
1*1 National Defense

Defence nationale

GROUND TERMINAL SIMULATOR IMPLEMENTATION
FOR UPLINK SYNCHRONIZATION TRIALS

by

Caroline Tom

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
REPORT NO. 1341

Canada November 1998
Ottawa

MW1-64-07 £&

1*1 National Defense
Defence nationale

GROUND TERMINAL SIMULATOR IMPLEMENTATION
FOR UPLINK SYNCHRONIZATION TRIALS

by

Caroline Tom
Military Satellite Communications Group

Space Systems and Technology Section

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
REPORT NO. 1341

PROJECT November 1998
5CA11 Ottawa

Abstract

A ground terminal (GT) simulator was developed at Defence Research Establishment
Ottawa (DREO) as part of an in-house activity examining aspects of uplink synchronization for
extremely high frequency (EHF) satellite communications (SATCOM) using frequency hopping.
The GT simulator consists of a GT processor, custom interface boards, synthesizer controller,
frequency synthesizer, and data source. The GT processor is the principal component of the
simulator and is realized by a TMS320C30 digital signal processor board. This report describes
the implementation of the GT processor functions relating to uplink synchronization and the
interfaces between the various components of the simulator. This report also describes the
synchronization procedure for the GT simulator. The procedure is broken down into three steps:
downlink synchronization; uplink coarse synchronization; and uplink fine synchronization. A
guide on the hardware installation of the various components of the GT simulator and a list of the
software needed to run the simulator is provided in an appendix.

Resume

Un simulateur de terminal au sol a ete develope au Centre de Recherches pour la Defense
ä Ottawa (CRDO). Ce simulateur fait partie d'un travail au CRDO concernant les aspects de
synchronisation de la liaison sol-espace pour les communications par satellite, utilisant le spectre
etale dans la bände de frequence extremement haute. Le simulateur consiste d'un processeur de
terminal au sol, des cartes d'interfaces fabriquees sur demande, un contröleur de synthetiseur, un
synthetiseur de frequences, et une source de donnees. Le processeur du terminal au sol est la
piece principale du simulateur. Le role de processeur du terminal au sol est realise par une unite
de traitement de signaux numeriques, TMS320C30. Ce rapport decrit la realisation des fonctions
du processeur de terminal au sol liees ä la synchronisation de la liaison sol-espace. Ce rapport
decrit aussi la procedure pour la synchronisation du simulateur de terminal au sol. La procedure
est divisee en 3 etapes: la synchronisation de la liaison espace-sol; la synchronisation
preliminaire de la liaison sol-espace; et la synchronisation precise de la liaison sol-espace. Un
guide d'installation des pieces du simulateur de terminal au sol est fourni ainsi qu'une liste des
logiciels requis pour le fonctionnement du simulateur.

m

Executive Summary

The Military Satellite Communications (MSC) Groups at Defence Research
Establishment Ottawa (DREO) and Communications Research Centre (CRC) have been
examining synchronization aspects of robust, anti-jam satellite communications at extremely
high frequency (EHF). The MSC groups at DREO and CRC cooperatively developed ground
terminal (GT) and payload simulators to carry out synchronization trials over the United
Kingdom (UK) Skynet 4A EHF transponder. The use of the Skynet 4A EHF transponder was
made possible through a Memorandum of Understanding established under The Technical
Cooperation Program (TTCP). With the Skynet 4A EHF transponder, the ground-based GT and
payload simulators are set up to realize a single path (either uplink or downlink) of a practical
EHF communications link.

Before communications of a frequency hopped system can begin, synchronization of the
GT and payload must be performed. The first step in the synchronization procedure is downlink
synchronization, followed by uplink coarse synchronization, and finally uplink fine
synchronization. The in-house activity examined downlink and uplink synchronization
separately. The first part of the in-house activity focussed on downlink synchronization aspects
and has been documented. During downlink synchronization, the GT gathers information about
the system clock to allow it to proceed to uplink synchronization. In uplink synchronization, the
GT attempts to align its clock with the payload by transmitting synchronization probes at
designated times. The payload receives the probes and formulates synchronization responses.
The responses are transmitted back to the GT and are used to adjust the GT clock.

This report describes the development of a GT simulator for the uplink synchronization
trials. The GT simulator consists of a GT processor, a number of custom interface boards,
frequency synthesizer, RF equipment, and a data source. The GT processor was implemented on
a TMS320C30 digital signal processor (DSP) board and is contained in a host PC. The custom
interface boards include a GT processor interface board which generates the necessary clock
signals for the GT processor and provides the interface between the GT processor and the
hopping synthesizer controller (HSC). The HSC, in turn, controls a frequency synthesizer. A
multipurpose data interface board was also designed and fabricated to provide the interface
between the GT processor and a data source, and to provide the interface to a downlink
synchronization reference link.

The modes of operation for the GT simulator include: transmitting a continous-wave
(CW) tone at specific points in the hopping bandwidth; transmitting an arbitrary CW tone within
the hopping bandwidth; sweeping a CW tone across the hopping bandwidth; performing
downlink synchronization; performing uplink coarse synchronization; and performing uplink fine
synchronization. The first three functions were implemented during the development of the
simulator and are retained for debug purposes. The GT simulator has been developed so that
commands for the various modes of operation can be issued remotely once the GT simulator is
powered on and the executable file is run. In this implementation, remote operation of the GT

Simulator is carried out by the payload simulator. The remote operation capability is included to
facilitate the system integration and trials since the GT and payload simulators are physically
located 1.5 km apart.

Although the focus of the second part of the in-house activity is only on uplink
synchronization, there is a need to provide a mechanism for establishing downlink
synchronization beforehand. As the experimental setup for the uplink synchronization only
realizes a single path of an EHF communications link, a simulated downlink was set up between
the GT and payload simulators using an RS232 serial communications link. During downlink
synchronization, a downlink synchronization reference pulse is continuously transmitted by the
payload to the GT simulator. The edges of the reference pulse correspond to specific instances in
the pseudorandom hopping sequence of the payload simulator. The GT simulator detects and
uses the pulse to form a preliminary estimate of the system clock.

Once downlink synchronization is achieved, the GT simulator can proceed with uplink
coarse synchronization. In coarse synchronization, two consecutive bursts of sixteen
synchronization probes are transmitted by the GT simulator using different timing hypotheses. In
this implementation, an "outward moving" search scheme is used to test different timing
hypotheses. The search scheme consists of starting at the most probable hypothesis obtained
during downlink synchronization and shifting each subsequent timing hypothesis outward on
either side of the most probable hypothesis. The payload receives the coarse synchronization
probes and formulates a binary "detect/no detect" response. The response is relayed back to the
GT simulator via another serial link. When a "detect" is received by the GT simulator, a
verification process is carried out to ensure it is a valid "detect" response. Coarse
synchronization is considered to be achieved when the GT clock is aligned to within a hop of the
payload clock.

In fine synchronization, a single burst of thirty-two synchronization probes is transmitted
at designated times. Again, the payload simulator receives the probes and computes a
synchronization estimate to be returned to the GT simulator. The synchronization estimate
represents how early or late the received probes are relative to the system clock. In order to
reduce the number of times the GT clock is adjusted and to minimize any estimate errors due to
noise, an average of ten fine synchronization responses is used to determine the final adjustment
of the GT clock. The fine synchronization routine is repeated until the GT clock is aligned to
within 10% of a hop of the payload clock.

The procedures for setting up the GT simulator are included in Appendix A. The listings
of programs used by the GT simulator and the simulation parameter data files are contained in
Appendix B and Appendix C respectively.

VI

Table of Contents

Page

ABSTRACT iii

RESUME iii

EXECUTIVE SUMMARY v

TABLE OF CONTENTS vii

LIST OF FIGURES xi

LIST OF TABLES xiii

LIST OF SYMBOLS AND ABBREVIATIONS xv

1.0 Introduction 1
1.1 Background 1
1.2 Task Description 2
1.3 Report Outline 2

2.0 Synchronization Procedure 5
2.1 Downlink Synchronization 5
2.2 Uplink Synchronization 6

2.2.1 Uplink Coarse Synchronization 7
2.2.2 Uplink Fine Synchronization 8
2.2.3 Synchronization Responses 9

3.0 System Description 11
3.1 Simulator Setup 11
3.2 Ground Terminal Simulator Subsystem Hardware 12

3.2.1 Ground Terminal Processor 12
3.2.2 Ground Terminal Processor Interface Board 13
3.2.3 Hopping Synthesizer Controller and Frequency Synthesizer 13
3.2.4 Data Device and Multipurpose Data Interface Board 13
3.2.5 Synchronization Response Return Serial Link 13
3.2.6 Downlink Synchronization Reference Serial Link 14
3.2.7 Hardware Interface Requirements of the GT Simulator 14

3.2.7.1 DSPLINK Backplane Interface 14
3.2.7.2 Serial Link Interfaces 16
3.2.7.3 Data Source Interface 17
3.2.7.4 HSC Command and Transmit Data Interface 17
3.2.7.5 Frequency Synthesizer Interface for the HSC 17

vii

Table of Contents

Page

3.3 Ground Terminal Simulator Software 17

3.3.1 DSP Assembly Language Programs 18

3.3.1.1 Main Assembly Language Program 18

3.3.1.1.1 Preliminary Initialization by the GT Processor DSP 18
3.3.1.1.2 GT Simulator Modes of Operation 19

3.3.1.2 Coarse Synchronization Assembly Routine 20
3.3.1.2.1 Starting the Coarse Synchronization Procedure 20
3.3.1.2.2 Coarse Synchronization Probe Generation 21
3.3.1.2.3 Verification of "Detect" Responses Received 23
3.3.1.2.4 Preparing for Fine Synchronization 27
3.3.1.2.5 Clearing the Synchronization Response Buffer 28
3.3.1.2.6 Search Range for Coarse Synchronization Routine Exceeded 28
3.3.1.2.7 Synchronization Response Buffer Overflow 28

3.3.1.3 Fine Synchronization Assembly Routine 28
3.3.1.3.1 Beginning Fine Synchronization 29
3.3.1.3.2 Generation of Fine Synchronization Probes 29
3.3.1.3.3 Refining the Alignment of the Ground Terminal Clock 30
3.3.1.3.4 Nonconvergence of Fine Synchronization Estimates 31
3.3.1.3.5 Achieving Fine Synchronization 31

3.3.1.4 Interrupt Service Routine 31
3.3.1.4.1 ISR Housekeeping • 31

3.3.1.4.2 ISR Tasks for Coarse Synchronization Mode 32
3.3.1.4.3 ISR Tasks for Fine Synchronization Mode 33
3.3.1.4.4 ISR Tasks for Downlink Synchronization Mode 33

3.3.2 Host/User Interface Program • 34
3.3.2.1 DSP Board Initialization 34
3.3.2.2 Downloading Simulation Parameters 34
3.3.2.3 Serial Communications Initialization 35
3.3.2.4 User Interface Menu 35
3.3.2.5 Host/User Interface Loop 36

3.3.2.5.1 Checking for User Input - Local Keyboard Input 37
3.3.2.5.2 Checking for User Input - Remote Input 37
3.3.2.5.3 Checking for FRO Pulse Edge Detection 38
3.3.2.5.4 Checking for Completion of Task by DSP 38
3.3.2.5.5 Checking for Return Link Synchronization Response 38
3.3.2.5.6 Checking Other Flag Conditions 38

3.3.3 ASCn DataFiles 39

4.0 Summary 41

43 References

Vlll

Table of Contents

Page

Appendix A - Ground Terminal Simulator Installation Guide
Al Installation Al

Al.l Hardware Installation Al
A1.2 Program Files A2

Appendix B - Software Listings
B1 GT Simulator Host/User Interface Program B1
B2 DSP Main Program B17
B3 Coarse Synchronization Routine B33
B4 Fine Synchronization Routine B50
B5 DSP Interrupt Service Routine B57
B6 TMS Linker .cmd File B62

Appendix C ■ ASCII Data Files
Cl General Cl
C2 Freq.dat File Cl
C3 Hscinit.dat File C2
C4 Gtparam.dat File C3

IX

List of Figures

Page

Fig. 2.1 Downlink transmission structure 5
Fig. 2.2 Downlink synchronization reference pulse detail 6
Fig. 2.3 General time-frequency plan for uplink transmission structure 7
Fig. 2.4 Data flow of the coarse synchronization process 8
Fig. 2.5 Data flow of the fine synchronization process 9
Fig. 2.6 Synchronization response format 10
Fig. 3.1 System block diagram of the uplink synchronization experiments 12
Fig. 3.2 DSPLINK backplane interface connector 15
Fig. 3.3 Pinout configuration for serial connector to downlink synchronization 16

reference pulse
Fig. 3.4 Coarse synchronization procedure state diagram 20
Fig. 3.5 Search scheme for coarse synchronization timing hypotheses 22
Fig. 3.6 Different scenarios for GT clock alignment with payload clock 25
Fig. 3.7 Fine synchronization procedure state diagram 29
Fig. 3.8 Interrupt service routine flow diagram 32
Fig. 3.9 Host/user interface flow diagram 34
Fig. 3.10 User menu for the GT simulator 35
Fig. 3.11 Host/user interface loop operation 37
Fig. A. 1 GT simulator TMS320C30 linker process A2
Fig. A.2 GT simulator host PC linker process A3

XI

List of Tables

Page

Table 3.1 DSPLINK backplane interface pinout description 16
Table 3.2 GT simulator modes of operation 19
Table 3.3 Description of flags for GT simulator 40

xui

List of Symbols and Abbreviations

ADJ_NCO
ASCII
CLR_RESP_PIPE
CRC
CSYNC
CW
DIB
DP
DREO
DSP
EHF
FCALC
FFT
FIFO
FINE_NT_ACH
FRO
FSK
FSK/FRAME
GEN_PROBES
GO_2_FSYNC
GO_2_RUN
GT
HSC
i/f
I/O
INIT_SECTION
ISR
JDLS
MOU
MSC
NCO
PC
PL
PLINE_ERR
PRELIMJNIT
proc
prop
RF
SATCOM
SHF
SRCH_EXCEED
TTCP
TXOFF
TX FPROBES

Adjust NCO state in fine synchronization routine
American Standard Code for Information Interchange
Clear Response Buffer Pipeline state in coarse synchronization routine
Communications Research Centre
Coarse Synchronization mode command of the HSC
Continuous Wave
Data Interface Board
Data Page
Defence Research Establishment Ottawa
Digital Signal Processor
Extremely High Frequency
Frequency Calculate command for the HSC
Fast Fourier Transform
First In First Out
Fine Synchronization Not Achieved state in fine synchronization routine
Frame 0
Frequency Shift Keying
Transmit data port of the GT processor i/f board
Generate Probes state in coarse synchronization routine
Go to Fine Synchronization state in coarse synchronization routine
Go to RUN state in fine synchronization routine
Ground Terminal
Hopping Synthesizer Controller
Interface
Input/Output
Initialization Section in fine synchronization routine
Interrupt Service Routine
Joint Data Link Standard
Memorandum Of Understanding
Military Satellite Communications
Numerically-Controlled Oscillator
Personal Computer
Payload
Pipeline Overflow Error state in coarse synchronization routine
Preliminary Initialization state in coarse synchronization routine
Processing
Propagation
Radio Frequency
Satellite Communications
Super High Frequency
Search Range Exceeded state in coarse synchronization routine
The Technical Cooperation Program
Transmit off command bit for the HSC
Transmit Fine Synchronization Probes in fine synchronization routine

xv

List of Symbols and Abbreviations

UK United Kingdom
ULGO Uplink GO command for the HSC
VER_DETECT Verify Detect state in coarse synchronization routine

xvi

1.0 Introduction

1.1 Background

The Military Satellite Communications (MSC) Group at Defence Research Establishment
Ottawa (DREO), along with its sister group at Communications Research Centre (CRC) have
been examining aspects of robust, anti-jam satellite communications at extremely high frequency
(EHF). An area critical to the operation of EHF frequency hopped satellite communications
(S ATCOM) systems is the synchronization of the ground terminal (GT) clock to the payload
system clock. In order to gain a better appreciation of the processes involved in synchronization,
the MSC groups at DREO and CRC developed GT and payload simulators to carry out
synchronization trials. Trials were carried out over the United Kingdom (UK) Skynet 4A EHF
transponder, made possible through a memorandum of understanding (MOU) established under
The Technical Cooperation Program (TTCP). The Skynet 4A transponder receives an EHF
signal and translates it to a super high frequency (SHF) signal which is subsequently
retransmitted. Consequently, the ground-based simulators for the GT and the payload are used to
realize a single path of a practical EHF communications link.

Before communications of an EHF system can begin, synchronization of the GT and
payload must be performed. Downlink synchronization is considered to be the first step in the
synchronization process and was the focus of the first part of the in-house activity examining
EHF satellite communications. The work on downlink synchronization was documented in [1].
During downlink synchronization, the GT gathers synchronization information about the system
clock to allow it to receive frequency hopped signals from the satellite. The synchronization
information also provides a basis to begin uplink synchronization. The GT simulator performs
uplink synchronization in order to align its clock with the payload clock after taking into account
the non-deterministic propagation delay. Processing delays, although small by comparison, can
also be factored into the alignment of the GT clock. Once uplink synchronization is achieved,
the GT simulator can begin to transmit user data over the frequency hopped SATCOM system.

The uplink synchronization process consists of two phases: coarse synchronization and
fine synchronization. In both phases, the GT simulator transmits synchronization probes to the
payload. The payload receives the probes and formulates a synchronization response for the GT
simulator. The synchronization response during coarse synchronization indicates whether the
probes are detected by the payload simulator. In fine synchronization, the synchronization
response reflects how early or late the received probes are, relative to the payload clock. The
synchronization responses are relayed to the GT simulator and are used by the GT simulator to
adjust its clock. The aspects of uplink synchronization were the focus of the second part of the
in-house activity and are described in this report.

Users of an EHF satcom system communicate according to a data link standard which
defines the uplink and downlink signal formats and the processing operations. For the in-house
activity, a Joint Data Link Standard (JDLS) was written [2] to provide the parameters for uplink

and downlink transmission structures. The parameters include the modulation scheme, data rate,
frame and channel sizes, and subframe allocations.

1.2 Task Description

In order to carry out uplink synchronization experiments, GT and payload simulators had
to be developed. Each of the simulators consists of a processing unit which performs the
synchronization tasks and interfaces to other components of the simulator. The payload
processor must receive, demodulate, and process transmitted synchronization probes. The
payload processor must also formulate responses corresponding to the synchronization probes
received and transmit the responses back to the GT simulator. In addition, the payload processor
must generate a synchronization aid which is used by the GT simulator to establish a starting
point for performing uplink synchronization. The generation of a synchronization aid is intended
as a substitute for the downlink synchronization process described above since only the uplink
path can be realized using the transponding Skynet satellite. For the purposes of the in-house
activity and of this report, the detection of the synchronization aid by the GT simulator is referred
to as performing downlink synchronization. The payload processor also interacts with other
hardware components of the simulator. The hardware components include a hopping synthesizer
controller (HSC) which controls a frequency synthesizer, a data interface board which connects
to a data sink, and a first-in-first-out (FIFO) interface board which holds the samples of the
received signal.

The GT processor performs reciprocal tasks of the payload processor. The GT processor
assembles and transmits modulated uplink synchronization probes at specific allocated times
according to the data link standard. The GT processor must also receive and decode the
synchronization responses during uplink synchronization. As well, the GT processor is
responsible for detecting the synchronization aid generated by the payload simulator.
Furthermore, the GT processor interacts with other components of the GT simulator. Once such
component is a GT processor interface (i/f) board which generates the necessary GT clock signals
and transfers commands to an HSC. The HSC, in turn, controls a transmitting frequency
synthesizer. The GT processor also communicates with a data interface board which is
connected to the data source.

1.3 Report Outline

The purpose of this report is to describe the development of the GT simulator for the
uplink synchronization experiments. A detailed description of the synchronization procedure is
provided in Section 2.0. In Section 3.0, the simulator setup is described to introduce the
components of the GT simulator. Subsequently, the description of the GT simulator is broken
down into the hardware and software features of the simulator. The hardware section deals
mainly with the physical components and interfaces. The software section describes the tasks
performed by the GT simulator. Three appendices are included in this report. Appendix A
consists of a guide which outlines the installation and setup procedures of the GT simulator.

Appendix B contains a listing of all the programs used for the GT simulator. Appendix C
contains a copy of the American Standard Code for Information Interchange (ASCII) data files
used by the GT simulator to download specific simulation parameters.

2.0 Synchronization Procedure

2.1 Downlink Synchronization

The first step in establishing communications over an EHF frequency hopped SATCOM
system consists of achieving downlink synchronization. The purpose of performing downlink
synchronization is to acquire the satellite downlink including demodulating user data and
synchronization information. The downlink synchronization process preceeds uplink
synchronization. From the data link standard described in [2], the payload terminal transmits
synchronization hops based on a time division multiplex scheme. The GT simulator, upon
receiving and detecting the synchronizataion hops, is then able to derive an estimate of the
payload (system) clock in order to begin uplink synchronization. The general downlink transmit
structure is shown in Fig. 2.1. A 20 ms frame consisting of 320 hops is further divided into 40
time slots of 8 hops each. The data link standard specifies that the first 36 time slots are
allocated to user data. The next two are reserved and the last two are used for synchronization
purposes.

20 ms frame (320 hops) —» , .

«-►1 mot (Shops)

... maM
1 J- J, J
r^

36 si Afordati 2 reserved 2 »tots for
■lots synehronizi

Fig. 2.1 Downlink transmission structure

As described in Section 1.1, the uplink synchronization trials are carried over the Skynet
4A EHF transponder. As a transponding satellite is used, only one path (uplink or downlink) of
an EHF satcom system with onboard processing can be realized at any one time. The use of a
transponding satellite for the uplink synchronization trials also means both the GT simulator and
payload simulator are developed as ground-based systems. For the uplink synchronization trials,
a downlink "path" is simulated by a direct serial link connection between the payload and GT
simulators. Furthermore, to facilitate the implementation of the simulated downlink, a reference
pulse is transmitted in lieu of synchronization hops to transmit a reference of the payload
terminal clock (master clock). The reference pulse is referred to as the downlink synchronization
reference pulse and is shown in Fig. 2.2. The edges of the reference pulse were chosen to
correspond to specific points in the pseudorandom hop sequence. The rising edge of the
downlink synchronization reference pulse corresponds to the start of hop number 0 of frame
number 0 in the pseudorandom sequence. The falling edge of the reference pulse corresponds to
the start of hop number 0 of frame number 1. The GT simulator receives this reference pulse and
resets its own hop clock accordingly in preparation for uplink synchronization. For the uplink

synchronization experiments, the downlink synchronization reference pulse is continuously
generated and transmitted by the payload simulator.

GT simulator
payload

simulator

Downlink synchronization reference pulse (serial Unk)

n_ ... _n TL
Frame 0
HopO

Frame 0
HopO

Fig. 2.2 Downlink synchronization reference pulse detail

2.2 Uplink Synchronization

Once downlink synchronization is achieved, the GT simulator can proceed with uplink
synchronization. Uplink synchronization is the process whereby the GT simulator attempts to
align its own clock with the payload (system) clock. The uplink synchronization process is
carried out independently from downlink synchronization because in uplink synchronization, the
ground terminal takes into account the propagation delay so that its transmissions are received at
the appropriate time by the payload. The GT simulator transmits bursts of synchronization
probes which correspond to different timing offset hypotheses. The payload simulator receives
the probes and produces a response. The response indicates the coarse synchronization probes
detection and the fine synchronization probe timing offset relative to the payload clock in a
particular frame. The GT simulator then uses the responses to align its clock with the payload
clock.

The timing offset hypotheses of the transmitted synchronization probes correspond to
specific instances relative to the time-frequency plan described in [2] and illustrated in Fig. 2.3.
The format of the time-frequency plan is based on a multichannel subframe/frame structure
which is repeated on a frame basis. A subframe for a particular channel is referred to as a cell
[2]. There are four channels implemented for the uplink synchronization trials. Each channel is
subdivided into 8 frequency tone bins to support the 8-ary frequency-shift-keying (FSK) uplink
modulation scheme specified in [2]. Each cell is designated as either a data cell or a
synchronization cell for transmission of data or synchronization probes respectively. A particular
user would be assigned specific cells to transmit data or synchronization probes.

frequency
▲
*

channel

data aubframet

subframe

-#-
frame

Fig. 2.3 General time-frequency plan for uplink transmission structure

The uplink synchronization process is carried out in two stages. The first stage is referred
to as coarse synchronization. Coarse synchronization is achieved when the payload detects the
GT simulator's synchronization probes. For the uplink synchronization trials, coarse
synchronization occurs when the GT simulator clock is within a hop of the payload clock. The
second stage of uplink synchronization is called fine synchronization. During fine
synchronization, the GT simulator attempts to refine the alignment of its clock to come within
10% of a hop. The method for carrying out coarse and fine synchronization are described further
in the following subsections.

2.2.1 Uplink Coarse Synchronization

Coarse synchronization probes are transmitted in a specific cell in the time-frequency
plan and are composed of two contiguous bursts of sixteen probes [2]. The synchronization
probes are located in a specific FSK tone bin. The probes are subsequently frequency hopped for
transmission. In this implementation, the coarse synchronization probes are generated by a
frequency synthesizer which is controlled by the HSC [3]. Each sixteen probe burst has a
different timing hypothesis. The procedure for generating the coarse synchronization probes is
given in Section 3.3.1.2.2. The GT simulator transmits the coarse synchronization probes by
issuing a command to the HSC to precompute the frequency hopped probe frequencies for the
two bursts and by commanding the HSC to switch to those frequencies at an appropriate time.
After a propagation delay and a processing delay, a binary response is returned by the payload
simulator as a synchronization response indicating if the coarse synchronization probes were
detected. Details of the synchronization response are provided in Section 2.2.4. The consistent
detection of coarse synchronization probes with the same hypothesis indicates that the GT clock

is within a hop of the payload clock. Coarse synchronization is thus achieved. The general data
flow for coarse synchronization is shown in Fig. 2.4.

bme = t,

GT simulator
Coarse Synchronization Probst

Bme-t,

Synchronization Response!

^ «me ■ \, * prop (May
«me -t, + prop delay ♦proedelay

«me «t, + prop delay +procdelay
♦ proc delay

\

Fig. 2.4 Data flow of the coarse synchronization process

2.2.2 Uplink Fine Synchronization

Fine synchronization probes are also transmitted in a specific FSK tone bin of a specific
cell in the time-frequency plan. However, fine synchronization probes consist of a single burst of
32 probes rather than two bursts of 16 as in the coarse synchronization process. Again the
synchronization probes are generated by a frequency synthesizer. Information on the specific cell
(i.e. channel number and FSK tone bin) to be used for the fine synchronization probes is
transmitted by the GT processor to the HSC at the appropriate time (subframe). The payload
simulator processes the received probes and formulates a response which indicates how early or
late the probes are in relation to the payload clock. Details of the synchronization response
format are given in Section 2.2.4. For the uplink synchronization experiments, uplink
synchronization is considered achieved when the GT clock is aligned to within 10 % of the
payload clock. The value of 10% was considered reasonable to account for frequency drift while
causing minimal degradation to FSK modulation. A general data flow diagram for the fine
synchronization process is shown in Fig. 2.5.

GT simulator

tingle burst
(32 hops)

time * t, time • t, time • t.

Fme Synchronization Probes

\

payload
simulator

Synchronization Responses

* time * t, + prop delay
time = t, + prop delay ♦P'oedelay

time -t. + prop delay +procdelay
+ proc delay

Fig. 2.5 Data flow of the fine synchronization process

2.2.3 Synchronization Responses

Synchronization responses are formulated by the payload simulator each frame to provide
feedback to the GT simulator on the detection of coarse synchronization probes and on the
estimation of the time offset of fine synchronization probes. For the uplink synchronization
experiments, a synchronization response is returned via a synchronization response return link.
The return link is described in Section 3.2.5. The synchronization response return link is
implemented using an RS232 serial connection between the GT and payload. The serial
connection is capable of supporting communications at 9.6 kb/s. With one response being
transmitted per 20ms frame, the serial communications link is able to support synchronization
responses which are about 20 characters in length.

For the uplink synchronization trials, the synchronization response consists of a reference
frame number, the coarse synchronization detection results for the two coarse synchronization
probe channels, and the fine synchronization estimates for the the two fine synchronization probe
channels. The frame number ranges in value between 0 and 191. The coarse synchronization
response for each synchronzation burst is a binary response, i.e. it is either a "detect" or "no
detect". The "detect" and "no detect" responses are represented by "1" and "0" respectively. As
there are two probe bursts per channel per frame, there are four possible combinations of
detection responses for each channel. In this implementation, the detection result for the first
probe burst is selected to occupy the most significant bit. The combinations of detection results
are mapped to a decimal representation for the return link synchronization response and thus, are
represented by a value between 0 and 3.

The fine synchronization response is a number between -31 and 31 representing the
timing error of the GT clock. A negative fine synchronization response indicates that the GT
clock is early while a positive fine synchronization estimate indicates that the GT clock is late. It
is assumed that coarse synchronization is achieved prior to performing fine synchronization so
that the GT clock is within a hop of the payload clock at the start of fine synchronization. As a

result, with a hop period of 62.5 us, the fine synchronization estimate (timing error) represents
approximately half the actual timing error, in us.

In order to comply with the message length restrictions for the serial connection, it was
decided that the synchronization response would be formatted as shown in Fig. 2.6. An example
of a synchronization response received by the GT simulator is also included.

Example: 0 9 6 1 2
SP

frame # between /
000 and 191 /

coarse response
for channel 0

value between
0 and 3

SP space

<CR> carriage return

<LF> linefeed

\

± fine estimate
for channel 0

between
00 and 31

0 4

I SL._." iu.i.1.;
± fine estimate

for channel 1
between

00 and 31

<CR> <LF>

coarse response
for channel 1

value between
0and3

Fig. 2.6 Synchronization response format

For the example in Fig. 2.6, the GT simulator would subsequently decode the response as:

096 ■► Synchronization response for frame number 96
2 ■► Coarse synchronization response for channel 0

210 = 102 "detect" for burst 0
"no detect" for burst 1

1 ^ Coarse synchronization response for channel 1
1 jo = 012 "no detect" for burst 0

"detect" for burst 1
+12 ■► Fine synchronization response for channel 0,

payload estimates that received probes are 24 (is
later than payload clock

-04 ^ Fine synchronization response for channel 1,
payload estimates that received probes are 8 (as
earlier than payload clock

10

3.0 System Description

3.1 Simulator Setup

A system block diagram of the simulator setup for the uplink synchronization
experiments is shown in Fig. 3.1. The GT and payload simulators are ground-based systems
which are located approximately 1.5 km apart on the DREO/CRC site.

Data to be transmitted from the GT is modulated using 8-ary FSK as specified in [2]. The
GT processor transfers the modulated data to the GT processor i/f board [4]. The data is read by
the HSC which calculates the frequency of the next hop. The result of the calculations is a
frequency value which includes the modulated data and the hop frequency. The HSC then passes
this frequency value to the frequency synthesizer. The frequency synthesizer output is then
converted to the radio frequency (RF) transmit signal at EHF. Upon receiving the EHF
transmitted signal, Skynet 4 translates and retransmits the signal at X-band to the payload
terminal. The received signal is downconverted and transferred to a frequency synthesizer which
is controlled by another HSC. The frequency synthesizer generates the hopping pattern used to
dehop the received signal. A Fast-Fourier Transform (FFT)-based processor is then used to
produce samples of the received signal for each FFT channel [5]. The samples are stored on a
FIFO interface board until the payload processor is ready to process the data.

The entire process described above encompasses only the uplink portion of an actual EHF
satcom system with on-board processing. In an actual system, when the payload receives and
processes the data during synchronization, a response is formulated and transmitted back to the
GT on the downlink. For the uplink synchronization trials, the downlink portion is simulated
using a direct serial link called the "synchronization response return link" which will be used to
transmit the responses generated by the payload processor to the GT. The synchronization
response return link is separate from the downlink synchronization reference link described in
Section 2.1 which is used to simulate downlink synchronization. Furthermore, the interface of
the synchronization response return link to each simulator is through the host personal computer
(PC). By contrast, the interface of the downlink synchronization reference pulse serial link to
each simulator is provided through a multipurpose data interface board designed and fabricated at
DREO [6]. A data source and data sink are included in the simulator setup for data
communications once fine synchronization is achieved.

11

T

Receive
antenna

RF
upconvenion

£
RF

downconversion

Frequency
synthesizer

(modulation «hop) _

Hopping
synthesizer

Data

n
n

RonaosDowa

—-r

DSP board

PC

QT
«..— -.-_ — - — — -• — -> — — — —-

Frequency
synltwslzer

(dehop)

Hopping
synthesizer
controller

Demodulation

FIFO
intoffsos

board

Synchronization response return
■ Nnk

GT simulator

Downink synchrentzstlon
IseeerialHnk

±
DSP board

PC

Data
Interface

board

Data sink

payload processor

payload simulator

Fig. 3.1 System block diagram of the uplink synchronization experiments

3.2 Ground Terminal Simulator Hardware

3.2.1 Ground Terminal Processor

The GT processor for the uplink synchronization experiments consists of a Texas
Instruments' TMS320C30 digital signal processor (DSP) board. The TMS320C30 board is
installed in a single 16-bit slot of an IBM-compatible host PC with a monitor and keyboard.
Communications between the PC and the DSP board go through the PC's input/output (I/O)
space. The GT processor communicates with other components of the GT simulator using the
serial port of the PC or by using the DSPLINK interface supported by the TMS320C30 DSP
board. These interfaces are discussed further in the subsections below.

12

3.2.2 Ground Terminal Processor Interface Board

A GT processor interface board was designed and fabricated at DREO for the uplink
synchronization experiments and is documented in [4]. The board was designed to perform three
functions: to generate the necessary clock signals for the GT simulator operations; to provide a
command interface for a hopping synthesizer controller [3]; and to provide an interface for
transferring FSK/channel data to the hopping synthesizer controller. Communications between
the GT processor and the GT processor i/f board is achieved through the DSPLINK interface of
the TMS320C30 DSP board. The GT processor i/f board is installed in a DSPLINK backplane
chassis that was also assembled at DREO. The DSPLINK interface and backplane are described
further in Section 3.2.7.1. Details on the specific operation of the GT processor i/f board can be
found in [4].

3.2.3 Hopping Synthesizer Controller and Frequency Synthesizer

A frequency synthesizer is used in the uplink synchronization experiments to produce the
appropriate frequency-hopped FSK tone to be transmitted by the GT. In this implementation of
the GT simulator, two synthesizers are supported: the Comstron FS2000 Frequency Synthesizer
[7]; and the Sciteq VDS-2G-469 Frequency Synthesizer [8]. Both frequency synthesizers are
driven by an HSC which was developed at DREO [3]. The HSC, in turn, is controlled by the GT
processor via the GT processor i/f board which is described above. The HSC receives and
actions commands from the GT processor relating to its initialization and mode of operation. The
HSC performs all the calculations required for frequency computation (including a random
number generator routine for the pseudorandom hop sequence), and frequency word format
conversion. Finally, the HSC transfers the resulting frequency word to the frequency synthesizer
at the appropriate point in time. A detailed description of the HSC is provided by [3].

3.2.4 Data Device and Multipurpose Data Interface Board

The data source for the GT simulator subsystem consists of an HP1645A Bit-error-rate
test set [9]. The interface between the HP1645A and the GT processor is realized using a
multipurpose data interface board (DIB) which was developed at DREO and is documented in
[6]. The DIB receives a single-bit RS232 data stream from the HP1645A, converts the data to
TTL levels, and formats the data stream into 12-bit words to be read by the GT processor. The
DIB is installed in the DSPLINK backplane chassis and communicates with the GT processor via
the DSPLINK interface. The DSLINK interface and backplane are discussed in Section 3.2.7.1.

3.2.5 Synchronization Response Return Serial Link

As mentioned in Section 2.2.3, the payload simulator formulates a synchronization
response for every frame. The synchronization response contains information on whether any

13

probes were detected in the coarse synchronization cells which are shown in Fig. 2.3. The
synchronization response also contains estimates of the timing offset of probes which may be
received in the fine synchronization cells. In a practical EHF satcom system with on-board
processing, the synchronization response is transmitted by the payload to the GT on the
downlink. For the uplink synchronization experiments, a transponding satellite is used and thus,
another means of transmitting the synchronization responses to the GT simulator is required. A
synchronization response return link is realized using an RS232 serial connection between the
GT and payload ground-based simulators. The serial connection supports communications at 9.6
kb/s and is accessed through the serial connector of the PC host for each simulator. Serial
communications software [10] developed at DREO is used by the payload and GT hosts to send
and retrieve the synchronization responses respectively.

3.2.6 Downlink Synchronization Reference Serial Link

A downlink synchronization reference serial link is implemented to transmit the downlink
synchronization reference pulse which is described in Section 2.1. The downlink synchronization
reference pulse is analagous to using synchronization hops of a real processing satellite. Similar
to the case for the relaying of synchronization responses back to the GT, another method of
transmitting the reference pulse is required as a result of a transponding satellite being used for
the trials. In order to be able to present the reference pulse to the GT processor in real time, it
was decided to route the downlink synchronization reference serial link by way of the DIB. By
using the DIB, it is possible to avoid having to use the slower host/DSP interface. Details of the
downlink synchronization reference serial link implementation are found in [6].

3.2.7 Hardware Interface Requirements of the GT Simulator

3.2.7.1 DSPLINK Backplane Interface

In order to support multiple custom boards using the DSPLINK interface to communicate
with the GT processor, a DSPLINK backplane chassis was assembled for the uplink
synchronization experiments. Currently, the backplane chassis houses the GT processor i/f
board, the DIB, and an adaptor board to map the 50-pin DSPLINK interface [11] connector from
the DSP board to the 96-pin backplane connector. The DSPLINK backplane connector and
pinout description are shown in Fig. 3.2 and Table 3.1 respectively.

14

Pln#
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

ROWC
ROWB
ROW A

(* B *\
B

B

Corresponding signal names
PIN ROW A ROWB ROWC

1 HOP CLK DO
2 HOP CLK* D1
3 D2
4 RESERVED D3
5 RESERVED D4
6 RESERVED D5
7 RESERVED D6
8 RESERVED D7
9 GND RESERVED GND
10 DATA CLK RESERVED D8
11 GND RESERVED D9
12 D10
13 D11
14 D12
15 GND D13
16 D14
17 GND D15
18 W7R
19 GND IOE*
20 RESERVED GND INTO*
21 RESERVED RESET
22 RESERVED CLK/2

« 23 GND A0
24 A1
25 A2
26 A3
27 FLAGIN
28 -5V ANALOG FLAGOUT
29 5V ANALOG
30 AGND
31 -15V 5VSTBY 15V
32 15V 5V 5V

The asterisk (*) denotes an active-low signal

Fig. 3.2 DSPLINK backplane interface connector

15

Signal

D0-D15
GND
W*/R
IOE*
INTO*

RESET*
CLK/2
A0-A3
FLAGIN

FLAGOUT
15V
-15V
5V
-5V ANALOG
SV ANALOG
AGND
5VSTDBY
HOPCLK
HOPCLK*
DATA CLK
RESERVED

Direction
with respect

to DSP
to/from

from
from

to

from
from
from

to

from

Details

Sixteen bi-directional TTL data lines of DSPLINK
Digital ground
DSPLINK read/write* line to signal the direction of data transfer
An active-low, input/output enable signal indicating an access on the DSPLINK
A negative-edge triggered, or active-low interrupt signal on DSPLINK generated on the GT processor i/f
board.
DSPLINK reset line.
General purpose clock signal. This signal is not used by the GT processor i/f board.
Four buffered TTL address lines of DSPLINK.
General purpose input line on DSPLINK readable by the DSP. This signal is not used by the GT
processor i/f board.
General purpose output line on DSPLINK writeable by the DSP.
15 volts power supply.
-15 volts power supply
5 volts power supply
-5 volts analog power supply
5 volts analog power supply

to
to

Analog ground
5 volts standby power supply. This signal is not used by the GT processor i/f board.
Hop clock signal originating from the GT processor i/f board,
Inverse hop clock signal. This pin is not currently being used by the GT processor i/f board.
Data clock signal originating from the GT processor i/f board.
Reserved lines for the DSP backplane.

The asterisk (*) denotes an active-low signal

Table 3.1 DSP backplane interface pinout description

3.2.7.2 Serial Link Interfaces

There are two serial link interfaces required for the GT and payload simulators. The first
interface is provided by a standard serial connector located on the host PC to access the
synchronization response return serial link. As mentioned in Section 3.2.5, serial
communications software routines were developed and written at DREO [10] to provide the user
interface to the synchronization response return link.

The second serial link is used to relay the downlink synchronization reference pulse to the
GT simulator. The downlink synchronization reference pulse serial link interface is a 9-pin D-
type connector located on the DIB. The pinout description of the D-type connector is shown in
Fig. 3.3.

16

5 4 3 2 1

(fo o D D öl)

V D D nil
9 8 7 6

D Female connector

Pin Description

1 not used
2 FRO in
3 FRO out
4 not used
5 GND
6 not used
7 not used
8 not used
9 not used

Fig. 3.3 Pinout configuration for serial connector to downlink synchronization reference
pulse

3.2.7.3 Data Source Interface

The connection between the data source and the DIB shown in Fig. 3.1 is realized by a
male 9-pin D-type connector and is described further in [6].

3.2.7.4 HSC Command and Transmit Data Interface

As shown in Fig. 3.1, there are two connections between the GT processor i/f board and
the HSC. These connections correspond to the HSC's command and transmit data interface.
The connections are made using of a 26-pin ribbon cable and a 10-pin ribbon cable respectively.
The details of the command and transmit data interface are described in [3] and [4].

3.2.7.5 Frequency Synthesizer Interface for the HSC

A 50-pin ribbon cable is used to connect the HSC to the frequency synthesizer. A
description of the connection between HSC and the frequency synthesizer, as shown in Fig. 3.1,
is given in [3].

3.3 Ground Terminal Simulator Software

The following section provides a description of the software for the DSP and the host. In
both cases, the principal concepts and operations of the routines are outlined. The software for
the DSP is described first. The DSP software includes the coarse and fine synchronization

17

routines and the processing of synchronization responses. Subsequently, the host/user interface
software is described.

3.3.1 DSP Assembly Language Programs

The GT processor functions are implemented on a Texas Instruments' TMS320C30 DSP
board which is contained in a PC. The software for the GT processor was written in assembly
language and is described in the following subsections.

3.3.1.1 Main Assembly Language Program

The main DSP program for the GT processor performs two general functions. The first
function is the preliminary initialization of the DSP board, the interface boards, and associated
hardware of the GT simulator. The second function of the main DSP program is to respond to
commands issued by the host program. The commands correspond to different modes of
operation for the GT simulator. The two functions of the main DSP program are described
further in the following subparagraphs.

3.3.1.1.1 Preliminary Initialization by the GT Processor DSP

The first stage of the main assembly program involves putting the DSP and its associated
interface boards and hardware into a known state. The TMS320C30 DSP data page (DP) pointer,
status register, stack pointer, primary bus control register, and secondary bus control register are
initialized to appropriate values as specified in [11] and shown in Section B.3 of Appendix B. A
software reset is then issued to the GT processor i/f board and DIB through the DSPLINK
interface to reset circuits and latches. The software reset operations for the GT processor i/f
board and the DIB are described in [4] and [6] respectively.

A subroutine is called next to download the GT parameters for the simulation. The
parameters are contained in an ASCII data file which is read and processed by the host/user
interface program. The parameters are then transferred from the host to the DSP through the dual
port memory. A copy of the ASCII data file for the GT parameters is included in Section C.4 of
Appendix C.

The next step in the initialization process is to set up the numerically-controlled oscillator
(NCO) to start the GT clock circuit on the GT processor i/f board. The clock circuit generates
the hop clock and data clock signals for the GT simulator. The NCO setup is described in [4].
The HSC is also initialized in this part of the main assembly language program. The HSC
initialization is carried out in the same manner as for the GT parameters. An ASCII file
containing the HSC parameters is read by the host/user interface program which then passes the
values to the DSP board. The DSP board then loads the values onto the HSC through the GT
processor i/f board [4].

18

The final step in the initialization process is to enable the interrupts for the DSP board.
An interrupt is generated on the rising edge of the hop clock in order that appropriate counters for
the GT processor be updated and synchronization probes be generated if applicable. The
interrupt service routine for the GT processor is described further in Section 3.3.1.4.

3.3.1.1.2 GT Simulator Modes of Operation

Once the DSP board and associated hardware are initialized, the main assembly program
enters into a loop to wait for and respond to user commands transferred to it by the host/user
interface program. The commands relate to different modes of operation for the GT simulator as
well as to terminating the simulation. When a command is received, the DSP processes it and
determines the appropriate subroutine to execute. If a command is received to terminate the
simulation, the DSP disables the interrupts and remains idle. The modes of operation are listed
in Table 3.2. The first five modes are discussed further in Section 3.3.2. A description of the
algorithms for the coarse and fine synchronization modes is provided in the next sections.

Mode Operation Description
1 Transmitting a CW signal GT simulator transmits one of five

predefined continuous wave (CW)
frequencies located in the frequency
band of operation.

2 Run Mode GT simulator switches the HSC to
RUN mode [3] to randomly hop over
the system bandwidth.

3 Sweep Mode GT simulator sweeps a CW signal
across the system bandwidth.

4 Frame Zero (FRO) Enable Mode GT simulator monitors the downlink
synchronization reference serial link
for the downlink synchronization
reference pulse and adjusts the GT
hop clock counter if required.

5 FRO Disable Mode GT simulator ceases monitoring the
downlink synchronization reference
serial link.

6 Coarse Synchronization Mode GT simulator performs coarse
synchronization.

7 Fine Synchronizaion Mode GT simulator performs fine
synchronization.

Table 3.2 GT simulator modes of operation

19

3.3.1.2 Coarse Synchronization Assembly Routine

During coarse synchronization, the GT processor is responsible for several tasks. The
tasks include generating coarse synchronization probes at appropriate times, processing
synchronization responses transmitted from the payload simulator, and responding appropriately
to these synchronization responses. When coarse synchronization is achieved, it is considered
that the GT clock is within a hop from the payload system clock. The state diagram in Fig. 3.4
describes the general flow of events for the coarse synchronization process. The concepts or
general procedure for the states shown in Fig. 3.4 are described in more detail in the following
paragraphs. A listing of the assembly language program for the coarse synchronization routine is
included in Section B.4, Appendix B.

Verification
not complete

Fig. 3.4 Coarse synchronization procedure state diagram

3.3.1.2.1 Starting the Coarse Synchronization Procedure

In this implementation of the GT simulator, a command is issued by the user to start the
coarse synchronization procedure. The command is issued from the host/user interface program
which is described in Section 3.3.2. When the coarse synchronization command is received, the
GT processor initializes parameters related to the transmission of synchronization probes and the
processing of synchronization responses from the payload simulator. First, the GT processor
must calculate the start time for the HSC. As described in [3], the delayed start time is necessary

20

in order to give the HSC ample time for the propagation of the random number generator and to
precompute hop frequencies for the start frame. The start time is calculated based on a frame
boundary, i.e. the start time is given as hop 0 of a frame "X". From [3], the earliest start time is
calculated to be the third frame after the current frame. Where a terminal is not assigned all the
coarse synchronization probe frames, the GT processor must wait until the first assigned frame
following the delayed start time before transmitting the probes for the particular terminal. The
start time is transferred to the HSC by way of the GT processor i/f board which is described in
Section 3.2.2 and documented in [4].

When the start time is transferred to the HSC and the necessary parameters have been
initialized for the coarse synchronization algorithm, the GT processor commands the HSC to
switch to uplink synchronization mode and waits until the start time precalculation is completed
before proceeding to state 2 to begin generating coarse synchronization probes.

3.3.1.2.2 Coarse Synchronization Probe Generation

The GT processor's primary task in state 2 is to generate coarse synchronization probes at
the appropriate time. In this implementation, only one terminal is realized to facilitate the
demonstration of the coarse synchronization algorithm. In addition, the terminal allocation for
transmitting coarse synchronization probes is selected to be on frames which are a multiple of
four.

The process for achieving coarse synchronization consists of transmitting probes at
different timing hypotheses. As described in Section 2.2.1, coarse synchronization probes are
transmitted in the form of two bursts of sixteen probes each in the allocated channel and at the
specific FSK tone bin. The coarse synchronization probes for the particular terminal
implemented are to be transmitted on channel 1 and FSK tone bin 3. The two bursts of
synchronization probes are transmitted with a timing offset between them. In this
implementation, the second burst of synchronization probes is transmitted 1/2 hop later than the
first burst of probes. If the received probes are detected by the payload processor, a "detect"
response is formulated and relayed back to the GT simulator through the synchronization
response return link. When the payload simulator is able to consistently detect the coarse
synchronization probes for a timing hypothesis, it is considered that the timing of the GT clock is
within a hop of the payload (system) clock.

The strategy selected to test the different timing hypotheses until the synchronization
probes are detected involves starting at the most probable timing hypothesis and moving outward
in increments of a hop at a time. The GT simulator uses the information obtained from the
downlink synchronization pulse to derive the most probable timing hypothesis which does not
account for any propagation delay. According to [2], the point at which synchronization probes
are transmitted occurs at hop 288 of the time-frequency plan shown in Fig.2.3. As a result, the
default starting point of the search for the correct timing hypothesis is selected to be at hop
N=288 of a terminal's assigned frame and corresponds to the case where there is perfect
alignment of the GT clock with the payload clock.

21

Using the default starting point, the first series of coarse synchronization probes are
transmitted starting on hop 288 of the terminal's assigned frame. On the next iteration, the
synchronization probes are delayed by a hop and are transmitted starting at hop (N+l)=289 of the
terminal's next assigned frame. The following series of synchronization probes are transmitted a
hop earlier than the starting point, at hop (N-l)=287. With each iteration of the search, the
timing hypotheses move further away from the starting point. The "outward moving" search
scheme is illustrated in Fig. 3.5.

Hop Hop
288 304

Burnt 0 Burnt 1
Starting point of —► £

binary search *u -timing offset between bursts (1/2 hop)

Burst 0 Burst 1
Timing —► r_
hypothesis #1

Burst 0 Burst 1
Timing —► I
hypothesis #2 j

Burst 0 Burst 1
Timing -+-► [
hypothesis «3

Burst 0 Burst 1
Timing —► r_
hypothesis «4

Burst 0 Burst 1
Timing —► [
hypothesis #5

Fig. 3.5 Search scheme for coarse synchronization timing hypotheses

The timing hypotheses are stored in an array indexed by the frame number during which
the synchronization probes were transmitted. This allows a hypothesis to be retrieved should it
result in the synchronization probes being detected by the payload simulator. The actions
following the detection of synchronization probes are discussed below.

A search range is included as a parameter for the search scheme and is used to limit how
many timing hypotheses are tested in the search. The search range is given by the absolute value
of the maximum offset from the starting point for which coarse synchronization probes will be
transmitted. The search range is in units of hops and is user-configurable as a parameter which is
downloaded from an ASCII data file during run time. The ASCII data file is discussed in Section
3.3.3. The default search range is set at 32 hops which results in the probes being transmitted
with timing hypotheses of up to ± 32 hops or ±1 subframe. If the coarse synchronization probes
have not been detected when the entire search range has been exhausted, the search range is

22

exceeded and the GT processor proceeds to state 6 where an error is signalled to the user. State 6
is described in Section 3.3.1.2.6.

In addition to generating the coarse synchronization probes, the GT processor processes
the synchronization responses which are returned by the payload simulator. As described in
Section 2.2.3, the synchronization responses for each frame are transmitted to the GT simulator
via the synchronization response return serial link. The synchronization response contains both
coarse and fine synchronization estimates. During coarse synchronization, the GT processor
processes only the coarse synchronization estimate corresponding to the terminal's allocated
probe frame. If no "detect" received in the appropriate coarse synchronization estimate, the GT
processor does nothing further and continues with its task of generating coarse synchronization
probes. However, if a "detect" is received in either of the bursts, the GT processor suspends the
generation of synchronization probes for different timing hypotheses, and proceeds to state 3 to
verify the "detect" received. The last timing hypothesis tested is saved before going to state 3 to
facilitate resumption of the probe generation if the "detect" received proves to be an invalid one.

3.3.1.2.3 Verification of "Detect" Responses Received

In order to be certain that a "detect" response is valid, the GT processor retransmits
synchronization probes using the timing hypothesis which prompted the "detect". In this
implementation, the GT processor uses the reference frame number included in the
synchronization response to retrieve the appropriate hypothesis to be verified. The GT processor
again waits until the terminal's allocated probe frame to retransmit the synchronization probes.
The GT processor examines the subsequent coarse synchronization estimates to confirm the
detection of synchronization probes by the payload simulator. Therefore, just as in state 2, the
GT processor also processes synchronization responses from the payload simulator. For this
implementation, the user can define the number of iterations for synchronization probe
retransmission to validate the "detect" response. As well, the number of subsequent "detects"
which are to be received to confirm detection is user-configurable. The two configurable values
are included in the same ASCII data file that contains the search range parameter mentioned in
Section 3.3.1.2.2.

As shown in Fig. 2.4, there is a processing delay from the time the synchronization probes
are transmitted to the time the corresponding synchronization response is received by the GT. As
a result, when the GT processor first enters into state 3 to verify a "detect" response, the GT
processor may continue to receive synchronization responses for probes sent prior to changing
states. These synchronization responses are stored temporarily so that they may be processed
later should a "false detect" result from the retransmitted synchronization probes during
verification. A "false detect" occurs if the minimum number of "detects" required to confirm the
detection for the retransmitted probes is not received for the number of iterations selected. If a
"false detect" is concluded during the verification process, the GT processor enters into state 5 to
process the temporarily stored synchronization responses. State 5 is described further in Section
3.3.1.2.5. In this implementation of the GT processor, only synchronization responses for the
single terminal considered are stored in the synchronization responses buffer. As an added

23

precaution, the GT processor checks to see if there's any more room in the synchronization
response buffer before storing the synchronization response. The overflow check serves as a
debug feature to ensure the buffer is being cleared properly. If there is an overflow of the
synchronization response buffer, then the GT processor goes to state 7 where a signal is sent to
the user indicating the overflow error. The actions taken in state 7 are described further in
Section 3.3.1.2.7.

If the verification is successful and the original "detect" is confirmed, the GT processor
examines "detect" responses for the retransmitted probes to determine whether the GT clock
should be delayed by 1/2 a hop. This additional step is required because as mentioned in Section
3.3.1.2.2, the two bursts of synchronization probes are transmitted with a timing offset of 1/2 hop
between them. In essence, two timing hypotheses are transmitted in one probe frame during
coarse synchronization. As a result, the synchronization response from the payload simulator
consists of two estimates for each coarse synchronization channel as described in Section 2.2.3.
Fig. 3.6 illustrates the possible scenarios of synchronization responses. It is noted that four hops
per burst are used to simplify the illustration. As the second burst is delayed by 1/2 a hop, if the
responses for the retransmitted probes indicates a majority of "detects" in the second burst, the
GT clock is delayed by 1/2 hop. Once the adjustment is made the GT processor advances to
State 4 which is described further in the following section.

24

PL elk

1 2 3 4 5 6 7 8

GTclk

portion of synchronization
probe received by PL

Detection result "0" *1*

(i) GT clock 1 hop earlier than payload clock

PL elk

GTclk

- portion of synchronization
probe received by PL

Possible detection results: "0"
■r

(ii) GT clock between 1/2 and 1 hop earlier than payload clock

PLdk

GTclk

!....,,,.,, ..,,,:::■!, ,A„..- t ■,-,,,■ W>
1 2 3 4 5 6 7 8

- portion of synchronization
probe received by PL

Detection result "1" "1"

(iii) GT clock 1/2 hop earlier than payload clock

Fig. 3.6 Different scenarios for GT clock alignment with payload clock

25

PL elk J L
i i i r

GTclk

■ portion of synchronization
probe received by PL

Detection result "1" "1"

(iv) GT clock less than 1/2 hop earlier than payload clock

PL elk

GTclk

c portion of synchronization
probe received by PL

Detection result *1" "1"

(v) GT clock aligned with payload clock

PL elk

I I

GTclk

■ portion of synchronization
probe received by PL

Possible detection results: "1"

"1"

XT
"1"

(vi) GT clock less than 1/2 hop later than payload clock

Fig. 3.6 (cont'd) Different scenarios for GT clock alignment with payload clock

26

PL elk _r

GTclk

1
1 2

1

 1
3

1

4

1 1

5 6 7 8

1 1 1 1
1 1

portion of synchronization
probe received by PL

Detection result "1" *0*

(vii) GT clock 1/2 hop later than pay load clock

PLdk

i r

GTclk

PL elk

GTclk

portion of synchronization
probe received by PL

Possible detection results: "1"
■0"

•0*
"0"

(viii) GT clock between 1/2 and 1 hop later than payload clock

' -■•■■■■—'

2 3 4 5 6 7

no synchronization probes
'received" by PL

Detection result "0" "0"

(ix) GT clock 1 hop later than payload clock

Fig. 3.6 (cont'd) Different scenarios for GT clock alignment with payload clock

3.3.1.2.4 Preparing for Fine Synchronization

In State 4, the GT processor uses the confirmed hypothesis to adjust the GT clock before
proceeding to the fine synchronization algorithm. In this implementation, a signal is sent back to
the user to indicate that coarse synchronization has been achieved. The user is then given the
option to continue with fine synchronization or to halt the program. The user options are
described in more detail in Section 3.3.2.

27

3.3.1.2.5 Clearing the Synchronization Response Buffer

A synchronization response buffer is used to store synchronization responses which arrive
after the GT processor changes from state 2 (generating synchronization probes) to state 3
(verification of "detect"). The responses correspond to the synchronization probes transmitted
after those which resulted in a "detect" response from the payload simulator. If the original
"detect" response is shown to be invalid in state 3, the GT processor processes the stored
responses to see if a "detect" was received for the subsequent synchronization probes. The buffer
thus saves the GT processor from having to retransmit synchronization probes for the hypotheses
tested. If a "detect" is received in a subsequent response, then the GT processor switches back to
state 3 to verify whether this "detect" is valid or not. Otherwise, if all the stored responses are
processed and no "detect" occurs, then the GT processor resumes generation of synchronization
probes (state 2).

3.3.1.2.6 Search Range for Coarse Synchronization Routine Exceeded

When synchronization probes for all the timing hypotheses have been transmitted for the
search range and no subsequent "detect" is received for any of the probes, a flag is set to alert the
user. The user is then given a choice to repeat the downlink synchronization procedure or to halt
the program. The user options are described in more detail in Section 3.3.2.

3.3.1.2.7 Synchronization Response Buffer Overflow

If an overflow occurs in the synchronization response buffer, then a flag is set to alert the
user to the error. The host/user interface program for the GT simulator is subsequently aborted.
The host/user interface program is described further in Section 3.3.2.

3.3.1.3 Fine Synchronization Assembly Routine

Once coarse synchronization is achieved, the GT performs fine synchronization in order
to refine the GT clock alignment with the payload clock. For fine synchronization, the GT
processor performs tasks similar to those during coarse synchronization. The GT processor
generates fine synchronization probes to be transmitted at allocated times and processes
synchronization responses transmitted by the payload simulator relating to the fine
synchronization probes. During fine synchronization, the GT processor is also responsible for
adjusting the GT clock according to the fine synchronization estimate received from the payload
simulator. For this implementation, fine synchronization is considered achieved when the GT
clock is within 10% of a hop from the payload clock. The choice of 10% was considered
reasonable to account for frequency drift with minimal degradation to FSK modulation
performance. The fine synchronization procedure is illustrated in Fig. 3.7. The general concepts
of the states in Fig. 3.7 are described further in the following subsections. A listing of the
assembly program for the fine synchronization routine is included in Section B.5, Appendix B.

28

Fig. 3.7 Fine synchronization procedure state diagram

3.3.1.3.1 Beginning Fine Synchronization

Upon receiving a command to perform fine synchronization, the fine synchronization
routine begins by initializing variables associated with the transmission of fine synchronization
probes. The DSP also sends a command to the HSC to go to RUN mode afterwhich the HSC
switches the frequency synthesizer according to a pseudorandom sequence [3]. The DSP then
proceeds to state 2 to begin transmitting fine synchronization probes.

3.3.1.3.2 Generation of Fine Synchronization Probes

As in the case of coarse synchronization, only one terminal is realized to facilitate the
demonstration of the fine synchronization algorithm. In addition, the terminal allocation for
transmitting fine synchronization probes is again selected to be on frames which are a multiple of
four.

The fine synchronization process involves transmitting fine synchronization probes
during a terminal's allocated frame and time slot. As described in Section 2.2.2, fine
synchronization probes are transmitted in a single burst of 32 probes. Another difference
between the two synchronization processes is in the way the probes are transmitted. For coarse
synchronization, synchronization probe frequencies are precomputed and the GT processor sends
commands to the HSC to transmit the probes. In fine synchronization, the frequency for the fine
synchronization probe is transferred to the HSC on a hop basis. The fine synchronization probe
frequency is defined by a channel and FSK tone bin. The channel and FSK tone bin information
are passed to the HSC through the GT processor i/f board. The HSC then uses the information to

29

generate the appropriate transmit hop signal on the frequency synthesizer. In this implementation
of the GT simulator, the fine synchronization probes are transmitted on channel 2, FSK tone bin
3. The GT processor's task is to determine when it is time to transmit the fine synchronization
probes. The transmission of the fine synchronization probes is carried out by the interrupt
service routine which is described in Section 3.3.1.4. When it is time to transmit fine
synchronization probes, the GT processor sets a flag which is monitored by the interrupt service
routine.

In addition to determining when fine synchronization probes are to be transmitted, the GT
processor processes the synchronization responses which are returned by the payload simulator.
Again, the synchronization responses for each frame are transmitted to the GT simulator on the
synchronization response return serial link. The fine synchronization responses correspond to the
payload simulator's estimate of how early or late the received probes are relative to the system
clock. In this implementation, the host/user interface program of the GT simulator initially
processes the fine synchronization responses and computes an average of ten responses received
for the user. The host/user interface program also calculates a corresponding phase adjustment
required for the NCO to refine the GT clock alignment. The average estimate of the responses
and the phase change are then transferred to the GT processor. When the GT processor has read
and stored the two values, the GT processor proceeds to state 3 to adjust the GT clock.

3.3.1.3.3 Refining the Alignment of the Ground Terminal Clock

Prior to adjusting the NCO phase to realign the GT clock, the GT processor checks
whether the estimates received for the user are converging. The point of convergence is chosen
to correspond to the GT clock being within 10% of a hop from the payload clock. In addition,
the GT processor checks to see how many times the GT clock has been adjusted (or how many
bursts of fine synchronization probes have been sent) to avoid the situation of endlessly trying to
perform fine synchronization.

In this implementation, the adjustment of the GT clock is carried out over a frame (320
hops) to minimize frequency discontinuities while making the adjustment in a timely manner.
Based on the estimate received from the synchronization response, a new GT clock frequency is
calculated to align the GT clock over a period of 320 hops, afterwhich the original GT clock
frequency is reinstated. The calculations for the new frequency which take into consideration
this gradual approach is described in Section 3.3.2. If the synchronization response indicates that
the probes received were early, the GT clock frequency is lowered to, in effect, delay the clock.
Conversely, if the estimate shows that fine synchronization probes were late, then the GT clock
frequency is increased to advance the clock. The clock frequency adjustment is implemented by
adjusting the phase increment of the NCO which produces the clock signals for the GT simulator.
In the assembly language program, a subroutine is called to transfer the new phase increment to
the NCO via the GT processor i/f board. Once the new phase adjustment is loaded, the GT
processor waits for 320 hops afterwhich the original phase increment for the NCO is reloaded to
produce the initial GT clock frequency.

30

3.3.1.3.4 Nonconvergence of Fine Synchronization Estimates

The arrival into this state implies that either the synchronization estimates being received
from the payload simulator are not converging, or it has taken too long for the synchronization
estimates to converge. At this point, the assembly language routine sets a flag to indicate to the
host program that this event has occurred. The fine synchronization assembly language routine
then returns to the main assembly language program to wait for the next command from the user.

3.3.1.3.5 Achieving Fine Synchronization

When fine synchronization is achieved, the GT processor sets a flag to the host program.
At this point, the GT processor is ready to transmit user data. However, the development of the
GT simulator was terminated here as the demonstration of synchronization concepts was the
primary goal of this project.

3.3.1.4 Interrupt Service Routine

In the GT simulator implementation, an interrupt is generated on the rising edge of every
hop clock pulse. When an interrupt is received by the DSP, the DSP stops its current task and
invokes the interrupt service routine (ISR). The interrupt service routine carries out some routine
updating of counters and performs tasks related to synchronization if applicable. Once the
interrupt service routine has been executed, the DSP continues the task it was performing prior to
receiving the interrupt. The interrupt service routine is written in assembly language and can be
found in Section B.6, Appendix B. The tasks for the interrupt service are shown in Fig. 3.8 and
are described in more detail in the following paragraphs.

3.3.1.4.1 ISR Housekeeping

The first step of the interrupt service routine consists of clearing the interrupt signal sent
to the DSP by the GT processor i/f board. The interrupt signal is automatically cleared on the GT
processor i/f board by reading the interrupt port of the GT processor i/f board [4]. The next step
for the interrupt service routine is to update the hop and frame counters of the GT processor.
Finally, the interrupt service routine checks to see if the GT processor is in either downlink
synchronization, uplink coarse synchronization, or uplink fine synchronization modes. If the GT
processor is not in one of these modes, the interrupt service routine is then complete and the DSP
can resume its normal operations. Otherwise, the interrupt service routine performs one of the
tasks described below before the DSP resumes its normal operations.

31

Interrupt
received

Fig. 3.8 Interrupt Service Routine Flow Diagram

3.3.1.4.2 ISR Tasks for Coarse Synchronization Mode

For coarse synchronization, the interrupt service is responsible for transmitting the coarse
synchronization probes at the appropriate time. In order to determine the appropriate time for
transmitting the coarse synchronization probes, the interrupt service routine goes through a series
of checks. As described in [3], when the HSC is changed to CSYNC (coarse synchronization)
mode, the HSC first requires a certain amount of time to precompute the hop frequencies for the
coarse synchronization probes. Thus, the interrupt service routine first verifies that the
precomputation time has elasped. After the precomputation time has elapsed, the interrupt
service routine must check to see if the current hop is hop 0. During coarse synchronization, the
HSC must be given an FCALC (frequency calculate) command on hop 0 of every frame in order
to calculate the next synchronization probe frequencies. The next step is to verify whether the
current frame is one that is assigned to the user. If it is an assigned frame, the interrupt service
routine checks to see if it is time to transmit coarse synchronization probes based on a particular
timing hypothesis. Once it is the appropriate time, the interrupt service routine must differentiate
between transmitting one of the two bursts of probes with a timing offset of 1/2 hop between
them as described in Section 3.3.1.2.2. The transmission of the coarse synchronization probes is

32

accomplished by sending ULGO (uplink GO) commands to the HSC through the GT processor
i/fboard[3,4].

3.3.1.4.3 ISR Tasks for Fine Synchronization Mode

As described in Section 2.2.2, during fine synchronization, the GT processor transmits a
series of bursts of 32 fine synchronization probes at specific times allocated to a particular
terminal. As a result, the interrupt service routine must perform a similar series of checks as for
coarse synchronization in order to determine when to transmit the synchronization probes. First,
the interrupt service routine checks to see if the current frame is an allocated frame for fine
synchronization. If so, the interrupt service routine checks for the appropriate time to transmit
the fine synchronization probes. The fine synchronization probes are transmitted by writing the
channel and FSK bin information to the FSK/FRAME port of the GT processor i/f board [3,4].
If the current frame is not allocated for the transmission of fine synchronization probes, a TXOFF
(transmit off) command is written to the FSK/FRAME port which causes the transmit signal to
be attenuated, effectively turning the transmitter off.

3.3.1.4.4 ISR Tasks for Downlink Synchronization Mode

As described in Section 2.1, downlink synchronization is performed in order to acquire
the satellite downlink. In practice, downlink synchronization consists of the ground terminal
detecting synchronization aids transmitted by the payload. The detection of the synchronization
aids also provides the ground terminal with some preliminary information to begin uplink
synchronization. A simulated downlink synchronization link was implemented whereby a
reference pulse is transmitted on a serial link connecting the payload and GT simulators. The
rising and falling edges of the reference pulse were chosen to correspond to the start of
hopO/frameO and hopO/frame 1 respectively. Access to the reference pulse is achieved by way of
the status register on the DIB [6]. When the ground terminal processor is in downlink
synchronization mode, the interrupt service routine reads the status register of the DIB and
examines whether a rising or falling edge has occurred. If either edge is detected, the interrupt
service routine verifies the hop and frame counters are set properly or resets the counters as
required.

33

3.3.2 Host/User Interface Program

The user interface to the GT simulator is provided by the host/user interface program
which is written in C. A listing of the host/user interface program is included in Section B.2,
Appendix B. The host/user interface program initializes and downloads the DSP code to the
DSP board (also referred to as the GT processor) and allows the user to select the mode of
operation for the GT simulator. Furthermore, the host/user interface program monitors the status
of the simulation by continuously checking a series of flags and responding as required. The
general flow of the program steps is shown in Fig. 3.9. A description of each of these steps or
tasks is provided in the following paragraphs.

Fig. 3.9 Host/user interface flow diagram

3.3.2.1 DSP Board Initialization

The first step of the host/user interface program involves using interface library
subroutines provided by Spectrum Signal Processing Inc. [11] to properly initialize the DSP
board which operates as the GT processor. Once the appropriate DSP board is selected and
initialized, the DSP code is downloaded into the DSP program memory. The dual port memory
of the DSP board, which allows for data transfer between the DSP and host PC and vice versa, is
then initialized. Finally, a reset is issued to the DSP board using the interface library functions to
start the execution of the DSP program.

3.3.2.2 Downloading Simulation Parameters

In order to allow flexibility in changing parameter values for a particular simulation,
parameters are stored in ASCII files which are read by the host/user interface program and
subsequently transferred to the DSP board. For this implementation of the GT simulator, there
are three ASCII data files. The three data files include values for general GT parameters, for the
HSC, and for CW frequency values. The data files are described further in Section 3.3.3 and are
included in Appendix C. In the host/user interface program, each value is read and then
formatted to be downloaded to the DSP. The downloading of the parameter values is also
reflected in the DSP main assembly program which is discussed in Section 3.3.1.1.1.

34

3.3.2.3 Serial Communications Initialization

As described in Section 3.1, the experimental setup consists of the ground-based pay load
and GT simulators being located approximately 1.5 km apart. In order to facilitate integration
and testing of the software, a remote operation capability was implemented for the GT simulator.
A serial communications link was installed to connect the two simulators. Using the serial
communications software developed at DREO [10], the GT simulator can be operated by the
payload simulator. It is noted that the scope of the remote operation only encompasses the mode
of operation for the GT simulator. The GT simulator still has to be powered on and the
executable file has to be run locally before remote operation can occur. Similarly, if a
catastrophic error occurs and a reboot of the GT simulator is required, the reboot must also be
performed at the local terminal.

3.3.2.4 User Interface Menu

During the development of the GT simulator, several modes of operation were
implemented. The modes of operation were introduced in Section 3.3.1.1.2. While some of
these modes are not part of the uplink synchronization process, they are retained for debug
purposes. A mode is selected by the user from a menu which is displayed on the local terminal.
A replica of the user menu which is displayed on the local screen is shown in Fig. 3.10. Each of
the options in the menu are described further in the following paragraphs.

**
CW test - 7-11 April 1997
GT Synch Processor Menu

Enter one of the following:

'L'
•U'
•M'
•Q-
' T'
■F*
'R'
'S'
'E'
•D'
•C
■W
'X'

TMS

BW
BW

Go
Go

Go to lower edge of hop
Go to upper edge of hop
Go to middle of hop BW
Go to one quarter mark of hop BW

to three quarter mark of hop BW
to specific frequency

Go to RUN mode
Slowly cycle through hop BW
Enable interrupt/FRO detection
Disable interrupt/FRO detection
Coarse Synchronization test
Fine Synchronization test
Exit program or stop slow hopping (option 'S')

interrupts/FRO detection is currently disabled.
**

Enter selection:

Fig. 3.10 User menu for the GT simulator

35

The first six options on the user menu allow the user to select a CW frequency tone to be
transmitted. The first five of six options ('L\ «U\ 'M\ 'Q\ T') correspond to the lower edge,
the upper edge, the middle, the quarter mark, and the three-quarter mark of the hopping
bandwidth respectively. These values are stored in an ASCII data file which is read by the
host/user program as described above. The sixth option ('F') corresponds to an arbitrary value
within the hopping bandwidth, selectable by the user.

The RUN mode option ('R') causes the HSC to randomly hop over the hopping or system
bandwidth. Alternatively, the 'S' option transmits a CW tone that is swept across the hopping
bandwidth. The user can select the rate at which the tone is swept through the bandwidth by
entering a dwell time (in seconds) and a hopping increment (between 1 and 16777215) for the
prompts following the 'S' entry.

The *E' option enables the detection of the downlink synchronization reference pulse
(FRO pulse). When this option is invoked, the DSP returns a flag every time the rising edge of
the FRO pulse is detected. The host/user interface program prints a message on the local screen
indicating that the rising edge of the FRO pulse was detected and prints the values of the hop and
frame counters when the edge is detected. The values indicate whether an adjustment is required
for the counters. When no adjustments are observed for the counters over a period of time,
downlink synchronization can be considered to be achieved and thus, the detection of the FRO
pulse can be disabled. To disable this option, a 'D' may be entered at any time during this mode
of operation.

The 'C and *W allow the user to execute the coarse and fine synchronization algorithms
for the GT simulator, respectively. The detailed description of the algorithms are included in
Sections 3.3.1.2 and 3.3.1.3.

3.3.2.5 Host/User Interface Loop

Once the DSP and host initialization have taken place and the user menu is displayed, the
host enters into a loop operation to respond to user commands and to flag conditions relating to
the status of the simulation. Fig. 3.11 illustrates the loop. The order in which the loop is carried
out is only a reflection of the order in which the GT processor functions were developed.

36

storthere/Check for local'
*l keyboard input

Print message
on local screen

Transfer Response
to DSP when ready

Fig. 3.11 Host/user interface loop

3.3.2.5.1 Checking for User Input - Local Keyboard Input

If the host detects a keyboard entry, it will process the input to determine whether the
input is valid and if so, take appropriate action. The valid entries are the options on the user
menu described in Section 3.3.2.4. The subroutine for processing keyboard entries has been
written to be case insensitive (i.e. the host program interprets upper and lower case entries to be
the same). If a valid entry is received, the host transfers the appropriate command to the DSP
board. In addition, if serial communications between the payload and GT simulators is activated,
a keyboard entry at the local terminal will also cause a message to be sent to the remote terminal
identifying the entry made. If an invalid entry is received, the host program prints an error
message, prompts the user for another entry and displays the user menu again.

3.3.2.5.2 Checking for User Input - Remote Input

The host program also checks for remote input if serial communications is enabled
between the payload and GT simulators. Similar to any keyboard input, the host program
processes the remote input to determine whether it is valid. The input options for remote input
correspond to the options on the user menu. Remote input through the serial communications

37

link is formatted as text messages which must be read and decoded by the host program. If a
valid entry is received, the host transfers the appropriate command to the DSP board and prints a
message on the local terminal that a remote entry has been made.

3.3.2.5.3 Checking for FRO Pulse Edge Detection

The task of checking for the FRO pulse edge detection was originally used in the
development of the downlink synchronization mode for the GT simulator. The task has been
retained for debug purposes. The task involves reading a location in dual port memory to see if
the flag for an FRO pulse edge detection is set. If the flag is set, the host program clears the flag
and displays a message on the screen including the value of the hop and frame counters before
the edge was detected. The detection of the FRO pulse can be disabled at any time by entering
T>'.

3.3.2.5.4 Checking for Completion of Task by DSP

In this step of the loop operation, the host program checks to see whether the DSP is
ready to receive another user command by reading the C30DONE flag which is also stored in
dual port memory. When the C30DONE flag is set, the host program prompts the user for
another command.

3.3.2.5.5 Checking for Return Link Synchronization Response

Synchronization responses are received by the GT simulator from the payload through a
serial communications link and stored in a buffer on the host PC. When a synchronization
response is received, the host program reads and decodes the response according to the format
presented in Section 2.2.3. If the GT simulator is in coarse synchronization mode, the response
is transferred to the DSP. However, in the case of fine synchronization, an average of ten fine
synchronization responses is computed first. An average value of the fine synchronization
estimates was chosen over a single estimate to provide further accuracy of the realignment
required for the GT clock and possibly reduce the number of adjustments needed to align the GT
clock with the payload clock. The average is then used to compute the phase change required on
the NCO to align the GT clock. Both the average fine synchronization response and the
corresponding phase change required are then transferred to the DSP.

3.3.2.5.6 Checking Other Flag Conditions

The final step of the loop operation for the host program is to check a series of flags
which indicate the status of the simulation. Again, while some flags may not explicitly be part of
the uplink synchronization process, they are retained for debug purposes. Table 3.3 describes
each of the flags which are monitored by the host program and any subsequent options should a

38

flag become set. Again, the order in which the flags are listed only reflect the order in which the
functionality was added in the development of the GT simulator.

3.3.3 ASCH Data Files

To facilitate the reconfiguration of parameters for the GT processor and the HSC during
the trials without the need to recompile code, three ASCII data files are used. These data files
must be stored in the same directory as the executable file for the host/user interface C program.
The first data file called "freq.dat" contains the frequency values at specific points within the
hopping bandwidth. The frequency values are used to generated CW tones to verify the system
integration of the GT and payload simulators as well as to verify the S ATCOM link. Frequency
values are included for both the COMSTRON and SCITEQ frequency synthesizers which are
supported in the uplink synchronization trials. The second data file, "hscinit.dat", contains the
parameters to be initialized on the HSC. Again, initial values are included for both the
COMSTRON and SCITEQ synthesizers. The third data file called "GTparam.dat" allows the
user to select values for GT processor variables. The user-definable variables enable changes to
the coarse synchronization and fine synchronization procedures. These include the search limit
for the synchronization probe hypotheses, the number of times a "detect" must be received to
confirm coarse synchronization, the synchronization response buffer size, and the range of fine
synchronization estimates within which fine synchronization is considered to be achieved. The
ASCII files are included in Appendix C.

39

Flag Name
RNG XCDED

CSYNC.OK

PLINE_FLAG

TOO_MANY_HYPS

FRM_NOT_FOUND

FSTART_AVAIL

FSYNC_OK

NO.FSYNC

UFLO.CDTN

Description
Indicates that the search range for the coarse synchronization algorithm has
been exceeded with no coarse synchronization probes being detected. The
search range is defined by the user in an ASCII data file which is read by the
host program. This flag is used to indicate that the range of timing hypotheses
to be tested has been exceeded. The occurrence of this flag being set may
indicate the possibility of an error with the downlink synchronization
acquisition. Thus, in the event this flag is set, the user is given the option to
return to downlink synchronization mode.
Indicates that coarse synchronization has been achieved. At this point, the
detection of coarse synchronization probes for a particular timing hypothesis
has been confirmed. The timing hypothesis is used to adjust the hop and
frame counters (i.e. GT clock). If this flag becomes set, the user is given the
option to go to fine synchronization mode.
Indicates that the buffer used by the GT processor to store coarse
synchronization responses is full. The buffer is used when the GT processor is
verifying a timing hypothesis which resulted in a "detect" response from the
payload. The buffer holds only responses for timing hypotheses which were
transmitted after the timing hypothesis which resulted in the "detect" response
but before the verification procedure commenced. The verification of timing
hypotheses is described in Section 3.3.1.2.3. This flag is used for debug
purposes.
Indicates that the buffer used by the GT processor to store the reference frame
number and timing hypotheses is full. This condition occurs when the GT
processor tries to overwrite another entry. This flag is used for debug
purposes.
When a coarse synchronization response is received from the payload, it is
only referenced by the frame number to which the response corresponds.
Thus, the GT processor must retrieve the timing hypothesis used in that
particular frame to verify the hypothesis. The GT processor retrieves the
timing hypothesis from the hypothesis log. If the frame number is not found
and the timing hypothesis cannot be retrieved, the FRM_NOT_FOUND flag is
set. The host program is subsequently aborted. This flag is used for debug
purposes.
Indicates that the frame number of the first valid fine synchronization response
has been transferred by the GT processor. The frame number is stored by the
host program and used to start processing fine synchronization responses,
Indicates that fine synchronization has been achieved. A message is printed
on the screen that the GT is ready to transmit data. Due to time constraints,
the data transmission function has not been implemented on the GT simulator,
Indicates that fine synchronization could not be achieved as the fine
synchronization responses did not converge. If this condition occurs, the user
is given the option to go back to coarse synchronization.
Indicates that data was not transferred to the GT processor i/f board in time
for the next hop during fine synchronization, resulting in an underflow
condition. A message is printed on the local terminal screen and the host
program is subsequently aborted.

Table 3.3 Description of flags for GT simulator

40

4.0 Summary

This report describes the development of a GT simulator for an in-house activity
examining synchronization aspects of EHF SATCOM at DREO and CRC. The GT simulator
consists of a GT processor, a number of custom interface boards, frequency synthesizer, RF
equipment, and a data source. The GT processor was implemented on a TMS320C30 DSP board
from Spectrum Signal Processing Inc., and is contained in a host PC. A GT processor i/f board
was designed and fabricated to generate the necessary clock signals for the GT processor and to
provide the interface between the GT processor and an HSC. The HSC, in turn, controlled a
frequency synthesizer used to produce the transmit signal. A multipurpose data interface board
was also designed and fabricated to provide the interface between the GT processor and a data
source, and to provide the interface to the downlink synchronization reference link.

The modes of operation for the GT simulator include: transmitting CW tones at specific
points in the hopping bandwidth; transmitting an arbitrary CW tone within the hopping
bandwidth; sweeping a CW tone across the hopping bandwidth; performing downlink
synchronization using a simulated downlink; performing uplink coarse synchronization; and
performing uplink fine synchronization. The first three functions were implemented during the
development of the simulator and are retained for debug purposes.

The GT simulator was developed for use in uplink synchronization trials over the UK
Skynet 4A satellite. The synchronization procedure begins with downlink synchronization. In
this implementation, a simulated downlink is setup between the payload and GT simulators via
an RS232 serial communications link. A downlink synchronization reference pulse is
continously transmitted by the payload simulator to the GT simulator. The edges of the reference
pulse correspond to specific instances in the pseudorandom hopping sequence of the payload
simulator. The GT simulator detects and uses this reference pulse to begin uplink
synchronization.

There are two stages in performing uplink synchronziation: coarse and fine
synchronization. Both involve the transmission of synchronization probes to the payload
simulator at allocated times. Synchronization responses to the synchronization probes are
formulated by the payload and returned to the GT simulator. In coarse synchronization, a binary
"detect/no detect" response is returned. In fine synchronization, a time estimate of how early or
late the received probes are relative to the system clock is provided on the synchronization
response return link. The synchronization response return link is implemented on a serial
communications link capable of data transfer at 9.6 kb/s. These responses are transmitted to the
GT simulator once every frame.

For coarse synchronization, two consecutive bursts of sixteen synchronization probes are
transmitted at different timing hypotheses. In this implementation of the GT simulator, an
"outward moving" search scheme is used in coarse synchronization to test different timing
hypotheses beginning with the most probable hypothesis. In addition, a verification process is

41

carried out when a "detect" response is first received by the GT simulator for a particular timing
hypothesis. Coarse synchronization is considered achieved when the GT clock is aligned to
within a hop of the payload clock.

In fine synchronization, a single burst of thirty-two synchronization probes is transmitted.
In order to reduce the number of times the GT clock is adjusted and to minimize any estimate
errors due to noise, an average of ten fine synchronization responses is used to the determine the
fine adjustment required by the GT clock during fine synchronization. Fine synchronization is
considered achieved when the GT clock is aligned to within 10% of a hop of the payload clock.

The GT simulator has been developed so that it can be remotely operated by the payload
simulator once the GT simulator is powered on and the executable file is run. The remote
operation capability is included to facilitate the operation of the trials since the GT and payload
simulators are physically located 1.5 km apart.

Data files containing parameters for the simulation are used to allow changing of their
values without recompilation. The parameters are downloaded by the host PC to the DSP at the
beginning of the simulation.

A user's guide is included in Appendix A for installation and operating procedures of the
GT simulator. Appendix B contains a listing of the software programs used by the GT simulator.
Appendix C contains a listing of the parameter data files used by the GT simulator.

42

References

[I] Addison, R.D., Seed, W.R., "Implementation of an EHF Frequency-Hopping
Simulator", DREO Report 1279, Ottawa, Canada, December 1995.

[2] Lambert, J.D., "DREO/CRC Joint Data Link Standard for Low Data Rate
Service to EHF Ground Terminal and Payload Simulators", DREO Report 1069,
Ottawa, Canada, February 1991.

[3] Addison, R.D., "Modified Hopping Synthesizer Controller", DREO Report 1304,
Ottawa, Canada, December 1996.

[4] Tom, C, "Ground Terminal Processor Interface Board for SJcynet Uplink
Synchronization Trials", DREO Report 1321, Ottawa, Canada, November 1997.

[5] Tom, C, Meng, Z., "Multichannel M-ary Frequency-shift-keying Block
Demodulator Implementation", DREO Report 1307, Ottawa, Canada, December
1996.

[6] Simoneau, Y., Tom, C, "Multipurpose Data Interface Board", DREO Report
1332, Ottawa, Canada, October 1998.

[7] Series FS2000 Frequency Synthesizer Operation and Maintenance Manual,
Comstron Corporation, 1987.

[8] VDS-3000-977 Frequency Synthesizer Operating Instructions, Sciteq Electronics
Inc., Rev.A, January 14,1983.

[9] Model 1645A Data Error Analyzer Operating and Service Manual, Hewlett
Packard Company, November 1983.

[10] Addison, R.D., "Real-time Interprocessor Serial Communications Software for
Skynet EHF Trials", DREO Report 1227, Ottawa, Canada, July 1994.

[II] TMS320C30 System Board User's Manual, Spectrum Signal Processing Inc.,
Issue 1.01, August 1990.

43

Appendix A: Ground Terminal Simulator Installation Guide

Al Installation

A 1.1 Hardware installation

The GT simulator (excluding the RF components) consists of the following:

• IBM-AT compatible PC
• Spectrum Signal Processing Inc., TMS320C30 DSP Board (GT

processor)
• GT processor i/f board
• Hopping synthesizer controller
• Frequency synthesizer (COMSTRON or SCITEQ)
• Multipurpose DIB
• Data source (HP 1645 Bit Error Rate Analyser)
• DSPLINK backplane cage

The DSP board or GT processor is installed in an ISA expansion slot of the PC. The
configuration and jumper settings of the DSP board are described in [11]. For the uplink
synchronization experiments, the default settings for the DSP board are used. The GT processor
i/f board and the multipurpose DIB are each inserted into a slot of the 96-pin DSPLINK
backplane. The DSPLINK backplane was described in Section 3.2.7.1 of the main document.
Details of the configuration of the GT processor i/f board and DIB are provided in [4] and [6]
respectively. Communications between the GT processor and the interface boards are made
possible through the DSPLINK interface of the DSP board [11] using a 50-pin ribbon cable and
DSPLINK extender card. The extender card, which is inserted one of the other slots of the
DSPLINK backplane cage, maps the fifty lines of DSPLINK to the 96-line backplane.

On the other end of the GT processor i/f board, there are two connections for the HSC:
the HSC command interface; and the HSC data interface connection. A 26-pin ribbon cable and
a 10-pin ribbon cable are used respectively to connect the GT processor i/f board to the
corresponding connectors on the back of the HSC box. An additional 50-pin ribbon cable
connector is located on the back of the HSC box and is used to connect the HSC to the frequency
synthesizer. Details of the HSC configuration and interfaces are found in [3].

On the other end of the DIB, there are three connectors. A 26-pin ribbon cable connector
is available to access one of the debug latches on the DIB. The second connector is a 9-pin male
RS232 type connector. It is used to connect the data source (HP1645) to the DIB. Another 9-pin
female RS232 type connector is used for the downlink synchronization reference serial
communications link. Full details of the DIB connectors are found in [6].

Al

The serial port of the PC is also used in the GT simulator. The serial port of the PC is
connected to the synchronization response return serial link.

A1.2 Program files

In order to run the GT simulator, several files must be present. The files are listed below:

tms_ul2.out
ulsync2.exe
com.h

The GT simulator programs are compiled and executed in DOS. The tmsjiU.out file is
the output file from the TMS320C30 linker. The TMS320C30 linker creates the executable
module by combining object files of compiled assembly programs and allocates sections to the
DSP memory map. The GT simulator assembly routines being linked are shown in Fig. A.l.
The file rtsAib is the run time library routines which are supplied by Spectrum Signal Processing
Inc. The options and filenames for the linker are contained in a command file which in included
in Section B7, of Appendix B.

tms_ul2.asm tms_ul2obj

intrpts.Bsm intrpts.obj

uljsr.asm uljsr.obj

csync.asm csync.obj

fsync.asm ftync.obj

tms uK.out

rts.lib

Fig. A.1 GT simulator TMS320C30 linker process

Similarly, the ulsync2.exe file is the output of the C linker for the PC. The C linker
combines the compiled host/user interface program with the TMS320C30 development library
routines, lm30dev.lib, as well as the compiled serial communications routines. The definitions
for the routines are found in the com.h header file. The result of the compiled routines is
contained in two object files, com.obj and serialobj. Fig. A.2 illustrates the flow of the C linker
process for the PC.

A2

ulsync2.c > ulsync2.obj

com.obj

serial.obj

Fig. A.2 GT simulator host PC linker process

A3

Appendix B: Software Listings

Bl. GT simulator host/user interface program

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

r************************** ****** * ************
Program Name: ULSYNC2.C
Author: C. Tom
Date Edited: 31 March 1998

THIS VERSION HAS A USER SELECTABLE OPTION FOR THE SERIAL COMMUNICATIONS
ROUTINES. USER IS PROMPTED AT THE BEGINNING OF PROGRAM.

Description

PC program for GT simulator for uplink synchronization trials. Includes
capability for remote operation through serial communications link
software.
Application

1.
2.
3.
4.
5.

Available options to send CW at low, high, mid, 1/4, 3/4 band
Available option to send CW at user specified frequency
Available option to sweep through allocated BW (PN seq)
Available option to go to RUN mode (frequency hopping)
Available option to enable/disable FRAME 0 detect (confirm DL)
and adjust hop and frame counters.

6. Available option to test CSVNC procedure
7. Available option to test FSYNC procedure
.»*,*»»»,,*»«,,,«***»»***«*««.******»*****«****.****«*****************•»**'

/..*.** include files **«***/

»include <stdio.h>
»include <conio.h>
»include "com.h"

/...*«* THS BPMEM address definitions ***»*»/

»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define

BASEIO
BASEDF
C30DONE
MODEJWÄIL
MODE
MODE.ACK
F_AVAIL
F_VALUE
F^ACK
PHS_AVAIL
PHS_RNDED
PHS_ACK
DWELL.AVAIL
DWELL_VAL
DWELL_ACK
VAL_RDY
VAL_IDX
VALUE
VAL^ACK
END_ASCII
STOP_MOD3
INCR_AVAIL
INCR_VAL
INCRJVCK
STOP_INT
RIS_DET
HYP_AVAIL
USER_HYP
HYP_ACK
DBUG^AVAIL
DBUG_VALUE
DBUG.ACK
CHK_AVAIL
CHK_VALUE
CHK^ACK
FRM_REF
C0_RESP
C1_RESP
F0_RESP
F1_RESP
RESPJWAIL
RDY_4_RESP
RESP_ACK
RNG_XCDED

0x290
Ox30000L
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +
BASEDP +

0L
1L
2L
3L
4L
5L
6L
7L
8L
9L
OxBL
OxCL
OxDL
OxEL
OxFL
OxlOL
OxllL
0xl2L
0X13L
0X14L
0X15L
0x16L
0xl7L
0xl8L
0xl9L
OxlAL
OxlBL
OxlCL
OxlDL
OxlEL
OxlFL
0x2 0L
0x21L
0X2 2 L
0X2 3 L
0X24L
0X25L
0X2 6L
0X27L
0X2 8 L
0X2 9 L
0X2AL

/•base address of c30*/
/•base address of c30 dual port mem*/

Bl

»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define
»define

«define
»define
»define
»define
»define
»define
»define

»define
»define

»define
»define

CSYNC_OK BASEDP + 0X2BL
CHK_HOP BASEDP + 0X2CL
CHK_FRM BASEDP + 0X2DL

LOG_END BASEDP + 0X2EL

PLINE_FLAG BASEDP + 0X2 FL

DAT_AVAIL BASEDP + 0X30L
INDEX BASEDP + 0X31L

DAT_VALUE BASEDP + 0X32L

DAT_ACK BASEDP + 0X33L
END_FILE BASEDP + 0X34L
TOO_MANY_HYPS BASEDP + 0X35L

FRM_NOT_FOUND BASEDP + 0X3 6L

FSTART_AVAIL BASEDP + 0X40L
FSTART_FRM BASEDP + 0X41L
FSTART_ACK BASEDP + 0X42L

EST^AVAIL BASEDP + 0X43L
FINE_EST BASEDP + 0X44L
PHS_CHANGE BASEDP + 0X45L
EST_ACK BASEDP + 0X4 6L

NO_FSYNC BASEDP + 0X47L
FSYNC_OK BASEDP + 0X48L
UFLO_CDTN BASEDP + 0X4 9 L

leous constants *....*/

DUAL 0
ALL 1
BITCLR OL
BITSET 1L
maxien 80
local 0
remote 1

MAX_HOP_NUM OxffffffL

NCO_VAL 0xl3A92A3L

RESP_BUF_SIZ 100
STRING_LEN 220

/•Memory type,
/•Memory type,

p.48 in manual*/
p.48 in manual*/

/* 16777215 for PN seq generator in HSC */
/* value of phs_rnded for NCO - default 192000 Hz*/

/* Synch response buffer size */
/* Serial com message length */

/•External variable declaration*/
/ /

int i, err, checkbit;
int ser_select = 0;
unsigned long check;
unsigned long lo_band, up_band, mid_band, oneg_band,
unsigned long base_f, hop_bw;
unsigned long flag, flagl;
int count, mode_of_op;
int stop_fsel;
unsigned long user_f, freq_val;
double hop_par;
float dwell_tirae;
unsigned long hop_incr;
unsigned long dwell_cycles;
FILE *flp, *f2p, *f3p, *f4p, *f5p;
char fstring[maxien], linetype, go_on_flg;
unsigned long idx;
long int data;
int int_mode « BITCLR;
int stop_PC = BITCLR;
int key_ret = BITCLR;
int msg_ret = BITCLR;
int proc_ret = BITCLR;
int operation;
int mlocal, ndest;
char string[STRING_LEN];
long int hypothesis;
long int sync_iter;
long int chk_point;
long int hop_b4edge, frm_b4edge;
long int command_given = BITCLR;
char c_resp_arr[RESP_BUF_SIZ] [STRING_LEN] ;
long int f_resp_arr[RESP_BUF_SIZ];
int scmp_ret = BITCLR;
long int resp_rd_ptr = 0;
long int resp_wr_ptr = 0;
long int frame, c0_crsp, cl_crsp, c0_frsp, cl_frsp;
long int debug_entry;
unsigned long frm_ref_4_fine;
long int cum_fine_resp = 0;
int fine_cnt = 0;
long int f_est_avg, phs_change_4_nco;
float adjustment, flt_avg;
char u_input;

/* Subroutine declarations */

threeg_band;

B2

» ******* *i I

void Init_DPMEM(void);
unsigned long CTGet32Bit(int baseadr, long loc);
int checkkey(int mdest);
int checkmsg(void);
void pabort(char *msg);
void Disp_menu(void);
void send_mode(int mode_sel);
void send_f(unsigned long f_val);
int proc_msg(int type, char mcontent[220]);
float Rd_value(char par [10));

/♦initializes TMS dual port memory*/
/•alternate Get32Bit for DSP*/
/•check and action key presses*/
/•check for receive messages and others*/
/*print message, close file, exit*/

/****/
main()
/****/

{

/******Load c30 program******/

check = SelectBoard(BASEIO); /»Initialise c30*/
printf("\nReturn from SelectBoard = Ox *x h\n", check);
err = LoadObjectFile("tms_ul2.out"); /*Load c30 program*/
switch (err) {

case 0:
printf ("\nTMS program has been loaded successfully.\n");
break;

case 1:
printf ("\nERROR. unable to open TMS file.Xn");
exit(l);
break;

case 2:
printf ("\nERROR. Invalid address for TMS program.\n");
exit(l);
break;

default:
printf("\nError. Value = %i", err);
exit(l);

) /*end switch (err)*/

/**.«.«initialize TMS DP memory and synch response buffer in pc******/

Init_DPMEM();

for (i=0; i < RESP_BUF_SIZ; i++)
{

strcpy(&c_resp_arr[i][0], "empty");
f_resp_arr[ij = 999;

} /* end for i */

/******Start c30******/

printf("\nSerial Comms routines enabled, enter '1'
scanf("%i", fcser_select);
printf("\nSer_select value: %i ", ser_select);

Reset();
printf("\nReset issued to c30 board.\n");

otherwise enter '0': ");

/•Reset DSP board*/

/♦•••••Download GT processor parameters******/

if ((fSp=fopen!"GTparam.dat", "r")) == NULL)
{

printf("\nError. Cannot open file GTPARAM.DAT. Aborting.");
exit(l);

} /«end if f5p*/
printf("\nFile opened for GT parameters.");
while (fgets(fstring, maxien, f5p) != NULL)
{

printf("\r Reading next GT parameter. ");
sscanflfstring, "ftc %li %li", tlinetype, tidx, 4data);
if (linetype == 'd')
{

check = Put32Bit(INDEX, DUAL, idx);
check = Put32Bit(DAT_VALUE, DUAL, data);
Check = Put32Bit(DAT_AVAIL, DUAL, BITSET);
flag = BITCLR;
while ((flag = CTGet32Bit(BASEIO, DAT_ACK)) != BITSET);

check = Put32Bit(DATwACK, DUAL, BITCLR);
) /»end if linetype*/

B3

) /*end while fgets*/
printf("\nEnd of transferring GT parameters.");
check = Put32Bit(END_FILE, DUAL, BITSET);

/******Send NCO initial condition to TMS******/

Check = Put32Bit(PHS_RNDED, DUAL, NCO_VAL);
check = Put32Bit(PHS_AVAIL, DUAL, BITSET);
flagl = BITCLR;
while ((flagl = CTGet32Bit(BASEIO, PHS_ACK)) != BITSET)

printf("\rWaiting for TMS to ack transfer of NCO value,
printf("\nNCO value transfer acknowledged.\n");
check = Put32Bit(PHS_ACK, DUAL, BITCLR);

/......Read ASCII file with HSC parameters and transfer to TMS******/

printf("\nReady to read HSC parameters.");
if ((flp=fopen("hscinit.daf, "r"))==NULL) {

printf("\nError. Cannot open input file for HSC parameters.");
exit(l);

} /*end if flp*/
printf("\nlnput file opened for HSC parameters.");
while (fgets(fstring, maxien, flp) != NULL)

{
printf("\rReading HSC parameters into TMS memory.");
sscanf(fstring,"%c %li %lx", Slinetype, fcidx, idata);
if (linetype == 'd')
{

check = Put32Bit(VAL_IDX, DUAL, idx);
check = Put32Bit(VALUE, DUAL, data);
check = Put32Bit(VAL_RDY, DUAL, BITSET);
flag = BITCLR;
while!(flag=CTGet32Bit(BASEIO, VAL^ACK)) != BITSET);
check = Put32Bit(VAL_ACK, DUAL, BITCLR);

} /*end if linetype*/
) /*end while fgets*/
printf("\nEnd of HSC parameters ASCII file.");
check = Put32Bit(END_ASCII, DUAL, BITSET);
fclose(flp);

/».»»»»Read ASCII file with frequency values for SCITEQ or COMSTRON******/

printf("\nReading frequency select values from ASCII file.");
if (<f2p=fopen("freq.daf, "r"))==NULD
<

printf("\nError. Cannot open input file for frequency parameters.");
exit(l);

} /*end if f2p*/
printf("\nlnput file opened for frequency parameters.");
while (fgets(fstring, maxien, f2p) != NULL)
<

printf("\rReading frequency data.");
sscanf(fstring,"%c %li %lx", ilinetype, tidx, fcdata);
if (linetype == 'd')
{

switch (idx)
{

case 0:
lo_band = data;
break;

case 1:
up_band = data;
break;

case 2:
mid_band = data;
break;

case 3:
oneq_band = data;
break;

case 4:
threeq_band = data;
break;

case 5:
stop_fsel = data;
break;

case 6:
base_f = data;
break;

case 7:
hop_bw = data;
break;

B4

default:
printf("\nError in data file index value.");
exit(l);

) /«end switch (idx)*/
) /*end if linetype*/

} /*end while fgets*/
printf("\nEnd of freq.dat ASCII file.");
fclose(f2p);

/••••••Initialize serial communications******/

if (ser_select == 1)
{

/••••••Open all communications******/
if ((mlocal = open_com())==BAD_STATION) pabort("\nError in open_com.");
printf("\nLocal station is %s\n", stnlstr(mlocal, string));

/••••••Select link to PL synch processor******/
if {(ndest=look_com("SYNC_PROC")) ==BAD_STATION)

pabort("\nBad station lookup");

/••••••Send message to remote terminal that local terminal is ready******/
printf("\nSending 'READY' message to remote terminal.");
send_com(ndest,STATUS,"Local terminal ready.");

} /*end if (ser_select)*/

printf("\nLocal terminal ready.");

Disp_menu()•

/******Loop operation******/

while (stop_PC == BITCLR)
{

/****** Step 1: Check for local keyboard input ****•*/

key_ret = checkkey(ndest); /«Check for local keyboard input*/
if (key_ret != 0)
{

if <key_ret == 1) /«regular exit*/
{

Stop_PC = BITSET;
printf("\nProgram halted by local user.");
if (ser_select == 1)

send_com(ndest,STATUS,"Program halted at local terminal.");
break;

} /«end if key_ret == 1*/
else if (key_ret == 2) /*exit slow hopping*/
{

printf("\nSlow hopping halted.");
command_given = BITCLR;
if (ser_select == 1)

send_com(ndest,STATUS,"Slow hopping halted at local terminal.");
} /*end else*/

) /*end if key_ret*/

/****** Step 2: Check for remote terminal input (if serial comms enabled)******/

if (ser_select == 1)
{

msg_ret = checkmsgO; /*Check for remote input*/
switch (msg_ret)
{

case 0: /* normal exit */
break;

case 1: /• normal remote exit •/
stop_PC = BITSET;
printf("\nProgram halted by remote user.");
send_com(ndest, STATUS, "Program halted by remote terminal.");
break;

case 2: /* slow hopping halted by remote terminal */
printf("\nSlow hopping halted by remote terminal.");
send_com(ndest, STATUS, "Slow hopping halted by remote terminal.");
break;

case 3: /* Synch response buffer overflow */
stop_PC = BITSET;
printf("\nError. Synch resp buffer overflow. Abort.");
send_com(ndest, STATUS, "Error. Synch resp buffer overflow. Abort.");
break;

case 4: /*Error in get_com found*/
Stop_PC = BITSET;
printf("\nError in serial communications link detected.");
break;

B5

Invalid return value from check_msg subroutine.");
default:

print f C\nERROR
exit(l);

} /*end switch (msg_ret)
} /'end if (ser_select)*/

Step 3: Check for rising edge detect for DL synch ****/

flagl = BITCLR;
if ((flagl = CTGet32Bit(BASEIO,RIS_DET)) == BITSET)
{

hop_b4edge = CTGet32Bit(BASEIO,CHK_HOP);
frm_b4edge = CTGet32Bit(BASEIO,CHK_FRM);
printf("\nRISING EDGE DETECTED ON FRAME 0 LINE.");
printf("\nValues of hop and frm counters before edge: %li %li", hop_b4edge, frm_b4edge);
check = Put32Bit(RIS_DET, DUAL, BITCLR);
printf("\nTo disable FRO detection, enter 'D' ");

) /*end if flagl*/

/..*«•* step 4: Check for TMS response re: end of program **•***>

flagl = BITCLR;
if ((flagl=CTGet32Bit(BASEIO,C30DONE))= =BITSET) /«check for TMS response*/

check = Put32Bit(C30DONE, DUAL, BITCLR);
printf("\nTMS response received and cleared.");
if (operation == local)

printf("\nCommand executed. Another (y or n)?
else if (operation == remote)
{

command_given = BITCLR;
if (ser_aelect == 1)

send_com(ndest, STATUS, "Op complete.
printf("\nRemote command executed.");

) /*end else if*/
) /«end if (flagl)*/

');

Ready for command.");

Step S: Check for transfer of next synch resp to TMS

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

if (mode_of_op == 6) check for csynch mode */

{
if
{

((scmp_ret = strcmp(&c_resp_arr[resp_rd_ptr](0),"empty")) != 0) /*if buffer not empty*/

if ((flagl = CTGet32Bit(BASEIO,RDY_l_*ESP)) « BITSET)
{

sscanf(ic_resp_arr[resp_rd_ptr][0], "%i %i
fccl_crsp, &c0_frsp, fccl_frsp);

%i %i %i", iframe, fcc0_crsp,

check = Put32Bit(FRM_REF, DUAL,
check = Put32Bit(C0_RESP, DUAL,
check = Put32Bit(Cl_RESP, DUAL,
check = Put32Bit(F0_RESP, DUAL,
check = Put32Bit(Fl_RESP, DUAL,
check = Put32Bit(RESP_JWAIL, DUAL,
check = Put32Bit(RDY_4_RESP, DUAL,
strcpy(fcc_resp_arr[resp_rd_ptr][0]
if (RESP_BUF_SIZ -

0;
(resp_rd_ptr
resp_rd_ptr

else
resp_rd_ptr = resp_rd_ptr

} /*end if flagl*/
/*end if *c_resp_arr*/

frame);
c0_crsp);
cl_crsp);
c0_frsp);
cl_frsp);

BITSET);
BITCLR);
"empty");
D)

/•clear buffer element*/
•check for buffer rollover*/

1;

) /«end
else
{

if
{
if
{

if mode_of_op == 6 */

(mode_of_op «== 7)

(f_resp_arr[resp_rd_Ptr] != 999)

f_est_avg = f_resp_arr[resp_rd_ptr];
f_resp_arr[resp_rd_ptr] = 999;
if (resp_rd_ptr == (RESP_BUF_SIZ - 1))

/* check for fsynch mode

/* retrieve average fine estimate */
/* clear buffer element */
/* update pointer */

resp_rd_ptr = 0;
else

1>)

resp_rd_ptr = resp_rd_ptr + 1;
phs_change_4_nco = f_resp_arr[resp_rd_ptr]
f_resp_arr[resp_rd_ptr] = 999;
if (resp_rd_ptr == (RESP_BUF_SIZ

resp_rd_ptr = 0;
else

resp_rd_ptr = resp_rd_ptr
check = Put32Bit(FINE_EST, DUAL, f_est_avg) ;
check = Put32Bit(PHS_CHANGE, DUAL, phs_change_4_nco) ;
check = Put32Bit(EST.JWAIL, DUAL, BITSET);

/•end if f_resp_arr*/
/•end if mode_of_op == 7) •/

retrieve phase change */
clear buffer element */
update pointer */

+ 1;

) /* end else */

B6

/****** Step 6: Check for proper transfer of synch resp to TMS, goes with Step 5 ***

/* if (mode_of_op == 6)
/* {
/* if ((flagl = CTGet32Bit(BASEIO,RESP_ACK)) == BITSET)
/* {
/* check = Put32Bit(RESP_ACK, DUAL, BITCLR);
/* check = Put32Bit(RDY_4_RESP, DUAL, BITSET);
/* } /*end if flagl*/
/* } /*end if mode_of_op == 6 */
/* else
/* {
/* if (mode_of_op == 7)
/* {
/* if ((flagl = CTGet32Bit(BASEIO,EST_ACK)) == BITSET)
/* check = Put32Bit(EST^ACK, DUAL, BITCLR);
/*) /*end if mode_of_op == 7 */
/*) /*end else */

/****** Step 7; Check for search range exceeded during CSYNC ******
/*«•*** Check for CSYNC_OK condition .****.
/**.».* Check for pipeline overflow in synch response buffer ******
/****** Check for hyp_log overflow **«**•
/«***** Check for FRM_NOT_FOUND when retrieving hypothesis ******
/**•*** Check for FSYNC_OK condition ***.*.
/****** Check for NO_FSYNC condition - non-convergence ******
/****** Check for FSTART_FRM for fine sync process ******

flagl = BITCLR;
if ((flagl = CTGet32Bit(BASEIO,RNG_XCDED)) == BITSET)
{

check = Put32Bit(RNG_XCDED, DUAL, BITCLR);
printf("\nSearch range exceeded encountered.");
printf("\nDo you want to go back to DL sync? (y/n) ");
scanf("%ls", &u_input);
switch (u_input)
{

case 'Y':
case 'y':

int_mode = BITSET;
mode_of_op = 4;
send_mode (mode_of_op);
printf("\nEnabling FRO detection again.");
if (ser_select == 1)

send_com(ndest, STATUS, "LOC - back to FRO detect");
command_given = BITSET;
break;

case 'N':
case 'n':

stop_PC = BITSET;
printf("\nExiting program now");
break;

default:
printf("\nlnvalid response. Aborting program.");
Stop_PC = BITSET;
break;

) /*end switch u_input*/

} /*end if ...RNG_XCDED*/
else /**1*V
(

flagl = BITCLR;
if ((flagl = CTGet32Bit(BASEIO,CSYNC OK)) == BITSET)
{
check = Put32Bit(CSYNC_OK, DUAL, BITCLR);
printf("\nCoarse synch achieved.");
printf("\nDo you want to go to fine sync? (y/n) ");
scanf("%ls", fcu_input);
switch (u_input)
{
case 'Y':
case 'y':

int_mode = BITSET;
mode_of_op = 7;
send_mode(mode_of_op);
printf("\nProceeding to fine sync.");
if (ser_select == 1)

send_com(ndest, STATUS, "LOC - going to fine sync");
command_given = BITSET;
break;

case 'N';
case 'n':

Stop_PC = BITSET;
printf("VnExiting program now");
break;

default:

B7

printf("\nlnvalid response. Aborting program.");
Stop_PC = BITSET;
break;

} /«end switch u_input*/
) /'end if . . .CSYNC_OK*/
else 1**2**1
{

flagl = BITCLR;
if ((flagl = CTGet32Bit(BASEIO,PLINE_FLAG)) == BITSET)

(
check = Put32Bit(PLINE_FLAG, DUAL, BITCLR);
printf("\nSynch response buffer pipeline overflow in TMS. Exiting program.");
stop_PC = BITSET;

) /«end if flagl ... PLINE_FLAG«/
else /**3**/
(

flagl = BITCLR;
if ((flagl = CTGet32Bit(BASEIO,TOO_MANY_HYPS)) == BITSET)

check = Put32Bit(TOO_MANY_HYPS, DUAL, BITCLR);
printf("\nHypothesis buffer overflow. Exiting program.");
stop_PC = BITSET;

) /»end if flagl ... T0O_MANY_HYPS*/
else /**i**/
{

flagl = BITCLR;
if ((flagl = CTGet32Bit(BASEIO,FRM_NOT_FOUND)) == BITSET)

check = Put32Bit(FRM_NOT_FOUND, DUAL, BITCLR);
printf("\nUnable to retrieve hypothesis to verify coarse synch. Aborting.•),
Stop_PC = BITSET;

) /«end if flagl ... FRM_NOT_F0UND*/
else /**5**/
(
flagl = BITCLR;
if ((flagl = CTGet32Bit(BASEIO, FSTART^AVAIL)) == BITSET)

frm_ref_4_fine = CTGet32Bit(BASEIO,FSTART_FRM);
check = Put32Bit(FSTART^AVAIL, DUAL, BITCLR);
check = Put32Bit(FSTART_JACK, DUAL, BITSET);

} /*end if flagl ... FSTART^AVAIL*/
else 1**6**1
{

flagl = BITCLR;
if ((flagl = CTGet32Bit(BASEIO, FSYNC_OK)) == BITSET)

{
check = Put32Bit(FSYNC_OK, DUAL, BITCLR);
printf("\nFine synch achieved. Ready to transmit data. \n\n");
Stop_PC = BITSET; /* TEST ONLY */

) /*end if flagl ... FSYNC_OKV
else 1**1**1
{

flagl = BITCLR;
if ((flagl = CTGet32Bit(BASEIO, NO_FSYNC)) == BITSET)

{
check = Put32Bit(NO_FSYNC, DUAL, BITCLR);
printf("\nFine estimates not converging.-);
printf("\nDo you want to go back to coarse sync? (y/n) ");
scanf("%c", fcu_input);
switch (u_input)
{
case 'Y':
case 'y':
mode_of_op = 6;
sendjnode(mode_of_op);
hypothesis = 0;
check = Put32Bit(USER_HYP, DUAL, hypothesis);
check = Put32Bit(HYP^AVAIL, DUAL, BITSET);
flag = BITCLR;
while ((flagl = CTGet32Bit(BASEIO, HYP.ACK)) == BITCLR)

printf("\rAwaiting hyp acknowledge");
check = Put32Bit(HYP_ACK, DUAL, BITCLR);
if (ser_select == 1)

send_com(ndest, STATUS, "LOC - going back to csync");
break;

case 'N':
case 'n':
printf("\nExiting program");
Stop_PC = BITSET;
break;

default:
printf("\nlnvalid response. Exiting program now.");
Stop_PC = BITSET;
break;

) /«end switch*/
} /«end if flagl ... NO_FSYNC*/

) /«end else *7* */

B8

) /'end else *6* */
) /*end else *5* */

} /»end else *4* */
) /*end else *3* */

} /*end else *2» */
} /«end else *1* */

/****** step 8: Check for data underflow in GT processor i/f board **

flagl = BITCLR;
if ((flagl = CTGet32Bit(BASEIO,UFLO_CDTN)) == BITSET)
(

printf("\nUnderflow condition received. Aborting program.");
Stop_PC = BITSET;

} /*end if flag UFLO_CDTN */

} /*end while (stop_PC)*/

/****** Disable TMS interrupts before exiting »•****/

/*check = Put32Bit(STOP_INT, DUAL, BITSET);
/•flagl = BITSET;
/•while ((flagl=CTGet32Bit(BASEIO,STOP_INT))==BITSET); */

if (ser_select == 1)
C

while (ready_com(ndest)!=0)
checkmsg();

send_com(ndest, STATUS, "End of GT program.");
while (chk_time(0) != 0);
close_com() ;

} /*end if (ser_select)*/

printf("\nEnd of C program.");

/•wait for transmit buffer to be ready*/

) /*end of main*/

I***/

unsigned long CTGet32Bit(int baseadr, long loc)
/♦♦♦»»A***************************************/

{
unsigned int low;
unsigned int high;
int C30port,commreg,hicommreg;
unsigned long total;

C3 Opor t=baseadr ;
commreg= C30port + 0;
hicommreg= C30port + 2;
SetAddr(loc);
CntrDisO;
low=inpw(commreg);
high=inpw(hicommreg) ;
total = ((long)high«16) + low;
return(total);

) /*end CTGet32Bit()*/

void Disp_menu()

{
printf("\n*******************

CW test - 7-11 April 1997
GT Synch Processor Menu

**
"\n*
■\n*
"\n*
"\n*
"\n*
"\n*
"\n*
"\n*

printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf(
printf("\n*
printf("\n*
printf("\n*
printf("\n*
printf("\n*
printf("\n*
printf("\n*
printf("\n*
printf("\n*
printf("\n*
i f (int_mode

Enter one of the following:

Go to lower edge of hop BW
Go to upper edge of hop BW
Go to middle of hop BW
Go to one quarter mark of hop BW
Go to three quarter mark of hop BW
Go to specific frequency
Go to RUN mode
Slowly cycle through hop BW
Enable interrupt/FRO detection
Disable interrupt/FRO detection
Coarse synchronization test
Fine synchronization test
Exit program or stop slow hopping (option 'S')

BITCLR)

else

printf("\n*

printf("\n* TMS interrupts/FRO detection is currently disabled. *");

printf("\n* TMS interrupts/FRO detection is currently enabled. *");
**

B9

printf("\n\nEnter selection: ") ;
return;
) /*end Disp_menu()*/

int checkkeylint dest)

(
int c; /"character from keyboard*/
unsigned long user_f, freq_val;

!=0) if (kbhitO
{

operation = local;
c = getchO ;
switch (command_given)
{

case 0:
switch (c)
(

case
case

/•is a key pressed?*/

case
case

case
case

case
case

case
case

case
case

case
case

mode_of_op = 1;
send_mode(mode_of_op) ;
freq_val = lojband;
send_f(freq_val);
if (ser_select == 1)

send_com(ndest, STATUS,
command_given = BITSET;
break;

"LOC - go low command sent.");

"LOC - go 1/4 command sent.");

mode_of_op = 1;
send_mode(mode_of_op);
freg_val = up_band;
send_f(freg_val);
if (ser_select == 1)

send_com(ndest, STATUS, "LOC - go high command sent.");
command_given = BITSET;
break;

•K' :
'm' :

mode_of_op = 1;
send_mode(mode_of_op);
frep_val = mid_band;
send_f(freq_val);
if (ser_select == 1)

send_com(ndest, STATUS, "LOC - go mid command sent.");
command_given = BITSET;
break;

•Q' :

mode_of_op = 1;
send_mode(mode_of_op);
freq_val = onep_band;
send_f(frep_val);
if (ser_select == 1)

send_com(ndest, STATUS,
command_given = BITSET;
break;

■T" :
'f :

mode_of_op = 1;
send_mode(mode_of_op);
freq_val = threeq_band;
send_f(freq_val);
if (ser_select == 1)

send_com(ndest, STATUS,
command_given = BITSET;
break;

•F' ;
•f' :

printf("\nEnter frequency in 100Hz: ");
scanf("%li", tuser_f);
mode_of_op = 1;
send_mode(mode_of_op);
freq_val = user_f;
send_f(freq_val);
if (ser_select == 1)

send_com(ndest, STATUS, "LOC - user freq command sent.");
command_given = BITSET;
break;

■R' :
'r' :

mode_of_op = 2;
send_mode(mode_of_op);
printf("\nGoing to RUN mode.");

"LOC - go 3/4 command sent.");

BIO

if (ser_select == 1)
send_com(tidest, STATUS, "LOC - RUN command sent.");

command_given = BITSET;
break;

case 'S':
case 's';

mode_of_op = 3;
printf("\nEntry changes mode_of_op to ; %i", mode_of_op);
send_mode(mode_of_op);
printf("\nPlease enter dwell in seconds: ");
scanf("%f", &dwell_time);
printf("\nPlease enter hop increment 0-16777215: ");
scanf("%li", &hop_incr);
dwell_cycles = (unsigned long)((dwell_time/60.0e-9) + 0.5);
check = Put32Bit(DWELL_VAL, DUAL, dwell_cycles) ;
check = Put32Bit(DWELL_JAVAIL, DUAL, BITSET);
flagl = BITCLR;
while ((flagl = CTGet32Bit(BASEIO, DWELL_ACK)) != BITSET)

printf("\rWaiting for TMS to ack receipt of dwell. ");
printf("\nDwell transferred.\n");
check = Put32Bit(DWELL_JACK, DUAL, BITCLR);
check = Put32Bit(INCR_VAL, DUAL, hop_incr);
check = Put32Bit(INCR_AVAIL, DUAL, BITSET);
flagl = BITCLR;
while ((flagl = CTGet32Bit(BASEIO, INCR^ACK)) != BITSET);
printf("\nHop increment transferred.\n");
check = Put32Bit(INCRwACK, DUAL, BITCLR);
printf("\nTo stop slow hopping through BW, type 'X' ");
if (ser_select == 1)

send_com(ndest, STATUS, "LOC - sweep command sent.");
command_given = BITSET;
break;

case 'D':
case 'd':

int_mode = BITCLR;
mode_of_op = 5;
send_mode(mode_of_op);
printf("\nDisabling FRO detection.");
if (ser_select == 1)

send_com(ndest, STATUS, " LOC - disabling FRO detection.");
command_given = BITSET;
break;

case 'E':
case 'e':

int_mode = BITSET;
mode_of_op = 4;
send_mode(mode_of_op);
printf("\nEnabling FRO detection.");
if (ser_select == 1)

send_com(ndest, STATUS, "LOC - enabling FRO detection.");
command_given = BITSET;
break;

case 'C :
case "C:
mode_of_op = 6;
send_mode(mode_of_op);
printf("\nSync probes are transmitted starting at hop 288 by default.");
printf("\nPlease enter desired hypothesis offset or 0 if none: ");
scanf("%li", ^hypothesis);
printf("\nHyps will be at 0,1,-1,2,-2,...from hop 288 \(if no offset\)");
check = Put32Bit(USER_HYP, DUAL, hypothesis);
check = Put32Bit(HYP_AVAIL, DUAL, BITSET);
printf("\nHYP_JWAIL signal sent to TMS.");
flagl = BITCLR;
while ((flagl=CTGet32Bit(BASEIO, HYP_ACK)) == BITCLR)

printf("\rWaiting for hypothesis acknowledge. ");
printf("SnHypothesis transferred.");
check = Put32Bit(HYP_ACK, DUAL, BITCLR);
if (ser_select == 1)

send_com(ndest, STATUS, "LOC - coarse synch initiated.");
command_given = BITSET;
break;
case 'W:
case 'W :

mode_of_op = 7;
send_mode(mode_of_op);
printf("\nAttempting fine synch. \n");
if (ser_select == 1)

send_com(ndest, STATUS, "LOC - fine synch initiated");
command_given = BITSET;
break;

case 'X':
case 'x':

if (ntode_of_op == 3)
{

check = Put32Bit(STOP_MOD3, DUAL, BITSET);
flagl = BITSET;

Bll

while Mflagl = CTGet32Bit(BASEIO, STOP_MOD3)> != BITCLR);
printf("\nStopped TMS in mode3");
mode_o f_op = 0;
return 2;

)
else

return 1;
default:

printf("\nlnvalid entry. Try again.");
Disp_menu();
break;

) /"end switch (c) , case 0 for command given*/
break;

case 1:
switch(c)
{

case 'V :
case 'y';

Disp_menu();
command_given = BITCLR;
if (ser_select == 1)

send_com(ndest, STATUS, "LOC - Ready for next command.");
break;

case 'N':
case 'n':

if (ser_select == 1)
send_com(ndest, STATUS, "LOC - user's stopping program.");

return 1;
case 'X':
case 'x':

if (mode_of_op == 3)
{

check = Put32Bit(STOP_MOD3, DUAL, BITSET);
flagl = BITSET;
while ((flagl = CTGet32Bit(BASEIO, ST0P_M0D3)) != BITCLR);
printf("\nStopped TMS in mode3");
mode_of_op = 0;
if (ser_select == 1)

send_com(ndest, STATUS, "LOC - exit slow hopping command.");
return 2;

}
else

return 1;
default:

printf("\nlnvalid entry.");
printf("\nPlease enter, y, n, or x to exit immediately");
break;

} /*end switch (c), case 1 for command given*/
break;

} /*end switch(command_given)*/
) /*end if (kbhitO)*/
return 0;
) /*end checkkey(dest)*/

int checkmsgO

(
int mstat; /*message status - valid, error, or quit*/
int mtype; /«message type number*/
int mfrom; /«message from station number*/
char mdata[220]; /«message data*/
char string[220]; /«message string buffer used to name, type, or error*/

mstat = get_com(&mtype, fcmfrom, mdata);
if (mstat == VALID_MSG)
{

printf("\nMessage received from *s ", stnstr(mfrom,string));
printf("\n(%s): \"%s\"\n", messtr(mtype,string), mdata);
proc_ret = proc_msg(mtype, mdata);
return(proc_ret);

) /*end if mstat*/
else if (mstat == COMM_ERR)

{
printf("\n—Comm error with %s: %s\n",stnlstr(mfrom,string).mdata);
} /«end else if mstat==COMM_ERR*/

else if (mstat == QUIT)
{
if (mtype == TOTAL)

{
printf("\nToo many communication errors.");
return 4;
) /«end if mtype*/

else if (mtype == CONSEC)
{
printf("\nToo many consecutive communication errors with %s",

stnlstr(mfrom,string));

B12

return 4;
)

else if (mtype == BREAK)
{
printf("\nBreak detected.");
} /*end if mtype==BREAK*/

return 1;
) /'end if mstat==QUIT*/

return 0;

) /*end checkmsgO*/

void pabort(char *msg)

{
printf("\n%s" , msg);
close_com();
exit(O);
) /*end pabortO*/

/**************************/
void send_mode(int mode_sel)
/a,*************************/

{
check = Put32Bit(KODE, DUAL, (long)mode_sel>; /«Transfer mode*/
check = Put32Bit(MODE_AVAIL, DUAL, BITSET); /«Signal TMS that mode is avail*/
flagl = BITCLR;
while ((flagl = CTGet32Bit(BASEIO,MODE_ACK>) != BITSET)<

if (operation == local)
printf("\rWaiting for TMS to ack mode transfer, flagl: %lx ", flagl);

} /*end while flagl*/
if (operation == local) {

printf("\nMode transfer acknowledged.');
) /*end if operation*/
check = Put32Bit(MODE^ACK, DUAL, BITCLR);
return;

) /*end send_mode(mode_sel)*/

/******************************/
void send_f(unsigned long f_val)
/**********************#*******/
{
/*****«Compute appropriate value for LD_HOP in HSC******/

hop_par = (((double)(f_val - base_f) / (double)hop_bw) * (double)MAX_HOPJTOM) + 0.5;
check = Put32Bit(F_VALUE, DUAL, (unsigned long)hop_par);

check = Put32Bit(F_AVAlL, DUAL, BITSET); /«signal TMS that frequency is avail*/
flagl = BITCLR;
while ((flagl = CTGet32Bit(BASEIO,F_ACK)) != BITSET){

if (operation == local)
printf("\rWaiting for TMS to ack freq transfer, flagl: %lx ", flagl);

} /*end while flagl*/
if (operation == local) {

printf("\nFrequency select transfer acknowledged.\n");
) /*end if operation*/
check = Put32Bit(F_JACK, DUAL, BITCLR);
return;

} /*end send_f(f_val)*/

/A***************************************/

int proc_msg(int type, char mcontent[220])
y**/

{
char cmd[20], paraml[20], param2[20];

operation = remote;
if (type == COMMAND)
{

/*•**** Break up message string into separate fields ****/

sscanf(mcontent, "%s %s %s", cmd, paraml, param2);

if (strncmp(cmd, "Set_freq", 8)==0)
{

mode_of_op = 1;
send_mode(mode_of_op);
freq_val = (long int)Rd_value(paraml);
send_f(freq_val);
printf("\nRemote user frequency sent to TMS.");
command_given = BITSET;

) /*end if strncmp = Set_freq*/
else if (strncmp(cmd, "Go_to_run", 9)==0)
{

B13

mode_of_op = 2;
send_mode(mode„of_op);
printf("\nRemote RUN command sent to TMS.");
command_given = BITSET;

) /"end if strncmp = go_to_run*/
else if (strncmplcmd, "Dwell_hop", 9)==0)
{

mode_of_op = 3;
send_mode(mode_of_op);
dwell_time = Rd_value(paraml);
dwell_cycles = (unsigned long)((dwell_time/60.0e-9) + 0.5);
check = Put32Bit(DWELL_VAL, DUAL, dwell_cycles);
Check = Put32Bit(DWELL_AVAIL, DUAL, BITSET);
flagl = BITCLR;
while ((flagl = CTGet32Bit(BASEIO,DWELL_ACK)) != BITSET) /'wait*/ ;
check = Put32Bit(DWELL_ACK, DUAL, BITCLR);
hop_incr = (long int)Rd_value(param2);
check = Put32Bit(INCR_VAL, DUAL, hop_incr);
check = Put32Bit(INCR_AVAIL, DUAL, BITSET);
flagl = BITCLR;
while ((flagl = CTGet32Bit(BASEIO, INCRJVCK)) != BITSET) /»wait*/ ;
check = Put32Bit(INCR_JACK, DUAL, BITCLR);
printf("\nRemote slow hop command sent to TMS.");
command_given = BITSET;

) /«end if strncmp = dwell_hop*/
else if (strncmplcmd,"Exit", 4)==0)
{

if (mode_of_op == 3)
{

check = Put32Bit(STOP_MOD3, DUAL, BITSET);
flagl = BITSET;
While ((flagl = CTGet32Bit(BASEIO, STOP_MOD3)) != BITCLR);
printf("\nRemote stop TMS in mode3");
mode_of_op = 0;
send_com(ndest, STATUS, "Slow hop terminated.");
command_given = BITCLR;
return 2;

)
else

return 1;
) /*end if strncmp = exit*/
else if (strncmplcmd,"Enable_FR0",10)==0)
(

mode_of_op = 4;
send_mode(mode_of_op);
printf("\nRemote enable FRO detect sent to TMS.");
command_given = BITSET;

) /«end if strncmp = Enable_FRO*/
else if (strncmp(cmd,"Disable_FR0",11)==0)
<

mode_of_op = 5;
send_mode(mode_of_op);
printf("\nRemote disable FRO detect sent to TMS.");
command_given = BITSET;

) /»end if strncmp = Disable_FR0*/
else if (strncmplcmd,"Go_2_csync",10)==0)
(

mode_of_op = 6;
send_mode(mode_of_op);

/.....NEED T0 ADD IN INPUT FOR HYPOTHESIS OFFSET, ETC...*****/

printf("\nRemote CSYNC command sent to TMS.");
command_given = BITSET;

} /*end if strncmp = Go_2_csync*/
else

printf("\nWrong command statement: %s", mcontent);
send_com(ndest, STATUS, "Unknown command.");

} /*end if type = COMMAND*/
else if (type == STATUS)

if (isdigit(mcontenttOl) != 0) /* find out if 1st is a digit */
{
printf("\nStatus message processed: %s ", mcontent); /*print status message*/
sscanf(mcontent, "%li", «.frame);
if (mode_of_op ==6) /* check for CSYNC mode */
{

if ((frame%4) == 0) /* check for frame a mult of 4 */
{

if ((scmp_ret = strcmp(&c_resp_arr[resp_wr_ptr][0],"empty")) == 0)
(
strcpy(S.c_resp_arr[resp_wr_ptr] [0] .mcontent); /*store synch resp*/
sscanf (mcontent, "%li %li %li %li »li", {.frame, S.c0_crsp,fccl_crsp,

tcO_frsp,fccl_frsp);
printf("\nFrame number, coarse resp, fine resp: %li %li %li %li %li",

frame, c0_crsp, cl_crsp, c0_frsp, cl_frsp) ;
if (resp_wr_ptr == (RESP_BUF_SIZ -1)) /«update pointer*/

B14

resp_wr_ptr = 0;
else

resp_wr_ptr = resp_wr_ptr + 1;
printf("\nSynch response stored.");

} /*end if scmp_ret*/
else
{
printf("\nERR0R. Overflow of synch response buffer in PC.");
return 3;

} /*end else*/
) /*end if frame*/

} /*end if mode_of_op == 6 */
else
{

if (mode_of_op == 7)
{

if (((frame%4) == 0) && (frame >= frm_ref_4_fine))
{
sscanf(mcontent, "%li %li %li %li %li", tframe, S.c0_crsp, fccl_crsp,

fcc0_frsp, fccl_frsp) ;
cum_fine_resp = cum_fine_resp + cl_frsp; /*cumul estimates for user 1*/
fine_cnt = fine_cnt + 1;
if (fine_cnt == 10)
C

if (cum_fine_resp >= 0)
flt_avg = ((float)cum_fine_resp/10.0) + 0.5; /* calc avg fine est */

else
flt_avg = ((float)cum_fine_resp/10.0) - 0.5;

f_est_avg = (long int)flt_avg;
cum_fine_resp = 0; /* reset fine resp accumulator */
fine_cnt =0; /* reset fine estimate received count */
if (f_resp_arr[resp_wr_ptr] == 999)
{
f_resp_arr[resp_wr_ptr] = f_est_avg; /* store avg fine est */
if (resp_wr_ptr == <RESP_BUF_SIZ - 1)) /* update pointer */
resp_wr_ptr = 0;

else
resp_wr_ptr = resp_wr_ptr + 1;

} /* end if f_resp_arr */
else
{
printf("\nERROR. Overflow of synch response buffer.");
return 3;

} /* end else */

adjustment = (float) f_est_avg/(62.5 * 320.0); /»COMPUTE NCO CHANGE NECESSARY*/
phs_change_4_nco = (long int)((1.0+adjustment)*NCO_VAL);
if (f_resp_arr[resp_wr_ptr] == 999)
{
f_resp_arr[resp_wr_ptr] = phs_change_4_nco; /* store phase change */
if (resp_wr_ptr == (RESP_BUF_SIZ - 1)) /* update pointer */

resp_wr_ptr = 0;
else

resp_wr_ptr = resp_wr_ptr + 1;
} /*end if f_resp_arr */
else
{
printf("\nERROR. Overflow in synch resp buffer.");
return 3;

} /* end else */
} /* end if fine_cnt */

} /*end if frame...*/
} /*end if mode_of_op == 1*1

) /*end else*/
} /*end if isdigit...*/
else
printf("\nStatus message: %s ", mcontent); /«print status message*/

) /*end else if type*/
return 0;
} /* end proc_msg(mcontent)*/

/•A**************************/

float Rd_value(char par[20])
/***#*******#****************/
{

float number;

/* Find out whether it's a digit */

if (isdigit(par[01) == 0) { /«first char is not a digit*/
if (strncmp(par, "low", 3)==0)

returnf(float)lo_band);
else if (strncmpfpar, "high", 4)==0)

return!(float)up_band);
else if (strncmp(par, "mid", 3)==0)

returnf(float)mid_band);
else if (strncmp(par, "oneq", 4)==0)

B15

return((float)oneq_band);
else if (strncmplpar, "threecj", 6)=

return!(float)threeq_band);
else {

return(0.0);
) /"end else*/

) /"end if isdigit*/
else {

sscanf(par, "%f", Stnumber) ;
return(number);

} /*end else*/

} /*end Rd_value subroutine*/

=0)

void Ini
/*
(
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =
check =

* * * * /
t_DPMEM ()

*********! /

Put32Bit(C30DONE,DUAL,BITCLR);
Put32Bit(MODE_AVAIL,DUAL,BITCLR);
Put32Bit(MODE,DUAL,BITCLR);
Put32Bit(MODE_ACK,DUAL,BITCLR);
Put32Bit(F_AVAIL,DUAL,BITCLR);
Put32Bit(F_VALUE,DUAL,BITCLR);
Put32Bit(F_ACK,DUAL,BITCLR);
Put32Bit(PHS_AVAIL,DUAL,BITCLR) ;
Put32Bit(PHS_RNDED,DUAL,BITCLR);
Put32Bit(PHS_ACK,DUAL,BITCLR);
Put32Bit(DWELL_AVAIL,DUAL,BITCLR);
Put32Bit(DWELL_VAL,DUAL,BITCLR);
Put32Bit(DWELL_ACK,DUAL,BITCLR);
Put32Bit(VAL_RDY,DUAL,BITCLR);
Put32Bit(VAL_IDX,DUAL,BITCLR);
Put32Bit(VALUE,DUAL,BITCLR);
Put32Bit(VAL_ACK,DUAL,BITCLR);
Put32Bit(END_ASCII,DUAL,BITCLR);
Put32Bit(STOP_MOD3,DUAL,BITCLR);
Put32Bit(INCR_JlVAIL, DUAL, BITCLR) ;
Put32Bit(INCR_VAL,DUAL,BITCLR) ;
Put32Bit(INCR_ACK,DUAL,BITCLR);
Put32Bit(STOP_INT,DUAL,BITCLR);
Put32Bit(RIS_DET,DUAL,BITCLR);
Put32Bit(HYP_JWAIL, DUAL, BITCLR) ;
Put32Bit(USER_HYP,DUAL,BITCLR);
Put32Bit(HYP_JACK, DUAL, BITCLR) ;
Put32Bit(DBUG_AVAIL,DUAL,BITCLR);
Put32Bit(DBUG_VALUE,DUAL,BITCLR);
Put32Bit(DBUG_ACK,DUAL,BITCLR);
Put32Bit(CHK_AVAIL,DUAL,BITCLR);
Put32Bit(CHK_VALUE,DUAL,BITCLR);
Put32Bit(CHK_ACK,DUAL,BITCLR) ;
Put32Bit(FRM_REF,DUAL,BITCLR);
Put32Bit(C0_RESP,DUAL,BITCLR);
Put32Bit(Cl_RESP,DUAL,BITCLR);
Put32Bit(F0_RESP,DUAL,BITCLR)|
Put32Bit(Fl_RESP,DUAL,BITCLR);
Put32Bit(RESP_AVAIL,DUAL,BITCLR) ;
Put32Bit(RESP_JACK, DUAL, BITCLR) ;
Put32Bit(RDY_4_RESP,DUAL,BITSET)j
Put32Bit(RNG_XCDED,DUAL,BITCLR);
Put32Bit(CSYNC_OK,DUAL,BITCLR);
Put32Bit(CHK_HOP,DUAL,BITCLR)j
Put32Bit(CHK_FRH,DUAL,BITCLR);
Put32Bit(LOG_END,DUAL,BITCLR);
Put32Bit(PLINE_FLAG,DUAL, BITCLR);
Put32Bit(DAT_AVAIL,DUAL,BITCLR);
Put32Bit(INDEX,DUAL,BITCLR);
Put32Bit(DAT_VALUE,DUAL,BITCLR);
Put32Bit(DAT_ACK,DUAL,BITCLR);
Put32Bit(END_FILE,DUAL,BITCLR);
Put32Bit(TOO_MANY_HYPS,DUAL,BITCLR);
Put32Bit(FRM_NOT_FOUND,DUAL,BITCLR) ;
Put32Bit(FSTART_AVAIL,DUAL,BITCLR);
Put32Bit(FSTART_FRM,DUAL, BITCLR);
Put32Bit(FSTART_ACK,DUAL,BITCLR);
Put32Bit(EST_AVAIL,DUAL,BITCLR);
Put32Bit(FINE_EST,DUAL,BITCLR);
Put32Bit(PHS_CHANGE,DUAL,BITCLR) ;
Put32Bit(EST_ACK,DUAL,BITCLR);
Put32Bit(NO_FSYNC,DUAL,BITCLR);
Put32Bit(FSYNC_OK,DUAL,BITCLR);
Put32Bit(UFLO_CDTN, DUAL, BITCLR);

} /«end Init_DPMEM subroutine*/

B16

B2. DSP main program

Program Name: TMS_UL2.ASM
Author: C. Tom
Date edited: 26 February 1998

Description: This program performs uplink GT processor functions including
transmission of CW tones, slow sweeping across entire BW,
detecting FRO pulse for DL sync confirmation, transmitting
of coarse sync probes and achieving coarse synchronization.
This version has the parameters for the GT processor
downloaded from an ASCII data file.

*********** ********** ********

**** Subroutine declarations ****

.globl

.globl

.globl

.globl

.globl

.globl

.globl

.globl

.globl

.globl

.globl

.globl

.globl

. globl

.globl

.globl

**** Miscellaneous cons

XF0_EN .set
XF_SET .set
XF_CLR .set

BITCLR .set
BITSET .set

HODE1 .set
MODE2 .set
HODE3 .set
MODE4 .set
MODES .set
MODE6 .set
MODE7 .set

F_STOP .set
MASKL16 .set

.data
VAR_BASE .word

* Indices for gt. _vars p

NUM_HOP .set
MAX_FRM .set
MAX_HOP .set
PRB_START .set
SRCH_LIM .set
TIMES_4_CONFM .set
RESP_BUF_SIZ .set
MIN_DET_2_VER .set
NOM_RETRANSMITS .set
LIM_10 .set
MIN_4_C0NV .set
MAX_ATTEMPTS .set

.data
HSC_addr .word
BITS0_N_1 .word
BITS2_31 .word

CHG_COM_DISP
CHOOSE_F
COMMAND_CLK
CRSE_SYNC
Disableint
DSPDLAYLP
Enableint
FINE_SYNC
GT_ISR
HSC_INIT
Ld_param_HSC
NRDY_low_loop
Rd_GTparam
Rd_HSCparam
SLOW_HOP
START_NCO

2h
6h
Offfbh

0
1

1
2
3
4
5
6
7

1234h
Offffh

gt_vars

;mode 1: CW frequency transmit
;mode 2: RUN mode
;mode 3: sweep alloc bw with dwell
;mode 4: FRO enable mode
;mode 5: FRO disable mode
;mode 6: CSYNC mode
;mode 7: FSYNC mode

0
1
2
3
4
5
6
7
8
9
10
11

HSC_array
3h
OFFFFFFFCh

. Dsp initialization stuff *
.data

BEGSTACK .word 809800h
Pribus .set 808064h
Secbus .set 808060h

;Address of beginning of stack
;Address of primarybus control register
(Address of secondary bus control register

Pribusval
Secbusval
ST_reg_init

.set

.set

.set

800h
0
1800h ;bit to clear/enable CACHE, disable OVM

B17

N.B. After RESET, following registers are initialized to zero

ST - CPU status register
IE - CPU/DMA interrupt enable flags
IF - CPU interrupt flags
IOF - I/O flags

Data page pointers

INIPG .set
DPMEMPG .set
BSSPG .set
DATAPG .set
DSPLNKPG .set
BUSPG .set

0
3h
8 Oh
Oh
80h
80h

**** DPMEM addresses ****

DPBASE .set
C30DONE .set
MODE_AVAIL .set
MODE .set
MODE_ACK .set
F_AVAIL .set
F_VALUE .set
F_ACK .set
PHS_AVAIL .set
PHS_RNDED .set
PHS_ACK .set
DWELL^AVAIL .set
DWELL_VAL .set
DWELL_ACK .set
VAL_RDY .set
VAL_IDX .set
VALUE .set
VAL_ACK .set
END_ASCII .set
ST0P_MOD3 .set
INCR.AVAIL .set
INCR_VAL .set
INCR^ACK .set
STOP_INT .set
RIS_DET .set

30000h
DPBASE
DPBASE + lh
DPBASE + 2h
DPBASE + 3h
DPBASE + 4h
DPBASE + 5h
DPBASE + 6h
DPBASE + 7h
DPBASE + 8h
DPBASE + 9h
DPBASE + OBh
DPBASE + OCh
DPBASE + ODh
DPBASE + OEh
DPBASE + OFh
DPBASE + 10h
DPBASE + llh
DPBASE + 12h
DPBASE + 13h
DPBASE + 14h
DPBASE + 15h
DPBASE + 16h
DPBASE + 17h
DPBASE + 18h

* DPBASE+19h to DPBASE+2Bh, AND DPBASE+2Eh to DPBASE + 2Fh used in CSYNC.ASM

CHK_HOP
CHK_FRM

DPBASE + 2Ch
DPBASE + 2Dh

DAT_AVAIL
INDEX
DAT_VALUE
DAT_ACK
END_FILE

.set

.set

.set

.set

.set

DPBASE + 3Oh
DPBASE + 31h
DPBASE + 32h
DPBASE + 33h
DPBASE + 34h

••** BER i/f board addresses

CMD_BER .set
STAT_BER . set
BER_DAT_port . set

800009h
800009h
800008h

WRITE only
READ only
READ/WRITE

BER i/f board commands »*»*

BER_SWres
BER_Dfault

.set

.set
8000h
Oh

**** GT i/f board addresses ****

COMMAND .set
STATUS .set
NCO_CMD .set
INTRPT_PORT . set
HSC_PORT .set
FSK_FRM . set

800004h
800004h
800005h
800005h
800006h
800007h

WRITE only
READ only
WRITE only
READ only
WRITE only
WRITE only

•• GT i/f board commands ***

SW_RES_GT
Dfault_CMD

.set

.set

**** HSC commands and miscellaneous ****

.data

B18

HSC_endhop .wore

SYNC_BIT .set
NRDY_BIT .set

STOP_HSC .set
RUN_HSC .set
CHG IMMED .set
CHG_HOP .set
LD_LATCH .set
LD BASE .set
LD BWSCALE .set
LD DOPF .set
LD_FCSPACE .set
LD_FLAGS .set
LD_FSKCHAN .set
LD HOP .set
LD_LOSCI .set
LD LOCOM .set
LD_OFFSET .set
LD_TIMELO .set
LD_TIMEHI .set

ULSYNC_CMD .set
ULGO_BASE .set

Offffffh

2
4

0
8000h
0501h
0500h
0300h
030Ch
0306h
0310h
030Ah
031Ah
0308h
0304h
0318h
0312h
030Eh
0314h
0316h

500Bh
200h

,-16777215 (max hop number for HSC)

;SYNC on bit Dl of GT status
;bit D2 on GT status (DSPLINK)

;GO TO ULSYNC BODE, channel 1, bin 3
;BASE VALUE OF ULGO COMMAND FOR CSYNC

**** HSC parameter indices

BASE_L16 .set 0
BASE_H16 .set 1
BWSCALE_L16 .set 2
BWSCALE_H16 .set 3
HOP_BW_L16 .set 4
HOP_BW_H16 .set 5
DOPF_L16 .set 6
DOPF_H16 .set 7
FCSPACE_L16 .set 8
FCSPACE_H16 .set 9
FLAGS_L16 .set 10
FLAGS_H16 .set 11
LOSCI_L16 .set 12
LOSCI_H16 .set 13
LOCOM_L16 .set 14
LOCOM_H16 .set 15
OFFSET_L16 .set 16
OFFSET_H16 .set 17
TIMELO_L16 .set 18
TIMELO_H16 .set 19
TIMEHI_L16 .set 20
TIMEHI_H16 .set 21

**** NCO constants and commands ****

.data
NCO_INIT .float 1.92e5
NCO_const .float 1.0737418e2
D0_D7mask .word OFFh
D8_D15mask .word OFFOOh
D16_D23mask .word OFFOOOOh
D24_D31mask .word OFFOOOOOOh
D0_D7addr .word 3000000h
D8_D15addr .word 2000000h
D16_D23addr .word 1000000h
D24_D31addr .word Oh
Addr_Phase .word Phase
NCO_WRN_LO .set 4h
NCO_STRB_HI .set 7h

**** Reserve memory in .bss for variables ****

globl op_mode
bss opjnode, 1
globl LSB16
bss LSB16.1
globl MSB16
bss MSB16.1
globl f_select
bss f_select,l
globl HOP_PAR
bss HOP_PAR,l
globl temp_var
bss temp_var,1
globl NCO_CLK
bss NCO_CLK,l
globl Phase
bss Phase,4

B19

.globl phs_rnded

.bss phs_rnded,1

.globl original_phase

.bss original_phase,1

.globl hop_dwell

.bss hop_dwe11,1

.globl HSC_array

.bss HSC_array,25

.globl counter

.bss counter,1

.globl tx_cnt

.bss tx_cnt,1

.globl gt_vars

.bss gt_vars,12

fined elsewhere * * * *

.globl BER_stat

.globl hop_cnt

.globl frm_cnt

.globl prev_FR0

.globl chk_FRO_flg

.globl array_cnt

.globl hyp_used

.globl hyp_offset

.globl nxt_prb_frm

.globl act_prb_frm

.globl act_prb_hop

.globl start_timef

.globl start_timeh

.globl assigned_f

.globl tms_csync_rdy

.globl brstO_flg

.globl brstl_flg

.globl user_hyp_off

.globl iter_hyp

.globl first_prb

.globl prb_cmd

.globl coarsel

.globl coarse2

.globl ref_frame

*** Initialize RESET and interrupt service routine locations ****

.sect "VECTORS"

RESET .word START
INTO .word GT_ISR
INT1 .word 0
INT2 .word 0
INT3 .word 0
XINTO .word 0
RINTO .word 0
XINTA .word 0
RINTA .word 0
TINTO .word 0
TINT1 .word 0
DINT .word 0

.space 20

Program begins here ***

.text
START:

LDI
LDI
LDI
LDI

LDI
LDI
ST I
LDI
STI

LDI

LDI
LSH
STI
CALL

LDI
LSH
STI
CALL

INIPG,DP
ST_reg_init,ST
DATAPG.DP
8BEGSTACK.SP

BUSPG,DP
Pribusval,R4
R4,ePribus
Secbusval,R4
R4,eSecbus

DSPLNKPG.DP

SW_RES_GT,R0
16,R0
R0,«COMMAND
DSPDLAYLP

Dfault_CMD,R0
16,R0
R0, 8COMMAND
DSPDLAYLP

;set DP pointer to 0
;clear/enable CACHE, disable OVM

;initialize SW stack pointer

;initialize primary bus control register

.•initialize secondary bus control register

;issue SW reset of GT i/f board

B20

LDI
LSH
ST I
CALL

LDI
LSH
STI
CALL

BER_SWres,RO
16, RO
RO,@CMD_BER
DSPDLAYLP

BER_Dfault,RO
16,RO
RO,8CMD_BER
DSPDLAYLP

;issue SW reset of BER i/f board

* Download parameters for GT processor

CALL Rd_GTparam

* Wait for clock frequency from PC

NCO_WAIT:
LDI

LDI
CMPI
BNE

LDI
STI

LDI
LDI
STI
STI

LDI
LDI
STI

CALL

DPMEMPG.DP

8PHS_AVAIL,R0
BITSET.RO
NCO_WAIT

BITCLR.RO
R0,9PHS_AVAIL

9PHS_RNDED,R0
BSSPG.DP
RO,8phs_rnded
RO,9original_phase

BITSET.RO
DPMEMPG.DP
R0,9PHS_ACK

STARTJNCO

* Download initial parameters for HSC (Blue box)

CALL Rd_HSCparam

CALL HSC_INIT

CALL Ld_param_HSC

* Final initialization of variables

LDI
LDI
STI
CALL

LDI
LDI
CALL

LDI
LDI
STI
STI
STI
STI

LDI
STI

LDI
STI
LDI
STI

* Enable interrupts

LDI
CALL

DSPLNKPG.DP
0,R0
RO,8FSK_FRM
DSPDLAYLP

DSPLNKPG.DP
8STATUS,R0
DSPDLAYLP

0,R0
BSSPG.DP
RO, 9BER_Stat
RO,9chk_FR0_flg
RO,9array_cnt
RO,8tms_csync_rdy

800h,R0
R0,9prev_FR0

222.R0
RO, 9hop_cnt
7.R0
R0,9frm_cnt

O.IF
Enableint

.■make sure RF is on

;read GT status to clear uflo bit

;clear flags for ISR

.•initialize prev_FR0 to be "high"

.•arbitrary

;clear any pending interrupts

NEXT_CMD:

* Wait for mode of operation from PC
LDI DPMEMPG.DP

M0DE_WAIT:
LDI 9M0DE_AVAIL, RO
CMPI BITSET.RO
BEQ GET_MODE
LDI 9STOP_INT,R0
CMPI BITSET.RO
BEQ CLOSE_OUT
B MODE_WAIT

B21

GET_MODE:
LDI BITCLR.RO ,-clear MODE_AVAIL location
STI RO,9M0DE_AVAIL

LDI 9MODE,RO ;read MODE
LDI BSSPG.DP
STI RO,9op_mode

LDI BITSET.RO ;acknowledge MODE transfer
LDI DPMEMPG,DP
STI RO,@MODE_ACK

* Put HSC in known state (STOP MODE)

CALL HSC_INIT

* Find out which mode

LDI BSSPG.DP
LDI 6op_mode,R0
CMPI MODE1,RO
BEQ OP_l
CMPI MODE2,RO
BEQ OP_2
CMPI MODE3,RO
BEQ OP_3
CMPI MODE4, RO
BEQ OP_4
CMPI MODE5, RO
BEQ OP_5
CMPI MODE6,RO
BEQ OP_6
CMPI MODE7,RO
BEQ 0P_7

OP_ERR:
LDI BSSPG.DP ;Error. Synth goes to low edge of alloc BW
LDI Oh.RO
STI R0.8LSB16
LDI Oh.RO
STI R0.9MSB16
CALL CHG_COM_DISP
B RET_MODE

**
OP_l:

CALL CHOOSE_F
B RET_MODE

****************************** ********************* ***************************
OP_2:

LDI DSPLNKPG.DP

CALL NRDY_10w_loop

LDI CHG_HOP,R0 ;issue CHG_HOP to respond to rising edge of
LSH 16, RO
STI RO,9HSC_PORT
CALL DSPDLAYLP

CALL NRDY_low_loop

LDI RUN HSC.RO .-issue RUN command
LSH 16, RO
STI RO,8HSC_PORT
CALL DSPDLAYLP
B RET_MODE

************************ **
OP_3:
DWELL WAIT:

LDI DPMEMPG,DP
LDI 8DWELL_JAVAIL,R0
CMPI BITSET,RO
BNE DWELL_WAIT

LDI BITCLR.RO
STI RO,9DWELL^AVAIL

LDI 8DWELL_VAL,R0
LDI BSSPG.DP
STI RO,9hop_dwell

LDI BITSET.RO
LDI DPMEMPG,DP
STI R0,9DWELL_ACK

INCR WAIT:
LDI DPMEMPG,DP
LDI 9INCR_AVAIL,RO
CMPI BITSET.RO
BNE INCR_WAIT

B22

LDI
STI

LDI
LDI
STI

LDI
LDI
STI

BITCLR.RO
RO,@INCR_AVAIL

@INCR_VAL,RO
BSSPG.DP
RO,@hop_incr

BITSET,RO
DPMEMPG.DP
RO,@INCR_ACK

CALL
B

SLOW_HOP
RETMODE

OP_4:
FRO_DET:

LDI
LDI
STI

BITSET.RO
BSSPG,DP
RO,@chk_FRO_flg
RET_J!ODE

********************* ***
OP_5:
NO_FRO:

LDI BITCLR.RO
LDI BSSPG.DP
STI RO, 9chk_FR0_f lg
LDI DPMEMPG.DP ;clear pending RIS_DET
STI RO, 8RIS_DET
B RET_MODE

**
0P_6:

CALL CRSE_SYNC
B NEXT_CMD .-ONLY APPLIES TO MODE6 & MODE7

**
OP_7:

CALL • FINE_SYNC
B NEXT_CMD

**
RET_MODE:

CLOSE_OUT:

LDI
LDI
STI
B

CALL
LDI
LDI
STI

DPMEMPG.DP
BITSET.RO
R0.9C30DONE
NEXT_CMD

Disableint
DPMEMPG.DP
BITCLR.RO
R0,9STOP_INT

NOP
B STDBY

;C30 waits here

* SUBROUTINES BEGIN HERE *

.globl CHG_COM_DISP

CHG_COM_DISP:
PUSH
PUSH
PUSHF

DP
RO
RO

LDI

CALL

LDI
LSH
STI
CALL

CALL

LDI
LDI
LSH
STI
CALL

DSPLNKPG.DP

NRDY_low_loop

CHG_IMMED,RO
16, RO
RO,8HSC_PORT
DSPDLAYLP

NRDY_low_loop

LD_LATCH,RO
LD_HOP,RO
16, RO
R0,8HSC_PORT
DSPDLAYLP

.-wait until HSC has processed command

;Change immediate command

;Load Latch command
;Load Hop command

B23

CALL

LDI
LDI
LSH
LDI
STI
CALL

CALL

LDI
LDI
LSH
LDI
STI
CALL

CALL

POPF
POP
POP

RETS

NRDY_low_loop

BSSPG.DP
9LSB16.R0
16, RO
DSPLNKPG.DP
RO,@HSC_PORT
DSPDLAYLP

NRDY_low_loop

BSSPG.DP
9MSB16.R0
16, RO
DSPLNKPG.DP
R0,9HSC_PORT
DSPDLAYLP

NRDY_low_loop

RO
RO
DP

;16 LSB of COMSTRON synthesizer latch

;16 MSB of COMSTRON synthesizer latch

;end of CHG_COM_DISP subroutine

******************************** ************ ********** ****************

CHOOSE_F:

.globl

PUSH
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSHF

CHOOSE_F

DP
RO
RO
Rl
Rl
R2
R2
R3
R3
R4
R4
R5
R5
R6
R6

* Wait for frequency selected by PC

F_WAIT:
LDI

LDI
CMPI
BNE

LDI
STI

LDI
LDI
STI

LDI
LDI
STI

DPMEMPG, DP

9F_AVAIL.RO
BITSET,R0
F_WAIT

BITCLR.RO
RO,9F_AVAIL

8F_VALUE.R0
BSSPG.DP
R0,9f_select

BITSET.RO
DPMEMPG,DP
RO,9F_ACK

* Send appropriate frequency to HSC

* First, check that it's not an F_STOP command

LDI
LDI
CMPI
BEQ

BSSPG.DP
9f_select,R0
F_STOP,R0
GET_OUT

;wait until frequency selection is available

;clear F_AVAIL location

;read F_VALUE

.'acknowledge transfer of F_VALUE

RO <- f_select

* For now, value to be transferred to HSC computed by PC

;store 16 LSB AND
STI
LDI
LSH
AND
STI

CALL

MASKL16.R0
R0.9LSB16
9f_select,R0
-16, RO
MASKL16.R0
R0,8MSB16

CHG_COM_DISP

;Store 16 MSB

B24

POPF
POP
POPF
POP
POPF
POP
POPF
POP
POPF
POP
POPF
POP
POPF
POP
POP

RETS

R6
R6
R5
R5
R4
R4
R3
R3
R2
R2
Rl
Rl
RO
RO
DP

*********** *********

;end of CHOOSE_F subroutine

.globl

.globl

.bss

COMMAND_CLK

index
index,1

COMMAND_CLK:
.text

PUSH
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSH

DP
RO
RO
Rl
Rl
R2
R2
ARO
IRO

LDI
LDI
LDI
STI

BSSPG.DP
0,R0
RO,IRO
R0,eindex

LDI
LDI

DATAPG.DP
9Addr_Phase,AR0

Phase_trans:
LDI
LDI
STI
CALL
LDI
LSH
STI
CALL
LDI
LSH
STI
CALL
LDI
LDI
ADDI
LDI
STI
CMPI
BLT

«+AR0(IR0),R1
DSPLNKPG.DP
Rl,9NC0_CMD
DSPDLAYLP
NCO_WRN_LO,R2
16, R2
R2,SCOHMAND
DSPDLAYLP
Dfault_CMD,R2
16, R2
R2,«COMMAND
DSPDLAYLP
BSSPG.DP
eindex.RO
1,R0
R0,IRO
RO,6index
4,R0
Phase_trans

LDI
LDI
LSH
STI
CALL
LDI
LSH
STI
CALL

DSPLNKPG,DP
NCO_STRB_HI,R2
16, R2
R2, 8COMMAND
DSPDLAYLP
Dfault_CMD,R2
16,R2
R2,eCOMHAND
DSPDLAYLP

POP
POP
POPF
POP
POPF
POP
POPF
POP
POP

IRO
ARO
R2
R2
Rl
Rl
RO
RO
DP

B25

;end of COMMAND_CLK subroutine

DSPDLAYLP:

.globl

PUSH
PUSH
PUSHF

DSPDLAYLP

DP
Rl
Rl

LDI

ADDI
CMPI
BLT

0,R1

1,R1
5,R1
DLAY

POPF
POP
POP

Rl
Rl
DP

RETS ;end of DSPDLAYLP subroutine

***************** ****************** ************************ i******

.globl HSC_INIT

HSC_INIT:
PUSH
PUSH
PUSHF

CALL

LDI

LDI
LSH
STI
CALL

CALL

LDI
LSH
STI
CALL

CALL

LDI
LSH
STI
CALL

POPF
POP
POP

RETS

DP
RO
RO

NRDY_low_loop

DSPLNKPG.DP

STOP_HSC,R0
16,RO
RO,8HSC_P0RT
DSPDLAYLP

NRDY_low_loop

STOP_HSC,R0
16,RO
RO, 8HSC_PORT
DSPDLAYLP

NRDY_low_loop

STOP_HSC,R0
16,RO
RO,8HSC_P0RT
DSPDLAYLP

RO
RO
DP

;initialize HSC

;1st STOP command

;wait until HSC has processed command

;2nd STOP command

;wait until HSC has processed command

;3rd STOP command

;end of HSC_INIT subroutine

********************** ft***

Ld_param_HSC:

.globl

PUSH
PUSH
PUSHF
PUSH
PUSH

Ld_param_HSC

DP
RO
RO
ARO
IRO

LDI
LDI

DATAPG.DP
8HSC_addr,AR0

LDI

CALL
LDI
LSH
STI
CALL

CALL
LDI
LDI

DSPLNKPG.DP

NRDY_low_loop
LD_BASE,R0
16, RO
RO, 8HSC_PORT
DSPDLAYLP

NRDY_low_loop
BASE_L16,IR0
*+AR0(IR0) ,R0

;wait until HSC has processed command
;Load BASE command

;wait until HSC has processed command
;BASE_L16 transfer

B26

LSH
STI
CALL

CALL
LDI
LDI
LSH
STI
CALL

CALL
LDI
LSH
STI
CALL

CALL
LDI
LDI
LSH
STI
CALL

CALL
LDI
LDI
LSH
STI
CALL

CALL
LDI
LSH
STI
CALL

CALL
LDI
LDI
LSH
STI
CALL

CALL
LDI
LDI
LSH
STI
CALL

CALL
LDI
LSH
STI
CALL

CALL
LDI
LDI
LSH
STI
CALL

CALL
LDI
LDI
LSH
STI
CALL

CALL
LDI
LSH
STI
CALL

CALL
LDI
LDI
LSH
STI
CALL

CALL
LDI
LDI

16,RO
RO, @HSC_PORT
DSPDLAYLP

NRDY_low_loop
BASE_H16,IRO
*+ARO(IRO),RO
16,RO
RO,@HSC_PORT
DSPDLAYLP

NRDY_low_loop
LD_BWSCALE,RO
16,RO
RO,8HSC_PORT
DSPDLAYLP

NRDY_low_lO0p
BWSCALE_L16,IR0
*+ARO(IR0),RO
16, RO
R0,8HSC_PORT
DSPDLAYLP

NRDY_low_loop
BWSCALE_H16,IR0
*+ARO(IRO),RO
16, RO
R0,9HSC_PORT
DSPDLAYLP

NRDY_1 ow_l oop
LD_DOPF,R0
16, RO
RO, 8HSC_P0RT
DSPDLAYLP

NRDY_low_loop
DOPF_L16,IR0
*+ARO(IRO),R0
16,RO
RO,8HSC_P0RT
DSPDLAYLP

NRDY_low_loop
DOPF_H16,IR0
*+ARO(IRO),RO
16, RO
RO,8HSC_PORT
DSPDLAYLP

NRDY_low_loop
LD_FCSPACE,RO
16,RO
RO, 9HSC_P0RT
DSPDLAYLP

NRDY_low_loop
FCSPACE_L16,IRO
*+ARO(IRO),RO
16, RO
R0,9HSC_PORT
DSPDLAYLP

NRDY_low_loop
FCSPACE_H16,IR0
*+ARO(IRO),RO
16,RO
R0,9HSC_PORT
DSPDLAYLP

NRDY_low_loop
LD_FLAGS,RO
16, RO
RO, 9HSC_PORT
DSPDLAYLP

NRDY_low_loop
FLAGS_L16,IR0
*+ARO(IRO),RO
16, RO
RO, 9HSC_P0RT
DSPDLAYLP

NRDY_low_loop
FLAGS_H16,IR0
*+ARO(IRO),R0

;wait until HSC has processed command
;BASE_H16 transfer

;wait until HSC has processed command
,-Load BWSCALE command

;wait until HSC has processed command
;BWSCALE_L16 transfer

;wait until HSC has processed command
;BWSCALE_H16 transfer

;wait until HSC has processed command
,-Load DOPF command

;wait until HSC has processed command
;DOPF_L16 transfer

.-wait until HSC has processed command
;DOPF_H16 transfer

,-wait until HSC has processed command
;Load FCSPACE command

,-wait until HSC has processed command
;FCSPACE_L16 transfer

;wait until HSC has processed command
;FCSPACE_H16 trnasfer

;wait until HSC has processed command
jLoad FLAGS command

;wait until HSC has processed command
;FLAGS_L16 transfer

,-wait until HSC has processed command
;FLAGS_H16 transfer

B27

LSH
STI
CALL

CALL
LDI
LSH
STI
CALL

CALL
LDI
LDI
LSH
STI
CALL

CALL
LDI
LDI
LSH
STI
CALL

CALL
LDI
LSH
STI
CALL

CALL
LDI
LDI
LSH
STI
CALL

CALL
LDI
LDI
LSH
STI
CALL

CALL
LDI
LSH
STI
CALL

CALL
LDI
LDI
LSH
STI
CALL

CALL
LDI
LDI
LSH
STI
CALL

CALL

LDI
LSH
STI
CALL

CALL
LDI
LDI
LSH
STI
CALL

CALL
LDI
LDI
LSH
STI
CALL

16.R0
RO,9HSC_PORT
DSPDLAYLP

NRDY_low_loop
LD_LOSCI,RO
16,RO
RO,@HSC_PORT
DSPDLAYLP

NRDY_low_loop
LOSCI_L16,IR0
*+AR0(IR0),RO
16,RO
RO,8HSC_PORT
DSPDLAYLP

NRDY_low_loop
LOSCI_H16,IR0
*+ARO(IRO),R0
16,RO
RO,SHSC_PORT
DSPDLAYLP

NRDY_low_loop
LD_LOCOM,RO
16, RO
R0,8HSC_PORT
DSPDLAYLP

NRDY_low_loop
LOCOM_L16,IRO
*+AR0(IR0) ,R0
16, RO
RO,8HSC_P0RT
DSPDLAYLP

NRDY_low_loop
LOCOM_H16,IR0
*+ARO(IRO),RO
16, RO
RO, 8HSC_PORT
DSPDLAYLP

NRDY_10w_loop
LD_OFFSET,RO
16, RO
RO, 8HSC_PORT
DSPDLAYLP

NRDY_low_loop
OFFSET_L16,IRO
*+ARO(IRO),RO
16, RO
RO,8HSC_PORT
DSPDLAYLP

NRDY_low_loop
OFFSET_H16,IR0
*+ARO(IRO),RO
16, RO
RO,9HSC_PORT
DSPDLAYLP

NRDY_low_loop

LD_TIMELO,RO
16, RO
RO, 8HSC_P0RT
DSPDLAYLP

NRDY_low_loop
TIMELO_L16,IRO
*+ARO(IRO),R0
16,RO
RO,8HSC_P0RT
DSPDLAYLP

NRDY_low_loop
TIMELO_H16,IRO
*+ARO(IRO),RO
16,RO
RO,8HSC_P0RT
DSPDLAYLP

;wait until HSC has processed command
;Load LOSCI command

;wait until HSC has processed command
;LOSCI_L16 transfer

;wait until HSC has processed command
;LOSCI_H16 transfer

;wait until HSC has processed command
;Load LOCOM command

;wait until HSC has processed command
;LOCOM_L16 transfer

;wait until HSC has processed command
;LOCOM_H16 transfer

;wait until HSC has processed command
;Load OFFSET command

;wait until HSC has processed command
;OFFSET_L16 transfer

;wait until HSC has processed command
;OFFSET_H16 transfer

;wait until HSC has processed command

;Load TIMELO command, autoclr up32 bits (TIMEHI)

;wait until HSC has processed command
;TIMELO_L16 transfer

;wait until HSC has processed command
;TIMELO_H16 transfer

POP
POP

IRO
ARO

B28

POPF
POP
POP

RETS

RO
RO
DP

;end of Ld_param_HSC subroutine

**************** ************** ******************* *******

NRDY_1 ow_l o op:

.globl

PUSH
PUSH
PUSHF

NRDY_low_loop

DP
RO
RO

NRDY_LOOP:

LDI

LDI
LSH
TSTB
BNZ

POPF
POP
POP

RETS

DSPLNKPG.DP

BSTATUS.RO
-16,RO
NRDY_BIT.RO
NRDY_LOOP

RO
RO
DP

,-end of NRDY_low_loop subroutine

Rd_GTparam:

RD_GT_VARS:

WAIT_GT_VAR:

READ_VAL:

FINISHED:

.globl

PUSH
PUSH
PUSH
PUSH
PUSHF

LDI
LDI
LDI

LDI
CMPI
BEQ
LDI
CMPI
BNE

LDI
STI
LDI
LDI
STI
LDI
STI
B

LDI
LDI
STI
POPF
POP
POP
POP
POP

RETS

Rd_GTparam

DP
ARO
IRO
RO
RO

DATAPG,DP
eVAR_BASE,ARO
DPMEMPG.DP

8END_FILE,R0
BITSET.RO
FINISHED
8DAT_AVAIL.R0
BITSET.RO
WAIT_GT_VAR

BITCLR,R0
RO, 8DAT_AVAIL
8INDEX.IR0
8DAT_VALUE.R0
R0,*+AR0(IR0)
BITSET.RO
RO,8DAT_ACK
WAIT_GT_VAR

BITCLR,R0
DPMEMPG.DP
R0,8END_FILE
RO
RO
IRO
ARO
DP

;check for end of data file

;check for data available

,-read index in gt_vars array
;read value
;store value into gt_vars array

;send ack to PC

;end of Rd_GTparam subroutine

************************************* *******

Rd_HSCparam:

.globl

PUSH
PUSH
PUSHF
PUSH
PUSH

Rd_HSCparam

DP
RO
RO
ARO
IRO

RD_NEXT:

WAIT_DAT:
LDI

LDI
CMPI

DPMEMPG.DP

8VAL_RDY,R0
BITSET.RO

;check for next param ready

B29

BEQ
LDI
CMPI
BNE
B

LDI
STI

LDI

LDI
LDI
LDI
LDI
LDI
STI

LDI
LDI
STI

B

POP
POP
POPF
POP
POP

RETS

.globl

.globl
. bss
.globl
.bss

RD_DAT
9END_ASCII.RO
BITSET.RO
WAIT_DAT
WRAP_UP

0,R0
R0,@VAL_RDY

@VAL_IDX,IR0

DPHEHPG,DP
8VALUE, R0
DATAPG.DP
8HSC_addr,ARO
BSSPG.DP
R0,*+AR0(IR0)

BITSET.RO
DPMEMPG.DP
R0,8VAL_ACK

RD_NEXT

IRO
ARO
R0
R0
DP

SLOW_HOP

hop_num
hop_num,1
hop_incr
hop_incr,1

.•also check for end of file

;clear VAL_RDY

;store next param in array

;end of Rd_HSCparam subroutine

******* ********** *******

SLOW_HOP:

DO_AGAIN:

GO_THRU_PN:

.text

PUSH
PUSH
PUSHF
PUSH

LDI
LDI
STI

LDI
LDI
AND
STI
LDI
LSH
AND
STI
CALL
LDI

LDI
OR
NOP
NOP
NOP
AND

RPTS
NOP

OR
NOP
NOP
AND
NOP
NOP
NOP
NOP
NOP
OR
NOP

DP
R0
RO
IOF

0,R0
BSSPG.DP
RO,8hop_num

BSSPG.DP
8hop_num,R0
MASKL16.R0
R0.8LSB16
8hop_num,R0
-16,RO
HASKL16.R0
R0.8HSB16
CHG_COM_DISP
BSSPG.DP

XF0_EN,IOF
XF_SET,IOF

XF_CLR,IOF

8hop_dwell

XF_SET,IOF

XF_CLR,IOF

XF_SET,IOF

;enable XFO
;put "1" on XF

;put "0" on XF

;put "1" on XF

;put "0" on XF

;put "1" on XF

B30

NOP
AND XF_CLR,IOF ;put "0" on XF

LDI
LDI
CMP I
BEQ

LDI
LDI
ADDI
STI
LDI
CMPI
BLT
B

DPMEMPG.DP
8STOP_MOD3,
1,R0
EXIT_LOOP

R0

BSSPG.DP
8hop_num,R0
8h.op_i.ncr,RO
RO,8hop_num
DATAPG.DP
8HSC_endhop.R0
GO_THRU_PN
DO_AGAIN

EXIT_LOOP:
LDI
LDI
STI

POP
POPF
POP
POP

RETS

DPMEMPG,DP
BITCLR,R0
R0,8STOP_MOD3

IOF
RO
RO
DP

;end of SLOW_HOP subroutine

t**

.globl START_NCO

START_NCO:
PUSH DP
PUSH RO
PUSHF RO
PUSH Rl
PUSHF Rl
PUSH R2
PUSHF R2
PUSH R3
PUSHF R3

LDI BSSPG.DP
LDI 8phs_rnded,RO
LDI DATAPG.DP
AND 8D24_D31mask.R0
LSH -8,R0
ADDI 8D24_D31addr.R0
LDI BSSPG.DP
STI RO,8Phase

LDI 8phs_raded,RO
LDI DATAPG.DP
AND 8D16_D23mask.R0
ADDI 8D16_P23addr,R0
LDI BSSPG.DP
STI R0,8Phase+l

LDI 8phs_rnded,R0
LDI DATAPG.DP
AND 8D8_D15mask,R0
LSH 8.R0
ADDI 8D8_D15addr.R0
LDI BSSPG.DP
STI R0,8Phase+2

LDI 8phs_rnded,R0
LDI DATAPG.DP
AND 8D0_D7mask,R0
LSH 16, RO
ADDI 8D0_D7addr.R0
LDI BSSPG.DP
STI R0,8Phase+3

CALL COMMAND_CLK

POPF R3
POP R3
POPF R2
POP R2
POPF Rl
POP Rl
POPF RO
POP RO

B31

POP DP

RETS ;end of START_NCO subroutine

.end

B32

B3. Coarse synchronization routine

********* ********* **********
Program Name: CSYNC.ASM
Author: C. Tom
Date edited: 30 March 1998

Description: Assembler code to be added to TMS_UL2.ASM which performs
coarse synchronization. Based on state diagram approach
which directs path based on current state and triggers.

******* ******** ************************

**** Subroutine declaration ****

.globl CRSE_SYNC

.globl

.globl

.globl

.globl

.globl

.globl

.globl

.globl

CHG_STATE
COMMAND_CLK
Disableint
DSPDLAYLP
INPUT_HYP_LOG
NRDY_1 ow_l oop
RETRV_HYP
STARTJICO

**** Miscellaneous constants ****

XF0_EN
XF_SET
XF_CLR

.set

.set

.set

2h
6h
Offfbh

BITSET
BITCLR

.set

.set
1
0

STATE_ROW
STATE_COL

.set

.set
8
5

MASKL16 .set OFFFFh

VAR_BASE
.data
.word gt_vars

* Indices for gt. .vars parameters array

NUM_HOP
MAX_FRM
MAX_HOP
PRB_START
SRCH_LIM
TIMES_4_CONFM
RESP_BUF_SIZ
MIN_DET_2_VER
NUM_RETRANSMITS

.set

.set

.set

.set

.set

.set

.set

.set

.set

0
1
2
3
4
5
6
7
8

* TRIGGERS for CSYNC routine

CMD_RECD .set 0
PRELIM_COMPL .set 1
DET_RECD .set 2
DET_CONFM .set 3
FALSE_DET .set 4
PLINE_CLR .set 5
SRCH_RG_XCD .set 6
PLINE_OFLO .set 7

* STATES for CSYNC routine

IDLE .set 0
PRELIM_INIT .set 1
GEN_PROBES .set 2
VER_DETECT .set 3
CLR_RESP_PIPE .set 4
GO_2_FSYNC .set 5
SRCH_EXCEED .set 6
PLINE_ERR .set

.data

7

STAT_ADDR .word LK_UP_BASE
HYP_LOG_ADDR .word hyp_log
HYP_FRM_ADDR .word hyp_frame
RESP_BUF_ADDR .word resp_buffer
BITS0_N_1 . word 3h
BITS2_31 .word OFFFFFFFCh
BITS2_N_3 .word OCh

;starting point of CSYNC routine
(preliminary init complete
;detect received in synch resp
.■detect has been confirmed
;false detect has occurred
;pipeline of synch resp emptied
;search range for csync routine exceeded
;resp pipeline has overflowed

;starting state of CSYNC routine
;performing preliminary initialization
;generating csync probes at appropriate time
;verifying a detect in the synch response
.-clearing the synch resp pipeline
;detect confirmed, switching to fsync routine
;search range exceeded procedure, send error msg
.•pipeline overflow during VER_DETECT, send err msg

0000 0000 0000 0000 0000 0000 0000 0011
1111 1111 1111 1111 1111 1111 1111 1100
0000 0000 0000 0000 0000 0000 0000 1100

B33

*** STATE LOOKUP TABLE

.data

LK_UP_BASE:
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

«*«• Data page pointers

STATE Look up table

| curr_state
■ i 1 1

SYNC_INIT [0,01=0
0 [0,1]=1
0 [0,21=2
0 [0,31=3
0 [0,41=4
0 [1,01=5
COMPUT_HYP [1,11=6
0 [1,21=7
0 [1,31=8
0 [1,41=9
0 [2,01=10
0 [2,11=11
CHK_DET [2,21=12
0 [2,31=13
CHK_DET [2,41=14
0 [3,01=15
0 •[3,11=16
0 •[3,21=17
RETURN •[3,3]=18
0 •[3,41=19
0 ; [4,01=20
0 ;[4,11=21
0 ,-[4,21=22
CLR_PIPE ;[4,31=23
0 ; [4,41=24
0 ;[5,01=25
0 ; [5,11=26
0 ,-[5,21=27
0 ,-[5,31=28
COMPUT_HYP ; [5,41=29
0 ;[6,01=30
0 ;[6,1]=31
OUT_A_RANGE ; [6,21=32
0 ,-[6,31=33
0 ;[6,41=34
0 ;[7,01=35
0 ;[7,11=36
0 ; [7,21=37
OFLO RESP ;[7,31=38
0 ;[7,41=39

INIPG .set
DPMEMPG .set
BSSPG .set
DATAPG .set
DSPLNKPG .set
BUSPG .set
DBUGPG .set

0
3h
80h
Oh
8 Oh
80h
8 Oh

»*•*» DPMEM addresses

DPBASE 30000h

DPBASE to DPBASE+18h used in TMS_UL2.asm

HYP_AVAIL .set
USER_HYP .set
HYP_ACK .set
DBUG_AVAIL .set
DBUG_VALUE .set
DBUG_ACK .set
CHK_AVAIL .set
CHK_VALUE .set
CHK_ACK .set
FRM_REF .set
C0_RESP .set
C1_RESP .set
F0_RESP .set
F1_RESP .set
RESP_AVAIL .set
RDY_4_RESP .set
RESP_ACK .set
RNG_XCDED .set
CSYNC_OK .set
LOG_END .set
PLINE_FLAG .set

DPBASE+19h
DPBASE+lAh
DPBASE+lBh
DPBASE+lCh
DPBASE+IDh
DPBASE+lEh
DPBASE+lFh
DPBASE+20h
DPBASE+21h
DPBASE+22h
DPBASE+23h
DPBASE+24h
DPBASE+25h
DPBASE+26h
DPBASE+27h
DPBASE+28h
DPBASE+29h
DPBASE+2Ah
DPBASE+2Bh
DPBASE+2Eh
DPBASE+2Fh

B34

TOO_MANY_HYPS
FRMNOTFOUND

.set

.set
DPBASE+35h
DPBASE+36h

DPBASE+30h to DPBASE+34h used in TMS_UL2.asm

.... GT i/f board addresses ***

COMMAND
STATUS
NCO_CMD
INTRPT_PORT
HSC_PORT
FSK_FRM

.set

.set

.set

.set

.set

.set

800004h
800004h
800005h
800005h
800006h
800007h

•* HSC commands and miscellaneous **

HSC_endhop

SYNC_BIT
NRDY_BIT

STOP_HSC
RUN_HSC
CHG_IMMED
CHG_HOP
LDJLATCH
LD_BASE
LD_BWSCALE
LD_DOPF
LD_FCSPACE
LD_FLAGS
LD_FSKCHAN
LD_HOP
LD_LOSCI
LD_LOCOM
LD_OFFSET
LD_TIMELO
LD_TIMEHI

ULSYNC_CMD
ULGO_BASE

.data

.word

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

NCO constants

NCO_DLAY
.data
.set

Offffffh

2
4

0
BOOOh
0501h
0500h
0300h
030Ch
0306h
0310h
030Ah
031Ah
0308h
0304h
0318h
0312h
030Eh
0314h
0316h

500Bh
200h

13A14CFh

WRITE only
READ only
WRITE only
READ only
WRITE only
WRITE only

,•16777215 (max hop number for HSC)

;SYNC on bit Dl of GT status
jbit D2 on GT status (DSPLINK)

;GO TO ULSYNC MODE, channel 1, bin 3
;BASE VALUE OF ULGO COMMAND FOR CSYNC

; resulting phase incr to delay NCO clock
; by 0.5 hop over 320 hops

**** Reserve section in RAM block 0 for debug log

.data
DBUG_ADDR .word 809A00h

**** Reserve memory in .bss for variables *•**

.globl

.bss

.globl

.bss

.globl

.bss

.globl

.bss

.globl

.bss

.globl

.bss

.globl

.bss

.globl

.bss

.globl
■ bss
.globl
.bss
.globl
.bss
.globl
.bss
.globl
.bss
.globl
.bss
.globl
.bss

curr_state
curr_state,1
trigger
trigger,1
hyp_used
hyp_used,1
hyp_offset
hyp_offset,l
nxt_prb_frm
nxt_prb_f rm, 1
act_prb_frm
act_prb_frm,1
act_prb_hop
act_prb_hop,l
start_timef
start_timef,1
start_timeh
start_timeh,1
assigned_f
assigned_f,1
tms_csync_rdy
tms_c sync_rdy,
brst0_flg
brst0_flg,l
brstl_flg
brstl_flg,l
user_hyp_off
user_hyp_off,1
iter_hyp
iter_hyp,l

B35

.globl first_prb

. bss first_prb,1
globl prb_cmd
.bss prb_cmd,1
.globl coarseO
.bss coarseO,1
.globl coarsel
.bss coarsel,1
.globl ref_frame
.bss ref_frame,1
.globl hyp_log
.bss hyp_log,128
.globl hyp_frame
.bss hyp_frame,128
.globl hyp_index
.bss hyp_index,1
.globl resp_buffer
.bss resp_buffer,25
.globl buff idx
.bss buff_idx,l
.globl ver_count
.bss ver_count,1
.globl new_state
.bss new_state,l
.globl valid_resp_flg
.bss valid_resp_flg,1
.globl last_resp_clrd
.bss last_resp_clrd,1
.globl last_resp_in
.bss last_resp_in,l
.globl last_hyp_tested
.bss last_hyp_tested,1
.globl pipe_idx
.bss pipe_idx,1
.globl dbug_indx
.bss dbug_indx,1
.globl dbug_adr
.bss dbug_adr, 1
.globl dbug_cnt
.bss dbug_cnt, 1
.globl re_tx_cnt
.bss re_tx_cnt,1
.globl det_count
.bss det_count,1
.globl ND_count
.bss ND_count,1
.globl DD_count
.bss DD_count, 1
.globl DN_count
.bss DN_count,1
.globl hop_ref
.bss hop_ref,1
.globl frm_ref
.bss frm_ref,1

fined elsewhere ****

.globl hop_cnt

.globl frm_cnt

.globl gt_vars

.globl original_phase

.globl phs_rnded

*********************** r***** ****** ***************

** Program begins here ****

******************* ******* **************

CRSE_SYNC:

********************************** A***********************

; STATE 1: PRELIM_INIT
** **********

SYNC_INIT:

LDI
LDI
STI

BSSPG,DP ;update current state
PRELIM_INIT,RO
RO,8curr_state

LDI
LDI

DATAPG.DP
8VAR_BASE,AR2 ;set up AR2

;Step 1: Compute precalc time required by HSC

B36

OVER_LIM:

UNDER_LIM:

NXT_MULT4:

GT_LIM:

LT_LIM:

LDI
LDI
ADDI
CMPI
BLE

LDI
ADDI
SUB I

ST I
STI
LDI
TSTB
BZ

LDI
AND
ADDI
CMPI
BLE

LDI
ADDI
SUBI

LDI
STI
STI

BSSPG.DP ;allow time for HSC to precompute
@fm_cnt,R0 ; hop frequencies for CSYNC
3,R0 ;start 9 2nd frame after current + 6% = 3rd frm
•+AR2(MAX_FRM),RO;check if number exceeds max frame #
UNDER_LIM

*+AR2 (MAX_FRM) ,R1; rollover frame
1,R1
R1.R0

R0,9start_timef ;used to find first valid synch resp
RO,@nxt_prb_frm
DATAPG.DP
9BITS0_N_1,RO ;round to next multiple of 4
SET_TIME ; already a multiple of 4

DATAPG.DP
8BITS2_31,R0 ;mask off 2 LSBs
4,R0
*+AR2(MAX_FRM),R0;check if number exceeds max frame #
LT_LIM

*+AR2(MAX_FRM),R1;rollover frame
1,R1
R1,R0

BSSPG.DP
R0,9start_timef
RO,9nxt_prb_frm

;Step 2: set TIMELO and TIMEHI on HSC due to precalc time

SET_TIME:
MPYI
LDI
STI

LDI
CALL
LDI
LSH
STI
CALL

CALL
LDI
LDI
AND
LSH
LDI
STI
CALL

CALL
LDI
LDI
LDI
STI
CALL

•+AR2(NUM_HOP),R0;change start_time in frames to hops
BSSPG.DP ;HAKE SURE NUM_HOP IS 320!!!
RO,8start_timeh

;send LDJTIMELO command

.-send 16 LSBs of start_time

DSPLNKPG.DP
NRDY_low_loop
LD_TIMELO,R0
16, RO
R0,9HSC_PORT
DSPDLAYLP

NRDY_low_loop
BSSPG.DP
9start_timeh.R0
MASKL16,R0
16,RO
DSPLNKPG.DP
R0,9HSC_PORT
DSPDLAYLP

NRDY_low_loop ,
BSSPG.DP
9start_timeh,R0 .-send 16 MSBs of start_time
DSPLNKPG.DP
RO, 9HSC_PORT
DSPDLAYLP

.-Step 2a: Initialize variables

LDI
LDI
STI
STI
STI
STI
STI
STI
STI
STI
STI
STI
STI
STI
STI
STI
STI

LDI
LDI
LDI
LDI
LDI
LDI

BSSPG.DP
BITCLR.RO
R0,9hyp_used ;hyp_used = 0
R0,9assigned_f ;assigned_f = 0
R0,8brst0_flg ;brst0_flg = 0
R0,9brstl_flg ;brstl_flg = 0
R0,9hyp_offset ;hyp_offset = 0
RO,9tms_csync_rdy;tms_csync_rdy = 0
R0,8valid_resp_flg ;valid_resp_flg = 0
R0,8new_state ;new_state = 0
R0,9buff_idx ;buff_idx = 0
R0,91ast_resp_clrd ; last_resp_clrd = 0
R0,91ast_resp_in ;last_resp_in = 0
RO,9ver_count ;ver_count = 0
R0,91ast_hyp_tested ;last_hyp_tested = 0
R0,9pipe_idx ;pipe_idx = 0
RO,9hyp_index ;hyp_index = 0

1.R1
R1.IR1
9999.R0
DATAPG.DP
9HYP_LOG_ADDR, ARO
9HYP_FRM_ADDR,AR1

;init hyp_log and hyp_frame to 9999

B37

ZRO_LOOP:

WAIT_4_HYP:

GET_HYP:

LDI
RPTB
STI
STI

LDI

LDI
STI

LDI
LDI
CMPI
BNE

LDI
STI
LDI
LDI
STI
LDI
LDI
STI

LDI
LDI
STI

CALL

LDI
LDI
LDI
ADDI
STI
STI

127,RC
ZRO_LOOP
R0,*AR0++(IR1)
R0,*AR1++(IR1)

BSSPG.DP

ULGO_BASE,R0
RO,@prb_cmd

DPMEMPG.DP
eHYP_AVAIL,RO
BITSET,R0
WAIT_4_HYP

;set repeat counter

;store '9999' in hyp_log and hyp_frarae

; in case user wants to start at
;other than PRB_START=288

BITCLR,R0
RO,8HYP_AVAIL
8USER_HYP.R0
BSSPG,DP
R0,8user_hyp_off ;read user hypothesis offset
BITSET.RO
DPMEMPG.DP
R0,8HYP_ACK

BSSPG.DP
«start_timef,R0
RO,8act_prb_f rm

INPUTHYPLOG

;act_prb_frm = start_timef

/store 1st hyp_offset (default 0) in hyp_log

BSSPG.DP
*+AR2(PRB_START),R0 ;PRB_START = default hop # to start synch probes
8user_hyp_off,Rl
R1.R0
R0,8first_prb ;starting point for binary search
RO,8act_prb_hop ;act_prb_hop = PRB_START+user_hyp_off

Final check to see if adjustment of frame and hop number needed
because of user hyp offset

ABOV_LIM:

BELOWLIM:

CMPI
BLT
SUBI
STI
LDI
ADDI
CMPI
BLE

LDI
ADDI
SUBI

STI

*+AR2(NOM_H0P),R0;check if number exceeds max hop #
TX_CSYNC_CMD ;will branch on the first iteration/run
*+AR2<NUM_HOP),R0;rollover hop
RO,8act_prb_hop
8nxt_prb_frm,RO
1,R0
*+AR2(MAX_FRM),RO;check if number exceeds max frm #
BELOW_LIM

•+AR2 (MAX_FRM) , Rl; rollover frame
1,R1
R1.R0

RO,8act_prb_f rm

; at this point, HSC has been set up for coarse synch, switch to
; ULSYNC mode for HSC and check for SYNC line from status before
; proceeding.

,-Step 3: Change HSC to ULSYNC mode

TX_CSYNC_CMD:

WAIT_4_SYNC:

CALL
LDI
LSH
LDI
STI
CALL

LDI
LDI
LSH
CALL
TSTB
BZ

NRDY_low_loop
ULSYNC_CMD,R0
16, RO
DSPLNKPG,DP
RO,8HSC_PORT
DSPDLAYLP

DSPLNKPG,DP
8STATUS,RO
-16,RO
DSPDLAYLP
SYNC_BIT,R0
WAIT_4_SYNC

;send ULSYNC_CMD to HSC

;Step 4: now, allow precalc time for HSC to finish calculations

PRECALC_WAIT:
LDI BSSPG.DP

,-wait until frm_cnt
LDI
LDI
LDI
SUBI

BSSPG.DP
8frm_cnt.R0
8start_timef,Rl
1,R1

(start_timef - 1)

B38

PAST_HOP0:

CMPI
BNZ

LDI
CMPI
BEQ

R0.R1
PRECALC_WAIT

@hop_cnt,RO
0,RO
PAST_HOPO

1111II111IIIII11111111111 III 111II11II11
Trigger ■= PRELIM_COMPL, GO TO STATE 2 (GEN_PROBES)

1111II11II11111111111111111111111111111111II111111111111111111111111111111111

STATE 2: GEN_PROBES

**** ******** ****** ********

***************** **********

COMPUT_HYP:

LDI
LDI
STI

LDI
LDI
STI

LDI
LDI
CMPI
BNE

LDI
LDI
STI
STI
STI
STI
LDI
STI

B

LDI
ABSI
CMPI
BLT

BSSPG,DP
GEN_PROBES,R0
R0,9curr_state

BSSPG,DP
BITSET.RO
RO,9tms_csync_rdy

BSSPG.DP
@hyp_used,RO
BITSET.RO
CHK_FRM

BITCLR,RO
BSSPG.DP
RO,8hyp_used
RO,eassigned_f
R0,8brst0_flg
R0,8brstl_flg
ULGO_BASE,RO
RO,8prb_cmd

CONT_SRCH

;update current state

;set flag for ISR

BSSPG.DP
8hyp_offset,RO
«+AR2 (SRCH_LIM) ,R0
CONT_SRCH

;check if hyp transmitted

;will branch on first iter/run

;clear flag for hypothesis used
;clear flag for ISR
;clear flag for brstO probes (ISR)
;clear flag for brstl probes (ISR)
;reset prb_cmd

;TEST ONLY

;check if search range is exceeded

111111111111111111111111111111II11111111IIII111II III 11 III 111 III IIIIIII1111111
Trigger = SRCH_RG_XCD, GO TO STATE 6 (SRCH_EXCEED)

i ii 11 ii 11 ii ii ii i ii ii ii i ii ii ii um ii im in ii in um in in ii in ii i ii i im in
LDI
LDI
STI
CALL
LDI
LDI
B

BSSPG.DP
SRCH_RG_XCD,R0
RO,9trigger
CHG_STATE
BSSPG.DP
8new_state,R2
R2

; 111111111111111111111 III 111 III I III III III III III III III III III I III I III III III III 11

CONT_SRCH:

KEEP_FRM:

NEXTHYP:

NXT_HYP_NEG:

LDI
ADDI
CMPI
BLE
LDI
ADDI
SOBI

STI
STI

LDI
LDI
CMPI
BLE

NEGI
LDI
STI

CALL

LDI
LDI
ADDI
STI
B

8nxt_prb_frm,R0 ;comp nxt frm to tx csync
4,R0 ; probes
*+AR2(MAX_FRM),R0;check if frame * exceeded
KEEP_FRM
*+AR2 (MAX_FRM) , Rl; rollover frame
1.R1
R1.R0

RO,8nxt_prb_f rm
RO,9act_prb_f rm

BSSPG.DP
8hyp_offset.R0
0.R0
NXT_HYP_POS

R0.R1
BSSPG.DP
Rl,8hyp_offset

INPUT_HYP_LOG

BSSPG.DP
8first_prb,R2
R1.R2
R2,8act_prb_hop
CHK_FRM

;negate hypothesis offset

; store hyp_offset in HYP_LOG & HYP_FRAME #

; compute actual hop # to tx
; csync probe

B39

NXT_HYP_POS:

VALIDFRM:

NEGI
ADDI
LDI
ST I

CALL

LDI
LDI
ADDI
STI
CMPI
BLT
SUB I
STI
LDI
ADDI
CMPI
BLE
LDI
ADDI
SUB I

STI

R0.R1
1,R1
BSSPG.DP
Rl,8hyp_offset

INPUT_HYP_LOG

.•negate hypothesis offset
;incr hypothesis

;store hyp_offset in hyp_log and hyp_frame

;up to here act_prb_hop & act_prb.
; Now, go into loop of generating

BSSPG,DP
@first_prb,R2 ;compute actual hop # to tx
R1,R2 ; csync probe, adj frm t if
R2,@act_prb_hop ; necessary
*+AR2(NUM_HOP),R2;check if number exceeds max hop #
CHK_FRM
•+AR2(NUM_HOP),R2;rollover hop
R2,8act_prb_hop
8nxt_prb_frm,R2
1,R2
*+AR2(MAX_FRM),R2;check if number exceeds max frm #
VALID_FRM
*+AR2(MAX_FRM) ,R1,-rollover frame
1,R1
R1,R2

R2,8act_prb_frm

_frm have been calculated
probes and collecting responses

CHK_FRM:

SET_TXPRB:

LDI
LDI
CMPI
BEQ

LDI
LDI
CMPI
BNE

LDI
STI

BSSPG.DP
Bassigned_f,R0
BITSET.RO
CHK_RET_LNK

8act_prb_frm,RO
8frm_cnt,Rl
R0,R1
CHK_RET_LNK

BITSET.RO
R0,8assigned_f

.•check if already in assigned frame

;check if current is assigned frame

;here, arrived at assigned frame

;set flag to signal assigned frame

CHK_RET_LNK:

LDI
LDI
CMPI
BNE

DPMEMPG.DP
8RESP_AVAIL,R0
BITSET.RO
COMPUT_HYP ;go back to top of loop

LDI
LDI
STI

LDI
LDI
LDI
LDI
STI
STI
STI

LDI
LDI
STI

DPMEMPG,DP
BITCLR.RO
RO,8RESP_AVAIL

8FRM_REF,R0
9C0_RESP,R1
8C1_RESP,R2
BSSPG.DP
R0,8ref_frame
Rl.ecoarseO
R2,Scoarsel

BITSET.RO
DPMEMPG.DP
R0,8RESP_ACK

;clear flag

;store synch response

;coarse synch response for chO
.•coarse synch response for chl

;ack synch response

; Check if response frame # is a multiple of i (probe every 4 frame - user allocation assumed.)
; Check also if frame # is later than the start_timef -> set flag

;not a mult of 4, disregard response

LDI BSSPG.DP
LDI 8ref_frame.R0
LDI DATAPG.DP
TSTB 8BITS0_N_1,R0
BNZ RESP_WRAP_UP

LDI BSSPG.DP
LDI 8valid_resp_
CMPI BITSET.R3
BEQ TEST_RESP

LDI BSSPG.DP
LDI 8ref_frame,R

;check if past starting point of probe frames

B40

LDI 9start_timef,R3
CMPI R0,R3 ;R3 - RO = start_timef - ref_frame
BGT RESP_WRAP_UP ;invalid response, disregard

LDI BITSET.R3
STI R3,9valid_resp_flg

; Current user allocated chl for coarse synch probes.
; See ULSYNC_CMD description above

TEST_RESP:
CMPI 0,R2 ;R2 <- coarsel
BEQ RESP_WRAP_UP ;no "DETECT" for either burst

III11111111111II111II1111111II11
Trigger = DET_RECD, SAVE CURRENT HYP/PROBE SETTINGS, GO TO STATE 3 (VER_DETECT)

111111111111II11

LDI BSSPG.DP ;save current hypothesis for resume probing
LDI 9hyp_offset,R0
STI R0,91ast_hyp_tested

LDI ULGO_BASE,R0 ;reset prb_cmd
STI RO,9prb_cmd

LDI BITCLR,R0 ;clear variables related to tx of probes
STI RO,9hyp_used
STI R0,9assigned_f
STI R0,9brst0_flg
STI RO,9brstl_flg
LDI BSSPG.DP

LDI DET_RECD,RO ;set trigger
STI R0,9trigger
CALL CHG_STATE
LDI BSSPG.DP
LDI 9new_state,R2
B R2 ,-go to STATE 3

; 1111111111! 111111111 i 11111II11111II11111II11 III 1111111111111111111II111111111111

RESP_WRAP_UP:

B COMPUT_HYP

STATE 3: VER_DETECT

CHK_DET:

LDI BSSPG.DP .-modify current state
LDI VER_DETECT,RO
STI RO, 9curr_state

LDI 91ast_resp_in,R0 ;init buffer index for response pipeline
STI R0,9buff_idx

initialize variables for verifying detect

LDI BSSPG.DP
LDI BITCLR.RO
STI RO,9re_tx_cnt
STI RO,9det_count
STI RO, 9ND_count
STI R0,9DD_count
STI RO,9DN_count

CALL RETRV_HYP ;retrieve hypothesis to verify

LDI BSSPG.DP
LDI 9nxt_prb_frm,R0 ;compute next frame for probe
ADDI 4.R0
CMPI 9frm_cnt,R0 ;check if nxt_prb_frm is already passed
BGT NXT_2_PRB
ADDI 4,R0 ;go to next multiple of 4

CMPI *+AR2(MAX_FRM),R0;check if number exceeds max frm #
BLE FRM_NO_CHG
LDI * +AR2 (MAX_FRM) , Rl
ADDI 1, Rl
SUB I R1.R0

FRM_NO_CHG:
STI RO,9nxt_prb_frm
STI RO,9act_prb_frm
STI R0,9start_timef ,-used to find when synch resp are valid

LDI 9hyp_offset,R0 /compute act_prb_hop with offset

NXT_2_PRB:

B41

FRMOK:

LDI
ADDI
STI
CMPI
BLT
SUBI
STI
LDI
ADDI
CMPI
BLE
LDI
ADDI
SUBI

STI

8first_prb,Rl ;first_prb includes user offset 8 beginning
R0.R1
Rl,9act_prb_hop
•+AR2(NUM_HOP),R1;check if number exceeds max hop #
REPEAT_CHK
•+AR2(NUM_HOP),R1;max hop# exceeded, roll over
Rl, 8act_prb_hop
8nxt_prb_frm,Rl ;adjust frm# because of roll over
1,R1
*+AR2(MAX_FRM),R1;check if number exceeds max frm #
FRM_OK
*+AR2(MAX_FRM),R2
1,R2
R2.R1

Rl,8act_prb_f rm

; At this point,

REPEAT_CHK:

act_prb_hop and act_prb_frm have been calculated for VER_DETECT

LDI
LDI
CMPI
BNE

BSSPG,DP
8hyp_used,R0
BITSET,R0
WAIT_4_FRM

LDI
LDI
STI
STI
STI
STI
LDI
STI

BSSPG.DP
BITCLR,R0
RO,9hyp_used
R0,8assigned_f
R0,8brst0_flg
R0,8brstl_flg
ULGO_BASE,R0
RO,8prb_cmd

STORE_FRM:

LDI
LDI
ADDI
CMPI
BLE
LDI
ADDI
SUBI

STI

BSSPG.DP ;update nxt_prb_frm
8nxt_prb_frm,RO
4,R0
•+AR2 (MAX_FRM) ,R0; check if number exceeds max frm #
STORE_FRM
*+AR2(MAX_FRM) ,R1;rollover frame
1.R1
R1.R0

RO,8nxt_prb_frm

FRM_OVER:

FRM_UNDER:

LDI
ADDI
CMPI
BLE

LDI
ADDI
SUBI

STI

8act_prb_frm,RO
4.R0
•+AR2 (MAX_FRM)
FRM_UNDER

*+AR2 (MAX_FRM)
1,R1
R1.R0

RO,8act_prb_f rm

rcompute next probe frame
; using act_prb_frm to avoid recalc

RO; act_prb_hop should be the same
;done separately in case of straddling
; of frame boundaries betw nxt_prb_frm

Rl;rollover frame

; and act_prb_frm

WAIT_4_FRM:
LDI
LDI
CMPI
BEQ

BSSPG.DP
8assigned_f,R0
BITSET.RO
LOOK_4_RESP

LDI
LDI
CMPI
BNE

8act_prb_f nn,RO
8frm_cnt,Rl
R0.R1
LOOK_4_RESP

GO_PROBE:
LDI
STI

BITSET.RO
R0,8assigned_f

LOOK_4_RESP:
LDI
LDI
CMPI
BNE

DPMEMPG.DP
8RESP_AVAIL.R0
BITSET.RO
REPEAT_CHK

GET_RESP:
LDI
STI
LDI
LDI
LDI
LDI
STI
STI

BITCLR.RO
RCSRESP^AVAIL
8FRM_REF,R0
8C0_RESP,R1
8C1_RESP,R2
BSSPG.DP
R0,8ref_frame
Rl,8coarse0

;clear flag

;obtain responses

B42

STI R2,8coarsel

LDI
LDI
STI

BITSET,R3
DPMEMPG.DP
R3,8RESP_ACK

;ACK resp

,- Check response is a mult of 4 and references frame later than start_timef

TEST ONLY

SAV_2_PIPE:

LDI
LDI
LDI
TSTB
BNZ

LDI
LDI
LDI
CMPI
BLE

LDI
LDI
CMPI
BNE

BSSPG.DP
8ref_frame,R0
DATAPG.DP
@BITS0_N_1,R0
CLOSE_RESP

L00K_4_DET

;look at lower 2 bits to see if a mult of 4
,-not a mult of 4, disregard response

;test - go directly to testing response

BSSPG.DP
8ref_frame,R0
8start_timef,R1
R0.R1
L00K_4_DET

;check if frame # > start_timef
; for valid response

;R1 - RO = start_timef
,-valid verify response
; Otherwise,

ref_frame

BSSPG.DP
8buff_idx.R0
81ast_resp_clrd,RO
ASSMBL_RESP

check to see if anymore room in response
pipeline buffer

11111111111111111111111111111II11111IIIII111111II111111111IIIII11111111111III
Trigger = PLINE_OFLO, go to state 7 (OFLO_RESP)

11111111II11111111111111111111IIIIIIIIII111II1111II111II1111111IIIII111111111

LDI
LDI
STI
CALL
LDI
LDI
B

BSSPG.DP
PLINE_OFLO,R0
RO,Strigger
CHG_STATE
BSSPG.DP
8new_state,R2
R2

; 111111111111111111111111111111IIIIIIIII111IIIIIIII III III III 111111IIIII111II11

ASSMBL_RESP:

SAV_BUF_IDX:

LDI
LDI
LDI
LSH
LSH
ADDI
ADDI
LDI
LDI
LDI
LDI
LDI
STI
ADDI
CMPI
BLT
SUBI

STI
B

save responses arriving after "detect"
frame # in 16MSB
chO coarse in D0-D1
chl coarse in D2-D3

;append chl coarse resp
;append chO coarse resp

Bref_frame,RO
ScoarseO.Rl
8coarsel,R2
16, RO
2,R2
R2.R0
R1,R0
DATAPG.DP
8RESP_BUF_ADDR, ARO
BSSPG.DP
8buff_idx,R3
R3, IRO
R0,«+ARO(IR0)
1.R3 ;increment buffer index
*+AR2(RESP_BOF_SIZ) ,R3 .-check for rollover of buffer index
SAV_BUF_IDX
*+AR2 (RESP_BUF_SIZ) ,R3

R3,8buff_idx
CLOSE_RESP

; See if "detect" received again
; Again, chl for current user assumed

LOOK_4_DET:

LDI
LDI
ADDI
STI

LDI
LDI
CMPI
BNE

BSSPCDP
8re_tx_cnt,RO
1,R0
RO,8re_tx_cnt

BSSPG.DP
8coarsel,R2
0.R2
INCR_TALLY

;increment retransmit count

.•check if "detect" received

; "detect" reed again, incr counter

;no detect received, so check if # times retransmit completed

B CHK_NOM_RETX

INCR_TALLY:
LDI BSSPG.DP .•increase # of "detect's count

B43

ITS_DD:

CHK_NUM_DET:

LDI
ADDI
ST I

CMPI
BNE
LDI
ADDI
STI
B

CMPI
BNE
LDI
ADDI
STI
B

LDI
ADDI
STI

LDI
LDI
CMPI
BLT

8det_count,R0
1,R0
RO,@det_count

1,R2
NOT_ND
8ND_count,RO
l,RO
RO,@ND_count
CHK_NUM_DET

2,R2
ITS_DD
@DN_count,RO
l,RO
RO, 8DN_count
CHK_NUM_DET

8DD_count, RO
l,RO
RO,8DD_count

R2 still has coarsel
determine whether "ND", "DD", or "DN" rec'd
"ND" received, increment ND_count

;check if enough "detect's for confm

;check for "DN" received

;"DN" received, increment DN_count

,-check if enough "detect's for confm

; check if minimum # of detects received for confm BSSPG.DP
8det_count.R0
♦+AR2(MIN_DET_2_VER),RO
CHK_NUM_RETX ;if not enough yet, check if # retransmit completed

.•otherwise,

1111111111111111111111111111111111111II11111111111111111111111111111111111111
Trigger = DET_CONFM, GO TO STATE 4 (GO_2_FSYNC) (for now, RETURN)

11111111111111II111

;FOR TEST, GO STRAIGHT TO CHANGE:

B CHANGE ;FOR TEST ONLY

first compare ND_count with both DD_ and DN_count. if ND > DD and DN, then
have to delay NCO by 180 (see synch response scenarios)

DLAY_BY_180:

WAIT_320_HOPS:

CHANGE:

LDI
LDI
CMPI
BLT
CMPI
BLT

LDI
LDI
LDI
STI

CALL

LDI
LDI
LDI
STI
STI

LDI
LDI
CMPI
BNE
LDI
CMPI
BEQ

LDI
LDI
STI

LDI
LDI
STI
CALL
LDI
LDI
B

BSSPG.DP
8ND_count, RO
8DD_count, RO
CHANGE
8DN_count,RO
CHANGE

DATAPG.DP
8NCO_DLAY,R0
BSSPG,DP
RO,8phs_rnded

START_NCO

BSSPG,DP
8hop_cnt,RO
8frm_cnt,Rl
R0,8hop_ref
R0,8frm_ref

BSSPG.DP
8hop_cnt, RO
8hop_ref.R0
WAIT_320_HOPS
8frm_cnt.R0
8frm_ref.R0
WAIT320HOPS

compare ND and DD
if ND < DD, then no need to adjust clock
compare ND and DN
if ND < DN, then no need to adjust clock

;ND > both DD and DN, therefore, delay clock

;change to slower frequency

;save current hop and frame #

;compare hop # first, then frm #
;hop # still not cycled through, keep waiting

;frm # has not advanced (<320hops), keep waiting

BSSPG.DP
8original_phase,RO
RO,8phs_rnded

START_NCO

BSSPG.DP
DET_CONFM,R0
RO.fltrigger
CHG_STATE
BSSPG.DP
8new_state,R2
R2

;change back to original NCO frequency

;set trigger

;go to new state (state 4)

;check if hypothesis has been retransmitted enough times to determine whether to continue

B44

CHK_NUM_RETX:
LDI
LDI
CMPI
BLT

BSSPG.DP
@re_tx_cnt,RO
*+AR2 (NUM_RETRANSMITS) ,R0
CLOSE_RESP

otherwise, finish all retransmits and not enough "detects" received to confm
i in ii ii ii ii ii ii ii ii ii ii i iii ii iii ii iiin ii iiinn in in ii in ii 11111111! 111111
Trigger = FALSE_DET, GO TO STATE 5 (CLR_RESP_PIPE)

11II1111II111/111111111II11111111111111

LDI
LDI
STI

LDI
STI

LDI
STI
STI
STI
STI

LDI
LDI
STI
CALL
LDI
LDI
B

BSSPG.DP
8buff_idx.R0
RO,91ast_resp_in

ULGO_BASE,RO
RO,Sprb_cmd

BITCLR.RO
RO,8hyp_used
R0,8assigned_f
R0,8brst0_flg
R0,8brstl_flg

BSSPG.DP
FALSE_DET,RO
R0,8trigger
CHG_STATE
BSSPG.DP
8new_state, R2
R2

;save loc of last entry into resp_buff

;reset prb_cmd

;clear variables related to tx of probes

;set trigger

;go to new state (state 5)
; 111111111111111111II11II11111111II111II11111111IIII111111111II11111IIII111III

CLOSE_RESP:

B REPEAT_CHK

**
; State 4: GO_2_FSYNC («temporarily set to RETURN*)
**

RETURN:

LEAVE_FRM:

OK_2_CONTINUE:

LDI
LDI
STI

LDI
STI
STI
STI
STI

LDI
ADDI
STI
CMPI
BLT
SUBI
STI
LDI
ADDI
CMPI
BLE
LDI
ADDI
SUBI

STI

LDI
LDI
STI

RETS

BSSPG.DP
GO_2_FSYNC,R0
R0,8curr_state

BITCLR.RO
RO,8hyp_used
R0,8assigned_f
RO,SbrstO_flg
R0,9brstl_flg

.•modify current state

; clear flags for isr

.-adjust hop and frame counter 8hop_cnt,RO
8hyp_offset,RO
RO,8hop_cnt
*+AR2(NUM_HOP) ,R0; check for hop # rollover
OK_2_CONTINUE
*+AR2 (NOM_HOP) ,R0
RO, 9hop_cnt
8frm_cnt.R0
1.R0
*+AR2(MAX_FRM) ,R0; check for frm 8 rollover
LEAVE_FRM
•+AR2 (MAX_FRM) ,R1
1.R1
R1.R0

R0,8frm_cnt

BITSET.RO
DPMEMPG.DP
RO, 8CSYNC_0K

;return to TMS_UL2.ASM

; State 5: CLR_RESP_PIPE

**

CLR_PIPE:
LDI
LDI
STI

LDI

**

BSSPG.DP ;revise current status
CLR_RESP_PIPE,RO
RO,8curr_state

DATAPG.DP

B45

LCI 8RESP BUF_ADDR,ARO ;set up indirect addr pointer, ARO

FLUSH_OUT:

SAVE_PIPE_IDX:

LDI
LDI
CMPI
BEQ
STI

LDI
LDI
ADD I
CMPI
BLT
SUB I

STI

LDI
LDI
LDI
TSTB
BZ

@last_resp_clrd,RO ;last loc data cleared
@last_resp_in,Rl ; last loc data entered
R0.R1
PLINE_MT
RO,@pipe_idx ;initialize pipeline index

,-buffer not clear, start emptying

jupdate pipeline index
BSSPG.DP
@pipe_idx,RO
1,R0
*+AR2 (RESP_BUF_SIZ) ,R0 ,-check for pipe index rollover
SAVE_PIPE_IDX
*+AR2(RESP_BUF_SIZ),RO

R0,8pipe_idx

@pipe_idx,IRO
*+AR0(IR0),R0
DATAPG.DP
8BITS2_N_3.R0
FLUSH_NXT

;look at next response in pipeline

;look at chl coarse synch response
;no "DETECT" in response

; 11! 111111111111111111
; Trigger = DET_RECD, GO TO STATE 3 (VER_DETECT)
; 11II11111111111111111

LDI
LSH
STI
LDI
STI

LDI
STI
CALL
LDI
LDI
B

BSSPG,DP
-16,RO
R0,8ref_frame
8pipe_idx,Rl
Rl,81ast_resp_clrd

RO still has response from buffer
recover frame # from pipeline buffer

for hypothesis lookup

DET_RECD,R0
RO,«trigger
CHG_STATE
BSSPG.DP
8new_state,R2
R2

;save loc of last response cleared

;set trigger

;go to new state (state 3)
; 111

FLUSH_NXT:
LDI BSSPG.DP
LDI 8pipe_idx.R0 ;find out if any more to flush
CMPI 91ast_resp_in,R0 ;pipe_idx - last_resp_in
BNE FLUSH_OUT ;if pointers don't line up, more to flush

.•otherwise, pipeline empty

111II111111
Trigger = PLINE_CLR, GO TO STATE 2 (GEN_PROBES) TO RESUME PROBING

1111111111111111111II1111111111111111 III 1111111111II111111II11111111111111111

PLINE_MT:

TRY_NXT_FRM:

NXT_FRM_2_PRB:

GEN_PROBES

STORE_HOP:

LDI
LDI
STI

LDI

ADDI
CMPI
BGT
B

CMPI
BLE
LDI
ADDI
SUBI

STI
STI
STI

LDI

STI
ADDI
STI
CMPI
BLT
SUBI

STI
LDI
ADDI

BSSPG.DP
ULGO_BASE,R0
RO,8prb_cmd

.•reset prb_cmd

8nxt_prb_frm.R0 ;compute next frame to tx probes

4.R0
8frm_cnt.R0
NXT_FRM_2_PRB
TRY_NXT_FRM

.•next frame number is valid

.-need to go to next allocation

*+AR2(MAX_FRM),R0;check if frame # exceeded
SAVE_FRM
*+AR2 (MAX_FRM) ,R1;rollover frame
1.R1
R1.R0

RO,8nxt_prb_f rm
RO,8act_prb_f rm
RO,8start_timef

81ast_hyp_tested,RO

R0,8hyp_offset
8first_prb.R0
RO,8act_prb_hop
♦+AR2 (NUM_HOP),R0
STORE_HYP
*+AR2 (NUM_HOP) ,R0

RO,8act_prb_hop
8nxt_prb_frm,RO
1,R0

.•recover last hypothesis tested in

B46

FRMSTORE:

CMPI
BLE
LDI
ADDI
SUB I

STI

*+AR2(MAX_FRM),R0;check if frame # exceeded
FRM_STORE
*+AR2(MAX_FRM) ,R1,-rollover frame
1,R1
R1,R0

RO,@act_prb_frm

STORE_HYP:
LDI
LDI
LDI
LDI
LDI
STI

LDI
STI
CALL
LDI
LDI
B

DATAPG.DP
8HYP_LOG_ADDR,ARO
BSSPG.DP
8nxt_prb_f rm, IRO
8hyp_offset,R0
R0,*+AR0(IR0)

PLINE_CLR,RO
RO,etrigger
CHG_STATE
BSSPG.DP
8new_state,R2
R2

;store hyp_offset in hyp_log rel to frame #

;set trigger

,-go to new state (state 2)
; 11111111111111111111111111111111111111II111IIII11111111111111111II11111111111

**
; State 6: SRCH_EXCEED **

OUT_A_RANGE:

LDI
LDI
STI

LDI
LDI
STI

RETS

BSSPG.DP
SRCH_EXCEED,RO
R0,8curr_state

DPMEMPG.DP
BITSET,R0
R0,8RNG_XCDED

;set flag on PC indicating error

.-return to TMS_UL2.ASM (to replace WAIT_LOOP)

**
; State 7: PLINE_ERR (set flag to PC)
**

OFLO_RESP:
LDI
LDI
STI

LDI
LDI
STI

RETS

BSSPG.DP
PLINE_ERR,R0
RO,9curr_state

DPMEMPG.DP
BITSET.RO
R0,8PLINE_FLAG

;update current state

;set flag on PC

;return to TMS_UL2.ASM

******************************* ***************************************

.globl CHG_STATE

*** *******

CHG_STATE:
PUSH
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSH

LDI
LDI
LDI
MPYI
ADDI
LDI
LDI
LDI
LDI
LDI
STI

DP
RO
RO
Rl
Rl
R2
R2
ARO
IRO

BSSPG.DP
etrigger,RO
STATE_COL,Rl
R0.R1
8curr_state,Rl
Rl, IRO
DATAPCDP
9STAT^ADDR,AR0
*+AR0(IR0),R2
BSSPG.DP
R2,8new_state

;trigger x number of states + curr_state

POP
POP
POPF
POP

IRO
ARO
R2
R2

B47

POPF Rl
POP Rl
POPF RO
POP RO
POP DP

RETS

**************** ***************** ***
.globl INPUT_HYP_LOG

**************** .*.*...*.«•*•*••• ***

INPUT_HYP_LOG t

PUSH DP
PUSH IR1
PUSH ARO
PUSH AR1
PUSH AR3
PUSH RO
PUSHF RO

LDI BSSPG.DP
LDI 8hyp_index,RO
LDI R0.IR1

LDI DATAPG.DP
LDI 8HYP_LOG_ADDR, ARO
LDI 8HYP_FRK_ADDR, AR1
LDI *+AR0(IRl) ,R0 ;only have to check one of them
CMPI 9999.R0
BNE HYP_BUFF_OFLO

LDI BSSPG,DP
LDI 8nxt_prb_frm,RO
STI RO,*+ARl(IR1) ;save probe frame number
LDI 8hyp_offset.RO
STI RO,*+AR0(IRl) ;save hypothesis for probe frame number

ADDI 1.IR1
CMPI 128,IR1 ;check for hyp_index rollover
BLT SAV_HYP_IDX
LDI BITCLR.IR1 ;rollover

SAV_HYP_IDX:
STI IR1,9hyp_index
B END_ROUTINE

HYP_BUFF_OFLO:

LDI BITSET.RO
LDI DPMEMPG,DP
STI RO,8T00_MANY_HYPS;set flag to PC

END_ROUTINE:
POPF RO
POP RO
POP AR3
POP AR1
POP ARO
POP IR1
POP DP

RETS

**************** ***************** ft**
.globl RETRV_HYP

**************** ***************** ***

RETRV_HYP:

PUSH DP
PUSH IRO
PUSH ARO
PUSH AR3
PUSH RO
PUSHF RO

FIND_IDX:
LDI DATAPG.DP
LDI 8HYP_FRM_ADDR, ARO
LDI 0.IR0

FIND_LOOP:
LDI *+ARO(IR0) ,R0
LDI BSSPG.DP
CMPI 8ref_frame.R0
BEQ FOUND_IDX
ADDI 1.IR0

B48

LDI
CMPI
BLT

LDI
LDI
STI

B

IRO, RO
128,RO
FIND_LOOP

BITSET.RO
DPMEMPG.DP
RO,@FRM_NOT_FOUND

CLOSE_ROUTINE

;check if at end of buffer

;set flag to PC, frm not found

FOUND_IDX:

CLOSE_ROUTINE:

LDI
LDI
LDI
LDI
STI

LDI
STI
LDI
LDI
STI

POPF
POP
POP
POP
POP

DATAPG.DP ;IR0 currently has index
8HYP_L0G_ADDR,ARO
*+ARO(IR0) ,R0 ,-retrieve hyp_offset
BSSPG.DP
RO,@hyp_offset

9999,RO
RO,*+AR0(IR0) ;reset hyp_log location
DATAPG,DP
6HYP_FRM_JADDR, ARO
R0,*+AR0(IR0) ;reset hyp_frame location

RO
RO
ARO
IRO
DP

RETS

.end

B49

B4. Fine synchronization routine

Description:

Program Name: FSYNC.ASM
Author: C. Tom
Date edited: 31 March 1998

Assembler code to be added to TMS_UL2.ASM which performs
fine synchronization. Fine synchronization probes are
transmitted for user 1 (burst of 32). Fine synch responses
are analyzed in PC program. PC will take an average
of 'X'synch responses and compute an appropriate phase
change for the NCO. The phase change is such that the
adjustment of hop clock over 320 hops (1 frame). After
320 hops, the NCO is returned to its original frequency.
Fine synchroniztion occurs when fine synch response falls
below a certain threshold (i.e. fsync resp < threshold 'Y')
Currently considering threshold to be within 10% of a hop
ft***

**** Subroutine declaration *»**

.globl FINE_SYNC

.globl CHG_FSTATE

.globl COMMAND_CLK

.globl DSPDLAYLP

.globl NRDY_low_loop

.globl START_NCO

**** Miscellaneous constants *** *

XF0_EN .set 2h
XF_SET .set 6h
XF_CLR .set OFFFBh

BITSET .set 1
BITCLR .set 0

MASKL16 .set OFFFFh

NUM_R0W .set 6
NUM_COL .set

.data

6

BITS0_N_1 .word 3h
BITS2_31 .word OFFFFFFFCh
VAR_BASE .word gt_vars
STATE_TBL .word STATE_BASE

.. TRIGGERS for FSYNC routine ****

CMD_ISSUED .set 0
INI_COMPL .set 1
F_EST_AVAIL .set 2
ADJ_COMPL .set 3
NT_CONVERGING .set 4
CONVERGED .set 5

**** STATES for FSYNC routine ** * *

IDLE_F .set 0
INIT_SECTION .set 1
TX_FPROBES .set 2
ADJJNCO .set 3
FINE_NT_ACH .set 4
GO_2_RUN ■ set 5

;number of rows in state table
;number of columns in state table

.•starting point of FSYNC routine

.-finished initialising variables, etc...
;fine estimate available from PC
.•adjustment of NCO completed
;no convergence of estimate after X times
;fine synch to within 10% of a hop achieved

;idle state
,-performing preliminary initialisation
;generating fsync probes and waiting for fine est
.•adjusting NCO frequency over 320 hops
;not able to achieve fine synch, send error msg
;fine sync achieved, ready to send data

Look up table for FSYNC routine

triaoer
1 current state

.data
1 1

STATE_BASE: .word FINE INIT [0,0]=0
.word 0 [0,1]
.word 0 [0,2]
.word 0 [0,3]
.word 0 [0,4]
.word 0 [0,5]
.word 0 tl,0]=6
.word FINE_PRB [1,1]
.word 0 [1,2]
.word 0 [1,3]
.word 0 [1,41
.word 0 [1,51

B50

NUM_HOP
MAX_FRM
MAX_HOP
PRB_START
LIM_10
MIN_4_C0NV
MAX^ATTEMPTS

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.word

.set

.set

.set

.set

.set

.set

.set

Data page pointers

INIPG
DPMEMPG
BSSPG
DATAPG
DSPLNKFG
BUSPG
DBUGPG

.set

.set

.set

.set

.set

.set
■ set

***** DPMEM addresses ****

DPBASE
FSTART_AVAIL
FSTART_FRM
FSTART_ACK
EST_AVAIL
FINE_EST
PHS_CHANGE
EST_ACK
NO_FSYNC
FSYNC_OK

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

»** GT i/f board addresses ****

COMMAND
STATUS
NCO_CMD
INTRPT_PORT
HSC_PORT
FSK_FRM

.set

.set
■ set
.set
.set
.set

0 [2,0]=12
0 [2,1]
CHANGE_NCO U,2]
0 [2,3]
0 [2,4]
0 [2,5]
0 [3,0]=18
0 [3,1]
0 [3,2]
FINE_PRB [3,3]
NO_CONVERG [3,4]
FINE^ACH [3,5]
0 [4,0]=24
0 [4,1]
0 [4,2]
0 [4,3]
0 [4,4]
0 [4,5]
0 [5,0]=30
0 [5,1]
0 [5,2]
0 [5,3]
0 [5,4]
0 [5,5]

s array ****

0
1
2
3
9
10
11

0
3h
80h
Oh
80h
80h
80h

30000h
DPBASE + 40h
DPBASE + 41h
DPBASE + 42h
DPBASE + 43h
DPBASE + 44h
DPBASE + 45h
DPBASE + 46h
DPBASE + 47h
DPBASE + 48h

800004h •WRITE only
800004h ;READ only
800005h ; WRITE only
800005h ;READ only
800006h ; WRITE only
800007h ; WRITE only

**** HSC commands and miscellaneous ****

HSC_endhop

STOC_BIT
NRDY_BIT

.data

.word

.set

.set

Offffffh ,-16777215 (max hop number for HSC)

;SYNC on bit Dl of GT status
;bit D2 on GT status (DSPLINK)

STOP_HSC
RUN_HSC
CHG_IMMED
CHG_HOP
LD_LATCH
LD_BASE
LD_BWSCALE
LD_DOPF
LD_FCSPACE
LD_FLAGS
LD_FSKCHAN
LD_HOP

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

0
8000h
0501h
0500h
0300h
030Ch
0306h
0310h
030Ah
031Ah
0308h
0304h

B51

LD_LOSCI . set
LD LOCOM . set
LD OFFSET .set
LDJTIMELO .set
LD_TIMEHI .set

ULSYNC_CMD .set
ULGO_BASE .set

Ul FPROBE .set
TX_OFF .set

0318h
0312h
030Eh
0314h
0316h

500Bh
200h

13h
8 Oh

;GO TO ULSYNC MODE, channel 1, bin 3
;BASE VALUE OF ULGO COMMAND FOR CSYNC

; 00010011, FSK/CHAN FOR USER 1
;set RF_OFF "high" when not transmitting f probes

Reserve memory in .bss for variables ****

globl allocated_f
bss allocated_f,1
globl avg_fine
bss avg_fine,1
globl burst_compl
bss burst_compl,1
globl convrg_cnt
bss convrg_cnt,l
globl no_convrg_cnt
bss no_convrg_cnt,1
globl prev_fine
bss prev_fine,l
globl returned_est
bss returned_est,1
globl tx_fine_en
bss tx_fine_en,l

Variables defined elsewhere ****

globl act_prb_frm
globl curr_state
globl frm_cnt
globl frm_ref
globl gt_vars
globl hop_cnt
globl • hop_ref
globl new_state
globl nxt_prb_frm
globl original_phase
globl phs_rnded
globl start_timef
globl trigger
globl uflo_err

************** ******** ******** ********************************

**** program begins here ****

********** ****************************** **********************

*** **** ******* **********
; STATE 0: IDLE_F
** ************************

FINE_SYNC:
LDI
LDI
STI

BSSPG.DP
IDLE_F,R0
R0,9curr_state

II111111111111II! 11111111111111111111II111II1111111111II1111111IIIII111111111
Trigger = CMD_ISSUED, GO TO STATE 1 (INIT_SECTION)

111111111111IIII1111111111111111111II111111111111IIIII1111IIIII11111111111111

; STATE 1: INIT_SECTION

****************** ***********

******** ******** ******** *

FINE_INIT:
LDI
LDI
STI

BSSPG,DP
INIT_SECTION,R0
R0,8curr_state

LDI
LDI

DATAPG,DP
8VAR_BASE,AR2

; Step 1: Initialisation of variables, etc...
Send command to HSC to go to RUN mode

B52

LDI
LDI
STI
STI
STI
STI
STI
STI

LDI
STI

CALL
LDI
LSH
LDI
STI
CALL

BSSPG.DP
BITCLR.RO
RO,@burst_compl
RO,@allocated_f
RO,@tx_fine_en ;
RO,8no_convrg_cnt
RO,@convrg_cnt
RO,@uflo_err

31,RO
RO,@prev_fine

NRDY_low_loop
RUN_HSC, RO
16,RO
DSPLNKPG.DP
RO,@HSC_PORT
DSPDLAYLP

disable transmission of fsync probes

;start max fine estimate

,-send RUN command to HSC

1111111111111111111111111111111111II111
Trigger = INI_COMPL, GO TO STATE 2 (TX_FPROBES)

11II111II11111111111II111111II11IIII111

**
; STATE 2: TX_FPROBES
**

FINE_PRB:
LDI
LDI
STI

LDI
LDI
STI
STI

BSSPG.DP
TX_FPROBES,R0
R0,9curr_state

BSSPG.DP
BITCLR.RO
RO,8burst_compl
RO,eallocated_f

;this is for later iterations
;after estimate is received

; Step 1: compute next allocation to transmit fine synch probes

; find next multiple of 4 for frame number

ADV_NXT_4:

NOW_A_MULT_4:

ABOV_MAXF:

BLOW_MAXF:

LDI
LDI
LDI
TSTB
BZ

LDI
AND

ADDI
CMPI
BLE

LDI
ADDI
SUBI

LDI
STI
STI
STI

BSSPG.DP
9frm_cnt,R0
DATAPG.DP
9BITS0_N_1,R0
NOW_A-MULT_4

DATAPG.DP
8BITS2_31,R0

;round to next mult of 4
;if zero, already a mult of 4

.-mask off 2 LSBs
;DON'T KNOW IF NEED TO ADD ANOTHER 4! !

4,R0
*+AR2(MAX_FRM),R0;check if # exceeds max frame
BLOW_MAXF

*+AR2 (MAX_FRM) ,R1
1.R1
R1.R0

BSSPG.DP
R0,8start_timef ;HAVE TO SEND TO PC SO IT KNOWS WHEN
R0,9nxt_prb_frm ;TO START ANALYZING SYNCH RESPONSES
RO,9act_prb_frm

; Step 2: transfer start_timef to PC

FSTART_WAIT:

LDI
STI

LDI
STI

LDI
CMPI
BNE

LDI
LDI
STI

DPHEHPG.DP
RO, 9FSTART_FRM ;R0 already has start_timef

BITSET.RO
R0,9FSTART_AVAIL

8FSTART_ACK,R0
BITSET.RO
FSTART_WAIT

BITSET.RO
BSSPG.DP
RO,9tx_fine_en ;enable transmission of fsync probes

; Step 3: initialise/set flags for ISR, including read status to clear uflo bit

CONT_W_FPRBS:
LDI BSSPG.DP
LDI 9uflo_err,R0 ;check for data underflow condition
CMPI BITSET.RO
BEQ DATA_ERROR

B53

FRM_AS_IS:

LDI
LDI
CMPI
BNE

LDI
STI
STI

LDI
LDI

LDI
LDI
ADDI
CMPI
BLE
LDI
ADDI
SUBI

STI
STI

BSSPG.DP
9burst_compl,RO
BITSET.RO
TIME_TRANSF

BITCLR.RO
RO,8burst_compl
RO,@allocated_f

DSPLNKPG.DP
8STATUS.R0

;check if burst is completed

;reset variables for next burst

;NT SURE IF NEEDED,TX_OFF SENT WHEN allocated_f=0
;read GT status to clear uflo bit

BSSPG.DP
8nxt_prb_frm,RO
4.R0
*+AR2(MAX_FRM),R0;check for rollover of frame #
FRM_AS_IS
•+AR2 (MAX_FRM) , Rl
1,R1
R1,R0

R0,9nxt_prb_frm ,-save nxt frame # for fsync probes
RO,9act_prb_f rm

; Step 4: check if time to transmit probes

TIME_TRANSF:

SET_FPRB_FLAG:

CHK_4_F_EST:

LDI
LDI
CMPI
BEQ

LDI
LDI
CMPI
BNE

LDI
STI

LDI
LDI
CMPI
BNE

BSSPG,DP
9allocatea_f.R0
BITSET.RO
CHK_4_F_EST

9act_prb_frm,R0
9frm_cnt,Rl
R0.R1
CHK_4_F_EST

BITSET.RO
R0,8allocated_f

DPMEMPG.DP
9EST_AVAIL,R0
BITSET.RO
CONT_W_FPRBS

.•check if transmitting a burst already

;if not transmitting a burst,
;check if it's an allocated frame

;check if fine estimate is available

LDI
LDI
STI
LDI
LDI
LDI
STI
STI

LDI
LDI
STI

DPMEMPG.DP
BITCLR.RO
RO, 8EST_AVAIL
eFINE_EST,R0
9PHS_CHANGE,R1
BSSPG.DP
R0,9avg_fine

;read estimate from PC (avg of 10 responses)
,-read phase change calc by PC

;avg_fine = average of fine est received
Rl,9returned_est ;returned_est = new NCO phase for adj

BITSET.RO
DPMEMPG.DP
RO,8EST_ACK ;ack estimate received to PC

11111111II11111111111111111111111111111IIIIII111111111111IIIIIIII111IIIIIII11
Trigger = F EST_AVAIL, GO TO STATE 3 (ADJ_NCO)

11111111111111111111111111111111 III 11

STATE 3: ADJ_NCO

*****••**********•• *********

********* **

LDI
LDI
STI

BSSPG.DP
ADJ_NCO,R0
R0,9curr_state

; Step 1: check for convergence or non-convergence of fine synch estimate

INCR_NCNVRG:

LDI
LDI
ABS I
CMPI
BLE
CMPI
BGT
STI
B

LDI
LDI
ADDI
STI

BSSPG.DP
9avg_fine,R0
R0.R1
*+AR2(LIM_10) ,R1 ,-check if within 10% of hop period
INCR_CNVRG
9prev_fine.Rl
INCR_NCNVRG
Rl, 9prev_f ine
INCR_CNVRG

check if estimate is still converging
no -> update non-convergence count
yes -> update prev_fine (=abs(estimate))

update convergence count

BSSPG.DP
9no_convrg_cnt,R0;update non-convergence count
1.R0
R0,9no_convrg_cnt

B54

ADDI
CMPI
BLT

@convrg_cnt,RO
♦+AR2(MAX_ATTEMPTS),RO
CHANGE_NCO

;check max attempts desired exceeded?

111
Trigger = NT_CONVERGING, GO TO STATE 4 (FINE_NT_ACH)

11II1111111111111

LDI
LDI
ST I
CALL
LDI
LDI
B

BSSPG.DP
NT_CONVERGING, RO
RO,©trigger
CHG_FSTATE
BSSPG.DP
9new_state,R2
R2

INCR_CNVRG:
LDI
LDI
ADDI
CMPI
BLT

BSSPG.DP
@convrg_cnt,RO ;update convergence count
1,R0
*+AR2(MIN_4_CONV),R0 ;check if converged enough times
CHANGE_NCO

1111111111111111111111II1111111111111 III 11IIIII111111IIIIIII11IIIIIIIIIII III I
Trigger = CONVERGED, GO TO STATE 5 (GO_2_RUN)

1111111111111111111111111111111111II111111IIII111111111II111IIIIIIIIIIII111II

CHANGE_NCO:

WAIT_1_FRM:

LDI
LDI
STI
CALL
LDI
LDI
B

LDI
STI

LDI
LDI
STI

CALL

LDI
LDI
LDI
STI
STI

LDI
LDI
CMPI
BNE
LDI
CMPI
BEQ

LDI
LDI
STI

CALL

BSSPG.DP
CONVERGED, RO
RO,©trigger
CHG_FSTATE
BSSPG.DP
9new_state, R2
R2

BITCLR.RO
RO,8tx_fine_en

BSSPG.DP
8returned_est,RO
RO,9phs_rnded

START_NCO

BSSPG.DP
9hop_cnt.R0
9frm_cnt,Rl
R0,8hop_ref
R0,9frm_ref

BSSPG.DP
9hop_cnt, RO
9hop_ref,R0
WAIT_1_FRM
9frm_cnt,R0
9frm_ref,R0
WAIT_1_FRM

BSSPG.DP
9original_phase,RO
RO,9phs_rnded

.-stop fine probes during NCO adjustment

.-change phase value on NCO

.-save current hop and frame #

;NCO adjusted over 320 hops

START_NCO ;change NCO phase back to orig value

111
Trigger = ADJ_COMPL, GO TO STATE 2 (TX_FPROBES)

11111111111111111 ii ii i ii ii ii ii ii in ii ii inn in in ii in in in muni muni

LDI
LDI
STI
CALL
LDI
LDl'
B

BSSPG.DP
ADJ_COMPL,R0
R0,9trigger
CHG_FSTATE
BSSPG.DP
9new_state,R2
R2

**
; STATE 4: FINE_NT_ACH **

NOCONVERG:
LDI
LDI
STI

BSSPG.DP
FINE_NT_ACH,RO
RO,9curr_state

B55

LDI
LDI
ST I

BITSET.RO
DPMEMPG,DP
RO,@NO_FSYNC

;set flag on PC

RETS ,-return to TMS_UL2.ASM

********** * * * * * * * * * *
; STATE 5: GO. .2 _RUN ********** ** * * * * * * **

FINE_ACH:
LDI
LDI
STI

LDI
LDI
STI

k* * * * **

BSSPG,DP
GO_2_RUN,R0
R0,8curr_state

DPMEMPG,DP
BITSET.RO
RO, @FSYNC_OK

;set flag on PC

********* *******
;return to TMS_UL2.ASM

; DATA_ERROR STATE, return to TMS_UL2.ASM, flag to PC already set in ISR
**

DATA_ERROR:
RETS

**
STATE
ft************************************

.globl CHG_FSTATE
************************ *************************

CHG_FSTATE:
PUSH DP
PUSH RO
PUSHF RO
PUSH Rl
PUSHF Rl
PUSH R2
PUSHF R2
PUSH ARO
PUSH IRO

LDI BSSPG.DP
LDI 9trigger,R0
LDI NUM_COL,Rl
BPYI R0,R1
ADDI 8curr_s täte,Rl
LDI Rl, IRO
LDI DATAPG.DP
LDI 8STATE_TBL,AR0
LDI *+AR0(IR0),R2
LDI BSSPG.DP
STI R2,8new_state

POP IRO
POP ARO
POPF R2
POP R2
POPF Rl
POP Rl
POPF RO
POP RO
POP DP

.end

B56

B5. DSP interrupt service routine

******** * *** ***

Description:

Program Name:
Author:
Date:
Edited:

UL_ISR.ASM
C. Tom
09 May 1997
30 March 1998

Interrupt service routine for uplink synchronization for
the ground terminal simulator. On each rising edge of hop
clock, GT status is read, hop/frm counters are updated,
able to check for FRO pulse,and check whether to send
coarse synch probes

******* ****************** **************************** ***************

«*«* Subroutine declarations *****

.globl GT_ISR

**** Miscellaneous constants ****

XF0_EN .set 2h
XF_SET .set 6h
XF_CLR .set OFFFBh

BITCLR .set 0
BITSET .set 1

MODE4 .set 4
MODE6 .set 6
MODE7 .set

.data

7

VAR_BASE .word gt_vars

* Indices for gt. _var s. parameters array

NUM_HOP .set 0
MAX_FRM .set 1
MAX_HOP .set 2
PRB_START .set 3
SRCH_LIM .set 4
TIMES_4_CONFM .set 5
RESP_BUF_SIZ .set 6

**** Status bits mask ****

BER_tx_rdy .set 8000h
BER_oflo_bit .set 4000h
FR0_BIT .set 800h
HCLK_BIT .set lh
DAT_UFLO ■ set

.data

8h

PN_LIMIT .word OFFFFFFh
DBUG_ADDR .word 809A00h

**** Data page pointers ****

INIPG .set Oh
DPMEMPG .set 3h
BSSPG .set 8 Oh
DATAPG .set Oh
DSPLNKPG .set 8 Oh
BUSPG .set 8 Oh
DBUGPG .set 8 Oh

;detect FRO enable mode
;coarse synch mode
;fine synch mode

BIT 15 of BER status
BIT 14 of BER status
BIT 11 of BER status
BIT 0 OF GT status
BIT 3 OF GT status

;HSC max hop number 16777215
;addr of first entry in dbug array

**** DPMEM addresses ****

* DPBASE to DPBASE+17h, DPBASE+30h TO DPBASE+34h used in TMS_UL2.ASM
* DPBASE+19h to DPBASE+2Bh, DPBASE+2Eh used in CSYKC.ASM

RIS_DET
CHK_HOP
CHK_FRM
UFLO_CDTN

.set

.set

.set

.set

30018h
3002Ch
3002Dh
30049h

**** BER i/f board addresses ****

CMD_BER
STAT_BER
BER_DAT_PORT

.set

.set

.set

800009h
800009h
800008h

WRITE only
READ only
READ/WRITE

**** GT i/f board addresses

B57

COMMAND
STATUS
INTRPT_PORT
HSC_PORT
FSK_FRM

.set

.set

.set

.set

.set

800004h
800004h
800005h
800006h
800007h

WRITE only
READ only
READ only
WRITE only
WRITE only

■** HSC commands **

FCALC
Ul_FPROBE
TX_OFF

.set

.set

.set

5800h
13h
80h

Reserve memory in .bss for variables ****

.globl

.bss

.globl

.bss

.globl

.bss

.globl

.bss

.globl

.bss

.globl

.bss

.globl

.bss

.globl

.bss

BER_stat
BER_stat,l
hop_cnt
hop_cnt,1
frm_cnt
frm_cnt,1
BER_data
BER_data,1
prev_FR0
prev_FR0,1
chk_FR0_flg
chk_FR0_flg,l
array_cnt
array_cnt ,• 1
fburst_cnt
fburst_cnt,1

;00010011, FSK/CHAN FOR USER 1
;set RF_OFF "high" when not transmitting f probes

**** Variables defined elsewhere ****

.globl op_mode

.globl tms_csync_rdy

.globl assigned_f

.globl brst0_flg

.globl brstl_flg

.globl hyp_used

.globl act_prb_hop

.globl prb_cmd

.globl dbug_adr

.globl gt_vars

.globl allocated_f

.globl burst_compl

.globl tx_fine_en

.text

GT_ISR:
PUSH
PUSH
PUSH
PUSH
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSH
PUSH
PUSH
PUSH

DP
ST
IE
IOF
R0
RO
Rl
Rl
R2
R2
AR0
IR0
AR1
IR1
AR2

;Step 1: Read GT i/f board interrupt port to clear interrupt

LDI
LDI
NOP
NOP
NOP

;Step 2: Update hop and frame counters

DSPLNKPG.DP
9INTRPT_PORT,R0 ;read GT INTRPT_PORT to clear interrupt

LDI
LDI

DATAPG,DP
9VAR_BASE,AR2

LDI
LDI
CMPI
BLT
LDI
STI
LDI

BSSPG,DP
8hop_cnt,R0
*+AR2(MAX_HOP)
INCR_BY_1
0,R0
R0,9hop_cnt
6frm_cnt,R0

R0
;update hop and frame counters

B58

CMPI
BLT

*+AR2(MAX_FRM) , RO
INCR_FRM

RES_FRM_CNT:
LDI
LDI
ST I
B

0,R0
BSSPG.DP
RO,@frm_cnt
WHICH_MODE

ADDI
STI
B

1,R0
R0,@frm_cnt
WHICH_MODE

INCR_BY_1:
ADDI
STI

l,RO
RO, @hop_cnt

;Step 3: Determine which mode of operation GT sync processor is in

WHICH_MODE:
LDI
LDI
CMPI
BEQ
CMPI
BEQ
CMPI
BEQ
B

BSSPG.DP
8op_mode,RO
MODE6.R0
COARSE
MODE7,RO
FINE
MODE4.R0
DET_FR0
WRAP_UP ;do nothing else for this interrupt

******************** ********************************* **************
; Code for Coarse Synch mode, probe transmission

COARSE:

FR_ASSIGN_CHK:

LDI
LDI
CMPI
BNE

LDI
CMPI
BNE

LDI
LDI
LSH
STI

LDI
LDI
CMPI
BNE

BSSPG.DP
8tms_csync_rdy,R0; check if precalc time has elasped
BITSET.RO
WRAP_UP

8hop_cnt,RO
0.R0
FR_ASSIGN_CHK

DSPLNKPG.DP
FCALCRO
16, RO
R0,8HSC_PORT

BSSPG.DP
8assigned_f.R0
BITSET.RO
WRAPUP

.-check for hop

.-issue FCALC command if hop

;is current frame assigned
; csynch frame

for now, issue both burst 0 and burst 1 probes from ISR, i.e., wait
falling edge in ISR to send burst 1 probes...not as efficient...
will see later about a hardware fix to switch to /HCLK

HOP_CHK:

TX_B0:

LDI
LDI
CMPI
BEQ

LDI
CMPI
BEQ

LDI
LDI
LDI
CMPI
BLT
LDI
STI

LDI
LDI
LSH
LDI
STI
LSH
ADDI
LDI

BSSPG.DP
8brstO_flg.RO
BITSET.RO
TX_B0

8brstl_flg.R0
BITSET.RO
TX_B1

BSSPG.DP
8act_prb_hop, RO
8hop_cnt, Rl
R0.R1
WRAP_UP
BITSET.RO
R0,8brst0_flg

BSSPG.DP
8prb_cmd.R0
16, R0
DSPLNKPG.DP
R0, 8HSC_PORT
-16.R0
2.R0
BSSPG.DP

.-check if already started probe tx

;check if already started probe tx

;(R1-R0) -> Rl
;do nothing if hop_cnt < act_prb_hop

.•send ULGO command, sync probe

B59

STI RO,Qprb_cmd ;update ULGO command
CMPI 220h,RO ;check if all of brst 0 probes sent
BNE WRAP_UP
LDI BITCLR.RO
LDI BSSPG.DP
STI RO,@brstO_flg ;clear brstO_flg
LDI BITSET.RO
STI RO,@brstl_flg ;set brstl_flg
B WRAP_UP

TX_B1:
WAIT_FALL_HCLK

LDI DSPLNKPG.DP
LDI 8STATUS.R0 ;wait for falling edge of HCLK
LSH -16,RO
TSTB HCLK_BIT,RO
BNZ WAIT_FALL_HCLK

LDI BSSPG.DP
LDI 8prb cmd.RO
LSH 16, RO
LDI DSPLNKPG.DP
STI RO,9HSC_P0RT ;send ULGO command, sync probe
LSH -16,RO
ADDI 2,RO
LDI BSSPG.DP
STI RO,@prb_cmd ;update ULGO command
CMPI 240h,R0 ;check if all of brst 1 probes sent

BNE WRAP_UP
LDI BITSET.RO
LDI BSSPG.DP
STI RO,8hyp_used ;signal TMS that hyp sent
B WRAP_UP

************** *********** * ***
,-Code for fine synch mode transmitting fine synch probes or RF_OFF

FINE:
LDI DSPLNKPG,DP
LDI 8STATUS,RO
LSH -16.R0
TSTB DAT_UFLO,R0
BZ FLO_OK

LDI BITSET.RO ;THIS IS NOT A CLEAN EXIT
LDI DPMEMPG.DP
STI RO,8UFLO_CDTN

B WRAP_UP
FLO_OK:

LDI BSSPG.DP
LDI 8tx_fine_en,R0
CMPI BITSET.RO
BNE SEND_RF_OFF ;RF_OFF sent every hop as default

LDI 8allocated_f,R0
CMPI BITSET.RO
BNE SEND_RF_OFF ;RF_OFF sent every hop as default

LDI 8hop_cnt, RO
CMPI *+AR2(PRB_START) ,R0 ,• check for hop >= "288"
BLT SEND_RF_OFF ;RF_OFF sent every hop as default

LDI U1_FPROBE,RO
LSH 16, RO
LDI DSPLNKPG,DP
STI R0,8FSK_FRM ;send user 1 fine synch probe

LDI BSSPG,DP
LDI 8fburst_cnt,R0
ADDI 1,R0
STI R0,8fburst_cnt
CMPI 32, RO ,• check if all probes sent yet
BLT WRAP_UP

LDI BITSET.RO
STI RO,8burst_compl ; set flag for TMS that burst has been s

B WRAP_UP

SEND_RF_OFF:
LDI TX_OFF,R0
LSH 16,RO
LDI DSPLNKPG.DP
STI RO,8FSK_FRM ;default command to FSK/CHAN port

B WRAP_UP

B60

****** ************* ******** ******************
;Code for DL synch mode, detecting FRO pulse and adjusting hop/frm coutners

DETFRO:
LDI
LDI
CMPI
BNE

BSSPG.DP
@chk_FR0_flg,R0
BITSET.RO
WRAP_UP

CHK_BER_STAT:

GET_FR0:

LDI
LDI
NOP
NOP
NOP
LSH
LDI
STI

LDI
LDI
AND
CMPI
BEQ
BGT

DSPLNKPG,DP
@STAT_BER,RO

-16.R0
BSSPG,DP
R0,8BER_stat

BSSPG,DP
8BER_stat.R0
FR0_BIT,R0
8prev_FR0, RO
WRAP_UP
SYNC_RIS

,-read BER status

SYNC_FALL:
LDI
STI
LDI
STI
ADDI
STI
B

BSSPG,DP
RO,8prev_FR0
0,R0
RO,8hop_cnt
1,R0
R0,8frn_cnt
WRAP_UP

;falling edge detected, hopO.frO

SYNC_RIS:

RESETCNTS:

LDI
STI
LDI
LDI
LDI
STI
STI
LDI

LDI
STI
STI

LDI
LDI
STI

BSSPG.DP
RO,8prev_FR0
8hop_cnt, RO
8frn_cnt,Rl
DPMEMPG.DP
RO, 8CHK_H0P
R1,8CHK_FRM
BSSPG,DP

O.RO
RO, Bhop_cnt
R0,8frm_cnt

DPMEMPG.DP
BITSET.RO
RO, 8RIS_DET

.•rising edge detected, hopO.frO

.-transfer hop and frame count before reset

.-signal PC that rising edge detected

LDI
POP
POP
POP
POP
POP
POPF
POP
POPF
POP
POPF
POP
POP
POP
POP
POP

O.IF
AR2
IR1
AR1
IRO
ARO
R2
R2
Rl
Rl
RO
RO
IOF
IE
ST
DP

RETI

.end

B61

B6. TMS Linker .cmd File

/*
/•
/*
/*
/*
/•
/*
/*
/*

Program Name: UL2 . CMD
Date: 06 October 1997

Previously, you had to enter:

lnk30 -c <input filenames> -o <output filename> -1 rts.lib

*/
*/
*/
*/
*/
*/
*/

/* Input filenames */

tms_ul2.obj intrpts.obj ul_isr.obj csync.obj fsync.obj

-m tms_ul2.map
-o tms_ul2.out

/* Specify memory map for c30

/* Create a map file V
/* Output filename */

MEMORY
(

VECS: origin = 0 length = 0x40 /* Int vectors */
Prg_mem: origin = 0x40 length = 0x9fcO /* Program memory */
DP_mem: origin = 0x30000 length = 0x10000 /* Dual port memory */
RAM_0: origin = 0x809800 length = 0x400 /* RAM Block 0 */
RAM_1: origin = 0x809c00 length = 0x400 /» RAM Block 1 */
EXT_MEM0: origin = 0x80A000 length = OxCOO /* Ext mem block 0 */
EXT_MEM1: origin = 0x80AC00 length = OxCOO /* Ext mem block 1 */

)

/* Specify "Sections" allocations into memory */

SECTIONS
{

VECTORS 000000h {)
.text {} > Prg_mem 1
.cinit (} > Prg_mem 1
.stack {) > RAM_0 1
.data {) > Prg_mem 1
. bss {} > RAM_1 1
.sysmem {) > RAM_0 1
DBUG_LOG {} > EXT_MEM0 1

Code */
Initialization tables */
System stack */
Assign memory for .data section */
Global & static variables */
Dynamic memory */
Debug log area */

B62

Appendix C: ASCII Data Files

Cl. General

The three ASCH data files that contain parameters required to operate the GT simulator
are listed in this appendix. The use of ASCII data files facilitates changes to parameters without
having to recompile the assembly and C programs. The three data files are: "freq.dat",
"hscinit.dat", and "Gtparam.dat".

C2. Freq.dat file

ASCII file of frequency parameters
Created: 19 March 1997

"freq.dat*

Ensure indices correspond to PC program indices for frequency values

index

0
1
2
3
4
0
1
2
3
4
5
6
7
6
7

End of file

value(hex)

0X3B9ACA00L
0X77359400L
0X59682F00L
0X4A817C80L
0X684EE180L
0X1A96F220L
0X1A9CE590L
0X1A99EBD8L
0X1A986EFCL
0X1A9B68B4L
0xl234L
0X3B9ACA00L
0X3B9ACA00L
0X1A96F220L
0X5F37OL

description

LO_BAND 1 GHz for COMSTRON, in Hz
UP_BAND 2 GHz for COMSTRON, in Hz
MID_BAND 1.5 GHz for COMSTRON, in Hz
ONEQ_BAND 1.25 GHz for COMSTRON, in Hz
THREEQ_BAND 1.75 GHz for COMSTRON, in Hz
LO_BAND 44.61 GHz /100 Hz for SCITEQ
UP_BAND 44.649 GHz /100 Hz for SCITEQ
MID_BAND 44.6295 GHz/100 Hz for SCITEQ
ONEQ_BAND 44.61975 GHz/100 Hz for SCITEQ
THREEQ_BAND 44.63925 GHz/100 Hz for SCITEQ
STOP_FSEL
Base frequency 1 GHz for COMSTRON, in Hz
Hop BW 1 GHz for COMSTRON, in Hz
Base frequency 44.61 GHz/100 Hz for SCITEQ
Hop BW 39 MHz/100 Hz for SCITEQ

Cl

C3. Hscinit.dat file

\ ASCII file of HSC parameters - "hscinit.dat"
\
\
\
\
\

Created: 5 March 1997

Ensure indices correspond to TMS program indices for HSC parameters

VALUES FOR THE SCITEQ
\
\
\
d

index

0

value(hex) description (< 40 char)

0F220 BASE_L16 44.61GHz/100Hz
d 1 1A96 BASE_H16 44.61GHz/100Hz
d 2 0F9B8 BWSCALE_L16 39MHZ/2/100HZ
d 3 2 BWSCALE_H16 39MHZ/2/100HZ
d 4 17C0 HOP_BW_L16 39MHz
d 5 253 HOP_BW_H16 39MHz
d 6 0 DOPF_L16
d 7 0 DOPF_H16
d 8 0 FCSPACE_L16 no FSK modulation
d 9 0 FCSPACE_H16 no FSK modulation
d 10 0 FLAGS_L16
d 11 0 FLAGS_H16
d 12 1060 LOSCI_L16 (BASE - 1.5GHz)/100Hz Ray
d 13 19B2 LOSCI_H16 (BASE - 1.5GHz)/100Hz Ray
d 14 1060 LOCOM_L16 (BASE - 1.5GHz)/100Hz Ray
d 15 19B2 LOCOM_H16 (BASE - 1.5GHz)/100Hz Ray
d 16 0 OFFSET_L16
d 17 0 OFFSET_H16
d 18 5A81 TIMELO_L16 hopl29,frame72 (arbitrary)
d 19 0 TIMELO_H16
d 20 0 TIMEHI_L16
d
\
\

21 0 TIMEHI_H16

VALUES FOR THE COMSTRON
\
\
\
\

index

0

value(hex) description (< 40 char)

9680 BASE_L16 lGHz/lOOHz Comstron
\ 1 98 BASE_H16 lGHz/100Hz Comstron
\ 2 4B40 BWSCALE_L16 lGHz/2/lOOHz Comstron
\ 3 4C BWSCALE_H16 lGHz/2/100Hz Comstron
\ 4 0CA00 HOP_BW_L16 1GHz Comstron
\ 5 369A HOP_BW_H16 1GHz Comstron
\ 6 0 DOPF_L16
\ 7 0 DOPF_H16
\ 8 0 FCSPACE_L16 no FSK modulation
\ 9 0 FCSPACE_H16 no FSK modulation
\ 10 0 FLAGS_L16
\ 11 0 FLAGS_H16
\ 12 0 LOCSCI_L16 Comstron
\ 13 0 LOSCI_H16 Comstron
\ 14 0 LOCOM_L16 Comstron
\ 15 0 LOCOM_H16 Comstron
\ 16 0 OFFSET_L16
\ 17 0 OFFSET_H16
\ 18 5A81 TIMELO_L16 hopl29,frame72 (arbitrary)
\ 19 0 TIMELO_H16
\ 20 0 TIMEHI_L16
\
\

21 0 TIMEHI_H16

:nd of file

C2

C4. Gtparam.dat Hie

\Data file for parameters to be downloaded to TMS memory for GT processor
\ "Gtparam.dat"
\ Created: 19 March 1997
\

Value Comments
\
\Type

\

Inde

\ 0
d 1
d 2
d 3
d 4
d 5
d 6
d 7
d 8
d 9
d 10
d 11
\
\End of file

320 NUM_HOP = number of hops
191 MAX_FRM = maximum frame number
319 MAX_HOP = maximum hop number
288 PRB_START = starting hop number for probes
32 SRCH_LIM = search limit for hypothesis
5 TIMES_4_CONFM = # detects to confirm coarse synch
25 RESP_BUF_SIZ = synch resp buffer size
5 MIN_DET_2_VER = min # of detects before verified
15 NUM_RETRANSMITS = # of attempts to verify detect
6 LIH_10 = est range within 10 % of a hop
5 MIN_4_CONV = # times f est in LIM_10 range
25 MAX_ATTEMPTS = max # of attempts to adjust NCO

C3

-115-
UNCLASSEFTED

SECURITY CLASSIFICATION OF FORM

(highest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (the name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Establishment sponsoring
a contractor's report, or tasking agency, are entered in section 8.)

Defence Research Establishment Ottawa
Ottawa, Ontario
K1A0Z4

2. SECURITY CLASSIFICATION
(overall security classification of the document
including special warning terms if applicable)

UNCLASSIFIED

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S.C or U) in parentheses after the title.)

Ground Terminal Simulator Implementation for Uplink Synchronization Trials (U)

4. AUTHORS (Last name, first name, middle initial)

Tom, Caroline

5. DATE OF PUBLICATION (month and year of publication of
document)

November 1998

6a. NO. OF PAGES (total
containing information. Include
Annexes, Appendices, etc.)

129

6b. NO. OFREFS (total cited in
document)

11

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of
report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.

DREO Report

8. SPONSORING ACTIVITY" (the name of the department project office or laboratory sponsoring the research and development. Include the
address.

5CA11

9a. PROJECT OR GRANT NO. (if appropriate, me applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant)

9b. CONTRACT NO. (if appropriate, the applicable number under
which the document was written)

10a. ORIGINATOR'S DOCUMENT NUMBER (the official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

DREO REPORT 1341

10b. OTHER DOCUMENT NOS. (Any other numbers which may
be assigned mis document either by the originator or by the
sponsor)

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

X) Unlimited distribution
) Distribution limited to defence departments and defence contractors; further distribution only as approved
) Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved
) Distribution limited to government departments and agencies; further distribution only as approved
) Distribution limited to defence departments; further distribution only as approved
) Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to
the Document Availability (11). however, where further distribution (beyond the audience specified in 11) is possible, a wider
announcement audience may be selected.)

Unlimited Announcement

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM RA.W (21 Dec 92)

-116-

UNCLASSDTffiD
SECURTTY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable mat the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U).
It is not necessary to include here abstracts in both official languages unless the text is bilingual).

A ground terminal (GT) simulator was developed at Defence Research Establishment Ottawa (DREO) as part of an in-house
activity examining aspects of uplink synchronization for extremely high frequency (EHF) satellite communications
(SATCOM) using frequency hopping. The GT simulator consists of a GT processor, custom interface boards, synthesizer
controller, frequency synthesizer, and data source. The GT processor is the principal component of the simulator and is
realized by a TMS320C30 digital signal processor board. This report describes the implementation of the GT processor
functions relating to uplink synchronization and the interfaces between the various components of the simulator. This report
also describes the synchronization procedure for the GT simulator. The procedure is broken down into three steps: downlink
synchronization; uplink coarse synchronization; and uplink fine synchronization. A guide on the hardware installation of
the various components of the GT simulator and a list of the executable files needed to run the simulator is provided in an
appendix.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment
model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected
from a published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to
select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

ground terminal simulator
uplink synchronization
coarse synchronization
fine synchronization
digital signal processor
EHF satcom

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

