
unclassified/unlimited
SEC"- .iSS'S'Ci" -*• ?c "-iS »i-lE

REPORT DOCUMENTATION P
AFRL-SR-BL-TR-99-

1» REPORT SECLRlTv CLASSIFICATION

unclassified/unlimited
2a. SECURITY CLASSIFICATION AUTHORITY

3b. OECLASSIFICATION/OOVMNGRAOING SCHEOULE

4 PERFORMING ORGANIZATION REPORT NUMBERISI

6a. NAME OF PERFORMING ORGANIZATION

Aerospace & Energetics
Research Program

Sb. OFFICE SYMBOL
llf applicable!

2250
6c. A.ODRESS. (City Stair,and. ZJP Code!
University of Wasnington
Grant & Contract Services
3935 Univ Way NE, Seattle, WA 98105-6613

•a. NAME OF FUNDING/SPONSORING
ORGANIZATION

AFOSR

8b. OFFICE SYMBOL
lit applicable

/NM

Be. AOORESS (City. Slat* and ZIP Code!

110 Duncan Avenue, Rm B115
Boiling AFB, DC 20332-8080

11 TITLE (Include Security Cloai.rteoiion<i.DEVELOpMENT Qp £N

ADVANCED IMPLICIT ALGORITHM FOR MHD

IB. RESTRICTI MA3
3. OlSTRIBUTION/AVAILABiLi i T «■- r-,trv

unclassified/unlimited

5. MONITORING ORGANIZATION REPORT NUMBER

7«. NAME OF MONITORING ORGANIZATION

Office of Naval Research (0NR)
7b. AOORESS /City. Statt and ZIP Coda

1107 NE 45th St., Suite 350
Seattle, WA 98105-4631

9. PROCUREMENT INSTRUMENT IDENTIFICATION Nv

F4962Ö-96-1-0160

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO.

12. PERSONAL AUTHOR(S) COMPUTATIONS ON PARALLEL SUPERCOMPUTERS
SHUMLAK, Uri

nr

PROJECT
NO.

2304

TASK
NO.

/cs

WORK UNIT
NO.

13a. TYPE OF REPORT

final technical report
16. SUPPLEMENTARY NOTATION

13b. TIME COVERED

FROMQfi/S/1, TO98/4/30
1«. DATE OF REPORT lYr . Mo.. Day)

98/7/28
15. PAGE COUNT

69

17

FIELO

COSATI COOES

GROUP SUB. GR.

IS. SUBJECT TERMS {Continue on reverwe it nece—ery and identity by block number»
implicit algorithm, parallel computer, lower-upper
symmetric-Gauss-Siedel, LUSGS, approximate Riemann
solver, magnetohydrodynamic, MHD, Hartmann flow

1». ABSTRACT r Con I in u« on reverie if nece—ry and identity by Mock numben

The primary objective of this project is to develop an advanced algorithm for parallel
supercomputers to model time-dependent magnetohydrodynamics (MHD) in all three dimensions.
This will provide a valuable tool for the design and testing of plasma related technologies
that are important to the Air Force and industry. Implementing the algorithm on parallel
supercomputers will allow the detailed modeling of realistic plasmas in complex three-
dimensional geometries.

We have developed a time-dependent, two-dimensional, arbitrary-geometry version of the
algorithm, placed it into a testbedcode, added the modifications necessary for viscous and
resistive effects, and tested the code against known analytical problems. We have
implemented the algorithm on a parallel architecture and investigated parallelization
strategies. Future plans include installing the algorithm into MACH2, optimizing the
parallelization, extending the code to three dimensions, installing the three-dimensional
algorithm into' MACH3, and calibrating the code with experimental data.

20. OISTRI8UTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED 05 SAME AS RPT. O OTIC USERS O

22a. NAME OF RESPONSIBLE INDIVIDUAL

Donald W. Allen, Director G&C Services

DD FORM 1473, 83 APR

21. ABSTRACT SECURITY CLASSIFICATION

unclassified/unlimited
22b. TELEPHONE NUMBER

(Include Area Code!

206 543-4043

22c. OFFICE SYMBOL

5754
EDITION OF 1 JAN 73 IS OBSOLETE. unclassified/unlimited

SECURITY CLASSIFICATION OF THIS PAGE

Contents

1 Executive Summary 1

2 Project Description 1
2.1 Research Objectives 2
2.2 Technical Description 2

2.2.1 MHD Plasma Model 2
2.2.2 Algorithm Overview 3
2.2.3 LU-SGS Relaxation Scheme 7
2.2.4 Approximate Riemann Solver 8
2.2.5 General Multiblock Implementation 9
2.2.6 Second-Order Accurate Boundary Conditions 11
2.2.7 Unaligned Finite Volumes 11
2.2.8 Parabolic MHD Terms 14

3 Benchmarks and Applications 16
3.1 Ideal MHD Test Problems 16

3.1.1 One-Dimensional Coplanar MHD Riemann Problem . 16
3.1.2 Oblique Shock 18

3.2 Viscous and Resistive MHD Test Problems 19
3.2.1 Laminar Flow 21
3.2.2 Resistive Diffusion 23
3.2.3 Hartmann Flow 23

3.3 MPD Plasma Thruster 27
3.4 Magnetic Reconnection 30

3.4.1 Problem Description 31
3.4.2 Linear Analysis 32
3.4.3 Non-Linear Analysis 34

3.5 HIT Injector 34
3.6 Three-Dimensional Magnetic Relaxation 36
3.7 Nonlinear Tilt Instability in the Spheromak 39
3.8 MPD Plasma Thruster 43

4 Parallel Computer Implementation 47
4.1 Fine-Grain Parallelization 48
4.2 Coarse-Grain Parallelization 50

4.2.1 Domain Decomposition 51
4.2.2 Implementation of the Patch Decomposition 52
4.2.3 Message Passing 53

SSO QUALUf mpv^~^~ *

4.2.4 Load Balancing 53
4.2.5 Results 54

5 Professional Interactions 57
5.1 Project Personnel 57
5.2 Collaborations 57

5.2.1 Air Force Research Laboratory 57
5.2.2 National Oceanic and Atmospheric Administration . . 57
5.2.3 Lawrence Livermore National Laboratory 57
5.2.4 University of Michigan 58
5.2.5 University of Colorado 58
5.2.6 New Mexico Institute of Technology 58
5.2.7 University of Washington 58

5.3 Transitions 58
5.4 Publications 58
5.5 Presentations 59

6 Conclusions 60

in

List of Figures

1 Top view of a non-simply connected grid. (Only the block
boundaries are shown for clarity.) 10

2 Hierarchy of the derived data types. The most basic derived
data structure is the cell 12

3 Schematic drawing of a finite volume cell with local coordi-
nate systems at its interfaces. The fluxes are only needed
along the Xj directions 13

4 Rotation of a cell coordinate system that aligns x° with the
normal to the cell face h 14

5 Positioning for (a) vertex-centered and (b) face-centered parabolic
fluxes. The face-centered fluxes produced more accurate and
stable solutions. . . 15

6 Numerical solution of coplanar Riemann problem. Density
profile is shown initially and after solution has evolved for
400 time steps 17

7 Numerical solution of coplanar Riemann problem. Transverse
magnetic field profile is shown initially and after solution has
evolved for 400 time steps 18

8 Comparison of numerical and exact solution of coplanar Rie-
mann problem for Bx = 0 case 19

9 Geometry of oblique shock test problem 20
10 Density contours and field lines for an M = 3 flow impinging

on a perfectly conducting plate at an angle of 25 degrees. . . 20
11 Logarithm of the two-norm of the energy equation residual

plotted as a function of iteration number for explicit and im-
plicit solutions of channel flow with horizontal velocity and
vertical magnetic field imposed at the left boundary 21

12 Simulation of laminar flow between parallel plates in the pre-
sense of a constant pressure gradient. The velocity profile is
parabolic as expected from the analytical solution 22

13 The Hartmann flow geometry showing the moving parallel
plates and the cross magnetic field 24

14 Hartmann flow simulation with H = 104. Flow velocity vec-
tors and magnetic field lines are shown. The velocity of the
flow is zero everywhere except at the plates. The magnetic
field lines have a constant slope through the domain 25

IV

15 Haxtmann flow simulation with H = 0.1. Flow velocity vec-
tors and magnetic field lines are shown. The velocity profile is
linear and the magnetic field lines have an "S" shape caused
by the bulk fluid flow 26

16 Hartmann flow simulation with H = 10. Flow velocity vectors
and magnetic field lines are shown. The flow velocity only
exists close to the plates. The magnetic field lines are linear
around the midplane 27

17 Geometry of the two-dimensional MPD thruster 28
18 Plasma velocity as a function of x and time for explicit time

differencing simulation and dual time-stepping (implicit) sim-
ulation . 29

19 Magnetic field as a function of x and time for explicit time
differencing simulation and dual time-stepping (implicit) sim-
ulation 30

20 Velocity vectors for the MPD thruster. The plasma is accel-
erated down the gun by the I x B force and a boundary layer
develops. The internal blocks illustrate the decomposition of
the domain used for the validation of the parallel version of
the code 31

21 Magnetic field (Bz) contours for the MPD thruster. The gra-
dient in the magnetic field produces the force applied to the
plasma 32

22 Schematic of planar sheet pinch problem [from H. P. Furth,
Phys. Fluids 28(6), 1595 (1985)] 33

23 Equilibrium profiles of normalized magnetic field and resistivity. 34
24 The eigenfunctions for Lu = 103 and a = 0.5 35
25 The linear and non-linear evolution of the reconnected flux. . 36
26 Flux contours of the developed non-linear instability 37
27 Schematic of the HIT plasma experiment 38
28 Results of two-dimensional simulation of HIT injector. Plot

shows density contours and poloidal magnetic field lines. ... 39
29 Contours of poloidal flux showing the toroidal mode struc-

ture of a relaxing compact toroid with a magnetic Reynolds
number of 104 after 10 Alfven transit times 40

30 Contours of poloidal flux showing only a weak toroidal mode
structure for a relaxing compact toroid with a magnetic Reynolds
number of 103 after 10 Alfven transit times 41

31 The ten block grid used for the spheromak simulation. Some
of the blocks has been removed for illustration 42

32 Two alternate grids that can be used for simulations of cylin-
drical configurations, (a) The pie slice grid has large aspect
ratio cells along circumference and a singularity at the axis.
(b) The distorted square grid has high aspect ratio cells along
the circumference 43

33 Initial velocity field. Contours represent the magnitude of
the toroidal velocity component and the vectors represent the
poloidal velocity. Velocity field is normalized with respect to
the Alfven speed 44

34 Contours of toroidal magnetic field BQ through a cross-section
of the spheromak at 9 = 90°. White contours represents
positive values and black negative values 45

35 Evolution of the kinetic energy of the spheromak as a func-
tion of normalized time. Note the nonlinear behavior at the
beginning of the simulation 46

36 (a) Four block grid for the axisymmetric MPD simulation and
(b) the initial contours of the magnetic field. (Black contours
represent higher values.) 47

37 (a) Flow field and (b) contours of azimuthal magnetic field.
(Black contours represent higher values.) Note the vortex
ring shedding off the cathode 48

38 The 20 x 20 lower (a) and upper (b) tridiagonal block matrices
for the LU-SGS algorithm with a grid of 4 x 5 cells 49

39 The parallel speedup for a problem with constant size grid
using a fine-grain parallelization approach 50

40 (a) Strip decomposition and (b) patch decomposition of a 2-D
domain 51

41 Column decomposition of a 3-D domain is an immediate ex-
tension of the patch decomposition of 2-D domains 52

42 Fixed grid (400 x 80) speedup results. Note the superlinear
speedup of the explicit mode 54

43 Scaled grid (50 x 10 per processor) speedup results 56

VI

1 Executive Summary

The primary objective of this project is to develop an advanced algorithm
for parallel supercomputers to model time-dependent magnetohydrodynam-
ics (MHD) in all three dimensions. This will provide a valuable tool for
the design and testing of plasma related technologies that are important to
the Air Force and industry. Implementing the algorithm on parallel super-
computers will allow the detailed modeling of realistic plasmas in complex
three-dimensional geometries.

We have developed a time-dependent, two-dimensional, arbitrary-geometry
version of the algorithm, placed it into a testbed code, added the modifica-
tions necessary for viscous and resistive effects, and tested the code against
known analytical problems. We have implemented the algorithm on a paral-
lel architecture and investigated parallelization strategies. Future plans in-
clude installing the algorithm into MACH2, optimizing the parallelization,
extending the code to three dimensions, installing the three dimensional
algorithm into MACH3[1], and calibrating the code with experimental data.

As a result of this project several professional collaborations now exist
between the Department of Aeronautics and Astronautics at the University
of Washington and the Air Force Phillips Laboratory, Lawrence Livermore
National Laboratory, the University of Michigan, the University of Colorado,
and other departments at the University of Washington. The work from this
project has been presented at international conferences and one publication
has already been published in a refereed journal and another publication
has been accepted for publication pending revisions.

2 Project Description

Plasmas are essential to many technologies that are important to the Air
Force, some of which have dual-use potential. These applications include
nuclear weapons effects simulations, radiation production for counter pro-
liferation, fusion for power generation, and advanced plasma thrusters for
space propulsion. In general, plasmas fall into a density regime where they
exhibit both collective (fluid) behavior and individual (particle) behavior.
Many plasmas of interest can be modeled by treating the plasma like a con-
ducting fluid and assigning macroscopic parameters that accurately describe
its particle-like interactions. The magnetohydrodynamic (MHD) model is a
plasma model of this type.

2.1 Research Objectives

The objectives of the project are to:

• Develop a coupled, implicit, time-accurate algorithm for three-dimensional,
viscous, resistive MHD simulations;

• Incorporate the algorithm into the MACH3 code, which was developed
at the Air Force Phillips Laboratory;

• Validate the code with analytical and experimental data; and

• Apply the code to analyze plasma experiments at the University of
Washington [Helicity Injected Tokamak (HIT) [2]] and at the Phillips
Laboratory [the liner implosion system (WFX)[3], the dense plasma
focus experiment, and magnetic flux compression generators].

2.2 Technical Description

2.2.1 MHD Plasma Model

The three-dimensional, viscous, resistive MHD plasma model is a set of
mixed hyperbolic and parabolic equations. The Navier-Stokes equations are
also of this type. This project applies some advances that have been made in
implicit algorithms for the Navier-Stokes equations to the MHD equations.
These implicit algorithms solve the equation set in a fully coupled manner,
which generates better accuracy than the current methods used for MHD
simulations.

When expressed in conservative, non-dimensional form, the MHD model
is described by the following equation set.

P
Ö

dt
pv
B
e

+ V-

pv
pvv - BB + (p + B • B/2) I

vB-Bv
(e + p + B • B/2) v - (B • v) B

0
(ReAl) -l

(RmAiy1E(fj,B)
(ReAl)'1 v • f - (RmAiy1 f(VxB)xB + f (PeAiy1 k ■ VT

(1)

The variables are density (/?), velocity (v), magnetic induction (B), pressure
(p), energy density (e), and temperature (T). H(^,B) is the transverse

Alfven Number : Al = vA/v
Reynolds Number : Re = LV/v
Magnetic Reynolds Number : Rm = HoLV/v
Peclet Number : Pe = LV/K

resistive electric field tensor which is described in Section 2.2.8. Mi is the
ion mass. The energy density is

p vv B B e = 7^l + »—+ — (2)

where 7 = cp/cv is the ratio of the specific heats. The non-dimensional
tensors are thestress tensor (f), the electrical resistivity (77), and the thermal
conductivity (k), and I is the identity matrix. The non-dimensional numbers
are defined as follows:

(3)

The characteristic variables are length (L), velocity (V), Alfven speed (VA =
B/y/HoP), kinematic viscosity (v), electrical resistivity (77), and thermal dif-
fusivity (K = k/pcp). ß0 is the permeability of free space (AT X 10~7).

For convenience, the MHD equation set [eqn(l)] is rewritten in the fol-
lowing compact form

|2 + V.?Ä = V-?PI (4)

where Q is the vector of conservative variables, Th is the tensor of hyperbolic
fluxes, and Tp is the tensor of parabolic fluxes. The forms of these vectors
and tensors can be seen from eqn(l). The hyperbolic fluxes are associated
with wave-like motion, and the parabolic fluxes are associated with diffusion-
like motion.

2.2.2 Algorithm Overview

Because of the natural differences between hyperbolic and parabolic equa-
tions, the methods for solving them are very different. Since the MHD
equations are of mixed type the hyperbolic and parabolic terms must be
handled differently. The hyperbolic fluxes are differenced by applying an
implicit, approximate Riemann algorithm that properly accounts for their
wave-like behavior. The parabolic terms are discretized by applying explicit
central differencing.

The design of the overall algorithm is primarily driven by the numerical
techniques that must be used to discretize the hyperbolic terms. Therefore,

we begin by considering the ideal MHD equations, which are obtained from
eqn(4) by setting all the parabolic terms (Tp) to zero.

In one dimension they are

9Q + dF = dQ+AdQ=0

dt dx dt dx (5)

where F is the flux vector in the x direction (i.e. Th = (F, G, H)) and A is
its Jacobian.

A'dQ

Here, Q is the vector of conserved variables:

Q = (p,pvx,pvy,pvz,By,Bz,e)

(6)

(7)

This is a set of hyperbolic equations and thus A has a complete set of real
eigenvalues given by

A = (vx, Vx ± Vfast, Vx ± Vglau,, Vx ± VAX) , (8)

where Vfast and VsZow are the fast and slow magnetosonic speeds, and VAX

is the Alfven speed based on the x component of the magnetic field. These
can be expressed as

V2 =- ' fast 9 i + Vl + \/{cl + Vlf - AclVlx (9)

V? slow Z + Vl-^{c1 + Vlf-±clVlx (10)

v2 _ Bx
ßoP

Here, cs is the ion sound speed, which for a perfect gas is

s~ p-

(11)

(12)

Information propagates along characteristics which travel at wave speeds
given by the eigenvalues. Most modern numerical techniques for solving
hyperbolic equations are based upon the idea of splitting the fluxes into

components due to left and right running waves. Then each part of the flux
can be differenced in an upwind manner, which greatly reduces numerical
oscillations and stabilizes the solutions.

It is well known that if a hyperbolic equation is solved with an explicit
scheme, then the allowable time step to maintain numerical stability is given
by the CFL (Courant-Priedrichs-Lewy) condition, which in the case of the
ID MHD equations is

At<, A* ,. (13)
\VX+ Vfasti

For the high magnetic fields and low densities common in many plasma
experiments, the fast magnetosonic speed is quite high, and thus the time
step is prohibitively small. We are often interested in only modeling the
physics that occurs slower than Alfven time scales. For example, it can be
shown that resistive tearing modes, which are important in studying fusion
plasmas, evolve on a time scale that is given by [4]

Ttearing OC S/rf5 = (Luf5 TA. (14)

TA is the Alfven time, TV is the resistive diffusion time, and Lu is the
Lundquist number, which is given by

Lu = ^- = RmAl. (15)
TA

If Lu is 106, which is typical for laboratory plasmas in fusion applications,
the resistive tearing time is approximately 4000 times larger than the Alfven
time. By treating the hyperbolic fluxes implicitly in time, the stability
restriction on the time step is removed, and the solution can be advanced at
the larger resistive tearing time step. This is our motivation for proposing
an implicit scheme.

The starting point for deriving the algorithm is the two-dimensional ideal
MHD equations in Cartesian form

dQ dF 8G n

We then discretize eqn(16) using first order Euler time differencing to get

V ° At
Jj = -Rij (Qn+l) = -Rfl (17)

where R is

Rij = -^i+l/2J ~ -Fi-1/2J + Gjj+1/2 - Gij-i/2- (18)

Note that in this equation and all that follow the grid metric terms (cell
areas and volumes) are omitted for clarity. We linearize R as follows:

^+1"^+(H)^.(Q?1-^) (19)

Substituting this expression back into eqn(17) and rearranging, we get

J_ (dR\n

^t+{dQjij
AQ£ = -R?j. (20)

Here AQ is denned as

AQn = Q^1 - Q%. (21)

The left hand side of the eqn(20) is an implicit operator operating on AQ.
It is a large banded block matrix. In three dimensions, it is an (Imax x
Jmax x Kraax) by (Imax x Jmax x Kmax) matrix, where Imax is the number of
cells in the x direction, etc. It is quite costly to invert a matrix of this size
directly. We choose to invert it using an approximate factorization, which
can be done more efficiently. When solved this way, eqn(20) is no longer
time accurate. However, we can still achieve time accuracy with this type
of scheme by adding the time derivative of Q as a source term to the right
hand side of the equation. We then have

f)n+1=-Rr-sr (22)
where

^+1 = 2Ä7 (3Q£+1 - 4Q£ + ^"0 W W (23)

The r in eqn(22) can be thought of as a pseudo time variable. At each
physical time step, eqn(22) is solved iteratively in pseudo time until the left
hand side vanishes. When the solution converges, our original equation

is solved. This technique is known as dual time-stepping. [5] Note that in
eqn(23) a more accurate time derivative can be used at the expense of the
additional memory needed to store the Q vectors from previous time steps.

One advantage of the strategy outlined above is that the implicit op-
erator and the right hand side in eqn(20) are decoupled. The structure
of the matrix no longer depends on the details of the discretization of the
right hand side fluxes. In the following sections we will describe the relax-
ation scheme that is used to iteratively invert the implicit operator and the
approximate Riemann solver that is used to form the right hand side fluxes.

2.2.3 LU-SGS Relaxation Scheme

We use the lower-upper symmetric-Gauss-Seidel (LU-SGS) method to it-
eratively invert the implicit operator. [6] To derive this method, we first
consider the following first order accurate flux-vector splitting of R (at time
level n + 1) in eqn(17):

Rio = Fij ~ F£-lj + Fi+i,j ~ Fij + Gtj ~ Gtj-i + Gi,j+1 ~ Gij (25)

where F+ is the portion of the F flux vector corresponding to right-running
waves, and F~ is the portion corresponding to left-running waves, and G+

and G~ are similarly defined. This equation is linearized to obtain

{I + At (4 - Atld + A~+1J - A-tj + B± - BJ.! + B-j+1 - ßr.) }
x AQ§ = -AtRfj

(26)

where A+ is the Jacobian of F+, and so on. We approximate these Jacobians
as

A+ = \{A + pA) (27)

A- = \{A-pA) (28)

where pA is the maximum eigenvalue (spectral radius) of A. If we then
iteratively solve this simplified implicit operator using a forward Gauss-
Seidel sweep followed by a backward sweep, the resulting algorithm can be
written as

{I + A* [(pA + PB)l- Atltj - ß+._J }
x {I + At [(PA + PB)1 + A-+1J + B~j+1] } (29)

x AQ% = - [1 + At (pA + pB)\ AtR%

The forward sweep is equivalent to inverting a lower block diagonal matrix
[the first braced term in eqn(29)], and the backward sweep is equivalent to
inverting an upper block diagonal matrix [second braced term in eqn(29)].
This structure leads naturally to several vectorization and parallelization
strategies.

If we sweep through the computational domain along lines of constant
i + j (in 2-D), each term along these lines is independent of the others and
depends only on data that has already been updated during the current
sweep. This type of fine grain parallelization is ideal for vector computers.
However, that degree of parallelism is not efficient for parallel computers
because the extra communication time between processors exchanging data
more than offsets the gain in computational efficiency. To optimize this
algorithm for a parallel architecture, we need to break up the computational
domain into blocks and send each block to a different processor. At the
boundaries between the blocks, we reduce the data dependency between the
blocks by using data from the previous time step along the block boundaries.
This effectively reduces those points into a Jacobi iteration. However, the
interior points are still solved with a Gauss-Seidel iteration. As long as
the blocks are large enough that there are many more interior points than
boundary points, then the overall convergence rate is approximately the
same as Gauss-Seidel.

2.2.4 Approximate Riemann Solver

The fluxes on the right hand side of eqn(20) are discretized using a Roe-type
approximate Riemann solver. [7] In this method the overall solution is built
upon the solutions to the Riemann problem defined by the discontinuous
jump in the solution between each pair of cells. The numerical flux for a
first-order accurate (in space) Roe-type solver is written in symmetric form
as

Fi+i/2 = \ (Fi+i + fi) - \YS ** (Gi+i - Qi) lA*l rfc (3°)

where rk is the kth right eigenvector, Afc is the absolute value of the kth

eigenvalue, and Ik is the kth left eigenvector. The values at the cell interface
(i+1/2) are obtained by a simple average of the neighboring cells. These first
order accurate upwind fluxes are used in the vicinity of sharp discontinuities
in order to suppress oscillations in the solution. We achieve a globally second
order accurate solution by using a flux limiter that modifies the first order

flux so that it uses second order central differencing in smooth portions of
the flow. We are using a minmod limiter.[8]

Once the eigenvalues and eigenvectors are obtained and properly nor-
malized to avoid singularities, it is relatively straight-forward to apply this
scheme to the one-dimensional ideal MHD equations.[9, 10] Unlike for the
Euler equations, the extension to more than one dimension is non-trivial.
The reason is that in more than one dimension, the Q vector must in-
clude Bx in addition to the other magnetic field components. (For the
one-dimensional case Bx is constant by virtue of V • B = 0). Since the j x B
force acts perpendicularly to the directions of j and B, the F flux vector
has a zero term corresponding to Bx. Thus, the Jacobian matrix of F is
singular and has a zero eigenvalue. This means we no longer have a complete
set of physically meaningful eigenvectors. Physically, we expect information
to travel either at the fluid velocity or at the fluid velocity plus or minus
the wave speeds. Simply dropping Bx from the equation set is not a viable
option, because Bx needs to change in order to maintain V • B = 0. Powell
et al., recently solved this problem by modifying the Jacobian in such a way
as to change the zero eigenvalue to vx (keeping the others unchanged), and
then adding in a source term that exactly canceled out the terms introduced
by the modified Jacobian. [11]

The source term is

&div —

P
B
v

v B

VB (31)

It is proportional to the divergence of B and thus very small.

2.2.5 General Multiblock Implementation

General multiblock grid capability has been implemented in our code. This
capability allows the application of the code to arbitrarily complex geome-
tries which is one of the primary project objectives. MACH3 also uses a
multiblock grid though not as general as the one implemented here. The
grid that spans the physical domain of interest is composed of blocks which
have a local grid. Blocks share faces with adjacent blocks thus allowing
information to pass through the whole domain. The only restriction is that
the cells on a block's face must map one to one to the cells on the adja-
cent block's face. An advantage of this approach is that the user is able to
generate highly orthogonal grids with cell aspect ratios close to unity even

Figure 1: Top view of a non-simply connected grid. (Only the block bound-
aries are shown for clarity.)

for complex geometries. This approach is readily adaptable to paralleliza-
tion by domain decomposition where the blocks are distributed among the
processors of a parallel computer.

An advantage of multiblock grids is the flexibility they provide for com-
plex geometries. This flexibility is even greater if there is no limitation to
simply-connected blocks. See Figure 1 for an example of a non-simply con-
nected block grid. This means that an arbitrary number of blocks may meet
at a block a vertex. An example of this type of grid is illustrated in Section
3.7.

The MHD algorithm is now nested within a loop over grid blocks. Logic
has been implemented in the new algorithm that allows the user to freely
distribute the blocks on processors. A static load balancing algorithm can be
implemented to distribute the blocks such that the number of cells on each
processor is approximately equal. This strategy balances the load among the
processors and makes the most efficient use of the parallel computer. The
appropriate relationship between the blocks is maintained by a connectivity
matrix. Blocks sharing a face transfer data either by simply copying if they
reside on the same processor or by message passing if they reside on different
processors.

Multiblock implementation led to memory management issues that we
solved by using Fortran 90. The most useful feature used was dynamic
memory allocation. Dynamic memory allocation allows the specification of

10

array sizes at run time and leads to a significant memory savings compared
to static memory allocation, where a maximum overall array size has to be
specified at compile time. Memory allocation issues are exacerbated in the
multiblock algorithm where blocks can have widely varying numbers of cells.
While most Fortran 77 compilers implement dynamic memory allocation,
the implementations are not standard. Using Fortran 90 we maintained the
portability of the code.

2.2.6 Second-Order Accurate Boundary Conditions

For simplicity an early version of the algorithm used first-order accurate
boundary conditions. Practically this meant that a single layer of ghost
cells were used for all boundaries. This arrangement was shown to lower
the overall accuracy of the algorithm. We have since implemented second-
order accurate boundary conditions by using two layers of ghost cells. The
second-order accurate boundary conditions ensure that our simulations are
completely independent of how the grid is decomposed.

Since the code is three dimensional the data passed between blocks is
represented as a pair of two dimensional structures. Transfer of these two
dimensional structures by message passing uses derived data types. The
Message Passing Interface (MPI) provides a set of procedures for defining
derived data types.[16] A derived data type is a template that describes how
a complex structure is built from a more basic data type. In our approach the
most basic unit of data is a cell. A cell contains the eight conserved variables
mass density (p), components of momentum (pvx, pvy, pvz), components of
magnetic field (Bx, By, Bz) and energy density (e). A cell can be thought of
as a zero dimensional data structure. A strip is a one dimensional structure
made of cells. A face is a two dimensional structure made of strips. Finally,
a double face is made of two adjacent faces. The composition of the derived
data type is illustrated in Figure 2.

Use of derived data types is more general and speeds the message trans-
fer, compared to explicitly constructing the messages. Our results show a
three to ten fold improvement in message passing time when derived data
types are used.

2.2.7 Unaligned Finite Volumes

The deficiency revealed by the spheromak simulations was corrected by re-
casting the algorithm using an unaligned finite volume formulation. Using
the identical finite formulation for the hyperbolic fluxes as for the parabolic

11

Cell

Strip

Face

Double
face

Figure 2: Hierarchy of the derived data types. The most basic derived data
structure is the cell.

fluxes is essential to achieving our objective of a fully-coupled MHD code.
The previous algorithm used a generalized coordinates approach to calcu-
late the fluxes across cell interfaces. [17] These fluxes are used to update the
solution at the next time step. The flux in generalized coordinates is

Tl = Fnl
x + GnL

y + HnL
z, (32)

where F, G and H are the fluxes in Cartesian coordinates, nx, ny and nz

are the components of the unit normal vector, and t = 1,2,3 stands for each
of the three generalized coordinates (£,77, C)- These generalized coordinates
fluxes Tl are calculated in the cells to the left and right of the interface.
The flux at the interface is obtained by averaging the two.

1 1 8

Fi+x = ^{^i + ^i+i)-^^^k\\k\rk, (33)
fc=i

where ak are the wave strengths, A^ are the wave speeds, and rk are the right
eigenvectors of the flux Jacobian. The eigenvectors and eigenvalues of the

12

Figure 3: Schematic drawing of a finite volume cell with local coordinate
systems at its interfaces. The fluxes are only needed along the X{ directions.

flux Jacobian {dF/dQ) are evaluated using average values of the conserved
variables. Presently the code uses arithmetic averages.

In the new approach, the fluxes at an interface are calculated based on a
locally aligned coordinate system. The Riemann problem is then solved at
the interface in a natural direction to generate fluxes that are automatically
orthogonal to the interface. A divergence theorem can now be applied to
the finite volume cell to calculate the change in the conserved variables. See
Figure 3 for an illustration of the local coordinate systems. The unaligned
finite volume methods is exactly the same method that has already been
implemented for the calculation of the parabolic fluxes. Using the same
approach for the hyperbolic fluxes will make the code consistent.

We locally rotate the coordinate system such that one axis is normal
to the interface. The Riemann problem is solved along the axis normal to
the face. The rotation is kept consistent by performing a two step rotations
about the Cartesian coordinates. We calculate the angles between each of
the original axes (x°, y°, z°) and the normal to the face. The axis corre-
sponding to the minimum angle is aligned with the normal. For example,
if x° is to be aligned with the normal then the first rotation is about the
z° axis with an angle 6\. The second rotation is about y', with an angle
02, which aligns the coordinate system with the interface normal. The new

13

"V

z'=z
A

n

0.

y

Y
X'

y^y

Figure 4: Rotation of a cell coordinate system that aligns x° with the normal
to the cell face h.

coordinate axes are {x\, y\, z\). For this case the angles are

n„
B\ — atari—2-,

nx
62 — —atari

nz

and the rotation matrices are

Ri(0i)
cos9\ —sinöi 0
sindi cos9\ 0

0 0 1
-R2(#2

y/nl + n\

COS62 0 sin&2
0 1 0

—sm$2 0 COSÖ2

(34)

(35)

The rotation is illustrated in Figure 4.
Once the components of the vector fields (v and B) are rotated the

Riemann problem is solved and the flux along the normal to the face is
calculated. Then the conserved variables are updated and the vector fields
are rotated back to the original Cartesian coordinate system.

Since the rotation matrices are orthogonal their inverses are equal to
their transposes (R~l = RT) so that the extra work to be performed by
the algorithm at each cell is minimal (27 floating point operations). This
method is currently implemented and is being tested.

2.2.8 Parabolic MHD Terms

To this point we have only considered the hyperbolic terms. When finite
viscousity and resistivity are included, the parabolic terms of the MHD
equations [right hand side of eqn(l)] become important. For reasonably large
values of Re and Rm (easily in the range of interest for most applications),
the parabolic terms can be differenced explicitly without constraining the
allowable time step. In this work we difference the parabolic terms explicitly
in time with central differences in space. They are added to the right hand
side fluxes arising from the approximate Riemann solver.

14

(a) (b)

Figure 5: Positioning for (a) vertex-centered and (b) face-centered parabolic
fluxes. The face-centered fluxes produced more accurate and stable solu-
tions.

During the past year, we have spent a concerted effort on the parabolic
terms to achieve accurate and stable calculations. Originally we used the
same flux centering scheme that is used in MACH3 where the fluxes are
calculated at the cell vertices and a divergence law is applied around the
cell center. See Figure 5(a). A detailed stability analysis demonstrates the
potential for grid decoupling and a resulting odd-even instability. [This re-
sult has important implications to all ALE (arbitrary Lagrangian-Eulerian)
codes and will soon be submitted to a journal.] Locating the parabolic
fluxes at the cell faces which corresponds to the location of the hyperbolic
fluxes produced solutions that converged faster and were more accurate than
locating the parabolic fluxes at the cell vertices. See Figure 5(b).

We also point out that the resistive electric field term in eqn(l) is differ-
ent than the one commonly used and presented last year V-f?-VB which does
not hold for spatially dependent anisotropic resistivity. Plasma resistivity
is a strong function of temperature and of the orientation to the magnetic
field. Therefore, the assumption of spatially constant isotropic resistivity is
incorrect. The new term reduces from the conservative formulation of the
more general equation.

fdVVx (r?-VxB)= idSx (f-VxB)= fdVV-E= I dS-E

(36)

15

where the transverse resistive electric field tensor is defined as

0 rjz {dxBy - dyBx) r)y (dxBz - dzBx) '
r]z(dyBx-dxBy) 0 Vx(dyBz-dzBy) (37)
Vy(dzBx-dxBz) r}x(dzBy-dyBz) 0

The dimensionless numbers have been removed for clarity.

3 Benchmarks and Applications

3.1 Ideal MHD Test Problems

3.1.1 One-Dimensional Coplanar MHD Riemann Problem

This test problem served to validate the approximate Riemann solver, be-
cause the computed solution could be checked against the exact analytical
solution. For the one-dimensional ideal MHD equations (variations in x
only), the equation for Bx reduces to Bx is constant and drops from the
equation set, eliminating the zero eigenvalue in this case. The coplanar MHD
equations are obtained from the full one-dimensional ideal MHD equations
by setting Bz and vz to zero, thus allowing only planar flow and fields. This
eliminates the vx ± VAX eigenvalues, leaving a system of five equations with
five eigenvalues. Mathematically, the Riemann problem is an initial bound-
ary value problem in which there is initially a discontinuity in the data such
that the left half of the domain is at one state and the right half of the
domain is at another state. As the solution evolves in time, shock waves
and rarefaction waves form and travel at speeds related to the wave speeds
of the system. Although not physically realizable in plasmas, this problem
is analogous to a shock tube in hydrodynamics.

For the full five-wave case, there is not a closed form analytical solution.
Instead, the solution must be checked by calculating generalized Riemann
invariants across the rarefaction waves and Rankine-Hugoniot jump condi-
tions across the shock waves. Since this has already been done by Brio and
Wu[9] for a specific set of conditions, for our test case we used the same
initial conditions as they used in order to allow direct comparison with their
published solution. The initial left state was p — 1, p = 1, and By — 1. The
initial right state was p — 0.1, p = 0.125, and By = — 1. The velocities were
zero and Bx was 0.75. Figure 6 shows the initial density distribution and
its numerical solution after 400 time steps on an 800 point grid with a CFL
number of 0.8. Figure 7 is the corresponding plot of the transverse magnetic
field (By). The solution was computed using explicit time-stepping. The so-
lution clearly shows five waves formed corresponding to the five eigenvalues.

16

Solution after 400 time steps

Figure 6: Numerical solution of coplanar Riemann problem. Density profile
is shown initially and after solution has evolved for 400 time steps.

They are a fast rarefaction wave, a slow shock, a contact surface moving to
the right, a slow compound wave (rarefaction and shock), and a fast rar-
efaction wave moving to the left. Note that the numerical method is able
to resolve the shocks over a few grid points without introducing numerical
oscillations. This is one of the advantages of the flux splitting approach
we have used. The computed solution overlaid exactly on Brio and Wu's
published solution.

If we set Bx = 0 above, then the problem reduces to a hydrodynamic
shock tube problem if one replaces the thermodynamic pressure by the sum
of the thermodynamic and magnetic pressures. For this case one can find a
closed form exact solution to compare to the calculated solution. Figure 8
shows both the calculated and the exact solution for p + B2/2 after 80 time
steps on a 100 point grid. There is very good agreement with the plateau
values and the shock is resolved in a few cells without numerical oscillations.

17

Initial State

0.5

CG o.o

-0.5

t,0 .
02 0J

Solution after 400 time steps

a* a«

Figure 7: Numerical solution of coplanar Riemann problem. Transverse
magnetic field profile is shown initially and after solution has evolved for
400 time steps.

3.1.2 Oblique Shock

This steady-state problem served primarily as a test of the LU-SGS implicit
relaxation scheme. It also allowed us to examine the divergence of B at each
point to ensure that the the zero eigenvalue fix was correctly implemented.

The geometry for these tests is shown in Figure 9. A super-Alfvenic flow
(Mach number of 3) impinges on a perfectly conducting plate at an angle
of 25 degrees. In addition, a vertical field of By — 0.2 is imposed at the
left boundary. Since the plate is perfectly conducting, the component of the
magnetic field normal to the plate is held at zero.

Figure 10 shows the steady-state solution of this problem. Contours of
density and magnetic field lines are plotted. The density contours show
that an oblique shock forms, as expected. Outside of the shock, the field
is convected in from the boundary. At the shock, the field lines bend due
to the change in direction of the flow at the shock. Finally, the field lines
bend at the conducting wall as all the field is converted to Bx to satisfy the
boundary condition while keeping the divergence of B equal to zero. We

18

Solution after 80 time steps

m

. calculated

. exact

02 0.4 0.6 0.B 1.0

X

Figure 8: Comparison of numerical and exact solution of coplanar Riemann
problem for Bx = 0 case.

verified that the divergence was less than 10~14 throughout the domain.
This two-dimensional steady-state solution was obtained with explicit

time stepping at a CFL number of 0.8 and with the LU-SGS implicit relax-
ation scheme at an infinite CFL number (approximate Newton iteration).
Figure 11 is a plot of the logarithm of the two-norm of the residual of the en-
ergy equation as a function of the number of iterations. The implicit scheme
converged to 10-14 in about 150 iterations, whereas the explicit scheme re-
quired about 700 iterations. This is an acceleration factor of about 4.5 for
the implicit scheme. Higher acceleration factors can be achieved for finer
grids.

3.2 Viscous and Resistive MHD Test Problems

The viscous and resistive terms in the MHD equations comprise the right
hand side of the equality in eqn(l). The addition of these terms to the

19

M = 3

conducting wall, By = 0

Figure 9: Geometry of oblique shock test problem.

Figure 10: Density contours and field lines for an M = 3 flow impinging on
a perfectly conducting plate at an angle of 25 degrees.

algorithm involved the modification of the R vector in eqn(20).

-R -» -R + V ■ fp (38)

The R vector is updated with each iteration to produce a solution that is
fully coupled.

Using the divergence form of the parabolic terms reduces the differencing
errors of the method. To preserve the accuracy on irregular meshes the
derivatives are computed using a finite volume method.

The validation of the parabolic terms consisted of applying the code to
a suite of test problems with known analytical solutions. We validated in-
dependently the terms associated with viscosity and those associated with

20

explicit

iterations

Figure 11: Logarithm of the two-norm of the energy equation residual plot-
ted as a function of iteration number for explicit and implicit solutions of
channel flow with horizontal velocity and vertical magnetic field imposed at
the left boundary.

resistivity and then the combined effect of all of the terms. The test prob-
lems were: (1) fully developed laminar flow between two parallel plates, (2)
magnetic field generated by a constant current density, and (3) Hartmann
flow. All of these test problems were run until a steady-state solution devel-
oped. The capability of the code to capture time-dependent physical effects
was also tested by modeling the exponential resistive decay of the magnetic
field generated in test problem 2.

3.2.1 Laminar Flow

We benchmarked the code to two types of laminar flows between infinite par-
allel plates. The plates restrict the steady-state flow to be one-dimensional.
No magnetic fields are present. This reduces the MHD equations to the
Navier-Stokes equations. In these simulations a no-slip boundary condition
was applied to the fluid in contact with the plates.

The first type of flow to which we benchmarked was viscous flow gen-
erated by one plate moving relative to the other plate. With no pressure
gradient, constant viscosity, and incompressible flow, the equations reduce
to

(Re)-1 V • f = (Rey1 V2vx = 0 (39)

which is Laplace's equation. For finite viscosity (Re) the analytical solution

21

1.0 !l_ ' .

 >^

0.5
-j —^>

 -J* -j*

->

-0 5 0.0 0.5 1.0 1

Figure 12: Simulation of laminar flow between parallel plates in the presense
of a constant pressure gradient. The velocity profile is parabolic as expected
from the analytical solution.

for the flow velocity is

vx(y) = Vo (l - |) + VL (40)

0 and VL is the velocity of the where Vo is the velocity of the plate at y
plate at y = L.

The errors between the analytical solution and the code generated so-
lution were below 10-9 (the two-norm of the error between the solutions).
We performed the same simulation with no viscosity (Re —► oo). As would
be expected, the flow velocity vanished everywhere except on the plates.
When the viscous heating was modeled, a transient pressure gradient p(y)
and transverse velocity vy(y) developed which heated the flow and increased
its energy.

The next test was laminar flow between stationary parallel plates with
a constant pressure gradient in the flow direction. The governing equation
is

dp w dx = {Re)' vV
The solution for this flow is the parabolic equation given by

dp (y\ (L-y *<»>-<*>£(!) 2L

(41)

(42)

Figure 12 shows the solution generated by the code. Again the errors
were reduced to below 10-9.

22

3.2.2 Resistive Diffusion

We benchmarked the resistive diffusion to a current sheet with a uniform
current density. Values of the tangential magnetic field were specified at
parallel infinite plates, in a similar way as the first of the laminar flow
simulations.

For no flow velocity and constant resistivity the MHD equations reduce
to a Laplace equation similar to eqn(39).

(Rm)-1 V • VB = 0 (43)

This equation has the same form for its solution as eqn(40).

Bx(y) = B0(l-±)+BLl (44)

where Bo is the velocity of the plate at y = 0 and BL is the velocity of the
plate at y = L.

The code agreed with the analytical solution to within errors of 10~9.
The time-dependent resistive decay of a magnetic field can be represented

analytically by solving the one-dimensional transverse magnetic induction
equation with constant resistivity.

■ dB± m ,-1d
2B±

The solution is the exponential decay of the magnetic field with a sinusoidal
profile.

B±(t,x) oc exp I — ——) sin(7rx) (46)
\ Rm J

for zero field boundary conditions at x = 0 and x = 1.
This simulation was performed beginning with a uniform field profile.

The field decayed into the expected sinusoidal shape and the decay constant
agreed with the analytical result to within 0.01%. The same test was re-
peated on a parabolic clustered grid with &.xmax/'Axmin = 10. The same
accuracy was achieved.

3.2.3 Hartmann Flow

Hartmann flow combines the effects of viscosity and resistivity. The problem
geometry is the same as that for the laminar flow with the addition of a

23

*vL

Vo

Figure 13: The Hartmann flow geometry showing the moving parallel plates
and the cross magnetic field.

magnetic field that is normal to the plates, in the y direction. See Figure 13
for an illustration.

The governing equations for the Hartmann flow can be found by com-
bining the magnetic field and momentum equations from the MHD model.
As before there will only be flow in the x direction. However, an applied
electric field in the z direction must be included since it can generate an
E0 x B0 flow in the x direction. The Hartmann flow is described by the
differential equation,

dy2

IP
L2 vx +

Eo
B0

0,

where the Hartmann number is defined as

H = JfeL = AlLVReRm.

The analytical solution to the Hartmann flow is

sinh(ff(l-y/L)) smh(Hy/L)
vx{y) = Vo _._i_,rTN 1- KL

(47)

(48)

Eo
B0

sinh(tf)
sinh(iJ(l

sinh(tf)
y/L)) + smh(Hy/L)
sinh(tf)

(49)

where the same no-slip boundary conditions have been applied. In the
limit of no magnetic field, the solution reduces to the laminar flow solu-
tion, eqn(40).

The response of the magnetic field can be determined by solving the
magnetic field equation for the field component that will be "dragged" with

24

Figure 14: Hartmann flow simulation with H = 104. Flow velocity vectors
and magnetic field lines are shown. The velocity of the flow is zero every-
where except at the plates. The magnetic field lines have a constant slope
through the domain.

the flow. This magnetic field is described by

- (Rm) (vx + -£■
dBx

dy v""v V* ' B0/

Using the flow solution of eqn(49), the solution for Bx is

Bx(y)
Rm\ fVL-V0

H
cosh(#/2) - cosh(H(L - 2y)/2L)

sinh(H/2)

(50)

(51)

The boundary conditions are that Bx vanishes at the plates and the net
current is zero. The first boundary condition may seem arbitrary, but it is
consistent with the no-slip boundary condition applied to the flow solution.
The second boundary condition relates the applied electric field, E0, and the
plate velocities.

Eo
Bo

Vo + VL (52)

Since the MHD equation set does not allow for an applied electric field, VQ

is set to — Vx,, so that E0 = 0.
We performed simulations for large, small, and intermediate Hartmann

numbers, H.

25

Figure 15: Hartmann flow simulation with H = 0.1. Flow velocity vectors
and magnetic field lines are shown. The velocity profile is linear and the
magnetic field lines have an "S" shape caused by the bulk fluid flow.

For a large Hartmann number, the effects of viscosity and resistivity are
small, and the solution approaches that of ideal MHD. The flow velocity
vanishes everywhere except on the plates, like it does for the inviscid case
(Re —> oo). The magnetic field is frozen into the plates and develops a
slope (constant Bx) as the plates move. The slope of the magnetic field is
determined by the value of H (the field lines slip through the plates due
to resistivity). The slope of the magnetic field lines (B0/Bx) is constant
at H/Rm. Figure 14 shows the results from simulation with H = 104. A
finite value of the flow velocity exists only at the plates. The magnetic field
lines are straight except at the plates where Bx is forced to vanish because
of the boundary conditions. For clarity the slope of the magnetic field has
been normalized to unity at the midplane between the plates for all of the
Hartmann flow simulations.

The limiting case of small Hartmann number is characterized by a flow
that is dominated by viscous effects and a magnetic field that responds to
the bulk fluid flow and the large resistivity. The flow velocity varies linearly
from the velocity of the top plate to the velocity of the bottom plate, as
described by eqn(40). The magnetic field diffuses through the plate and
the bulk fluid, but the fluid drags the field lines along with the flow. This
produces a swayed "S" shape to the field lines with a peak magnetic field
at the midplane. Since the slope of the field lines is inversely proportional
to the magnitude of Bx, the peak in the magnetic field corresponds to the

26

Figure 16: Hartmann flow simulation with H = 10. Flow velocity vectors
and magnetic field lines are shown. The flow velocity only exists close to
the plates. The magnetic field lines are linear around the midplane.

field lines with the minimum slope (most horizontal). The minimum slope
is A/Rm. The simulation results for H = 0.1 are shown in Figure 15. Notice
the linear velocity profile and the swayed magnetic field lines.

Flows with Hartmann numbers in the intermediate ranges have solutions
which exhibit characteristics of both of the limiting cases. The flow velocity
falls to zero away from the boundaries in a scale length of L/H. This
scale length is an appreciable fraction of the domain. The magnetic field is
influenced by the motion of the plates and the fluid flow. The magnetic field
has a swayed shape close to the plates and is linear around the midplane.
Away from the boundaries (L/H < y < L—L/H), the value of Bx is constant
at B0Rm/H. Figure 16 shows the results from a simulation with H — 10.
The velocity profile falls to zero around the midplane. The magnetic field
lines have a swayed shape like those in Figure 15 but not as dramatic, and
they are linear around the midplane.

All of the Hartmann flow simulations converged to the analytical solution
to within errors of 10~6.

3.3 MPD Plasma Thruster

The magnetoplasmadynamic (MPD) thruster is an electric propulsion device
for spacecraft. Electrical propulsion is a technological field that is impor-
tant to the Air Force and industry for satellite station keeping and orbital
maneuvering. This problem demonstrates the dual time-stepping algorithm,

27

,Conduc"tinc
/piotes

Figure 17: Geometry of the two-dimensional MPD thruster.

which allows flexible choice of time steps so that fast and slow transients
can be tracked accurately and efficiently. This is also the first problem that
exercises all of the parts of the new algorithm (the approximate Riemann
solver, the LU-SGS relaxation scheme, the resistive and viscous terms, and
the dual time-stepping) simultaneously. The problem geometry is shown
in Figure 17. A current is applied across the left boundary. This current
creates a magnetic field in the z direction that in turn leads to a j x B force
that accelerates the plasma to the right. We expect that the plasma initially
in the domain will be accelerated up to some exit velocity on a fast time
scale related to the Alfven time. However, if there is a finite resistivity in
the plasma, the magnetic field and current at the left boundary will diffuse
into the domain on a slower time scale related to the resistive diffusion time.
Ideally, one would like to take small time steps initially to follow the fast
transient, and then switch to a much larger time step when the system is
evolving more slowly.

If there is no viscosity, then the problem becomes one-dimensional in x,
which is to the right in Figure 17. For this problem we chose a Lundquist
number of 100, a reference magnetic field of 1 Tesla, a reference density
of 10-5 kg/m3, a reference length of 10 cm, and an imposed current of
30 kA. Figure 18 shows the plasma velocity as a function of x at several
different times (normalized to the Alfven time). The top plot shows the
results of an explicit time-differencing simulation with a CFL number of
1. This simulation took 2600 time steps to advance the solution to t =
10.17. Notice that between 3 and 5 Alfven times, the velocity reaches a

28

Explicit Time Differencing, CFL No. = 1

0.00020 Pseudo Time Iterations, CFL No. = 100

0.00015

5
3

0.00005

t = 7.53
 t = 10.17

x/L

Figure 18: Plasma velocity as a function of x and time for explicit time
differencing simulation and dual time-stepping (implicit) simulation.

constant uniform value along the length of the domain. The bottom plot is
a simulation in which a CFL number of 1 was used until t = 1.5, at which
point the CFL number was increased to 100 and the dual time-stepping
implicit method was used to maintain stability. At each physical time step
it took about 30 pseudo-time steps to converge, so the overall number of
iterations was reduced to 1090 for the dual time-stepping case. The plots
look similar to the explicit time-stepping results, except that the end of
the fast transient is filtered out by taking such large time steps. On the
other hand, Figure 19 shows that the magnetic field, which evolves on the
slower resistive diffusion time scale, is captured equally well by the explicit
and implicit schemes. The development of the plasma velocity and internal
magnetic field can be seen in Figures 20 and 21.

29

Explicit Time Differencing, CFL No. = 1

t = 1.5
t = 2.63
t = 5.27
1 = 7.53
t = 10.17

<?.■

x/L

Pseudo Time Iterations, CFL No. = 100

t = 1.5
1 = 2.63
t = 5.27
t = 7.53
t = 10.17

x/L

Figure 19: Magnetic field as a function of x and time for explicit time
differencing simulation and dual time-stepping (implicit) simulation.

3.4 Magnetic Reconnection

In this application we present results demonstrating agreement between the-
oretical linear growth rates of the resistive instability in a sheet pinch and
our non-linear resistive MHD code. We study resistive instabilities because
they are a likely candidate for driving magnetic relaxation in the Helic-
ity Injected Tokamak (HIT). The planar sheet pinch is a well understood
connguration[12, 13, 14, 15] and provides a good test problem and bench-
mark for our MHD code.

We present the linear analysis of the sheet pinch.[13, 14] The linear
equations are solved numerically to obtain the eigenmodes. The eigenvalues
(growth rates) are compared with the analytical theory. [12] We then present
the nonlinear analysis where our implicit MHD code is applied. A pertur-
bation is initialized in the MHD code. The instability resulting from the
perturbation is allowed to develop and finally saturates due to non-linear

30

Plasma Gun Simulation - Velocity Vector Plot

Applied current: la = 30,000

'Reservoir1 density: pr= 10

Ud = 5

Processor grid: 4x8

Grid size: 400 x 80

1.0

0.5

|—m— 1—3— i—a— i—m—m—g—|—m—s—=§— |—3
I—§—I—§— 1—a—I—Ü— 1—S-1—g—5 g §—M

Figure 20: Velocity vectors for the MPD thruster. The plasma is accelerated
down the gun by the I x B force and a boundary layer develops. The internal
blocks illustrate the decomposition of the domain used for the validation of
the parallel version of the code.

effects. The initially linear growth rate agrees with linear analysis.

3.4.1 Problem Description

We study the resistive instability in a planar sheet pinch, the symmetric
tearing mode in a finite-thickness current sheet. See Figure 22 for schematic
representation. For simplicity we examine the mode with the wave vector
parallel to the equilibrium magnetic field.

We define

k\\Bn

FS^=tanh(?9
Bref

(53)

(54)

31

Plasma Gun Simulation - Bz Contour Plot

Applied current: I, = 30,000

'Reservoir1 density: pr= 10

L/d = 5

Processor grid: 4x8

Grid size: 400 x 80

bz

0.04

0.0362

0.0324

0.0286

0.0248

0.021

0.0172
0.0134

0.0096

0.0058

0.002

BSC .
RMS
BS.V:'

p*
fef j . . , i . . i i i . . t , .

Figure 21: Magnetic field (Bz) contours for the MPD thruster. The gradient
in the magnetic field produces the force applied to the plasma.

where a is the characteristic width of the current sheet. The resistivity of
the current sheet is

V
Vref

cosh' © (55)

which satisfies the equilibrium induction equation with no flow. The resis-
tivity has a minimum in the middle of the current sheet (y = 0), and the
magnetic field vanishes at y = 0 and is positive for y > 0 and negative for
y < 0. See Figure 23 for the equilibrium profiles.

3.4.2 Linear Analysis

For the linear analysis, we begin with the incompressible, resistive MHD
equations. We assume a variation of the perturbations of the form

f = f(v,t)e ikx (56)

32

Figure 22: Schematic of planar sheet pinch problem [from H. P. Furth,
Phys. Fluids 28(6), 1595 (1985)].

The perturbation equations yield a pair of coupled, linear differential equations. [14]

dt 771 dy2 azm - Fw (57)

d (d2 uw
a2w) = a2Lu2

dt \dy2 " ™) " •""■ |* ydy2

where Lu is the Lundquist number and

Byl

F (£?-»•»

* =
#0

d2F
ay2 $ (58)

(59)

tu = —ikrrvxi (60)

a = /ca (61)

rr = LUT^I (62)

This coupled pair of PDE's are solved numerically using an implicit finite
difference formulation. The eigenfunctions for Lu = 103 and a = 0.5 are

33

Figure 23: Equilibrium profiles of normalized magnetic field and resistivity.

shown in Figure 24. The growth rates have also been found analytically. [12]
For the pure symmetric tearing mode the growth rate is given by

7 = 0.954(1-a2)4/5(^)2/5- (63)

For values of Lu greater than 500, the numerically calculated and analytical
linear growth rates agree to within a few percent.

3.4.3 Non-Linear Analysis

A planar current sheet is initialized in the code, and a perturbation of the
same form as the linear eigenfunction is superimposed. The growth rate is
determined from the amount of reconnected flux at y = 0. The evolution
of the non-linear perturbation is shown in Figure 25. The result from the
linear analysis is also shown. The non-linear growth matches the linear
prediction during early development of the instability, but during late time
the instability saturates due to non-linear effects. Magnetic flux contours
are shown in Figure 26 which show the magnetic island formation of the
non-linear instability.

3.5 HIT Injector

One of the first applications for the new code will be to simulate the HIT
experiment. The experiment is shown schematically in Figure 27. The

34

«p

w

Figure 24: The eigenfunctions for Lu = 103 and a = 0.5.

geometry is toroidal, but only a single slice in the poloidal plane is pictured.
HIT is a low aspect ratio tokamak that uses helicity injection to produce
toroidal current. Gas is puffed into the injector and then a series of capacitor
banks are discharged across the electrodes to form the plasma and interact
with the applied magnetic fields to push the plasma into the confinement
region, where the tokamak plasma is formed. The full simulation will require
three-dimensional, multiblock capability, which the code does not yet have.
However, the injector portion of the experiment can be modeled as a single
block.

For the first simulation we made the further simplification of solving
the two-dimensional problem rather than the true cylindrical problem. We
chose an initial poloidal bias field that is uniform throughout the injector
with By = 0.00IT and Bx = 0, where the x direction is up (toward the con-
finement region) in Figure 27. The initial toroidal (out of plane) field was
zero in this case, and a current of 30kA was applied across the electrodes
(at the bottom boundary in Figure 27). Plasma was placed at the bottom
boundary with a density ten times higher than the initial background den-
sity. The Lundquist number was 1000. A grid with 44 cells in the x direction
and 12 points in the y direction was used.

The results of the simulation after ten Alfven times are shown in Figure
28. Contours of density and the in-plane magnetic field lines are plotted.

35

Linear.-'

20 25

Time

Figure 25: The linear and non-linear evolution of the reconnected flux.

The current at the left boundary (x = 0) induces out-of-plane magnetic field
that results in a j x B force that brings in plasma from the left and pushes
the plasma to the right (in the x direction) towards the confinement region.
The contours of density show the higher density plasma being carried into
the domain. In addition, the initially straight field lines are stretched as
the plasma flows across them. However, the density contours do not overlay
with the field lines as they would in the limit of zero resistivity. This is
consistent with the relatively low Lundquist number for this simulation.

3.6 Three-Dimensional Magnetic Relaxation

We have performed a preliminary study of three-dimensional magnetic re-
laxation in toroidal configurations using the code. These configurations are
similar to the previous compact toroid experiment (MARAUDER) at the
Phillips Laboratory. [18] The major exception is that the geometry used here
is a toroid with a square cross section and smaller aspect ratio. An article
describing this application will be published by the Maui High Performance
Computing Center (MHPCC) as a HPC Success Story.

The plasma is initialized with uniform density and pressure and a core of
purely toroidal field surrounded by purely poloidal field. This corresponds to
a current sheet around the toroidal field. The fields strengths are adjusted so
the forces balance at the current sheet. In toroidal coordinates, the toroidal

36

Figure 26: Flux contours of the developed non-linear instability.

field is

and the poloidal field is

Bt = Bo-ß,

B
P

=

B° \ R

Ro\ (To
(7)

(64)

(65)

where R is the major radius, r is the minor radius, and B0 is maximum mag-
netic field value. Because the plasma geometry has a square cross section,
the poloidal field beyond r = a/2 was set to zero to satisfy the divergence-
free condition on the magnetic field.

We know the final plasma configuration based on energy minimization.
This configuration is called a Taylor state.[19] Taylor theorized that the
magnetic field will rearrange or relax through tearing and reconnection to
arrive at the lowest energy state while maintaining the total magnetic helic-
ity. Helicity is the amount of magnetic flux linkage. For this geometry, the
Taylor state has an analytical form.

-Dr — t-so^z Jl(ÄV Ji(A)
Yi(A)

Yi(fcrr) cos{kzz) (66)

37

C.L.

Figure 27: Schematic of the HIT plasma experiment.

Be = Bo^Jkt + kl Ji(krr)-^Y1(krr) sin(kzz) (67)

Dz — LJQKT Jo(krr) Ji(A)
Yi(A)

Y0(M sm(kzz) (68)

where Jm and Ym are the ordinary Bessel functions, and kr, kz, and A are
chosen to satisfy the boundary conditions.

While Taylor's theory agrees with most experimental data, the mecha-
nism for relaxation is not understood. If the relaxation involves global tear-
ing and reconnection, the process may destroy the plasma. The simulations
that we performed are providing great insight into the exact mechanisms
and their dependence on the magnetic Reynolds number.

The simulation results for a compact toroid with a magnetic Reynolds
number of 104 and an aspect ratio of 1.5 are shown in Figure 29 after the
plasma has evolved for 10 Alfven transit times. The formation of a toroidal
perturbation with a primary mode number of 3 can be seen in the contours of
the poloidal flux. Furthermore, the mode is localized on a magnetic surface
(q = 1). Interestingly the perturbation saturates and does not destroy the
plasma. This mode is a strong candidate for the mechanism responsible for
magnetic relaxation.

38

density

Figure 28: Results of two-dimensional simulation of HIT injector,
shows density contours and poloidal magnetic field lines.

Plot

When the magnetic Reynolds number is decreased, the toroidal mode
structure weakens and the simulations are almost axisymmetric. This be-
havior is due to the larger resistive diffusion that occurs at the lower mag-
netic Reynolds numbers. Instead of magnetic tearing and reconnection,
the magnetic fields merely diffuse through each other in a symmetric man-
ner. Results are shown in Figure 30 for a compact toroid with a magnetic
Reynolds number of 103 and an aspect ratio of 1.5. The results corresponds
to the parameters of a cold plasma.

Other simulations were performed at larger aspect ratios. The larger
aspect ratios simulations showed a similar mode structure but with a higher
toroidal mode number. This phenomena is still under investigation and will
be submitted for publication.

3.7 Nonlinear Tilt Instability in the Spheromak

There is a renewed interest in "alternative" plasma confinement concepts.
One of these concepts is the spheromak which is a toroidal plasma confine-
ment concept where no materials such vacuum vessels or magnetic field coils
link the toroid. [20] Spheromaks were first studied by astrophysicists. They
are interesting since they are force-free, simple structures with closed flux

39

Figure 29: Contours of poloidal flux showing the toroidal mode structure of
a relaxing compact toroid with a magnetic Reynolds number of 104 after 10
Alfven transit times.

surfaces towards which space plasmas tend to evolve.
Plasma stability is a major issue for spheromaks. Stability of spheromaks

has been first studied by Rosenbluth and Bussac in a spherical configuration. [21]
Using linear theory for a force-free equilibrium (j = AB, where A is indepen-
dent of position), they showed that an oblate spheromak is stable against
all internal modes if surrounded by a closed fitting conducting shell. The
plasma is unstable if the boundary is prolate.

Finn and Manheimer[22] and Bondeson et a/., [23] studied the tilt in-
stability of spheromaks in a cylindrical geometry. The tilt instability is a
relaxation to a minimum energy state during which the magnetic axis of the
spheromak tilts. In both papers cited above the authors used linear theory
and found that for aspect ratios (L/R) less than 1.67 the spheromaks in
cylindrical geometry are stable to tilt. However, some experiments showed
that oblate spheromaks still tilted. [24]

The goals of our study were to validate the code against theoretical and
experimental results obtained for a tilting prolate spheromak and under-
stand why oblate spheromaks tilt.[25] To test our code we tried to match
the growth rate obtained with a linear stability code described by Shumlak
et al.[26] A small perturbation to the spheromak equilibrium should grow

40

Figure 30: Contours of poloidal flux showing only a weak toroidal mode
structure for a relaxing compact toroid with a magnetic Reynolds number
of 103 after 10 Alfven transit times.

initially at the linear growth rate. Eventually nonlinear effects would satu-
rate the growth of the mode.

For our simulation we selected an aspect ratio L/R = 3 where linear
theory showed that the growth rate is maximum for spheromaks with ß
between 0 and 6% where ß = R

pma% x 100%. The normalized growth
rate obtained was JTA — 0.20015.

The nonlinear simulation with our code used a non-simply connected
grid made of ten blocks, each with 15 x 15 x 20 cells. (See Figure 31.) This
particular type of grid was chosen since it has only four pairs of cells with
high aspect ratio. Alternative grid options are a pie slice grid which has high
aspect ratio cells all around the circumference and has a singular point at
the axis and a distorted square grid which has high aspect ratio cells around
the circumference. These alternative grids are shown in Figure 32.

The initial magnetic field is obtained from the force-free equilibrium.

BT — — kzJi(krr) cos(kzz)

Bg — AoJi(Avr) sin(/c2z)

Bz = fcrJo(A;T.r) sm{kzz)

where krR — 3.832, kzL = 7r and Ao = \Jk^. + k\. Uniform density and
pressure profiles are initialized to give ß — 8%. The initial perturbation is

41

Figure 31: The ten block grid used for the spheromak simulation. Some of
the blocks has been removed for illustration.

the velocity field obtained from the linear code and interpolated to the three
dimensional grid. Figure 33 shows the initial velocity field.

Our first goal was to match the growth rate obtained from the linear
code at early time. Since our code is nonlinear, the size of the initial per-
turbation is critical. We found that if the initial perturbation is too large
(vmax > 12%VA) then the spheromak structure is destroyed. If the ini-
tial perturbation is too small the algorithm produces flows which are larger
than the initial perturbation. These spurious flows were the result of the
generalized coordinate formulation which are being corrected by using the
unaligned finite volume formulation described in Section 2.2.7.

For an initial perturbation of v^x = 5.5%v^ the spheromak tilts and
gives encouraging results as shown in Figure 34. When the tilt instability
saturates, the plasma axis is not perpendicular to its original orientation.
The final state is oriented so that the plasma has expanded into the corners
of the flux conserver which further minimizes the magnetic energy. Figure 35
shows the growth of the kinetic energy with time. The linear growth rate has

42

Figure 32: Two alternate grids that can be used for simulations of cylindrical
configurations, (a) The pie slice grid has large aspect ratio cells along
circumference and a singularity at the axis, (b) The distorted square grid
has high aspect ratio cells along the circumference.

also been plotted for comparison. The rate of growth is limited by the linear
growth rate as expected. The initial decrease in kinetic energy is related to
the spurious flow produced by the generalized coordinate formulation.

3.8 MPD Plasma Thruster

A plasma thruster uses the j x B body force to accelerate the plasma. Ad-
vantages of this type of thrusters over chemical thrusters are a higher specific
impulse and higher efficiency. The higher specific impulse leads to savings
in propellant mass for a mission with a specified AV.

We have studied the magnetoplasmadynamic (MPD) plasma thrusters.
Our goal is to validate the code against computational and experimental
results of Sleziöna er al. [27] and to improve the thruster design.

We have studied channel MPD thrusters successfully during tests of our
code. The current work modeled the more realistic annular MPD thrusters.
In an annular MPD thruster a current is driven through the plasma radially
by coaxial electrodes (the anode is at the larger radius). The self-generated
magnetic field and the current give the j x B force that accelerate the plasma.

A Hall plasma thruster also has a coaxial configuration. A radial mag-
netic field and an axial electric field are applied which produces an azimuthal
current by the Hall Effect. The Hall current is created by electron drifting
azimuthally at a high speed. The electrons ionize the injected gas propellant
to form a plasma. Then the Hall current interacts with the radial magnetic
field to accelerate the plasma axially.

43

_D

Wt

1.72E-02
1.54E-02
1.36E-02
1.18E-02
9.97E-03
8.16E-03
6.35E-03
4.53E-03
2.72E-03
9.Ö6E-04

-9.06E-04
-2.72E-03
-4.53E-03
-6.35E-03
-8.16E-03
-9.97E-03
-1.18E-02
-1.36E-02
-1.54E-02
-1.72E-02

Figure 33: Initial velocity field. Contours represent the magnitude of the
toroidal velocity component and the vectors represent the poloidal velocity.
Velocity field is normalized with respect to the Alfven speed.

Our simulation uses a grid composed of four blocks (see Figure 36) in
an axisymmetric configuration. The electrodes are modeled as perfect con-
ductors. The inlet gas was injected at a pressure that is 5% higher than the
initial pressure inside the thruster. The expansion region beyond the exit
of the thruster is also modeled to examine the plume of the thruster. The
thruster current was held constant at IkA. The plasma temperature was
0.5keV.

Results are encouraging and further investigation is required in order to
validate the code against the mentioned experimental results. In Figure 37
we present the velocity vectors and contours of magnetic field after approx-
imately 20 Alfven transit times. The radial dependence of the velocity is
caused by the radial dependence of the j x B accelerating force. A vortex
ring is observed shedding from the cathode, in the upper quarter of the do-

44

IIIIf If//
ii

"mm
11 ||n\

'Mm 41
<7|

CNl

II

»*

B^^MBBBH. * :

Figure 34: Contours of toroidal magnetic field Bg through a cross-section of
the spheromak at 0 = 90°. White contours represents positive values and
black negative values.

main. The magnetic field balloons beyond the annular region between the
electrodes as measured in experiments.

Tests showed that initialization with lower pressures (ß) of the compu-
tational domain gave non-physical results, i.e. negative pressures, after a
few time steps. There two factors that might lead to such behavior. One
is related to the initialization, specifically the sudden application of the

45

Figure 35: Evolution of the kinetic energy of the spheromak as a function
of normalized time. Note the nonlinear behavior at the beginning of the
simulation.

magnetic field to the stationary plasma. This can lead to vacuum or near
vacuum conditions being created in a few grid cells after the first time step.
Further mass transport can lead to a negative pressure situation. We are in-
vestigating starting the simulation with a finite current rise time (as is more
physical). The applied current would increase until the operating value is
reached.

Another source of the errors at lower pressures is the numerical overes-
timation of the wave speeds which leads to the depletion of mass in regions
of the domain and finally to negative pressures. To eliminate this effect we
are following the work by Einfeldt et al.{28] They describe the calculation
of the flux at a cell interface such that the scheme is positively conservative,
cannot lead to negative pressure. We are applying their scheme, developed
for a first order accurate algorithm, to our second order accurate algorithm.

46

Cathode

B.

Injector

Figure 36: (a) Four block grid for the axisymmetric MPD simulation and (b)
the initial contours of the magnetic field. (Black contours represent higher
values.)

4 Parallel Computer Implementation

We have begun to investigate strategies for implementing the algorithm on
parallel architectures. The first of the following sections describes our first
and the simplest approach, which was to parallelize the LU-SGS algorithm
in a point-wise manner. This proved to be too fine-grained to be efficient, so
we have since opted for a domain decomposition approach which is described
in the second section. The third section describes the implementation of this
method on the MHD solver.

47

V

I//, '<""
Jill

ä

fa,A

thu
\ltin,.

', 'It,,

Iftmtii

Ittiimii

Figure 37: (a) Flow field and (b) contours of azimuthal magnetic field.
(Black contours represent higher values.) Note the vortex ring shedding off
the cathode.

4.1 Fine-Grain Parallelization

The LU-SGS algorithm involves a double sweep of the computational do-
main. The forward (predictor) sweep solves a lower tridiagonal block matrix
for the entire computational domain. The backward (corrector) sweep solves
an upper tridiagonal block matrix. Figure 38 shows the form of the lower
and upper block diagonal matrices for the case of a 4 x 5 grid. Because of
the lower-upper form of the matrices, the solutions at grid cells along a line
of constant i + j are independent.

The simplest parallel implementation is to decompose the domain into
its component cells, distribute the grid cells over the processors of the par-
allel computer, and treat each cell as residing on a different processor. This
approach exploits the independence of the solutions of the cells on lines

48

5 •

10

15

20

10 15 20

(a)

Figure 38: The 20 x 20 lower (a) and upper (b) tridiagonal block matrices
for the LU-SGS algorithm with a grid of 4 x 5 cells.

of constant i + j. Communication between the cells provides the neces-
sary synchronization. For these tests, we used the Parallel Virtual Machine
(PVM) communication library which was developed at Oak Ridge National
Laboratory. [29] PVM allowed us to connect a network of four DEC Alpha
workstation and use them as our parallel computer.

To determine the parallel effectiveness, we measured the speedup ob-
tained when a problem grid of constant size was evenly distributed onto an
increasing number of processors. Speedup is defined as the time required to
find the solution with n processors divided by the time with one processor.
For perfectly parallel implementations, the speedup would be equal to the
number of processors. Any communication time and processor synchroniza-
tion decreases the speedup.

We used a 4 x 4 grid and varied the number of processors from one
to four. While this was a small size problem, it was sufficient to test the
parallel implementation. The speedup results are shown in Figure 39. Some
speedup can be seen; however, the amount is unsatisfactory.

The low efficiencies indicate that the simplest approach for parallel im-
plementation of the LU-SGS algorithm is inadequate. The results are not
surprising since the grain of parallelization in this approach is too fine and
requires excessive communication. The number of grid cells in practical
applications will be much greater than the number of processors. This sug-
gests dividing the domain into a number of large blocks, so that the grid
cells within a block are located on the same processor (and memory) and
do not need to communicate through message passing.

49

Figure 39: The parallel speedup for a problem with constant size grid using
a fine-grain parallelization approach.

4.2 Coarse-Grain Parallelization

In this section, we describe the coarse-grain parallelization of the MHD
solver and the performance of this approach applied to a real problem.

The algorithm was parallelized using the domain decomposition tech-
nique (DDT). This technique is based on the simple idea of "divide and
conquer" The integral form of a general conservation law is

jtj dVQ + ldS-F{Q)= I dV S(Q), (69)

n s n

where $7 is the domain and £ is the boundary of Cl. Q is the vector of
conserved variables, F(Q) is the flux of the conserved variables, and S(Q)
is the vector of source terms. By splitting the domain Q, into p subdomains
such that

0 = U Cli, (70)
i=l

one can replace eqn(69) with a set of p conservation equations applied on
the subdomains fij.

^-tJdVQ + jdS-F{Q) = JdVS{Q), » = 1,2,...,? (71)

Each of these discretized equations is solved by a single processor. Each
processor uses the boundary values copied from neighboring subdomains.

50

n
p -- 16

(b)

Figure 40: (a) Strip decomposition and (b) patch decomposition of a 2-D
domain.

4.2.1 Domain Decomposition

To abstract the computer architecture, we assume that a set of p processors
can be assigned to run the code and that these processors implement a
message passing system. For simplicity the original domain is assumed to
be a square of size n x n.

The 2-D version of the algorithm was parallelized. There are two tech-
niques available for the decomposition of 2-D domains, the strip decompo-
sition and the patch decomposition which are shown in Figure 40.

Strip decomposition is implemented by dividing the original domain in
subdomains of n x ^, and it might be thought of as a 1-D decomposition.
With strip decomposition each subdomain needs to exchange data with two
neighbors except the subdomains at the boundaries of the original domain
which communicate with only one neighbor.

The communication time for an interior subdomain was defined by Zhu
[30] as

TD21 = 2(CT + 8/3n) (72)

where a is the communication start-up time, ß is the time required to send
one byte of data, and the 8 means that the data are represented as double
precision variables (their size is eight bytes).

51

n

Jis ,■'
L— i ■'' ■"'

y / .-'
} /'

s' ,.'*

|~ y

Figure 41: Column decomposition of a 3-D domain is an immediate exten-
sion of the patch decomposition of 2-D domains.

n v _n
y/P* y/P

Patch decomposition is implemented by dividing the original domain in
With this method each processor has to communicate with four

neighbors unless it is situated on the boundaries of the original domain and
it has two or three neighbors. For simplicity it is assumed that p is an even
square number and n is evenly divisible by yjp. The communication time
for an internal subdomain is

TD22 = 4(a + 8/3 —) (73)

For a fixed grid size, Tb22 decreases with the number of processors since
in eqn (73) the number of processors appear at the numerator. In contrast,
Tb21 stays constant with the number of processors.

This made the patch decomposition an obvious choice for our implemen-
tation. The technique will also provide a straightforward extension to the
column decomposition of 3-D domains (see Figure 41).

4.2.2 Implementation of the Patch Decomposition

The programming model used for the implementation was single program
multiple data (SPMD). Each processor runs the same code on the data
corresponding to its subdomain. One processor has to perform the domain
decomposition and send the data to the other processors. This processor
was designated as the main task.

Assuming that there are p processors available for running the code
they can be arranged in a processor grid of pr x pc = p where pr is the
number of rows and pc is the number of columns. The size of the original
computational domain is m x n. It is possible to have subdomains of equal

52

sizes only if m and n are evenly divisible with pc and pr respectively. The
domain decomposition was implemented such that some processors receive
an extra row or extra column if m and n are not divisible by pc and pr.

Physical coupling of the subdomains is accomplished by the exchange
of internal boundaries. A processor sends the data from the cells next to
its boundaries to the neighboring processors if they exist. The receiving
processor assigns the received data to the cells of its respective boundaries.
If a processor does not have a neighbor in a certain direction the boundary
conditions are applied to that boundary. Since the algorithm uses a five-
point stencil only one row/column needs to be exchanged.

4.2.3 Message Passing

One of the goals of the project is to develop a portable code. A first step
in assuring the portability was to use a message passing system commonly
available on parallel supercomputers and on workstation clusters. This sys-
tem is the Message Passing Interface (MPI)[16], which was adopted as a
standard in May 1994 by industry and academia. Hardware and software
vendors' implementation of MPI provides parallel program developers with
a consistent set of subroutines callable from FORTRAN77 and C. In our
code we made use of the basic point-to-point communications subroutines
and global communications subroutines. The point-to-point communica-
tion subroutines were used for the domain decomposition and boundary
exchange while the global communication subroutines were used for conver-
gence checking. All message passing systems (PVM, MPL) support point-
to-point and global communications subroutines so that by using only the
basic set we provided for a facile portability to systems not supporting MPI.

4.2.4 Load Balancing

The load balancing for this code is performed by distributing an approx-
imately equal number of cells to each processor. This is accomplished by
the main task during the domain decomposition phase. Since the number of
floating point operations performed by each processor is the same, a static
domain decomposition is sufficient to ensure that the processors have an
equal share of the computing load. If the code takes were to allow for time-
dependent ionization or other localized phenomena which require additional
operations in a limited region of the computational domain, then a dynamic
load balancing procedure may be necessary. A simple algorithm for dynamic
load balancing is the masked multiblock described by Borrelli et al.[31] We

53

Speedup vs. Number of Processors

Figure 42: Fixed grid (400 x 80) speedup results. Note the superlinear
speedup of the explicit mode.

will implement the masking algorithm in future versions of the code if it
becomes necessary.

4.2.5 Results

In order to measure the performance of the code we applied the parallel
version to the plasma gun problem described in Section 3.3. The paral-
lel version was checked against the sequential version, and both produced
identical results.

There are two criteria generally used for the performance analysis of
parallel codes: (1) the speedup Sp = Tseq/Tp and (2) the efficiency Ep —
Sp/p, where Tseq is the time needed for the best sequential algorithm to
complete the task and Tp is the time needed for the parallel algorithm run
on a number of p processors to complete the same task. Note that the
definition of speedup used here is more rigorous and meaningful than the
one commonly used since it is based on the sequential version and not the
parallel version on one processor.

We ran the parallel code on the IBM SP2 with a fixed grid of size 400 x 80
on a processor pool of varying size: 4, 8, 16, 32 and 64 processors. The
speedup for the explicit and implicit modes is shown in Figure 42. As
expected the speedup increases with the number of processors assigned to
run the code. For the explicit mode the speedup is superlinear, which seems

54

to contradict Amdahl's law

Sv = ^sr^; —• (74)
 J-seq
rp I 2-/T.=1 computation,!
J-communication T „

Assuming that no time is used for communication and that the sum of the
computation time for all processors is equal to the sequential computation
time, the maximum speedup is linear (for p processors the speedup is p).
However, Amdahl's law does not take in consideration the architecture of the
system used, in particular the cache effects. On the IBM RS/6000 machines,
which constitute the nodes of the SP2, the data is passed from the main
memory to the CPU through a data cache. A data cache miss involves
a delay of eight CPU cycles while the data in the cache can be accessed
in one cycle[32]. Noting that an add and multiply operation (a FLOP)
takes one CPU cycle the conclusion is that a data cache miss decreases the
performance significantly. By increasing the number of processors in the
pool and keeping the overall problem size constant, we reduced the amount
of data assigned to a processor. Its data cache could hold more data thus
reducing the number of cache misses and improving the performance, which
explains the super linear speedup. The same behavior was observed by Michl
et al., on a cluster of IBM RS/6000/500 workstations.[33]

The speedup for the explicit mode is higher than that for the implicit
mode because the implicit mode is the more computationally intensive and
is, therefore, less sensitive to cache misses. One has to be careful when
comparing the results presented in Figure 42 since the number of iterations
until convergence is reached for the implicit mode depends on the number
of processors used.

The trend of the speedup shows an increasing slope for both explicit
and implicit modes which indicates that the code is far from communication
saturation. Saturation occurs when the time spent on communications be-
comes comparable with the computation time. If the number of processors
is increased and the size of the subdomains becomes smaller, each processor
will have fewer computations to perform, but the total time spent in ex-
changing the data on the boundaries will increase. The total time spent for
boundary exchange can be found using the formula for the communication
time for an internal subdomain [eqn(73)] and multiplying it with the number
of processors in a pool p,

Tbdry exch = pTD22 = 4(crp + 8ßn^/p). (75)

The total time spent on boundary exchanges varies proportionally with p.

55

1

0.9

0.8

0.7

„ 0.6

I 0.5
tu

"> 0.4

0.3

0.2

0.1

0

Speedup vs. Number of Processors

100x20 100x40 200x40 200x80

and and

200x20 400x40

Figure 43: Scaled grid (50 x 10 per processor) speedup results.

For the processor pools with a non-square number of processors we have
run the code on grids organized as pr x pc and the transpose pcxpr, so that
the number of row cells versus column cells changed. The results showed
that a decomposition whose subdomains have longer rows performs better
than one with longer columns. This is consistent with the data cache misses
that were observed previously. An improvement of 20-30% in the measured
speedup was obtained by modifying the domain partitions. It should be
noted that this result is particular to IBM architecture, and the dependency
of the obtained speedup on domain decomposition will vary on other archi-
tectures. The speedup results shown in Figure 42 for 8 and 32 processors
have been averaged.

In order to eliminate the cache effects from the performance analysis we
ran the code on grids that scaled with the number of processors. The size of
the grid on each processor remained constant. As the number of processors
was increased, the grid increased proportionally. The speedup results are
presented in Figure 43. Again note that the speedup is measured relative
to the sequential version of the code and not the parallel version run on a
single processor.

The speedup for a perfectly parallel code for the scaled grid is unity for
any number of processors. Our results show a speedup that is less than
unity and it decreases with the number of processors. This is an expected

56

result since the total communication time increases with the number of
processors. Since the slope of the speedup is gradual and it appears to
flatten, we conclude that the parallel code performs satisfactorily on scaled
grids.

5 Professional Interactions

5.1 Project Personnel

The personnel who have been directly involved in this project are listed
below.

Name Position
Uri Shumlak Research Assistant Professor
D. Scott Eberhardt Associate Professor
Thomas R. Jarboe Professor
Byoungsoo Kim Research Associate
Julian Becerra-Sagredo Graduate Student
Ogden S. Jones Graduate Student
R. Scott Raber Graduate Student
David Taflin Graduate Student
Bogdan Udrea Graduate Student

5.2 Collaborations

5.2.1 Air Force Research Laboratory

Dr. Robert Peterkin and Dr. Thomas Hussey of the Electromagnetic Sources
Division on three-dimensional multigrid algorithms for MACH3, develop-
ment of a parallel PIC (particle in cell) code for microwave simulations, and
stabilization of the the Rayleigh-Taylor instability in solid liner implosions
by introducing a sheared axial flow.

5.2.2 National Oceanic and Atmospheric Administration

Dr. Kris Murawski of the Space Environment Center on applying our code
to study solar wind and corona. They currently have a copy of our code for
this application.

5.2.3 Lawrence Livermore National Laboratory

Dr. Charles Hartman of the Magnetized Plasmas Division on stabilization
of the z-pinch using sheared axial flows. This collaboration resulted in the

57

publication listed below.

5.2.4 University of Michigan

Prof. Bram van Leer, Prof. Kenneth Powell, and Prof. Philip Roe of the
Aerospace Engineering Department on approximate Riemann solvers for the
MHD plasma model, in particular, eigenvector normalizations and Roe av-
erages.

5.2.5 University of Colorado

Prof. Steve McCormick of the Applied Math Department on three-dimensional
multigrid algorithms.

5.2.6 New Mexico Institute of Technology

Prof. Steve Schaffer of the Applied Math Department on three-dimensional
multigrid algorithms for anisotropic equations.

5.2.7 University of Washington

Prof. Randy LeVeque of the Applied Math Department on approximate
Riemann solvers and their applications to multidimensional problems.

5.3 Transitions

Dr. Kris Murawski at the Space Environment Center of the National Oceanic
and Atmospheric Administration requested and was granted a copy of our
code. His group will use our code to study solar wind and corona.

5.4 Publications

A journal article describing our algorithm has been published in the Jour-
nal of Computational Physics. The title is "An Implicit Scheme for Nonideal
Magnetohydrodynamics" by O. S. Jones, U. Shumlak, and D. S. Eberhardt.[17]
The citation is Journal of Computational Physics 130, 231 (1997). We have
two papers that have been published in conference proceedings. "Physics of
the Hall Thruster," U. Shumlak, T. R. Jarboe, and R. A. Sprenger, AIAA
97-3048 (1997), at the 1997 Joint Propulsion Conference in Seattle, Wash-
ington. "A Portable Parallel Implicit Approximate Riemann Solver for Non-
Ideal Magnetohydrodynamics," B. Udrea, O. S. Jones, U. Shumlak, and D.

58

S. Eberhardt, AIAA 97-0366 (1997), at the Aerospace Science Meeting in
Reno, Nevada.

Two journal articles resulting from the collaboration with the Air Force
Research Laboratory and Lawrence Livermore National Laboratory were
published. One article is titled "Sheared Flow Stabilization of the m = 1
Kink Mode in Z-Pinches" by U. Shumlak and C. W. Hartman. The citation
is Physical Review Letters 75 (18), 3285 (1995). The other article is titled
"Mitigation of the Rayleigh-Taylor Instability by Sheared Axial Flows" by
U. Shumlak and N. F. Roderick. The citation is Physics of Plasmas 5 (6),
2384 (1998).

A journal article has been submitted for publication in the AIAA Journal
of Propulsion and Power. The article is titled, "A Simple Model of Flow
Evolution in the Hall Thruster" by U. Shumlak, T. R. Jarboe, and R. A.
Sprenger.

5.5 Presentations

A paper discussing the magnetic reconnection results was presented at the
Thirty-Seventh Annual American Physical Society Meeting of the Division
of Plasma Physics, Louisville, Kentucky, November 1995. "Time-Dependent
Calculations of Resistive Tearing Instabilities Using a New Implicit MHD
Solver."

A paper presenting the findings of the stabilization of the z-pinch by
sheared axial flows was presented at the Thirty-Seventh Annual American
Physical Society Meeting of the Division of Plasma Physics, Louisville, Ken-
tucky, November 1995. "Sheared Flow Stabilization of the m = 1 Kink Mode
in Z-Pinches."

A paper was presented at the Thirty-Eighth Annual American Physi-
cal Society Meeting of the Division of Plasma Physics, Denver, Colorado,
November 1996. The title was "Computer Simulations of Plasma Acceler-
ators," by B. Udrea, O. S. Jones, and U. Shumlak. A paper was presented
at the Thirty-Fifth AIAA Aerospace Science Meeting, Reno, Nevada, Jan-
uary 1997. The title was "A Portable Parallel Implicit Approximate Rie-
mann Solver for Non-Ideal Magnetohydrodynamics," by B. Udrea, O. S.
Jones, U. Shumlak, and D. S. Eberhardt. A paper was also presented at the
Twenty-Fourth Annual IEEE International Conference on Plasma Sciences,
San Diego, California, May 1997. The title was "An Advanced Implicit
Algorithm for MHD Computations on Parallel Architectures," by U. Shum-
lak, D. S. Eberhardt, O. S. Jones, and B. Udrea. A paper was presented at
the Thirty-Third AIAA/ASME/ASEE Joint Propulsion Conference, Seat-

59

tie, Washington, July 1997. The title was "Physics of the Hall Thruster,"
by U. Shumlak, T. R. Jarboe, and R. A. Sprenger.

6 Conclusions

The successful development of the three-dimensional advanced implicit algo-
rithm, the implementation of the algorithm on arbitrarily connected multi-
block grids, and the practical applications indicate that this project is ex-
ceeding its objectives. The research from this project has been published in
a refereed journal and presented at international conferences.

Valuable collaborations have been formed with the Air Force Research
Laboratory, Lawrence Livermore National Laboratory, and other universi-
ties.

The continuing development of this project will include adding an equa-
tion of state package, investigating powerful implicit matrix inversion meth-
ods, treating the destabilizing Hall effect, and applying the code to plasma
experiments to calibrate the code and gain physical insight into devices that
are important to the Air Force, such as the magnetic flux compression gen-
erator (MCG).

References

[1] U. Shumlak, T. W. Hussey, and R. E. Peterkin, Jr., IEEE Transaction
on Plasma Science 23, (1995).

[2] B. A. Nelson, T. R. Jarboe, D. J. Orvis, L. McCullough, J. Xie, C.
Zhang, and L. Zhou, Phys. Rev. Lett. 72, 3666 (1994).

[3] F. M. Lehr, A. Alaniz, J. D. Beason, L. C. Carswell, J. H. Degnan, J. F.
Crawford, S. E. Englert, T. J. Englert, J. M. Gahl, J. H. Holmes, T. W.
Hussey, G. F. Kiuttu, B. W. Muffins, R. E. Peterkin, Jr., N. F. Roderick,
P. J. Turchi, and J. D. Graham, J. Appl. Phys. 75, 3769 (1994).

[4] H. P. Furth, J. Kileen, and M. N. Rosenbluth, Phys. Fluids 6, 479 (1963).

[5] H. Ok and D. S. Eberhardt, "Solution of Unsteady Incompressible
Navier-Stokes Equations Using an LU Decomposition Scheme," AIAA-
91-1611 (1991).

[6] S. Yoon and A. Jameson, AIAA J. 26, 1025 (1988).

60

[7] P. L. Roe, J. Comp. Phys. 43, 357 (1981).

[8] R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhauser
Verlag, Boston (1992).

[9] M. Brio and C. C. Wu, J. Comp. Phys. 75, 400 (1988).

[10] A. L. Zachery and P. Colella, J. Comp. Phys. 99, 341 (1992).

[11] K. G. Powell, B. van Leer, and P. L. Roe, Private Communication,
1994.

[12] H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6(4), 459
(1963).

[13] H. P. Furth, Phys. Fluids 28(6), 1595 (1985).

[14] J. Killeen and A. I. Shestkov, Phys. Fluids 21(10), 1746 (1978).

[15] D. Schnack and J. Killeen, J. of Comp. Physics 35, 110 (1980).

[16] Message Passing Interface Forum MPI: A Message Passing Interface
Standard, May 5, 1994.

[17] O. S. Jones, U. Shumlak, and D. S. Eberhardt, J. of Comp. Physics
130, 231 (1997).

[18] J. H. Degnan, R. E. Peterkin, Jr., G. P. Baca, J. D. Beason, D. E. Bell,
M. E. Dearborn, D. Dietz, M. R. Douglas, S. E. Englert, T. J. Englert,
K. E. Hackett, J. H. Holmes, T. W. Hussey, G. F. Kiuttu, F. M. Lehr,
G. J. Marklin, B. W. Mullins, D. W. Price, N. F. Roderick, E. L. Ruden,
C. R. Sovinec, P. J. Turchi, G. Bird, S. K. Coffey, S. W. Seiler, Y. G.
Chen, D. Gale, J. D. Graham, M. Scott, and W. Sommars, Phys. Fluid
B 5, 2938 (1993).

[19] J. B. Taylor, Phys. Rev. Lett. 33, 1139 (1974).

[20] T. R. Jarboe, Plasma Phys. Controlled Fusion 36, 945 (1994).

[21] M. N. Rosenbluth and M. N. Bussac, Nucl. Fusion 19, 489 (1979).

[22] J. M. Finn and W. M. Manheimer, Phys. Fluids 24(7), 1336 (1981).

[23] A. Bondeson, G. Marklin, Z. G. An, H. H. Chen, Y. C. Lee, and C. S.
Liu, Phys. Fluids 24(9), 1682 (1981).

61

[24] C. W. Barnes, I. Henins, H. W. Hoida, T. R. Jarboe, G. Marklin, B.
L. Wright, and G. A. Wurden, Conference Record of the 1984 IEEE
International Conference on Plasma Science St. Louis, MO, pp. 50-1.

[25] T. R. Jarboe, I. Hennis, H. W. Hoida, R. K. Linford, J. Marshall, D.
A. Platts, and A. R. Sherwood, Phys. Rev. Lett. 45(15), 1264 (1980).

[26] U. Shumlak, T. K. Fowler, and E. C. Morse, Phys. Plasmas 1(3), 643
(1994).

[27] P. C. Sleziona, M. Auweter-Kurtz, H. O. Schrade, Int. J. Num. Meth.
Eng. 34, 759 (1992) .

[28] B. Einfeldt, C. D. Munz, P. L. Roe, B. Sjögreen J. of Comp. Physics
92, 273 (1991).

[29] Al Geist, A. Beguelin, J. Dongara, W. Jiang, R. Manchek, V. Sun-
deram, PVM 3 User's Guide and Reference Manual, 1994.

[30] J. Zhu, On the Implementation Issues of Domain Decomposition Algo-
rithms for Parallel Computers Parallel CFD Conference, 1992.

[31] S. Borrelli, A. Matrone, P. Schiano, A Multiblock Hypersonic Flow
Solver For Massively Parallel Computers, Parallel CFD Conference,
1992.

[32] IBM Corp., Optimization/Tuning Guide for XL FORTRAN and XLC

[33] T. Michl, S. Wagner, M. Lenke, A. Bode, Dataparallel Implicit Navier-
Stokes Solver on Different Multiprocessors Parallel CFD Conference
1993.

62

