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1 Executive Summary 

The primary objective of this project is to develop an advanced algorithm 
for parallel supercomputers to model time-dependent magnetohydrodynam- 
ics (MHD) in all three dimensions. This will provide a valuable tool for 
the design and testing of plasma related technologies that are important to 
the Air Force and industry. Implementing the algorithm on parallel super- 
computers will allow the detailed modeling of realistic plasmas in complex 
three-dimensional geometries. 

We have developed a time-dependent, two-dimensional, arbitrary-geometry 
version of the algorithm, placed it into a testbed code, added the modifica- 
tions necessary for viscous and resistive effects, and tested the code against 
known analytical problems. We have implemented the algorithm on a paral- 
lel architecture and investigated parallelization strategies. Future plans in- 
clude installing the algorithm into MACH2, optimizing the parallelization, 
extending the code to three dimensions, installing the three dimensional 
algorithm into MACH3[1], and calibrating the code with experimental data. 

As a result of this project several professional collaborations now exist 
between the Department of Aeronautics and Astronautics at the University 
of Washington and the Air Force Phillips Laboratory, Lawrence Livermore 
National Laboratory, the University of Michigan, the University of Colorado, 
and other departments at the University of Washington. The work from this 
project has been presented at international conferences and one publication 
has already been published in a refereed journal and another publication 
has been accepted for publication pending revisions. 

2 Project Description 

Plasmas are essential to many technologies that are important to the Air 
Force, some of which have dual-use potential. These applications include 
nuclear weapons effects simulations, radiation production for counter pro- 
liferation, fusion for power generation, and advanced plasma thrusters for 
space propulsion. In general, plasmas fall into a density regime where they 
exhibit both collective (fluid) behavior and individual (particle) behavior. 
Many plasmas of interest can be modeled by treating the plasma like a con- 
ducting fluid and assigning macroscopic parameters that accurately describe 
its particle-like interactions. The magnetohydrodynamic (MHD) model is a 
plasma model of this type. 



2.1 Research Objectives 

The objectives of the project are to: 

• Develop a coupled, implicit, time-accurate algorithm for three-dimensional, 
viscous, resistive MHD simulations; 

• Incorporate the algorithm into the MACH3 code, which was developed 
at the Air Force Phillips Laboratory; 

• Validate the code with analytical and experimental data; and 

• Apply the code to analyze plasma experiments at the University of 
Washington [Helicity Injected Tokamak (HIT) [2]] and at the Phillips 
Laboratory [the liner implosion system (WFX)[3], the dense plasma 
focus experiment, and magnetic flux compression generators]. 

2.2 Technical Description 

2.2.1    MHD Plasma Model 

The three-dimensional, viscous, resistive MHD plasma model is a set of 
mixed hyperbolic and parabolic equations. The Navier-Stokes equations are 
also of this type. This project applies some advances that have been made in 
implicit algorithms for the Navier-Stokes equations to the MHD equations. 
These implicit algorithms solve the equation set in a fully coupled manner, 
which generates better accuracy than the current methods used for MHD 
simulations. 

When expressed in conservative, non-dimensional form, the MHD model 
is described by the following equation set. 

P 
Ö 

dt 
pv 
B 
e 

+ V- 

pv 
pvv - BB + (p + B • B/2) I 

vB-Bv 
(e + p + B • B/2) v - (B • v) B 

0 
(ReAl) -l 

(RmAiy1E(fj,B) 
(ReAl)'1 v • f - (RmAiy1 f(VxB)xB + f (PeAiy1 k ■ VT 

(1) 

The variables are density (/?), velocity (v), magnetic induction (B), pressure 
(p), energy density (e), and temperature (T).   H(^,B) is the transverse 



Alfven Number : Al = vA/v 
Reynolds Number : Re = LV/v 
Magnetic Reynolds Number : Rm = HoLV/v 
Peclet Number : Pe = LV/K 

resistive electric field tensor which is described in Section 2.2.8. Mi is the 
ion mass. The energy density is 

p vv     B  B e = 7^l + »—+ — (2) 

where 7 = cp/cv is the ratio of the specific heats. The non-dimensional 
tensors are thestress tensor (f), the electrical resistivity (77), and the thermal 
conductivity (k), and I is the identity matrix. The non-dimensional numbers 
are defined as follows: 

(3) 

The characteristic variables are length (L), velocity (V), Alfven speed (VA = 
B/y/HoP), kinematic viscosity (v), electrical resistivity (77), and thermal dif- 
fusivity (K = k/pcp). ß0 is the permeability of free space (AT X 10~7). 

For convenience, the MHD equation set [eqn(l)] is rewritten in the fol- 
lowing compact form 

|2 + V.?Ä = V-?PI (4) 

where Q is the vector of conservative variables, Th is the tensor of hyperbolic 
fluxes, and Tp is the tensor of parabolic fluxes. The forms of these vectors 
and tensors can be seen from eqn(l). The hyperbolic fluxes are associated 
with wave-like motion, and the parabolic fluxes are associated with diffusion- 
like motion. 

2.2.2    Algorithm Overview 

Because of the natural differences between hyperbolic and parabolic equa- 
tions, the methods for solving them are very different. Since the MHD 
equations are of mixed type the hyperbolic and parabolic terms must be 
handled differently. The hyperbolic fluxes are differenced by applying an 
implicit, approximate Riemann algorithm that properly accounts for their 
wave-like behavior. The parabolic terms are discretized by applying explicit 
central differencing. 

The design of the overall algorithm is primarily driven by the numerical 
techniques that must be used to discretize the hyperbolic terms. Therefore, 



we begin by considering the ideal MHD equations, which are obtained from 
eqn(4) by setting all the parabolic terms (Tp) to zero. 

In one dimension they are 

9Q + dF = dQ+AdQ=0 

dt      dx      dt dx (5) 

where F is the flux vector in the x direction (i.e. Th = (F, G, H)) and A is 
its Jacobian. 

A'dQ 

Here, Q is the vector of conserved variables: 

Q = (p,pvx,pvy,pvz,By,Bz,e) 

(6) 

(7) 

This is a set of hyperbolic equations and thus A has a complete set of real 
eigenvalues given by 

A = (vx, Vx ± Vfast, Vx ± Vglau,, Vx ± VAX)    , (8) 

where Vfast and VsZow are the fast and slow magnetosonic speeds, and VAX 

is the Alfven speed based on the x component of the magnetic field. These 
can be expressed as 

V2     =- ' fast       9 i + Vl + \/{cl + Vlf - AclVlx (9) 

V? slow Z + Vl-^{c1 + Vlf-±clVlx (10) 

v2    _   Bx 
ßoP 

Here, cs is the ion sound speed, which for a perfect gas is 

s~ p- 

(11) 

(12) 

Information propagates along characteristics which travel at wave speeds 
given by the eigenvalues. Most modern numerical techniques for solving 
hyperbolic equations are based upon the idea of splitting the fluxes into 



components due to left and right running waves. Then each part of the flux 
can be differenced in an upwind manner, which greatly reduces numerical 
oscillations and stabilizes the solutions. 

It is well known that if a hyperbolic equation is solved with an explicit 
scheme, then the allowable time step to maintain numerical stability is given 
by the CFL (Courant-Priedrichs-Lewy) condition, which in the case of the 
ID MHD equations is 

At<,      A*      ,. (13) 
\VX+ Vfasti 

For the high magnetic fields and low densities common in many plasma 
experiments, the fast magnetosonic speed is quite high, and thus the time 
step is prohibitively small. We are often interested in only modeling the 
physics that occurs slower than Alfven time scales. For example, it can be 
shown that resistive tearing modes, which are important in studying fusion 
plasmas, evolve on a time scale that is given by [4] 

Ttearing OC S/rf5 = (Luf5 TA. (14) 

TA is the Alfven time, TV is the resistive diffusion time, and Lu is the 
Lundquist number, which is given by 

Lu = ^- = RmAl. (15) 
TA 

If Lu is 106, which is typical for laboratory plasmas in fusion applications, 
the resistive tearing time is approximately 4000 times larger than the Alfven 
time. By treating the hyperbolic fluxes implicitly in time, the stability 
restriction on the time step is removed, and the solution can be advanced at 
the larger resistive tearing time step. This is our motivation for proposing 
an implicit scheme. 

The starting point for deriving the algorithm is the two-dimensional ideal 
MHD equations in Cartesian form 

dQ     dF     8G     n 

We then discretize eqn(16) using first order Euler time differencing to get 

V  ° At    
Jj = -Rij (Qn+l) = -Rfl (17) 



where R is 

Rij = -^i+l/2J ~ -Fi-1/2J + Gjj+1/2 - Gij-i/2- (18) 

Note that in this equation and all that follow the grid metric terms (cell 
areas and volumes) are omitted for clarity. We linearize R as follows: 

^+1"^+(H)^.(Q?1-^) (19) 

Substituting this expression back into eqn(17) and rearranging, we get 

J_     (dR\n 

^t+{dQjij 
AQ£ = -R?j. (20) 

Here AQ is denned as 

AQn = Q^1 - Q%. (21) 

The left hand side of the eqn(20) is an implicit operator operating on AQ. 
It is a large banded block matrix. In three dimensions, it is an (Imax x 
Jmax x Kraax) by (Imax x Jmax x Kmax) matrix, where Imax is the number of 
cells in the x direction, etc. It is quite costly to invert a matrix of this size 
directly. We choose to invert it using an approximate factorization, which 
can be done more efficiently. When solved this way, eqn(20) is no longer 
time accurate. However, we can still achieve time accuracy with this type 
of scheme by adding the time derivative of Q as a source term to the right 
hand side of the equation. We then have 

f)n+1=-Rr-sr (22) 
where 

^+1 = 2Ä7 (3Q£+1 - 4Q£ + ^"0 W W (23) 

The r in eqn(22) can be thought of as a pseudo time variable. At each 
physical time step, eqn(22) is solved iteratively in pseudo time until the left 
hand side vanishes. When the solution converges, our original equation 



is solved. This technique is known as dual time-stepping. [5] Note that in 
eqn(23) a more accurate time derivative can be used at the expense of the 
additional memory needed to store the Q vectors from previous time steps. 

One advantage of the strategy outlined above is that the implicit op- 
erator and the right hand side in eqn(20) are decoupled. The structure 
of the matrix no longer depends on the details of the discretization of the 
right hand side fluxes. In the following sections we will describe the relax- 
ation scheme that is used to iteratively invert the implicit operator and the 
approximate Riemann solver that is used to form the right hand side fluxes. 

2.2.3    LU-SGS Relaxation Scheme 

We use the lower-upper symmetric-Gauss-Seidel (LU-SGS) method to it- 
eratively invert the implicit operator. [6] To derive this method, we first 
consider the following first order accurate flux-vector splitting of R (at time 
level n + 1) in eqn(17): 

Rio = Fij ~ F£-lj + Fi+i,j ~ Fij + Gtj ~ Gtj-i + Gi,j+1 ~ Gij       (25) 

where F+ is the portion of the F flux vector corresponding to right-running 
waves, and F~ is the portion corresponding to left-running waves, and G+ 

and G~ are similarly defined. This equation is linearized to obtain 

{I + At (4 - Atld + A~+1J - A-tj + B± - BJ.! + B-j+1 - ßr.) } 
x AQ§ = -AtRfj 

(26) 

where A+ is the Jacobian of F+, and so on. We approximate these Jacobians 
as 

A+ = \{A + pA) (27) 

A- = \{A-pA) (28) 

where pA is the maximum eigenvalue (spectral radius) of A. If we then 
iteratively solve this simplified implicit operator using a forward Gauss- 
Seidel sweep followed by a backward sweep, the resulting algorithm can be 
written as 

{I + A* [(pA + PB)l- Atltj - ß+._J } 
x {I + At [(PA + PB)1 + A-+1J + B~j+1] }       (29) 

x AQ% = - [1 + At (pA + pB)\ AtR% 



The forward sweep is equivalent to inverting a lower block diagonal matrix 
[the first braced term in eqn(29)], and the backward sweep is equivalent to 
inverting an upper block diagonal matrix [second braced term in eqn(29)]. 
This structure leads naturally to several vectorization and parallelization 
strategies. 

If we sweep through the computational domain along lines of constant 
i + j (in 2-D), each term along these lines is independent of the others and 
depends only on data that has already been updated during the current 
sweep. This type of fine grain parallelization is ideal for vector computers. 
However, that degree of parallelism is not efficient for parallel computers 
because the extra communication time between processors exchanging data 
more than offsets the gain in computational efficiency. To optimize this 
algorithm for a parallel architecture, we need to break up the computational 
domain into blocks and send each block to a different processor. At the 
boundaries between the blocks, we reduce the data dependency between the 
blocks by using data from the previous time step along the block boundaries. 
This effectively reduces those points into a Jacobi iteration. However, the 
interior points are still solved with a Gauss-Seidel iteration. As long as 
the blocks are large enough that there are many more interior points than 
boundary points, then the overall convergence rate is approximately the 
same as Gauss-Seidel. 

2.2.4    Approximate Riemann Solver 

The fluxes on the right hand side of eqn(20) are discretized using a Roe-type 
approximate Riemann solver. [7] In this method the overall solution is built 
upon the solutions to the Riemann problem defined by the discontinuous 
jump in the solution between each pair of cells. The numerical flux for a 
first-order accurate (in space) Roe-type solver is written in symmetric form 
as 

Fi+i/2 = \ (Fi+i + fi) - \YS ** (Gi+i - Qi) lA*l rfc (3°) 

where rk is the kth right eigenvector, Afc is the absolute value of the kth 

eigenvalue, and Ik is the kth left eigenvector. The values at the cell interface 
(i+1/2) are obtained by a simple average of the neighboring cells. These first 
order accurate upwind fluxes are used in the vicinity of sharp discontinuities 
in order to suppress oscillations in the solution. We achieve a globally second 
order accurate solution by using a flux limiter that modifies the first order 



flux so that it uses second order central differencing in smooth portions of 
the flow. We are using a minmod limiter.[8] 

Once the eigenvalues and eigenvectors are obtained and properly nor- 
malized to avoid singularities, it is relatively straight-forward to apply this 
scheme to the one-dimensional ideal MHD equations.[9, 10] Unlike for the 
Euler equations, the extension to more than one dimension is non-trivial. 
The reason is that in more than one dimension, the Q vector must in- 
clude Bx in addition to the other magnetic field components. (For the 
one-dimensional case Bx is constant by virtue of V • B = 0). Since the j x B 
force acts perpendicularly to the directions of j and B, the F flux vector 
has a zero term corresponding to Bx. Thus, the Jacobian matrix of F is 
singular and has a zero eigenvalue. This means we no longer have a complete 
set of physically meaningful eigenvectors. Physically, we expect information 
to travel either at the fluid velocity or at the fluid velocity plus or minus 
the wave speeds. Simply dropping Bx from the equation set is not a viable 
option, because Bx needs to change in order to maintain V • B = 0. Powell 
et al., recently solved this problem by modifying the Jacobian in such a way 
as to change the zero eigenvalue to vx (keeping the others unchanged), and 
then adding in a source term that exactly canceled out the terms introduced 
by the modified Jacobian. [11] 

The source term is 

&div — 

P 
B 
v 

v  B 

VB (31) 

It is proportional to the divergence of B and thus very small. 

2.2.5    General Multiblock Implementation 

General multiblock grid capability has been implemented in our code. This 
capability allows the application of the code to arbitrarily complex geome- 
tries which is one of the primary project objectives. MACH3 also uses a 
multiblock grid though not as general as the one implemented here. The 
grid that spans the physical domain of interest is composed of blocks which 
have a local grid. Blocks share faces with adjacent blocks thus allowing 
information to pass through the whole domain. The only restriction is that 
the cells on a block's face must map one to one to the cells on the adja- 
cent block's face. An advantage of this approach is that the user is able to 
generate highly orthogonal grids with cell aspect ratios close to unity even 



Figure 1: Top view of a non-simply connected grid. (Only the block bound- 
aries are shown for clarity.) 

for complex geometries. This approach is readily adaptable to paralleliza- 
tion by domain decomposition where the blocks are distributed among the 
processors of a parallel computer. 

An advantage of multiblock grids is the flexibility they provide for com- 
plex geometries. This flexibility is even greater if there is no limitation to 
simply-connected blocks. See Figure 1 for an example of a non-simply con- 
nected block grid. This means that an arbitrary number of blocks may meet 
at a block a vertex. An example of this type of grid is illustrated in Section 
3.7. 

The MHD algorithm is now nested within a loop over grid blocks. Logic 
has been implemented in the new algorithm that allows the user to freely 
distribute the blocks on processors. A static load balancing algorithm can be 
implemented to distribute the blocks such that the number of cells on each 
processor is approximately equal. This strategy balances the load among the 
processors and makes the most efficient use of the parallel computer. The 
appropriate relationship between the blocks is maintained by a connectivity 
matrix. Blocks sharing a face transfer data either by simply copying if they 
reside on the same processor or by message passing if they reside on different 
processors. 

Multiblock implementation led to memory management issues that we 
solved by using Fortran 90. The most useful feature used was dynamic 
memory allocation. Dynamic memory allocation allows the specification of 
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array sizes at run time and leads to a significant memory savings compared 
to static memory allocation, where a maximum overall array size has to be 
specified at compile time. Memory allocation issues are exacerbated in the 
multiblock algorithm where blocks can have widely varying numbers of cells. 
While most Fortran 77 compilers implement dynamic memory allocation, 
the implementations are not standard. Using Fortran 90 we maintained the 
portability of the code. 

2.2.6 Second-Order Accurate Boundary Conditions 

For simplicity an early version of the algorithm used first-order accurate 
boundary conditions. Practically this meant that a single layer of ghost 
cells were used for all boundaries. This arrangement was shown to lower 
the overall accuracy of the algorithm. We have since implemented second- 
order accurate boundary conditions by using two layers of ghost cells. The 
second-order accurate boundary conditions ensure that our simulations are 
completely independent of how the grid is decomposed. 

Since the code is three dimensional the data passed between blocks is 
represented as a pair of two dimensional structures. Transfer of these two 
dimensional structures by message passing uses derived data types. The 
Message Passing Interface (MPI) provides a set of procedures for defining 
derived data types.[16] A derived data type is a template that describes how 
a complex structure is built from a more basic data type. In our approach the 
most basic unit of data is a cell. A cell contains the eight conserved variables 
mass density (p), components of momentum (pvx, pvy, pvz), components of 
magnetic field (Bx, By, Bz) and energy density (e). A cell can be thought of 
as a zero dimensional data structure. A strip is a one dimensional structure 
made of cells. A face is a two dimensional structure made of strips. Finally, 
a double face is made of two adjacent faces. The composition of the derived 
data type is illustrated in Figure 2. 

Use of derived data types is more general and speeds the message trans- 
fer, compared to explicitly constructing the messages. Our results show a 
three to ten fold improvement in message passing time when derived data 
types are used. 

2.2.7 Unaligned Finite Volumes 

The deficiency revealed by the spheromak simulations was corrected by re- 
casting the algorithm using an unaligned finite volume formulation. Using 
the identical finite formulation for the hyperbolic fluxes as for the parabolic 
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Figure 2: Hierarchy of the derived data types. The most basic derived data 
structure is the cell. 

fluxes is essential to achieving our objective of a fully-coupled MHD code. 
The previous algorithm used a generalized coordinates approach to calcu- 
late the fluxes across cell interfaces. [17] These fluxes are used to update the 
solution at the next time step. The flux in generalized coordinates is 

Tl = Fnl
x + GnL

y + HnL
z, (32) 

where F, G and H are the fluxes in Cartesian coordinates, nx, ny and nz 

are the components of the unit normal vector, and t = 1,2,3 stands for each 
of the three generalized coordinates (£,77, C)- These generalized coordinates 
fluxes Tl are calculated in the cells to the left and right of the interface. 
The flux at the interface is obtained by averaging the two. 

1 1   8 

Fi+x = ^{^i + ^i+i)-^^^k\\k\rk, (33) 
fc=i 

where ak are the wave strengths, A^ are the wave speeds, and rk are the right 
eigenvectors of the flux Jacobian. The eigenvectors and eigenvalues of the 
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Figure 3: Schematic drawing of a finite volume cell with local coordinate 
systems at its interfaces. The fluxes are only needed along the X{ directions. 

flux Jacobian {dF/dQ) are evaluated using average values of the conserved 
variables. Presently the code uses arithmetic averages. 

In the new approach, the fluxes at an interface are calculated based on a 
locally aligned coordinate system. The Riemann problem is then solved at 
the interface in a natural direction to generate fluxes that are automatically 
orthogonal to the interface. A divergence theorem can now be applied to 
the finite volume cell to calculate the change in the conserved variables. See 
Figure 3 for an illustration of the local coordinate systems. The unaligned 
finite volume methods is exactly the same method that has already been 
implemented for the calculation of the parabolic fluxes. Using the same 
approach for the hyperbolic fluxes will make the code consistent. 

We locally rotate the coordinate system such that one axis is normal 
to the interface. The Riemann problem is solved along the axis normal to 
the face. The rotation is kept consistent by performing a two step rotations 
about the Cartesian coordinates. We calculate the angles between each of 
the original axes (x°, y°, z°) and the normal to the face. The axis corre- 
sponding to the minimum angle is aligned with the normal. For example, 
if x° is to be aligned with the normal then the first rotation is about the 
z° axis with an angle 6\. The second rotation is about y', with an angle 
02, which aligns the coordinate system with the interface normal. The new 
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Figure 4: Rotation of a cell coordinate system that aligns x° with the normal 
to the cell face h. 

coordinate axes are {x\, y\, z\). For this case the angles are 

n„ 
B\ — atari—2-, 

nx 
62 — —atari 

nz 

and the rotation matrices are 

Ri(0i) 
cos9\    —sinöi   0 
sindi     cos9\     0 

0 0        1 
-R2(#2 

y/nl + n\ 

COS62     0   sin&2 
0        1       0 

—sm$2    0   COSÖ2 

(34) 

(35) 

The rotation is illustrated in Figure 4. 
Once the components of the vector fields (v and B) are rotated the 

Riemann problem is solved and the flux along the normal to the face is 
calculated. Then the conserved variables are updated and the vector fields 
are rotated back to the original Cartesian coordinate system. 

Since the rotation matrices are orthogonal their inverses are equal to 
their transposes (R~l = RT) so that the extra work to be performed by 
the algorithm at each cell is minimal (27 floating point operations). This 
method is currently implemented and is being tested. 

2.2.8    Parabolic MHD Terms 

To this point we have only considered the hyperbolic terms. When finite 
viscousity and resistivity are included, the parabolic terms of the MHD 
equations [right hand side of eqn(l)] become important. For reasonably large 
values of Re and Rm (easily in the range of interest for most applications), 
the parabolic terms can be differenced explicitly without constraining the 
allowable time step. In this work we difference the parabolic terms explicitly 
in time with central differences in space. They are added to the right hand 
side fluxes arising from the approximate Riemann solver. 
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(a) (b) 

Figure 5: Positioning for (a) vertex-centered and (b) face-centered parabolic 
fluxes. The face-centered fluxes produced more accurate and stable solu- 
tions. 

During the past year, we have spent a concerted effort on the parabolic 
terms to achieve accurate and stable calculations. Originally we used the 
same flux centering scheme that is used in MACH3 where the fluxes are 
calculated at the cell vertices and a divergence law is applied around the 
cell center. See Figure 5(a). A detailed stability analysis demonstrates the 
potential for grid decoupling and a resulting odd-even instability. [This re- 
sult has important implications to all ALE (arbitrary Lagrangian-Eulerian) 
codes and will soon be submitted to a journal.] Locating the parabolic 
fluxes at the cell faces which corresponds to the location of the hyperbolic 
fluxes produced solutions that converged faster and were more accurate than 
locating the parabolic fluxes at the cell vertices. See Figure 5(b). 

We also point out that the resistive electric field term in eqn(l) is differ- 
ent than the one commonly used and presented last year V-f?-VB which does 
not hold for spatially dependent anisotropic resistivity. Plasma resistivity 
is a strong function of temperature and of the orientation to the magnetic 
field. Therefore, the assumption of spatially constant isotropic resistivity is 
incorrect. The new term reduces from the conservative formulation of the 
more general equation. 

fdVVx (r?-VxB)= idSx (f-VxB)= fdVV-E= I dS-E 

(36) 
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where the transverse resistive electric field tensor is defined as 

0 rjz {dxBy - dyBx)   r)y (dxBz - dzBx) ' 
r]z(dyBx-dxBy) 0 Vx(dyBz-dzBy) (37) 
Vy(dzBx-dxBz)   r}x(dzBy-dyBz) 0 

The dimensionless numbers have been removed for clarity. 

3    Benchmarks and Applications 

3.1    Ideal MHD Test Problems 

3.1.1    One-Dimensional Coplanar MHD Riemann Problem 

This test problem served to validate the approximate Riemann solver, be- 
cause the computed solution could be checked against the exact analytical 
solution. For the one-dimensional ideal MHD equations (variations in x 
only), the equation for Bx reduces to Bx is constant and drops from the 
equation set, eliminating the zero eigenvalue in this case. The coplanar MHD 
equations are obtained from the full one-dimensional ideal MHD equations 
by setting Bz and vz to zero, thus allowing only planar flow and fields. This 
eliminates the vx ± VAX eigenvalues, leaving a system of five equations with 
five eigenvalues. Mathematically, the Riemann problem is an initial bound- 
ary value problem in which there is initially a discontinuity in the data such 
that the left half of the domain is at one state and the right half of the 
domain is at another state. As the solution evolves in time, shock waves 
and rarefaction waves form and travel at speeds related to the wave speeds 
of the system. Although not physically realizable in plasmas, this problem 
is analogous to a shock tube in hydrodynamics. 

For the full five-wave case, there is not a closed form analytical solution. 
Instead, the solution must be checked by calculating generalized Riemann 
invariants across the rarefaction waves and Rankine-Hugoniot jump condi- 
tions across the shock waves. Since this has already been done by Brio and 
Wu[9] for a specific set of conditions, for our test case we used the same 
initial conditions as they used in order to allow direct comparison with their 
published solution. The initial left state was p — 1, p = 1, and By — 1. The 
initial right state was p — 0.1, p = 0.125, and By = — 1. The velocities were 
zero and Bx was 0.75. Figure 6 shows the initial density distribution and 
its numerical solution after 400 time steps on an 800 point grid with a CFL 
number of 0.8. Figure 7 is the corresponding plot of the transverse magnetic 
field (By). The solution was computed using explicit time-stepping. The so- 
lution clearly shows five waves formed corresponding to the five eigenvalues. 
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Solution after 400 time steps 

Figure 6: Numerical solution of coplanar Riemann problem. Density profile 
is shown initially and after solution has evolved for 400 time steps. 

They are a fast rarefaction wave, a slow shock, a contact surface moving to 
the right, a slow compound wave (rarefaction and shock), and a fast rar- 
efaction wave moving to the left. Note that the numerical method is able 
to resolve the shocks over a few grid points without introducing numerical 
oscillations. This is one of the advantages of the flux splitting approach 
we have used. The computed solution overlaid exactly on Brio and Wu's 
published solution. 

If we set Bx = 0 above, then the problem reduces to a hydrodynamic 
shock tube problem if one replaces the thermodynamic pressure by the sum 
of the thermodynamic and magnetic pressures. For this case one can find a 
closed form exact solution to compare to the calculated solution. Figure 8 
shows both the calculated and the exact solution for p + B2/2 after 80 time 
steps on a 100 point grid. There is very good agreement with the plateau 
values and the shock is resolved in a few cells without numerical oscillations. 
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Figure 7: Numerical solution of coplanar Riemann problem. Transverse 
magnetic field profile is shown initially and after solution has evolved for 
400 time steps. 

3.1.2    Oblique Shock 

This steady-state problem served primarily as a test of the LU-SGS implicit 
relaxation scheme. It also allowed us to examine the divergence of B at each 
point to ensure that the the zero eigenvalue fix was correctly implemented. 

The geometry for these tests is shown in Figure 9. A super-Alfvenic flow 
(Mach number of 3) impinges on a perfectly conducting plate at an angle 
of 25 degrees. In addition, a vertical field of By — 0.2 is imposed at the 
left boundary. Since the plate is perfectly conducting, the component of the 
magnetic field normal to the plate is held at zero. 

Figure 10 shows the steady-state solution of this problem. Contours of 
density and magnetic field lines are plotted. The density contours show 
that an oblique shock forms, as expected. Outside of the shock, the field 
is convected in from the boundary. At the shock, the field lines bend due 
to the change in direction of the flow at the shock. Finally, the field lines 
bend at the conducting wall as all the field is converted to Bx to satisfy the 
boundary condition while keeping the divergence of B equal to zero.  We 
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Solution after 80 time steps 
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Figure 8: Comparison of numerical and exact solution of coplanar Riemann 
problem for Bx = 0 case. 

verified that the divergence was less than 10~14 throughout the domain. 
This two-dimensional steady-state solution was obtained with explicit 

time stepping at a CFL number of 0.8 and with the LU-SGS implicit relax- 
ation scheme at an infinite CFL number (approximate Newton iteration). 
Figure 11 is a plot of the logarithm of the two-norm of the residual of the en- 
ergy equation as a function of the number of iterations. The implicit scheme 
converged to 10-14 in about 150 iterations, whereas the explicit scheme re- 
quired about 700 iterations. This is an acceleration factor of about 4.5 for 
the implicit scheme. Higher acceleration factors can be achieved for finer 
grids. 

3.2    Viscous and Resistive MHD Test Problems 

The viscous and resistive terms in the MHD equations comprise the right 
hand side of the equality in eqn(l).   The addition of these terms to the 
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M = 3 

conducting wall, By = 0 

Figure 9: Geometry of oblique shock test problem. 

Figure 10: Density contours and field lines for an M = 3 flow impinging on 
a perfectly conducting plate at an angle of 25 degrees. 

algorithm involved the modification of the R vector in eqn(20). 

-R -» -R + V ■ fp (38) 

The R vector is updated with each iteration to produce a solution that is 
fully coupled. 

Using the divergence form of the parabolic terms reduces the differencing 
errors of the method. To preserve the accuracy on irregular meshes the 
derivatives are computed using a finite volume method. 

The validation of the parabolic terms consisted of applying the code to 
a suite of test problems with known analytical solutions. We validated in- 
dependently the terms associated with viscosity and those associated with 
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explicit 

iterations 

Figure 11: Logarithm of the two-norm of the energy equation residual plot- 
ted as a function of iteration number for explicit and implicit solutions of 
channel flow with horizontal velocity and vertical magnetic field imposed at 
the left boundary. 

resistivity and then the combined effect of all of the terms. The test prob- 
lems were: (1) fully developed laminar flow between two parallel plates, (2) 
magnetic field generated by a constant current density, and (3) Hartmann 
flow. All of these test problems were run until a steady-state solution devel- 
oped. The capability of the code to capture time-dependent physical effects 
was also tested by modeling the exponential resistive decay of the magnetic 
field generated in test problem 2. 

3.2.1    Laminar Flow 

We benchmarked the code to two types of laminar flows between infinite par- 
allel plates. The plates restrict the steady-state flow to be one-dimensional. 
No magnetic fields are present. This reduces the MHD equations to the 
Navier-Stokes equations. In these simulations a no-slip boundary condition 
was applied to the fluid in contact with the plates. 

The first type of flow to which we benchmarked was viscous flow gen- 
erated by one plate moving relative to the other plate. With no pressure 
gradient, constant viscosity, and incompressible flow, the equations reduce 
to 

(Re)-1 V • f = (Rey1 V2vx = 0 (39) 

which is Laplace's equation. For finite viscosity (Re) the analytical solution 
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Figure 12: Simulation of laminar flow between parallel plates in the presense 
of a constant pressure gradient. The velocity profile is parabolic as expected 
from the analytical solution. 

for the flow velocity is 

vx(y) = Vo (l - |) + VL (40) 

0 and VL is the velocity of the where Vo is the velocity of the plate at y 
plate at y = L. 

The errors between the analytical solution and the code generated so- 
lution were below 10-9 (the two-norm of the error between the solutions). 
We performed the same simulation with no viscosity (Re —► oo). As would 
be expected, the flow velocity vanished everywhere except on the plates. 
When the viscous heating was modeled, a transient pressure gradient p(y) 
and transverse velocity vy(y) developed which heated the flow and increased 
its energy. 

The next test was laminar flow between stationary parallel plates with 
a constant pressure gradient in the flow direction. The governing equation 
is 

dp w dx = {Re)' vV 
The solution for this flow is the parabolic equation given by 

dp (y\ (L-y *<»>-<*>£(!) 2L 

(41) 

(42) 

Figure 12 shows the solution generated by the code.   Again the errors 
were reduced to below 10-9. 
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3.2.2 Resistive Diffusion 

We benchmarked the resistive diffusion to a current sheet with a uniform 
current density. Values of the tangential magnetic field were specified at 
parallel infinite plates, in a similar way as the first of the laminar flow 
simulations. 

For no flow velocity and constant resistivity the MHD equations reduce 
to a Laplace equation similar to eqn( 39). 

(Rm)-1 V • VB = 0 (43) 

This equation has the same form for its solution as eqn(40). 

Bx(y) = B0(l-±)+BLl (44) 

where Bo is the velocity of the plate at y = 0 and BL is the velocity of the 
plate at y = L. 

The code agreed with the analytical solution to within errors of 10~9. 
The time-dependent resistive decay of a magnetic field can be represented 

analytically by solving the one-dimensional transverse magnetic induction 
equation with constant resistivity. 

■    dB±     m   ,-1d
2B± 

The solution is the exponential decay of the magnetic field with a sinusoidal 
profile. 

B±(t,x) oc exp I — —— ) sin(7rx) (46) 
\   Rm J 

for zero field boundary conditions at x = 0 and x = 1. 
This simulation was performed beginning with a uniform field profile. 

The field decayed into the expected sinusoidal shape and the decay constant 
agreed with the analytical result to within 0.01%. The same test was re- 
peated on a parabolic clustered grid with &.xmax/'Axmin = 10. The same 
accuracy was achieved. 

3.2.3 Hartmann Flow 

Hartmann flow combines the effects of viscosity and resistivity. The problem 
geometry is the same as that for the laminar flow with the addition of a 

23 



*vL 

Vo 

Figure 13: The Hartmann flow geometry showing the moving parallel plates 
and the cross magnetic field. 

magnetic field that is normal to the plates, in the y direction. See Figure 13 
for an illustration. 

The governing equations for the Hartmann flow can be found by com- 
bining the magnetic field and momentum equations from the MHD model. 
As before there will only be flow in the x direction. However, an applied 
electric field in the z direction must be included since it can generate an 
E0 x B0 flow in the x direction. The Hartmann flow is described by the 
differential equation, 

dy2 

IP 
L2 vx + 

Eo 
B0 

0, 

where the Hartmann number is defined as 

H = JfeL = AlLVReRm. 

The analytical solution to the Hartmann flow is 

sinh(ff(l-y/L)) smh(Hy/L) 
vx{y) = Vo _._i_,rTN 1- KL 

(47) 

(48) 

Eo 
B0 

sinh(tf) 
sinh(iJ(l 

sinh(tf) 
y/L)) + smh(Hy/L) 
sinh(tf) 

(49) 

where the same no-slip boundary conditions have been applied. In the 
limit of no magnetic field, the solution reduces to the laminar flow solu- 
tion, eqn(40). 

The response of the magnetic field can be determined by solving the 
magnetic field equation for the field component that will be "dragged" with 
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Figure 14: Hartmann flow simulation with H = 104. Flow velocity vectors 
and magnetic field lines are shown. The velocity of the flow is zero every- 
where except at the plates. The magnetic field lines have a constant slope 
through the domain. 

the flow. This magnetic field is described by 

- (Rm) ( vx + -£■ 
dBx 

dy v""v V* ' B0/ 

Using the flow solution of eqn(49), the solution for Bx is 

Bx(y) 
Rm\ fVL-V0 

H 
cosh(#/2) - cosh(H(L - 2y)/2L) 

sinh(H/2) 

(50) 

(51) 

The boundary conditions are that Bx vanishes at the plates and the net 
current is zero. The first boundary condition may seem arbitrary, but it is 
consistent with the no-slip boundary condition applied to the flow solution. 
The second boundary condition relates the applied electric field, E0, and the 
plate velocities. 

Eo 
Bo 

Vo + VL (52) 

Since the MHD equation set does not allow for an applied electric field, VQ 

is set to — Vx,, so that E0 = 0. 
We performed simulations for large, small, and intermediate Hartmann 

numbers, H. 
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Figure 15: Hartmann flow simulation with H = 0.1. Flow velocity vectors 
and magnetic field lines are shown. The velocity profile is linear and the 
magnetic field lines have an "S" shape caused by the bulk fluid flow. 

For a large Hartmann number, the effects of viscosity and resistivity are 
small, and the solution approaches that of ideal MHD. The flow velocity 
vanishes everywhere except on the plates, like it does for the inviscid case 
(Re —> oo). The magnetic field is frozen into the plates and develops a 
slope (constant Bx) as the plates move. The slope of the magnetic field is 
determined by the value of H (the field lines slip through the plates due 
to resistivity). The slope of the magnetic field lines (B0/Bx) is constant 
at H/Rm. Figure 14 shows the results from simulation with H = 104. A 
finite value of the flow velocity exists only at the plates. The magnetic field 
lines are straight except at the plates where Bx is forced to vanish because 
of the boundary conditions. For clarity the slope of the magnetic field has 
been normalized to unity at the midplane between the plates for all of the 
Hartmann flow simulations. 

The limiting case of small Hartmann number is characterized by a flow 
that is dominated by viscous effects and a magnetic field that responds to 
the bulk fluid flow and the large resistivity. The flow velocity varies linearly 
from the velocity of the top plate to the velocity of the bottom plate, as 
described by eqn(40). The magnetic field diffuses through the plate and 
the bulk fluid, but the fluid drags the field lines along with the flow. This 
produces a swayed "S" shape to the field lines with a peak magnetic field 
at the midplane. Since the slope of the field lines is inversely proportional 
to the magnitude of Bx, the peak in the magnetic field corresponds to the 
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Figure 16: Hartmann flow simulation with H = 10. Flow velocity vectors 
and magnetic field lines are shown. The flow velocity only exists close to 
the plates. The magnetic field lines are linear around the midplane. 

field lines with the minimum slope (most horizontal). The minimum slope 
is A/Rm. The simulation results for H = 0.1 are shown in Figure 15. Notice 
the linear velocity profile and the swayed magnetic field lines. 

Flows with Hartmann numbers in the intermediate ranges have solutions 
which exhibit characteristics of both of the limiting cases. The flow velocity 
falls to zero away from the boundaries in a scale length of L/H. This 
scale length is an appreciable fraction of the domain. The magnetic field is 
influenced by the motion of the plates and the fluid flow. The magnetic field 
has a swayed shape close to the plates and is linear around the midplane. 
Away from the boundaries (L/H < y < L—L/H), the value of Bx is constant 
at B0Rm/H. Figure 16 shows the results from a simulation with H — 10. 
The velocity profile falls to zero around the midplane. The magnetic field 
lines have a swayed shape like those in Figure 15 but not as dramatic, and 
they are linear around the midplane. 

All of the Hartmann flow simulations converged to the analytical solution 
to within errors of 10~6. 

3.3    MPD Plasma Thruster 

The magnetoplasmadynamic (MPD) thruster is an electric propulsion device 
for spacecraft. Electrical propulsion is a technological field that is impor- 
tant to the Air Force and industry for satellite station keeping and orbital 
maneuvering. This problem demonstrates the dual time-stepping algorithm, 
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Figure 17: Geometry of the two-dimensional MPD thruster. 

which allows flexible choice of time steps so that fast and slow transients 
can be tracked accurately and efficiently. This is also the first problem that 
exercises all of the parts of the new algorithm (the approximate Riemann 
solver, the LU-SGS relaxation scheme, the resistive and viscous terms, and 
the dual time-stepping) simultaneously. The problem geometry is shown 
in Figure 17. A current is applied across the left boundary. This current 
creates a magnetic field in the z direction that in turn leads to a j x B force 
that accelerates the plasma to the right. We expect that the plasma initially 
in the domain will be accelerated up to some exit velocity on a fast time 
scale related to the Alfven time. However, if there is a finite resistivity in 
the plasma, the magnetic field and current at the left boundary will diffuse 
into the domain on a slower time scale related to the resistive diffusion time. 
Ideally, one would like to take small time steps initially to follow the fast 
transient, and then switch to a much larger time step when the system is 
evolving more slowly. 

If there is no viscosity, then the problem becomes one-dimensional in x, 
which is to the right in Figure 17. For this problem we chose a Lundquist 
number of 100, a reference magnetic field of 1 Tesla, a reference density 
of 10-5 kg/m3, a reference length of 10 cm, and an imposed current of 
30 kA. Figure 18 shows the plasma velocity as a function of x at several 
different times (normalized to the Alfven time). The top plot shows the 
results of an explicit time-differencing simulation with a CFL number of 
1. This simulation took 2600 time steps to advance the solution to t = 
10.17.   Notice that between 3 and 5 Alfven times, the velocity reaches a 
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Figure 18: Plasma velocity as a function of x and time for explicit time 
differencing simulation and dual time-stepping (implicit) simulation. 

constant uniform value along the length of the domain. The bottom plot is 
a simulation in which a CFL number of 1 was used until t = 1.5, at which 
point the CFL number was increased to 100 and the dual time-stepping 
implicit method was used to maintain stability. At each physical time step 
it took about 30 pseudo-time steps to converge, so the overall number of 
iterations was reduced to 1090 for the dual time-stepping case. The plots 
look similar to the explicit time-stepping results, except that the end of 
the fast transient is filtered out by taking such large time steps. On the 
other hand, Figure 19 shows that the magnetic field, which evolves on the 
slower resistive diffusion time scale, is captured equally well by the explicit 
and implicit schemes. The development of the plasma velocity and internal 
magnetic field can be seen in Figures 20 and 21. 
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Figure 19: Magnetic field as a function of x and time for explicit time 
differencing simulation and dual time-stepping (implicit) simulation. 

3.4    Magnetic Reconnection 

In this application we present results demonstrating agreement between the- 
oretical linear growth rates of the resistive instability in a sheet pinch and 
our non-linear resistive MHD code. We study resistive instabilities because 
they are a likely candidate for driving magnetic relaxation in the Helic- 
ity Injected Tokamak (HIT). The planar sheet pinch is a well understood 
connguration[12, 13, 14, 15] and provides a good test problem and bench- 
mark for our MHD code. 

We present the linear analysis of the sheet pinch.[13, 14] The linear 
equations are solved numerically to obtain the eigenmodes. The eigenvalues 
(growth rates) are compared with the analytical theory. [12] We then present 
the nonlinear analysis where our implicit MHD code is applied. A pertur- 
bation is initialized in the MHD code. The instability resulting from the 
perturbation is allowed to develop and finally saturates due to non-linear 
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Figure 20: Velocity vectors for the MPD thruster. The plasma is accelerated 
down the gun by the I x B force and a boundary layer develops. The internal 
blocks illustrate the decomposition of the domain used for the validation of 
the parallel version of the code. 

effects. The initially linear growth rate agrees with linear analysis. 

3.4.1    Problem Description 

We study the resistive instability in a planar sheet pinch, the symmetric 
tearing mode in a finite-thickness current sheet. See Figure 22 for schematic 
representation. For simplicity we examine the mode with the wave vector 
parallel to the equilibrium magnetic field. 

We define 

k\\Bn 

FS^=tanh(?9 
Bref 

(53) 

(54) 
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Plasma Gun Simulation - Bz Contour Plot 

Applied current: I, = 30,000 

'Reservoir1 density: pr= 10 
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Processor grid: 4x8 

Grid size: 400 x 80 
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Figure 21: Magnetic field (Bz) contours for the MPD thruster. The gradient 
in the magnetic field produces the force applied to the plasma. 

where a is the characteristic width of the current sheet. The resistivity of 
the current sheet is 

V 
Vref 

cosh' © (55) 

which satisfies the equilibrium induction equation with no flow. The resis- 
tivity has a minimum in the middle of the current sheet (y = 0), and the 
magnetic field vanishes at y = 0 and is positive for y > 0 and negative for 
y < 0. See Figure 23 for the equilibrium profiles. 

3.4.2    Linear Analysis 

For the linear analysis, we begin with the incompressible, resistive MHD 
equations. We assume a variation of the perturbations of the form 

f = f(v,t)e ikx (56) 
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Figure 22:   Schematic of planar sheet pinch problem [from H. P. Furth, 
Phys. Fluids 28(6), 1595 (1985)]. 

The perturbation equations yield a pair of coupled, linear differential equations. [14] 

dt 771 dy2 azm   - Fw (57) 

d (d2 uw 
a2w ) = a2Lu2 

dt \dy2     " ™)     " •""■   |*  ydy2 

where Lu is the Lundquist number and 

Byl 

F (£?-»•» 

* = 
#0 

d2F 
ay2 $ (58) 

(59) 

tu = —ikrrvxi (60) 

a = /ca (61) 

rr = LUT^I (62) 

This coupled pair of PDE's are solved numerically using an implicit finite 
difference formulation.  The eigenfunctions for Lu = 103 and a = 0.5 are 
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Figure 23: Equilibrium profiles of normalized magnetic field and resistivity. 

shown in Figure 24. The growth rates have also been found analytically. [12] 
For the pure symmetric tearing mode the growth rate is given by 

7 = 0.954(1-a2)4/5(^)2/5- (63) 

For values of Lu greater than 500, the numerically calculated and analytical 
linear growth rates agree to within a few percent. 

3.4.3    Non-Linear Analysis 

A planar current sheet is initialized in the code, and a perturbation of the 
same form as the linear eigenfunction is superimposed. The growth rate is 
determined from the amount of reconnected flux at y = 0. The evolution 
of the non-linear perturbation is shown in Figure 25. The result from the 
linear analysis is also shown. The non-linear growth matches the linear 
prediction during early development of the instability, but during late time 
the instability saturates due to non-linear effects. Magnetic flux contours 
are shown in Figure 26 which show the magnetic island formation of the 
non-linear instability. 

3.5    HIT Injector 

One of the first applications for the new code will be to simulate the HIT 
experiment.    The experiment is shown schematically in Figure 27.    The 
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Figure 24: The eigenfunctions for Lu = 103 and a = 0.5. 

geometry is toroidal, but only a single slice in the poloidal plane is pictured. 
HIT is a low aspect ratio tokamak that uses helicity injection to produce 
toroidal current. Gas is puffed into the injector and then a series of capacitor 
banks are discharged across the electrodes to form the plasma and interact 
with the applied magnetic fields to push the plasma into the confinement 
region, where the tokamak plasma is formed. The full simulation will require 
three-dimensional, multiblock capability, which the code does not yet have. 
However, the injector portion of the experiment can be modeled as a single 
block. 

For the first simulation we made the further simplification of solving 
the two-dimensional problem rather than the true cylindrical problem. We 
chose an initial poloidal bias field that is uniform throughout the injector 
with By = 0.00IT and Bx = 0, where the x direction is up (toward the con- 
finement region) in Figure 27. The initial toroidal (out of plane) field was 
zero in this case, and a current of 30kA was applied across the electrodes 
(at the bottom boundary in Figure 27). Plasma was placed at the bottom 
boundary with a density ten times higher than the initial background den- 
sity. The Lundquist number was 1000. A grid with 44 cells in the x direction 
and 12 points in the y direction was used. 

The results of the simulation after ten Alfven times are shown in Figure 
28.  Contours of density and the in-plane magnetic field lines are plotted. 
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Figure 25: The linear and non-linear evolution of the reconnected flux. 

The current at the left boundary (x = 0) induces out-of-plane magnetic field 
that results in a j x B force that brings in plasma from the left and pushes 
the plasma to the right (in the x direction) towards the confinement region. 
The contours of density show the higher density plasma being carried into 
the domain. In addition, the initially straight field lines are stretched as 
the plasma flows across them. However, the density contours do not overlay 
with the field lines as they would in the limit of zero resistivity. This is 
consistent with the relatively low Lundquist number for this simulation. 

3.6    Three-Dimensional Magnetic Relaxation 

We have performed a preliminary study of three-dimensional magnetic re- 
laxation in toroidal configurations using the code. These configurations are 
similar to the previous compact toroid experiment (MARAUDER) at the 
Phillips Laboratory. [18] The major exception is that the geometry used here 
is a toroid with a square cross section and smaller aspect ratio. An article 
describing this application will be published by the Maui High Performance 
Computing Center (MHPCC) as a HPC Success Story. 

The plasma is initialized with uniform density and pressure and a core of 
purely toroidal field surrounded by purely poloidal field. This corresponds to 
a current sheet around the toroidal field. The fields strengths are adjusted so 
the forces balance at the current sheet. In toroidal coordinates, the toroidal 
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Figure 26: Flux contours of the developed non-linear instability. 

field is 

and the poloidal field is 

Bt = Bo-ß, 

B
P 

=
 
B° \  R 

Ro\  (To 
(7) 

(64) 

(65) 

where R is the major radius, r is the minor radius, and B0 is maximum mag- 
netic field value. Because the plasma geometry has a square cross section, 
the poloidal field beyond r = a/2 was set to zero to satisfy the divergence- 
free condition on the magnetic field. 

We know the final plasma configuration based on energy minimization. 
This configuration is called a Taylor state.[19] Taylor theorized that the 
magnetic field will rearrange or relax through tearing and reconnection to 
arrive at the lowest energy state while maintaining the total magnetic helic- 
ity. Helicity is the amount of magnetic flux linkage. For this geometry, the 
Taylor state has an analytical form. 

-Dr — t-so^z Jl(ÄV Ji(A) 
Yi(A) 

Yi(fcrr) cos{kzz) (66) 
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Figure 27: Schematic of the HIT plasma experiment. 

Be = Bo^Jkt + kl Ji(krr)-^Y1(krr) sin(kzz) (67) 

Dz —       LJQKT Jo(krr) Ji(A) 
Yi(A) 

Y0(M sm(kzz) (68) 

where Jm and Ym are the ordinary Bessel functions, and kr, kz, and A are 
chosen to satisfy the boundary conditions. 

While Taylor's theory agrees with most experimental data, the mecha- 
nism for relaxation is not understood. If the relaxation involves global tear- 
ing and reconnection, the process may destroy the plasma. The simulations 
that we performed are providing great insight into the exact mechanisms 
and their dependence on the magnetic Reynolds number. 

The simulation results for a compact toroid with a magnetic Reynolds 
number of 104 and an aspect ratio of 1.5 are shown in Figure 29 after the 
plasma has evolved for 10 Alfven transit times. The formation of a toroidal 
perturbation with a primary mode number of 3 can be seen in the contours of 
the poloidal flux. Furthermore, the mode is localized on a magnetic surface 
(q = 1). Interestingly the perturbation saturates and does not destroy the 
plasma. This mode is a strong candidate for the mechanism responsible for 
magnetic relaxation. 

38 



density 

Figure 28:   Results of two-dimensional simulation of HIT injector, 
shows density contours and poloidal magnetic field lines. 

Plot 

When the magnetic Reynolds number is decreased, the toroidal mode 
structure weakens and the simulations are almost axisymmetric. This be- 
havior is due to the larger resistive diffusion that occurs at the lower mag- 
netic Reynolds numbers. Instead of magnetic tearing and reconnection, 
the magnetic fields merely diffuse through each other in a symmetric man- 
ner. Results are shown in Figure 30 for a compact toroid with a magnetic 
Reynolds number of 103 and an aspect ratio of 1.5. The results corresponds 
to the parameters of a cold plasma. 

Other simulations were performed at larger aspect ratios. The larger 
aspect ratios simulations showed a similar mode structure but with a higher 
toroidal mode number. This phenomena is still under investigation and will 
be submitted for publication. 

3.7    Nonlinear Tilt Instability in the Spheromak 

There is a renewed interest in "alternative" plasma confinement concepts. 
One of these concepts is the spheromak which is a toroidal plasma confine- 
ment concept where no materials such vacuum vessels or magnetic field coils 
link the toroid. [20] Spheromaks were first studied by astrophysicists. They 
are interesting since they are force-free, simple structures with closed flux 
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Figure 29: Contours of poloidal flux showing the toroidal mode structure of 
a relaxing compact toroid with a magnetic Reynolds number of 104 after 10 
Alfven transit times. 

surfaces towards which space plasmas tend to evolve. 
Plasma stability is a major issue for spheromaks. Stability of spheromaks 

has been first studied by Rosenbluth and Bussac in a spherical configuration. [21] 
Using linear theory for a force-free equilibrium (j = AB, where A is indepen- 
dent of position), they showed that an oblate spheromak is stable against 
all internal modes if surrounded by a closed fitting conducting shell. The 
plasma is unstable if the boundary is prolate. 

Finn and Manheimer[22] and Bondeson et a/., [23] studied the tilt in- 
stability of spheromaks in a cylindrical geometry. The tilt instability is a 
relaxation to a minimum energy state during which the magnetic axis of the 
spheromak tilts. In both papers cited above the authors used linear theory 
and found that for aspect ratios (L/R) less than 1.67 the spheromaks in 
cylindrical geometry are stable to tilt. However, some experiments showed 
that oblate spheromaks still tilted. [24] 

The goals of our study were to validate the code against theoretical and 
experimental results obtained for a tilting prolate spheromak and under- 
stand why oblate spheromaks tilt.[25] To test our code we tried to match 
the growth rate obtained with a linear stability code described by Shumlak 
et al.[26] A small perturbation to the spheromak equilibrium should grow 

40 



Figure 30: Contours of poloidal flux showing only a weak toroidal mode 
structure for a relaxing compact toroid with a magnetic Reynolds number 
of 103 after 10 Alfven transit times. 

initially at the linear growth rate. Eventually nonlinear effects would satu- 
rate the growth of the mode. 

For our simulation we selected an aspect ratio L/R = 3 where linear 
theory showed that the growth rate is maximum for spheromaks with ß 
between 0 and 6% where ß = R 

pma% x 100%. The normalized growth 
rate obtained was JTA — 0.20015. 

The nonlinear simulation with our code used a non-simply connected 
grid made of ten blocks, each with 15 x 15 x 20 cells. (See Figure 31.) This 
particular type of grid was chosen since it has only four pairs of cells with 
high aspect ratio. Alternative grid options are a pie slice grid which has high 
aspect ratio cells all around the circumference and has a singular point at 
the axis and a distorted square grid which has high aspect ratio cells around 
the circumference. These alternative grids are shown in Figure 32. 

The initial magnetic field is obtained from the force-free equilibrium. 

BT — — kzJi(krr) cos(kzz) 

Bg — AoJi(Avr) sin(/c2z) 

Bz = fcrJo(A;T.r) sm{kzz) 

where krR — 3.832, kzL = 7r and Ao = \Jk^. + k\.   Uniform density and 
pressure profiles are initialized to give ß — 8%. The initial perturbation is 
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Figure 31: The ten block grid used for the spheromak simulation. Some of 
the blocks has been removed for illustration. 

the velocity field obtained from the linear code and interpolated to the three 
dimensional grid. Figure 33 shows the initial velocity field. 

Our first goal was to match the growth rate obtained from the linear 
code at early time. Since our code is nonlinear, the size of the initial per- 
turbation is critical. We found that if the initial perturbation is too large 
(vmax > 12%VA) then the spheromak structure is destroyed. If the ini- 
tial perturbation is too small the algorithm produces flows which are larger 
than the initial perturbation. These spurious flows were the result of the 
generalized coordinate formulation which are being corrected by using the 
unaligned finite volume formulation described in Section 2.2.7. 

For an initial perturbation of v^x = 5.5%v^ the spheromak tilts and 
gives encouraging results as shown in Figure 34. When the tilt instability 
saturates, the plasma axis is not perpendicular to its original orientation. 
The final state is oriented so that the plasma has expanded into the corners 
of the flux conserver which further minimizes the magnetic energy. Figure 35 
shows the growth of the kinetic energy with time. The linear growth rate has 
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Figure 32: Two alternate grids that can be used for simulations of cylindrical 
configurations, (a) The pie slice grid has large aspect ratio cells along 
circumference and a singularity at the axis, (b) The distorted square grid 
has high aspect ratio cells along the circumference. 

also been plotted for comparison. The rate of growth is limited by the linear 
growth rate as expected. The initial decrease in kinetic energy is related to 
the spurious flow produced by the generalized coordinate formulation. 

3.8    MPD Plasma Thruster 

A plasma thruster uses the j x B body force to accelerate the plasma. Ad- 
vantages of this type of thrusters over chemical thrusters are a higher specific 
impulse and higher efficiency. The higher specific impulse leads to savings 
in propellant mass for a mission with a specified AV. 

We have studied the magnetoplasmadynamic (MPD) plasma thrusters. 
Our goal is to validate the code against computational and experimental 
results of Sleziöna er al. [27] and to improve the thruster design. 

We have studied channel MPD thrusters successfully during tests of our 
code. The current work modeled the more realistic annular MPD thrusters. 
In an annular MPD thruster a current is driven through the plasma radially 
by coaxial electrodes (the anode is at the larger radius). The self-generated 
magnetic field and the current give the j x B force that accelerate the plasma. 

A Hall plasma thruster also has a coaxial configuration. A radial mag- 
netic field and an axial electric field are applied which produces an azimuthal 
current by the Hall Effect. The Hall current is created by electron drifting 
azimuthally at a high speed. The electrons ionize the injected gas propellant 
to form a plasma. Then the Hall current interacts with the radial magnetic 
field to accelerate the plasma axially. 
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Figure 33: Initial velocity field. Contours represent the magnitude of the 
toroidal velocity component and the vectors represent the poloidal velocity. 
Velocity field is normalized with respect to the Alfven speed. 

Our simulation uses a grid composed of four blocks (see Figure 36) in 
an axisymmetric configuration. The electrodes are modeled as perfect con- 
ductors. The inlet gas was injected at a pressure that is 5% higher than the 
initial pressure inside the thruster. The expansion region beyond the exit 
of the thruster is also modeled to examine the plume of the thruster. The 
thruster current was held constant at IkA. The plasma temperature was 
0.5keV. 

Results are encouraging and further investigation is required in order to 
validate the code against the mentioned experimental results. In Figure 37 
we present the velocity vectors and contours of magnetic field after approx- 
imately 20 Alfven transit times. The radial dependence of the velocity is 
caused by the radial dependence of the j x B accelerating force. A vortex 
ring is observed shedding from the cathode, in the upper quarter of the do- 
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Figure 34: Contours of toroidal magnetic field Bg through a cross-section of 
the spheromak at 0 = 90°. White contours represents positive values and 
black negative values. 

main. The magnetic field balloons beyond the annular region between the 
electrodes as measured in experiments. 

Tests showed that initialization with lower pressures (ß) of the compu- 
tational domain gave non-physical results, i.e. negative pressures, after a 
few time steps. There two factors that might lead to such behavior. One 
is related to the initialization, specifically the sudden application of the 
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Figure 35: Evolution of the kinetic energy of the spheromak as a function 
of normalized time. Note the nonlinear behavior at the beginning of the 
simulation. 

magnetic field to the stationary plasma. This can lead to vacuum or near 
vacuum conditions being created in a few grid cells after the first time step. 
Further mass transport can lead to a negative pressure situation. We are in- 
vestigating starting the simulation with a finite current rise time (as is more 
physical). The applied current would increase until the operating value is 
reached. 

Another source of the errors at lower pressures is the numerical overes- 
timation of the wave speeds which leads to the depletion of mass in regions 
of the domain and finally to negative pressures. To eliminate this effect we 
are following the work by Einfeldt et al.{28] They describe the calculation 
of the flux at a cell interface such that the scheme is positively conservative, 
cannot lead to negative pressure. We are applying their scheme, developed 
for a first order accurate algorithm, to our second order accurate algorithm. 
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Figure 36: (a) Four block grid for the axisymmetric MPD simulation and (b) 
the initial contours of the magnetic field. (Black contours represent higher 
values.) 

4    Parallel Computer Implementation 

We have begun to investigate strategies for implementing the algorithm on 
parallel architectures. The first of the following sections describes our first 
and the simplest approach, which was to parallelize the LU-SGS algorithm 
in a point-wise manner. This proved to be too fine-grained to be efficient, so 
we have since opted for a domain decomposition approach which is described 
in the second section. The third section describes the implementation of this 
method on the MHD solver. 
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Figure 37: (a) Flow field and (b) contours of azimuthal magnetic field. 
(Black contours represent higher values.) Note the vortex ring shedding off 
the cathode. 

4.1    Fine-Grain Parallelization 

The LU-SGS algorithm involves a double sweep of the computational do- 
main. The forward (predictor) sweep solves a lower tridiagonal block matrix 
for the entire computational domain. The backward (corrector) sweep solves 
an upper tridiagonal block matrix. Figure 38 shows the form of the lower 
and upper block diagonal matrices for the case of a 4 x 5 grid. Because of 
the lower-upper form of the matrices, the solutions at grid cells along a line 
of constant i + j are independent. 

The simplest parallel implementation is to decompose the domain into 
its component cells, distribute the grid cells over the processors of the par- 
allel computer, and treat each cell as residing on a different processor. This 
approach exploits the independence of the solutions of the cells on lines 
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Figure 38: The 20 x 20 lower (a) and upper (b) tridiagonal block matrices 
for the LU-SGS algorithm with a grid of 4 x 5 cells. 

of constant i + j. Communication between the cells provides the neces- 
sary synchronization. For these tests, we used the Parallel Virtual Machine 
(PVM) communication library which was developed at Oak Ridge National 
Laboratory. [29] PVM allowed us to connect a network of four DEC Alpha 
workstation and use them as our parallel computer. 

To determine the parallel effectiveness, we measured the speedup ob- 
tained when a problem grid of constant size was evenly distributed onto an 
increasing number of processors. Speedup is defined as the time required to 
find the solution with n processors divided by the time with one processor. 
For perfectly parallel implementations, the speedup would be equal to the 
number of processors. Any communication time and processor synchroniza- 
tion decreases the speedup. 

We used a 4 x 4 grid and varied the number of processors from one 
to four. While this was a small size problem, it was sufficient to test the 
parallel implementation. The speedup results are shown in Figure 39. Some 
speedup can be seen; however, the amount is unsatisfactory. 

The low efficiencies indicate that the simplest approach for parallel im- 
plementation of the LU-SGS algorithm is inadequate. The results are not 
surprising since the grain of parallelization in this approach is too fine and 
requires excessive communication. The number of grid cells in practical 
applications will be much greater than the number of processors. This sug- 
gests dividing the domain into a number of large blocks, so that the grid 
cells within a block are located on the same processor (and memory) and 
do not need to communicate through message passing. 

49 



Figure 39: The parallel speedup for a problem with constant size grid using 
a fine-grain parallelization approach. 

4.2    Coarse-Grain Parallelization 

In this section, we describe the coarse-grain parallelization of the MHD 
solver and the performance of this approach applied to a real problem. 

The algorithm was parallelized using the domain decomposition tech- 
nique (DDT). This technique is based on the simple idea of "divide and 
conquer" The integral form of a general conservation law is 

jtj dVQ + ldS-F{Q)= I dV S(Q), (69) 

n s n 

where $7 is the domain and £ is the boundary of Cl. Q is the vector of 
conserved variables, F(Q) is the flux of the conserved variables, and S(Q) 
is the vector of source terms. By splitting the domain Q, into p subdomains 
such that 

0 = U Cli, (70) 
i=l 

one can replace eqn(69) with a set of p conservation equations applied on 
the subdomains fij. 

^-tJdVQ + jdS-F{Q) = JdVS{Q),    » = 1,2,...,?        (71) 

Each of these discretized equations is solved by a single processor.   Each 
processor uses the boundary values copied from neighboring subdomains. 
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Figure 40: (a) Strip decomposition and (b) patch decomposition of a 2-D 
domain. 

4.2.1    Domain Decomposition 

To abstract the computer architecture, we assume that a set of p processors 
can be assigned to run the code and that these processors implement a 
message passing system. For simplicity the original domain is assumed to 
be a square of size n x n. 

The 2-D version of the algorithm was parallelized. There are two tech- 
niques available for the decomposition of 2-D domains, the strip decompo- 
sition and the patch decomposition which are shown in Figure 40. 

Strip decomposition is implemented by dividing the original domain in 
subdomains of n x ^, and it might be thought of as a 1-D decomposition. 
With strip decomposition each subdomain needs to exchange data with two 
neighbors except the subdomains at the boundaries of the original domain 
which communicate with only one neighbor. 

The communication time for an interior subdomain was defined by Zhu 
[30] as 

TD21 = 2(CT + 8/3n) (72) 

where a is the communication start-up time, ß is the time required to send 
one byte of data, and the 8 means that the data are represented as double 
precision variables (their size is eight bytes). 
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Figure 41: Column decomposition of a 3-D domain is an immediate exten- 
sion of the patch decomposition of 2-D domains. 
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Patch decomposition is implemented by dividing the original domain in 
With this method each processor has to communicate with four 

neighbors unless it is situated on the boundaries of the original domain and 
it has two or three neighbors. For simplicity it is assumed that p is an even 
square number and n is evenly divisible by yjp. The communication time 
for an internal subdomain is 

TD22 = 4(a + 8/3 —) (73) 

For a fixed grid size, Tb22 decreases with the number of processors since 
in eqn (73) the number of processors appear at the numerator. In contrast, 
Tb21 stays constant with the number of processors. 

This made the patch decomposition an obvious choice for our implemen- 
tation. The technique will also provide a straightforward extension to the 
column decomposition of 3-D domains (see Figure 41). 

4.2.2    Implementation of the Patch Decomposition 

The programming model used for the implementation was single program 
multiple data (SPMD). Each processor runs the same code on the data 
corresponding to its subdomain. One processor has to perform the domain 
decomposition and send the data to the other processors. This processor 
was designated as the main task. 

Assuming that there are p processors available for running the code 
they can be arranged in a processor grid of pr x pc = p where pr is the 
number of rows and pc is the number of columns. The size of the original 
computational domain is m x n. It is possible to have subdomains of equal 
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sizes only if m and n are evenly divisible with pc and pr respectively. The 
domain decomposition was implemented such that some processors receive 
an extra row or extra column if m and n are not divisible by pc and pr. 

Physical coupling of the subdomains is accomplished by the exchange 
of internal boundaries. A processor sends the data from the cells next to 
its boundaries to the neighboring processors if they exist. The receiving 
processor assigns the received data to the cells of its respective boundaries. 
If a processor does not have a neighbor in a certain direction the boundary 
conditions are applied to that boundary. Since the algorithm uses a five- 
point stencil only one row/column needs to be exchanged. 

4.2.3 Message Passing 

One of the goals of the project is to develop a portable code. A first step 
in assuring the portability was to use a message passing system commonly 
available on parallel supercomputers and on workstation clusters. This sys- 
tem is the Message Passing Interface (MPI)[16], which was adopted as a 
standard in May 1994 by industry and academia. Hardware and software 
vendors' implementation of MPI provides parallel program developers with 
a consistent set of subroutines callable from FORTRAN77 and C. In our 
code we made use of the basic point-to-point communications subroutines 
and global communications subroutines. The point-to-point communica- 
tion subroutines were used for the domain decomposition and boundary 
exchange while the global communication subroutines were used for conver- 
gence checking. All message passing systems (PVM, MPL) support point- 
to-point and global communications subroutines so that by using only the 
basic set we provided for a facile portability to systems not supporting MPI. 

4.2.4 Load Balancing 

The load balancing for this code is performed by distributing an approx- 
imately equal number of cells to each processor. This is accomplished by 
the main task during the domain decomposition phase. Since the number of 
floating point operations performed by each processor is the same, a static 
domain decomposition is sufficient to ensure that the processors have an 
equal share of the computing load. If the code takes were to allow for time- 
dependent ionization or other localized phenomena which require additional 
operations in a limited region of the computational domain, then a dynamic 
load balancing procedure may be necessary. A simple algorithm for dynamic 
load balancing is the masked multiblock described by Borrelli et al.[31] We 
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Speedup vs. Number of Processors 

Figure 42: Fixed grid (400 x 80) speedup results. Note the superlinear 
speedup of the explicit mode. 

will implement the masking algorithm in future versions of the code if it 
becomes necessary. 

4.2.5    Results 

In order to measure the performance of the code we applied the parallel 
version to the plasma gun problem described in Section 3.3. The paral- 
lel version was checked against the sequential version, and both produced 
identical results. 

There are two criteria generally used for the performance analysis of 
parallel codes: (1) the speedup Sp = Tseq/Tp and (2) the efficiency Ep — 
Sp/p, where Tseq is the time needed for the best sequential algorithm to 
complete the task and Tp is the time needed for the parallel algorithm run 
on a number of p processors to complete the same task. Note that the 
definition of speedup used here is more rigorous and meaningful than the 
one commonly used since it is based on the sequential version and not the 
parallel version on one processor. 

We ran the parallel code on the IBM SP2 with a fixed grid of size 400 x 80 
on a processor pool of varying size: 4, 8, 16, 32 and 64 processors. The 
speedup for the explicit and implicit modes is shown in Figure 42. As 
expected the speedup increases with the number of processors assigned to 
run the code. For the explicit mode the speedup is superlinear, which seems 
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to contradict Amdahl's law 

Sv = ^sr^; —• (74) 
 J-seq  
rp I     2-/T.=1     computation,! 
J-communication T „ 

Assuming that no time is used for communication and that the sum of the 
computation time for all processors is equal to the sequential computation 
time, the maximum speedup is linear (for p processors the speedup is p). 
However, Amdahl's law does not take in consideration the architecture of the 
system used, in particular the cache effects. On the IBM RS/6000 machines, 
which constitute the nodes of the SP2, the data is passed from the main 
memory to the CPU through a data cache. A data cache miss involves 
a delay of eight CPU cycles while the data in the cache can be accessed 
in one cycle[32]. Noting that an add and multiply operation (a FLOP) 
takes one CPU cycle the conclusion is that a data cache miss decreases the 
performance significantly. By increasing the number of processors in the 
pool and keeping the overall problem size constant, we reduced the amount 
of data assigned to a processor. Its data cache could hold more data thus 
reducing the number of cache misses and improving the performance, which 
explains the super linear speedup. The same behavior was observed by Michl 
et al., on a cluster of IBM RS/6000/500 workstations.[33] 

The speedup for the explicit mode is higher than that for the implicit 
mode because the implicit mode is the more computationally intensive and 
is, therefore, less sensitive to cache misses. One has to be careful when 
comparing the results presented in Figure 42 since the number of iterations 
until convergence is reached for the implicit mode depends on the number 
of processors used. 

The trend of the speedup shows an increasing slope for both explicit 
and implicit modes which indicates that the code is far from communication 
saturation. Saturation occurs when the time spent on communications be- 
comes comparable with the computation time. If the number of processors 
is increased and the size of the subdomains becomes smaller, each processor 
will have fewer computations to perform, but the total time spent in ex- 
changing the data on the boundaries will increase. The total time spent for 
boundary exchange can be found using the formula for the communication 
time for an internal subdomain [eqn(73)] and multiplying it with the number 
of processors in a pool p, 

Tbdry exch = pTD22 = 4(crp + 8ßn^/p). (75) 

The total time spent on boundary exchanges varies proportionally with p. 
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Figure 43: Scaled grid (50 x 10 per processor) speedup results. 

For the processor pools with a non-square number of processors we have 
run the code on grids organized as pr x pc and the transpose pcxpr, so that 
the number of row cells versus column cells changed. The results showed 
that a decomposition whose subdomains have longer rows performs better 
than one with longer columns. This is consistent with the data cache misses 
that were observed previously. An improvement of 20-30% in the measured 
speedup was obtained by modifying the domain partitions. It should be 
noted that this result is particular to IBM architecture, and the dependency 
of the obtained speedup on domain decomposition will vary on other archi- 
tectures. The speedup results shown in Figure 42 for 8 and 32 processors 
have been averaged. 

In order to eliminate the cache effects from the performance analysis we 
ran the code on grids that scaled with the number of processors. The size of 
the grid on each processor remained constant. As the number of processors 
was increased, the grid increased proportionally. The speedup results are 
presented in Figure 43. Again note that the speedup is measured relative 
to the sequential version of the code and not the parallel version run on a 
single processor. 

The speedup for a perfectly parallel code for the scaled grid is unity for 
any number of processors. Our results show a speedup that is less than 
unity and it decreases with the number of processors. This is an expected 
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result since the total communication time increases with the number of 
processors. Since the slope of the speedup is gradual and it appears to 
flatten, we conclude that the parallel code performs satisfactorily on scaled 
grids. 

5    Professional Interactions 

5.1 Project Personnel 

The personnel who have been directly involved in this project are listed 
below. 

Name Position 
Uri Shumlak Research Assistant Professor 
D. Scott Eberhardt Associate Professor 
Thomas R. Jarboe Professor 
Byoungsoo Kim Research Associate 
Julian Becerra-Sagredo    Graduate Student 
Ogden S. Jones Graduate Student 
R. Scott Raber Graduate Student 
David Taflin Graduate Student 
Bogdan Udrea Graduate Student 

5.2 Collaborations 

5.2.1 Air Force Research Laboratory 

Dr. Robert Peterkin and Dr. Thomas Hussey of the Electromagnetic Sources 
Division on three-dimensional multigrid algorithms for MACH3, develop- 
ment of a parallel PIC (particle in cell) code for microwave simulations, and 
stabilization of the the Rayleigh-Taylor instability in solid liner implosions 
by introducing a sheared axial flow. 

5.2.2 National Oceanic and Atmospheric Administration 

Dr. Kris Murawski of the Space Environment Center on applying our code 
to study solar wind and corona. They currently have a copy of our code for 
this application. 

5.2.3 Lawrence Livermore National Laboratory 

Dr. Charles Hartman of the Magnetized Plasmas Division on stabilization 
of the z-pinch using sheared axial flows. This collaboration resulted in the 
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publication listed below. 

5.2.4 University of Michigan 

Prof. Bram van Leer, Prof. Kenneth Powell, and Prof. Philip Roe of the 
Aerospace Engineering Department on approximate Riemann solvers for the 
MHD plasma model, in particular, eigenvector normalizations and Roe av- 
erages. 

5.2.5 University of Colorado 

Prof. Steve McCormick of the Applied Math Department on three-dimensional 
multigrid algorithms. 

5.2.6 New Mexico Institute of Technology 

Prof. Steve Schaffer of the Applied Math Department on three-dimensional 
multigrid algorithms for anisotropic equations. 

5.2.7 University of Washington 

Prof. Randy LeVeque of the Applied Math Department on approximate 
Riemann solvers and their applications to multidimensional problems. 

5.3 Transitions 

Dr. Kris Murawski at the Space Environment Center of the National Oceanic 
and Atmospheric Administration requested and was granted a copy of our 
code. His group will use our code to study solar wind and corona. 

5.4 Publications 

A journal article describing our algorithm has been published in the Jour- 
nal of Computational Physics. The title is "An Implicit Scheme for Nonideal 
Magnetohydrodynamics" by O. S. Jones, U. Shumlak, and D. S. Eberhardt.[17] 
The citation is Journal of Computational Physics 130, 231 (1997). We have 
two papers that have been published in conference proceedings. "Physics of 
the Hall Thruster," U. Shumlak, T. R. Jarboe, and R. A. Sprenger, AIAA 
97-3048 (1997), at the 1997 Joint Propulsion Conference in Seattle, Wash- 
ington. "A Portable Parallel Implicit Approximate Riemann Solver for Non- 
Ideal Magnetohydrodynamics," B. Udrea, O. S. Jones, U. Shumlak, and D. 
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S. Eberhardt, AIAA 97-0366 (1997), at the Aerospace Science Meeting in 
Reno, Nevada. 

Two journal articles resulting from the collaboration with the Air Force 
Research Laboratory and Lawrence Livermore National Laboratory were 
published. One article is titled "Sheared Flow Stabilization of the m = 1 
Kink Mode in Z-Pinches" by U. Shumlak and C. W. Hartman. The citation 
is Physical Review Letters 75 (18), 3285 (1995). The other article is titled 
"Mitigation of the Rayleigh-Taylor Instability by Sheared Axial Flows" by 
U. Shumlak and N. F. Roderick. The citation is Physics of Plasmas 5 (6), 
2384 (1998). 

A journal article has been submitted for publication in the AIAA Journal 
of Propulsion and Power. The article is titled, "A Simple Model of Flow 
Evolution in the Hall Thruster" by U. Shumlak, T. R. Jarboe, and R. A. 
Sprenger. 

5.5    Presentations 

A paper discussing the magnetic reconnection results was presented at the 
Thirty-Seventh Annual American Physical Society Meeting of the Division 
of Plasma Physics, Louisville, Kentucky, November 1995. "Time-Dependent 
Calculations of Resistive Tearing Instabilities Using a New Implicit MHD 
Solver." 

A paper presenting the findings of the stabilization of the z-pinch by 
sheared axial flows was presented at the Thirty-Seventh Annual American 
Physical Society Meeting of the Division of Plasma Physics, Louisville, Ken- 
tucky, November 1995. "Sheared Flow Stabilization of the m = 1 Kink Mode 
in Z-Pinches." 

A paper was presented at the Thirty-Eighth Annual American Physi- 
cal Society Meeting of the Division of Plasma Physics, Denver, Colorado, 
November 1996. The title was "Computer Simulations of Plasma Acceler- 
ators," by B. Udrea, O. S. Jones, and U. Shumlak. A paper was presented 
at the Thirty-Fifth AIAA Aerospace Science Meeting, Reno, Nevada, Jan- 
uary 1997. The title was "A Portable Parallel Implicit Approximate Rie- 
mann Solver for Non-Ideal Magnetohydrodynamics," by B. Udrea, O. S. 
Jones, U. Shumlak, and D. S. Eberhardt. A paper was also presented at the 
Twenty-Fourth Annual IEEE International Conference on Plasma Sciences, 
San Diego, California, May 1997. The title was "An Advanced Implicit 
Algorithm for MHD Computations on Parallel Architectures," by U. Shum- 
lak, D. S. Eberhardt, O. S. Jones, and B. Udrea. A paper was presented at 
the Thirty-Third AIAA/ASME/ASEE Joint Propulsion Conference, Seat- 
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tie, Washington, July 1997. The title was "Physics of the Hall Thruster," 
by U. Shumlak, T. R. Jarboe, and R. A. Sprenger. 

6    Conclusions 

The successful development of the three-dimensional advanced implicit algo- 
rithm, the implementation of the algorithm on arbitrarily connected multi- 
block grids, and the practical applications indicate that this project is ex- 
ceeding its objectives. The research from this project has been published in 
a refereed journal and presented at international conferences. 

Valuable collaborations have been formed with the Air Force Research 
Laboratory, Lawrence Livermore National Laboratory, and other universi- 
ties. 

The continuing development of this project will include adding an equa- 
tion of state package, investigating powerful implicit matrix inversion meth- 
ods, treating the destabilizing Hall effect, and applying the code to plasma 
experiments to calibrate the code and gain physical insight into devices that 
are important to the Air Force, such as the magnetic flux compression gen- 
erator (MCG). 
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