NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS <

~O>

~DD

FAULT TOLERANT COMPUTING TESTBED: >

A TOOL FOR THE ANALYSIS OF HARDWARE AND >

SOFTWARE FAULT HANDLING TECHNIQUES

Q
™Y
by ™D
John C. Payne, Jr.
—
-December 1998 "
Thesis Advisor: Alan Ross I
Second Reader:

Douglas J. Fouts

Approved for public release; distribution is unlimited.

Form Approved

REPORT DOCUMENTATION PAGE O o188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to

- Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 1998

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE

5. FUNDING NUMBERS

FAULT TOLERANT COMPUTING TESTBED: A TOOL FOR THE ANALYSIS OF
HARDWARE AND SOFTWARE FAULT HANDLING TECHNIQUES

6. AUTHOR(S)
Payne, John C. Jr.

8. PERFORMING
ORGANIZATION REPORT
NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

10. SPONSORING /
MONITORING :
AGENCY REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. ‘

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (maximum 200 words)

Operating computers in space requires the use of very expensive radiation hardened microelectronics devices. Unfortunately, the
United States radiation hardened market is rapidly shrinking and makes up a very small percentage of the commercial market. For
these reasons, and the fact that commercial-off-the-shelf (COTS) devices are cheaper, more capable, readily available, and software
availability is much greater, the use of COTS devices in future space systems is fast becoming a reality. A significant disadvantage
of COTS devices is their susceptibility to radiation induced single event upsets (SEUs), among other radiation effects which are
detrimental to electronic systems. : :

This thesis focuses on the board level design of a tool which enables the analysis of fault tolerant computing techniques in a
laboratory environment in the presence of radiation induced SEUs. When implemented, this tool will be beneficial to the study of
using COTS devices in space. The tool will provide the capability to analyze the performance of hardware redundancy techniques
and software algorithms intended to improve the performance of COTS microprocessors in this environment prior to their use in
designs intended for actual space applications. Cadence Concept™ design schematics, associated Verilog® code and simulation

results are presented to develop this concept.

14. SUBJECT TERMS 15. NUMBER OF

Fault Tolerant Computing, Triple Modular Redundancy (TMR), Commercial-off-the-shelf (COTS) Devices, PAGES
Single Event Upsets (SEUs), Cadence Concept Schematic, Verilog 184
16. PRICE CODE
17. SECURITY CLASSIFICATION OF | 18 SECURITY CLASSIFICATIONOF | 1o gecymiTy CLASSIFICATION OF | 20 LIMITATION
THIS PAGE OF ABSTRACT
REPORT Unclassified ABSTRACT
Unclassified nclassihe Unclassified UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANS!| Std. 239-18

Approved for public release; distribution is unlimited.

FAULT TOLERANT COMPUTING TESTBED:
A TOOL FOR THE ANALYSIS OF HARDWARE AND SOFTWARE FAULT
HANDLING TECHNIQUES

John C. Payne, Jr.
Lieutenant, United States Navy
B.S., Virginia Polytechnic Institute and State University, 1990

Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

December 1998
Author: %’ C - ‘@L/ Q :
7/ 174 /

John C. Payne, Jr.

Approved by: V/,(‘,éa/v\ d M

Alan Ross, Thesis Advisor

ﬂ%% J. Fuk

Douglas J. Fouts, Second Reader

SRS~

L —
Jeffrey B\.Knorr, Chairman
Department of Electrical and Computer Engineering

B Sty T
et (7T RY aTED E

iii R U

iv

ABSTRACT

Operating computers in space requires the use of very expensive radiation
hardened microelectronics devices. Unfortunately, the United States radiation hardened
market is rapidly shrinking and makes up a very small percentage of the commercial
market. For these reasons, and the fact that commercial-off-the-shelf (COTS) devices
are cheaper, more capable, readily available, and software availability is much greater,
the use of COTS devices in future space systems is fast becoming a reality. A
significant disadvantage of COTS devices is their susceptibility to radiation induced
single event upsets (SEUs), among other radiation effects which are detrimental to
electronic systems.

This thesis focuses on the bo.ard level design of a tool which enables the analysis
of fault tolerant computing techniques in a laboratory environment in the presence of
radiation induced SEUs. When implemented, this tool will be beneficial to the study of
using COTS devices in space. The tool will provide the capability to analyze the
performance of hardware redundancy techniques and software algorithms intended to
improve the performance of COTS microprocessors in this environment prior to their

use in designs intended for actual space applications. Cadence Concept™ design
schematics, associated Verilog® code and simulation results are presented to develop

this concept.

vi

TABLE OF CONTENTS

I. INTRODUC T ION & 4t v it e ettt te oee et osacssseenseoannassenaessasensessona 1
A. BACKGROUND .+ttt ittt it eee e neesoseenensasseenenssanessnssseas 1

B. PURPOSE &« i ot it ettt ittt et et ettt ettt et 4

C. THESIS ORGANTIZATTION v v vt i vttt et et eotaseenenanaesssonssssasens 5

IT. PROCESSOR SELECTION & v vt it v it oo e seatamsseseesnaseaesssssonessnnos 7
A. CHARACTERISTICS ... it iiiiiiiannnn e e e e e e e e e 7

1. COTS ws. Rad-hardttt ittt ittt ieannnaesoenns 7

2. CISC VS. RISC ittt ittt ittt et iattsi s ansasiaesnnnens 10

3. Size, Pinoul, POWeY . ..ttt i it ittt et 11

4. Bus Width and Memory SizZe ...t tmmnnunnnnenenannn 12

LT =) < Y=Y Yo A 13

6. Multiple Chip vs. Single Chip Implementations 14

B. PROCESSOR REVIEW ..ttt ittt it s te st ceassnoanasaneeesosasenesss 15

C. CHARACTERISTICS OF SELECTED PROCESSORt 18

R 00 = & N 7 3 ' T 20

2. System Control CO-PrOCESSOYvvereunnennenennecnsenns 20

3. Floating Point CO-PrOCESSOYvttvrenenneeeensncnmnss 20

4. Clock Generator Unitt nenneenn e 21

5. Instruction and Data Caches 21

6. Bus Interface Unitiiiiiiniieieiiinennnneneeanns 22

T. SYSEEM USAJTE ..ttt ev it tnntnneneanaeneeasoneaenonenasasns 23

8. Instruction Set Architectureiiiiimvineneennn. 24

9. The pipeline Architecture, 26

D. SUMMARY & ittt it sttt ceeneasasoossiaesenssessnasaasssssessesss 27

III. HARDWARE REDUNDANCY & it v vttt aceevsoeneensanassanseasnsnssassnss 31
A. TRIPLE MODULAR REDUNDANCY (TMR) . ittt vt eie o manaeenseneennas 31

1. Voting TechniQuest iitnit e nns 35

2. VOLING ISSUES . .iti ittt in i iieinetienaseaeeninenasnaas 37

B. TRIPLE MODULAR REDUNDANT MICROPROCESSOR DESIGN 40

IV. TMR TESTBED DESIGN & v vttt it ettt e cn s soeetntonsnsensassasssosases 45
A, OVERVIEW . it ittt ettt e eeonnessonsssesensnsessananaseessnenssas 45

1. Testbed Operation SUMMATLY .-« vt v eeroeeranonnnnnnn e 46

2. IDT R3081 Simulabion .. .vuiiine ittt eneneennennenas 49

B. IDT R3081 BUS INTERFACE 50

C. ADDRESS/DATA BUS DEMULTIPLEXINGttt eteeeencssnnenensnn 60

D. DATA BUS VOTING ..ot v vttt e st neesaesesnseesassssnsssecnsnssos 61

E. ADDRESS BUS VOTING & it vttt ittt et et aeannenassnenoneesnsssenns 63

F. CONTROL BUS VOTING ..t ittt it it et ettt tesessaneneneeseneennn 64

G. ADDRESS DECODER &ttt it e ettt oo s e eoesensnennonaeoesesessssnss 65

H. MEMORY/ERROR CYCLE CONTROLLER . . ittt it ittt e ieitnannaenennon 67

1. RAM/ROM Cycle Controller 68

2. FIFO Memory Cycle Controllerc.ciieiennennnnn 69

3. Error Cycle Controlleriiiiieinenunenrncnenens 71

L. SYSTEM INTEREFACE ...t ittt et ct it tosseaonaneeseaeasenosacsnoes 76

V. SIMULATION RESUL DS & i ittt e vttt et s s o st aeesnnseossenasnnenesesecees 79
A. NORMAL (ERROR FREE) RESULTS ...ttt ittt iemriiaeneoeeneenanns 80

B. INJECTED ERROR RESULTS ..ttt it ittt i ittt teeeeeneasnosannens 83

VI. CONCLUSTON & v o v e et s ettt et e et e e aaaseaeaaeeaae e eannnnenss 91
APPENDIX A. TMR TESTBED DESIGN SCHEMATICS ¢ttt tieneannnneoneen 95

vii

APPENDIX B. CADENCE SUPPLIED MODULES ...ttt t ittt it intenemeaeneannn 107

A. A74FCT373 TRANSPARENT LATCH ...ttt ittt tieeeeiinnennnnn 107
B. IDT71256 32K X 8 SRAM ...ttt it i tttttttaetae e e ennennn 109
C. IDT72225LA 1K X 18 FIFO .ttt ittt it ettt e ee e annann 109
APPENDIX C. USER DEFINED VERILOG® MODULES ...\ vvvvvveeennenennnnn. 111
A IDT R3081 RISC MICROPROCESSOR BUS SIMULATORc.oven.. 111
B 32-BIT VOTER/ERROR DETECTOR AND TRANSCEIVER 125
c 8-BIT VOTER/ERROR DETECTOR .. it vt ttitin ettt ee i eieeee e 129
D 32-BIT VOTER/ERROR DETECTOR .. ot vttt it titteetaeeeeaaennnn 132
E MEMORY/ADDRESS DECODERottt ittt ittt ittt i e eie 134
F MEMORY/ERROR CONTROLLER . .t ittt ittt it etoeceeaenanennns 136
G. MEMORY READ/WRITE ENABLE CONTROLLERicuuiiinnennnnnannn 142
H 16-BIT NON-INVERTING TRI-STATE BUFFERccouviemunenn. 145
I 0) 147
J SYSTEM INTERFACE ...ttt ittt ettt eeetateeaerannaaenanss 150
APPENDIX D. CADENCE SCRIPT CONTROL LANGUAGE FILES.................. 157
A. NORMAL (ERROR FREE) SCL FILEttt iinnaaanannnn 157
B. ERROR SCL FILE ...ttt ittt ittt ittt ittt 162
LIST OF REFERENCES . . i ittt ittt ittt ittt ettt aen et atenneeneeneennnn 169
INITIAL DISTRIBUTION LIS ..ttt ittt ittt it et e ettt i aenns 171
viii

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

WO U i W

LIST OF FIGURES

IDT R3081 Block Diagram. From Ref. [5]......... ..., 19
Instruction Formats. After Ref. [5]....... 25
5-Instructions per Clock Cycle. After Ref. [5]........... 26
Triple Modular Redundancy. After Ref. [6]......... 33
TMR with triplicated voters. After Ref. [6].............. 33
Multiple-stage TMR system. After Ref. [6]................ 34
1-bit majority voter. After Ref. [6]........, 36
Mid-value select technique. After Ref. [6]............... 38
Simple R3081 Board Design. After Ref. [9)................ 41
TMR R3081 BoaArd DeSigmn. v v ittt it inaneeetsetsanonenneenns 42
Testbed FIFO Interface. ... ittt ittt i it 44
IDT R0381 Burst Read Cycle. From Ref. [9]............... 51
IDT R3081 Write Cycle. From Ref. [9]....... 52
IDT R3081 Single Datum Read. From Ref. [9].............. 52
IDT R3081 Bus Interface Simulator..............cciinn.. 53
Simulated R3081 Burst Read Cycle.ot iiiieennnnn 56
Simulated R3081 Write CycCle. .. ittt ittt ie i 58
Simulated R3081 Read CyCle.ttt it iiiannnn 59
Address/Data Bus DemultipleXing.ot teteeeiaenannnns 60

Data BUS VOLANg. . vttt it e e e et e et e ettt i e e 62

AAAress BUS VOLINg. v vttt ittt it et it et ettt i i 64
Control BuUS VOLimg. v v i vttt ittt et e et et tinaeenneenns 65
AAAresSS DeCOART . & v vttt ittt ittt ettt e e e 66

Memory/Error Cycle Controller............. ... 67

FIFO COntrOlS . v it ittt e ittt ettt e iiee et ereanveaeeanes 70
FIFO Controls During Burst Read Cycle.o 72
FIFO Controls During Write Cycle. i, 73
FIFO Controls During Read Cycle. i, 74
System Interface. ittt i i e e e 76
System Interface Controls. it 78
TMR Testbed Schematic (1 of 11).t iinennn. 96
TMR Testbed Schematic (2 of 1l)..... .. eeennn 97
TMR Testbed Schematic (3 o0f 11)t eeennns 98
TMR Testbed Schematic (4 of 11). 99
TMR Testbed Schematic (5 of 11), 100
TMR Testbed Schematic (6 of 11). i 101
TMR Testbed Schematic (7 of 11). 102
TMR Testbed Schematic (8 of 11)...... ... 103
TMR Testbed Schematic (9 of 11). ... s 104
TMR Testbed Schematic (10 of 11). 105
TMR Testbed Schematic (11 of 11). iiiinnnnnn. 106
A74FCT373 Transparent Latch. 107
Address DemultipleXer.ttt ittt e 107
Address Demultiplexer Schematic.coiiiiieinnnns 108
IDT 71256 SRAM. & vttt it te te e e st eeeemes e e eeeeeeeeneaesensen 109
IDT 7222508 FIFO . ittt ittt e et it ettt et anaaseaeeeeeeeenn 109
R3081 Microprocessor Bus Simulator.c.ouoo... 111
32-Bit Voter/Error Detector and Transceiver............. 125
8-Bit Voter/Error DeteCtor. .. ittt it inee et eienennnn 129
32-Bit Voter/Error DeteCtOr . . o v vttt ittt tee e eeaaeeeennn 132
Memory/Address DeCoder. ittt ittt 134
Memory/Error Controller.t iiiiinenennnnnn 136
Memory Read/Write Enable Controller. 142
16-Bit Non-Inverting Tri-State Buffer................... 145
D0 =2 = L0 1. 147
150

System Interface. i e e

ix

ACRKNOWLEDGMENT

The author would like to thank Mr. Kenny Clark and Mr.
Mark Hall for their assistance in obtaining information
about the triple-vote R3081 experiment which was part of the
Microelectronics and Photonics Testbed.

The author wants to thank Professor Ross for his

guidance and patience during the work in performing this
investigation.

xi

e

I. INTRODUCTION

A. BACKGROUND

A fault tolerant system is one that can continue the
correct performance of its specified tasks in the presence
of hardware and/or software faults. Fault tolerance is the
attribute that enables a system to achieve fault tolerant
operation. In many sensitive applications fault tolerant
computing techniques are employed where the failure of these
systems could lead to disastrous results. Examples of such
sensitive applications include aircraft and spacecraft
flight control systems and power plant control systems. A
recent examplé of such a failure occurred with the loss of
PanAmSat‘s Galaxy 4 satellite.

Galaxy 4’'s attitude control system and

an identical backup unit conked out at

approximately 6 p.m. Eastern Daylight

.Time May 19 [1998], sending the)

satellite into an uncontrolled spin.

[Ref. 1]
While the loss of this satellite was not necessarily
“disastrous,” it could indeed prove to be very expensive.
The Galaxy 4 cost between $200 million and $250 million to
build, launch, and insure. [Ref. 1]

In the space environment there are three categories of

radiation effects in integrated circuits. Total Dose

Effects, Dose Rate Effects, and Single Event Effects.
Within Single Event Effects are the four sub-categories:
Single Event Upset (SEU), Single Event Latchup (SEL), Single
Event Gate Rupture (SEGR), and Single Event Burnout (SEB).
Total Dose Effects and Dose Rate Effects are destructive
effects in integrated circuits arising from solar flares,
neutrons from nuclear detonations, and protons in the Van
Allen belts. In addition, three of the subcategories of
single event effects (SEL, SEGR, and SEB) are also
destructive. These effects must be compensated for with the
use of radiation hardening and shielding techniques. On the
other hand, SEUs, which are essentially bit flips occurring
within a device due to ionized charge being collected in a
circuit, can be reduced by hardware architecture and
software techniques such as redundancy.

Operating computers in the space environment requires
the use of very expensive radiation hardened (rad-hard)
devices. In addition to the use of rad-hard technology,
space systems also employ many other approaches to fault
tolerance such as hardware redundancy, fault tolerant
software algorithms, error detecting/correcting codes, etc.
Whilé'deploying reliable, fault tolerant computers in space
will always require rad-hard components, the number of

suppliers of such devices is decreasing and the costs of the

devices continues to increase. Many manufacturers are
abandoning.their production of rad-hard devices in favor of
the more lucrative, booming consumer electronics industry.
According to the May 1997 issue of Military & Space
Electronics, “U.S. Department of Defense (DOD) leaders are
struggling to find new ways to safeguard the dwindling
supplier base of radiation-hardened microelectronics that
are necessary to meet future spacecraft requirements.” [Ref.
2]

While the commercial satellite industry may £fill the
void, it is estimated that DOD must increase investments
from $30 million per year to nearly $60 million per year to
advance the technology and ensure a base of reliable
suppliers. [Ref. 2]

The issue is in the fabrication process of the
microelectronic devices. The production of the unique rad-
hard devices requires specialized processes and demand for
‘thém is considerably less than that for consumer
electronics. With the costs of modern fabrication lines
reaching nearly $2.8 billion apiece, it is obviously cost
prdhibitive for companies to merely have two separate
production facilities: one for rad-hard devices and one for
non-rad-hard devices. A company producing both rad-hard and

non-rad-hard devices will have to give up precious

fabrication time to make a few devices for a limited market.
This precious time takes away from the production of
microelectronics for a booming PC market and could mean
millions, if not billions, of dollars in lost revenue.
Herein lies the fundamental economic reason for the
escalating prices of rad-hard microelectronics.

An approach to solving this problem, which is receiving
considerable amount of research, is the development of new
processes that allow companies to manufacture rad-hard
devices without major changes to their fabrication process.
Another possible approach is the development of alternative
approaches in hardware and software fault tolerant design
with non-rad-hard commercial-off-the-shelf (COTS)
microelectronics to reduce the dependency on rad-hard
technology. This research project addresses the latter

approach.

.B. PURPOSE

The goal of this research is to develop a fault
tolerant computing testbed for use as a tool for the
analysis of hardware and software fault handling techniques.
In particular, the testbed is intended to allow the analysis
of techniques to resolve faults caused by single event
upsets. The testbed computer will employ a three CPU,
triple modular redundant (TMR), design. The TMR testbed

4

will allow flexibility in the hardware and software design
enabling direct performance analysis of various approaches
to fault tolérant design. The testbed will enable fault
injectionlsimulations and direct radiation testing on the
system for data analysis and hardware/software benchmarking.
This project will help in the development of cheaper
alternatives to the highly expensive radiation hardened
devices. ‘It will further the research of radiation testing
and single-event upset research by providing a testbed for
analysis of various hardware redundancy techniques as well
as any software techniques chosen to be employed. The
testbed will be used in direct radiation testing in a
laboratory envifonment and/or placed in a satellite as an
experimental payload to study the effects in the actual flux
environment of the satellite. This study will benefit our
development of small, economical satellites for both

commercial and military use.

C. THESIS ORGANIZATION

The organization of this thesis largely follows the
approach taken to the design of a TMR system. Chapter I is
a brief introduction with background information. Chapter
IT describes the microprocessor selection process and the
characteristics of the selected processor. Chapter III
presents various topics in hardware redundancy including

5

triple modular redundancy, voting techniques,
synchronization and timing issues. Chapter IV contains the
actual hardware design of the testbed. Simulation and
results are presented in Chapter V. Finally the
conclusions drawn from this research are presented in

Chapter VI.

II. PROCESSOR SELECTION

a. CHARACTERISTICS

The place to start when designing a computer is with
processor selection. The selection of the processor, oxr
processors in the case of hardware redundancy, is where
critical decisions are made regarding expected operating
environment, necessary performance, power consumption and

space limitations.

1. COTS vs. Rad-Hard

In June 1994, a directive was issued by then Secretary
of Defense William Perry requiring the use of COTS parts in
military systems whenever possible. As previously
discussed, the availability of rad-hard parts is diminishing
and as a result military, NASA, and commercial spacecraft
builders may eventually be forced to use COTS technology.

There are significént advantages to using COTS devices.
COTS devices tend to be state-of-the-art and are therefore
significantly more capable than rad-hard devices. To put it
in perspective, often the choice is between a COTS Pentium
or a rad-hard 286 or 386 microprocessor. As an example, in
July 1998 Space Electronics announced intentions to release

a single-board computer for space designed with primarily

COTS devices. This product, running at 66 MHz, is intended
to compete with the RAD6000 from Lockheed Martin Federal
Systems, which runs at 33 MHz and costs twice as much. [Ref.
3] The processor used in the new release product, the 6U
VME SB486R radiation hardened 32-bit single board computer
based on Intel’s 80486 microprocessor, is still an order of
magnitude slower than the 300-400 MHz microprocessors
currently available for desktop PCs.

Other advantages of COTS systems include lower cost and
better availability. Often a rad-hard microprocessor can
cost many (10-15) thousands of dollars more than more
capable, current technoldgy COTS devices. In addition, rad-
hard devices often have uncertain delivery times. Because
of the declining rad-hard device market, these devices often
must be special ordered from a limited number of available
manufacturers. On the other hand, manufacturers of COTS
devices often have stockpiles and can deliver a product
within 24-48 hours. Many powerful COTS devices can even be
obtained over the counter at several big name electronics
stores.

Commercial software is much more available for COTS
devices. Software development is a very costly part of
building any compﬁter system. As the complexity of

microprocessors increases, so does the complexity of the

required software. If rad-hard devices are not identical to
their COTS counterparts, software must be specially designed
for this device. This is both expensive and time consuming.
In‘addition, this specially designed software will have to
undergo rigorous testing to check its response to unexpected
situations. [Ref. 4] This is in contrast with software for
COTS devices where large companies design software for these
devices. The software becomes proven over time through the
high volume of users and the consumers actually participate
in the testing of these products.

Finally, while not necessarily an advantage of COTS
devices themselves, it is possible to achieve some degree of
radiation hardness by employing various techniques to shield
COTS devices which are not themselves radiation hardened.
[Ref. 4] While the use of shielding has shown to improve
the reliability of devices in radiation environments, it
adds to the physical space and weight requirements.

- However, there are disadvantages to using COTS devices.
While the reliability of COTS devices used in benign
environments is known, their reliability in stressing
environments (radiation, thermal, vibration) is uncertain.
[Ref. 4] The susceptibility of COTS devices to radiation
induced failures is a major concern, and survivability in

the space environment may be difficult with many COTS

devices. While some COTS devices may have hardness levels
of 100 kRADs or more, this hardness varies greatly from one
device to another. This hardness varies even for devices
produced by the same manufacturer. Because of this lack of
hardness assurance by manufacturers, each individual device
will have to undergo testing and effectively be space
qualified.

Another disadvantage of COTS devices is they change
rapidly. The semiconductor industry generally cycles new
technology every 6-18 months. The devices continue to get
faster, more capable, and require less power. The advantage
here is clear for devices intended for the normal, non-
stressing environment. However, as the devices get smaller,
faster, and more complex, they are bécoming more susceptible
to radiation. Finally, in many cases, the required safety
and reliability specifications, especially for military

applications, simply cannot be met by COTS devices. [Ref. 4]

2. CISC vs. RISC

Reduced instruction set computer (RISC) machines were
designed to take advantage of the caching, prefetching,
pipelining, and superscalar methods that were invented to
improve the performance of complex instruction set computer
(CISC) machines. The CISC machines depend on long complex
instructions. The operand access for these instructions

10

required complex address arithmetic. As a result, CISC
machines were unable to take full advantage of these
techniques.

The RISC focuses on reducing the number and complexity
of instructions in the machine. This allows a reduction of
actual machine hardware complexity. Early on, RISC machines
operated such that each instruction completed in one clock
cycle. This was achieved by limiting the instructions in
RISC machines to a fixed length, usually 1 word. Thus, in a
32-bit machine, one 32-bit word specifies everything there
is to know about the instruction.

With the advent of pipelining, the current goal is that
(at least) one instruction will begin and (at least) one
instruction will complete during every clock cycle. Since
program-execution time depends on throughput and not on
individual instruction execution times, issuing (and thus
completing) one instruction per clock cycle is an
appropriate goal. This is achieved by making instructions

simple, not by making the clock period longer.

3. Size, Pinout, Power

The size of the device determines the physical space
required on the assembled board. Space and weight
constraints are critical limitations imposed on systems for
satellites and other space applications. Similarly, power

11

consumption is a critical factor in space applications where
a steady, endless supply of power from a standard 120 volt
outlet is not available. In applications where power comes
frdm batteries and/or solar cells, available power is a
precious commodity.

The pinout of the device is often directly related to
its physical size. In addition, many devices reduce their
pinout requirements by having individual address and data

lines multiplexed together on one interface pin.

4. Bus Width and Memory Size

The bus width of COTS devices essentially follows
current trends. While many processors are available today
with 64-bit architectures, the RAD6000 microprocessor
(considered to be the industry standard for radiation
hardened microprocessors) incorporates a 32-bit
architecture. Compared to 32-bit architectures, a 64-bit
- bus effectively doubles (design dependent) the pinout
requirements and correspondingly increases the power
consumption of the device.

As bus size increases, the complexity of the
interconnectivity hardware increases as well. Particularly
in a TMR design where 3 microprocessors are connected

together with voting hardware, increasing the bus width from

12

32-bits to 64-bits requires a rather significant increase in
hardware and logic.

The size of the physical memory that the processor can
use is a significant factor in space applications as well.
In space applications where large volume secondary storage
media is generally not available, the bigger the physical
memory potential the better. Of course, this is essentially
limited by the bus architecture of the device. A device
with a 64-bit bus can accommodate a larger physical memory
space than a 32-bit bus device. Without large secondary
storage media, all operations will be performed using ROM
and RAM with varying combinations of ROM and RAM types
depending on the application. Therefore, it is necessary
that the available physical address (memory) space be large

enough to accomplish the intended tasks.

5. Speed

The speed of the device is an important issue.
However, in a TMR design, the speed at which the system can
operate will be limited by the propagation time of the
voting and vote error control logic as well as the memory
setup and hold times. Although new personal computers are
currently available with processors running at 300-400 MHz,
the current new radiation hardened microprocessors run at
33-66 MHz.

13

The speed of the microprocessor chosen for this TMR
design will be limited by the critical path logic
propagation time in the several FPGAs chosen to implement

the voting and vote error control.

6. Multiple Chip vs. Single Chip Implementations

The tradeoff associated with a single chip processor
versus a processdr which requires additional hardware
peripheral devices is a significant issue. This is
especially true in a TMR designlwhere each address/data line
as well as each control line has.to be voted to ensure
agreement between the three processors. In addition, in
space applications the potential for radiation ;nduced error
increases with each additional piece of hardware added.
Other prleems include fault localization. With
microprocessors with external peripheral device
requirements, voting and vote error control complexity is
increased. Also, board reliability is inversely
proportional to the number of chips on it.

The overall complexity of the board design increases
as well with microprocessors with external peripheral device
requirements. In a TMR design, this increased complexity is
compounded. In a single chip microprocessor, the associated
interface complexity is internal to the device. Therefore
radiation-induced faults are limited to a single device when

14

performing processor voting which corresponds to simpler

voting logic and less hardware reguirements.

B. PROCESSOR REVIEW

As part of this research, several microprocessors were
analyzed based on the microprocessor characteristics
discussed in the preceding section. Tables 1, 2, and 3
contain data concerning the various COTS CISC and RISC
microprocessors that were considered in developing the
testbed.

The processor chosen was the R3081 RISC Microcontroller
manufactured by Integrated Device Technologies (IDT). The
reasons for this selection were many. From the outset of
this research project, the intent was to choose a COTS
device for the TMR design.

The R3081 is a COTS, single chip, RISC architecture
machine, with a 32-bit multiplexed address/data bus. The
" highly flexible and user configurable device can run between
20 and 50 MHz and is readily available.

The determining factor for selecting the R3081 was the
availability of radiation environment performance data from
the Naval Research Laboratory (NRL). The R3081 was used in
a triple vote experiment deployed on the Microelectronics
and Photonics Testbed (MPTB). The MPTB is a space
experiment launched in 1997 into a high radiation orbit to

15

test performance, reliability, and survivability of new
microelectronics and photonic devices operating in the space
radiation environment. The triple vote experiment was one
of 24 experiments onboard the MPTB which were individually
scheduled by a core controller. The purpose of this
experiment was to measure SEU, SEL, and Total Dose effects
in IDT R3081 microprocessors vs. epi thickness. The three
microprocessors used had epi thicknesses of 6, 8, and 12
microns respectively. The MPTB design was obtained from NRL
and used as a starting point for the testbed designed in

this research project.

Characteristic AM25000 AM29050 PowerPC 603e
Manufacturer AMD AMD IBM, Motorola
Processor Streamlined Streamlined RISC
Architecture Instruction Instruction
Package 168-PQFP or 169- 169-PGA

PGA

Floating Point Y {(off chip) Y Y

Accelerator

Memoxy Management Y Y Y

Unit

Speed (MHz) 16-33 20-40 200-250

Integer Y N Y

Multiply/Divide

Bus Architecture 32-bit 3 bus 32-bit 3 bus Selectable 64-/32-
bit data bus, 32-
bit address bus

Demultiplex Signal N/A N/A N/A

Physical Address

Space

Power (watts) <1 <1 3.5 - 5.8

Single Chip N Y Y

Built-in Master/Slave |y Y Y

Table 1. Microprocessor Review (1 of 3).

16

Characteristic PowerPC 604e PowexrPC 750 R3081
Manufacturer IBM, Motorola IBM, Motorola IDT
Processor RISC RISC MIPS/RISC
Architecture
Package 255-CBGA 360-CBGA 84-pin MQUAD/PLCC
Floating Point Y Y Y
Accelerator
Memory Management Y Y Y
Unit
Spesd (MHZ) 250-350 200-300 20-50
Integexr Y Y (3) Y (2)
Multiply/Divide
Bus Architecture 64-bit data, 32- 32-bit data, 64- 32-bit

bit address bit address address/data
multiplexed
Demultiplex Signal N/A N/A Y
Physical Address 4GB
Space
Power (watts) 6.0-14.5 4.7-11.0 2.375-4.125
Single Chip Y Y Y
Built-in Master/Slave |N N N
Table 2. Microprocessor Review (2 of 3).

Characteristic R36100 R4650 R5000
Manufacturex IDT IDT IDT
Processor MIPS/RISC MIPS-III/RISC MIPS-IV/RISC
Architecture
Package 208-pin MQUAD 288-pin MQUAD 223-pin CPGA or

272-ball SBGA
Floating Point N Y Y
Accelerator
Memory Management Y Y Y
Unit
Speed (MHz) 20-~33 100-180 200
Integer Y Y Y
Multiply/Divide
Bus Architecture 8-, 16-, 32-bit 32- or 64-bit 64-bit
programmable address/data address/data
address _and data multiplexed multiplexed
Demultiplex Signal N/A Y Y
Physical Address 4GB 4GB
Space
Power (watts) 2-3 1.646-3.465 7.59-8.25
Single Chip Y Y Y
Built-in Master/Slave | N N N
Table 3. Microprocessor Review (3 of 3).

17

C. CHARACTERISTICS OF SELECTED PROCESSOR

The IDT R30xx family of microprocessors is intended to

offer the high-performance associated with the MIPS RISC

architecture for low-cost, simplified, power sensitive

applications. [Ref. 5] Some features of the R3081E include:

High level of integration minimizes cost

Over 40 MIPS at 50 MHz

Low cost 84-pin packaging

Large on-chip user configurable instruction and data
caches

On chip Floating Point Accelerator (FPA)

20 through 50 MHz operation

Multiplexed address/data bus interface with low
cost, low speed memory systems with high speed CPU
support

On-chip 4-deep write buffer eliminates memory write
stalls

On-chip 4-deep read buffer supports burst or simple
block reads

Figure 1 shows a block diagram of the IDT R3081E

microprocessor. Some of the highlights include:

System Control Coprocessor (CPO)

v Dedicated Exception/Control Registers-

v Dedicated Memory Management Registers

Integer CPU Core

v’ 32 32-bit general registers

v ALU, Shifter, Mult/Div Unit, Address Adder, and PC
Control

Floating Point Coprocessor (CP1l)

v 16 64 bit registers

v Exponent, Add, Divide, and Multiply Units

v Floating Point Exception/Control

Configurable Instruction and Data Caches

4-deep Read and Write Buffers

18

Clkin ——»|

int(5:0)

Clock Generstor

] BrCond(3:2,0)

19

Unit/Clock Doubler‘—’|7 Master Pipeline Control |
System Contro! Flosting P oirt
Coprocessor Integer Coprocessor
(CPO} y CPU Core (CP1)
. General Registers Register Unit
Exception/Control
Registers 32x32) (16 x 64)
ALU Exponent Unit
Memory Management
Registers Shitter Add Unit
Mutt/Div Unit Divide Unit
Translation
N Lookaside Buffer Address Adder Muttiply Unit
- (64 entries)
PC Control Exception Control
Fy
Vitual Address
FP Interupt
Data Bus
Physical AddressBus
v v o=y
32/, Configurable Configurable
Instruction Dsata
Cache Cache
(18kB/B8kB) (4kB/BkB)
¢ Dsta Bus #
h 4 3
Parity P
Generstor R3051 Superset Bus Interface Unit
————py dedeep Gaese 1 oma BU | Coherency
Arbiter Control Logic
Buftfer Buffer
I I I l
A 4
Address! DMA R S_ysCIk Invelidate
Data Control Control Control
Figure 1. IDT R3081 Block Diagram. From Ref. [5].

1. CPU Core

The CPU Core is a full 32-bit RISC integer execution
engine, capable of sustaining close to a single cycle per
instruction rate. It contains a 5 stage pipeline and 32

orthogonal 32-bit registers. [Ref. 5]

2. System Control Co-Processor

The integrated on-chip System Control Co-Processor
(CPO) manages both the exception handling of the CPU and the
virtual to physical address mapping. The fully associative
64-entry Translation Lookaside Buffer (TLB) maps 4kB virtual
pages into the physical address space. The virtual to
physical mapping includes kernel segments which are hard-
mapped to physical addresses, and kernel and user segments
which the TLB maps 4kB page by 4kB page into anywhere in the
4GB (potentially) physical address space. The TLB also
allows 8 pages to be locked by the kernel to ensure

deterministic response in real-time applications. [Ref. 5]

3. Floating Point Co-Processor

The R3081 also incorporates an integrated R3010A
compatible FPA which is co-processor 1 (CPl) to the CPU.
The high-performance co-processor provides separate add,

multiply, and divide functional units for single and double

precision floating point arithmetic. To the software

20

engineer, the FPA simply appears as an extension of the
integer execution unit with 16 dedicated 64-bit floating
point registers. The software references these as 32 32-bit

registers when performing loads or stores. [Ref. 5]

4, Clock Generator Unit

The on-chip clock generator manages the interaction of
the CPU core, caches, and bus interface. It includes a
clock doubler to provide a higher frequency signal to the

internal execution core. [Ref. 5]

5. Instruction and Data Caches

The on-chip cache is default configured to 16kB
Instruction Cache and 4kB Data Cache. However, the cache
can be reconfigured by system software to 8kB of Instruction
and 8kB of Data caches. The instruction cache is organized
with a line size of 16 bytes (four 32-bit entries) which
‘achieves hit rates in excess of 98% in most applications.
The data cache is organized as a line size of 4 bytes (one
word) and achieves hit rates near 95% in most applications.
The high hit rates associated with the instruction and data
cache contribute significantly to the performance of the
R3081E. The instruction cache is a direct mapped cache
capable of caching instructions from anywhere in the 4GB

physical address space. The instruction cache is

21

implemented using physical addresses and physical tags
(rather than virtual addresses or tags) to eliminate the
requirement of flushing on context switch. As with the
instruction cache, the data cache is a direct mapped
physical address cache capable of mapping any word within
the 4GB physical address space. However, the data cache is
implemented as a write-through cache to insure that main
memory is always consistent with cache memory. In order to
minimize processor stalls due to data write operations, the
bus interface utilizes a 4-deep write buffer which
“captures” address and data information at the processor
execution rate, allowing it to be written tb main memory at
the memory speeds with minimum impact to overall system

prerformance. [Ref. 5]

6. Bus Interface Unit

Because the R3081 uses its large internal caches to
provide the majority of the bandwidth reéuireﬁents of the
execution engine, it can utilize a much simpler bus
interface connection to slower memory. The bus interfaée
utilizes a 32-bit address and data bus multiplexed onto a
single set of pins. It also provides an ALE (Address Latch
Enable) output signal to de-multiplex the A/D bus, and
simple handshaking signals to process CPU read and write

requests. The DMA Arbiter allows an external master to

22

control the external bus if desired. As described
previously in the Instruction and Data Cache section, a 4-
deep write buffer decouples the speed of the execution
engine from the speed of the main memory system. The write
buffers capture and FIFO processor address and data
information in store operations and schedule them on the bus
at a rate that can be handled by the system memory. The
read interface is capable of both single word and quad word
reads. Single word reads utilize a simple handshake, and
quad word reads can utilize either a simple handshake or a
tighter timing mode when the memory system can burst data at
the processor clock rate. In order to accommodate slower
quad word reads, the 4-deep read buffer FIFO is utilized
allowing the external interface to queue data within the
processo? before releasing it to perform a “burst” fill of

the internal caches. [Ref. 5]

7. System Usage

The bus interface of the IDT R30xx (including the
R3081E) family was specifically designed to allow a wide
range of memory systems. A typical system using off-the-
shelf logic devices contains simple transparent latches to
de-multiplex the R30xx address and data busses and the A/D
bus; the data path between the memory system and the A/D bus
is managed by octal transceivers; and a small set of PALs is

23

used to control the various data path elements, and to
control the handshake between the memory and the processor.

[Ref. 5]

8. Instruction Set Architecture

All instructions and addresses are 32 bits and the CPU
utilizes a 5-stage pipeline to achieve a near one
instruction per clock cycle execution rate. There are five

basic groups of instructions:

e Ioad/Store
v Move data between memory and general registers
e Computational

v' Perform arithmetic, logical, and shift operations
on values in registers

e Jump and Branch
v' Change control flow of program
e (Co-Processor
v' Perform operations on the co-processor set
e Special
v Movement of data between special and general
registers, system calls, breakpoint operations
Figure 2 displays the instruction formats of the R3081
- processor. Load/Store instructions are all encoded as
Immediate, or I-Type, instructions. Computational
instructions are encoded as either Register, or R-Type,
instructions when both source operands and the result are
general registers or I-Type when one of the source operands

is a 16-bit immediate value. Jump and Branch instructions

can be either J-Type (target address is PC + 26-bit

24

immediate value), R-Type (target address is 32-bit value
contained in one of general registers), or I-Type (Branch
Instructions where target address is formed from a 16-bit
displacement relative to the PC). Jump and Lil"lk
instructions save a return address in register R31. -Co-
processor Loads and Stores are always I-Type. Special

instructions are always encoded as R-Type. [Ref. 5]

I-Type {Immediate)

31 26 25 21 20 16 15
op rs n . immediate
J-Type (Jump)
31 26 25
op target

R-Type (Register)

31 26 25 21 20 16 15 1110 65
op rs rn rd shamt funct
where:
op 6-bit operation code
xrs 5-bit source register specifier
re 5-bit target register or branch condition
immediate 16-bit immediate, or branch or address displacement
target 26-bit jump target address
rd 5-bit destination register specifier
shamt 5-bit shift amount
funct 6-bit function field

Figure 2. Instruction Formats. After Ref. [5].

25

Table 4 lists the instruction set mnemonics of R3081E

‘processor.

9. The Pipeline Architecture

The execution of a single instruction is performed in

five separate steps:

e Instruction Fetch (IF)
v Instruction virtual address translated to physical
address and read from internal instruction cache
¢ Read (RD)
v’ Instruction decoded and required operands read
e ALU (ALU)
v Required operation is performed
¢ Memory Access (MEM)

v/ If instruction was a Load or Store, the data cache
is accessed

e Write Back (WB)
v Results from ALU step updated in on-chip register

file
Figure 3 illustrates the pipeline and the capability to

execute 5 instructions per cycle. Pipeline hazards in the

I#1 IF RD ALU
I4#2 IF RD WB
I#3 IF MEM WB
I#4 ALU | MEM WB
I#5 RD ALU | MEM WB

Current

Clock

Cycle

Figure 3. b5-Instructions per Clock Cycle. After Ref. [5].

26

R3081 are handled in both.hardware and software. The
hardware methods used are forwarding and stalling (minimal).
The hardware methods deal with instructions that need a
result from the register file of the immediately prior
instruction and in integer multiply and divide operations
where an instruction attempts to access the LO or HI
registers prior to completion of the multiply or divide. If
this happens, the requesting instruction will be blocked
until the result is ready. The software method used is an
optimizing compiler and peephole scheduler of the assembler.
Two instruction classes which use the software method are
Load instructions and Jump and Branch instructions. Both of
these instruction classes have a delay, or latency, of one
cycle. Rather than include extensive pipeline control
logic, the CPU gives responsibility for dealing with “delay
slots” to software. The peephole optimizer, performed as a
part of compilation or assembly, can reorder the code to
insure that the instruction in the delay slot does not
require the logical result of the “delayed” instruction.

[Ref. 5]

D. SUMMARY

Having completed a review of some of the desired
characteristics of a microprocessor to be investigated when
designing a system, the IDT R3081 RISC microprocessor was

27

op DESCRIPTION OP DESCRIPTION
Load/Store Instructions Multiply/Divide Instructions
LB Load Byte MULT Multiply
LBU Load Byte Unsigned MULTU Multiply Unsigned
LH Load Halfword DIV Divide
LHU Load Halfword Unsigned DIVU Divide Unsigned
w Load Word
LWL Load Word Left MFHI Move From HI
LWR Load Word Right MTHI Move To HI
SB Store Byte MFLO Move From LO
SH Store Halfword MTLO Move To LO
SW Store Word
SWL Store Word Left Jump and Branch Instructions
SWR Store Word Right J Jump
JAL Jump and Link
Arithmetic Instructions JR Jump to Register
(ALU Immediate)
ADDI Add Immediate JALR Jump and Link Register
ADDIU Add Immediate Unsigned BEQ Branch on Equal
SLTI Set on Less Than Immediate BNE Branch on Not Equal
SLTIU Set on Less Than Immediate Unsigned BLEZ Branch on Less Than or Equal to
Zexo
ANDI AND Immediate BGTZ Branch on Greater Than Zero
ORI OR Immediate BLTZ Branch on Less Than Zero
XORI Exclusive OR Immediate BGEZ Branch on Greater Than or Equal to
Zero
LUI Load Upper Immediate BLTZAL Branch on Less Than Zero and Link
BGEZAL Branch on Greater Than or Equal to
Zero and Link
Arithmetic Instructions Special Operations
(3-operand, register type)
ADD Add SYSCALL System Call
ADDU Add Unsigned BREAK Break
SUB Subtract
SUBU Subtract Unsigned Coprocessor Instructions
SLT Set on Less Than LWCz Load Word from Coprocessor
SLTU Set on Less Than Unsigned SWCz Store Word to Coprocessor
AND AND MTCz Move to Coprocessor
OR OR MFCz Move from Coprocessor
XOR Exclusive OR CTCz Move Control to Coprocessor
NOR NOR CFCz Move Control from Coprocessor
COPz Coprocessor Operation
shift Instructions BCzT Branch on Coprocessor z True
SLL Shift Left Logical BCzF Branch on Coprocessor z False
SRL Shift Right Logical
SRA Shift Right Arithmetic System Control Coprocessor (CPO)
’ Instructions
SLLV Shift Left Logical Variable MTCO Move to CPO
SRLV Shift Right Logical Variable MFCO Move from CPO
SRAV Shift Right Arithmetic Variable TLBR Read Indexed TLB Entry
TLBWI Write Indexed TLB Entry
TLBWR Write Random TLB Entry
TLBP Probe TLB for Matching Entry
RFE Restore from Exception

Table 4.

28

Instruction Mnemonics.

After Ref. [5].

chosen. Although the performance of the R3081 is much less
than that of the current microprocessors available, it does
have the performance and computing power necessary for
analyzing fault tolerant improvement techniques in the
presence of radiation induced SEUs. In addition, the R3081
has previously been tested by the Naval Research Laboratory
and flown in actual space satellite experiments. Finally,
the R3081 employs a flexible bus interface which makes it a
good candidate for use in a redundant hardware design.

In the next chapter, some of the concepts of triple
modular redundancy, a hardware redundancy technique, are
covered. This is followed by a description of a simple
R3081 based system. Finally, a brief overview of how three
R3081 processors were incorporated into a redundant design

is presented.

29

30

III. HARDWARE REDUNDANCY

There are many techniques available to achieve some
degree of fault tolerance. Fault tolerant systems basically
employ some combination of hardware, software, time, or
information redundancy. The purpose of this chapter is to
introduce the concept of triple modular redundancy (TMR).
The initial design of the testbed will employ a TMR design
and as such TMR.issues are dealt with thoroughly. The
overall goal of this project is to design a testbed which
allows flexibility in the ultimate methods employed to
achieve fault tolerance.A This will allow the user to
compare and contrast the fault tolerant performance of many

combinations of the different techniques.

A. TRIPLE MODULAR REDUNDANCY (TMR)

A common form of hardware redundancy is triple modular
redundancy (TMR). The basic concept is fairly simple. It
involves the triplication of the hardware and performing a
majority vote to determine the output of the system. This
technique is considered to be passive hardware redundancy in
that it masks the occurrence of faults. Fault tolerance is
achieved through the use of majority voting techniques
without the need for fault detection or system recovery.

[Ref. 6] If one of the modules becomes faulty, the two

31

remaining modules, which are fault-free, mask the fault when
the majority vote is performed. 1In short, TMR uses three
identical modules, performing identical operations, with a
majority &oter determining -the output, as shown in Figure 4.
In a TMR system with three microprocessofs, an SEU
could cause one processor to branch to a completely wrong
address. That processor will continue to cause errors on
all votes until it is reset to the state of the correct
processors. Until it is reset, the system is no longer a
TMR system. It is a dual pfocessor with comparison system
which provides for error detection but no error correction.
One of the primary disadvantages with a TMR system is
that the system}can be no more reliable than the voter
itself. 1Indeed the voter becomes a single point of failure—
if the voter fails, the entire system fails. [Ref. 6]
Several techniques can be used to overcome this. One method
is the use of ‘triplicated voters which produce three
independent outputs. Hefe again three identical modules
receive identical inputs and perform the same operations on
those inputs. Each module provides its output to three
separate and independent voters to produce the three
results, as shown in Figure 5. Each output is cofrect as
long as no more than one module, or input, is faulty. 1In

essence, the voter is no longer the single point of failure.

32

A multi-stage TMR system can be built by
interconnecting this triplicated voter approach as shown in

Figure 6. [Ref. 6] A multi-stage system with triplicated

voters can provide some error correction in that an error in

a module of one stage is masked and the voters provide three

Input 1 —» Module 1

Input 2 —» Module 2 Output

Input 3—>» Module 3

Figure 4. Triple Modular Redundancy. After Ref. [6].

Input 1 —» Module 1 Output 1

Input 2 —» Module 2 v‘® Output 2

Input 3 —» Module 3 | Output 3

Figure 5. TMR with triplicated voters. After Ref. [6].

33

independent and “corrected” results to the next stage. At
the final stage, the three independent outputs can then be
voted again to form a single output. However, this final

voter could again become the single point of failure.

Input 1 —» Module 1 ‘v@ Module 1 v@
Input 2 —>» Module 2 A"@ Module 2 A"@

Input 3—» Module 3 A@ Module 3 “@

Figure 6. Multiple-stage TMR system. After Ref. [6].

A generalization of the TMR approach is N-Modular
Redundancy (NMR). [Ref. 6] TMR is based on the techniques
of NMR. There are N redundant modules vice three. 1In
general, N is chosen to be odd so that majority voting
Eechniques can still be applied. The advantage gained is
that more module faults may be tolerated. In an NMR system
with N redundant modules, majority voting will allow the
system to tolerate faults in.rN/21 - 1 modules. The
primary concerns associated with NMR system deal with added
logic hardware and circuit complexity. Clearly, one could

design a system that continues to employ NMR voting at

34

multiple stages to improve system reliability. Referring to
Figure 5, the triplicated voters could even be voted again
to ensure faults are detected in the voters themselves.

This could conceivably continue in an endless cycle.
Practical applications and design constraints often prevail

and are the limiting factor to choosing N in an NMR system.

[Ref. 6]

1. Voting Technigques

Voting may occur at several locations within a system.
Take, for example, a TMR system used as an industrial
process controller. [Ref. 6] The controller could sample
from three identical, independent sensors and perform a vote
to determine which sensor value to use. This data is
provided to three identical, independent modules to perform
some calculations on the sensor data, and then a majority
vote on these calculations is performed to perhaps adjust
- the controls of‘the process. The voting can be used on both
analog and digital data. This approach masks and contains
the effect of a faulty sensor. An alternative method might
be to provide the values from each of the three sensors
directly to a dedicated module, perform the necessary
calculations, and then vote the results from the three
modules. Here, faulty sensor data would be allowed to
migrate into the processing modules. The tradeoffs between

35

the two approaches are slight but would obviously have to be
analyzed to determine the appropriate design based on the
application.

A hardware voter is a relatively simple circuit to
design and implement. All that is needed is a combinational
logic circuit that produces a 1 when a majority of the input
bits are 1 and a 0 when a majority of the input bits are 0.
An implementation of a one-bit majority voter is shown in
Figure 7. Alternately, the carry out output‘of a l-bit full
adder will produce the necessary output to implement the 1-
bit majority voter. An 8, 16, 32, or 64-bit voter can be

constructed by replicating the circuit in Figure 7 in

Input A _—\\)
— |
Input B TN r_'“‘“‘\\
}__ﬁ___ _z
1 —),
input € ™~
___,/J

Figure 7. 1-bit majority voter. After Ref. [6].

parallel for each bit that needs to be voted. One can see

the amount of additional logic grows rapidly if, for

instance, the three independent modules in a TMR system to

be voted are 32-bit microprocessors. The desired

36

reliability will certainly have to be weighed against the
space, power, and weight limitations, especially in

satellite and other space applications.

2. Voting Issues

In practical applications, timing will have to be
considered when performing majority voting. If the three
inputs to a majority voter arrive at different times, then
depending on when the output of the voter is sampled, an
incorrect vote may be generated. In many applications, an
incorrect result cannot be allowed even for a very small
period of time. [Ref.v6]' There are techniques which can be
applied that will force the inputs to the voter to be
synchronized so that'the output of the voter is sampled at
the correct time. One approach to achieving synchronization
involves a two-phase clock which drives master-slave D flip-
flops on each input to the majority voter. The costs of
using this synchronization approach will be in terms of
additional logic and timing delays.

Another problem that may be encountered in hardware
voting is that the three modules in a TMR system, or the
three sensors that feed the three modules, could disagree
slightly even in a fault-free environment. These devices,
sensors in particular, can seldom be produced so that they
generate identical results under the same circumstances. In

37

addition, a single analog-to-digital converter can produce
results that differ slightly in the least significant bits,
even if the exact same signal is applied to it several
different.times. [Ref. 6] One technigque used to get around
this is to ignore a set number of the least significant bits
generated. The assumption is that the result will differ in
only a known number of the least significant bits. An
alternative approach is the mid-value select technique. The
voter basically just selects the middle value of the three
inputs as shown in Figure 8. Essentially, it is the same
concept as a majority voter but is necessary when the three
values may have slight perturbations between them. The

middle value is chosen

Sensor
Values

A

Selected
Signal ——08M

-
Time

Figure 8. Mid-value select technique. After Ref. [6].

38

because an assumption is made that only one of the inputs
can be faulty at one time. Thus, since minor perturbations
are expected the middle value will always be one from a
“good” input. The middle value is chosen instead of taking
an average of the three inputs. This is because in the
event that one input is clearly faulty as shown in Figure 8,
the average would be adversely affected. In effect, the
faulty input is ignored by selecting the middle value.

Another problem that must be realized in a TMR system
with majority voting is that identical errors in two of the
modules will have to be tolerated. The errors will produce
results that when passed to the voter will be selected as
the majority. The possibility of this occurring and the
consequences would definitely have to be investigated
depending on the application.

A significant danger of incorporating redundancy into a
system is that the overall system reliabilitylcould be
feduced, due to the incfeased number of components. If the
redundant systems are not themselves reliable, there is
little hope of improving the reliability of the system.
[Ref. 7] For example, Wakerly notes that constructing a
voting component for three microprocessors in a TMR
structure could conceivably require 14 integrated circuit

packages constructed from the same (unreliable) technology

39

as the three microprocessor packages, and hence would lead
to a system with lower reliability than that of a single
microprocessor chip. [Ref. 8] In addition, on a PC board,
solder connections can be one of the largest sources of
failure.

On the other hand, given that the redundant components
are sufficiently reliable and the additional logic required
is at least as reliable as the redundant modules, TMR
provides a viable technique for improving overall system

reliability in critical applications. [Ref. 4]

B. TRIPLE MODULAR REDUNDANT MICROPROCESSOR DESIGN

Having reviewed the concepts of TMR, what follows is a
description of how they might be employed with three
microprocessors. Aléo, having chosen to build the Testbed
using the IDT R3081 RISC Microprocessor discussed in
Chapters I and II, it is useful to examine what is necessary
in constructing a board with three R3081’'s operating in a
TMR design.

Figure 9 shows a block diagram of a simple system using
a single R3081 processor. The multiplexed address/data bus
of the R3081 is demultiplexed through the use of address
latches and data buffers/transceivers. The address bus and

the control bus are then used by the memory controller to

40

access the memory blocks. A typical design similar to
Figure 9 is described in detail in Ref. [9].

Expounding on this simple system, Figure 10 shows a
block diagram of a TMR system using three R3081 processors.
Figure 10 shows the additional hardware blocks necessary to

implement majority wvoting of the address, data, and control

Address/Data Bus | Address Address Bus RAM | | EPROM
Latches
R3081
RISC
CPU Data Buffer/ Data Bus
Transceiver
Control Bus Memory
Controller

Figure 9. Simple R3081 Board Design. After Ref. [9].

41

Address Voled
Address Busses Address ote
Latches Voter I AdBdress 7 RAM EPROM
us
R3081
RISC
— CPUA Address
) Error
Address | _ |
Latches Data
R3081 Busses Voted
RISC b -
Voter/Xcvr Data
«1 CPUB 1 Bus
] Data
Error
Address | | I__ Memory/
Latches | ——— Error
—
R3081 Cg:gf‘ voted | Controller
RISC Contral B | Control
ontrol Busses
+— CPUC Control Bus'
Voter
Vote Error Interrupt

Figure 10. TMR R3081 Board Design.

busses and how the voted busses are then used in the
remainder of the system.

A significant issue when using three microprocessors in.
a TMR design is the synchronization of the processors,
briefly described in the preceding section, Voting Issues
(Section A, Subéection 2, of this chapter). The IDT R3081
contains an output from the processor which is the System
Reference Clock, SysClk*. This clock is used to control
state transitions in the read buffer, write buffer, memory
controller, and bus interface unit internal to the
processor. As such it is used as timing reference by the

external memory system. The frequency of this clock can be

42

either the same as the CPU cycle rate, or one-half that
frequency. The frequency of this clock is selectable during
the processor reset initialization. [Ref. 5]

ThelR308l does not have a guaranteed relationship
between the input clock and the SysClk* System Reference
Clock. However, it is possible to ensure the phase of this
output reference clock allowing the multiple processors to
be in the same phase. The IDT R3081 contains internal logic
as part of its reset state machine, which forces the System
Reference Clock, SysClk*, into a known state. [Ref. 5] Thus
in a system using multiple R3081 processors with their
System Reference Clocks operating at the same frequency as
the CPU cycle fate, the negation of the Reset* input to the
processors is sufficient to ensure that the System Reference
Clocks from each processor are operating in the same phase.
This assumes that the three processors are driven by the
same input clock. [Ref. 5] If the Output Reference Clocks
are operating at one-half of the frequency of the CPU cycle
rate, additional steps are necessary to ensure
synchronization between the System Reference Clocks from
multiple CPUs.

In order to take full advantage of the TMR design to.
allow error analysis, FIFOs dedicated to each processor were

incorporated as shown in Figure 11. The FIFOs allow the

43

capturing of the address, control, and data bus information
from each processor before it is passed to the majority
voters as shown in Figure 10.

Detailed descriptions of the blocks shown in Figures 10
and 11 and how they are implemented in the Testbed design

are discussed in the next chapter.

Address
Address Bus
Latches -

R3081 Data | Buffer FIFO
RISC Bis pl A A

CPU A
Control Bus I

Address
Address Bus

R3081 Leches pata | Buffer | FIFO
RISC L Bus | B B FIFO Write

Enable
CPUB | » & Buffer Select
Control Bus T ([) Q o) Linee

Address <
Address Bus | From
Latches
R3081 pata | Buffer | FIFO CMETC)II;y
Bus c ontroiler
RISC c

cPUC Control Bus I

[LS T

Figure 11. Testbed FIFO Interface.

44

IV. TMR TESTBED DESIGN

A. OVERVIEW

In order to observe the performance and behavior of a
microprocessor in the presence of radiation induced single
event upsets (SEUs), the address, data, and control busses
must be monitored. This is because in a general purpose
microprocessor there is not an efficient built-in mechanism
to indicate to external devices and/or observers that an SEU
induced error has occurred. This is particularly true in
the case where one or more bits in a word of data are
flipped. SEU induced errors may cause the processor to
“Jock up” or “crash,” which is detectable, but is of little
use when trying to trouble-shoot and/orx mbnitor the
performance of the system.

Monitoring of the address and data busses presents
another pfoblem. Without a separate entity which is deemed,
or assumed, to be error free there is not a way to tell if
the information that appears on the busses is error free or
not. In addition, in the presence of radiation induced
SEUs, the ability to correct such faults once detected is a
desirable characteristic.

In this testbed design, triple modular redundancy (TMR)

was chosen to allow the monitoring of three identical

45

microprocessors running identical programs. The majority
voting used in conjunction with TMR allows detection of an
SEU which has been manifested as a disagreement between the
address, data, and control busses of the three processors.
The majority voter also allows the masking of these SEU
induced disagreements. The address, data, and control bus
information from the two microprocessors which are in
agreement is used to start, control, and complete each bus
cycle.

This assumes that identical faults, or errors, will
not occur in two different microprocesso:s and produce the
same erroneous results on their associated busses. If this
occurred, then the majority would be in an error state. The
same argument applies for identical faults in all three
processors. The following sections describe the Testbed TMR
functionality and the use of dedicated FIFOs for error

analysis.

1. Testbed Operation Summary

The testbed contains three IDT R3081 RISC
microprocessors executing the same program and interrupt
service routines. Each processor has a dedicated FIFO
memory to capture the address, control, and data bus
information during ea;h bus cycle. The address, data, and
control busses from the three processors are then combined

46

into single address, control, and data busses via majority
voters. These voted busses are then used by a single
memory/error cycle controller to access the same ROM and
RAM..

a. Normal (Error Free) Operation

At the beginning of a bus cycle (Read, Burst Read,
or Write), the address is latched from each processor’s A/D
bus. Voting commences on the address busses while ﬁhey are
simultaneously written to each FIFO.

Control lines are next sampled from each processor.
Voting commences on the control busses while they are
simultaneously written to each FiFO.

Data on the A/D bus from each processor is wvoted
(during a Write cycle only). Data on the A/D busses from
each processor during both Read and Write bus cycles,
including Burst Read, are written to each FiFO.

If no error is detected (address, control, or data),

then the current bus cycle finishes normally.

b. Error Detection

Errors are detected by majoritylvoting of the
address, control, and data busses from each processor. If
an error is detected, the current bus cycle is allowed to

complete before generating an interrupt. The error is

47

masked during Read and Write operations through the majority
voter. However, the address, control, and data bus
information associated with each processor before voting
occurs will have been placed in each FIFO for analysis.

Upon completion of the current cycle, an interrupt is

generated and synchronously supplied to each processor.

c. Error Correction

Upon receipt of an interrupt, each processor
executes the same interrupt service routine. The beginning
of this routine is signaled by initiating a write to “dummy”
address 1F80xxxXy. The dummy address is recognized by the
address decoder and a dedicated chip select is asserted.
This chip select is in turn recognized by the memory/error
cycle cohtroller. The memory/error cycle controller clears
the current interrupt and disables subsequent vote error
interrupts while the interrupt routine executes.

The internal general purpose registers, configuration
registers, and instruction and data caches are written to a
reserved location in RAM. While this occurs, all internal
information associated with each processor is written to a
dedicated FIFO. The majority voter masks the error in the
faulty processor and the “corrected” information, based on
the majority of the two agreeing processors, is written to

RAM. All internal registers and caches in each processor

48

are then filled by reading the reserved locations in RAM.
The “faulty” processor will now have been “corrected” and
re—synchronized with the other two processors.

The processors signal the end of the interrupt service
routine by initiating another write to “dummy” address
1F80xxxxy. The memory/error cycle controller will then re-

enable vote error interrupts, and the next bus cycle begins.

d. Error Monitoring
The operation of the Testbed is monitored via an
outside interface system. This outside system reads the
contents of the FIFOs associatedlwith each processor.
Address, control, and data bus information from each
processor are placed in FIFOs during non-error Eus cycles.
Upon detection of an error and interrupt handler
execution, all internal registers and caches for each
processor are written to the dedicated FIFOs.
The FIFOs now contain the information necessary to
detect which processor was in error and what the processors

were doing at the time the error occurred.

2. IDT R3081 Simulation

We do not have a model of the complete R3081 RISC
Microprocessor for simulation of the Testbed design.

Therefore, in order to develop the concept of this design we

49

modeled the behavior of the IDT R3081 multiplexed
address/data bus and associated control lines using the
Verilog Hardware Description Language [Ref. 10]. The
remaining sections of this chapter describe in detail each
of the blocks in thevTestbed design.

In the descriptions of the blocks and in the associated
figures, the following convention has been used. Signal and
bus names which are bold and italicized, FORCE A for
example, are intended to match the same signal and bus names
in the overall schematic in Appendix A for ease in cross
referencing. In addition, signal and bus names which begin
with an underscore, _ALE for example, represent signals
which come from.each of the three processors. Thus _ALE

represents A ALE, B ALE, and C _ALE, for example.

B. IDT R3081 BUS INTERFACE

In this section, we will demonstrate that the bus
interface simulation matches the manufacturers design
specifications for the R3081.

The datasheet for the IDT R3081 RISC Microprocessor
[Ref. 11] was used in conjunction with the R3081 Hardware
Users Manual [Ref. 5]. The single datum (word or byte)
Read, Burst Read, and Write bus cycle timing diagrams and

timing parameters were analyzed and used to simulate the

50

R3081 bus interface. Figures 12, 13, and 14 are the bus

cycles obtained from these references.

| A N - AN —
gam__\ 1" T %“‘ T
] t7 |- . »

—__.) n?_

%) K
114 o] 118 . tia | ta le t1a e te e ™ te
F Adar Word 0 -l Word 1 Word 2 :k Worg 3
A/D(31:0) [N N N t N 41: t
29 a

"1 =

Addr(3:2) 00 * or t ¢ * 1 x
-t - 19 o 116 o116 »t16
ALE 4 /

- t12 s

DataEn A, -m£
Burst _{
1 - U e 11
- S A T [F

] 117}] 117

Diag(1) achea? Miss AdOress(3)
-1 1 111 1 t 1
Diag(0) : ¥ Miss Aacress(2) X:
[| | [I |] I |

Start Turn Ack/ Sample RACEn Sampie RJCEn Sample RdCEn Sample New
Read Bus RdCen Data Data Data Data Transaction
2889 0rw 2¢

Figure 12. IDT R0381 Burst Read Cycle. From Ref. [9].

51

SysCik y ¥ \ ¥ \ -+ N .z—‘—_/—
—"_‘7!'" - s
. : 7
t14 tis - t14
. ulr Jg
AD(31:0) NI_sE out
R [T h ' I I I J
Addr(3:2) i Word Address
-t 1L
ALE 5]
17
Diag(1) Cached Reserved)_—
ha
>t17 | J I I l I
Reserved
Diag(0) > —
hat t7|<- o) 115 pat
rNear k ZZ
’_m;I:
Aok s o jih_n
nt t Ack N N
W‘:te oau‘a Ack? Ack? © ev%?te Traﬁ‘sﬁ;er 2859 arv 23
Figure 13. IDT R3081 Write Cycle. From Ref. [9].
Sk B .\ _Z_\ _é—\ VN J_z—___/—
________’_‘7!" s
. < 7
114 gd F o 118 - tla |eg Ly ha
AD(31:0) N Data Input
- tis _t10 H = t2a
Addr(3:2) Word Address
& 18 i
ALE zE by
e t12 - trs
ata l11£ ;
= 17 e ™
4
Burst
11 f-
RICER
- R
Ack
— 17 17|
Diag(1) chad? Miss Address(3)
Diag(0) o Miss Address(2) X
I I [[[I
Stat T Ack/ Sampl End
Read Bus A Ack? RdCen —Data Read 2890w 75
Figure 14. IDT R3081 Single Datum Read. From Ref. [9].

52

The Diag(l) and Diag(0) signals shown in Figures 12, 13, and
14 were not modeled. These two pins are useful in the
initial debug of R30xx family based systems. [Ref. 5]
Alﬁhough they are not control lines, in an actual
implementation of the Testbed, these lines could easily be
added as part of the control bus from each microprocessor
and passed to the control majority voter. They are not
needed to control the bus/memory interface. However, they
could be used as additional status lines to detect
differences among the three processors.

Figure 15 shows the R3081 bus interface simulator built

in Cadence Concept™ Schematics and the Verilog Hardware

Description Language. The associated Verilog code is

contained in Appendix C, Section A. The three pins on the

R3081

ADK3L. . @y ADC3L. . B>

AODR2 Lo ADOORZ2
CURR_TRANS<2.. B> o TRANSC 2. . B>
ROORESS¢3L. . B> o ADDR<31. . B> ARDOR3 | ¢ AODR3
DATACRL. . B> OARTACEL. . B>

ALE o ALE
RESET-N o RESETX ROx] o RO_N
ACK_N o] ACKX wRi] o WR_N
ROCEN_N -] ROCENK BURSTx} o BURST_N
INTS_N o INTSK DATAENK® | o OATAEN_N

SYSCLKX o SYSCLK.N

Figure 15. IDT R3081 Bus Interface Simulator.

53

simulator labeled TRANS<2..0>, ADDR<31..0>, and DATA<31..0>
are not pins on an actual R3081 device. These pins are
used during simulations to force the simulator to execute a
specified bus cycle. TRANS<2..0> is used to specify either
Byte Read, Word Read, Burst Read, Byte Write, or Word Write
bus cycles. ADDR<31..0> is used to specify the address of
the current bus cycle. If the current bus cycle specified
is a Burst Read, then ADDR<31..0> specifies the initial word
address. DATA<31..0> is used to specify the data to be used
during Write bus cycles. By using three separate simulators
and specifying each of the above three signals separately to
each simulator, faults can be injected into the system.

Figures 16, 17, and 18 show the simulated address/data
bus and control line behavior. Extra wait states; i.e.,
additional system reference clock cycles, have been added to
each bus cycle. The extra wait states allow FIFO memories
~dedicated to each microprocessor to grab the address,
control, and data bus information. In addition, in these
three figures the address/data bus and control lines from
each of the three microprocessors are displayed to show they
are synchronized with one another.

In Figure 16, the Burst Read cycle is initiated at the
falling edge of the _RD* and _BURST* lines from each

microprocessor. In this particular example, the address.

54

1FC00000y4 is placed on the multiplexed address/data bus,
_AD<31..0>, by each processor. After this address is
latched using the _ALE signals from each processor, the
first word of data appears on the _AD<31..0> bus after a
short delay from the memory. The four contigudus words of
memory read during this bus cycle are obtained by providing
the initial address, 1FC00000y in this case, and strobing
the _ADDRB and _ADDR2 lines so that they count in binary 00,
01, 10, and 11. 1In addition, the memory controller strobes
the RDCEN* line, which is supplied to all three
microprocessors, four times indicating when the expected
word from memory has been placed on the bus. The burst read
cycle is completed at the rising edge of the _RD* and
_BURST* signals. 1In the example in Figure i6 the four
addresses read are 1FC00000yz, 1FC00004yz, 1FC00008yz, and
1FC0000Cy. In this design, the addresses 1FC00000y through
1FCOxxxxy are decoded to be read only memory (ROM). The
four words read contained the data 000000004, 00000001y,

00000002y, and 00000003y, respectively. This correctly

corresponds to the data which has been programmed into the

EPROM. See Appendix C, Section I.

In Figure 17, the Write cycle is initiated at the

falling edge of the _WR* lines from each microprocessor.

55

r~

I~

B <[<owry pug> ‘qawTy 3xeys>)/<awrl 3aeys>

s388Np* g ‘saasng° 1 < [<awrl pug> .Aoﬁﬂ. jIe3s> J/<auty 3Ie3s>
- X w00z <AITATAVA

¢ dn NYd <MATATAVA

XN xTped-

28sQ :ouTl IMdpxeN soasd 1 :uorqnjosay P1 a0y SI96M 96z OMIL X(MEH

2'¢

keon

8T 9T T [0 SEEN T

©ewry

| 1SHRG D

L yavivad g
L anN9

1 I Uy Q-
[fHOIV D -

£%0

EX0XZ*0

FAd1]

PAT] TX0 TX0X0%0 0%0Y__Z01__X0n0oDoaT=0 - 0" ¥E20¥ 3

,,cﬂBu

«Eu

1 ._.Hmmsn ﬂ

] Y NIVIVICE

L ANd

] | At g
| : - EU0I Tl

[31]

EX0X2%0

%0

FAI)Ed] FE7 TX0X0%0_ 0%0X_21 __ XDO0BOITK) _ <0° *TEHN &

L ¢

L esundve

l C wNIVIVETY
L AW

1 J Hov Y

I - EUum Y

£0

EXOXZX0

%0

SX0XT%0 =0 1X0X0%0 S%gX 20 XQUO00OITE — <0° - TEXNY

'y

L LML L L L L UL LU L U L LU LT LT vmsas

naIn WIDH m3IAINE B

;e@dy

anrea |

T e

Figure 16

Simulated R3081 Burst Read Cycle.

56

In this particular example, the address 00000000y is'placed
on the multiplexed address/data bus, _AD<31..0>, by each
processor. After this address is latched using the _ALE
signals from each processor, the data to be written appears
on the bus. In this example, the data to be written is
11111111y. The ACK* signal, which is returned from the
memory controller, indicates the write has been completed.
The write cycle is completed at the rising edge of the _WR*
signal. In the TMR Testbed design, addresses 00000000y

through 0007FFFFy correspond to random access memory
(RAM) . Therefore, in this example, 11111111y has been
written to RAM at address 00000000y.

In Figure 18, the single datum Word Read cycle is
initiated at the falling edge of the _RD* lines from each
microprocessor. In this particular example, the address
00000000y is placed on the multiplexed address/data bus,
_AD<31..0>, by each processor. After this address is
latched using the _ALE signals from each processor, the data
appears on the bus after some delay. The RDCEN* line from
the memory controller indicates that the address/data bus
contains valid data. The read cycle is completed at the
rising edge of the _RD* lines. In this example, 11111111y
has been read from RAM at address 00000000y. This correctly
corresponds with the 11111111y written to address 00000000x

57

R) B <[couTy pug> ‘cawry 3e3S>]/<ouTL 3FEIS>
$23sNg P SI9sNG L <[<WTL PUT)> “<OUTL JTeIS>}/COuUTL jae3S>
! IMOTY NYd < [<auwty pugy ‘<awTl 3Ie3s)>]/<aurl 3xeass
¢ 1331 NVd < [<OWTL pudd> ‘<AWLL 3Xe)S>] /<ULl Jxes>

T~

XN :xTpey 295() :OWEL JeqTeH soasd 7 :uorgnposay 2 a0y £008N PEGE OWIL AQYIH-

ot |

.- &sasn R o - aut} .
ey ¥ v : 6'€ g€ L

1SHAT D
»NIVIVT 9
| I IO
a3
, gunvs
ZTHXTTIITIIIX0 TTIITILI%0 TTTTTLIE*0X 0%0 X2t 20 <0t ey, |
i f 1 .
@0
+ATSXS™D
ylSHNGTd
wANIVIVA |
L1 Ivg
ey
euamTg;

| J I l | : [| S o |] 1 I N |

ZIHXTIITTIIII%0 TIITITLII%0 TITTIITIX0X 0%0 X2 Zi

R | 1
. A QuTL Fou
1 f H f | | | | | f I | I [| | ! | | | |
_ _ . ysoizoy
weg
L ﬂ" Jufiren ose
ZUDITTTIITI%0 TITIILLI%0 TTTITLLI20X 0%0 2T 2TH 0" IeVY _m ,i.nu
Cemnv 1 uado
1 f 1 [L. 1 | 1 | : [| : |] |] f l | | vSTOSAS™Y . ,

ROT WILK MATAINEN

SLSL 9661 ‘LE WEL:E0d-PNNS b'h MOJABABH - . o . - I

8

Simulated R3081 Write Cycle.
5

Figure 17.

wf.

B <[<oury pug>

£2980p° 9 $2950Y 9 < [<IWTL pud>

¢ IHOTH Nvd < [<oury pug>
{1337 Nvg S fcawrL pua>

‘<auTL JxRIS>]/CAuUTL JIRIS>
‘¢AULL 3XL]SH | /<AUTL. JIRISH
“Caur] 3xe3s>]/cautl 3xe3s>-

“¢aUTY 3XRIS) | /<OUTL JARISH’

KN :xTpeyd

29sg. joury aoxqxey. soasd T iuoranyesay L :am

80981 /1’9 1OWIL XQVEH
;]

-

aurg

»154n979

»NIVIVA D

1 | IV 9

ouany ™o

£HaaY 9

2TITTITITIX

TITTTITI*0

2T gxQ Xz

<0 IEXATY

R,

l »@ o

I : J : J i | 1 I :

j | ¥4TOSAS™D

x1Sung g

L avivdd

1_ f INg

| U

ZODITTITIIX0

TITITIIT*0 TITILLII0X_ Y2 2TH

i1y

2THY_ 0%0 X2 cpIIesav T

iwﬁlﬂ.

1 g

f 1 »10SAS™E
¥V

DY

v1SHDE TV

1 | L NEVIVDY
1 J AN

ZINY

cHmavY

2T 0¥ XZ™

0TIEMIV Y

Y'Y

L eayv

| 1 _|

] »NT08XSTV

- dyen

LERM CRE LRI -

SLSL 9661 ‘LE VelEQd-PNNS PP MBIABARH

f24

lated R3081 Read Cycle.

Simu

Figure 18

59

in the previous example Write cycle description and in

Figure 17.

C. ADDRESS/DATA BUS DEMULTIPLEXING

The multiplexed 32-bit address/data bus of each of the
three microprocessors is demultiplexed using the address

latch enable, _ALE, signal [Ref. 5] from each processor.
The schematic diagram of the demultiplexer is contained in
Appendix B, Section A. Figure 19 is a block diagram of the

demultiplexer.

32-bit Address/
Data Bus
(_AD<31..05) 32-bit Data Bus
R3081 Address/Data Bus | 32-bit Address Bus
RISC Address Latch —

CPU Enable (_ALE) Demultiplexer

TESTENT"

Figure 19. Address/Data Bus Demultiplexing.

Each 32-bit demultiplexer makes use of four 8-bit
FCT373 transparent latches. [Ref. 9] During each bus cycle
(Read, Burst Read, or Write) the address is placed on the
_AD<31..0> bus of each processor at the beginning of the
cycle. While the _ALE signals are HIGH, the transparent

60

latches allow the address information to pass to the 32-bit
address voter. This allows the address information to be
voted and passed to the memory/address decoder as soon as it
becomes évailable. When the _ALE signals transition from
HIGH to LOW, the address information is latched to the
associated 32-bit address bus. Subsequent changes on the
_AD<31..0> busses do not affect the state of the address
busses until the next _ALE transition from LOW to HIGH,
which occurs during the next bus cycle. The TESTEN1* line,
which is supplied to each demultiplexer, can be used to
place the address bus, or output of each demultiplexer, in a
high impedance state for testing. During normal operations,
the TESTEN1* line should be held LOW. The schematic diagram
of the three microprocessors, the demultiplexers, and the

associated connections is contained in Appendix A.

D. DATA BUS VOTING

The _AD<31..0> bus from each microprocessor is
considered to be the data bus after the transition of the
ALE signal from HIGH to LOW during each bus cycle. The 32-
bit data busses from each processor are passed to a 32-bit
majority voter/transceiver. Figure 20 is a block diagram of

the data bus voter/transceiver.

61

During a Write cycle, the three 32-bit data busses are
voted to produce a single 32-bit data bus. However, during

a Read, or Burst Read, bus cycle the data read from memory

_ A_AD<31..0> R
. To/From Memory
BApare> | Sebit Voter | VOTEDATA<31..0>
> Error Detector - >
and Transceiver
. C_AD<31..0> DATAERR
- .
To/From
FORCE_A T EN Memory
I WRDATAEN*
FORCE_B Controller
RDDATAEN"
FORCE_C

Figure 20. Data Bus Voting.

must be allowed to pass back to the three _AD<31..0> busses
and on ﬁo the three microprocessors. This is accomplished
via the RDDATAEN* and WRDATAEN* control lines from the
memory enable controller. While the WRDATAEN* signal is
LOW, the three data busses are voted and passed to the
single data bus. While the RDDATAEN* line is LOW, the data
on the single bus which has been read from memory is allowed
to pass back through to the three microprocessors. Voting
of the data busses occurs only during a Write cycle and when

WRDATAEN* is LOW. The WRDATEN* and RDDATAEN* signals are

mutually exclusive (when one is HIGH, the other is LOW). If

62

an error is detected on one of the data busses supplied to
the voter, the signal DATAERR goes HIGH.

In addition, the majority voter/transceiver uses three
input lines (FORCE_A, FORCE_B, and FORCE_C) which, when
pulled HIGH, force the data from the respective bus through
to the output data bus. When one of these signals is pulled
HIGH, voting errors are not detected or signaled. These
signals should all be held LOW during normal operations.

The schematic for the 32-bit majority voter/transceiver
and associated Verilog code are contained in Appendix C,

Section B.

E. ADDRESS BUS VOTING

The output of the three demultiplexers is considered to
be the address bus associated with each processor. Once a
bus cycle has initiated and the _ALE has transitioned from
HIGH to LOW, the address bus holds the address information
until the LOW to HIGH transition of _ALE during the next bus
cycle. The address bus from each demultiplexer is passed to
a 32-bit majority voter. This majority voter operates
similarly to that of the majority voter/transceiver
described in the previous section except there is no
associated transceiver operation or control lines. Figure

21 is a block diagram of the address voter. If an error is

63

detected on one of the address busses supplied to the wvoter,

the signal ADDRERR goes HIGH.

CPUA_ADDR<31..0> VOTEADDR<31..0>
|

CPUB_ADDR<31..0> 32-bit Voter/

Error Detector
CPUC_ADDR<31..0> R ADDRERR >

To Memory/Error
Controller and Memory

From
Demultiplexers

FORCE_A

FORCE_B

FORCE_C

Figure 21. Address Bus Voting.

The schematic for the 32-bit majority voter and
associated Verilog code are contained in Appendix C, Section

D.

F. CONTROL BUS VOTING

Six control lines from each of the three processors are
voted using an 8-bit majority voter. The six control lines
voted are _ADDR2, _ADDR3, _RD*, _WR#*, _BURST*, and _DATAEN*.
The other two inputs to the 8-bit voter are not used and are
held LOW. These control lines are voted to produce a single
control bus. Figure 22 is a block diagram of the control
bus voter. This majority voter operates similarly to that
of the majority voter/transceiver described in Section D

64

except there is no associated transceiver operation or
control lines. 1If an error is detected on one of the

control lines supplied to the voter, the signal CONTERR goes

HIGH.

A_ADDR2

A ADOR2
A_ADDR3
£ < A_RD* >
S 2 Tawm > -
L& Tasumr
"A_DATAEN"
2
_ o
cE
5 ADDR2 VOTECONT<7.0> | T S
m 8_ADDRS3 . | —]
Eo | g 8-bit Voter/ 2
LW > ©
& & [s Error Detector | conterr £ x
eoamasw) > ——*==2
o £
= c
5]
>_ADDR2 ©
) ~C_ADDR3
£ D"
SOy —<Twm———> . FORCE_A
. & | TcsuRsT
Of Toamen 5 FORCE_B
FORCE_C -

Figure 22. Control Bus Voting.
The schematic for the 8-bit majority voter and
associated Verilog code are contained in Appendix C, Section

cC.

G. ADDRESS DECODER

The address decoder uses the voted address bus,
VOTEADDR<31..17>, to generate chip selects. The address
decoder does not wait for _ALE to begin generating the chip
selects. This is done to achieve better performance since

the chip select outputs will be generated earlier in the bus

65

cycle. As a side effect, however, the chip select outputs
may tend to “glitch” as a valid address is driven. Thus,
the Read Enables and Write Enables seen in the memory system
must be synchronized so they are valid only when the CPUs
are attempting a read or write transfer. This combination
allows maximum performance because address and chip selects
are seen early in the bus cycle but the Read and Write
signals are synchronized to ensure proper system operation.

[Ref. 9] Figure 23 is a block diagram of the address

decoder.

From Address Voter VOTEADDR<31.0> g.
g

o

I =

RAMCS* — | o

EPROMCS*

VOTEADDR<31.17> Address
Decoder

|
INTCS*

R

H———/
To Memory Controller

Figure 23. Address Decoder.

The schematic for the memory/address decoder and
associated Verilog code are contained in Appendix C, Section

E.

66

H. MEMORY/ERROR CYCLE CONTROLLER

The memory cycle controller provides a wait-state
generator which stalls the bus interfaces of the three

processors so that various types and speeds of memories can

be used. [Ref. 9] This also allows the additional wait-

states required for the FIFO interface described later.
Figure 24 is a block diagram of the memory/error cycle

The memor?/error cycle controller is composed

controller.
To Memory
—
4 4
From Control Read Write
Voter Enables Enables
VOTECONT<7..0> |]
> ADDRTOFIFO*
A_SYSCLK (From CPU A w
SAMCS- DATATOFIFO 8
. w
From EPROMCS* | CONTTOFIFO" ("~
Address Memory/Error FIFOWE* -
Decoder] == Controller | 3
5 .
ADDRERR WRDATAEN" ‘>5 Q
f AL A A 5
From DATAERR RDDATAEN* [& §
Majority *| 8§
Voters CONTERR ___l o =
i

i
ACK* RDCEN* BUSERROR* VOTERRINT*
J_)
—~
To Processors

Figure 24. Memory/Error Cycle Controller.

of three subsections. The basic RAM/ROM subsection
generates the appropriate timing signals such as ACK*%*,
RDCEN*, and BUSERROR* for operating the R3081 bus interface
as well as the necessary write and read enables for
accessing the RAM/ROM. The FIFO memory cycle controller

generates the signals necessary for capturing the state of

67

each processor in its dedicated FIFO at the appropriate
times during each cycle. The error cycle controller
monitors the vote error signals from the address, data, and
cohtrol bus majority voters. If an error is detected, it
generates an interrupt to the processors. It also disables
the vote error interrupts while the interrupt handler
routine is executed by the processors. The schematics for
the memory/error cycle and memory enable controllers and
associated Verilog code are contained in Appendix C,

Sections F and G.

1. RAM/ROM Cycle Controller

The basic state machine looks for the start of a read
or write bus cycle by looking for a negative edge of VOTRD*
or VOTWR* from the control bus majority voter. When a bus
cycle is initiated, the state machine starts a 5-bit up
counter, counter<4..0>. The counter then increments on each
SYSCLK* rising edge. This counter is then used as the
timing master for all other control signals generated by the
state machine. [Ref. 9]

A synchronous decoder, CYCEND*, is used to tell the
counter when the end of a memory cycle occurs. CYCEND?* is
used to synchronously reset the state machine when a

positive edge of VOTRD* or VOTWR* is expected. Another

68

output, ENSTART*, is used to start the byte enables
generated by the memory enable controller. [Ref. 9]

Other outputs from the memory cycle controller include
cycle termination inputs RDCEN*, ACK*, and BUSERROR*. On a
read transfer, VOTBURST* from the control bus voter and the
current active chip select from the address decoder are used
to determine the timing and quantity of RDCEN#* signals to be
asserted. ACK* is asserted at the end of a write cycle to
indicate completion of the transfer. BUSERROR* is used to

end an undecoded memory cycle. [Ref. 9]

2. FIFO Memory Cycle Controller

In order to provide the ability to observe the status
of each processor before, during, and after an error cycle,
the address, control, and data busses (before the majority
voters) from each processor are written to a dedicated FIFO
memory. The state machine in the memory cycle controller is
used to generate thé outputs ADDRTOFIFO*, CONTTOFIFO%*,
DATATOFIFO*, and FIFOWE*. Figure 25 shows a block diagram
of the FIFO dedicated to processor A. A similar arrangement
is qsed for the FIFOs dedicated to processors B and C. The
use 6f the memory cycle state machine ensures the timing of
these signals are synchronized with the current bus cycle

and that during a Burst Read bus operation, the address,

69

control, and data busses are written to the FIFOs four

times.

From CPU A

A_SYSCLK* FIFORD* \
- A_OE’
@ £
< 2 Address 2
=30 g o
&£ Sus > Write Read (2] 8
23] paa Jook Comeft— RDCLK—— }E 5
e §| By EF_AT* =
wo Buffer |sroamaio] FIFO EF_A2* K]
A A
E g Control FIFOAOUT<31..0> .
E % Bus J

T T o

ADDRTOFIFO*
CONTTOFIFO*
DATATOFIFO*

;—W—J
From Memory/
Error Controller

Figure 25. FIFO Controls.

The ADDRTOFIFO*, CONTTOFIFO*, and DATATOFIFO* outputs
synchronously select when to provide the address bus,
control bus, and data bus respectively to the FIFO
associated with each processor. Since the address is the
first bus to stabilize, ADDRTOFIFO* is asserted first. This
is followed by CONTTOFIFO* and then DATATOFIFO*. FIFOWE* is
the actual write enable supplied to the three FIFOs.

When ADDRTOFIFO* is asserted, the address bus from each
processor is supplied to its associated FIFO and written at
the rising edge of FIFOWE*. This is followed by CONTTOFIFO*

and DATATOFIFO#*, in turn.

70

Figures 26, 27, and 28 show the operation of these FIFO
controls during a Burst Read, Write, and single word Read

respectively.

3. Error Cycle Controller

The memory cycle controller state machine also controls
the generation of an interrupt which is supplied to each

processor at the detection of a vote error (ADDRERR,

CONTERR, or DATAERR) .

The vote error interrupt, VOTERRINT*, is generated only
at the end of the current bus cycle. This allows the
current bus cycle to complete, with the majority voters
masking the associated fault. In addition, allowing the bus
cycle to complete ensures the FIFOs associated with each
processor capture the state of the address, control, and
data bus of each processor prior to generating an interrupt.

It is intended that the three processors will
| syhchronously receive thé interrupt, and will execute the
same interrupt service routine. The beginning and end of
this service routine is indicated by a write to “dummy”
address 1F80xxxxXy. This address is decoded by the memory
decoder to generate the chip select INTCS*. The error cycle

controller, upon detection of a write cycle with this chip

71

i

o R <[<awTL pug> ‘<AWTL 3XRIS> J/COUTL ITRIS>
£29sMp g S0 [< [<awrl pud> ‘<auTl 3IRIS> J/<aury 3xels>
S23SNP g 802sNY) T < [<OWTL PU> ‘<aWTl 3xe3s>}/cauty jxess>

8338Mp g s0asMg () < [<oMTL pud> ‘<awTL qxe}s>}/Cauty jxe3s>

298 towTl Xaxe) soasd .1 :udTINTOSAY ssamm £30°1 "oﬁﬁh.,.ﬁnxwz

%% sod

7|

7 soesm LT P C 7 eumy

»IN0ITI
<0° *TE>NIO0),
<0" "TEONIAD ;)
<0° " TEINIVO)
»0d1ioLvIva |

LR e
WEVIVE.
WEINDD

*NIIOH

. lsundioa
L NEVIVIIOA
L INY
Z900Y10A
£UmIVION
(L) AT <0° “TESVIVI)

0000093TX0)S <0* * TEOUAOY |

SXOXIX0 1x0 1*0X0%0

0000033T%0

EX0XG*0 %0

wHXE £X0

I

»OJII0LINDD |’

W

FIFO Controls During Burst Read Cycle.

:

£131130 .

arig.

ISTY

-}
E

g
g

QEHH du:”a

Ll 38 Hﬂﬂ

ysaxyay

Jytan aaR,

e

RN . ‘SLSL966L ' LE VBLEOA-bNNS t'h MIIABAEM .

TR

Figure 26.

72

I~

/ : .

™ N <[<awrl pug> “caur) JXeYS>|/CAUTL JXRIS>
£238Ng P s2asng g < [cawT pud> ‘<awrl jaels)}/<awty qaxe3ss

! ! IHOTY N¥d <[<owtl pug> ‘<awrl 3xe3s>}/<awry jae3s>

Y . INOTH N¥d < [<aWTl pu3> *<awrtl XR35> | /<AL 3T03S)

. EH XTpey 22s() :QWTL Xaprel soasd | .:E.M.v:,nonum 2T iaog . .soesm umn.,w.v.,.".eﬁw.—. Xavay

AT =]

saasn auTy - _ am>
sy : Ty . 14 6'€ 8'¢ : VAL

. INDIE104

*IADITI

Z2THY X2t) vexo X #m X 0% Xzm 2™ 2TH) <0° “[EONI0 'y

ZmY X _Zzml X vexo Y Zm_ X__0%*0 XzW AL

20X Xz Y pExo Yz X _0%0_ Yew PAT

1

 ¥0ITI0IVIVE

¥0JIJOLINDD

1

»0JTIOLYOAY -

] | ANY

ZTHXTTTITITIXD TEETITTEX0 TITETTTIX0X2™H 2TH 2THX X0

40" *TESUEIV

0%0 __X01000937%0
| »HALOA
»MILOA

B s S e WU b ST D Y e e T e T e T e T

| «3T0SXS7Y .

1

FIFO Controls During Write Cycle.

270 <0 TEINTE0 o
Z0D)..<0" " TENIVD 3|

| ewrreaten |

<0 TENIVE Hf

wavy ugop arazawn

- saayan

—f|||||. orra

anrea |

S1:51 9661 'LE UBL:E0d-PNOS by MAJABAE R

Figure 27.

73

™~

o
L il <[<ourL o> “<omTL 735>]/COUTL Axeas>
S295NE°9820800"G < [<OWTL pud> ‘<OWTL IXLAS>]/<awTy jJIRIS>
‘ ¢ IMOTH N¥d <{<IWTL pud> ‘<awTL 3Xe3§) |/<aurl 3Ie3sd
v * IMDTH NVd < [<ouTl pud> ‘<auTL 3Xe3s>]/<auTl JTe3s>
I :xrpey - .v DasQ ouTL IWpreH saosd m.,.&ﬁjaomww ST :MOW - $29SM §Z0°9 UL - AUNEY
T e]
outl _ >
SE'9 E'9 52'9 29 SI°9 19 S0°9° 9
1 P | [1 1 f PR i _ _SIIYIQ.
+INTUNI10A —
S D I L 1 »ANDIXI _ ot
Z2mX —XZTH ZOIX8IX0 BIXOXZTH ZTHY0%0 D¥0XZTH <0° *TEXNII0) - !
AT Xz ZTHXBT*Q 8T%0XZTH 2THX0%0 0%0X2TH " <0° *TENIED »| :
2THY Xz ZTHYBT*0 B8IxX0Xe™H ZHXpX0 0X0XZIH <0’ TEINIVO »].
R : »0I1I0IVIVA
: . 1 ¥04T40LINDD
1 «04TI01HEAY -
T T N WAvIvaD
WHIINDD -
WEMITY
I 1 E L awrITeqTaq
| . *NIOW. .
+isunaios
j [»NIVIVILOA -
L | INY
UOVIOA
EUTIVI0A
ZUDTTLITILIXD TEITTLLIX0 TTL XX X2 <0" 'TESVIVU »
00 <0° TESHNIV »
»HALOA :
_ f L soue
L | [| : | L | 1 J 1] ¥ATISKSTY

M3ITH WIDR MIIATALS

.__SUS1 966L'LEVBLEQd~PNAS #'b MOJABABM

FIFO Controls During Read Cycle.

Figure 28.

74

select asserted, clears the interrupt and disables
further vote error interrupts. The interrupt is disabled
ﬁntil the end of the interrupt routine. This is again
signaled by the next write to “dummy” address 1F80XxXxXy.

During the interrupt routine, it is intended that the
processors will write all of their internal general purpose
registers, configuration registers, and instruction and data
caches to some selected portion of RAM. The vote error
interrupt will have been disabled. However, errors in the
“faulty” processor will be masked by the majority voted
output from the other two “agreeing” processors during each
write. Then, the interrﬁpt routine would read back the
selected portion of RAM and refill all of its internal
general purpose registers, configuration registers, and
instruction and data caches. Thus, the processor which had
an error will have been corrected and re-synchronized with
the other two processors. While this routine is executing,
the FIFOs associated with each processor will capture all of
the internal information of each processor for error
analysis.

The IDT R3081 Microprocessor Bus Interface Simulator
module contained in Appendix A, Section A, contains a
simulated, abbreviated interrupt service routine which

executes when the interrupt INT5* is asserted. Simulations

75

which show the operation of the error cycle and this
simulated interrupt service routine are contained in Chapter

V.

I. SYSTEM INTERFACE

The system interface is intended to be a laptop or
similar system which can read the FIFOs associated with each
microprocessor and perform some analysis. This provides for
both real-time and post error analysis. The FIFOs selected
allow for asynchronous writing and reading with separate
write and read clocks which can be different frequencies.

Figure 29 is a block diagram of the system interface.

EF_A1*
From} —

oL _EFAz |
A FIFOAOUT<31..Q

EF_B1*

From| ——=——> System

EF_B2*

L
FIFOBOUT<31..05 Interface

RDCLK

F_C1*

El
—————)]
Fro EF_C2*
—_—]

FIFOCOUT<31.. |

I 4 I
A_OE* B_OE" C_OE* FIFORD*

' ‘v J v v

~—

——
Output Enables and Read Enables to FIFOs

Figure 29. System Interface.

The testbed interface monitors the FIFO empty lines
from processor A’s FIFO, EF_Al* and EF_A2*. As soon as they

are both deasserted, the interface reads the FIFO. This is

76

followed by monitoring the FIFO empty lines from processor
B’s FIFO, EF_B1* and EF_B2#*, and reading processor B’s FIFO
once they are both deasserted. Finally, the FIFO empty
lines from processor C’s FIFO, EF _C1* and EF_C2*, are
monitored and the FIFO is read once they are both
deasserted. This process continues and the address,
control, and data information stored in the associated FIFOs
are obtained by the interface. The read clock is set to be
twice the frequency of the write clock. This enables the
interface to read the data out of the FIFOs fast enough so
they never fill up. Figure 30 shows the timing of the
control signals generated by the system interface.

The interface module writes the results obtained from
the FIFOs to a text file, TMR_trace.out. By reviewing this
text file, the status of the processors during each bus
cycle can be observed. Examples of this text file obtained
during both normal (error free) and induced error operations
aré contained in Chapter V.

The schematics for the system interface and associated

Verilog code are contained in Appendix C, Section J.

77

™

£2asng "p’soasng*
S$2asNp° p '8006MG*

B <[<auxy pug>
€ <[caurl pud>
g <[<aury pug>

¢ IHOTM Nvd <[<awrl -pud>

‘<auty Jae3s>)/CeurL JreIS>
‘¢autl 3xeYS) J/Cautl xe3s>
‘cauty 3xelsy j/¢ourl JIeIS>
‘<ULl 3xeIS) | /<aUTL xRS

R < | u.x..nﬂmz wonc tQUT] Xapre saasd [:uoINTOS3IY 1T tm0d s39sn £Y6°E owtl XIVIY
i i = 7»
" ‘soasm S i) aut] .
CLEY Se'V. 4 STV TV . s0°y : 14 S6'€ 6'¢
SRR L 2 2 " " 1 " 2 " " i " " " "] N " " " 1 " " 2 PR | " i " 1 " PV | " TN 3
zmY___ XXz 2T 2 veEXo)XZTH 2T 2t} 0%0 Xz 2T 4TE>1N020ITL
1 1 i I B
e e e) SO R
Y O B | 10738
ZT) O@Em Zm PR TEID 0 AL Zm ZOD(Y OE ZTH (1€ LN0804I1
1 1 1 ¥307E
e 1l] v231
| S N [I %
z(O X¥ezm 2TH 2O XEm g zmp(O(CO0EM JTEXINOVOITL
1 1 1 vi0Y :
o) T %
[O L RO P
LJ L | | L] | S N IS B R L L Ry R EE
AN [(NN N TN R NN R SO N N (- D R B , b ¢+i S
L Tl T L eanodra
ZTHY__TITLEILIX0 YZiH ZINYPEXD - pEXOXZTH ZX0%0 OX0XZTH__ ¢ *TE>NI04TA .
2T TITLIITE%0 Yem ZUEXQ PEXOYZTH ZTHX0%0 OX0XZT__ ¢ ' TEONIE0ITE
ZIX_ TR0 Xeh AL (T 75.01) €A ST (L] OFDETL ¢ *TE>NIVOITd .
1 v »04TI0IVIVE .
. : »03T10LINDD

[L

f L voaxdozumv |

N

naxy wrny miragngn |

S1:51:9661 “IE UBREDd-PNNS b'b MBIASARMA

Figure 30.

System Interface Controls.

78

V. SIMULATION RESULTS

The complete design has been implemented in Cadence
Concept™ gchematics and the Verilog® Hardware Description

Language. Timing parameters have been obtained from actual
device datasheets. The IDT R3081 bus/memory interface in

this TMR design can be simulated in Cadence Logic
Workbench™ to verify the concept of operation and test the

voting logic, memory and error cycle controllers, as well as
the FIFO interface.

The following simulation results were obtained from the
trace file generated by the simulated system interféce. The
information displayed represents what was actually read from
each FIFO.

The overall testbed schematics are contained in
Appendix A. The Cadence supplied modules and user defined
modules used in the schematics and the simulations are
contained in Appendices B and C, respectively. The script
control language (SCL) files which were used to drive the
inputs to the Testbed schematics to obtain the following

simulation results are contained in Appendix D.

79

A. NORMAL (ERROR FREE) RESULTS

Bus cycles 1 through 4 correspond to a Burst Read from
EPROM addresses 1FC00000y through 1FC0000Cyg. The data read
corresponds to the data programmed into the Verilog EPROM

module in Appendix C, Section I.

CPU A CPU B CPU C
Address = 1£fc00000 1£c00000 1£c00000
Control = 00000008 00000008 00000008
Data = 00000000 00000000 00000000
A Control = Burst Read Word 0
B Control = Burst Read Word 0
C Control = Burst Read Word 0
Address = 1£c00000 1£c00000 1£c00000
Control = 00000009 00000009 00000009
Data = 00000001 00000001 00000001
A Control = Burst Read Word 1
B Control = Burst Read Word 1
C Control = Burst Read Word 1
Address = 1£c00000 1£c00000 1£c00000
Control = 0000000a 0000000a 0000000a
Data = 00000002 00000002 00000002
A Control = Burst Read Word 2
B Control = Burst Read Word 2
C Control = Burst Read Word 2
Address = 1£c00000 1£c00000 1£c00000
Control = 0000000b 0000000b 0000000b
Data = 00000003 00000003 00000003
A Control = Burst Read Word 3
B Control = Burst Read Word 3
C Control = Burst Read Word 3

Bus cycles 5 through 8 correspond to a Burst Read from
EPROM addresses 1FC00010yg through 1FC0001Cy. Again the data
read corresponds to the data programmed into the Verilog

EPROM module in Appendix C, Section I.

80

Address
Control
Data =
A Control
B Control
C Control

1£c00010
00000008
00000004

Burst Read
Burst Read
Burst Read

1£c00010

00000008

00000004
Word 0
Word 0

1£c00010
00000008
00000004

1£c00010
00000009
00000005

Address
Control
Data

A Control
B Control
C Control

Burst Read
Burst Read
Burst Read

1£c00010

00000009

00000005
Word 1
Word 1

1£c00010
00000009
00000005

1£c00010
0000000a
00000006

Address =
Control =
Data =
A Control
B Control
C Control

Burst Read
Burst Read
Burst Read

1£fc00010

0000000a

00000006
Word 2

1£c00010
0000000a
00000006

1£c00010
0000000b
00000007

Address =
Control =

B Control
C Control

Burst Read
Burst Read
Burst Read

1£c00010

0000000b

00000007
Word 3

1£c00010
0000000b
00000007

Bus cycles 9 through 12 correspond to four Write bus

cycles to RAM addresses 00000000y,

0000000Cy.

9.

10.

.11,

Address =
Control =
Data =
A Control
B Control
C Control

00000000
00000034
11111111

Write

00

00000000
00000034
11111111

000004y, 000000084,

00000000
00000034
11111111

Address
Control
Data

A Control
B Control
C Control

o

00000000
00000035
22222222

fon

Write
Write

00000000
00000035
22222222

00000000
00000035
22222222

00000000
00000036
33333333

Address
Control
Data

A Control
B Control
C Control

Write
Write

00000000
00000036
33333333

00000000
00000036
33333333

81

and

12.

Address
Control
Data

A Control
B Control
C Control

i}

00000000
00000037
44444444

00000000
00000037
44444444

00000000
00000037
44444444

Bus cycle 13 corresponds to a single word Read bus

cycle from RAM address 00000000y4.

that was written during cycle 9.

13.

Address
Control
Data

A Control
B Control
C Control

00000000
00000018

00000000
00000018
11111111

00000000
00000018
11111111

The data read is the same

Bus cycles 14 through 17 correspond to a Burst Read

from RAM addresses 00000000y through 0000000Cy.

read from RAM is the same that was written during cycles 9

through 12.

14.

15.

16.

Address
Control
Data

A Control
B Control
C Control

00000000
00000008
11111111

Burst Read
Burst Read
Burst Read

00000000

00000008

11111111
Word O
Woxrd O
Word 0

00000000
00000008
11111111

The data

00000000
00000009
22222222

Address =
Control =
Data =
A Control
B Control
C Control

Burst Read
Burst Read
Burst Read

Address =
Control =
Data =
A Control
B Control
C Control

Burst Read
Burst Read
Burst Read

00000000

00000009

22222222
Word 1
Word 1

00000000
00000009
22222222

00000000
0000000a
33333333

00000000

0000000a

33333333
Word 2
Word 2

00000000
0000000a
33333333

82

17. Address
Control
Data
A Control
B Control
C Control

Honon

00000000 00000000
0000000b 0000000b
44444444 44444444

Burst Read Word 3
= Burst Read Word 3
= Burst Read Word 3

00000000
0000000b
44444444

B. INJECTED ERROR RESULTS

Bus cycles 1 through 4 correspond to a Burst Read from

EPROM addresses 1FC00000j4 through 1FC0000Cy. The data read
corresponds to the data programmed into the Verilog® EPROM

module in Appendix C, Section I.

CPU A CPU B CPU C

1. Address = 1£c00000 1£c00000 1£c00000
Control = 00000008 00000008 00000008
Data = 00000000 00000000 00000000
A Control = Burst Read Word 0
B Control = Burst Read Word 0
C Control = Burst Read Word 0

2. Address = 1£c00000 1£c00000 1£c00000
Control = 00000009 00000009 00000009
Data = 00000001 00000001 00000001
A Control = Burst Read Word 1
B Control = Burst Read Word 1
C Control = Burst Read Word 1

3. Address = 1£c00000 1£c00000 1£fc00000
Control = 0000000a 0000000a 0000000a
.Data = 00000002 00000002 00000002
A Contrecl = Burst Read Word 2
B Control = Burst Read Word 2
C Control = Burst Read Word 2

4. Address = 1£c00000 1£c00000 1£c00000
Control = 0000000b 0000000 0000000b
Data = 00000003 00000003 00000003

A Control = Burst Read Word 3
B Control = Burst Read Word 3
C Control = Burst Read Word 3

Cycle 5 is a Write bus cycle to RAM address 00000000x

where there is an error in the address of processor A.

83

5. Address = 00000100 00000000 00000000
Control = 00000034 00000034 00000034
Data = 11111111 11111111 11111111

A Control = Write
B Control = Write
C Control =

Cycles 6 through 11 are the six cycles of the simulated
interrupt service routine. The differences between the
“internal” information of the three processors that caused
the error can be observed. These differences do not
themselves cause additional vote error interrupts because
the interrupt routines are initiated by a write to “dummy”
address 1F80xxxxy. However, when the “internal” information

is read back from RAM, the “corrected” information is read.

6. Address = 1£800000 1£800000 1£800000
Control = 00000034 00000034 00000034
Data = fEEEfEEE fEEEfEEE fEffELEEE

A Control = Write
B Control = Write

C Control Write

7. Address = 00070000 00070000 00070000
Control = 00000034 00000034 00000034
Data = 00000100 00000000 00000000

A Control = Write
B Control = Write

C Control Write

8 . =============;==================================
Address = 00070000 00070000 00070000
Control = 00000035 00000035 00000035
Data = 11111111 11111111 11111111
A Control = Write
B Control = Write
C Control = Write

9. Address = 00070000 00070000 00070000
Control = 00000018 00000018 00000018
Data = 00000000 00000000 00000000

A Control = Read
B Control = Read
C Control =

84

10. Address = 00070000 00070000 00070000
Control = 00000019 00000019 00000019
Data = 11111111 11111111 11111111
A Control = Read
B Control = Read
C Control = Read

11. Address = 1£800000 1£800000 1£800000
Control = 00000034 00000034 00000034
Data = ffffffff ffEffffef ffffffff
A Control = Write
B Control = Write
C Control = Write

Cycle 12 is a Write bus cycle to RAM address 00000004y
where there is an error in the address of processor B.

Cycles 13 through 18 are the simulated interrupt service

routine initiated by the three processors.

12. Address = 00000000 01000000 00000000
Control = 00000035 00000035 00000035
Data = 22222222 22222222 22222222
A Control = Write
B Control = Write
C Control = Write

13. Address = 1£800000 1£800000 1£800000
Control = 00000034 00000034 00000034
Data = FEFFfE£LE s i o i o i o ffffffeef
A Control = Write
B Control = Write
C Control = Write

14. Address = 00070000 00070000 00070000
Control = 00000034 00000034 00000034
Data = 00000004 01000004 00000005
A Control = Write
B Control = Write
C Control = Write

15. Address = 00070000 00070000 00070000
Control = 00000035 00000035 00000035
Data = 22222222 22222222 22222222
A Control = Write
B Control = Write
C Control = Write

16. Address = 00070000 00070000 00070000
Control = 00000018 00000018 00000018
Data = 00000004 00000004 00000004
A Control = Read
B Control = Read
C Control = Read

17.

18.

Address
Control
Data

A Control
B Control
C Control

Address
Control
Data

A Control
B Control
C Control

00070000
00000019

1£800000
00000034
fEEfEFEE
= Write

00070000
00000019
22222222

1£800000
00000034
fEELEFEE

00070000
00000019
22222222

1£800000
00000034
fEfEELEEE

Cycle 19 is a Write bus cycle to RAM address 00000008y

where there is an error in the data of processor C.

Cycles

20 through 25 are the simulated interrupt service routine

initiated by the three processors.

19.

20.

21.

22.

23.

Address
Control
Data =
A Control
B Control
C Control

Address =
Control =
Data =
A Control
B Control
C Control

Address =
Control: =

Address
Control
Data

A Control
B Control
C Control

fnon

Address =
Control =
Data
A Control
B Control
C Control

00000000
00000036

00070000
00000034
00000008
= Write
= Write

00070000
00000035
33333333
= Write
= Write

00070000
00000018

00000000
00000036
33333333

1£800000
00000034
fEELEFES

00070000
00000034
00000008

00070000
00000035
33333333

00070000
00000018
00000008

00000000
00000036
33333337

1£800000
00000034
FEEELFES

00070000
00000034
00000008

00070000
00000035
33333337

00070000
00000018
00000008

00070000 00070000 00070000
Control 00000019 00000019
Data 33333333 33333333 33333333
A Control = Read '

B Control = Read

24. Address

i un
o
o
o
o
o
o
e
W

C Control Read

25. Address = 1£800000 1£800000 1£800000
Control = 00000034 00000034 00000034
Data = fEEFEFEEE FEEELEEE fEEEEEEL
A Control = Write
B Control = Write
C Control = Write

Cycle 26 is a Write bus cycle to RAM address 00000002y
where there are multiple errors in the data of all three

processors. Cycles 27 through 32 are the interrupt service

routine.
26. Address = 00000000 00000000 00000000
. Control = 00000037 00000037 00000037
Data = £4444444 44344444 44444447

A Control = Write
B Control = Write

C Control Write

27. Address = 1£800000 1£800000 1£800000
Control = 00000034 00000034 00000034
Data = ffffffff fEEfELEf fEfffffff

C Control Write

28. Address = 00070000 00070000 00070000
Control = 00000034 00000034 00000034
Data = 0000000c¢ 0000000c¢ 0000000c

A Control = Write
B Control = Write

C Control Write

29. Address = 00070000 00070000 00070000
Control = 00000035 00000035 00000035
Data = £4444444 44a44444 44444447
A Control = Write
B Control = Write
C Control = Write

30. Address = 00070000 00070000 00070000
Control = 00000018 00000018 00000018
Data = 0000000c 0000000c 0000000c¢

A Control = Read
B Control = Read
C Control =

31. Address = 00070000 00070000 00070000
Contxrol = 00000019 00000019 00000019
Data = 44444444 44444444 44444444
A Control = Read
B Control = Read
C Control = Read

32. Address = 1£800000 1£800000 1£800000
Control = 00000034 00000034 00000034
Data = ffffffff fEEELfEEf fEEFELES
A Control = Write
B Control = Write
C Control = Write

Cycles 33 through 36 are a Burst Read from RAM
addresses 000000005, 00000004y, 00000008y, and 0000000Cx.
The data read from RAM is the data which was “corrected” by

the majority voter when written during cycles 5, 12, 19, and

26. This example shows the successful completion of the

four Write cycles (5, 12, 19, and 26) which contained

errors.

33.

34.

35.

36.

Address =
Control =

00000000
00000008
11111113
= Burst Read
= Burst Read
= Burst Read

00000000

00000008

11111111
Word 0
Word 0

00000000
00000008
11111111

Address =
Control =
Data =
A Control
B Control

00000000
00000009
22222222
= Burst Read
= Burst Read
= Burst Read

00000000

00000009

22222222
Word 1
Word 1

00000000
00000009
22222222

Address
Control
Data

A Control
B Control
C Control

00000000
0000000a
33333333
= Burst Read
= Burst Read
= Burst Read

00000000

0000000a

33333333
Word 2
Word 2

00000000
0000000a
33333333

Address
Control
Data =
A Control
B Control
C Control

00000000
0000000b
44444444
Burst Read
Burst Read
Burst Read

IWonon

00000000

0000000b

44444444
Word 3

00000000
0000000Db
44444444

Cycle 37 is a Write cycle to RAM address 00004000y
where processor B has incorrectly initiated a burst read

from 00004000y. Cycles 38 through 43 are the interrupt

routine.
37. Address = 00004000 00004000 00004000
Control = 00000034 00000008 00000034
Data = 78787878 b O.0.0.0.0.0.6.4 78787878

A Control = Write
B Control = Burst Read Word 0

C Control Write

38. Address = 1£800000 1£800000 1£800000
Control = 00000034 00000034 00000034
Data = fEEFf£££EE fEEL£EEE bl i o o o i o

A Control = Write
B Control = Write

C Control Write

39. Address = 00070000 00070000 00070000
Control = 00000034 00000034 00000034
Data = 00004000 00004000 00004000
A Control = Write
B Control = Write
C Control = Write

40. Address = 00070000 00070000 00070000
Control = 00000035 00000035 00000035
Data = 78787878 78787878 78787878
A Control = Write
B Control = Write
C Control = Write

41. Address = 00070000 00070000 00070000
Control = 00000018 00000018 00000018
Data = 00004000 00004000 00004000
A Control = Read
B Control = Read
C Control = Read

42. Address = 00070000 00070000 00070000
Control = 00000019 00000019 00000019
Data = 78787878 78787878 78787878
A Control = Read
B Control = Read
C Control = Read

43. Address = 1£800000 1£800000 1£800000
Control = 00000034 00000034 00000034
Data = ffffffff fELfLfELf ffEEfEff

A Control = Write
B Control = Write
C Control =

Cycle 44 is a single word Read from RAM address

000040004. The data read is the correct data written during

cycle 37.
44, Address = 00004000 00004000 00004000
Control = 00000018 00000018 00000018
Data = 78787878 78787878 78787878
A Control = Read .
B Control Read

C Control = Read

90

VI. CONCLUSION

With the rapidly declining radiaﬁion hardened device
market and high prices of such devices when compared to COTS
alternatives, a tool is desired that will allow the
observance and analysis of COTS processors operating in a
radiation environment. Additional reasons to move towards
COTS devices are significant advantages in efficiency,
performance, and software availability.

One of the primary disadvantages of COTS devices 1is
their susceptibility to single event upsets. Triple Modular
Redundancy (TMR) is viewed as one of many possible
alternatives to provide some protection from SEUs in COTS
devices.

The danger of incorporating redundancy into a system is
that the overall system reliability could be reduced, due to
the increased number of components. If the redundant
‘systems are not themselves reliable, there is little hope of
improving the reliability of the system.

The TMR Testbed design is not intended as a design for
space flight operations. ©Nor is it intended as a guaranteed
method of improving the performance of the R3081 processors
in the presence of radiation induced single event upsets.

The design herein is intended for ground based operational

91

testing of the voting logic and any software algorithms run
within the processors themselves. It is assumed that the
board can be constructed in such a way that all of the
hardware, other than the microprocessors, can be adequately
shielded during laboratory radiation testing. In addition,
it is realized that a fault which occurs in two of the
processors at the same time, and which is manifested as the
same bit being flipped on the address, control, or data bus,
cannot be detected. 1In the event this error occurs, the two
processors which are actually “faulty” will agree and become
the majority when passed to the majority voters.

In the Testbed design, TMR provides the opportunity to
monitor the three processors and in the event of an error,
determine which processor was in error and what the

processor was doing at the time the error occurred.
The Cadence/Verilog® design will allow simulation of

the concept, verification of timing signals, and flexibility
in reconfiguration of the design. Through simulation, the
use of the bus/memory interface from three COTS
microprocessors in a TMR design to monitor the system for
errors has been realized. The actual board design could be
constructed and used to test voting logic hardware and
software algorithms in a laboratory environment in the

presence of radiation induced SEUs or injected faults.

92

The use of the dedicated FIFO memories allows both real

time and post-error analysis of the state of the three

microprocessors. Thus, the tool will provide the capability

to analyze the success or failure of attempts to improve the
performance of COTS microprocessors in this environment,

prior to their use in designs intended for actual space

applications.

93

o4

APPENDIX A. TMR TESTBED DESIGN SCHEMATICS
This appendix contains the entire schematic for the TMR
Testbed built using Cadence Concept™ schematic tools and
the Verilog® Hardware Description Language.
Enlarged views of each block in the following
schematics and associated Verilog® code, when applicable,

are contained Appendices B and C.

95

INWINIL63L
TRJ-335903
T<g~I3503 FYTIGLE T [¥*N125A5 .
R S A) 2] FNITITO~T J*N2YLY0 WSIND —
#IEEAE=S 153G *N320H ¥NI03 o
Lot e ey E0T] w4y Lo b —
wogTT jrou ®1363Y ¥I3538 W
e} L) IwW .. | S O R (42°51:1s o]
<@ * *T6>4140 (o]
*IN3LEIL TEUOTTT | 6Y400U<A 1 16>H00Y PR 1r2: 1010, e
<@ "Z>6NEAL
<@ "Te>Y Rl ~TgaugTy T jedaoy rllnﬁ.nﬂ.ld.wﬂzmmﬂd —
<@ * "16>00 2yeresm—{<e - resoy ~
4y Xnu3g-oY
dr o)
-
e
[\)}
J6Ae 8 *NTISAG K
SRIUITT g *Naviva *SIND WINTSUILOA @)
FTSETTg——J*15ung N304 wn
wor=g »uM 10 19
—sg———{roy #13639] T o
33384 w [=TeTr—TCTeToT-. 0 o
Hou¥3~3LoN 8-3%403 <@ T TE>Ulun Q
Y=32403 *TNILSAL S TY005-9 £HOOY<A * " TE>¥OaY DA R3¢ 1n1s -} .
<@ 71622 . <@ " "2>ENBEL IS
@ Te>in0To3lon @: L4 Rt 14 <@- Te>M 3IW ZU00U-8 zZyooy eyt n
1192e3ion wi-td B 1600 8 <@ Te>0Y Q
4s XNW30-QY - £
d6 g4z tea@ed
g nd2
FATISAE 110518 .
2-32u04 F X *NIULYD WSINI
53380 ki erBUNE #N o,
e ACENTE |
s ot
<@ °IE e e B2 R
- 1E>4N0-03100 <@ " “FE>)
dg dNIXTLI8|IEILON *Od- o *13634 r
ERTNC] e T30 TESOIED B
©€>4140 3
®ENILEIL— wIuuey | €2 400U § T 3T Y
Z>6NuL | O
<@ FErY 3 240009 -
<@ 7E>0Y rerr=—{<a- resau I
gg XNW30“0Y S—
PP)
¥ Ndd

INDT 32404

IN8T32d04

INT33903
Z INOND

9 INOND

S ANIYLYO™ D

. ¥ ¥Isang 2

3 *4MT2

ISR
2 T %08-9

(2 of 11).

¥ £d3009~02

L] c<daayTa

Z INONS

] INOND

% A*N3Qiu0™8

HYIALINOD
2-32d04— ¥ x¥1s543n8"8a

Youy3—3100 8-32404
¥N3Ig19010n ¥ Y-33804 be———————=an-8§

<@ "2>1n0-0310n <@ "u>8 T i
X*1sdn8.10n r o erd

1188310n

97

] x0y—8

*4Mi0Nn 3

T edoay— 8

d
& =[]
FOGIUN o <@ " T4 21N0JT10N o]

cauuy—8

TMR Testbed Schematic

TdOauLON T

Z INOND

cugay1on L)

g INOND

S AXNJYI80TY

r x1s548N8™ o

< xamT e

I|~.s-|d.ﬂ=adu|a.nr

Figure 32.

z x*Qa8™yv

¥ eguuyT v

L} [=£=[s[s[=3ni~]

EN38
*N3Y1900d XN3IY 1800y CN38
F¥NJ AN3I0Y TN39
K0~ NIEM AROTNIUM anN3g
¥~ NIHM RITNIEM KON3DIAD
i 39 XKGTNIAM KLAULISNI
K~ U KUTNIEM A3 10N
ANIGIYOHM KNIY.LYAM *0qY 10N
*13S388Md
#1353 *ATISAS IV*L3530dnd
41T N3ITUW3N
*13534
X¥1INIJI310N ¥INIHYO¥Y3I1loNn 0414350 INOII A5
H¥ILINOD 5]
“EIMO3 T ¥IMOAT 4 dd39 160 EEaey
£ QL INOQD X0 J4T4011INQD dy33aay dd3doay
*047130149190 PRQ4T1 3019190 *SJANI
X g X04I401400Y *SIH0Hd3
* 3508 Xyoyy3asnag - #SOHUY
E 24 *158N910n *159N8100
*NID0Y ANIO08 *YM 10N XHM100
AON3IJAD *0d.10nM ®¥0310n
1d91SN3 X1353Y A
*AT1ISAS hd AATNISASTY
dey AINODTHIN
*S521NI
T ey
T
T
*SDUINI LI
*5S2n0dd3 X*SIWQYdI <L4T° "TE>H
4118
¥Sonod #S2UHBY B

de7 93002307W3W

<¥ ° "g9T 2d00UY3 L 0N

<@ " "TE>H300Y310n

(3 of 11).

TMR Testbed Schematic

Figure 33.

98

XSOW0oUd3

*¥E2
*30
<@ yroy
<Foy
= <" -Te>ulLa <a>u
Houd3
d66
9 S @ ¢
~ EINERES]
O NI9M
kDT NIHM
g NI3aM
Ko~ NIaM
a o a
G OWoH
¢ C XX (080]
30 62 u-u. 3062 3M 30 52 IM 3052 3M
i oy
o o PN
b .
o) “ 4 pa y “
——{C01 o 208 4 Oy 2 Dor = 0 o
¥ o o 3) I P
IS |oor St—oor oy cor o -9 loor o
g L ey oL Y = Dor N P =
O P - \ﬂqluon B 3 4 a B lL——{ 1 B
& —Joor 0 1 o1 LN 3 .
62 nDuOH B L Gor 0Oy Oor O Oor Oy
Cee it S s = BS 3 %
T8 | = ™ or = et &
p— = 2N = =
3 3
—= — c— —
—— — 971} | e —
asZrLiat sszrzior sszvzl01 aszralor
dS6 dse di6 d86
© QI SOOI IIon
P d
~ ~ €4ddY.LoN
& d
hd = Zg0a9Ion

<F 7 9T oauddd1on

(4 of 11).

TMR Testbed Schematic
99

Figure 34.

<@ "TE>NIYOSIA

*30 *30 INOND *30
=5 5710 SINIE & = Erino sr =3 Eilne SIN &3
= PR (11 —— = [T S | = Tritne yIn
= ST sINI—= = Tine &1 0 TINe EIN
= ETANC 2T - = Tine & = ﬂ:.:a TN =
- e Iy - - e Ir - Trine TIN -
= 1IN0 @INI —o - 5100 @r = Tine aiN =
= 6100 GNT T - 6110 6N O 1ne &N =
= jsine EN = - 6110 EN - ine €N =
= e aibs = s o = e M
= S1no N = = 21 2N = ino SN =
= Ano N = = rino N =. ino w
- no EN - E1010 €N ! ne &N =
- 1ne 2 - - 21no 2N = ine 2N -
= 1no ¥ =] rino TN = 1no TN
j@alno NI = 1010 1Mo @N
1199174408 4189774408 11997° 4409
dTar d2Lr dELT
W0413010160
#OILIOLINGD
¥OITIOLG008
.; 0
*20 »30 INOND 30
= ETIN0 ST - ETin0 SIN frine sIN
= fino viNnrl—T Tine rIN 1ne rIN
= ET10 &7 = = ET1Ne BIN S 1ne EIN
= ETIN0 2T = = ETIN0 ZTN - o 2IN
1ng T I - - rine TIN = rTino TIN
- ing arh = = Ting arN = Prine eiN
1 8ine 6! - §1N0 BN §.1n0 BN
j6ino &l - 61no 6N €1no 6N g
e & 2 g e jare &
" 21he N 1 s1ine 5t - S1no N
rino N - o——]rine N 1ne N
€1ne &N E L0 &N 0 1ino &N
a3 e 3 e A
@ine an L] a—{aino GNI lo1no an]
1189t-34ng Ar199r-dMa 118937174408
dgaar ds ¥ dray
o]
R A (52 11 ot

(5 of 11).

TMR Testbed Schematic

Figure 35.

100

<@° "

TE>NIF0JLd

*30 *30 TNGND *30
0 BILne SINT) =) =T 1Mo ST B TiN0 STt (=
= prse i = we e
- :.:W Wwa 7 - AU e Ayl E-31
- rying TIN T ino T - jot (39 -
=) Tin0 aiN =) = 1Mo ar = TAn avl -,
- 51M0 BN - - 1No 6 - 6ine G -
) §e1no BN - - 1Nno &) s1no = -
= 21no IN = - 110 P - 2110 2 =
- 9470 aN - - ino aN - =TT (] 2] =
= sine SN - - 100 S - S1M0 SN 3
- rine TN = - yino r - ¥ 1Mo N =
- €1no BN - T €410 13 - €110 GN)
- Z1NG eN = - -4 - S1M0 2N =
ring N 3 =l T - jrino TN -
= al1no ON 1} = —u—— Q = {eLlne 9N =
Aragr-Jang 1199774409 1r8g9r-44na9
drFT d%9 d¥
¥oJIT IUIYI60
®OJITIVIINDD
*QJI 3019009
8]
%30 w30 TNORND
= Lo SIN - - no sr1 -
o= Lo ¥IN = = e ¥r =
e—Enne Sini—= =—FEing i =
= - -
“~= TILNG TIN C m—. =
_— FLOO AN = 1 ar T
o 6100 &N - 6 -
ino 6N B
- ino &N &
o j9ino SN 1 91no 8N s
ino SN 1 Sino SN O
ine rn o 1rine N a0
=110 6N fcino &N 0
Z1Nno ZN g Z1ne ZN O
o rine N . Tino TN O
o—{aune ___anl o—aing T
11991- 4409 1189871~ 4d4n8 1198774409
dery J496 dis
e uT o
WLSING T a
T e

(6 of 11).

TMR Testbed Schematic

Figure 36.

101

<@ " "TE>NI20JIJ

%30 W30 T~onD %30
A — e SN 53 Erine s 75 TiN0 SIN
o E— Tino yINIF—a s e v BE TiNO ¥IN
| oe—— FIN0 SINIf—%¢ ot Erino ¢ 5t Tino &Y
1 N ZINLE—we ¥E Erlne 2 o — rine 2iN
Z Trino FINEF—7r i ne 1 e fring TIN
bl F100 @INTf—oE L oe——] Tine @ O me— YiNo @IN
= 61010 &N If—=z e N [=e— 6110 BN
3 810 BNI—7e o — 100 v jsino &N
fse— %N NI =t 1n0 21N0 prt
|-z aino an T T2 o — 1no g1no aN
[e— 51N0 SN =T s 1N0 5 S1n0 SN .
=S = e e 2
AS oY 18
i1 g1ino NI : 51 2Lno] —]2ino 4
T Y110 TN iy 2T Tino N 110 TN
T a1no NI ST T—{eLie LIN _s:._o N
1199T-43n9 1Tegv-J4ane LTQ9f-Jana
arry 469 dr
¥OITICITIE0
¥OJTIUTIINOD
WO ILI0 1000
[a)
%30 TNGND %30
SN 3 ETine S TIN0 SIN 3
30 v ¥ e v -+ Tino ¥¥ 3
&IN s T ETIN0 § n TiNo &I S
2N 14 ETine 2 2T rine 2r 3
Hi] =i Bi= 4 Eis U
61M0 BN [~ (Y l e %% 2
gLne &N Lno 3 [€1n0 [
L1010 ZN 100 Lz [~ £1no ZN
aino aN LNO gN = 31no]
sing SN |- 1nQ SN S1n0 5
rino N rino N ¥ ino v
=] sino &N 5 g GLN0 &N T £ 1N0 13
r—]z1no 2N c Z1no N Z1N0 z
Y110 N TLNG EN FAN0 T
~s— aino ent] L ——(eLne [@ino___ oncf—w
11ags-Jang L1T89r- 930 11697 34ng
are 436 des
B LS IR0T
—greSTIT

(7 of 11).

TMR Testbed Schematic

Figure 37.

102

*0H041 .3

©

*307Y

K R £-30 110\ (o) F R

o
HA1oay 9
o
foXe & %1358
30 sy 30 sy
1M oM & =
XM/ AH H12Y | OXM/4H NT2Y d T 1DSAS™ B
oxy oxy
N3IM[) NIMY
Jud N3Y ¥4 NIY XIMOL4T 4
3ud xy < 3ud Xy <
XM < Ixu N
4 4
INAND INONS
w“ FF] . D 44
*2U 43 43 *TO— 43
[2]®; L REE] o>
INdn vind INdn- Tind
g Bg | %9 0g
s—] Lo Tal _ &Y) Yo E3-] N
o - Mo () —] Ma gof——z~
L ye——1,° Sop——] L—e—1,0 Sob—p
To rg To qm
- I L~ ¥
v — So So REEEE— l—— Se Sa =
Jh-CEE—] 9g——— 221 9p Sg
[fo——] 20 agf— 727 Lo 2q
| 25— S0 6g |||||¢||m|N/ Sp €p
R &g e S & e
V22— o33 |~ o (]
[5] 950 argl— =2 7 @y Qig C)
[— "% Tigl— . 8&7 JATS TTg 2
- 3 ot argl————— 32 z 2T 2tg L
jﬂ’Iﬂqc ﬂwal.lllll«.ﬂ/ \ﬂa"'lllﬂqc ﬂ«alllﬂd/
—r¥o rial— L sv—{ e riot—pl
—{STe stal— I —— P stat—ey
—{ 97y argf—- [q—— 970 arg|—ygyp
—¢Te AT L —1%Te D
0JI4 BIXAT 0414 BTXAT
vIsEEeLI0L YisEeeL10L
dre dei

<@ "TE>NIY04Id

TMR Testbed Schematic (8 of 11).

Figure 38.

103

*qH0II 4

D

*307d

E (AR E PR RReI: () g€}
o
Hoad
o
*1353d
fo¥e el
30 sy 30 sy
N19M 919M h _
oxm/an oY [— OXM/4H N2y = RHTOGAS™D
oxy N oxa N 1
N3N N3N
aud N3Y 1dd NI = *3MO4Id
avd Xy < vd Xy o~
XM £XM
oy INAND - INGND
INANS INOND
wu 44 mu 44
= | 43 *Ta~33 Sk
a1D T~ a1 =
dn-1imnd INdN™INd
] Q a !
lev—1,° L N 12 o |~ a7~
[=70 Ta [~ 17e fo
&7 2o zg gy L] 2o 20
[]
@z o b — a2 z 5o ca
Yo fo 2 e ra
e So Sa 2 Sp sa
8o ag 9p ag
g L) 2q 4 o tg
Sp] N So Sg
Gp 60 |wMI. Gp &g
8¥p orgl— £27] a1, arg
UM | Tig S: L Tfo £Tg []
o3 - oG z 9 T
\J‘ﬂluﬂ—‘a n—.B'IH.ﬂ/ L er— €0 ETgt——py
—*teo rrgf— [y+———{"To riol—r]
—ISTe STol— [ey———{ST0 STgf———gy
~{9T0 argf—- L qr——{ %0 ELL] SRRy
—~{¢%o 2¥Fal— L r——— %0 eraf—0r]
04X BTXATY 04X BTXAT
CRECECANTB wIs2gaLL00
dav dT
&

<@ "TE>NIFLOJIS

TMR Testbed Schematic (9 of 11).

Figure 39.

104

*AHOAT 4

D

%3070

—~&

TG 1ESIN0oo0 313
STy ©
a
ﬂ._u ; mﬁ XK13S3d
30 sy 20 s
HAI0M ATOM =3
mWMH\Lz A2 moxzxux [y = KHTOSAS™ Y
oxa
N[N3M[) ¢
dud N3 Aud N3y ~ *3Mod14
Jud Ixy < 3vd Ixy
XM > Ixm N
e INAND 4 INAND
a4 44
®2o~ 33 m 43 = m 43
e RTD~ 33 a—
o INam Tnd ~ INd T d
©
2 wa — o) 2 @g
o Of—————————r] To
2z - 13 L —+—i° ! X
Sp g0 € Ep co N
ro rg 12 3 v *m N
z So <9 3 y c? 8
T ag — e 3 al ¢ 2
-y, - — 1,2 bl
T a— P o ———————g L—2——&° Lof—-—7z]
gz 0 Sof—————z] [———— &0 Sor—¢
17— 80 60— | 150 60 e
[t=—{ %0 ergl———— 2. L) arg
£y o g Lam— 24 N -y
pAT-a— T zrg B2 gLl arg ar T
\snll Big ETg [} 3 ETg ﬂqm 3
e —tio rigl- & 3 AR rig 3N
o sral- ° STg 4
u 9rp arg|—] a1y arg =7]
—{¢te Lral— [9 4T LTg
03X+ BIXAT 0414 BIXAT)
YIS222L 101 viszzzalor
davy dT %

<@ "TE>NID0JI S

(10 of 11).

TMR Testbed Schematic

Figure 40.

105

W&o 33
X727 43
HOE0I TS
Wea - 33
FTE=
*g3~ 43 e
¥30 3 *OHQAT A ¥
=
*T8-43 s
¥30-8 xro-13
X307 WTg—
=07 *3076 <@ CTE>DTOATA T
X208 <@ -1EX8-04Id
<@ "TE>Y—Q4TY
e Ve s 3OUIHILINT
Soad

A %) te 710GV 3L q

AY%| e 7 1NMUCU 313

(11 of 11).

TMR Testbed Schematic

Figure 41.

106

APPENDIX B. CADENCE SUPPLIED MODULES

This appendix contains the TMR Testbed schematic
modules, which were supplied in the Cadence Concept™

schematic libraries.

A. A74FCT373 TRANSPARENT LATCH

This part was used to build the address demultiplexer.
The body diagram of the address demultiplexer and its

schematic follow.

OEx \B G~ en
E Gca
L FeTavs Jj
D <?> e_ln 4 v_eo <7>
D <6> G Lo Q@
D.(5> [c™ Lo Q <5>
D <4> G- Lo Q@ <45
D <3 e Lo Q <3>
D 2> [_eQ 2>
Db <1> o Lo Q@ <1>
D <& (e —OQ <@8>

Figure 42. A74FCT373 Transparent Latch.

AD_DEMUX
AD<31.. 0> oAD3L. . B>

ALE o{ALE AC3L. . 8> g AK3L. . B>

TESTENL1* o TESTEN1xX

Figure 43. Address Demultiplexer.

107

B. IDT71256 32K X 8 SRAM

IDT?1256
32KXS
—Jaa SRAM
—A1i3
A1z
—A11 IO? —
—ALe IOE =
—Ra I0s —
—RAs IO0a—
—A7 IOz —
—As I02[—
—Rs IO [—
R4 I0e [—
—As
.—.Q:
—.gl
—Pr
WE CSOE
0O

Figure 45. IDT71256 SRAM.

C. IDT72225LA 1K X 18 FIFO

I0T72225LA
1KX189 FIFO
—B17 Oy —
—R1iE oy
—0is Q5

-—D14 Q14— 4
—013 Qig—
—012 Qyp—
—043 Q3
—0im i@
Us QB.—
—07 0? O—
_DE os —
—DS QS__
_.04 04 f—
—03 Qg—
—02 02_—_
—D.‘L °1_
Qo
EF 8
FF
FL
WXI
RXI PAE
REN pnr8
WEN
ong
—RCLK HF/WXD
~—WCLK
RS OF
O 0

Figure 46. IDT72225LA FIFO.

109

110

APPENDIX C. USER DEFINED VERILOG® MODULES

This appendix contains the custom modules built using

the Verilog® Hardware Description Language and the part body

diagrams built using the Cadence Concept™ schematic tools.

A. IDT R3081 RISC MICROPROCESSOR BUS SIMULATOR

R3081
ADC3L. . B>l AD¢3L. . B>
ADDR2 | ¢ ADOR2
CURR_TRANS<2. . B> o] TRANS<2. . B>
ADORESS< 31. . B> 5| ADDR<31. . B> ADDR3|o ADDRS
DATAR<3L. . B> o DATAC3L. . B>
ALE o ALE
RESET..N o RESETk ROx} o RO-N
ACK_N o ACKxX WRilo WR_N
ROCEN_N @] ROCENK BURSTx|.o BURST_N
INTS_N o} INTSk DATRENKX Lo DATAEN_N
SYSCLKk bg SYSCLK_N

Figure 47. R3081 Microprocessor Bus Simulator.

//**************'k*-k***

//* File: r3081l.v

//*

//* Description: Verilog behavioral file for simulating the
//* multiplexed address/data bus of a IDT RV3081l.

//*

//* Reference: (1) IDT79R3081 RISController with FPA Data Sheet
//* (2) R3081 Family Hardware User'’s Guide

//*

//* Author: John C. Payne, Jr.
//* Date: 10/24/98

//**

‘timescale 1 ns /1 ps
‘define NONE 0

‘define READ_BYTE 1
‘define READ_WORD 2

111

‘define READ_BURST 3
‘define WRITE_BYTE 4
‘define WRITE_WORD 5
‘define HIGH
‘define LOW

‘define TRUE
‘define FALSE

oOroOoRr

//********************************-k*************************************

//* Module: r3081

//*

//* Description: Verilog behavioral module for simulating the

//* multiplexed address/data bus and control lines of the IDT R3081.
//* This module drives the R3081 block in the Cadence Concept

/7* schematic.

//* NOTE: Module name must match the Cadence Concept block name, but
/1* must be in lower case. Signal names of inout, input, and output
//* lines and size (or bus width) must match the signal names in the
//* Cadence Concept block.

//*

//* Reference: (1) IDT79R3081 RISController with FPA Data Sheet

//* (2) R3081 Family Hardware User’s Guide

//**

module r3081 (SYSCLK_N, RD_N, WR_N, AD, ADDR3, ADDR2, ALE,
DATAEN_N, BURST_N, RDCEN_N, ACK_N, RESET_N,
INT5_N, CURR_TRANS, ADDRESS, DATA);

//* RV3081 @ 20MHz rise/fall time parameters (min,typ,max)

parameter
t7_min
t7_typ
t7_max
£8_min
t8_typ
t8_max
£9_min
t9_typ
t9_max
tll_min
tll_typ
tll_max
tld_min
tld_typ
tl4_max
tl5_min
t15_typ
t15_max
tl6_min
tlé6_typ
tl6_max
tl8_min
tl8_typ
t18_max
tl9_min
t19_typ
£l9_max

PSRN

w
~

/7% t7 Valid from SYSCLK_N rising

//7* t8

Asserted from SYSCLK_N rising

//* €9

Negated from SYSCLK_N falling

L A [A | I { B 1 I |

BNOPRPNMNOUOINO

~

w

//* t1ll = Asserted from SYSCLK_N falling

Ul .

//* tl4 Driven from SYSCLK_N rising

e s s N~
il

(84}

//7* tl15

Negated from SYSCLX_N falling

//* tlé6

"

Valid from SYSCLK_N

fl

//* tl8 Tri-State from SYSCLK_N falling

O~ ~ S~ S~ s~ 0~
~

//7* tl19

il

U

SYSCLK_N falling to data valid

POOPRPUIOOANWOIWOOOORLJO ~ ~ ~ ~ ~ ~

w -

L ¢ | { { { | H J { O | | | A T A 11

112

//* Module input and output lines
output SYSCLK_N,
RD_N,
WR_N;
inout [31:0] AD;
output ADDR3,
ADDR2,
ALE,
DATAEN_N,
BURST_N;
input RDCEN_N,
ACK_N,
RESET_N,
INTS5_N;

//* These three inputs are not actual pins on an IDT R3081. They
//* are used as interface pins to the bus simulator to command the
//* bus to initiate a read, burst read, or a write.

input [2:0] CURR_TRANS;

input [31:0] ADDRESS;

input [31:0] DATA;

reg SYSCLK_N;
wire RD_N, ADDR3, ADDR2, ALE, DATAEN_N, BURST_N;

//* Internal variables (line enables)
reg RD_N_enable;

reg WR_N_enable;

reg AD_enable;

reg ADDR3_enable;

reg ADDR2_enable;

reg ALE_enable;

reg DATAEN_N_enable;
reg BURST_N_enable;

reg [(31:0] busValue;
reg startCycle;

reg bootCycle;

reg [31:0] saveAddress;
reg [31:0] saveData;

//* R3081 Multiplexed Address/Data Bus (32 bit)
busDriver #(tl4d_min, tl4_typ,tld_max,
t18_min, tl1l8_typ, tl8_max,
tl8_min,tl8_typ,tl8_max)
ADBus (AD, busValue, AD_enable);

//* R3081 Output Line RD_N Driver
activeLowLineDriver
#(tl15_min, tl5_typ,tl5_max,t7_min, t7_typ, t7_max)
RDLine(RD_N, RD_N_enable);

//* R3081 Output Line WR_N Driver
activeLowLineDriver
#(tl5_min, tl5_typ, tl5_max,t7_min, t7_typ,t7_max)
WRLine (WR_N, WR_N_enable);

113

//* R3081 Output Line ADDR3 Driver
activeHighLineDriver
#(tlé_min,tl6_typ,tlé_max,tlé_min,tlé_typ, tlé6_max)
ADDR3Line (ADDR3, ADDR3_enable);

//* R3081 Output Line ADDR2 Driver
activeHighlL.ineDriver
#(tlé_min,tl6_typ,tlé6_max,tl6_min,tl6_typ,tl6_max)
ADDR2Line (ADDR2, ADDR2_enable);

//* R3081 OQutput Line ALE Driver
activeHighLineDriver
#(t8_min, t8_typ, t8_max,t9 min, t9_typ, t9_max)
ALELine (ALE, ALE_enable);

//* R3081 Output Line DATAEN_N Driver
activeLowlLineDriver
#(tl5_min,tlS5_typ,tl5_max,tll min,tll_typ,tll_max)
DATAENLine (DATAEN_N, DATAEN_N_enable);

//* R3081 Output Line BURST_N Driver
activeLowLineDriver
#(tl5_min,tl5_typ, tl5_max,t7_min, t7_typ,t7_max)
BURSTLine (BURST_N, BURST_N_enable);

//* Initialize internal variables

initial

begin
SYSCLK_N = 0
RD_N_enable ‘LOW;
WR_N_enable *LOW;
AD_enable = ‘LOW;

wonm -~

ADDR3_enable ‘LOW;
ADDR2_enable *LOW;
ALE_enable = ‘LOW;
DATAEN_N_enable = ‘LOW;
BURST_N_enable = ‘LOW;
busvValue = ’‘bz;

startCycle = ‘FALSE;
saveAddress = ‘bz;
saveData = ‘bz;

end

//* Control System Reference Clock
always
#25 SYSCLK_N = ~ SYSCLK_N;

//* Watch for change in CURR_TRANS input. If there is not a cycle
//* already started (startCycle = FALSE), then start a new cycle.
always @ (CURR_TRANS)

_if (startCycle)

startCycle = ‘FALSE;

else if (CURR_TRANS == ‘NONE)
startCycle = ‘FALSE;

else
startCycle = ‘TRUE;

114

//* At each positive edge of the system reference clock, if the
//* RESET_N input line is low, then set up system for initial burst
//* read from ROM at address 1FC00000
always @ (posedge SYSCLK_N)
begin
if (!RESET_N)
begin
busvValue = 32'hlFC00000;
AD_enable = ‘HIGH;
wait (RESET_N == 1);
bootCycle = ‘TRUE;
end
end

//* Watch for negative edge of the interrupt line INT5_N. If a
//* cycle is currently in progress, then it is a cycle that hasn’t
//* finished because of an incorrect control input. This means
//* that if, for example, this R3081 initiated a READ while the
//* other two R3081‘’s initiated a WRITE, it will be stuck waiting
//* for signals from the memory controller which are associated
//* with a READ. These signals will not come as expected because
//* the system completed a WRITE cycle based on the voted majority
//* from the other two R308l‘’s. After interrupting waiting
//* processor (if necessary), perform simulated, abbreviated
//* interrupt handler routine, beginning and ending the routine with
//* a WRITE to "dummy address" 1F800000
always @(negedge INTS5_N)
begin
if (lstartCycle) //* Then cycle is in progress
case (CURR_TRANS[2:0]) //* Interrupt waiting cycle
3’b001:
begin //* Interrupt a waiting READ_BYTE cycle
disable readByte;
@ (negedge SYSCLK_N)
begin
RD_N_enable = ‘LOW;
DATAEN_N_enable = ‘LOW;
ADDR3_enable = ‘LOW;
ADDR2_enable = ‘HIGH;
@ (posedge SYSCLK_N) ;
end
end

3’b010:
begin //* Interrupt a waiting READ_WORD cycle
disable readWord;
@ (negedge SYSCLK_N)
begin
RD_N_enable = ‘LOW;
DATAEN_N_enable = ‘LOW;
ADDR3_enable = ‘LOW;
ADDR2_enable = ‘HIGH;
@ (posedge SYSCLK_N) ;
end
end

115

3'b011:
begin //* Interrupt a waiting READ_BURST cycle
disable readBurst;
@ (negedge SYSCLK_N)
begin
RD_N_enable = ‘LOW;
ADDR3_enable ‘LOW;
ADDR2_enable ‘LOW;
DATAEN_N_enable = ‘LOW;
BURST_N_enable = ‘LOW;
@ (posedge SYSCLK_N) ;
end ’
end

nwu

3'b100:
begin //* Interrupt a waiting WRITE_BYTE cycle
disable writeByte;
@ (negedge SYSCLK_N)
WR_N_enable = ‘LOW;
@ (posedge SYSCLK_N)
begin
AD_enable = ‘LOW;
ADDR3_enable *LOW;
ADDR2_enable ‘LOW;
end
end

fnou

3'b101:
begin //* Interrupt a waiting WRITE _WORD cycle
disable writeWord;
@ (negedge SYSCLK_N)
WR_N_enable = ‘LOW;
@ (posedge SYSCLK_N)
begin
AD_enable = ‘LOW;
ADDR3_enable = ‘LOW;
ADDR2_enable = ‘LOW;

end

end
endcase
//* The saved address and data information from the last bus
//* cycle which caused the interrupt is used here simply to
//* show that differences between the three processors will
//* not cause a vote error interrupt to be generated due to
//* the WRITE to "dummy address" 1F800000. The use of the
//* saved address and data information is not intended to
//* show what would actually be written during an interrupt
//* routine.
writeWord (32 hl1F800000, 32'hFFFFFFFF);
if (saveAddress[31:0] >= 32'h00000000)

els
if

els

writeWord(32'h00070000, saveAddress);

e

writeWord(32°h00070000, 32‘hASAS5AS5AS5);

(saveData[31:0] ">= 32'h00000000)

writeWord(32'h00070004, saveData);

e

writeWord(32'h00070004, 32'h78787878);

116

readWord (32 h00070000) ;
readWord (32-h00070004) ;
writeWord(32‘hlF800000, 32'hFFFFFFFF);

end

//* Initiate appropriate bus cycles based on CURR_TRANS input, and
//* if startCyle is TRUE, or if a boot cycle is necessary.
//* See the simulated, abbreviated interrupt handler routine above
//* for how the saved address and data information is used.
always
begin
if (startCycle && (CURR_TRANS == ‘READ_BYTE) && !'bootCycle)
begin '
saveAddress = ADDRESS;
saveData = DATA;
readByte (ADDRESS) ;
end -

else if (startCycle && (CURR_TRANS == ‘READ_WORD) && !bootCycle)
begin

saveAddress = ADDRESS;

saveData = DATA;

readWord (ADDRESS) ;

end

else if ((startCycle && (CURR_TRANS == ‘READ_BURST))
|| bootCycle)

begin .

saveAddress = ADDRESS:;
saveData = DATA;
readBurst (ADDRESS) ;

end

else if (startCycle && (CURR_TRANS == ‘WRITE_BYTE) &&
'bootCycle)

begin

saveAddress = ADDRESS;
saveData = DATA;
writeByte (ADDRESS, DATA);

end

else if (startCycle && (CURR_TRANS == ‘WRITE_WORD) &&
lbootCycle)

begin

saveAddress = ADDRESS;

saveData = DATA;

writeWord (ADDRESS, DATA);
end

else -
@ (posedge SYSCLK_N) ;

end

117

//***

//* task: readByte

/7%

//* Description: Simulates the bus cycle for reading a byte from the
//* given address by driving the A/D bus and associated control
//* lines. It waits on the RDCEN_N input from the memory

/7* controller to indicate the memory has placed valid data on the
//* bus to read.

/7%

//* Reference: (1) IDT79R3081 RISController with FPA Data Sheet

//* (2) R3081 Family Hardware User’s Guide

//***

task readByte;
input [31:0] address;

begin:readByte
@ (posedge SYSCLK_N
begin :
startCycle = ‘FALSE;
busvValue[31:4] = address{[31:4);

//* Set BE[3:0] lines

busValue[3] ! (address{1l] && address(0}])
busvValue([2] ! (address(1] && !'address[0]
busValue(l] ! (ltaddress[l] && address[0]
busvValue[0] ! (taddress[l] && !'address|[0

wonwunu

)
)
1)
AD_enable = ‘HIGH;

RD_N_enable = ‘HIGH;

ADDR3_enable address([3]; //* Set word address
ADDR2_enable address (2] ;

ALE_enable = ‘HIGH;
end

@ (negedge SYSCLK_N)

begin
AD_enable = ‘LOW;
DATAEN_N_enable = ‘HIGH;
ALE_enable = ‘LOW;

end

@ (posedge RDCEN_N) ;

@ (negedge SYSCLK_N)

begin
RD_N_enable = ‘LOW;
DATAEN_N_enable = ‘LOW;
ADDR3_enable = ‘LOW;
ADDR2_enable = ‘LOW;

end

end
‘endtask //* end task readByte

118

//***

//* task: readWord

//*

//* Description: Simulates the bus cycle for reading a word from the
//* given address by driving the A/D bus and associated control
/1* lines. It waits on the RDCEN_N input from the memory

//* controller to indicate the memory has placed valid data on the
//* bus to read.

//*

//* Reference: (1) IDT79R3081 RISController with FPA Data Sheet

//* (2) R3081 Family Hardware User’s Guide

//***

task readword;
input [31:0] address;

begin:readword
@ (posedge SYSCLK_N)
begin
startCycle = ‘FALSE;
busvValue[31:4] = address([31:4};

//* Set BE[3:0] lines

busvValue[3] = ‘LOW;
‘busvValue[2] = ‘LOW;
busValue[l] = ‘LOW;
busvalue[0] = ‘LOW;

AD_enable = ‘HIGH;
RD_N_enable = ‘HIGH;
ADDR3_enable address[3]; //* Set word address
ADDR2_enable address{2];
ALE_enable = ‘HIGH;
end .

@ (negedge SYSCLK_N)

begin
AD_enable = ‘LOW;
DATAEN_N_enable = ‘HIGH;
ALE_enable = ‘LOW;

end

@ (posedge RDCEN_N) ;

@ (negedge SYSCLK_N)

begin
RD_N_enable = ‘LOW;
DATAEN_N_enable = ‘LOW;
ADDR3_enable ‘LOW;
ADDR2_enable *LOW;

end

~end
endtask //* end task readWord

119

//***

//* task: readBurst

/7*

//* Description: Simulates the bus cycle for burst reading four
//* contiguous words of memory starting at the given address
//* . by driving the A/D bus and associated control lines.

//* It waits on the RDCEN_N four times input from the memory
//* controller to indicate the memory has placed valid data on
//* the bus to read.

//*

//* Reference: (1) IDT79R3081 RISController with FPA Data Sheet
//* (2) R3081 Family Hardware User'’s Guide

//***

task readBurst;
input [31:0] address;

begin:readBurst

@ (posedge SYSCLK_N)

begin ;
startCycle = ‘FALSE; \
if (!bootCycle) :

//* If it is a boot cycle, 1FC00000 will already

//* be in busValue[31:0]} for initial EPROM read

begin ‘
busvValue[31:4] = address(31:4];

//* Set BE[3:0] lines

busvValue[3] = ‘LOW;
busvalue([2] = ‘LOW;
busvalue(l] = ‘LOW;
busvalue(0] = ‘LOW;
end
bootCycle ‘FALSE;

AD_enable = ‘HIGH;
RD_N_enable = ‘HIGH;
ADDR3_enable ‘LOW; //* Set word address of 1lst word
ADDR2_enable ‘LOW;
ALE_enable = ‘HIGH;
BURST_N_enable = ‘HIGH;
end

- H 0

@ (negedge SYSCLK_N)

begin
AD_enable = ‘LOW;
DATAEN_N_enable = ‘HIGH;
ALE _enable = ‘LOW;

end

@ (posedge RDCEN_N); //* Wait for 1lst word
@ (negedge SYSCLK_N)
begin
ADDR2_enable = ‘HIGH; //* Set word address of 2nd word
end

@ (posedge RDCEN_N); //* Wait for 2nd word

120

//*
//*

/1*
//*
/1*
//*
//*
//*

//* Description:

@(negedge SYSCLK_N)
begin
ADDR3_enable
ADDR2_enable
end

‘HIGH; //* Set word address of 3rd word

*LOW;

[T]

@ (posedge RDCEN_N); //* Wait for 3rd word
@ (negedge SYSCLK_N)
begin

ADDR2_enable = ‘HIGH;
end

//* Set word address of 4th word

@ (posedge RDCEN_N); //* Wait for 4th word
@ (negedge SYSCLK_N)
begin
RD_N_enable = ‘LOW;
ADDR3_enable = ‘LOW;
ADDR2_enable = ‘LOW;
DATAEN_N_enable = ‘LOW;
BURST_N_enable = ‘LOW;
end

end
endtask //* end task readBurst

//*********************************.**********************************

task:

writeByte

Simulates the bus cycle for writing a byte of the
given data at the given address by driving the A/D bus and

associated control lines. It waits on the ACK_N input from
the memory controller to indicate the data has been written.

Reference: (1) IDT79R3081 RISController with FPA Data Sheet

(2) R3081 Family Hardware User’s Guide

//*******************************'k***********************************

task writeByte;
input [31:0] address, data;

begin:writeByte

@ (posedge SYSCLK_N)

begin
startCycle = ‘FALSE;
busvalue([31:4] = address[31:4];

//* Set BE[3:0] lines

busvalue[3] ! (address[1l] && address([0]);
busvalue[2] ! (address([1l] && !'address[0]):;
busvalue(l] ! (ltaddress[1l] && address{0]);
busvalue0] ! (taddress{l] && 'address[0])

7

AD_enable = ‘HIGH;
WR_N_enable = ‘HIGH:
ADDR3_enable = address{3];
ADDR2_enable = address[2];
ALE_enable = ‘HIGH;

end

//* Set word address

121

@ (negedge SYSCLK_N)
begin
ALE_enable = ‘LOW;
#(tl9_min:tl9_typ:tl9_max)
busvalue = data;
end

@ (posedge ACK_N);

@ (negedge SYSCLK_N)
begin

WR_N_enable = ‘LOW;
end

@ (posedge SYSCLK_N)

begin
AD_enable = ‘LOW;
ADDR3_enable = ‘LOW;
ADDR2_enable = ‘LOW;

end

end
endtask //* end task writeByte

//***

//* task: writeWord

//*

//* Description: Simulates the bus cycle for writing a word of
//* given data at the given address by driving the A/D bus and
/7% associated control lines. It waits on the ACK_N input from
//* the memory controller to indicate the data has been written.
//*

//* Reference: (1) IDT79R3081 RISController with FPA Data Sheet
//* (2) R3081 Family Hardware User’s Guide

//***

task writeWord;
input [31:0] address, data;

begin:writeWord
@ (posedge SYSCLK_N)
begin
startCycle = ‘FALSE;
busvValue[31:4] = address([31:4];

//* Set BE[3:0] lines

busvalue[3] = ‘LOW;
busvValue(2] = ‘LOW;
busvalue[l] = ‘LOW;
busvalue[0] = ‘LOW;

AD_enable = ‘HIGH;
WR_N_enable = ‘HIGH;
ADDR3_enable = address(3]; //* Set word address
ADDR2_enable = address([2];
ALE_enable = “HIGH;
end

122

@ (negedge SYSCLK_N)
begin
ALE_enable = ‘LOW;
#(t1l9_min:tl9_typ:tl9_max)
busvValue = data;

end
@(posedge ACK_N || !INTS5_N);
@ (negedge SYSCLK_N)
begin
WR_N_enable = ‘LOW;
end

@ (posedge SYSCLK_N)

begin
AD_enable = ‘LOW;
ADDR3_enable = ‘LOW;
ADDR2_enable = ‘LOW;

end

end)
endtask //* end task writeWord

endmodule //* end module r3081

//**

//* Module: busDriver

//*
//* Description: Assigns valueToGo to address/data bus when driveEnable
//* is HIGH, otherwise drives bus to high impedance.

//**
module busDriver (buslLine, valueToGo, driveEnable);

parameter //* Parameters may be overridden for each
//* instantiation of this module

R_min = 0, //* Minimum Rise Time
R_typ = 2, //* Typical Rise Time
R_max = 4, //* Maximum Rise Time
F_min = 0, //* Minimum Fall Time
F_typ = 2, //* Typical Fall Time
F_max = 4, //* Maximum Fall Time
Z_min = 0, //* Minimum Time to high impedance
Z_typ = 2, //* Typical Time to high impedance
Z_max = 4; //* Maximum Time to high impedance

inout [31:0] busLine;
input [31:0] valueToGo;
input driveEnable;

assign #(R_min:R_typ:R_max,F_min:F_typ:F_max,Z_min:2Z_typ:Z_max)
buslLine = (driveEnable)?valueToGo: ‘bz;

endmodule //* end module busDriver

123

//**********************"**

//* Module: activeLowLineDriver

//*
//* Description: Drives contLine LOW when driveEnable is HIGH,
//* otherwise contLine remains HIGH.

//**

module activelLowLineDriver (contLine, driveEnable) ;
parameter //* Parameters may be overridden for each
//* instantiation of this module

R min = 0, //* Minimum Rise Time
R_typ = 2, //* Typical Rise Time
R _max = 4, //* Maximum Rise Time
F_min = 0, //* Minimum Fall Time
F _typ = 2, //* Typical Fall Time
F_max = 4; //* Maximum Fall Time

inout contLine;
input driveEnable;

assign #(R_min:R_typ:R_max,F_min:F_typ:F_max)
contLine = (driveEnable)?0:1;

endmodule //* end module activeLowLineDriver

//**

//* Module: activelLowLineDriver

//*
//* Description: Drives contLine HIGH when driveEnable is HIGH,
//* otherwise contline remains LOW.

//****************‘k*'k**
module activeHighlLineDriver (contLine, driveEnable);
parameter //* Parameters may be overridden for each
//* instantiation of this module

R_min = 0, //* Minimum Rise Time
R_typ = 2, //* Typical Rise Time
R_max = 4, //* Maximum Rise Time
F_min = 0, //* Minimum Fall Time
F_typ = 2, //* Typical Fall Time
F max = 4; //* Maximum Fall Time

inout contLine;
input driveEnable;

assign #(R_min:R_typ:R_max,F_min:F_typ:F_max)
contLine = (driveEnable)?1:0;

endmodule //* end module activeHighLineDriver

124

B. 32-BIT VOTER/ERROR DETECTOR AND TRANSCEIVER

UOTE32BIT XCUR

A<3L. .B>g]AC3L. . > UOTED_OUT<3L..®> ¢ VOTED_OUT<3L..@>
B<3l..8>g{B<¢3L.. 0>

C<3L..80>p4C<31L..08> UOTE_ERROR | o VOTE_ERROR
FORCE_AR g FORCE_R

FORCE_B g{ FORCE_B RD¥ | o RD_N
FORCE_CaJFORCE_.C WR¥ Lo WR_N

Figure 48. 32-Bit Voter/Error Detector and Transceiver.

//******'k***********‘k***

//* File: vote32bit_xcvr.v

//*

//* Description: Verilog file for a 32 bit majority voter/error
//* detector and transceiver.

//*

//* Author: John C. Payne, Jr.

//* Date: 10/31/98

//**

‘timescale 1 ns /1 ps

//**

//* Module: Dbidirsw

//* .

//* Description: Verilog behavioral module for a bidirectional switch
//* with tristate. If CONT_LINE is high, then the INOUT_LINE

//* information drives the LINE_QUT line (LINE_OUT = INOUT_LINE);

/7% otherwise, the LINE_OUT line is in a high impedance state. If
//* CONT_LINE is low, then the LINE_IN information drives the

//* INOUT_LINE (INOUT_LINE = LINE_IN); otherwise, the INOUT_LINE line
//* is in a high impedance state.

//**
module bidirsw (LINE_IN, LINE_OUT, INOUT_LINE, CONT_LINE);

input LINE_IN;

output LINE_OUT;

inout INOUT_LINE;

input CONT_LINE;

assign INOUT_LINE = (!CONT_LINE)?LINE_IN: ‘bz;
assign LINE_OUT = (CONT_LINE)?INOUT_LINE: 'bz;

endmodule //* end module bidirsw

125

//**

//* Module: votecell_xcvr

//*

//* Description: Verilog structural module for a one bit voter/error
//* detector and transceiver. Votes 3 input bits to produce 1 output
//* bit. FORCE_A, FORCE_B, & FORCE_C inputs can be used to disable
//* voting and force data on A, B, or C through to the output.

/7* Uses 4 bidirsw modules.

//******************-k****‘k**

module votecell_xcvr (A, B, C, FORCE_A, FORCE B, FORCE_C, RD_N, WR_N,
MAJ_OUT, MAJ_ERROR);

inout A, B, C;

input FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N;
inout MAJ_OUT;

output MAJ_ERROR;

wire MAJORITY;

tri IN_A, IN_B, IN_C, RD_IN;

//* If RD_N is low, then RD_IN drives all three input/output lines
//* A, B, & C; otherwise, A, B, & C drive IN_A, IN_B, & IN_C which
//* are then voted.
bidirsw
sw_1(RD_IN, IN_A, A, RD_N),
sw_2 (RD_IN, IN_B, B, RD_N),
sw_3 (RD_IN, IN_C, C, RD_N);

//* If WR_N is low, then MAJORITY drives the output line MAJ_OUT;
//* otherwise, MAJ OUT drives the RD_IN line.
bidirsw

sw_4 (MAJORITY, RD_IN, MAJ_OUT, WR_N);

ot
not_1 (NOT_IN_A, IN_A),
not_2 (NOT_IN_B, IN_B),
not_3 (NOT_IN_C, IN_C),
not_4 (NOT_FORCE_A, FORCE_A),
not_5 (NOT_FORCE_B, FORCE_B),
not_6 (NOT_FORCE_C, FORCE_C);

and

and_1 (and_l_out, IN_A, FORCE_A),

and_2 (and_2_out, IN_B, FORCE_B),

and_3 (and_3_out, IN_C, FORCE_C),

and_4 (and_4_out, IN_A, IN_B, NOT_FORCE_A, NOT_FORCE_RB,
NOT_FORCE_C),

and_5 (and_5_out, IN_A, IN_C, NOT_FORCE_A, NOT_FORCE_B,
NOT_FORCE_C),

and_6 (and_6_out, IN_B, IN_C, NOT_FORCE_A, NOT_FORCE_B,
NOT_FORCE_C) ;

or #15

or_1l (MAJORITY, and_l_out, and_2_out, and 3_out, and_4_out,
and_5_out, and_6_out);

126

and
and_7 (and_7_out, NOT_IN_A, NOT_IN_B, IN_C, NOT_FORCE_A,
NOT_FORCE_B, NOT_FORCE_C),
and_8 (and_8_out, NOT_IN_A, IN_B, NOT_IN_C, NOT_FORCE_A,
NOT_FORCE_B, NOT_FORCE_C),
and_9 (and_9_out, NOT_IN_A, IN_B, IN_C, NOT_FORCE_A, NOT_FORCE_B,
NOT_FORCE_C) ,
and_10 (and_10_out, IN_A, NOT_IN_B, NOT_IN_C, NOT_FORCE_A,
NOT_FORCE_B, NOT_FORCE_C),
and_11 (and_11_out, IN_A, NOT_IN_B, IN_C, NOT_FORCE_A,
NOT_FORCE_B, NOT_FORCE_C),
and_12 (and_12_out, IN_A, IN_B, NOT_IN_C, NOT_FORCE_A,
NOT_FORCE_B, NOT_FORCE_C);

or #15
or_2 (MAJ_ERROR, and_7_out, and_8_out, and_9_out, and_10_out,
and_11_out, and_12_out);
endmodule //* end module votecell_xcvr

//**

//* Module: vote8bit_xcvr

//*

//* Description: Verilog structural module for an 8 bit voter/error
//* detector and transceiver. Votes 24 input bits to produce 8

//* output bits. FORCE_A, FORCE_B, & FORCE_C inputs can be used to
//* disable voting and force data on A[7:0], B[7:0], or C[7:0]

//* through to the output. Uses eight votecell_xcvr modules.

//**************************'k***

module vote8bit_xcvr (A, B, C, FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N,
VOTED_QUT, VOTE_ERROR) ;

inout [(7:0] A, B, C;

input FORCE_A, FORCE_B, FORCE_C;
input RD_N, WR_N;

inout {7:0] VOTED_OUT;

output VOTE_ERROR;

wire ERROR_0, ERROR_1, ERROR_2, ERROR_3, ERROR_4, ERROR_5, ERROR_6,
ERROR_7;

votecell_xcvr

cell0 (A[O], B{0], C[0O], FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N,
VOTED_OUT[0], ERROR_O0),

celll (a{l), B[l], C[l], FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N,
VOTED_OUT[1], ERROR_1),

cell2 (A[2], B[2], C[2], FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N,
VOTED_OUT (2], ERROR_2),

cell3 (A[3], B[3], C[3], FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N,
VOTED_OUTI[3], ERROR_3),

celld (A[4], B{4], C[4]), FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N,
VOTED_OUT[4], ERROR_4),

cell5 (A[S]), B[5], C[5], FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N,
VOTED_OUT[5], ERROR_5),

cellée (A[6], B[6], C(6], FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N,
VOTED_OUT (6], ERROR_6),

cell7 (aA[7), B[7], C[7], FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N,
VOTED_OUTI[7], ERROR_7);

127

or #10
or_1l (VOTE_ERROR, ERROR_O, ERROR_1, ERROR_2, ERROR_3, ERROR_4,
ERROR_5, ERROR_6, ERROR_7);

endmodule //* end module vote8bit_xcvr

//**

//* Module: vote32bit_xcvr

/7%
//* Description: Verilog structural module for a 32 bit voter/error
//* detector and transceiver. Votes 96 input bits to produce 32

//* output bits. FORCE_A, FORCE_B, & FORCE_C inputs can be used
//* to disable voting and force data on A[31:0}, B[31:0], or C[31:0]

//* through to the output. Uses four vote8bit_xcvr modules.

//* This module drives the VOTE32BIT XCVR block in the Cadence

/7% Concept schematic.

//* NOTE: Module name must match the Cadence Concept block name, but
//* must be in lower case. Signal names of inout, input, and output

//* lines and size (or bus width) must match the signal names in the

//* Cadence Concept block.

//**********************************‘k*'k*********************************

module vote32bit_xcvr (A, B, C, FORCE_A, FORCE_B, FORCE_C,
RD_N, WR_N, VOTED_OUT, VOTE_ERROR) ;

inout [31:0] A, B, C;

input FORCE_A, FORCE_B, FORCE_C;
input RD_N, WR_N;

inout ([31:0] VOTED_OUT;

output VOTE_ERROR;

wire ERROR_0, ERROR_1, ERROR_2, ERROR_3;

vote8bit_xcvr

voter0 (A[31:24], B[31:24], C[31:24], FORCE_A, FORCE_B, FORCE_C,
RD_N, WR_N, VOTED_OUT[31:24], ERROR_O0),

voterl (A[23:16]}, B[23:16], C[23:16), FORCE_A, FORCE_B, FORCE_C,
RD_N, WR_N, VOTED_OQUT[23:16], ERROR_1),

voter2 (A[15:8], B[15:8], C[15:8], FORCE_A, FORCE_B, FORCE_C,

~ RD_N, WR_N, VOTED_OUT[15:8], ERROR_2),

voter3 (A[7:0], B[7:0], C[7:0], FORCE_A, FORCE_E, FORCE_C,

RD_N, WR_N, VOTED_OUT([7:0], ERROR_3):;

or #10
or_1 (VOTE_ERROR, ERROR_0, ERROR_1, ERROR_2, ERROR_3);

endmodule //* end module vote32bit_xcvr

128

C. 8-BI

T VOTER/ERROR DETECTOR

VOTESBIT

Ac7. . > afAc. . B>
B<7. . aB<7. . B> UOTED_OUT<7..D>
(A FYS AN
FORCE-A o FORCE-A
FORCE_B o] FORCE_B UOTE_ERROR
FORCE_C g} FORCE_C

Lo VOTED-_OUT<?7. . B>

| o UOTE_ERROR

Figure 49. 8-Bit Voter/Error Detector.

//**

//* File:
/1> '

//* Description:

/7%

/7%

//* Author:
//* Date:

vote8bit.v

Verilog structural file for 8 bit majority voter and

error detector using 8 votecell modules

John C. Payne, Jr.
10/06/98

//**

‘timescale

1 ns /1 ps

//**

//* Module:
//*

//* Description:

votecell

Verilog structural module for a one bit voter/error

//* detector. Votes 3 input bits to produce 1 output bit. FORCE_A,
//* FORCE_B, & FORCE_C inputs can be used to disable voting and
//* force data on A, B, or C through to the output.

//**

module votecell (IN_A, FORCE_A, IN_B, FORCE_B,

MAJ_ERROR) ;

IN_C, FORCE_C, MAJ_OUT,

input IN_A, FORCE_A, IN_B, FORCE_B, IN_C, FORCE_C;
output MAJ_OUT, MAJ_ERROR;

not
not_1
not_2
not_3
not_4
not_5
not_=6

and
and_1
and_2
and_3
and_4

and_5

and_6

(NOT_IN_A, IN_A),
(NOT_IN_B, IN_B),
(NOT_IN_C, IN_C),
(NOT_FORCE_A, FORCE_A),
(NOT_FORCE_B, FORCE_B),
(NOT_FORCE_C, FORCE_C) ;

(and_1_out, IN_A, FORCE_A},
(and_2_out, IN_B, FORCE_B),
(and_3_out, IN_C, FORCE_C),

(and_4_out, IN_A, IN_B, NOT_FORCE_A, NOT_FORCE_B,

NOT_FORCE_C) ,

(and_5_out, IN_A, IN_C, NOT_FORCE_A, NOT_FORCE_B,

NOT_FORCE_C) ,

(and_6_out, IN_B, IN_C, NOT_FORCE_A, NOT_FORCE_B,

NOT_FORCE_C) ;
129

#15
or_1 (MAJ_OUT, and_1_out, and_2_out,
and_5_out, and_6_out);

or
and_3_out,

and

and_7 (and_7_out, NOT_IN_A, NOT_IN_B, IN_C, NOT_FORCE_A,
NOT_FORCE_B, NOT_FORCE_C}),
and_8 (and_8_out, NOT_IN_A, IN_B, NOT_IN_C, NOT_FORCE_A,

NOT_FORCE_B, NOT_FORCE_C),
and_9 (and_9_out, NOT_IN_A, IN_B,
NOT_FORCE_C),
(and_10_out,
NOT_FORCE_B, NOT_FORCE_C),
and_11 (and_1l1l1_out, IN_A, NOT_IN_B,

NOT_FORCE_B, NOT_FORCE_C),

and_10

IN_C, NOT_FORCE_A,

and_12 (and_12_out, IN_A, IN_B, NOT_IN_C, NOT_FORCE_A,
NOT_FORCE_B, NOT_FORCE_C);
or #15
or_2 (MAJ_ERROR, and_7_out, and_8_out, and_9_out,
and_11_out, and_12_out);
endmodule //* end module votecell

and_4_out,

IN_C, NOT_FORCE_A, NOT_FORCE_B,

IN_A, NOT_IN_B, NOT_IN_C, NOT_FORCE_A,

and_10_out,

//**

//*
/1*
/7*
//*
/7*
//*
/7*
/7*
//*
//*
/1*
/7*

Module: wvote8bit
Description: Verilog structural module for an 8 bit voter/error
detector. Votes 24 input bits to produce 8 output bits.

FORCE_A, FORCE_B, & FORCE_C inputs can be used to disable voting

and force data on A([7:0], B[7:0],
output. Uses eight votecell modules.
VOTE8BIT block in the Cadence Concept schematic.
NOTE:
must be in lower case.

Signal names of inout, input,

or C[7:0] through to the
This module drives the

Module name must match the Cadence Concept block name, but
and output

lines and size (or bus width) must match the signal names in the

Cadence Concept block.

//**

module vote8bit

VOTE_ERROR) ; ’

input [7:0] A, B, C;

input FORCE_A, FORCE_B, FORCE_C;
output [7:0] VOTED_OUT;

output VOTE_ERROR;

wire ERROR_O, ERROR_1, ERROR_2, ERROR_3, ERROR_4, ERROR_5,
ERROR_7;
votecell
cell0 (A[O], FORCE_A, B[0], FORCE_B, C[0], FORCE_C,
VOTED_OUT([0], ERROR_O0),
celll (A[1l], FORCE_A, B[1l], FORCE_B, C[l1l], FORCE_C,
VOTED_OUT[1], ERROR_1),
cell2 (A[2], FORCE_A, B[2], FORCE_B, C[2]., FORCE_C,
VOTED_OUT([2], ERROR_2),
130

(A, FORCE_A, B, FORCE_B, C, FORCE_C, VOTED_OUT,

ERROR_6,

cell3 (A[3], FORCE_A, B[3], FORCE_B, C[3], FORCE_C,
VOTED_OUT (3], ERROR_3),

celld (A[4], FORCE_A, BI[4], FORCE_B, C[4], FORCE_C,
VOTED_OUT[4], ERROR_4),

cell5 (A[5], FORCE_A, B[5], FORCE_B, C[5], FORCE_C,
VOTED_OUT[5], ERROR_S),

cellé (A[6], FORCE_A, B([6], FORCE_B, C[6], FORCE_C,
" VOTED_OQOUT[6], ERROR_6),

cell7 (A[7], FORCE_A, B[7], FORCE_B, C{7], FORCE_C,
VOTED_OUT[7], ERROR_7);

or #10
or_1l (VOTE_ERROR, ERROR_0O, ERROR_1, ERROR_2, ERROR_3, ERROR_4,
ERROR_5, ERROR_6, ERROR_7);

endmodule //* end module vote8bit

131

D.

/7*
//*
//*
/1%
//*
//*
//*
/1*
//*

32-BIT VOTER/ERROR DETECTOR

UOTE32BIT

A<3L. .B>aA3L. . B>
B<31l..8>a{B<¢31..8> UOTED_OUT<3L..0>l o UOTED_OUT<3L..0>
C<3L..8>pJC<3L.. 8>
FORCE_A g FORCE_A
FORCE_B g FORCE._B UOTE_ERROR | o UOTE_ERROR
FORCE_C g FORCE_C

Figure 50. 32-Bit Voter/Error Detector.

Fhkdkkhhkdkkhdkdhhhdkhhkkk ko hhkhkhkkhk ko oh sk ks ko dok ok ko o oo ok d % % % ok % % % % % % % % % % % % % %

File: vote32bit.v

Description: Verilog structural file for 32 bit majority voter and
error detector using 4 voter_8bit modules

Author: John C. Payne, Jr.
Date: 10/06/98

Khkhdhkhkhhkdhdhhkhddehkkhk ke hhkh ko h kA hkkhkkkhk ko hhhkhk ke k ko hkk ke ko k ko k sk ok kh*

‘timescale 1.ns /1 ps

//*
//*
//*
//*
//*
//*
//*
/7*
//*
//*
//*
//*
/7*
//*

Khkhkkkdhkdhhh kA A I A A Ik bk hk ok khhkhhhkhhkkhk ks ko kdkk ko ks k k& ok o d ok s s s % % o % o o d % %

Module: vote32bit

Description: Verilog structural module for a 32 bit voter/error

detector. Votes 96 input bits to produce 32 output bits.
FORCE_A, FORCE_B, & FORCE_C inputs can be used to disable voting
and force data on A[31:0], B[31:0], or C[31:0) through to the
output. Uses four vote8bit modules. This module drives the
VOTE32BIT block in the Cadence Concept schematic.
NOTE: Module name must match the Cadence Concept block name, but
must be in lower case. Signal names of inout, input, and output
lines and size (or bus width) must match the signal names in the
Cadence Concept block.

hhkkkdkkdkkhkhkdkhkhkkhkkdkkhokdhkdhdkkkhdkok ook sk ok % ok s % % % % % % % % % %k K & Kk % % % %k Kk Kk s kK sk g ok ok K

module vote32bit (A, FORCE_A, B, FORCE_B, C, FORCE_C, VOTED_OUT,

VOTE_ERROR) ;
input [31:0] A, B, C;
input FORCE_A, FORCE_B, FORCE_C;
output [31:0] VOTED_OUT;
output VOTE_ERROR;

wire ERROR_0, ERROR_1, ERROR_2, ERROR_3;

132

vote8bit
voter0O (A[31:24], FORCE_A, B[31:24], FORCE_B, C[31:24], FORCE_C,

VOTED_OUT[31:24], ERROR_O),
voterl (A[23:16], FORCE_A, B[23:16], FORCE_B, C[23:16], FORCE_C,

VOTED_OUT([23:16], ERROR_1),
voter2 (A[15:8], FORCE_A, B[15:8], FORCE_B, C[15:8], FORCE_C,

VOTED_OUT[15:8], ERROR_2),
voter3 (A[7:0], FORCE_A, B[7:0], FORCE_B, C[7:0], FORCE_C,
VOTED_OUT([7:0], ERROR_3);

or #10
or_1l (VOTE_ERROR, ERROR_0, ERROR_1, ERROR_2, ERROR_3);

endmodule //* end module vote32bit

133

E. MEMORY/ADDRESS DECODER

MEM_DECODER

RAMCSx] o RAMCSx
AC3L. . 17> o{AK3L. . L7 EPROMCSx | o EFPROMCSx

INTCSx}o INTCSX

Figure 51. Memory/Address Decoder.

//**

//* File: mem_decoder.v

//*

//* Description: Verilog structural file for memory decoder to
//* generate various chip selects.

//*

//* Author: John C. Payne, Jr.
//* Date: 10/06/98

//**

‘timescale 1 ns / 1 ps

//**

//* Module: mem_decoder

//*
//* Description: Verilog behavioral module for a memory decoder. Uses
//* input A[31:17] to generate three active low chip select outputs.

/7* This module drives the MEM_DECODER block in the Cadence Concept
//* schematic.

/7* NOTE: Module name must match the Cadence Concept block name, but
//* must be in lower case. Signal names of inout, -input, and output
/* lines and size (or bus width) must match the signal names in the
//* Cadence Concept block.

//**

module mem_decoder (A, RAMCS_N, EPROMCS_N, INTCS_N);

input [31:17] A;
cutput RAMCS_N, EPROMCS_N, INTCS_N;
wire RAMCS_N, EPROMCS_N, INTCS_N;

/7% RAM = 00000000 to OOOQ7FFFF
/7% EPROM = 1FC00000 to 1FCOxxxx
//* INT = 1F800000 "Dummy Address to Disable Vote Error Interrupts"

- 134

assign #45
RAMCS_N =

assign #45
EPROMCS_N

assign #45
INTCS_N =

endmodule

//* end module

(1A[31] &&
1A[27] &&
IA[23] &&
I1A[19])720

(tA[31] &&
A[27] &&
A[23] &&
1A[19]) &&

('A[31] &&
A[27] &&
A[23] &&
1A[19] &&

'A[30]
1A[26]
1A[22]

:1;

1A[30]
A[26]
A[22]
1A[18]

1A[30]

A[26]
1A[22]
1A[18]

&&
&&
&&

&&
&&
&&
&&

&&
&&
&&
&&

mem_decoder

135

'A[29] &&
'A[25] &&
'1A[21] &&

'A[29] &&
A[25] &&
'1A[21] &&
'A[171)20

'A[29] &&
A[25] &&
'A[21]) &&

'A[17])20:

1a[28]
1A[24]
'A[20]

A[28]
A[24)
12{20]

11

A[28]

Af24)]
tA[20]
1;

&&
&&
&&

&é&
&&
&&

&&
&&
&&

/1*
/7*
/*
/7*

/™
/1*
A
/7*

/7*
/1*
//*
/7*

NO O o

oNmgR

O T

F. MEMORY/ERROR CONTROLLER

MEM_CONT
SYSCLK_Ng§ Sy scLKx
RESET _N o RESET % ENSTARTx | oENSTART_N
UOTRO_N o UDTROX CYCENDx |oCYCEND_N
UOT KR _N o] UO TRk ROCENK|oROCEN_N
UDTBLRST_N o] VOTBLURS TX ACKX LoACK_N
RAMCS_N o] RAMCS K BUSERRORK| oBUSERROR N
EPROMCS_N o EPROMCS % AODRTOF IF Ok | oADDRTOFIFO_N
INTCS_N o} INTCSX DATATOF IF Ok | gDATATOFIFO_N
ADORERR -} ADDRERR CONT TOF IF Ox | o CONTTOFIFO_N
DATAERR g-] DATAERR FIFOWEK | oF IFONE_N
CONTERR o] CONTERR
USEFIFO o USEFIFO UDTERRORINT x| oUOTERROR_INT_N

Figure 52. Memory/Error Controller.

//**

//* File: mem_cont.v

//*

//* Description: Verilog behavioral file for memory/error controller
//* to control timing cycles of various bus transactions.
//*

//* Reference: (1) IDT RISC Microprocessor Application Guide,

//* Application Note AN-86, IDT79R3051 System Design
//* Example

//*

//* Author: John C. Payne, Jr.
//* Date: 11/3/98

//***********’k*****************‘k***************************‘k************

‘timescale 1 ns /1 ps

//*****************l’\'**

//* Module: mem_cont

//* .

//* Description: Verilog behavioral module for the memory/error

//* controller. Produces READ, WRITE, and BUS ERROR acknowledge

//* controls (RDCEN_N, ACK_N, BUSERROR_N) based on a 5 bit counter
/1* and cycle end stall cycle (wait state) equations.

//* Also produces an interrupt if there is a vote error detected on
//* the ADDRERR, CONTERR, or DATAERR inputs. The ADDRERR, CONTERR,
//* and DATAERR inputs are saved at specified values of the counter,
/7* and an error interrupt is generated only at the end of the

//* current cycle, so that the current cycle is allowed to finish.
/7% If INTCS_N goes low during a dummy write to that address, this
//* signals the beginning of the interrupt handler routine and

//* vote error interrupts are disabled until INTCS_N goes low again,
//* which signals the end of the interrupt handler routine.

//* This module also controls the three lines ADDRTOFIFO_N,

//* CONTTOFIFO_N, and DATATOFIFO_N which send the appropriate

/7% information to the dedicated FIFOs. These three lines are

136

/1*
/7*
/7*
/1*
/r*
/7%
/1*
/1*
/7*
/7*
/1>
/1%
/1*
/7*
/1*
/1*
/1%
/1*

active low enable lines which allow, through the use of 32-bit
tri-state buffers, the ADDRESS, CONTROL, and DATA information
from the processor to be multiplexed onto a single 32-bit bus
which is the input bus for each dedicated FIFO. The FIFOWE_N
line signals a write to the FIFOs at the appropriate time within
a bus cycle based on the 5-bit counter.

This module drives the MEM_CONT block in the Cadence Concept
schematic.

NOTE: Module name must match the Cadence Concept block name, but
must be in lower case. Signal names of inout, input, and output
lines and size (or bus width) must match the signal names in the
Cadence Concept block.

Reference: (1) IDT RISC Microprocessor Application Guide,
Application Note AN-86, IDT79R3051 System Design
Example

Yo v g de dk o v de ok ok %k Y ok ek k% %k k% Tk Sk Rk ke k% %k ke dk ke ke ke ok ok kR K ok R ok ok ko e ok ok ke ok ok ke ke ke ke ko ke ok

module mem_cont (SYSCLK_N, RESET_N, VOTRD_N, VOTWR_N, VOTBURST_N,

RAMCS_N, EPROMCS_N, INTCS_N, USEFIFO, DATAERR,
ADDRERR, CONTERR, ENSTART_N, CYCEND_N,
RDCEN_N, ACK_N, BUSERROR_N, ADDRTOFIFO_N,
DATATOFIFO_N, CONTTOFIFO_N, FIFOWE_N,
VOTERROR_INT_N) ;

input SYSCLK_N, //* System clock from R3081
RESET_N, //* Reset from MEMEN module
VOTRD_N, //* Voted read from R3081
VOTWR_N, //* Voted write from R3081
VOTBURST_N, //* Voted burst from R3081
RAMCS_N, //* RAM chip select from memory decoder
EPROMCS_N, //* EPROM chip select from memory decoder
INTCS_N, - //* INT chip select from memory decoder
USEFIFO, //* Set High (pull up) to Write to FIFOs
DATAERR, //* Data Vote Error from 32-bit Data Voter
ADDRERR, //* Address Vote Error from 32-bit Address Voter
CONTERR; //* Control Vote Error from 8-bit Control Voter
output ENSTART_N, //* Read/write output enable start
CYCEND_N, //* Cyle end (composite ACK)
RDCEN_N, //* R3081 read buffer clock enable
ACK_N, ' //* R3081 acknowledge
BUSERROR_N, //* R3081 bus error
ADDRTOFIFO_N, //* Address To FIFO to Address Buffers
DATATOFIFO_N, //* Data To FIFO to Data Buffers
CONTTOFIFO_N, //* Control To FIFO to Control Buffers
FIFOWE_N, //* FIFO Write Enable

VOTERROR_INT_N; //* Interrupt Sent to R3081

wire ENSTART N, CYCEND_N, RDCEN_N, ACK_N, BUSERROR_N,
ADDRTOFIFO_N, DATATOFIFO_N, CONTTOFIFO_N,
. FIFOWE_N, VOTERROR_INT_N;

reg [4:0] counter;

reg voteErrorIntEn;

wire voteError;

reg saveErrorl, saveError2, saveError3, saveErroré;

reg voteErrorIntValueToGo;

137

//* At the positive edge of the reset input line, RESET_N, ensure
//* vote error interrupts are enabled, the interrupt line is HIGH,
//* and the saved error flags are initialized to indicated no error
//* has been detected.

always
@ (posedge RESET_N)

begin
voteErrorIntEn = 1;
voteErrorIntValueToGo = 1;
saveErrorl = 0;
saveError2 = 0;
saveError3 = 0;
saveErrord = 0;

end

//* At each positive edge of the system reference clock generated
//* by the R3081, reset the counter if RESET N or CYCEND_N goes low.
//* Increment the counter if VOTRD_N or VOIWR_N is low. Save the
//* error flag at the four different counter values, so that the
//* cycle is allowed to finish. The use of four different saved
//* values allows a single READ or WRITE to finish as well as a
//* BURST READ to finish. If the current transaction is a BURST
//* READ, then an ADDRERR, CONTERR, or DATAERR is sampled four times.
always

@ (posedge SYSCLK_N)

begin
if (!RESET_N || !CYCEND_N)
counter = 0;
else if (!VOTRD_N || !VOTWR_N)

counter = counter + 1;

if (RESET_N && CYCEND_N && (counter == 5'h05))
saveErrorl = voteError;

else if (RESET_N && CYCEND_N && (counter == 5’h09))
saveError2 = voteError;
else if (RESET_N && CYCEND_N && (counter == 5'h0B))

saveError3 = voteError;
else if (RESET_N && CYCEND_N && (counter == 5'hl7))
saveError4 = voteError;

//* 1f at the end of a cycle, and one of the saved errors
//* indicates an error occurred, then generate an interrupt
//* only if vote error interrupts are currently enabled.
if (RESET_N && !CYCEND_N && voteErrorIntEn &&
(saveErrorl || saveError2 || saveError3 || saveError4))
voteErrorIntValueToGo = 0;
end

//* Watch for negative edge of INTCS_N, and disable/reenable vote
//* error interrupts.
always
@ (negedge INTCS_N)
begin
voteErrorIntEn = ~voteErrorIntEn;
voteErrorIntvValueToGo = 1;
saveErrorl 0;
saveErroxr2 0;

138

saveError3
saveErrord
end

inon
OO

~e we

//* Update internal voteError flag

assign #30 voteError = (ADDRERR || DATAERR || CONTERR)?1:0;

//* Update VOTERROR_INT_N output line
assign #30 VOTERROR_INT_N = voteErrorIntValueToGo;

//* Update ENSTART_N output line

assign #30 ENSTART_N = (RESET_N && (counter >= 1) && CYCEND_N)?0:1;

//* Update CYCEND_N output line
assign #30 CYCEND_N =
(RESET_N && CYCEND_N && (

(counter == 8’hlF)
9

(!RAMCS_N && (counter == 5’'h05)
|| (IRAMCS_N && (counter == 5'hl7)
|| (!RAMCS_N && (counter == 5'h06) && !VOTWR_N)
|| (!EPROMCS_N && (counter == 5'h0
|| (!EPROMCS_N && (counter == 5'hl7) && !VOTRD_N &&
%% ('INTCS_N && (counter == 5'h06) && !VOTWR_N)
))

//* Update RDCEN_N output line
assign #30 RDCEN_N =
(RESET_N && CYCEND_N && (
('RAMCS_N && !VOTRD_N &&
(

(counter == 5'h03)
|| (!VOTBURST_N && (counter == 5'h09))
|| (!VOTBURST_N && (counter == 5’'h0OF))
|| (!VOTBURST_N && (counter == 5'hl5))

)
)
|| (!EPROMCS_N && !VOTRD_N &&
{

(counter == 5'h03)
|| (!VOTBURST_N && (counter == 5'h09))
| (!VOTBURST_N && (counter == 5'h0F))
|| (!VOTBURST_N && (counter == 5'hl5))

)
))20:1;

//* Update ACK_N output line
assign #30 ACK_N = (RESET_N && CYCEND_N &&
(
(IRAMCS_N && !VOTWR_N &&
{counter == 5'h06)
)
|| (!RAMCS_N && !VOTRD_N &&
(counter == 5’h03)
)
|| ('EPROMCS_N && !VOTRD_N &&
(counter == 5°h03)
) .

- 139

&& !VOTRD_N && VOTBURST_N)
&& !VOTRD_N && !VOTBURST_N)

5) && !VOTRD_N && VOTBURST_N)
7 !VOTBURST_N)

|| (!INTCS_N && !VOTWR_N &&
(counter == 5’'h06)
)
))20:1;

//* Update BUSERROR_N output line
assign #30 BUSERROR_N =
(RESET_N && CYCEND_N && (counter == 5'hlF))?0:1;

//* Update ADDRTOFIFO_N output line
assign #30 ADDRTOFIFO_N =
(RESET_N && CYCEND_N && USEFIFO &&
(

(counter == 5'h01)
|| (!EPROMCS_N && !VOTRD_N &&
(

(!VOTBURST_N && (counter == 5'h07))
| (!VOTBURST_N && (counter == 5’h0D))
|| (!VOTBURST_N && (counter == 5'hl13))
)

)
|| ('RAMCS_N && !VOTRD_N &&
(

(!VOTBURST_N && (counter == 5'h07))
|| (!VOTBURST_N && (counter == 5/h0D))
|| (!VOTBURST_N && (counter == 5'hl13))
)

)
)
)20:1;
//* Update CONTTOFIFO_N output line
assign #30 CONTTOFIFO_N =
(RESET_N && CYCEND_N && USEFIFO &&
(
(counter == 5°h03)
|| (!EPROMCS_N && !VOTRD_N &&
(

(!VOTBURST_N && {counter == 5'h09))
|| (!VOTBURST_N && (counter == 5’hO0F))
|| (!VOTBURST_N && (counter == 5‘'hl5))
) .

)
|| (IRAMCS_N && !VOTRD_N &&
{

(1VOTBURST_N && (counter == 5°h09))
|| (!VOTBURST_N && (counter == 5‘hOF))
|| (!VOTBURST_N && (counter == 5°hlS5))
)

120:1;

140

//* Update DATATOFIFO_N output line

assign #30 DATATOFIFO_N =

(RESET_N && CYCEND_N && USEFIFO &&

(

))
))
))

(counter == 5'h05)
|| (!EPROMCS_N && !VOTRD_N &&
(.

(1VOTBURST_N && (counter == 5’h0OB
|l ({VOTBURST_N && (counter == 5'hll
|| (!VOTBURST_N && {(counter == 5'hl7
)

)
|| ('RAMCS_N && !VOTRD_N &&
(

(!'VOTBURST_N && (counter == 5'h0B))
|| (!VOTBURST_N && (counter == 57hll))
|| (I{VOTBURST_N && (counter == 5'hl7))
) ;

)
)
1?20:1;
//* Update FIFOWE_N output line
assign #30 FIFOWE_N =
(RESET_N && CYCEND_N && USEFIFO &&
(
(counter == 5°'h01)
(counter == 5'h03)
(counter == 5'h05)
(! VOTBURST_N && !VOTRD_N && {(counter ==
(IVOTBURST_N && !VOTRD_N && (counter ==
(!VOTBURST_N && !VOTRD_N && (counter ==
('WVOTBURST_N && !VOTRD_N && (counter ==
(!'VOTBURST_N && !VOTRD_N && (counter ==
(!'VOTBURST_N && !VOTRD_N && (counter ==
(!VOTBURST_N && !'VOTRD_N && (counter ==
(!VOTBURST_N && !VOTRD_N && (counter ==
(}'VOTBURST_N && !VOTRD_N && (counter ==

)
)?20:1;

endmodule //* end module mem_cont

141

G. MEMORY READ/WRITE ENABLE CONTROLLER

MEM_EN

SYSCLK_Ng| SYSCLKx RESETH| gRESET_N

PWRRESET_NgG-| PWRRESE Tx

VOTRD_NGJUOTRDX* WRDATAEN*|oWRDATAEN_N
VOTWR NG| VO TWRx WREN _Ax | gWREN_NA
ENSTART_N g ENSTART* WREN_Bx | gWREN_NE
CYCEND_N gJCYCEND* WREN_Cx |.oWREN_NC

BEN@ G| BEN® WREN_Dx | WREN_ND
BEN1 | BENL RDENX | 9RDEN_N
BEN2@G| BEN2 RDDATAEN*| gRDDATAEN_N

BEN3 -] BEN3

Figure 53. Memory Read/Write Enable Controller.

//**

//* File: mem_en.v

//*

//* Description: Verilog behavioral file for generating memory read
//* and write enable signals.

//*

//* Reference: (1) IDT RISC Microprocessor Application Guide,

//* Application Note AN-86, IDT79R3051 System Design
//* Example

/7%

//* Author: John C. Payne, Jr.
//* Date: 11/1/98

//**

‘timescale 1 ns /1 ps

//*****************'***

//* Module: mem_cont

//*

//* Description: Verilog behavioral module for generating the read

//* and write enables for the memory controls.

//* This module drives the MEM_EN block in the Cadence Concept

//* schematic.

//* NOTE: Module name must match the Cadence Concept block name, but
//* must be in lower case. Signal names of inout, input, and output
//* lines and size (or bus width) must match the signal names in the
/¥ Cadence Concept block.

//*

//* Reference: (1) IDT RISC Microprocessor Application Guide,

//* Application Note AN-86, IDT79R3051 System Design
//* Example

/7%

//**

142

module mem_en (SYSCLK_N, PWRRESET_N, VOTRD_N, VOTWR_N, ENSTART_N,

CYCEND_N,

RDDATAEN_N) ;

input SYSCLK_N,
PWRRESET_N,
VOTRD_N,
VOTWR_N,
ENSTART_N,
CYCEND_N,
BENO,
BEN1,
BEN2,
BEN3;

output RESET_N,
WREN_N,
WRDATAEN_N,
WREN_NA,
WREN_NB,
WREN_NC,
WREN_ND,
RDEN_N,

WREN_N,

BENO, BENl, BEN2, BEN3, RESET_N,
WRDATAEN_N, WREN_NA, WREN_NB, WREN_NC, WREN_ND, RDEN_N,

//* System clock from R3081
//* Power (Global) reset
//* Voted read from R3081
//* Voted write from R3081
//* Enable start from memory controller
//* Cycle end from memory controller
//* Byte 0 enable (active low) from R3081
//* Byte 1 enable (active low) from R3081
//* Byte 2 enable (active low) from R3081
//* Byte 3 enable (active low) from R3081

//* Synchronzied reset line to rest of board

//* Not used

//* Write data xcvr enable

//* Write enable for byte 0

//* Write enable for byte 1

//* Write enable for byte 2

//* Write enable for byte 3

//* Read output enable (for words)

//* Read data xcvr enable

RDDATAEN_N;

wire RESET_N, WREN_N, WRDATAEN_N, WREN_NA, WREN_NB, WREN_NC, WREN_ND,
RDEN_N, RDDATAEN_N;

assign #30 WREN_NA

' (RESET_N &&

(! VOTWR_N &&

);

assign #30 WREN_NB

' (RESET_N &&

({VOTWR_N &&

)

assign #30 WREN_NC

! (RESET_N &&

(!VOTWR_N &&

) :

assign #30 WREN_ND

! (RESET_N &&

(!VOTWR_N &&

)

assign #30 WREN_N
' (RESET_N &&

((!'VOTWR_N && CYCEND_N)

)

!BENO &&

!BEN1 &&

!BEN2 &&

!BEN3 &&

|

(!WREN_N &&

143

IENSTART_N && CYCEND_N)

!ENSTART_N && CYCEND_N)

IENSTART_N && CYCEND_N)

'ENSTART_N && CYCEND_N)

!CYCEND_N))

assign #30 WRDATAEN_N =

! (RESET_N &&
((IVOTWR_N && !ENSTART_N) ||
(IWRDATAEN_N && (!ENSTART_N || !CYCEND_N))

)
) ;

assign #30 RDEN_N =
! (RESET_N &&
(1VOTRD_N && !ENSTART_N && CYCEND_N)
) ;

assign #30 RDDATAEN_N =
! (RESET_N &&
(I1VOTRD_N && !ENSTART_N && CYCEND_N)
)
assign #30 RESET_N = ! (!PWRRESET_N);

endmodule //* end module mem_en

144

H. 16-BIT NON-INVERTING TRI-STATE BUFFER

BUFF_16BIT

IND o IND ouTe L gouTe
INL g 1INt ouTt1 fgouT1
IN2 g 1Nz outz fgouta
IN3 o] IN3 oUT3 fgoouTs
IN4 | IN4 oUT4 | qouT4
INS g INS ouTs LgouTs
ING o ING oute fgouTs
IN7 o IN7 oUT7 LoouT?
INS g INS ouTs | gouTs
INS g INS ouTs gouTs
INIBG] INLO ouUT1B}ooUT1B
INL1g) INLL oUTL11}l oouTLL
IN12g] IN12 ouT12| HouT12
IN13g] INL3 OUT13}gouUT13
INt4g]INL4 oUTL14fo0UT14
IN1Sg] INLS OUT1S}gOUT1S

OE

OE_N

Figure 54. 16-Bit Non-Inverting Tri-State Buffer.

//**

//* File: Dbuff_l6bit.v

/7*

//* Description: Verilog structural file for 16 bit tri-state
//* non-inverting buffer.

//*

//* Author: John C. Payne, Jr.
//* Date: 11/16/98

//**

‘timescale 1 ns /1 ps

//**

//* Module: interface

//*

//* Description: Verilog structural module for simulating a 16-bit

//* tri-state non-inverting buffer.

//* This module drives the BUFF_16BIT block in the Cadence Concept
/¥ schematic.

//* NOTE: Module name must match the Cadence Concept block name, but
//* must be in lower case. Signal names of inout, input, and output
/1* lines and size (or bus width) must match the signal names in the
//* Cadence Concept block.

//*******************************‘k**********'k***************************
module buff_ 16bit (INO, IN1l, IN2, IN3, IN4, IN5, IN6, IN7,
IN8, IN9, IN10, IN1l1, IN12, IN13, IN14, IN15,
QUTO, OUT1, OUT2, OUT3, OUT4, QUTS, OUT6, OUT7,
ouTs8, 0QUTY9, OUT10, OUT1l1l, OUT1l2, 0OUT13, 0UT14, OUT1S5,
OE_N) ;

145

input INO,
INS8,

INl, IN2, IN3, IN4, IN5, IN6, IN7,
IN9, IN10, IN11, IN12, IN13, IN14, IN15;

output OUTO, OUT1l, OUT2, OUT3, OUT4, OUT5, OUT6, OUT7,
ouTtg8, OUTY9, OUT10, OUT11, OUT12, OUT13, OUT14, OUT1S5;

input OE_N;

bufif0 #(0:15:30, 0:15:30, 0:15:30)
buff_0 (OUTO, INO, OE_N
buff_1 (0UT1, IN1, OE_N

buff_2
buff_3
buff_4
buff_5
buff_6
buff_7
buff_8
buff_9
buff_10
buff_11
buff_12
buff_13
buff_14
buff_15

endmodule //*

)
)
(OUT2, IN2, OE_N)
(OUT3, IN3, OE_N)
(OUT4, IN4, OE_N)
(OUT5, IN5, OE_N)
(OUT6, IN6, OE_N)
(OUT7, IN7, OE_N)
(ouT8, IN8, OE_N)
(OUT9, IN9, OE_N),
(OUT10, IN10, OE_N)
(OUT11, IN11l, OE_N)
(OUT12, IN12, OE_N)
(0UT13, IN13, OE_N)
(OUT14, IN14, OE_N)
(OUT15, IN15, CE_N);

end module buff_1l6bit

146

I. EPROM

EPROM

AR o A DATACZL. . By L oDATA<EL. . B>

Al o4 R<1>)

ARL4_2<414. . 2> JA<14 . 2>
OUTPUTENABLE_N (3§ OEx
CHIPSELECT_N 3] CSk

Figure 55. EPROM.

//**

//* File: eprom.v

//*

//* Description: Verilog behavioral file for an EPROM.
//*

//* Author: John C. Payne, Jr.

//* Date: 10/28/98

//**************‘k***

‘timescale 1 ns /1 ps

//* Define how many entries are in the data file for internal memory

//* storage.
‘define EPROM_ENTRIES 48

//** .

//* Module: eprom

//*

//* Description: Verilog behavioral module for simulating an EPROM.

//* Although because of the number of address lines, it is capable of
//* being 128k, it has been limited to 48 entries to reduce data

//* entry for simulation purposes. The memory data and intialized
//* the data file EPROM.data.

//* This module drives the EPROM block in the Cadence Concept

//* schematic.

//* NOTE: Module name must match the Cadence Concept block name, but
//* must be in lower case. Signal names of inout, input, and output
//* lines and size (or bus width) must match the signal names in the
//* Cadence Concept block.

//**

module eprom (A0, Al, Al4_2, OUTPUTENABLE_N, CHIPSELECT_N, DATA);

//* EPROM Maximum Access Times *//
parameter
CY27C256_max_access = 45;

//* Module input and output lines
input A0,

Al;
input [14:2] Al4_2;

147

input OUTPUTENABLE_N,
CHIPSELECT_N;
output {31:0] DATA;

//* Internal variables (line enables)
wire [14:0)] combined_address;
reg [31:0] memory(0:(‘EPROM_ENTRIES - 1)1];

//* Intialize internal memory from data file
initial
begin
Sreadmemh ("EPROM.data", memory) ;
end

//* Combine input lines into single address
assign combined_address([0] = AQ;

assign combined_address(l] = Al;

assign combined_address([14:2] = Al4_2;

//* Drive data bus with data from EPROM at combined address if
//* OUTPUTENABLE_N and CHIPSELECT_N are both low. Drive to
//* high impedance otherwise.
assign #(CY27C256_max_access) DATA =
(!OUTPUTENABLE_N &&
!{CHIPSELECT_N) ?memory [combined_address]: 'bz;

endmodule

//**

//* File: EPROM.data

//*

//* Description: Capable of being 128K EPROM Memory File

//* ' 17 address lines (A[16] -~ A[0]) =

//* 131072 lines of 32-bit data/instructions allowed
//* Only 48 entries have been supplied to reduce data entry for
//* simulation purposes.

//*

//* Author: John C. Payne, Jr.

//* Date: 10/28/98

//*'***
//* ADDRESS '

00000000 //* 00000h

00000001

00000002

00000003

00000004

00000005

00000006

00000007 //* 00007h

00000008

00000009

0000000A

00000008

ooooo000C

0000000D

0000000E

0000000F //* 0000Fh

00000010 //* 00010h

148

00000011

00000012
00000013
00000014
00000015
00000016
00000017
00000018
00000019
0000001A
0000001B
0000001C
0000001D
0000001E
0000001F
00000020
00000021
00000022
00000023
00000024
00000025
00000026
00000027
00000028
00000029
0000002A
0000002B
0000002C
0000002D
0000002E
0000002F

/I

/1*
//*

//*

/1*

00017h

0001Fh

00020h

00027h

0002Fh

149

J. SYSTEM INTERFACE

INTERFACE
FIFOROUTK31.. 0> o JFIFO_AC3L. . B>
FIFOBOUT<31.. B> oJFIFO_B<31.. B> ROCLK Lo READCLK
FIFOCOUT<31..@> oJFIFO_C<31..@B> A_OEX Lo A-DE_N
EF_AL_N o JEF_Alx . B_OEX% o B-OE_N
EF_A2.N o JEF_A2x C_O0Ex fo C_OE_N
EF_BL1_N o JEF_Blxk
EF_B2_N o JEF_B2x% FIFORDX o FIFORD_N
EF_CL_N oJEF_Clx
EF_CR2_N o JEF_C2x%

Figure 56. System Interface.

//**

//* File: interface.v

//*

//* Description: Verilog behavioral file for simulating the
//* interface portion of the TMR testbed.

/7*

//* Author: John C. Payne, Jr.
//* Date: 11/15/98

//**

‘timescale 1 ns /1 ps

‘define HIGH 1
‘define LOW 0

//**

//* Module: interface

/1>

//* Description: Verilog behavioral module for simulating the

//* interface of the TMR Testbed which removes the information from
//* the three FIFOs dedicated to the three microprocessors.

//* The data that is read from each FIFO is formatted and written to
//* text trace file 'TMR_trace.out’. If the file doesn’t exist, it
//* is created in the current working directory. If the file already
/7* exists, it is emptied and overwritten.

//* This module drives the INTERFACE block in the Cadence Concept

/7* schematic.

//* NOTE: Module name must match the Cadence Concept block name, but
//* must be in lower case. Signal names of inout, input, and output
//* lines and size (or bus width) must match the signal names in the
//* Cadence Concept block.

//***‘***

module interface (FIFOAOUT, FIFOBOUT, FIFOCOUT, EF_A1_N, EF_A2_N,
EF_B1_N, EF_B2_N, EF_C1_N, EF_C2_N, READCLK,
A_OCE_N, B_OE_N, C_OE_N, FIFORD_N);

150

//* Module input and output lines
input [31:0] FIFOAOUT,
FIFOBOUT,
FIFOCOUT;
input EF_Al_N, EF_A2_N,
EF_B1_N, EF_B2_N,
EF_C1_N, EF_C2_N;

output READCLK,
A_OE_N,
B_OE_N,
C_OE_N,
FIFORD_N;

reg READCLK;

wire FIFORD_N;

wire fifoAEmpty N, fifoBEmpty N, fifoCEmpty_N;

wire A_OE_N, B_OE_N, C_OE_N;

reg [31:0) fileHandle;

reg aOEenable, bOEenable, cOEenable, fifoRdEnable;

reg [31:0] Adata, Bdata, Cdata, saveAdata, saveBdata, saveCdata;

initial

begin
READCLK = ‘LOW;
fifoRdEnable = ‘LOW;

aOEenable = ‘LOW;
bOEenable = ‘LOW;
cOEenable = ‘LOW;
fileHandle = $fopen("TMR_trace.out");
$fdisplay(fileHandle, " CPU A CPU B
CpPU C");
$fdisplay(fileHandle,
e e~ =c-=oo===ss===-=—o=======z=—=—=========z=") ;
end

//* Control FIFO interface clock
always
#12.5 READCLK = ~READCLK;

//* Composite FIFO empty. flags. If not empty, signals will be high.
assign #30 fifoAEmpty N = (EF_AI_N && EF_A2_N)?21:0;

assign #30 fifoBEmpty N (EF_B1_N && EF_B2_N)?1:0;

assign #30 fifoCEmpty_N = (EF_C1_N && EF_C2_N)?1:0;
assign FIFORD_N = (fifoRdEnable)?0:1;
(aOEenable) ?0:1;

(bOEenable)?0:1;
(cOEenable)?0:1;

assign A_OQOE_N
assign B_OE_N
assign C_OE_N

ninnu

always
begin
wait ((fifoAEmpty N == ‘HIGH) && (fifoBEmpty_N == ‘HIGH) &&
(fifoCEmpty N == ‘HIGH))

151

begin
//* Read FIFO A -- should be address from CPU A
@ (negedge READCLK)
begin
#5;
fifoRdEnable = ‘HIGH;
aOEenable = ‘HIGH;
@ (posedge READCLK)
begin
#10;
Adata[31:0] = FIFOAQUT[31:0];
fifoRdEnable = ‘LOW;
aOEenable = ‘LOW;
end
end

//* Read FIFO B -- should be address from CPU B
@ (negedge READCLK)
begin
#5;
fifoRdEnable = ‘HIGH;
bOEenable = ‘HIGH;
@ (posedge READCLK)
begin
#10;
Bdata[31:0] = FIFOBOUT[31:0];
fifoRdEnable = ‘LOW;
bOEenable = ‘LOW;
end
end

//* Read FIFO C -- should be address from CPU C
@ (negedge READCLK)
begin
#5;
fifoRdEnable = ‘HIGH;
cOEenable = ‘HIGH;
@ (posedge READCLK)
begin
#10;
Cdata[31:0] = FIFOCOUT[31:0];
fifoRdEnable = ‘LOW;
cOEenable = ‘LOW;
end
end

//* Output address info from FIFQOs to diary file
$fdisplay(fileHandle, "Address = %h\t%h\t%h", Adata, Bdata,

Cdata) ;
end
“wait ((£fifoAEmpty N == ‘HIGH) && (fifoBEmpty N == ‘HIGH) &&
(£ifoCEmpty N == ‘HIGH))

begin

//* Read FIFO A -- should be control from CPU A
@ (negedge READCLK)

152

begin
#5;
fifoRdEnable = ‘HIGH;
aOEenable = ‘HIGH;
@ (posedge READCLK)
begin
#10;

" Adata[31:0] = FIFOAOUT[31:0];
fifoRdEnable = ‘LOW;
aOEenable = ‘LOW;

end
end

//* Read FIFO B -- should be control from CPU B
@ (negedge READCLK)
begin
#5;
fifoRdEnable = ‘HIGH;
bOEenable = ‘HIGH;
@ (posedge READCLK)
begin
#10;
Bdata[31:0] = FIFOBOUT([31:0];
fifoRdEnable = ‘LOW;
bOEenable = ‘LOW;
end
end

//* Read FIFO C -- should be control from CPU C
@ (negedge READCLK)
begin
#5;
fifoRdEnable = ‘HIGH;
cOEenable = ‘HIGH;
@ (posedge READCLK)
begin
#10;
Cdata([31:0] = FIFOCOUT([31:0];
fifoRdEnable = ‘LOW;
cOEenable = ‘LOW;
end
end

//* Output control info from FIFOs to diary file
$fdisplay(fileHandle, "Control = $h\t%h\t%h", Adata, Bdata,

Cdata) ;

//* Save CONTROL data for displaying control status at end
//* of reading DATA data from FIFO

saveAdata = Adata;
saveBdata = Bdata;
saveCdata = Cdata:
end
wait ((fifoAEmpty_N == ‘HIGH) && (fifoBEmpty N == ‘HIGH) &&
(fifoCEmpty_ N == ‘HIGH))
begin :

153

//* Read FIFO A -- should be data to/from CPU A
@ (negedge READCLK)
begin
#5;
fifoRdEnable = ‘HIGH;
aOEenable = ‘HIGH;
@ (posedge READCLK)
begin
#10;
Adata[31:0] = FIFOAOUT[31:0];
fifoRdEnable = ‘LOW;
aOEenable = ‘LOW;
end
end

//* Read FIFO B -- should be data to/from CPU B
@ (negedge READCLK)
begin
#5;
fifoRdEnable = ‘HIGH;
bOEenable = ‘HIGH;
@ (posedge READCLK)
begin
#10;
Bdata([31:0] = FIFOBOUT([31:0];
fifoRdEnable = ‘LOW;
bOEenable = ‘LOW;
end
end

//* Read FIFO C ~- should be data to/from CPU C
@ (negedge READCLK)
begin
#5;
fifoRdEnable = ‘HIGH;
cOEenable = ‘HIGH;
@ (posedge READCLK)
begin
#10;
Cdata(31:0] = FIFOCOUT([31:0];
fifoRdEnable = ‘LOW;
cOEenable = ‘LOW;
end
end

//* Output data info from FIFOs to diary file

$fdisplay(fileHandle, "Data = %$h\t%h\t%h", Adata, Bdata,

Cdata);
case (saveddatal(4:2])
3'b010:

$fdisplay(fileHandle, "A Control = Burst Read Word %4,

saveAdatall:0]);

3'b110:

$fdisplay(fileHandle, "A Control = Read");
3'b101:

Sfdisplay(fileHandle, "A Control = Write");
default:

154

$fdisplay(fileHandle,
Transaction") ;
endcase

case(saveBdata[4:2])
3'b010:
$fdisplay(fileHandle,

saveBdata(l:
3b110:
$fdisplay(fileHandle,
3'b101:
$fdisplay(fileHandle,
default:
$fdisplay(fileHandle,
Transaction") ;
endcase

case(saveCdatal4:2])
3'b010:
$fdisplay(fileHandle,

saveCdatall:

3'b110:
$fdisplay(fileHandle,

3b101:
$fdisplay(fileHandle,

default:
$fdisplay(fileHandle,

Transaction") ;
endcase

$fdisplay(fileHandle,

end

endmodule //* end module interface

"A Control

"B Control
01});

*B Control
"B Control

"B Control

"C Control
01);

"C Control
"C Control

"C Control

155

Illegal Bus

Burst Read Word %d",

Read");
Write");

Illegal Bus

Burst Read Word %d4d",

Read") ;
Write");

Illegal Bus

156

APPENDIX D. CADENCE SCRIPT CONTROL LANGUAGE FILES

This appendix contains two SCL files which were used to

generate the simulation results obtained in Chapter V.

A. NORMAL (ERROR FREE) SCL FILE

//**

//* File: normal.scl

//*

//* Description: Cadence Logic Workbench Opensim Script Control

//* Language (SCL) file. This file executes several bus cycles for
//* the TMR Testbed schematic. All of the bus cycles in this file
/7* should be error free.

//*

//* Author: John C. Payne, Jr.
//* Date: 11/30/98

//*************'k**

//* Definitions for transaction codes

//* (same as in verilog file for R3081 module)
NONE = 0
READ_BYTE = 1
READ_WORD = 2
READ_BURST
WRITE_BYTE

3
4
WRITE_WORD 5

wonn

//* Initialize board interface lines
DEPOSIT ’‘PWRRESET*’, 0
DEPOSIT ‘TESTEN1*‘, 0

DEPOSIT ’'FORCE_A’,
DEPOSIT ‘FORCE_B’,
DEPOSIT ‘FORCE_C’,
DEPOSIT ‘USEFIFO’,
DEPOSIT ‘PULL_UP’,
DEPOSIT ’‘GND’, 0

PPOOO

DEPOSIT ‘A_TRANS’, (NONE)
DEPOSIT 'B_TRANS’, (NONE)
DEPOSIT ‘C_TRANS’, (NONE)

//* These initializations are necessary to prevent timing violations
//* in the simulation

DEPOSIT 'RAMCS*’, 1

DEPOSIT ‘EPROMCS*’, 1

DEPOSIT ‘INTCS*’, 1
DEPOSIT ’‘WREN_A*',

DEPOSIT ’‘WREN_B*’,

DEPOSIT ‘WREN_C*’,

DEPOSIT ’'WREN_D*’,

DEPOSIT ‘RDEN*‘, 1

PR

157

//* Hold board reset and release
sim 1000ns
DEPOSIT ‘'PWRRESET*’, 1

//* Advance simulation clock during initial burst read from EPROM
//* address 1FC00000 which is initiated by the R3081 modules

while (#‘'VOTRD*’ == 1)
sim 25ns

while (#'VOTRD*’' == 0)
sim 25ns

sim 50ns

//***

//* Test Burst Read Bus Cycle from EPROM

//***

DEPOSIT ‘A_TRANS’, (READ_BURST)
DEPOSIT 'B_TRANS’, (READ_BURST)
DEPOSIT 'C_TRANS’, (READ_BURST)

//* Burst Read next EPROM Address
DEPOSIT 'A_ADDR’, S$x1FC00010
DEPOSIT ‘B_ADDR’, $x1FC00010
DEPOSIT ‘C_ADDR’, S$x1FCO00010

//* Advance simulation clock

while (#'VOTRD*’ == 1)
sim 25ns

while (#'VOTRD*’' == 0)
sim 25ns

//* Advance sim clock to ensure previous cycle completes
DEPOSIT 'A_TRANS’, (NONE)

DEPOSIT ‘B_TRANS’, (NONE)

DEPOSIT 'C_TRANS’, (NONE)

DEPOSIT ‘A_ADDR', $X2222222Z22

DEPOSIT 'B_ADDR’, $XZzZZZ2zZ2Z

DEPOSIT ‘C_ADDR’', $x2zzzzzzzZ

sim 50ns

//***

//* Test Write Bus Cycle

//**********************************'k******

DEPOSIT 'A_TRANS’, (WRITE_WORD)
DEPOSIT ‘B_TRANS’, (WRITE_WORD)
DEPOSIT ‘C_TRANS’', (WRITE_WORD)

//* Write to Lower RAM Boundary
DEPOSIT ‘A_ADDR', $x00000000
DEPOSIT ‘B_ADDR’, $x00000000
DEPOSIT 'C_ADDR’, $x00000000

DEPOSIT ‘A_DATA’, $x11111111
DEPOSIT ‘B_DATA’, $x11111111

158

DEPOSIT ‘C_DATA’, $x11111111

//* Advance simulation clock
while (#/VOTWR*’ == 1)

sim 25ns
while (#/VOTWR*’ == ()

sim 25ns

//* Advance sim clock to ensure previous cycle completes
DEPOSIT ‘A_TRANS’, (NONE)

DEPOSIT ’‘B_TRANS’, (NONE)

DEPOSIT ‘C_TRANS’, (NONE)

DEPOSIT ‘A_ADDR’, $Xz2z2zzzzZ

DEPOSIT 'B_ADDR’, $xzz2zzzzzZ

DEPOSIT ‘C_ADDR’, $Xzzzzzzzz

DEPOSIT ‘A_DATA’, $Xzzz2222ZZ

DEPOSIT ’'B_DATA', $xXzzzzzzzZz

DEPOSIT ‘C_DATA’, $X2zzz2zzZZ

sim 50ns

//***

//* Test Write Bus Cycle

//***

DEPOSIT ‘A_TRANS’, (WRITE_WORD)
DEPOSIT ‘B_TRANS’, (WRITE_WORD)
DEPOSIT ‘C_TRANS’, (WRITE_WORD)

//* Write to RAM

DEPOSIT ‘A_ADDR’, $x00000004
DEPOSIT ‘B_ADDR’, $x00000004
DEPOSIT ‘C_ADDR’, $x00000004

DEPOSIT ‘A_DATA’, $x22222222
DEPOSIT 'B_DATA’, $x22222222
DEPOSIT ‘C_DATA’, $x22222222

while (#’'VOTWR*’ == 1)
sim 25ns ‘
while (#'VOTWR*’ == ()

sim 25ns

//* Advance sim clock to ensure previous cycle completes
DEPOSIT ‘A_TRANS’, (NONE)

DEPOSIT ‘B_TRANS’, (NONE)

DEPOSIT ‘C_TRANS’, (NONE)

DEPOSIT ‘A_ADDR’, $XZzzZzz2zzZzZ

DEPOSIT ‘B_ADDR', $Xzzzzzzzz

DEPOSIT ‘C_ADDR’, $Xzzzzzzzz

DEPOSIT ’'A_DATA’, $X22ZZZ22ZZ

DEPOSIT ’'B_DATA’, $XzZzzzZZzZ2Z

DEPOSIT ‘C_DATA’, $Xz222222Z

sim S50ns

159

//***

//* Test Write Bus Cycle

//***

DEPOSIT ’'A_TRANS',
DEPOSIT ’‘B_TRANS',
DEPOSIT ‘C_TRANS’,

(WRITE_WORD)
(WRITE_WORD)
(WRITE_WORD)

//* Write to RAM

DEPOSIT ‘A_ADDR’, $x00000008
DEPOSIT ‘B_ADDR’, $x00000008
DEPOSIT ‘C_ADDR’, $x00000008
DEPOSIT ‘A_DATA’, $x33333333
DEPOSIT ‘B_DATA’, $x33333333
DEPOSIT ‘C_DATA’, $x33333333

//* Advance simulation clock

while (#'VOTWR*’ == 1)
sim 25ns

while (#'VOTWR*’ == 0)
sim 25ns

//* Advance sim clock to ensure previous cycle completes

DEPOSIT ‘A_TRANS’, (NONE)
DEPOSIT ‘B_TRANS’, (NONE)
DEPOSIT 'C_TRANS’, (NONE)
DEPOSIT ‘A_ADDR’, $x2z2zz22Z
DEPOSIT 'B_ADDR’, $Xz222ZZZZ
DEPOSIT 'C_ADDR’, $xX2222222Z
DEPOSIT 'A_DATA', $X222222Z2Z
DEPOSIT 'B_DATA’, $X22zzzzzZ
DEPOSIT ‘C_DATA’, $xX22z22Zz22Z
sim 50ns

//***

//* Test Write Bus Cycle

//***

DEPOSIT ‘A_TRANS’, (WRITE_WORD)
DEPOSIT ‘B_TRANS’, (WRITE_WORD)
DEPOSIT ‘C_TRANS‘, (WRITE_WORD)
//* Write to RAM
DEPOSIT ‘A_ADDR’, $x0000000C
DEPOSIT ‘B_ADDR’, $x0000000C
DEPOSIT ’'C_ADDR’, $x0000000C
DEPOSIT ‘A_DATA‘, $x44444444
DEPOSIT 'B_DATA’, $x44444444
DEPOSIT ‘C_DATA’, $x44444444
//* Advance simulation clock
while (#’'VOTWR*’ == 1)

sim 25ns
while (#’'VOTWR*' == 0)

sim 25ns

160

//* Advance sim clock to ensure previous cycle completes
DEPOSIT '‘A_TRANS’, (NONE)

DEPOSIT ’'B_TRANS’, (NONE)

DEPOSIT ‘C_TRANS’, (NONE)

DEPOSIT 'A_ADDR’, $Xzzz2zzzzZ

DEPOSIT ‘'B_ADDR’, $Xzz22222Z

DEPOSIT 'C_ADDR’, $xzzzzzz2Z

DEPOSIT ‘A_DATA’, $X22z2zZZZ

DEPOSIT ‘B_DATA’, $Xzzzz222Z

DEPOSIT 'C_DATA’, $X22ZzzzzZ

sim 50ns

//****************‘*************************

//* Test Read Bus Cycle

//***

DEPOSIT 'A_TRANS’, (READ_WORD)
DEPOSIT ‘B_TRANS’, (READ_WORD)
DEPOSIT ‘C_TRANS’, (READ_WORD)

//* Read Lower RAM Boundary
DEPOSIT ’‘A_ADDR’, $x00000000
DEPOSIT ‘B_ADDR’, $x00000000
DEPOSIT ’'C_ADDR’, $x00000000

//* Advance simulation clock

while (#'VOTRD*’ == 1)
sim 25ns

while (#’'VOTRD*’ == 0)
sim 25ns

//* Advance sim clock to ensure previous cycle completes
DEPOSIT ‘A_TRANS’, (NONE)

DEPOSIT ‘B_TRANS’, (NONE)

DEPOSIT ‘C_TRANS’, (NONE)

DEPOSIT 'A_ADDR’, $XzzzzzzzZ

DEPOSIT 'B_ADDR’, $X2zzz222Z

DEPOSIT ’‘C_ADDR’, $xXzzzz2z2ZZ

sim 50ns

//***

//* Test Burst Read Bus Cycle from RAM

//***

DEPOSIT 'A_TRANS’, (READ_BURST)
DEPOSIT ‘B_TRANS’, (READ_BURST)
DEPOSIT ‘C_TRANS’, (READ_BURST)

//* Burst Read from RAM

DEPOSIT ‘A_ADDR’, $x00000000
DEPOSIT ‘B_ADDR’, $x00000000
DEPOSIT ‘C_ADDR’, $x00000000

161

//* Advance simulation clock

while (#’/VOTRD*’ == 1)
sim 25ns

while (#‘'VOTRD*’' == 0)
sim 25ns

DEPOSIT 'A_TRANS’, (NONE)
DEPOSIT ’‘B_TRANS’, (NONE)
DEPOSIT ‘C_TRANS’, (NONE)
DEPOSIT 'A_ADDR’, $X222Z222zZ2
DEPOSIT 'B_ADDR’, $Xz2z2zz22zZ
DEPOSIT ‘C_ADDR’, $xzzzz2222Z

//* Advance sim clock to ensure previous cycle completes and FIFO is

//* emptied
sim 150ns

B. ERROR SCL FILE

//**

//* File: errors.scl

//*

//* Description: Cadence Logic Workbench Opensim Script Control

//* Language (SCL) file. This file executes several bus cycles for
//* the TMR Testbed schematic. Several of the bus cycles in this
//* file should contain errors.

//*

//* Author: John C. Payne, Jr.
//* Date: 11/30/98

//**

//* Definitions for transaction codes

//* (same as in verilog file for R3081 module)
NONE = 0
READ_BYTE
READ_WORD
READ_BURST
WRITE_BYTE
WRITE_WORD

1
2

0o

3
4
5

//* Initialize board interface lines
DEPOSIT 'PWRRESET*’, 0
DEPOSIT ‘TESTEN1*’, O

DEPOSIT ‘FORCE_A’,
DEPOSIT ‘'FORCE_B’,
DEPOSIT 'FORCE_C’,
DEPOSIT 'USEFIFO’,
DEPOSIT 'PULL_UP’,
DEPOSIT ‘GND’, 0

[l e No ol

DEPOSIT ‘A_TRANS’, (NONE)
DEPOSIT ‘B_TRANS’, (NONE)
DEPOSIT ‘C_TRANS’, (NONE)

//* These initializations are necessary to prevent timing violations

//* in the simulation
DEPOSIT 'RAMCS*’, 1

162

DEPOSIT 'EPROMCS*’, 1
DEPOSIT 'INTCS*’, 1
DEPOSIT ‘WREN_A*', 1
DEPOSIT ‘WREN_B*’, 1
DEPOSIT ‘WREN_C*’, 1
DEPOSIT ‘WREN_D*’, 1
DEPOSIT 'RDEN*’, 1

//* Hold board reset and release
sim 1000ns

DEPOSIT 'PWRRESET*’, 1

//* Advance simulation clock during initial burst read from EPROM
//* address 1FC00000 which is initiated by the R3081 modules

while (#'VOTRD*’ == 1)
sim 25ns

while (#’'VOTRD*’ == ()
sim 25ns

sim 50ns

//**

//* Test Write Bus Cycle

//* - with single error in address inputs
//**
DEPOSIT ‘A_TRANS’, (WRITE_WORD)
DEPOSIT 'B_TRANS’, (WRITE_WORD)
DEPOSIT ‘C_TRANS’, (WRITE_WORD)
//* Write to RAM
DEPOSIT ’‘A_ADDR’, $x00000100
DEPOSIT ‘B_ADDR‘, $x00000000
DEPOSIT ‘C_ADDR’, $x00000000
DEPOSIT ‘A_DATA’, $x11111111
DEPOSIT 'B_DATA’, $x11111111
DEPOSIT ‘C_DATA’, $x11111111
//* Advance simulation clock
while (#'VOTWR*’' == 1)
sim 25ns
while (#'VOTWR*’ == 0)
sim 25ns

//* Advance sim clock to ensure previous cycle and the interrupt
//* service routine which is initiated by the R3081 complete

DEPOSIT ‘A_TRANS’, (NONE)
DEPOSIT ’'B_TRANS’, (NONE)
DEPOSIT ‘C_TRANS’, (NONE)
DEPOSIT 'A_ADDR’, $Xzzz22zz2z
DEPOSIT ‘B_ADDR’, $XzzzzzzzZ
DEPOSIT 'C_ADDR’, $Xz2zzzzzZzZZ
DEPOSIT 'A_DATA’, $Xz22zZzzZZzZZ
DEPOSIT ‘B_DATA’, $xXzzzzzz2z2Zz
DEPOSIT ‘C_DATA', $X2222Zz2ZZ

sim 3700ns

//**

//* Test Write Bus Cycle

//* - with multiple errors in address
//* inputs
//**
DEPOSIT "A_TRANS’, (WRITE_WORD)
DEPOSIT 'B_TRANS'’, (WRITE_WORD)
DEPOSIT 'C_TRANS’, (WRITE_WORD)
//* Write to RAM
DEPOSIT 'A_ADDR’, $x00000004
DEPOSIT ’‘B_ADDR’, $x01000004
DEPOSIT 'C_ADDR’, $x00000005
DEPOSIT 'A_DATA', $x22222222
DEPOSIT ’'B_DATA‘, $x22222222
DEPOSIT ‘C_DATA’, $x22222222
//* Advance simulation clock
while (#'VOTWR*’' == 1)
sim 25ns
while (#'VOTWR*’ == 0)
sim 25ns

//* Advance sim clock to ensure previous cycle and the interrupt
//* service routine which is initiated by the R3081 complete

DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT
DEPOSIT

‘A_TRANS',
'B_TRANS',
'C_TRANS"’,
‘A_ADDR’,
"B_ADDR’,
‘C_ADDR’,
‘A_DATA’,
"B_DATA’,
"C_DATA’,

{NONE)

(NONE)

(NONE)
$X22222222
$xXzzz222222
$X222722222
$X2222222Z
$xX22222222
$Xzzzz2z2222

sim 3700ns

//**

//* Test Write Bus Cycle

//* - with single error in data inputs
//**

DEPOSIT ‘A_TRANS’, (WRITE_WORD)
DEPOSIT ‘B_TRANS’, (WRITE_WORD)
DEPOSIT ‘C_TRANS’, (WRITE_WORD)
//* Write to RAM

DEPOSIT 'A_ADDR’, $x00000008
DEPOSIT ‘B_ADDR’, $x00000008
DEPOSIT 'C_ADDR’, $x00000008
DEPOSIT ‘A_DATA’, $x33333333
DEPOSIT ’'B_DATA’, $x33333333
DEPOSIT ‘C_DATA’, $x33333337

164

//* Advance simulation clock

while (#'VOTWR*’' == 1)
sim 25ns

while (#'VOTWR*’ == 0)
sim 25ns

//* Advance sim clock to ensure previous cycle and the interrupt
//* service routine which is initiated by the R3081 complete

DEPOSIT ‘A_TRANS’, (NONE)
DEPOSIT ‘B_TRANS’, (NONE)
DEPOSIT ‘C_TRANS’, (NONE)

DEPOSIT ’'A_ADDR‘, $Xzzz22zzZ
DEPOSIT ‘B_ADDR’, $xXzzzz2222Z
DEPOSIT 'C_ADDR’, $Xzzzz2zzzZZ
DEPOSIT 'A_DATA’, $xX2z22222Z
DEPOSIT ‘B_DATA’, $X2222222Z
DEPOSIT ’'C_DATA’, $XzzzzZzZZZ
sim 3700ns

//**

//* Test Write Bus Cycle

/1* - with multiple errors in data inputs
//**

DEPOSIT ‘A_TRANS’, (WRITE_WORD)
DEPOSIT ‘B_TRANS’, (WRITE_WORD)
DEPOSIT ‘C_TRANS’, (WRITE_WORD)

//* Write to RAM

DEPOSIT ‘A_ADDR’, $x0000000C
DEPOSIT ’'B_ADDR’, $x0000000C
DEPOSIT ‘C_ADDR’ $x0000000C

~

~

DEPOSIT 'A_DATA’, $xF4444444
DEPOSIT ‘B_DATA’, $x44A44444
DEPOSIT ‘C_DATA’, $x44444447

//* Advance simulation clock

while (#’'VOTWR*’ == 1)
sim 25ns ’
while (#’'VOTWR*’ == 0)

sim 25ns

//* Advance sim clock to ensure previous cycle and the interrupt
//* service routine which is initiated by the R3081 complete

DEPOSIT ‘A_TRANS’, (NONE)
DEPOSIT ‘B_TRANS’, (NONE)
DEPOSIT ‘C_TRANS’, (NONE)
DEPOSIT ‘A_ADDR’, $Xz22ZZ2z2ZZ2
DEPOSIT ’‘B_ADDR’, $Xz222ZZZZ
DEPOSIT 'C_ADDR’, $Xzzzzz2zZZ
DEPOSIT 'A_DATA’', $X2ZZz22ZZZ
DEPOSIT ‘B_DATA’, $XZZ22ZZZZ
DEPOSIT 'C_DATA’, $Xzz222zZz2Z

sim 3700ns

//***

//* Test Burst Read Bus Cycle

//***

DEPOSIT ‘A_TRANS’, (READ_BURST)
DEPOSIT 'B_TRANS’, (READ_BURST)
DEPOSIT ‘C_TRANS’, (READ_BURST)

//* Burst Read from RAM
DEPOSIT 'A_ADDR’, $x00000000
DEPOSIT ‘'B_ADDR', $x00000000_
DEPOSIT ‘C_ADDR’, $x00000000

//* Advance simulation clock

while (#’VOTRD*’' == 1)
sim 25ns

while (#'VOTRD*’ == 0)
sim 25ns

//* Advance sim clock to ensure previous cycle completes

DEPOSIT ‘A_TRANS’, (NONE)
DEPOSIT ‘B_TRANS’, (NONE)
DEPQOSIT ‘C_TRANS’, (NONE)
DEPOSIT ‘A_ADDR’', $Xzzzzzz2zZ
DEPOSIT ‘B_ADDR’, $XZZZzzZZ22Z2
DEPOSIT ‘C_ADDR’, $xXzz2z2222zZ
DEPOSIT ’'A_DATA’', $Xzz2z2z222Z
DEPOSIT ‘B_DATA’, $Xzzz22222Z
DEPOSIT 'C_DATA'’, $X22zzZ22Z
sim 50ns

//**

//* Test Write Bus Cycle
//* - with error in control inputs

//**

DEPOSIT 'A_TRANS’, (WRITE_WORD)
DEPOSIT ‘B_TRANS'’, (READ_BURST)
DEPOSIT ‘C_TRANS’, (WRITE_WORD)

//* Write to RAM

DEPOSIT ‘A_ADDR’, $x00004000
DEPOSIT ‘B_ADDR’, $x00004000
DEPOSIT 'C_ADDR’, $x00004000
DEPOSIT ’'A_DATA’, $x78787878
DEPOSIT ‘B_DATA’, $x78787878
DEPOSIT ‘C_DATA’, $x78787878
//* Advance simulation clock
while (#/VOTWR*' == 1)

sim 25ns
while (#'VOTWR*’ == Q)

sim 25ns

166

//* Advance sim clock to ensure previous cycle and the interrupt
//* service routine which is initiated by the R3081 complete

DEPOSIT ’‘A_TRANS’, (NONE)
DEPOSIT 'B_TRANS’, (NONE)
DEPOSIT 'C_TRANS’, (NONE)
DEPOSIT '‘A_ADDR’, $Xzz2zzzz22ZZ
DEPOSIT ‘B_ADDR’, $x222ZZzZzZ
DEPOSIT 'C_ADDR’, $xXzzzzzzzZz
DEPOSIT 'A_DATA'’, $XZ2ZZZ2ZZ
DEPOSIT 'B_DATA’, $XzzzZzz2zZ
DEPOSIT ‘C_DATA’, $XzzzzzzzZ

sim 3700ns

//***

//* Test Read Bus Cycle

//***

DEPOSIT ‘A_TRANS’, (READ_WORD)
DEPOSIT ‘B_TRANS’, (READ_WORD)
DEPOSIT ‘C_TRANS’, (READ_WORD)
//* Burst Read from RAM
DEPOSIT ‘A_ADDR’, $x00004000
DEPOSIT ‘B_ADDR’, $x00004000
DEPOSIT ‘C_ADDR‘, $x00004000
//* Advance simulation clock
while (#'VOTRD*’ == 1)

sim 25ns .
while (#'VOTRD*’ == 0)

sim 25ns
DEPOSIT ’'A_TRANS’, (NONE)
DEPOSIT ’‘B_TRANS’, (NONE)
DEPOSIT ’‘C_TRANS’, (NONE)
DEPOSIT 'A_ADDR’, $XzzzzzzzZz
DEPOSIT ‘B_ADDR’, $XzzzzzzzZz
DEPOSIT 'C_ADDR’, $xzzzzzzzZ
DEPOSIT ’'A_DATA', $XzzZzz2ZZZ
DEPOSIT 'B_DATA’, $Xz22zzzzZZ
DEPOSIT ’‘C_DATA’, $XZzZzzZzzZZzZ

//* Advance sim clock to ensure previous cycle completes and FIFO is
//* emptied
sim 150ns

167

168

10.

11.

LIST OF REFERENCES

Silverstein, S., “PanAmSat Scrambles to Restore
Service,” Space News, vol. 9, no. 21, p. 3, Springfield,
VA, 1998.

Rhea, J., “The Challenges of Space on the New COTS
Frontier,” Military and Aerospace Electronics, vol. 8,
no. 5, pp. 14-18, Springfield, VA, 1997.

McHale, John, “Space Electronics to Release Space Board
Later this Year,” Military and Aerospace Electronics,
vol. 9, no. 7, p. 6, Springfield, VA, 1998.

Ritter, James C., “Spacecraft Anomalies and Future
Trends,” Radiation Effects Challenges for 21°° Century
Space Systems (1996 IEEE Nuclear and Space Radiation
Effects Conference Short Course), IEEE Publishing
Services, Piscataway, NJ, 1996.

The IDT79R3071, IDT79R3081 RISController Hardware User’s
Manual, Integrated Device Technology, Inc., Santa Clara,
ca, 1994.

Johnson, Barry W., Design and Analysis of Fault Tolerant
Digital Systems, Addison-Wesley, 1989.

Anderson, T. and P. A. Lee, Fault Tolerance Principles
and Practice, Prentice-Hall International, 1981.

Wakerly, J. F., “Microcomputer Reliability Improvement
Using Triple-Modular Redundancy, ” Proceedings of the
IEEE 64(6), pp. 889-895, June, 1976.

Ng, Andrew, IDT79R3051 System Design Example, RISC
Microprocessor Applications Guide, pp. 1-31, Integrated
Device Technology, Inc., Santa Clara, CA, 1995.

Thomas, Donald E. and Philip R. Moorby, The Verilog
Hardware Description Language, 3¢ Edition, Kluwer
Academic Publishers, Norwell, MA, 1996.

R3081 Datasheet, IDT79R3081 RISController with FPA, file

2889 .pdf, located at internet address
http://www.idt.com/products/product_files/79R3081.html

- 169

170

INITIAL DISTRIBUTION LIST

Defense Technical Information Center

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

Dudley Knox Libraryciiiiiiiiiiniinnnannannn

Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

Chairman, Code EC . ittt ittt ittt e et tetneseeeanneas

Naval Postgraduate School
Monterey, California 93943-5101

Professor Alan ROSS v it ittt ittt e tee s eeneeeeenensens

Naval Postgraduate School
Monterey, California 93943-5101

Professor Douglas FOUES ... i ittt it ittt ittt iiennnnnnn _

Code EC/Fs
Naval Postgraduate School
Monterey, California 93943-5101

LT John C. Payne, Jr., USN ...ttt ittt itteenennnnns

6408 Chapel View Rd.
Clifton, VA 22024

RON Phel DS vttt it et et et e e s e e e e e e e e e

Code SP/Ph

Bldg. 233, Rm. 125

- Naval Postgraduate School
Monterey, California 93943-5101

171

