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I. INTRODUCTION 

An initially flat circular membrane forming one end of a cylindrical vacuum chamber, and clamped along the 
rim, deforms under vacuum to a surface whose shape has been found to be less than ideal for optical applications. 
Deviations from an ideal paraboloid or sphere are greater than 100A at optical wavelengths A, even for membrane 
(paraxial) /-numbers as high as //8. The work reported here was carried out in support of an in-house laboratory 
effort to demonstrate the improvement of this shape by introducing a controllable strain, independent of the vacuum 
pressure used to produce the membrane curvature. These experiments were performed on a Upilex membrane mounted 
on two concentric cylinders to form one end of two independently controlled vacuum chambers. When a vacuum is 
created in the interior of the outer annulus (p0 < patm, where patm is laboratory atmospheric pressure), with no 
vacuum on the inner cylinder (p = patm), the membrane is free to move outward across the inner ring, creating a 
strain in the inner membrane. For a given vacuum pressure p < patm on the inner cylinder, this "pre-strain" favorably 
affects the final shape of the inner membrane surface compared to the shape it would attain with no pre-strain (note 
that when p < patm, the annulus pressure may change to some new value p'0 due to migration of membrane material 
back across the inner ring). The amount of pre-strain can be controlled by the annulus pressure, affording a degree of 
control over the final shape of the inner membrane. Details of this "rim-controlled" membrane and its use in a simple 
optical system were presented in references [6], [7], and [9]. The design of the membrane mounting is illustrated in 
Figure 1. 
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FIG. 1. In-House Laboratory Membrane Mirror 
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The goals of the modelling effort described in this report were to provide theoretical verification of pre-strain 
control of a membrane surface, and to investigate effects of the control parameters (inner membrane pressure p and 
pre-strain e) on the final shape. The boundary value problem corresponding to the rim-controlled membrane mirror 
used in our laboratory experiments is, however, rather formidable, and to the author's knowledge its solution has 
not been given in the literature. We have thus opted to instead examine a different boundary value problem whose 
solution is fairly well-known, and which corresponds to an experimental situation similar in some respects to the one 
in our laboratory. Results obtained from this solution will be shown to be in qualitative agreement with measurements 
made on the laboratory membrane, and can thus serve as a guide in optical designs using the membrane as a mirror. 
In addition, the next generation of experiments at this laboratory are expected to involve a membrane mounting that 
more nearly resembles the one described by the boundary value problem solved here. 

As a quick review of the history of this problem, we note that in 1915 Hencky [5] proposed a system of equations for 
determining the equilibrium configuration of an initially plane circular membrane deformed by an axially symmetric 
constant pressure load. They are essentially von Kärman's nonlinear plate equations [11] specialized to zero flexural 
rigidity D (for a clear and careful discussion of the von Kärmän equations, see [3]). Hencky derived power series 
solutions for the stress, strain, and displacement vector components for the case of an initially unstressed membrane. 
In 1956 Campbell [1] generalized Hencky's problem to include an initial tension in the membrane. In Sections II-V 
we give a detailed description of the setting for the Hencky-Campbell problem, and show that it is equivalent to the 
problem of a membrane subjected to an initial purely radial displacement of its edge, then clamped at the original 
radius before being deformed by a uniform pressure. This boundary value problem is illustrated in Figure 2, where 
the differences between the laboratory membrane mounting and the one modeled by the Hencky-Campbell theory 
are apparent, i.e., the Hencky-Campbell membrane is clamped at the inner ring after pre-straining it by a radial 
displacement of its edge, and is then pressurized, while the laboratory membrane can slip back over the inner ring 
when it is pressurized, after pre-straining it by the annulus pressure. 
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FIG. 2. Hencky-Campbell Membrane Model 



Sections VI and VII are concerned with the elasto-mechanical properties of the membrane derived from the Hencky- 
Campbell theory, while Section VIII begins a discussion of relations between these properties and some of the optical 
parameters of the problem. 

II. REFERENCE CONFIGURATION 

We consider a body, henceforth referred to as a membrane, whose reference configuration is a thin circular disk of 
radius a and thickness h « a. An arbitrary point P of the reference configuration can be specified by either its 
Cartesian coordinates {X,Y,Z}, or its cylindrical coordinates {R,Q,Z). The middle plane of the membrane is the 
plane Z - 0, and we take the origin of coordinates to be the center 0 of the circle of radius a in this plane. We 
assume given a fixed orthonormal Cartesian basis {i, j, k} at 0. The position vector of P with respect to O is given 
by 

X = Xi + Yj + Zk. (2-1) 

The cylindrical and Cartesian coordinates of P are related by the following transformation equations: 

X = flcosG,    Y = i?sin0,    Z = Z, (2-2) 

hence the position vector can be written in terms of cylindrical coordinates as 

X - RcosOi + RsinOj + Zk. (2.3) 

We introduce orthonormal basis vectors {ER,Ee, Ez) associated with the cylindrical coordinates, and defined in 
terms of the fixed basis vectors by 

ER(e) = cosQi + sin6j,    £©(0) = -sin6i + cos6 j,    Ez = k, (2.4) 

in terms of which the position vector can be written as 

X{R,e,Z) = RER{B) + ZEZ- (2-5) 

III. ASSUMPTIONS ON THE DEFORMATION 

Under a uniform pressure p, a point P of the reference configuration is deformed to a new point P'. The set of all 
such points defines the deformed configuration. The point P' of the deformed configuration has Cartesian coordinates 
{x, y, z] and cylindrical coordinates (r,0, z). The position vector of P' with respect to the origin O at the center of 
the membrane is thus given in the fixed Cartesian basis by 

x = xi + yj + zk = = r cosOi + r sin9 j + zk, (3.1) 

where the cylindrical and Cartesian coordinates are related by 

x = r cos0,    y = r sinö,     z = z. (3-2) 

The orthonormal basis vectors {er,ee,ez} associated with the cylindrical coordinates on the deformed configuration 
are defined by 

er{9) = cosOi + sinöj,    eB(9) = -sinfli + cosöj,    ez = k = Ez, (3-3) 

in terms of which the position vector can be written as 

x = rer + zez. (3-4) 

The displacement vector u relates the position vector X of P in the reference configuration to the position vector 
x of the point P' to which P is displaced by the deformation, i.e., u = x - X, hence 

x - X + u. (3-5) 



We write the displacement vector in the cylindrical basis {ER, E@, EZ} of the reference configuration as 

« = UR ER + Ue E@ + Uz Ez, (3-6) 

where the orthonormal cylindrical basis vectors are related to the fixed Cartesian basis vectors by (2.4). Thus, (3.5) 
can be written as 

x i + y j + z k = X i + Y j + Z k + UR ER + U& Ee + Uz Ez 

= Xi + Yj + Zk + UR(cosei + sin0j) + U@ (-sin6i + cos0 j) + Uzk, 

= {X + URCOSS - U@ sin6)i + (Y + URsine + U& cos6)i + (Z + Uz)k. (3.7) 

From (3.7) we obtain the following relations between the Cartesian coordinates of the two position vectors, and the 
cylindrical components of the displacement vector: 

x = X + UR cos 0 - Ue sin 6, (3.8a) 

y = Y + UR sin6 + U@ cos 6, (3.8b) 

z = Z + Uz. (3.8c) 

Substituting from (2.2) and (3.2) into the first two equations of (3.8), we obtain 

rcosö = (i?+ C/j?) cos 6-[/© sin0, (3.9a) 

r sin0 = (R+ UR) sine + U@ cose. (3.9b) 

These equations can be solved for the deformed configuration cylindrical coordinates in terms of the reference 
configuration cylindrical coordinates and displacement vector components as follows: first, multiply the first equation 
by cos6 and the second by sin0, and add the results to get (using the trigonometric identity for the cosine of the 
difference of two angles) rcos (0 - 0) = R+UR; second, multiply the first equation by -sin0 and the second by 
cos0, and add to get rsin (6 — 8) =U@. From these two results one easily obtains 

r = y/(R + UR)* + Ug , (3-lOa) 

^-^GrrW)- {3-10b) 

We assume that the deformation of the membrane from its reference configuration to its deformed configuration is 
described mathematically by one-to-one invertible mappings between the coordinates of points in the two configura- 
tions, e.g., between their cyindrical coordinates: 

r = fr(R,e,z),   e = fe(R,e,z),   2 = fz(R,e,z). (3.11) 

We immediately restrict consideration to deformations in which the cylindrical coordinate Q of any point in the 
reference configuration remains the same after the deformation, i.e., we assume that the second equation of (3.11) is 
the identity mapping 

0 = 6. (3-12) 

Furthermore, we restrict consideration to deformations that are independent of this angular coordinate. Equations 
(3.11) thus reduce to a pair of mappings depending only on the other two coordinates: 

r = fr(R,Z),    z = fz(R,Z). (3.1.3) 

Under these assumptions of axisymmetric deformation, equations (3.12) and (3.10b) imply that 

Ue = 0, (3.14) 



hence the relation (3.10a) between radial coordinates in the two configurations simplifies considerably to 

r = MR,Z) = R + UR(R,Z). (3-15) 

The relation (3.8c) between the vertical coordinates is unchanged: 

z = fz(R,Z) = Z + UZ(R,Z), (3.16) 

and the displacement vector reduces to 

u(Ä, 0, Z) = UR{R, Z) ER(Q) + Uz{R, Z) Ez. (3.17) 

Assumption (3.12) implies that the orthonormal basis vectors {eR,e@,ez} on the deformed configuration are the 
same as those on the reference configuration, i.e., 

er(0) = er(6) = JBÄ(e),    e«(0) = e«(6) = £©(0),    ez = Ez = k. (3.18) 

IV. HENCKY'S EQUATIONS 

Hencky's equations describe the equilibrium state of the middle surface of the deformed membrane, i.e., the image 
under the deformation of the middle plane Z = 0. Setting Z = 0 in (3.15) and (3.16), we write the equations describing 
the middle surface as 

r = F(R) = R + 17(A),    where       F(R) = fr(R,0)    and    17(A) = UR{R,0), 

and 

z = W{R),    where       W(R) = /,(fl,0) = Uz{R,0). 

The deformation of the middle plane into the middle surface is illustrated in Figure 3, below. 

w(r) 

FIG. 3. Deformation of the Middle Plane Z = 0 

(4.1) 

(4.2) 

We consider a circular membrane made of a material characterized by given values of Young's modulus E and 
Poisson's ratio v. We assume that under a uniform pressure p the membrane is deformed to a new equilibrium 
configuration, illustrated in Figure 3, that is a solution of Hencky's equations [5]. This system of equations consists 
first of the following relations between the radial and circumferential strain tensor components and the displacement 
vector components: 

(R 
_ dU       1 fdW\* 

~ lR + 2 V dR ) ' 
(4.3) 



ee = |, (4-4) 

where all variables are assumed to depend only upon the radial coordinate R of the reference configuration. The 
strain components are assumed to be linearly related to the second Piola-Kirchhoff stress components (see [3], pp. 
465-466) by the following uniform, homogeneous, isotropic form of Hooke's Law: 

SR - uSe = EeR, (4.5) 

5© - vSR = Eee. (4.6) 

Finally, the stress components must satisfy the force equilibrium equations 

S..S. + R2jL = ±iRS„). (4-7) 

*% - -£ 
representing equilibrium in the radial and lateral directions, respectively. We remark that Fichter [2] has recently 
suggested that (4.8) represents equilibrium in the lateral direction only for a laterally applied pressure load, and should 
be altered to include an additional term if the model is to represent a true pressure load (which would necessarily 
be normal to the deformed surface). Regardless of the merits of his suggestion, which at first sight appear to be 
well motivated physically, we adopt in this report the more familiar model using the equilibrium equation (4.8). We 
believe that Fichter's claim, if true, should be derived in a way that carefully distinguishes between variables defined 
on the reference and deformed configurations. Such a derivation has, to our knowledge, not been given. 

Before going on to consider a particularly simple solution of these equations, we give details of the derivations of 
two useful differential equations that follow from (4.3)-(4.8). Differentiating (4.4), and using (4.3) and (4.4) in the 
result, we obtain 

de&        1 dU        U        1 \ 1 fdW\'-\       e© 
dR       RdR      R2       R 

1 fdW\i] 
€R~2 [iRJ   J " i?' 

which can be written as 

Ddee 1 (dW\2 

R-dR=€R-€e~2 \1R) ■ 

Multiplying this equation thru by E and using (4.5) and (4.6) to replace the strains in terms of the stresses yields 

rl E fdW\2 

R^iSe - vSR) = SR - ,5© - 5© + VSR - - (-^) . 

On the right-hand side of the last equation, we use (4.7) to replace SR = 5© - R(dSR/dR), obtaining after some 
simplification: 

»B<*+ *> + !(£)" = ■>■ <4-9» 
which is Hencky's equation (4), and Campbell's equation (7). This can be written in terms of the pressure by using 
(4.8) to replace dW/dR, yielding 

lsi^(a. + a,) + fg = 0. (4.10) 

It is convenient to introduce at this point a dimensionless independent variable p defined by 

R 
P   =   —: a 

(4.11) 

as well as dimensionless displacement vector components U and W, defined by 



Ü(p) = ^U(ap),        W{p) = -aW{ap), (4.12) 

and dimensionless stress components SR and S©, defined by 

SR(p) = \ SR(ap),        Se(p) = \ SQ(ap). (4.13) 

We have departed somewhat from the Hencky-Campbell approach, as they define dimensionless stress components 
in terms of a factor A; that is proportional to p. With our definitions, equations (4.3)-(4.8), (4.9), and (4.10) can be 
written in dimensionless form as 

u 
e© = —, 

P 
(4.15) 

SR-VSQ = eR, (4.16) 

5© - vSR = e©, (4.17) 

Se =SR + P^ = 4-(PSR)> (4"18) 

and 

respectively, where 

dp dp 

*»£ = -§* <«9» 

4^^AO,-a- (4-20) 

-SlUsa + SR) + \q' = 0, (4.21) 
p        dp o 

pa (4.22) 
Eh 

is a dimensionless constant proportional to the external pressure p. 

V. EQUILIBRIUM CONFIGURATION OF AN UNPRESSURIZED CIRCULAR MEMBRANE 

We consider here the solution of equations (4.14)-(4.19) when there is no externally applied pressure, which must 
include as one case the initially tensioned state assumed in Campbell's paper. With the exception of the radial 
coordinate on the deformed configuration, all variables in this special situation will carry a 0-subscript, hence the 
deformation equations corresponding to (4.1) and (4.2) will be written as 

R = Ro + Uo(Ro)    and    z0 = W0{R0), (5-1) 

respectively. We also introduce, similarly to (4.11), a dimensionless radial coordinate p0 defined by 



Po = -• l (5-2) a 

Thus, i?0 (or />o) labels a point of the undeformed reference configuration, and R (or p) labels the point to which it 
may be deformed in the absence of external pressure. 

It is convenient to again introduce dimensionless displacement vector and stress tensor components defined by 

U0(po) = \uo{ap0),        W0(Po) = ^W(ap0), (5.3) 

and 

SRO(PO) = ßSno{apo),        Sea(po)= gSeo{apa). (5.4) 

From (5.3), (4.11), (5.2) and (5.1), we obtain a dimensionless form of the equation of radial deformation: 

p = po + Uo(po)- (5-5) 

The system of equations (4.14)-(4.19) with p = 0 (hence q = 0 ) can be written in terms of these dimensionless 
variables as 

£R0 = *!h + I (<W*\2 (5.6) 
dpo       2 \ dpo ) 

U0 
e©o = —, 

Po 
(5.7) 

SRQ — VS@Q = €RQ, (5.8) 

Seo — VSRO = e©o, (5-9) 

Seo = SRO + po—;— = -j—{POSRO), (5.10) 
dpo        dpi •o 

SR0
dJ± = 0, (5.11) 

dpo 

It follows immediately from (5.11) that either SRO is zero, or WQ(po) is a constant, or both of these conditions hold. 
It is easy to see that if 5RO = 0, then all dependent variables except Wo vanish, and Wo is again relegated to some 
constant value by equation (5.6). 

The remaining possibility, then, is that Wo{po) is constant, but SRO ^ 0.   Under these conditions, the lateral 
equilibrium equation (5.11) is identically satisfied, and equation (5.6) for the radial strain reduces to 

CRO = P-, (5-12) 
dpo 

hence the system we must solve consists of equations (5.7), (5.8), (5.9), (5.10), and (5.12), subject to the requirement 
that all functions be regular (i.e., be defined for all values of p0). We begin by using (5.10) to replace Siao in the 
left-hand sides of (5.8) and (5.9), and using (5.7) and (5.12) in the right-hand sides of the same two equations, to 
write them as 

,.. s A dSRo       dUo 
(1 - v)SRO - vpo —.— = -j—, 

dpo dpo 

and 



-    /, Vä     .       dSR0       Uo 
(1 - v) SRO + po -j— = —• 

dpo Po 

Subtracting the first of these two equations from the second, we obtain 

,,   ,     ..     dSR0       . Uo      dUo s 
(1 + v) po —,— = ( -j—), 

dpo po       dpo 

which can be rewritten as 

dSR0  _ 1      ,1  dUp _U±\ - 1       d   /UQ\ 

dpo   ~     1 + v Vo dpo       Po 1 + v dpo V p0 J 

This integrates immediately to obtain 

SR0 = c1-(-±-)^, (5.13) 
V 1 + v J po 

where c\ is an arbitrary integration constant. Substitution of (5.13) and (4.4) in (4.6) yields 

5eo = clV+(7^-)^. (5-14) 
V 1 + v I po 

Finally, substitution of (5.13), (5.14) and (5.12) in (5.8) yields a differential equation for U0(po): 

(     1     \ Uo r ,   /     1     \ Uo I       dUo 
C\ — V    C\ V +  I  1 —     =  ——, 

V 1 + v ) po L \ 1 + v J po J        dpo 

which can be rearranged to write it as 

which easily integrates to obtain 

-j-{poUo) = ci(l - v2)po, 
dpo 

~ 1  —  V2 C2 
U0{po) = ci—-—po + —. 

£ Po 

In this expression, the arbitrary integration constant c2 must be set equal to zero in order for Uo to be regular at 
po = 0, hence the general solution for Uo reduces to 

~ 1 — f2 

Uo{pa) = ci—-—po. (5.15) 

Substitution of this result in (5.6) and (5.7), recalling that Wo is constant, yields 

(no = «eo = ci —-— = e, (5.16) 

i.e., the two strain components are equal to the same constant value, which we denote by e. From (5.8) and (5.9) it 
then follows that the two stress components are also equal and constant throughout the membrane: 

SR0 = Seo = (j^) e = S. (5.17) 

In terms of the constant strain e, the radial displacement (5.15) is given by the linear relation 

Uo{po) = epo     =>     Uo(l) = e. (5-18) 

Thus, Campbell's configuration of initial tension a (which corresponds to S = E S in the preceding development) is 
equivalent to a configuration in which each point has suffered a linear radial displacement from its unstrained reference 
configuration. The radial deformation (5.5) is found from (5.18) and (5.16) to have the simple form 

P = po(l + 0. (5-19) 
while the lateral deformation is taken to be 

zo = 0, (5.20) 

assuming the constant lateral displacement to be zero, i.e., W0(po) = 0. Since W0{po) is constant, this will be true if, 
for example, the membrane remains in contact with the hoop edge at R0 — a during the radial displacement. 



VI. CAMPBELL'S PROBLEM 

We consider now a membrane which has suffered a purely radial displacement of its edge. As shown in the previous 
Section, this introduces an initial uniform dimensionless stress S and corresponding strain e, related by (5.17). Body 
points of the middle plane of this pre-strained membrane are labeled by the radial coordinate R, as in the previous 
Section. The membrane is subsequently clamped along the circle R = a, and an external uniform pressure is applied 
to points of the disk R < a. In terms of dimensionless variables defined at points of this pressurized part of the 
pre-strained membrane labeled by the dimensionless radial variable p - R/a, the Hencky-Campbell equations can be 
written as 

£R = e + |4(f)2. 

and 

ee = e + -, (6-2) 
P 

SR-VSQ = ER, (6.3) 

50 - vSR = e©, (6.4) 

Se = SR + p-fp(SR) = ±(pSR), (6.5) 

SR§ = -§„ (6-6) 

I^i-(§e + &) + i«a = 0, (6.8) 
p       dp 8 

We remark that the stress and strain components in these equations are the total stresses and strains, not the 
incremental stresses and strains used by Campbell. The non-zero pre-strain is accounted for in equations (6.1) and 
(6.2), which are modifications of Hencky's equations (4.14) and (4.15) needed to assure that the total stress and 
strain in the membrane reduce to the pre-stress and pre-strain when the displacement components U and W vanish 
(corresponding to ^reduction of the external pressure to zero). Since the membrane is clamped along the circle R= a, 
corresponding to p — 1, the appropriate boundary conditions to be applied are 

17(1) = 0,    and   W{1) = 0. (6.9) 

Similarly to Hencky and Campbell, we begin by assuming an even power series solution for the dimensionless total 
stress component SR of the form 

sß = Mi + £w2n), (6-10) 
71 = 1 

where the coefficients b2n, n = 1,2,3,..., are dimensionless constants. Substitution of this expression in (6.5) yields 

S& = -f(pSR) = b0[l + Y/(^ + l)b^P2n}- (6-11) 
n = \ 
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From the last two equations we obtain 

SR + Se = 2*0 [1 + £ (n + VhnP2" ]. 
n = l 

hence 

1  d ,* 
- -f- (5fl + 5© ) = 4 6o V] n(n + l)&2„P2n-2, 
o do *—' P dp n=l 

This is substituted, together with (6.10), into (6.8) to obtain 

n=l n=l 

which we rewrite as 

(l + £ W2")2 • £ ^f^W2-2 + ß2 = 0, (6-12) 
n=l n=l 

where we have introduced a new dimensionless constant B defined by 

B=l-J-     =>     60 = im2/3. (6.13) 
° - 8 ,3/2     ^     °°       4 Vß/ V       ' 

°0 

The expanded form of (6.12) is 

( 1 + 62p2  + b4p4  + hp6  +  . . . )2 ( h + Zhp2  + Qhp4 +  106gp6   + )   + ß2   =  Q (ß 14) 

This is used to obtain all coefficients 62„, n > 1, in terms of B, by computing the products of the three infinite series, 
and equating to zero each coefficient of different powers of p. We have made use of the Mathematica* software system 
to determine that each of these coefficients has the form 

b2n = -ßinB2\ (6-15) 

where the purely numerical coefficients ßin for n = 1 to n = 11 are given by 

2 13 17 37 
/?2 = 1,    /?4 = ö'    ße - Jg>    /% = jgi    Ao = 27> 

_ 1205 _ 219241 _ 6634069 
Ä2 ~ "567'    ßl4 ~   63504 '    Ä6 ~ 1143072' 

_ 51523763 _ 998796305 _  118156790413 ,ß lg. 
ßl8 ~   5143824 '    Ä0 ~   56582064'    Ä2 ~    3734416224' 

Now, substituting (6.2) in the right-hand side of (6.4), and evaluating the result at the edge boundary p = 1, yields 

b0 (1 + 362 + 564 + 766 + 9fe8 +■••)- "&o (1 + 62 + &4 + be + b8 +...)= e + ^ (1) = e> 

where we applied the first boundary condition (6.9). This can be rewritten, after collecting like terms on the left-hand 
side, as 

[(1 - v) + (3 - v)b2 + (5 - v)bA + (7 - v)h + (9 - i/)68 + ...]- ^- = 0. (6.17) 

Since all the coefficients have been expressed in terms of B, or equivalently, in terms of 60, the left-hand side of 
(6.17) defines a function whose independent variable is b0. According to (6.17), the remaining constant b0 must be 

* Mathematica is a registered trademark of Wolfram Research, Inc. 
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determined as a zero of this function. This can be done by standard numerical methods, e.g., the bisection method 
given in [8] is quite satisfactory for our purposes. 

Once the coefBcient b0 has been determined, the dimensionless stress components are given by the even-order power 
series (6.10) and (6.11), while U{p) is given, according to (6.2) and (6.4), by the odd-order series 

V(p) = p{S@ - VSR) - pe = b0p[(l -v) + J2(2n + * ~ ") Wn] - pe. (6.18) 
71 = 1 

Similarly, the two strain components are obtained by substituting the appropriate series into (6.3) and (6.4), to obtain 

cR = SR - vSe = M(l " ") + X^1 - v(2n + l)]hnP2n), (6-19) 
n = l 

and 

ee = S@ -VSR = b0{(l-v) + J2(2n+ 1 ~ ")WB)- (6-20) 
n=l 

The remaining dimensionless variable W(p) can be determined by assuming an even-order power series of the form 

W(p) = £uW\ (6-21) 
ra=0 

the derivative of which is 

? = 2r»2„p2"-1 (6.22) 

Substitution of (6.22) and (6.10) in (6.6) yields 
? 

or 

26o(l + X>2„/>2")X>i2i2"',2"~1 + \P = °' 
n=l n=0 

(1  +  X! h^P2n)  E "C2nP2"_1   + P  =   0- (6-23) 
n=l n=0 

In the last line we have defined new coefficients c2„ such that ü)2n = C c^n, n>l, where 

C=ll (6-24) 
4 60 

is another dimensionless constant. Expanding the product of the two infinite series in (6.23), replacing each 62n in 
terms of B, and then equating coefficients of like powers of p to zero we find, again making extensive use of the 
Mathematica system, that 

C2n   =   -72nB2n-2, (6-25) 

where the purely numerical coefficients 72n for n = 1 to n = 10 are given by 

1 5 55 7 
72 = 1,    74 = 2'    76 = 9'    78 = 72'    7l° _ 6' 

_ 205 _ 17051 _ 2864485 
7i2 - YÖ8'    Tl4 _   5292 '    7l6 ~   508032 ' 

_    741805 _ 16659221 ,g ^ 
718 ~ 10287648'    72° -   5143824 " 

The remaining coefficient w0 is determined by the second boundary condition of (6.9), viz., W(l) = 0, which yields 
from (6.21): 

0  =  W0  + C X C2"       =>       S0   =   -CXC2n- (6-27) 
n=l n=l 

Power series expressions for each of the dimensionless variables are now completely determined. Each of these must 
be truncated after a finite number of terms, determined by the error acceptable by the user. 
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VII. THE EQUATION OF THE "TRUE" MIDDLE SURFACE 

The solutions U(R) and W{R) can be substituted in equations (4.1) and (4.2) to obtain the deformation mappings: 

r = F(R) = R + U(R),    and   z = W{R). (7.1) 

They can be interpreted as parametric equations of the middle surface, with parameter R. The second equation of (7.1) 
defines the surface of lateral displacements of the body points with radial coordinates R. The graph of this equation 
is frequently identified with the middle surface, but it does not define the true middle surface (this observation has 
been emphasized in a recent AIAA Proceedings paper [4] ). Points on the middle surface are coordinatized by (r, z), 
not {R,z), hence the equation of the middle surface must relate the lateral displacement z to the radial coordinate 
r of the point in the deformed configuration that was originally at R. Thus, it must take into account the radial 
displacement U{R) as well. As can be seen in Figure 3, the true middle surface should be graphed by plotting the 
lateral displacement z = W{R) versus the point of the middle plane with coordinate r = R+ U{R) ( not against the 
point with coordinate R ). 

For some purposes it is convenient to actually eliminate the parameter R between the two relations in (7.1). We 
first introduce on the deformed configuration a dimensionless radial variable £, defined by 

e = r-, (7-2) 
a 

so that, recalling the definition p = R/a, hence R = ap, we can evaluate the two relations in (7.1) at R = ap to obtain 

t = -F(R) = -F{ap) = F(p) = p + U(p),    and    z = W{R) = W{ap) = aW{p), (7.3) 
a a 

where we recall that U(ap) = a U(p). One can, in principle, solve the first of these relations to obtain p as a function 
of C, i-e., 

P = F-Ht), <7-4) 

which can then be substituted into the second relation to obtain 

z = W(R) = aWiF-1^)) = a «HO = aw(r/a) = w{r). (7.5) 

The final equality is, formally, the equation of the true middle surface. 
Of course, it is difficult, if not impossible, to determine the exact relation (7.4). However, such a relation can be 

found to any desired accuracy, as follows. We substitute the infinite series (6.18) for U(p) into the first relation in 
(7.3), and write the result as 

£ = F(p)= [(1 - e) + 60(1 - v)]p + 6oM3 - v)p3 + b0b4(5 - v)p5 + ..., 

= dlP + dzP
z + d5p

5 + ... . (7-6) 

We then express the variable p as an infinite series in £, viz., 

p = F-\o = ht + fse + he + ---, (7-7) 

where the f2n+i are determined by substituting (7.7) for p into (7.6), and equating like powers of £ in the result. For 
example, we find in this way 

1 , d3 3rf§-did5 ,        Sdxd3d5 - 12dg - d{d7 ,     . 
/l = d?     f3 = ~4'     /5 = —di—'     /7= df ' j 

again making use of the Mathematica system. In practice, the coefficients of the highest order termsjetained in the 
power series (7.6) and (7.7) are chosen to satisfy the boundary condition on the circle p = 1, viz., (7(1) = 0, which 
in turn requires that £ = 1 when p = 1. For example, we find that for pre-strains and pressures relevant to the 
laboratory membrane, £ is well-approximated by the truncated series 

£ = dip + d3p
3 + 4sP5,        d55 = 1 - di - d3) (7-9) 
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while p can be approximated by 

P = fit + fsf + fsst*,        hs = I-/1-/3. (7.10) 

Once the series (7.7) for p is determined to the desired accuracy, the result can be substituted for p = F *(£) in 
the power series representation (6.21) of W(p), yielding according to (7.5) a series solution for the equation of the 
true middle surface: 

w(r) = a{w0 + Cj2cm lF~l(r/a)]2n}, 
n=l 

or, in dimensionless form: 

5(fl = wo + C^^niF-1^)}2", 

(7.11) 

(7.12) 
n=i 

and we note that since P_1(l) = 1, we have w(l) = 0, as required. In Figure 4 we show a rather extreme case (zero 
pre-strain and an /-number of 2) of the difference between the true surface and the surface of lateral displacements. 
For pre-strains of as little as 0.1% and high /-numbers, say //8, the difference is, however, negligibly small (on the 
order of tenths of a wavelength). 

30- 

25- 

=    20- 

*     15- 
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o      5 
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Deviation of True Surface 

from Lateral Displacement Surface 

(wlru. - wai.p for f/2 Membrane with Zero Pre-Strain) 

—| 1 1 1 1 1 1 1 1— 

-1.0 -0.5 0.0 0.5 1.0 

? = r/a 

FIG. 4. Deviation of True Surface from Surface of Lateral Displacements (f/2 Membrane) 
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VIII. THE MEMBRANE SURFACE AS A FUNCTION OF F-NUMBER 

Referring to Figure 3, we note that for r « a, i.e., near the vertex of the membrane where r = 0, the equation of 
the surface is approximated by the first two terms of (7.11), viz., 

u,(r) *a\w0 + Cc2fUr-)2] =w0-^r2, (8.1) 
L a     J a 

where we replaced ci = —72 = — 1 in the final equality. This is recognized to be the equation of a paraboloid with 
origin at O, having a focal length / given by 

a ad? (g 2) 
1      AC ft        4C 

where the final equality follows from the first relation in (7.8). In all that follows, we consider this "paraxial" focal 
length to be the focal length of the membrane. It is convenient to replace / by the membrane /-number, //#, defined 

by 

//# = I, (8-3) 

where la is the membrane diameter. From (8.2) and (8.3) it then follows that 

//# = ||. (8-4) 

which relates the /-number to the mechanical properties of the membrane (recall that i\ depends on both e and v 
according to (7.6), while C depends on q = pa/Eh according to (6.24) and (4.22) ). 

In order to determine the equation of the membrane surface for a given /-number //#, and given values of e and 
v, we begin by noting from (8.4) that C must in this case be given by 

r - JL - [(l-e) + 60(l-^)]2 (8 5) 
~ 8//# _ 8//# 

where the last expression follows from (7.6). From the definition (6.24) we obtain the following relation between C, 
bo, and the variable q: 

q = 4b0C. (8-6) 

Substitution of this expression into (6.13) yields 

B = TW (8J) 

These expressions for C and B as functions of b0 are now used in (6.17), to determine fc0 as a solution of 

[(1 - v) + (3 - v)b2 + (5 - v)b4 + (7 - v)bG + (9 - v)bs + ...] - y = 0, (8.8) 

for a given value of the pre-strain e. Once 60 is determined, the coefficients in the power series for the displacement 
components and other variables can be computed. The pressure for this value of b0, and the given values of the 
parameters e, v, and //#, is found from the definition (4.22): 

p = q—, (8-9) 
a 

after q has been computed from (8.6). The maximum displacement is 

wo = a wo, (8.10) 

where WQ has been computed according to (6.27). 
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IX. ESTIMATION OF THE PRE-STRAIN AS A FUNCTION OF F-NUMBER 

Suppose that at a given pressure p the membrane is characterized as having a particular /-number //#. The 
amount of pre-strain e for these values of p and //# is difficult to measure directly, but can be calculated as follows. 
From (8.5), (8.6), and (4.22), we have 

Eh     [l + fe0 (1 - ^) -e]3 
p = —bo 277# • (   ' 

which can be solved for e as a function of the known parameters, and the unknown coefficient 60: 

Since p is known, we can compute q from (4.22), and then from (6.24) and (6.13) get C and B as functions of the 
unknown coefficient &o: 

C = ST'       B = -375- (9"3) 

These expressions for e and ß as functions of b0 are now substituted in (8.8), which is solved for &o- This value of b0 

can then be used in (9.2) to obtain the desired estimate of the pre-strain e at the given values of p and //#. 
We also note that for e/[l + b0 (1 - v)] << 1, we obtain from (9.1) a linear approximation of p as a function of e: 

P*— ^l[HMl^)l2-- -^r[l + bo(l-v))e = p0-me, (9.4) 
a   2//# a   //# 

where the p-intercept and slope m are given by 

Po = — ^[1 + Ml-^,    and    m=^-^   [1 + Ml-iO]. (^) 

The approximation (9.4) yields the following linear approximation for the pre-strain as a function of pressure, for a 
given //#: 

€ 
Po~p. (9.6) 

X. ESTIMATION OF THE PRE-STRAIN AS A FUNCTION OF MAXIMUM LATERAL 
DISPLACEMENT 

It has been found useful to have at least an approximate solution of the following problem: what pre-strain e is 
required to obtain a desired maximum lateral displacement of the membrane for a given pressure pi We note that 
from (6.21) and (6.27) we have the following expression for the maximum displacement Wo: 

W(0) = Wo = aw0 = -aC ]T c2„, 
n=l 

or, using (6.25): 

Wo = aC(72 + 74#2 + 76#4 + 1&B6 + ... + 720#18), 

where we recall from (6.26) that 72„ is the numerical coefficient of B2n~2 in each series coefficient c2„, e.g., 72 = 1, 
74 = 1/2, 7e = 5/9, and 78 = 55/72. Using (6.24) to replace C yields 

Wo = ^(72+74#2+76ß4+78ß6 + ... + 720Ö18)- (10.1) 
4  60 
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The coefficient B depends, in general, on b0 and q according to its definition (6.13), and we recall that 60 is determined 
for a given q, v, and e by solving (6.17). 

However, for e — 0, equation (6.17) reduces to 

1 - v) + (3 - i/)62 + (5 - v)bA + (7 - v)b6 + (9 - v)H + ■■■ = 0. (10.2) 

which can be solved for B without regard for q, requiring only a given value for v [the coefficients 62„, n > 1, depend 
only on B, according to (6.15)]. Denoting by B0 the value of B corresponding to e = 0, we have from (6.13): 

- -1 (i) (10'3' 
.2/3 

4 VBo'- 

for the value of 60 when e = 0. This can be substituted for 60 in (10.1) to obtain the maximum displacement with 
zero pre-strain: 

Wo = a q1'3 B2
0
/3 (72 + 74 B2 + 7e B4 + 7s B6 + ... + 720 B18) = K a q1'3, (10.4) 

where we have introduced a new constant K. defined by 

K = ßo/3(72 + IAB
2
 + 7eß4 + 7sß6 + ... + 72oß18)- (10-5) 

We remark that our equation (10.4) is equivalent to Campbell's equation (25), where K. = 0.653 corresponds to his 
use of a Poisson's ratio v = 0.3. We have verified this value of K, with our computations, and find that when we 
increase v to v - 0.4, the value decreases to K - 0.626. Once this constant has been determined for a given value of 
v, we can solve (10.4) for the pressure: 

Po = ^ (^)3, (10.6) a   \/Ca/ 

which is the pressure required to produce a desired maximum displacement Wo when there is zero pre-strain. 
Now, in the opposite limit of large pre-strain, we find numerically that the parameter B tends to a number much 

less than 1, hence the terms in (10.1) involving B can be neglected to yield the approximation 

Wo = ^   * (10.7) 
4   &000 

where we denote by b0oo the value of 60 for large values of e. In the same approximation, since the coefficients 62n, 
n > 1, are proportional to powers of B, the determining equation (6.17) reduces to simply 

1 _ „ _ J_ = 0    =>     6000 = T-^—• (10-8) 

Substituting (4.22), and this expression for 60oo, in (10.7) yields the following expression for the pressure under large 
pre-strain conditions: 

.Eh    Wo nnQx 
Poo = 4— e. (lU-yj 

a   1 — v 

The curve of pressure versus pre-strain for a given value of Wo has been found to be well-approximated by the 
linear function obtained from the sum of the two extreme cases (10.6) and (10.9): 

p{e) w po + me, (10.10) 

where the p-intercept p0, and slope m, are given by 

Eh (W0\
3 , Eh    Wo Mni1x 

po = —   TH      
and    m = 4—^i ' (10.11) a   \KaJ a   1 — v 

respectively. Thus, by measuring the pressure p required to produce a (measured) maximum displacement Wo, we 
can invert (10.10) to obtain an estimate for the amount of initial strain existing in the membrane: 

p - Po 
m 

Unfortunately, a precise direct measurement of Wo is also difficult to obtain. 
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XI. COMPARISONS WITH REFERENCE SURFACES 

In Figure 5 we have illustrated again the displacement of point P of an initially flat membrane to point P' of its 
equilibrium deformed configuration. We have also shown there a sphere of radius Rc with center at C, which has been 
chosen to coincide with the membrane at the vertex V and along the circular membrane edge r = a. The equation of 
the middle surface of the deformed membrane, in a frame with origin at O, is given by (7.5), i.e., 

z = w(r) (11.1) 

The center 0 of the middle plane Z = 0 is displaced under the deformation to the vertex V of the membrane, which 
has coordinates (0, w0), where w0 = w(0) = W(0) — W0 is the maximum lateral displacement. 

FIG. 5. Geometry of Reference Sphere 

In Figure 5, a point with Cartesian coordinates {x, y, z} in the frame with origin at O has coordinates {x, y,z} in 
a frame with origin at the vertex V. The two axial coordinates are related by a translation through the maximum 
displacement wo, i.e., 

z — z — wo, (11-2) 

which assures that the vertex V defined by z = 0 corresponds to z = w0 with respect to O.  The equation of the 
membrane surface in a frame with origin at V is thus 

z — w(r) — wo- (11-3) 

In this coordinate system, the equation of a paraboloid with focal length fP has the particularly simple form 

1      2 
ZP = -J7-r2, 

while points on the surface of the upper hemisphere of a sphere of arbitrary radius Rc satisfy the equation 

(11.4) 

7S = -Rc + y/Ri-r*, (11.5) 

which is easily derived from the geometry of Figure 5.  We note that for r « Rc ( i.e., near the vertex V ), the 
equation of the sphere is approximated by 
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1 
5 2Ä 

(11.6) 

which we obtained by keeping only the first two terms in the binomial expansion of the square root function in (11.5). 
According to (11.4), this represents a paraboloid of focal length fs = Rc/2. Translating back to the coordinate 
system with origin at the membrane center O, the equations for spherical and paraboloidal surfaces passing through 
the vertex V are given by 

zs = ws{r)= w0 -RC + ^R2- r\ (11.7) 

and 

zp = wP{r) = w0 - 77- r2, (11.9) 
4/p 

where the approximation (11.8) holds near the vertex. 
We note that the plane z = 0 intersects the membrane surface in a circle of radius a, which suggests choosing as 

a reference sphere one obtained by requiring that the plane z = 0 also cut the spherical surface in a circle of radius 
r = a, as shown in Figure 5. From (11.7) it follows that the maximum displacement wo, the membrane radius a, and 
the radius Rc of the sphere, must then satisfy the condition 

wo = Rc - V&c-a2- (n-10) 

This can be solved for the radius of curvature, to obtain 

Rc = al+A. (11.11) 
2w0 

A reference paraboloid can be defined by the same condition, viz., that the plane z = 0 cut its surface in a circle of 
radius r — a. For this to occur, we must have from (11.9): 

wo = -£-     =>     fP = £-. (11-12) 
4/P 4w;0 

From (11.11) and (11.12), it follows that for reference surfaces satisfying these criteria, the radius of curvature of the 
sphere and the focal length of the paraboloid must be related by the expression 

Rc = 2fP + ^ = 2(fP + ^) = 2fs,    where    fs EE fP + ^. (11.13) 

Thus, in the approximation r « Rc, this reference sphere is approximated not by a paraboloid of focal length fP, 
but rather by one of longer focal length fs ■ Both focal lengths are determined by the maximum displacement u>0 

which, for a given membrane /-number, is obtained from the algorithm leading to equation (8.10). It should be noted 
that in general neither of these focal lengths is the same as the membrane focal length / defined by (8.2). 

The last observation suggests a different set of reference surfaces, i.e., we can choose a reference paraboloid having 
focal length fp = /, and a reference sphere having a radius of curvature that is twice this focal length, i.e., Rc = 2/. 
With these choices, regions near the vertex of any one of the three surfaces will have the same focal length. 

For either set of reference surfaces, we can compute the deviation Atu(r) of the membrane surface from the spherical 
and paraboloidal reference surfaces, i.e., 

Atus(r) = w{r) - tt;s(r) = w{r) - w0 + Rc - V R2
C ~ r2 , (U-14) 

and 

Awp(r) = w(r) - wP(r) = w(r) - w0 + 77-r2! (H-15) 

respectively. Since these differences are typically on the order of microns, it is convenient to graph them in units of 
the wavelength A of light used to probe the membrane mirror, i.e., we plot 
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.    ,.        Aws(r)                                       Awp(r) 
Aws{r,X) =  f^-    and   AwP(r,X) =  r-^-. (11.16) 

As an example, Figure 6 is a graph of -A£DS(£, A) as a function of £ for an //8 membrane with three different 
levels of pre-strain, where we have used the reference sphere that contacts the membrane at both the vertex and the 
membrane edge. For 0.25% pre-strain, the graph indicates a nearly 95% reduction in the maximum deviation from 
a sphere, which would imply a similar reduction in the spherical aberration of the wavefront reflected from an //8 
membrane mirror. 

o- 

-20 

-|    -40 
k_   CO 

1»    -60-1 
E 5> 

§    -80 

-100- 

-120 —I— 
-1.0 

w^ra-w® 

-0.5 
 1  

0.0 

i-i/a. 

- Pareant Pr^Slrain - 0.0 
- P«rc»nt Pr»Stmin - 0.1 
- Parcanl Pr^Slrain - 0.25 

0.5 
-r~ 

1.0 

FIG. 6. Deviation of //8 Membrane from Reference Sphere 

We are usually interested in this maximum deviation from a reference surface, which occurs at a value of r for 
which 

^-[Atüs(r)] = 0    or    j[Ati)j»(r)] = 0. 
dr dr 

(11.17) 

To determine the left-hand sides of these expressions, we first use the chain rule to compute dw/dr, i.e., we have 

hence 

However, 

w(r) = aw(£(r)),    where    £(r) = -, 

dw _    dw d£ _ dw 
dr d£ dr        d£ 

G(Z) = W(p(£)), 

so the chain rule can be applied again to obtain 

dw _ dW dp 
dr dp   d£ 

(11.18) 

Recalling from (7.7) that 

P= fit + fst* + fU5 + ••• , (11.19) 
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we substitute this result together with (6.22) into (11.18), yielding 

T = 2(/i + 3/3£
2 + 5/5^4 + ...)-n £ nc2nP*«, 

where we made the replacement w2n = Cc2n- It is easy to show that 

dws 

dr 
— -,    where    /tc = — 

and 

dwP            £ , 2   - fp —— = R-,    where    fp = —; 
dr 2fP 

a 

hence the value of r or £ = r/a that will give the maximum deviations must be a solution of either 

2yJ% -e   (h +3M2 + 5/5£
4 + ...)Cj2ncmP2n + Pt = 0, 

71 = 1 

or 

4/P(/I + 3M2 + 5/5£
4 + ...)C^nc2„/)2n + />£ = 0. 

(11.20) 

(11.21) 

(11.22) 

(11.23) 

(11.24) 
n = l 

A graph of the maximum deviation of f/4, //6, and //8 membranes from a reference sphere as a function of percent 
pre-strain is shown in Figure 7, below. The marked improvement (over the zero pre-strain case) to approximately six 
waves of deviation requires only 0.25% pre-strain for an //8 membrane, but more than 2.0% pre-strain for an f/4 
membrane. 

W4.0 

t/6.0 

f/8.0 

P re-Strain (%) 

FIG. 7. Maximum Deviation from Reference Sphere-versus-Pre-Strain (f/4, f/6, and //8 Membranes) 
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XII. RAY DEVIATIONS FROM A MEMBRANE MIRROR ILLUMINATED BY AN ON-AXIS POINT 
SOURCE 

The solution (11.1) for the deformed membrane surface defines a surface of revolution.  The equation of such a 
surface can also be written as 

where the function <f> is denned by 

4>{r,z) = 0. 

<fr(r,z) = w(r) — z. 

(12.1) 

(12.2) 

The value of the gradient of this function at a point of the membrane with coordinates (r, z), i.e., V<£(r, z), is a vector 
normal to the membrane surface at that point, hence the unit normal vector at any such point is given by 

(12.3) 

Thus, from (12.3) and (12.2), we have for the unit normal to a surface of revolution, expressed in terms of the 
orthonormal basis {er,eg,ez}: 

„(r) = W'{r)*lr)    *',    where   V(r) = v>W + 1 , (12.4) 

and the prime denotes a derivative with respect to r. 
Suppose, now, that an incident ray propagating in a direction specified by unit vector fes strikes a point P of the 

surface as illustrated in Figure 8. At this point of incidence there will originate, in general, both a reflected and a 
transmitted (or refracted) ray. The transmitted ray is of no interest here (for a high reflectance surface, the transmitted 
ray is essentially nonexistent). From Figure 3 and the (geometrical) definitions of the dot and cross products of two 
vectors, we have 

n-ki = cos(7T — 0j) = — cos0j, (12.5) 

nxki = sin(7r — 9i) eg = sin 0,- eg, 

where 0,- is the angle of incidence. 

(12.6) 

Incident Ray 

FIG. 8. Geometry of Incident and Reflected Rays 
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The direction of the reflected ray is specified by a unit vector fcr. To facilitate the computation of this vector we 
introduce at P a unit vector v tangent to the meridional curves on the surface, defined by 

v = ny.ee- (12.7) 

The unit ray vectors fc, and kr lie in a plane called the plane of incidence, spanned by the orthonormal pair {n,v}. 
Thus, the unit ray vectors can be written in terms of components along n and v as 

ki = — cos OiU — sin 0,- v, (12.8) 

cosöfw — sinöj v, (12.9) 

where we used the law of reflection, which states that the angle of reflection equals the angle of incidence 0,-. By 
subtracting (12.8) from (12.9) and using (12.5) in the result, we obtain kr - ki = 2cos0,-n = -2(n-fe,-)n, from 
which 

ki — 2(n-fe,)n. (12.10) 

Equation (12.10) is a coordinate-free expression for the direction of the reflected ray in terms of the given incident 
direction and the calculated surface unit normal vector. 

Referring now to Figure 9, we consider rays emanating from a point source located at C, the center of curvature of 
the membrane (not the reference sphere, as was the case in the previous Section), which has position vector 

-Le, L = 2/ - WQ, (12.11) 

with respect to 0, as can be easily deduced from the Figure. Any such ray propagates radially outward from C, and 
we show a particular ray striking the surface at an arbitrary point P, which is then reflected to some point Q. 

FIG. 9. Ray Deviation Geometry 

We denote by 

x = rer + zez = rer + w(r)ez,    where    z = w(r), (12.12) 

the position vector of P with respect to 0, and by xd the position vector of Q with respect to O, so that 

xd = x + dkr = x + d[ki - 2{n-ki)n], (12.13) 

where d = \xd - x\ is the distance between P and Q along the line parallel to fer, and (12.10) was used to replace 
fcr in the final equality. 
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The position vector of Q with respect to C is called the ray deviation vector, which we denote by A. From Figure 
9 we have 

A = xd - L, (12.14) 

hence from (12.13) and (12.14) it follows that 

A = x - L + d[ki - 2(n-ki)n}. (12.15) 

For convenience, we introduce a new variable ( defined by 

C = z + L = w(r) + L, (12.16) 

so that 

x-L — rer + zez+Lez = rer + Cez- (12.17) 

Now, the incident ray unit vector fej in this case is just a unit vector along the position vector of P with respect to 
C, i.e., 

ki = ^4l = %-±,    where   Vc(r,C) = ^/V2 + C2 • (12-18) 
x — L\ Vc 

Substituting (12.18) in (12.15) yields 

A = x-L+£-{(x-L)- 2{n-(x - L)]n}. (12.19) 

The radial and lateral components of the ray deviation vector are thus 

Ar = er-A = r + —{r - — [n-(as - L)\, 

J O 

Az = ez-A = (+ ^{C+ p[n-(x - £)], 

or, since w(x - L) = (rw' - <)/P, we have 

Ar = r+±[r- ^{rw> - C)],        A, = C + ^[C + ±(rv/ - C)]- 

Factoring 1/V2 from the square-bracketed terms, recalling that V2 = (it)')2 + 1, these can also be written as 

Ar = r + 2^-(0' + ra), Az = C + 2 ^ (rw' - <>), (12.20) 

where we have introduced for convenience: 

Q = i[l - (r,/f]. (12.21) 

The factor d/V2Vc can be eliminated between the two equations of (12.20), yielding the following relation between 
the ray deviation components: 

=   O^+ro. Az +   (r2-e)W>-2rCa (12 22) 

rw' — C« rw' -(a 

For a given value of the longitudinal deviation Az, we can use (12.22) to graph the transverse deviation Ar as a 
function of the coordinate r of the point P on the membrane from which the ray was reflected. 

It is also useful to compute the angular deviation 8 of a reflected ray from the incident ray. This deviation is just 
twice the angle of incidence, i.e., 8 = 2 0,-. From (12.5), (12.6), (12.4), and (12.18), we have 

n-ki = -cosOi = i-(r«/ - C), (12-23) 
Due 

nxki = smeiee = -==-(Ctü' + r)et, (12-24) 
uPc 

hence the ray deviation angle is given by 

ofl.   —  0 +=T,
-1

 I 
rw' — C <$ = 2 0i=2tan-1(^±_n. (12.25) 

\ rw' — C ' 
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XIII. COMPARISONS WITH LABORATORY MEASUREMENTS 

Two types of measurements were made [10] on an 11-inch (~ 28-cm) diameter laboratory membrane of 125 fi thick 
Upilex, having a Young's modulus of E = 8800 N/m2 and a Poisson's ratio of v = 0.4. In the first type of measurement, 
the annulus vacuum pressure was fixed at some value (po = 0 inches of water in one case, and po = 20 inches of water 
in the other case), and the central displacement (sag) w0 was measured as the inner membrane vacuum pressure p 
was increased. A measurement of inner membrane pressure was recorded at every 0.010-inch (10 mil) increment of 
the central sag as shown in the following tables: 

Po = 0 
wo (mm) 

inches water 
p (inches water) 

0.254 0.21 
0.508 0.42 
0.762 0.63 
1.016 0.85 
1.270 1.09 
1.524 1.30 
1.778 1.58 
2.032 1.87 
2.286 2.19 
2.540 2.50 
2.794 2.83 
3.048 3.25 
3.302 3.64 
3.556 4.12 
3.810 4.60 
4.064 5.13 
4.318 5.73 
4.572 6.30 
4.826 7.03 
5.080 7.77 

po = 20 inches water 
wo (mm) p (inches water) 

0.254 0.32 
0.508 0.67 
1.016 1.40 
1.524 2.07 
2.032 2.85 
2.54 3.70 
3.048 4.54 
3.556 5.65 
4.064 6.78 
4.572 8.08 
5.08 9.62 

For each data point {w0,p), the Hencky-Campbell theory was used to compute the predicted pre-strain e existing in 
the inner membrane. These computed values are plotted versus the measured central sag in the following two graphs. 
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Computed Pre-Strain -vs- Measured Central! 
(Annulus Pressure = 20" water) 
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These graphs show that although the annulus pressure was maintained at a nearly constant value, the amount of 
strain in the inner membrane attributable to the "pre-strain" occurring in the Hencky-Campbell theory decreases 
as the inner membrane vacuum pressure is increased. This is not surprising since the laboratory membrane is not 
clamped on the inner ring, hence an increase in inner membrane pressure can cause some of the membrane material 
over the annulus chamber to slip across the inner ring to become part of the inner membrane. The effect of this 
membrane migration is a reduction of the total strain in the inner membrane (compared to the strain that would exist 
if the membrane had been clamped on the inner ring), which manifests in the model as a reduction of the effective 
pre-strain. The next two graphs are plots of the inner membrane pressure against central sag, where the points are 
the data points from the tables on the last page, and the curves reflect model predictions using the mean value (not 
a particularly good estimator) of the computed pre-strains shown in the previous two graphs. 
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In the second type of measurement the inner membrane vacuum pressure was adjusted until the central deflection 
was w0 = 2.1 mm. This was done for two different annulus vacuum pressures. The inner membrane vacuum pressure 
required for the low annulus pressure case was p = 2.0 inches of water, while the high annulus pressure case required 
a pressure of p = 8.1 inches of water. These data were used to calculate pre-strains of 0.05% and 0.24%, respectively. 
The predicted deviations of the membrane surfaces from a reference sphere (contacting the membrane at its vertex 
and along the inner ring) in the two examples is shown in the next graph. The effect of a higher pre-strain on the 
shape is rather dramatic, causing the maximum deviation to be reduced from over 22 waves to about 6 waves. 
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In each case the membrane mirror was being illuminated by laser light from a pinhole (simulated point source) located 
at the center of curvature of the membrane. Measurements were made of the minimum geometric spot size of the 
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light reflected from the mirror. The measured minimum spot size was roughly 7-8 mm for the low pre-strain case, 
and 3-4 mm for the higher pre-strain. In the next graph we show plots of the computed transverse ray deviations in 
the z-planes where the maximum transverse ray deviations were minimized (z = 35.7 cm and z = 9.2 cm from the 
membrane center of curvature for the low and high pre-strain, respectively). 
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The predicted peak-to-valley ray deviations, which correspond directly to the spot diameters, are seen to be on the 
order of 7 mm and 2 mm, respectively, somewhat smaller than the measured spot diameters. This is to be expected, 
since our axially symmetric model does not account for asymmetric aberrations observed in the laboratory membrane 
(especially astigmatism), which contribute to the larger measured spot sizes. 
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