
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
FAULT TOLERANT COMPUTING TESTBED:

A TOOL FOR THE ANALYSIS OF HARDWARE AND
SOFTWARE FAULT HANDLING TECHNIQUES

by

John C. Payne, Jr.

December 1998

Thesis Advisor:
Second Reader:

Alan Ross
Douglas J. Fouts

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1998

3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE
FAULT TOLERANT COMPUTING TESTBED: A TOOL FOR THE ANALYSIS OF
HARDWARE AND SOFTWARE FAULT HANDLING TECHNIQUES

6. AUTHOR(S)
Payne, John C. Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING
ORGANIZATION REPORT
NUMBER

10. SPONSORING/
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Operating computers in space requires the use of very expensive radiation hardened microelectronics devices. Unfortunately, the
United States radiation hardened market is rapidly shrinking and makes up a very small percentage of the commercial market. For
these reasons, and the fact that commercial-off-the-shelf (COTS) devices are cheaper, more capable, readily available, and software
availability is much greater, the use of COTS devices in future space systems is fast becoming a reality. A significant disadvantage
of COTS devices is their susceptibility to radiation induced single event upsets (SEUs), among other radiation effects which are
detrimental to electronic systems.

This thesis focuses on the board level design of a tool which enables the analysis of fault tolerant computing techniques in a
laboratory environment in the presence of radiation induced SEUs. When implemented, this tool will be beneficial to the study of
using COTS devices in space. The tool will provide the capability to analyze the performance of hardware redundancy techniques
and software algorithms intended to improve the performance of COTS microprocessors in this environment prior to their use in
designs intended for actual space applications. Cadence Concept™ design schematics, associated Verilog® code and simulation
results are presented to develop this concept.

14. SUBJECT TERMS
Fault Tolerant Computing, Triple Modular Redundancy (TMR), Commercial-off-the-shelf (COTS) Devices,
Single Event Upsets (SEUs), Cadence Concept Schematic, Verilog

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT
Unclassified

15. NUMBER OF
PAGES

184

16. PRICE CODE

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited.

FAULT TOLERANT COMPUTING TESTBED:
A TOOL FOR THE ANALYSIS OF HARDWARE AND SOFTWARE FAULT

HANDLING TECHNIQUES

John C. Payne, Jr.
Lieutenant, United States Navy

B.S., Virginia Polytechnic Institute and State University, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1998

Author:
L- - 1/ ccy^p^

John C. Payne, Jr.

Approved by: £jUZo^\ Q f^-c^iA

Alan Ross, Thesis Advisor

Douglas J. Foüts, Second Reader

Jeffrey B. Xnorr, Chairman
Department of Electrical and Computer Engineering

in &J£x-~

IV

ABSTRACT

Operating computers in space requires the use of very expensive radiation

hardened microelectronics devices. Unfortunately, the United States radiation hardened

market is rapidly shrinking and makes up a very small percentage of the commercial

market. For these reasons, and the fact that commercial-off-the-shelf (COTS) devices

are cheaper, more capable, readily available, and software availability is much greater,

the use of COTS devices in future space systems is fast becoming a reality. A

significant disadvantage of COTS devices is their susceptibility to radiation induced

single event upsets (SEUs), among other radiation effects which are detrimental to

electronic systems.

This thesis focuses on the board level design of a tool which enables the analysis

of fault tolerant computing techniques in a laboratory environment in the presence of

radiation induced SEUs. When implemented, this tool will be beneficial to the study of

using COTS devices in space. The tool will provide the capability to analyze the

performance of hardware redundancy techniques and software algorithms intended to

improve the performance of COTS microprocessors in this environment prior to their

use in designs intended for actual space applications. Cadence Concept™ design

schematics, associated Verilog® code and simulation results are presented to develop

this concept.

v

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B . PURPOSE 4

C . THESIS ORGANIZATION 5

II. PROCESSOR SELECTION 7

A. CHARACTERISTICS 7

1. COTS vs. Rad-hard 7
2 . CISC vs . RISC 10
3. Size, Pinout, Power 11
4. Bus Width and Memory Size . . '. 12
5 . Speed 13
6. Multiple Chip vs. Single Chip Implementations 14

B. PROCESSOR REVIEW 15
C. CHARACTERISTICS OF SELECTED PROCESSOR 18

1. CPU Core 2 0
2. System Control Co-Processor 2 0
3. Floating Point Co-Processor 20
4. Clock Generator Unit 21
5. Instruction and Data Caches 21
6. Bus Interface Unit 22
7. System Usage 23
8. Instruction Set Architecture 24
9. The pipeline Architecture 2 6

D. SUMMARY 27

III. HARDWARE REDUNDANCY 31

A. TRIPLE MODULAR REDUNDANCY (TMR) 31
1. Voting Techniques 35
2. Voting Issues 37

B. TRIPLE MODULAR REDUNDANT MICROPROCESSOR DESIGN 40

IV. TMR TESTBED DESIGN 45

A. OVERVIEW 45
1. Testbed Operation Summary 46
2. IDT R3081 Simulation 49

B. IDT R3 081 BUS INTERFACE 50
C. ADDRESS/DATA BUS DEMULTIPLEXING 60
D. DATA BUS VOTING 61
E. ADDRESS BUS VOTING 63
F. CONTROL BUS VOTING 64
G. ADDRESS DECODER 65
H. MEMORY/ERROR CYCLE CONTROLLER 67

1. RAM/ROM Cycle Controller 68
2 . FIFO Memory Cycle Controller 69
3 . Error Cycle Controller 71

.1. SYSTEM INTERFACE 7 6

V. SIMULATION RESULTS 79

A. NORMAL (ERROR FREE) RESULTS 80
B. INJECTED ERROR RESULTS 83

VI. CONCLUSION 91

APPENDIX A. TMR TESTBED DESIGN SCHEMATICS 95

VÜ

APPENDIX B. CADENCE SUPPLIED MODULES 107

A. A74FCT373 TRANSPARENT LATCH 107
B. IDT71256 32K X 8 SRAM 109
C. IDT72225LA 1K X 18 FIFO 109

APPENDIX C. USER DEFINED VERILOG® MODULES 111

A. IDT R3081 RISC MICROPROCESSOR BUS SIMULATOR 111
B. 32-BIT VOTER/ERROR DETECTOR AND TRANSCEIVER 125
C. 8-BIT VOTER/ERROR DETECTOR 129
D. 32-BIT VOTER/ERROR DETECTOR 132
E. MEMORY/ADDRESS DECODER 134
F. MEMORY/ERROR CONTROLLER 13 6
G. MEMORY READ/WRITE ENABLE CONTROLLER 142
H. 16-BIT NON-INVERTING TRI-STATE BUFFER 145
I. EPROM 147
J. SYSTEM INTERFACE 150

APPENDIX D. CADENCE SCRIPT CONTROL LANGUAGE FILES .' . . . 157

A. NORMAL (ERROR FREE) SCL FILE 157
B. ERROR SCL FILE 162

LIST OF REFERENCES 169

INITIAL DISTRIBUTION LIST 171

VI11

LIST OF FIGURES

Figure 1.
Figure 2.
Figure 3 .
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12 .
Figure 13 .
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18 .
Figure 19.
Figure 20.
Figure 21.
Figure 22 .
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43 .
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53 .
Figure 54.
Figure 55.
Figure 56.

IDT R3081 Block Diagram. From Ref. [5] 19
Instruction Formats. After Ref. [5] 25
5-Instructions per Clock Cycle. After Ref. [5] 26
Triple Modular Redundancy. After Ref. [6] 33
TMR with triplicated voters. After Ref. [6] 33
Multiple-stage TMR system. After Ref. [6] 34
1-bit majority voter. After Ref. [6] 36
Mid-value select technique. After Ref. [6] 38
Simple R3081 Board Design. After Ref. [9] 41
TMR R3081 Board Design 42
Testbed FIFO Interface 44
IDT R0381 Burst Read Cycle. From Ref. [9] 51
IDT R3 081 Write Cycle. From Ref. [9] 52
IDT R3081 Single Datum Read. From Ref. [9] 52
IDT R3081 Bus Interface Simulator 53
Simulated R3081 Burst Read Cycle 56
Simulated R3081 Write Cycle 58
Simulated R3 081 Read Cycle 59
Address/Data Bus Demultiplexing 60
Data Bus Voting 62
Address Bus Voting 64
Control Bus Voting 65
Address Decoder 66
Memory/Error Cycle Controller 67
FIFO Controls 70
FIFO Controls During Burst Read Cycle 72
FIFO Controls During Write Cycle 73
FIFO Controls During Read Cycle 74
 76
 78
 96
 97
 98

. 99
 100

System Interface
System Interface Controls.
TMR Testbed Schematic
TMR Testbed Schematic
TMR Testbed Schematic
TMR Testbed Schematic
TMR Testbed Schematic
TMR Testbed Schematic
TMR Testbed Schematic
TMR Testbed Schematic
TMR Testbed Schematic
TMR Testbed Schematic
TMR Testbed Schematic

of 11)
of 11)
of 11)

(4 of 11)....
(5 of 11)
6 of 11) 101
7 of 11) 102
[8 of 11) 103
(9 of 11) 104
[10 of 11) 105
[11 of 11) 106

A74FCT373 Transparent Latch 107
Address Demultiplexer 107
Address Demultiplexer Schematic 108
IDT71256 SRAM 109
IDT72225LA FIFO 109
R3081 Microprocessor Bus Simulator Ill
32-Bit Voter/Error Detector and Transceiver 125
8-Bit Voter/Error Detector 129
32-Bit Voter/Error Detector 132
Memory/Address Decoder 134
Memory/Error Controller 136
Memory Read/Write Enable Controller 142
16-Bit Non-Inverting Tri-State Buffer 145
EPROM 147
System Interface 150

IX

X

ACKNOWLEDGMENT

The author would like to thank Mr. Kenny Clark and Mr.
Mark Hall for their assistance in obtaining information
about the triple-vote R3 081 experiment which was part of the
Microelectronics and Photonics Testbed.

The author wants to thank Professor Ross for his
guidance and patience during the work in performing this
investigation.

XI

XI1

I. INTRODUCTION

A. BACKGROUND

A fault tolerant system is one that can continue the

correct performance of its specified tasks in the presence

of hardware and/or software faults. Fault tolerance is the

attribute that enables a system to achieve fault tolerant

operation. In many sensitive applications fault tolerant

computing techniques are employed where the failure of these

systems could lead to disastrous results. Examples of such

sensitive applications include aircraft and spacecraft

flight control systems and power plant control systems. A

recent example of such a failure occurred with the loss of

PanAmSat's Galaxy 4 satellite.

Galaxy 4's attitude control system and
an identical backup unit conked out at
approximately 6 p.m. Eastern Daylight
Time May 19 [1998], sending the
satellite into an uncontrolled spin.
[Ref. 1]

While the loss of this satellite was not necessarily

"disastrous," it could indeed prove to be very expensive.

The Galaxy 4 cost between $200 million and $250 million to

build, launch, and insure. [Ref. 1]

In the space environment there are three categories of

radiation effects in integrated circuits. Total Dose

Effects, Dose Rate Effects, and Single Event Effects.

Within Single Event Effects are the four sub-categories:

Single Event Upset (SEU), Single Event Latchup (SEL), Single

Event Gate Rupture (SEGR), and Single Event Burnout (SEB).

Total Dose Effects and Dose Rate Effects are destructive

effects in integrated circuits arising from solar flares,

neutrons from nuclear detonations, and protons in the Van

Allen belts. In addition, three of the subcategories of

single event effects (SEL, SEGR, and SEB) are also

destructive. These effects must be compensated for with the

use of radiation hardening and shielding techniques. On the

other hand, SEUs, which are essentially bit flips occurring

within a device due to ionized charge being collected in a

circuit, can be reduced by hardware architecture and

software techniques such as redundancy.

Operating computers in the space environment requires

the use of very expensive radiation hardened (rad-hard)

devices. In addition to the use of rad-hard technology,

space systems also employ many other approaches to fault

tolerance such as hardware redundancy, fault tolerant

software algorithms, error detecting/correcting codes, etc.

While' deploying reliable, fault tolerant computers in space

will always require rad-hard components, the number of

suppliers of such devices is decreasing and the costs of the

devices continues to increase. Many manufacturers are

abandoning their production of rad-hard devices in favor of

the more lucrative, booming consumer electronics industry.

According to the May 1997 issue of Military & Space

Electronics, "U.S. Department of Defense (DOD) leaders are

struggling to find new ways to safeguard the dwindling

supplier base of radiation-hardened microelectronics that

are necessary to meet future spacecraft requirements." [Ref.

2]

While the commercial satellite industry may fill the

void, it is estimated that DOD must increase investments

from $30 million per year to nearly $60 million per year to

advance the technology and ensure a base of reliable

suppliers. [Ref. 2]

The issue is in the fabrication process of the

microelectronic devices. The production of the unique rad-

hard devices requires specialized processes and demand for

them is considerably less than that for consumer

electronics. With the costs of modern fabrication lines

reaching nearly $2.8 billion apiece, it is obviously cost

prohibitive for companies to merely have two separate

production facilities: one for rad-hard devices and one for

non-rad-hard devices. A company producing both rad-hard and

non-rad-hard devices will have to give up precious

fabrication time to make a few devices for a limited market.

This precious time takes away from the production of

microelectronics for a booming PC market and could mean

millions, if not billions, of dollars in lost revenue.

Herein lies the fundamental economic reason for the

escalating prices of rad-hard microelectronics.

An approach to solving this problem, which is receiving

considerable amount of research, is the development of new

processes that allow companies to manufacture rad-hard

devices without major changes to their fabrication process.

Another possible approach is the development of alternative

approaches in hardware and software fault tolerant design

with non-rad-hard commercial-off-the-shelf (COTS)

microelectronics to reduce the dependency on rad-hard

technology. This research project addresses the latter

approach.

.B. PURPOSE

The goal of this research is to develop a fault

tolerant computing testbed for use as a tool for the

analysis of hardware and software fault handling techniques.

In particular, the testbed is intended to allow the analysis

of techniques to resolve faults caused by single event

upsets. The testbed computer will employ a three CPU,

triple modular redundant (TMR), design. The TMR testbed

4

will allow flexibility in the hardware and software design

enabling direct performance analysis of various approaches

to fault tolerant design. The testbed will enable fault

injection simulations and direct radiation testing on the

system for data analysis and hardware/software benchmarking.

This project will help in the development of cheaper

alternatives to the highly expensive radiation hardened

devices. 'It will further the research of radiation testing

and single-event upset research by providing a testbed for

analysis of various hardware redundancy techniques as well

as any software techniques chosen to be employed. The

testbed will be used in direct radiation testing in a

laboratory environment and/or placed in a satellite as an

experimental payload to study the effects in the actual flux

environment of the satellite. This study will benefit our

development of small, economical satellites for both

commercial and military use.

C. THESIS ORGANIZATION

The organization of this thesis largely follows the

approach taken to the design of a TMR system. Chapter I is

a brief introduction with background information. Chapter

II describes the microprocessor selection process and the

characteristics of the selected processor. Chapter III

presents various topics in hardware redundancy including

5

triple modular redundancy, voting techniques,

synchronization and timing issues. Chapter IV contains the

actual hardware design of the testbed. Simulation and

results are presented in Chapter V. Finally the

conclusions drawn from this research are presented in

Chapter VI.

II. PROCESSOR SELECTION

A. CHARACTERISTICS

The place to start when designing a computer is with

processor selection. The selection of the processor, or

processors in the case of hardware redundancy, is where

critical decisions are made regarding expected operating

environment, necessary performance, power consumption and

space limitations.

1. COTS vs. Rad-Hard

In June 1994, a directive was issued by then Secretary

of Defense William Perry requiring the use of COTS parts in

military systems whenever possible. As previously

discussed, the availability of rad-hard parts is diminishing

and as a result military, NASA, and commercial spacecraft

builders may eventually be forced to use COTS technology.

There are significant advantages to using COTS devices.

COTS devices tend to be state-of-the-art and are therefore

significantly more capable than rad-hard devices. To put it

in perspective, often the choice is between a COTS Pentium

or a rad-hard 286 or 386 microprocessor. As an example, in

July 1998 Space Electronics announced intentions to release

a single-board computer for space designed with primarily

7

COTS devices. This product, running at 66 MHz, is intended

to compete with the RAD6000 from Lockheed Martin Federal

Systems, which runs at 33 MHz and costs twice as much. [Ref.

3] The processor used in the new release product, the 6U

VME SB486R radiation hardened 32-bit single board computer

based on Intel's 80486 microprocessor, is still an order of

magnitude slower than the 3 00-400 MHz microprocessors

currently available for desktop PCs.

Other advantages of COTS systems include lower cost and

better availability. Often a rad-hard microprocessor can

cost many (10-15) thousands of dollars more than more

capable, current technology COTS devices. In addition, rad-

hard devices often have uncertain delivery times. Because

of the declining rad-hard device market, these devices often

must be special ordered from a limited number of available

manufacturers. On the other hand, manufacturers of COTS

devices often have stockpiles and can deliver a product

within 24-48 hours. Many powerful COTS devices can even be

obtained over the counter at several big name electronics

stores.

Commercial software is much more available for COTS

devices. Software development is a very costly part of

building any computer system. As the complexity of

microprocessors increases, so does the complexity of the

8

required software. If rad-hard devices are not identical to

their COTS counterparts, software must be specially designed

for this device. This is both expensive and time consuming.

In addition, this specially designed software will have to

undergo rigorous testing to check its response to unexpected

situations. [Ref. 4] This is in contrast with software for

COTS devices where large companies design software for these

devices. The software becomes proven over time through the •

high volume of users and the consumers actually participate

in the testing of these products.

Finally, while not necessarily an advantage of COTS

devices themselves, it is possible to achieve some degree of

radiation hardness by employing various techniques to shield

COTS devices which are not themselves radiation hardened.

[Ref. 4] While the use of shielding has shown to improve

the reliability of devices in radiation environments, it

adds to the physical space and weight requirements.

■However, there are disadvantages to using COTS devices.

While the reliability of COTS devices used in benign

environments is known, their reliability in stressing

environments (radiation, thermal, vibration) is uncertain.

[Ref. 4] The susceptibility of COTS devices to radiation

induced failures is a major concern, and survivability in

the space environment may be difficult with many COTS

devices. While some COTS devices may have hardness levels

of 100 kRADs or more, this hardness varies greatly from one

device to another. This hardness varies even for devices

produced by the same manufacturer. Because of this lack of

hardness assurance by manufacturers, each individual device

will have to undergo testing and effectively be space

qualified.

Another disadvantage of COTS devices is they change

rapidly. The semiconductor industry generally cycles new

technology every 6-18 months. The devices continue to get

faster, more capable, and require less power. The advantage

here is clear for devices intended for the normal, non-

stressing environment. However, as the devices get smaller,

faster, and more complex, they are becoming more susceptible

to radiation. Finally, in many cases, the required safety

and reliability specifications, especially for military

applications, simply cannot be met by COTS devices. [Ref. 4]

2. CISC vs. RISC

Reduced instruction set computer (RISC) machines were

designed to take advantage of the caching, prefetching,

pipelining, and superscalar methods that were invented to

improve the performance of complex instruction set computer

(CISC) machines. The CISC machines depend on long complex

instructions. The operand access for these instructions

10

required complex address arithmetic. As a result, CISC

machines were unable to take full advantage of these

techniques.

The RISC focuses on reducing the number and complexity

of instructions in the machine. This allows a reduction of

actual machine hardware complexity. Early on, RISC machines

operated such that each instruction completed in one clock

cycle. This was achieved by limiting the instructions in

RISC machines to a fixed length, usually 1 word. Thus, in a

32-bit machine, one 32-bit word specifies everything there

is to know about the instruction.

With the advent of pipelining, the current goal is that

(at least) one instruction will begin and (at least) one

instruction will complete during every clock cycle. Since

program execution time depends on throughput and not on

individual instruction execution times, issuing (and thus

completing) one instruction per clock cycle is an

appropriate goal. This is achieved by making instructions

simple, not by making the clock period longer.

3. Size, Pinout, Power

The size of the device determines the physical space

required on the assembled board. Space and weight

constraints are critical limitations imposed on systems for

satellites and other space applications. Similarly, power

11

consumption is a critical factor in space applications where

a steady, endless supply of power from a standard 120 volt

outlet is not available. In applications where power comes

from batteries and/or solar cells, available power is a

precious commodity.

The pinout of the device is often directly related to

its physical size. In addition, many devices reduce their

pinout requirements by having individual address and data

lines multiplexed together on one interface pin.

4. Bus Width and Memory Size

The bus width of COTS devices essentially follows

current trends. While many processors are available today

with 64-bit architectures, the RAD6000 microprocessor

(considered to be the industry standard for radiation

hardened microprocessors) incorporates a 32-bit

architecture. Compared to 32-bit architectures, a 64-bit

bus effectively doubles (design dependent) the pinout

requirements and correspondingly increases the power

consumption of the device.

As bus size increases, the complexity of the

interConnectivity hardware increases as well. Particularly

in a TMR design where 3 microprocessors are connected

together with voting hardware, increasing the bus width from

12

32-bits to 64-bits requires a rather significant increase in

hardware and logic.

The size of the physical memory that the processor can

use is a significant factor in space applications as well.

In space applications where large volume secondary storage

media is generally not available, the bigger the physical

memory potential the better. Of course, this is essentially

limited by the bus architecture of the device. A device

with a 64-bit bus can accommodate a larger physical memory

space than a 32-bit bus device. Without large secondary

storage media, all operations will be performed using ROM

and RAM with varying combinations of ROM and RAM types

depending on the application. Therefore, it is necessary

that the available physical address (memory) space be large

enough to accomplish the intended tasks.

5. Speed

The speed of the device is an important issue.

However, in a TMR design, the speed at which the system can

operate will be limited by the propagation time of the

voting and vote error control logic as well as the memory

setup and hold times. Although new personal computers are

currently available with processors running at 300-400 MHz,

the current new radiation hardened microprocessors run at

33-66 MHz.

13

The speed of the microprocessor chosen for this TMR

design will be limited by the critical path logic

propagation time in the several FPGAs chosen to implement

the voting and vote error control.

6. Multiple Chip vs. Single Chip Implementations

The tradeoff associated with a single chip processor

versus a processor which requires additional hardware

peripheral devices is a significant issue. This is

especially true in a TMR design where each address/data line

as well as each control line has to be voted to ensure

agreement between the three processors. In addition, in

space applications the potential for radiation induced error

increases with each additional piece of hardware added.

Other problems include fault localization. With

microprocessors with external peripheral device

requirements, voting and vote error control complexity is

increased. Also, board reliability is inversely

proportional to the number of chips on it.

The overall complexity of the board design increases

as well with microprocessors with external peripheral device

requirements. In a TMR design, this increased complexity is

compounded. In a single chip microprocessor, the associated

interface complexity is internal to the device. Therefore

radiation-induced faults are limited to a single device when

14

performing processor voting which corresponds to simpler

voting logic and less hardware requirements.

B. PROCESSOR REVIEW

As part of this research, several microprocessors were

analyzed based on the microprocessor characteristics

discussed in the preceding section. Tables 1, 2, and 3

contain data concerning the various COTS CISC and RISC

microprocessors that were considered in developing the

testbed.

The processor chosen was the R3 081 RISC Microcontroller

manufactured by Integrated Device Technologies (IDT). The

reasons for this selection were many. From the outset of

this research project, the intent was to choose a COTS

device for the TMR design.

The R3 081 is a COTS, single chip, RISC architecture

machine, with a 32-bit multiplexed address/data bus. The

highly flexible and user configurable device can run between

20 and 50 MHz and is readily available.

The determining factor for selecting the R3 081 was the

availability of radiation environment performance data from

the Naval Research Laboratory (NRL). The R3 081 was used in

a triple vote experiment deployed on the Microelectronics

and Photonics Testbed (MPTB). The MPTB is a space

experiment launched in 1997 into a high radiation orbit to

15

test performance, reliability, and survivability of new

microelectronics and photonic devices operating in the space

radiation environment. The triple vote experiment was one

of 24 experiments onboard the MPTB which were individually

scheduled by a core controller. The purpose of this

experiment was to measure SEU, SEL, and Total Dose effects

in IDT R3081 microprocessors vs. epi thickness. The three

microprocessors used had epi thicknesses of 6, 8, and 12

microns respectively. The MPTB design was obtained from NRL

and used as a starting point for the testbed designed in

this research project.

Characteristic AM29000 AM29050 PowerPC 603e
Manufacturer AMD AMD IBM, Motorola
Processor
Architecture

Streamlined
Instruction

Streamlined
Instruction

RISC

Package 168-PQFP or 169-
PGA

169-PGA

Floating Point
Accelerator

Y (off chip) Y Y

Memory Management
Unit

Y Y Y

Speed (MHz) 16-33 20-40 200-250
Integer
Multiply/Divide

Y N Y

Bus Architecture 32-bit 3 bus 32-bit 3 bus Selectable 64-/32-
bit data bus, 32-
bit address bus

Demultiplex Signal N/A N/A N/A
Physical Address
Space
Power (watts) < 1 < 1 3.5 - 5.8
Single Chip N Y Y
Built-in Master/Slave Y Y Y 1

Table 1. Microprocessor Review (1 of 3)

16

Characteristic PowerPC 604e PowerPC 750 R3081

Manufacturer IBM, Motorola IBM, Motorola IDT
Processor
Architecture

RISC RISC MIPS/RISC

Package 255-CBGA 360-CBGA 84-pin MQUAD/PLCC

Floating Point
Accelerator

Y Y Y

Memory Management
Unit

Y Y Y

Speed (MHz) 250-350 200-300 20-50

Integer
Multiply/Divide

Y Y (3) Y (2)

Bus Architecture 64-bit data, 32-
bit address

32-bit data, 64-
bit address

32-bit
address/data

multiplexed

Demultiplex Signal N/A N/A Y
Physical Address
Space

4GB

Power (watts) 6.0-14.5 4.7-11.0 2.375-4.125

Single Chip Y Y Y
Built-in Master/Slave N N N

Table 2. Microprocessor Review (2 of 3).

Characteristic R36100 R4650 R5000

Manufacturer IDT IDT IDT
Processor
Architecture

MIPS/RISC MIPS-III/RISC MIPS-IV/RISC

Package 208-pin MQUAD 288-pin MQUAD 223-pin CPGA or
272-ball SBGA

Floating Point
Accelerator

N Y Y

Memory Management
Unit

Y Y Y

Speed (MHz) 20-33 100-180 200
Integer
Multiply /Divide

Y Y Y

Bus Architecture 8-, 16-, 32-bit

programmable
address and data

32- or 64-bit '
address/data
multiplexed

64-bit
address/data
multiplexed

Demultiplex Signal N/A Y Y
Physical Address
Space

4 GB 4GB

Power (watts) 2-3 1.646-3.465 7.59-8.25
Single Chip Y Y Y
Built-in Master/Slave N N N

Table 3. Microprocessor Review (3 of 3)

17

C. CHARACTERISTICS OF SELECTED PROCESSOR

The IDT R3 0xx family of microprocessors is intended to

offer the high-performance associated with the MIPS RISC

architecture for low-cost, simplified, power sensitive

applications. [Ref. 5] Some features of the R3 081E include:

• High level of integration minimizes cost
• Over 40 MIPS at 50 MHz
• Low cost 84-pin packaging
• Large on-chip user configurable instruction and data

caches
• On chip Floating Point Accelerator (FPA)
• 20 through 50 MHz operation
• Multiplexed address/data bus interface with low

cost, low speed memory systems with high .speed CPU
support

• On-chip 4-deep write buffer eliminates memory write
stalls

• On-chip 4-deep read buffer supports burst or simple
block reads

Figure 1 shows a block diagram of the IDT R3081E

microprocessor. Some of the highlights include:

• System Control Coprocessor (CPO)
S Dedicated Exception/Control Registers-
■S Dedicated Memory Management Registers

• Integer CPU Core
•f 32 32-bit general registers
S ALU, Shifter, Mult/Div Unit, Address Adder, and PC

Control
• Floating Point Coprocessor (CPl)

S 16 64 bit registers
S Exponent, Add, Divide, and Multiply Units
S Floating Point Exception/Control

• Configurable Instruction and Data Caches
• 4-deep Read and Write Buffers

18

Clkln ■
Clock Generator

Unit/Clock Doubler

lrtt(5:0) ■

Master Pipeline Control

System Control
Coprocessor

(CPO)

BtCond (3:2,0)

Integer
CPU Core

Exception/Control
Registers

Memory Management
Registers

Translation
Lookaside Buffer

(64 entries)

32

General Registers
(32x32)

ALU

Shifter

MultOivUnit

Address Adder

PC Control

i IVfrtual Address
FP Interrupt

Physical Address Bus

Y Configurable
Instruction

Cache
(16kBßkB)

36

Configurable
Data

Cache
(4kB/8kB)

i Data Bus

Parity
Generator

4-deep
Read
Buffer

I
I

V

R3051 Superset Bus Interfaoe Unit

4-deep
Write
Buffer

DMA
Arbiter

BIU
Control

Coherency
Logic

▼
Address/

Data

\ \\ X

Floating Point
Coprocessor

(CP1)

Register Unit
(16x64)

Exponent Unit

Add Unit

Divide Unit

Multiply Unit

Exception Control

1
Data Bus

DMA
Control

Rd/Wr s Qk Invalidate
Control Control

Figure 1. IDT R3081 Block Diagram. From Ref. [5]

19

1. CPU Core

The CPU Core is a full 32-bit RISC integer execution

engine, capable of sustaining close to a single cycle per

instruction rate. It contains a 5 stage pipeline and 32

orthogonal 32-bit registers. [Ref. 5]

2. System Control Co-Processor

The integrated on-chip System Control Co-Processor

(CPO) manages both the exception handling of the CPU and the

virtual to physical address mapping. The fully associative

64-entry Translation Lookaside Buffer (TLB) maps 4kB virtual

pages into the physical address space. The virtual to

physical mapping includes kernel segments which are hard-

mapped to physical addresses, and kernel and user segments

which the TLB maps 4kB page by 4kB page into anywhere in the

4GB (potentially) physical address space. The TLB also

allows 8 pages to be locked by the kernel to ensure

deterministic response in real-time applications. [Ref. 5]

3. Floating Point Co-Processor

The R3 081 also incorporates an integrated R3010A

compatible FPA which is co-processor 1 (CP1) to the CPU.

The high-performance co-processor provides separate add,

multiply, and divide functional units for single and double

precision floating point arithmetic. To the software

20

engineer, the FPA simply appears as an extension of the

integer execution unit with 16 dedicated 64-bit floating

point registers. The software references these as 32 32-bit

registers when performing loads or stores. [Ref. 5]

4. Clock Generator Unit

The on-chip clock generator manages the interaction of

the CPU core, caches, and bus interface. It includes a

clock doubler to provide a higher frequency signal to the

internal execution core. [Ref. 5]

5. Instruction and Data Caches

The on-chip cache is default configured to 16kB

Instruction Cache and 4kB Data Cache. However, the cache

can be reconfigured by system software to 8kB of Instruction

and 8kB of Data caches. The instruction cache is organized

with a line size of 16 bytes (four 32-bit entries) which

achieves hit rates in excess of 98% in most applications.

The data cache is organized as a line size of 4 bytes (one

word) and achieves hit rates near 95% in most applications.

The high hit rates associated with the instruction and data

cache contribute significantly to the performance of the

R3081E. The instruction cache is a direct mapped cache

capable of caching instructions from anywhere in the 4GB

physical address space. The instruction cache is

21

implemented using physical addresses and physical tags

(rather than virtual addresses or tags) to eliminate the

requirement of flushing on context switch. As with the

instruction cache, the data cache is a direct mapped

physical address cache capable of mapping any word within

the 4GB physical address space. However, the data cache is

implemented as a write-through cache to insure that main

memory is always consistent with cache memory. In order to

minimize processor stalls due to data write operations, the

bus interface utilizes a 4-deep write buffer which

"captures" address and data information at the processor

execution rate, allowing it to be written to main memory at

the memory speeds with minimum impact to overall system

performance. [Ref. 5]

6. Bus Interface Unit

Because the R3 081 uses its large internal caches to

provide the majority of the bandwidth requirements of the

execution engine, it can utilize a much simpler bus

interface connection to slower memory. The bus interface

utilizes a 32-bit address and data bus multiplexed onto a

single set of pins. It also provides an ALE (Address Latch

Enable) output signal to de-multiplex the A/D bus, and

simple handshaking signals to process CPU read and write

requests. The DMA Arbiter allows an external master to

22

control the external bus if desired. As described

previously in the Instruction and Data Cache section, a 4-

deep write buffer decouples the speed of the execution

engine from the speed of the main memory system. The write

buffers capture and FIFO processor address and data

information in store operations and schedule them on the bus

at a rate that can be handled by the system memory. The

read interface is capable of both single word and quad word

reads. Single word reads utilize a simple handshake, and

quad word reads can utilize either a simple handshake or a

tighter timing mode when the memory system can burst data at

the processor clock rate. In order to accommodate slower

quad word reads, the 4-deep read buffer FIFO is utilized

allowing the external interface to queue data within the

processor before releasing it to perform a "burst" fill of

the internal caches. [Ref. 5]

7. System Usage

The bus interface of the■IDT R3 0xx (including the

R3081E) family was specifically designed to allow a wide

range of memory systems. A typical system using off-the-

shelf logic devices contains simple transparent latches to

de-multiplex the R30xx address and data busses and the A/D

bus; the data path between the memory system and the A/D bus

is managed by octal transceivers; and a small set of PALs is

23

used to control the various data path elements, and to

control the handshake between the memory and the processor.

[Ref. 5]

8. Instruction Set Architecture

All instructions and addresses are 32 bits and the CPU

utilizes a 5-stage pipeline to achieve a near one

instruction per clock cycle execution rate. There are five

basic groups of instructions:

• Load/Store
■/ Move data between memory and general registers

• Computational
S Perform arithmetic, logical, and shift operations

on values in registers
• Jump and Branch

S Change control flow of program
• Co-Processor

S Perform operations on the co-processor set
• Special

•S Movement of data between special and general
registers, system calls, breakpoint operations

Figure 2 displays the instruction formats of the R3 081

processor. Load/Store instructions are all encoded as

Immediate, or I-Type, instructions. Computational

instructions are encoded as either Register, or R-Type,

instructions when both source operands and the result are

general registers or I-Type when one of the source operands

is a 16-bit immediate value. Jump and Branch instructions

can be either J-Type (target address is PC + 2 6-bit

24

immediate value), R-Type (target address is 32-bit value

contained in one of general registers), or I-Type (Branch

Instructions where target address is formed from a 16-bit

displacement relative to the PC). Jump and Link

instructions save a return address in register R31. Co-

processor Loads and Stores are always I-Type. Special

instructions are always encoded as R-Type. [Ref. 5]

I-Type (Immediate)

31 26 25 21 20 16 15 0

op rs it immediate

J-Type (Jump)

31 26 25

op target

R-Type (Register)

31 26 25 21 20 16 15 11 10 6 5

op rs it rd shamt funct

where:
op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target register or branch condition
immediate 16-bit immediate, or branch or address displacement
target 26-bit jump target address
rd 5-bit destination register specifier
shamt 5-bit shift amount
funct 6-bit function field

Figure 2. Instruction Formats. After Ref. [5]

25

Table 4 lists the instruction set mnemonics of R3081E

processor.

9. The Pipeline Architecture

The execution of a single instruction is performed in

five separate steps:

• Instruction Fetch (IF)
•S Instruction virtual address translated to physical

address and read from internal instruction cache
• Read (RD)

S Instruction decoded and required operands read
• ALU (ALU)

S Required operation is performed
• Memory Access (MEM)

S If instruction was a Load or Store, the data cache
is accessed

• Write Back (WB)
•/ Results from ALU step updated in on-chip register

file

Figure 3 illustrates the pipeline and the capability to

execute 5 instructions per cycle. Pipeline hazards in the

I#l IF RD ALU MEM WB

I#2 IF RD ALU MEM WB

I #3 IF RD ALU MEM WB

I#4 IF RD ALU MEM WB

I#5 IF RD ALU MEM WB

Current
Clock
Cycle

Figure 3. 5-Instructions per Clock Cycle. After Ref. [5]

26

R3081 are handled in both hardware and software. The

hardware methods used are forwarding and stalling (minimal).

The hardware methods deal with instructions that need a

result from the register file of the immediately prior

instruction and in integer multiply and divide operations

where an instruction attempts to access the LO or HI

registers prior to completion of the multiply or divide. If

this happens, the requesting instruction will be blocked

until the result is ready. The software method used is an

optimizing compiler and peephole scheduler of the assembler.

Two instruction classes which use the software method are

Load instructions and Jump and Branch instructions. Both of

these instruction classes have a delay, or latency, of one

cycle. Rather than include extensive pipeline control

logic, the CPU gives responsibility for dealing with "delay

slots" to software. The peephole optimizer, performed as a

part of compilation or assembly, can reorder the code to

insure that the instruction in the delay slot does not

require the logical result of the "delayed" instruction.

[Ref. 5]

D. SUMMARY

Having completed a review of some of the desired

characteristics of a microprocessor to be investigated when

designing a system, the IDT R3 081 RISC microprocessor was

27

OP

LB
LBU
LH
LHU
LW
LWL
LWR
SB
SH
SW
SWL
SWR

ADDI
ADDIU
SLTI
SLTIU

ANDI
ORI
XORI

LUI

ADD
ADDU
SUB
SUBU
SLT
SLTU
AND
OR
XOR
NOR

SLL
SRL
SRA

SLLV
SRLV
SRAV

 DESCRIPTION
Load/Store Instructions
Load Byte
Load Byte Unsigned
Load Halfword
Load Halfword Unsigned
Load Word
Load Word Left
Load Word Right
Store Byte
Store Halfword
Store Word
Store Word Left
Store Word Right

Arithmetic Instructions
(ALU Immediate)
Add Immediate
Add Immediate Unsigned
Set on Less Than Immediate
Set on Less Than Immediate Unsigned

AND Immediate
OR Immediate
Exclusive OR Immediate

Load Upper Immediate

Arithmetic Instructions
(3-operand, register type)
Add
Add Unsigned
Subtract
Subtract Unsigned
Set on Less Than
Set on Less Than Unsigned
AND
OR
Exclusive OR
NOR

Shift Instructions
Shift Left Logical
Shift Right Logical
Shift Right Arithmetic

Shift Left Logical Variable
Shift Right Logical Variable
Shift Right Arithmetic Variable

OP

MULT
MULTU
DIV
DIVU

MFHI
MTHI
MFLO
MTLO

J
JAL
JR

JALR
BEQ
BNE
BLEZ

BGTZ
BLTZ
BGEZ

BLTZAL
BGEZAL

SYSCALL
BREAK

LWCz
SWCz
MTCz
MFCz
CTCz
CFCz
COPz
BCzT
BCzF

MTCO
MFCO
TLBR
TLBWI
TLBWR
TLBP
RFE

DESCRIPTION
Multiply/Divide Instructions
Multiply
Multiply Unsigned
Divide
Divide Unsigned

Move From HI
Move To HI
Move From LO
Move To LO

Jump and Branch Instructions
Jump
Jump and Link
Jump to Register

Jump and Link Register
Branch on Equal
Branch on Not Equal
Branch on Less Than or Equal to
Zero
Branch on Greater Than Zero
Branch on Less Than Zero
Branch on Greater Than or Equal to
Zero
Branch on Less Than Zero and Link
Branch on Greater Than or Equal to
Zero and Link

Special Operations

System Call
Break

Coprocessor Instructions
Load Word from Coprocessor
Store Word to Coprocessor
Move to Coprocessor
Move from Coprocessor
Move Control to Coprocessor
Move Control from Coprocessor
Coprocessor Operation
Branch on Coprocessor z True
Branch on Coprocessor z False

System Control Coprocessor (CPO)
Instructions
Move to CPO
Move from CPO
Read Indexed TLB Entry
Write Indexed TLB Entry
Write Random TLB Entry
Probe TLB for Matching Entry
Restore from Exception

Table 4. Instruction Mnemonics. After Ref. [5]

28

chosen. Although the performance of the R3 081 is much less

than that of the current microprocessors available, it does

have the performance and computing power necessary for

analyzing fault tolerant improvement techniques in the

presence of radiation induced SEUs. In addition, the R3081

has previously been tested by the Naval Research Laboratory

and flown in actual space satellite experiments. Finally,

the R3081 employs a flexible bus interface which makes it a

good candidate for use in a redundant hardware design.

In the next chapter, some of the concepts of triple

modular redundancy, a hardware redundancy technique, are

covered. This is followed by a description of a simple

R3081 based system. Finally, a brief overview of how three

R3 081 processors were incorporated into a redundant design

is presented.

29

30

III. HARDWARE REDUNDANCY

There are many techniques available to achieve some

degree of fault tolerance. Fault tolerant systems basically

employ some combination of hardware, software, time, or

information redundancy. The purpose of this chapter is to

introduce the concept of triple modular redundancy (TMR).

The initial design of the testbed will employ a TMR design

and as such TMR issues are dealt with thoroughly. The

overall goal of this project is to design a testbed which

allows flexibility in the ultimate methods employed to

achieve fault tolerance. This will allow the user to

compare and contrast the fault tolerant performance of many

combinations of the different techniques.

A. TRIPLE MODULAR REDUNDANCY (TMR)

A common form of hardware redundancy is triple modular

redundancy (TMR). The basic concept is fairly simple. It

involves the triplication of the hardware and performing a

majority vote to determine the output of the system. This

technique is considered to be passive hardware redundancy in

that it masks the occurrence of faults. Fault tolerance is

achieved through the use of majority voting techniques

without the need for fault detection or system recovery.

[Ref. 6] If one of the modules becomes faulty, the two

31

remaining modules, which are fault-free, mask the fault when

the majority vote is performed. In short, TMR uses three

identical modules, performing identical operations, with a

majority voter determining the output, as shown in Figure 4.

In a TMR system with three microprocessors, an SEU

could cause one processor to branch to a completely wrong

address. That processor will continue to cause errors on

all votes until it is reset to the state of the correct

processors. Until it is reset, the system is no longer a

TMR system. It is a dual processor with comparison system

which provides for error detection but no error correction.

One of the primary disadvantages with a TMR system is

that the system can be no more reliable than the voter

itself. Indeed the voter becomes a single point of failure—

if the voter fails, the entire system fails. [Ref. 6]

Several techniques can be used to overcome this. One method

is the use of triplicated voters which produce three

independent outputs. Here again three identical modules

receive identical inputs and perform the same operations on

those inputs. Each module provides its output to three

separate and independent voters to produce the three

results, as shown in Figure 5. Each output is correct as

long as no more than one module, or input, is faulty. In

essence, the voter is no longer the single point of failure.

32

A multi-stage TMR system can be built by

interconnecting this triplicated voter approach as shown in

Figure 6. [Ref. 6] A multi-stage system with triplicated

voters can provide some error correction in that an error in

a module of one stage is masked and the voters provide three

Input 1 Module 1

Input 2 Module 2

Input 3 Module 3

-►Output

Figure 4. Triple Modular Redundancy. After Ref. [6]

Input 1 Module 1

Input 2 Module 2

Input 3—► Module 3

-►Output 1

-►Output 2

-►Output 3

Figure 5. TMR with triplicated voters. After Ref. [6]

33

independent and "corrected" results to the next stage. At

the final stage, the three independent outputs can then be

voted again to form a single output. However, this final

voter could again become the single point of failure.

Input 1 Module 1

Input 2 Module 2

Input 3 —► Module 3

Module 1

Module 2

Module 3

Figure 6. Multiple-stage TMR system. After Ref. [6].

A generalization of the TMR approach is N-Modular

Redundancy (NMR). [Ref. 6] TMR is based on the techniques

of NMR. There are N redundant modules vice three. In

general, N is chosen to be odd so that majority voting

techniques can still be applied. The advantage gained is

that more module faults may be tolerated. In an NMR system

with N redundant modules, majority voting will allow the

system to tolerate faults in TN/21 - 1 modules. The

primary concerns associated with NMR system deal with added

logic hardware and circuit complexity. Clearly, one could

design a system that continues to employ NMR voting at

34

multiple stages to improve system reliability. Referring to

Figure 5, the triplicated voters could even be voted again

to ensure faults are detected in the voters themselves.

This could conceivably continue in an endless cycle.

Practical applications and design constraints often prevail

and are the limiting factor to choosing N in an NMR system.

[Ref. 6]

1. Voting Techniques

Voting may occur at several locations within a system.

Take, for example, a TMR system used as an industrial

process controller. [Ref. 6] The controller could sample

from three identical, independent sensors and perform a vote

to determine which sensor value to use. This data is

provided to three identical, independent modules to perform

some calculations on the sensor data, and then a majority

vote on these calculations is performed to perhaps adjust

the controls of the process. The voting can be used on both

analog and digital data. This approach masks and contains

the effect of a faulty sensor. An alternative method might

be to provide the values from each of the three sensors

directly to a dedicated module, perform the necessary

calculations, and then vote the results from the three

modules. Here, faulty sensor data would be allowed to

migrate into the processing modules. The tradeoffs between

35

the two approaches are slight but would obviously have to be

analyzed to determine the appropriate design based on the

application.

A hardware voter is a relatively simple circuit to

design and implement. All that is needed is a combinational

logic circuit that produces a 1 when a majority of the input

bits are 1 and a 0 when a majority of the input bits are 0.

An implementation of a one-bit majority voter is shown in

Figure 7. Alternately, the carry out output of a 1-bit full

adder will produce the necessary output to implement the 1-

bit majority voter. An 8, 16, 32, or 64-bit voter can be

constructed by replicating the circuit in Figure 7 in

Innnt A
)

Input R

)

\ \ "~~\

Input C.

) X 7
1 \ / _y j ^/

\
i

)

Figure 7. 1-bit majority voter. After Ref. [6].

parallel for each bit that needs to be voted. One can see

the amount of additional logic grows rapidly if, for

instance, the three independent modules in a TMR system to

be voted are 32-bit microprocessors. The desired

36

reliability will certainly have to be weighed against the

space, power, and'weight limitations, especially in

satellite and other space applications.

2. Voting Issues

In practical applications, timing will have to be

considered when performing majority voting. If the three

inputs to a majority voter arrive at different times, then

depending on when the output of the voter is sampled, an

incorrect vote may be generated. In many applications, an

incorrect result cannot be allowed even for a very small

period of time. [Ref. 6] There are techniques which can be

applied that will force the inputs to the voter to be

synchronized so that the output of the voter is sampled at

the correct time. One approach to achieving synchronization

involves a two-phase clock which drives master-slave D flip-

flops on each input to the majority voter. The costs of

using this synchronization approach will be in terms of

additional logic and timing delays.

Another problem that may be encountered in hardware

voting is that the three modules in a TMR system, or the

three sensors that feed the three modules, could disagree

slightly even in a fault-free environment. These devices,

sensors in particular, can seldom be produced so that they

generate identical results under the same circumstances. In

37

addition, a single analog-to-digital converter can produce

results that differ slightly in the least significant bits,

even if the exact same signal is applied to it several

different times. [Ref. 6] One technique used to get around

this is to ignore a set number of the least significant bits

generated. The assumption is that the result will differ in

only a known number of the least significant bits. An

alternative approach is the mid-value select technique. The

voter basically just selects the middle value of the three

inputs as shown in Figure 8. Essentially, it is the same

concept as a majority voter but is necessary when the three

values may have slight perturbations between them. The

middle value is chosen

Sensor
Values

Time

Figure 8. Mid-value select technique. After Ref. [6]

because an assumption is made that only one of the inputs

can be faulty at one time. Thus, since minor perturbations

are expected the middle value will always be one from a

"good" input. The middle value is chosen instead of taking

an average of the three inputs. This is because in the

event that one input is clearly faulty as shown in Figure 8,

the average would be adversely affected. In effect, the

faulty input is ignored by selecting the middle value.

Another problem that must be realized in a TMR system

with majority voting is that identical errors in two of the

modules will have to be tolerated. The errors will produce

results that when passed to the voter will be selected as

the majority. The possibility of this occurring and the

consequences would definitely have to be investigated

depending on the application.

A significant danger of incorporating redundancy into a

system is that the overall system reliability could be

reduced, due to the increased number of components. If the

redundant systems are not themselves reliable, there is

little hope of improving the reliability of the system.

[Ref. 7] For example, Wakerly notes that constructing a

voting component for three microprocessors in a.TMR

structure could conceivably require 14 integrated circuit

packages constructed from the same (unreliable) technology

39

as the three microprocessor packages, and hence would lead

to a system with lower reliability than that of a single

microprocessor chip. [Ref. 8] In addition, on a PC board,

solder connections can be one of the largest sources of

failure.

On the other hand, given that the redundant components

are sufficiently reliable and the additional logic required

is at least as reliable as the redundant modules, TMR

provides a viable technique for improving overall system

reliability in critical applications. [Ref. 4]

B. TRIPLE MODULAR REDUNDANT MICROPROCESSOR DESIGN

Having reviewed the concepts of TMR, what follows is a

description of how they might be employed with three

microprocessors. Also, having chosen to build the Testbed

using the IDT R3081 RISC Microprocessor discussed in

Chapters I and II, it is useful to examine what is necessary

in constructing a board with three R3 081's operating in a

TMR design.

Figure 9 shows a block diagram of a simple system using

a single R3081 processor. The multiplexed address/data bus

of the R3 081 is demultiplexed through the use of address

latches and data buffers/transceivers. The address bus and

the control bus are then used by the memory controller to

40

access the memory blocks. A typical design similar to

Figure 9 is described in detail in Ref. [9].

Expounding on this simple system, Figure 10 shows a

block diagram of a TMR system using three R3 081 processors.

Figure 10 shows the additional hardware blocks necessary to

implement majority voting of the address, data, and control

Figure 9. Simple R3 081 Board Design. After Ref. [9]

41

R3081
RISC

CPU A

R3081
RISC

CPUB

R3081
RISC

CPUC

Address
Latches

Address
Busses

Address
Latches

Address
Latches

Address
Voter

Voted
Address ■

Bus

Address
Error

Data
Busses

Data
Voter/Xcvr

Data
Error

RAM

Voted
Data '
Bus

EPROM

Control Busses

I—
Control
Error

i

Control
Voter

Voted
Control

Bus

Memory/
Error

Controller

Vote Error Interrupt

Figure 10. TMR R3081 Board Design.

busses and how the voted busses are then used in the

remainder of the system.

A significant issue when using three microprocessors in

a TMR design is the synchronization of the processors,

briefly described in the preceding section, Voting Issues

(Section A, Subsection 2, of this chapter). The IDT R3081

contains an output from the processor which is the System

Reference Clock, SysClk*. This clock is used to control

state transitions in the read buffer, write buffer, memory

controller, and bus interface unit internal to the

processor. As such it is used as timing reference by the

external memory system. The frequency of this clock can be

42

either the same as the CPU cycle rate, or one-half that

frequency. The frequency of this clock is selectable during

the processor reset initialization. [Ref. 5]

The R3081 does not have a guaranteed relationship

between the input clock and the SysClk* System Reference

Clock. However, it is possible to ensure the phase of this

output reference clock allowing the multiple processors to

be in the same phase. The IDT R3 081 contains internal logic

as part of its reset state machine, which forces the System

Reference Clock, SysClk*, into a known state. [Ref. 5] Thus

in a system using multiple R3081 processors with their

System Reference Clocks operating at the same frequency as

the CPU cycle rate, the negation of the Reset* input to the

processors is sufficient to ensure that the System Reference

Clocks from each processor are operating in the same phase.

This assumes that the three processors are driven by the

same input clock. [Ref. 5] If the Output Reference Clocks

are operating at one-half of the frequency of the CPU cycle

rate, additional steps are necessary to ensure

synchronization between the System Reference Clocks from

multiple CPUs.

In order to take full advantage of the TMR design to

allow error analysis, FIFOs dedicated to each processor were

incorporated as shown in Figure 11. The FIFOs allow the

43

capturing of the address, control, and data bus information

from each processor before it is passed to the majority

voters as shown in Figure 10.

Detailed descriptions of the blocks shown in Figures 10

and 11 and how they are implemented in the Testbed design

are discussed in the next chapter.

R3081
RISC

CPU A

R3081
RISC

CPUB

R3081
RISC

CPUC

Address
Latches

Address
Bus .

Data
Bus

Control Bus

Buffer
A

YYS
Address
Latches

Address
Bus .

Data
Bus

Control Bus

Buffer
B

y y (^

Address
Latches

Address
Bus .

Control Bus

Data
Bus

Buffer
C

y y y_

FIFO
A

Y

FIFO
B

7T

FIFO
C

Y

FIFO Write
Enable

& Buffer Select
Lines

From
Memory

Controller

Figure 11. Testbed FIFO Interface.

44

IV. TMR TESTBED DESIGN

A. OVERVIEW

In order to observe the performance and behavior of a

microprocessor in the presence of radiation induced single

event upsets (SEUs), the address, data, and control busses

must be monitored. This is because in a general purpose

microprocessor there is not an efficient built-in mechanism

to indicate to external devices and/or observers that an SEU

induced error has occurred. This is particularly true in

the case where one or more bits in a word of data are

flipped. SEU induced errors may cause the processor to

"lock up" or "crash," which is detectable, but is of little

use when trying to trouble-shoot and/or monitor the

performance of the system.

Monitoring of the address and data busses presents

•another problem. Without a separate entity which is deemed,

or assumed, to be error free there is not a way to tell if

the information that appears on the busses is error free or

not. In addition, in the presence of radiation induced

SEUs, the ability to correct such faults once detected is a

desirable characteristic.

In this testbed design, triple modular redundancy (TMR)

was chosen to allow the monitoring of three identical

45

microprocessors running identical programs. The majority-

voting used in conjunction with TMR allows detection of an

SEU which has been manifested as a disagreement between the

address, data, and control busses of the three processors.

The majority voter also allows the masking of these SEU

induced disagreements. The address, data, and control bus

information from the two microprocessors which are in

agreement is used to start, control, and complete each bus

cycle.

This assumes that identical faults, or errors, will

not occur in two different microprocessors and produce the

same erroneous results on their associated busses. If this

occurred, then the majority would be in an error state. The

same argument applies for identical faults in all three

processors. The following sections describe the Testbed TMR

functionality and the use of dedicated FIFOs for error

analysis.

1. Testbed Operation Summary

The testbed contains three IDT R3 081 RISC

microprocessors executing the same program and interrupt

service routines. Each processor has a dedicated FIFO

memory to capture the address, control, and data bus

information during each bus cycle. The address, data, and

control busses from the three processors are then combined

46

into single address, control, and data busses via majority

voters. These voted busses are then used by a single

memory/error cycle controller to access the same ROM and

RAM.

a. Normal (Error Free) Operation

At the beginning of a bus cycle (Read, Burst Read,

or Write), the address is latched from each processor's A/D

bus. Voting commences on the address busses while they are

simultaneously written to each FIFO.

Control lines are next sampled from each processor.

Voting commences on the control busses while they are

simultaneously written to each FIFO.

Data on the A/D bus from each processor is voted

(during a Write cycle only) . Data on the A/D busses from

each processor during both Read and Write bus cycles,

including Burst Read, are written to each FIFO.

If no error is detected (address, control, or data),

then the current bus cycle finishes normally.

b. Error Detection

Errors are detected by majority voting of the

address, control, and data busses from each processor. If

an error is detected, the current bus cycle is allowed to

complete before generating an interrupt. The error is

47

masked during Read and Write operations through the majority

voter. However, the address, control, and data bus

information associated with each processor before voting

occurs will have been placed in each FIFO for analysis.

Upon completion of the current cycle, an interrupt is

generated and synchronously supplied to each processor.

c. Error Correction

Upon receipt of an interrupt, each processor

executes the same interrupt service routine. The beginning

of this routine is signaled by initiating a write to "dummy"

address lF80xxxxH. The dummy address is recognized by the

address decoder and a dedicated chip select is asserted.

This chip select is in turn recognized by the memory/error

cycle controller. The memory/error cycle controller clears

the current interrupt and disables subsequent vote error

interrupts while the interrupt routine executes.

The internal general purpose registers, configuration

registers, and instruction and data caches are written to a

reserved location in RAM. While this occurs, all internal

information associated with each processor is written to a

dedicated FIFO. The majority voter masks the error in the

faulty processor and the "corrected" information, based on

the majority of the two agreeing processors, is written to

RAM. All internal registers and caches in each processor

48

are then filled by reading the reserved locations in RAM.

The "faulty" processor will now have been "corrected" and

re-synchronized with the other two processors.

The processors signal the end of the interrupt service

routine by initiating another write to "dummy" address

lF80xxxxH. The memory/error cycle controller will then re-

enable vote error interrupts, and the next bus cycle begins.

d. Error Monitoring

The operation of the Testbed is monitored via an

outside interface system. This outside system reads the

contents of the FIFOs associated with each processor.

Address, control, and data bus information from each

processor are placed in FIFOs during non-error bus cycles.

Upon detection of an error and interrupt handler

execution, all internal registers and caches for each

processor are written to the dedicated FIFOs.

The FIFOs now contain the information necessary to

detect which processor was in error and what the processors

were doing at the time the error occurred.

2. IDT R3081 Simulation

We do not have a model of the complete R3081 RISC

Microprocessor for simulation of the Testbed design.

Therefore, in order to develop the concept of this design we

49

modeled the behavior of the IDT R3 081 multiplexed

address/data bus and associated control lines using the

Verilog Hardware Description Language [Ref. 10]. The

remaining sections of this chapter describe in detail each

of the blocks in the Testbed design.

In the descriptions of the blocks and in the associated

figures, the following convention has been used. Signal and

bus names which are bold and italicized, FORCE_A for

example, are intended to match the same signal and bus names

in the overall schematic in Appendix A for ease in cross

referencing. In addition, signal and bus names which begin

with an underscore, _ALE for example, represent signals

which come from each of the three processors. Thus _ALE

represents A_ALE, B_ALE, and C_ALE, for example.

B. IDT R3081 BUS INTERFACE

In this section, we will demonstrate that the bus

interface simulation matches the manufacturers design

specifications for the R3081.

The datasheet for the IDT R3 081 RISC Microprocessor

[Ref. 11] was used in conjunction with the R3081 Hardware

Users Manual [Ref. 5]. The single datum (word or byte)

Read, Burst Read, and Write bus cycle timing diagrams and

timing parameters were analyzed and used to simulate the

50

R3081 bus interface. Figures 12, 13, and 14 are the bus

cycles obtained from these references.

ra

A/D(31:0)

Addr(3:2)

ALE

Data En

Burst

RdCEn

ÄcE

Diag(1)

Diag(O)

' / \ / \ / \ /
i

~\
L : / \ / ^ r \

»- t?

tu «»

r i-
.. t 18 r* •» tia -* ha ■* H »a tie ■*

»t!4

/ Addr
S BE

- WofOO -
«J . Word i - - Word 2 - \ - Word 3 « •■

fr-
T i

1 * I- ■*
/

tl6 r»,10h •" t2a *" t2a •■ t2» •" KB r*

r
¥ w ¥ '"' ¥ '10' ^lf '"'

ts

7 f

«• tieU» *> t16l»

*
tieU»

r* tl2 •"
t-TT

fr "% 7
L

* r 7 4 L

j tl M tl M 11

7
/ ^ L \ L - L

t2

7

» •■ t2 i*» t2 r* *■
t2

t17L» «. tl

I

^Caa«r> -' Miss Aacess(3}

£ l/D - f Mrss Aaaress{2) /\
^ 1

Start Turn Acto' Sample RdCEn Sample RdCEn Sample RdCEn Sample New
Read Bus RdCen Data Data Data Data Transaction

28«* mv EC

Figure 12. IDT R0381 Burst Read Cycle. From Ref. [9]

51

SysClk

Wr

A/D(31:0)

Addr(3:2)

ALE

Diag(l)

Diag(O)

TORHF

ÄcR

.C

'14 ■*■ r"

"V.

t19

w^jn

J\-

Reserved « -

*.

.r _i i.

Data
Out

.r A r
r

X

Start
Write

Data
Out Ack?

:'i 3~
..,,, Ack Negate New
ACI<- Wr Transfer

Figure 13. IDT R3081 Write Cycle. From Ref. [9].

SysClk \
.1
i

t7k«

■ "

L
\ 7 L \ 1 L : \ ' L \ /

..
Rd

tu «.
1 L

t14 r ** tlS p» t1a

r • Data Input ■ \, /
\ A/L)(31:0)

fc
\ \ BF

■*

i

16 110 »1 ** ea

Addr(3:2) X Word Address X
•-

/ ALE \

\
t!2 «to

» t"
7 t DataEn

Burs«
ti

TSCEn
\ L

\

12

Äck

_». '7L*»

\ L
t17

Diag(i) - ^Cached?- Miss Address(3) X

Diag(O) : »
/

Miss Address(2) X
1 1 I III

Start Turn
Read Bus Ack? Ack? Ack/ Sample End

RdCen Data Read

Figure 14. IDT R3081 Single Datum Read. From Ref. [9]

52

The Diag(l) and Diag(O) signals shown in Figures 12, 13, and

14 were not modeled. These two pins are useful in the

initial debug of R3 0xx family based systems. [Ref. 5]

Although they are not control lines, in an actual

implementation of the Testbed, these lines could easily be

added as part of the control bus from each microprocessor

and passed to the control majority voter. They are not

needed to control the bus/memory interface. However, they

could be used as additional status lines to detect

differences among the three processors.

Figure 15 shows the R3081 bus interface simulator built

in Cadence Concept™ Schematics and the Verilog Hardware

Description Language. The associated Verilog code is

contained in Appendix C, Section A. The three pins on the

R3081

AD<31. . 0> -© AQ<31. . 0>

CURR_TRANS<2. . 0> Q-

A00RESS<31. . 0>©-
DATA<31. . 0>©-

TRANS< 2.
A0DR<31.
DflTflOl.

. 0>

. 0>

. 0>

AD OR 2

ADDR3

ALE

-©

-Q

-©

ADDR2

ADDR3

ALE

RESET-NQ- RESET* RDK -© RD_N

ACK-N ©. ACK* WR*: -© WR_N

ROCEN.NQ- ROCEN* BURST« -© BURST_N

INTS-N Q_ INT5* DATAENlk -& ÜATAEN-N

SYSCLKK -& SYSCLK-N

Figure 15. IDT R3081 Bus Interface Simulator.

53

Simulator labeled TRANS<2. ,0>, ADDR<31..0>, and DATAOl. ,0>

are not pins on an actual R3081 device. These pins are

used during simulations to force the simulator to execute a

specified bus cycle. TRANS<2..0> is used to specify either

Byte Read, Word Read, Burst Read, Byte Write, or Word Write

bus cycles. ADDR<31..0> is used to specify the address of

the current bus cycle. If the current bus cycle specified

is a Burst Read, then ADDROl..0> specifies the initial word

address. DATAOl. .0> is used to specify the data to be used

during Write bus cycles. By using three separate simulators

and specifying each of the above three signals separately to

each simulator, faults can be injected into the system.

Figures 16, 17, and 18 show the simulated address/data

bus and control line behavior. Extra wait states; i.e.,

additional system reference clock cycles, have been added to

each bus cycle. The extra wait states allow FIFO memories

dedicated to each microprocessor to grab the address,

control, and data bus information. In addition, in these

three figures the address/data bus and control lines from

each of the three microprocessors are displayed to show they

are synchronized with one another.

In Figure 16, the Burst Read cycle is initiated at the

falling edge of the _RD* and _BURST* lines from each

microprocessor. In this particular example, the address.

54

IFCOOOOOH is placed on the multiplexed address/data bus,

_AD<31..0>, by each processor. After this address is

latched using the _ALE signals from each processor, the

first word of data appears on the _AD<31..0> bus after a

short delay from the memory. The four contiguous words of

memory read during this bus cycle are obtained by providing

the initial address, 1FC00000H in this case, and strobing

the _ADDR3 and _ADDR2 lines so that they count in binary 00,

01, 10, and 11. In addition, the memory controller strobes

the RDCEN* line, which is supplied to all three

microprocessors, four times indicating when the expected

word from memory has been placed on the bus. The burst read

cycle is completed at the rising edge of the _RD* and

_BURST* signals. In the example in Figure 16 the four

addresses read are 1FC00000H, 1FC00004H, 1FC00008H, and

1FC0000CH. In this design, the addresses 1FCO0O0OH through

IFCOXXXXH are decoded to be read only memory (ROM) . The

four words read contained the data 00000000H, 00000001H,

00000002H, and 00000003H, respectively. This correctly

corresponds to the data which has been programmed into the

EPROM. See Appendix C, Section I.

In Figure 17, the Write cycle is initiated at the

falling edge of the _WR* lines from each microprocessor.

55

•*■«■«

V

I
8«8 ^ «."

J
2^1

,i *, I i 3s,§, ° l S- w a»-; aj. < o g g !" :« ö H a -a:, o' g

5 sOB 3^.3^. r.|-.°i° ■■■§■"
aa

b_ "I"-

If
■8.

*8

■s
1)

•a
.a

u

~T1 ~u '■™1

'A "'-© i' S
n

& a i J W

: T3

Ut
•H

o

o.

B
y

.a .5
■0-0
55

Figure 16. Simulated R3 081 Burst Read Cycle.

56

In this particular example, the address 00000000H is placed

on the multiplexed address/data bus, _AD<31..0>, by each

processor. After this address is latched using the _ALE

signals from each processor, the data to be written appears

on the bus. In this example, the data to be written is

11111111H. The ACK* signal, which is returned from the

memory controller, indicates the write has been completed.

The write cycle is completed at the rising edge of the _WR*

signal. In the TMR Testbed design, addresses 00000000H

through 0007FFFFH correspond to random access memory

(RAM) . Therefore, in this example, 11111111H has been

written to RAM at address 00000000H.

In Figure 18, the single datum Word Read cycle is

initiated at the falling edge of the _RD* lines from each

microprocessor. In this particular example, the address

00000000H is placed on the multiplexed address/data bus,

_AD<31..0>, by each processor. After this address is

latched using the _ALE signals from each processor, the data

appears on the bus after some delay. The KDCEN* line from

the memory controller indicates that the address/data bus

contains valid data. The read cycle is completed at the

rising edge of the _RD* lines. In this example, 11111111H

has been read from RAM at address 00000000H. This correctly

corresponds with the 11111111H written to address 00000000H

57

H

M HE -t -« ■*■

!

^ 55

■«■ * «'i Ai'M-N H i 'i ■*'■'< '« : A'

I ii::^ 11 -a i jg gg g ^

« §(n' w o' g o'

SI

Ü

~H ~3

•5
, 1

—* —1 -ü

; ' a g 1: i
:■-■&

.1 5 S +> ts 4J
U ft

§ ■■■■*■■

0. & s. a 1 t 3 •5
U.

(0
•H

i-f
•H 5

O
V

•5
H

Figure 17. Simulated R3 081 Write Cycle,

58

^1

St WWBM W ll'ü § 8 B»
.«.»■.»•«3} g." 5^ 5^! jt^-gj ra |g jBi^'S r? *"•" £-■"

t* «: w'w^t W »K -WIT» 5r Mi «I viT wi MI* *r w W^^^m^M^Mß^^^^^^ßm^M^^^^W^^^^' >»«« K B «a* rars KS S3»? EE, Fs !•£; G; ■: 3 *J_":jJ1 iä.;I- -si.'., «i '-iS -~ .-jr 1-- . . . -
r*w .B .

L L :-'"8--

Ln .. _"
P 2 t> -3 P a «J

| 3|

F
5|
5 r Hi

■1 ■4 ■4

H •4 r ■4

H r 4. ■4

H •4 p ■4

H p ■4 r ■4
H r ■4

■1
c

p
C — — * -1 5 1 n

3
a

3 e ""'*

-i

r ■1
■1

r
r

H
4

p H
„OJ

p

■t
■1
H
■1
■I
H <

r
•1
4
H
H
4
H
C

T

■4
H
H
■4
H
H <

■^D

C 3 C 3 c 3

-'

-4 H -4

H r 4 p ■1

H r H ■4

H p >t ■4

H p H p H

H 4 H

H
H < r

•4

C
T ■4

■4 < _-PH

5
>
P

■ ' C >
>

> ?

^

-to

•a i '— r j — a J

H

e 0
—» P j

t -a "kÖ

a a j a d

P

r
0

T

P

1
■3 .

P -a 5J

c
c

3 <
3

C

C

3 ;
3 e

3 <
3

<-£

- >
P

a

< «*
a

•- -i
—' >

[P

a j
l_ >

c

a

<
3

L_

_~ — -■*fl

4t .Ht * A f) C-J W « ■« * « * « * Am u ■« ■* *. < •«. /v CO W W * ■«

! 3 S. * ° 11 <.la ff 9 ri «, ",,-: S •^,1 S ä B. si : .1 1 *■ a a
P> < < -H < ■< «5 B :B E-W ■» :jÖ < «, B S3 fi-jß ü ü S ■-*, ^i " 5

I K V Ö O E
B C31 S .!,'

* 1 I —'
<■.;;. ■. «■ . ■».. :

*
—fl I "*T1 !1 -I

Figure 18. Simulated R3081 Read Cycle,

59

in the previous example Write cycle description and in

Figure 17.

C. ADDRESS /DATA BUS DEMULTIPLEXING

The multiplexed 32-bit address/data bus of each of the

three microprocessors is demultiplexed using the address

latch enable, _ALE, signal [Ref. 5] from each processor.

The schematic diagram of the demultiplexer is contained in

Appendix B, Section A. Figure 19 is a block diagram of the

demultiplexer.

R3081
RISC
CPU

32-bit Address/
Data Bus

, l_AD<31..0>) 32-bit Data Bus
 ►

Address Latch
Enable (_/>L£)

Address/Data Bus
Demultiplexer

TT

32-bit Address Bus
 ►

TESTENV

Figure 19. Address/Data Bus Demultiplexing.

Each 32-bit demultiplexer makes use of four 8-bit

FCT373 transparent latches. [Ref. 9] During each bus cycle

(Read, Burst Read, or Write) the address is placed on the

_AD<31.,0> bus of each processor at the beginning of the

cycle. While the _ALE signals are HIGH, the transparent

60

latches allow the address information to pass to the 32-bit

address voter. This allows the address information to be

voted and passed to the memory/address decoder as soon as it

becomes available. When the _ALE signals transition from

HIGH to LOW, the address information is latched to the

associated 32-bit address bus. Subsequent changes on the

_AD<31.,0> busses do not affect the state of the address

busses until the next _ALE transition from LOW to HIGH,

which occurs during the next bus cycle. The TESTEN1* line,

which is supplied to each demultiplexer, can be used to

place the address bus, or output of each demultiplexer, in a

high impedance state for testing. During normal operations,

the TESTEN1* line should be held LOW. The schematic diagram

of the three microprocessors, the demultiplexers, and the

associated connections is contained in Appendix A.

D. DATA BUS VOTING

The _AD<31. .0> bus from each microprocessor is

considered to be the data bus after the transition of the

ALE signal from HIGH to LOW during each bus cycle. The 32-

bit data busses from each processor are passed to a 32-bit

majority voter/transceiver. Figure 20 is a block diagram of

the data bus voter/transceiver.

61

During a Write cycle, the three 32-bit data busses are

voted to produce a single 32-bit data bus. However, during

a Read, or Burst Read, bus cycle the data read from memory

A_AD<31..0>

B_AD<31..0>

C AD<31..0>

FORCE_A

FORCB_B

FORCE_C

32-bit Voter/
Error Detector

and Transceiver

I

To/From Memory

VOTEDATA<31..0>
« *■

DATAERR \
 ►

WRDATAEN'

RDDATAEN"

To/From
>■ Memory
Controller

Figure 20. Data Bus Voting.

must be allowed to pass back to the three _AD<31. ,0> busses

and on to the three microprocessors. This is accomplished

via the RDDATAEN* and WRDATAEN* control lines from the

memory enable controller. While the WRDATAEN* signal is

LOW, the three data busses are voted and passed to the

single data bus. While the RDDATAEN* line is LOW, the data

on the single bus which has been read from memory is allowed

to pass back through to the three microprocessors. Voting

of the data busses occurs only during a Write cycle and when

WRDATAEN* is LOW. The WRDATEN* and RDDATAEN* signals are

mutually exclusive (when one is HIGH, the other is LOW) . If

62

an error is detected on one of the data busses supplied to

the voter, the signal DATAERR goes HIGH.

In addition, the majority voter/transceiver uses three

input lines (FORCE_A, FORCE_B, and FORCE_C) which, when

pulled HIGH, force the data from the respective bus through

to the output data bus. When one of these signals is pulled

HIGH, voting errors are not detected or signaled. These

signals should all be held LOW during normal operations.

The schematic for the 32-bit majority voter/transceiver

and associated Verilog code are contained in Appendix C,

Section B.

E. ADDRESS BUS VOTING

The output of the three demultiplexers is considered to

be the address bus associated with each processor. Once a

bus cycle has initiated and the _ALE has transitioned from

HIGH to LOW, the address bus holds the address information

until the LOW to HIGH transition of _ALE during the next bus

cycle. The address bus from each demultiplexer is passed to

a 32-bit majority voter. This majority voter operates

similarly to that of the majority voter/transceiver

described in the previous section except there is no

associated transceiver operation or control lines. Figure

21 is a block diagram of the address voter. If an error is

63

detected on one of the address busses supplied to the voter,

the signal ADDRERR goes HIGH.

2 ••=
u. "5

E
o
D

CPUA_ADDR<31..0> VOTEADDR<31..0>

CPUB_ADDR<31..0> 32-bit Voter/
Error Detector

CPUC_ADDR<31..0> ADDRERR

)

FORCE_A

i i i t i

FQRCEJB

FORCE_C

\
o F

<u
LLJ 2
1* ■o

M to

^
£ c
Ü

Figure 21. Address Bus Voting.

The schematic for the 32-bit majority voter and

associated Verilog code are contained in Appendix C, Section

D.

F. CONTROL BUS VOTING

Six control lines from each of the three processors are

voted using an 8-bit majority voter. The six control lines

voted are _ADDR2, _ADDR3, _RD*, _WR*, _BURST*, and _DATAEN*.

The other two inputs to the 8-bit voter are not used and are

held LOW. These control lines are voted to produce a single

control bus. Figure 22 is a block diagram of the control

bus voter. This majority voter operates similarly to that

of the majority voter/transceiver described in Section D

64

except there is no associated transceiver operation or

control lines. If an error is detected on one of the

control lines supplied to the voter, the signal CONTERR goes

HIGH.

.?2

o 3

o 3

A ADDR2
A AD0R3 J
A flD* :
>» Wfl* ?
A süflsr r
4 DATAEN'

B ADDR2 fc "\
S ADDB3 [
S HO' "
B ttrt- J '
e BURsr *
S DATAEN-

J

c AOOflr fc

C ADDR3 *
c AD' :
C VfR' *
C BUR$r j
C DATAEN'

8-bit Voter/
Error Detector

_l FORCE_A

FORCE_B

FORCE_C

VOTECONT<7..0>

CONTERR

. o
P E

o
Ü

Figure 22. Control Bus Voting.

The schematic for the 8-bit majority voter and

associated Verilog code are contained in Appendix C, Section

C.

6. ADDRESS DECODER

The address decoder uses the voted address bus,

VOTEADDROl. ,17>, to generate chip selects. The address

decoder does not wait for _ALE to begin generating the chip

selects. This is done to achieve better performance since

the chip select outputs will be generated earlier in the bus

65

cycle. As a side effect, however, the chip select outputs

may tend to "glitch" as a valid address is driven. Thus,

the Read Enables and Write Enables seen in the memory system

must be synchronized so they are valid only when the CPUs

are attempting a read or write transfer. This combination

allows maximum performance because address and chip selects

are seen early in the bus cycle but the Read and Write

signals are synchronized to ensure proper system operation.

[Ref. 9] Figure 23 is a block diagram of the address

decoder.

From Address Voter
VOTEADDR<31..0> 1 £"

V0TEADDR<31..17> Address
Decoder

o

EPROMCS'

INTCS-

I 1
To Memory Controller

Figure 23. Address Decoder.

The schematic for the memory/address decoder and

associated Verilog code are contained in Appendix C, Section

E.

66

H. MEMORY/ERROR CYCLE CONTROLLER

The memory cycle controller provides a wait-state

generator which stalls the bus interfaces of the three

processors so that various types and speeds of memories can

be used. [Ref. 9] This also allows the additional wait-

states required for the FIFO interface described later.

Figure 24 is a block diagram of the memory/error cycle

controller. The memory/error cycle controller is composed

To Memory

From Control
Voter

VOTECONT<7..0>
 »
A_SYSCLK (From CPU A^

RAMCS'

From BPROMCS-
Address
Decoder INTCS'

•> ADDRERR

From DATAERR
Majority
Voters CONTERR

Read Write
Enables Enables
 I I

Memory/Error
Controller

ADDRTOF1FO'

DATATOFIFO'

CONTTOFIFO' r u-
FIFOWE'

WRDATAEN' ■5 ">
> a)

to c
Q 2
O H

—I 1 1—

ACK' RDCEN' BUSERROR' VOTERRINT

To Processors

Figure 24. Memory/Error Cycle Controller.

of three subsections. The basic RAM/ROM subsection

generates the appropriate timing signals such as ACK*,

RDCEN*, and BUSERROR* for operating the R3081 bus interface

as well as the necessary write and read enables for

accessing the RAM/ROM. The FIFO memory cycle controller

generates the signals necessary for capturing the state of

67

each processor in its dedicated FIFO at the appropriate

times during each cycle. The error cycle controller

monitors the vote error signals from the address, data, and

control bus majority voters. If an error is detected, it

generates an interrupt to the processors. It also disables

the vote error interrupts while the interrupt handler

routine is executed by the processors. The schematics for

the memory/error cycle and memory enable controllers and

associated Verilog code are contained in Appendix C,

Sections F and G.

1. RAM/ROM Cycle Controller

The basic state machine looks for the start of a read

or write bus cycle by looking for a negative edge of VOTED*

or VOTWR* from the control bus majority voter. When a bus

cycle is initiated, the state machine starts a 5-bit up

counter, counter<4..0>. The counter then increments on each

SYSCLK* rising edge. This counter is then used as the

timing master for all other control signals generated by the

state machine. [Ref. 9]

A synchronous decoder, CYCEND*, is used to tell the

counter when the end of a memory cycle occurs. CYCEND* is

used to synchronously reset the state machine when a

positive edge of VOTRD* or VOTWR* is expected. Another

68

output, ENSTART*, is used to start the byte enables

generated by the memory enable controller. [Ref. 9]

Other outputs from the memory cycle controller include

cycle termination inputs RDCEN*, ACK*, and BUSERROR*. On a

read transfer, VOTBURST* from the control bus voter and the

current active chip select from the address decoder are used

to determine the timing and quantity of RDCEN* signals to be

asserted. ACK* is asserted at the end of a write cycle to

indicate completion of the transfer. BUSERROR* is used to

end an undecoded memory cycle. [Ref. 9]

2. FIFO Memory Cycle Controller

In order to provide the ability to observe the status

of each processor before, during, and after an error cycle,

the address, control, and data busses (before the majority

voters) from each processor are written to a dedicated FIFO

memory. The state machine in the memory cycle controller is

used to generate the outputs ADDRTOFIFO*, CONTTOFIFO*,

DATATOFIFO*, and FIFOWE*. Figure 25 shows a block diagram

of the FIFO dedicated to processor A. A similar arrangement

is used for the FIFOs dedicated to processors B and C. The

use of the memory cycle state machine ensures the timing of

these signals are synchronized with the current bus cycle

and that during a Burst Read bus operation, the address,

69

control, and data busses are written to the FIFOs four

times.

From CPU A

 A_SYSCLK'

Address
Bus .

Data
Bus

O ®

2 S
u. Q

<
E _ Control
2 Q. Bus .
Li- ü '

Buffer
A

FIFOAIN<31..0>

Q Q

Write Read
Clock Clock

FIFO
A

RDCLK ^g
o

EF_AT JL '
"S

FIFOAOUT<31..0>

ADDRTORFO-

CONTTOFIFCT

DATATOFIFO-

: o
■ Ü

Figure 25. FIFO Controls.

The ADDRTOFIFO*, CONTTOFIFO*, and DATATOFIFO* outputs

synchronously select when to provide the address bus,

control bus, and data bus respectively to the FIFO

associated with each processor. Since the address is the

first bus to stabilize, ADDRTOFIFO* is asserted first. This

is followed by CONTTOFIFO* and then DATATOFIFO*. FIFOVJE* is

the actual write enable supplied to the three FIFOs.

When ADDRTOFIFO* is asserted, the address bus from each

processor is supplied to its associated FIFO and written at

the rising edge of FIFOVJE*. This is followed by CONTTOFIFO*

and DATATOFIFO*, in turn.

70

Figures 26, 27, and 28 show the operation of these FIFO

controls during a Burst Read, Write, and single word Read

respectively.

3. Error Cycle Controller

The memory cycle controller state machine also controls

the generation of an interrupt which is supplied to each

processor at the detection of a vote error (ADDRERR,

CONTERR, or DATAERR).

The vote error interrupt, VOTERRINT*, is generated only

at the end of the current bus cycle. This allows the

current bus cycle to complete, with the majority voters

masking the associated fault. In addition, allowing the bus

cycle to complete ensures the FIFOs associated with each

processor capture the state of the address, control, and

data bus of each processor prior to generating an interrupt.

It is intended that the three processors will

synchronously receive the interrupt, and will execute the

same interrupt service routine. The beginning and end of

this service routine is indicated by a write to "dummy"

address lF80xxxxH. This address is decoded by the memory

decoder to generate the chip select INTCS*. The error cycle

controller, upon detection of a write cycle with this chip

71

^

b_

» n i
u u i
0} u i

:§§!

■O-O

.5.5
H H

as
CA (A
V V

•S.S

as
EAiV)

•S.S

S.S

19 «3

sa
IA W
V V

•S.S
H H

as
U) V)

~T! —1 *>
•§.
•H

*

.":"*

•T
•1

.5
.8

;3 u

* ... ,f ■4 4

: §
0 : *>

I' i
CM

3
! I 4J

1 •5:
n

■H

a»
PH
>H to

ft}

O

8
V

Figure 26. FIFO Controls During Burst Read Cycle.

72

ül

! i iHfff m ii #i 11 f i'P tu
; <S « OT Ö ttiillilllt^i «Oä Jü «n: «n .ei jo^w :5s M ■</£ Jft »

IB-Are's *-Ia.iai

y
N N N Uli

EM

-' -S

Ism

g? H M

W *

31
« « ■* ■

H fe Ifa h i-4 H T-4 b

J 3 "11
g 3 §

i'ti i^-

ill
4) V

•S.S
■Ö-O

SS v v

•S-S
H H

V 09

SS
«VI
v v

09 V

a.9
H H
■O-O
SS

V 09

H H
4J JJ

SS
VI VI
v v

5.5

SS
VI w

~i

1

i

'S 1-
" * * *

8)

§ 1'
s H 5' ■?■ ■SI- ■ i> ■ '«" i> U ft

■:*..

04 fi'
W; s ,■■?■: 1 S'- •4 £ •rl

■-I
a b e

V

Figure 27. FIFO Controls During Write Cycle.

73

ül

N N N

.
nn n

L] u
?s?s X
N N N

ja d a J

N N N II El
00 09 G0
H H T-l
X X o e O !__

e 09 CO
X X s e B
XX x

|- d s s J

N N N II l o o o
K e a a

o o

>S f<, ><
N N N

ä s £

p o p e o o

> cn

1 ■£ gg

tL !*«■

&a

■SS-!

BBJ

4 :*

■s 1 j ':U:

':■■-* * '" * *

:£ I J; f B>

*
£ s ■&■ 1 1 »

•H
N4

5
P

V

Figure 28. FIFO Controls During Read Cycle.

74

select asserted, clears the interrupt and disables

further vote error interrupts. The interrupt is disabled

until the end of the interrupt routine. This is again

signaled by the next write to "dummy" address lF80xxxxH.

During the interrupt routine, it is intended that the

processors will write all of their internal general purpose

registers, configuration registers, and instruction and data

caches to some selected portion of RAM. The vote error

interrupt will have been disabled. However, errors in the

"faulty" processor will be masked by the majority voted

output from the other two "agreeing" processors during each

write. Then, the interrupt routine would read back the

selected portion of RAM and refill all of its internal

general purpose registers, configuration registers, and

instruction and data caches. Thus, the processor which had

an error will have been corrected and re-synchronized with

the other two processors. While this routine is executing,

the FIFOs associated with each processor will capture all of

the internal information of each processor for error

analysis.

The IDT R3081 Microprocessor Bus Interface Simulator

module contained in Appendix A, Section A, contains a

simulated, abbreviated interrupt service routine which

executes when the interrupt INT5* is asserted. Simulations

75

which show the operation of the error cycle and this

simulated interrupt service routine are contained in Chapter

V.

I. SYSTEM INTERFACE

The system interface is intended to be a laptop or

similar system which can read the FIFOs associated with each

microprocessor and perform some analysis. This provides for

both real-time and post error analysis. The FIFOs selected

allow for asynchronous writing and reading with separate

write and read clocks which can be different frequencies.

Figure 29 is a block diagram of the system interface.

From. ,_,_
FIF0 _S>£

. FIFOAOUT<31..0^

From
FIFO,

B FIF0BQUT<31..tei

From
FIFO

c I FIF0C0UT<31..ai

Output Enables and Read Enables to FIFOs

Figure 29. System Interface.

The testbed interface monitors the FIFO empty lines

from processor A's FIFO, EF_A1* and EF_A2*. As soon as they

are both deasserted, the interface reads the FIFO. This is

76

followed by monitoring the FIFO empty lines from processor

B's FIFO, EFJB1* and EFJB2*, and reading processor B's FIFO

once they are both deasserted. Finally, the FIFO empty

lines from processor C's FIFO, EF_C1* and EF_C2*g are

monitored and the FIFO is read once they are both

deasserted. This process continues and the address,

control, and data information stored in the associated FIFOs

are obtained by the interface. The read clock is set to be

twice the frequency of the write clock. This enables the

interface to read the data out of the FIFOs fast enough so

they never fill up. Figure 30 shows the timing of the

control signals generated by the system interface.

The interface module writes the results obtained from

the FIFOs to a text file, TMR_trace. out. By reviewing this

text file, the status of the processors during each bus

cycle can be observed. Examples of this text file obtained

during both normal (error free) and induced error operations

are contained in Chapter V.

The schematics for the system interface and associated

Verilog code are contained in Appendix C, Section J.

77

■vfi

inn
B ü u
au u

2 2

CU C9 OHO
A A A A

A A A A
0) DU«

■S.S.S.S
HHH H
T3 ^ ^ T3

V V V V

A A A A
« tt 0) u

■S.S.S.S
HHHiH

IC |Q 4 Q
iJ 4> JJ 4J
cn w in c/j
V V V V

"■V ^ ^. "»■.
A A A A
0) Ott«

H H H H
4J JJ JJ 4J
IQ IQ flj (Q

JJ 4-) JJ 4J
V) tA W l/l
V V V V

ül

~TI
■ft
■H

iS

1 *

•s .8 ■B

* "I * * *

A

9. §
O
N i'

0) i- 4 5 $ 4» •O *> b e i
8« A-

iH
4) a 1 1 4 .5 fa

I» pH
•H fa 5

O

V

Figure 30. System Interface Controls

78

V. SIMULATION RESULTS

The complete design has been implemented in Cadence

Concept™ schematics and the Verilog® Hardware Description

Language. Timing parameters have been obtained from actual

device datasheets. The IDT R3081 bus/memory interface in

this TMR design can be simulated in Cadence Logic

Workbench™ to verify the concept of operation and test the

voting logic, memory and error cycle controllers, as well as

the FIFO interface.

The following simulation results were obtained from the

trace file generated by the simulated system interface. The

information displayed represents what was actually read from

each FIFO.

The overall testbed schematics are contained in

Appendix A. The Cadence supplied modules and user defined

modules used in the schematics and the simulations are

contained in Appendices B and C, respectively. The script

control language (SCL) files which were used to drive the

inputs to the Testbed schematics to obtain the following

simulation results are contained in Appendix D.

79

A. NORMAL (ERROR FREE) RESULTS

Bus cycles 1 through 4 correspond to a Burst Read from

EPROM addresses 1FC00000H through 1FC0000CH. The data read

corresponds to the data programmed into the Verilog EPROM

module in Appendix C, Section I.

CPU A CPU B CPU c

3.

Address = lfcOOOOO lfcOOOOO
Control = 00000008 00000008
Data = 00000000 00000000
A Control = Burst Read Word 0
B Control = Burst Read Word 0
C Control = Burst Read Word 0

Address = lfcOOOOO lfcOOOOO
Control = 00000009 00000009
Data = 00000001 00000001
A Control = Burst Read Word 1
B Control = Burst Read Word 1
C Control = Burst Read Word 1

Address = lfcOOOOO lfcOOOOO
Control = 0000000a 0000000a
Data = 00000002 00000002
A Control = Burst Read Word 2
B Control = Burst Read Word 2
C Control = Burst Read Word 2

lfcOOOOO
00000008
00000000

lfcOOOOO
00000009
00000001

lfcOOOOO
0000000a
00000002

lfcOOOOO
0000000b
00000003

Address = lfcOOOOO lfcOOOOO
Control = 0000000b 0000000b
Data = 00000003 00000003
A Control = Burst Read Word 3
B Control = Burst Read Word 3
C Control = Burst Read Word 3

Bus cycles 5 through 8 correspond to a Burst Read from

EPROM addresses 1FC00010H through 1FC0001CH. Again the data

read corresponds to the data programmed into the Verilog

EPROM module in Appendix C, Section I.

80

5. Address = lfcOOOlO lfcOOOlO
Control = 00000008 00000008
Data = 00000004 00000004
A Control = Burst Read Word 0
B Control = Burst Read Word 0
C Control = Burst Read Word 0

6. Address = lfcOOOlO lfcOOOlO
Control = 00000009 00000009
Data = 00000005 00000005
A Control = Burst Read Word 1
B Control = Burst Read Word 1
C Control = Burst Read Word 1

7. Address = lfcOOOlO lfcOOOlO
Control = 0000000a 0000000a
Data = 00000006 00000006
A Control = Burst Read Word 2
B Control = Burst Read Word 2
C Control = Burst Read Word 2

8. Address = lfcOOOlO lfcOOOlO
Control = 0000000b 0000000b
Data = 00000007 00000007
A Control = Burst Read Word 3
B Control = Burst Read Word 3
C Control = Burst Read Word 3

lfcOOOlO
00000008
00000004

lfcOOOlO
00000009
00000005

lfcOOOlO
0000000a
00000006

lfcOOOlO
0000000b
00000007

Bus cycles 9 through 12 correspond to four Write bus

cycles to RAM addresses 00000000H, 00000004H, 00000008H, and

OOOOOOOCH.

10.

11.

Address =
Control =
Data
A Control
B Control
C Control

00000000
00000034
11111111
= Write
= Write
= Write

Address =
Control =
Data
A Control
B Control
C Control

00000000
00000035
22222222
= Write
= Write
= Write

Address =
Control =
Data
A Control
B Control
C Control

00000000
00000036
33333333
= Write
= Write
= Write

00000000
00000034
11111111

00000000
00000035
22222222

00000000
00000036
33333333

00000000
00000034
11111111

00000000
00000035
22222222

00000000
00000036
33333333

81

12. Address =
Control =
Data =
A Control
B Control

00000000
00000037
44444444
= Write
= Write

00000000 00000000
00000037 00000037
44444444 44444444

C Control = Write

Bus cycle 13 corresponds to a single word Read bus

cycle from RAM address 00000000H. The data read is the same

that was written during cycle 9.

13. Address = 00000000
Control = 00000018
Data = 11111111
A Control = Read
B Control = Read
C Control = Read

00000000
00000018
11111111

00000000
00000018
11111111

Bus cycles 14 through 17 correspond to a Burst Read

from RAM addresses 00000000H through 0000000CH. The data

read from RAM is the same that was written during cycles 9

through 12.

14. Address = 00000000 00000000 00000000
Control = 00000008 00000008 00000008
Data = 11111111 11111111 11111111
A Control = Burst Read Word 0
B Control = Burst Read Word 0
C Control = Burst Read Word 0

15. Address = 00000000 00000000 00000000
Control = 00000009 00000009 00000009
Data = 22222222 22222222 22222222
A Control = Burst Read Word 1
B Control = Burst Read Word 1
C Control = Burst Read Word 1

16. Address = 00000000 00000000 00000000
Control = 0000000a 0000000a 0000000a
Data = 33333333 33333333 33333333
A Control = Burst Read Word 2
B Control = Burst Read Word 2
C Control = Burst Read Word 2

82

17. Address = 00000000
Control = 0000000b
Data =
A Control
B Control
C Control

00000000
0000000b

44444444 44444444
= Burst Read Word 3
= Burst Read Word 3
= Burst Read Word 3

00000000
0000000b
44444444

B. INJECTED ERROR RESULTS

Bus cycles 1 through 4 correspond to a Burst Read from

EPROM addresses 1FC00000H through 1FC0000CH. The data read

corresponds to the data programmed into the Verilog* EPROM

module in Appendix C, Section I

2.

CPU A CPU B CPU C

Address = lfc00000 lfc00000
Control = 00000008 00000008
Data = 00000000 00000000
A Control = Burst Read Word 0
B Control = Burst Read Word 0
C Control = Burst Read Word 0

Address = lfc00000 lfc00000
Control = 00000009 00000009
Data = 00000001 00000001
A Control = Burst Read Word 1
B Control = Burst Read Word 1
C Control = Burst Read Word 1

Address = lfc00000 lfc00000
Control = 0000000a 0000000a
Data = 00000002 00000002
A Control = Burst Read Word 2
B Control = Burst Read Word 2
C Control = Burst Read Word 2

lfc00000
00000008
00000000

lfc00000
00000009
00000001

lfc00000
0000000a
00000002

Address = lfc00000 lfc00000
Control = 0000000b 0000000b
Data = 00000003 00000003
A Control = Burst Read Word 3
B Control = Burst Read Word 3
C Control = Burst Read Word 3

lfc00000
0000000b
00000003

Cycle 5 is a Write bus cycle to RAM address 00000000H

where there is an error in the address of processor A.

83

5. Address =
Control =
Data =
A Control
B Control
C Control

00000100
00000034
11111111
= Write
= Write
= Write

00000000
00000034
11111111

00000000
00000034
11111111

Cycles 6 through 11 are the six cycles of the simulated

interrupt service routine. The differences between the

"internal" information of the three processors that caused

the error can be observed. These differences do not

themselves cause additional vote error interrupts because

the interrupt routines are initiated by a write to "dummy"

address lF80xxxxH. However, when the "internal" information

is read back from RAM, the "corrected" information is read.

Address =
Control =
Data
A Control
B Control
C Control

lf800000
00000034
ffffffff
= Write
= Write
= Write

lf800000
00000034
ffffffff

lf800000
00000034
ffffffff

Address =
Control =
Data =
A Control
B Control
C Control

Address =
Control =
Data =
A Control
B Control
C Control

00070000
00000034
00000100
= Write
= Write
= Write

00070000
00000035
11111111
= Write
= Write
= Write

00070000
00000034
00000000

00070000
00000035
11111111

00070000
00000034
00000000

00070000
00000035
11111111

Address =
Control =
Data =
A Control
B Control
C Control

00070000
00000018
00000000
= Read
= Read
= Read

00070000
00000018
00000000

00070000
00000018
00000000

84

10. Address = 00070000
Control = 00000019
Data = 11111111
A Control = Read
B Control = Read
C Control = Read

11. Address =
Control =
Data =
A Control
B Control
C Control

lf800000
00000034
ffffffff
= Write
= Write
= Write

00070000
00000019
11111111

lf800000
00000034
ffffffff

00070000
00000019
11111111

lf800000
00000034
ffffffff

Cycle 12 is a Write bus cycle to RAM address 00000004H

where there is an error in the address of processor B.

Cycles 13 through 18 are the simulated interrupt service

routine initiated by the three processors.

12,

14.

15,

Address =
Control =
Data =
A Control
B Control
C Control

00000000
00000035
22222222
= Write
= Write
= Write

13. Address = If800000
Control = 00000034
Data = ffffffff
A Control = Write
B Control = Write
C Control = Write

Address =
Control =
Data =
A Control
B Control
C Control

00070000
00000034
00000004
= Write
= Write
= Write

Address =
Control =
Data =
A Control
B Control
C Control

00070000
00000035
22222222
= Write
= Write
= Write

16. Address = 00070000
Control = 00000018
Data = 00000004
A Control = Read
B Control = Read
C Control = Read

01000000
00000035
22222222

lf800000
00000034
ffffffff

00070000
00000034
01000004

00070000
00000035
22222222

00070000
00000018
00000004

00000000
00000035
22222222

lf800000
00000034
ffffffff

00070000
00000034-
00000005

00070000
00000035
22222222

00070000
00000018
00000004

85

17, Address = 00070000
Control = 00000019
Data = 22222222
A Control = Read
B Control = Read
C Control = Read

00070000
00000019
22222222

00070000
00000019
22222222

18. Address =
Control =
Data =
A Control
B Control
C Control

lf800000
00000034
ffffffff
= Write
= Write
= Write

lf800000
00000034
ffffffff

lf800000
00000034
ffffffff

Cycle 19 is a Write bus cycle to RAM address 00000008H

where there is an error in the data of processor C. Cycles

2 0 through 25 are the simulated interrupt service routine

initiated by the three processors.

19.

20.

21.

22

23.

Address = 00000000 00000000 00000000
Control = 00000036 00000036 00000036
Data = 33333333 33333333 33333337
A Control = Write
B Control = Write
C Control = Write

Address = lf800000 lf800000 lf800000
Control = 00000034 00000034 00000034
Data = ffffffff ffffffff ffffffff
A Control = Write
B Control = Write
C Control = Write

Address = 00070000 00070000 00070000
Control' = 00000034 00000034 00000034
Data = 00000008 00000008 00000008
A Control = Write
B Control = Write
C Control = Write

Address = 00070000 00070000 00070000
Control = 00000035 00000035 00000035
Data = 33333333 33333333 33333337
A Control = Write
B Control = Write
C Control = Write

Address = 00070000 00070000 00070000
Control = 00000018 00000018 00000018
Data = 00000008 00000008 00000008
A Control = Read
B Control = Read
C Control = Read

86

24. Address = 00070000
Control = 00000019
Data = 33333333
A Control = Read
B Control = Read
C Control = Read

00070000
00000019
33333333

00070000
00000019
33333333

25, Address =
Control =
Data =
A Control
B Control
C Control

lf800000
00000034
ffffffff
= Write
= Write
= Write

lf800000
00000034
ffffffff

lf800000
00000034
ffffffff

Cycle 26 is a Write bus cycle to RAM address 0000000AH

where there are multiple errors in the data of all three

processors. Cycles 27 through 32 are the interrupt service

routine,

26.

27.

28.

29.

30.

Address =
Control =
Data
A Control
B Control
C Control

00000000
00000037
f4444444
= Write
= Write
= Write

00000000
00000037
44a44444

00000000
00000037
44444447

Address = lf800000 lf800000 lf800000
Control = 00000034 00000034 00000034
Data = ffffffff ffffffff ffffffff
A Control = Write
B Control = Write
C Control = Write

Address = 00070000 00070000 00070000
Control = 00000034 00000034 00000034
Data = 0000000c 0000000c 0000000c
A Control = Write
B Control = Write
C Control = Write

Address = 00070000 00070000 00070000
Control = 00000035 00000035 00000035
Data f4444444 44a44444 44444447
A Control = Write
B Control = Write
C Control = Write

Address = 00070000 00070000 00070000
Control = 00000018 00000018 00000018
Data 0000000c 0000000c 0000000c
A Control = Read
B Control = Read
C Control = Read

87

31. Address = 00070000
Control = 00000019
Data = 44444444
A Control = Read
B Control = Read
C Control = Read

00070000
00000019
44444444

00070000
00000019
44444444

32 Address =
Control =
Data =
A Control
B Control
C Control

lf800000
00000034
ffffffff
= Write
= Write
= Write

lf800000
00000034
ffffffff

lf800000
00000034
ffffffff

Cycles 33 through 36 are a Burst Read from RAM

addresses 00000000H, 00000004H, 00000008H, and 0000000CH.

The data read from RAM is the data which was "corrected" by

the majority voter when written during cycles 5, 12, 19, and

26. This example shows the successful completion of the

four Write cycles (5, 12, 19, and 26) which contained

errors.

33.

34.

35.

36.

Address = 00000000 00000000
Control = 00000008 00000008
Data = 11111111 11111111
A Control = Burst Read Word 0
B Control = Burst Read Word 0
C Control = Burst Read Word 0

Address = 00000000 00000000
Control = 00000009 00000009
Data = 22222222 22222222
A Control = Burst Read Word 1
B Control = Burst Read Word 1
C Control = Burst Read Word 1

Address = 00000000 00000000
Control = 0000000a 0000000a
Data = 33333333 33333333
A Control = Burst Read Word 2
B Control = Burst Read Word 2
C Control = Burst Read Word 2

Address = 00000000 00000000
Control = 0000000b 0000000b
Data = 44444444 44444444
A Control = Burst Read Word 3
B Control = Burst Read Word 3
C Control = Burst Read Word 3

00000000
00000008
11111111

00000000
00000009
22222222

00000000
0000000a
33333333

00000000
0000000b
44444444

88

Cycle 37 is a Write cycle to RAM address 00004000H

where processor B has incorrectly initiated a burst read

from 00004000H. Cycles 38 through 43 are the interrupt

routine.

37.

38,

39.

40.

41.

42,

43,

Address = 00004000 00004000
Control = 00000034 00000008
Data = 78787878 xxxxxxxx
A Control = Write
B Control = Burst Read Word 0
C Control = Write

Address = lf800000
Control = 00000034
Data = ffffffff
A Control = Write
B Control = Write
C Control = Write

Address =
Control =
Data
A Control
B Control
C Control

00070000
00000034
00004000
= Write
= Write
= Write

Address =
Control =
Data =
A Control
B Control
C Control

00070000
00000035
78787878
= Write
= Write
= Write

Address =
Control =
Data =
A Control
B Control
C Control

00070000
00000018
00004000
= Read
= Read
= Read

Address =
Control =
Data =
A Control
B Control
C Control

00070000
00000019
78787878
= Read
= Read
= Read

Address =
Control =
Data =
A Control
B Control
C Control

lf800000
00000034
ffffffff
= Write
= Write
= Write

lf800000
00000034
ffffffff

00070000
00000034
00004000

00070000
00000035
78787878

00070000
00000018
00004000

00070000
00000019
78787878

lf800000
00000034
ffffffff

00004000
00000034
78787878

lf800000
00000034
ffffffff

00070000
00000034
00004000

00070000
00000035
78787878

00070000
00000018
00004000

00070000
00000019
78787878

lf800000
00000034
ffffffff

89

Cycle 44 is a single word Read from RAM address

00004000H. The data read is the correct data written during

cycle 37.

44. Address = 00004000 00004000 00004000
Control = 00000018 00000018 00000018
Data = 78787878 78787878 78787878
A Control = Read
B Control = Read
C Control = Read

90

VI. CONCLUSION

With the rapidly declining radiation hardened device

market and high prices of such devices when compared to COTS

alternatives, a tool is desired that will allow the

observance and analysis of COTS processors operating in a

radiation environment. Additional reasons to move towards

COTS devices are significant advantages in efficiency,

performance, and software availability.

One of the primary disadvantages of COTS devices is

their susceptibility to single event upsets. Triple Modular

Redundancy (TMR) is viewed as one of many possible

alternatives to provide some protection from SEUs in COTS

devices.

The danger of incorporating redundancy into a system is

that the overall system reliability could be reduced, due to

the increased number of components. If the redundant

systems are not themselves reliable, there is little hope of

improving the reliability of the system.

The TMR Testbed design is not intended as a design for

space flight operations. Nor is it intended as a guaranteed

method of improving the performance of the R3081 processors

in the presence of radiation induced single event upsets.

The design herein is intended for ground based operational

91

testing of the voting logic and any software algorithms run

within the processors themselves. It is assumed that the

board can be constructed in such a way that all of the

hardware, other than the microprocessors, can be adequately

shielded during laboratory radiation testing. In addition,

it is realized that a fault which occurs in two of the

processors at the same time, and which is manifested as the

same bit being flipped on the address, control, or data bus,

cannot be detected. In the event this error occurs, the two

processors which are actually "faulty" will agree and become

the majority when passed to the majority voters.

In the Testbed design, TMR provides the opportunity to

monitor the three processors and in the event of an error,

determine which processor was in error and what the

processor was doing at the time the error occurred.

The Cadence/Verilog® design will allow simulation of

the concept, verification of timing signals, and flexibility

in reconfiguration of the design. Through simulation, the

use of the bus/memory interface from three COTS

microprocessors in a TMR design to monitor the system for

errors has been realized. The actual board design could be

constructed and used to test voting logic hardware and

software algorithms in a laboratory environment in the

presence of radiation induced SEUs or injected faults.

92

The use of the dedicated FIFO memories allows both real

time and post-error analysis of the state of the three

microprocessors. Thus, the tool will provide the capability

to analyze the success or failure of attempts to improve the

performance of COTS microprocessors in this environment,

prior to their use in designs intended for actual space

applications.

93

94

APPENDIX A. TMR TESTBED DESIGN SCHEMATICS

This appendix contains the entire schematic for the TMR

Testbed built using Cadence Concept™ schematic tools and

the Verilog® Hardware Description Language.

Enlarged views of each block in the following

schematics and associated Verilog® code, when applicable,

are contained Appendices B and C.

95

o- J9 *
£ 2 S
U Q Q
« 1- 1-
t a a £ c c
o C Q

Q 3

pj

,uuu
■wyu

Bid ma o: CE
V WO o o
atauL-ikb.

assdoo
i i i

. .uuu
flimoiaaa
vvvOOO

Figure 31. TMR Testbed Schematic (1 of 11)

96

. . A A C CD U a as i < i . .uuu . .uuu
• vvOOO

«IQ3ULLL

G

0

-*T ■* in

Figure 32. TMR Testbed Schematic (2 of 11)

97

äysit

**£ *KP
CCO:H

up

PS*

°o,H
Fh1-

aaa o
«10:11 ii.
cnuLJUj H
UCIll- L.
I-Dl-Z Li
ZDCTO in Hiou i

n

' I I I I

Uli

1J

2

* *******
t- zanuozz
U U I 1 1 jijLl
<n izzzzo«!
y i-uuuucti-
<* £0:0:0:0: s

g3222 g
3 a.

1- * *u >-*
ücn**o:a
_iuaa<rz uo:a3t-us-itMcn
uio:i-i-muzzzz
>2 00Z>-LilJUU cna33uumcamm

Figure 33. TMR Testbed Schematic (3 of 11)

98

VV VUJ ffl
eta a o u

*
cn
u
z
o
a
a
LI

Figure 34. TMR Testbed Schematic (4 of 11).

99

\\\\\UU\AAA\AA
:c cat c c c D:E[[DC E

a. H

t- 0)

oooooooooogggggg

ZZÜZZZZZ22Z2ZZ22

4M#w; PC ffl

\U\\\\\\\AAA\AH
CCCDCCCCDcQCCDCC

a t- si«irr*iniaMncn
3333333333 fcfctifcrtrS:
oooooooooogggggg ^

SiNl71*Ul
siNmnoMUiiiiii'i
zzzzzzzzzzzzzzzz

dicocCCCDdC

5-Trt!rr?IJiIfl?nci5?l'^!*'' 1-111-11

3333333333 t;

SiNffWUl si w or* uno r- moi m n i
zzzzzzzzzzzzzzzz

wwreqwTO

i fe

[CtO[[[[D[[[[D[D

H I-
r- to
-1 la

533

U-lLUuNu
 ►-(-»-HI-£
oooooooooogggggg

a-ifmrwmiOMnm1

Siwm^in
airt^it ma Mnm min
zzzzzzzzzzzzzzzz

MttM

qqqnqqqqonqqqaqi

TTffwÜTU^möi^^i^JHP
33333 D3333t:ttt:tt oooooooooogggggg

si NOW in
siwfi^mur-mm linn
zzzzzzzzzzzzzzzz

ÖOÖQ66666606660

AAA UAAA \AAAA UA
d[qQDdqqD]ddqdqqB

SiwnTiniflt^nmsiTWRn?

■jjjjjjjjjjjjj. w

Figure 35. TMR Testbed Schematic (5 of 11)

100

GCCCOCCCCQLLLLIQ

hl-hl-l-H-k^SjuM 33333 3333Z CECEL
"ooooco

S-iOJITWUl
~I« tfi »♦« iat- in m-i *i-i <M -i -t zzzzzzzzzzzzzzzz

ddddaddddoCJ[[[DC
^ w/ l it I! iff it ft

TTTTTTrmTTTTT
ccccncccc a[|Pp[|Q[

.-M-HM-i-f-i-i-^Tv'^r'r. D333333333^^t:t:t:

S-«OlffWlfl i-^wntinuir-flioi-H-i-i-i-i-i
:zzzzzzzzzzzzzzz

: cc c a 7777 / C CC C DC CC

UUVUU\UUU
CCCCDCC:CD[[[UQ[

s-*CM<rwinißf-mm' __.__._,
.555555555^^ ,00000 oooogggggg

:zzzzzzzzzzzzzs

2222222i2£F 2.

r c
\ I a

DqdqqDqqqqoqqqqD

zzzzzzzzzzzzzzzz

DdqqqoqqqTOqqqo /77^^ 1-1-1-1-1 1-1-1-1-1 1

"TT5TTTT5TTS55TT Diqqqqqqqqqaiqqqqo

s-irt<rwtnint-(nai Ü-UilllNUl

ooooogggggg ^

zzzzzzzzzzzzzzzz

oTOeoooeoTOffieit'O

UAAA UAAA VAAAA k DqqqqQqqqqoqqqqo

3333333333^t;t;t;t;

SiMintm
zzzzzzzzzzzzzzzz

iBWWWroiWw

Figure 36. TMR Testbed Schematic (6 of 11)

101

o - na tuiii(>Fiii--..d.

siftpi^inior-nor WtOTPTüT

ooooooooo« OQOOOO ,

s>
zzzzzzzzzzzzzzzz

MMMMHMMMMMHMHM

iWiW-WW'm

s-iMffwiniac-nai1

l-t- Hf-l-h- Hl-1- ►-£££ £ j2 2
gSiiSSigSSgggggg t

zzzzzzzzzzzzzzzz

8>

33 33333 333t, t.t.t.t.t: oooooooooo=||§3|

wtnti/iiar-noi-i-^-iM-i-i
zzzzzzzzzzzzzzzz

2iffl ■21 ffli üi

icwininiat-nai™ h-Kt-l-t-l-t-Hh--;
333333333=]!:

_ iNintinuMnaiiiiixx
zzzzzzzzzzzzzzzz

■W3979779777W
u t. p o »-J

TTT

10 S

r e ■» ir u i

l-H h-h-t-h- I- h-1-1- ££ £ p£-
33gggg3gSg333333

"oooooo

<W>6666(i)66ö<b66ö

TTTTHTTTTTTTTTT --■— Do-ritinihraa ■ c r p -"-J-'-J-J-

owwifliar-acnH
. i-h-h-*-t-Ht-i-i-rjr:rz:r,r1

D333333333t;t;t;t;t:t;

_ -* «n t in ifl f- <n oi «* i -. i -H -i
zzzzzzzzzzzzzzzz

■w^w-reww

Figure 37. TMR Testbed Schematic (7 of 11)

102

*
<r

I I

TT TT TT TYV

MO in

o o oo

01 «-is ci 011-mm «t 01 «-«s L. L.
~-^?I?Q oocoooooo Uk- o o o o

m m en

p. m in *

aaaa
TTTT

01 « -tS
-* *n M-* at oi t-io m •* ot tv •* a a
a a a a a a a a a a a a a a

u k.
a c
a a

MM Z Z
JX X u u
L. a a a 3

y > i) J ? 7777 // / /// / / /

ü—am?

/ /
Q33

c- u} u* ^(in) (v

jj L. o o oo o o o o

c-LOin^inctiG
^^-,-i-,-4-*-,annMflin^nw is
OgQQQQOQQQOOOaQQOO

CQ oo co
u u.
a a

oo x x
a 2

MM Z Z -J -J
_l X X u u u o
k3gC3 az

MClf iff H
/////// rn f ////7 / /

TT TOW

Q a: o

Figure 38. TMR Testbed Schematic (8 of 11).

103

tu m

I I II

TTTTTTTT
WM

Mdin^
-i -H 1-
o o oo

f m w ■
o o o c

_DQ CO CO

N
01 öl

Mdui

oaaa

TTTT

inoi>t{
a a a c

Id L. d a; a a

HMZZ
JKXUU
L2HIT2

n—ucmy

>-

TT TT TT TV

c- ifl in
o o oo

■ in w -<s oi in c- lain ^ ji «is
o o o o

rn mm
UJ u. ° o

W U
ftl

[- u in *

oaoa

tn w -»a
■H-i-i-ioimc-toin^infM-ia
aaaaaaaaaaaaaa

x *: a
_j _j
U (J
(X 3

Mcv iff »is

222 aiflMOififinni G

TT

1111 u i /11 n

aiw

:>
D4>

g

Figure 39. TMR Testbed Schematic (9 of 11)

104

u
I

Lü

"TT

Mil

TT
HMCMfl

TT TT

rr> m rr>
ffl CM IS

i -n -i "1 -He
O O O O

(II n

a g t» IO trw
aaaa

ui « -
a a ace

UL n <r
a a.

HH2Z
JKXUU
L. z a. a 3

I I I I n—axxxj

/ Z777777 //////

TT TTTT TT TT
auMim

TTT\ TT

ffirt-^saiint^ioi'i'fffifu-is
! o o o o

rn nn m

I- IC UT*

aaaa a a aa a a a a aa a a a a _i
HHZ2

J X X IdU
b. 3 a a 3

-i -i
u o

_ ^ -, ^ ^ ^ - - c cr t> u rtnm-ts) > > i / mTni n 1111

TT yuguu

Figure 40. TMR Testbed Schematic (10 of 11)

105

X
_l u
a

u o u o UJ o
a
a o

JUUU
uooo □ I I I
aacau

a
a
o

cncnn

I I 1-lOlHfllHfU ooodummuu
L.L.L. I I I I I I
HMHlj.L.lx.li.L.U-
L.L.U.U1UU1LJUU

Figure 41. TMR Testbed Schematic (11 of 11]

106

APPENDIX B. CADENCE SUPPLIED MODULES

This appendix contains the TMR Testbed schematic

modules, which were supplied in the Cadence Concept™

schematic libraries.

A. A74FCT373 TRANSPARENT LATCH

This part was used to build the address demultiplexer.

The body diagram of the address demultiplexer and its

schematic follow.

OE* \B
E

D <7>

D <E>

D <5>

D <4>

D <3>

D <2>

D <1>

D <0>

0-

0-

0-

0-

0-

0-

©-

0-

0-

EN

"_Q Q <7>

'_£) Q <E>

_0 Q <5>

".£) Q <4>

~-Q Q <3>

"_Q Q <2>

Q <1>

Q <0>
-0

-O

Figure 42. A74FCT373 Transparent Latch.

ftDOl. . 0> Q_

ALE0_

TESTEN1>K Q_

flD-DEMUX

AD<31..0>

RLE A<31. . 0>

TESTEN1*

-0 FK31. . 0>

Figure 43. Address Demultiplexer.

107

J) J J)) J) J I J) I J J / * in it r^ m a D -J

nil Jo LQDJOJ

-i a rt ri n u c« 9i a B -4
rnrrnrppi
1 t 1 7 M? 1) i

DP J 0 00 J 0

P D T

I')')
poa-no^in

J > 3 3 ^ ^ -»

C
a

y
_i
a

/
*
z
u
i-
cn
y
i-

/
K

Figure 44. Address Demultiplexer Schematic,

108

IDT71256 32K X 8 SRAM

IDT71255
32KX3
SRAM

fll.4

Al3
Ol2
fill 107
RlB ioE
fia ros
fls 104
fl7 ro3

OS 102

fis IOi

PU IOB

03
02
Ri
OB

WE CSOF.

uuu

Figure 45. IDT71256 SRAM.

IDT72225LA IK X 18 FIFO

C

IDT7222ELPI
1KX1S FIFO

— Ü17
-DIE
-Ü15
— Ü14
— D13

— Dl2

— Oia
— Dg
— ÜS
— D7

-ÜE
-OS
-D4

— 03
— G2

— Di
— Da

LD

u17

QlE
°15
014

Q13

Q13 —

Qg
0S
Q7

Q5-
04 -

OB —

FF

PfiE
PSF

RXO
RCLK HF/WXO
WCLK

RS OE

TJT7

Figure 46. IDT72225LA FIFO,

109

110

APPENDIX C. USER DEFINED VERILOG® MODULES

This appendix contains the custom modules built using

the Verilog® Hardware Description Language and the part body

diagrams built using the Cadence Concept™ schematic tools.

A. IDT R3081 RISC MICROPROCESSOR BUS SIMULATOR

R3081

AD<31. . B> -€> AD<31. . B>

CURR_TRANS<2. . 0> ©_
ADDRESSOl. . B>©_

DATA<31. . 0>o_

TRANS< 2.
ADDROl.
DATA<31.

. B>

. B>

. B>

ADDR2

ADDR3

ALE

-©

-O

-©

ADDR2

AQDR3

ALE

RESET_No_ RESET*: RD* -© RD_N

ACK_N e_ ACK*: MR IK -© WR_N

RDCEN_No- RDCENK BURST* -e BURST-N

INT5-N Q- INT5* DATAEN* -© DATAEN_N

SYSCLK* -© SYSCLK-N

Figure 47. R3081 Microprocessor Bus Simulator.

//* File: r3081.v
//*
//* Description: Verilog behavioral file for simulating the
//* multiplexed address/data bus of a IDT RV3 081.
//*
//* Reference: (1) IDT79R3081 RISController with FPA Data Sheet
//* (2)R3 081 Family Hardware User's Guide
//*
//* Author: John C. Payne, Jr.
//* Date: 10/24/98
//•***

vtimescale 1 ns /I ps

'define NONE 0
1define READ_BYTE 1
'define READ_WORD 2

111

'define READ_BURST 3
'define WRITE_BYTE 4
'define WRITE_WORD 5
'define HIGH 1
'define LOW 0
'define TRUE 1
'define FALSE 0

//***********************************•****•*****************************

//* Module: r3081
//*
//* Description: Verilog behavioral module for simulating the

multiplexed address/data bus and control lines of the IDT R3081.
This module drives the R3 081 block in the Cadence Concept
schematic.
NOTE: Module name must match the Cadence Concept block name, but
must be in lower case. Signal names of inout, input, and output
lines and size (or bus width) must match the signal names in the
Cadence Concept block.

//'
//*
//*
//*
//*
//*
//*
//*
//* Reference: (1) IDT79R3 081 RISController with FPA Data Sheet
//* (2) R3 081 Family Hardware User's Guide
//********•***

module r3081 (SYSCLK_N, RD_N, WR_N, AD, ADDR3, ADDR2, ALE,
DATAEN_N, BURST_N, RDCEN_N, ACK_N, RESET_N,
INT5_N, CURR_TRANS, ADDRESS, DATA);

//* RV3081 @ 20MHz rise/fall time parameters (min,typ,max)
parameter

t7_min = 0,
t7_typ =2.5,
t7_max = 5,
t8_min = 0,
t8_typ = 2,
t8_max = 4,
t9_min = 0,
t9_typ = 2,
t9_max = 4,
tll_min = 0,
tll_typ =7.5,
tll_max = 15,
tl4_min = 0,
tl4_typ = 0,
tl4_max = 0,
tl5_min = 0,
tl5_typ =3.5,
tl5_max = 7,
tl6_min = 0,
tl6_typ = 3,
tl6_max = 6,
tl8_min = 0,
tl8_typ = 5,
tl8_max = 10,
tl9_min = 0,
tl9_typ =6.5, //* tl9
tl9_max = 13;

//* t7 = Valid from SYSCLK_N rising

//* t8 = Asserted from SYSCLK_N rising

//* t9 = Negated from SYSCLK_N falling

//* til = Asserted from SYSCLK_N falling

//* tl4 = Driven from SYSCLK_N rising

//* tl5 = Negated from SYSCLK_N falling

//* tl6 = Valid from SYSCLK_N

//* tl8 = Tri-State from SYSCLK_N falling

SYSCLK_N falling to data valid

112

//* Module input and output lines
output SYSCLK_N,

RD_N,
WR_N;

inout [31:0] AD;
output ADDR3,

ADDR2,
ALE,
DATAEN_N,
BURST_N;

input RDCEN_N,
ACK_N,
RESET_N,
INT5_N;

//* These three inputs are not actual pins on an IDT R3081. They
//* are used as interface pins to the bus simulator to command the
//* bus to initiate a read, burst read, or a write,
input [2:0] CURR_TRANS;
input [31:0] ADDRESS;
input [31:0] DATA;

reg SYSCLK_N;
wire RD_N, ADDR3, ADDR2, ALE, DATAEN_N, BURST_N;

//* Internal variables (line enables)
reg RD_N_enable;
reg WR_N_enable;
reg AD_enable;
reg ADDR3_enable;
reg ADDR2_enable;
reg ALE_enable;
reg DATAEN_N_enable;
reg BURST_N_enable;
reg [31:0] busValue;
reg startCycle;
reg bootCycle;
reg [31:0] saveAddress;
reg [31:0] saveData;

//* R3081 Multiplexed Address/Data Bus (32 bit)
busDriver #(tl4_min,tl4_typ,tl4_max,

tl8_min,tl8_typ,tl8_max,
t18_min,t18_typ,t18_max)

ADBus(AD, busValue, AD_enable);

//* R3 081 Output Line RD_N Driver
activeLowLineDriver

#(tl5_min,tl5_typ,tl5_max,t7_min,t7_typ,t7_max)
RDL ine(RD_N, RD_N_enable) ;

//* R3 081 Output Line WR_N Driver
activeLowLineDriver

#(tl5_min,tl5_typ,tl5_max,t7_min,t7_typ,t7_max)
WRLine(WR_N, WR_N_enable) ;

113

//* R3 081 Output Line ADDR3 Driver
activeHighLineDriver

(tl6_min, tl6_typ, tl6_max, tl6_min, tl6_typ, tl6_max)
ADDR3Line(ADDR3, ADDR3_enable);

//* R3081 Output Line ADDR2 Driver
activeHighLineDriver

#(tl6_min,tl6_typ,tl6_max,tl6_min, tl6_typ, tl6_max)
ADDR2Line(ADDR2, ADDR2_enable) ;

//* R3081 Output Line ALE Driver
activeHighLineDriver

#(t8_min,t8_typ,t8_max,t9_min,t9_typ,t9_max)
ALELine(ALE, ALE_enable);

//* R3081 Output Line DATAEN_N Driver
activeLowLineDriver

#(tl5_min,tl5_typ,tl5_max, tll_min, tll_typ, tll_max)
DATAENLine(DATAEN_N, DATAEN_N_enable) ;

//* R3081 Output Line BURST_N Driver
activeLowLineDriver

#(tl5_min/tl5_typ,tl5_max,t7_min, t7_typ, t7_max)
BURSTLine(BURST_N, BURST_N_enable);

//* Initialize internal variables
initial
begin

SYSCLK_N = 0;
RD_N_enable = 'LOW;
WR_N_enable = 'LOW;
AD_enable = 'LOW;
ADDR3_enable = 'LOW;
ADDR2_enable = 'LOW;
ALE_enable = 'LOW;
DATAEN_N_enable = 'LOW;
BURST_N_enable = 'LOW;
busValue = 'bz;
startCycle = 'FALSE;
saveAddress = 'bz;
saveData = 'bz;

end

//* Control System Reference Clock
always

#25 SYSCLK_N = - SYSCLK_N;

//* Watch for change in CURR_TRANS input. If there is not a cycle
//* already started (startCycle = FALSE), then start a new cycle,
always @(CURRJTRANS)

if (startCycle)
startCycle = 'FALSE;

else if (CURR_TRANS == 'NONE)
startCycle = 'FALSE;

else
startCycle = 'TRUE;

114

//* At each positive edge of the system reference clock, if the
//* RESET_N input line is low, then set up system for initial burst
//* read from ROM at address 1FC00000
always @(posedge SYSCLK_N)
begin

if (!RESET_N)
begin

busValue = 32'hlFCOOOOO;
AD_enable = 'HIGH;
wait(RESET_N == 1);
bootCycle = 'TRUE;

end
end

//* Watch for negative edge of the interrupt line INT5_N. If a
//* cycle is currently in progress, then it is a cycle that hasn't
//* finished because of an incorrect control input. This means
//* that if, for example, this R3 081 initiated a READ while the
//* other two R3081's initiated a WRITE, it will be stuck waiting
//* for signals from the memory controller which are associated
//* with a READ. These signals will not come as expected because
//* the system completed a WRITE cycle based on the voted majority
//* from the other two R3 081's. After interrupting waiting
//* processor (if necessary) , perform simulated, abbreviated
//* interrupt handler routine, beginning and ending the routine with
//* a WRITE to "dummy address" 1F800000
always ©(negedge INT5_N)
begin

if (istartCycle) //* Then cycle is in progress
case (CURR_TRANS[2:0]) //* Interrupt waiting cycle

3'b001:
begin //* Interrupt a waiting READ_BYTE cycle

disable readByte;
©(negedge SYSCLK_N)
begin

RD_N_enable = 'LOW;
DATAEN_N_enable = 'LOW;
ADDR3_enable = 'LOW;
ADDR2_enable = 'HIGH;

©(posedge SYSCLK_N);
end

end

3'b010:
begin //* Interrupt a waiting READ_WORD cycle

disable readWord;
©(negedge SYSCLK_N)
begin

RD_N_enable = 'LOW;
DATAEN_N_enable = 'LOW;
ADDR3_enable = 'LOW;
ADDR2_enable = 'HIGH;

©(posedge SYSCLK_N);
end

end

115

3'bOll:
begin //* Interrupt a waiting READ_BURST cycle

disable readBurst;
@(negedge SYSCLK_N)
begin

RD_N_enable = 'LOW;
ADDR3_enable = 'LOW;
ADDR2_enable = 'LOW;
DATAEN_N_enable = 'LOW;
BURST_N_enable = 'LOW;

@(posedge SYSCLK_N);
end

end

3'blOO:
begin //* Interrupt a waiting WRITE_BYTE cycle

disable writeByte;
@(negedge SYSCLK_N)

WR_N_enable = 'LOW;
©(posedge SYSCLK_N)
begin

AD_enable = 'LOW;
ADDR3_enable = 'LOW;
ADDR2_enable = 'LOW;

end
end

3'bl01:
begin //* Interrupt a waiting WRITE_WORD cycle

disable writeWord;
©{negedge SYSCLK_N)

WR_N_enable = 'LOW;
©(posedge SYSCLK_N)
begin

AD_enable = 'LOW;
ADDR3_enable = 'LOW;
ADDR2_enable = 'LOW;

end
end

endcase

//* The saved address and data information from the last bus
//* cycle which caused the interrupt is used here simply to
//* show that differences between the three processors will
//* not cause a vote error interrupt to be generated due to
//*'the WRITE to "dummy address" 1F800000. The use of the
//* saved address and data information is not intended to
//* show what would actually be written during an interrupt
//* routine.
writeWord(32'hlF800000, 32'hFFFFFFFF);
if (saveAddress[31:0] >= 32 'h.00000000)

writeWord(32'h00070000, saveAddress);
else

writeWord(32'h00070000, 32'hA5A5A5A5);
if (saveData[31:0] >= 32'hOOOOOOOO)

writeWord(32'h00070004, saveData) ;
else

writeWord(32'h00070004, 32'h78787878) ;

116

readWord(32'h00070000) ;
readWord(32'h00070004) ;
writeWord(32'hlF800000, 32'hFFFFFFFF);

end

//* Initiate appropriate bus cycles based on CURRJTRANS input, and
//* if startCyle is TRUE, or if a boot cycle is necessary.
//* See the simulated, abbreviated interrupt handler routine above
//* for how the saved address and data information is used.
always
begin

if (startCycle && (CURRJTRANS == *READ_BYTE) && ibootCycle)
begin

saveAddress = ADDRESS;
saveData = DATA;
readByte(ADDRESS);

end ■

else if (startCycle && (CURRJTRANS == *READ_WORD) && IbootCycle)
begin

saveAddress = ADDRESS;
saveData = DATA;
readWord(ADDRESS);

end

else if ((startCycle && (CURRJTRANS == lREAD_BURST))
|| bootCycle)

begin
saveAddress = ADDRESS;
saveData = DATA;
readBurst(ADDRESS);

end

else if (startCycle && (CURRJTRANS == *WRITE_BYTE) &&
IbootCycle)

begin
saveAddress = ADDRESS;
saveData = DATA;
writeByte(ADDRESS, DATA);

end

else if (startCycle && (CURRJTRANS == *WRITE_WORD) &&
IbootCycle)

begin
saveAddress = ADDRESS;
saveData = DATA;
writeWord(ADDRESS, DATA);

end

else
©(posedge SYSCLK_N);

end

117

//A**

//* task: readByte
//*
//* Description: Simulates the bus cycle for reading a byte from the
//* given address by driving the A/D bus and associated control
//* lines. It waits on the RDCEN_N input from the memory
//* controller to indicate the memory has placed valid data on the
//* bus to read.
//*
//* Reference: (1) IDT79R3081 RISController with FPA Data Sheet
//* (2) R3 081 Family Hardware User's Guide
//••A**

task readByte;
input [31:0] address;

begin:readByte
©(posedge SYSCLK_N)
begin

startCycle = 'FALSE;
busValue[31:4] = address[31:4];

//* Set BE[3:0] lines
busValue[3] = !(address[l] && address[0]);
busValue[2] = !(address[1] && laddress[0]);
busValuefl] = !(laddress[1] && address[0]);
busValue[0] = !(laddress[1] && !address[0]);

AD_enable = 'HIGH;
RD_N_enable = 'HIGH;
ADDR3_enable = address[3]; //* Set word address
ADDR2_enable = address[2];
ALE_enable = 'HIGH;

end

©(negedge SYSCLK_N)
begin

AD_enable = 'LOW;
DATAEN_N_enable = 'HIGH;
ALE_enable = 'LOW;

end

@(posedge RDCEN_N);

@(negedge SYSCLK_N)
begin

RD_N_enable = 'LOW;
DATAEN_N_enable = 'LOW;
ADDR3_enable = 'LOW;
ADDR2_enable = 'LOW;

end
end

endtask //* end task readByte

118

//* task: readWord
//*
//* Description: Simulates the bus cycle for reading a word from the
//* given address by driving the A/D bus and associated control
//* lines. It waits on the RDCEN_N input from the memory
//* controller to indicate the memory has placed valid data on the
//* bus to read.
//*
//* Reference: (1) IDT79R3081 RISController with FPA Data Sheet
//* (2) R3081 Family Hardware User's Guide
//*******•***

task readWord;
input [31:0] address;

begin:readWord
©(posedge SYSCLK_N)
begin

startCycle = 'FALSE;
busValue[31:4] = address[31:4] ;

//* Set BE[3:0] lines
busValue[3] = 'LOW;
busValue[2] = 'LOW;
busValue[l] = 'LOW;
busValue[0] = 'LOW;

AD_enable = 'HIGH;
RD_N_enable = 'HIGH;
ADDR3_enable = address[3]; //* Set word address
ADDR2_enable = address[2];
ALE_enable = 'HIGH;

end

©(negedge SYSCLK_N)
begin

AD_enable = 'LOW;
DATAEN_N_enable = 'HIGH;
ALE_enable = 'LOW;

end

@{posedge RDCEN_N);

©(negedge SYSCLK_N)
begin

RD_N_enable = 'LOW;
DATAEN_N_enable = 'LOW;
ADDR3_enable = 'LOW;
ADDR2_enable = 'LOW;

end
. end

endtask //* end task readWord

119

//* task: readBurst
//*
//* Description: Simulates the bus cycle for burst reading four
//* contiguous words of memory starting at the given address
//* .by driving the A/D bus and associated control lines.
//* It waits on the RDCEN_N four times input from the memory
//* controller to indicate the memory has placed valid data on
//* the bus to read.
//*
//* Reference: (1) IDT79R3081 RISController with FPA Data Sheet
//* (2) R3081 Family Hardware User's Guide

task readBurst;
input [31:0] address;

begin:readBurst
<2(posedge SYSCLK_N)
begin

startCycle = 'FALSE;
if (!bootCycle)

//* If it is a boot cycle, 1FC00000 will already
//* be in busValue[31:0] for initial EPROM read

begin
busValue[31:4] = address[31:4];

//* Set BE[3:0] lines
busValue[3] = 'LOW;
busValue[2] = 'LOW;
busValue[1] = 'LOW;
busValue[0] = 'LOW;

end

bootCycle = 'FALSE;
AD_enable = 'HIGH;
RD_N_enable = 'HIGH
ADDR3_enable = 'LOW
ADDR2_enable = 'LOW
ALE_enable = 'HIGH;
BURST_N_enable = 'HIGH;

end

©(negedge SYSCLK_N)
begin

AD_enable = 'LOW;
DATAEN_N_enable = 'HIGH;
ALE_enable = 'LOW;

end

©(posedge RDCEN_N); //* Wait for 1st word

@(negedge SYSCLK_N)
begin

ADDR2_enable = 'HIGH; //* Set word address of 2nd word
end

@(posedge RDCEN_N); //* Wait for 2nd word

120

//* Set word address of 1st word

@(negedge SYSCLK_N)
begin

ADDR3_enable = 'HIGH; //* Set word address of 3rd word
ADDR2_enable = 'LOW;

end

@(posedge RDCEN_N); //* Wait for 3rd word

©(negedge SYSCLK_N)
begin

ADDR2_enable = 'HIGH; //* Set word address of 4th word
end

@(posedge RDCEN_N); //* Wait for 4th word

@(negedge SYSCLK_N)
begin

RD_N_enable = 'LOW;
ADDR3_enable = 'LOW;
ADDR2_enable = 'LOW;
DATAEN_N_enable = 'LOW;
BURST_N_enable = 'LOW;

end
end

endtask //* end task readBurst

//••••a**

//* task: writeByte
//*
//* Description: Simulates the bus cycle for writing a byte of the
//* given data at the given address by driving the A/D bus and
//* associated control lines. It waits on the ACK_N input from
//* the memory controller to indicate the data has been written.
//*
//* Reference: (1) IDT79R3081 RISController with FPA Data Sheet
//* (2) R3081 Family Hardware User's Guide
//A**

task writeByte;
input [31:0] address, data;

begin:writeByte
(Hposedge SYSCLK_N)
begin

startCycle = 'FALSE;
busValue[31:4] = address[31:4];

//* Set BE[3:0] lines
busValue[3] = !(address[l] && address[0]);
busValue[2] = !(address[l] && !address[0]);
busValue[l] = !(iaddress[1] && address[0]);
busValuefO] = !(!address[1] && !address[0]);

AD_enable = 'HIGH;
WR_N_enable = 'HIGH;
ADDR3_enable = address[3]; //* Set word address
ADDR2_enable = address[2];
ALE_enable = 'HIGH;

end

121

©(negedge SYSCLK_N)
begin

ALE_enable = 'LOW;
#(tl9_min:tl9_typ:tl9_max)

busValue = data;
end

©(posedge ACK_N) ;

©(negedge SYSCLK_N)
begin

WR_N_enable = 'LOW;
end

©(posedge SYSCLK_N)
begin

AD_enable = 'LOW;
ADDR3_enable = 'LOW;
ADDR2_enable = 'LOW;

end
end

endtask //* end task writeByte

//**************************•**

//* task: writeWord
//*
//* Description: Simulates the bus cycle for writing a word of
//* given data at the given address by driving the A/D bus and
//* associated control lines. It waits on the ACK_N input from
//* the memory controller to indicate the data has been written.
//*
//* Reference: (1) IDT79R3081 RISController with FPA Data Sheet
//* (2) R3081 Family Hardware User's Guide
//••A**

task writeWord;
input [31:0] address, data;

begin:writeWord
©(posedge SYSCLK_N)
begin

startCycle = 'FALSE;
busValue[31:4] = address[31:4];

//* Set BE[3:0] lines
busValue[3] = 'LOW;
busValue[2] = 'LOW;
busValue[1] = 'LOW;
busValue[0] = 'LOW;

AD_enable = 'HIGH;
WR_N_enable = 'HIGH;
ADDR3_enable = address[3]; //* Set word address
ADDR2_enable = address [2],-
ALE_enable = 'HIGH;

end

122

©(negedge SYSCLK_N)
begin

ALE_enable = 'LOW;
(tl9_min: tl9_typ: tl9_max)

busValue = data;
end

©(posedge ACK_N || !INT5_N);

©(negedge SYSCLK_N)
begin

WR_N_enable = 'LOW;
end

©(posedge SYSCLK_N)
begin

AD_enable = 'LOW;
ADDR3_enable ='LOW;
ADDR2_enable = 'LOW;

end
end

endtask //* end task writeWord

endmodule //* end module r3081

//***********************•**

//* Module: busDriver
//*
//* Description: Assigns valueToGo to address/data bus when driveEnable
//* is HIGH, otherwise drives bus to high impedance.

module busDriver(busLine, valueToGo, driveEnable);
parameter //* Parameters may be overridden for each

//* instantiation of this module

R_min =0, //* Minimum Rise Time
R_typ =2, //* Typical Rise Time
R_max =4, //* Maximum Rise Time
F_min =0, //* Minimum Fall Time
F_typ =2, //* Typical Fall Time
F_max =4, //* Maximum Fall Time
Z_min = 0, //* Minimum Time to high impedance
Z_typ =2, //* Typical Time to high impedance
Z_max =4; //* Maximum Time to high impedance

inout [31:0] busLine;
input [31:0] valueToGo;
input driveEnable;

assign # (R_min: R_typ: R_max, F_min: F_typ: F_max, Z_min: Z_typ: Z_max)
busLine = (driveEnable)?valueToGo:'bz;

endmodule //* end module busDriver

123

//* Module: activeLowLineDriver
//*
//* Description: Drives contLine LOW when driveEnable is HIGH,
//* otherwise contLine remains HIGH.

module activeLowLineDriver(contLine, driveEnable);
parameter //* Parameters may be overridden for each

//* instantiation of this module

R_min = 0, //* Minimum Rise Time
R_typ =2, //* Typical Rise Time
R_max =4, //* Maximum Rise Time
F_min =0, //* Minimum Fall Time
F_typ = 2, //* Typical Fall Time
F_max =4; //* Maximum Fall Time

inout contLine;
input driveEnable;

ass ign #(R_min:R_typ:R_max,F_min:F_typ:F_max)
contLine = (driveEnable)?0:1;

endmodule //* end module activeLowLineDriver

//••A***

//* Module: activeLowLineDriver
//*
//* Description: Drives contLine HIGH when driveEnable is HIGH,
//* otherwise contLine remains LOW.

module activeHighLineDriver(contLine, driveEnable);
parameter //* Parameters may be overridden for each

//* instantiation of this module

R_min = 0, //* Minimum Rise Time
R_typ =2, //* Typical Rise Time
R_max =4, //* Maximum Rise Time
F_min =0, //* Minimum Fall Time
F_typ = 2, /'/* Typical Fall Time
F_max =4; //* Maximum Fall Time

inout contLine;
input driveEnable;

assign #(R_min:R_typ:R_max,F_min:F_typ:F_max)
contLine = (driveEnable)?1:0;

endmodule //* end module activeHighLineDriver

124

B. 32-BIT VOTER/ERROR DETECTOR AND TRANSCEIVER

U0TE32BIT_XCUR

R<31. . 0>o_
B<31. . 0>Q_

C<31. . 0>©_ C<31. . 0>
FORCE-R©- rORCE_A
TORCE:_BQ_ FORCE_B
FORCE_Co_ rORCE_C

R<31..0> U0TED_0UT<31. . 0>
B<31..0>

UOTE_ERROR

RD>K
WR>k

\-Q U0TED_0UT<31. . 0>

|_© UOTE_ERROR

_0 RD_N
-Q WR_N

Figure 48. 32-Bit Voter/Error Detector and Transceiver.

//* File: vote32bit_xcvr.v
//*
//* Description: Verilog file for a 32 bit majority voter/error
//* detector and transceiver.
//*
//* Author: John C. Payne, Jr.
//* Date: 10/31/98

'timescale 1 ns /l ps

//it***

//* Module: bidirsw
//*
//* Description: Verilog behavioral module for a bidirectional switch
//* with tristate. If C0NT_LINE is high, then the INOUT_LINE
//* information drives the LINE_0UT line (LINE_0UT = INOUT_LINE);
//* otherwise, the LINE_OUT line is in a high impedance state. If
//* CONT_LINE is low, then the LINE_IN information drives the
//* INOUT_LINE (INOUT_LINE = LINE_IN); otherwise, the INOUT_LINE line
//* is in a high impedance state.
//A***

module bidirsw (LINE_IN,' LINE_OUT, INOUT_LINE, CONT_LINE);

input LINE_IN;
output LINE_OUT;
inout INOUT_LINE;
input CONT_LINE;

assign INOUT_LINE = (!C0NT_LINE)?LINE_IN:'bz;
assign LINE_OUT = (CONT_LINE)?INOUT_LINE:'bz;

endmodule //* end module bidirsw

125

//*********************************•***********•************************

//* Module: votecell_xcvr
//*
//* Description: Verilog structural module for a one bit voter/error
//* detector and transceiver. Votes 3 input bits to produce 1 output
//* bit. FORCE_A, FORCE_B, & FORCE_C inputs can be used to disable
//* voting and force data on A, B, or C through to the output.
//* Uses 4 bidirsw modules.
//*****************************•*************•**************************

module votecell_xcvr (A, B, C, FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N,
MAJ_OUT, MAJ_ERROR);

inout A, B, C;
input FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N;
inout MAJ_OUT;
output MAJ_ERROR;
wire MAJORITY;

tri IN_A, IN_B, IN_C, RD_IN;

//* If RD_N is low, then RD_IN drives all three input/output lines
//* A, B, & C; otherwise. A, B, & C drive IN_A, IN_B, & IN_C which
//* are then voted,
bidirsw

sw_l(RD_IN, IN_A, A, RD_N),
sw_2(RD_IN, INJB, B, RD_N),
sw_3(RD_IN, IN_C, C, RD_N);

//* If WR_N is low, then MAJORITY drives the output line MAJ_OUT;
//* otherwise, MAJ_OUT drives the RD_IN line.
bidirsw

sw_4(MAJORITY, RD_IN, MAJ_OUT, WR_N);

not
not_l (NOT_IN_A, IN_A),
not_2 (NOT_IN_B, IN_B),
not_3 (NOT_IN_C, IN_C),
not_4 (NOT_FORCE_A, FORCE_A),
not_5 (NOT_FORCE_B, FORCE_B),
not_6 (NOT_FORCE_C, FORCE_C);

and
and_l (and_l_out,
and_2 (and_2_out,
and_3 (and_3_out,
and_4 (and_4_out, IN_A, IN_B, NOT_FORCE_A, NOT_FORCE_B,

NOT_FORCE_C),
and_5 (and_5_out, IN_A, IN_C, NOT_FORCE_A, NOT_FORCE_B,

NOT_FORCE_C),
and_6 (and_6_out, IN_B, IN_C, NOT_FORCE_A, NOT_FORCE_B,

NOT_FORCE_C);

or #15
or_l (MAJORITY, and_l_out, and_2_out, and_3_out, and_4_out,

and_5_out, and_6_out);

126

IN_A, FORCE_A),
IN_B, FORCE_B),
IN_C, FORCE_C),
IN_A, IN_B, NOT_FORCE_A,

and
and_7 (and_7_out, NOT_IN_A, NOT_IN_B, IN_C, NOT_FORCE_A,

NOT_FORCE_B, NOT_FORCE_C),
and_8 (and_8_out, NOT_IN_A, IN_B, NOT_IN_C, NOT_FORCE_A,

NOT_FORCE_B, NOT_FORCE_C),
and_9 (and_9_out, NOT_IN_A, IN_B, IN_C, NOT_FORCE_A, NOT_FORCE_B,

NOT_FORCE_C),
and_10 (and_10_out, IN_A, NOT_IN_B, NOT_IN_C, NOT_FORCE_A,

NOT_FORCE_B, NOT_FORCE_C),
and_ll (and_ll_out, IN_A, NOT_IN_B, IN_C, NOT_FORCE_A,

NOT_FORCE_B, NOT_FORCE_C),
and_12 (and_12_out, IN_A, IN_B, NOT_IN_C, NOT_FORCE_A,

NOT_FORCE_B, NOT_FORCE_C);

or #15
or_2 (MAJ_ERROR, and_7_out, and_8_out, and_9_out, and_10_out,

and_ll_out, and_12_out);

endmodule //* end module votecell_xcvr

//*****•*************•**

//* Module: vote8bit_xcvr
//*
//* Description: Verilog structural module for an 8 bit voter/error
//* detector and transceiver. Votes 24 input bits to produce 8
//* output bits. FORCE_A, FORCE_B, & FORCE_C inputs can be used to
//* disable voting and force data on A[7:0], B[7:0], or C[7:0]
//* through to the output. Uses eight votecell_xcvr modules.
//»••••A**

module vote8bit_xcvr (A, B, C, FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N,
VOTED_OUT, VOTE_ERROR);

inout [7:0] A, B, C;
input FORCE_A, FORCE_B, FORCE_C;
input RD_N, WR_N;
inout [7:0] VOTED_OUT;
output VOTE_ERROR;

wire ERROR_0, ERR0R_1, ERR0R_2, ERR0R_3, ERR0R_4, ERROR_5, ERR0R_6,
ERROR_7;

votecell_xcvr
cellO (A[0], B[0], C[0], F0RCE_A, FORCE_B, FORCE_C, RD_N, WR_N,

VOTED_OUT[0], ERROR_0),
celll (A[l], B[l], C[l], FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N,

VOTED_OUT[1], ERR0R_1),
cell2 (A[2], B[2], C[2], FORCE_A, F0RCE_B, FORCE_C, RD_N, WR_N,

VOTED_OUT[2], ERR0R_2),
cell3 (A[3], B[3], C[3], FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N,

VOTED_OUT[3], ERROR_3),
cell4 (A[4], B[4], C[4], FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N,

VOTED_OUT[4], ERROR_4),
cell5 (A[5], B[5], C[5], FORCE_A, F0RCE_B, F0RCE_C, RD_N, WR_N,

VOTED_OUT[5], ERROR_5) ,
cell6 (A[6], B[6], C[6], FORCE_A, FORCE_B, F0RCE_C, RD_N, WR_N,

VOTED_OUT[6], ERR0R_6),
cell7 (A [7], B[7], C[7], FORCE_A, FORCE_B, FORCE_C-, RD_N, WR_N,

VOTED_OUT[7], ERR0R_7);

127

or #10 .
or_l (VOTE_ERROR, ERROR_0, ERROR_l, ERROR_2, ERROR_3, ERROR_4,

ERROR_5, ERROR_6, ERROR_7);

endmodule //* end module vote8bit xcvr

II* Module: vote32bit_xcvr
//*
//* Description: Verilog structural module for a 32 bit voter/error
//* detector and transceiver. Votes 96 input bits to produce 32
//* output bits. FORCE_A, FORCE_B, & FORCE_C inputs can be used
//* to disable voting and force data on A[31:0], B[31:0], or C[31:0]
//* through to the output. Uses four vote8bit_xcvr modules.
//* This module drives the VOTE32BIT_XCVR block in the Cadence
//* Concept schematic.
//* NOTE: Module name must match the Cadence Concept block name, but
//* must be in lower case. Signal names of inout, input, and output
//* lines and size (or bus width) must match the signal names in the
//* Cadence Concept block.
//******************************•***************************************

module vote32bit_xcvr (A, B, C, FORCE_A, FORCE_B, FORCE_C,
RD_N, WR_N, VOTED_OUT, VOTE_ERROR);

inout [31:0] A, B, C;
input F0RCE_A, F0RCE_B, FORCE_C;
input RD_N, WR_N;
inout [31:0] VOTED_OUT;
output VOTE_ERROR;

wire ERROR_0, ERR0R_1, ERROR_2, ERROR_3;

vote8bit_xcvr
voterO (A[31:24], B[31:24], C[31:24], FORCE_A, FORCE_B, F0RCE_C,

RD_N, WR_N, VOTED_OUT[31:24] , ERROR_0),
voterl (A[23:16], B[23:16], C[23:16], FORCE_A, F0RCE_B, F0RCE_C,

RD_N, WR_N, VOTED_OUT[23:16], ERR0R_1),
voter2 (A[15:8], B[15:8], C[15:8], F0RCE_A, FORCE_B, FORCE_C,

RD_N, WR_N, VOTED_OUT[15:8] , ERROR_2) ,
voter3 (A[7:0], B[7:0], C[7:0], FORCE_A, FORCE_B, FORCE_C,

RD_N, WR_N, VOTED_OUT[7:0], ERROR_3);

or #10
or_l (VOTE_ERROR, ERROR_0, ERROR_l, ERROR_2, ERROR_3);

endmodule //* end module vote32bit_xcvr

128

c. 8-BIT VOTER/ERROR DETECTOR

UOTESBIT

A< 7. . B> ©_
B<7. . B> ©_
C< 7. . B> ©_
FORCE-A©-
FORCE_B©_
FORCE_C©_

A< 7. . B>
B< 7. . B>
C< 7. . B>
FORCE-A
FORCE-B
FORCE-C

U0TED_0UT<7. . B>

UOTE-ERROR

_£> U0TED_0UT<7. . B>

UOTE-ERROR

Figure 49. 8-Bit Voter/Error Detector.

//*********•*********-***

//* File: vote8bit.v
//*
//* Description: Verilog structural file for 8 bit majority voter and
//* error detector using 8 votecell modules
//*
//* Author: John C. Payne, Jr.
//* Date: 10/06/98
//••A***

'timescale 1 ns /l ps

//* Module: votecell
//*
//* Description: Verilog structural module for a one bit voter/error
//* detector. Votes 3 input bits to produce 1 output bit. F0RCE_A,
//* FORCE_B, & FORCE_C inputs can be used to disable voting and
//* force data on A, B, or C through to the output.

module votecell (IN_A, FORCE_A, IN_B, FORCE_B, IN_C, FORCE_C, MAJ_OUT,
MAJ_ERROR) ;

input IN_A, FORCE_A, IN_B, FORCE_B, IN_C, FORCE_C;
output MAJ_OUT, MAJ_ERROR;

not
not_l (NOT_IN_A, IN_A),
not_2 (NOT_IN_B, IN_B),
not_3 (NOT_IN_C, IN_C),
not_4 (NOT_FORCE_A, FORCE_A),
not_5 (NOT_FORCE_B, FORCE_B),
not_6 (NOT_FORCE_C, FORCE_C);

and
and_l (and_l_out, IN_A, FORCE_A),
and_2 (and_2_out, IN_B, FORCE_B),
and_3 (and_3_out, IN_C, FORCE_C),
and_4 (and_4_out, IN_A, IN_B, NOT_FORCE_A, NOT_FORCE_B,

NOT_FORCE_C) ,
and_5 (and_5_out, IN_A, IN_C, NOT_FORCE_A, NOT_FORCE_B,

NOT_FORCE_C) ,
and_6 (and_6_out, IN_B, IN_C, NOT_FORCE_A, NOT_FORCE_B,

NOT_FORCE_C);

129

or #15
or_l (MAJ_OUT, and_l_out, and_2_out, and_3_out, and_4_out,

and_5_out, and_6_out);

and
and_7 (and_7_out, NOT_IN_A, NOT_IN_B, IN_C, NOT_FORCE_A,

NOT_FORCE_B, NOT_FORCE_C),
and_8 (and_8_out, NOT_IN_A, IN_B, NOT_IN_C, NOT_FORCE_A,

NOT_FORCE_B, NOT_FORCE_C),
and_9 (and_9_OUt, NOT_IN_A, IN_B, IN_C, NOT_FORCE_A, NOT_FORCE_B,

NOT_FORCE_C),
and_10 (and_10_out, IN_A, NOT_IN_B, NOT_IN_C, NOT_FORCE_A,

NOT_FORCE_B, NOT_FORCE_C) ,
and_ll (and_ll_out, IN_A, NOT_IN_B, IN_C, NOT_FORCE_A,

NOT_FORCE_B, NOT_FORCE_C) ,
and_12 (and_12_out, IN_A, IN_B, NOT_IN_C, NOT_FORCE_A,

NOT_FORCE_B, NOT_FORCE_C);

or #15
or_2 (MAJ_ERROR, and_7_out, and_8_out, and_9_out, and_10_out,

and_ll_out, and_12_out),-

endmodule //* end module votecell

//A***

//* Module: vote8bit
//*
//* Description: Verilog structural module for an 8 bit voter/error
//* detector. Votes 24 input bits to produce,8 output bits.
//* FORCE_A, FORCE_B, & FORCE_C inputs can be used to disable voting
//* and force data on A[7:0], B[7:0], or C[7:0] through to the
//* output. Uses eight votecell modules. This module drives the
//* V0TE8BIT block in the Cadence Concept schematic.
//* NOTE: Module name must match the Cadence Concept block name, but
//* must be in lower case. Signal names of inout, input, and output
//* lines and size (or bus width) must match the signal names in the
//* Cadence Concept block.
//***************************************•**********•*******************

module vote8bit (A, FORCE_A, B, FORCE_B, C, FORCE_C, VOTED_OUT,
VOTE_ERROR);

input [7:0] A, B, C;
input FORCE_A, FORCE_B, FORCE_C;
output [7:0] VOTEDJDUT;
output VOTE_ERROR;

wire ERROR_0, ERROR_l, ERROR_2, ERROR_3, ERR0R_4, ERR0R_5, ERR0R_6,
ERROR_7;

votecell
cellO (A[0], FORCE_A, B[0], FORCE_B, C[0], FORCE_C,

VOTED_OUT[0], ERROR_0),

celll (A[l], FORCE_A, B[l], FORCE_B, C[l], FORCE_C,
VOTED_OUT[1], ERROR_l),

cell2 (A[2], FORCE_A, B[2], FORCE_B, C[2], FORCE_C,
VOTED_OUT[2], ERROR_2),

130

cell3 (A[3], FORCE_A, B[3], FORCE_B, C[3], FORCE_C,
VOTED_OUT[3], ERR0R_3),

cell4 (A[4], FORCE_A, B[4], FORCE_B, C[4], FORCE_C,
VOTED_OUT[4], ERR0R_4},

cell5 (A[5], FORCE_A, B[5], FORCE_B, C[5], FORCE_C,
VOTED_OUT[5], ERR0R_5),

cel'16 (A[6], FORCE_A, B[6], FORCE_B, C[6], FORCE_C,
VOTED_OUT[6], ERR0R_6),

cell7 (A[7], FORCE_A, B[7], FORCE_B, C[7], FORCE_C,
VOTED_OUT[7], ERR0R_7);

or #10
or_l (VOTE_ERROR, ERROR_0, ERROR_l, ERR0R_2, ERR0R_3, ERROR_4,

ERROR_5, ERROR_6, ERROR_7);

endmodule //* end module vote8bit

131

D. 32-BIT VOTER/ERROR DETECTOR

U0TE32BIT

FORCE_AQ_
FORCE_B©_
TORCE-CQ-

fioi. . 0>Q_| floi: . 0>
B<31. . 0>0_ B<31. . 0> U0TED_0UT<31. . 0>
C<31. .0>0_ C<31. . 0>

FORCE_A
rORCE_B UOTE_ERROR
rORCE_C

_© U0TED_0UT<31,

-© UOTE-ERROR

0>

Figure 50. 32-Bit Voter/Error Detector.

II* File: vote32bit.v
//*
//* Description: Verilog structural file for 32 bit majority voter and
//* error detector using 4 voter_8bit modules
//*
//* Author: John C. Payne, Jr.
//* Date: 10/06/98

'timescale 1.ns /l ps

//it***

//* Module: vote32bit
//*
//* Description: Verilog structural module for a 32 bit voter/error
//*
//*
//*
//*
//*
//*
//*
//*
//*

detector. Votes 96 input bits to produce 32 output bits.
FORCE_A, FORCE_B, & FORCE_C inputs can be used to disable voting
and force data on A[31:0], B[31:0], or C[31:0] through to the
output. Uses four vote8bit modules. This module drives the
VOTE32BIT block in the Cadence Concept schematic.
NOTE: Module name must match the Cadence Concept block name, but
must be in lower case. Signal names of inout, input, and output
lines and size (or bus width) must match the signal names in the
Cadence Concept block.

module vote32bit (A, FORCE_A, B, FORCE_B, C, FORCE_C, VOTED_OUT,
VOTE_ERROR);

input [31:0] A, B, C;
input FORCE_A, FORCE_B, F0RCE_C;
output [31:0] VOTED_OUT;
output VOTE_ERROR;

wire ERROR_0, ERROR_l, ERROR_2, ERROR_3;

132

vote8bit
voterO (A[31:24], FORCE_A, B[31:24], FORCE_B, C[31:24], FORCE_C,

VOTED_OUT[31:24], ERROR_0),
voterl (A[23:16], FORCE_A, B[23:16], FORCE_B, C[23:16], FORCE_C,

VOTED_OUT[23:16], ERROR_l),
VOter2 (A[15:8], FORCE_A, B[15:8], FORCE_B, C[15:8], FORCE_C,

VOTED_OUT[15:8], ERR0R_2),
voter3 (A[7:0], FORCE_A, B[7:0], FORCE_B, C[7:0], FORCE_C,

VOTED_OUT[7:0], ERROR_3) ;

or #10
or_l (VOTE_ERROR, ERROR_0, ERROR_l, ERROR_2, ERROR_3);

endmodule //* end module vote32bit

133

E. MEMORY/ADDRESS DECODER

MEM_DECODER

flOl. . 17> o_ fl<3i. . 17>

RP)MC5>K

EPROMCS«

INTCS>K

|_0 RAMCS*

|_^) EPROMCS*

i_0 INTCS>K

Figure 51. Memory/Address Decoder.

//*********************** ******************************* ****************
//* File: mem_decoder.v
//*
//* Description: Verilog structural file for memory decoder to
//* generate various chip selects.
//*
//* Author: John C. Payne, Jr.
//* Date: 10/06/98
//**

'timescale 1 ns / 1 ps

//it***

//* Module: mem_decoder
//*
//* Description: Verilog behavioral module for a memory decoder. Uses
//* input A[31:17] to generate three active low chip select outputs.
//* This module drives the MEM_DECODER block in the Cadence Concept
//* schematic.
//* NOTE: Module name must match the Cadence Concept block name, but
//* must be in lower case. Signal names of inout, input, and output
'//* lines and size (or bus width) must match the signal names in the
//* Cadence Concept block.
//**

module mem_decoder (A, RAMCS_N, EPR0MCS_N, INTCS_N);

input [31:17] A;
output RAMCS_N, EPR0MCS_N, INTCS_N;
wire RAMCS_N, EPR0MCS_N, INTCS_N;

//* RAM = 00000000 to 0007FFFF
//* EPROM = 1FC00000 to lFCOxxxx
//* INT = 1F800000 "Dummy Address to Disable Vote Error Interrupts"

134

assign #45
RAMCS_N = (!A[31] && !A[30] && !A[29] && !A[28] && //* 0

IA[27] && !A[26] && !A[25] && !A[24] && //* 0
!A[23] &Sc !A[22] && !A[21] && !A[20] && //* 0
!A[19])?0:1; //* 7

assign #45
EPROMCS_N = (!A[31] && !A[30] && !A[29] && A[28] && //* 1

A[27] && A[26] && A[25] && A[24] && //* F
A[23] && A[22] && !A[21] && !A[20] && //* C

!A[19] && !A[18] && !A[17])?0:1; //* 0

assign #45
INTCS_N = (!A[31] && !A[30] && !A[29] && A[28] && //* 1

A[27] && A[26] && A[25] && A[24] && //* F
A[23] && !A[22] && !A[21] && !A[20] && //* 8

!A[19] && !A[18] ScSc !A[17]) ?0:1; //* 0

endmodule //* end module mem_decoder

135

F. MEMORY/ERROR CONTROLLER

MEM-CONT

SYSCLK_N©_
RESET-N^.
UOTRÜ-N©.
UOTWR-N^.

UOTBURST-N^
RAMCS-N©.

EPROMCS-N o_
INTC£_No_
AGDRERR^.
DATAERR ©_
CONTERR ©_

USEEIFOc

SYSCLK*
RESET*
UOTRD*
UOTWRik
UOTBURST*
RAMCS*
EP ROM CS >k
INTCSik
ADDRERR
DATAERR
CONTERR

USEFIFO

ENSTART*
CYCEND*

RDCENikLeRDCEN.

JSERRORik _eB
ACK*

BU
AODRTOFIFO*
OATATOFIFOik
CONTTOFIFO*

FIFO WE ik

UOTERRORINTik

-©ENSTART-N
_€,CYCEND_N

.N
_^ACK_N

~USERROR_N
.©ADÜRTOFIFO-N
-©DATATOFIFO-N
_£,CONTTOFIFO_N
.^FIFOWE-N

_OUOTERROR_INT_N

Figure 52. Memory/Error Controller.

//••••A***

//* File: mem_cont.v
//*
//* Description: Verilog behavioral file for memory/error controller
//* to control timing cycles of various bus transactions.
//*
//* Reference: (1) IDT RISC Microprocessor Application Guide,
//* Application Note AN-86, IDT79R3051 System Design
//* Example
//*
//* Author: John C. Payne, Jr.
//* Date: 11/3/98
//**

1timescale 1 ns /l ps

//**•*

//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*

Mo du1e: mem_cont

Description: Verilog behavioral module for the memory/error
controller. Produces READ, WRITE, and BUS ERROR acknowledge
controls (RDCEN_N, ACK_N, BUSERROR_N) based on a 5 bit counter
and cycle end stall cycle (wait state) equations.
Also produces an interrupt if there is a vote error detected on
the ADDRERR, CONTERR, or DATAERR inputs. The ADDRERR, CONTERR,
and DATAERR inputs are saved at specified values of the counter,
and an error interrupt is generated only at the end of the
current cycle, so that the current cycle is allowed to finish.
If INTCS_N goes low during a dummy write to that address, this
signals the beginning of the interrupt handler routine and
vote error interrupts are disabled until INTCS_N goes low again,
which signals the end of the interrupt handler routine.
This module also controls the three lines ADDRTOFIFO_N,
CONTTOFIFO_N, and DATATOFIFO_N which send the appropriate
information to the dedicated FIFOs. These three lines are

136

active low enable lines which allow, through the use of 32-bit
tri-state buffers, the ADDRESS, CONTROL, and DATA information
from the processor to be multiplexed onto a single 32-bit bus
which is the input bus for each dedicated FIFO. The FIFOWE_N
line signals a write to the FIFOs at the appropriate time within
a bus cycle based on the 5-bit counter.
This module drives the MEM_CONT block in the Cadence Concept
schematic.
NOTE: Module name must match the Cadence Concept block name, but
must be in lower case. Signal names of inout, input, and output
lines and size (or bus width) must match the signal names in the
Cadence Concept block.

Reference: (1) IDT RISC Microprocessor Application Guide,
Application Note AN-86, IDT79R3051 System Design
Example

//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*

module mem_cont (SYSCLK_N, RESET_N, VOTRD_N, VOTWR_N, VOTBURST_N,
RAMCS_N, EPROMCS_N, INTCS_N, USEFIFO, DATAERR,
ADDRERR, CONTERR, ENSTART_N, CYCEND_N,
RDCEN_N, ACK_N, BUSERROR_N, ADDRTOFIFO_N,
DATATOFIFO_N, CONTTOFIFO_N, FIFOWE_N,
VOTERROR_INT_N);

input SYSCLKJSF,
RESET_N,
VOTRD_N,
VOTWRJST,
VOTBURST_N,
RAMCS_N,
EPROMCS_N,
INTCS_N,
USEFIFO,
DATAERR,
ADDRERR,
CONTERR;

//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*

System clock from R3 081
Reset from MEMEN module
Voted read from R3 081
Voted write from R3 081
Voted burst from R3 081
RAM chip select from memory decoder
EPROM chip select from memory decoder
INT chip select from memory decoder
Set High (pull up) to Write to FIFOs
Data Vote Error from 32-bit Data Voter
Address Vote Error from 32-bit Address Voter
Control Vote Error from 8-bit Control Voter

output ENSTART_N,
CYCEND_N,
RDCEN_N,
ACK_N,
BUSERROR_N,
ADDRTOFIFO_N,
DATATOFIFO_N,
CONTTOFIFO_N,
FIFOWE_N,

//* Read/write output enable start
//* Cyle end (composite ACK)
//* R3081 read buffer clock enable
//* R3081 acknowledge
//* R3081 bus error
//* Address To FIFO to Address Buffers
//* Data To FIFO to Data Buffers
//* Control To FIFO to Control Buffers
//* FIFO Write Enable

VOTERROR_INT_N; //* Interrupt Sent to R3081

wire ENSTART_N, CYCEND_N, RDCEN_N, ACK_N, BUSERROR_N,
ADDRTOFIFO_N, DATATOFIFO_N, CONTTOFIFO_N,

' , FIFOWE_N, VOTERROR_INT_N;

reg [4:0] counter;
reg voteErrorlntEn;
wire voteError;
reg saveErrorl, saveError2, saveError3, saveError4;
reg voteErrorlntValueToGo;

137

//* At the positive edge of the reset input line, RESETJST, ensure
//* vote error interrupts are enabled, the interrupt line is HIGH,
//* and the saved error flags are initialized to indicated no error
//* has been detected,
always

@(posedge RESET_N)
begin

voteErrorlntEn = 1;
voteErrorlntValueToGo = 1;
saveErrorl = 0;
saveError2 = 0
saveError3 = 0
saveError4 = 0

end

//* At each positive edge of the system reference clock generated
//* by the R3081, reset the counter if RESET_N or CYCEND_N goes low.
//* Increment the counter if VOTRD_N or V0TWR_N is low. Save the
//* error flag at the four different counter values, so that the
//* cycle is allowed to finish. The use of four different saved
//* values allows a single READ or WRITE to finish as well as a
//* BURST READ to finish. If the current transaction is a BURST
//* READ, then an ADDRERR, CONTERR, or DATAERR is sampled four times,
always

©(posedge SYSCLK_N)
begin

if (!RESET_N || !CYCEND_N)
counter = 0;

else if (!VOTRD_N || !VOTWR_N)
counter = counter + 1;

if (RESET_N && CYCEND_N && (counter == 5'h05))
saveErrorl = voteError;

else if (RESET_N && CYCEND_N && (counter == 5'h09))
saveError2 = voteError;

else if (RESET_N && CYCEND_N && (counter == 5'hOB))
saveError3 = voteError;

else if (RESET_N && CYCEND_N && (counter == 5'hl7))
saveError4 = voteError;

//* If at the end of a cycle, and one of the saved errors
//* indicates an error occurred, then generate an interrupt
//* only if vote error interrupts are currently enabled,
if (RESET_N && !CYCEND_N && voteErrorlntEn &&

(saveErrorl || saveError2 || saveError3 || saveError4))
voteErrorlntValueToGo = 0 ;

end

//* Watch for negative edge of INTCS_N, and disable/reenable vote
//* error interrupts.
always

©(negedge INTCS_N)
begin

voteErrorlntEn = -voteErrorlntEn;
voteErrorlntValueToGo = 1;
saveErrorl = 0;
saveError2 = 0;

138

saveError3 = 0 ;
saveError4 = 0;

end

//* Update internal voteError flag
assign #30 voteError = (ADDRERR || DATAERR CONTERR)?1:0;

//* Update VOTERROR_INT_N output line
assign #3 0 VOTERROR_INT_N = voteErrorlntValueToGo;

//* Update ENSTART_N output line
assign #30 ENSTART_N = (RESET_N && (counter >= 1) && CYCEND_N)?0:1;

//* Update CYCEND_N output line
assign #30 CYCEND_N =

(RESET_N && CYCEND_N && (
(!RAMCS_N && (counter == 5'h05) && !V0TRD_N && VOTBURST_N)
(!RAMCS_N && (counter == 5'hl7) && !V0TRD_N && !VOTBURST_N)
(!RAMCS_N && (counter == 5'h06) && !V0TWR_N)
(!EPROMCS_N && (counter == 5'h05) && !V0TRD_N && VOTBURST_N)
(!EPROMCS_N && (counter == 5'hl7) && !VOTRD_N && !VOTBURST_N)
(!INTCS_N ScSc (counter == 5'h06) && !VOTWR_N)
(counter == 8'hlF)

))?0:1;

//* Update RDCEN_N output line
assign #30 RDCEN_N =

(RESET_N ScSc CYCEND_N && (
(!RAMCS_N && !VOTRD_N &&

(
(counter == 5 'h03)

(!VOTBURST_N && (counter == 5 'h09))
(!VOTBURST_N && (counter == 5 'hOF))
(!VOTBURST_N
)

ScSc (counter == 5 'hl5))

.EPROMCS_N && VOTRD_N &&
(

(counter == 5 'h03)
(!VOTBURST_N ScSc (counter == 5 'h09))

•(!VOTBURST_N ScSc (counter == 5 'hOF))
(!VOTBURST_N Sc& (counter == 5 'hl5))

)
))?0:1;

//* Update ACK_N output line
assign #30 ACK_N = (RESET_N && CYCEND_N &&

(
(!RAMCS_N && !VOTWR_N &&

(counter == 5'h06)
)
(!RAMCS_N && !VOTRD_N &&

(counter == 5'h03)
)
(!EPROMCS_N && !VOTRD_N S=&

(counter == 5'h03)

139

(!INTCS_N && !VOTWR_N &&
(counter == 5'h06)

)
))?0:1;

//* Update BUSERROR_N output line
assign #30 BUSERROR_N =

(RESET_N && CYCEND_N && (counter 5'hlF))?0:1;

//* Update ADDRTOFIFO_N output line
assign #30 ADDRTOFIFO_N =

(RESET_N && CYCEND_N && USEFIFO &&
(

!EPROMCS_N &&
(counter

!VOTRD_N &&
== 5'h01)

(
(!VOTBURST_N &&
(!VOTBURST_N &&
(!VOTBURST_N &&

(counter
(counter
(counter

5'h07))
5'hOD))
5'hl3))

)
(!RAMCS_N && !VOTRD_N &&

(
(!VOTBURST_N &&
(!VOTBURST_N &&
(!VOTBURST_N &&

(counter
(counter
(counter

5'h07))
5'hOD))
5'hl3))

)
?0:1;

//* Update CONTTOFIFO_N output line
assign #30 CONTTOFIFO_N =

(RESET_N && CYCEND_N && USEFIFO &&
(

(!EPROMCS_N &&
(counter

!VOTRD_N &&
(

(!VOTBURST_N &&
(!VOTBURST_N &&
(!VOTBURST_N &&

(counter
(counter
(counter

== 5'h03]

5'h09))
5'h0F))
5'hl5))

(!RAMCS_N && !VOTRD_N &&
(

(!VOTBURST_N && (counter == 5'h09))
(!VOTBURST_N && (counter == 5'hOF))
(!VOTBURST_N && (counter == 5'hl5))

)
),?0:1;

140

//* Update DATATOFIFO_N output line
assign #30 DATATOFIFO_N =

(RESET_N && CYCEND_N && USEFIFO &&
(

(!EPR0MCS_N && 1V0TRD.
(

(!VOTBURST_N &&
(!VOTBURST_N &&
(!VOTBURST_N &&

(counter
_N &&

(counter
(counter
(counter

5'h05)

5'hOB))
5'hll))
5'hl7))

)
(!RAMCS_N && !V0TRD_N &&

(
(!VOTBURST_N &&
(!VOTBURST_N &&
(!VOTBURST_N &&

(counter
(counter
(counter

5'hOB))
5'hll))
5'hl7))

)
)?0:1;

//* Update FIFOWE_N output line
assign #3 0 FIFOWE_N =

(RESET_N && CYCEND_N && USEFIFO &&
(

)
?0:1;

(counter == 5'h01)
(counter == 5'h03)
(counter == 5'h05)
(!VOTBURST_N
(!VOTBURST_N
(!VOTBURST_N
(!VOTBURST_N
(!VOTBURST_N
(!VOTBURST_N
(!VOTBURST_N
(!VOTBURST_N
(!VOTBURST_N

Sc& !VOTRD_N && (counter = = 5 'h07))
&& !VOTRD_N && (counter == 5 'h09))
&& !VOTRD_N && (counter == 5 'hOB))
Sc& !VOTRD_N && (counter == 5 'hOD))
ScSc !VOTRD_N && (counter == 5 'hOF))
&& !VOTRD_N && (counter == 5 'hll))
&& IVOTRD N && (counter = = 5 'hl3))
&& !VOTRD_N && (counter == 5 'hl5))
ScSc !VOTRD_N && (counter == 5 'hl7))

endmodule //* end module mem_cont

141

G. MEMORY READ/WRITE ENABLE CONTROLLER

MEM-EN

SYSCLK_N0_i
PWRRESET_NQ_

YOTRD_NQ_

UOTWR_NQ_

ENSTART_N ©_
CYCEND-N ©_

BEN00_
BEN1Q_

BEN2Q_

BEN3©_

SYSCLK* RESET*
PWRRESET*
UOTRD* WRDATAEN*
UOTWR*
ENSTART*
CYCEND*
BEN0
BEN1
BEN2
BEN3

WREN_A*
WREN_B*
WREN_C>K
WREN_D*

RDEN*
RDDATAEN*

_ORESET_N

_OWRDATAEN_N
_0WREN_NA
_QWREN_NB

_©WREN_NC
_QWREN_ND

_©RDEN_N
_ORDDATAEN_N

Figure 53. Memory Read/Write Enable Controller.

//*********************•**

//* File: mem_en.v
//*
//* Description: Verilog behavioral file for generating memory read
//* and write enable signals.
//*
//* Reference: (1) IDT RISC Microprocessor Application Guide,
//* Application Note AN-86, IDT79R3051 System Design
//* Example
//*
//* Author: John C. Payne, Jr.
//* Date: 11/1/98
//**

'timescale 1 ns /l ps

//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*

*************** *■* **

Module: mem_cont

Description: Verilog behavioral module for generating the read
and write enables for the memory controls.
This module drives the MEM_EN block in the Cadence Concept
schematic.
NOTE: Module name must match the Cadence Concept block name, but
must be in lower case. Signal names of inout, input, and output
lines and size (or bus width) must match the signal names in the
Cadence Concept block.

Reference: (1) IDT RISC Microprocessor Application Guide,
Application Note AN-86, IDT79R3051 System Design
Example

142

module mem_en (SYSCLK_N, PWRRESET_N, VOTRD_N, VOTWR_N, ENSTART_N,
CYCEND_N, BENO, BEN1, BEN2, BEN3, RESET_N, WREN_N,
WRDATAEN_N, WREN_NA, WREN_NB, WREN_NC, WREN_ND, RDEN_N,
RDDATAEN_N);

input SYSCLK_N,
PWRRESET_N,
VOTRD_N,
VOTWR_N,
ENSTART_N,
CYCEND_N,
BENO,
BEN1,
BEN2,
BEN3 ;

output RESET_N,
WREN_N,
WRDATAEN_N,
WREN_NA,
WREN_NB,
WRENJSTC,
WREN_ND,
RDEN_N,
RDDATAEN_N;

//* System clock from R3 081
//* Power (Global) reset
//* Voted read from R3 081
//* Voted write from R3 081
//* Enable start from memory controller
//* Cycle end from memory controller
//* Byte 0 enable (active low) from R3081
//* Byte 1 enable (active low) from R3081
//* Byte 2 enable (active low) from R3081
//* Byte 3 enable (active low) from R3081

(ADDR
(ADDR
(ADDR
(ADDR

[0])
[1])
[2])
[3])

//* Synchronzied reset line to rest of board
//* Not used
//* Write data xcvr enable
//*
//*
//*
//*
//*
//*

Write enable for byte 0
Write enable for byte 1
Write enable for byte 2
Write enable for byte 3
Read output enable (for words)
Read data xcvr enable

wire RESET_N, WREN_N, WRDATAEN_N, WREN_NA, WREN_NB, WREN_NC, WREN_ND,
RDEN_N, RDDATAEN_N;

assign #30 WREN_NA =
!(RESET_N ScSc

(!VOTWR_N ScSc 1BEN0 ScSc !ENSTART_N ScSc CYCEND_N)

assign #3 0 WREN_NB =
! (RESET_N ScSc

(!VOTWR_N ScSc !BEN1 && ! ENSTART_N ScSc CYCEND_N)
);

assign #30 WREN_NC =
!(RESET_N &&

(!VOTWR_N ScSc !BEN2 && ! ENSTART_N && CYCEND_N)
) ;

assign #3 0 WREN_ND =
!(RESET_N &&

(!VOTWR_N && !BEN3 && !ENSTART_N && CYCEND_N)
);

assign #30 WREN_N =
!(RESET_N &&

((!VOTWR_N ScSc CYCEND_N) || (!WREN_N ScSc !CYCEND_N))
) ;

143

assign #30 WRDATAEN_N =
!(RESET_N &&

((!VOTWR_N && !ENSTART_N) ||
(!WRDATAEN_N && (!ENSTART_N || !CYCEND_N))

)
);

assign #30 RDEN_N =
!(RESET_N &&

(!VOTRD_N && !ENSTART_N && CYCEND_N)
) ;

assign #30 RDDATAEN_N =
!(RESET_N &&

(!VOTRD_N && !ENSTART_N && CYCEND_N)
);

assign #30 RESET_N = ! (! PWRRESETJJ) ;

endmodule //* end module mem_en

144

H. 16-BIT NON-INVERTING TRI- STATE BÜFFER

BUFF_16BIT

IN0 0_ IN0 OUT0 _0OUT0
INlQ_ INI 0UT1 _£>0UT1
IN2Q_ IN2 0UT2 _£|0UT2
IN3Q_ IN3 0UT3 _QOUT3
IN4 0_ IN4 0UT4 _QOUT4

IN5Q_ IN5 0UT5 _©0UT5
INB0_ IN6 0UT6 _©0UT6
iw?e- IN7 0UT7 _QOUT7
IN8Q_ IN8 0UT8 _QOUT8

IN9Q. IN9 0UT9 -0OUT9
IN100- IN10 OUT10 _£)OUT10
INllQ- IN11 0UT11 _QOUT11
IN12©_ IN12 0UT12 _©0UT12
IN130_ IN13 0UT13 _£)0UT13
IN14Q_ IN14 0UT14 _QOUT14

IN15Q_ IN15 0UT15 _£)0UT15

OE*

<Q>
OE_N

Figure 54. 16-Bit Non-Inverting Tri-State Buffer.

//**********************•***

//* File: buff_16bit.v
//*
//* Description: Verilog structural file for 16 bit tri-state
//* non-inverting buff er.
//*
//* Author: John C. Payne, Jr.
//* Date: 11/16/98
//***•******************

xtimescale 1 ns /l ps

//**

//* Module: interface
//*
//* Description: Verilog stru ctural module for simulating a 16-bit
//* tri-state non-inverting buffer.
//* This module drives the BUFF_16BIT block in the Cadence Concept
//* schematic.
//* NOTE: Module name must match the Cadence Concept block name, but
//* must be in lower case. Signal names of inout, input, and output
//* lines and size (or bus width) must match the signal names in the
//* Cadence Concept block.

module buff_16bit (INO, INI, IN2, IN3, IN4, IN5, IN6, IN7,
IN8, IN9, IN10, IN11, IN12, INI3, INI4, INI5,
OUTO, 0UT1, 0UT2, 0UT3, 0UT4, 0UT5, 0UT6, 0UT7,
0UT8, 0UT9, OUT10, 0UT11, OUT12, 0UT13, 0UT14, 0UT15,
OE_N);

145

input INO, INI, IN2, IN3, IN4, IN5, IN6, IN7,
IN8, IN9, INIO, IN11, IN12, INI3, INI4, INI 5;

output OUTO, OUT1, OUT2, OUT3, OUT4, OUT5, OUT6, OUT7,
OUT8, OUT9, OUT10, OUT11, OUT12, OUT13, OUT14, OUT15;

input OE_N;

bufifO #(0 :15:30, 0:15:30, 0:15:30)
buff 0 (OUTO, INO, OE_N),
buff_l (OUT1, INI, OE_N),
buff_2 (OUT2, IN2, OE_N),
buff_3 (OUT3, IN3, OE_N),
buff_4 (OUT4, IN4, OE_N),
buff_5 (OUT5, IN5, OE_N),
buff_6 (OUT6, IN6, OE_N), •
buff 7 (OUT7, IN7, OE_N),
buff 8 (OUT8, IN8, OE_N),
buff_9 (OUT9, IN9, OE_N),
buff_10 (OUT10 , IN10, OE_N),
buff_ll (OUT11 , IN11, OE_N),
buff 12 (OUT12 , IN12, OE_N),
buff 13 (OUT13 , INI3, OE_N),
buff_14 (OUT14 , INI4, OE_N),
buff_15 (OUT15 , INI5, OE_N);

endmodule //* end module buff 16bit

146

I. EPROM

EPROM

A0Q_ A<0> DftTflOl. . B> _QDATA<31

A10- ft<i>
ftl4_2<14. . 2>Q_ ft<14. . 2>

OUTPUTENftBLE_N Q_ OE*
CHIPSELECT_N ©_ CS*

Eb

Figure 55. EPROM.

//*****************•*******•**

//* File: eprom.v
//*
//* Description: Verilog behavioral file for an EPROM.
//*
//* Author: John C. Payne, Jr.
//* Date: 10/28/98

'timescale 1 ns /l ps

//* Define how many entries are in the data file for internal memory
//* storage.
1 define EPROM_ENTRIES 48

//*****•**

//* Module: eprom
//*
//* Description: Verilog behavioral module for simulating an EPROM.
//* Although because of the number of address lines, it is capable of
//* being 128k, it has been limited to 48 entries to reduce data
//* entry for simulation purposes. The memory data and intialized
//* the data file EPROM.data.
//* This module drives the EPROM block in the Cadence Concept
//* schematic.
//* NOTE: Module name must match the Cadence Concept block name, but
//* must be in lower case. Signal names of inout, input, and output
//* lines and size (or bus width) must match the signal names in the
//* Cadence Concept block.
//**************************************••******************************

module eprom (A0, Al, A14_2, OUTPUTENABLE_N, CHIPSELECT_N, DATA);

//* EPROM Maximum Access Times *//
parameter

CY27C256_max_access = 45;

//* Module input and output lines
input A0,

Al;
input [14:2] A14_2;

147

input OUTPUTENABLE_N,
CHIPSELECT_N;

output [31:0] DATA;

//* Internal variables (line enables)
wire [14:0] combined_address;
reg [31:0] memory [0: TEPROMJENTRIES - 1)];

//* Intialize internal memory from data file
initial

begin
$readmemh("EPROM.data",memory);

end

//* Combine input lines into single address
assign combined_address[0] = A0;
assign combined_address[1] = Al;
assign combined_address[14:2] = A14_2;

//* Drive data bus with data from EPROM at combined address if
//* OUTPUTENABLE_N and CHIPSELECT_N are both low. Drive to
//* high impedance otherwise,
assign #(CY27C256_max_access) DATA =

(!OUTPUTENABLE_N &&
!CHIPSELECT_N)?memory[combined_address]:'bz;

endmodule

//* File: EPROM.data
//*
//* Description: Capable of being 128K EPROM Memory File
//* 17 address lines (A[16] - A[0]) =
//* 131072 lines of 32-bit data/instructions allowed
//* Only 48 entries have been supplied to reduce data entry for
//* simulation purposes.
//*
/ / * Author: John C. Payne, Jr.
//* Date: 10/28/98
//********************************•*************************************

//* ADDRESS
00000000 //* 00000h
00000001
00000002
00000003
00000004
00000005
00000006
00000007 //* 00007h
00000008
00000009
OOO0OO0A
OOO0OO0B
oooooooc
OOO0OOOD
0000000E
OOO0OO0F //* OOOOFh
00000010 //* OOOlOh

148

00000011
00000012
00000013
00000014
00000015
00000016
00000017 ' //* 00017h
00000018
00000019
0000001A
0000001B
0000001C
0000001D
0000001E
0000001F //* OOOlFh
00000020 //* 00020h
00000021
00000022
00000023
00000024
00000025
00000026
00000027 //* 00027h
00000028
00000029
0000002A
0000002B
0000002C
0000002D
0000002E
0000002F //* 0002Fh

149

J. SYSTEM INTERFACE

INTERFACE
FIFOAOUT<31. . 0> A- FIF0_A<31. . B>
FIF0B0UT<31. . 0> O- FIF0_B<31. . 0> RDCLK -^i READCLK
FIF0C0UTO1. . B> O- FIF0_C<31. . B> A_OEa< -O A_OE_N

EF_ftl_N ©- EF_A1* B_OEü< _0 B_OE_N
EF_ft2_N O- EF_A2* C_OEik _o C_OE_N
EF_B1_N O- EF_B1*
EF_B2_N <V EF_B2ü< "IFORDik _c FIFORD-N
EF_C1_N O- EF_C1*
EF_C2_N O- EF_C2)k

Figure 56. System Interface.

//**
//* File: interface.v
//*
//* Description: Verilog behavioral file for simulating the
//* interface portion of the TMR testbed.
//*
//* Author: John C. Payne, Jr.
//* Date: 11/15/98
//**

ltimescale 1 ns /l ps

xdefine HIGH 1
"define LOW 0

//** **************
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*
//*

Module: interface

Description: Verilog behavioral module for simulating the
interface of the TMR Testbed which removes the information from
the three FIFOs dedicated to the three microprocessors.
The data that is read from each FIFO is formatted and written to
text trace file 'TMR_trace.out'. If the file doesn't exist, it
is created in the current working directory. If the file already
exists, it is emptied and overwritten.
This module drives the INTERFACE block in the Cadence Concept
schematic.
NOTE: Module name must match the Cadence Concept block name, but
must be in lower case. Signal names of inout, input, and output
lines and size (or bus width) must match the signal names in the
Cadence Concept block.

module interface (FIFOAOUT, FIFOBOUT, FIFOCOUT, EF_A1_N, EF_A2_N,
EF_B1_N, EF_B2_N, EF_C1_N, EF_C2_N, READCLK,
A_OE_N, B_OE_N, C_OE_N, FIFORD_N);

150

//* Module input and output lines
input [31:0] FIFOAOUT,

FIFOBOUT,
FIFOCOUT;

input EF_A1_N, EF_A2_N,
EF_B1_N, EF_B2_N,
EF_C1_N, EF_C2_N;

output READCLK,
A_OE_N,
B_OE_N,
C_OE_N,
FIFORD_N;

reg READCLK;
wire FIFORD_N;
wire fifoAEmpty_N, fifoBEmpty_N, fifoCEmpty_N;
wire A_OE_N, B_OE_N, C_OE_N;
reg [31:0] fileHandle;
reg aOEenable, bOEenable, cOEenable, fifoRdEnable;
reg [31:0] Adata, Bdata, Cdata, saveAdata, saveBdata, saveCdata;

initial
begin

READCLK = 'LOW;
fifoRdEnable = 'LOW;
aOEenable = 'LOW;
bOEenable = 'LOW;
cOEenable = 'LOW;
fileHandle = $fopen("TMR_trace.out") ;
$fdisplay(fileHandle, " CPU A CPU B

CPU C");
$fdisplay(fileHandle,

end

//* Control FIFO interface clock
always

#12.5 READCLK = -READCLK;

//* Composite FIFO empty flags. If not empty, signals will be high.
assign #30 fifoAEmpty_N = (EF_A1_N && EF_A2_N)?1:0;

assign #30 fifoBEmpty_N = (EF_B1_N && EF_B2_N)?1:0

assign #30 fifoCEmpty_N = (EF_C1_N && EF_C2_N)?1:0

assign FIFORD_N = (fifoRdEnable)?0:1;

assign A_OE_N = (aOEenable)?0:1;
assign B_OE_N = (bOEenable)?0:1;
assign C_OE_N = (cOEenable)?0:1;

always
begin

wait((fifoAEmpty_N == 'HIGH) && (fifoBEmpty_N == 'HIGH) &&
(fifoCEmpty_N == 'HIGH))

151

begin
//* Read FIFO A -- should be address from CPU A
©(negedge READCLK)
begin

#5;
fifoRdEnable = 'HIGH;
aOEenable = 'HIGH;
©(posedge READCLK)
begin

#10;
Adata[31:0] = FIFOAOUT[31:0];
fifoRdEnable = 'LOW;
aOEenable = 'LOW;

end
end

//* Read FIFO B -- should be address from CPU B
©(negedge READCLK)
begin

#5;
fifoRdEnable = 'HIGH;
bOEenable = 'HIGH;
©(posedge READCLK)
begin

.#10;
Bdata[31:0] = FIFOBOUT[31:0];
fifoRdEnable = 'LOW;
bOEenable = 'LOW;

end
end

//* Read FIFO C — should be address from CPU C
©(negedge READCLK)
begin

#5;
fifoRdEnable = 'HIGH;
cOEenable = 'HIGH;
©(posedge READCLK)
begin

#10;
Cdata[31:0] = FIFOCOUT[31:0];
fifoRdEnable = 'LOW;
cOEenable = 'LOW;

end
end

//* Output address info from FIFOs to diary file
$fdisplay(fileHandle, "Address = %h\t%h\t%h", Adata, Bdata,

Cdata);
end

,wait((fifoAEmpty_N == 'HIGH) && (fifoBEmpty_N == 'HIGH) &&
(fifoCEmpty_N == 'HIGH))

begin

//* Read FIFO A — should be control from CPU A
©(negedge READCLK)

152

begin
#5;
fifoRdEnable = 'HIGH;
aOEenable = 'HIGH;
@(posedge READCLK)
begin

#10;
Adata[31:0] = FIFOAOUT[31:0];
fifoRdEnable = 'LOW;
aOEenable = 'LOW;

end
end

//* Read FIFO B -- should be control from CPU B
@(negedge READCLK)
begin

#5;
fifoRdEnable =''HIGH;
bOEenable = 'HIGH;
©(posedge READCLK)
begin

#10;
Bdata[31:0] = FIFOBOUT[31:0];
fifoRdEnable = 'LOW;
bOEenable = 'LOW;

end
end

//* Read FIFO C -- should be control from CPU C
@(negedge READCLK)
begin

#5;
fifoRdEnable = 'HIGH;
cOEenable = 'HIGH;
@(posedge READCLK)
begin

#10;
Cdata[31:0] = FIFOCOUT[31:0];
fifoRdEnable = 'LOW;
cOEenable = 'LOW;

end
end

//* Output control info from FIFOs to diary file
$fdisplay(fileHandle, "Control = %h\t%h\t%h", Adata, Bdata,

Cdata);

//* Save CONTROL data for displaying control status at end
//* of reading DATA data from FIFO
saveAdata = Adata;
saveBdata = Bdata;
saveCdata = Cdata;

end

wait((fifoAEmpty_N == 'HIGH) && (fifoBEmpty_N == 'HIGH) &&
(fifoCEmpty_N == 'HIGH))

begin

153

//* Read FIFO A — should be data to/from CPU A
@(negedge READCLK)
begin

#5;
fifoRdEnable = 'HIGH;
aOEenable = 'HIGH;
@(posedge READCLK)
begin

#10;
Adata[31:0] = FIFOAOUT[31:0];
fifoRdEnable = 'LOW;
aOEenable = 'LOW;

end
end

//* Read FIFO B — should be data to/from CPU B
@(negedge READCLK)
begin

#5;
fifoRdEnable = 'HIGH;
bOEenable = 'HIGH;
@(posedge READCLK)
begin

#10;
Bdata[31:0] = FIFOBOUT[31:0];
fifoRdEnable = 'LOW;
bOEenable = 'LOW;

end
end

//* Read FIFO C -- should be data to/from CPU C
©(negedge READCLK)
begin

#5;
fifoRdEnable = 'HIGH;
cOEenable = 'HIGH;
@(posedge READCLK)
begin

#10;
Cdata[31:0] = FIFOCOUT[31:0];
fifoRdEnable = 'LOW;
cOEenable = 'LOW;

end
end

//* Output data info from FIFOs to diary file
$fdisplay(fileHandle, "Data = %h\t%h\t%h", Adata, Bdata,

Cdata);
case(saveAdata[4:2])

3'b010:
$fdisplay(fileHandle, "A Control = Burst Read Word %d",

saveAdata[1:0]);
3'bll0:

$fdisplay(fileHandle, "A Control = Read");
3'bl01:

$fdisplay(fileHandle, "A Control = Write");
default:

154

$fdisplay(fileHandle, "A Control = Illegal Bus
Transaction");

endcase

case(saveBdata[4:2])
3'b010:

$fdisplay(fileHandle, "B Control = Burst Read Word %d",
saveBdata[1:0]);

3'bllO:
$fdisplay(fileHandle, "B Control = Read");

3'bl01:
$fdisplay{fileHandle, "B Control = Write");

default:
$fdisplay{fileHandle, "B Control = Illegal Bus

Transaction") ;
endcase

case(saveCdata[4:2])
3'b010:

$fdisplay(fileHandle, "C Control = Burst Read Word %d",
saveCdata[1:0]);

3'bllO:
$fdisplay(fileHandle, "C Control = Read");

3'bl01:
$fdisplay(fileHandle, "C Control = Write");

default:
$fdisplay(fileHandle, "C Control = Illegal Bus

Transaction");
endcase

$fdisplay(fileHandle,
it = ——————————— — — — — — — ———————

end

end

endmodule //* end module interface

155

156

APPENDIX D. CADENCE SCRIPT CONTROL LANGUAGE FILES

This appendix contains two SCL files which were used to

generate the simulation results obtained in Chapter V.

A. NORMAL (ERROR FREE) SCL FILE

//♦»»»»A**

//* File: normal.scl
//*
//* Description: Cadence Logic Workbench Opensim Script Control
//* Language (SCL) file. This file executes several bus cycles for
//* the TMR Testbed schematic. All of the bus cycles in this file
//* should be error free.
//*
//* Author: John C. Payne, Jr.
//* Date: 11/30/98
//*•**

//* Definitions for transaction codes
//* (same as in verilog file for R3 081 module)
NONE = 0
READ_BYTE = 1
READ_WORD = 2
READ_BURST = 3
WRITE_BYTE = 4
WRITE_WORD = 5

//* Initialize board interface lines
DEPOSIT 'PWRRESET*', 0
DEPOSIT 'TESTEN1*', 0

DEPOSIT 'F0RCE_A', 0
DEPOSIT 'FORCE_B', 0
DEPOSIT 'FORCE_C, 0
DEPOSIT 'USEFIFO', 1
DEPOSIT 'PULL_UP', 1
DEPOSIT 'GND', 0

DEPOSIT 'A_TRANS', (NONE)
DEPOSIT 'B_TRANS', (NONE)
DEPOSIT 'C_TRANS', (NONE)

//* These initializations are necessary to prevent timing violations
//* in the simulation
DEPOSIT 'RAMCS*', 1
DEPOSIT 'EPROMCS*', 1
DEPOSIT 'INTCS*', 1
DEPOSIT 'WREN_A*', 1
DEPOSIT 'WREN_B*', 1
DEPOSIT 'WREN_C*', 1
DEPOSIT 'WREN_D*', 1
DEPOSIT 'RDEN*', 1

' 157

//* Hold board reset and release
sim 1000ns
DEPOSIT 'PWRRESET*', 1

//* Advance simulation clock during initial burst read from EPROM
//* address 1FC00000 which is initiated by the R3081 modules
while (#'VOTRD*' == 1)

sim 25ns
while (#'VOTRD*' ==0)

sim 25ns

sim 50ns

//•••»»A***********************************

//* Test Burst Read Bus Cycle from EPROM
//•••••A***********************************

DEPOSIT 'AJTRANS', (READ_BURST)
DEPOSIT 'BJTRANS', (READ_BURST)
DEPOSIT 'CJTRANS', (READ_BURST)

//* Burst Read next EPROM Address
DEPOSIT 'A_ADDR', $xlFC00010
DEPOSIT 'B_ADDR', $xlFC00010
DEPOSIT 'C_ADDR', $xlFC00010

//* Advance simulation clock
while (#'VOTRD*' == 1)

sim 25ns
while (#'VOTRD*' ==0)

sim 25ns

//* Advance sim clock to ensure previous cycle completes
DEPOSIT 'AJTRANS', (NONE)
DEPOSIT 'BJTRANS', (NONE)
DEPOSIT 'CJTRANS', (NONE)
DEPOSIT 'A_ADDR', $X2222ZZZZ
DEPOSIT 'B_ADDR', $x2zzzzzzz
DEPOSIT 'C_ADDR', $xzz22zzzz

sim 50ns

//******************•***■*******************

//* Test Write Bus Cycle
//••A**************************************

DEPOSIT 'AJTRANS', (WRITEJWORD)
DEPOSIT 'BJTRANS', (WRITEJWORD)
DEPOSIT 'CJTRANS', (WRITE_WORD)

//* Write to Lower RAM Boundary
DEPOSIT 'A_ADDR', $x00000000
DEPOSIT 'B_ADDR', $x00000000
DEPOSIT 'C_ADDR', $x00000000

DEPOSIT 'A_DATA', $xllllllll
DEPOSIT 'B_DATA', $xllllllll

158

DEPOSIT 'C_DATA', $xllllllll

//* Advance simulation clock
while (#'VOTWR*' == 1)

sim 25ns
while (#'VOTWR*' == 0)

sim 25ns

//* Advance sim clock to ensure previous cycle completes
DEPOSIT 'A_TRANS', {NONE)
DEPOSIT 'B_TRANS', (NONE)
DEPOSIT 'C_TRANS', (NONE)
DEPOSIT 'A_ADDR', $xzzzzzzzz
DEPOSIT 'B_ADDR', $xzzzzzzzz
DEPOSIT 'C_ADDR', $xzzzzzzzz
DEPOSIT 'A_DATA', $xzzzzzzzz
DEPOSIT 'B_DATA', $xzzzzzzzz
DEPOSIT 'C_DATA', $xzzzzzzzz

sim 50ns

//it**

//* Test Write Bus Cycle
//•♦A**************************************

DEPOSIT 'AJTRANS', (WRITE_WORD)
DEPOSIT 'B_TRANS', (WRITE_WORD)
DEPOSIT 'C_TRANS', (WRITE_WORD)

//* Write to RAM
DEPOSIT 'A_ADDR', $x00000004
DEPOSIT 'B_ADDR', $x00000004
DEPOSIT 'C_ADDR', $x00000004

DEPOSIT 'A_DATA', $x22222222
DEPOSIT 'B_DATA', $x22222222
DEPOSIT 'C_DATA', $x22222222

while (#'VOTWR*' == 1)
sim 25ns

while (#'VOTWR*' == 0)
sim 25ns

//* Advance sim clock to ensure previous cycle completes
DEPOSIT 'AJTRANS', (NONE)
DEPOSIT 'B_TRANS', (NONE)
DEPOSIT 'C_TRANS', (NONE)
DEPOSIT 'A_ADDR', $xzzzzzzzz
DEPOSIT 'B_ADDR', $xzzzzzzzz
DEPOSIT 'C_ADDR', $xzzzzzzzz
DEPOSIT 'A_DATA', $xzzzzzzzz
DEPOSIT 'B_DATA', $xzzzzzzzz
DEPOSIT 'C_DATA', $XZZZZZZZZ

sim 50ns

159

//* Test Write Bus Cycle

DEPOSIT 'AJTRANS', (WRITE_WORD)
DEPOSIT 'BJTRANS', (WRITE_WORD)
DEPOSIT 'CJTRANS', (WRITE_WORD)

//* Write to RAM
DEPOSIT 'A_ADDR', $x00000008
DEPOSIT 'B_ADDR', $x00000008
DEPOSIT 'C_ADDR', $x00000008

DEPOSIT 'A_DATA', $x33333333
DEPOSIT 'B_DATA', $x33333333
DEPOSIT 'C_DATA', $x33333333

//* Advance simulation clock
while (#'VOTWR*' == 1)

sim 25ns
while (#'VOTWR*' == 0)

sim 25ns

//* Advance sim clock to ensure previous cycle completes
DEPOSIT 'A_TRANS', (NONE)
DEPOSIT 'B_TRANS', (NONE)
DEPOSIT 'CJTRANS', (NONE)
DEPOSIT 'A_ADDR', $xzzzzzzzz
DEPOSIT 'B_ADDR', $xzzzzzzzz
DEPOSIT 'C_ADDR', $xzzzzzzzz
DEPOSIT 'A_DATA', $xzzzzzzzz
DEPOSIT 'B_DATA', $xzzzzzzzz
DEPOSIT 'C_DATA', $xzzzzzzzz

sim 50ns

//* Test Write Bus Cycle
//••A**************************************

DEPOSIT 'AJTRANS', (WRITE_WORD)
DEPOSIT 'BJTRANS', (WRITE_WORD)
DEPOSIT 'CJTRANS', (WRITE_WORD)

//* Write to RAM
DEPOSIT 'A_ADDR', $x0000000C
DEPOSIT 'B_ADDR', $x0000000C
DEPOSIT 'C_ADDR', $x0OOO0OOC

DEPOSIT 'A_DATA', $x44444444
DEPOSIT 'B_DATA', $x44444444
DEPOSIT 'C_DATA', $x44444444

//* Advance simulation clock
while (#'VOTWR*' == 1)

sim 25ns
while (#'VOTWR*' == 0)

sim 25ns

160

//* Advance sim clock to ensure previous cycle completes
DEPOSIT 'AJTRANS'
DEPOSIT 'BJTRANS'

(NONE)
(NONE)
(NONE) DEPOSIT 'CJTRANS'

DEPOSIT 'A_ADDR', $xzzzzzzzz
DEPOSIT 'B_ADDR', $xzzzzzzzz
DEPOSIT 'C_ADDR', $xzzzzzzzz
DEPOSIT 'A_DATA', $xzzzzzzzz
DEPOSIT 'B_DATA', $xzzzzzzzz
DEPOSIT 'C_DATA', $xzzzzzzzz

sim 50ns

//A**

//* Test Read Bus Cycle
//A**

DEPOSIT 'AJTRANS', (READ_WORD)
DEPOSIT 'B_TRANS', (READ_WORD)
DEPOSIT 'CJTRANS', (READ_WORD)

//* Read Lower RAM Boundary
DEPOSIT 'A_ADDR', $x00000000
DEPOSIT 'B_ADDR', $x00000000
DEPOSIT 'C_ADDR', $x00000000

//* Advance simulation clock
while (#'VOTRD*' == 1)

sim 25ns
while (#'VOTRD*' == 0)

sim 25ns

//* Advance sim clock to ensure previous cycle completes
DEPOSIT 'AJTRANS', (NONE)
DEPOSIT 'BJTRANS', (NONE)
DEPOSIT 'CJTRANS', (NONE)
DEPOSIT 'A_ADDR', $XZZZZZZZZ
DEPOSIT 'B_ADDR', $XZZZZZZZZ
DEPOSIT 'C_ADDR', $xzzzzzzzz

sim 50ns

//* Test Burst Read Bus Cycle from RAM

DEPOSIT 'AJTRANS', (READJBURST)
DEPOSIT 'BJTRANS', (READJBURST)
DEPOSIT 'CJTRANS', (READJBURST)

//* Burst Read from RAM
DEPOSIT 'A_ADDR', $x00000000
DEPOSIT 'B_ADDR', $x00000000
DEPOSIT 'C_ADDR', $x00000000

161

//* Advance simulation clock
while (#'VOTRD*' == 1)

sim 25ns
while (#'VOTRD*' == 0)

sim 25ns

DEPOSIT 'AJTRANS'
DEPOSIT 'BJTRANS'
DEPOSIT 'C_TRANS'
DEPOSIT 'A_ADDR',
DEPOSIT 'B_ADDR',

(NONE)
(NONE)
(NONE)

$xzzzzzzzz
$xzzzzzzzz

DEPOSIT 'C_ADDR', $xzzzzzzzz

//* Advance sim clock to ensure previous cycle completes and FIFO is
//* emptied
sim 150ns

B. ERROR SCL FILE

//je***

//* File: errors.scl
//*
//* Description: Cadence Logic Workbench Opensim Script Control
//* Language (SCL) file. This file executes several bus cycles for
//* the TMR Testbed schematic. Several of the bus cycles in this
//* file should contain errors.
//*
//* Author: John C. Payne, Jr.
//* Date: 11/30/98
//***************************************•*****************•************

//* Definitions for transaction codes
//* (same as in verilog file for R3081 module)
NONE = 0
READ_BYTE = 1
READ_WORD = 2
READ_BURST = 3
WRITE_BYTE = 4
WRITE_WORD = 5

//* Initialize board interface lines
DEPOSIT 'PWRRESET*', 0
DEPOSIT 'TESTEN1*', 0

DEPOSIT 'FORCE_A', 0
DEPOSIT 'FORCE_B', 0
DEPOSIT 'FORCE_C, 0
DEPOSIT 'USEFIFO', 1
DEPOSIT 'PULL_UP', 1
DEPOSIT 'GND', 0

DEPOSIT 'AJTRANS', (NONE)
DEPOSIT 'BJTRANS', (NONE)
DEPOSIT 'CJTRANS', (NONE)

//* These initializations are necessary to prevent timing violations
//* in the simulation
DEPOSIT 'RAMCS*', 1

162

DEPOSIT 'EPROMCS*', 1
DEPOSIT 'INTCS*', 1
DEPOSIT 'WREN_A*', 1
DEPOSIT 'WREN_B*', 1
DEPOSIT 'WREN_C*', 1
DEPOSIT 'WREN_D*', 1
DEPOSIT 'RDEN*', 1

//* Hold board reset and release
sim 1000ns
DEPOSIT 'PWRRESET*', 1

//* Advance simulation clock during initial burst read from EPROM
//* address 1FC00000 which is initiated by the R3081 modules
while (#'VOTRD*' == 1)

sim 25ns
while (#'VOTRD*' ==0)

sim 25ns

sim 50ns

//* Test Write Bus Cycle
//* - with single error in address inputs
//**

DEPOSIT 'A_TRANS', (WRITE_WORD)
DEPOSIT 'BJTRANS', (WRITE_WORD)
DEPOSIT 'CJTRANS', (WRITE_WORD)

//* Write to RAM
DEPOSIT 'A_ADDR', $x00000100
DEPOSIT 'B_ADDR', $x00000000
DEPOSIT 'C_ADDR', $x00000000

DEPOSIT 'A_DATA', $xllllllll
DEPOSIT 'B_DATA', $xllllllll
DEPOSIT 'C_DATA', $xllllllll

//* Advance simulation clock
while (#'VOTWR*' ==1) "

sim 25ns
while (#'VOTWR*' == 0)

sim 25ns

//* Advance sim clock to ensure previous cycle and the interrupt
//* service routine which is
DEPOSIT 'AJTRANS', (NONE)

initiated by the R3 081 complete

DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT

'BJTRANS'
'C_TRANS'
'A_ADDR',
'B_ADDR',
'C_ADDR',
'A_DATA',
'B_DATA',
'C_DATA',

(NONE)
(NONE)

$XZZ2ZZZZZ
$xzzzzzzzz
$xzzzzzzzz
$xzzzzzzzz
$xzzzzzzzz
$xzzzzzzzz

sim 3700ns

163

//A***

//* Test Write Bus Cycle
//* - with multiple errors in address
//* inputs

DEPOSIT ''AJTRANS',
DEPOSIT 'BJTRANS',
DEPOSIT 'C TRANS',

(WRITE_WORD)
(WRITE_WORD)
(WRITE_WORD)

//* Write to RAM
DEPOSIT 'A_ADDR', $x00000004
DEPOSIT 'B_ADDR', $x01000004
DEPOSIT 'C_ADDR', $x00000005

DEPOSIT 'A_DATA', $x22222222
DEPOSIT 'B_DATA', $x22222222
DEPOSIT 'C_DATA', $x22222222

//* Advance simulation clock
while (#'VOTWR*' == 1)

sim 25ns
while (#'VOTWR*' == 0)

sim 25ns

//* Advance sim clock to ensure previous cycle and the interrupt
//* service routine which is initiated by the R3081 complete
DEPOSIT 'A_TRANS', (NONE)
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT

'B_TRANS'
'CJTRANS'
'A_ADDR',
'B_ADDR',
'C_ADDR',
'A_DATA',
'B_DATA',
'C DATA',

(NONE)
(NONE)

$X2ZZZZZZZ
$xzzzzzzzz
$xzzzzzzzz
$xzzzzzzzz
$xzzzzzzzz
$xzzzzzzzz

sim 3700ns

//***************•**************************

//* Test Write Bus Cycle
//* - with single error in data inputs
//*************•****************************

DEPOSIT 'A_TRANS'
DEPOSIT 'B_TRANS'
DEPOSIT 'C_TRANS'

(WRITE_WORD)
(WRITE_WORD)
(WRITE_WORD)

//* Write to RAM
DEPOSIT 'A_ADDR' ,
DEPOSIT 'B_ADDR',
DEPOSIT 'C ADDR',

$x00000008
$x00000008
$x00000008

DEPOSIT 'A_DATA'
DEPOSIT 'B_DATA'
DEPOSIT 'C DATA'

$x33333333
$x33333333
$x33333337

164

//* Advance simulation clock
while (#'VOTWR*' == 1)

sim 25ns
while <#'VOTWR*' == 0)

sim 25ns

//* Advance sim clock to ensure previous cycle and the interrupt
//* service routine which is initiated by the R3081 complete
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT

'AJTRANS'
'BJTRANS'
'C_TRANS'
'A_ADDR',
'B_ADDR',
'C_ADDR',
'A_DATA',
'B_DATA',
'C_DATA',

, (NONE)
. (NONE)
. (NONE)
$X2ZZZZZZZ
$xzzzzzzzz
$xzzzzzzzz
$xzzzzzzzz
$xzzzzzzzz
$xzzzzzzzz

sim 3700ns

//* Test Write Bus Cycle
//* - with multiple errors in data inputs

DEPOSIT 'AJTRANS', (WRITE_WORD)
DEPOSIT 'BJTRANS', (WRITE_WORD)
DEPOSIT 'CJTRANS', (WRITE_WORD)

//* Write to RAM
DEPOSIT 'A_ADDR', $x00O0OO0C
DEPOSIT 'B_ADDR', $x0000OO0C
DEPOSIT 'C_ADDR', $x00O0OO0C

DEPOSIT 'A_DATA', $xF4444444
DEPOSIT 'B_DATA', $x44A44444
DEPOSIT 'C_DATA', $x44444447

//* Advance simulation clock
while (#'VOTWR*' == 1)

sim 25ns
while (#'VOTWR*' == 0)

sim 25ns

//* Advance sim clock to ensure previous cycle and the interrupt
//* service routine which is initiated by the R3 081 complete
DEPOSIT 'AJTRANS', (NONE)
DEPOSIT 'BJTRANS', (NONE)
DEPOSIT 'CJTRANS', (NONE)
DEPOSIT 'A_ADDR', $XZZZZZZZZ
DEPOSIT 'B_ADDR', $xzzzzzzzz
DEPOSIT 'C_ADDR', $xzzzzzzzz
DEPOSIT 'A_DATA', $xzzzzzzzz
DEPOSIT 'B_DATA', $xzzzzzzzz
DEPOSIT 'C_DATA', $xzzzzzzzz
sim 3700ns

165

//* Test Burst Read Bus Cycle

DEPOSIT 'AJTRANS', (READ_BURST)
DEPOSIT 'B_TRANS', (READ_BURST)
DEPOSIT 'C_TRANS', (READ_BURST)

//* Burst Read from RAM
DEPOSIT 'A_ADDR', $x00000000
DEPOSIT 'B_ADDR', $x00000000
DEPOSIT 'C_ADDR', $x00000000

//* Advance simulation clock
while (#'VOTRD*' == 1)

sim 25ns
while (#'VOTRD*' == 0)

sim 25ns

//* Advance sim clock to ensure previous cycle completes
DEPOSIT 'AJTRANS', (NONE)
DEPOSIT 'BJTRANS', (NONE)
DEPOSIT 'CJTRANS', (NONE)
DEPOSIT 'A_ADDR', $xzzzzzzzz
DEPOSIT 'B_ADDR', $xzzzzzzzz
DEPOSIT 'C_ADDR', $xzzzzzzzz
DEPOSIT 'A_DATA', $xzzzzzzzz
DEPOSIT 'B_DATA', $xzzzzzzzz
DEPOSIT 'C_DATA', $XZZZZZZZZ

sim 50ns

//* Test Write Bus Cycle
//* - with error in control inputs
//it***

DEPOSIT 'AJTRANS', (WRITE_WORD)
DEPOSIT 'BJTRANS', (READ_BURST)
DEPOSIT 'CJTRANS', (WRITEJWORD)

//* Write to RAM
DEPOSIT 'A_ADDR', $x00004000
DEPOSIT 'B_ADDR', $x00004000
DEPOSIT 'C_ADDR', $x00004000

DEPOSIT 'A_DATA', $x78787878
DEPOSIT 'B_DATA', $x78787878
DEPOSIT 'C_DATA', $x78787878

//* Advance simulation clock
while (#'VOTWR*' == 1)

sim 25ns
while (#'VOTWR*' == 0)

sim 25ns

166

//* Advance sim c lock to ensure previous cycle and the interrupt
//* service routine which is initiated by the R3081 complete
DEPOSIT 'A_TRANS' , (NONE)
DEPOSIT 'B_TRANS' , (NONE)
DEPOSIT 'CJTRANS' , (NONE)
DEPOSIT 'A_ADDR', $xzzzzzzzz
DEPOSIT 'B_ADDR', $xzzzzzzzz
DEPOSIT 'C_ADDR', $xzzzzzzzz
DEPOSIT 'A_DATA', $xzzzzzzzz
DEPOSIT 'B_DATA', $xzzzzzzzz
DEPOSIT 'C_DATA', $xzzzzzzzz
sim 3700ns

//•A***************************************

//* Test Read Bus Cycle
//***

DEPOSIT 'A_TRANS' , (READ_WORD)
DEPOSIT 'B_TRANS' , (READ_WORD)
DEPOSIT 'CJTRANS' , (READ_WORD)

//* Burst Read from RAM
DEPOSIT 'A_ADDR', $x00004000
DEPOSIT 'B_ADDR', $x00004000
DEPOSIT 'C_ADDR', $x00004000

//* Advance simulation clock
while (# 'VOTRD*' == 1)

sim 25ns
while (# 'VOTRD*' == 0)

sim 25ns

DEPOSIT 'AJTRANS' , (NONE)
DEPOSIT 'B_TRANS' , (NONE)
DEPOSIT 'CJTRANS' , (NONE)
DEPOSIT 'A_ADDR' , $xzzzzzzzz
DEPOSIT 'B_ADDR', $xzzzzzzzz
DEPOSIT 'C_ADDR', $xzzzzzzzz
DEPOSIT 'A_DATA', $xzzzzzzzz
DEPOSIT 'B_DATA', $xzzzzzzzz
DEPOSIT 'C_DATA', $xzzzzzzzz

//* Advance sim c lock to ensure previous cycle completes and FIFO is
//* empt ied
sim 150ns

•

167

168

LIST OF REFERENCES

Silverstein, S., "PanAmSat Scrambles to Restore
Service," Space News, vol. 9, no. 21, p. 3, Springfield,
VA, 1998.

Rhea, J., "The Challenges of Space on the New COTS
Frontier," Military and Aerospace Electronics, vol. 8,
no. 5, pp. 14-18, Springfield, VA, 1997.

McHale, John, "Space Electronics to Release Space Board
Later this Year," Military and Aerospace Electronics,
vol. 9, no. 7, p. 6, Springfield, VA, 1998.

Ritter, James C, "Spacecraft Anomalies and Future
Trends," Radiation Effects Challenges for 21st Century-
Space Systems (1996 IEEE Nuclear and Space Radiation
Effects Conference Short Course), IEEE Publishing
Services, Piscataway, NJ, 1996.

The IDT79R3071, IDT79R3081 RISController Hardware User's
Manual, Integrated Device Technology, Inc., Santa Clara,
CA, 1994.

Johnson, Barry W., Design and Analysis of Fault Tolerant
Digital Systems, Addison-Wesley, 1989.

Anderson, T. and P. A. Lee, Fault Tolerance Principles
and Practice, Prentice-Hall International, 1981.

Wakerly, J. F., "Microcomputer Reliability Improvement
Using Triple-Modular Redundancy," Proceedings of the
IEEE 64(6), pp. 889-895, June, 1976.

Ng, Andrew, IDT79R3051 System Design Example, RISC
Microprocessor Applications Guide, pp. 1-31, Integrated
Device Technology, Inc., Santa Clara, CA, 1995.

10. Thomas, Donald E. and Philip R. Moorby, The Verilog
Hardware Description Language, 3rd Edition, Kluwer
Academic Publishers, Norwell, MA, 1996.

11. R3081 Datasheet, IDT79R3081 RISController with FPA, file
2889.pdf, located at internet address
http://www.idt.com/products/product_files/79R3 081.html

169

170

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2 . Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Chairman, Code EC 1
Naval Postgraduate School
Monterey, California 93943-5101

4. Professor Alan Ross 2
Naval Postgraduate School
Monterey, California 93943-5101

5 . Professor Douglas Fouts 1
Code EC/Fs
Naval Postgraduate School
Monterey, California 93943-5101

6 . LT John C. Payne, Jr. , USN 1
6408 Chapel View Rd.
Clifton, VA 22024

7. Ron Phelps 1
Code SP/Ph
Bldg. 233, Rm. 125
Naval Postgraduate School
Monterey, California 93943-5101

171

