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ABSTRACT 

Operating computers in space requires the use of very expensive radiation 

hardened microelectronics devices. Unfortunately, the United States radiation hardened 

market is rapidly shrinking and makes up a very small percentage of the commercial 

market. For these reasons, and the fact that commercial-off-the-shelf (COTS) devices 

are cheaper, more capable, readily available, and software availability is much greater, 

the use of COTS devices in future space systems is fast becoming a reality. A 

significant disadvantage of COTS devices is their susceptibility to radiation induced 

single event upsets (SEUs), among other radiation effects which are detrimental to 

electronic systems. 

This thesis focuses on the board level design of a tool which enables the analysis 

of fault tolerant computing techniques in a laboratory environment in the presence of 

radiation induced SEUs. When implemented, this tool will be beneficial to the study of 

using COTS devices in space. The tool will provide the capability to analyze the 

performance of hardware redundancy techniques and software algorithms intended to 

improve the performance of COTS microprocessors in this environment prior to their 

use in designs intended for actual space applications. Cadence Concept™ design 

schematics, associated Verilog® code and simulation results are presented to develop 

this concept. 

v 



VI 



TABLE OF CONTENTS 

I. INTRODUCTION 1 

A.  BACKGROUND 1 

B .  PURPOSE 4 

C .  THESIS ORGANIZATION 5 

II. PROCESSOR SELECTION 7 

A. CHARACTERISTICS 7 

1. COTS vs. Rad-hard 7 
2 . CISC vs . RISC 10 
3. Size, Pinout, Power  11 
4. Bus Width and Memory Size . . '.  12 
5 . Speed  13 
6. Multiple Chip vs. Single Chip Implementations  14 

B. PROCESSOR REVIEW  15 
C. CHARACTERISTICS OF SELECTED PROCESSOR  18 

1. CPU Core 2 0 
2. System Control Co-Processor 2 0 
3. Floating Point Co-Processor 20 
4. Clock Generator Unit 21 
5. Instruction and Data Caches 21 
6. Bus Interface Unit 22 
7. System Usage 23 
8. Instruction Set Architecture 24 
9. The pipeline Architecture 2 6 

D. SUMMARY 27 

III. HARDWARE REDUNDANCY 31 

A. TRIPLE MODULAR REDUNDANCY (TMR)   31 
1. Voting Techniques 35 
2. Voting Issues 37 

B. TRIPLE MODULAR REDUNDANT MICROPROCESSOR DESIGN   40 

IV. TMR TESTBED DESIGN 45 

A. OVERVIEW  45 
1. Testbed Operation Summary  46 
2. IDT R3081 Simulation  49 

B. IDT R3 081 BUS INTERFACE  50 
C. ADDRESS/DATA BUS DEMULTIPLEXING  60 
D. DATA BUS VOTING  61 
E. ADDRESS BUS VOTING  63 
F. CONTROL BUS VOTING  64 
G. ADDRESS DECODER  65 
H.  MEMORY/ERROR CYCLE CONTROLLER   67 

1.  RAM/ROM Cycle Controller  68 
2 .  FIFO Memory Cycle Controller  69 
3 .  Error Cycle Controller  71 

.1.  SYSTEM INTERFACE  7 6 

V. SIMULATION RESULTS 79 

A. NORMAL (ERROR FREE) RESULTS   80 
B. INJECTED ERROR RESULTS   83 

VI. CONCLUSION 91 

APPENDIX A.  TMR TESTBED DESIGN SCHEMATICS 95 

VÜ 



APPENDIX B.  CADENCE SUPPLIED MODULES 107 

A. A74FCT373 TRANSPARENT LATCH   107 
B. IDT71256 32K X 8 SRAM 109 
C. IDT72225LA 1K X 18 FIFO 109 

APPENDIX C.  USER DEFINED VERILOG® MODULES   111 

A. IDT R3081 RISC MICROPROCESSOR BUS SIMULATOR 111 
B. 32-BIT VOTER/ERROR DETECTOR AND TRANSCEIVER 125 
C. 8-BIT VOTER/ERROR DETECTOR   129 
D. 32-BIT VOTER/ERROR DETECTOR   132 
E. MEMORY/ADDRESS DECODER   134 
F. MEMORY/ERROR CONTROLLER 13 6 
G. MEMORY READ/WRITE ENABLE CONTROLLER   142 
H.  16-BIT NON-INVERTING TRI-STATE BUFFER   145 
I.  EPROM 147 
J.  SYSTEM INTERFACE 150 

APPENDIX D.  CADENCE SCRIPT CONTROL LANGUAGE FILES .' . . . 157 

A. NORMAL (ERROR FREE) SCL FILE 157 
B. ERROR SCL FILE 162 

LIST OF REFERENCES 169 

INITIAL DISTRIBUTION LIST 171 

VI11 



LIST OF FIGURES 

Figure 1. 
Figure 2. 
Figure 3 . 
Figure 4. 
Figure 5. 
Figure 6. 
Figure 7. 
Figure 8. 
Figure 9. 
Figure 10. 
Figure 11. 
Figure 12 . 
Figure 13 . 
Figure 14. 
Figure 15. 
Figure 16. 
Figure 17. 
Figure 18 . 
Figure 19. 
Figure 20. 
Figure 21. 
Figure 22 . 
Figure 23. 
Figure 24. 
Figure 25. 
Figure 26. 
Figure 27. 
Figure 28. 
Figure 29. 
Figure 30. 
Figure 31. 
Figure 32. 
Figure 33. 
Figure 34. 
Figure 35. 
Figure 36. 
Figure 37. 
Figure 38. 
Figure 39. 
Figure 40. 
Figure 41. 
Figure 42. 
Figure 43 . 
Figure 44. 
Figure 45. 
Figure 46. 
Figure 47. 
Figure 48. 
Figure 49. 
Figure 50. 
Figure 51. 
Figure 52. 
Figure 53 . 
Figure 54. 
Figure 55. 
Figure 56. 

IDT R3081 Block Diagram.  From Ref. [5]  19 
Instruction Formats.  After Ref. [5]  25 
5-Instructions per Clock Cycle.  After Ref. [5]  26 
Triple Modular Redundancy.  After Ref. [6]  33 
TMR with triplicated voters.  After Ref. [6]  33 
Multiple-stage TMR system.  After Ref. [6]  34 
1-bit majority voter.  After Ref. [6]  36 
Mid-value select technique.  After Ref. [6]  38 
Simple R3081 Board Design.  After Ref. [9]  41 
TMR R3081 Board Design  42 
Testbed FIFO Interface  44 
IDT R0381 Burst Read Cycle.  From Ref. [9]  51 
IDT R3 081 Write Cycle.  From Ref. [9]  52 
IDT R3081 Single Datum Read.  From Ref. [9]  52 
IDT R3081 Bus Interface Simulator  53 
Simulated R3081 Burst Read Cycle  56 
Simulated R3081 Write Cycle  58 
Simulated R3 081 Read Cycle  59 
Address/Data Bus Demultiplexing  60 
Data Bus Voting  62 
Address Bus Voting  64 
Control Bus Voting  65 
Address Decoder  66 
Memory/Error Cycle Controller  67 
FIFO Controls  70 
FIFO Controls During Burst Read Cycle  72 
FIFO Controls During Write Cycle  73 
FIFO Controls During Read Cycle  74 
  76 
  78 
  96 
  97 
  98 

.  99 
 100 

System Interface  
System Interface Controls. 
TMR Testbed Schematic 
TMR Testbed Schematic 
TMR Testbed Schematic 
TMR Testbed Schematic 
TMR Testbed Schematic 
TMR Testbed Schematic 
TMR Testbed Schematic 
TMR Testbed Schematic 
TMR Testbed Schematic 
TMR Testbed Schematic 
TMR Testbed Schematic 

of 11)  
of 11)  
of 11)  

(4 of 11)....  
(5 of 11)  
6 of 11) 101 
7 of 11) 102 
[8 of 11) 103 
(9 of 11) 104 
[10 of 11) 105 
[11 of 11) 106 

A74FCT373 Transparent Latch 107 
Address Demultiplexer 107 
Address Demultiplexer Schematic 108 
IDT71256 SRAM 109 
IDT72225LA FIFO 109 
R3081 Microprocessor Bus Simulator Ill 
32-Bit Voter/Error Detector and Transceiver 125 
8-Bit Voter/Error Detector 129 
32-Bit Voter/Error Detector 132 
Memory/Address Decoder 134 
Memory/Error Controller 136 
Memory Read/Write Enable Controller 142 
16-Bit Non-Inverting Tri-State Buffer 145 
EPROM 147 
System Interface 150 

IX 



X 



ACKNOWLEDGMENT 

The author would like to thank Mr. Kenny Clark and Mr. 
Mark Hall for their assistance in obtaining information 
about the triple-vote R3 081 experiment which was part of the 
Microelectronics and Photonics Testbed. 

The author wants to thank Professor Ross for his 
guidance and patience during the work in performing this 
investigation. 

XI 



XI1 



I.   INTRODUCTION 

A.   BACKGROUND 

A fault tolerant system is one that can continue the 

correct performance of its specified tasks in the presence 

of hardware and/or software faults.  Fault tolerance is the 

attribute that enables a system to achieve fault tolerant 

operation.  In many sensitive applications fault tolerant 

computing techniques are employed where the failure of these 

systems could lead to disastrous results.  Examples of such 

sensitive applications include aircraft and spacecraft 

flight control systems and power plant control systems.  A 

recent example of such a failure occurred with the loss of 

PanAmSat's Galaxy 4 satellite. 

Galaxy 4's attitude control system and 
an identical backup unit conked out at 
approximately 6 p.m. Eastern Daylight 
Time May 19 [1998], sending the 
satellite into an uncontrolled spin. 
[Ref. 1] 

While the loss of this satellite was not necessarily 

"disastrous," it could indeed prove to be very expensive. 

The Galaxy 4 cost between $200 million and $250 million to 

build, launch, and insure. [Ref. 1] 

In the space environment there are three categories of 

radiation effects in integrated circuits.  Total Dose 



Effects, Dose Rate Effects, and Single Event Effects. 

Within Single Event Effects are the four sub-categories: 

Single Event Upset (SEU), Single Event Latchup (SEL), Single 

Event Gate Rupture (SEGR), and Single Event Burnout (SEB). 

Total Dose Effects and Dose Rate Effects are destructive 

effects in integrated circuits arising from solar flares, 

neutrons from nuclear detonations, and protons in the Van 

Allen belts.  In addition, three of the subcategories of 

single event effects (SEL, SEGR, and SEB) are also 

destructive.  These effects must be compensated for with the 

use of radiation hardening and shielding techniques.  On the 

other hand, SEUs, which are essentially bit flips occurring 

within a device due to ionized charge being collected in a 

circuit, can be reduced by hardware architecture and 

software techniques such as redundancy. 

Operating computers in the space environment requires 

the use of very expensive radiation hardened (rad-hard) 

devices.  In addition to the use of rad-hard technology, 

space systems also employ many other approaches to fault 

tolerance such as hardware redundancy, fault tolerant 

software algorithms, error detecting/correcting codes, etc. 

While' deploying reliable, fault tolerant computers in space 

will always require rad-hard components, the number of 

suppliers of such devices is decreasing and the costs of the 



devices continues to increase.  Many manufacturers are 

abandoning their production of rad-hard devices in favor of 

the more lucrative, booming consumer electronics industry. 

According to the May 1997 issue of Military & Space 

Electronics,   "U.S. Department of Defense (DOD) leaders are 

struggling to find new ways to safeguard the dwindling 

supplier base of radiation-hardened microelectronics that 

are necessary to meet future spacecraft requirements." [Ref. 

2] 

While the commercial satellite industry may fill the 

void, it is estimated that DOD must increase investments 

from $30 million per year to nearly $60 million per year to 

advance the technology and ensure a base of reliable 

suppliers. [Ref. 2] 

The issue is in the fabrication process of the 

microelectronic devices.  The production of the unique rad- 

hard devices requires specialized processes and demand for 

them is considerably less than that for consumer 

electronics.  With the costs of modern fabrication lines 

reaching nearly $2.8 billion apiece, it is obviously cost 

prohibitive for companies to merely have two separate 

production facilities:  one for rad-hard devices and one for 

non-rad-hard devices.  A company producing both rad-hard and 

non-rad-hard devices will have to give up precious 



fabrication time to make a few devices for a limited market. 

This precious time takes away from the production of 

microelectronics for a booming PC market and could mean 

millions, if not billions, of dollars in lost revenue. 

Herein lies the fundamental economic reason for the 

escalating prices of rad-hard microelectronics. 

An approach to solving this problem, which is receiving 

considerable amount of research, is the development of new 

processes that allow companies to manufacture rad-hard 

devices without major changes to their fabrication process. 

Another possible approach is the development of alternative 

approaches in hardware and software fault tolerant design 

with non-rad-hard commercial-off-the-shelf (COTS) 

microelectronics to reduce the dependency on rad-hard 

technology.  This research project addresses the latter 

approach. 

.B.   PURPOSE 

The goal of this research is to develop a fault 

tolerant computing testbed for use as a tool for the 

analysis of hardware and software fault handling techniques. 

In particular, the testbed is intended to allow the analysis 

of techniques to resolve faults caused by single event 

upsets.  The testbed computer will employ a three CPU, 

triple modular redundant (TMR), design.  The TMR testbed 
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will allow flexibility in the hardware and software design 

enabling direct performance analysis of various approaches 

to fault tolerant design.  The testbed will enable fault 

injection simulations and direct radiation testing on the 

system for data analysis and hardware/software benchmarking. 

This project will help in the development of cheaper 

alternatives to the highly expensive radiation hardened 

devices. 'It will further the research of radiation testing 

and single-event upset research by providing a testbed for 

analysis of various hardware redundancy techniques as well 

as any software techniques chosen to be employed.  The 

testbed will be used in direct radiation testing in a 

laboratory environment and/or placed in a satellite as an 

experimental payload to study the effects in the actual flux 

environment of the satellite.  This study will benefit our 

development of small, economical satellites for both 

commercial and military use. 

C.   THESIS ORGANIZATION 

The organization of this thesis largely follows the 

approach taken to the design of a TMR system.  Chapter I is 

a brief introduction with background information.  Chapter 

II describes the microprocessor selection process and the 

characteristics of the selected processor.  Chapter III 

presents various topics in hardware redundancy including 

5 



triple modular redundancy, voting techniques, 

synchronization and timing issues.  Chapter IV contains the 

actual hardware design of the testbed.  Simulation and 

results are presented in Chapter V.   Finally the 

conclusions drawn from this research are presented in 

Chapter VI. 



II.  PROCESSOR SELECTION 

A.   CHARACTERISTICS 

The place to start when designing a computer is with 

processor selection.  The selection of the processor, or 

processors in the case of hardware redundancy, is where 

critical decisions are made regarding expected operating 

environment, necessary performance, power consumption and 

space limitations. 

1.   COTS vs. Rad-Hard 

In June 1994, a directive was issued by then Secretary 

of Defense William Perry requiring the use of COTS parts in 

military systems whenever possible.  As previously 

discussed, the availability of rad-hard parts is diminishing 

and as a result military, NASA, and commercial spacecraft 

builders may eventually be forced to use COTS technology. 

There are significant advantages to using COTS devices. 

COTS devices tend to be state-of-the-art and are therefore 

significantly more capable than rad-hard devices.  To put it 

in perspective, often the choice is between a COTS Pentium 

or a rad-hard 286 or 386 microprocessor.  As an example, in 

July 1998 Space Electronics announced intentions to release 

a single-board computer for space designed with primarily 

7 



COTS devices.  This product, running at 66 MHz, is intended 

to compete with the RAD6000 from Lockheed Martin Federal 

Systems, which runs at 33 MHz and costs twice as much. [Ref. 

3]  The processor used in the new release product, the 6U 

VME SB486R radiation hardened 32-bit single board computer 

based on Intel's 80486 microprocessor, is still an order of 

magnitude slower than the 3 00-400 MHz microprocessors 

currently available for desktop PCs. 

Other advantages of COTS systems include lower cost and 

better availability.  Often a rad-hard microprocessor can 

cost many (10-15) thousands of dollars more than more 

capable, current technology COTS devices.  In addition, rad- 

hard devices often have uncertain delivery times.  Because 

of the declining rad-hard device market, these devices often 

must be special ordered from a limited number of available 

manufacturers.  On the other hand, manufacturers of COTS 

devices often have stockpiles and can deliver a product 

within 24-48 hours.  Many powerful COTS devices can even be 

obtained over the counter at several big name electronics 

stores. 

Commercial software is much more available for COTS 

devices.  Software development is a very costly part of 

building any computer system.  As the complexity of 

microprocessors increases, so does the complexity of the 
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required software.  If rad-hard devices are not identical to 

their COTS counterparts, software must be specially designed 

for this device.  This is both expensive and time consuming. 

In addition, this specially designed software will have to 

undergo rigorous testing to check its response to unexpected 

situations. [Ref. 4]  This is in contrast with software for 

COTS devices where large companies design software for these 

devices.  The software becomes proven over time through the • 

high volume of users and the consumers actually participate 

in the testing of these products. 

Finally, while not necessarily an advantage of COTS 

devices themselves, it is possible to achieve some degree of 

radiation hardness by employing various techniques to shield 

COTS devices which are not themselves radiation hardened. 

[Ref. 4]  While the use of shielding has shown to improve 

the reliability of devices in radiation environments, it 

adds to the physical space and weight requirements. 

■However, there are disadvantages to using COTS devices. 

While the reliability of COTS devices used in benign 

environments is known, their reliability in stressing 

environments (radiation, thermal, vibration) is uncertain. 

[Ref. 4]  The susceptibility of COTS devices to radiation 

induced failures is a major concern, and survivability in 

the space environment may be difficult with many COTS 



devices.  While some COTS devices may have hardness levels 

of 100 kRADs or more, this hardness varies greatly from one 

device to another.  This hardness varies even for devices 

produced by the same manufacturer.  Because of this lack of 

hardness assurance by manufacturers, each individual device 

will have to undergo testing and effectively be space 

qualified. 

Another disadvantage of COTS devices is they change 

rapidly.  The semiconductor industry generally cycles new 

technology every 6-18 months.  The devices continue to get 

faster, more capable, and require less power.  The advantage 

here is clear for devices intended for the normal, non- 

stressing environment.  However, as the devices get smaller, 

faster, and more complex, they are becoming more susceptible 

to radiation.  Finally, in many cases, the required safety 

and reliability specifications, especially for military 

applications, simply cannot be met by COTS devices. [Ref. 4] 

2.   CISC vs. RISC 

Reduced instruction set computer (RISC) machines were 

designed to take advantage of the caching, prefetching, 

pipelining, and superscalar methods that were invented to 

improve the performance of complex instruction set computer 

(CISC) machines.  The CISC machines depend on long complex 

instructions.  The operand access for these instructions 
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required complex address arithmetic.  As a result, CISC 

machines were unable to take full advantage of these 

techniques. 

The RISC focuses on reducing the number and complexity 

of instructions in the machine.  This allows a reduction of 

actual machine hardware complexity.  Early on, RISC machines 

operated such that each instruction completed in one clock 

cycle.  This was achieved by limiting the instructions in 

RISC machines to a fixed length, usually 1 word.  Thus, in a 

32-bit machine, one 32-bit word specifies everything there 

is to know about the instruction. 

With the advent of pipelining, the current goal is that 

(at least) one instruction will begin and (at least) one 

instruction will complete during every clock cycle.  Since 

program execution time depends on throughput and not on 

individual instruction execution times, issuing (and thus 

completing) one instruction per clock cycle is an 

appropriate goal.  This is achieved by making instructions 

simple, not by making the clock period longer. 

3.   Size, Pinout, Power 

The size of the device determines the physical space 

required on the assembled board.  Space and weight 

constraints are critical limitations imposed on systems for 

satellites and other space applications.  Similarly, power 
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consumption is a critical factor in space applications where 

a steady, endless supply of power from a standard 120 volt 

outlet is not available.  In applications where power comes 

from batteries and/or solar cells, available power is a 

precious commodity. 

The pinout of the device is often directly related to 

its physical size.  In addition, many devices reduce their 

pinout requirements by having individual address and data 

lines multiplexed together on one interface pin. 

4.   Bus Width and Memory Size 

The bus width of COTS devices essentially follows 

current trends.  While many processors are available today 

with 64-bit architectures, the RAD6000 microprocessor 

(considered to be the industry standard for radiation 

hardened microprocessors) incorporates a 32-bit 

architecture.  Compared to 32-bit architectures, a 64-bit 

bus effectively doubles (design dependent) the pinout 

requirements and correspondingly increases the power 

consumption of the device. 

As bus size increases, the complexity of the 

interConnectivity hardware increases as well.  Particularly 

in a TMR design where 3 microprocessors are connected 

together with voting hardware, increasing the bus width from 

12 



32-bits to 64-bits requires a rather significant increase in 

hardware and logic. 

The size of the physical memory that the processor can 

use is a significant factor in space applications as well. 

In space applications where large volume secondary storage 

media is generally not available, the bigger the physical 

memory potential the better.  Of course, this is essentially 

limited by the bus architecture of the device.  A device 

with a 64-bit bus can accommodate a larger physical memory 

space than a 32-bit bus device.  Without large secondary 

storage media, all operations will be performed using ROM 

and RAM with varying combinations of ROM and RAM types 

depending on the application.  Therefore, it is necessary 

that the available physical address (memory) space be large 

enough to accomplish the intended tasks. 

5.   Speed 

The speed of the device is an important issue. 

However, in a TMR design, the speed at which the system can 

operate will be limited by the propagation time of the 

voting and vote error control logic as well as the memory 

setup and hold times.  Although new personal computers are 

currently available with processors running at 300-400 MHz, 

the current new radiation hardened microprocessors run at 

33-66 MHz. 
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The speed of the microprocessor chosen for this TMR 

design will be limited by the critical path logic 

propagation time in the several FPGAs chosen to implement 

the voting and vote error control. 

6.   Multiple Chip vs. Single Chip Implementations 

The tradeoff associated with a single chip processor 

versus a processor which requires additional hardware 

peripheral devices is a significant issue.  This is 

especially true in a TMR design where each address/data line 

as well as each control line has to be voted to ensure 

agreement between the three processors.  In addition, in 

space applications the potential for radiation induced error 

increases with each additional piece of hardware added. 

Other problems include fault localization.  With 

microprocessors with external peripheral device 

requirements, voting and vote error control complexity is 

increased.  Also, board reliability is inversely 

proportional to the number of chips on it. 

The overall complexity of the board design increases 

as well with microprocessors with external peripheral device 

requirements.  In a TMR design, this increased complexity is 

compounded.  In a single chip microprocessor, the associated 

interface complexity is internal to the device.  Therefore 

radiation-induced faults are limited to a single device when 
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performing processor voting which corresponds to simpler 

voting logic and less hardware requirements. 

B.   PROCESSOR REVIEW 

As part of this research, several microprocessors were 

analyzed based on the microprocessor characteristics 

discussed in the preceding section.  Tables 1, 2, and 3 

contain data concerning the various COTS CISC and RISC 

microprocessors that were considered in developing the 

testbed. 

The processor chosen was the R3 081 RISC Microcontroller 

manufactured by Integrated Device Technologies (IDT).  The 

reasons for this selection were many.  From the outset of 

this research project, the intent was to choose a COTS 

device for the TMR design. 

The R3 081 is a COTS, single chip, RISC architecture 

machine, with a 32-bit multiplexed address/data bus.  The 

highly flexible and user configurable device can run between 

20 and 50 MHz and is readily available. 

The determining factor for selecting the R3 081 was the 

availability of radiation environment performance data from 

the Naval Research Laboratory (NRL).  The R3 081 was used in 

a triple vote experiment deployed on the Microelectronics 

and Photonics Testbed (MPTB).  The MPTB is a space 

experiment launched in 1997 into a high radiation orbit to 

15 



test performance, reliability, and survivability of new 

microelectronics and photonic devices operating in the space 

radiation environment.  The triple vote experiment was one 

of 24 experiments onboard the MPTB which were individually 

scheduled by a core controller.  The purpose of this 

experiment was to measure SEU, SEL, and Total Dose effects 

in IDT R3081 microprocessors vs. epi thickness.  The three 

microprocessors used had epi thicknesses of 6, 8, and 12 

microns respectively.  The MPTB design was obtained from NRL 

and used as a starting point for the testbed designed in 

this research project. 

Characteristic AM29000 AM29050 PowerPC 603e 
Manufacturer AMD AMD IBM, Motorola 
Processor 
Architecture 

Streamlined 
Instruction 

Streamlined 
Instruction 

RISC 

Package 168-PQFP or 169- 
PGA 

169-PGA 

Floating Point 
Accelerator 

Y (off chip) Y Y 

Memory Management 
Unit 

Y Y Y 

Speed (MHz) 16-33 20-40 200-250 
Integer 
Multiply/Divide 

Y N Y 

Bus Architecture 32-bit 3 bus 32-bit 3 bus Selectable 64-/32- 
bit data bus, 32- 
bit address bus 

Demultiplex Signal N/A N/A N/A 
Physical Address 
Space 
Power (watts) < 1 < 1 3.5 - 5.8 
Single Chip N Y Y 
Built-in Master/Slave Y Y Y                  1 

Table 1.  Microprocessor Review (1 of 3) 
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Characteristic PowerPC 604e PowerPC 750 R3081 

Manufacturer IBM, Motorola IBM, Motorola IDT 
Processor 
Architecture 

RISC RISC MIPS/RISC 

Package 255-CBGA 360-CBGA 84-pin MQUAD/PLCC 

Floating Point 
Accelerator 

Y Y Y 

Memory Management 
Unit 

Y Y Y 

Speed (MHz) 250-350 200-300 20-50 

Integer 
Multiply/Divide 

Y Y (3) Y (2) 

Bus Architecture 64-bit data, 32- 
bit address 

32-bit data, 64- 
bit address 

32-bit 
address/data 

multiplexed 

Demultiplex Signal N/A N/A Y 
Physical Address 
Space 

4GB 

Power (watts) 6.0-14.5 4.7-11.0 2.375-4.125 

Single Chip Y Y Y 
Built-in Master/Slave N N N 

Table 2.     Microprocessor Review   (2  of  3). 

Characteristic R36100 R4650 R5000 

Manufacturer IDT IDT IDT 
Processor 
Architecture 

MIPS/RISC MIPS-III/RISC MIPS-IV/RISC 

Package 208-pin MQUAD 288-pin MQUAD 223-pin CPGA or 
272-ball SBGA 

Floating Point 
Accelerator 

N Y Y 

Memory Management 
Unit 

Y Y Y 

Speed (MHz) 20-33 100-180 200 
Integer 
Multiply /Divide 

Y Y Y 

Bus Architecture 8-, 16-, 32-bit 

programmable 
address and data 

32- or 64-bit ' 
address/data 
multiplexed 

64-bit 
address/data 
multiplexed 

Demultiplex Signal N/A Y Y 
Physical Address 
Space 

4 GB 4GB 

Power (watts) 2-3 1.646-3.465 7.59-8.25 
Single Chip Y Y Y 
Built-in Master/Slave N N N 

Table  3.     Microprocessor Review   (3  of  3) 
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C.   CHARACTERISTICS OF SELECTED PROCESSOR 

The IDT R3 0xx family of microprocessors is intended to 

offer the high-performance associated with the MIPS RISC 

architecture for low-cost, simplified, power sensitive 

applications. [Ref. 5]  Some features of the R3 081E include: 

• High level of integration minimizes cost 
• Over 40 MIPS at 50 MHz 
• Low cost 84-pin packaging 
• Large on-chip user configurable instruction and data 

caches 
• On chip Floating Point Accelerator (FPA) 
• 20 through 50 MHz operation 
• Multiplexed address/data bus interface with low 

cost, low speed memory systems with high .speed CPU 
support 

• On-chip 4-deep write buffer eliminates memory write 
stalls 

• On-chip 4-deep read buffer supports burst or simple 
block reads 

Figure 1 shows a block diagram of the IDT R3081E 

microprocessor.  Some of the highlights include: 

• System Control Coprocessor (CPO) 
S   Dedicated Exception/Control Registers- 
■S   Dedicated Memory Management Registers 

• Integer CPU Core 
•f   32 32-bit general registers 
S  ALU, Shifter, Mult/Div Unit, Address Adder, and PC 

Control 
• Floating Point Coprocessor (CPl) 

S   16 64 bit registers 
S   Exponent, Add, Divide, and Multiply Units 
S  Floating Point Exception/Control 

• Configurable Instruction and Data Caches 
• 4-deep Read and Write Buffers 
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Figure 1.  IDT R3081 Block Diagram.  From Ref. [5] 
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1. CPU Core 

The CPU Core is a full 32-bit RISC integer execution 

engine, capable of sustaining close to a single cycle per 

instruction rate.  It contains a 5 stage pipeline and 32 

orthogonal 32-bit registers. [Ref. 5] 

2. System Control Co-Processor 

The integrated on-chip System Control Co-Processor 

(CPO) manages both the exception handling of the CPU and the 

virtual to physical address mapping.  The fully associative 

64-entry Translation Lookaside Buffer (TLB) maps 4kB virtual 

pages into the physical address space.  The virtual to 

physical mapping includes kernel segments which are hard- 

mapped to physical addresses, and kernel and user segments 

which the TLB maps 4kB page by 4kB page into anywhere in the 

4GB (potentially) physical  address space.  The TLB also 

allows 8 pages to be locked by the kernel to ensure 

deterministic response in real-time applications. [Ref. 5] 

3. Floating Point Co-Processor 

The R3 081 also incorporates an integrated R3010A 

compatible FPA which is co-processor 1 (CP1) to the CPU. 

The high-performance co-processor provides separate add, 

multiply, and divide functional units for single and double 

precision floating point arithmetic.  To the software 
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engineer, the FPA simply appears as an extension of the 

integer execution unit with 16 dedicated 64-bit floating 

point registers.  The software references these as 32 32-bit 

registers when performing loads or stores. [Ref. 5] 

4. Clock Generator Unit 

The on-chip clock generator manages the interaction of 

the CPU core, caches, and bus interface.  It includes a 

clock doubler to provide a higher frequency signal to the 

internal execution core. [Ref. 5] 

5. Instruction and Data Caches 

The on-chip cache is default configured to 16kB 

Instruction Cache and 4kB Data Cache.  However, the cache 

can be reconfigured by system software to 8kB of Instruction 

and 8kB of Data caches.  The instruction cache is organized 

with a line size of 16 bytes (four 32-bit entries) which 

achieves hit rates in excess of 98% in most applications. 

The data cache is organized as a line size of 4 bytes (one 

word) and achieves hit rates near 95% in most applications. 

The high hit rates associated with the instruction and data 

cache contribute significantly to the performance of the 

R3081E.  The instruction cache is a direct mapped cache 

capable of caching instructions from anywhere in the 4GB 

physical address space.  The instruction cache is 
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implemented using physical addresses and physical tags 

(rather than virtual addresses or tags) to eliminate the 

requirement of flushing on context switch.  As with the 

instruction cache, the data cache is a direct mapped 

physical address cache capable of mapping any word within 

the 4GB physical address space.  However, the data cache is 

implemented as a write-through cache to insure that main 

memory is always consistent with cache memory.  In order to 

minimize processor stalls due to data write operations, the 

bus interface utilizes a 4-deep write buffer which 

"captures" address and data information at the processor 

execution rate, allowing it to be written to main memory at 

the memory speeds with minimum impact to overall system 

performance. [Ref. 5] 

6.   Bus Interface Unit 

Because the R3 081 uses its large internal caches to 

provide the majority of the bandwidth requirements of the 

execution engine, it can utilize a much simpler bus 

interface connection to slower memory.  The bus interface 

utilizes a 32-bit address and data bus multiplexed onto a 

single set of pins.  It also provides an ALE (Address Latch 

Enable) output signal to de-multiplex the A/D bus, and 

simple handshaking signals to process CPU read and write 

requests.  The DMA Arbiter allows an external master to 
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control the external bus if desired.  As described 

previously in the Instruction and Data Cache section, a 4- 

deep write buffer decouples the speed of the execution 

engine from the speed of the main memory system.  The write 

buffers capture and FIFO processor address and data 

information in store operations and schedule them on the bus 

at a rate that can be handled by the system memory.  The 

read interface is capable of both single word and quad word 

reads.  Single word reads utilize a simple handshake, and 

quad word reads can utilize either a simple handshake or a 

tighter timing mode when the memory system can burst data at 

the processor clock rate.  In order to accommodate slower 

quad word reads, the 4-deep read buffer FIFO is utilized 

allowing the external interface to queue data within the 

processor before releasing it to perform a "burst" fill of 

the internal caches. [Ref. 5] 

7.   System Usage 

The bus interface of the■IDT R3 0xx (including the 

R3081E) family was specifically designed to allow a wide 

range of memory systems.  A typical system using off-the- 

shelf logic devices contains simple transparent latches to 

de-multiplex the R30xx address and data busses and the A/D 

bus; the data path between the memory system and the A/D bus 

is managed by octal transceivers; and a small set of PALs is 
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used to control the various data path elements, and to 

control the handshake between the memory and the processor. 

[Ref. 5] 

8.   Instruction Set Architecture 

All instructions and addresses are 32 bits and the CPU 

utilizes a 5-stage pipeline to achieve a near one 

instruction per clock cycle execution rate.  There are five 

basic groups of instructions: 

• Load/Store 
■/ Move data between memory and general registers 

• Computational 
S   Perform arithmetic, logical, and shift operations 

on values in registers 
• Jump and Branch 

S  Change control flow of program 
• Co-Processor 

S   Perform operations on the co-processor set 
• Special 

•S  Movement of data between special and general 
registers, system calls, breakpoint operations 

Figure 2 displays the instruction formats of the R3 081 

processor.  Load/Store instructions are all encoded as 

Immediate, or I-Type, instructions.  Computational 

instructions are encoded as either Register, or R-Type, 

instructions when both source operands and the result are 

general registers or I-Type when one of the source operands 

is a 16-bit immediate value.  Jump and Branch instructions 

can be either J-Type (target address is PC + 2 6-bit 
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immediate value), R-Type (target address is 32-bit value 

contained in one of general registers), or I-Type (Branch 

Instructions where target address is formed from a 16-bit 

displacement relative to the PC).  Jump and Link 

instructions save a return address in register R31.  Co- 

processor Loads and Stores are always I-Type.  Special 

instructions are always encoded as R-Type. [Ref. 5] 

I-Type (Immediate) 

31                  26 25 21 20 16 15 0 

op rs it immediate 

J-Type (Jump) 

31 26 25 

op target 

R-Type (Register) 

31 26 25 21 20 16 15 11 10 6 5 

op rs it rd shamt funct 

where: 
op 6-bit  operation code 
rs 5-bit source register specifier 
rt 5-bit  target register or branch condition 
immediate 16-bit immediate,   or branch or address displacement 
target 26-bit  jump target address 
rd 5-bit destination register specifier 
shamt 5-bit  shift amount 
funct 6-bit  function field 

Figure 2.  Instruction Formats.  After Ref. [5] 
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Table 4 lists the instruction set mnemonics of R3081E 

processor. 

9.   The Pipeline Architecture 

The execution of a single instruction is performed in 

five separate steps: 

• Instruction Fetch (IF) 
•S  Instruction virtual address translated to physical 

address and read from internal instruction cache 
• Read (RD) 

S   Instruction decoded and required operands read 
• ALU (ALU) 

S  Required operation is performed 
• Memory Access (MEM) 

S   If instruction was a Load or Store, the data cache 
is accessed 

• Write Back (WB) 
•/  Results from ALU step updated in on-chip register 

file 

Figure 3 illustrates the pipeline and the capability to 

execute 5 instructions per cycle.  Pipeline hazards in the 

I#l IF RD ALU MEM WB 

I#2 IF RD ALU MEM WB 

I #3 IF RD ALU MEM WB 

I#4 IF RD ALU MEM WB 

I#5 IF RD ALU MEM WB 

Current 
Clock 
Cycle 

Figure 3.  5-Instructions per Clock Cycle.  After Ref. [5] 
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R3081 are handled in both hardware and software.  The 

hardware methods used are forwarding and stalling (minimal). 

The hardware methods deal with instructions that need a 

result from the register file of the immediately prior 

instruction and in integer multiply and divide operations 

where an instruction attempts to access the LO or HI 

registers prior to completion of the multiply or divide.  If 

this happens, the requesting instruction will be blocked 

until the result is ready.  The software method used is an 

optimizing compiler and peephole scheduler of the assembler. 

Two instruction classes which use the software method are 

Load instructions and Jump and Branch instructions.  Both of 

these instruction classes have a delay, or latency, of one 

cycle.  Rather than include extensive pipeline control 

logic, the CPU gives responsibility for dealing with "delay 

slots" to software.  The peephole optimizer, performed as a 

part of compilation or assembly, can reorder the code to 

insure that the instruction in the delay slot does not 

require the logical result of the "delayed" instruction. 

[Ref. 5] 

D.   SUMMARY 

Having completed a review of some of the desired 

characteristics of a microprocessor to be investigated when 

designing a system, the IDT R3 081 RISC microprocessor was 
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OP 

LB 
LBU 
LH 
LHU 
LW 
LWL 
LWR 
SB 
SH 
SW 
SWL 
SWR 

ADDI 
ADDIU 
SLTI 
SLTIU 

ANDI 
ORI 
XORI 

LUI 

ADD 
ADDU 
SUB 
SUBU 
SLT 
SLTU 
AND 
OR 
XOR 
NOR 

SLL 
SRL 
SRA 

SLLV 
SRLV 
SRAV 

 DESCRIPTION  
Load/Store Instructions 
Load Byte 
Load Byte Unsigned 
Load Halfword 
Load Halfword Unsigned 
Load Word 
Load Word Left 
Load Word Right 
Store Byte 
Store Halfword 
Store Word 
Store Word Left 
Store Word Right 

Arithmetic Instructions 
(ALU Immediate) 
Add Immediate 
Add Immediate Unsigned 
Set on Less Than Immediate 
Set on Less Than Immediate Unsigned 

AND Immediate 
OR Immediate 
Exclusive OR Immediate 

Load Upper Immediate 

Arithmetic Instructions 
(3-operand, register type) 
Add 
Add Unsigned 
Subtract 
Subtract Unsigned 
Set on Less Than 
Set on Less Than Unsigned 
AND 
OR 
Exclusive OR 
NOR 

Shift Instructions 
Shift Left Logical 
Shift Right Logical 
Shift Right Arithmetic 

Shift Left Logical Variable 
Shift Right Logical Variable 
Shift Right Arithmetic Variable 

OP 

MULT 
MULTU 
DIV 
DIVU 

MFHI 
MTHI 
MFLO 
MTLO 

J 
JAL 
JR 

JALR 
BEQ 
BNE 
BLEZ 

BGTZ 
BLTZ 
BGEZ 

BLTZAL 
BGEZAL 

SYSCALL 
BREAK 

LWCz 
SWCz 
MTCz 
MFCz 
CTCz 
CFCz 
COPz 
BCzT 
BCzF 

MTCO 
MFCO 
TLBR 
TLBWI 
TLBWR 
TLBP 
RFE 

DESCRIPTION 
Multiply/Divide Instructions 
Multiply 
Multiply Unsigned 
Divide 
Divide Unsigned 

Move From HI 
Move To HI 
Move From LO 
Move To LO 

Jump and Branch Instructions 
Jump 
Jump and Link 
Jump to Register 

Jump and Link Register 
Branch on Equal 
Branch on Not Equal 
Branch on Less Than or Equal to 
Zero 
Branch on Greater Than Zero 
Branch on Less Than Zero 
Branch on Greater Than or Equal to 
Zero 
Branch on Less Than Zero and Link 
Branch on Greater Than or Equal to 
Zero and Link 

Special Operations 

System Call 
Break 

Coprocessor Instructions 
Load Word from Coprocessor 
Store Word to Coprocessor 
Move to Coprocessor 
Move from Coprocessor 
Move Control to Coprocessor 
Move Control from Coprocessor 
Coprocessor Operation 
Branch on Coprocessor z True 
Branch on Coprocessor z False 

System Control Coprocessor (CPO) 
Instructions 
Move to CPO 
Move from CPO 
Read Indexed TLB Entry 
Write Indexed TLB Entry 
Write Random TLB Entry 
Probe TLB for Matching Entry 
Restore from Exception  

Table 4.  Instruction Mnemonics.  After Ref. [5] 
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chosen.  Although the performance of the R3 081 is much less 

than that of the current microprocessors available, it does 

have the performance and computing power necessary for 

analyzing fault tolerant improvement techniques in the 

presence of radiation induced SEUs.  In addition, the R3081 

has previously been tested by the Naval Research Laboratory 

and flown in actual space satellite experiments.  Finally, 

the R3081 employs a flexible bus interface which makes it a 

good candidate for use in a redundant hardware design. 

In the next chapter, some of the concepts of triple 

modular redundancy, a hardware redundancy technique, are 

covered.  This is followed by a description of a simple 

R3081 based system.  Finally, a brief overview of how three 

R3 081 processors were incorporated into a redundant design 

is presented. 
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III. HARDWARE REDUNDANCY 

There are many techniques available to achieve some 

degree of fault tolerance.  Fault tolerant systems basically 

employ some combination of hardware, software, time, or 

information redundancy.  The purpose of this chapter is to 

introduce the concept of triple modular redundancy (TMR). 

The initial design of the testbed will employ a TMR design 

and as such TMR issues are dealt with thoroughly.  The 

overall goal of this project is to design a testbed which 

allows flexibility in the ultimate methods employed to 

achieve fault tolerance.  This will allow the user to 

compare and contrast the fault tolerant performance of many 

combinations of the different techniques. 

A.   TRIPLE MODULAR REDUNDANCY (TMR) 

A common form of hardware redundancy is triple modular 

redundancy (TMR).  The basic concept is fairly simple.  It 

involves the triplication of the hardware and performing a 

majority vote to determine the output of the system.  This 

technique is considered to be passive hardware redundancy in 

that it masks the occurrence of faults.  Fault tolerance is 

achieved through the use of majority voting techniques 

without the need for fault detection or system recovery. 

[Ref. 6]   If one of the modules becomes faulty, the two 
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remaining modules, which are fault-free, mask the fault when 

the majority vote is performed.  In short, TMR uses three 

identical modules, performing identical operations, with a 

majority voter determining the output, as shown in Figure 4. 

In a TMR system with three microprocessors, an SEU 

could cause one processor to branch to a completely wrong 

address.  That processor will continue to cause errors on 

all votes until it is reset to the state of the correct 

processors.  Until it is reset, the system is no longer a 

TMR system.  It is a dual processor with comparison system 

which provides for error detection but no error correction. 

One of the primary disadvantages with a TMR system is 

that the system can be no more reliable than the voter 

itself.  Indeed the voter becomes a single point of failure— 

if the voter fails, the entire system fails. [Ref. 6] 

Several techniques can be used to overcome this.  One method 

is the use of triplicated voters which produce three 

independent outputs.  Here again three identical modules 

receive identical inputs and perform the same operations on 

those inputs.  Each module provides its output to three 

separate and independent voters to produce the three 

results, as shown in Figure 5.  Each output is correct as 

long as no more than one module, or input, is faulty.  In 

essence, the voter is no longer the single point of failure. 
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A multi-stage TMR system can be built by 

interconnecting this triplicated voter approach as shown in 

Figure 6. [Ref. 6]  A multi-stage system with triplicated 

voters can provide some error correction in that an error in 

a module of one stage is masked and the voters provide three 

Input 1 Module 1 

Input 2 Module 2 

Input 3 Module 3 

-►Output 

Figure 4.  Triple Modular Redundancy.  After Ref. [6] 

Input 1 Module 1 

Input 2 Module 2 

Input 3—► Module 3 

-►Output 1 

-►Output 2 

-►Output 3 

Figure 5.  TMR with triplicated voters.  After Ref. [6] 
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independent and "corrected" results to the next stage.  At 

the final stage, the three independent outputs can then be 

voted again to form a single output.  However, this final 

voter could again become the single point of failure. 

Input 1 Module 1 

Input 2 Module 2 

Input 3 —► Module 3 

Module 1 

Module 2 

Module 3 

Figure 6.  Multiple-stage TMR system.  After Ref. [6]. 

A generalization of the TMR approach is N-Modular 

Redundancy   (NMR).    [Ref. 6]  TMR is based on the techniques 

of NMR.  There are N  redundant modules vice three.  In 

general, N  is chosen to be odd so that majority voting 

techniques can still be applied.  The advantage gained is 

that more module faults may be tolerated.  In an NMR system 

with N    redundant modules, majority voting will allow the 

system to tolerate faults in TN/21 - 1 modules.   The 

primary concerns associated with NMR system deal with added 

logic hardware and circuit complexity.  Clearly, one could 

design a system that continues to employ NMR voting at 
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multiple stages to improve system reliability.  Referring to 

Figure 5, the triplicated voters could even be voted again 

to ensure faults are detected in the voters themselves. 

This could conceivably continue in an endless cycle. 

Practical applications and design constraints often prevail 

and are the limiting factor to choosing N  in an NMR system. 

[Ref. 6] 

1.   Voting Techniques 

Voting may occur at several locations within a system. 

Take, for example, a TMR system used as an industrial 

process controller. [Ref. 6]  The controller could sample 

from three identical, independent sensors and perform a vote 

to determine which sensor value to use.  This data is 

provided to three identical, independent modules to perform 

some calculations on the sensor data, and then a majority 

vote on these calculations is performed to perhaps adjust 

the controls of the process.  The voting can be used on both 

analog and digital data.  This approach masks and contains 

the effect of a faulty sensor.  An alternative method might 

be to provide the values from each of the three sensors 

directly to a dedicated module, perform the necessary 

calculations, and then vote the results from the three 

modules.  Here, faulty sensor data would be allowed to 

migrate into the processing modules.  The tradeoffs between 
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the two approaches are slight but would obviously have to be 

analyzed to determine the appropriate design based on the 

application. 

A hardware voter is a relatively simple circuit to 

design and implement.  All that is needed is a combinational 

logic circuit that produces a 1 when a majority of the input 

bits are 1 and a 0 when a majority of the input bits are 0. 

An implementation of a one-bit majority voter is shown in 

Figure 7.  Alternately, the carry out output of a 1-bit full 

adder will produce the necessary output to implement the 1- 

bit majority voter.  An 8, 16, 32, or 64-bit voter can be 

constructed by replicating the circuit in Figure 7 in 

Innnt     A 
) 

Input     R 

) 

\ \             "~~\ 

Input     C. 

) X                       7 
1 \                        / _y j           ^/ 

\ 
i 

 ) 

Figure 7.  1-bit majority voter.  After Ref. [6]. 

parallel for each bit that needs to be voted.  One can see 

the amount of additional logic grows rapidly if, for 

instance, the three independent modules in a TMR system to 

be voted are 32-bit microprocessors.  The desired 

36 



reliability will certainly have to be weighed against the 

space, power, and'weight limitations, especially in 

satellite and other space applications. 

2.   Voting Issues 

In practical applications, timing will have to be 

considered when performing majority voting.  If the three 

inputs to a majority voter arrive at different times, then 

depending on when the output of the voter is sampled, an 

incorrect vote may be generated.  In many applications, an 

incorrect result cannot be allowed even for a very small 

period of time. [Ref. 6]  There are techniques which can be 

applied that will force the inputs to the voter to be 

synchronized so that the output of the voter is sampled at 

the correct time.  One approach to achieving synchronization 

involves a two-phase clock which drives master-slave D flip- 

flops on each input to the majority voter.  The costs of 

using this synchronization approach will be in terms of 

additional logic and timing delays. 

Another problem that may be encountered in hardware 

voting is that the three modules in a TMR system, or the 

three sensors that feed the three modules, could disagree 

slightly even in a fault-free environment.  These devices, 

sensors in particular, can seldom be produced so that they 

generate identical results under the same circumstances.  In 
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addition, a single analog-to-digital converter can produce 

results that differ slightly in the least significant bits, 

even if the exact same signal is applied to it several 

different times. [Ref. 6]  One technique used to get around 

this is to ignore a set number of the least significant bits 

generated.  The assumption is that the result will differ in 

only a known number of the least significant bits.  An 

alternative approach is the mid-value select technique. The 

voter basically just selects the middle value of the three 

inputs as shown in Figure 8. Essentially, it is the same 

concept as a majority voter but is necessary when the three 

values may have slight perturbations between them.  The 

middle value is chosen 

Sensor 
Values 

Time 

Figure 8.  Mid-value select technique.  After Ref. [6] 



because an assumption is made that only one of the inputs 

can be faulty at one time.  Thus, since minor perturbations 

are expected the middle value will always be one from a 

"good" input.  The middle value is chosen instead of taking 

an average of the three inputs.  This is because in the 

event that one input is clearly faulty as shown in Figure 8, 

the average would be adversely affected.  In effect, the 

faulty input is ignored by selecting the middle value. 

Another problem that must be realized in a TMR system 

with majority voting is that identical errors in two of the 

modules will have to be tolerated.  The errors will produce 

results that when passed to the voter will be selected as 

the majority.  The possibility of this occurring and the 

consequences would definitely have to be investigated 

depending on the application. 

A significant danger of incorporating redundancy into a 

system is that the overall system reliability could be 

reduced, due to the increased number of components.  If the 

redundant systems are not themselves reliable, there is 

little hope of improving the reliability of the system. 

[Ref. 7]  For example, Wakerly notes that constructing a 

voting component for three microprocessors in a.TMR 

structure could conceivably require 14 integrated circuit 

packages constructed from the same (unreliable) technology 
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as the three microprocessor packages, and hence would lead 

to a system with lower reliability than that of a single 

microprocessor chip. [Ref. 8]  In addition, on a PC board, 

solder connections can be one of the largest sources of 

failure. 

On the other hand, given that the redundant components 

are sufficiently reliable and the additional logic required 

is at least as reliable as the redundant modules, TMR 

provides a viable technique for improving overall system 

reliability in critical applications. [Ref. 4] 

B.   TRIPLE MODULAR REDUNDANT MICROPROCESSOR DESIGN 

Having reviewed the concepts of TMR, what follows is a 

description of how they might be employed with three 

microprocessors.  Also, having chosen to build the Testbed 

using the IDT R3081 RISC Microprocessor discussed in 

Chapters I and II, it is useful to examine what is necessary 

in constructing a board with three R3 081's operating in a 

TMR design. 

Figure 9 shows a block diagram of a simple system using 

a single R3081 processor.  The multiplexed address/data bus 

of the R3 081 is demultiplexed through the use of address 

latches and data buffers/transceivers.  The address bus and 

the control bus are then used by the memory controller to 
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access the memory blocks.  A typical design similar to 

Figure 9 is described in detail in Ref. [9]. 

Expounding on this simple system, Figure 10 shows a 

block diagram of a TMR system using three R3 081 processors. 

Figure 10 shows the additional hardware blocks necessary to 

implement majority voting of the address, data, and control 

Figure 9.  Simple R3 081 Board Design.  After Ref. [9] 
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Figure 10.  TMR R3081 Board Design. 

busses and how the voted busses are then used in the 

remainder of the system. 

A significant issue when using three microprocessors in 

a TMR design is the synchronization of the processors, 

briefly described in the preceding section, Voting Issues 

(Section A, Subsection 2, of this chapter).  The IDT R3081 

contains an output from the processor which is the System 

Reference Clock, SysClk*.  This clock is used to control 

state transitions in the read buffer, write buffer, memory 

controller, and bus interface unit internal to the 

processor.  As such it is used as timing reference by the 

external memory system.  The frequency of this clock can be 
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either the same as the CPU cycle rate, or one-half that 

frequency.  The frequency of this clock is selectable during 

the processor reset initialization. [Ref. 5] 

The R3081 does not have a guaranteed relationship 

between the input clock and the SysClk* System Reference 

Clock.  However, it is possible to ensure the phase of this 

output reference clock allowing the multiple processors to 

be in the same phase.  The IDT R3 081 contains internal logic 

as part of its reset state machine, which forces the System 

Reference Clock, SysClk*, into a known state. [Ref. 5]  Thus 

in a system using multiple R3081 processors with their 

System Reference Clocks operating at the same frequency as 

the CPU cycle rate, the negation of the Reset* input to the 

processors is sufficient to ensure that the System Reference 

Clocks from each processor are operating in the same phase. 

This assumes that the three processors are driven by the 

same input clock. [Ref. 5]  If the Output Reference Clocks 

are operating at one-half of the frequency of the CPU cycle 

rate, additional steps are necessary to ensure 

synchronization between the System Reference Clocks from 

multiple CPUs. 

In order to take full advantage of the TMR design to 

allow error analysis, FIFOs dedicated to each processor were 

incorporated as shown in Figure 11.  The FIFOs allow the 

43 



capturing of the address, control, and data bus information 

from each processor before it is passed to the majority 

voters as shown in Figure 10. 

Detailed descriptions of the blocks shown in Figures 10 

and 11 and how they are implemented in the Testbed design 

are discussed in the next chapter. 
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IV.  TMR TESTBED DESIGN 

A.   OVERVIEW 

In order to observe the performance and behavior of a 

microprocessor in the presence of radiation induced single 

event upsets (SEUs), the address, data, and control busses 

must be monitored.  This is because in a general purpose 

microprocessor there is not an efficient built-in mechanism 

to indicate to external devices and/or observers that an SEU 

induced error has occurred.  This is particularly true in 

the case where one or more bits in a word of data are 

flipped.  SEU induced errors may cause the processor to 

"lock up" or "crash," which is detectable, but is of little 

use when trying to trouble-shoot and/or monitor the 

performance of the system. 

Monitoring of the address and data busses presents 

•another problem.  Without a separate entity which is deemed, 

or assumed, to be error free there is not a way to tell if 

the information that appears on the busses is error free or 

not.  In addition, in the presence of radiation induced 

SEUs, the ability to correct such faults once detected is a 

desirable characteristic. 

In this testbed design, triple modular redundancy (TMR) 

was chosen to allow the monitoring of three identical 
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microprocessors running identical programs.  The majority- 

voting used in conjunction with TMR allows detection of an 

SEU which has been manifested as a disagreement between the 

address, data, and control busses of the three processors. 

The majority voter also allows the masking of these SEU 

induced disagreements.  The address, data, and control bus 

information from the two microprocessors which are in 

agreement is used to start, control, and complete each bus 

cycle. 

This assumes that identical faults, or errors, will 

not occur in two different microprocessors and produce the 

same erroneous results on their associated busses.  If this 

occurred, then the majority would be in an error state.  The 

same argument applies for identical faults in all three 

processors.  The following sections describe the Testbed TMR 

functionality and the use of dedicated FIFOs for error 

analysis. 

1.   Testbed Operation Summary 

The testbed contains three IDT R3 081 RISC 

microprocessors executing the same program and interrupt 

service routines.  Each processor has a dedicated FIFO 

memory to capture the address, control, and data bus 

information during each bus cycle.  The address, data, and 

control busses from the three processors are then combined 
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into single address, control, and data busses via majority 

voters.  These voted busses are then used by a single 

memory/error cycle controller to access the same ROM and 

RAM. 

a. Normal   (Error Free)   Operation 

At the beginning of a bus cycle (Read, Burst Read, 

or Write), the address is latched from each processor's A/D 

bus.  Voting commences on the address busses while they are 

simultaneously written to each FIFO. 

Control lines are next sampled from each processor. 

Voting commences on the control busses while they are 

simultaneously written to each FIFO. 

Data on the A/D bus from each processor is voted 

(during a Write cycle only) .  Data on the A/D busses from 

each processor during both Read and Write bus cycles, 

including Burst Read, are written to each FIFO. 

If no error is detected (address, control, or data), 

then the current bus cycle finishes normally. 

b. Error Detection 

Errors are detected by majority voting of the 

address, control, and data busses from each processor.  If 

an error is detected, the current bus cycle is allowed to 

complete before generating an interrupt.  The error is 
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masked during Read and Write operations through the majority 

voter.  However, the address, control, and data bus 

information associated with each processor before voting 

occurs will have been placed in each FIFO for analysis. 

Upon completion of the current cycle, an interrupt is 

generated and synchronously supplied to each processor. 

c.       Error Correction 

Upon receipt of an interrupt, each processor 

executes the same interrupt service routine.  The beginning 

of this routine is signaled by initiating a write to "dummy" 

address lF80xxxxH.  The dummy address is recognized by the 

address decoder and a dedicated chip select is asserted. 

This chip select is in turn recognized by the memory/error 

cycle controller.  The memory/error cycle controller clears 

the current interrupt and disables subsequent vote error 

interrupts while the interrupt routine executes. 

The internal general purpose registers, configuration 

registers, and instruction and data caches are written to a 

reserved location in RAM. While this occurs, all internal 

information associated with each processor is written to a 

dedicated FIFO. The majority voter masks the error in the 

faulty processor and the "corrected" information, based on 

the majority of the two agreeing processors, is written to 

RAM.  All internal registers and caches in each processor 
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are then filled by reading the reserved locations in RAM. 

The "faulty" processor will now have been "corrected" and 

re-synchronized with the other two processors. 

The processors signal the end of the interrupt service 

routine by initiating another write to "dummy" address 

lF80xxxxH.  The memory/error cycle controller will then re- 

enable vote error interrupts, and the next bus cycle begins. 

d.   Error Monitoring 

The operation of the Testbed is monitored via an 

outside interface system.  This outside system reads the 

contents of the FIFOs associated with each processor. 

Address, control, and data bus information from each 

processor are placed in FIFOs during non-error bus cycles. 

Upon detection of an error and interrupt handler 

execution, all internal registers and caches for each 

processor are written to the dedicated FIFOs. 

The FIFOs now contain the information necessary to 

detect which processor was in error and what the processors 

were doing at the time the error occurred. 

2.   IDT R3081 Simulation 

We do not have a model of the complete R3081 RISC 

Microprocessor for simulation of the Testbed design. 

Therefore, in order to develop the concept of this design we 
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modeled the behavior of the IDT R3 081 multiplexed 

address/data bus and associated control lines using the 

Verilog Hardware Description Language [Ref. 10].  The 

remaining sections of this chapter describe in detail each 

of the blocks in the Testbed design. 

In the descriptions of the blocks and in the associated 

figures, the following convention has been used.  Signal and 

bus names which are bold and italicized, FORCE_A  for 

example, are intended to match the same signal and bus names 

in the overall schematic in Appendix A for ease in cross 

referencing.  In addition, signal and bus names which begin 

with an underscore, _ALE  for example, represent signals 

which come from each of the three processors.  Thus _ALE 

represents A_ALE,   B_ALE,   and C_ALE,   for example. 

B.   IDT R3081 BUS INTERFACE 

In this section, we will demonstrate that the bus 

interface simulation matches the manufacturers design 

specifications for the R3081. 

The datasheet for the IDT R3 081 RISC Microprocessor 

[Ref. 11] was used in conjunction with the R3081 Hardware 

Users Manual [Ref. 5].  The single datum (word or byte) 

Read, Burst Read, and Write bus cycle timing diagrams and 

timing parameters were analyzed and used to simulate the 
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R3081 bus  interface.     Figures  12,   13,   and 14  are  the bus 

cycles  obtained from these references. 
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The Diag(l) and Diag(O) signals shown in Figures 12, 13, and 

14 were not modeled.  These two pins are useful in the 

initial debug of R3 0xx family based systems. [Ref. 5] 

Although they are not control lines, in an actual 

implementation of the Testbed, these lines could easily be 

added as part of the control bus from each microprocessor 

and passed to the control majority voter.  They are not 

needed to control the bus/memory interface.  However, they 

could be used as additional status lines to detect 

differences among the three processors. 

Figure 15 shows the R3081 bus interface simulator built 

in Cadence Concept™ Schematics and the Verilog Hardware 

Description Language.  The associated Verilog code is 

contained in Appendix C, Section A.  The three pins on the 
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Figure 15.  IDT R3081 Bus Interface Simulator. 
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Simulator labeled TRANS<2. ,0>,  ADDR<31..0>,   and DATAOl. ,0> 

are not pins on an actual R3081 device.   These pins are 

used during simulations to force the simulator to execute a 

specified bus cycle. TRANS<2..0>    is used to specify either 

Byte Read, Word Read, Burst Read, Byte Write, or Word Write 

bus cycles. ADDR<31..0>  is used to specify the address of 

the current bus cycle.  If the current bus cycle specified 

is a Burst Read, then ADDROl..0>  specifies the initial word 

address. DATAOl. .0>  is used to specify the data to be used 

during Write bus cycles.  By using three separate simulators 

and specifying each of the above three signals separately to 

each simulator, faults can be injected into the system. 

Figures 16, 17, and 18 show the simulated address/data 

bus and control line behavior.  Extra wait states; i.e., 

additional system reference clock cycles, have been added to 

each bus cycle.  The extra wait states allow FIFO memories 

dedicated to each microprocessor to grab the address, 

control, and data bus information.  In addition, in these 

three figures the address/data bus and control lines from 

each of the three microprocessors are displayed to show they 

are synchronized with one another. 

In Figure 16, the Burst Read cycle is initiated at the 

falling edge of the _RD*  and _BURST*  lines from each 

microprocessor.  In this particular example, the address. 
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IFCOOOOOH is placed on the multiplexed address/data bus, 

_AD<31..0>,   by each processor.  After this address is 

latched using the _ALE  signals from each processor, the 

first word of data appears on the _AD<31..0>  bus after a 

short delay from the memory.  The four contiguous words of 

memory read during this bus cycle are obtained by providing 

the initial address, 1FC00000H in this case, and strobing 

the _ADDR3  and _ADDR2  lines so that they count in binary 00, 

01, 10, and 11.  In addition, the memory controller strobes 

the RDCEN*  line, which is supplied to all three 

microprocessors, four times indicating when the expected 

word from memory has been placed on the bus.  The burst read 

cycle is completed at the rising edge of the _RD*  and 

_BURST*  signals.  In the example in Figure 16 the four 

addresses read are 1FC00000H, 1FC00004H, 1FC00008H, and 

1FC0000CH.  In this design, the addresses 1FCO0O0OH through 

IFCOXXXXH are decoded to be read only memory (ROM) .  The 

four words read contained the data 00000000H, 00000001H, 

00000002H, and 00000003H, respectively.  This correctly 

corresponds to the data which has been programmed into the 

EPROM.  See Appendix C, Section I. 

In Figure 17, the Write cycle is initiated at the 

falling edge of the _WR*  lines from each microprocessor. 
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In this particular example, the address 00000000H is placed 

on the multiplexed address/data bus, _AD<31..0>,  by each 

processor.  After this address is latched using the _ALE 

signals from each processor, the data to be written appears 

on the bus.  In this example, the data to be written is 

11111111H.  The ACK*  signal, which is returned from the 

memory controller, indicates the write has been completed. 

The write cycle is completed at the rising edge of the _WR* 

signal.  In the TMR Testbed design, addresses 00000000H 

through 0007FFFFH correspond to random access memory 

(RAM) .  Therefore, in this example, 11111111H has been 

written to RAM at address 00000000H. 

In Figure 18, the single datum Word Read cycle is 

initiated at the falling edge of the _RD*  lines from each 

microprocessor.  In this particular example, the address 

00000000H is placed on the multiplexed address/data bus, 

_AD<31..0>,  by each processor.  After this address is 

latched using the _ALE  signals from each processor, the data 

appears on the bus after some delay.  The KDCEN*  line from 

the memory controller indicates that the address/data bus 

contains valid data.  The read cycle is completed at the 

rising edge of the _RD*  lines.  In this example, 11111111H 

has been read from RAM at address 00000000H.  This correctly 

corresponds with the 11111111H written to address 00000000H 
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in the previous example Write cycle description and in 

Figure 17. 

C.   ADDRESS /DATA BUS DEMULTIPLEXING 

The multiplexed 32-bit address/data bus of each of the 

three microprocessors is demultiplexed using the address 

latch enable, _ALE,   signal [Ref. 5] from each processor. 

The schematic diagram of the demultiplexer is contained in 

Appendix B, Section A.  Figure 19 is a block diagram of the 

demultiplexer. 

R3081 
RISC 
CPU 

32-bit Address/ 
Data Bus 

, l_AD<31..0>) 32-bit Data Bus 
 ► 

Address Latch 
Enable (_/>L£) 

Address/Data Bus 
Demultiplexer 

TT 

32-bit Address Bus 
 ► 

TESTENV 

Figure 19.  Address/Data Bus Demultiplexing. 

Each 32-bit demultiplexer makes use of four 8-bit 

FCT373 transparent latches. [Ref. 9]  During each bus cycle 

(Read, Burst Read, or Write) the address is placed on the 

_AD<31.,0>  bus of each processor at the beginning of the 

cycle.  While the _ALE  signals are HIGH, the transparent 
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latches allow the address information to pass to the 32-bit 

address voter.  This allows the address information to be 

voted and passed to the memory/address decoder as soon as it 

becomes available.  When the _ALE  signals transition from 

HIGH to LOW, the address information is latched to the 

associated 32-bit address bus.  Subsequent changes on the 

_AD<31.,0>  busses do not affect the state of the address 

busses until the next _ALE  transition from LOW to HIGH, 

which occurs during the next bus cycle.  The TESTEN1*  line, 

which is supplied to each demultiplexer, can be used to 

place the address bus, or output of each demultiplexer, in a 

high impedance state for testing.  During normal operations, 

the TESTEN1*  line should be held LOW.  The schematic diagram 

of the three microprocessors, the demultiplexers, and the 

associated connections is contained in Appendix A. 

D.   DATA BUS VOTING 

The _AD<31. .0>  bus from each microprocessor is 

considered to be the data bus after the transition of the 

ALE signal from HIGH to LOW during each bus cycle.  The 32- 

bit data busses from each processor are passed to a 32-bit 

majority voter/transceiver.  Figure 20 is a block diagram of 

the data bus voter/transceiver. 
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During a Write cycle, the three 32-bit data busses are 

voted to produce a single 32-bit data bus. However, during 

a Read, or Burst Read, bus cycle the data read from memory 

A_AD<31..0> 

B_AD<31..0> 

C AD<31..0> 

FORCE_A 

FORCB_B 

FORCE_C 

32-bit Voter/ 
Error Detector 

and Transceiver 

I 

To/From Memory 

VOTEDATA<31..0> 
« *■ 

DATAERR   \ 
 ► 

WRDATAEN' 

RDDATAEN" 

To/From 
>■ Memory 
Controller 

Figure 20.  Data Bus Voting. 

must be allowed to pass back to the three _AD<31. ,0>  busses 

and on to the three microprocessors.  This is accomplished 

via the RDDATAEN*  and WRDATAEN*  control lines from the 

memory enable controller.  While the WRDATAEN*  signal is 

LOW, the three data busses are voted and passed to the 

single data bus.  While the RDDATAEN*  line is LOW, the data 

on the single bus which has been read from memory is allowed 

to pass back through to the three microprocessors.  Voting 

of the data busses occurs only during a Write cycle and when 

WRDATAEN*  is LOW.  The WRDATEN*  and RDDATAEN*  signals are 

mutually exclusive (when one is HIGH, the other is LOW) .  If 
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an error is detected on one of the data busses supplied to 

the voter, the signal DATAERR  goes HIGH. 

In addition, the majority voter/transceiver uses three 

input lines (FORCE_A,   FORCE_B,   and FORCE_C)   which, when 

pulled HIGH, force the data from the respective bus through 

to the output data bus.  When one of these signals is pulled 

HIGH, voting errors are not detected or signaled.  These 

signals should all be held LOW during normal operations. 

The schematic for the 32-bit majority voter/transceiver 

and associated Verilog code are contained in Appendix C, 

Section B. 

E.   ADDRESS BUS VOTING 

The output of the three demultiplexers is considered to 

be the address bus associated with each processor.  Once a 

bus cycle has initiated and the _ALE  has transitioned from 

HIGH to LOW, the address bus holds the address information 

until the LOW to HIGH transition of _ALE  during the next bus 

cycle.  The address bus from each demultiplexer is passed to 

a 32-bit majority voter.  This majority voter operates 

similarly to that of the majority voter/transceiver 

described in the previous section except there is no 

associated transceiver operation or control lines.  Figure 

21 is a block diagram of the address voter.  If an error is 
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detected on one of the address busses supplied to the voter, 

the signal ADDRERR  goes HIGH. 

2 ••= 
u. "5 
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D 
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) 

FORCE_A 

i i      i t i 

FQRCEJB 

FORCE_C 
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Figure 21.  Address Bus Voting. 

The schematic for the 32-bit majority voter and 

associated Verilog code are contained in Appendix C, Section 

D. 

F.   CONTROL BUS VOTING 

Six control lines from each of the three processors are 

voted using an 8-bit majority voter.  The six control lines 

voted are _ADDR2,  _ADDR3,  _RD*,  _WR*,  _BURST*,   and _DATAEN*. 

The other two inputs to the 8-bit voter are not used and are 

held LOW.  These control lines are voted to produce a single 

control bus.  Figure 22 is a block diagram of the control 

bus voter.  This majority voter operates similarly to that 

of the majority voter/transceiver described in Section D 
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except there is no associated transceiver operation or 

control lines.  If an error is detected on one of the 

control lines supplied to the voter, the signal CONTERR  goes 

HIGH. 

.?2 

o 3 

o 3 

A ADDR2 
A AD0R3              J 
A flD*                  : 
>» Wfl*                   ? 
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S HO'                   " 
B ttrt-                 J  ' 
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c AOOflr          fc 

C ADDR3               * 
c AD'             : 
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C BUR$r             j 
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Error Detector 

_l   FORCE_A 

FORCE_B 

FORCE_C 

VOTECONT<7..0> 

CONTERR 

. o 
P E 

o 
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Figure 22.  Control Bus Voting. 

The schematic for the 8-bit majority voter and 

associated Verilog code are contained in Appendix C, Section 

C. 

6.   ADDRESS DECODER 

The address decoder uses the voted address bus, 

VOTEADDROl. ,17>,   to generate chip selects.  The address 

decoder does not wait for _ALE  to begin generating the chip 

selects.  This is done to achieve better performance since 

the chip select outputs will be generated earlier in the bus 
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cycle.  As a side effect, however, the chip select outputs 

may tend to "glitch" as a valid address is driven.  Thus, 

the Read Enables and Write Enables seen in the memory system 

must be synchronized so they are valid only when the CPUs 

are attempting a read or write transfer.  This combination 

allows maximum performance because address and chip selects 

are seen early in the bus cycle but the Read and Write 

signals are synchronized to ensure proper system operation. 

[Ref. 9]  Figure 23 is a block diagram of the address 

decoder. 

From Address Voter 
VOTEADDR<31..0>        1      £" 

V0TEADDR<31..17> Address 
Decoder 

o 

EPROMCS' 

INTCS- 

I 1 
To Memory Controller 

Figure 23.  Address Decoder. 

The schematic for the memory/address decoder and 

associated Verilog code are contained in Appendix C, Section 

E. 
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H.   MEMORY/ERROR CYCLE CONTROLLER 

The memory cycle controller provides a wait-state 

generator which stalls the bus interfaces of the three 

processors so that various types and speeds of memories can 

be used. [Ref. 9]  This also allows the additional wait- 

states required for the FIFO interface described later. 

Figure 24 is a block diagram of the memory/error cycle 

controller.  The memory/error cycle controller is composed 

To Memory 

From Control 
Voter 

VOTECONT<7..0> 
 » 
A_SYSCLK (From CPU A^ 

RAMCS' 

From BPROMCS- 
Address 
Decoder INTCS' 

•> ADDRERR 

From DATAERR 
Majority 
Voters CONTERR 

Read       Write 
Enables   Enables 
 I I  

Memory/Error 
Controller 

ADDRTOF1FO' 

DATATOFIFO' 

CONTTOFIFO' r u- 
FIFOWE' 

WRDATAEN' ■5 "> 
> a) 

to c 
Q 2 
O H 

—I 1 1— 

ACK'       RDCEN'  BUSERROR'    VOTERRINT 

To Processors 

Figure 24.  Memory/Error Cycle Controller. 

of three subsections.  The basic RAM/ROM subsection 

generates the appropriate timing signals such as ACK*, 

RDCEN*,   and BUSERROR*  for operating the R3081 bus interface 

as well as the necessary write and read enables for 

accessing the RAM/ROM.  The FIFO memory cycle controller 

generates the signals necessary for capturing the state of 
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each processor in its dedicated FIFO at the appropriate 

times during each cycle.  The error cycle controller 

monitors the vote error signals from the address, data, and 

control bus majority voters.  If an error is detected, it 

generates an interrupt to the processors.  It also disables 

the vote error interrupts while the interrupt handler 

routine is executed by the processors. The schematics for 

the memory/error cycle and memory enable controllers and 

associated Verilog code are contained in Appendix C, 

Sections F and G. 

1.   RAM/ROM Cycle Controller 

The basic state machine looks for the start of a read 

or write bus cycle by looking for a negative edge of VOTED* 

or VOTWR*  from the control bus majority voter.  When a bus 

cycle is initiated, the state machine starts a 5-bit up 

counter, counter<4..0>.  The counter then increments on each 

SYSCLK*  rising edge.  This counter is then used as the 

timing master for all other control signals generated by the 

state machine. [Ref. 9] 

A synchronous decoder, CYCEND*, is used to tell the 

counter when the end of a memory cycle occurs. CYCEND*  is 

used to synchronously reset the state machine when a 

positive edge of VOTRD*  or VOTWR*  is expected.  Another 
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output, ENSTART*, is used to start the byte enables 

generated by the memory enable controller. [Ref. 9] 

Other outputs from the memory cycle controller include 

cycle termination inputs RDCEN*,   ACK*,   and BUSERROR*.     On a 

read transfer, VOTBURST*  from the control bus voter and the 

current active chip select from the address decoder are used 

to determine the timing and quantity of RDCEN*  signals to be 

asserted. ACK*  is asserted at the end of a write cycle to 

indicate completion of the transfer. BUSERROR*  is used to 

end an undecoded memory cycle. [Ref. 9] 

2.   FIFO Memory Cycle Controller 

In order to provide the ability to observe the status 

of each processor before, during, and after an error cycle, 

the address, control, and data busses (before the majority 

voters) from each processor are written to a dedicated FIFO 

memory.  The state machine in the memory cycle controller is 

used to generate the outputs ADDRTOFIFO*, CONTTOFIFO*, 

DATATOFIFO*,   and FIFOWE*.     Figure 25 shows a block diagram 

of the FIFO dedicated to processor A.  A similar arrangement 

is used for the FIFOs dedicated to processors B and C.  The 

use of the memory cycle state machine ensures the timing of 

these signals are synchronized with the current bus cycle 

and that during a Burst Read bus operation, the address, 
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control, and data busses are written to the FIFOs four 

times. 

From CPU A 

 A_SYSCLK' 

Address 
Bus  . 

Data 
Bus 

O ® 

2 S 
u. Q 

< 
E _ Control 
2 Q. Bus . 
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Buffer 
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FIFOAIN<31..0> 

Q Q 

Write       Read 
Clock      Clock 

FIFO 
A 

RDCLK  ^g 
o 

EF_AT JL ' 
"S 

FIFOAOUT<31..0> 

ADDRTORFO- 

CONTTOFIFCT 

DATATOFIFO- 

:  o 
■ Ü 

Figure 25.  FIFO Controls. 

The ADDRTOFIFO*,   CONTTOFIFO*,   and DATATOFIFO*  outputs 

synchronously select when to provide the address bus, 

control bus, and data bus respectively to the FIFO 

associated with each processor.  Since the address is the 

first bus to stabilize, ADDRTOFIFO*  is asserted first.  This 

is followed by CONTTOFIFO*  and then DATATOFIFO*.     FIFOVJE*  is 

the actual write enable supplied to the three FIFOs. 

When ADDRTOFIFO*  is asserted, the address bus from each 

processor is supplied to its associated FIFO and written at 

the rising edge of FIFOVJE*.     This is followed by CONTTOFIFO* 

and DATATOFIFO*,   in turn. 
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Figures 26, 27, and 28 show the operation of these FIFO 

controls during a Burst Read, Write, and single word Read 

respectively. 

3.   Error Cycle Controller 

The memory cycle controller state machine also controls 

the generation of an interrupt which is supplied to each 

processor at the detection of a vote error (ADDRERR, 

CONTERR,   or DATAERR). 

The vote error interrupt, VOTERRINT*,   is generated only 

at the end of the current bus cycle.  This allows the 

current bus cycle to complete, with the majority voters 

masking the associated fault.  In addition, allowing the bus 

cycle to complete ensures the FIFOs associated with each 

processor capture the state of the address, control, and 

data bus of each processor prior to generating an interrupt. 

It is intended that the three processors will 

synchronously receive the interrupt, and will execute the 

same interrupt service routine.  The beginning and end of 

this service routine is indicated by a write to "dummy" 

address lF80xxxxH.  This address is decoded by the memory 

decoder to generate the chip select INTCS*.     The error cycle 

controller, upon detection of a write cycle with this chip 
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select asserted, clears the interrupt and disables 

further vote error interrupts.  The interrupt is disabled 

until the end of the interrupt routine.  This is again 

signaled by the next write to "dummy" address lF80xxxxH. 

During the interrupt routine, it is intended that the 

processors will write all of their internal general purpose 

registers, configuration registers, and instruction and data 

caches to some selected portion of RAM.  The vote error 

interrupt will have been disabled.  However, errors in the 

"faulty" processor will be masked by the majority voted 

output from the other two "agreeing" processors during each 

write.  Then, the interrupt routine would read back the 

selected portion of RAM and refill all of its internal 

general purpose registers, configuration registers, and 

instruction and data caches.  Thus, the processor which had 

an error will have been corrected and re-synchronized with 

the other two processors.  While this routine is executing, 

the FIFOs associated with each processor will capture all of 

the internal information of each processor for error 

analysis. 

The IDT R3081 Microprocessor Bus Interface Simulator 

module contained in Appendix A, Section A, contains a 

simulated, abbreviated interrupt service routine which 

executes when the interrupt INT5*  is asserted.  Simulations 
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which show the operation of the error cycle and this 

simulated interrupt service routine are contained in Chapter 

V. 

I. SYSTEM INTERFACE 

The system interface is intended to be a laptop or 

similar system which can read the FIFOs associated with each 

microprocessor and perform some analysis.  This provides for 

both real-time and post error analysis.  The FIFOs selected 

allow for asynchronous writing and reading with separate 

write and read clocks which can be different frequencies. 

Figure 29 is a block diagram of the system interface. 

From.  ,_,_ 
FIF0 _S>£ 

. FIFOAOUT<31..0^ 

From 
FIFO, 

B       FIF0BQUT<31..tei 

From 
FIFO 

c    I FIF0C0UT<31..ai 

Output Enables and Read Enables to FIFOs 

Figure 29.  System Interface. 

The testbed interface monitors the FIFO empty lines 

from processor A's FIFO, EF_A1*  and EF_A2*.     As soon as they 

are both deasserted, the interface reads the FIFO.  This is 
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followed by monitoring the FIFO empty lines from processor 

B's FIFO, EFJB1*  and EFJB2*,     and reading processor B's FIFO 

once they are both deasserted.  Finally, the FIFO empty 

lines from processor C's FIFO, EF_C1*  and EF_C2*g     are 

monitored and the FIFO is read once they are both 

deasserted.  This process continues and the address, 

control, and data information stored in the associated FIFOs 

are obtained by the interface.  The read clock is set to be 

twice the frequency of the write clock.  This enables the 

interface to read the data out of the FIFOs fast enough so 

they never fill up.  Figure 30 shows the timing of the 

control signals generated by the system interface. 

The interface module writes the results obtained from 

the FIFOs to a text file, TMR_trace. out.  By reviewing this 

text file, the status of the processors during each bus 

cycle can be observed.  Examples of this text file obtained 

during both normal (error free) and induced error operations 

are contained in Chapter V. 

The schematics for the system interface and associated 

Verilog code are contained in Appendix C, Section J. 
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V.   SIMULATION RESULTS 

The complete design has been implemented in Cadence 

Concept™ schematics and the Verilog® Hardware Description 

Language.  Timing parameters have been obtained from actual 

device datasheets.  The IDT R3081 bus/memory interface in 

this TMR design can be simulated in Cadence Logic 

Workbench™ to verify the concept of operation and test the 

voting logic, memory and error cycle controllers, as well as 

the FIFO interface. 

The following simulation results were obtained from the 

trace file generated by the simulated system interface. The 

information displayed represents what was actually read from 

each FIFO. 

The overall testbed schematics are contained in 

Appendix A.  The Cadence supplied modules and user defined 

modules used in the schematics and the simulations are 

contained in Appendices B and C, respectively.  The script 

control language (SCL) files which were used to drive the 

inputs to the Testbed schematics to obtain the following 

simulation results are contained in Appendix D. 
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A.   NORMAL (ERROR FREE) RESULTS 

Bus cycles 1 through 4 correspond to a Burst Read from 

EPROM addresses 1FC00000H through 1FC0000CH.  The data read 

corresponds to the data programmed into the Verilog EPROM 

module in Appendix C, Section I. 

CPU A CPU B CPU c 

3. 

Address = lfcOOOOO     lfcOOOOO 
Control = 00000008     00000008 
Data   = 00000000     00000000 
A Control = Burst Read Word 0 
B Control = Burst Read Word 0 
C Control = Burst Read Word 0 

Address = lfcOOOOO     lfcOOOOO 
Control = 00000009     00000009 
Data   = 00000001     00000001 
A Control = Burst Read Word 1 
B Control = Burst Read Word 1 
C Control = Burst Read Word 1 

Address = lfcOOOOO     lfcOOOOO 
Control = 0000000a     0000000a 
Data   = 00000002     00000002 
A Control = Burst Read Word 2 
B Control = Burst Read Word 2 
C Control = Burst Read Word 2 

lfcOOOOO 
00000008 
00000000 

lfcOOOOO 
00000009 
00000001 

lfcOOOOO 
0000000a 
00000002 

lfcOOOOO 
0000000b 
00000003 

Address = lfcOOOOO     lfcOOOOO 
Control = 0000000b     0000000b 
Data   = 00000003     00000003 
A Control = Burst Read Word 3 
B Control = Burst Read Word 3 
C Control = Burst Read Word 3 

Bus cycles 5 through 8 correspond to a Burst Read from 

EPROM addresses 1FC00010H through 1FC0001CH.  Again the data 

read corresponds to the data programmed into the Verilog 

EPROM module in Appendix C, Section I. 
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5. Address = lfcOOOlO lfcOOOlO 
Control = 00000008 00000008 
Data = 00000004 00000004 
A Control = Burst Read Word 0 
B Control = Burst Read Word 0 
C Control = Burst Read Word 0 

6. Address = lfcOOOlO lfcOOOlO 
Control = 00000009 00000009 
Data = 00000005 00000005 
A Control = Burst Read Word 1 
B Control = Burst Read Word 1 
C Control = Burst Read Word 1 

7. Address = lfcOOOlO lfcOOOlO 
Control = 0000000a 0000000a 
Data = 00000006 00000006 
A Control = Burst Read Word 2 
B Control = Burst Read Word 2 
C Control = Burst Read Word 2 

8. Address = lfcOOOlO lfcOOOlO 
Control = 0000000b 0000000b 
Data = 00000007 00000007 
A Control = Burst Read Word 3 
B Control = Burst Read Word 3 
C Control = Burst Read Word 3 

lfcOOOlO 
00000008 
00000004 

lfcOOOlO 
00000009 
00000005 

lfcOOOlO 
0000000a 
00000006 

lfcOOOlO 
0000000b 
00000007 

Bus cycles 9 through 12 correspond to four Write bus 

cycles to RAM addresses 00000000H, 00000004H, 00000008H, and 

OOOOOOOCH. 

10. 

11. 

Address = 
Control = 
Data 
A Control 
B Control 
C Control 

00000000 
00000034 
11111111 
= Write 
= Write 
= Write 

Address = 
Control = 
Data 
A Control 
B Control 
C Control 

00000000 
00000035 
22222222 
= Write 
= Write 
= Write 

Address = 
Control = 
Data 
A Control 
B Control 
C Control 

00000000 
00000036 
33333333 
= Write 
= Write 
= Write 

00000000 
00000034 
11111111 

00000000 
00000035 
22222222 

00000000 
00000036 
33333333 

00000000 
00000034 
11111111 

00000000 
00000035 
22222222 

00000000 
00000036 
33333333 
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12. Address = 
Control = 
Data = 
A Control 
B Control 

00000000 
00000037 
44444444 
= Write 
= Write 

00000000 00000000 
00000037 00000037 
44444444    44444444 

C Control = Write 

Bus cycle 13 corresponds to a single word Read bus 

cycle from RAM address 00000000H.  The data read is the same 

that was written during cycle 9. 

13.   Address = 00000000 
Control = 00000018 
Data   = 11111111 
A Control = Read 
B Control = Read 
C Control = Read 

00000000 
00000018 
11111111 

00000000 
00000018 
11111111 

Bus cycles 14 through 17 correspond to a Burst Read 

from RAM addresses 00000000H through 0000000CH.  The data 

read from RAM is the same that was written during cycles 9 

through 12. 

14. Address = 00000000 00000000 00000000 
Control = 00000008 00000008 00000008 
Data = 11111111 11111111 11111111 
A Control = Burst Read Word 0 
B Control = Burst Read Word 0 
C Control = Burst Read Word 0 

15. Address = 00000000 00000000 00000000 
Control = 00000009 00000009 00000009 
Data = 22222222 22222222 22222222 
A Control = Burst Read Word 1 
B Control = Burst Read Word 1 
C Control = Burst Read Word 1 

16. Address = 00000000 00000000 00000000 
Control = 0000000a 0000000a 0000000a 
Data = 33333333 33333333 33333333 
A Control = Burst Read Word 2 
B Control = Burst Read Word 2 
C Control = Burst Read Word 2 
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17.   Address = 00000000 
Control = 0000000b 
Data   = 
A Control 
B Control 
C Control 

00000000 
0000000b 

44444444     44444444 
= Burst Read Word 3 
= Burst Read Word 3 
= Burst Read Word 3 

00000000 
0000000b 
44444444 

B. INJECTED ERROR RESULTS 

Bus cycles 1 through 4 correspond to a Burst Read from 

EPROM addresses 1FC00000H through 1FC0000CH.  The data read 

corresponds to the data programmed into the Verilog* EPROM 

module in Appendix C, Section I 

2. 

CPU A CPU B CPU C 

Address = lfc00000     lfc00000 
Control = 00000008     00000008 
Data   = 00000000     00000000 
A Control = Burst Read Word 0 
B Control = Burst Read Word 0 
C Control = Burst Read Word 0 

Address = lfc00000     lfc00000 
Control = 00000009      00000009 
Data   = 00000001     00000001 
A Control = Burst Read Word 1 
B Control = Burst Read Word 1 
C Control = Burst Read Word 1 

Address = lfc00000     lfc00000 
Control = 0000000a     0000000a 
Data   = 00000002     00000002 
A Control = Burst Read Word 2 
B Control = Burst Read Word 2 
C Control = Burst Read Word 2 

lfc00000 
00000008 
00000000 

lfc00000 
00000009 
00000001 

lfc00000 
0000000a 
00000002 

Address = lfc00000     lfc00000 
Control = 0000000b     0000000b 
Data   = 00000003     00000003 
A Control = Burst Read Word 3 
B Control = Burst Read Word 3 
C Control = Burst Read Word 3 

lfc00000 
0000000b 
00000003 

Cycle 5 is a Write bus cycle to RAM address 00000000H 

where there is an error in the address of processor A. 

83 



5. Address = 
Control = 
Data = 
A Control 
B Control 
C Control 

00000100 
00000034 
11111111 
= Write 
= Write 
= Write 

00000000 
00000034 
11111111 

00000000 
00000034 
11111111 

Cycles 6 through 11 are the six cycles of the simulated 

interrupt service routine.  The differences between the 

"internal" information of the three processors that caused 

the error can be observed.  These differences do not 

themselves cause additional vote error interrupts because 

the interrupt routines are initiated by a write to "dummy" 

address lF80xxxxH.  However, when the "internal" information 

is read back from RAM, the "corrected" information is read. 

Address = 
Control = 
Data 
A Control 
B Control 
C Control 

lf800000 
00000034 
ffffffff 
= Write 
= Write 
= Write 

lf800000 
00000034 
ffffffff 

lf800000 
00000034 
ffffffff 

Address = 
Control = 
Data = 
A Control 
B Control 
C Control 

Address = 
Control = 
Data = 
A Control 
B Control 
C Control 

00070000 
00000034 
00000100 
= Write 
= Write 
= Write 

00070000 
00000035 
11111111 
= Write 
= Write 
= Write 

00070000 
00000034 
00000000 

00070000 
00000035 
11111111 

00070000 
00000034 
00000000 

00070000 
00000035 
11111111 

Address = 
Control = 
Data = 
A Control 
B Control 
C Control 

00070000 
00000018 
00000000 
= Read 
= Read 
= Read 

00070000 
00000018 
00000000 

00070000 
00000018 
00000000 
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10. Address = 00070000 
Control = 00000019 
Data   = 11111111 
A Control = Read 
B Control = Read 
C Control = Read 

11. Address = 
Control = 
Data = 
A Control 
B Control 
C Control 

lf800000 
00000034 
ffffffff 
= Write 
= Write 
= Write 

00070000 
00000019 
11111111 

lf800000 
00000034 
ffffffff 

00070000 
00000019 
11111111 

lf800000 
00000034 
ffffffff 

Cycle 12 is a Write bus cycle to RAM address 00000004H 

where there is an error in the address of processor B. 

Cycles 13 through 18 are the simulated interrupt service 

routine initiated by the three processors. 

12, 

14. 

15, 

Address = 
Control = 
Data = 
A Control 
B Control 
C Control 

00000000 
00000035 
22222222 
= Write 
= Write 
= Write 

13.   Address = If800000 
Control = 00000034 
Data   = ffffffff 
A Control = Write 
B Control = Write 
C Control = Write 

Address = 
Control = 
Data = 
A Control 
B Control 
C Control 

00070000 
00000034 
00000004 
= Write 
= Write 
= Write 

Address = 
Control = 
Data = 
A Control 
B Control 
C Control 

00070000 
00000035 
22222222 
= Write 
= Write 
= Write 

16.   Address = 00070000 
Control = 00000018 
Data   = 00000004 
A Control = Read 
B Control = Read 
C Control = Read 

01000000 
00000035 
22222222 

lf800000 
00000034 
ffffffff 

00070000 
00000034 
01000004 

00070000 
00000035 
22222222 

00070000 
00000018 
00000004 

00000000 
00000035 
22222222 

lf800000 
00000034 
ffffffff 

00070000 
00000034- 
00000005 

00070000 
00000035 
22222222 

00070000 
00000018 
00000004 
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17, Address = 00070000 
Control = 00000019 
Data   = 22222222 
A Control = Read 
B Control = Read 
C Control = Read 

00070000 
00000019 
22222222 

00070000 
00000019 
22222222 

18. Address = 
Control = 
Data = 
A Control 
B Control 
C Control 

lf800000 
00000034 
ffffffff 
= Write 
= Write 
= Write 

lf800000 
00000034 
ffffffff 

lf800000 
00000034 
ffffffff 

Cycle 19 is a Write bus cycle to RAM address 00000008H 

where there is an error in the data of processor C.  Cycles 

2 0 through 25 are the simulated interrupt service routine 

initiated by the three processors. 

19. 

20. 

21. 

22 

23. 

Address = 00000000 00000000 00000000 
Control = 00000036 00000036 00000036 
Data   = 33333333 33333333 33333337 
A Control = Write 
B Control = Write 
C Control = Write 

Address = lf800000 lf800000 lf800000 
Control = 00000034 00000034 00000034 
Data   = ffffffff ffffffff ffffffff 
A Control = Write 
B Control = Write 
C Control = Write 

Address = 00070000 00070000 00070000 
Control' = 00000034 00000034 00000034 
Data   = 00000008 00000008 00000008 
A Control = Write 
B Control = Write 
C Control = Write 

Address = 00070000 00070000 00070000 
Control = 00000035 00000035 00000035 
Data   = 33333333 33333333 33333337 
A Control = Write 
B Control = Write 
C Control = Write 

Address = 00070000 00070000 00070000 
Control = 00000018 00000018 00000018 
Data   = 00000008 00000008 00000008 
A Control = Read 
B Control = Read 
C Control = Read 
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24. Address = 00070000 
Control = 00000019 
Data   = 33333333 
A Control = Read 
B Control = Read 
C Control = Read 

00070000 
00000019 
33333333 

00070000 
00000019 
33333333 

25, Address = 
Control = 
Data = 
A Control 
B Control 
C Control 

lf800000 
00000034 
ffffffff 
= Write 
= Write 
= Write 

lf800000 
00000034 
ffffffff 

lf800000 
00000034 
ffffffff 

Cycle  26   is  a Write bus   cycle  to  RAM address   0000000AH 

where  there are multiple errors  in the data of  all  three 

processors.     Cycles  27   through 32  are  the  interrupt  service 

routine, 

26. 

27. 

28. 

29. 

30. 

Address  = 
Control  = 
Data 
A Control 
B Control 
C Control 

00000000 
00000037 
f4444444 
= Write 
= Write 
= Write 

00000000 
00000037 
44a44444 

00000000 
00000037 
44444447 

Address = lf800000 lf800000 lf800000 
Control = 00000034 00000034 00000034 
Data   = ffffffff ffffffff ffffffff 
A Control = Write 
B Control = Write 
C Control = Write 

Address = 00070000 00070000 00070000 
Control = 00000034 00000034 00000034 
Data   = 0000000c 0000000c 0000000c 
A Control = Write 
B Control = Write 
C Control = Write 

Address = 00070000 00070000 00070000 
Control = 00000035 00000035 00000035 
Data f4444444 44a44444 44444447 
A Control = Write 
B Control = Write 
C Control = Write 

Address = 00070000 00070000 00070000 
Control = 00000018 00000018 00000018 
Data 0000000c 0000000c 0000000c 
A Control = Read 
B Control = Read 
C Control = Read 
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31. Address = 00070000 
Control = 00000019 
Data    = 44444444 
A Control = Read 
B Control = Read 
C Control = Read 

00070000 
00000019 
44444444 

00070000 
00000019 
44444444 

32 Address = 
Control = 
Data = 
A Control 
B Control 
C Control 

lf800000 
00000034 
ffffffff 
= Write 
= Write 
= Write 

lf800000 
00000034 
ffffffff 

lf800000 
00000034 
ffffffff 

Cycles 33 through 36 are a Burst Read from RAM 

addresses 00000000H, 00000004H, 00000008H, and 0000000CH. 

The data read from RAM is the data which was "corrected" by 

the majority voter when written during cycles 5, 12, 19, and 

26.  This example shows the successful completion of the 

four Write cycles (5, 12, 19, and 26) which contained 

errors. 

33. 

34. 

35. 

36. 

Address = 00000000     00000000 
Control = 00000008     00000008 
Data   = 11111111     11111111 
A Control = Burst Read Word 0 
B Control = Burst Read Word 0 
C Control = Burst Read Word 0 

Address = 00000000     00000000 
Control = 00000009      00000009 
Data    = 22222222      22222222 
A Control = Burst Read Word 1 
B Control = Burst Read Word 1 
C Control = Burst Read Word 1 

Address = 00000000     00000000 
Control = 0000000a     0000000a 
Data   = 33333333     33333333 
A Control = Burst Read Word 2 
B Control = Burst Read Word 2 
C Control = Burst Read Word 2 

Address = 00000000     00000000 
Control = 0000000b     0000000b 
Data    = 44444444     44444444 
A Control = Burst Read Word 3 
B Control = Burst Read Word 3 
C Control = Burst Read Word 3 

00000000 
00000008 
11111111 

00000000 
00000009 
22222222 

00000000 
0000000a 
33333333 

00000000 
0000000b 
44444444 
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Cycle 37 is a Write cycle to RAM address 00004000H 

where processor B has incorrectly initiated a burst read 

from 00004000H.  Cycles 38 through 43 are the interrupt 

routine. 

37. 

38, 

39. 

40. 

41. 

42, 

43, 

Address = 00004000     00004000 
Control = 00000034     00000008 
Data   = 78787878     xxxxxxxx 
A Control = Write 
B Control = Burst Read Word 0 
C Control = Write 

Address = lf800000 
Control = 00000034 
Data   = ffffffff 
A Control = Write 
B Control = Write 
C Control = Write 

Address = 
Control = 
Data 
A Control 
B Control 
C Control 

00070000 
00000034 
00004000 
= Write 
= Write 
= Write 

Address = 
Control = 
Data = 
A Control 
B Control 
C Control 

00070000 
00000035 
78787878 
= Write 
= Write 
= Write 

Address = 
Control = 
Data = 
A Control 
B Control 
C Control 

00070000 
00000018 
00004000 
= Read 
= Read 
= Read 

Address = 
Control = 
Data = 
A Control 
B Control 
C Control 

00070000 
00000019 
78787878 
= Read 
= Read 
= Read 

Address = 
Control = 
Data = 
A Control 
B Control 
C Control 

lf800000 
00000034 
ffffffff 
= Write 
= Write 
= Write 

lf800000 
00000034 
ffffffff 

00070000 
00000034 
00004000 

00070000 
00000035 
78787878 

00070000 
00000018 
00004000 

00070000 
00000019 
78787878 

lf800000 
00000034 
ffffffff 

00004000 
00000034 
78787878 

lf800000 
00000034 
ffffffff 

00070000 
00000034 
00004000 

00070000 
00000035 
78787878 

00070000 
00000018 
00004000 

00070000 
00000019 
78787878 

lf800000 
00000034 
ffffffff 
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Cycle 44 is a single word Read from RAM address 

00004000H.  The data read is the correct data written during 

cycle 37. 

44.  Address = 00004000     00004000    00004000 
Control = 00000018      00000018    00000018 
Data   = 78787878      78787878    78787878 
A Control = Read 
B Control = Read 
C Control = Read 
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VI.  CONCLUSION 

With the rapidly declining radiation hardened device 

market and high prices of such devices when compared to COTS 

alternatives, a tool is desired that will allow the 

observance and analysis of COTS processors operating in a 

radiation environment.  Additional reasons to move towards 

COTS devices are significant advantages in efficiency, 

performance, and software availability. 

One of the primary disadvantages of COTS devices is 

their susceptibility to single event upsets.  Triple Modular 

Redundancy (TMR) is viewed as one of many possible 

alternatives to provide some protection from SEUs in COTS 

devices. 

The danger of incorporating redundancy into a system is 

that the overall system reliability could be reduced, due to 

the increased number of components.  If the redundant 

systems are not themselves reliable, there is little hope of 

improving the reliability of the system. 

The TMR Testbed design is not intended as a design for 

space flight operations.  Nor is it intended as a guaranteed 

method of improving the performance of the R3081 processors 

in the presence of radiation induced single event upsets. 

The design herein is intended for ground based operational 
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testing of the voting logic and any software algorithms run 

within the processors themselves.  It is assumed that the 

board can be constructed in such a way that all of the 

hardware, other than the microprocessors, can be adequately 

shielded during laboratory radiation testing.  In addition, 

it is realized that a fault which occurs in two of the 

processors at the same time, and which is manifested as the 

same bit being flipped on the address, control, or data bus, 

cannot be detected.  In the event this error occurs, the two 

processors which are actually "faulty" will agree and become 

the majority when passed to the majority voters. 

In the Testbed design, TMR provides the opportunity to 

monitor the three processors and in the event of an error, 

determine which processor was in error and what the 

processor was doing at the time the error occurred. 

The Cadence/Verilog® design will allow simulation of 

the concept, verification of timing signals, and flexibility 

in reconfiguration of the design.  Through simulation, the 

use of the bus/memory interface from three COTS 

microprocessors in a TMR design to monitor the system for 

errors has been realized.  The actual board design could be 

constructed and used to test voting logic hardware and 

software algorithms in a laboratory environment in the 

presence of radiation induced SEUs or injected faults. 
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The use of the dedicated FIFO memories allows both real 

time and post-error analysis of the state of the three 

microprocessors.  Thus, the tool will provide the capability 

to analyze the success or failure of attempts to improve the 

performance of COTS microprocessors in this environment, 

prior to their use in designs intended for actual space 

applications. 
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APPENDIX A.  TMR TESTBED DESIGN SCHEMATICS 

This appendix contains the entire schematic for the TMR 

Testbed built using Cadence Concept™ schematic tools and 

the Verilog® Hardware Description Language. 

Enlarged views of each block in the following 

schematics and associated Verilog® code, when applicable, 

are contained Appendices B and C. 
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Figure 31.     TMR Testbed Schematic   (1  of   11) 

96 



. . A A C CD U a as i < i . .uuu . .uuu 
• vvOOO 

«IQ3ULLL 

G 

0 

-*T ■*       in 

Figure 32.  TMR Testbed Schematic (2 of 11) 
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Figure 33.  TMR Testbed Schematic (3 of 11) 
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Figure 34.  TMR Testbed Schematic (4 of 11). 
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Figure  35.     TMR Testbed Schematic   (5   of   11) 
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Figure  36.     TMR Testbed  Schematic   (6   of   11) 
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Figure  37.     TMR Testbed  Schematic   (7   of   11) 
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Figure  38.     TMR Testbed Schematic   (8  of   11). 
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Figure  39.     TMR Testbed Schematic   (9  of  11) 
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APPENDIX B.  CADENCE SUPPLIED MODULES 

This appendix contains the TMR Testbed schematic 

modules, which were supplied in the Cadence Concept™ 

schematic libraries. 

A.   A74FCT373 TRANSPARENT LATCH 

This part was used to build the address demultiplexer. 

The body diagram of the address demultiplexer and its 

schematic follow. 

OE* \B 
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Figure 42.  A74FCT373 Transparent Latch. 
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Figure 43.  Address Demultiplexer. 
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Figure 45.  IDT71256 SRAM. 
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APPENDIX C.  USER DEFINED VERILOG® MODULES 

This appendix contains the custom modules built using 

the Verilog® Hardware Description Language and the part body 

diagrams built using the Cadence Concept™ schematic tools. 

A.   IDT R3081 RISC MICROPROCESSOR BUS SIMULATOR 

R3081 

AD<31. . B> -€> AD<31. . B> 

CURR_TRANS<2. . 0> ©_ 
ADDRESSOl. . B>©_ 

DATA<31. . 0>o_ 

TRANS< 2. 
ADDROl. 
DATA<31. 

. B> 

. B> 

. B> 

ADDR2 

ADDR3 

ALE 

-© 

-O 

-© 

ADDR2 

AQDR3 

ALE 

RESET_No_ RESET*: RD* -© RD_N 

ACK_N e_ ACK*: MR IK -© WR_N 

RDCEN_No- RDCENK BURST* -e BURST-N 

INT5-N Q- INT5* DATAEN* -© DATAEN_N 

SYSCLK* -© SYSCLK-N 

Figure 47.  R3081 Microprocessor Bus Simulator. 

//* File:     r3081.v 
//* 
//* Description:     Verilog behavioral   file  for  simulating the 
//* multiplexed address/data bus  of  a  IDT RV3 081. 
//* 
//* Reference:  (1) IDT79R3081 RISController with FPA Data Sheet 
//* (2)R3 081 Family Hardware User's Guide 
//* 
//* Author:  John C. Payne, Jr. 
//* Date:  10/24/98 
//•********************************************************************* 

vtimescale 1 ns /I ps 

'define NONE 0 
1define READ_BYTE 1 
'define READ_WORD 2 
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'define READ_BURST 3 
'define WRITE_BYTE 4 
'define WRITE_WORD 5 
'define HIGH 1 
'define LOW 0 
'define TRUE 1 
'define FALSE 0 

//***********************************•****•***************************** 

//* Module:  r3081 
//* 
//* Description:  Verilog behavioral module for simulating the 

multiplexed address/data bus and control lines of the IDT R3081. 
This module drives the R3 081 block in the Cadence Concept 
schematic. 
NOTE:  Module name must match the Cadence Concept block name, but 
must be in lower case.  Signal names of inout, input, and output 
lines and size (or bus width) must match the signal names in the 
Cadence Concept block. 

//' 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* Reference:  (1) IDT79R3 081 RISController with FPA Data Sheet 
//* (2) R3 081 Family Hardware User's Guide 
//********•************************************************************* 

module r3081 (SYSCLK_N, RD_N, WR_N, AD, ADDR3, ADDR2, ALE, 
DATAEN_N, BURST_N, RDCEN_N, ACK_N, RESET_N, 
INT5_N, CURR_TRANS, ADDRESS, DATA); 

//* RV3081 @ 20MHz rise/fall time parameters (min,typ,max) 
parameter 

t7_min = 0, 
t7_typ =2.5, 
t7_max = 5, 
t8_min = 0, 
t8_typ = 2, 
t8_max = 4, 
t9_min = 0, 
t9_typ = 2, 
t9_max = 4, 
tll_min = 0, 
tll_typ =7.5, 
tll_max = 15, 
tl4_min = 0, 
tl4_typ = 0, 
tl4_max = 0, 
tl5_min = 0, 
tl5_typ =3.5, 
tl5_max = 7, 
tl6_min = 0, 
tl6_typ = 3, 
tl6_max = 6, 
tl8_min = 0, 
tl8_typ = 5, 
tl8_max = 10, 
tl9_min = 0, 
tl9_typ =6.5,  //* tl9 
tl9_max = 13; 

//* t7 = Valid from SYSCLK_N rising 

//* t8 = Asserted from SYSCLK_N rising 

//* t9 = Negated from SYSCLK_N falling 

//* til = Asserted from SYSCLK_N falling 

//* tl4 = Driven from SYSCLK_N rising 

//* tl5 = Negated from SYSCLK_N falling 

//* tl6 = Valid from SYSCLK_N 

//* tl8 = Tri-State from SYSCLK_N falling 

SYSCLK_N falling to data valid 
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//* Module input and output lines 
output SYSCLK_N, 

RD_N, 
WR_N; 

inout [31:0] AD; 
output ADDR3, 

ADDR2, 
ALE, 
DATAEN_N, 
BURST_N; 

input RDCEN_N, 
ACK_N, 
RESET_N, 
INT5_N; 

//* These three inputs are not actual pins on an IDT R3081.  They 
//* are used as interface pins to the bus simulator to command the 
//* bus to initiate a read, burst read, or a write, 
input [2:0] CURR_TRANS; 
input [31:0] ADDRESS; 
input [31:0] DATA; 

reg SYSCLK_N; 
wire RD_N, ADDR3, ADDR2, ALE, DATAEN_N, BURST_N; 

//* Internal variables (line enables) 
reg RD_N_enable; 
reg WR_N_enable; 
reg AD_enable; 
reg ADDR3_enable; 
reg ADDR2_enable; 
reg ALE_enable; 
reg DATAEN_N_enable; 
reg BURST_N_enable; 
reg [31:0] busValue; 
reg startCycle; 
reg bootCycle; 
reg [31:0] saveAddress; 
reg [31:0] saveData; 

//* R3081 Multiplexed Address/Data Bus (32 bit) 
busDriver   #(tl4_min,tl4_typ,tl4_max, 

tl8_min,tl8_typ,tl8_max, 
t18_min,t18_typ,t18_max) 

ADBus(AD, busValue, AD_enable); 

//* R3 081 Output Line RD_N Driver 
activeLowLineDriver 

#(tl5_min,tl5_typ,tl5_max,t7_min,t7_typ,t7_max) 
RDL ine(RD_N, RD_N_enable) ; 

//* R3 081 Output Line WR_N Driver 
activeLowLineDriver 

#(tl5_min,tl5_typ,tl5_max,t7_min,t7_typ,t7_max) 
WRLine(WR_N, WR_N_enable) ; 
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//* R3 081 Output Line ADDR3 Driver 
activeHighLineDriver 

# (tl6_min, tl6_typ, tl6_max, tl6_min, tl6_typ, tl6_max) 
ADDR3Line(ADDR3, ADDR3_enable); 

//* R3081 Output Line ADDR2 Driver 
activeHighLineDriver 

#(tl6_min,tl6_typ,tl6_max,tl6_min, tl6_typ, tl6_max) 
ADDR2Line(ADDR2, ADDR2_enable) ; 

//* R3081 Output Line ALE Driver 
activeHighLineDriver 

#(t8_min,t8_typ,t8_max,t9_min,t9_typ,t9_max) 
ALELine(ALE, ALE_enable); 

//* R3081 Output Line DATAEN_N Driver 
activeLowLineDriver 

#(tl5_min,tl5_typ,tl5_max, tll_min, tll_typ, tll_max) 
DATAENLine(DATAEN_N, DATAEN_N_enable) ; 

//* R3081 Output Line BURST_N Driver 
activeLowLineDriver 

#(tl5_min/tl5_typ,tl5_max,t7_min, t7_typ, t7_max) 
BURSTLine(BURST_N, BURST_N_enable); 

//* Initialize internal variables 
initial 
begin 

SYSCLK_N = 0; 
RD_N_enable = 'LOW; 
WR_N_enable = 'LOW; 
AD_enable = 'LOW; 
ADDR3_enable = 'LOW; 
ADDR2_enable = 'LOW; 
ALE_enable = 'LOW; 
DATAEN_N_enable = 'LOW; 
BURST_N_enable = 'LOW; 
busValue = 'bz; 
startCycle = 'FALSE; 
saveAddress = 'bz; 
saveData = 'bz; 

end 

//* Control System Reference Clock 
always 

#25 SYSCLK_N = - SYSCLK_N; 

//* Watch for change in CURR_TRANS input.  If there is not a cycle 
//* already started (startCycle = FALSE), then start a new cycle, 
always @(CURRJTRANS) 

if (startCycle) 
startCycle = 'FALSE; 

else if (CURR_TRANS == 'NONE) 
startCycle = 'FALSE; 

else 
startCycle = 'TRUE; 
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//* At each positive edge of the system reference clock, if the 
//* RESET_N input line is low, then set up system for initial burst 
//* read from ROM at address 1FC00000 
always @(posedge SYSCLK_N) 
begin 

if (!RESET_N) 
begin 

busValue = 32'hlFCOOOOO; 
AD_enable = 'HIGH; 
wait(RESET_N == 1); 
bootCycle = 'TRUE; 

end 
end 

//* Watch for negative edge of the interrupt line INT5_N.  If a 
//* cycle is currently in progress, then it is a cycle that hasn't 
//* finished because of an incorrect control input.  This means 
//* that if, for example, this R3 081 initiated a READ while the 
//* other two R3081's initiated a WRITE, it will be stuck waiting 
//* for signals from the memory controller which are associated 
//* with a READ.  These signals will not come as expected because 
//* the system completed a WRITE cycle based on the voted majority 
//* from the other two R3 081's.  After interrupting waiting 
//* processor (if necessary) , perform simulated, abbreviated 
//* interrupt handler routine, beginning and ending the routine with 
//* a WRITE to "dummy address" 1F800000 
always ©(negedge INT5_N) 
begin 

if (istartCycle)  //* Then cycle is in progress 
case (CURR_TRANS[2:0])  //* Interrupt waiting cycle 

3'b001: 
begin //* Interrupt a waiting READ_BYTE cycle 

disable readByte; 
©(negedge SYSCLK_N) 
begin 

RD_N_enable = 'LOW; 
DATAEN_N_enable = 'LOW; 
ADDR3_enable = 'LOW; 
ADDR2_enable = 'HIGH; 

©(posedge SYSCLK_N); 
end 

end 

3'b010: 
begin //* Interrupt a waiting READ_WORD cycle 

disable readWord; 
©(negedge SYSCLK_N) 
begin 

RD_N_enable = 'LOW; 
DATAEN_N_enable = 'LOW; 
ADDR3_enable = 'LOW; 
ADDR2_enable = 'HIGH; 

©(posedge SYSCLK_N); 
end 

end 
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3'bOll: 
begin  //* Interrupt a waiting READ_BURST cycle 

disable readBurst; 
@(negedge SYSCLK_N) 
begin 

RD_N_enable = 'LOW; 
ADDR3_enable = 'LOW; 
ADDR2_enable = 'LOW; 
DATAEN_N_enable = 'LOW; 
BURST_N_enable = 'LOW; 

@(posedge SYSCLK_N); 
end 

end 

3'blOO: 
begin  //* Interrupt a waiting WRITE_BYTE cycle 

disable writeByte; 
@(negedge SYSCLK_N) 

WR_N_enable = 'LOW; 
©(posedge SYSCLK_N) 
begin 

AD_enable = 'LOW; 
ADDR3_enable = 'LOW; 
ADDR2_enable = 'LOW; 

end 
end 

3'bl01: 
begin  //* Interrupt a waiting WRITE_WORD cycle 

disable writeWord; 
©{negedge SYSCLK_N) 

WR_N_enable = 'LOW; 
©(posedge SYSCLK_N) 
begin 

AD_enable = 'LOW; 
ADDR3_enable = 'LOW; 
ADDR2_enable = 'LOW; 

end 
end 

endcase 

//* The saved address and data information from the last bus 
//* cycle which caused the interrupt is used here simply to 
//* show that differences between the three processors will 
//* not cause a vote error interrupt to be generated due to 
//*'the WRITE to "dummy address" 1F800000.  The use of the 
//* saved address and data information is not intended to 
//* show what would actually be written during an interrupt 
//* routine. 
writeWord(32'hlF800000, 32'hFFFFFFFF); 
if (saveAddress[31:0] >= 32 'h.00000000) 

writeWord(32'h00070000, saveAddress); 
else 

writeWord(32'h00070000, 32'hA5A5A5A5); 
if (saveData[31:0] >= 32'hOOOOOOOO) 

writeWord(32'h00070004, saveData) ; 
else 

writeWord(32'h00070004, 32'h78787878) ; 
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readWord(32'h00070000) ; 
readWord(32'h00070004) ; 
writeWord(32'hlF800000, 32'hFFFFFFFF); 

end 

//* Initiate appropriate bus cycles based on CURRJTRANS input, and 
//* if startCyle is TRUE, or if a boot cycle is necessary. 
//* See the simulated, abbreviated interrupt handler routine above 
//* for how the saved address and data information is used. 
always 
begin 

if (startCycle && (CURRJTRANS == *READ_BYTE) && ibootCycle) 
begin 

saveAddress = ADDRESS; 
saveData = DATA; 
readByte(ADDRESS); 

end ■ 

else if (startCycle && (CURRJTRANS == *READ_WORD) && IbootCycle) 
begin 

saveAddress = ADDRESS; 
saveData = DATA; 
readWord(ADDRESS); 

end 

else if ((startCycle && (CURRJTRANS == lREAD_BURST)) 
|| bootCycle) 

begin 
saveAddress = ADDRESS; 
saveData = DATA; 
readBurst(ADDRESS); 

end 

else if (startCycle && (CURRJTRANS == *WRITE_BYTE) && 
IbootCycle) 

begin 
saveAddress = ADDRESS; 
saveData = DATA; 
writeByte(ADDRESS, DATA); 

end 

else if (startCycle && (CURRJTRANS == *WRITE_WORD) && 
IbootCycle) 

begin 
saveAddress = ADDRESS; 
saveData = DATA; 
writeWord(ADDRESS, DATA); 

end 

else 
©(posedge  SYSCLK_N); 

end 
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//A****************************************************************** 

//* task:  readByte 
//* 
//* Description:  Simulates the bus cycle for reading a byte from the 
//*   given address by driving the A/D bus and associated control 
//*    lines.  It waits on the RDCEN_N input from the memory 
//*   controller to indicate the memory has placed valid data on the 
//*   bus to read. 
//* 
//* Reference:  (1) IDT79R3081 RISController with FPA Data Sheet 
//* (2) R3 081 Family Hardware User's Guide 
//••A**************************************************************** 

task readByte; 
input [31:0] address; 

begin:readByte 
©(posedge SYSCLK_N) 
begin 

startCycle = 'FALSE; 
busValue[31:4] = address[31:4]; 

//* Set BE[3:0] lines 
busValue[3] = !(address[l] && address[0]); 
busValue[2] = !(address[1] && laddress[0]); 
busValuefl] = !(laddress[1] && address[0]); 
busValue[0] = !(laddress[1] && !address[0]); 

AD_enable = 'HIGH; 
RD_N_enable = 'HIGH; 
ADDR3_enable = address[3]; //* Set word address 
ADDR2_enable = address[2]; 
ALE_enable = 'HIGH; 

end 

©(negedge SYSCLK_N) 
begin 

AD_enable = 'LOW; 
DATAEN_N_enable = 'HIGH; 
ALE_enable = 'LOW; 

end 

@(posedge RDCEN_N); 

@(negedge SYSCLK_N) 
begin 

RD_N_enable = 'LOW; 
DATAEN_N_enable = 'LOW; 
ADDR3_enable = 'LOW; 
ADDR2_enable = 'LOW; 

end 
end 

endtask //* end task readByte 
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//* task:  readWord 
//* 
//* Description:  Simulates the bus cycle for reading a word from the 
//*   given address by driving the A/D bus and associated control 
//*   lines.  It waits on the RDCEN_N input from the memory 
//*   controller to indicate the memory has placed valid data on the 
//*   bus to read. 
//* 
//* Reference:  (1) IDT79R3081 RISController with FPA Data Sheet 
//* (2) R3081 Family Hardware User's Guide 
//*******•*********************************************************** 

task readWord; 
input [31:0] address; 

begin:readWord 
©(posedge SYSCLK_N) 
begin 

startCycle = 'FALSE; 
busValue[31:4] = address[31:4] ; 

//* Set BE[3:0] lines 
busValue[3] = 'LOW; 
busValue[2] = 'LOW; 
busValue[l] = 'LOW; 
busValue[0] = 'LOW; 

AD_enable = 'HIGH; 
RD_N_enable = 'HIGH; 
ADDR3_enable = address[3];  //* Set word address 
ADDR2_enable = address[2]; 
ALE_enable = 'HIGH; 

end 

©(negedge SYSCLK_N) 
begin 

AD_enable = 'LOW; 
DATAEN_N_enable = 'HIGH; 
ALE_enable = 'LOW; 

end 

@{posedge RDCEN_N); 

©(negedge SYSCLK_N) 
begin 

RD_N_enable = 'LOW; 
DATAEN_N_enable = 'LOW; 
ADDR3_enable = 'LOW; 
ADDR2_enable = 'LOW; 

end 
. end 

endtask //* end task readWord 
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//* task:  readBurst 
//* 
//* Description:  Simulates the bus cycle for burst reading four 
//*    contiguous words of memory starting at the given address 
//*  .by driving the A/D bus and associated control lines. 
//*    It waits on the RDCEN_N four times input from the memory 
//*   controller to indicate the memory has placed valid data on 
//*   the bus to read. 
//* 
//* Reference:  (1) IDT79R3081 RISController with FPA Data Sheet 
//* (2) R3081 Family Hardware User's Guide 

task readBurst; 
input [31:0] address; 

begin:readBurst 
<2(posedge SYSCLK_N) 
begin 

startCycle = 'FALSE; 
if (!bootCycle) 

//* If it is a boot cycle, 1FC00000 will already 
//* be in busValue[31:0] for initial EPROM read 

begin 
busValue[31:4] = address[31:4]; 

//* Set BE[3:0] lines 
busValue[3] = 'LOW; 
busValue[2] = 'LOW; 
busValue[1] = 'LOW; 
busValue[0] = 'LOW; 

end 

bootCycle = 'FALSE; 
AD_enable = 'HIGH; 
RD_N_enable = 'HIGH 
ADDR3_enable = 'LOW 
ADDR2_enable = 'LOW 
ALE_enable = 'HIGH; 
BURST_N_enable = 'HIGH; 

end 

©(negedge SYSCLK_N) 
begin 

AD_enable = 'LOW; 
DATAEN_N_enable = 'HIGH; 
ALE_enable = 'LOW; 

end 

©(posedge RDCEN_N);  //* Wait for 1st word 

@(negedge SYSCLK_N) 
begin 

ADDR2_enable = 'HIGH;  //* Set word address of 2nd word 
end 

@(posedge RDCEN_N);  //* Wait for 2nd word 
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@(negedge SYSCLK_N) 
begin 

ADDR3_enable = 'HIGH;  //* Set word address of 3rd word 
ADDR2_enable = 'LOW; 

end 

@(posedge RDCEN_N);  //* Wait for 3rd word 

©(negedge SYSCLK_N) 
begin 

ADDR2_enable = 'HIGH;  //* Set word address of 4th word 
end 

@(posedge RDCEN_N);  //* Wait for 4th word 

@(negedge SYSCLK_N) 
begin 

RD_N_enable = 'LOW; 
ADDR3_enable = 'LOW; 
ADDR2_enable = 'LOW; 
DATAEN_N_enable = 'LOW; 
BURST_N_enable = 'LOW; 

end 
end 

endtask //* end task readBurst 

//••••a************************************************************** 

//* task:  writeByte 
//* 
//* Description:  Simulates the bus cycle for writing a byte of the 
//*   given data at the given address by driving the A/D bus and 
//*   associated control lines.  It waits on the ACK_N input from 
//*   the memory controller to indicate the data has been written. 
//* 
//* Reference:  (1) IDT79R3081 RISController with FPA Data Sheet 
//* (2) R3081 Family Hardware User's Guide 
//A****************************************************************** 

task writeByte; 
input [31:0] address, data; 

begin:writeByte 
(Hposedge SYSCLK_N) 
begin 

startCycle = 'FALSE; 
busValue[31:4] = address[31:4]; 

//* Set BE[3:0] lines 
busValue[3] = !(address[l] && address[0]); 
busValue[2] = !(address[l] && !address[0]); 
busValue[l] = !(iaddress[1] && address[0]); 
busValuefO] = !(!address[1] && !address[0]); 

AD_enable = 'HIGH; 
WR_N_enable = 'HIGH; 
ADDR3_enable = address[3];  //* Set word address 
ADDR2_enable = address[2]; 
ALE_enable = 'HIGH; 

end 
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©(negedge SYSCLK_N) 
begin 

ALE_enable = 'LOW; 
#(tl9_min:tl9_typ:tl9_max) 

busValue = data; 
end 

©(posedge ACK_N) ; 

©(negedge SYSCLK_N) 
begin 

WR_N_enable = 'LOW; 
end 

©(posedge SYSCLK_N) 
begin 

AD_enable = 'LOW; 
ADDR3_enable = 'LOW; 
ADDR2_enable = 'LOW; 

end 
end 

endtask //* end task writeByte 

//**************************•**************************************** 

//* task:  writeWord 
//* 
//* Description:  Simulates the bus cycle for writing a word of 
//*   given data at the given address by driving the A/D bus and 
//*   associated control lines.  It waits on the ACK_N input from 
//*   the memory controller to indicate the data has been written. 
//* 
//* Reference:  (1) IDT79R3081 RISController with FPA Data Sheet 
//* (2) R3081 Family Hardware User's Guide 
//••A**************************************************************** 

task writeWord; 
input [31:0] address, data; 

begin:writeWord 
©(posedge SYSCLK_N) 
begin 

startCycle = 'FALSE; 
busValue[31:4] = address[31:4]; 

//* Set BE[3:0] lines 
busValue[3] = 'LOW; 
busValue[2] = 'LOW; 
busValue[1] = 'LOW; 
busValue[0] = 'LOW; 

AD_enable = 'HIGH; 
WR_N_enable = 'HIGH; 
ADDR3_enable = address[3];  //* Set word address 
ADDR2_enable = address [2],- 
ALE_enable = 'HIGH; 

end 
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©(negedge SYSCLK_N) 
begin 

ALE_enable = 'LOW; 
# (tl9_min: tl9_typ: tl9_max) 

busValue = data; 
end 

©(posedge ACK_N || !INT5_N); 

©(negedge SYSCLK_N) 
begin 

WR_N_enable = 'LOW; 
end 

©(posedge SYSCLK_N) 
begin 

AD_enable = 'LOW; 
ADDR3_enable ='LOW; 
ADDR2_enable = 'LOW; 

end 
end 

endtask //* end task writeWord 

endmodule //* end module r3081 

//***********************•********************************************** 

//* Module:  busDriver 
//* 
//* Description:  Assigns valueToGo to address/data bus when driveEnable 
//*   is HIGH, otherwise drives bus to high impedance. 

module busDriver(busLine, valueToGo, driveEnable); 
parameter     //* Parameters may be overridden for each 

//* instantiation of this module 

R_min =0, //* Minimum Rise Time 
R_typ =2, //* Typical Rise Time 
R_max =4, //* Maximum Rise Time 
F_min =0, //* Minimum Fall Time 
F_typ =2, //* Typical Fall Time 
F_max =4, //* Maximum Fall Time 
Z_min = 0, //* Minimum Time to high impedance 
Z_typ =2, //* Typical Time to high impedance 
Z_max =4; //* Maximum Time to high impedance 

inout [31:0] busLine; 
input [31:0] valueToGo; 
input       driveEnable; 

assign # (R_min: R_typ: R_max, F_min: F_typ: F_max, Z_min: Z_typ: Z_max) 
busLine = (driveEnable)?valueToGo:'bz; 

endmodule //* end module busDriver 
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//* Module:  activeLowLineDriver 
//* 
//* Description:  Drives contLine LOW when driveEnable is HIGH, 
//*   otherwise contLine remains HIGH. 

module activeLowLineDriver(contLine, driveEnable); 
parameter     //* Parameters may be overridden for each 

//* instantiation of this module 

R_min = 0, //* Minimum Rise Time 
R_typ =2, //* Typical Rise Time 
R_max =4, //* Maximum Rise Time 
F_min =0, //* Minimum Fall Time 
F_typ = 2, //* Typical Fall Time 
F_max =4; //* Maximum Fall Time 

inout contLine; 
input driveEnable; 

ass ign #(R_min:R_typ:R_max,F_min:F_typ:F_max) 
contLine = (driveEnable)?0:1; 

endmodule //* end module activeLowLineDriver 

//••A******************************************************************* 

//* Module:  activeLowLineDriver 
//* 
//* Description:  Drives contLine HIGH when driveEnable is HIGH, 
//*   otherwise contLine remains LOW. 

module activeHighLineDriver(contLine, driveEnable); 
parameter     //* Parameters may be overridden for each 

//* instantiation of this module 

R_min = 0, //* Minimum Rise Time 
R_typ =2, //* Typical Rise Time 
R_max =4, //* Maximum Rise Time 
F_min =0, //* Minimum Fall Time 
F_typ = 2, /'/* Typical Fall Time 
F_max =4; //* Maximum Fall Time 

inout contLine; 
input driveEnable; 

assign #(R_min:R_typ:R_max,F_min:F_typ:F_max) 
contLine = (driveEnable)?1:0; 

endmodule //* end module activeHighLineDriver 
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B. 32-BIT VOTER/ERROR DETECTOR AND  TRANSCEIVER 

U0TE32BIT_XCUR 
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Figure  48.     32-Bit Voter/Error Detector and Transceiver. 

//*  File:     vote32bit_xcvr.v 
//* 
//* Description:  Verilog file for a 32 bit majority voter/error 
//*   detector and transceiver. 
//* 
//* Author:  John C. Payne, Jr. 
//* Date:  10/31/98 

'timescale 1 ns /l ps 

//it********************************************************************* 

//* Module:  bidirsw 
//* 
//* Description:  Verilog behavioral module for a bidirectional switch 
//*   with tristate.  If C0NT_LINE is high, then the INOUT_LINE 
//*   information drives the LINE_0UT line (LINE_0UT = INOUT_LINE); 
//*   otherwise, the LINE_OUT line is in a high impedance state.  If 
//*   CONT_LINE is low, then the LINE_IN information drives the 
//*   INOUT_LINE (INOUT_LINE = LINE_IN); otherwise, the INOUT_LINE line 
//*   is in a high impedance state. 
//A********************************************************************* 

module bidirsw (LINE_IN,' LINE_OUT, INOUT_LINE, CONT_LINE); 

input LINE_IN; 
output LINE_OUT; 
inout INOUT_LINE; 
input CONT_LINE; 

assign INOUT_LINE = (!C0NT_LINE)?LINE_IN:'bz; 
assign LINE_OUT = (CONT_LINE)?INOUT_LINE:'bz; 

endmodule  //* end module bidirsw 
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//*********************************•***********•************************ 

//* Module:  votecell_xcvr 
//* 
//* Description:  Verilog structural module for a one bit voter/error 
//*   detector and transceiver.  Votes 3 input bits to produce 1 output 
//*   bit.  FORCE_A, FORCE_B, & FORCE_C inputs can be used to disable 
//*   voting and force data on A, B, or C through to the output. 
//*   Uses 4 bidirsw modules. 
//*****************************•*************•************************** 

module votecell_xcvr (A, B, C, FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N, 
MAJ_OUT, MAJ_ERROR); 

inout A, B, C; 
input FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N; 
inout MAJ_OUT; 
output MAJ_ERROR; 
wire MAJORITY; 

tri IN_A, IN_B, IN_C, RD_IN; 

//* If RD_N is low, then RD_IN drives all three input/output lines 
//* A, B, & C; otherwise. A, B, & C drive IN_A, IN_B, & IN_C which 
//* are then voted, 
bidirsw 

sw_l(RD_IN, IN_A, A, RD_N), 
sw_2(RD_IN, INJB, B, RD_N), 
sw_3(RD_IN, IN_C, C, RD_N); 

//* If WR_N is low, then MAJORITY drives the output line MAJ_OUT; 
//* otherwise, MAJ_OUT drives the RD_IN line. 
bidirsw 

sw_4(MAJORITY, RD_IN, MAJ_OUT, WR_N); 

not 
not_l (NOT_IN_A, IN_A), 
not_2 (NOT_IN_B, IN_B), 
not_3 (NOT_IN_C, IN_C), 
not_4 (NOT_FORCE_A, FORCE_A), 
not_5 (NOT_FORCE_B, FORCE_B), 
not_6 (NOT_FORCE_C, FORCE_C); 

and 
and_l (and_l_out, 
and_2 (and_2_out, 
and_3 (and_3_out, 
and_4   (and_4_out,   IN_A,   IN_B,   NOT_FORCE_A,   NOT_FORCE_B, 

NOT_FORCE_C), 
and_5   (and_5_out,   IN_A,   IN_C,   NOT_FORCE_A,   NOT_FORCE_B, 

NOT_FORCE_C), 
and_6   (and_6_out,   IN_B,   IN_C,   NOT_FORCE_A,   NOT_FORCE_B, 

NOT_FORCE_C); 

or #15 
or_l   (MAJORITY,   and_l_out,   and_2_out,   and_3_out,   and_4_out, 

and_5_out,   and_6_out); 
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and 
and_7 (and_7_out, NOT_IN_A, NOT_IN_B, IN_C, NOT_FORCE_A, 

NOT_FORCE_B, NOT_FORCE_C), 
and_8 (and_8_out, NOT_IN_A, IN_B, NOT_IN_C, NOT_FORCE_A, 

NOT_FORCE_B, NOT_FORCE_C), 
and_9 (and_9_out, NOT_IN_A, IN_B, IN_C, NOT_FORCE_A, NOT_FORCE_B, 

NOT_FORCE_C), 
and_10 (and_10_out, IN_A, NOT_IN_B, NOT_IN_C, NOT_FORCE_A, 

NOT_FORCE_B, NOT_FORCE_C), 
and_ll (and_ll_out, IN_A, NOT_IN_B, IN_C, NOT_FORCE_A, 

NOT_FORCE_B, NOT_FORCE_C), 
and_12 (and_12_out, IN_A, IN_B, NOT_IN_C, NOT_FORCE_A, 

NOT_FORCE_B, NOT_FORCE_C); 

or #15 
or_2 (MAJ_ERROR, and_7_out, and_8_out, and_9_out, and_10_out, 

and_ll_out, and_12_out); 

endmodule  //* end module votecell_xcvr 

//*****•*************•************************************************** 

//* Module:  vote8bit_xcvr 
//* 
//* Description:  Verilog structural module for an 8 bit voter/error 
//*   detector and transceiver.  Votes 24 input bits to produce 8 
//*   output bits.  FORCE_A, FORCE_B, & FORCE_C inputs can be used to 
//*    disable voting and force data on A[7:0], B[7:0], or C[7:0] 
//*    through to the output.  Uses eight votecell_xcvr modules. 
//»••••A**************************************************************** 

module vote8bit_xcvr (A, B, C, FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N, 
VOTED_OUT, VOTE_ERROR); 

inout [7:0] A, B, C; 
input FORCE_A, FORCE_B, FORCE_C; 
input RD_N, WR_N; 
inout [7:0] VOTED_OUT; 
output VOTE_ERROR; 

wire ERROR_0, ERR0R_1, ERR0R_2, ERR0R_3, ERR0R_4, ERROR_5, ERR0R_6, 
ERROR_7; 

votecell_xcvr 
cellO (A[0], B[0], C[0], F0RCE_A, FORCE_B, FORCE_C, RD_N, WR_N, 

VOTED_OUT[0], ERROR_0), 
celll (A[l], B[l], C[l], FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N, 

VOTED_OUT[1], ERR0R_1), 
cell2 (A[2], B[2], C[2], FORCE_A, F0RCE_B, FORCE_C, RD_N, WR_N, 

VOTED_OUT[2], ERR0R_2), 
cell3 (A[3], B[3], C[3], FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N, 

VOTED_OUT[3], ERROR_3), 
cell4 (A[4], B[4], C[4], FORCE_A, FORCE_B, FORCE_C, RD_N, WR_N, 

VOTED_OUT[4], ERROR_4), 
cell5 (A[5], B[5], C[5], FORCE_A, F0RCE_B, F0RCE_C, RD_N, WR_N, 

VOTED_OUT[5], ERROR_5) , 
cell6 (A[6], B[6], C[6], FORCE_A, FORCE_B, F0RCE_C, RD_N, WR_N, 

VOTED_OUT[6], ERR0R_6), 
cell7 (A [7], B[7], C[7], FORCE_A, FORCE_B, FORCE_C-, RD_N, WR_N, 

VOTED_OUT[7], ERR0R_7); 
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or #10 . 
or_l (VOTE_ERROR, ERROR_0, ERROR_l, ERROR_2, ERROR_3, ERROR_4, 

ERROR_5, ERROR_6, ERROR_7); 

endmodule //* end module vote8bit xcvr 

II*  Module:  vote32bit_xcvr 
//* 
//* Description: Verilog structural module for a 32 bit voter/error 
//*   detector and transceiver.  Votes 96 input bits to produce 32 
//*   output bits.  FORCE_A, FORCE_B, & FORCE_C inputs can be used 
//*   to disable voting and force data on A[31:0], B[31:0], or C[31:0] 
//*   through to the output.  Uses four vote8bit_xcvr modules. 
//*   This module drives the VOTE32BIT_XCVR block in the Cadence 
//*   Concept schematic. 
//*   NOTE:  Module name must match the Cadence Concept block name, but 
//*   must be in lower case.  Signal names of inout, input, and output 
//*   lines and size (or bus width) must match the signal names in the 
//*   Cadence Concept block. 
//******************************•*************************************** 

module vote32bit_xcvr (A, B, C, FORCE_A, FORCE_B, FORCE_C, 
RD_N, WR_N, VOTED_OUT, VOTE_ERROR); 

inout [31:0] A, B, C; 
input F0RCE_A, F0RCE_B, FORCE_C; 
input RD_N, WR_N; 
inout [31:0] VOTED_OUT; 
output VOTE_ERROR; 

wire ERROR_0, ERR0R_1, ERROR_2, ERROR_3; 

vote8bit_xcvr 
voterO (A[31:24], B[31:24], C[31:24], FORCE_A, FORCE_B, F0RCE_C, 

RD_N, WR_N, VOTED_OUT[31:24] , ERROR_0), 
voterl (A[23:16], B[23:16], C[23:16], FORCE_A, F0RCE_B, F0RCE_C, 

RD_N, WR_N, VOTED_OUT[23:16], ERR0R_1), 
voter2 (A[15:8], B[15:8], C[15:8], F0RCE_A, FORCE_B, FORCE_C, 

RD_N, WR_N, VOTED_OUT[15:8] , ERROR_2) , 
voter3 (A[7:0], B[7:0], C[7:0], FORCE_A, FORCE_B, FORCE_C, 

RD_N, WR_N, VOTED_OUT[7:0], ERROR_3); 

or #10 
or_l (VOTE_ERROR, ERROR_0, ERROR_l, ERROR_2, ERROR_3); 

endmodule  //* end module vote32bit_xcvr 
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c. 8-BIT VOTER/ERROR DETECTOR 
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Figure  49.      8-Bit Voter/Error Detector. 

//*********•*********-*************************************************** 

//*  File:     vote8bit.v 
//* 
//* Description:  Verilog structural file for 8 bit majority voter and 
//* error detector using 8 votecell modules 
//* 
//* Author:  John C. Payne, Jr. 
//* Date:  10/06/98 
//••A******************************************************************* 

'timescale 1 ns /l ps 

//* Module:  votecell 
//* 
//* Description:  Verilog structural module for a one bit voter/error 
//*   detector.  Votes 3 input bits to produce 1 output bit.  F0RCE_A, 
//*   FORCE_B, & FORCE_C inputs can be used to disable voting and 
//*   force data on A, B, or C through to the output. 

module votecell (IN_A, FORCE_A, IN_B, FORCE_B, IN_C, FORCE_C, MAJ_OUT, 
MAJ_ERROR) ; 

input IN_A, FORCE_A, IN_B, FORCE_B, IN_C, FORCE_C; 
output MAJ_OUT, MAJ_ERROR; 

not 
not_l (NOT_IN_A, IN_A), 
not_2 (NOT_IN_B, IN_B), 
not_3 (NOT_IN_C, IN_C), 
not_4 (NOT_FORCE_A, FORCE_A), 
not_5 (NOT_FORCE_B, FORCE_B), 
not_6 (NOT_FORCE_C, FORCE_C); 

and 
and_l (and_l_out, IN_A, FORCE_A), 
and_2 (and_2_out, IN_B, FORCE_B), 
and_3 (and_3_out, IN_C, FORCE_C), 
and_4 (and_4_out, IN_A, IN_B, NOT_FORCE_A, NOT_FORCE_B, 

NOT_FORCE_C) , 
and_5 (and_5_out, IN_A, IN_C, NOT_FORCE_A, NOT_FORCE_B, 

NOT_FORCE_C) , 
and_6 (and_6_out, IN_B, IN_C, NOT_FORCE_A, NOT_FORCE_B, 

NOT_FORCE_C); 
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or  #15 
or_l (MAJ_OUT, and_l_out, and_2_out, and_3_out, and_4_out, 

and_5_out, and_6_out); 

and 
and_7 (and_7_out, NOT_IN_A, NOT_IN_B, IN_C, NOT_FORCE_A, 

NOT_FORCE_B,  NOT_FORCE_C), 
and_8 (and_8_out, NOT_IN_A, IN_B, NOT_IN_C, NOT_FORCE_A, 

NOT_FORCE_B, NOT_FORCE_C), 
and_9 (and_9_OUt, NOT_IN_A, IN_B, IN_C, NOT_FORCE_A, NOT_FORCE_B, 

NOT_FORCE_C), 
and_10 (and_10_out, IN_A, NOT_IN_B, NOT_IN_C, NOT_FORCE_A, 

NOT_FORCE_B, NOT_FORCE_C) , 
and_ll (and_ll_out, IN_A, NOT_IN_B, IN_C, NOT_FORCE_A, 

NOT_FORCE_B, NOT_FORCE_C) , 
and_12 (and_12_out, IN_A, IN_B, NOT_IN_C, NOT_FORCE_A, 

NOT_FORCE_B, NOT_FORCE_C); 

or #15 
or_2 (MAJ_ERROR, and_7_out, and_8_out, and_9_out, and_10_out, 

and_ll_out, and_12_out),- 

endmodule //* end module votecell 

//A********************************************************************* 

//* Module:  vote8bit 
//* 
//* Description:  Verilog structural module for an 8 bit voter/error 
//*   detector.  Votes 24 input bits to produce,8 output bits. 
//*   FORCE_A, FORCE_B, & FORCE_C inputs can be used to disable voting 
//*   and force data on A[7:0], B[7:0], or C[7:0] through to the 
//*   output.  Uses eight votecell modules.  This module drives the 
//*   V0TE8BIT block in the Cadence Concept schematic. 
//*   NOTE:  Module name must match the Cadence Concept block name, but 
//*   must be in lower case.  Signal names of inout, input, and output 
//*   lines and size (or bus width) must match the signal names in the 
//*   Cadence Concept block. 
//***************************************•**********•******************* 

module vote8bit (A, FORCE_A, B, FORCE_B, C, FORCE_C, VOTED_OUT, 
VOTE_ERROR); 

input [7:0] A, B, C; 
input FORCE_A, FORCE_B, FORCE_C; 
output [7:0] VOTEDJDUT; 
output VOTE_ERROR; 

wire ERROR_0, ERROR_l, ERROR_2, ERROR_3, ERR0R_4, ERR0R_5, ERR0R_6, 
ERROR_7; 

votecell 
cellO    (A[0],   FORCE_A,   B[0],   FORCE_B,   C[0],   FORCE_C, 

VOTED_OUT[0],   ERROR_0), 

celll    (A[l],   FORCE_A,   B[l],   FORCE_B,   C[l],   FORCE_C, 
VOTED_OUT[1],   ERROR_l), 

cell2   (A[2],   FORCE_A,   B[2],   FORCE_B,   C[2],   FORCE_C, 
VOTED_OUT[2],   ERROR_2), 
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cell3    (A[3],   FORCE_A,   B[3],   FORCE_B,   C[3],   FORCE_C, 
VOTED_OUT[3], ERR0R_3), 

cell4   (A[4],   FORCE_A,   B[4],   FORCE_B,   C[4],   FORCE_C, 
VOTED_OUT[4], ERR0R_4}, 

cell5   (A[5],   FORCE_A,   B[5],   FORCE_B,   C[5],   FORCE_C, 
VOTED_OUT[5], ERR0R_5), 

cel'16   (A[6],   FORCE_A,   B[6],   FORCE_B,   C[6],   FORCE_C, 
VOTED_OUT[6], ERR0R_6), 

cell7    (A[7],   FORCE_A,   B[7],   FORCE_B,   C[7],   FORCE_C, 
VOTED_OUT[7],   ERR0R_7); 

or #10 
or_l (VOTE_ERROR, ERROR_0, ERROR_l, ERR0R_2, ERR0R_3, ERROR_4, 

ERROR_5, ERROR_6, ERROR_7); 

endmodule //* end module vote8bit 
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D.   32-BIT VOTER/ERROR DETECTOR 
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Figure  50.     32-Bit Voter/Error Detector. 

II*  File:     vote32bit.v 
//* 
//* Description:  Verilog structural file for 32 bit majority voter and 
//* error detector using 4 voter_8bit modules 
//* 
//* Author:  John C. Payne, Jr. 
//* Date:  10/06/98 

'timescale 1.ns /l ps 

//it********************************************************************* 

//* Module:  vote32bit 
//* 
//* Description:  Verilog structural module for a 32 bit voter/error 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 

detector.  Votes 96 input bits to produce 32 output bits. 
FORCE_A, FORCE_B, & FORCE_C inputs can be used to disable voting 
and force data on A[31:0], B[31:0], or C[31:0] through to the 
output.  Uses four vote8bit modules.  This module drives the 
VOTE32BIT block in the Cadence Concept schematic. 
NOTE:  Module name must match the Cadence Concept block name, but 
must be in lower case.  Signal names of inout, input, and output 
lines and size (or bus width) must match the signal names in the 
Cadence Concept block. 

module vote32bit (A, FORCE_A, B, FORCE_B, C, FORCE_C, VOTED_OUT, 
VOTE_ERROR); 

input [31:0] A, B, C; 
input FORCE_A, FORCE_B, F0RCE_C; 
output [31:0] VOTED_OUT; 
output VOTE_ERROR; 

wire ERROR_0, ERROR_l, ERROR_2, ERROR_3; 
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vote8bit 
voterO (A[31:24], FORCE_A, B[31:24], FORCE_B, C[31:24], FORCE_C, 

VOTED_OUT[31:24], ERROR_0), 
voterl (A[23:16], FORCE_A, B[23:16], FORCE_B, C[23:16], FORCE_C, 

VOTED_OUT[23:16], ERROR_l), 
VOter2 (A[15:8], FORCE_A, B[15:8], FORCE_B, C[15:8], FORCE_C, 

VOTED_OUT[15:8], ERR0R_2), 
voter3 (A[7:0], FORCE_A, B[7:0], FORCE_B, C[7:0], FORCE_C, 

VOTED_OUT[7:0], ERROR_3) ; 

or  #10 
or_l    (VOTE_ERROR,   ERROR_0,   ERROR_l,   ERROR_2,   ERROR_3); 

endmodule     //*  end module vote32bit 
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E.        MEMORY/ADDRESS   DECODER 
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Figure 51.  Memory/Address Decoder. 

//*********************** ******************************* **************** 
//* File:  mem_decoder.v 
//* 
//* Description:  Verilog structural file for memory decoder to 
//* generate various chip selects. 
//* 
//* Author:  John C. Payne, Jr. 
//* Date:  10/06/98 
//********************************************************************** 

'timescale 1 ns / 1 ps 

//it********************************************************************* 

//* Module:  mem_decoder 
//* 
//* Description:  Verilog behavioral module for a memory decoder.  Uses 
//*   input A[31:17] to generate three active low chip select outputs. 
//*   This module drives the MEM_DECODER block in the Cadence Concept 
//*   schematic. 
//*   NOTE:  Module name must match the Cadence Concept block name, but 
//*   must be in lower case.  Signal names of inout, input, and output 
'//*   lines and size (or bus width) must match the signal names in the 
//*   Cadence Concept block. 
//********************************************************************** 

module mem_decoder (A, RAMCS_N, EPR0MCS_N, INTCS_N); 

input [31:17] A; 
output RAMCS_N, EPR0MCS_N, INTCS_N; 
wire RAMCS_N, EPR0MCS_N, INTCS_N; 

//* RAM = 00000000 to 0007FFFF 
//* EPROM = 1FC00000 to lFCOxxxx 
//*   INT  = 1F800000 "Dummy Address to Disable Vote Error Interrupts" 
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assign #45 
RAMCS_N =        (!A[31] && !A[30] && !A[29] && !A[28] &&   //* 0 

IA[27] && !A[26] && !A[25] && !A[24] &&   //* 0 
!A[23] &Sc !A[22] && !A[21] && !A[20] &&   //* 0 
!A[19])?0:1; //* 7 

assign #45 
EPROMCS_N  =   (!A[31] && !A[30] && !A[29] && A[28] &&   //* 1 

A[27] && A[26] && A[25] && A[24] &&   //* F 
A[23] && A[22] && !A[21] && !A[20] &&   //* C 

!A[19] && !A[18] && !A[17] )?0:1; //* 0 

assign #45 
INTCS_N  =         (!A[31] && !A[30] && !A[29] && A[28] &&   //* 1 

A[27] && A[26] && A[25] && A[24] &&   //* F 
A[23] && !A[22] && !A[21] && !A[20] &&   //* 8 

!A[19] && !A[18] ScSc !A[17] ) ?0:1; //* 0 

endmodule    //*  end module mem_decoder 
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F.        MEMORY/ERROR CONTROLLER 
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Figure 52.  Memory/Error Controller. 

//••••A***************************************************************** 

//* File:  mem_cont.v 
//* 
//* Description:  Verilog behavioral file for memory/error controller 
//* to control timing cycles of various bus transactions. 
//* 
//* Reference:  (1) IDT RISC Microprocessor Application Guide, 
//* Application Note AN-86, IDT79R3051 System Design 
//* Example 
//* 
//* Author:  John C. Payne, Jr. 
//* Date:  11/3/98 
//********************************************************************** 

1timescale 1 ns /l ps 

//********************************************************************•* 

//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 

Mo du1e:  mem_cont 

Description: Verilog behavioral module for the memory/error 
controller.  Produces READ, WRITE, and BUS ERROR acknowledge 
controls (RDCEN_N, ACK_N, BUSERROR_N) based on a 5 bit counter 
and cycle end stall cycle (wait state) equations. 
Also produces an interrupt if there is a vote error detected on 
the ADDRERR, CONTERR, or DATAERR inputs.  The ADDRERR, CONTERR, 
and DATAERR inputs are saved at specified values of the counter, 
and an error interrupt is generated only at the end of the 
current cycle, so that the current cycle is allowed to finish. 
If INTCS_N goes low during a dummy write to that address, this 
signals the beginning of the interrupt handler routine and 
vote error interrupts are disabled until INTCS_N goes low again, 
which signals the end of the interrupt handler routine. 
This module also controls the three lines ADDRTOFIFO_N, 
CONTTOFIFO_N, and DATATOFIFO_N which send the appropriate 
information to the dedicated FIFOs.  These three lines are 
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active low enable lines which allow, through the use of 32-bit 
tri-state buffers, the ADDRESS, CONTROL, and DATA information 
from the processor to be multiplexed onto a single 32-bit bus 
which is the input bus for each dedicated FIFO.  The FIFOWE_N 
line signals a write to the FIFOs at the appropriate time within 
a bus cycle based on the 5-bit counter. 
This module drives the MEM_CONT block in the Cadence Concept 
schematic. 
NOTE:  Module name must match the Cadence Concept block name, but 
must be in lower case.  Signal names of inout, input, and output 
lines and size (or bus width) must match the signal names in the 
Cadence Concept block. 

Reference:  (1) IDT RISC Microprocessor Application Guide, 
Application Note AN-86, IDT79R3051 System Design 
Example 

//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 

module mem_cont (SYSCLK_N, RESET_N, VOTRD_N, VOTWR_N, VOTBURST_N, 
RAMCS_N, EPROMCS_N, INTCS_N, USEFIFO, DATAERR, 
ADDRERR, CONTERR, ENSTART_N, CYCEND_N, 
RDCEN_N, ACK_N, BUSERROR_N, ADDRTOFIFO_N, 
DATATOFIFO_N, CONTTOFIFO_N, FIFOWE_N, 
VOTERROR_INT_N); 

input SYSCLKJSF, 
RESET_N, 
VOTRD_N, 
VOTWRJST, 
VOTBURST_N, 
RAMCS_N, 
EPROMCS_N, 
INTCS_N, 
USEFIFO, 
DATAERR, 
ADDRERR, 
CONTERR; 

//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 

System clock from R3 081 
Reset from MEMEN module 
Voted read from R3 081 
Voted write from R3 081 
Voted burst from R3 081 
RAM chip select from memory decoder 
EPROM chip select from memory decoder 
INT chip select from memory decoder 
Set High (pull up) to Write to FIFOs 
Data Vote Error from 32-bit Data Voter 
Address Vote Error from 32-bit Address Voter 
Control Vote Error from 8-bit Control Voter 

output ENSTART_N, 
CYCEND_N, 
RDCEN_N, 
ACK_N, 
BUSERROR_N, 
ADDRTOFIFO_N, 
DATATOFIFO_N, 
CONTTOFIFO_N, 
FIFOWE_N, 

//* Read/write output enable start 
//* Cyle end (composite ACK) 
//* R3081 read buffer clock enable 
//* R3081 acknowledge 
//* R3081 bus error 
//* Address To FIFO to Address Buffers 
//* Data To FIFO to Data Buffers 
//* Control To FIFO to Control Buffers 
//* FIFO Write Enable 

VOTERROR_INT_N; //* Interrupt Sent to R3081 

wire ENSTART_N, CYCEND_N, RDCEN_N, ACK_N, BUSERROR_N, 
ADDRTOFIFO_N, DATATOFIFO_N, CONTTOFIFO_N, 

' , FIFOWE_N, VOTERROR_INT_N; 

reg [4:0] counter; 
reg voteErrorlntEn; 
wire voteError; 
reg saveErrorl, saveError2, saveError3, saveError4; 
reg voteErrorlntValueToGo; 
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//* At the positive edge of the reset input line, RESETJST, ensure 
//* vote error interrupts are enabled, the interrupt line is HIGH, 
//* and the saved error flags are initialized to indicated no error 
//* has been detected, 
always 

@(posedge RESET_N) 
begin 

voteErrorlntEn = 1; 
voteErrorlntValueToGo = 1; 
saveErrorl = 0; 
saveError2 = 0 
saveError3 = 0 
saveError4 = 0 

end 

//* At each positive edge of the system reference clock generated 
//* by the R3081, reset the counter if RESET_N or CYCEND_N goes low. 
//* Increment the counter if VOTRD_N or V0TWR_N is low.  Save the 
//* error flag at the four different counter values, so that the 
//* cycle is allowed to finish.  The use of four different saved 
//* values allows a single READ or WRITE to finish as well as a 
//* BURST READ to finish.  If the current transaction is a BURST 
//* READ, then an ADDRERR, CONTERR, or DATAERR is sampled four times, 
always 

©(posedge SYSCLK_N) 
begin 

if (!RESET_N || !CYCEND_N) 
counter = 0; 

else if (!VOTRD_N || !VOTWR_N) 
counter = counter + 1; 

if (RESET_N && CYCEND_N && (counter == 5'h05)) 
saveErrorl = voteError; 

else if (RESET_N && CYCEND_N && (counter == 5'h09)) 
saveError2 = voteError; 

else if (RESET_N && CYCEND_N && (counter == 5'hOB)) 
saveError3 = voteError; 

else if (RESET_N && CYCEND_N && (counter == 5'hl7)) 
saveError4 = voteError; 

//* If at the end of a cycle, and one of the saved errors 
//* indicates an error occurred, then generate an interrupt 
//* only if vote error interrupts are currently enabled, 
if (RESET_N && !CYCEND_N && voteErrorlntEn && 

(saveErrorl || saveError2 || saveError3 || saveError4)) 
voteErrorlntValueToGo = 0 ; 

end 

//* Watch for negative edge of INTCS_N, and disable/reenable vote 
//* error interrupts. 
always 

©(negedge INTCS_N) 
begin 

voteErrorlntEn = -voteErrorlntEn; 
voteErrorlntValueToGo = 1; 
saveErrorl = 0; 
saveError2 = 0; 
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saveError3 = 0 ; 
saveError4 = 0; 

end 

//* Update internal voteError flag 
assign #30 voteError = (ADDRERR || DATAERR CONTERR)?1:0; 

//* Update VOTERROR_INT_N output line 
assign #3 0 VOTERROR_INT_N = voteErrorlntValueToGo; 

//* Update ENSTART_N output line 
assign #30 ENSTART_N = (RESET_N && (counter >= 1) && CYCEND_N)?0:1; 

//* Update CYCEND_N output line 
assign #30 CYCEND_N = 

(RESET_N && CYCEND_N && ( 
(!RAMCS_N && (counter == 5'h05) && !V0TRD_N && VOTBURST_N) 
(!RAMCS_N && (counter == 5'hl7) && !V0TRD_N && !VOTBURST_N) 
(!RAMCS_N && (counter == 5'h06) && !V0TWR_N) 
(!EPROMCS_N && (counter == 5'h05) && !V0TRD_N && VOTBURST_N) 
(!EPROMCS_N && (counter == 5'hl7) && !VOTRD_N && !VOTBURST_N) 
(!INTCS_N ScSc   (counter == 5'h06) && !VOTWR_N) 
(counter == 8'hlF) 

))?0:1; 

//* Update RDCEN_N output line 
assign #30 RDCEN_N = 

(RESET_N  ScSc  CYCEND_N &&   ( 
(!RAMCS_N  &&   !VOTRD_N && 

( 
(counter == 5 'h03) 

(!VOTBURST_N && (counter == 5 'h09)) 
(!VOTBURST_N && (counter == 5 'hOF)) 
(!VOTBURST_N 
) 

ScSc (counter == 5 'hl5)) 

.EPROMCS_N  && VOTRD_N  && 
( 

(counter == 5 'h03) 
(!VOTBURST_N ScSc (counter == 5 'h09)) 

•(!VOTBURST_N ScSc (counter == 5 'hOF)) 
(!VOTBURST_N Sc& (counter == 5 'hl5)) 

) 
) )?0:1; 

//* Update ACK_N output line 
assign #30 ACK_N = (RESET_N && CYCEND_N && 

( 
(!RAMCS_N && !VOTWR_N && 

(counter == 5'h06) 
) 
(!RAMCS_N && !VOTRD_N && 

(counter == 5'h03) 
) 
(!EPROMCS_N && !VOTRD_N S=& 

(counter == 5'h03) 
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(!INTCS_N && !VOTWR_N && 
(counter == 5'h06) 

) 
))?0:1; 

//* Update BUSERROR_N output line 
assign #30 BUSERROR_N = 

(RESET_N && CYCEND_N && (counter 5'hlF))?0:1; 

//* Update ADDRTOFIFO_N output line 
assign #30 ADDRTOFIFO_N = 

(RESET_N && CYCEND_N && USEFIFO && 
( 

!EPROMCS_N && 
(counter 

!VOTRD_N && 
== 5'h01) 

( 
(!VOTBURST_N && 
(!VOTBURST_N && 
(!VOTBURST_N && 

(counter 
(counter 
(counter 

5'h07)) 
5'hOD)) 
5'hl3)) 

) 
(!RAMCS_N && !VOTRD_N && 

( 
(!VOTBURST_N && 
(!VOTBURST_N && 
(!VOTBURST_N && 

(counter 
(counter 
(counter 

5'h07)) 
5'hOD)) 
5'hl3)) 

) 
?0:1; 

//* Update CONTTOFIFO_N output line 
assign #30 CONTTOFIFO_N = 

(RESET_N && CYCEND_N && USEFIFO && 
( 

(!EPROMCS_N && 
(counter 

!VOTRD_N && 
( 

(!VOTBURST_N && 
(!VOTBURST_N && 
(!VOTBURST_N && 

(counter 
(counter 
(counter 

== 5'h03] 

5'h09)) 
5'h0F)) 
5'hl5)) 

(!RAMCS_N && !VOTRD_N && 
( 

(!VOTBURST_N && (counter == 5'h09)) 
(!VOTBURST_N && (counter == 5'hOF)) 
(!VOTBURST_N && (counter == 5'hl5)) 

) 
),?0:1; 
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//* Update DATATOFIFO_N output line 
assign #30 DATATOFIFO_N = 

(RESET_N && CYCEND_N && USEFIFO && 
( 

(!EPR0MCS_N && 1V0TRD. 
( 

(!VOTBURST_N && 
(!VOTBURST_N && 
(!VOTBURST_N && 

(counter 
_N && 

(counter 
(counter 
(counter 

5'h05) 

5'hOB)) 
5'hll)) 
5'hl7)) 

) 
(!RAMCS_N && !V0TRD_N && 

( 
(!VOTBURST_N && 
(!VOTBURST_N && 
(!VOTBURST_N && 

(counter 
(counter 
(counter 

5'hOB)) 
5'hll)) 
5'hl7)) 

) 
)?0:1; 

//* Update FIFOWE_N output line 
assign #3 0 FIFOWE_N = 

(RESET_N && CYCEND_N && USEFIFO && 
( 

) 
?0:1; 

(counter == 5'h01) 
(counter == 5'h03) 
(counter == 5'h05) 
(!VOTBURST_N 
(!VOTBURST_N 
(!VOTBURST_N 
( !VOTBURST_N 
(!VOTBURST_N 
(!VOTBURST_N 
(!VOTBURST_N 
(!VOTBURST_N 
(!VOTBURST_N 

Sc& !VOTRD_N && (counter = = 5 'h07)) 
&& !VOTRD_N && (counter == 5 'h09)) 
&& !VOTRD_N && (counter == 5 'hOB)) 
Sc& !VOTRD_N && (counter == 5 'hOD)) 
ScSc !VOTRD_N && (counter == 5 'hOF)) 
&& !VOTRD_N && (counter == 5 'hll)) 
&& IVOTRD N && (counter = = 5 'hl3)) 
&& !VOTRD_N && (counter == 5 'hl5)) 
ScSc !VOTRD_N && (counter == 5 'hl7)) 

endmodule //* end module mem_cont 
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G. MEMORY  READ/WRITE   ENABLE   CONTROLLER 

MEM-EN 

SYSCLK_N0_i 
PWRRESET_NQ_ 

YOTRD_NQ_ 

UOTWR_NQ_ 

ENSTART_N ©_ 
CYCEND-N ©_ 

BEN00_ 
BEN1Q_ 

BEN2Q_ 

BEN3©_ 

SYSCLK* RESET* 
PWRRESET* 
UOTRD*   WRDATAEN* 
UOTWR* 
ENSTART* 
CYCEND* 
BEN0 
BEN1 
BEN2 
BEN3 

WREN_A* 
WREN_B* 
WREN_C>K 
WREN_D* 

RDEN* 
RDDATAEN* 

_ORESET_N 

_OWRDATAEN_N 
_0WREN_NA 
_QWREN_NB 

_©WREN_NC 
_QWREN_ND 

_©RDEN_N 
_ORDDATAEN_N 

Figure 53.  Memory Read/Write Enable Controller. 

//*********************•************************************************ 

//* File:  mem_en.v 
//* 
//* Description:  Verilog behavioral file for generating memory read 
//* and write enable signals. 
//* 
//*  Reference:      (1)   IDT RISC Microprocessor Application Guide, 
//* Application Note AN-86,   IDT79R3051  System Design 
//* Example 
//* 
//* Author:     John C.   Payne,   Jr. 
//*  Date:     11/1/98 
//********************************************************************** 

'timescale  1  ns   /l  ps 

//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 

*************** *■* **************************************************** 

Module:  mem_cont 

Description:  Verilog behavioral module for generating the read 
and write enables for the memory controls. 
This module drives the MEM_EN block in the Cadence Concept 
schematic. 
NOTE:  Module name must match the Cadence Concept block name, but 
must be in lower case.  Signal names of inout, input, and output 
lines and size (or bus width) must match the signal names in the 
Cadence Concept block. 

Reference:  (1) IDT RISC Microprocessor Application Guide, 
Application Note AN-86, IDT79R3051 System Design 
Example 

********************************************************************* 
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module mem_en (SYSCLK_N, PWRRESET_N, VOTRD_N, VOTWR_N, ENSTART_N, 
CYCEND_N, BENO, BEN1, BEN2, BEN3, RESET_N, WREN_N, 
WRDATAEN_N, WREN_NA, WREN_NB, WREN_NC, WREN_ND, RDEN_N, 
RDDATAEN_N); 

input SYSCLK_N, 
PWRRESET_N, 
VOTRD_N, 
VOTWR_N, 
ENSTART_N, 
CYCEND_N, 
BENO, 
BEN1, 
BEN2, 
BEN3 ; 

output  RESET_N, 
WREN_N, 
WRDATAEN_N, 
WREN_NA, 
WREN_NB, 
WRENJSTC, 
WREN_ND, 
RDEN_N, 
RDDATAEN_N; 

//* System clock from R3 081 
//* Power   (Global)   reset 
//* Voted read from R3 081 
//* Voted write from R3 081 
//* Enable start from memory controller 
//* Cycle end from memory controller 
//* Byte 0 enable (active low) from R3081 
//* Byte 1 enable (active low) from R3081 
//* Byte 2 enable (active low) from R3081 
//* Byte 3 enable (active low) from R3081 

(ADDR 
(ADDR 
(ADDR 
(ADDR 

[0]) 
[1]) 
[2]) 
[3]) 

//* Synchronzied reset line to rest of board 
//* Not used 
//* Write data xcvr enable 
//* 
//* 
//* 
//* 
//* 
//* 

Write enable for byte 0 
Write enable for byte 1 
Write enable for byte 2 
Write enable for byte 3 
Read output enable (for words) 
Read data xcvr enable 

wire RESET_N, WREN_N, WRDATAEN_N, WREN_NA, WREN_NB, WREN_NC, WREN_ND, 
RDEN_N, RDDATAEN_N; 

assign  #30 WREN_NA = 
!(RESET_N  ScSc 

(!VOTWR_N ScSc   1BEN0   ScSc   !ENSTART_N  ScSc  CYCEND_N) 

assign  #3 0 WREN_NB = 
! (RESET_N  ScSc 

(!VOTWR_N  ScSc   !BEN1   &&   ! ENSTART_N  ScSc  CYCEND_N) 
); 

assign #30 WREN_NC = 
!(RESET_N && 

(!VOTWR_N ScSc   !BEN2 && ! ENSTART_N && CYCEND_N) 
) ; 

assign #3 0 WREN_ND = 
!(RESET_N && 

(!VOTWR_N && !BEN3 && !ENSTART_N && CYCEND_N) 
); 

assign #30 WREN_N = 
!(RESET_N && 

((!VOTWR_N  ScSc  CYCEND_N)     ||    ( !WREN_N  ScSc   !CYCEND_N)) 
) ; 
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assign #30 WRDATAEN_N = 
!(RESET_N && 

(( !VOTWR_N && !ENSTART_N) || 
(!WRDATAEN_N  &&    (!ENSTART_N   ||    !CYCEND_N)) 

) 
); 

assign  #30  RDEN_N = 
!(RESET_N && 

( !VOTRD_N  &&   !ENSTART_N  &&  CYCEND_N) 
) ; 

assign  #30   RDDATAEN_N = 
!(RESET_N && 

( !VOTRD_N  &&   !ENSTART_N  &&  CYCEND_N) 
); 

assign  #30  RESET_N =   ! ( ! PWRRESETJJ) ; 

endmodule  //*  end module mem_en 
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H.         16-BIT  NON-INVERTING  TRI- STATE  BÜFFER 

BUFF_16BIT 

IN0 0_ IN0 OUT0 _0OUT0 
INlQ_ INI 0UT1 _£>0UT1 
IN2Q_ IN2 0UT2 _£|0UT2 
IN3Q_ IN3 0UT3 _QOUT3 
IN4 0_ IN4 0UT4 _QOUT4 

IN5Q_ IN5 0UT5 _©0UT5 
INB0_ IN6 0UT6 _©0UT6 
iw?e- IN7 0UT7 _QOUT7 
IN8Q_ IN8 0UT8  _QOUT8 

IN9Q. IN9 0UT9  -0OUT9 
IN100- IN10 OUT10 _£)OUT10 
INllQ- IN11 0UT11 _QOUT11 
IN12©_ IN12 0UT12 _©0UT12 
IN130_ IN13 0UT13 _£)0UT13 
IN14Q_ IN14 0UT14 _QOUT14 

IN15Q_ IN15 0UT15 _£)0UT15 

OE* 

<Q> 
OE_N 

Figure  54.      16-Bit Non-Inverting  Tri-State  Buffer. 

//**********************•*********************************************** 

//*   File:     buff_16bit.v 
//* 
//*  Description:     Verilog structural file  for  16  bit  tri-state 
//*                                   non-inverting buff er. 
//* 
//* Author:     John C.   Payne,   Jr. 
//*  Date:     11/16/98 
//***************************************************•****************** 

xtimescale  1  ns   /l  ps 

//********************************************************************** 

//* Module:     interface 
//* 
//*  Description:     Verilog stru ctural module  for simulating a  16-bit 
//* tri-state non-inverting buffer. 
//* This module drives the BUFF_16BIT block in the Cadence Concept 
//* schematic. 
//* NOTE:  Module name must match the Cadence Concept block name, but 
//* must be in lower case.  Signal names of inout, input, and output 
//* lines and size (or bus width) must match the signal names in the 
//* Cadence Concept block. 

module buff_16bit (INO, INI, IN2, IN3, IN4, IN5, IN6, IN7, 
IN8, IN9, IN10, IN11, IN12, INI3, INI4, INI5, 
OUTO, 0UT1, 0UT2, 0UT3, 0UT4, 0UT5, 0UT6, 0UT7, 
0UT8, 0UT9, OUT10, 0UT11, OUT12, 0UT13, 0UT14, 0UT15, 
OE_N); 
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input INO, INI, IN2, IN3, IN4, IN5, IN6, IN7, 
IN8, IN9, INIO, IN11, IN12, INI3, INI4, INI 5; 

output OUTO, OUT1, OUT2, OUT3, OUT4, OUT5, OUT6, OUT7, 
OUT8, OUT9, OUT10, OUT11, OUT12, OUT13, OUT14, OUT15; 

input OE_N; 

bufifO #(0 :15:30, 0:15:30, 0:15:30) 
buff 0 (OUTO, INO, OE_N), 
buff_l (OUT1, INI, OE_N), 
buff_2 (OUT2, IN2, OE_N), 
buff_3 (OUT3, IN3, OE_N), 
buff_4 (OUT4, IN4, OE_N), 
buff_5 (OUT5, IN5, OE_N), 
buff_6 (OUT6, IN6, OE_N), • 
buff 7 (OUT7, IN7, OE_N), 
buff 8 (OUT8, IN8, OE_N), 
buff_9 (OUT9, IN9, OE_N), 
buff_10 (OUT10 , IN10, OE_N), 
buff_ll (OUT11 , IN11, OE_N), 
buff 12 (OUT12 , IN12, OE_N), 
buff 13 (OUT13 , INI3, OE_N), 
buff_14 (OUT14 , INI4, OE_N), 
buff_15 (OUT15 , INI5, OE_N); 

endmodule //* end module buff 16bit 
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I.   EPROM 

EPROM 

A0Q_ A<0> DftTflOl. . B> _QDATA<31 

A10- ft<i> 
ftl4_2<14. . 2>Q_ ft<14. . 2> 

OUTPUTENftBLE_N  Q_ OE* 
CHIPSELECT_N   ©_ CS* 

Eb 

Figure 55.  EPROM. 

//*****************•*******•******************************************** 

//* File:  eprom.v 
//* 
//* Description:  Verilog behavioral file for an EPROM. 
//* 
//* Author:  John C. Payne, Jr. 
//* Date:  10/28/98 

'timescale 1 ns /l ps 

//* Define how many entries are in the data file for internal memory 
//* storage. 
1 define EPROM_ENTRIES  48 

//*****•**************************************************************** 

//* Module:  eprom 
//* 
//* Description:  Verilog behavioral module for simulating an EPROM. 
//*   Although because of the number of address lines, it is capable of 
//*   being 128k, it has been limited to 48 entries to reduce data 
//*   entry for simulation purposes.  The memory data and intialized 
//*   the data file EPROM.data. 
//*   This module drives the EPROM block in the Cadence Concept 
//*   schematic. 
//*   NOTE:  Module name must match the Cadence Concept block name, but 
//*   must be in lower case.  Signal names of inout, input, and output 
//*   lines and size (or bus width) must match the signal names in the 
//*   Cadence Concept block. 
//**************************************••****************************** 

module eprom (A0, Al, A14_2, OUTPUTENABLE_N, CHIPSELECT_N, DATA); 

//* EPROM Maximum Access Times *// 
parameter 

CY27C256_max_access = 45; 

//* Module input and output lines 
input A0, 

Al; 
input [14:2] A14_2; 
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input OUTPUTENABLE_N, 
CHIPSELECT_N; 

output [31:0] DATA; 

//* Internal variables (line enables) 
wire [14:0] combined_address; 
reg [31:0] memory [0: TEPROMJENTRIES - 1)]; 

//* Intialize internal memory from data file 
initial 

begin 
$readmemh("EPROM.data",memory); 

end 

//* Combine input lines into single address 
assign combined_address[0] = A0; 
assign combined_address[1] = Al; 
assign combined_address[14:2] = A14_2; 

//* Drive data bus with data from EPROM at combined address if 
//* OUTPUTENABLE_N and CHIPSELECT_N are both low.  Drive to 
//* high impedance otherwise, 
assign #(CY27C256_max_access) DATA = 

(!OUTPUTENABLE_N && 
!CHIPSELECT_N)?memory[combined_address]:'bz; 

endmodule 

//* File:  EPROM.data 
//* 
//* Description:  Capable of being 128K EPROM Memory File 
//* 17 address lines (A[16] - A[0]) = 
//* 131072 lines of 32-bit data/instructions allowed 
//*   Only 48 entries have been supplied to reduce data entry for 
//*   simulation purposes. 
//* 
/ / * Author:  John C. Payne, Jr. 
//* Date:  10/28/98 
//********************************•************************************* 

//* ADDRESS 
00000000 //* 00000h 
00000001 
00000002 
00000003 
00000004 
00000005 
00000006 
00000007  //* 00007h 
00000008 
00000009 
OOO0OO0A 
OOO0OO0B 
oooooooc 
OOO0OOOD 
0000000E 
OOO0OO0F  //* OOOOFh 
00000010  //* OOOlOh 
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00000011 
00000012 
00000013 
00000014 
00000015 
00000016 
00000017 ' //* 00017h 
00000018 
00000019 
0000001A 
0000001B 
0000001C 
0000001D 
0000001E 
0000001F  //* OOOlFh 
00000020  //* 00020h 
00000021 
00000022 
00000023 
00000024 
00000025 
00000026 
00000027  //* 00027h 
00000028 
00000029 
0000002A 
0000002B 
0000002C 
0000002D 
0000002E 
0000002F  //* 0002Fh 
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J. SYSTEM INTERFACE 

INTERFACE 
FIFOAOUT<31. . 0> A- FIF0_A<31. . B> 
FIF0B0UT<31. . 0> O- FIF0_B<31. . 0> RDCLK -^i READCLK 
FIF0C0UTO1. . B> O-  FIF0_C<31. . B> A_OEa< -O A_OE_N 

EF_ftl_N ©- EF_A1* B_OEü<    _0 B_OE_N 
EF_ft2_N O- EF_A2* C_OEik    _o C_OE_N 
EF_B1_N O- EF_B1* 
EF_B2_N <V EF_B2ü< "IFORDik   _c FIFORD-N 
EF_C1_N O- EF_C1* 
EF_C2_N O- EF_C2)k 

Figure 56.  System Interface. 

//********************************************************************** 
//* File:  interface.v 
//* 
//* Description:  Verilog behavioral file for simulating the 
//* interface portion of the TMR testbed. 
//* 
//* Author:  John C. Payne, Jr. 
//* Date:  11/15/98 
//********************************************************************** 

ltimescale 1 ns /l ps 

xdefine HIGH      1 
"define LOW       0 

//******************************************************** ************** 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 
//* 

Module: interface 

Description:  Verilog behavioral module for simulating the 
interface of the TMR Testbed which removes the information from 
the three FIFOs dedicated to the three microprocessors. 
The data that is read from each FIFO is formatted and written to 
text trace file 'TMR_trace.out'.  If the file doesn't exist, it 
is created in the current working directory.  If the file already 
exists, it is emptied and overwritten. 
This module drives the INTERFACE block in the Cadence Concept 
schematic. 
NOTE:  Module name must match the Cadence Concept block name, but 
must be in lower case.  Signal names of inout, input, and output 
lines and size (or bus width) must match the signal names in the 
Cadence Concept block. 

module interface (FIFOAOUT, FIFOBOUT, FIFOCOUT, EF_A1_N, EF_A2_N, 
EF_B1_N, EF_B2_N, EF_C1_N, EF_C2_N, READCLK, 
A_OE_N, B_OE_N, C_OE_N, FIFORD_N); 

*********** 
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//* Module input and output lines 
input [31:0] FIFOAOUT, 

FIFOBOUT, 
FIFOCOUT; 

input       EF_A1_N, EF_A2_N, 
EF_B1_N, EF_B2_N, 
EF_C1_N, EF_C2_N; 

output       READCLK, 
A_OE_N, 
B_OE_N, 
C_OE_N, 
FIFORD_N; 

reg READCLK; 
wire FIFORD_N; 
wire fifoAEmpty_N, fifoBEmpty_N, fifoCEmpty_N; 
wire A_OE_N, B_OE_N, C_OE_N; 
reg [31:0] fileHandle; 
reg aOEenable, bOEenable, cOEenable, fifoRdEnable; 
reg [31:0] Adata, Bdata, Cdata, saveAdata, saveBdata, saveCdata; 

initial 
begin 

READCLK = 'LOW; 
fifoRdEnable = 'LOW; 
aOEenable = 'LOW; 
bOEenable = 'LOW; 
cOEenable = 'LOW; 
fileHandle = $fopen("TMR_trace.out") ; 
$fdisplay(fileHandle, " CPU A        CPU B 

CPU C"); 
$fdisplay(fileHandle, 

end 

//* Control FIFO interface clock 
always 

#12.5 READCLK = -READCLK; 

//* Composite FIFO empty flags.  If not empty, signals will be high. 
assign #30 fifoAEmpty_N = (EF_A1_N && EF_A2_N)?1:0; 

assign #30 fifoBEmpty_N = (EF_B1_N && EF_B2_N)?1:0 

assign #30 fifoCEmpty_N = (EF_C1_N && EF_C2_N)?1:0 

assign FIFORD_N = (fifoRdEnable)?0:1; 

assign A_OE_N = (aOEenable)?0:1; 
assign B_OE_N = (bOEenable)?0:1; 
assign C_OE_N = (cOEenable)?0:1; 

always 
begin 

wait((fifoAEmpty_N == 'HIGH) && (fifoBEmpty_N == 'HIGH) && 
(fifoCEmpty_N == 'HIGH)) 
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begin 
//* Read FIFO A -- should be address from CPU A 
©(negedge READCLK) 
begin 

#5; 
fifoRdEnable = 'HIGH; 
aOEenable = 'HIGH; 
©(posedge READCLK) 
begin 

#10; 
Adata[31:0] = FIFOAOUT[31:0]; 
fifoRdEnable = 'LOW; 
aOEenable = 'LOW; 

end 
end 

//* Read FIFO B -- should be address from CPU B 
©(negedge READCLK) 
begin 

#5; 
fifoRdEnable = 'HIGH; 
bOEenable = 'HIGH; 
©(posedge READCLK) 
begin 

.#10; 
Bdata[31:0] = FIFOBOUT[31:0]; 
fifoRdEnable = 'LOW; 
bOEenable = 'LOW; 

end 
end 

//* Read FIFO C — should be address from CPU C 
©(negedge READCLK) 
begin 

#5; 
fifoRdEnable = 'HIGH; 
cOEenable = 'HIGH; 
©(posedge READCLK) 
begin 

#10; 
Cdata[31:0] = FIFOCOUT[31:0]; 
fifoRdEnable = 'LOW; 
cOEenable = 'LOW; 

end 
end 

//* Output address info from FIFOs to diary file 
$fdisplay(fileHandle, "Address = %h\t%h\t%h", Adata, Bdata, 

Cdata); 
end 

,wait((fifoAEmpty_N == 'HIGH) && (fifoBEmpty_N == 'HIGH) && 
(fifoCEmpty_N == 'HIGH)) 

begin 

//* Read FIFO A — should be control from CPU A 
©(negedge READCLK) 
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begin 
#5; 
fifoRdEnable = 'HIGH; 
aOEenable = 'HIGH; 
@(posedge READCLK) 
begin 

#10; 
Adata[31:0]   =  FIFOAOUT[31:0]; 
fifoRdEnable = 'LOW; 
aOEenable = 'LOW; 

end 
end 

//* Read FIFO B -- should be control from CPU B 
@(negedge READCLK) 
begin 

#5; 
fifoRdEnable =''HIGH; 
bOEenable = 'HIGH; 
©(posedge READCLK) 
begin 

#10; 
Bdata[31:0] = FIFOBOUT[31:0]; 
fifoRdEnable = 'LOW; 
bOEenable = 'LOW; 

end 
end 

//* Read FIFO C -- should be control from CPU C 
@(negedge READCLK) 
begin 

#5; 
fifoRdEnable = 'HIGH; 
cOEenable = 'HIGH; 
@(posedge READCLK) 
begin 

#10; 
Cdata[31:0] = FIFOCOUT[31:0]; 
fifoRdEnable = 'LOW; 
cOEenable = 'LOW; 

end 
end 

//* Output control info from FIFOs to diary file 
$fdisplay(fileHandle, "Control = %h\t%h\t%h", Adata, Bdata, 

Cdata); 

//* Save CONTROL data for displaying control status at end 
//* of reading DATA data from FIFO 
saveAdata = Adata; 
saveBdata = Bdata; 
saveCdata = Cdata; 

end 

wait((fifoAEmpty_N == 'HIGH) && (fifoBEmpty_N == 'HIGH) && 
(fifoCEmpty_N == 'HIGH)) 

begin 
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//* Read FIFO A — should be data to/from CPU A 
@(negedge READCLK) 
begin 

#5; 
fifoRdEnable = 'HIGH; 
aOEenable = 'HIGH; 
@(posedge READCLK) 
begin 

#10; 
Adata[31:0] = FIFOAOUT[31:0]; 
fifoRdEnable = 'LOW; 
aOEenable = 'LOW; 

end 
end 

//* Read FIFO B — should be data to/from CPU B 
@(negedge READCLK) 
begin 

#5; 
fifoRdEnable = 'HIGH; 
bOEenable = 'HIGH; 
@(posedge READCLK) 
begin 

#10; 
Bdata[31:0] = FIFOBOUT[31:0]; 
fifoRdEnable = 'LOW; 
bOEenable = 'LOW; 

end 
end 

//* Read FIFO C -- should be data to/from CPU C 
©(negedge READCLK) 
begin 

#5; 
fifoRdEnable = 'HIGH; 
cOEenable = 'HIGH; 
@(posedge READCLK) 
begin 

#10; 
Cdata[31:0] = FIFOCOUT[31:0]; 
fifoRdEnable = 'LOW; 
cOEenable = 'LOW; 

end 
end 

//* Output data info from FIFOs to diary file 
$fdisplay(fileHandle, "Data   = %h\t%h\t%h", Adata, Bdata, 

Cdata); 
case(saveAdata[4:2]) 

3'b010: 
$fdisplay(fileHandle, "A Control = Burst Read Word %d", 

saveAdata[1:0]); 
3'bll0: 

$fdisplay(fileHandle, "A Control = Read"); 
3'bl01: 

$fdisplay(fileHandle, "A Control = Write"); 
default: 
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$fdisplay(fileHandle, "A Control = Illegal Bus 
Transaction"); 

endcase 

case(saveBdata[4:2]) 
3'b010: 

$fdisplay(fileHandle, "B Control = Burst Read Word %d", 
saveBdata[1:0]); 

3'bllO: 
$fdisplay(fileHandle, "B Control = Read"); 

3'bl01: 
$fdisplay{fileHandle, "B Control = Write"); 

default: 
$fdisplay{fileHandle, "B Control = Illegal Bus 

Transaction") ; 
endcase 

case(saveCdata[4:2]) 
3'b010: 

$fdisplay(fileHandle, "C Control = Burst Read Word %d", 
saveCdata[1:0]); 

3'bllO: 
$fdisplay(fileHandle, "C Control = Read"); 

3'bl01: 
$fdisplay(fileHandle, "C Control = Write"); 

default: 
$fdisplay(fileHandle, "C Control = Illegal Bus 

Transaction"); 
endcase 

$fdisplay(fileHandle, 
it = ——————————— — — — — — — ——————— 

end 

end 

endmodule //* end module interface 
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APPENDIX D.  CADENCE SCRIPT CONTROL LANGUAGE FILES 

This appendix contains two SCL files which were used to 

generate the simulation results obtained in Chapter V. 

A.   NORMAL (ERROR FREE) SCL FILE 

//♦»»»»A**************************************************************** 

//* File:  normal.scl 
//* 
//* Description:  Cadence Logic Workbench Opensim Script Control 
//*   Language (SCL) file.  This file executes several bus cycles for 
//*   the TMR Testbed schematic.  All of the bus cycles in this file 
//*   should be error free. 
//* 
//* Author:  John C. Payne, Jr. 
//* Date:  11/30/98 
//*•******************************************************************** 

//* Definitions for transaction codes 
//* (same as in verilog file for R3 081 module) 
NONE = 0 
READ_BYTE = 1 
READ_WORD = 2 
READ_BURST = 3 
WRITE_BYTE = 4 
WRITE_WORD = 5 

//* Initialize board interface lines 
DEPOSIT 'PWRRESET*', 0 
DEPOSIT 'TESTEN1*', 0 

DEPOSIT 'F0RCE_A', 0 
DEPOSIT 'FORCE_B', 0 
DEPOSIT 'FORCE_C, 0 
DEPOSIT 'USEFIFO', 1 
DEPOSIT 'PULL_UP', 1 
DEPOSIT 'GND', 0 

DEPOSIT 'A_TRANS', (NONE) 
DEPOSIT 'B_TRANS', (NONE) 
DEPOSIT 'C_TRANS', (NONE) 

//* These initializations are necessary to prevent timing violations 
//* in the simulation 
DEPOSIT 'RAMCS*', 1 
DEPOSIT 'EPROMCS*', 1 
DEPOSIT 'INTCS*', 1 
DEPOSIT 'WREN_A*', 1 
DEPOSIT 'WREN_B*', 1 
DEPOSIT 'WREN_C*', 1 
DEPOSIT 'WREN_D*', 1 
DEPOSIT 'RDEN*', 1 
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//* Hold board reset and release 
sim 1000ns 
DEPOSIT 'PWRRESET*', 1 

//* Advance simulation clock during initial burst read from EPROM 
//* address 1FC00000 which is initiated by the R3081 modules 
while (#'VOTRD*' == 1) 

sim 25ns 
while (#'VOTRD*' ==0) 

sim 25ns 

sim 50ns 

//•••»»A*********************************** 

//* Test Burst Read Bus Cycle from EPROM 
//•••••A*********************************** 

DEPOSIT 'AJTRANS', (READ_BURST) 
DEPOSIT 'BJTRANS', (READ_BURST) 
DEPOSIT 'CJTRANS', (READ_BURST) 

//* Burst Read next EPROM Address 
DEPOSIT 'A_ADDR', $xlFC00010 
DEPOSIT 'B_ADDR', $xlFC00010 
DEPOSIT 'C_ADDR', $xlFC00010 

//* Advance simulation clock 
while (#'VOTRD*' == 1) 

sim 25ns 
while (#'VOTRD*' ==0) 

sim 25ns 

//* Advance sim clock to ensure previous cycle completes 
DEPOSIT 'AJTRANS', (NONE) 
DEPOSIT 'BJTRANS', (NONE) 
DEPOSIT 'CJTRANS', (NONE) 
DEPOSIT 'A_ADDR', $X2222ZZZZ 
DEPOSIT 'B_ADDR', $x2zzzzzzz 
DEPOSIT 'C_ADDR', $xzz22zzzz 

sim 50ns 

//******************•***■******************* 

//* Test Write Bus Cycle 
//••A************************************** 

DEPOSIT 'AJTRANS', (WRITEJWORD) 
DEPOSIT 'BJTRANS', (WRITEJWORD) 
DEPOSIT 'CJTRANS', (WRITE_WORD) 

//* Write to Lower RAM Boundary 
DEPOSIT 'A_ADDR', $x00000000 
DEPOSIT 'B_ADDR', $x00000000 
DEPOSIT 'C_ADDR', $x00000000 

DEPOSIT 'A_DATA', $xllllllll 
DEPOSIT 'B_DATA', $xllllllll 
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DEPOSIT 'C_DATA', $xllllllll 

//* Advance simulation clock 
while (#'VOTWR*' == 1) 

sim 25ns 
while (#'VOTWR*' == 0) 

sim 25ns 

//* Advance sim clock to ensure previous cycle completes 
DEPOSIT 'A_TRANS', {NONE) 
DEPOSIT 'B_TRANS', (NONE) 
DEPOSIT 'C_TRANS', (NONE) 
DEPOSIT 'A_ADDR', $xzzzzzzzz 
DEPOSIT 'B_ADDR', $xzzzzzzzz 
DEPOSIT 'C_ADDR', $xzzzzzzzz 
DEPOSIT 'A_DATA', $xzzzzzzzz 
DEPOSIT 'B_DATA', $xzzzzzzzz 
DEPOSIT 'C_DATA', $xzzzzzzzz 

sim 50ns 

//it**************************************** 

//* Test Write Bus Cycle 
//•♦A************************************** 

DEPOSIT 'AJTRANS', (WRITE_WORD) 
DEPOSIT 'B_TRANS', (WRITE_WORD) 
DEPOSIT 'C_TRANS', (WRITE_WORD) 

//* Write to RAM 
DEPOSIT 'A_ADDR', $x00000004 
DEPOSIT 'B_ADDR', $x00000004 
DEPOSIT 'C_ADDR', $x00000004 

DEPOSIT 'A_DATA', $x22222222 
DEPOSIT 'B_DATA', $x22222222 
DEPOSIT 'C_DATA', $x22222222 

while (#'VOTWR*' == 1) 
sim 25ns 

while (#'VOTWR*' == 0) 
sim 25ns 

//* Advance sim clock to ensure previous cycle completes 
DEPOSIT 'AJTRANS', (NONE) 
DEPOSIT 'B_TRANS', (NONE) 
DEPOSIT 'C_TRANS', (NONE) 
DEPOSIT 'A_ADDR', $xzzzzzzzz 
DEPOSIT 'B_ADDR', $xzzzzzzzz 
DEPOSIT 'C_ADDR', $xzzzzzzzz 
DEPOSIT 'A_DATA', $xzzzzzzzz 
DEPOSIT 'B_DATA', $xzzzzzzzz 
DEPOSIT 'C_DATA', $XZZZZZZZZ 

sim 50ns 
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//* Test Write Bus Cycle 

DEPOSIT 'AJTRANS', (WRITE_WORD) 
DEPOSIT 'BJTRANS', (WRITE_WORD) 
DEPOSIT 'CJTRANS', (WRITE_WORD) 

//* Write to RAM 
DEPOSIT 'A_ADDR', $x00000008 
DEPOSIT 'B_ADDR', $x00000008 
DEPOSIT 'C_ADDR', $x00000008 

DEPOSIT 'A_DATA', $x33333333 
DEPOSIT 'B_DATA', $x33333333 
DEPOSIT 'C_DATA', $x33333333 

//* Advance simulation clock 
while (#'VOTWR*' == 1) 

sim 25ns 
while (#'VOTWR*' == 0) 

sim 25ns 

//* Advance sim clock to ensure previous cycle completes 
DEPOSIT 'A_TRANS', (NONE) 
DEPOSIT 'B_TRANS', (NONE) 
DEPOSIT 'CJTRANS', (NONE) 
DEPOSIT 'A_ADDR', $xzzzzzzzz 
DEPOSIT 'B_ADDR', $xzzzzzzzz 
DEPOSIT 'C_ADDR', $xzzzzzzzz 
DEPOSIT 'A_DATA', $xzzzzzzzz 
DEPOSIT 'B_DATA', $xzzzzzzzz 
DEPOSIT 'C_DATA', $xzzzzzzzz 

sim 50ns 

//* Test Write Bus Cycle 
//••A************************************** 

DEPOSIT 'AJTRANS', (WRITE_WORD) 
DEPOSIT 'BJTRANS', (WRITE_WORD) 
DEPOSIT 'CJTRANS', (WRITE_WORD) 

//* Write to RAM 
DEPOSIT 'A_ADDR', $x0000000C 
DEPOSIT 'B_ADDR', $x0000000C 
DEPOSIT 'C_ADDR', $x0OOO0OOC 

DEPOSIT 'A_DATA', $x44444444 
DEPOSIT 'B_DATA', $x44444444 
DEPOSIT 'C_DATA', $x44444444 

//* Advance simulation clock 
while (#'VOTWR*' == 1) 

sim 25ns 
while (#'VOTWR*' == 0) 

sim 25ns 
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//* Advance sim clock to ensure previous cycle completes 
DEPOSIT 'AJTRANS' 
DEPOSIT 'BJTRANS' 

(NONE) 
(NONE) 
(NONE) DEPOSIT 'CJTRANS' 

DEPOSIT 'A_ADDR', $xzzzzzzzz 
DEPOSIT 'B_ADDR', $xzzzzzzzz 
DEPOSIT 'C_ADDR', $xzzzzzzzz 
DEPOSIT 'A_DATA', $xzzzzzzzz 
DEPOSIT 'B_DATA', $xzzzzzzzz 
DEPOSIT 'C_DATA', $xzzzzzzzz 

sim 50ns 

//A**************************************** 

//* Test Read Bus Cycle 
//A**************************************** 

DEPOSIT 'AJTRANS', (READ_WORD) 
DEPOSIT 'B_TRANS', (READ_WORD) 
DEPOSIT 'CJTRANS', (READ_WORD) 

//* Read Lower RAM Boundary 
DEPOSIT 'A_ADDR', $x00000000 
DEPOSIT 'B_ADDR', $x00000000 
DEPOSIT 'C_ADDR', $x00000000 

//* Advance simulation clock 
while (#'VOTRD*' == 1) 

sim 25ns 
while (#'VOTRD*' == 0) 

sim 25ns 

//* Advance sim clock to ensure previous cycle completes 
DEPOSIT 'AJTRANS', (NONE) 
DEPOSIT 'BJTRANS', (NONE) 
DEPOSIT 'CJTRANS', (NONE) 
DEPOSIT 'A_ADDR', $XZZZZZZZZ 
DEPOSIT 'B_ADDR', $XZZZZZZZZ 
DEPOSIT 'C_ADDR', $xzzzzzzzz 

sim 50ns 

//* Test Burst Read Bus Cycle from RAM 

DEPOSIT 'AJTRANS', (READJBURST) 
DEPOSIT 'BJTRANS', (READJBURST) 
DEPOSIT 'CJTRANS', (READJBURST) 

//* Burst Read from RAM 
DEPOSIT 'A_ADDR', $x00000000 
DEPOSIT 'B_ADDR', $x00000000 
DEPOSIT 'C_ADDR', $x00000000 
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//* Advance simulation clock 
while (#'VOTRD*' == 1) 

sim 25ns 
while (#'VOTRD*' == 0) 

sim 25ns 

DEPOSIT 'AJTRANS' 
DEPOSIT 'BJTRANS' 
DEPOSIT 'C_TRANS' 
DEPOSIT 'A_ADDR', 
DEPOSIT 'B_ADDR', 

(NONE) 
(NONE) 
(NONE) 

$xzzzzzzzz 
$xzzzzzzzz 

DEPOSIT 'C_ADDR', $xzzzzzzzz 

//* Advance sim clock to ensure previous cycle completes and FIFO is 
//* emptied 
sim 150ns 

B. ERROR SCL FILE 

//je********************************************************************* 

//* File:  errors.scl 
//* 
//* Description:  Cadence Logic Workbench Opensim Script Control 
//*   Language (SCL) file.  This file executes several bus cycles for 
//*   the TMR Testbed schematic.  Several of the bus cycles in this 
//*   file should contain errors. 
//* 
//* Author:  John C. Payne, Jr. 
//* Date:  11/30/98 
//***************************************•*****************•************ 

//* Definitions for transaction codes 
//* (same as in verilog file for R3081 module) 
NONE = 0 
READ_BYTE = 1 
READ_WORD = 2 
READ_BURST = 3 
WRITE_BYTE = 4 
WRITE_WORD = 5 

//* Initialize board interface lines 
DEPOSIT 'PWRRESET*', 0 
DEPOSIT 'TESTEN1*', 0 

DEPOSIT 'FORCE_A', 0 
DEPOSIT 'FORCE_B', 0 
DEPOSIT 'FORCE_C, 0 
DEPOSIT 'USEFIFO', 1 
DEPOSIT 'PULL_UP', 1 
DEPOSIT 'GND', 0 

DEPOSIT 'AJTRANS', (NONE) 
DEPOSIT 'BJTRANS', (NONE) 
DEPOSIT 'CJTRANS', (NONE) 

//* These initializations are necessary to prevent timing violations 
//* in the simulation 
DEPOSIT 'RAMCS*', 1 
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DEPOSIT 'EPROMCS*', 1 
DEPOSIT 'INTCS*', 1 
DEPOSIT 'WREN_A*', 1 
DEPOSIT 'WREN_B*', 1 
DEPOSIT 'WREN_C*', 1 
DEPOSIT 'WREN_D*', 1 
DEPOSIT 'RDEN*', 1 

//* Hold board reset and release 
sim 1000ns 
DEPOSIT 'PWRRESET*', 1 

//* Advance simulation clock during initial burst read from EPROM 
//* address 1FC00000 which is initiated by the R3081 modules 
while (#'VOTRD*' == 1) 

sim 25ns 
while (#'VOTRD*' ==0) 

sim 25ns 

sim 50ns 

//* Test Write Bus Cycle 
//*   - with single error in address inputs 
//****************************************** 

DEPOSIT 'A_TRANS', (WRITE_WORD) 
DEPOSIT 'BJTRANS', (WRITE_WORD) 
DEPOSIT 'CJTRANS', (WRITE_WORD) 

//* Write to RAM 
DEPOSIT 'A_ADDR', $x00000100 
DEPOSIT 'B_ADDR', $x00000000 
DEPOSIT 'C_ADDR', $x00000000 

DEPOSIT 'A_DATA', $xllllllll 
DEPOSIT 'B_DATA', $xllllllll 
DEPOSIT 'C_DATA', $xllllllll 

//* Advance simulation clock 
while (#'VOTWR*' ==1)  " 

sim 25ns 
while (#'VOTWR*' == 0) 

sim 25ns 

//* Advance sim clock to ensure previous cycle and the interrupt 
//* service routine which is 
DEPOSIT 'AJTRANS', (NONE) 

initiated by the R3 081 complete 

DEPOSIT 
DEPOSIT 
DEPOSIT 
DEPOSIT 
DEPOSIT 
DEPOSIT 
DEPOSIT 
DEPOSIT 

'BJTRANS' 
'C_TRANS' 
'A_ADDR', 
'B_ADDR', 
'C_ADDR', 
'A_DATA', 
'B_DATA', 
'C_DATA', 

(NONE) 
(NONE) 

$XZZ2ZZZZZ 
$xzzzzzzzz 
$xzzzzzzzz 
$xzzzzzzzz 
$xzzzzzzzz 
$xzzzzzzzz 

sim 3700ns 
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//A***************************************** 

//* Test Write Bus Cycle 
//*   - with multiple errors in address 
//*     inputs 

DEPOSIT ''AJTRANS', 
DEPOSIT 'BJTRANS', 
DEPOSIT 'C TRANS', 

(WRITE_WORD) 
(WRITE_WORD) 
(WRITE_WORD) 

//* Write to RAM 
DEPOSIT 'A_ADDR', $x00000004 
DEPOSIT 'B_ADDR', $x01000004 
DEPOSIT 'C_ADDR', $x00000005 

DEPOSIT 'A_DATA', $x22222222 
DEPOSIT 'B_DATA', $x22222222 
DEPOSIT 'C_DATA', $x22222222 

//* Advance simulation clock 
while (#'VOTWR*' == 1) 

sim 25ns 
while (#'VOTWR*' == 0) 

sim 25ns 

//* Advance sim clock to ensure previous cycle and the interrupt 
//* service routine which is initiated by the R3081 complete 
DEPOSIT 'A_TRANS', (NONE) 
DEPOSIT 
DEPOSIT 
DEPOSIT 
DEPOSIT 
DEPOSIT 
DEPOSIT 
DEPOSIT 
DEPOSIT 

'B_TRANS' 
'CJTRANS' 
'A_ADDR', 
'B_ADDR', 
'C_ADDR', 
'A_DATA', 
'B_DATA', 
'C DATA', 

(NONE) 
(NONE) 

$X2ZZZZZZZ 
$xzzzzzzzz 
$xzzzzzzzz 
$xzzzzzzzz 
$xzzzzzzzz 
$xzzzzzzzz 

sim 3700ns 

//***************•************************** 

//* Test Write Bus Cycle 
//*   - with single error in data inputs 
//*************•**************************** 

DEPOSIT 'A_TRANS' 
DEPOSIT 'B_TRANS' 
DEPOSIT 'C_TRANS' 

(WRITE_WORD) 
(WRITE_WORD) 
(WRITE_WORD) 

//* Write to RAM 
DEPOSIT 'A_ADDR' , 
DEPOSIT 'B_ADDR', 
DEPOSIT 'C ADDR', 

$x00000008 
$x00000008 
$x00000008 

DEPOSIT 'A_DATA' 
DEPOSIT 'B_DATA' 
DEPOSIT 'C DATA' 

$x33333333 
$x33333333 
$x33333337 
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//* Advance simulation clock 
while (#'VOTWR*' == 1) 

sim 25ns 
while <#'VOTWR*' == 0) 

sim 25ns 

//* Advance sim clock to ensure previous cycle and the interrupt 
//* service routine which is initiated by the R3081 complete 
DEPOSIT 
DEPOSIT 
DEPOSIT 
DEPOSIT 
DEPOSIT 
DEPOSIT 
DEPOSIT 
DEPOSIT 
DEPOSIT 

'AJTRANS' 
'BJTRANS' 
'C_TRANS' 
'A_ADDR', 
'B_ADDR', 
'C_ADDR', 
'A_DATA', 
'B_DATA', 
'C_DATA', 

, (NONE) 
. (NONE) 
. (NONE) 
$X2ZZZZZZZ 
$xzzzzzzzz 
$xzzzzzzzz 
$xzzzzzzzz 
$xzzzzzzzz 
$xzzzzzzzz 

sim 3700ns 

//* Test Write Bus Cycle 
//*    - with multiple errors in data inputs 

DEPOSIT 'AJTRANS', (WRITE_WORD) 
DEPOSIT 'BJTRANS', (WRITE_WORD) 
DEPOSIT 'CJTRANS', (WRITE_WORD) 

//* Write to RAM 
DEPOSIT 'A_ADDR', $x00O0OO0C 
DEPOSIT 'B_ADDR', $x0000OO0C 
DEPOSIT 'C_ADDR', $x00O0OO0C 

DEPOSIT 'A_DATA', $xF4444444 
DEPOSIT 'B_DATA', $x44A44444 
DEPOSIT 'C_DATA', $x44444447 

//* Advance simulation clock 
while (#'VOTWR*' == 1) 

sim 25ns 
while (#'VOTWR*' == 0) 

sim 25ns 

//* Advance sim clock to ensure previous cycle and the interrupt 
//* service routine which is initiated by the R3 081 complete 
DEPOSIT 'AJTRANS', (NONE) 
DEPOSIT 'BJTRANS', (NONE) 
DEPOSIT 'CJTRANS', (NONE) 
DEPOSIT 'A_ADDR', $XZZZZZZZZ 
DEPOSIT 'B_ADDR', $xzzzzzzzz 
DEPOSIT 'C_ADDR', $xzzzzzzzz 
DEPOSIT 'A_DATA', $xzzzzzzzz 
DEPOSIT 'B_DATA', $xzzzzzzzz 
DEPOSIT 'C_DATA', $xzzzzzzzz 
sim 3700ns 
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//* Test Burst Read Bus Cycle 

DEPOSIT 'AJTRANS', (READ_BURST) 
DEPOSIT 'B_TRANS', (READ_BURST) 
DEPOSIT 'C_TRANS', (READ_BURST) 

//* Burst Read from RAM 
DEPOSIT 'A_ADDR', $x00000000 
DEPOSIT 'B_ADDR', $x00000000 
DEPOSIT 'C_ADDR', $x00000000 

//* Advance simulation clock 
while (#'VOTRD*' == 1) 

sim 25ns 
while (#'VOTRD*' == 0) 

sim 25ns 

//* Advance sim clock to ensure previous cycle completes 
DEPOSIT 'AJTRANS', (NONE) 
DEPOSIT 'BJTRANS', (NONE) 
DEPOSIT 'CJTRANS', (NONE) 
DEPOSIT 'A_ADDR', $xzzzzzzzz 
DEPOSIT 'B_ADDR', $xzzzzzzzz 
DEPOSIT 'C_ADDR', $xzzzzzzzz 
DEPOSIT 'A_DATA', $xzzzzzzzz 
DEPOSIT 'B_DATA', $xzzzzzzzz 
DEPOSIT 'C_DATA', $XZZZZZZZZ 

sim 50ns 

//* Test Write Bus Cycle 
//*   - with error in control inputs 
//it***************************************** 

DEPOSIT 'AJTRANS', (WRITE_WORD) 
DEPOSIT 'BJTRANS', (READ_BURST) 
DEPOSIT 'CJTRANS', (WRITEJWORD) 

//* Write to RAM 
DEPOSIT 'A_ADDR', $x00004000 
DEPOSIT 'B_ADDR', $x00004000 
DEPOSIT 'C_ADDR', $x00004000 

DEPOSIT 'A_DATA', $x78787878 
DEPOSIT 'B_DATA', $x78787878 
DEPOSIT 'C_DATA', $x78787878 

//* Advance simulation clock 
while (#'VOTWR*' == 1) 

sim 25ns 
while (#'VOTWR*' == 0) 

sim 25ns 
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//* Advance sim c lock to ensure previous cycle and the interrupt 
//* service routine which is initiated by the R3081 complete 
DEPOSIT 'A_TRANS' , (NONE) 
DEPOSIT 'B_TRANS' , (NONE) 
DEPOSIT 'CJTRANS' , (NONE) 
DEPOSIT 'A_ADDR', $xzzzzzzzz 
DEPOSIT 'B_ADDR', $xzzzzzzzz 
DEPOSIT 'C_ADDR', $xzzzzzzzz 
DEPOSIT 'A_DATA', $xzzzzzzzz 
DEPOSIT 'B_DATA', $xzzzzzzzz 
DEPOSIT 'C_DATA', $xzzzzzzzz 
sim 3700ns 

//•A*************************************** 

//* Test Read Bus Cycle 
//***************************************** 

DEPOSIT 'A_TRANS' , (READ_WORD) 
DEPOSIT 'B_TRANS' , (READ_WORD) 
DEPOSIT 'CJTRANS' , (READ_WORD) 

//* Burst Read from RAM 
DEPOSIT 'A_ADDR', $x00004000 
DEPOSIT 'B_ADDR', $x00004000 
DEPOSIT 'C_ADDR', $x00004000 

//* Advance simulation clock 
while (# 'VOTRD*' == 1) 

sim 25ns 
while (# 'VOTRD*' == 0) 

sim 25ns 

DEPOSIT 'AJTRANS' , (NONE) 
DEPOSIT 'B_TRANS' , (NONE) 
DEPOSIT 'CJTRANS' , (NONE) 
DEPOSIT 'A_ADDR' , $xzzzzzzzz 
DEPOSIT 'B_ADDR', $xzzzzzzzz 
DEPOSIT 'C_ADDR', $xzzzzzzzz 
DEPOSIT 'A_DATA', $xzzzzzzzz 
DEPOSIT 'B_DATA', $xzzzzzzzz 
DEPOSIT 'C_DATA', $xzzzzzzzz 

//* Advance sim c lock to ensure previous cycle completes and FIFO is 
//* empt ied 
sim 150ns 

• 
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