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Abstract 

The importance of transition and its effect on skin friction in subsonic vehicle drag has 
been investigated for many years. However, in high-speed flows, the prominence of 
transition in vehicle heating and drag is more uncertain, because of the small amount of 
flight experience we have. Clearly, though, transition location can be a significant source 
of uncertainty in vehicle drag and heating predictions. Also, the efficacy of transition 
control depends largely on where transition is predicted. 

The high levels of noise present in conventional hypersonic ground-test facilities cause 
transition to occur earlier than in flight. Because of facility noise, the trend of tunnel data 
can even be opposite to that for flight. Clearly, transition measurements in ground-test 
facilities are generally not reliable predictors of flight performance and we must rely on 
computational approaches for design for flight. 

The program at Arizona State University to investigate stability and transition of 
hypersonic boundary-layer flows has been ongoing for several years. In this final report 
we compile the significant theoretical and computational results from this program. The 
research has progressed through several logical steps with increasing complexity: 
• Linear stability theory (LST) with the effects of chemistry and bow shock on a sharp 

circular cone at zero incidence with a Parabolized Navier-Stokes (PNS) basic state. 
• Examine 3-D effects on a sharp elliptic cone at zero incidence with a PNS basic state. 
• Include nose bluntness (entropy layer and curved shock) plus nonequilibrium 

chemistry on a circular cone in the nonlinear Parabolized Stability Equations (NPSE) 
with a Navier-Stokes (NS) basic state. 

• Along the way, we also provided a new crossflow Reynolds number including 
compressibility and wall-temperature effects for use in conceptual design. 

These steps are described in more detail in this final report and in the indicated 
references. The ultimate goal is a predictive capability of transition location and trends on 
a general hypersonic vehicle. 
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Introduction 

The importance of transition and its effect on skin friction in subsonic vehicle drag has 
been investigated for many years. However, in high-speed flows, the prominence of 
transition in vehicle heating and drag is more uncertain, because of the small amount of 
flight experience we have. Clearly, though, transition location can be a significant source 
of uncertainty in vehicle drag and heating predictions. Also, the efficacy of transition 
control depends largely on where transition is predicted. 

The high levels of noise present in conventional hypersonic ground-test facilities cause 
transition to occur earlier than in flight, e.g. [1]. Because of facility noise, the trend of 
tunnel data can even be opposite to that for flight. Clearly, transition measurements in 
ground-test facilities are generally not reliable predictors of flight performance and we 
must rely on computational approaches for design for flight. 

The program at Arizona State University to investigate stability and transition of 
hypersonic boundary-layer flows has been ongoing for several years. In this final report 
we compile the significant theoretical and computational results from this program. The 
research has progressed through several logical steps with increasing complexity: 
• Linear stability theory (LST) with the effects of chemistry and bow shock on a sharp 

circular cone at zero incidence with a Parabolized Navier-Stokes (PNS) basic state. 
• Examine 3-D effects on a sharp elliptic cone at zero incidence with a PNS basic state. 
• Include nose bluntness (entropy layer and curved shock) plus nonequilibrium 

chemistry on a circular cone in the nonlinear Parabolized Stability Equations (NPSE) 
with a Navier-Stokes (NS) basic state. 

• Along the way, we also provided a new crossflow Reynolds number including 
compressibility and wall-temperature effects for use in conceptual design. 

These steps are described in more detail below. The ultimate goal is a predictive 
capability of transition location and trends on a general hypersonic vehicle. 

Linear Stability Theory - Effects of Chemistry and Bow Shock 

The paper by Mack [2] is the most complete description of compressible stability 
available anywhere. The linear stability analysis of high-speed boundary layers uncovers 
three major differences between it and the subsonic analysis: the presence of a 
generalized inflection-point, multiple acoustic modes, and the dominance of 3-D viscous 
disturbances. Linear stability solutions for hypersonic flows are further complicated for 
some of the following reasons: 1) At hypersonic speeds, the gas often cannot be modeled 
as perfect because the molecular species begin to dissociate due to aerodynamic heating. 
In fact, sometimes there are not enough intermolecular collisions to support local 
chemical equilibrium and a nonequilibrium-chemistry model must be used. 2) The bow 
shock is near the edge of the boundary layer and must be included in transition studies. 

In our program [3], the stability of a shock layer in chemical nonequilibrium was 
analyzed for a sharp cone and results were compared with those assuming 1) local 
chemical equilibrium and 2) a perfect gas. The coordinate system for both the basic-state 
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and stability analysis fit the body and bow shock as coordinate lines. This makes it easier 
to apply the linearized shock-jump conditions as the disturbance boundary conditions. At 
the surface of the cone, for the nonequilibrium calculations, the species mass fluxes were 
set to zero (noncatalytic wall), whereas for the equilibrium calculations the disturbances 
were assumed to be in chemical equilibrium. It is clear that the equilibrium and 
nonequilibrium solutions can differ significantly depending on the rates of the reactions 
relative to the time scales of convection and diffusion. For example, some of the 
equilibrium modes were determined to be supersonic modes, each of which was a 
superposition of incoming and outgoing amplified solutions in the inviscid region of the 
shock layer; no similar solutions were found for the nonequilibrium shock layer. The 
magnitudes of these modes oscillated with y in the inviscid region of the shock layer. 
This behavior is possible only because the shock layer has a finite thickness. They are 
also unlike Mack's higher modes (except for the second) in that the disturbance-pressure 
phase for all of these supersonic modes changed most across the inviscid region of the 
shock layer. (The disturbance-pressure phase change for Mack's higher modes occurs 
across the viscous region of the flow, i.e. the boundary layer.) In fact, the disturbance- 
pressure phase change for all of these supersonic modes through the boundary layer is 
comparable to that of Mack's second mode. 

Another effect of the chemical reactions is to increase the size of the region of relative 
supersonic flow primarily by reducing the temperature in the boundary layer through 
endothermic reactions, increasing the density, and hence decreasing the speed of sound. 
This reduces the frequency of the higher modes; in particular, the most unstable one, the 
second mode. The higher modes in the reacting-gas cases are also more unstable relative 
to the corresponding perfect-gas modes. The first modes are, however, more stable. 

Finally, the finite thickness of the shock layer has a significant effect on the first-mode 
solutions of all of the families. The effect on higher-mode, higher-frequency solutions 
does not seem to be as large as long as they are subsonic. This is perhaps what one 
would intuitively expect because the shock is likely "stiff and hence difficult to perturb 
with smaller-wavelength, larger-wavenumber, higher-frequency disturbances. However, 
nonparallel effects are known to be large for first-mode solutions, and a complete study 
of the effects of the finite shock-layer thickness requires at least an NPSE solution [4]. 

Linear Stability Theory - Elliptic Cone 

The current concept of a hypersonic vehicle includes a forebody which we next modelled 
more generally as a sharp cone with an elliptical cross-section instead of a circular cross- 
section. (The blunt nose is considered in the next section.) The boundary layers 
associated with this geometry are 3-D. Three-dimensional boundary layers are 
susceptible to crossflow instabilities, as well as streamwise instabilities [5]. In fact, these 
crossflow instabilities are often the dominant mechanisms responsible for transition. 

A PNS code was written to investigate the 3-D boundary layer at zero angle-of-attack [6]. 
The flow of interest was a calorically perfect ideal gas at a freestream Mach number of 4. 
Cones of various cross-sectional aspect ratios were investigated. As demonstrated in 
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Figure 1, the wall streamlines follow a path from the major axis toward the minor axis. 
There appears a "ballooning" of the velocity boundary layer in the vicinity of the minor 
axis, created by a welling of low-momentum fluid convected by the crossflow velocity. 
This produces unstable, inflected velocity profiles near the centerline. From a stability 
consideration, transition is first expected in the minor-axis region, not in the crossflow- 
dominated region. These observations are consistent with those of Kimmel, e.g. [1]. 
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Figure 1: Wall streamlines for elliptic cone of cross-sectional aspect ratio 2, zero angle of 
attack, Mach number 4. Flow moves from major to minor axis. 

Navier Stokes Basic State / Nonlinear Parabolized Stability Equations - Ongoing 

The next and current step in our program was/is to investigate the nonequilibrium- 
chemistry flows on an elliptic cone with a blunt nose (including the entropy layer and 
curved shock). Based on our previous experience and recognizing the sensitivity of 
transition to even the smallest details of the basic state, a well-resolved, 3-D, steady, 
basic-state NS solution is necessary for this more complex geometry before subsequent 
transition studies can be attempted. However, there are several critical issues associated 
with the 3-D configuration that could and should be addressed by initially considering a 
2-D geometry, such as a blunted circular cone at zero angle of attack. These problems 
include developing massively scalable parallel algorithms for structured-/unstructured- 
grid NS solvers and determining the appropriate chemistry model. 

As of this report, the extent of physics modeled is chemical non-equilibrium, where it is 
assumed that one temperature describes the thermal state. The basic state is solved using 
an explicit finite-volume code, written for 2-D or axisymmetric flows. The inviscid terms 
are evaluated using a Roe upwinding scheme, with limiting terms and the viscous terms 
are evaluated using second-order finite differences.  The chemistry model can be 
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arbitrary, subject to availability of thermodynamic, reaction and inter-molecular potential 
data; currently, we have compiled this data for: N2, N, NO, 0, 02, Ar, as well as for ideal 
air. A structured mesh is used initially for the sake of simplicity. One of the ultimate 
goals of this research is to rewrite the codes to use unstructured meshes. This will allow 
for the analysis of flow about more complex geometries. 

Mole fraction of02 Temperature 
(Ideal gas) 

Temperature 
(Real-gas effects) 

Figure 2:  Contours for  10° blunted wedge.     Inviscid case.  Freestream conditions 
M»=12.5, Tro=298.15K, p«r=l atm. Species model (N2, N, NO, 0, 02). 

One of the principles around which the basic-state code is written is the availability of a 
distributed memory parallel architecture. Such machines range from the do-it-yourself 
Beowulf cluster (as is in operation at ASU), to the Intel Paragon (as is used at Sandia). 
The code is written for scalable performance on such machines, meaning that the time 
required to run the code will scale (roughly) inversely with the number of processors 
available. The solution method is "cell-implicit" [7], meaning that the only terms 
evaluated implicitly are those involving the chemical reactions. This helps to remove 
problems associated with the stiffness of the system, without requiring a fully implicit 
treatment. This way, the parallel performance of the code is not compromised. As of the 
submission of this abstract, this basic-state code runs in parallel for inviscid cases. One 
such case is included among the figures, describing a five species flow (N2, N, NO, O, 
02) around a blunted wedge at a freestream Mach number of 12.5. For this flow, there is 
considerable dissociation of oxygen, and lesser dissociation of nitrogen; see Figure 2. 
For comparison to show the importance of including real-gas effects, results from a 
calculation assuming ideal gas are also provided in Figure 2; for the ideal-gas case, the 
shock standoff distance and the post-shock temperatures are greater than those of the 
chemical-nonequilibrium case. 

Once the basic state is completed, we shall model the transition process by NPSE spatial 
simulations with rate-chemistry effects on the blunt-nosed shape. In recent years the 
NPSE have become a popular approach to analyzing streamwise growth of disturbances 
in slowly varying shear layers, jets, and boundary layers. The NPSE include nonparallel 
and nonlinear effects ignored by linear stability theory [4,8]. Moreover, the NPSE have 
significantly less resource overhead associated with them compared with direct numerical 
simulations _[4].  To date the NPSE have been applied to a variety of 2- and 3-D flow 
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situations and are generally regarded as appropriate for convectively unstable flows [4,9]. 
In particular, for a far more complicated wall-bounded shear layer, we developed and 
validated the NPSE with wind-tunnel experiments at ASU on a swept airfoil [10-11]. The 
NPSE does an excellent job of capturing the details for little computational expense. 

Transition Prediction - Correlation Parameters 

This phase was an outgrowth of the above work in 3-D boundary layers. With the current 
interest in high-speed flight, there is also a keen desire to determine correlating 
parameters, based purely on basic-state profiles, that can be easily incorporated into 
existing basic-state codes and will predict transition location (or trends) for crossflow- 
dominated problems. To evaluate parameters quantifying stability characteristics, we 
examined the linear stability of the supersonic flow over a rotating cone at zero 
incidence. When compressibility and wall-temperature effects are included, a correlating 
parameter is found at transition [12]: 

Quiet  Rcf(new)= 26.7 +38.0 Wmax/Ue Noisy  Rc^ew)= 21.5+ 29.1 Wmax/Ue 

for 2% < Wmax/Ue < 8% where Wmax/Ue is in percent 

This result has been verified with available yawed-cone data (references available in [1]); 
see Figure 3. The new parameter is calculated solely from the basic-state profiles and, as 
such, it can aid in conceptual (only) transition prediction and design, including the 
evaluation of parameter trends, for 3-D boundary layers. Once a preliminary shape is 
selected, NPSE calculations are strongly urged. 

RcKnew) 

400 ! 

i 

1 

i 

I         
1 
i 

300 
i 
i 

i 
i 

! 
i 

1 
i 
; 
:• 

• 

1 
! 
1 
1 

La,---' = 

1 [ i   J^      °o 

t 

! /p. 

• 1 

jpr o 
i 

; 

n 

as 
*           i 

i i i 

W^/IL 

Figure 3: New crossflow Reynolds number (including compressibility and wall 
temperature) vs maximum crossflow velocity (solid line - noisy data; dashed line - quiet 
data) compared with experiments: King quiet ••;King noisy AA; Stetson 0*;Holden • 
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