
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

MULTIPLE ROBOT COMMAND AND CONTROL
ARCHITECTURE DEVELOPMENT

bv

Uriah E. Zachary

December 1998

Thesis Advisor: Xiaoping Yun

Approved for public release; distribution is unlimited.

DTIG QUALITY INSPECTED 2 19990205 041

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1998

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

MULTIPLE ROBOT COMMAND AND CONTROL ARCHITECTURE DEVELOPMENT

6. AUTHOR(S)
Zachary, Uriah E.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School

Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Space and Naval Warfare System Center - San Diego

San Diego, CA 92152-5001

5. FUNDING NUMBERS

8. PERFORMING
ORGANIZATION REPORT
NUMBER

10. SPONSORING/
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The military use of autonomous vehicles or robots will increase as national security planners seek to maintain strategic deterrence
and preserve U.S. interest in spite of reduced resources. Cooperative group behavior among large numbers of robots will be
required to complete various missions. Communication schemes for command, control, and coordination of multiple robots is one
of the required capabilities. This thesis evaluates the Simplified Lisp-like Expression Evaluation Paradigm (SLEEP) for
implementation as a development tool and a communications scheme: SLEEP enables the dynamic group formation of robots that
are best qualified for a task. The SLEEP concept is tested and evaluated using a testbed built from Nomadic SCOUT mobile robots
and a socket interface. Results from simulation and physical experiments validate the effectiveness of SLEEP for multiple robot
coordination.

14. SUBJECT TERMS
Autonomous Agents, Multiple Robots, Cooperative Behavior, Dynamic Addressing

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI- CATION
OF ABSTRACT
Unclassified

15. NUMBER OF

PAGES
114

16. PRICE CODE

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std.

11

Approved for public release; distribution is unlimited

MULTIPLE ROBOT COMMAND AND CONTROL ARCHITECTURE
DEVELOPMENT

Uriah E. Zachary
Lieutenant, United States Navy

B.S., California State University, Northridge, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1998

Author /JyuJyt-

Approved by: <V £^=V
Xiaoping Yun, Thesis Advisor

JU fA~.
Douglas^WTGafe, Second Reader

lorr, Chairman
Department of Electrical and Computer Engineering

m

IV

ABSTRACT

The military .use of autonomous vehicles or robots

will increase as national security planners seek to

maintain strategic deterrence and preserve U.S. interest

in spite of reduced resources. Cooperative group

behavior among large numbers of robots will be required

to complete various missions. Communication schemes for

command, control, and coordination of multiple robots is

one of the required capabilities. This thesis evaluates

the Simplified Lisp-like Expression Evaluation Paradigm

(SLEEP) for implementation as a development tool and a

communications scheme. SLEEP enables the dynamic group

formation of robots that are best qualified for a task.

The SLEEP concept is tested and evaluated using'a testbed

built from Nomadic SCOUT mobile robots and a socket

interface. Results from simulation and physical

experiments validate the effectiveness of SLEEP for

multiple robot coordination.

VI

TABLE OF CONTENTS

I. INTRODUCTION i

A. GENERAL .. 1
B. PROBLEM STATEMENT . . . 3
C. OUTLINE OF THE THESIS 4

II. DEVELOPMENT ENVIRONMENT 7

A. HARDWARE DESCRIPTION 7
1. Nomad Scout Mobile Robot 7
2. Ethernet 9

B. SOFTWARE DESCRIPTION 9
1. Nomadic Host Software Development Environment 9

III. SIMPLIFIED LISP-LIKE EVALUATION EXPRESSION

PARADIGM. 15

A. MOTIVATION 15
B. LANGUAGE ATTRIBUTES 17
C. DEFINITION : 19
D. APPLICATIONS 24

IV. SOCKET-BASED INTERPROCESS COMMUNICATIONS 29

A. THE NETWORK MODEL 29
B . THE CLIENT/SERVER MODEL .' ■ 31
C. TRANSPORT PROVIDERS 32
D. THE SOCKET INTERFACE 33

V. DESIGN APPROACH 37

A. TESTBED CREATION 3.7
1. Integration 38

B. SLEEP EVALUATION 39

VI. RESULTS • 41

A. SLEEP EVALUATION . . 41
1. Compilation and Portability 41
2. Syntax Determination 41
3. Expression Evaluation 42

B. BROADCAST MODULE 46
C. INTEGRATED PROGRAM TESTING 46

1. Simulation 47
2. Real World 49

VII. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY.. 53

Vll

APPENDIX A. SLEEP. C 55

APPENDIX B. TUNE-UP. C 63

APPENDIX C. SOCKET_READ.C 69

APPENDIX D. SOCKET_SEND.C 71

APPENDIX E. SOCKET_SHELL.C 73

APPENDIX F. SLEEPY.C 75

APPENDIX G. BRDCST.C 83

APPENDIX H. R0B1.C 85

APPENDIX I. ROB2.C 91

APPENDIX J. CODE SEGMENTS FOR LINKING 97

LIST OF REFERENCES 99

INITIAL DISTRIBUTION LIST 101

vm

LIST OF FIGURES

Figure 1. NOMAD SCOUT Mobile Robot 7
Figure 2(a). GUI: World Map ! 12
Figure 2 (b) . GUI: Robot Map 12
Figure 3 . Sleep Address Space 21
Figure 4. OSI Reference Model From Ref. 16 '.'.'.'.'. .3 0
Figure 5. Socket Connection From Ref. 16 34
Figure 6 . Datagram Communication After Ref. 16 .'35
Figure 7. Socket/Application Functional Flow Diagram 40
Figure 8. Initial State of Simulation 48
Figure 9. Final State of Simulation .'48
Figure 10 . Real-world Test Environment 51

IX

ACKNOWLEDGEMENTS

I would like to acknowledge the financial support of

the Space and Naval Warfare System Center-San Diego

(SPAWARSYSCEN SD) Research Fellowship Program. Because

of it, travel and the purchase of necessary equipment

were possible.

I would like to thank my thesis advisor, Professor

Xiaoping Yun, for his support, patience, guidance and

encouragement. Working with him was fun, rewarding, and

enriching.

Many thanks to my second reader and SPAWAR sponsor

Dr. Douglas W. Gage. It was a pleasure to work with the

originator of the SLEEP concept. Our visits always added

more insight and enjoyment to the discipline'. His final

support and responsiveness was a saving grace!

Thanks to John Lock, NPS computer Science Dept., for

the introduction to sockets. Without this, the thesis

would have taken a different direction.

Thanks to Art Neumann, NPS ECE Controls Laboratory,

for his daily humor, support, and teachings for survival

in the world of UNIX and Windows.

I would like to acknowledge the love, patience and

support of my lovely wife Karen - We did it!

XI

I would like to dedicate this thesis to my parents

for they stressed the importance of education and hard

work. The early robot toys were not forgotten.

Xll

I. INTRODUCTION

GENERAL

As the reduction in American military forces continues,

caution must be exercised for the assurance of minimal

adequate force structure. This presents an immediate

challenge to national security planners as it is essential

for the maintenance of strategic deterrence and the support

of U.S. political and economic objectives abroad. At

present, in support of these objectives, military forces

continue to do more with less. Battlefields of the future

will require less manning because of the proliferation of

sensors and emitters. These devices may be realized through

micro-technology for the creation of area denial, systems,

"pop-up" and "fire ant" warfare. This may be one form of

network-centric warfare. Battlefields may be saturated with

hundreds of sensors and autonomous vehicles, armed with

smart munitions that loiter or hibernate until the target or

•victim traverses the area. This will render obsolete the

traditional concept of organizing forces around major

platforms since those platforms will be much more

vulnerable/outnumbered. Groups of cooperative agents or

evolving robots can help fill this gap.[Ref. 1]

Results of a recent military robotics workshop

identified increasing needs for military robotics and

identified the current deficiencies. Some of the robotic

applications likely to be of greatest utility to the

1

military include: systems capable of switching easily

between missions; systems that can operate either in the air

or on the ground; micro-robots; tactile and/or kinematic

sensing robots; robots with pattern recognition

capabilities; robots with rudimentary abilities to solve

problems, address novel situations, reason, and learn;

groups of robots with coordinated, emergent behaviors;

robots capable of understanding and responding to human

facial expressions; and robots realized through

biotechnology. The process of data fusion can be resource-

intensive. Robotic systems and technologies may facilitate

the merging of all information-related tasks (intelligence

gathering, surveillance, target acquisition, information

warfare, etc.) into a single "information meta-task".

Current robots are "extremely dumb", lacking even insect

intellect and thus falling short of the ability to emulate

human behavior and intelligence. Communication links

between operator and robot as well as between multiple

robots need to be improved. Better communication sub-

systems are required for integration, command, and control

of large groups of robotics systems in attempt to benefit

from emergent or cooperative robotic behaviors. Other

nations or adversaries will compete with the United States

in the development of robotic capabilities. Accordingly,

design, developmental testing and procurement issues must be

addressed.[Ref. 2]

B. PROBLEM STATEMENT

The realization of task-driven cooperative behavior

among a group of autonomous agents is formidable because of

the required coordination. The same problem plagues other

social orders such as urban areas, insect colonies, animal

herds, etc. The members may desire individual rights and

freedom of choice yet the society may perish if the members

don't collaborate for achieving beneficial goals for the

society.' Communication among the members, and with any

external ruling or intruding .bodies, must be possible for

the occurrence of cooperation. Determination of a feasible

communications scheme requires the use of development and

diagnostic tools to capture and evaluate the reactive

behavior.

Development of a many-robot system may present an

agonizing process of testing and debugging. The operating

environment as perceived by the robots■ sensor -suite may not

match the environment as perceived by the human developer.

Accordingly, the reactive behavior of the robots may not

match the intentions of the developer. Furthermore,

acceptable behavior in one scenario may be chaotic in

another scenario without any external or simulated

indications of the cause. Determination of such causes

requires a communications scheme that provides

controllability and observability of the robots' states.

One proposal is the use of a high bandwidth broadcast

Channel which transmits messages from the user's workstation

to the robots. This thesis attempts to evaluate and

implement the SLEEP (Simplified Lisp-like Expression

Evaluation Paradigm) command channel/broadcast scheme as a

communications scheme and diagnostic tool for multiple-robot

command and control (C2) architecture development. SLEEP

proposes a means to address a message to a specific

individual robot or group of robots as the number of robots

grows arbitrarily large.' Each robot determines whether a

given command is intended for it by evaluating a predicate

expression based on the values of its own state variables.

[Ref. 3]

The integration of existing resources will be used for

SLEEP implementation and evaluation. The introduction of an

interprocess communication scheme, based on network

protocols, in a robot software development environment will

comprise the SLEEP testbed. Success in this endeavor may

enable experimentation in reactive group behavior which is a

necessity for the future robotic battlefield and commercial

arena.

C. OUTLINE OF THE THESIS

Chapter II provides a description of the platforms,

software and hardware used to conduct the research. Chapter

III discusses the SLEEP concept and its motivation and

advantages while chapter IV examines the background, issues

and current uses of sockets, network protocols, interprocess

Communications and alternatives. Chapter V describes the

methods pursued for multiple robot integration/development.

Chapter VI presents the integration, test, and evaluation

results of SLEEP implementation. Chapter VII presents

conclusions and recommendations for future study.

II. DEVELOPMENT ENVIRONMENT

A. HARDWARE DESCRIPTION

1. Nomad Scout Mobile Robot

The NOMAD SCOUT is an integrated mobile robot system

with ultrasonic and tactile sensing modules. It uses a

hierarchial control architecture. A special

multiprocesssor-based low level control system performs

sensor, motor, and communication process control. High

level control is provided by either a UNIX-based, laptop

computer or a remote workstation. SUN Sparc workstation

were used for this study. The NOMAD SCOUT is software

compatible with the NOMAD 200 class robots, another research

platform at NPS [Ref. 4]. Figure 1 shows a picture of the

NOMAD SCOUT.

Figure 1. NOMAD SCOUT Mobile Robot

a) Mechanical System

The NOMAD SCOUT is a two-degree of freedom (DOF)

differential drive robot with omnidirectional motion.

Translation and steering (or rotational motion) are not

decoupled since the robot's differential drive base has axes

that serve as both translation and steering. The drive is

set about the geometrical center of the robot. Compact

design of the SCOUT made it an attractive choice -for multi-

robot experimentation. It has a height of 0.38 meters, a

diameter of 0.34 meters and a 3.5 centimeter ground

clearance. Without batteries, the unit has a mass of 23

kilograms. Maximum speed and acceleration are 1.0 meters

per second and two meters per second squared, respectively.

[Ref. 5]

b) Sensor System

The NOMAD SCOUT perceives its environment through

the use of ultrasonic, tactile (bumper), and odometric sensor

systems. The ultrasonic sensor system uses 16 independent

standard Polaroid transducers. The effective range of the

ultrasonic sensors is 6 to 255 inches. This sonar system

is practically identical to the one installed in the NOMAD

200 with slight differences due to the smaller diameter of

the NOMAD SCOUT [Refs. 4,5,6] . The tactile system uses a

ribbon switch enclosed in a energy absorbing neoprene

channel to provide 360-degree coverage. The odometric

8

sensors are provided on the base of the SCOUT in the form of

incremental angle encoders which enable movement tracking.

The encoder resolution is 167 counts/cm for translation and

45 counts/degree for robot rotation. [Ref. 7]

2. Ethernet

Communication with and/or among robots occurs over a

radio-ethernet that uses a RangeLan2/Access Point bridge

device. Each robot has a 2.4 Ghz radio modem and a

corresponding IP address for the reception of instructions.

Carrier Sense Multiple Access/collision Avoidance (CSMA/CD)

is the governing media access protocol. [Ref. 8]

B. SOFTWARE DESCRIPTION

1. Nomadic Host Software Development Environment

The NOMAD SCOUT can be programmed using the Unix-based •

Nomadic Software Development Environment. It'is a full

featured, object based,' integrated package which consists of

two parts: the server (host workstation) and the client

(robot)'. The server is a convenient way to send commands to

the robot and receive sensing data from the robot. The

server is run as a separate process on a workstation. This -

process communicates with the robot process (client) through

the radio ethernet using the TCP/IP protocol. The server

performs four functions: Host <-> Robot Interface for

complete control of the robot from a host computer, a

graphic user interface which provides a graphic display of

sensor information and convenient interface with the robot

and robot simulator, a simulator and a Client <-> Server

Language User interface which allows a C or Lisp application

program (which acts as a client process) to access the

server (Nserver). [Ref. 4]

a) Host Robot Interface

Programs running on-board the robot go into a

loop, assimilate sensory data, and wait for commands from

the host computer. The robot responds to the set of

predefined commands. To command the robot, the host

computer sends a stream of characters via the radio modem to

the robot and waits for the robot's reply. The robot's

reply consists of a stream of characters. A simple

synchronous serial communication protocol facilitates the

communication between the host computer (server) and the

robot (client). These protocols are used to implement

motion and sensor commands. The motion commands allow the

user to set the speed and acceleration of the robot and to

command the robot to move at certain velocities or to move

by a certain distance. The sensor commands allow the user

to configure and acquire data from the sonar and bumper

sensor systems. [Ref 4]

b) Graphical User Interface

The Graphical User Interface (GUI) provides

consolidated access to the real and simulated robots and to

10

their world representation as shown in figures 2(a) and

2(b) . Through the GUI, the user can send commands to the

robots, monitor command execution by seeing the actual robot

motion on a screen window, and visualize real-time and

historical sensor data. The user can create and modify a

simulated environment for testing robot programs. .The

graphic environment consist of four main windows: the World

or Map window, the Robot window, the ShortSensors window and

the LongSensors window. The World window represents the

environment from a frame of reference or rectangular

coordinate system common to all robots (i.e. the world

window, global view). This window allows for manipulation of

the environment through the creation of simulated obstacles.

The Robot window displays the world as seen by one robot

(local view). This window allows the display of sensor

history, robot path, as well as the execution of robot

commands. Both reference windows support display

functionalities like zooming, scrolling, centering, etc.

The ShortSensor window provides an optional display of

obstacle detection by infrared and/or bumper hit/collision.

11

Wit-l'llllNl^lil-VlljillMII-liM^,._
Rio Edit Obstacle» View Show Control

^

*
I +

•

I
Kindnr-iaoncte 1968,-*0pOI€ O1966,-KiÖ0Ö17iM>.

Figure 2(a). GUI: World Map

|^.Jjl.-i.mJ., J^-.,-.^.. ■^■■^vl-l::^.' ,-_ ,:, J

Unit« .«onKnrt«'.^«!.-!«*«^ ansle*:,^' fcltiogree«'>

Figure 2(b). GUI: Robot Map

Infrar?d sensors are not available on the SCOUT. The

LongSensor window allows the display of Laser or sonar

12

sensor data. The laser is not available for the NOMAD

SCOUT.

c) Robot Simulator

The simulator models the robot's basic motion

(translation and steering) and its sensor systems. The

robot can only translate along the forward and backward

directions in which the wheels are aligned. This is often

referred to as a non-holonomic constraint similar to that of

a car. Unlike, a car, the robot can rotate in place (zero

turning-radius). To model uncertainty, the simulator keeps

track of two positions of the simulated robot: encoder and

actual position. This provides representation of the

commanded (desired) velocity or position and the actual

effects of slippage or the sliding of wheels. The

randomness factor of the sensed distance for sonar is also

taken into account by the simulator. A control uncertainty

model and sonar simulation parameters are specified in the

robot, setup file and can be adjusted for better modeling in

a given environment. The simulated robot responds to the

same sets of commands as the real robot. There is no limit

to the number of real or simulated robots that can be

hosted; however, network congestion/response time may become

a factor when exceeding seven robots.

13

d) Language User Interface

The Language User Interface provides the link

between the application program (as a client process) and

the robot or robot simulator and the GUI (as the server

process). For C language interface, one can include

Nclient.h in the application program and link it to

Nclient.o. If the application program is not running on the

same computer where the server is running, then the host

computer must be designated as the server machine in the

application program. The TCP port number used by the server

(as specified in the world.setup file) must be the same as

that specified in Nclient.o and the application program.

This is required for the server and application to

communicate. There are two global variables defined in the

file Nclient.h which the application program can access and

there are a set of interface functions which the program can

call. The state vector global variable is an array of 45

long integers which reflect the current state of the robot.

The Smask' global variable specifies which sensor data are to

be returned and hence which sensor data is to be

disregarded, not processed or "masked".

14

III. SIMPLIFIED LISP-LIKE EVALUATION EXPRESSION PARADIGM

A. MOTIVATION

Unambiguous communications among any group is required

for cooperative behavior in support of unified, group-

oriented task achievement. For member or group survival in

a dynamic environment, the communications scheme or language

must facilitate information flow that will enable adaptation

to the current environment. In Robotics and AI, total

reliance upon "hard-wired" or preprogrammed instructions do

not provide such flexibility. A group is only as efficient

as it can be efficiently organized. For example, if a group

consist of, say, .one thousand robots with the same

application program and the environment or tactical

situation unexpectedly changes, then how does the group

reconfigure itself? Intervention would be required from the

system developer or mission commander. All one thousand

robots would have to be stopped, taken off-line or out of

operation, and another program or modification would have to

be downloaded. How long would this take!? What implication

or impact would this have on the now-suspended operation

(i.e. an assembly line, construction site, tactical

engagement).' What would be the subsequent level of

productivity or mission readiness? In military operations,

organization is based on the chain-of-command where key

information or directives flow from National Command

Authority down to the deployed troops. The rules of

15

engagement define or map defensive and offensive responses

to various situations. In the US Navy, if shots are fired

and/or communications are lost between the warfare

commanders and their immediate superior in command (Officer

in Tactical Command), then the warfare commanders can take

necessary action without requesting and receiving

permission. This offers some level of autonomy without

having to rely solely on directives from the top. Here, the

organization has a fighting chance because of its ability to

react and adapt to scenarios which deviate from the script.

Naval force organization evolves around the aircraft carrier

and the amphibious command ship. This comprises two groups:

the Carrier Battle Group (CVBG) and the Amphibious Readiness

Group (ARG). These task' forces are further broken into

smaller groups such as Task Groups and Task Elements.

Protective screens are set around the high value unit by

explicitly assigning units to a group or sector. The

assignments are not made at random yet conditions may have

changed since the assignments were made. They are usually

based on the mission, equipment capabilities and personnel.

If group assignments could be made instantaneously based on

who meets conditions/criteria imposed by the new, emergent

task (i.e. downed aircraft, man overboard -- search and

rescue; hostile submarine contact and prosecution), then

resource management could be optimized and the response time

would be reduced. Once again, re-emphasising Chapter I,

16

multi-tasking could cause us to spread our forces too thin

if we do not fully utilize the technology of Robotics-and

Automation!

Athletics also provides examples of the need for

dynamic group reconfiguration ability. In basketball, which

defense is best: zone or man-to-man? It may very well

depend on the environment, the opponent, injuries, if we are

winning or losing and how much time is left in the game. In

football, the type'of organization employed may be one form

if we are approaching half-time and up by five points or

another form if we are down by a field goal with two minutes

left in the game. This may drive us to use the no-huddle

offense unless there is too much noise (i.e. jamming) and

the offensive line can't hear' the audible or the play being

called by the quarterback. In short, if groups are formed

by the use of conditionals, qualifiers or thresholds and not

explicitly by mechanical unit/name-to-group assignments,

then one would achieve a system response or effect more

commensurate to the situation. Similar, desirable group

behavioral characteristics and the underlying, required

developmental process are the'motivation for consideration

of SLEEP implementation.

B. LANGUAGE ATTRIBUTES

The development of robots with intelligent,

evolutionary behavior requires a computer programming

language that is designed, itself, to evolve. This is one

17

of the distinctive characteristics of the LISP programming

language. One can use LISP to define new LISP operators.

As new abstractions such as object-oriented programming

continue to increase in popularity, it turns out easier to

implement them in LISP. LISP lets one do things that can't

be done in other languages. For example, suppose you want

to write a function that takes a number n and returns a

function that adds n to its argument. This can be done in

LISP but not in C. The phrase rapid prototyping describes a

kind of programming that began with LISP; A prototype can be

written in less time than it would take to write the

specification for one. Such a prototype can be so abstract

that it makes a better specification than one written in

English. LISP allows for a smooth transition from prototype

to production software. [Ref. 9]

LISP takes its name from List Programming. Let's see

why. Binary digits (bits) in a computer, taken in groups,

can be interpreted as a code for word-like objects and

sentence-like objects.. In LISP, the fundamental objects

formed from bits are word-like objects called atoms. Groups

of atoms form sentence-like objects called lists. List

themselves can be grouped together to form higher-level

lists. Atoms and list collectively are called symbolic

expressions or, for short, expressions. Working with

symbolic expressions is what symbol manipulation using LISP

is about.

18

Just as people use pencil, paper and human language to

remember and work with data and procedures, a symbol

manipulation program uses symbolic expressions to remember

and work with data and procedures. Typically, the procedures

can recognize particular symbolic expressions, tear old ones

apart and assemble new ones. In short, symbol manipulation

enables LISP to performs functions or task such as expert

problem solving, commonsense reasoning, learning, natural

language interfaces, education and intelligent support

systems and speech/vision synthesis. These language

attributes can be used to.foster intelligent robot behavior.

[Ref. 9]

C. DEFINITION

SLEEP is a communications scheme for addressing a

message to a specific individual robot or group of robots as

the number of robots grows arbitrarily large. Each robot

determines whether a given command is intended for him by

evaluating a predicate expression based on the values of his

own state variables or, in the case of our test subject,

NOMAD SCOUT, state vector. A predicate is an expression

whose value is true or false. A predicate can also be

thought of as a procedure that returns a value that signals

true or. false. Consider the following example. A disabled

Naval vessel X is in imminent danger of hostile fire. The

only friendly forces in the vicinity are robotic scouting

crafts that have been dispatched from a "mother ship". They

19

were widely dispersed for various missions. The compact

design of the scouts and their primary mission limits- their

fuel and ordnance capacity. Which scouts are best qualified

to defend or assist the disabled vessel? By broadcasting a

message which says "All scouts within 5 miles of X that have

more than 5 0% fuel level and 70% ordnance are now in Task

Element Bravo", criteria has been established and

disseminated for determining which scouts should assist

vessel X. Subsequent commands can be given to the

previously selected group. For example, "Task Element

Bravo, cover vessel X" or "Task Element Bravo, render rescue

and assistance to vessel X" are commands that can be given

without knowing the identity (i.e. hull number) of each

scout. Through one broadcast ccnmand, an organizational .

category was created, a degree or readiness was indirectly

assessed, and an order was given for execution. A LISP

rule-like paradigm can be used to realiz uch a broadcast:

IF <predicate> returns true, THEN store aiid execute

<command>. By adopting a LISP representation for

<predicate>, we can also use it for the < imand>. Thus the

IF-THEN rule can be explicitly captured in a LISP COND

function and the whole message becomes a single LISP

expression whose evaluation is all the processing that is

required. [Ref. 3]

SLEEP consists of several address spaces with the

associated storage classes and processing: (1) expressions,

20

(2) variables, and (3) functions as depicted in Figure 3.

Each node corresponds to a robot and incorporates an indexed

set of buffers for storing a number of LISP-syntax ex-

pressions. [Ref. 3]

EXPRESSIONS

MESSAGE
RULE BASE

EVALUATES TO A #

STORAGE
CLASSES

VARIABLES FUNCTIONS

AGENTS'STATES
!: PARAMETERS

ARITHMETIC
LOGICAL

LISP SPECIALS
PROBABILISTIC

Figure 3. Sleep Address Space

Each expression buffer is either' active or inactive by

either SETQing the active flag variable or through an

explicit activate/deactivate function call. The core SLEEP

process evaluates the.expressions in the active buffers in a

round robin sequence although other priority schemes could

be used. The message reception process writes an incoming

expression into a special buffer and SLEEP executes it one

time. The expression can copy a portion of itself into one

of the other regular buffers for repeated processing as a

part of the rule base. [Ref. 3]

SLEEP provides an indexed set of variables for

potential use in three ways. Some of the indexed variables

point to the other variables that are used by the robot's

21

underlying processing such as memory-mapped sensor inputs

and actuator outputs. Others support SLEEP processing

itself, like marked, marking, frozen, and sleeping. These

proposed processes are not the focus of this thesis and are

not addressed. The user has flexibility in using the rest

of the variables as deemed necessary. [Ref. 3]

The function base can include basic arithmetic (+, -,

*, /, ~, etc), boolean (AND, OR, NOT), LISP "special forms"

(COND, SETQ), SLEEP support (power down), and pointers to

functions in the robots core software. Randomization

functions can include (PROB x), which evaluates as TRUE with

probability x, and the special form (DICE (x A) (y B) (z C)) ,

which evaluates A with probability x, B with probability y,

and C with probability z. [Ref. 3]

The preliminary, exploratory C-based implementation of

SLEEP is given in Appendix A. In this version, the

simplified range of LISP expressions, whether in a message

or in the rule base, is represented as a sequence of tokens.

In'the rule base, i.e. varStr[], expStr[], funStr arrays,

each token represents a number, a variable name, an

expression name, or a function name. These are'used to

construct SLEEP expressions which are stored internally as

an array of shorts. The assigned respective ranges are as

follow: -65535 to +29999, 30000 to 30999,'31000 to 31999,

and 32000 to 32999. The last three ranges are arbitrarily

defined by VARBASE, EXPBASE, and FUNBASE, respectively. The

22

end of expression delimiter DONE is defined as 32100.

Currently, numbers have been limited to integers only but

floating point numbers would be required for representing

probabilities. The present set of functions implemented

include arithmetic, logical, LISP special forms and a

variant of SETQ called SETQQ which QUOTES both of its

arguments. [Ref. 10]

SLEEP functions as a LISP interpreter by realizing the

effect of LISP-like expressions in a C language environment.

The main function of the SLEEP program allows the user to

type in a string of characters and end with a carriage

return. It then echoes the original string, parses it into

an array of tokens which it stores in ex[0], displays the

string representing the array of tokens, evaluates it, and

displays the results. Since an expression always evaluates

to a number, this is not really LISP but encapsulates some

desirable features of LISP such as call-by-value parameters,

operator prefix notation, and function side-effects. To

make this happen, an expression can assume ONLY one of the

following forms: (1) numerical-value, (2) defined-variable-

name, or (3) (defined-function-name expressionl expression-

N). Evaluation of each form will return, respectively, the

numerical value, the current value of the variable, or the

value of each expression followed by the computed value

after the function is applied. [Ref. 10]

• 23

D. APPLICATIONS

The SLEEP broadcast channel can serve as a diagnostic,

development tool and as a medium for operational deployment

of a group of autonomous vehicles. Three recent similar

methods were presented at IROS '98 [Ref. 11,12,13]. The

first method consisted of a dynamically extendable (i.e.

while robots are performing their missions) language which

supports nine conversation types and works with 26 message

types. The Addressees Identity message field defines agents

that are not necessarily concerned by the message. They are

potential addressees. When a flag is set, a condition on

the agents is included in an extension field. An agent

becomes a real addressee when its condition matches the one

in the extension field. One agent can -control another agent

through recruitment orders. The requester sends a broadcast

with a list of conditions which must be fulfilled for team

membership. Applications for this strategy include

exploration or mapping and convoying (leader and pursuer)

which is simple operation through synchronization. The

second method proposed an algorithm for cooperation among

robots. The algorithm provides the capability for each

robot to select an appropriate behavior depending on the

situation. An operator provides commands to the group and

each robot uses energy consumption as one factor for

behavior selection. Various desirable behaviors are

prepared in advance and included in a behavior module for

24

robot selection. Cooperative behavior such as task-sharing

is achieved by each robot selecting its own behavior while

considering the other robots' behavior. The third method

and application consist of a robot society used to remove

and regulate algae growth, in pipes, by releasing poisonous

chemicals. The behavior of the robots is based on selected

strategy. There can exist as many groups as there are

strategies. The approach attempts to optimize the size of

the society for task performance since the performance of

the society changes as the size of the society is varied.

All strategies are tested where the final chosen strategy

returns the greatest profit. While the communications scheme

is different, the grouping concept was interesting and

similar to concepts investigated in this research.

One given illustrative example of SLEEP application is

the consideration of how it might be applied to Hoskins■

"emergent Braitenberg Vehicle" [Ref. 14]. This vehicle '

serves as a model for relating the Principle of Least Action

to collective behavior.. The Principle of Least Action is

rooted in Calculus of Variation for it states that there is

a function (action) whose integral is minimized along the

path that a particle actually takes as compared to all other

possible paths. Conditions of the environment determine the

path and thus the behavior of the particle or the vehicle in

our case. Hoskins's summary of the behavior is as follows:

25

"individual behaviors are randomly selected with

probabilities determined by the environment".

Hoskins' system consists of dozens of identical mobile

vehicles, operating in a plane, that travel at the same

constant speed in straight line paths and occasionally

"tumble" or turn at random to the left or right by about 67

degrees. Each vehicle can generate a ping or an active

transmission or source to indicate its existence as well as

detect the ping of other vehicles. The detector can

determine the range and relative position of the source or

ping associated with the other vehicles. A second sensor

can determine the range and relative position of a light

source located in the plane. Hoskins divides the vehicles

into groups or caste whose caste number is encoded in the

ping. Each caste can be configured with a set of simple

behavioral rules so that the group as a whole manifests the

key characteristics of a classic Braitenberg Vehicle homing

toward the light source, including body structure,

propulsion, control, and sensing. [Ref. 14]

Behavior is generated by events that depend upon the

sensor outputs. The vehicle, robot, or agent compares the

sensor output with the event definitions to generate a

boolean output. A simple event, E, consists of 4 elements:

. E = ({F, R}, {caste #, S}, R, {N, F}).

The first element indicates the location (Front or

Rear), relative to the agent's heading, of the on-board

26

sensor that has detected a ping or light source. The second

element indicates the origin of the ping (caste number of

the pinging agent or just "S" for (light) source). The

third element specifies a nominal range or radius R while

the fourth element indicates whether the pinger is Near or

Far relative to the nominal range. For example, the

definition:

El = ((R, 2, 0.0, F) , (F, S, 0.0, F))

defines two single events' which must be true for the

compound event, El, to be satisfied. If evaluation of El

returns true then a ping from a caste 2 agent was detected

in the rearward sensor at any range greater than zero while

the light source was detected by the front sensor at any

range greater than zero. Now, resultant behaviors can be

cataloged as a function of an event, an action, and a

probability. For example, the definition

B2 = {E2, Tumble, 0.50}

with E2 = (F, 1, 0.0, F) specifies that the agent should

■tumble with a 50% probability when the specified event is

true. Here, detection of a ping from a caste 1 agent by the

forward sensor is the triggering condition or qualifier.

[Ref. 14]

Gage shows how SLEEP is well matched to the behavioral

rule structure developed by Hoskins. Let the variables

pRange, pBearing, pCaste, and pFlag represent a ping where

pFlag is used for synchronizing the processing of pings as

27

discrete events. Lower level software queues up multiple

pings and presents these events one at a time, setting the

pFlag. Upon completion of the event, the pFlag is reset. A

similar designation may be used for the light source (i.e.

sRange, etc.). A typical rule based on Hoskins' behavior

definitions would look like the following:

(COND ((AND pFlag (EQ pCaste3) (EQ bBearing FRONT)

sFlag (EQ sBearing FRONT) (PROB 0.9)) (PING myCaste));

(COND ((EQ myCaste 4) (SETQ expr5 (QUOTE the-above-

expression-to-be-stored)) (SETQ active5 TRUE))).

The second rule is broadcasted by an operator or system

developer. The receiving elements of caste 4 would store

the first rule in expression buffer 5 and mark this buffer

as active. The first rule sets the behavior for any

qualifying agent of caste 4. If a caste 4 agent detects a

ping on its forward sensor from a caste 3 agent and the

light source on its forward light-detecting sensor then

ping. Here, ping is the resultant action or response. It

could also be specified as TUMBLE. [Ref. 3]

Some examples-have been given for uses of SLEEP.

Hoskins' event and behavior definitions provide tremendous

potential and flexibility for development of a rule base for

cooperative behavior and systems analysis. The use of LISP

syntax reduces overhead since the message reception

processing mechanism also executes any active messages or

expressions in the rule base [Ref. 3].

28

IV. SOCKET-BASED INTERPROCESS COMMUNICATIONS

The merge of computer science and data communications

has led to the computer-communications revolution.

Accordingly, the previous fundamental differences between

the two fields has diminished [Ref. 16] . There is no

fundamental difference between data processing (computers)

and data communications (transmission and switching

equipment). Considerable overlap of the computer and

communications industries, from component fabrication to

system integration, has occurred. Technology and technical

standards organizations are driving toward a single public

system that provides uniform access to information sources

world-wide. Data, voice, and video communications have

become similar processes. The distinction between the

single-processor computer, multi-processor computer, local

network, metropolitan network, and the long-haul network has

become blurred. Emergence of the Internet and networking

allows users to capitalize or exploit the overlap of

computer and communication systems. This chapter provides

an overview of network architecture for use as a foundation

for multi-robot control architecture development.

A. THE NETWORK MODEL

Networking is essential in today's computer environment

for it turns isolated computers into integrated systems

where resources are shared and capacity problems are reduced

[Ref. 16] . Most networks are divided into layers that

29

perform specific functions. Figure 4 shows the

International Organization for Standardization (OSI)

Reference Model. The layer architecture provides users with

the ease of replacing functionality by layer replacement

without affecting surrounding layers. Each layer defines a

protocol for use between a local and a remote machine. A

protocol is a set of rules that the local and remote machine

must follow if they wish to communicate with each other.

[Ref. 16]

"Ä^I£B2KTI0NJii

T
iPRESENTÄTIDN^

m^M§?&M%% ^mmmsmmm
t

Figure 4. OSI Reference Model From Ref. 16

Opponents to layering believe that better performance

can be gained by building an Interprocess Communications

30

(IPC) facility into a distributed operating system which is

supported by software which resides on each host [Ref.. 16] .

Most multitasking or multiprocessing systems provide IPC

facilities so that processes can communicate with each

other. Communicating processes which simultaneously run on

several processors or share one processor are Concurrent

processes. A distributed system is a collection of

processing elements which are interconnected, controlled by

a system-wide resource manager, and able to execute

application processes in a coordinated manner [Ref. 17].

A distributed process can be formed in one of three ways:

peer-to-peer, filter, or client/server. The client/server

model is the most commonly used paradigm in constructing

distributed applications [Ref. 18]'.

B. THE CLIENT/SERVER MODEL

Most networking applications involve communication

between a requester and a supplier of an action or service.

This relationship is referred to as the client/server model.

A service is a task performed for the requester or client by

another machine or server. Communications between the

client and server can not occur until a transport address

has been established. The server must get the address for

the service. As a phone number must be assigned before the

user can dial it, so must the server associate the service

with an address before clients can communicate with it. The

31

client must specify the destination address when sending a

message to a server. [Ref. 16]

C. TRANSPORT PROVIDERS

Network applications rely on transport providers to

transmit data between machines. Transport providers perform

the function of the OSI reference transport layer. By

accepting network messages and sending them to remote

machines, the transport layer frees the application process

of the details of achieving data transfer. Transport

providers offer two modes of service: connection-oriented

and connectionless services. Connection-oriented service is

often compared to the telephone call since a phone number

must be dialed (by the client) before data can be sent to

the server. All messages are gauranteed to arrive in the

order in which they were sent. This service is also called

a virtual circuit since it resembles a connected circuit

between two parties. The connectionless service is similar

to sending a message via the post office. Each'message must

be addressed before it is sent. Messages are put in the

mailbox hence the user does not need to know the destination

address. ' While there is a reasonable chance for the message

to reach the destination, the sender receives no

acknowledgment of message receipt. Furthermore, there is no

guarantee that messages will be received in the order in

which they were sent. This service is also called the

datagram because of its similiarity to telegram service.

32

The mail service scheme is applicable to multi-robot

communications since it is a client/server model of

asynchronous communications [Ref. 17]. This represents a

general class of IPC models which use multiple processors

that share memory. This involves significant operating

system overhead since messages must be stored, recipients

must be notified, lists of unread messages must be updated,

and undelivered mail must be archived. TCP/IP is better

equipped for providing such services.

The User Datagram Protocol (UDP) is a transport-level

protocol that is in common use as a part of the TCP/IP

protocol suite [Ref. 15] . UDP provides the connectionless,

primary mechanism that application programs use to send

datagrams to other application programs.. UDP can-

distinguish between multiple programs running on the same

computer. UDP sits on top of the IP layer, accepts and

demultiplexes the incoming datagram based on the UDP

destination port. Although UDP is an unreliable service

because of unguaranteed message delivery, the overhead of

the protocol is low and may be adequate in many cases. [Ref.

19]

D. THE SOCKET INTERFACE

The socket interface is a set of programming

subroutines that are used to create a communication channel

between resident applications of remote and local systems.

Sockets has allowed programmers to use TCP/IP protocols with

33

little effort [Ref. 19]. Accordingly, the developer can

fabricate an IPC facility with little effort. As shown in

Figure 4, the socket is an endpoint of a two-way

communications channel that can be connection-oriented or

connectionless as previously discussed. Figure 5 shows some

of the socket routines that let user applications interface

with the transport layer so that users do not have to worry

about the network transmission details.

CXMXNLCXniXE OffiMEL

Figure 5. Socket Connection From Ref. 16

34

Client

T
- . >x- ran,-i-.i---«VA <f ,*?, • i ™"™

F.se.c^||li.^'

Server

&:&M'^zi^s&e>-i.

biricfcö

network message

^'*iT.^-r^:::-:j:.:. \

network message

Figure 6. Datagram Communication After Ref. 16

Some datagram transport providers support a transport-level

broadcast facility for sending messages to all machines in a

network [Ref. 16]. Datagram sockets model contemporary

packet switched networks such as the ethernet [Ref. 18].

The socket interface can be used to implement SLEEP because

of the IPC facility that it can establish, among agents and

developers, across the local ethernet.

. 35

Recent studies have been conducted in the area of Web-

based communication and control for multi-agent Robots.

Focus was placed upon the following Web technologies:

browsers, Java language, and socket communication. The

relationship between the browser and the sockets was

interesting and illuminates the potential expansion of this

thesis topic. The browser was proposed as the front-end

system for robot control to realize intelligent cooperation

between humans and robots. TCP/IP is used for communication

from the browser (user) to the agent while UDP/IP is used

for communications from the agent to the browser. This

mixture places higher communications integrity upon the

command transmission than upon the robot reports. This

trade-off or balance between integrity and overhead may be

suitable for various missions. [Ref. 20]

36

V. DESIGN APPROACH

Control systems and software design can be best

achieved through a modular approach. By decomposing the

overarching system function or goal into supporting

functions, it may be easier to design and test the system as

a sum of its parts. A multi-robot control architecture can

be developed in the same manner.

A. TESTBED CREATION

A testbed is required for the development of a multi-

robot command and control architecture. This will provide

the means for "getting inside the heads of our robots" for

determination of their behavior motives. The testbed

provides a controlled environment for the examination .of

cause and effect, or stimulus and response, and the

correlation between them. The testbed is created by

integrating some aspects of the sockets IPC facility with

the existing Nomadic Host Software Development Environment.

This provides the ability for a developer to execute an

application program/process and modify the process' while it

is running. By being able to modify the operating parameters

while in a dynamic state, the developer debugs the program,

by making adjustments to achieve the desired result. The

testbed' may also serve as the operational broadcast command

node. These attributes will minimize the number of times

the system must be taken off-line for a new mission up-load.

37

The testbed resides in the Nomadic Host Software

Development Environment and consists of an application

program, a socket-read module, and a socket-send module,

Appendices B, C, and D, respectively. The application

program, Tune_up.c is a basic collision avoidance program

that demonstrates the basic client interface to the Nserver

as well as the reading of sonars and simple motion control

[Ref. 21]. The socket modules are basic tutorial examples

[Ref. 18] .

1. Integration

The integration phase consisted of preliminary test and

implementation of the socket modules for interoperability

followed by the merge of the socket-read module with the

application program. Two SUN Sparc workstations were used as

host computers for the socket modules. The interoperability

test was conducted by defining a data string in the send

module and transmitting it to the read module/host computer

for display on the monitor. This was accomplished by

executing the read program on its host computer and taking

the assigned or returned port number for use in executing

the send program. The C function sscanf was added to the

read program to facilitate the conversion of character

strings to floats. An operator at the send terminal enters

some numerical data which is read via keyboard as floating

point numbers. A multiplication operation is performed on

the data and the results are converted to strings before it

38

is transmitted to the read or receiving terminal. As in the

previous test, the read program has already been executed

and has been waiting for data. The port number has been

fixed in the read module, this time, otherwise it would

change for each execution. When the read module receives

the data from the sending computer its converts the data

from a string back to floating point numbers and displays

them on the monitor. This demonstration shows how sockets

could be used to transmit processed and unprocessed data

among robots. The merge of the socket read program with the

application program is provided as Appendix E. Figure 7 is

the corresponding functional flow diagram. This shell

provides a "plug and play" feature for integration with

various task programs. Expansion of the above test for a

single robot to multiple robots requires the modification of

the socket_send module for addressing more than one robot.

The robot simulator was required for testing and is

discussed in Chapter VII.

B. SLEEP EVALUATION

Appendix A is the original SLEEP program, sleep.c, as

provided by Gage. It was written in Symantec Think C on an

Apple Macintosh computer. The test plan for SLEEP evaluation

consists of.determining the state of the code by making it

portable for execution on the resident UNIX network,

determining the syntax that it recognizes, providing LISP-

like arguments for it to evaluate, and integrating its rule

39

base and expression buffers into the robot application

program. An overall evaluation can then be conducted by

transmitting SLEEP commands through the socket_send module

in a simulated and real environment.

I'WKiV«;

Figure 7. Socket/Application Functional Flow Diagram

40

VI. RESULTS

A. SLEEP EVALUATION

1. Compilation and Portability

The initial attempt to compile sleep.c was unsuccessful

because of a portability deficiency. Portability refers to

the ability to write a program on one computer platform and

run it on another computer platform with little or no

program modifications [Ref. 22]. The original code uses the

console header file, console.h which is not a part of the

local network /include directory. SUN OS release 4.1.3 Ul

is the UNIX version that was used throughout the study.

Importing console.h into a local directory did not enable

compiling since the local network does not contain the

csetmode function which is used by console.h. Since

console.h appears to just encapsulate one of the standard

header files, stdio-.h, it was discarded and the SLEEP

program was compiled by the GNU gcc compiler. The cc

compiler can not be used since it does not contain stdarg.h

which is used in sleep.c.

2• Syntax Determination

This level of testing was comparable to travelling

abroad and attempting to learn the native or host language.

Without fluency, the guest may attempt to pronounce words of

the language and form meaningful sentences. Feedback or

gestures from the host helps the guest determine a

comprehensible syntax. Similiarly, expressions were entered

41

for SLEEP until something was returned. The goal was not

the determination of useful SLEEP expressions but just to

get the program to accept an input or expression and

acknowledge its reception by echoing it back and parsing it.

This is analogous to the host saying "This is what I heard

you say: blah, blah, blah" even though the phrases make no

sense in the context of the native language.

Sleep.c was modified to accomplish the above scenario.

For dialogue to occur the listener must be able to

distinguish between words and sentences. The listener must

know when the speaker has finished a sentence. Accordingly,

SLEEP must be able to distinguish between expressions and

the end of a series of expressions. The character, @,

denotes the end of. an expression whereas the character, $,

denotes the end of a series of expressions. These

modifications are realized in sleepy.c, Appendix F .

Without these, expression evaluation will not occur since

the sleep.c will be waiting for character entry via the

keyboard. This is akin to the above analogy where the host

is still listening and not talking for he/she thinks the

guest has more to say.

3. Expression Evaluation

This part of the test plan examined the interpreting

ability of SLEEP. Given a LISP-like expression for

evaluation, what result would SLEEP return? The test plan

consists of experimentation with some of the operators that

42

are defined in the function string, *funStr[], of the SLEEP

program, sleepy.c. Some test examples and results are as

follow:

Input: (-5 6 9)

Output: eval = -10

Input:(* (/ 1 4 2) (* 2 6) (+3 7))

Output: eval = 168

Input: (SETQ a (5))

Output: ss = (SETQ BAD (5)), eval 32000, L* eval (SETQ) found

32010 as dest, eval=0.

(The "BAD" and "eval=0" are returned since "a" is not

defined in the variable string, *varStr[].)

Input:(SETQ E2 40000)

Output: ss = (SETQ E2 (-25536)), eval 32000, L* eval(SETQ)

found 31002 as dest, eval=0.

(40000 is out of the range of of expStr[] so it turned into

a negative number.)

Input: (SETQ E2 (30500))

Output: segmentation fault.

(30500 is greater than VARBASE so the operation is illegal.)

Input: (OR 0 2 0)

Output: eval=2

Input:(OR 3 0 5)

Output: eval=3

43

(OR evaluates its arguments from left to right. The first

non-NIL value is returned. Any remaining arguments will not

be evaluated. Otherwise OR returns NIL [Ref. 23].)

Input:(AND 13 0 5)

Output: eval=0

Input:(AND 13 5)

Output: eval=5

(AND evaluates its arguments from left to right. If a NIL

condition is encountered, then it is returned and the

remaining arguments won't be evaluated. Otherwise AND

returns the value of its last argument [Ref. 23].)

The LISP operator COND has the general argument form

(<testl>...<resultl>) ... (<test n> ... <result n>) where

each test is evaluated for a non-NIL value. The last result

for the successful test will be returned as the overall

result for COND [Ref. 23].

Input:(COND(99))

Output: eval=99

(as it should; this is.good!)

Inpu~. : (COND(V2) (E2))

Output: eval=32

(It returned the value of the first true argument.)

Input: (COND(VI)(V2))

Output: eval=31

(It returned the value of the first true argument.)

Input: (COND ((AND 1 1) 99) ((AND 1 0) 88))

44

Output: eval=99

(It returned 99 since its corresponding test was a success.)

Input: (COND ((AND 1 0) 99) ((AND 1 1) 88))

Output: ss=(COND ((AND 1 0) 99) ((AND 1 1) 88)),ss=(COND

((AND 1 0) 99) ((AND 1 1) 88)), eval 32000, eval 32000, eval

1, eval 0, L* eval(COND) found COND instead of '(', eval=0

It has not been determined why the last test failed. In

accordance with LISP convention , the second test is

successful or true so the second result, 88, should be

returned. Sleepy.c was modified to provide results at each

stage of the evaluation instead of returning only the

overall expression evaluation. Currently, the SLEEP program

is not asynchronous or non-blocking. It can't perform

successive evaluations. The program must be re-initialized

for each evaluation. This does not allow complete testing

of the SETQ operation since "memory" is required to read

back the variable to confirm the value that it was assigned

•or set to. Although, the SLEEP code is still in an

exploratory form, its potential functionality has been

demonstrated and it deserves attention for further

development. Because of its present form and time

constraints, the SLEEP code was not integrated with the

socket-robot program but other approaches were taken to

gauge the SLEEP concept feasibility.

45

B. BROADCAST MODULE

The sockets communication channel can be configured for

broadcast support by using the setsockopt()routine; however,

this option was not pursued since it would interfere with

the Department network. Instead, the socket_send module was

altered for the simultaneous creation and use of two

sockets., The program, brdcst.c is provided in Appendix G.

C. INTEGRATED PROGRAM TESTING

Under the SLEEP concept, an expression is broadcast

and all agents would evaluate the expression and execute it

if it applies. This requires the SLEEP rule base onboard

all agents. A similiar test without the SLEEP rule base was

conducted using two NOMAD SCOUT mobile robots. The

application programs robl.c and rob2.c of Appendices H and

I, respectively, are identical with the exception of'TCP/IP

port assignments for correspondence to the mobile robots .

named SC0UT1 and SC0UT2. The application program contains

an algorithm for stopping when within ten inches of an

obstacle and when in receipt of a message, any message, from

the socket_send module.

Although it was not done in this test, the message sent

could be the desired docking or stand-off range. Similiar

test for changing the velocities were successfully

completed. The outcome of this test depends upon how each

robot "perceives" or senses its environment. As with the

SLEEP concept, it is expected that, only those robots that

46

meet the criteria will respond or react and deviate from

their routine evolution. This test consisted of two phase:

simulation then real world.

1. Simulation

The Nomadics robot simulator was used for the creation

of a room with barriers. The robots' initial starting

positions are as shown in Figure 8. The remote sending

station was realized via rlogin from the local/host station.

After simultaneous programs execution, the robots were

allowed to roam and demonstrate collision avoidance. Once

both robots were in open area, a message was sent.

Confirmation of message reception can be observed in the

local station's command window. "I got a message" is

displayed upon message receipt. Otherwise, "no message this

time" scrolls up in the command window. Range to the closest

obstacle and the corresponding sensor #'is also continuously

given in the local machine's command window.

Figure 9 shows the final stopping positions of both

robots. SC0UT2 is in the upper left corner was the first

robot to stop. Both robots stopped at a distance of 9

inches. In the world map(previous figure) one grid length

is 24 inches. These are favorable results since the one

inch difference between the actual distance and the ten inch

threshold is probably a function or result of robot velocity

and system delay or response. Successive simulations also

provide favorable results.

47

Ji .i?!lMmmJMWiiww^
Hte Edit Obstacles View Show Control

Qnjx

e

e

V«Sifeemool sMa/cäi" UM*Z
1245 p? IW 0:03 /usi7openw1n/Mn/ma1ltooi

roboti cs:/home/roboti cs2/zachary
*■ I , , _~, ,-,-.,.,.„_,..

Figure 8. Initial State of Simulation

3HS *+ MW-tootol Ublma/tt>bottc*?JzsKhn<j't

F8S Edit Obstacles View Show Control

*

%

-,»=»J»JjeI»oolr-/&n/e»*i
sriag- i
in mr
i n mr
R2 m1n range and sensor tt - 9, 0

•. >:.w-~>-,..~.M-... '■**

Figure 9. Final State of Simulation

48

2. Real World

This test was conducted in the Naval Postgraduate

School Electrical Engineering Servo & Controls/Robotics

Laboratory as shown in Figure 10. The procedure used in the

simulated test was also used here. Unlike the simulated

case, either one or both robots would stop shortly after

receiving the message. The ranges to the closest objects,

as shown in the command window, were less than ten inches

but the actual distance was greater than ten inches. A

sonar sensors calibration was conducted to determine if the

problem was software or hardware related. Each robot was

placed in the lab aisle or corridor, its sonars were

continuously fired, and the ranges were observed from the

command window. This was done while the robot was

stationary and also while the robot was remotely rotated via

joystick. Comparison of the observed ranges to actual

ranges showed that a few ranges that were as small as five

inches were in error. Theoretically, this could be the

cause of the problem but what was its source? By decreasing

the firing rate of the sonars, the range accuracy

consistency improved. The sonar firing rate can be set

between 0 and 1.02 seconds in 4 millisecond intervals. This

can be adjusted in the application program by setting the

"firerate" argument of the sensor parameters setting

command, conf_sn [Ref. 24]. Firerate or the period between

firings, starts after the end of the previous sonar return

49

processing which depends on time of flight. After changing

firerate from 1 to 6, better test results were obtained.

The opposite of multi-path may have occurred. At smaller

intervals between firings, one sonar echo may arrive in the

processing window of a second sonar right after the

departure of the second sonar's incident wave. The second

sonar thinks this echo is its own and calculates a range

shorter than the actual range. Two trials were conducted.

In trial 1, one robot stopped at five inches while the other

one stopped at seven inches. In trial 2, one robot stopped

at seven while the other stopped at twelve inches.

Increasing the time between sonar firings reduces the

interference but provides a larger delay between range

updates and thereby reduces the system response. This

occurrence, along with inherent system processing delay and

velocity magnitudes, will affect overall performance,

precision, and accuracy.

50

1 x:\1«

*Äf*fc. I

v« t tti >

Figure 10. Real-world Test Environment

51

52

VII. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY

This thesis investigated some issues involved in the

development of a multi-robot command and control

architecture. Specific accomplishments are as follow:

1. Created a socket Interprocess communications (IPC)

facility.

2. Integrated the socket IPC with a robot application

program to develop a testbed system.

3. Ported the SLEEP code to be compatible with the campus

LAM and conducted a static evaluation of it.

4. Tested and evaluated a SLEEP-like communications scheme

in simulations and real-world test with two NOMAD SCOUT

robots.

A level of coordination for cooperative group behavior

can be achieved by implementing-an appropriate

communications scheme. Sockets were used to provide an IPC

facility for dynamic addressing and grouping among multiple

robots. This communications scheme led to favorable test

results-in support of achieving some' aspects of group

behavior. A static evaluation of SLEEP along with SLEEP-

like simulations and real-world test demonstrated its

capability as a viable diagnostic and control tool.

Portability must be considered in the-course of system

development for the generations of developers and systems

that will be needed.

■53

Future studies may consider to extend and integrate the

SLEEP code for dynamic testing on multiple robots as a

diagnostic tool and for inter-robot communications.

Appendix J provides some code segments for linking variables

between the application program and the SLEEP module [Ref.

10] . A workcell for task development is needed to focus

developmental efforts towards practical applications. The

convergence of a swarm of robots upon one point or through

an opening may be studied along with its battlefield

applications such as overwhelming any opposing forces [Ref.

10] . A step towards this could begin with the simulation and

real-world test of multiple robots leaving a room. This

will surely provide additional insight to the relation of

communications and cooperation.

A network or subnet may be created for testing the

command broadcast. Any inherent difference between using

multiple sockets and a broadcast may certainly become

apparent during testing. The Linux operating system may be

incorporated on a notebook PC or PDA for the dev ' opment of

mobile, stand-alone operations. The era of network-centric

warfare warrants the analysis of how autonomous agents

should link or fit into IT-21 and the Global Command and

Control System (GCCS). Military forces can not fully "do

more with less" without continuous addressal of these

is.: aes.

54

APPENDIX A. SLEEP.C

/* SLEEP.C: This is the original, exploratory version of SLEEP as
conceived by Dr. Douglas W. Gage, SPAWARSYSCEN San Diego, CA */

#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <console.h>
#include <math.h>
#include <string.h>

#define NUMVAR 6
#define NUMEXP 6
#define NUMFUN 13
#define VARBASE 30000
#define EXPBASE 31000
#define FUNBASE 32000
#define DONE '32100

#define F_LFPAREN 0
#define F_RTPAREN 1
#define F_SETQ 2
#define F_COND 3
#define F_PLUS 4
#define F_MINUS 5
#define F_MULT 6
#define F_DIV 7
#define F_AND 8
#define F_OR 9
#define F_BAD 10
#define F_SETQQ 11
#define F_PRINT 12

char *funStr[] = { "(",")","SETQ", "COND"," + ","-","*","/", "AND" ,
"OR","BAD","SETQQ"."PRINT" };

short var[20] = { 30, 31, 32, 33, 34, 35, 36, 37 };

char *varStr[] = {
char *expStr[]. = {

typedef short expr[225];

expr ex[20];

void Log (char *fmt, ...)
{
char s[255];
va_list args;
va_start (args, fmt);
vsprintf (s ,fmt,args);
printf ("\nL* %s\n", s);
va_end (args);
}

55

V0", "VI", "V2", "V3", "V4" , "V5" };
E0", "El", "E2", "E3", "E4", "E5" };

void printltem (short *t);

short »final (short *t) {
// if *t is '(', returns ptr to balancing ')'; otherwise returns t
short depth = 0;

if (*t == FUNBA5E + F_LFPAREN) depth++;
if (*t == FUNBASE + F_RTPAREN) depth--;
if (depth < 0) Log ("skipO encountered erroneous ')'");
while (depth > 0) {

t++;
if (*t == FUNBASE + F_LFPAREN) depth++;
if (*t == FUNBASE + F_RTPAREN) depth--;
}

return t;
}

short eval (short **t) {
// performs DEEP evaluation, EVALing all expressions named, to "any"
depth (?)
// detects cycles, and calcs.EVAL of any expression or variable only
once
// evaluates left to right, depth first

static short depth;
short tt, funCode, numArgs, accum, dest, done, i;
short *tp, *ep, *epl, **ep2;

depth++;
tt = **t;
printf("eval %d\n", tt);
if (tt < VARBASE) accum = tt;
// number
else if (t < EXPBASE) accum = varftt - VARBASE];
// variable
else if (tt < FUNBASE) {
// expression

ep2 = &epl;
epl = ex[tt - EXPBASE];
accum = eval(ep2) ;
}

else {
// function

funCode = tt - FUNBASE;
if (funCode != FJ.FPAREN)

{ Log ("evalO found %s without ' ('", funStr [funCode]);
return 0; }

(*t)++;
tt = **t;
if (tt < FUNBASE) { Log ("eval() found token %d after '('", tt)

return 0; }
funCode = tt - FUNBASE;
numArgs = 0;
done = 0;
accum = 0;

56

switch (funCode) {
// special case setup

case F_MULT:
case F_DIV:
case F_AND:
accum = 1;
}

(*t)++;
tt = **t;
while (tt != FUNBASE + F_RTPAREN) {

// for each arg
numArgs++;
if (done) *t = final(*t);
else switch (funCode) {

case F_PLUS: accum = accum + eval(t); break;
case F_MINUS:

if (numArgs == 1) accum = eval(t);
else accum = accum - eval(t);
break;

case F_MULT: accum = accum * eval(t); break;
case F_DIV:

if (numArgs == 1) accum = eval(t);
else accum = accum / eval(t);
break;

case F_AND:
if ((accum = eyal(t)) == 0) done = 1;
break;

case F_0R:
if (accum = eval(t)) done .= 1;
break;

case F_C0ND:
if (**t != FUNBASE + F_LFPAREN)

{ Log ("eval(C0ND) found %s
instead of '('", funStr[funCode]); return 0; }

(*t)++;
if (accum = eval(t)) {

(*t)++;
while (**t != FUNBASE +

F_RTPAREN) {

else {

F_RTPAREN) {

accum' = eval(t);
(*t)++;
}

done =1;
}

while (**t != FUNBASE +

}

*t = final(*t) ;
(*t)++;
} ■

EXPBASE))

break;
case F_SETQ:

if (((dest = **t) < VARBASE) || (dest >=

{ Log ("eval(SETQ) found %d as

57

dest", dest); return 0; }
(*t)++;
varfdest - VARBASE] = eval(t);
break;

case F_SETQQ:
if (((dest = **t) < EXPBA5E) || (dest >=

FUNBASE))
{ Log ("evaKSETQQ) found %d

as
dest", dest); return 0; }

(*t)++;
tp = *t;
ep = exfdest - EXPBASE];
*t = final(*t);
while (tp <= *t) *ep++ = *tp++;
break;

case F_PRINT:
printltem(*t) ;
break;

}
if (numArgs > 100) { Log ("eval numArgs > 100"); return

0; }
(*t)++;
tt = **t;
}

switch (funCode) {
// special case cleanup

case F_MINU5:
if (numArgs == 1) accum = - accum;
break;

case F_DIV:
if (numArgs == 1) accum - 1 / accum;
break;

case F_PRINT:
if (numArgs == 0) {

for (i =0; i < NUMVAR; i++) {
*tp = VARBASE + i;
printltem (tp);
}

for (i =0; i < NUMEXP; i++) {
*tp = EXPBASE + i ;
printltem (tp);
}

}
break;

}
}

depth--;
return accum;
}

void disp (char *s, short *t) {
char tempStr[20] ;
short oldT, *tt;

*s = 0;

58

oldT = FJ.FPAREN;
tt = final(t) ;
while (t <= tt) {

if ((OldT != (FUNBASE + FJ.FPAREN)) && (*t != (FUNBASE +
F_RTPAREN)))

strcat (s, " ");
// space

if (*t < VARBASE) {
// number

sprintf (tempStr, "%d", *t);
strcat (s, tempStr);
}

else if (*t < EXPBASE) strcat (s, varStr[*t - VARBASE]);
// variable

else if (*t < FUNBASE) strcat (s, expStr[*t - EXPBASE]);
// expression

else strcat (s, funStr[*t - FUNBASE]);
// function

oldT = *t++;
}

}

void printltem (short *t) {
char s[255] ;

if (*t < VARBASE) printf ("NUM %d\n", *t) ;
// number
else if (*t < EXPBASE)

printf ("VAR %s = %d\n",varStr [*t - VARBASE], var[*t -
VARBASE]);
// variable
else if (*t < FUNBASE) {

disp (s, ex[*t - EXPBASE]) ;
printf ("EXP %s = %s\n",expStr[*t - EXPBASE], s); //

expression
}

else printf ("FUN %s\n".funStr[*t - FUNBASE]); //
function
}

short parse (char *s, short *ep) {
char tok[25], *t;
short i, done =0;

t = tok;
while (done == 0) {

if (*s == 0) done =1;
if ((*s == 0) || (*s == ■' ') || (*s == '(') || (*s == ')')) {

if (t > tok) {
*t = 0;
if (((*tok >= '0') && (*tok <= '9')) || ((*tok

) && (t > (tok + 1))))

else {
*ep++ = atoi (tok);

for (i = 0; i < NUMFUN; i++) if

59

(strcmp (tok, funStrfi]) == 0) break ;
if (i < NUMFUN) *ep++ = FUNBASE + i;
else {

for (i =0; i < NUMVAR; i++) if
(strcmp (tok, varStr[i]) == 0) break;

if (i < NUMVAR) *ep++ = VARBASE
+ i;

else {
for (i = 0; i < NUMEXP;

i++) if (strcmp (tok, exp5tr[i]) == 0) break;
if (i < NUMEXP) *ep++ =

else *ep++ = FUNBASE +

}

EXPBA5E + i ;

F_BAD;

}
} .

}
if (*s == '(') *ep++ = FUNBASE + FJ.FPAREN;
else if (*s == ')') *ep++ = FUNBASE + F_RTPAREN;
t = tok;
}

else *t++ = toupper(*s);
s++;
}

*ep = DONE;
}

main () {
short *el, **e2;
char ss[255], c;
short i;
short done = 0;
csetmode (C_RAW, stdin);

ex[l][0] = 125;
ex[l][1] = 32100;
while (done ==' 0) {
'i = 0;
while ((c = getcharQ) != 13) if (c != -1) { // wait for char

if (c == 0x7) done =1;
else if (c == 0x8) i--;
else ss[i++] = c;
printf("%c", c);
}

ss[i] = 0;
// <cr> falls thru . . .
printf ("ss = %s\n", ss);

parse (ss, ex[0]);
disp (ss, ex[0]);
printf ("ss = %s\n", ss);

e2 = ⪙

60

el = ex[0];
printf (" eval =

}

printf ("done");

}

%d\n", eval(e2))

61

62

APPENDIX B. TUNE-UP.C

*

* PROGRAM: Tune-up.c
*

* PURPOSE: Demonstrate basic dient interface to Nserver, as well as
* the reading of sensors and simple motion control. The robot does
* nothing useful except for usually not hitting things.
*
**/

/*** Include Files ***/.

#include "Nclient.h"
#i.nclude <stdio.h>
#include <stdlib.h>
#include <math.h>

/* macros to convert Nomad 200 motion commands to Scout motion commands
*/
#define R0TATI0N_C0NSTANT 0.118597 /* inches/degree (Known to 100 ppm)
*/

#define RIGHT(trans, steer)
(trans+(int)((float)steer*R0TATI0N_C0NSTANT))
#define LEFT(trans, steer) (trans -
(int)((float)steer*ROTATION_CONSTANT))

#define scout_vm(trans, steer) vm(RIGHT(trans, steer), LEFT(trans,
steer), 0)
#define scout_pr(trans, steer) pr(RIGHT(trans, steer), LEFT(trans,
steer), 0)

/*** Constants ***/

#define TRUE 1
#define FALSE 0

/*** Function Prototypes ***/

void GetSensorData(void);
void Movement(void);

/*** Globals ***/

long SonarRange[16]; /* array of sonar readings (inches) */
long IRRange[16]; /* array of infrared readings (no units) */
int BumperHit = 0; /* boolean value */

63

/*** Main Program ***/

main (unsigned int arge, char** argv)
{

int i, index;
int oldx,.oldy;
int order[16];

5ERV_TCP_P0RT = 7771;

/* Connect to Nserver. The parameter passed must always be 1. */
connect robot(l);

/* Initialize Smask and send to robot. Smask is a large array that
controls which data the robot returns back to the server, This
function tells the robot to give us everything. */
init_mask();

/* Configure timeout (given in seconds). This is how long the robot
will keep moving if you become disconnected. Set this low if there
are walls nearby. */
conf tm(l) ;

U I IUUI llll L L ISCLUIIUi.

for (i =0; i < 16; i++)
order [i] = i;

conf_sn(l.order) ;

/* Zero the robot. This aligns, the turret and steering angles. The
repositioning is neccessary to allow the user to position
the robot where it was. */

oldx = State[34]; /* remember position */
oldy = State[35];
zr(); /* tell robot to zero itself */
ws(l,l,l,20); /* wait until done zeroing */
place_robot(oldx, oldy, 0, 0); /* reposition simulated robot */

/* Main loop. */
while (IBumperHit)

{
GetSensorData() ;
MovementO ;

}

64

/* Disconnect. */
disconnect_robot(l);

}

/* Movement(). This function is responsible for using the sensor
data to direct the robot's motion appropriately. */

void Movement (void)
{

int i ;
int minreturn;
int panic;
int tvel, svel;

/* Make sure we are not about to plow into something; check the
front sonar and infrared sensors. If it looks bad, set panic
flag. The threshold value for IRRangle has no exact physical
relevance, and was empirically determined. */

panic = FALSE;
for (i =12; i <= 15; i++)

if (SonarRangefi] < 8 || IRRange[i] < 10) panic = TRUE;
for (i = 0; i <= 4; i++)

if (SonarRange[i] < 8 || IRRange[i] < 10) panic = TRUE;

/* Move forward if we're not about to hit something. */
if (Ipanic)

tvel =78; /* can be between 0 and 280 */
else

tvel =0;

/* Determine the closest sonar return. Since the robot will only be
moving forward, we only really need to worry about the front 8
sensors.. */ •

minreturn =12;
for (i = 12; i <= 15; i++)

if (SonarRangefi] < SonarRangefminreturn])
minreturn = i;

for (i = 0; i <= 4; i++)
if (SonarRange[i] < SonarRangefminreturn])
minreturn = i;

/'* Decide how to move. There are three situations: 1) panic, 2) not
panic but

near something, 3) clear to move. */

if (panic)
{

tvel = 0; /* if panic, stop moving and make a big turn. */
svel = 340;

65

}
else if (SonarRange[minreturn] < 35) /* It is near something */

{
if (minreturn > 8)

{
svel = 240;
tvel = 50;

}
else

{
svel = -240;
tvel = 50;

}
}

else /* it is clear to move */

{
svel = 0;
tvel = 78;

}

/* obstacle on the right */
/* steer left */

/* obstacle on the left */
/* steer right */

/* Set the robot's velocities. The first parameter is the robot's
translational velocity, in tenths of an inch per second. This
velocity can be between -240 and 240. The second parameter is the
steering velocity, in tenths of a degree per second, and
can be between -450 and 450. */

scout vm(tvel,svel);

/* GetSensorDataQ . Read in sensor data and load into arrays. */
void GetSensorData (void)
{

i n t i ;

/* Read all sensors and load data into State array. */
gs();

/* Read State array data and put readings into individual arrays. */
for (i =0; i < 16; i++)

{
/* Sonar ranges are given in inches, and can be between 6 and
255, inclusive. */
SonarRange[i] = State[17+i];

}

/* Check for bumper hit. If a bumper is activated, the corresponding
bit in State[33] will be turned on. Since we don't care which
bumper is hit, we thus only need to check if State[33] is greater
than zero. */

if (State[33] > 0)
{

66

BumperHit = 1;
tk("Ouch.");
printf("Bumper hit!\n");
}

67

.68

APPENDIX C. SOCKET READ.C

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>

/*

* In the included file <netinet/in.h> a sockaddr_in is defined as
* follows:
* structure sockaddr_in {
* short sin_family;
* u_short sin_port;

struct in_addr sin_addr;
* char sin_zero[8];
* };
* This program creates a datagram socket, binds a name to it, then
* reads from
* the socket.
*/

mainQ
{

int sock, Length;
struct sockaddr_in name;
char buf [1.024] ;

float km.kmy,kmt,x,y,theta; .

*

/* Create socket from which to read. */
sock = socket(AF_INET, SOCK_DGRAM, 0);
if (sock < 0) {

perror ("opening datagram socket");
exit(l);

}
/* Create name with wildcards. */
name.sin_family = AF_INET;
name.sin_addr.s_addr = INADDR_ANY;
name.sin_port =^4000;
if (bind(sock, &name, sizeof(name))) {

perror("binding datagram socket");
exit(l);

}
/* Find assigned port value and print it out. */
Length = sizeof(name);
if (getsockname(sock, &name, &Length)) {

perror("getting socket name");
exit(l);

}
printf("socket has port #%d\n", ntohs(name.sin_port))
/* Read from the socket */

69

if (read(sock, buf, 1024) < 0)
perror("receiving datagram packet");

printf("-->%s\n", buf);

sscanf(buf, "%f %f %f",&km, &kmy, &kmt); /* convert string buf
to float km */

close(sock);

70

APPENDIX D. SOCKET SEND.C

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define mi_to_km 1.2
#define km_to_m 1000

/* Send a datagram to a receiver whose name is obtained from the
* command line arguments.
* The form of the command line is socket send hostname portnumber
*/ ~

main(argc, argv)

int arge;
char *argv[];

float x.y.theta.km.kmy.kmt;
char d[128];
int sock;
struct sockaddr_in name;
struct hostent *hp, *gethostbyname();

printf("Enter and read distance in miles:\n");

scanf("%f %f %f",&x, &y, &theta);

/* miles-to-kilometer conversion; this is just a test/calculation
example: */

km=x*mi_to_km;
kmy=y*mi_to_km;
kmt=theta*mi_to_km;

sprintf(d,"%12.2f %12.2f %12.2f".km,kmy,kmt); /* convert number
to string */

/* Create socket on which to send. */
sock = socket(AF_INET, SOCK_DGRAM, 0);

if (sock < 0) {
perror("opening datagram socket");

exit(l);
}
/*
* Construct name, with no wildcards, of the sockets to send to.
* GethostbynameQ returns a structure including the network

71

* address of the specified host. The port number is taken from
* the cmd line
*/
hp = gethostbyname(argv[l]);
if (hp == 0) {

fprintf(stderr, "%s: unknown hostO", argv[l]);
exit(2);

}
bcopy(hp->h_addr, &name.sin_addr, hp->h_length);

name.sin_family = AF_INET;
name.sin_port = htons(atoi(argv[2]));

/* Send message. */
if (sendto(sock, d, sizeof(d), 0, &name, sizeof(name)) < 0)

perror("sending datagram message");
close(sock);

72

APPENDIX E. SOCKET SHELL.C

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>

#include <unistd.h>
#include <fcntl.h>

/*
* In the included file <netinet/in.h> a sockaddr_in is defined as
* follows:
* structure sockaddr_iji {

short sin_family;
* u_short sin_port;

struct in_addr sin_addr;
* char sin_zero[8];

};
* This program creates a datagram socket, binds a name to it, then
* reads from the socket.
*

*

*

* /

mainQ
{

int sock, Length;

struct sockaddr_in name;
char buf[1024];

float km.kmy,kmt,x,y,theta;
int flag=-l;

./* Create socket from which to read. */
sock = socket(AF_INET, SOCK_DGRAM, 0);
if (sock < 0) {

perror ("opening datagram socket");
exit(l);

}

/* switch to asynch. mode or non-blocking mode */
fcntl(sock, F_SETFL, FNDELAY);

/* Create name with wildcards. */
name.sin_family = AF_INET;
name.sin_addr.s_addr = INADDR_ANY;
name.sin_port = 4000;
if (bind(sock, &name, sizeof(name))) {

perrorC'binding datagram socket");
exit(l);

}
/* Find assigned port value and print it out. */

73

Length = sizeof(name);
if (getsockname(sock, &name, &Length)) {

perror("getting socket name");
exit(l);

}
printf("socket has port #%d\n", ntohs(name.sin_port));
/* printf("readl= %d\n", read(sock, buf, 1024)); */

/* Read from the socket */
while (1)

{
if (read(sock, buf, 1024) < 0)

{
/* do something without a message from other side */
printf("No messag this time \n");

}
else

{
/* do something different with a message from other side */

printf("Yes, I got a message\n");

}

/* let robot perform a task here. */
}
printf("-->%s\n", buf);

sscanf(buf, "%f %f %f",&km, &kmy, &kmt);
/* convert string buf to ' float km */

close(sock);
printf("end\n");

}

74

APPENDIX F.

/* Modified sleep.c code */

SLEEPY.C

#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

NUMVAR 6
NUMEXP 6
NUMFUN 13
VARBASE 30000
EXPBASE 31000
FUNBASE 32000
DONE 32100

FJ.FPAREN 0
F_RTPAREN 1
F_SETQ 2
F_C0ND 3
F_PLUS 4
F_MINUS 5
F_MULT 6
F_DIV 7
F_AND 8
F_0R 9
F_BAD 10
F_SETQQ 11
F PRINT 12

char *funStr[] = { "(",")","SETQ", "COND","+","-","*","/","AND"
"OR","BAD","SETQQ","PRINT" };

short var[20] = { 30, 31, 32, 33; 34, 35, 36, 37 };

char *varStr[]
char *expStr[]

{ "V0", "VI", "V2"
{ "E0", "El", "E2"

'V3", "V4", "V5" };
'E3", "E4", "E5" };

typedef short expr[225]

expr ex[20];

void Log (char *fmt, ..
{
char s[255];
va_list args;
va_start (args, fmt);
vsprintf (s ,fmt,args);
printf ("\nL* %s\n", s)
va_end (args);
}

75

void printltem (short *t);

short »final (short *t) {
// if *t is '(', returns ptr to balancing ')'; otherwise returns t
short depth =0;

if (*t == FUNBASE + FJ.FPAREN) depth++;
if (*t == FUNBASE + F_RTPAREN) depth--;
if (depth < 0) Log ("skipQ encountered erroneous ')'");
while (depth > 0) {

t++;
if (*t == FUNBASE + F_LFPAREN) depth++;
if (*t == FUNBASE + F_RTPAREN) depth--;
}

return t;
}

short eval (short **t) {
// performs DEEP evaluation, EVALing all expressions named, to "any"
depth (?)
// detects cycles, and calcs EVAL of any expression or variable only
once
// evaluates left to right, depth first

static short depth;
short tt, funCode, numArgs, accum, dest, done, i;
short *tp, *ep, *epl, **ep2;

depth++;
tt = **t;
printf("eval %d\n", tt);
if (tt < VARBASE) accum = tt;
// number
else if (tt < EXPBASE) accum = var[tt - VARBASE];
// variable
else if (tt < FUNBASE) {
// expression

ep2 = &epl;
epl = ex[tt - EXPBASE];
accum = eval(ep2);
}

else {
// function

funCode = tt - FUNBASE;
if (funCode != FJ.FPAREN)

{ Log ("evalO found %s without '('", funStr[funCode])
return 0; }

(*t)++;
tt = **t;

printf("eval function = %d\n", tt); /* new line */
if (tt < FUNBASE) { Log ("evalO found token %d after '('", tt);

return 0; }
funCode = tt - FUNBASE;
numArgs = 0;

76

done = 0;
accum = 0;
switch (funCode) {

// special case setup
case F_MULT:
case F_DIV:
case F_AND:
accum = 1;
}

(*t)++;
tt = **t;
while (tt != FUNBA5E + F_RTPAREN) {

// for each arg
numArgs++;
if (done) *t = final(*t);
else switch (funCode) {

case F_PLUS: accum = accum + eval(t); break-
case F_MINUS:

if (numArgs == 1) accum = eval(t);
else accum = accum - eval(t);
break;

case F_MULT: accum = accum * eval(t); break;
case F_DIV:

if (numArgs == 1) accum = eval(t);
else accum = accum / eval(t);
break;

case F_AND:
if ((accum = eval(t)) == 0) done = 1;
break;

case F_0R:
if (accum = eval(t)) done = 1;
break;

case F_C0ND:
if (**t != FUNBASE + FJ.FPAREN)

{ Log ("eval(C0ND) found %s
instead of '('", funStr[funCode]) ; return 0; }

(*t)++;
if (accum = eval(t)) {

(*t)++;
while (**t != FUNBASE +

F_RTPAREN) {

else {

done
}

accum = eval(t);
(*t)++;
}

F_RTPAREN) {
while (**t != FUNBASE +

}

*t = final(*t);
(*t)++;
}

break;
case F_SETQ:

if (((dest = **t) < VARBASE) || (dest >=

77

EXPBASE))
{ Log ("evaKSETQ) found %d as

dest", dest); return 0; }
(*t)++;
accum = varfdest - VARBA5E] = eval(t);
/* new line */

break;
case F_SETQQ:

if (((dest = **t) < EXPBASE) || (dest >=
FUNBASE))

{ Log ("evaKSETQQ) found %d
as
dest", dest); return 0; }

(*t)++;
tp = *t;
ep = exfdest - EXPBASE];
*t = final(*t);
while (tp <= *t) *ep++ = *tp++;
break;

case F_PRINT:
printltem(*t);
break;

}
if (numArgs > 100) { Log ("eval numArgs > 100"); return

0; }
(*t)++;
tt = **t;
}

switch (funCode) {
// special case cleanup

case F_MINUS:
if (numArgs == 1) accum = - accum;
break;

case F_DIV:
if (numArgs == 1) accum = 1 / accum;
break;

case F_PRINT:
if (numArgs == 0) {

for (i = 0; i' < NUMVAR; i++) {
*tp = VARBASE + i;
printltem (tp);
}

for (i = 0; i < NUMEXP; i++) {
*tp = EXPBASE + i;

}
break;

}
}

dep*"h--;
pr f("eval = %d\n", accum); /* new line */
return accum;
}

78

printltem (tp);
}

void disp (char *s, short *t) {
char tempStr[20];
short oldT, *tt;

*s = 0;
oTdT = F_LFPAREN;
tt = final(t);
while (t <= tt) {

if ((oldT != (FUNBASE + FJ.FPAREN)) && (*t != (FUNBASE +
F_RTPAREN)))

strcat (s, " ");
// space

if (*t < VARBASE) {
// number

sprintf (tempStr, "%d", *t);
strcat (s, tempStr) ;
}

else if (*t < EXPBASE) strcat (s, varStr[*t - VARBASE]);
// variable

else if (*t < FUNBASE) strcat (s, expStr[*t - EXPBASE]);
// expression

else strcat (s, funStr[*t - FUNBASE]);
// function

oldT = *t++;
}

}

void printltem (short *t) {
char s[255] ; .

if (*t < VARBASE) printf ("NUM %d\n", *t);
// number
else if (*t < EXPBASE)

printf ("VAR %s = %d\n",varStr[*t - VARBASE], var[*t -
VARBASE]);
// variable
else if (*t < FUNBASE) {

disp (s, ex[*t - EXPBASE]);
printf ("EXP %s = %s\n".expStr[*t - EXPBASE], s) ;

//expression
}

else printf ("FUN %s\n".funStr[*t - FUNBASE]);
//function
}

short parse (char *s, short *ep) {
char tok[25], *t;
short i , done = 0;

t = tok;
while (done == 0) {

if (*s == 0) done = 1;
if ((*s == 0) || (*s == ' ') || (*s == '(') || (*s == ')')) {

if (t > tok) {
*t = 0;
if (((*tok >= '0') && (*tok <= '9')) || ((*tok

. 79

== '-') && (t > (tok + 1))))
*ep++ = atoi (tok);

else {
for (i =0; i < NUMFUN; i++) if

(strcmp (tok, funStr[i]) == 0) break ;
if (i < NUMFUN) *ep++ = FUNBASE + i;
else {

for (i =0; i < NUMVAR; i++) if
(strcmp (tok, varStr[i]) == 0) break;

if (i < NUMVAR) *ep++ = VARBASE
+ i;

else {
for (i = 0; i < NUMEXP;

i++) if (strcmp (tok, exp5tr[i]) == 0) break;

EXPBASE + i;

F_BAD;

}

if (i < NUMEXP) *ep++ =

else *ep++ = FUNBASE +

}

}
}

if (*s == '(') *ep++ = FUNBASE + FJ.FPAREN;
else if (*s == ')') *ep++ = FUNBASE + F_RTPAREN;
t = tok;
}

else *t++ = toupper(*s);
s++;
}

*ep = DONE;
}

main () {
short *el, **e2;
char ss[255] , c;
short i, a;
short done = 0;
int aa;

// csetmode (C_RAW, stdin);

ex[l][0] = 125;
ex[l][1] = 32100;
while (done == 0) {
i = 0;
while ((c = getcharO) != '§') if (c != -1) { // wait for char

if (c == '$') done = 1; ■
else if (c == 0x8) i--;
else ss[i++] = c;
printf("%c", c);
}

printf("\n I got a statement! \n");
ss[i] = 0;
// <cr> falls thru ...
printf ("ss = %s\n", ss);

80

parse (ss, ex[0])

disp (ss, ex[0]);
printf ("ss = %s\n", ss);

e2 = ⪙
el = ex[0];
printf (" eval = %d\n", eval(e2))

}

printf ("c^one");

81

82

APPENDIX G. BRDCST.C

/* This program creates two sockets for simultaneous connection to two
♦robots */

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define mi_to_km 1.2
#define km to m 1000

main(argc, argv)

int arge;
/* int stat; */
char *argv[] ;/* *opt; */

float x,y,theta.km.kmy,kmt;
char d[128], *opt;
int sockl, sock2, stat;
struct sockaddr_in namel, name2;
struct hostent *hpl, *hp2, *gethostbyname() ;

printf("Enter and read distance in miles:\n");

scanf<"%f %f %f",&x, &y, &theta);

km=x*mi_to_km;
kmy=y*mi_to_km;
kmt=theta*mi_to_km;

/* meters=km*km_to_m; */
sprintf(d,"%12.2f %12.2f %12.2f",km,kmy,kmt); /* convert number

to string */

■ printf("what is d: %s \n",d);

/* Create socket on which to send. */
sockl = socket(AF_I.NET, SOCK_DGRAM, 0);

if (sockl < 0) {
perror("opening datagram socketl")

83

exit(l);
}
sock2 = socket(AF_INET, SOCK_DGRAM, 0);
if (sock2 < 0) {

perror("opening datagram socket2")
exit(l);

}

/*
* Construct name, with no wildcards, of the sockets to send to.
* GethostbynameQ returns a structure including the network

address
* of the specified host. The port number is taken from the cmd

line
*/
hpl = gethostbyname(argv[l]);
if (hpl == 0) {

fprintf(stderr, "%s: unknown host0", argvfl]);
exit(2);

}
hp2 = gethostbyname(argv[3]);
if (hp2 == 0) {

fprintf(stderr, "%s: unknown host0", argv[3]);
exit(2);

}

bcopy(hpl->h_addr, &namel.sin_addr, hpl->h_length);
namel.sin_family = AF_INET;

namel.sin_port = htons(atoi(argv[2]));

bcopy(hp2->h_addr, &name2.sin_addr, hp2->h_length);
name2.sin_family = AF_INET;

name2.sin_port = htons(atoi(argv[4]));

/* Send messages. '*/
if (sendto(sockl, d, sizeof(d), 0, &namel, sizeof(namel)) < 0)

perror("sending datagram messagel");
close(sockl);

if (sendto(sock2, d, sizeof(d), 0, &name2, sizeof(name2)) < 0)
perror("sending datagram message2");

close(sock2);

printf("end of Prog\n");

}

/* on sending machine type: name of this program hostmachinel name portl
* number hostmachine 2 name port2 number */

84

APPENDIX H. R0B1.C

/* This is the integrated application program for SC0UT1 */

#include <sys/types .h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>

#include <unistd.h>
#include <fcntl.h>

#include "Nclient.h"
#include <math.h>

/* macros to convert Nomad 200 motion commands to Scout motion commands
*/
#define ROTATION_CONSTANT 0.118597 /* inches/degree (Known to 100 ppm)

#define RIGHT(trans, steer)
(trans+(int)((float)steer*ROTATION_CONSTANT))
#define LEFT(trans, steer) (trans -
(int)((float)steer*ROTATION_CONSTANT))

#define scout_vm(trans, steer) vm(RIGHT(trans, steer), LEFT(trans
steer),0)
#define scout_pr(trans, steer) pr(RIGHT(trans, steer), LEFT(trans
steer), 0)

/*** Constants ***/

#define TRUE 1
#define FALSE 0

/*** Function Prototypes ***/

void GetSensorData(void);
void Movement(void);

/*** Globals ***/

long SonarRange[16]; /* array of sonar readings (inches) */
long IRRange[16]; /* array of infrared readings (no units) */
int BumperHit = 0; /* boolean value */
int sflag; /* parameter change from socket */
float km.kmy.kmt.x.y.theta;

85

* In the included filw <netinet/in.h> a sockaddr_in is defined as
follows:
* structure sockaddr_in {
* short sin_family;
* u_short sin_port;
* struct in_addr sin_addr;
* char sin_zero[8];
* };
* This program creates a datagram socket, binds a name to it, then
reads from
* the socket.
*/
mainQ
{ int i, index;

int oldx, oldy;
int order[16];
int sock, Length;

struct sockaddr_in name;
char buf [1024];

SERV_TCP_PORT = 7771;

/* Connect to Nserver. The parameter passed must always be 1. */
connect_robot(1);

/* Initialize Smask and send to robot. Smask is a large array that
controls which data the robot returns back to the server. This
function tells the robot to give us everything. */
ini t mask();

/* Configure timeout (given in seconds). This is how long the robot
will keep moving if you become disconnected. Set this low if there
are walls nearby. */
conf_tm(l);

/* Sonar setup: configure the order in which individual sonar units
fire. In this ca , fire all units in counter-clockwise order
(units are numbered counter-clockwise starting with the front
sonar as zero). The conf_sn() function takes an integer and an
array of at most 16 integers. If less than 16 units are to be
used, the list must be terminated by a element of value -1. See
the IR setup below for an example of this. The single integer
value passed controls the time delay between units in multiples
of four milliseconds. */

for (i =0; i < 16; i++)
order [i] = i;

conf sn(6,order);

86

/* Create socket from which to read. */
sock = socket(AF_INET, SOCK_DGRAM, 0);
if (sock < 0) {

perror ("opening datagram socket");
exit(l);

}

/* switch to asynch. mode */
fcntl(sock, F_SETFL, FNDELAY);

/* Create name with wildcards. */
name.sin_family = AF_INET;
name.sin_addr.sj.addr = INADDR_ANY;
name.sin_port = 5001;
if (bind(sock, &name, sizeof(name))) {

perror("binding datagram socket");
exit(l);

}
/* Find assigned port value and print it out. */
Length = sizeof(name);
if (getsockname(sock, &name, &Length)) {

perror("getting socket name");
exit(l);

}
printf("socket has port #%d\n", ntohs(name.sin_port));
/* printf("readl= %d\n", read(sock, buf, 1024)); */

/* let robot do something here: main prog */

/* Main loop. */
while (IBumperHit)

{
if (read(sock, buf, 1024) < 0)

{
/* do something without a message from other side */
printf("No messag this time \n");

}
else

{
/* do something different with a message from other side */

printf("Yes, I got a message\n");

sflag=l;
sscanf(buf, "%f %f %f",&km, &kmy, &kmt); /* convert string buf

to float km */
}

87

printf("read= %d\n", read(sock,buf,1024))

GetSensorDataQ ;
MovementQ ;

} /* end while (!bumperhit) */

/* Disconnect. */
disconnect_robot(1);

printf("-->%s\n", buf);

printfC'we make it past rd line b4 msg snt\n")

close(sock);
printf("END OF MAIN\n");
}

/* MovementO. This function is responsible for using the sensor
data to direct the robot's motion appropriately. */

void Movement (void)
{

int i;
int minreturn;
int panic;
int tvel, svel;

/* Make, sure we are not about to plow into something; check the
front sonar and infrared sensors. If it looks bad, set panic
flag. The threshold value for IRRangle has no exact physical
relevance, and was empirically determined. */

panic = FALSE;
for (i =12; 1 <= 15; i++)

if (SonarRange[i] < 8) panic '= TRUE;
for (i = 0; i <= 4; i++)
. if (SonarRangefi] < 8) panic = TRUE;

printf("sflag= %d\n", sflag);

/* Determine the closest sonar return. Since the robot will only be
moving forward, we only really need to worry about the front 8
sensors, '/

minreturn = 12;

for (i = 12; i <= 15; i++)
if (SonarRangefi] < SonarRange[minreturn])
minreturn = i;

printf("in mr\n");

88

for (i =0; i <= 4; i++)
if (SonarRange[i] < SonarRange[minreturn])
minreturn = i;

printf("in mr \n") ;
printf("Rl min range and sensor # = %d, %d\n", SonarRangefminreturn] ,
minreturn) ;

while ((SonarRange[minreturn] < 10) && sflag==l)
{

st();
}

printf ("after st\n");

/* Decide which way (if any) to turn. 3 cases: panic; not panic but
near; clear */

if (panic) /* we're about to hit something */
{
tvel =0;
svel = 340; /* steer hard left to get turned around */
}

else if (SonarRange[minreturn] < 15) /* we're near something */
■ {

if (minreturn > 8) /* object on right side of robot */
{

svel = 320; /* steer left */
tvel =15;
}

else /* on left */
{

svel = -320; /* steer right */
tvel = 15;
}

}
else /* we're clear */

{
svel = 0;
tvel =75;
}

/* Set the robot's velocities. The first parameter is the robot's
translational velocity, in tenths of an inch per second. This
velocity can be between -240 and 240. The second parameter is the
steering velocity, and the third is the turret velocity. The
units of the latter two are tenths of a degree per second, and
can be between -450 and 450. The same value is given for these
two so that the turret is always facing the direction of
motion. */

/* if (sflag==l)
scout_vm(km,kmy);

else */
scout_vm(tvel.svel);

89

printf("past vm\n");
}
/* GetSensorDataQ. Read in sensor data and load into arrays. */
void GetSensorData (void)
{

i n t i;

/* Read all sensors and load data into State array. */
gs();

/* Read State array data and put readings into individual arrays. */
for (i =0; i < 16; i++)

{
/* Sonar ranges are given in inches, and can be between 6 and
255, inclusive. */
SonarRange[i] = State[17+i];

}

/* Check for bumper hit. If a bumper is activated, the corresponding
bit in State[33] will be turned on. Since we don't care which
bumper is hit, we thus only need to check if State[33] is greater
than zero. */

if (State[33] > 0)
{
BumperHit = 1;
tkC'Ouch.");
printf("Bumper hit!\n");

}
} /* end getsensordata */

90

APPENDIX I. R0B2.C

/* This is the integrated application program for SC0UT2 */

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>

#include <unistd.h>
#include <fcntl.h>

#include "Nclient.h"
#include <math.h>

/* macros to convert Nomad 200 motion commands to Scout motion commands
*/
#define ROTATION_CONSTANT 0.118597 /* inches/degree (Known to 100 ppm)
*/

#define RIGHT(trans, steer)
(trans+(int)((float)steer*ROTATION_CONSTANT))
#define LEFT(trans, steer) (trans -
(int)((float)steer*ROTATION_CONSTANT))

#define scout_vm(trans, steer) vm(RIGHT(trans, steer), LEFT(trans,
steer), 0)
#define scoutjpr(trans, steer) pr(RIGHT(trans, steer), LEFTttrans,
steer), 0)

/*** Constants ***/

#def ine TRITE .1
ftdefine FALSE 0

/*** Function Prototypes ***/

void GetSensorData(void);
void Movement(void);

/*** Globals ***/

long SonarRange[16]; /* array of sonar readings (inches) */
long IRRange[16]; /* array of infrared readings (no units) */
int BumperHit =0; /* boolean value */
int sflag; /* parameter change from socket */
float km,kmy,kmt,x,y, theta;

91

/*
* In the included filw <netinet/in.h> a sockaddr_in is defined as
follows:
* structure sockaddr_in {
* short sin_family;
* u_short sin_port;
* struct in_addr sin_addr;
* char sin_zero[8] ;
* };
* This program creates a datagram socket, binds a name to it, then
reads from
* the socket.
*/
main()
{ int i, index;

int oldx, oldy;
int order[16] ;
int sock, Length;

struct sockaddr_in name;
char buf [1024] ,-

SERV_TCP_PORT = 7771;

/* Connect to Nserver. The parameter passed must always be l. */
connect robot(2);

/* Initialize Smask and send to robot. Smask is a large array that
controls which data the robot returns back to the server. This
function tells the robot to give us everything. */
init mask();

/* Configure timeout (given in seconds). This is how long the robot
will keep moving if you become disconnected. Set this low if there
are walls nearby. */
conf_tm(1);

/* Sonar setup: configure the order in which individual sonar units
fire. In this case, fire all units in counter-clockwise order
(units are numbered counter-clockwise starting with the front
sonar as zero). The conf_sn() function takes an integer and an
array of at most 16 integers. If less than 16 units are to be
used, the list must be terminated by a element of value -1. See
the IR setup below for an example of this. The single integer
value passed controls the time delay between units in multiples

92

of four milliseconds. */
for (i = 0; i < 16; i++)
order [i] = i;

conf sn(6,order);

/* Create socket from which to read. */
sock = socket(AF_INET, SOCK_DGRAM, 0) ;
if (sock < 0) {

perror ("opening datagram socket");
exit(1);

}

/* switch to asynch. mode */
fcntKsock, F_SETFL, FNDELAY) ;

/* Create name with wildcards. */
name.sin_family = AF_INET;
name.s in_addr.s_addr = INADDR_ANY;
name.sinjport = 5002;
if (bind(sock, fcname, sizeof(name))) {

perror("binding datagram socket");
exit(1);

}
/* Find assigned port value and print it out. */
Length = sizeof(name);
if (getsockname(sock, &name, &Length)) {

perror("getting socket name");
exit(1);

}
printf("socket has port #%d\n", ntohs(name.sin_port)) ;
/* printf("readl= %d\n", read(sock, buf, 1024)); */

/* let robot do something here: main prog */

/* Main loop. */
while (IBumperHit)

{
if (read(sock, buf, 1024) < 0)

{
/* do something without a message from other side */
printf("No messag this time \n");

}
else

{
/* do something different with a message from other side */

93

printf("Yes, I got a message\n") ,-
sflag=l;

sscanf(buf, "%f %f %f",&km, &kmy, &kmt) ,- /* convert string buf
to float km */

}

printf("read= %d\n", read(sock,buf,1024));

GetSensorData ();
Movement();

} /* end while (Ibumperhit) */

/* Disconnect. */
disconnect_robot(2);

printf("-->%s\n", buf);

printf("we make it past rd line b4 msg snt\n");

close(sock);
printf("END OF MAIN\n");

}

/* Movement(). This function is responsible for using the sensor
data to direct the robot's motion appropriately. */

void Movement (void)

{
int i ;
int minreturn;
int panic;
int tvel, svel;

/* Make sure we are not about t° plow into something; check the
front sonar and infrared sensors. If it looks bad, set panic
flag. The threshold value for IRRangle has no exact physical
relevance, and was empirically determined. */

panic = FALSE;
for (i =12; i <= 15; i++)

if (SonarRange [i]- < 8) panic = TRUE;
for (i = 0; i <= 4; i++)

if (SonarRange[i] < 8) panic = TRUE;

printf("sflag= %d\n", sflag);

94

/* Determine the closest sonar return. Since the robot will only be
moving forward, we only really need to worry about the front 8
sensors. */

minreturn = 12;

for (i = 12; i <= 15; i++)
if (SonarRange[i] < SonarRange[minreturn])

minreturn = i;

printf("in mr\n");

for (i = 0; i <= 4; i++)
if (SonarRange[i] < SonarRange[minreturn])

minreturn = i;

printf("in mr \n");
printf("R2 min range and sensor # = %d, %d\n", SonarRange[minreturn],
minreturn);

while ((SonarRange[minreturn] < 10) && sflag==l)

{
St() ;

}
printf("after st\n");

/* Decide which way (if any) to turn. 3 cases: panic; not panic but
near; clear */

if (panic) /* we're about to hit something */

{
tvel = 0;
svel = 340; /* steer hard left to get turned around */
}

else if (SonarRange[minreturn] < 15) /* we're near something */

{'
if (minreturn >8) /* object on right side of robot */

{
svel =320; /* steer left */

tvel = 15;

}
else /* on left */

{ ■
. svel = -320; /* steer right */

tvel =15;

}
}

else /* we're clear */

{
svel = 0;

95

tvel = 75;

/* Set the robot's velocities. The first parameter is the robot's
translational velocity, in tenths of an inch per second. This
velocity can be between -240 and 240. The second parameter is the
steering velocity, and the third is the turret velocity. The
units of the latter two are tenths of a degree per second, and
can be between -450 and 450. The same value is given for these
two so that the turret is always facing the direction of
motion. */

/* if (sflag==l)
scout_vm(km,kmy);

else */
scout_vm(tvel,svel);

printf("past vm\n");

}
/* GetSensorData () . Read in sensor data and load into arrays. */
void GetSensorData (void)

{
int i;

/* Read all sensors and load data into State array. */
gs () ;

/* Read State array data and put readings into individual arrays. */
for (i = 0; i < 16; i++)

{•

}

/* Sonar ranges are given in inches, and can be between 6 and
255, inclusive. */
SonarRange[i] = State [17+i];

/* Check for bumper hit. If a bumper is activated, the corresponding
bit in State [33] will be turned on. Since we don't care which
bumper is hit, we thus only need to check if State [33] is greater
than zero. */

if (State[33] > 0)

{
BumperHit = 1;
tkC'Ouch. ") ;
printf("Bumper hit!\n") ;

}
} /* end getsensord* ■a */

96

APPENDIX J. CODE SEGMENTS FOR LINKING

This code may be used to link variables between the SLEEP
program and the robot application program.

First, in the C code that implements the robot (reading
sensors, controlling actuators, etc), declare ALL the
variables that are to be referred in SLEEP with:

struct {
short temp; /* these names can be anything the user
short x; wants them to be */
short velocity;

} v;

short *var;

and declare varname[]. Let's say that they are
"temp", "x", and "velocity" in that order.

when starting to execute, point var to v with:

var = &v;

Now, when using the string token "velocity" in a.SLEEP
expression, it will be recognized as varname[2], and SLEEP
will process it as var[2]. The exact same short variable
can be referred to as v.velocity in the robot code.

97

98

LIST OF REFERENCES

1. "PROJECT 2025 Briefing for the Secretary of the Defense
and the Service Chiefs," Institute for National
Strategic Studies, National Defense University, 1994

2. The Strategic Assessment Center Science Applications
International Corporation, "ROBOTICS WORKSHOP 2020,"
June 1997.

3. Gage, D. W. , "Development and Command-Control Tools for
Many-Robot Systems," Proceedings of SPIE Microrobotics
and Micromechanical Systems, Philadelphia, PA, October
1995.

4. NOMAD 200 User's Manual, Nomadic Technologies, Inc.,
Mountain View, CA, 1997.

5. SCOUT Beta 1.1 Manual, Nomadic Technologies, Inc.,
Mountain View, CA, 1998.

6: NOMAD 200 Hardware Manual, Nomadic Technologies, Inc.,
Mountain View, CA, 1997.

7. The NOMAD SCOUT Advertisement Brochure, Nomadic
Technologies, Inc., Mountain View, CA, 1997.

8. RangeLAN2/ISA User's Guide, Proxim, Mountain View, CA,
1993.

9. Graham, P., ANSI Common LISP, Prentice Hall-, Inc.,
Englewood Cliffs, NJ, 1996.

10. Personal Conversation between Dr. Douglas W. Gage, Code
D3 71, Space and Naval Warfare Systems Center San Diego,
CA, and the author, 12 November, 1998.

11. Hutin, N. , Pegard, C, Brassart, E., "A Communicaion
Strategy for Cooperative Robots," Proceedings of the
1998 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Victoria, B.C., Canada, October
1998.

12. Ohkawa, K., Shibata, T., Tanie, K., "Method for
Generating of Global Cooperation based on Local
Communication," Proceedings of the 1998 IEEE/RSJ
International Conference on Intelligent Robots and
Systems, Victoria, B.C., Canada, October 1998.

99

13. Vainio, M., Pekka, A., Halme, A., "Generic Control
Architecture for a Cooperative Robot System," Pro-
ceedings of the 1998 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Victoria, B.C.,
Canada, October 1998.

14. Hoskins, D.A., "A Least Action Approach to Collective
Behavior," Proceedings of SPIE Microrobotics and
Micromechanical Systems, Philadelphia, PA, October 1995.

15. Stallings, W. , Data and Computer Communications, 5th

ed., Prentice Hall, Inc., Englewood Cliffs, NJ, 1996.

16. Padovano, M., Networking Applications on Unix System V
Release 4, Prentice Hall, Inc., Englewood Cliffs, NJ,
1993.

17. Gauthier, D., Freedman, P., Carayannis, G., Malawany,
A., "Interprocess Communication for Distributed
Robotics," Multirobot Systems, IEEE Computer Society
Press, pp. 99-110, 1990.

18. SUN Microsystems, Network Programming Guide, Rev. A, pp.
251-344, SUN Microsystems, 1990.

19. Gomer, D., Internetworking with TCP/IP, v. 1, Prentice
Hall, Inc., Englewood Cliffs, NJ, 1991.

20. Hiraishi, H., Ohwada, H. , Mizoguchi, F., "Web-based
Communication and Control for Multiagent Robots," Pro-
ceedings of the 1998 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Victoria, B.C.,'
Canada, October 1998.

21. Yun, X., EC 4300 Class Notes, Naval Postgraduate School,
1998

22. Kelley, A., Pohl, I., C by Dissection: The Essentials
of C Programming, Addison-Wesley, Menlo Park, CA, 1996.

23. Winston, P., Horn, B., LISP, 2nd ed., Addison-Wesley,
Menlo Park, CA, 1984.

24. Language Reference Manual, Nomadic Technologies, Inc.,
Mountain View, CA, 1997.

100

INITIAL DISTRIBUTION LIST

Defense Technical Information Center ' 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

Professor Xiaoping Yun, Code EC/YX 2
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

Douglas W. Gage 2
SPAWARSYSCEN D371
534 06 Woodward Rd.
San Diego, California 92152-7383

John A. Roese (PL-TS) ■ i"
SPAWARSYSCEN D103
53570 Silvergate Ave. Rm. 3027A
San Diego, California 92152-5271

LT Uriah E. Zachary, USN 2
2185 Johnston Rd.
Escondido, California 92029

101

