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Overview 
This research project focused on the design and development of scalable shared-memory 
machines; in particular, those using directory-based cache coherence. The basic mecha- 
nisms of directory-based cache coherence were developed in an earlier research program, 
leading to the design and initial bring-up of the Stanford DASH prototype, the first opera- 
tional multiprocessor to support scalable cache coherence. This project involved scaling the 
DASH machine to larger processor counts (64 vs. 16), a through evaluation of the design, 
completion of new multiprocessor software systems, and the initial design of a second-gen- 
eration, more flexible machine, called FLASH. In addition, several basic studies of parallel 
architecture, multiprocessor technology, application parallelization, and related problems 
were undertaken. This report summarizes the technical accomplishments of this project, 
organizing the results by project or area. A complete list of publications appears at the end. 

The DASH Project 
We began this research contract with a barely operating 16-processor DASH prototype. 
During the first 24 months of the project, we brought the machine up to 64 processors 
(though reliability problems in the routing chip motivated us to use 48 processors as the 
usual operating mode), completed the operating system support, ported a range of applica- 
tions, developed several novel performance monitoring and analysis tools, and extensively 
measured and analyzed the machine. The design of DASH was detailed extensively in a 
book by Lenoski and Weber, and this book, together with other publications, has been ex- 
tensively used by industry as a handbook for building scalable cache-coherent multiproces- 
sors. Several companies (HP/Convex, Silicon Graphics, Sequent, HaL, and Data General) 
have built products partially or totally based on the ideas pioneered in DASH. In addition, 
a number of other companies (IBM, Sun, Compaq) have been investigating the distributed 
directory approach that the DASH project invented. 

The DASH Prototype 

We completed the DASH prototype in 1992 and began extensive measurements. The pri- 
mary DASH machine consisted of 48 processors, and was used for application performance 
tuning and evaluation of the DASH hardware features. We also used two eight processor 
machines, used for initial application development and debug, and operating system devel- 
opment. We had several applications running on DASH. Most of the applications got good 
speedups on 48 processors, even without a large effort spent in performance-tuning. 

We completed several studies that compared DASH to the KSR-1 machine, the only other 
scalable cache-coherent machine available at the time. This work extended our previous 
simulation-based comparison of the COMA and CC-NUMA architectural styles by using 
full-scale applications on real hardware. We ran full-scale problems on real COMA and 
CC-NUMA machines (KSR-1 and DASH) which have similarly sized caches. We used up 
to 48 processors on the two machines (2 rings on KSR-1). For small problems, we found 
DASH speedups to be invariably much better than those of KSR-1, since small problems 
have high communication-to-computation ratios and greater false-sharing (especially with 
the long cache lines on KSR-1), but not many capacity misses. For applications with low 
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miss rates and relatively small working sets (N-body computations, blocked dense linear 
algebra, etc.), we found both machines to yield about equally good speedups, DASH being 
a little bit better. And for the applications that had significant capacity misses, we found 
that (i) it was reasonably easy to manage data distribution well on DASH, so that DASH 
yielded equivalent or better speedups, and (ii) the techniques used to do this helped perfor- 
mance on KSR-1 substantially as well, since they reduced conflict misses and false sharing. 
KSR-1 did better on applications that needed high-bandwidth communication of large 
chunks of contiguous data (such as FFT), but this was due to peak communication band- 
width and not due to its COMA nature. The only example in which the COMA nature of 
KSR-1 was a clear advantage was the dynamically scheduled panel-oriented Cholesky fac- 
torization kernel from SPLASH. 

The DASH prototype was kept operational as an important tool for studying multiprocessor 
designs, and was decommissioned in 1997, approximately six years after the first 16 pro- 
cessors began working and five years after the full machine became operational. 



The FLASH Multiprocessor 
In mid-1993, we began the design of the Stanford FLASH (Flexible Architecture for 
SHared Memory) Multiprocessor. A key goal for the FLASH architecture is to support both 
coherent shared memory and high performance message passing with minimal hardware 
overhead in a scalable manner. Each node in FLASH is identical, containing a high-perfor- 
mance off-the-shelf microprocessor with its caches, a portion of the machine's distributed 
main memory, and the MAGIC node controller chip. The MAGIC chip forms the heart of 
the node, integrating the memory controller, I/O controller, network interface, and a pro- 
grammable protocol processor. This integration allows for low hardware overhead, while 
supporting both cache-coherence and message-passing protocols in a scalable and cohesive 
fashion. 

The Core of the FLASH Design-The Magic Chip 

To offer both flexibility and high performance, the MAGIC controller has several unique 
features. First, MAGIC includes a programmable protocol processor for flexibility. Sec- 
ond, MAGIC's central location within the node ensures that it sees all processor, network, 
and I/O transactions, allowing it to control all node resources and support a variety of pro- 
tocols. Third, to avoid limiting the node design to any specific protocol and to 
accommodate protocols with varying memory requirements, the node contains no dedi- 
cated protocol storage; instead, both the protocol code and protocol data reside in a reserved 
portion of the node's main memory. However, to provide high-speed access to frequently- 
used protocol code and data, MAGIC contains on-chip instruction and data caches (due to 
a change in the fabrication source, the data cache was subsequently moved off-chip). 
Finally, MAGIC separates data movement logic from protocol state manipulation logic. 
The hardwired data movement logic achieves low latency and high bandwidth by support- 
ing highly-pipelined data transfers without extra copying within the chip. The protocol 
processor employs a hardware dispatch table to help service requests quickly, and a coarse- 
level pipeline to reduce protocol processor occupancy. This separation and specialization 
of data transfer and control logic ensures that MAGIC does not become a latency or band- 
width bottleneck. 

At the core of the MAGIC chip is the protocol processor, which is used to perform all com- 
putation necessary to provide coherent-cache and message-passing primitives. We 
evaluated the performance gains due to various features in the instruction set of the protocol 
processor. Weighing the gains of each feature against its implementation cost has allowed 
us to define a base architecture for the processor that is well suited for efficient execution 
of the required primitives. The protocol processor itself is a dual-issue superscalar RISC 
CPU with instruction set extensions for rapidly manipulating bit fields, a common task in 
maintaining directory state. The basic RISC core is surrounded by specialized hardware 
units that queue incoming messages from the processor and the network, quickly dispatch 
the protocol processor to the code for the primitive indicated by those messages (e.g., a 
memory read), and send reply messages to the processor and network under the direction 
of the protocol processor. Through the pipelining of these units and the optimization of the 
protocol processor instruction set, this architecture achieves the high throughput require- 
ments for state manipulation that accompany the high-bandwidth data transfer rates of 



next-generation memory systems. 

Using the protocol processor, we have also developed a high performance message passing 
implementation cleanly integrated with cache coherence. Simulation results indicate that 
we can achieve comparable performance to message passing machines with dedicated 
hardware support. Furthermore, our implementation offers increased integration of 
machine attributes such as protection, virtual memory, and multiprogramming that has 
been missing in other implementations. 

As of the close of this project, we completed most of the Verilog description of Magic (with 
I/O being the major missing task). Although we have done extensive simulation of Magic, 
validation of the Magic Verilog, both for functionality and performance remains to be done. 
In addition, we have not yet explored the task of synthesis from the Verilog description. 

FLASH Message Passing 

The advantages of using message passing over shared memory for certain types of commu- 
nication and synchronization operations have provided an incentive to integrate both 
communication modes within a single architecture. One of the main goals of the FLASH 
architecture is to achieve this integration while maintaining a simple and efficient 
design.We have developed hardware and software mechanisms to support various message 
passing protocols in FLASH. We found we can achieve low overhead message passing by 
delegating protocol functionality to the programmable node controllers in FLASH and by 
providing direct user-level access to this messaging subsystem. In contrast to most earlier 
work, we provide an integrated solution that handles the interaction of the messaging pro- 
tocols with virtual memory, protected multiprogramming, and cache coherence. Our 
preliminary performance studies, based on detailed simulations of several message passing 
primitives, indicate that this system can sustain message transfers at a rate of several hun- 
dred megabytes per second, effectively utilizing projected network bandwidths for next 
generation multiprocessors. 

Integration of Block Data Transfer in Cache-Coherent Multiprocessors 

Many of the shared-memory multiprocessors developed, such as the Stanford FLASH, MIT 
Alewife, and Wisconsin Typhoon multiprocessors, provide architectural support for block 
data transfer. We have examined the potential performance benefits from using block trans- 
fer in a cache-coherent shared address space multiprocessor. A set of ambitious hardware 
mechanisms was used to study the performance gains obtained in five important computa- 
tions which appeared to be good candidates for using block transfer: (i) FFT, (ii) LU 
Decomposition, (iii) Sparse Cholesky Factorization, (iv) SPLASH Ocean Simulation, and 
(v) Radix Sort. Our conclusion is that the benefits of block transfer are not substantial for 
hardware cache-coherent multiprocessors. The main reasons for this are (i) the relatively 
modest fraction of time applications spend in communication amenable to block transfer, 
(ii) the difficulty of finding enough independent computation to overlap with the commu- 
nication latency that remains even after block transfer, and (iii) that long cache lines often 
capture many of the benefits of block transfer. 

In the cases where block transfer improved performance, prefetching provided comparable, 
if not superior, performance benefits compared to block transfer. We also examined the 



impact of varying important communication parameters and increasing processor speed on 
the effectiveness of block transfer. One important result we uncovered is that the advan- 
tages of block transfer are greatest in shared memory implementations which have high 
overhead for initiating communication, but that also provide high bandwidth for communi- 
cation, such as on message passing machines and networks of workstations. Finally, we 
examined useful features that a block transfer facility should support for real applications. 



General Multiprocessor Architecture Studies 

Memory Models 

The memory consistency model of a shared-memory system determines the order in which 
memory accesses can be executed by the system, and greatly affects the implementation 
and performance of the system. To aid system designers, memory models either directly 
specify, or are accompanied by, a set of low-level system conditions that can be translated 
into a correct implementation. These sufficient conditions play a key role in helping the 
designer determine the architecture and compiler optimizations that may be safely 
exploited under a specific model. Therefore, these conditions should obey three important 
properties. First, they should be unambiguous. Second, they should be feasibly aggressive; 
i.e., they should not prohibit practical optimizations that do not violate the semantics of the 
model. Third, it should be relatively straightforward to convert the conditions into efficient 
implementations, and conversely, to verify if an implementation obeys the conditions. 
Most previous approaches in specifying system requirements for a model are lacking in at 
least one of the above aspects. 

Our work presents a methodology for specifying the system conditions for a memory model 
that satisfies the above goals. A key attribute of our methodology is the exclusion of order- 
ing constraints among memory operations to different locations by observing that such 
constraints are unnecessary for maintaining the semantics of a model. To demonstrate the 
flexibility of our approach, we specify the conditions for several proposed memory models 
within this framework. Compared to the original specification for each model, the new 
specification allows more optimizations without violating the original semantics and, in 
many cases, is more precise. 

The Benefits of Clustering in Cache-Coherent Multiprocessors 

Clustering processors together at a level of the memory hierarchy in shared address space 
multiprocessors appears to be an attractive technique from several standpoints: resources 
are shared, packaging technologies are exploited, and processors within a cluster can share 
data more effectively. We have investigated the performance benefits that can be obtained 
by clustering on a range of important scientific and engineering applications. We found that 
in general clustering is not very effective in reducing inherent communication to computa- 
tion ratios. Clustering is more useful in reducing working set requirements in unstructured 
applications, and can improve performance substantially when small first level caches are 
clustered in these cases. This suggests that clustering at the first level cache might be useful 
in highly-integrated, relatively fine-grained environments. For less integrated machines 
such as current distributed shared memory multiprocessors, our results suggest that at least 
in the absence of artifacts such as cache mapping collisions, clustering is not very useful in 
improving application performance, and the decision about whether or not to cluster should 
be made on the basis of engineering and packaging constraints. 

Advantages and Challenges in COMA Architectures 

We are investigating the design issues involved in building a COMA-Flat multiprocessor 
(our own extension to the standard COMA protocols). While traditional COMA architec- 



tures such as the Kendall Square Research KSR1 and the Swedish Institute of Computer 
Science DDM utilize dynamic binding of data objects and directory information to physical 
locations to improve performance, this necessitates the use of relatively slow directory hier- 
archies. THE COMA-Flat protocol supports the dynamic binding of data objects to 
physical locations without the need of such a hierarchy, permitting the use of a high speed 
general interconnection topology such as a mesh. 

We have investigated the problem of memory block replacements in COMA architectures. 
When a memory block is requested by a processor and the local memory does not have 
space to hold it, an existing memory block is chosen for replacement. If this block repre- 
sents the last copy of a data object, it must be sent to another memory for storage. When 
the frequency of this occurrence is high, system performance may become degraded. We 
analyzed this replacement traffic and developed a mathematical model which predicts their 
frequency based upon the memory organization and size. We found that when the applica- 
tion data set size is large compared to the total memory size, the number of replacements 
generated is extremely high. We also find the number of replacements is mostly insensitive 
to the block size, but quite sensitive to the associativity of the memory. Even small degrees 
of associativity will significantly reduce the number of replacements generated in situations 
of high memory usage. For example, we find that when the ratio of the application data set 
size to the memory size is 85%, a 4-way associative memory generates 1.09 replacements 
per miss. However, a direct mapped memory will generate 5.67 replacements per miss. 
These studies illustrate that a competitive COMA implementation will have to pay close 
attention to its potential disadvantages to ensure that it delivers good performance. 



Parallel Software 
SUIF Parallel Compiler System 

One major goal of this work was to create a suitable platform for building parallel compiler 
systems. The initial version of SUIF was released to over 20 research institutions for this 
purpose. Our SUIF system is based on an "open-system" design, where various compiler 
passes are integrated together through a common interface. We expect this design to be 
more usable by outside compiler groups than previously released systems, because any of 
the phases in the compiler can be readily replaced by other modules with the same interface. 
This design enables our group to focus only on the core interface, a task that is much more 
manageable than maintaining the entire system. This approach of developing a standard 
interface appears to be a practical solution to the outstanding problem of how to provide an 
infrastructure for the compiler research community. 

Interprocedural Optimization for Parallelization 

We have developed an interprocedural optimization system, the FIAT system, a framework 
to facilitate rapid prototyping of interprocedural systems. FIAT, which was developed in 
collaboration with researchers at Rice University, used to drive interprocedural optimiza- 
tion in both the SUIF compiler and the D Programming Tools at Rice. Our research focused 
on using FIAT to build a comprehensive suite of analyses for parallelization, in order to 
measure how effective an aggressive interprocedural system is at locating parallelism 
across procedure boundaries. 

One criterion for evaluating an interprocedural parallelization system is its ability to paral- 
lelize loops containing procedure calls. Such loops are typically not parallelized by existing 
compilers because, without interprocedural analysis, the compiler does not know how the 
called procedure will affect the safety of parallelization. Previous studies of interprocedural 
systems for parallelization have been fairly successful at parallelizing loops with calls in 
linear algebra libraries, which are cleanly written and exhibit fairly regular array access pat- 
terns. However, these systems have not been effective at parallelizing full application 
programs such as the Perfect benchmark suite. One reason for their limited success is that 
previous interprocedural systems did not provide interprocedural counterparts for all the 
analysis techniques currently used in the intraprocedural setting. 

Our system provides the same quality of interprocedural analysis as would be available in 
a state-of-the-art intraprocedural compiler. Because many of these analyses must precisely 
describe program behavior, this project required extending FIAT to support flow-sensitive 
interprocedural analysis in addition to its existing flow-insensitive analysis; flow-sensitive 
analysis examines control flow paths within procedures during interprocedural propagation 
to determine what facts are true along all control flow paths. Efficient approaches to flow- 
sensitive analysis are currently an open area of research. Flow-sensitive analysis can be 
computationally infeasible using iterative data-flow analysis techniques, which are com- 
monly used in the intraprocedural setting. We discovered that the flow-sensitive analysis 
data-flow problems we were solving were amenable to an interval style of analysis, thus 
providing a practical solution to obtaining precise analysis. 



We measured FIAT's ability to parallelize loops containing procedure calls. In compari- 
sons with earlier interprocedural systems, our system is significantly more effective at 
parallelizing loops containing procedure calls in the Perfect and SPEC benchmark pro- 
grams. The difference in our results stem from the requirement, in many of these loops, for 
a number of distinct interprocedural analysis techniques working together. 

Prefetching by Compilers 

Software-controlled data prefetching is a promising technique for improving the perfor- 
mance of the memory subsystem to match today's high-performance processors. While 
prefetching is useful in hiding the latency, issuing prefetches incurs an instruction overhead 
and can increase the load on the memory subsystem. As a result, care must be taken to 
ensure that such overheads do not exceed the benefits. 

We have developed a compiler algorithm to insert prefetch instructions into code that oper- 
ates on dense matrices. Our algorithm identifies those references that are likely to be cache 
misses, and issues prefetches only for them. We have implemented our algorithm in the 
SUIF optimizing compiler. By generating fully functional code, we have been able to mea- 
sure not only the improvements in cache miss rates, but also the overall performance of a 
simulated system. We show that our algorithm significantly improves the execution speed 
of our benchmark programs-some of the programs improve by as much as a factor of two. 
When compared to an algorithm that indiscriminately prefetches all array accesses, our 
algorithm can eliminate many of the unnecessary prefetches without any significant 
decrease in the coverage of the cache misses. 

Compiler Optimizations for Shared Address Space Machines 

At first glance, it seems much easier to compile to shared address space machines (such as 
the DASH and KSR-1) as compared to distributed address space machines (such as the Par- 
agon and SP-2), since the programmer need not explicitly manage communication for non- 
local data. However, while it is relatively simple to get a program to run correctly, it is non- 
trivial to get scalable performance. As scalable parallel machines tend to have non-uniform 
memory access times, we find the compiler can significantly benefit from the analyses and 
optimizations performed to minimize communication on distributed memory machines. 

We investigated three optimization techniques: parallelism and locality analysis, commu- 
nication and synchronization analysis, and changing data layouts. During parallelism and 
locality analysis, the compiler first optimizes parallelism at the loop level by reordering the 
computation to discover the largest granularity of parallelism using unimodular code trans- 
formations (e.g. loop interchange, skewing and reversal). Global analysis then examines all 
loop nests together to determine an overall mapping of data and computation across the 
processors such that parallelism is maximized while minimizing communication. 

During communication and synchronization analysis, the compiler uses the data mapping 
information to identify accesses to non-local data. This step is not required to ensure cor- 
rectness as on distributed-memory machines, but is used to optimize synchronization. 
Many parallelized programs consist of a large number of parallel loops, each of which does 
not contain much computation. The resulting profusion of barriers incurs high overhead 
and inhibits parallelism. By taking advantage of the fact that data and computation map- 
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pings are calculated at compile time, we can use information on when and where 
communication is necessary to eliminate unnecessary barrier synchronization or replace 
them with efficient point-to-point synchronization. 

Finally, we found that changing the data layout can greatly improve the cache performance. 
Real caches have long cache lines and limited set associativity. One simple way to enhance 
spatial locality, minimize false sharing, and reduce cache interference is to restructure the 
array so that the major regions of data accessed by a processor are contiguous in memory. 
During code generation, the compiler translates array subscripts in the original code to 
accesses for the new array layout calculated in the parallelism and locality phase. If the new 
organization has more dimensions than the original, the address calculations now include 
division and modulo operations. A set of special optimizations are used to eliminate most 
of these division and modulo operations. 

Performance Debugging Tools 

MTOOL, initially developed under earlier funding, was improved and put into active use. 
MTOOL supports not only C with the ANL macros and compiler parallelized Fortran but 
also our experimental parallel languages COOL and Jade. MTOOL has been successfully 
used to tune several of the SPLASH applications programs (PSIM4, Barnes-Hut, Radiosity, 
cholesky) and in conjunction with a parallelizing compiler, has helped reduce the run-time 
of a significant application from Economics by a factor of 7 on an 8 processor SGI system. 
Several MTOOL ports were done by outside companies. For example, SUN ported a ver- 
sion of MTOOL to Sun SuperSparc-based multiprocessors. 

We developed a new type of a performance debugging tool: MemSpy is a software tool 
which provides users with detailed, data-oriented information on an application's memory 
system performance. For all application data objects and procedures, MemSpy provides 
information on the amount of memory stall at the time they incur, and breakdowns of the 
causes of this memory stall time. This information has proven useful in uncovering perfor- 
mance bottlenecks in a number of applications. A primary focus of work on MemSpy has 
been to improve its execution time overhead. Although MemSpy is simulation based, 
proper optimization of simulator performance should allow its overhead to be competitive 
with tools such as MTOOL, which have traditionally opted for lower overhead by provid- 
ing less detailed information on application performance. Initially, using MemSpy on an 
application incurred factors of roughly 20 to 50 times slowdown, depending on the specific 
applications memory referencing characteristics. With many optimizations, MemSpy's 
overhead has been brought to 7 to 20 on applications from the SPLASH benchmark set. 
MemSpy was released for general distribution in 1993. 

COOL-An Object-Oriented, Explicitly Parallel Programming Language 

Building on the concepts from the object-oriented community, we developed a new pro- 
gramming language called COOL (Concurrent Object Oriented Language) that uses 
explicit parallel constructs and monitors as basic programming tools. We implemented 
COOL on DASH, developed new applications in COOL including programs from the 
SPLASH benchmark suite, and studied various performance issues. 

The COOL programming language emphasizes the integration of concurrency and syn- 
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chronization with data abstraction. This approach provides several benefits. First, 
integrating concurrency with data abstraction allows construction of concurrent data struc- 
tures that have most of the complex details suitably encapsulated. Second, monitors and 
condition variables integrated with objects offer a flexible set of building blocks that can 
be used to build more complex synchronization abstractions. Synchronization operations 
are clearly identified through attributes and can be optimized by the compiler to reduce syn- 
chronization overhead. Finally, the object framework supports abstractions to improve the 
load distribution and data locality of the program, thus offering higher performance. 

We developed optimizations to efficiently support synchronization through monitors, and 
techniques to improve data locality. Synchronization built using monitors can suffer from 
high implementation overheads. To address this problem, we have developed compiler 
optimizations that analyze monitor operations, and, based on the synchronization they 
express, automatically optimize their implementation. These optimizations can signifi- 
cantly reduce the overheads for several common instances of monitor usage. 

Regarding techniques to improve data locality, we have employed knowledge of the under- 
lying memory hierarchy to schedule computation and distribute data structures and thereby 
improve data locality. We have developed abstractions for the programmer to supply infor- 
mation about the data reference patterns of the program. This information is used by the 
runtime task scheduler to distribute tasks and objects so that tasks execute close (in the 
memory hierarchy) to the objects they reference. We evaluated the effectiveness of these 
techniques by applying them to applications from the SPLASH benchmark suite. 

COOL was completed in 1993 and released to the research community. Several outside 
groups have used COOL for programming object-oriented, parallel applications. 

JADE-A Parallel Programming Language 

Unlike many other conventional parallel language constructs that are control-oriented, Jade 
is data-oriented. A Jade programmer parallelizes an application by augmenting sequential 
code with Jade constructs that declare the side effects of different sections of the code. The 
compiler and run-time system use that side effect information to execute the program in 
parallel while still enforcing the data dependence constraints implied by the original serial 
program. Jade's data-oriented approach simplifies development of large parallel applica- 
tions. The programmer only expresses local data usage information about each task; the 
Jade implementation determines the (possibly quite complex) synchronization necessary 
between tasks. We have discovered that data-oriented expression of parallelism can be used 
to describe sophisticated concurrency patterns that have been developed with control-ori- 
ented languages. A program's concurrency structure is captured in the design of the 
program's data structures. Simple data structures can be used for simple concurrency pat- 
terns such as dynamic task graphs and pipelining. More complicated patterns such as 
nested levels of parallelism can be achieved via hierarchically structured data. 

Hierarchically structured data allow the programmer to express tasks' accesses at different 
levels corresponding to how the tasks access the data. In this way, the programmer can 
express a task's accesses at the most appropriate level for that task. Hierarchies can also be 
useful for refining the access specification of a task which incrementally narrows down the 
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set of data it can potentially access. When a programmer expresses how tasks access data 
in this hierarchical manner, the Jade implementation can fully exploit the natural concur- 
rency available within and among operations of hierarchically structured data. The 
resulting hierarchical concurrency patterns also naturally make the generation of the 
dynamic task graph in a Jade program more efficient. 

We have used Jade to parallelize large applications, such as a simulation of the air flow in 
the Los Angeles basin, a 3-D graphical modeling system, and a program using finite-ele- 
ment analysis. Jade was also ported to the Stanford DASH multiprocessor prototype 
relatively easily. We released JADE in 1994 and several companies and research groups 
have used JADE to explore a variety of multiprocessing tasks ranging from other shared- 
memory multiprocessors to networks of workstations. 

Parallel Application Studies 

As part of the DASH project, we engaged in a variety of application studies. Several impor- 
tant results came of these studies. First, the development and characterization of the 
SPLASH benchmark set. SPLASH (Stanford ParaLlel Applications for SHared Memory) 
is the first publicly available set of scalable, parallel applications for shared memory mul- 
tiprocessors. SPLASH is distributed via the web (including reports that characterize and 
document the applications). SPLASH has been widely downloaded and used by a variety 
of researchers working on both parallel hardware and parallel software systems. 

Our second major thrust was to explore the parallelization of challenging applications. We 
have focused on the increasingly important n-body applications. These applications have 
promising uses and potentially good speed-up but present new challenges in memory local- 
ity and potentially in load balancing. Our work has demonstrated new approaches to 
solving these problems and clearly illustrates the advantages of shared-memory architec- 
tures. In particular, our work has focused on the two best methods for classical N-body 
problems-the Barnes-Hut method and the Fast Multipole Method (FMM)-as well as on a 
very different application of the hierarchical N-body approach: a hierarchical radiosity 
application for global illumination problems in computer graphics. Although obtaining 
effective parallel performance in these applications is complicated by their nonuniform and 
dynamically changing characteristics, we have designed new partitioning techniques that 
yield very good speedups on a 48-processor DASH. We have also studied the implications 
of these hierarchical N-body applications for multiprocessor architecture. Our first goal 
was to study the implications of scaling the applications to run on larger machines. We 
developed a realistic scaling methodology that takes all relevant application parameters 
into account, and demonstrated that it leads to different conclusions about the effectiveness 
and design of larger machines than the popular, naive method of considering only the 
impact of scaling the input data set size. Besides scaling, our other architectural conclusion 
from studying these applications had to do with the kind of communication abstraction that 
a multiprocessor should support. We found that the nonuniform and dynamically changing 
nature of the problem domain, together with the need for long-range communication, cause 
a shared address space to afford substantial advantages in both programming complexity as 
well as performance over an explicit message-passing communication paradigm. 

We have also been looking at scalability issues for the important sparse Cholesky factor- 
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ization computation. We have investigated the use of a panel decomposition for parallel 
sparse factorization, where sets of contiguous matrix columns with identical non-zero 
structure are distributed among the processors. Through extensive performance modelling 
and implementations on the DASH machine, we have learned several important things 
about such methods. First, panel methods produce a significant performance improvement 
over the more traditional column methods due to improved use of the memory hierarchy (a 
factor of two to three performance increase is typical). However, their performance is still 
somewhat disappointing, since they produce speedups that are well below linear in the 
number of processors. Our performance modelling work has allowed us to understand the 
achieved performance in terms of fundamental limitations in the computation. Indeed, we 
have found that such methods have very severe limitations due to a lack of exposed con- 
currency. Concurrency is inadequate for the moderately parallel machines we considered, 
and it would prove to be an even more severe limitation for larger machines. 

FLASH Operating System 

Our goal is an operating system that makes FLASH usable in general-purpose (commercial 
and engineering) environments in addition to supercomputer environments. As of the end 
of this contract, we completed several major steps towards this goal: 

1. Acquired and ported a commercial UNIX system to DASH as a base for FLASH 
OS development. 

2. Developed a detailed measurement method (using the monitoring hardware on 
the DASH) and used it to characterize the effects of NUMA on the OS we ported 
when run under a general-purpose workload. The information gathered, about 
where the performance problems occur and, just as importantly, about where they 
do not occur, is vital to planning our development efforts for FLASH. 

3. Used DASH to study the benefits and costs of several different scheduling and 
memory page migration policies on application performance in a general-purpose 
workload. 

4. Developed a simulation environment which can efficiently simulate an operating 
system and applications, rather than just applications as previous efficient simula- 
tion methods could handle (for example, Tango). 

5. Completed the first revision of the high-level architecture, and begun work on the 
file system and I/O architecture. 

To further our understanding of how cache-coherent NUMA multiprocessors will behave 
under the workloads presented to general-purpose compute servers, we have undertaken 
two different paths of study. One path involved studying workloads running on the DASH 
prototype machine. The other involved building a simulation environment capable of sim- 
ulating the FLASH machine running complex multiprogramming workloads. 

Using the DASH machine, we studied the effects of OS scheduling and page migration pol- 
icies on the performance of multiprogramming workloads. Results of this study are 
available in the paper entitled "Scheduling and Page Migration for Multiprocessor Com- 
pute  Servers"  which  was presented  at ASPLOS.  Our experiments  show  that for 
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multiprogramming workloads consisting of sequential jobs, the UNIX (SVR3) scheduling 
policy does very poorly on machines such as DASH. By incorporating cluster and cache 
affinity along with a simple page-migration algorithm, performance can be increased by up 
to a factor of two. For workloads consisting of multiple parallel applications, we show that 
space-sharing policies that divide the processors among the applications do substantially 
better than time-slicing policies such as standard UNIX or gang-scheduling. Finally, we 
evaluated using TLB misses as a predictor of cache misses for page migration in parallel 
applications. 

Operating System and Simulation Technology 

To understand the behavior of multiprogrammed workloads on FLASH, we have devel- 
oped an interface so the SimOS simulation environment can be used to drive the flashlite 
memory system simulator. SimOS, described in the paper entitled "Fast and Accurate Mul- 
tiprocessor Simulation: The SimOS Approach", is a machine simulation environment that 
contains a full Unix operating system. Having the full operating system allows SimOS- 
based simulations to both include the OS behavior in the simulation results as well as 
enabling complex workloads to run in the simulation environment. The current SimOS 
environment is application-level binary compatible with the system software environment 
being built for FLASH. 

Beside supporting complex, realistic, and long-running workloads, SimOS also supports 
the flexibility to trade-off speed and detail. Faster, less detailed simulation can be used to 
scan over the uninteresting, time-consuming parts of an execution while slower, more 
detailed levels of simulation can be used to focus on specific sections of interest. SimOS's 
ability to change levels of detail on-the-fly enhances its ability to study complex workloads. 

By interfacing to FLASHLite (the FLASH memory system simulator), we have created an 
environment which allows us to switch to a level of simulation detail that closely models 
both the hardware, system software, and workloads that will be running on the FLASH 
machine. We have already used this capability to evaluate the FLASH machine on multi- 
programmed workloads[8]. Even though it has come on-line only recently, this simulation 
environment has already given us interesting insight into the behavior of the design. 
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Uniprocessor Architecture Studies 
Exploiting Instruction Level Parallelism 

A growing perception is that dynamically-scheduled superscalar processors are the only 
effective way to couple instruction scheduling and speculative execution. This perception 
seems to be supported in the commercial world as superscalar implementations move from 
dynamic dependence checking (e.g. the Sun SuperSPARC) toward more complex dynamic 
scheduling techniques with support for speculative execution (e.g. the Motorola 88110). 
Yet, this hardware-intensive approach has a fundamental problem: these machines analyze 
only a small window of instructions at a time and use simplistic heuristics for choosing 
among the available instructions. Thus, they are not guaranteed to generate a good instruc- 
tion schedule. 

On the other hand, compiler algorithms that incorporate global scheduling techniques can 
effectively schedule instructions across branch boundaries. These techniques have advan- 
tages over run-time instruction scheduling because they are able to analyze a much larger 
portion of the program at any time, and they can use sophisticated heuristics to choose 
among the available instructions. These advantages allow the compiler to optimize the 
schedule for the critical paths of the program. While these compiler-based approaches have 
the benefit of much simpler issue hardware, they have been limited in their ability to use 
speculative execution. To augment these global scheduling algorithms, we recently pro- 
posed a general architectural mechanism called boosting that provides the compiler with an 
unconstrained model of speculative execution. Since then, we have constructed a complete 
compiler system and a working hardware model to better understand the capabilities and 
costs of boosting. 

Our TORCH project attempts to find an integrated solution, consisting of both compiler 
and architectural components, to the problem of effectively exploiting ILP. Our focus is on 
supporting general speculative execution in an environment with sophisticated instruction 
scheduling. Speculative execution is needed to find any significant amount of ILP in non- 
numerical applications. The key idea in our approach is in defining the right architectural 
interface; an interface that appropriately divides the work among the hardware and soft- 
ware. Our boosting approach relies on simple but useful hardware mechanisms that 
minimally impact the cycle time of the machine. Our preliminary hardware designs indicate 
that the cycle time of a superscalar machine with boosting past one conditional branch is 
nearly identical to the cycle time of a simple (VLrW-like) superscalar machine. By making 
these hardware mechanisms visible to the software, a sophisticated static instruction sched- 
uler can take full advantage of speculative execution with very little cost. 

We have developed a global scheduling algorithm that is useful for machines with and 
without boosting. Our algorithm is applicable to a wide range of machines, from deeply- 
pipelined RISC processors to dynamically-scheduled superscalar machines. Our algorithm 
uses a trace-based approach to efficiently exploit the ILP in non-numerical applications. 
Like other trace-based approaches, our algorithm concentrates on those code motions that 
are most beneficial to improving performance. Unlike other trace-based approaches, our 
algorithm tempers the global movements so as to not adversely affect the performance of 
the off-trace schedules. 

16 



As a result of our compiler implementation and in-depth hardware design, we have been 
able to evaluate our ideas and study a range of cost/performance tradeoffs. For the limited 
superscalar machines of the early 1990s, our statically-scheduled approach achieves cycle 
count speedups which are comparable to those found in the aggressive dynamically-sched- 
uled approaches. 

As an additional benefit of this work, we are using the TORCH compiler scheduling system 
to create the compiler back-end for the Magic protocol processor. 

Hardware and Software Technology for Multiprocessors 
Formal Verification of Multiprocessor Protocols 

Protocols are susceptible to subtle design errors which are difficult to detect and diagnose 
by simulation or prototyping. Our goal is to speed up the design of correct protocols by 
providing software for automatic formal verification. Our approach is to describe the pro- 
tocol using a simple language that we have devised, TRANS. Protocols described in 
TRANS can be checked automatically for violations of invariant properties or deadlocks. 

The TRANS language is based on iterated guarded commands, like Chandy and Misra's 
UNITY language, supporting data structures such as records and arrays. Simplicity in the 
language design was a high priority, because we want to apply a variety of verification tech- 
niques to TRANS descriptions. Every additional feature in the language would make 
adaptation to a new method more difficult. 

We have implemented the simplest possible verification methods, so that we could explore 
examples in TRANS in parallel with the development of more sophisticated methods. The 
first methods are based on explicit enumeration of the states of the protocol. Each state is 
added to a table after being checked for deadlock or violation of a user-specified invariant 
condition. Compared with other programs using the same basic method, we put more effort 
into minimizing the sizes of individual states, so we can handle somewhat larger problems 
in a given amount of memory. 

We pursued three subprojects; debugging the verification system, speeding up the system, 
and adding some features to Trans. We applied the simple verifier to a directory-based 
cache-coherence protocol for use with a communication medium that does not preserve 
message order (for example, because of different routing for consecutive messages). Early 
in the design, we began working from a high-level summary of the protocol with several 
interesting findings: 

1. Verification was worth the effort. There were several errors and many more over- 
sights (issues that were not addressed in the design). 

2. Almost all of the bugs in the system could be caught with very small configura- 
tions: for example, three processors with one memory location consisting of one 
bit. Hence, not many states needed to be explored (never over a million), so our 
simple verification algorithms were sufficient. 

3. Verification by the designer early in the design, on a high-level model of the 
design, is very productive. In this mode, the formal verifier is much like a highly 
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critical design assistant who finds all the obscure cases the designer failed to think 
about. 

4. Adding error statements to (supposedly) unused branches of IF and CASE state- 
ments catches more than half of the errors. Having an error statement in the 
description language makes the job of specification much easier. 

The program was also used successfully to assist in the detailed design of a link-level com- 
munications protocol by another student during a summer job at Sun Microsystems. 

The third major subproject was to design and implement a more sophisticated verifier for 
TRANS based on "symbolic" methods. A symbolic method uses an implicit instead of 
explicit representation of the state space of the system. The symbolic representation of the 
state space should grow in proportion to the "complexity" of the space, not just the number 
of states. One of the most widely-used symbolic representations is the "binary decision dia- 
gram", a directed graph representation of boolean functions. 

Our method uses binary decision diagrams to represent a finite state graph representing the 
behavior of the protocol. The state space of the protocol can be explored using breadth-first 
search, which is performed efficiently by boolean manipulations. Although these tech- 
niques have been used by other groups, the novelty of our approach is that the boolean 
representation is derived automatically from the high-level protocol descriptions. Other 
systems have required the protocol description to be written in boolean form. We have 
implemented this verifier, which works on small examples. We are now in the process of 
debugging and performance tuning. 

Liveness and Fairness 

Murphi is a description language for concurrent systems (such as protocols) that we have 
been developing and using for several years. A Murphi description consists of a set of 
guarded commands (condition/action rules) which are iterated indefinitely. The Murphi 
verifier generates the states of a system by systematically applying the guarded commands 
in all possible ways, checking each state as it is generated against a set of user-specified 
properties. If one of the properties is violated, the Murphi verifier generates an example 
execution history of the system to show how the error can occur. Murphi has been used to 
debug several descriptions at universities and in industry, including the DASH cache coher- 
ence and FLASH cache coherence protocols. As part of this contract, a version of Murphi 
was documented and distributed to both industry and university researchers. 

Verification of "Relaxed Memory Order" 

An important application of the new Murphi liveness checker was a Murphi model of 
"Relaxed Memory Order" (RMO), which is a new standard memory model for the Sparc 
V9 architecture, defined by the Sparc International Consortium. RMO is a very flexible 
multiprocessor memory model that allows memory loads and stores to distinct locations to 
be reordered very freely. 

We developed an operational description in Murphi of the RMO model. This model could 
be coupled in Murphi with small Sparc V9 assembly codes to verify the correctness of syn- 
chronization routines or to generate all the possible results of several interacting programs 
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under the memory model. 

Our initial system did not allow us to verify that the synchronization functions satisfied 
liveness requirements. A mutual exclusion algorithm should have the property that if a pro- 
cess tries to enter a critical section it will not have to wait forever. In order to prove such 
properties with the new liveness checker, it is first necessary to specify certain "fairness 
properties" of the memory model. For example, if a store is issued by a processor, it should 
eventually be executed by the memory; also, although the processors may vary widely in 
speed, each processor eventually issues its next instruction. 

We were able to verify all of our previous examples with the expected results (including 
some livelocks). One of the most interesting examples was one we had not previously ver- 
ified: a version of Dekker's algorithm with a starvation condition. The problem occurs 
when two processors repeatedly try to enter the critical section in exactly the same way, so 
each is blocked. The verifier was able to detect the problem and print the correct diagnostic 
trace. 

Integration with Symmetry Reduction 

One of the most successful ideas we have used in Murphi is "symmetry reduction". Many 
problems have natural structural symmetries where interchanging values in a state simply 
interchanges values in all future states, without otherwise changing the computation that 
occurs. For example, in a multiprocessor cache coherence protocol such as that used in 
DASH, the processors, memory addresses, and data values can all be interchanged without 
really changing the state: if no error occurs when processor 1 has a clean copy of a cache 
line and processor 2 has a dirty copy, no error will occur when processors 1 and 2 are 
exchanged. 

Two states can be regarded as equivalent if one can be obtained from the other by inter- 
changing symmetric values in this way. Huge savings by skipping a state whenever an 
equivalent state has already been processed; two orders of magnitude for DASH and even 
more for other cache coherence protocols. 

We have begun integrating symmetry reduction with the liveness algorithms. Although 
everyone believed that this would be straightforward, we have discovered that there are 
some surprising interactions and that the problem is not quite as simple as believed. Intu- 
itively, problems arise because a liveness property may require that two particular states be 
visited on any execution. However, symmetry reduction may implicitly merge the two 
states, losing track of whether both were visited or only one. As of the close of this contract, 
we have not found an ideal solution to this problem. 

FLASH Protocol Verification 

We also set out to verify the cache coherence protocol for the FLASH multiprocessor. The 
protocol was described in Murphi. The resulting operational model is a finite state concur- 
rent system composed of several processes modeling processors, caches, directory 
processors (DP), a pool of pointers, and networks connecting processors. The DP is the real 
part implementing the protocol and consists of local memory and directory for each mem- 
ory location. States in the model consist of global variables which represent the states of 
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each processes. Processors and caches are modelled abstractly in that only the necessary 
information for the cache coherence protocol is maintained. On the other hand, detailed 
implementations in the DP such as information bits in directory header are modelled by 
Boolean variables in Murphi description as they are in the specification. 

With the data structure, the protocol is described by transition relations among the states of 
the machine. The FLASH protocol specification fits with the rule-based nature of Murphi 
very well. The specification consists of a number of handlers for each of request and reply 
message type. A handler is specified by a table which simply lists case by case actions 
depending on the directory information of the memory line in the DP. Each of table entry 
can be directly translated into Murphi rules in a straightforward way. 

To keep the size of the state space manageable for verification, we have to confine the num- 
ber of resources of the system within small numbers. Thus, the largest system verified 
successfully is with four processors and a single memory location. However, within these 
limits, the Murphi verifier has explored EVERY POSSIBLE scenario, so it is likely that 
significant errors would have been caught by this process. 

The specifications that were checked using the Murphi verifier included in-line assertions, 
invariants, liveness properties, and absence of deadlock. 

Assertions: 

Murphi allows the user to insert assertions and error statements in the middle of a descrip- 
tion. For example, when the user writes an "if statement and the "else" clause is never 
supposed to be executed, it is possible to insert an error statement in the else. If it is possible 
for the else clause to be executed, Murphi will catch it and issue an error message and diag- 
nostic execution that leads to the problem case. This feature is used frequently in the 
FLASH description, especially for detecting the arrival of messages of unexpected types. 

Deadlocks: 

Running the verifier on the model with limited number of resources, we found deadlocks, 
especially when network queues were considered to be very small. In the actual implemen- 
tation, FLASH uses a software queue whose size is virtually infinite. When we limited the 
number of transactions in the system to avoid overflowing the queues in the model, there 
were no further deadlocks. 

Invariants: 

Besides the assertions, two groups of invariants were added in Murphi description. One 
group specifies properties of the directory headers in the DP implementation and the other 
specifies general properties of cache coherence protocols. These invariants are expected to 
hold at every reachable state of the system. 

Liveness Properties: 

Murphi is able to check liveness properties under the weak fairness assumption. The prop- 
erties are written in a subset of linear time temporal logic. This will capture livelocks of the 
protocol if they exist, and violations of the given temporal specifications. We have tested 
two kinds of temporal requirements. First, for each of the memory location, the directory 
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header has a pending bit which tells if there are any unacknowledged requests on that mem- 
ory location. This bit should be eventually cleared, so that any request to this location are 
processed. Second, for each cache line in a processor, an information bit is assigned to 
decide if the line is expecting some replies to its requests. These requests should be satisfied 
eventually. 

Verification Results: 

Some of the properties are found to be violated during verification, but all of them were 
caused by trivial errors in the specification (there were no problems in the implementation). 
Evidently, either the designer violated the specification in exactly the right ways so that the 
implementation did the "right thing" when the specification did not, or the specification 
was not updated when problems were found during implementation. Hence, the advantages 
of the verification effort were to increase our confidence in the correctness of the protocol 
implementation, and to debug the specification. 

Table 1 shows selected verification cases including the number of states explored and con- 
sumed time during verification. 

Table 1: 

#of 
Proc. 

#of 
Memory 

Iocs. 

Data 
values 

Input 
queue 

Network 
queue 

Dup. 
pointer 
allowed 

#of 
States 

Time in 
seconds 

2 2 yes no 3 yes 205,586 12,660 

3 1 no yes 3 no 1,008,146 32,232 

3 1 yes no 3 no 1,021,464 39,756 

4 1 no no 2 no 256,081 11,176 

The last line of the table is for a version of the FLASH description that was rewritten to 
exploit the fact that all processors, values, and cache lines are interchangeable at this level 
of abstraction. This allows the elimination of many redundant states, allowing larger 
descriptions to be verified. 
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