
DESIGN OF THE COMPUTER 

SUBSYSTEM FOR THE AFIT 

SIMULATION SATELLITE {SIMSAT) 

THESIS 
Michael P. Hanke 

GS-13, USAF 

AFIT/GSE/ENY/98D-1 

DEPARTMENT OF THE AIR FORCE 

AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 



AFIT/GSE/ENY/98D-1 

DESIGN OF THE COMPUTER 

SUBSYSTEM FOR THE AFIT 

SIMULATION SATELLITE (SIMSAT) 

THESIS 
Michael P. Hanke 

GS-13, USAF 

AFIT/GSE/ENY/98D-1 

Approved for public release; distribution unlimited 

DTIG QXMLIxy E7C520TBID 1 

■:,M 



The views expressed in this thesis are those of the author and do not reflect the official 

policy or position of the Department of Defense or the United States Government. 



AFIT/GSE/ENY/98D-1 

DESIGN OF THE COMPUTER 

SUBSYSTEM FOR THE AFIT 

SIMULATION SATELLITE (SIMSAT) 

THESIS 

Presented to the Faculty of the School of Engineering 

of the Air Force Institute of Technology 

Air University 

In Partial Fulfillment of the 

Requirements for the Degree of 

Master of Science in Systems Engineering 

Michael P. Hanke, B.S.E.E. 

GS-13, USAF 

December, 1998 

Approved for public release; distribution unlimited 



AFIT/GSE/ENY/98D-1 

Approved: 

DESIGN OF THE COMPUTER 

SUBSYSTEM FOR THE AFIT 

SIMULATION SATELLITE (SIMSAT) 

Michael P. Hanke, B.S.E.E. 

GS-13, USAF 

>4/w5£C Maw*—- i t>£C(Vg> 
Lieutenant Colonel Stuart Kramer Date 

/ 

7#*?t 
Dr. Curtis Spenny 
Committee Member 

2=^ 
Captain Gregory Agnes Date 
Committee Member 



Preface 
While only one author is listed on this volume, the research was part of a larger team 

effort. The second part of the total system design effort will be completed in March 1999. 

The computer subsystem design effort documented here was not developed in a vacuum, 

but required the support of the five authors responsible for the second volume [8]. Ideally 

the simulation satellite (SIMSAT) design effort would have been documented in a single 

document, but academic imperatives required this author graduate earlier than the rest of 

the team, so some part of the overall design had to be completed early. As fate would have 

it, the author's area of expertise and the subsystem to be implemented first coincided. 

As will be seen in this document, maintaining a total system perspective in the 

design process was not sacrificed to provide an expedient research topic. In fact, based 

upon the way the process was executed over the past few months, the computer subsystem 

would likely have still been a little ahead of the rest of the system design effort because 

a significant portion of the computer subsystem became available before the team began 

their design effort. The availability of DSPACE equipment early in the process established 

it as the baseline for all the engineering design studies the team conducted. The final design 

outcome was to use the DSPACE system, but not until every design decison confirmed 

DSPACE as the best alternative available. 
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Abstract 

This document details the systematic development of the computer subsystem for the 

AFIT Simulation Satellite (SIMSAT) from Concept Exploration to Implementation. This 

subsystem design effort was conducted as part of a larger four-phase team design effort 

to implement a fully functional, user-friendly test facility to meet current AFIT teaching 

and research requirements. Once SIMSAT system integration is complete, control laws 

will execute on the free-floating "satellite" to reduce communication systems overhead 

and its impact on control law execution, thereby allowing for more robust control system 

development and execution. Control law development, simulation, and interactive control 

of the system will occur through a "ground station" graphical user interface to enhance 

simulation capability and provide for more intuitive system control. The final subsystem 

design decision made in this effort was to implement the computer subsystem with an 

integrated hardware/software, commercial, off-the-shelf system. Detailed information on 

the design process, computer subsystem implementation, lessons learned, suggestions for 

future work, and procedures for system use are included in this document. 
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DESIGN OF THE COMPUTER 
SUBSYSTEM FOR THE AFIT 

SIMULATION SATELLITE (SIMSAT) 

I.   Introduction 

1.1    Overview 

In recent years, the U. S. military has increasingly realized the importance of space as 

a strategic and tactical resource. Satellite imagery, GPS-guided munitions, missile warning, 

and global communications for deployed forces exemplify the value of space assets in defense 

planning. Recognizing the value of these significant resources, the USAF has shifted its 

focus from being strictly an air force to becoming the premiere air and SPA CE force by the 

year 2025 [62]. Accordingly, the Air Force Institute of Technology (AFIT) responded by 

developing curriculum and conducting research to support space operations and cutting- 

edge space technologies [34]. Unfortunately, much of the space-related work at AFIT has 

been limited to computer simulation or stationary laboratory experiments due to a lack 

of representative space hardware. Consequently, AFIT needed to augment its laboratory 

facilities with a more realistic space-platform simulator. With a realistic satellite simulator, 

AFIT would be able to implement practical experiments, demonstrate fundamental motion 

principles, and extend Air Force research capabilities. Additionally, a realistic satellite 

simulator would provide a hands-on learning tool to enhance the educational experience 

of AFIT students, particularly in the area of satellite attitude dynamics. 

To initiate the development of the simulator, AFIT purchased a Tri-Axis Air Bearing 

System from Space Electronics, Inc. of Berlin, Connecticut. The system consists of an air 

bearing (spherical rotor, hollow shaft, and mounting flanges), a pedestal, and an air com- 

pressor. Figure 1.1 shows the free-floating portion of the air bearing assembly. Compressed 

air flows inside the pedestal (at approximately 75 psi) to six small jets in the air bearing 
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cup. The spherical rotor then floats above the cup on a gas film less than 0.0005 inch thick. 

The air bearing is capable of 360° of yaw (rotation about the vertical axis), 360° of roll 

(rotation about the horizontal axis), and ±25° of pitch (tilt in the vertical plane). The air 

bearing can support objects weighing up to 300 pounds [57]. Not capable of any motion 

without attached components, the Tri-Axis Air Bearing System served as the "backbone" 

for the development of the AFIT satellite simulator. 

Figure 1.1     Air Bearing Assembly [8] 

To implement the total system, two independent, yet synergistic, design efforts were 

undertaken by a team of six AFIT Graduate Systems Engineering students: the computer 

subsystem design effort documented here and an overall design effort documented in [8]. 

Throughout the system design process, the two efforts were closely tied, but the logistics 
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that drove the need to separate the efforts added some interesting twists to implementing 

the design. 

This chapter provides a top-level description of the problem AFIT faced, the path 

taken to solve that problem, and a short list of assumptions made to narrow the scope 

of this research. The chapter concludes with a concise description of the problem and 

objectives for this research effort, a summary of the final design solution, and an overview 

of the rest of the document. 

1.2    Initial Design Requirements 

To close the gap between space operations theory and application, AFIT tasked the 

1999 Graduate Systems Engineering Team to develop a satellite simulator (which became 

known as the SIMulation SATellite—SIMSAT) using the air bearing assembly (Figure 1.1) 

as the foundation of the solution. The team's charter was to formalize the customer's 

requirements for the simulator, design a system to meet those requirements, order parts, 

and perform as much of the system integration/implementation as possible before March 

1999. 

As with any development effort, this one began with a problem to be solved, a need 

to be filled. To provide the team an initial focus, the customer (the team's academic 

advisors) developed a "statement of need" as a one-line summary of the problem to be 

tackled: 

AFIT needs to simulate satellite behavior with as much fidelity as possible 

This needs statement served as a starting point from which the team developed more 

detailed design requirements. 

The first meeting of all the team members and their AFIT advisors allowed the team 

to "sit down with the customer" and determine' more details of the system requirements. 

The principal users of the simulator, the team's academic advisors, indicated SIMSAT 

should [33]: 

• support research and educational needs 
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- perform pure and "dual" spin experiments 

- support three-axis rigid and flexible structure experiments 

- host a variety of experimental payloads 

• be simple to use 

- setup and run meaningful experiments with only one researcher and one tech- 

nician in less than a week 

- display experiment data to allow intuitive real-time data analysis 

- easily store data to allow for future replay/analysis 

• be safe—as required, the following design techniques should be employed: 

. — highly reliable and/or redundant critical components 

- containment of components that could fail catastrophically 

• stay within budgetary and scheduling constraints 

- total initial costs should remain under $100K (additional funding may be pos- 

sible, but will add to the total development time) 

- the facility should available by 1st Qtr, FY 00 

Even from these top-level needs, it is clear the SIMS A T problem is multi-faceted. So 

how does one ensure simultaneous coverage of all the concerns that need to be addressed? 

How can one make sure that no critical aspects of the system get overlooked? Given 

several alternative solutions, how can the "best" alternative be selected? The answers to 

these questions, and others, form the foundation of the formal process known as "Systems 

Engineering." Some of the "variations on a theme" include "Systems Engineering is ..." 

... a process employed in the evolution of systems from the point when a need 
is identified through production and/or construction and ultimate deployment 
of that system for consumer use. [6:21] 

... concerned with the design and analysis of the whole system to achieve op- 
timum results. [45:US Naval Academy Definition] 
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... a top-down, life-cycle approach to the design, development, and deploy- 
ment of large-scale systems ... to meet the effective needs of users ... in a cost- 
effective, high-quality way. It uses the engineering thought process to analyze, 
model, and solve inter-disciplinary problems. [45:West Point Definition] 

... concerned with understanding the entire system, including its internal struc- 
ture, and its interaction with external variables. [45:AFIT Definition] 

... [a holistic attack of problems] to ensure a balanced treatment of all compo- 
nents and their interactions ... [45: Case Western Reserve Definition] 

... an inter-disciplinary approach encompassing the entire technical effort to 
evolve and verify an integrated life-cycle balanced set of system, people, prod- 
uct, and process solutions that satisfy customer needs. [45:MIL-STD-499B Def- 
inition] 

... [a process that] must ensure delivery of a system optimized to satisfy mission 
requirements that has the greatest possibility of success at the lowest cost. 
... [It] can be viewed as the technical arm of program management. [45:Martin 
Marietta Definition] 

... [an] iterative, but controlled process, in which user needs are understood 
and evolved through increasingly detailed levels of requirement specification 
and system design, to an operational state. [45:IBM Definition] 

... [a process that] integrates all the [appropriate] disciplines and specialty 
groups into a team effort forming a structured development process that pro- 
ceeds from concept to production to operation. [It] considers both the business 
and the technical needs of all customers with the goal of providing a quality 
product that meets the user needs. [64] 

... the design, production, and maintenance of trustworthy systems within cost 
and time constraints. [49:10] 

Clearly, there is no single commonly held definition for Systems Engineering, but they 

all share a common theme: Systems Engineering is not simply another engineering disci- 

pline [6:20]. Rather, it is a formal, multi-disciplined, iterative process for systematically 

developing customer needs, generating potential solutions to those needs, and determin- 

ing which alternative in that solution space would most effectively satisfy the customer. 

An effectively implemented Systems Engineering (SE) process would help ensure critical 

issues are addressed at appropriate times, and would aid any design team in managing 

complexity [49:9]. 
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1.3 Scope 

As already mentioned, the ultimate goal of this total design effort was to implement 

a high-fidelity satellite simulation facility. Since the list of desires in Section 1.2 was the 

only information initially provided to the team, the team's first task was to step back 

and determine what AFIT's detailed requirements were. To accomplish this task, the 

team's design work was divided into two major efforts: the computer subsystem design, 

and the design of the other subsystems, culminating in SIMS AT integration. This report 

documents the computer subsystem design effort, which directly supports the remaining 

satellite design effort (to be published in early 1999 [8]). The reason for this split was 

manifold and is explained in more detail in Chapter III, starting on page 3-2. 

With the problem thus limited in scope, it needed to be further constrained by what 

issues the team could control in the design and which issues were outside the domain of 

potential solutions they could develop. Determining the context of the system provided 

that focus. 

1.4 System Context 

To even the most casual observer, it is clear that satellite systems have two principal 

parts: the portion based in space (or the "Satellite") and the earth-bound portion (or the 

"Ground Station"). With this intuitive separation in traditional satellite systems, it made 

sense to notionally consider SIMS AT the same way to establish its boundaries. Figure 1.2 

pictorially represents the top-level functionality of these system elements. The only issue to 

resolve was where the software controlling the satellite would execute: "on the satellite" or 

"on the ground"—there are tradeoffs with either choice. Determining the correct solution 

to that problem became the primary focus for this research effort and is addressed during 

Detailed Design, Chapter IV. 

Once the system context is defined, the next step in most SE processes is to ef- 

fectively decompose the large, complex problem into a smaller set of more manageable 

problems. To ensure no specific space system design requirements were overlooked, the 

team began their efforts by considering the information, data, and techniques presented in 
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"Satellite": 
Motion Sensing & Control 

•  Experiment Host 

V 
Control Law Execution 

Ground Station: 
• Command & Control 

Control Law Development * 
Simulation & Data Replay 

Data Storage 

Figure 1.2     Top-Level Representation of SIMS AT 

the Space Mission Analysis and Design (SMAD) text1. As Figure 1.2 infers a system con- 

text, the team decided to functionally decompose the system along the lines specified in the 

SMAD text [35:287]: Attitude Determination and Control (ADACS), Power, Command 

and Data Handling (C&DH), Communications, and Structures. The SIMSAT subsystems 

were defined as: 

• ADACS: provides determination and control of attitude and orbit position, plus 

pointing of spacecraft and appendages (in the SIMSAT design, this subsystem also 

includes the Propulsion functions required to provide thrust for adjusting attitude 

and managing angular momentum) 

• Power: generates, stores, regulates, and distributes electrical power 

• C&DH: processes and allocates commands; processes, stores, and formats data2 

JEven though the SMAD book [35] was intended for systems that actually deploy in space, the team 
frequently consulted it throughout the design effort. 

2As C&DH is a more problem-specific term for the SIMSAT computer subsystem, that designation will 
be used throughout the rest of the document to refer to the computer subsystem 
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• Communications: communicates with the ground (in SIMS AT, conveys the signals 

to/from the C&DH subsystem and the sensors /effectors3) 

• Structures: provides support structure and moving parts 

Section 2.2.4.1 (page 2-15) further elaborates on these subsystem definitions and the system 

context. 

Figure 1.3 provides a more complete representation of the top-level context diagram 

of the SIMS AT system. The figure illustrates the functional decomposition of the system 

and identifies obvious aspects of the environment (those things the team had to consider, 

but had little or no control over). Further documentation of each part of this figure will 

be addressed in Section 2.2.2.5 (starting on page 2-6). 

Size limitations 
Outside power requirements 
Temp/humidity factors 

AFTT policies 
Lab usage guidelines 
Advisors/oversight 

•x constraints 
Available materials 
Limited time allocation 

Flywheels, gyros, structures, etc. 
All test-articles not integral to 
system 

Environment 

Figure 1.3     SIMSAT Context Diagram [8] 

One item of interest in Figure 1.3 is the overlap shown between the C&DH and Com- 

munications subsystems. After working on the SIMSAT design for short time, it became 

3Effectors are those parts of the system that cause things to happen.   In this case, they could be 
momentum exchange devices, thrusters, etc. 
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clear there was an inexorable link between the two subsystems. The C&DH subsystem was 

so dependent upon the Communications subsystem that it drove many of the Communi- 

cation subsystem requirements—after the Concept Exploration Phase, the C&DH system 

was designed with the assumption that the communications subsystem would support it . 

Further rationale for the decision to unify the C&DH and communications subsystems will 

be covered in Chapter II. 

1.5    Approach 

While considering each subsystem as a part of the integrated whole, the subsystem 

designs went through a collaborative, systematic process to find the best way to imple- 

ment the system. Each subsystem was designated at least one subject matter expert to 

refine the subsystem requirements, research alternatives, and gather data for each poten- 

tial alternative. Alternative SIMS AT solutions were then defined by permutation of the 

subsystem alternatives using the Strategy Generation Table (SGT) approach mentioned 

in [28:47]—system solutions are developed by choosing one of each of the subsystem al- 

ternatives and integrating them. These composite, integrated SIMS AT system solutions 

were then evaluated to determine how well user values were met—attempting to select 

"optimal" individual subsystem alternatives was deemed inappropriate. 

Using this technique, the pool of potential system solutions could be enlarged by 

adding different subsystem alternatives and generating additional SIMS AT permutations 

(an evolutionary approach to finding better solutions). This process could also have led 

the team to revolutionary solutions: if their research to improve sub-optimal subsystem 

alternatives led to innovative solutions that crossed the arbitrary functional boundaries the 

team originally established, a whole new set of solutions could result. For example, if they 

decided that "smart" motors and sensors, with their own dedicated control software, solved 

some nagging ADACS problems, adding that subsystem point solution would generate an 

4In other words, aspects of the Communication subsystem design evaluated, selected, and integrated 
into SIMS AT in the follow-on effort [8] were effectively constrained by the requirements imposed by the 
C&DH subsystem selected in this portion of the design effort. 
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entirely new set of alternatives—the original "digital, computer-assisted control system" 

decision would likely no longer be appropriate. 

As mentioned before, the formal, iterative process to go from requirements to an 

implementation of the best integrated system is covered by the SE process. How the 

team provided for "independent" assessment of the computer subsystem is discussed in 

Section 3.2, starting on page 3-2. 

1.5.1 Systems Engineering Processes. In practice, most complex prob- 

lems are multi-faceted. The SE Process is intended to help solve these types of problems. 

One of the purposes of a systematic process is to effectively manage problem complex- 

ity [49:9], so it is clear the complexity of considering all the issues, across every subsystem, 

from identification of requirements to system implementation, must be addressed. Clearly, 

partioning problems functionally helps, but as the design evolves, the level of design detail 

increases, and a different set of problems need to be solved. But, if one could develop a 

standardized way of dealing with all problems, the complexity of problem resolution would 

be reduced to manageable, systematic sub-problem resolution, each defined by the exper- 

tise required, the level of design detail, and what part of the "problem-solving process" is 

being applied. 

A classic approach, referenced by much of the literature on SE processes, was devel- 

oped by Hall nearly thirty years ago [26]. As mentioned in that article, "morphological 

analysis" was a term coined to describe a process whereby one could "decompose a gen- 

eral problem or system into its basic variables, each variable becoming a dimension on a 

morphological box." Hall defined the dimensions of his "box" as: 

• Knowledge:   those "body of facts, models, and procedures" utilized during the 

process. 

• Time: a coarse division of the total process into major decision phase points reflect- 

ing the systems life-cycle. 

• Logic: a fine division of the total process into a set of problem-solving steps to be 

followed in every phase of the design life-cycle. 
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While Hall is not the only person that developed a comprehensive SE process (Sage, in [48], 

presents a comprehensive review of other processes developed through the late 1970's), it 

is frequently the standard against which others are compared. 

1.5.1.1 Knowledge Dimension. Hall's article defined this dimension 

to reflect an ever-increasing level of detailed knowledge as one advanced along this axis. 

However, the team determined there would be no impact to the design effort if they strictly 

used this dimension to list the technical specialties brought to bear on the problem. While 

Section 2.2.2.9 (page 2-10) provides a complete list of expertise used for the total SIMSAT 

effort, the principle disciplines required for the total design effort included: 

• Systems Engineering Management 

• Electrical 

• Computers 

• Space Operations 

• Structures 

Collectively, these skills ensured key issues were not overlooked, and system integration 

difficulties were resolved quickly and completely. 

1.5.1.2 Time Dimension. The next dimension in the Hall process is the 

coarse, top-level "time" dimension, also known as the life-cycle phases for the development 

effort. Hall's life-cycle phases, as defined in [49:42-43] and [26:156], are: 

• Program Planning: identification of the system requirements and types of projects 

necessary to meet those requirements 

• Project Planning: focuses on the completion of a number of specific projects that, 

when brought together, will fulfill the intents of the program 

• System Development: tasks in this step complete the subsystem designs identified 

in the project plans above, typically resulting in drawings, interface specifications, 

and bills of material 
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• Production: all the activities required to physically manifest the design solutions 

developed in the previous steps 

• Distribution: taking whatever steps are required to deploy the system to the field 

• Operations: the focus of the rest of the phases; typically includes periodic system 

maintenance 

• Retirement: taking the system out of service, perhaps due to obsolesence (re- 

placement with a more modern system) or life-limitations. If the system was mass- 

produced, this phase-out will typically occur over a period of time. 

1.5.1.3    Logic Dimension. The final aspect of Hall's SE process is 

the "logic" dimension which describes a standardized "problem-solving process": how do 

we make sure we are making good decisions? The idea behind describing such a process 

is to make problem-solving easier—having a consistent process that can be applied no 

matter what phase of the life-cycle the design effort is in reduces the confusion of process 

implementation. The steps of Hall's problem-solving process5, and a summary of the 

activities in each step (detailed in [49:44-45] and [26:156-157]), are6: 

1. Problem Definition: define the scope of the problem, those involved in helping to 

solve the problem, the constraints associated with the problem, and any assumptions 

being made as part of the SE process 

2. Value System Design: develop a hierarchy of values to allow for analytical com- 

parison of alternative tradable attributes 

3. System Synthesis: use whatever tools may be applicable to generate as many 

alternatives as possible. For most SIMSAT system-level solutions, the team used 

the previously mentioned Strategy Generation Table (SGT) technique mentioned 

in [28:47]. The only alternatives that should be disregarded during this step are 

those that violate the constraints identified in the first step 

5Hall states that these steps can be followed in any order. But since each step is based on the results 
of previous steps, a more realistic approach is to follow the steps sequentially, allowing iteration back to 
previous steps when corrections need to be made in the products of those steps. 

6These short-hand descriptions of the Logic dimension are taken directly from Sage [49:44-45]. Sec- 
tion 1.5.2.2 (page 1-17) summarizes how Sage's process effectively encapsulates the Hall seven step process. 
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4. System Modeling: determine how to measure each tradable attribute, assessing 

the range, scale, and units to be measured 

5. System Analysis: (also called 'Optimization' in some of the literature) collect raw 

data on the tradable attributes of each alternative, determine how to convert the raw 

data into common units (or "value"), and determine if any alternatives are dominated 

(and can be discarded) or dominate others (are at least as good, or better than, other 

alternatives in every attribute, and always better in at least one attribute) ; consider 

solution modifications to make "weak" solutions more competitive 

6. Decision Making: determine the weighting factors assigned to each attribute mea- 

sured, and the values they support. Uncertainty about the fidelity of the raw data 

is also factored into the analysis that leads to the recommended ranking of solutions 

7. Planning for Action/Implementation: document the design solution(s) selected 

and finalize the information developed during the process/phase to help prepare for 

the next life-cycle phase (as required) 

While these steps were introduced as a part of an elaborate SE process, careful consid- 

eration of this "logical" dimension to Hall's Morphological process reveals a procedure 

that could prove valuable no matter what the problem is. Even "simple" issues can ben- 

efit from systematically formulating the problem, analyzing the potential solutions to the 

problem, and then interpreting the results of that analysis. Such a process can help make 

any decision a good one (unfortunately, it cannot guarantee a good outcome). Figure 1.4 

(page 1-14) pictorially represents a total SE process, adapted from the Hall morphological 

box [26:159] to reflect a subset of the skills the team applied to this problem. 

1.5.1.4    Systems Engineering Processes Summary. In summary, 

the SE process is multi-faceted: several disciplines cooperatively iterate through clearly 

defined problem solving steps in every phase of the system life. The "column" in Figure 1.4 

illustrates that, for a given process step (i.e., System Modeling) in a given life phase (i.e., 

System Development), all relevant disciplines are concurrently brought to bear. Having all 

the experts involved in addressing the sub-problems reduces the likelihood key issues will 
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Figure 1.4     Systems Engineering Process Morphology 

be overlooked. It also helps the team become more sensitive to system-level interactions 

they might have otherwise not been considered. This figure also makes it clear that, to 

actually implement a design, the problem-solving process will need to be applied more 

than once to evolve a design from a set of needs to an integrated, working system. 

1.5.2    Process   Considerations. While all the life-cycle phases and 

problem-solving steps listed above could have been used in the team's development ef- 

fort, not all of them were really necessary or appropriate. Due to a limited planning 

horizon (design completion by March 1999), the Distribution, Operations, and Retirement 

phases were not applicable to the SIMSAT design effort. In addition, Program Planning 

was essentially accomplished by the customer before the team was established due to their 

familiarity with the SE process and the need to procure long lead-time items—the team 

only had to formalize the requirements the users had already identified. Similarly, the 

team found the fine resolution of Hall's Logic dimension to be excessive for the task at 

hand. 
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Clearly all the problem-solving steps, applied during each of the life-cycle phases, 

would help ensure the results of the design process would provide a great level of detail 

about the design (a critical concern in high risk projects). However, such a complicated 

process would be very cumbersome for simpler projects [49:33]. Since one goal of a sys- 

tematic process is to effectively manage a design's inherent complexity, any process that 

encumbers the design team and impedes design evolution is undesirable. 

An overly detailed or rigid process can lead to overemphasis of process objectives 

at the expense of completing design objectives in a timely fashion. A simple test of an 

overly constrained design process is to determine whether the process steps are significantly 

contributing to a better final design. If process steps are being accomplished strictly for 

their own sake, they are wasting the design teams valuable time and the clients resources. 

Conversely, a design process which is too flexible and unstructured provides an in- 

adequate framework for the design team to conceptualize solutions, compare alternatives, 

and finally choose a "preferred" system. As all the information above indicates, existence 

of a formal process can be a significant driver in keeping the design team on track and pro- 

viding bounds to the seemingly unbounded world of systems design. Thus, a formal design 

process is a useful tool for managing the complexity inherent in any design problem [49:9], 

but only if properly selected and implemented. 

Somewhat abstract processes are sufficient for simpler projects, especially if the risks 

associated with the design decisions are fairly low. For example, the risks associated with 

choosing the wrong location for a nuclear waste site would likely justify the time and money 

required to implement the full Hall process. Military acquisitions likewise justify using the 

full Hall process. But designing a kite is not nearly as critical and would not justify the 

same level of resource commitment. Developing a laboratory test facility, as in this effort, 

falls somewhere in between. The question indeed arises, what is the best systematic design 

process for the problem at hand? 

Sage suggests the following considerations when assessing the appropriateness of 

candidate SE processes [49:68]: 

1. proximity and number of participants 
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2. their experience with SE tasks and the anticipated systems usage 

3. cost and schedule budgets 

In this design effort, the key participants were all in the same building and were either 

intimately familiar with SE, the domain of the potential solutions and their usage, or both. 

And as mentioned before, a significant objective identified by the users was the actual oper- 

ation of SIMSAT prior to March 1999. Thus, the design team was faced with a moderately 

complex problem to be taken from conceptualization to integration (and operation, if pos- 

sible) in a very short period of time. The team needed to make several iterations through 

whatever design process was chosen/adapted. A straight-forward, formal (yet flexible), 

design process had to be developed to handle this schedule-driven design problem. The 

next two subsections detail the Time and Logic dimensions of the process they defined. 

1.5.2.1 Time Dimension. Largely due to time constraints, a simplified 

variation of the morphology depicted in Figure 1.4, was needed to reduce the process 

complexity. The team found a partial solution in a process developed by Sage [49:32-33]. 

There, he points out that "typical" SE efforts can be condensed down to effectively three 

basic life-cycle phases (using Sage's terms): 

• System Definition: The user perceives a need to be fulfilled. Requirements for the 

solution are formalized. If required, this phase would see the requirement put out 

for bid, evaluation of the responses returned, and selection of a vendor to develop a 

solution to the problem [49:33-34]. 

• System Design and Development: Between choosing a vendor and the critical 

design review, the vendor carries the system from requirements to detailed design 

(a significant effort). Some of the activities performed include system decomposi- 

tion into subsystems, detailed subsystem specifications (including detailed interface 

"drawings" and testing requirements), design and fabrication of subsystem compo- 

nents (hardware and software), implementation and testing of subsystems, followed 

by systems integration and test, and finally, development of documentation and sys- 

tem training for the user [49:35-36]. 
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• System Operation and Maintenance: System fielded by the vendor in conjunc- 

tion with the user. To achieve full capability, the system must complete Acceptance 

Testing (in a "controlled" lab environment) which could lead to system changes to 

meet the users REAL needs (expected to be minor changes since the user should have 

been adjusting the vendor's course, as required, earlier in the life-cycle). Formal ac- 

ceptance/operational deployment comes only after Operational Testing (duplicating 

field conditions). During operational use, other needs may be identified, leading to 

another design life-cycle to modify the system. Documentation of the system devel- 

opment plays a key role in this phase—thorough documentation makes it easier to 

modify the system and helps prevent unintended consequences [49:36-37]. 

Clearly, these aggregated life-cycle phases encompass the seven detailed Hall life-cycle 

phases listed previously. Table 1.1 summarizes the Hall life-cycle phases captured in each 

phase of the "typical" Sage SE process [49:42]. 

Life-Cycle Phases 
Sage Hall 

System Definition Program Planning 
Project Planning 

System Design & Development 
System Development 

Production 
Distribution 

System Operation & Maintenance Operations 
Retirement 

Table 1.1     Sage vs. Hall Life-Cycle Phases 

1.5.2.2 Logic Dimension. In addition to the complexity required to 

implement a full Hall life-cycle approach, his detailed problem-solving steps made the 

design process very cumbersome. The detailed, seven-step problem-solving process helps 

make sure all the important issues are considered. But, early in the SIMSAT design effort, 

the team found themselves trying to exhaustively complete one step before moving on to 

the next—they needed to find another model that would provide structure without being 

so confining.   Again, Sage had a "coarse" problem-solving process based upon the Hall 
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process [49:44-45]. The Sage process effectively captures the seven step Hall problem- 

solving process in three sub-categories: 

Issue Formulation. As a starting point for any design life-cycle 

phase, identification of problem characteristics and relevant issues must be accomplished. 

The following information should be identified or at least considered by the design team 

at this stage: actors involved in this stage of the design process, groups affected by the 

issues or proposed solutions, fields of knowledge required to solve problem, specific needs 

addressed by the problem, design alterables, imposed constraints, and cost and schedule 

considerations. The problem itself is isolated, quantified, and clarified. The system (or 

subsystem) to be developed is delineated from its surrounding environment. This abstrac- 

tion of the environment consists of those elements which significantly interact or affect 

the system (or subsystem), but are beyond the design teams sphere of control (at this 

stage). Determination of "what is the system?" and "what is the environment?" allows 

identification and classification of important interfaces between what the team can control 

and what it cannot for the SIMS AT design. 

Once needs are identified, discernment of the user's values for the solution to this 

problem begins. This process, often called the Value System Design (or VSD), is the 

formulation of key user values that will be used to guide the search for alternatives. The 

framework developed during this task, frequently called the values hierarchy, can then be 

used for comparison of alternatives. The process helps the user formalize what is important 

to them. 

The value hierarchy itself can vary in form. For some problems, qualitative assess- 

ments are sufficient, so formal, quantitative measures are unnecessary. For other problems 

or subproblems, the value hierarchy may be the enumeration of specific measurables by 

which all alternatives will be judged. Thus, the determination of a preferred solution must 

be accomplished quantitatively [28:23]. From a top-level systems architecting perspective, 

it is highly desirable to create a value hierarchy with associated measurables consistent 

with the level of detail appropriate to the particular life-cycle phase. 
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This approach to the VSD process can then be carried to each problem or subprob- 

lem encountered as the design evolves and goes through repeated iterations of the design 

process, adapting it to the level of detail required. In some instances, a formal values 

hierarchy may not even be required. In these cases, alternatives which are feasible (within 

constraints) may be chosen without searching for the preferred alternative. This approach 

is desirable for a variety of reasons: tight schedule constraints prevented detailed alterna- 

tives comparisons in each life-cycle phase, lack of reliable modeling data prevented precise 

comparisons, and the value of a preferred solution may be comparable to that of other 

feasible solutions. In that case, all the proposed alternatives would progress to the next 

life-cycle phase. 

The last task in Issue Formulation is System Synthesis. A set of alternative solu- 

tions are developed through research, brainstorming, reverse engineering, heuristics, and 

other means. These alternatives should appear feasible, but need not fully comply with 

constraints at this stage7. Generating these alternatives is at the core of systems archi- 

tecting [47:12-13]. Functional breakdown of the problem at hand is often a helpful first 

step, but there is no explicit methodology to generate solutions based on a given problem. 

This step is at the root of systems design. 

Analysis. The Sage Analysis step includes the system modeling 

and evaluation necessary to make decisions regarding which alternatives to pursue further. 

The first aspect of this step, System Modeling, is the development of means to evaluate the 

"performance" of each alternative. Models are system abstractions used to generate data 

for each of the measures for each value. The second step, Systems Evaluation, is the use of 

those models to quantify the measures for each alternative. At this stage of the process, 

alternatives may be refined as required to improve performance. 

Analysis can take many different forms. Construction of simulations, itemization of 

costs, development of prototypes, and engineering estimates are just some of the modeling 

methods available to the design team to quantify performance measurables. The goal of 

7Later investigation could reveal a potentially infeasible solution was in fact feasible, or a feasible 
alternative may prove to be infeasible. 
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System Analysis is to provide data to the Decision-Making sub-step of the Interpretation 

step. Therefore, modeling is only necessary to the degree required to differentiate system 

alternatives. For the SIMSAT design problem, significant mental modeling, engineering 

estimates, and research were used to quantify the measures at a level sufficient to permit 

comparison of alternatives. 

Interpretation. This step uses the information gained from the 

Analysis step to make decisions and proceed to the next phase of the design process. In 

the Decision-Making sub-step, an alternative (or set of alternatives) is selected based on 

the analysis data and the values hierarchy defined earlier. Alternatives will typically be 

better in some aspects, but less desirable in others. But if they exist, dominated solutions 

should be identified and discarded from consideration8. Decision-making tools, such as 

multi-attribute utility theory, and value weighting are then used to settle on a preferred 

solution set. Since there is an element of risk and uncertainty in the results obtained 

through this analysis, these risks and uncertainties must be considered by the CDM when 

making his decision. Regular interaction with the customer/CDM is critical throughout 

this stage to determine what techniques he is comfortable with using to help quantify the 

risk involved in his decision. 

Once the set of preferred alternatives is identified, planning for the next life-cycle 

phase is necessary. The outcome of the design process to this point should be effectively 

documented to clearly communicate the decisions made and the impact of those decisions. 

Looking ahead to the next life-cycle iteration, the detailed allocation of resources and the 

next iteration of the design schedule are generated. The design process then begins the 

next life-cycle phase, in which the problem is recast to address the next level of detail 

for the selected solution set. If this is the final design iteration, the process results are 

documented and implemented. 

8 As "domination" implies at least one of the other alternatives is better than the dominated alternative, 
it is a waste of time to continue evaluating it-it can never become a competitive alternative. The remaining 
alternative solutions are naturally termed the "non-dominated solution set." 
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Table 1.2 (below) summarizes which Hall problem-solving steps are encapsulated by 

each Sage step9. Each iteration through the system or subsystem-level design process 

incorporates these steps. The tasks (or Hall steps) within each Sage step may be over- or 

under-emphasized as required, depending on the problem or subproblem. Thus, the design 

team would not be encumbered by implementation and documentation of the formal seven 

step process for every problem or subproblem encountered. 

Problem-Solving Steps 
Sage Hall 

Issue Formulation 
Problem Definition 

Value System Design 
System Synthesis 

Analysis System Modeling 
System Analysis 

Interpretation Decision-Making 
Document/Plan for Next Phase 

Table 1.2     Sage vs. Hall Process Problem-Solving Steps 

This process clearly accommodates the "time-to-market" approach the team needed 

to use better than the full Hall process. For example, Sage's approach could support less 

emphasis on System Synthesis or Analysis for certain subproblems in favor of requirements 

determination, a particularly important consideration during early life-cycle phases. Sim- 

ilarly, for later life-cycle phases, the Sage process would support significant effort on the 

Synthesis, Modeling, or Decision-Making tasks. 

It is important to note that although the process appears linear, feedback loops are 

permitted within every step and between steps. For example, during Analysis it may be 

discovered that a significant user concern was overlooked during earlier discussions. This 

team could then return to the Issue Formulation step and factor the concern into the values 

hierarchy. Moreover, if requirements prove to be very difficult, or too costly to meet, they 

could be challenged and the CDM could redefine that aspect of the problem if he felt such 

an adjustment was more prudent than maintaining the original requirement. 

9Within the chapters, the Hall steps will be used to further demark section divisions. To avoid confusion 
regarding the Hall steps within each Sage step, the Hall steps will be called "tasks" throughout the rest of 
the document. 
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1.5.3 Design Process Defined. An activity matrix [49:46] is a helpful tool 

to keep track of where you are in the overall design process. The difference between Hall's 

3-D Morphology and this tool is the elimination of the knowledge dimension. A complete 

listing of disciplines is important to the process to make sure no key area is overlooked (and 

Section 2.2.2.9, page 2-10 provides such a list). But as can be seen by the way Figure 1.4 

is drawn (along with the accompanying explanation of how it is applied), the "active" 

part of the SE process is the application of the logic dimension steps through each of the 

time dimension phases. The activity matrix in Figure 1.5 summarizes the logical and time 

dimensions of Hall's morphology as adapted to the team's particular problem using the 

Sage technique. 
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Figure 1.5     SIMS AT Team Activity Matrix 

This figure will appear near the beginning of each chapter to provide a frame of reference 

for the aspects of the process covered by that chapter. Each dimension will be addressed 

in the following subsection. 

1.5.3.1 Time and Logic Dimensions. Because of the relatively short 

planning horizon and resource limitations of this design project, the design team divided the 

SIMSAT development effort into four life-cycle phases: Concept Exploration, Preliminary 
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Design10, Detailed Design, and Implementation. As mentioned before, other life-cycle 

phases often seen in the acquisition of large-scale military systems [2] were not addressed. 

The team defined the "coarse," life-cycle phases of their process as: 

Concept Exploration. Once a need has been identified and ini- 

tial requirements have been defined, the system design process enters the first stage of 

the system life-cycle. This phase includes refinement of system requirements, along with 

an exploration into various concepts which can be designed to meet these identified re- 

quirements. Emphasis is on top-level system architectures, with detailed design decisions 

avoided at this point. The focus of this life-cycle phase is on identifying and differentiat- 

ing broad solution classes. Through initial modeling, research, trade studies, and CDM 

inputs, a class (or classes) of solutions may be identified which stand out from the rest 

(i.e., the non-dominated solution set). This solution class(es) can then be further refined 

and investigated in the next life-cycle phase. 

Preliminary Design. In this life-cycle phase, the solution class(es) 

identified in Concept Exploration is (are) further refined. Subsystem level requirements 

are defined in this phase. Trade studies, research, and system modeling are again used 

to determine which subsystem types best meet the system goals. The output of this 

phase includes a system architecture complete with identified subsystem types, subsystem 

requirements, and notional interface definition. 

Detailed Design. The subsystem designs are further refined dur- 

ing this phase. Detailed trade studies could be used to determine the exact subsystem 

architectures making up the overall system. Integration/interface issues are resolved in 

this phase and the overall system is completely defined, subject to change as system test 

and evaluation dictate. The product of this life-cycle phase is a detailed functional system 

architecture with subsystems designed and integrated.   Drawings are finalized to docu- 

10For this research effort, the Preliminary Design phase took the form of a trade study to compare the 
DSPACE system to other alternative solutions. 
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ment power, physical, and signal interfaces for each of the subsystems as well as how the 

integrated system fits together and functions as a unit. 

Implementation. The final product is built by purchasing com- 

ponents, fabricating sturctural support elements, and assembling the subsystems into an 

integrated whole. User's manuals are created and validated. Suggested improvements are 

described and documented for future user's consideration and to provide a roadmap for 

future designers. Unresolved design issues are addressed. 

During this effort, however, few problems arose, so the documentation of this phase 

addresses more the programming and interface issues of the implementation than looking 

at each of the problem-solving steps. The users values and concerns were considered in 

each C&DH subsystem implementation phase, but the focus of the documentation is on 

the actual implementation steps taken. 

Because the Sage problem-solving steps adequately captured all the steps the team 

needed, without introducing any additional burden, they were directly implemented (as 

documented in Section 1.5.2.2, starting on page 1-17). This "fine," logical structure, along 

with the "coarse" time structure above, defined the activity matrix used to guide the team 

through this development effort (Figure 1.5). 

1.5.3.2 Design Process Summary. Simplification of both the Hall life- 

cycle phases and problem-solving steps were appropriate for the problem at hand. As such, 

the Sage consolidation of problem-solving steps reduced process complexity and legitimized 

the significant recursion that occurs between the closely related Hall tasks within a single 

Sage step. This abstraction, then, provided some intellectual justification to begin a Hall 

task with the initial, obvious products of a previous Hall task without waiting until all 

the products of the former task were available. This saved significant time since many 

overlooked issues from previous Hall tasks would be detected within the confines of a given 

Sage step. This is not to say that, once you get to Analysis you cannot iterate back to 

Issue Formulation if you happen to find an overlooked issue. It just means that, if you 

carefully scrutinize the products of the process for completeness at the end of each Sage 
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step (vice the end of each Hall task), you will likely have nearly the same completeness you 

would have using the exhaustive Hall process, but with significantly less documentation and 

process overhead. The Sage aggregation of steps prior to formal product reviews removed 

some of the encumberances associated with trying to explicitly follow the standard Hall 

process and reduced the amount of time spent in internal design reviews. 

1.6    Assumptions 

Before the team was formed, some research funding became available and parts of 

a DSPACE control system11 were purchased. The team's efforts did not assume these 

DSPACE parts were the only possible C&DH solution, but they did have an obvious eco- 

nomic advantage over any other alternatives in any subsystem alternative comparisons— 

the costs for these parts of the system were treated as sunk costs (money already spent 

that cannot be recovered). While some of the pieces may have been adaptable to other 

applications, their immediate reuse was unknown, therefore any opportunity costs were 

also uncertain. For these reasons, the DSPACE costs were considered negligible for the 

purposes of subsystem comparisons. 

To evaluate subsystem alternatives during Concept Evaluation and Preliminary De- 

sign phases, the team considered integrated system solutions and selected those subsystem 

alternatives that dominated the others (i.e., were clearly better than the other subsystem 

alternatives in at least one attribute, and at least as good as the other alternatives in all 

the rest of the attributes). During Detailed Design, the subsystem choices made in this 

effort were considered separately from the remainder of the system by assuming a baseline 

system and then analyzing the impact of varying only the C&DH alternatives. To assess 

the range of potential values for a given C&DH alternative, the analysis was done with 

the "best" and "worst" subsystems possible (aggregated again to generate the "best" and 

"worst" alternatives the team were willing to consider for each subsystem). 

One crucial technical assumption the team made regarded the processing power 

requirements of the system.   Based upon previous experiences the CDM had with the 

nFor more information on dSPACE, Inc., consult their web-site: www.dspace.de 
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DSPACE system, and laboratory test environments in general, the 60 MHz Texas Instru- 

ments C40 Digital Signal Processor (DSP) was assumed to have sufficient computing power 

to permit at least the baseline system to function. The CDM recognized that it might not 

be possible to control the satellite and the most elaborate experiment he could imagine 

at the same time, but he was willing to assume the class of processors represented by the 

60Mhz C40 processor would be sufficient to meet his initial needs. If needed at some later 

time, he would purchase a processor upgrade to support more complicated experiments. 

1.1    Problem Statement 

After describing the overall design effort requirements, the process the team used 

to meet those requirements, and considering the assumptions described in the previous 

section, the problem statement for this part of the total SIMS AT effort could now be 

effectively expressed: 

Systematically design a computer control system and development environment 
to meet AFIT's SIMSAT requirements 

While this statement reflects what was to be accomplished in the total research effort, each 

chapter in this document provides a problem statement that focuses on the work to be 

accomplished in that life-cycle phase. 

1.8    Proposed Hypothesis 

To set a target for this effort, the following statement captures the expected research 

conclusions: 

The computer control system and development environment for SIMSAT 
was expected to best be accomplished using a fully-integrated hardware/software, 
commercial, off-the-shelf (COTS) system to support consolidated or distributed 
computing. In addition, designing the software architecture so the control laws 
execute on the "satellite" segment of the system was expected to provide the 
best systems solution. 

The research effort validated this hypothesis, with the exception of the distributed 

computing aspect: the hardware/software solution chosen, as purchased from the manu- 
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facturer, could only support consolidated computing. As the DSPACE automatic source 

code generation routines produce C code, hand-optimizing the code may provide a means 

to implement a distributed architecture. This effectively became one of the suggestions for 

future research in Chapter VI (page 6-5). That recommended research extension could be 

used to determine the benefits (if any) to implementing a distributed processing architec- 

ture. 

1.9 Objectives 

The objectives of this research follow from the issues raised above. In order of 

importance, this research will: 

1. Establish the computer subsystem for SIMS AT 

2. Determine the communication requirements necessary to support the computer sub- 

system 

3. Implement a user-friendly development and simulation environment for SIMSAT 

All these objectives were accomplished, as well as establishing the baseline systems 

engineering and decision-making tools the team would use in subsequent decisions. 

1.10 Decision-Making Tools 

To accomplish the systematic development and evaluation of alternatives, the team 

considered and used a multitude of tools and techniques. The tools used in this effort came 

from several disciplines—SE is not the only field concerned with a systematic approach 

to decision-making. In fact, many of the techniques and tools used in the qualitative 

and quantitative analysis portions of the SE process come from Operations Research and 

Systems Science [49:10,14]. 

One decision-making tool mentioned by Clements [7:85-88] is DPL, DECISION PRO- 

GRAMMING LANGUAGE12. While that tool is well-versed at handling probabilistic uncer- 

2Produc'ed by ADA Decision Systems, Menlo Park, CA. They can be reached at 415-854-7101 
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tainty and sequential decisions, it is not designed for the multi-criteria decision-making 

problems the team faced in this effort. For that, LOGICAL DECISIONS [56] provides a more 

complete and intuitive tool. It also does a good job of handling the one-way sensitivity 

analysis required later in the process. But even LOGICAL DECISIONS is not perfect—it 

did not allow much control over the formatting of the graphs and charts it provides. For 

simple graphing and table manipulation, MICROSOFT EXCEL was the tool of choice. 

1.11    Final Subsystem Design 

Once this design effort was complete, the following DSPACE system was selected 

and implemented to satisfy the user's needs: 

• a Simulation PC to support control law development and the graphical user interface 

for monitoring and controlling the system 

• a DS1003 processor board (based upon a 60MHz Texas Instruments C40 Digital 

Signal Processor [DSP]) to execute the control laws 

• a DS2003 analog-to-digital conversion board for 32 sensor inputs to the DSP 

• a DS2103 digital-to-analog conversion board for 32 effector outputs from the DSP 

• a DS400 AutoBox, a self-contained, power-conditioned (auto-ranging 8-36VDC in- 

put), ruggedized enclosure to hold all the above boards; also provides an ethernet 

port to communicate with the Simulation PC 

• DSPACE software development environment—all the tools required to build a control 

system making use of the above hardware in conjunction with MATLAB and SIMULINK 

• a RealMotion PC to support 3-D representation of motion; provides a means for 

rotating an AUTOCAD model of SIMS AT either real-time or from stored data 

• a second DS1003 processor board for the RealMotion PC to perform 3-D transfor- 

mations of the AutoBox data 

• two DS820 communication link buffer cards to allow greater separation between the 

AutoBox and the RealMotion PC (one will be housed in the AutoBox along with the 

cards listed above) 
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• the REALMOTION software to support the high fidelity representation of SIMSAT 

activity 

• all the interconnecting cables 

Appendix D details the installation of all these subsystem components. Chapter IV pro- 

vides additional information about the various interface requirements these components 

place upon the rest of the system. 

Figure 1.6 shows a block diagram of the notional C&DH/communications environ- 

ment necessary to implement the final SIMSAT control system configuration. It provides 

a top-level depiction of the interfaces between the C&DH subsystems. As this portion of 

the SIMSAT design effort did not select the wireless system to be used, all results reported 

in this document are based upon a "wired" system using the standard cabling provided by 

dSPACE, Inc. 

AutoBox/Boot 

Real Motion PC 

Pemium 0 333MHz 

DS1003 DSP Card 

DS820 Comm Card 

Figure 1.6     SIMSAT Computer System Setup 
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1.12    Document Overview 

Like the process the team used to systematically progress from conceptual design 

to implementation, this report systematically documents the critical steps taken to de- 

velop the SIMS AT Command and Data Handling (C&DH) subsystem. For documentation 

purposes, the team evaluated classes of candidate subsystem technologies during Con- 

cept Exploration. They then went through Preliminary and Detailed Design phases to 

select components and finalize subsystem and system-level interfaces. Finally, the team's 

Implementation phase began by assembling the C&DH subsystem (with the ulimate goal 

of integrating it with the rest of the system as it becomes available) and concluded the 

C&DH portion of that phase with rudimentary operation of the DSPACE system to vali- 

date its functionality. As the rest of the system would likely follow this same evolutionary 

process, this defined the number of iterations the entire system would need to go through 

to complete SIMS AT implementation. The documentation of the computer subsystem 

development effort mirrored that evolutionary process—each of the life-cycle phases is 

documented in a separate chapter. 

Chapter II provides the details of the team's Conceptual Design effort and lays the 

groundwork for the rest of the development effort. Chapter III then documents the issues 

involved with the shift in focus to the C&DH subsystem. Part of that shift was accom- 

plished through a C&DH trade study that assessed subsystems comparable to the baseline 

DSPACE system purchased before this research began. With the DSPACE choice val- 

idated, Chapter IV then documents the Detailed Design effort, including the significant 

quantitative analysis done to support the decision on how to most effectively implement 

the DSPACE system. An overview of the implementation and operational details for the 

subsystem is contained in Chapter V. That chapter also includes a description of those 

aspects of the C&DH system that still need to be handled during overall SIMS AT inte- 

gration. Finally, Chapter VI provides a summary of the entire C&DH research effort and 

provides recommendations for follow-on research efforts. 

The team used the Sage problem-solving steps (without modification) to further 

segment the documentation. To make Chapters II through V easier to read, each of the 

Sage problem-solving steps are addressed in a separate section. 
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Again, as the C&DH subsystem design drove many of the other design decisions, 

the C&DH design process was broken out into a separate, but coordinated, design effort 

so it could be completely implemented by the end of Sep 98. Since this document was 

developed in conjunction with the system-level research effort, significant portions of the 

first two chapters of this document were co-developed with the 1999 Systems Engineering 

Team. This was done to ensure some level of consistency in documentation of the team's 

SE process, and the Concept Exploration phase they directly shared. Once this subsystem 

entered Preliminary Design, it began to forge its own path, but was never completely 

developed in isolation. Sections 3.1 and 3.2 discuss this division of effort in greater detail. 

To compare the two works, consult [8]. 
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17.    Concept Exploration 

2.1 Overview 

Once a need has been identified and initial requirements have been defined, the 

system design process enters the first stage of the system life-cycle. This phase included 

a formal definition of the user's needs and requirements, followed by an exploration into 

various concepts which can be designed to meet the identified requirements. To effectively 

manage problem complexity, emphasis during this phase of the design life-cycle was on 

top-level system architecture issues; detailed design decisions were left for future phases. 

The focus of this life-cycle phase was on identifying and differentiating broad solution 

classes for each subsystem. Through mental modeling, research, trade studies, and chief 

decision maker (or CDM; another name for the "customer") inputs, classes of solutions 

were identified which stood out from the rest. These solution classes were then further 

refined and investigated in the next life-cycle phase. 

While this portion of the C&DH design effort was accomplished at the same time as 

the rest of the SIMS AT design, this document will only summarize those aspects of the 

total SIMS AT effort germane to understanding the decisions made in direct support of the 

C&DH effort. This portion of the design life-cycle was the first step in the design process, 

therefore it considered the system at its highest level of abstraction. Figure 2.1 provides a 

frame of reference for the activities documented in this chapter. 

2.2 Issue Formulation 

As a precursor to this phase, much of the requirements analysis phase of a typical 

life-cycle was done by the customer (and documented in Chapter I) before the team was 

established. This section details those Hall tasks Problem Definition, Value System Design, 

and System Synthesis appropriate to the design problem during Concept Exploration. 

2.2.1 Formulation Methodology. To get an understanding of what the 

CDM expected the system to do, the team had to further define the definition of the 
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Figure 2.1      Concept Exploration Activity Matrix 

problem and what the CDM considered important aspects of that solution. From there, 

the team began to generate solutions. As this was the first iteration through their System 

Engineering (SE) process, the preliminary steps of defining the problem and the user's 

values received the greatest amount of attention, while the solutions the team generated 

only considered the types of technologies that might be used to solve the problem. Future 

iterations through the life-cycle addressed greater levels of detail for the SIMS AT (and 

therefore the C&DH subsystem) design. 

2.2.2 Problem Definition. This part of the task forms the foundation for 

the rest of the research effort. While future iterations reconsider the issues developed here, 

this task in the Issue Formulation step in the Concept Exploration phase of the SE process 

requires the most thorough treatment to ensure the problem is completely defined before 

any signficant design decisions are made. 

2.2.2.1     Identification of Actors. To begin the process, the team 

identified the major players in this design process, and their contributing roles, to ensure 

success in the design effort through recognition of the concerns, needs, limitations, and 

expectations of each party. 
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Lt Col Stuart Kramer and Capt Greg Agnes, USAF. These AFIT instructors were 

the direct customers of SIMS AT, thus their identified needs provided the primary 

design focus. As sponsors of the project, they also served as the chief decision-maker 

(CDM). 

Systems Design Team. The team, comprised of six AFIT Master's degree candidates 

in Space Operations and Systems Engineering, was responsible for the design and 

integration of the system. These responsibilities included the selection of the tools 

and processes they would use in developing the system and ensuring the system met 

the needs of the CDM. 

Mr. Jay Anderson. An AFIT civilian responsible for resource acquisition and labora- 

tory support, Mr. Anderson was the focal point for facilities management, experi- 

mental support, logistics issues, hardware procurement, and safety-related issues. 

Suppliers/Vendors. Commercial suppliers were the primary source for hardware and 

software used in the system design. An understanding of product availability, tech- 

nological innovations, and customer support of these suppliers was critical to the 

design effort. 

Lab Technicians. A group of AFIT civilians, that work for Mr. Anderson, who were a 

source of endless experience on what would and would not work for this simulator. 

They also helped implement the system as the pieces came in. Their expertise was 

necessary to help find components (from the Suppliers/Vendors) to solve some of 

the design problems the team faced, and avoid purchasing things that would be 

unsupportable in the AFIT lab environment. 

Indirect Customers. Some of the additional customers considered include other AFIT 

departments, other Air Force agencies, and joint Department of Defense agencies. 

These indirect considerations play a significant role in the need for a robust and 

timely design. 

These actors, if not directly involved in the process, had to at least be considered in the 

development of the problem and its potential solutions. 
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2.2.2.2 Problem Statement. With the "actors" that could potentially 

be impacted by this effort defined, the team developed a problem statement to capture 

both the intent of the entire design effort (as specified in Section 1.7), and the goals of this 

phase of the design life-cycle, in a clear, concise manner. For the entire design effort, the 

intent of the SIMS AT design was to satisfy the needs of the direct AFIT customers (the 

CDM above), while retaining the capability to meet outside agency needs. Considering 

then, the previously defined focus for this life-cycle, the team worked against this problem 

statement: 

Considering SIMSAT is a satellite system simulator to be used as an experimen- 
tal test bed for AFIT, define the detailed requirements and top-level subsystem 
technologies for such a simulator to support Air Force/DoD research and pro- 
vide a sound instructional aid to AFIT instructors teaching satellite dynamics 
and control. 

This statement provides some initial bounds to the problem, but not many details.  The 

next section defines additional details of the problem context. 

2.2.2.3 Problem Scope. The team was tasked to develop a SIMu- 

lated SATellite platform (SIMSAT), integrating a "flying" test bed with a ground-based 

control system. The ground-based portion of the system (hereafter referred to as the 

"ground station") had to be capable of sending commands to and receiving data from the 

"flying"/space-based portion of the system (hereafter referred to as the "satellite"). In 

addition, the ground station had to support the development of the control laws, including 

simulation of the proposed "control laws" prior to actually using them for satellite opera- 

tion and control. Since this capability will be required any time the satellite characteristics 

change, the system must provide a user-friendly interface during control law development 

as well as during system control and the display of the satellite response to commands. 

The system must also allow for collection and replay of satellite motion and experimental 

telemetry. The SIMSAT design had to be robust enough that a variety of experiments 

could be accomplished with minimal adjustments. Some experimental areas identified by 

the customer so far include investigation of control-moment gyros, optimal flywheel ori- 

entation design, flexible space structures behavior and vibration control, satellite attitude 
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and tracking control, and elaborate ground station simulation of the satellite (including 

hardware-in-the-loop, in-class presentations, technology demonstrations, etc.). The goal 

was to implement the complete, integrated SIMS AT system design by March 1999. 

The first iteration through the design process focused on refining requirements and 

exploration of concepts, and was not intended to result in design, implementation, or 

evaluation of an actual system. The goal of this life-cycle phase was to understand the 

problem, gain knowledge in areas needed to attack the problem, identify constraints to the 

solution, develop fundamental CDM values, and then identify possible classes of solutions 

based on cost, performance, and other relevant criteria. This identification would then 

provide inputs into the system design and implementation phases. This first iteration was 

completed by the end of June 1998. 

With the problem statement in hand, and the context of the problem defined, the 

team worked with the CDM to develop an initial set of needs. 

2.2.2.4 Initial Needs. At this stage of the design, the user's needs were 

identified in general terms so potential design solutions could be conceived and explored. 

Actual subsystem requirements and quantitative system specifications were not considered 

appropriate this early in the design process. The following list summarizes the primary 

needs for SIMS AT at this level of detail, developed from all the previous information. 

• Support three-axis orientation control for detailed experimentation. Three-axis sta- 

bilization is required for the primary experimental configuration. 

• Support dual-spin demonstration experiments, which involve two sections of the satel- 

lite simultaneously rotating relative to one another. 

• Support pure spinner experiments to demonstrate fundmental principles. 

• Robust enough to support unforeseen experiments (include "obvious" support in the 

way of mass and power margins, flexible mounting points, flexible signal interface 

capability, etc.). 

• Build the system around the air-bearing assembly (the piece of test equipment shown 

in Figure 1.1 that allows the satellite full rotation in two axes and partial rotation in 
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the third [pitch] axis). This air-bearing assembly was previously purchased expressly 

for this project. 

• Provide unobstructed satellite rotation—physical connections to the satellite should 

not exist. 

• Develop a ground station to control and monitor the satellite and its experimental 

payload. 

• Provide as much data capability as possible: 

- real-time data acquisition and display to reflect the status of the satellite and 

its payload. 

- retention of mission data to allow detailed post-mission data analysis of satellite 

motion and payload information. 

• Provide pre-mission satellite simulation capability. 

• Provide real-time and post-mission graphical representation of satellite motion, (highly 

desirable, but not required) 

Prom these system needs, it was clear that some aspects of the system were requirements, 

while others benefit the user, but were not required. The next two sections address each 

of those types of needs. 

2.2.2.5     Constraints. Constraints generally fall into two categories: 

"environmental" concerns over which neither the team nor the CDM have any influence, 

and "design" choices that had already been made. Figure 2.2 identifies those aspects of 

the environment the team identified early in the design effort. In addition, there is at 

least one element of the design which has already been made (the choice of the air-bearing 

assembly). From this perspective, the team identified the following issues as those that 

MUST be accommodated by any potential system solution: 

• facility was physically located in the northwest corner of Room 146, Building 640 

(one of the AFIT laboratories) 

• system must fit into the available space of approximately 240 square feet 
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Figure 2.2     SIMSAT Context Diagram [8] 

• vertical height of any assembly was limited to approximately 15 feet; it had to fit 

below the overhead laboratory lighting and ventillation ducts in Room 146 

• the air-bearing model assembly (Figure 1.1) must be used (the only required design 

element) 

• if used, any computer-based ground station should be accessible from the AFIT 

network to allow file transfer and use of available software (if possible) 

• comply with appropriate AFIT, Wright-Patterson AFB, Air Force, and all other 

relevant agency policies (pertaining to safety, power, noise, pollution, radio frequency, 

and hazardous materials issues) 

• provide a means to shutdown the system in case of emergency 

Two final constraints that did not fit easily into this laundry list are the cost and 

schedule constraints. At this point in the design, specific cost allocations were not available, 

but a budget of approximately $100,000 was considered the high-end constraint (although 
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less expensive would obviously have been better). A design timeline was also formulated 

to provide a schedule at this stage. The significant events in the overall SIMSAT design 

timeline were: 

Apr 98 Refine problem definition and attain initial needs and constraints. 
Apr 98 Begin value system design and preliminary system synthesis. 
May 98 Refine the value system and conduct further research. 
Jun 98 Perform overall system evaluations. 
Jun 98 Complete Concept Exploration phase. 
Sep 98 Complete the Preliminary Design phase 

Order subsystem components which have long lead times. 
Dec 98 Complete Detailed Design phase. Order remaining subsystem components. 
Feb 99 Complete system integration; perform system test and evaluation. 
Mar 99 Present final system design and associated documentation. 

For the C&DH effort, the deadline for the final design was Sep 98. The associated subsys- 

tem testing also had to be completed by the end of Sep 98, with final design documentation 

and presentation in Nov 98. 

Other than the budget constraints and acceptability criteria identified above, all ele- 

ments of the subsystems and components of the overall design were considered alterable— 

the overall system architecture was left to the discretion of the design team. Obviously, the 

first three constraints were related, and if no acceptable solution could have been found to 

fit within those constraints, relocation of the test facility may have been considered. 

2.2.2.6    Alterables. The team then considered what items they had 

control over in the system design. The items in this list directly influenced the system 

alternatives the team created in System Synthesis, Section 2.2.4. 

1. power sources 

2. control systems 

3. structural support techniques 

4. attitude determination systems 

5. satellite movement techniques 
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6. communication systems 

While not the original intent of this list, it is interesting to note that it mirrors the func- 

tional decomposition of the system shown in Figure 2.2. 

2.2.2.7 Tradeables. The items in this list are the characteristics, or 

consequences, of design choices. The "best" systems solution provides the best balance 

of these characteristics, based upon the inputs of the CDM, without violating any of the 

above constraints. 

1. system cost 

2. development time 

3. degree of safety enhancement 

4. level of performance, considering 

• ease of use 

• robustness 

• simulation fidelity 

• command &; control vs autonomy 

• data analysis capability 

• satellite movement 

In Section 2.2.4, System Synthesis, the first six alterables were the design decisions to 

be used to define the potential system solutions. The rest of the alterables were the 

characteristics of those candidate solutions (i.e., the consequences of the design decisions) 

which factored into the values hierarchy defined in Section 2.2.3, Value System Design. 

The next section defines some additional elements of the problem. 

2.2.2.8 Problem Elements. Once the needs and the system boundaries 

were defined, the next step in the design process was to identify specific elements of the 

overall problem which had to be addressed by the SIMS AT system architecture. These 

problem elements were determined to be: 
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• Moving the satellite. 

• Powering the satellite. 

• Communicating with the satellite. 

• Commanding the satellite. 

• Accommodating a variety of experiments. 

• Collecting and analyzing satellite telemetry and experimental data. 

• Representing the behavior of the satellite (how to depict the satellite on the user 

interface). 

• Predicting satellite/payload behavior (how to estimate the satellite response to in- 

puts). 

• Providing emergency shutdown of the satellite. 

To address these elements, the team utilized the expertise available on the team, 

developing additional expertise in those areas they were less comfortable in. The next 

section delineates the expertise the team considered appropriate to address these problem 

elements. 

2.2.2.9 Relevant Disciplines. Based upon the elements of the problem 

the team had to address, they identified the following disciplines as relevant to solving this 

problem, incorporating knowledge from the disciplines as required: 

• Systems engineering. 

• Space operations. 

• Astronautical engineering. 

• Mechanical engineering. 

• Electrical engineering. 

• Program management. 

• Simulation/control theory. 
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• Software design and integration. 

• Telemetry and data acquisition system design. 

• Computer architecture design. 

These disciplines represent the team's implementation of the Knowledge axis of the three- 

dimensional systems engineering morphology developed by Hall [26:159], with the logic 

(systems engineering process) and time (lifecycle phases) comprising the other two axes 

(as adapted for this particular application in Figure 1.4). 

2.2.2.10 Problem Definition Summary. By the time the team got to 

the end of the problem-solving process for this life-cycle phase, this step did not seem that 

important since it does not produce as many fancy charts, graphs, or other "output" as 

the other tasks. But its importance in the overall process can not be overlooked. Without 

this step, the problem might have been intuitively understood, but would not have been as 

well-defined causing the rest of the process to be much more difficult. The team would not 

have been able to build as effective a value hierarchy in Section 2.2.3 or develop alternatives 

as sound as those in Section 2.2.4. The rest of the design effort would have floundered as 

a result. 

The next section documents how the team took the the fundamental needs of this 

section and elaborated them to one more level of detail to qualitatively compare system 

alternatives. That structured hierarchy provided the foundation for all the subsequent 

chapters and, eventually, led to a prioritized list of possible alternatives to meet the CDM's 

needs. 

2.2.3 Value System Design. In this section, the focus is on how the team 

developed the framework for determining how well a given solution fulfills the needs, values, 

requirements, and objectives of the CDM. The framework chosen must consider what is 

important to the CDM (his or her values), and provide the way to systematically capture 

the salient details of the alternatives (those that are "tradable") to assess how well each 

alternative satisfies the CDM. That framework is typically shown as a hierarchy of values 
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or objectives [28:13-16]. While they are very similiar, some in the technical community 

consider the value hierarchy a better tool. The reasons for this preference include [32]: 

• In an objectives hierarchy, measure direction specified by "Minimize" and "Maxi- 

mize" can be confusing when they are mixed—the customer will have to "get used 

to the idea" that sometimes going up is good, and sometimes it is bad 

• Those additional words also visually clutter the hierarchy 

• Measure direction is typically implied in a values hierarchy anyway (i.e., no one 

typically wants to Minimize Profit, or Maximize Waste) 

Since the hierarchy for the entire SIMS AT effort is fairly small, the C&DH effort will use 

a values hierarchy, while the rest of the team documented the users desires by means of 

an objectives hierarchy. The reader should consult the companion thesis [8] to compare 

the tools. To develop the framework shown in Figure 2.3, the team took the top-level 

needs/values discussed in the previous section and worked with the CDM to make them 

more specific. 

At this stage of the design life-cycle, it was not considered productive to identify 

specific measurables within the value system to quantitatively compare alternative solu- 

tions. Because the classes of solutions could have been very different, the solutions might 

not compare directly using detailed measurables. In addition, the top-level nature of the 

solutions in this phase made direct assessment of quantitative measurables difficult, if not 

impossible. Instead, the value system at this stage only needed to provide a framework 

wherein each broad solution could be distinguished from the others. If a value system 

without specific measurables allows differentiation between solutions, then it serves the 

purpose of identifying the most promising class or classes of solutions [28:23]. If no sig- 

nificant differentiation could have been made between solution classes, all of them would 

have continued into the next design phase(s). 

The values hierarchy in Figure 2.3 reflects the final form of the Concept Exploration 

hierarchy, updated from its initial form for shortcomings found while progressing through 

the problem-solving steps in this life-cycle phase. As can be seen by comparing it to 

Figure 4.5, this early life-cycle values hierarchy required revision in the next life-cycle 
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Figure 2.3      Concept Exploration Value Hierarchy 

phase to more accurately reflect the distinguishing characteristics of more detailed system 

designs. In fact, each stage of the life-cycle required a new values hierarchy to reflect the 

level of detail required at that time to differentiate between solutions. 

The customer's fundamental concerns (or "values") for the SIMS AT design were 

identified as "Cost" (i.e., impact to resources; the two most critical being money and 

time), Performance, and Safety. The team (in conjunction with the CDM) then derived 

some intermediate concerns, or "evaluation considerations"1 to determine how well a given 

alternative satisfied those fundamental values. The following list describes the aspect of 

the alternative each evaluation consideration was trying to capture for each fundamental 

value at this phase of the design life-cycle. 

• COST 

Total Cost Consider the purchase and integration costs to bring the system on-line. 

1 Evaluation Considerations are those intermediate values that link the fundamental values at the top of 
the values hierarchy with the quantitative measures at the bottom [28:12-13]. 
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Total Time Consider the purchase and integration time requirements (total time- 

frame) to bring the system on-line. 

• PERFORMANCE 

Data Capability Consider both what can be displayed real-time and the post- 

experiment data analysis capability. 

Ease of Use Consider the user interface and how easy it is to switch components/ex- 

periments on the model. 

Simulation Fidelity Consider how well a computer simulation model could repre- 

sent the physical models behavior and how easy it is to develop the simulation 

model. 

Command and Control Consider how well the system does what is desired, how 

responsive it is, and how autonomous it can become. 

Robustness Consider the range of experiments the system can support. 

Angular Capability Consider the system's ability to move rapidly (high slew rate) 

to the desired position (high sensing accuracy) and stabilize. 

• SAFETY 

Hazard Severity Estimate the system hazard severity in terms of potential damage 

to equipment and/or injury to personnel. 

Number of Hazards Estimate the total number of hazards inherent to the system, 

(a measure to represent the likelihood of failure). 

Figure 2.3 captures the Concept Exploration hierachy of fundamental values and evaluation 

considerations. This hierarchy was used in follow-on problem-solving steps to qualitatively 

measure how well each of the potential classes of solutions measured up against the CDM's 

values. 

2.2.4 System Synthesis. The goal of this task was to develop alternative 

solutions that, more or less, meet the needs of the CDM. The primary goal, within this 

life-cycle phase, was to generate as many potential technology solutions as time permitted. 
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These alternatives were then passed through an initial sanity filter: each candidate system 

solution must be technologically feasible within the planned time-frame, must be compat- 

ible across all the sub-systems, and the solution Alterables must be selected to meet the 

Constraints and optimize the Tradeables spelled out in the Problem Definition task above. 

Only those solutions that did not make it through this filter were thrown out. In fact, we 

used this technique to quickly trim the Strategy Generation Table (SGT) permutations 

(discussed in Section 1.5) from over 960 (represented by the 5x3x4x4x4 options in 

Table 2.1) to about 1 technology class for each subsystem using the logic described in the 

next section. 

Using the problem issues discussed in Sections 2.2.2.8 (Problem Elements), 2.2.2.5 (Con- 

straints), and 2.2.2.6 (Alterables), an initial system architecture was developed to meet the 

needs of the user and provide a basis for System Synthesis. The initial system architecture 

also provided identification of the system boundaries, and by extension, the environment. 

This resulted in the system context diagram shown in Figure 2.2 (page 2-7). 

2.2.4-1 System Decomposition. Initial system decomposition could 

have taken many forms. The subsystems identified in Figure 2.2 resulted from analysis of 

the problem elements, and a functional approach to addressing these elements following 

the method outlined in [35] since it lent itself to assigning indivduals to become subject 

matter experts on a given function/subsystem. 

A software/hardware breakdown was rejected due to the strong interdependencies of 

computer software and hardware solutions. Furthermore, this breakdown did not aid in 

development of solution alternatives since the specific problem elements are not addressed 

using this format. Similarly, a ground station/satellite model breakdown was rejected since 

aspects of some subsystems resided within each physical divisions, creating an artificial and 

unnecessary barrier between them. 

As stated above, the system decomposition of Figure 2.2 was based on functional 

breakdown, and was modeled after the spacecraft subsystem breakdown used in the Space 

Mission Analysis and Design (SMAD) text by Larsen and Wertz. The "Guidance, Navi- 

gation, and Control" subsystem identified in that text [35:287] was ignored since the sim- 
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ulator model is fixed in the laboratory. Thus, guidance and navigation represent attitude 

positioning only, which is handled by the "Attitude Determination and Control System" 

(ADACS). The thermal subsystem identified by SMAD was eliminated from initial consid- 

eration as a separate subsystem because operating conditions were not expected to require 

dedicated thermal management. If system operation required cooling of components, later 

stages of development could address environmental control mechanisms. The other sub- 

system divisions are very similar to the SMAD text definitions. The following subsystem 

list defines the system decomposition used for the SIMS AT design effort: 

Attitude Determination and Control System (ADACS). The ADACS consists of 

three components: attitude determination equipment, attitude control equipment, 

and control software that will execute on the processor (s) contained in the C&DH 

system. The attitude determination equipment determines the system's actual po- 

sition/orientation and provides information used to develop inputs for the attitude 

control mechanisms. The attitude control equipment provides the necessary forces 

and torques on the system based on information from the user or attitude determi- 

nation and control software inputs. The control software element consists of soft- 

ware code incorporating control laws which provide the logic used to provide the 

proper inputs to the attitude control equipment. The ADACS subsystem addresses 

the following problem elements identified in Section 2.2.2.8: "moving the satellite", 

"predicting satellite behavior", "and representing the behavior of the satellite". 

Power System. The power subsystem includes elements associated with the supply, reg- 

ulation, and distribution of necessary voltages and currents to operate all the onboard 

subsystems. This subsystem addresses the problem element "powering the satellite". 

Command and Data Handling System (C&DH). The C&DH subsystem receives, 

decodes, processes, and distributes all satellite commands. Moreover, it gathers, 

formats, stores, and transmits telemetry data from the onboard systems and exper- 

iments, as well as the ground station. This definition of the C&DH system is taken 

from the SMAD text [35:288].   Within the C&DH is the inherent computer archi- 
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tecture to perform these tasks, addressing the problem elements "commanding the 

satellite" and "collecting and analyzing satellite telemetry and experimental data". 

Communications. The communications subsystem represents the interface between the 

satellite model and the ground station. The communications system is, in effect, 

an extension of the C&DH subsystem, linking the simulator C&DH elements with 

the ground station C&DH elements. This subsystem therefore performs the "com- 

municating with the satellite" function listed in the problem elements. Thus, the 

communications and C&DH subsystems are shown slightly overlapped in Figure 2.2 

(page 2-7). 

Structures and Interfaces. This subsystem represents the physical satellite assembly, 

to include subsystem housing, structural supports, fasteners, and physical interfaces 

between the base model and experimental hardware. Although each subsystem must 

consider the following problem element, this subsystem addresses "accomodating a 

variety of experiments" most directly. 

With the broad system architecture now conceived, the next task was the identifica- 

tion of feasible system solutions through the development of a list of potential subsystem 

technologies, which could be integrated to create feasible system alternatives (using the 

SGT). These subsystem alternatives were the result of creative brainstorming and research 

into actual satellite systems, laboratory-based systems, flight test systems, and emerging 

technologies. Thus, a certain amount of knowledge had to first be developed to generate 

solutions. While each of the subsystem alternatives are described in the companion the- 

sis [8], the list of subsystem alternatives is summarized in Table 2.1 to provide a context 

of the system level alternatives the C&DH subsystem was a part of. The focus of this doc- 

ument will be on the C&DH subsystem, its alternatives, and the rationale used to select a 

class of technologies best suited to the SIMS AT application. 

2.2.4-2    Classes of Technologies. The C&DH subsystem has two 

main purposes: interface with the user and, as required, execute the actual control laws 

determining how the effectors (devices that cause something to happen) are activated to 
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Subsystem Alternatives 

Attitude Determination 

IMUs 
Sun/Star/Horizon Sensors 

Magnetometers 
Radio Interferometers 

Laser Grid 

Attitude Control 
Momentum Exchange 

Mass Expulsion 
External Forces 

Power Generation & 
Distribution 

Photovoltaic Cells 
Fuel Cells 

Thermal Batteries 
Chemical Batteries 

Command & 
Data Handling 

Direct Control 
Analog Computer 

Digital Computer (Text) 
Digital Computer (Graphical) 

Communications 
Flight Test Telemetry 

Satellite Relays 
Wireless Modem 

Wireless LAN 
Structures As Required 

Table 2.1     Initial Subsystem Technology Alternatives 

respond to commands. Theoretically, the control system could be as simple as a direct 

connection between the user controls and the effectors (similar to the mechanical control 

systems of early aircraft). But because this approach creates a tremendous workload for 

the operator, engineers have found ways to use computers to help the user control the 

system, improve performance, and reduce life-cycle costs at the same time. 

To determine the best C&DH design concept, some point solutions in the spectrum 

from simple, direct control systems, to the most sophisticated computer control systems 

available today, were considered. All these C&DH alternatives assume the other SIMS AT 

subsystems (power, communications, and structures) will be sufficiently designed to allow 

for full C&DH capability. The C&DH subsystem technology alternatives included the 

following classes: 
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Direct Control. The direct, unassisted control option considered in this review consisted 

of a user interface could be comprised of knobs, levers, switches, dials, display pan- 

els, and/or lights. The user commands (from the knobs, levers, and/or switches) 

would be converted to a format that could be transmitted to the satellite, where 

they would be converted back to a format required by the effectors (those parts of 

the satellite that cause something to happen). The results of those commands would 

be sensed, converted to the transmission format, sent back to the ground station 

where it would be converted to a format consistent with the dials, display panels, 

and/or lights. This functionality would require substantial research to locate compat- 

ible components, integrate them, and then troubleshoot the system when problems 

arise. These "components" would likely have been at the piece-part level—very little 

pre-implementation is likely (few implementations like this are being developed any 

more). 

Analog Control. The analog computer-assisted control system consists of a user interface 

very similar to the "direct" system above. Control law implementation/adaptation is 

typically handled by changing discrete components. Before the recent advancements 

in digital computer hardware and software, these computers were considered the 

preferred solution for real-time control due to reduced execution delay (no software 

"overhead"). All control box designs provide some flexibility for design optimizations 

to allow for more "building block"-type implementations (reducing the likelihood of 

component incompatibilities). This will reduce the research, implementation and 

troubleshooting time. However, analog computer technology is not as well understood 

or supportable as digital technology. 

Digital Control (Text). The digital computer-assisted control system is based on a 

command-line (or "text") user interface. Control law implementation and modi- 

fication is handled with well-defined software packages available for a number of 

different hardware platforms. Integrated subsystem implementation similar to the 

analog computer approach, but with more "building block" components available, 

along with significant in-house expertise. 
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Digital Control (Graphical). This solution class consists of a digital computer-assisted 

control system, with a visual/graphically-based user interface. All the design advan- 

tages of the above classes of technologies existed with the added intuitiveness of 

the graphical development environment. Using the integrated hardware/software 

solution provided by dSPACE, Inc. reduces the "untested" parts required for imple- 

mentation and troubleshooting to a minimum. A significant portion of the system 

was already available at AFIT, so the total cost of this system will be fairly low. 

There was also a lot of in-house and proximate technical support to address any 

problems that may develop. 

2.3    Analysis 

This section details those parts of the Hall process steps System Analysis and Opti- 

mization appropriate to the problem at hand. At this stage of the SE Process, these steps 

were very qualitative—no measures will be defined, but each alternative will be assessed 

on a relative scale for each value shown in Figure 2.3. Additional detail will be added to 

this step in follow-on phases. 

2.3.1 Analysis Methodology. A primary task of the Concept Exploration 

phase was to eliminate those subsystem alternatives which were determined to be infeasible, 

impractical, or relatively inferior to other alternatives. "Mental modeling" was the primary 

method for analyzing subsystem alternatives during this phase. Mental modeling relies on 

expert opinion, personal experience, research, and common sense rather than sophisticated 

models or rigorous mathematical analysis. Mental modeling was an efficient tool for making 

a top level "first cut" between feasible and infeasible alternatives. In order to augment 

this mental modeling, the SMAD text was often used as a source for expert opinion or 

rudimentary math calculations. The following paragraphs document the mental modeling 

used to determine impractical solutions, and allow selection of a set of solution classes for 

the Preliminary Design phase. 

While the data was collected for each subsystem independently to support a system- 

level assessment of integrated solutions, that top-level evaluation proved unnecessary—each 
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of the subsystems either ended up with a clearly preferred (or dominated) solution2, only 

one practical/feasible solution, or no decision could be made during this life-cycle phase. 

As mentioned before, the ADACS, power, and communications subsystems all had 

to respond to the choice of C&DH architecture. Thus, an early choice for the C&DH 

architecture was critical to the overall system architecture. Rather than repeating all 

the details justifying the choices made for each of the other subsystems, only the detailed 

analysis for the C&DH subsystem is documented here. To review the complete justification 

for the non-C&DH subsystem selections made below, consult [8]. 

2.3.2 Modeling. Since each of the classes of C&DH technologies listed in 

Section 2.2.4.2 could result in a myriad of alternative solutions, the team needed to qualita- 

tively compare the categories to find the solutions to be investigated further, discontinuing 

the investigation of the solutions that provide poor value for the required investment. To 

narrow the focus of the next phase of the team's process, ideally one class of subsystem 

solutions would dominate the others (i.e., is at least as good in all areas as the rest of the 

solutions and better than the rest in at least one area). And if there was not a class of 

solutions that stood out from the rest, hopefully at least one of them would be dominated 

(eliminating it from consideration). But, how to decide the goodness of the alternatives? 

The values hierarchy was used to make that assessment. 

The value hierarchy in Figure 2.3 represents our first step in trying to conceptualize 

the CDM's values in determining the best SIMS AT design. This hierarchy only includes 

the first level of evaluation considerations to determine how well the ultimate design goal 

was met. At this level of design abstraction, there was no point in trying to go all the way 

down to determining the salient characteristics of the actual alternatives—they have not 

even been defined yet so it would be impossible to establish actual measures of merit. 

Figure 2.4 documents the qualitative assessment of the ability of each class of solu- 

tions to satisfy the System Definition value hierarchy on a scale 0 (worst) to 5 (best). This 

evaluation table was used to help the team focus on the technologies that appeared to have 

2One solution in each area was at least as good as the rest, qualitatively, in all the evaluation consider- 
ations shown in 2.2.3, and the best in at least one of them. 
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Alternative Total Cost Total Time Num. of Hazards Haz. Severity 
Unassisted, direct control .■.:■■:■ 5' ::■;■ 3 4 4 
Analoq computer assisted 1 1 4 4 
Diqitai computer assisted (text) 3 3 5 5 
Digital computer assisted (graphical) v.:.;....      5:;    :; ;:—,,:::.5 ■.-■■:■-:• 5 5 

Alternative                    1 Data Capability Ease of Use Simulation Fidelity 
Unassisted, direct control                                 H               2 1 0 
Analoq computer assisted                                 |               2 2 1 
Digital computer assisted (text)                          |               3 4 3 
Digital computer assisted (graphical)                  H               5 5 5 

Alternative Command & Ctrl Robustness Angular Capability 
Unassisted, direct control 1 1 4 
Analoq computer assisted 2 2 4 
Diqitai computer assisted (text) 3 3 4 
Digital computer assisted (graphical) ■n..::v'::^',5:;. ■,:■-.- ■5 4 

Figure 2.4     C&DH Concept Exploration Evaluation Matrix 

the most promise. The data in the table represents the assumption that the other SIMS AT 

subsystems are "the best"—the "optimal system" would score '5' across the board. The 

scores shown represent how the total system would score by altering the C&DH class of 

solutions alone—the rest of the subsystem alternatives were assumed to remain constant. 

High scores for a given evaluation consideration are highlighted. 

2.3.3    Analysis.      The following descriptions explain why the C&DH alterna- 

tives scored the way they did: 

Total Cost. While the direct solution would have used simple components, the sunk costs 

of the DSPACE system means the visual, digital computer solution can directly 
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compete with the direct solution. The analog computer solution is expected to be 

the most expensive due to the specialized nature of the technology. The digital (text) 

solution is moderate because the equivalent of the DSPACE hardware and software 

would have to be purchased, but are very common COTS components. 

Total Time. The DSPACE solution was the best because the parts that may still be 

required will take little time to come in and integrate into the system—the DSPACE 

system is assumed to be integrated before the rest of the system is ready since 

most of the parts are already available. The analog solution is expected to take 

about as long as the digital (text) solution because both would require piece part 

selections, orders, and integration troubleshooting. The analog computer would take 

the longest because they are so rare, the order time would be considerable, and the 

integration time would likely be the longest—limited in-house expertise available for 

troubleshooting. 

Number of Hazards. The digital computer solutions were ranked the highest because 

the assumption is that much of the implementation would be based upon "building 

block" solutions—there were numerous sources for all the components of the sub- 

system. Such is not the case for the other technologies: the direct system would be 

nearly entirely fabricated at AFIT and would not be as "tight" as mass produced 

commercial component solutions. The analog computer solution would have more 

commercial "building blocks" in it, but would require more fabricated portions than 

the digital systems. 

Hazard Severity. This follows the same logic as the number of hazards—the more com- 

mercial building blocks used, the fewer things can fail and the less severe the potential 

system failure. 

Data Capability. The digital solutions assume the data can be viewed real-time and col- 

lected directly on the computer hard drive or use typical lab quality data acquisition 

systems. The other two alternatives assume a totally independent data logging sys- 

tem that will likely not be able to view any "useful" data during the experiment; 

only oscilloscope traces or strip charts would be available real-time. 
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Ease of Use. The digital, graphical environment is always the most intuitive for devel- 

opment and control. And the digital computers are the most powerful due to the 

tools available to it. Again, our lack of expertise in analog computers would make 

system or payload changes a significant challenge; the possible user interfaces is likely 

to be similar to what can be used with the digital (text) class of alternatives. The 

interface and adaptation of the direct control would be the worst—the user would 

have to re-learn how to handle the system every time some change is made. 

Simulation Fidelity. Obviously the direct control system has no simulation capability 

in and of itself. How an analog computer assisted system could be simulated (or how 

good the simulation would be) is unclear, but due to the lack of internal expertise, 

the difficulty of developing such a capability would be great. Digital simulations 

are well understood and supported with numerous software tools. Of course, a vi- 

sual environment would be the easiest to build the model and since DSPACE is an 

integrated solution, it would provide the highest fidelity model. 

Command & Control. Any open-loop control system (i.e., the direct control system) is 

very difficult to deal with, and its responsiveness will be user-dependent. In addition, 

any computer enhancement will increase the likelihood the system will do what you 

want it to, no matter how it is configured. The digital control systems will be even 

more that SIMS AT will do what you want it to (and convert to an autonomous 

system) due to the maturity and availability of development tools and supporting 

hardware. The DSPACE solution will be the best in all these areas due to the 

integrated nature of the hardware and software. 

Robustness. This category is very correlated to the scores obtained by the Command 

and Control measure, but represents a different aspect of the system. Actual imple- 

mentations (as opposed to classes of technologies) may have some divergence with 

the previous measure, but at this level of detail, the alternative values appear to be 

the "same" as the command and control values. 

Angular Capability. While each technology scored the same, the reasons are different. 

The direct solution suffers from the requirement of the operator to know how to 

operate the controls to cause SIMS'AT to move "fast" and stop "fast", then stay "on 
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target." The computer solutions all suffer from the added weight/moment of inertia 

impact the torque system must overcome—the assumption is that, once the control 

program is optimized, the actual response of the controller is the same. 

2.4    Interpretation 

This section (the equivalent of the Hall Decision-Making and Plan for Next Phase 

process steps) provide justification for the choices made during this life-cycle phase. At 

this stage of the SE Process, Decision-Making was very qualitative—only alternatives that 

dominated others were selected for further evaluation. 

2.4-1    Interpretation Methodology. The Concept Exploration phase 

made several significant steps toward the design of an up-and-running satellite simulation 

system. The problem was refined, with an initial list of needs and top-level requirements 

generated. A top-level value system, complete with a values hierarchy, was developed. The 

overall system architecture was framed, with potential subsystem alternatives considered 

and explored. Finally, these alternatives were compared and analyzed, with decisions made 

for each subsystem before progressing into the next design phase. 

2.4-2 Decision Summary. Upon completion of Concept Exploration, some 

of our subsystems had clear choices, others did not. In general, only the C&DH setup 

significantly affected the overall system architecture once the infeasible and impractical 

subsystem alternatives were eliminated. Table 2.2 summarizes the results of the Concept 

Exploration and definition phase, and sets the stage for the beginning of Preliminary 

Design. As previously stated, the choice of a C&DH architecture was necessary for the 

system design to advance to the Preliminary Design phase. 

2.4.2.I    Attitude Determination and Control System. For the 

ADACS alternatives, the choice of IMUs for attitude determination was made. Addi- 

tionally, momentum exchange methods were chosen for further design of the attitude con- 

trol system.  These ADACS alternatives are proven methods, and have fewer associated 
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Subsystem Technology Choice 

ADACS IMUs/Momentum Exchange 
Power Chemical Batteries 
C&DH Digital Computer (Graphical) 

Communications Wireless LAN/modem 
Structures As Required 

Table 2.2     Concept Exploration—Subsystem Technology Choices 

risks in terms of unforeseen problems, such as failure to meet requirements or difficulty in 

fabrication and integration. The use of gas jets (or other mass expulsion methods) was 

retained as a possible means for slewing/braking augmentation. However, gas jets alone 

were determined to be an impractical ADACS solution. 

2.4-2.2 Power. The choice of chemical batteries for the power subsystem 

was also grounded in precedent. Through a range of available types and sizes, chemical 

batteries allow flexibility in meeting power requirements, quicker integration schedules, 

and confidence in proper operation. 

2.4-2.3 Command and Data Handling. From Figure 2.4, and the 

above explanations, it is clear that the last alternative is the dominant solution—it has 

the highest score in each category, and in some categories, it is the only solution with the 

highest score. As the analysis showed, the dominant solution class for the C&DH was the 

digital computer with graphical interface. This solution was made even more favorable 

by the sunk costs of the DSPACE system purchase (assuming that any alternative that 

might be found more favorable during the next life-cycle phase will have to be even better 

in other areas to make up for the cost penalties). 

2.4-2.4 Communications. The use of wireless LAN/modem architec- 

ture was selected based on the use of a digital (graphical) computer C&DH subsystem. 

This C&DH architecture, namely the probable use of DSPACE, required the use of a 

wireless network, and allowed for possible onboard computer processing. 
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2.4-2.5 Structures. No refinement of the structural subsystem was made 

at this level of design since the "alternatives" available for this subsystem differ depending 

upon the final decisions made for the other subsystems. 

2.5    Summary 

The Concept Exploration phase made several significant steps towards the design of 

an up-and-running satellite simulation system. The problem was refined, with an initial 

list of needs and top-level requirements generated. A top-level value system, complete 

with objective hierarchy, was developed. The overall system architecture was framed, with 

potential subsystem alternatives considered and explored. Finally, these alternatives were 

compared and analyzed, with decisions made for each subsystem before progressing into 

the Preliminary Design phase. 

Future chapters document the results of taking these set of technology choices to the 

next level of detail. 
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III.   Preliminary Design 

3.1     Overview 

In this chapter, the focus of the design begins to diverge for strictly a SIMS AT 

system focus to more of a C&DH subsystem focus. This Preliminary Design iteration of 

the problem-solving process for the C&DH subsystem developed a trade study to evaluate 

candidate vendors of the digital control systems identified in the previous life-cycle phase. 

This does not mean the SE process changed to evaluating C&DH subsystem alternatives 

in isolation, or strictly on their own merits as C&DH subsystem solutions. Rather, the 

evaluation process made assumptions regarding the baseline system, where the only changes 

to the system was to select different C&DH alternatives. 

The first section in this chapter will justify the rationale for accelerating the de- 

velopment of the C&DH subsystem, and how the team reduced the likelihood of "sub- 

optimization" issues associated with developing a subsystem somewhat independently. The 

next section provides some background on Real-Time issues that needed to be addressed 

before design decisions regarding real-time systems were made. Particular issues covered 

in that section include the difference between real-time and general computing systems, 

techniques that can be used to address those differences, followed by the analytical tools 

provided by one of those techniques. The intent of that section was to provide justifi- 

cation for some of the measurables required to compare how well potential alternatives 

can support SIMS AT real-time concerns, providing a foundation for the discussions of the 

real-time measurables used in the rest of this document. 

Finally, before making any design decisions, some issues covered in Conceptual Design 

needed further definition to conduct the trade study, while others were left for future 

steps. First, additional details need to be developed for the Issue Formulation step of the 

Preliminary Design phase (see the activity matrix in Figure 3.1). As a minimum, the team 

needed to refine the Problem Definition task based upon some of the details developed in the 

previous iteration, as well as those required to reflect the shift from requirements to design. 

In addition, the Value System Design task results had to be updated to provide a more 
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detailed framework to support the choice of digital control system vendors. Prom there, 

a pair of alternatives were found to compare to the baseline DSPACE system: one less 

integrated but perhaps more flexible, the other more robust, but more complicated. Each 

alternative was then scored against the revised values hierarchy and a final recommendation 

developed. 
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Figure 3.1     Preliminary Design Activity Matrix 

As already mentioned, before getting into the trade study, an explanation of why 

the C&DH subsystem was selected as the subsystem to begin the accelerated development 

effort detailed in this document is needed. The next section will describe that decision, 

and how potential system-level pitfalls of seeking subsystem solutions were overcome. 

3.2    Design Effort Division 

While there were other reasons that necessitated a division in research effort (the 

author of this document needed to graduate before the rest of the team), there was sound 

technical justification for making the C&DH the first subsystem to be designed. Consid- 

ering the subsystem decomposition, and the functions of each of those subsystems, it can 

be easily seen that there are several subsystem interactions that must be considered: 

• Structures supports all the subsystems 
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• Power supports AD ACS, C&DH, and Communications 

• C&DH and ADACS, together, form the "brains" and the "brawn" of SIMSAT 

From this it was clear that the C&DH and ADACS subsystem will effectively influence the 

other subsystems, and may even constrain them. That leads to the natural conclusion that 

perhaps the system design could be done one subsystem at a time. One significant problem 

with that approach is that "optimal" subsystem solutions may lead to sub-optimal sys- 

tem solutions—system level interactions between subsystems cannot be ignored. Another 

problem with sequential subsystem designs is the additional time required to complete the 

total system design compared to developing the entire system concurrently. 

The team found a way to ameliorate both problems. During each stage of the design 

effort, each subsystem was assessed to determine if there were potential design decisions 

to be made. Anytime decisions could be made they were. As the team progressed through 

the design effort, it became clear the design of some subsystems (such as Structures) would 

need to wait until the other subsystems were defined (confirming the first observation made 

in the above list). In fact, over time, it became clear that portions of the core subsystems 

(C&DH and ADACS) would need to be defined before the design of the remaining sub- 

systems could progress. Since the team would likely have to build the Momentum Wheels 

for SIMSAT, and the C&DH subsystem would need to be an integrated COTS system 

to meet the usability goals for the system (so the solution space was likely to be much 

smaller), the decision was made to have the C&DH subsystem lead the rest of the system 

design. The initial purchase of portions of a DSPACE system, coupled with the author's 

existing knowledge of embedded, real-time control systems, also influenced the selection of 

the C&DH subsystem as the SIMS A T design pioneer. 

To minimize the potential for sub-optimal subsystem solutions, the team made sub- 

system decisions (for every subsystem) based upon the system-level values hierarchy for 

that life-cycle phase. When considering alternatives against that hierarchy, the impact 

of the alternative on other subsystem was factored in. For instance, if a C&DH solution 

could only be run with AC power, the various impacts of adding a power inverter to that 

subsystem to make it work on the satellite would have to be factored in.   In additon, 
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weekly internal design reviews provided a forum for the various subject matter experts 

to interact and reduce the likelihood of unintended consequences for decisions they were 

trying to make. While these were not flawless techniques for assessing system interactions 

when considering subsystem design alternatives, it was better than developing subsystems 

completely in isolation. 

With the decision to have the C&DH subsystem be the first subsystem to complete 

its design effort, research was required to determine those aspects of real-time control 

systems that need to be compared between potential solutions. 

3.3    Computer Subsystem Concerns 

As mentioned above, this research effort departed from the rest of the SIMS AT design 

effort after the Concept Exploration phase. This effort considered the design, implementa- 

tion, and testing of the computer control system to support the follow-on SIMS AT design 

and integration effort. Before going farther in discussing the results of the team's efforts, 

some specific computer control technology issues and concerns need to be addressed. 

3.3.1 Real-Time Control Systems. Living in the computer age may 

lead many to think they can evaluate control computer system correctness (as one of the 

measures of "goodness") using the same approach they take for determining if an office 

computer works correctly: "does it produce the logically correct answer?" But real-time 

applications need the same logically correct results prior to a specific point in time (called 

its deadline) to be "temporally correct." For real-time systems, then, a logically correct 

answer not available before its time-critical deadline is reached will likely be as useless as 

an incorrect computation. 

Computerized control systems (among others) fall into two categories of "real-time" 

systems: hard and soft. "Hard" real-time control systems require accurate results from all 

necessary computations before some well-defined deadline, guaranteed. For example, if 

the tasks that define the behavior of a computerized flight control system miss deadlines, 

the aircraft could become uncontrollable. For "hard" real-time control systems, accurate 

results must be computed before some pre-defined, application-specific deadline is reached. 
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For this type of system, a logically correct answer is useless if it is produced too late for 

the system to respond to user inputs or maintain system stability. 

A control system with less stringent timing requirements (such as an environmental 

control system [ECS]) requires computational results within a "reasonable" period of time 

(a flexible, or "soft," deadline). If a non-critical ECS task set misses a deadline for optimal 

temperature control, the pilot may get a little uncomfortable. 

The SIMS AT control system effectively falls into the first category. We are con- 

cerned about supporting a subset of hard real-time tasks: critical control system tasks 

that must provide logically correct results before some required deadline. Understanding 

more about "hard" real-time systems and scheduling theory is critical to understanding 

how to determine if a given control system can meet the user's requirements. The follow- 

ing section describe some key Scheduling Theory issues used in this evaluation. This is 

the first chapter that requires some understanding of the attributes of Real-Time Control 

Systems, so it is treated as a section of background material. Appendix A provides some 

additional information regarding several other Real-Time Control issues, some of which do 

not have immediate bearing on this effort, but provide significant foundation for some of 

the projects suggested in Chapter VI. 

3.3.2 Scheduling Theory. Research into task set schedulability, or "schedul- 

ing theory," has attempted to determine the most effective way to schedule a set of tasks 

and accurately predict whether deadlines can be met. In other words, scheduling theories 

intend to provide techniques to aid in determining the "schedulability"1 of a given task 

set. Locke, in [43], showed a number of different techniques for scheduling a set of tasks. 

His conclusion was that the only viable theories for most critical real-time systems are 

the Cyclic Executive and Fixed Priority techniques. But, as he indicated [43:52], Fixed 

Priority techniques were not even viable until Liu and Layland published their classic 

paper detailing a fixed priority scheduling technique called Rate Monotonie Scheduling 

(RMS) [39]. Since the time of that seminal paper, many extensions have been developed 

to make RMS a practical tool. In fact, the RMS techniques are some of the simplest tools 

1A task set is 'schedulable' if the deadlines of the task set can be met. 
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for determining schedulability, and they can be used to determine "optimal schedulabil- 

ity" of a task set (no other fixed priority scheduling technique can beat RMS processor 

utilization). This rest of this section is devoted to further elaboration of these issues. 

3.3.2.1 Current Knowledge. The Liu and Layland paper intended to 

provide a set of formal tools to help determine if a set of tasks could meet all its required 

deadlines. They proved the RMS algorithm was an "optimal" fixed priority scheduling 

algorithm: if any fixed/static priority scheduling algorithm could schedule a task set, the 

RMS algorithm could also determine a way to successfully schedule that task set. Using 

Ci as the execution time of task TJ, and Tj as the period of the same task, Liu and Layland 

defined the amount of work done by (or "utilization of") a processor for task TJ as Ui = jf. 

Liu and Layland then showed that, if the sum of all task C/j's is less than 0.6931 (no matter 

how many tasks there are), the task set can meet all its deadlines. 

While this technique for determining task set schedulability is extremely simple and 

straight-forward, the 69.31% limit is too conservative for most applications. This low 

processor utilization limit, combined with the restrictive assumption that the task set 

under evaluation consists strictly of independent, periodic tasks, rendered their basic model 

nearly useless. The process Liu and Layland went through was noteworthy, but these 

shortcomings prevented widespread use of RMS in its original form. 

Fortunately, some in the real-time community saw the potential power of the basic 

RMS technique. Numerous papers have been published since the mid-1980's to alleviate 

some of the limitations of the basic RMS theory. For example, [37] relaxes the Liu and 

Layland "worst case" 69.31% processor utilization limit. The authors demonstrated that a 

more realistic limit for a typical real-time workload is closer to 88% processor utilization. 

Their research indicated that this higher utilization bound is due to a general predominance 

of harmonic task periods (the task periods are integer multiples of the shortest task period 

in a given task set) within an "average" task set. One limitation to universal application 

of this increased bound is the task set size is assumed to be quite large, with a large spread 

in task periods [37:171]. Many other RMS shortcomings have also been addressed. In [52], 
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Sha, et.   al.  provide a good summary of the extensions and tools used to make RMS a 

more complete environment for real-time system design, which includes: 

• Relaxing the Utilization Bound [37] 

• Support for Aperiodic Tasks [58] 

• Support for Critical Sections/Mutual Exclusion (avoiding Mutual Deadlock and Pri- 

ority Inversion [25, 42, 40]) 

• Handling Various Input-Output Paradigms [31] 

As already mentioned, RMS is a specific scheduling technique. Rate Monotonie 

Analysis (RMA), on the other hand, consists of a set of tools that can be applied to any 

task set, no matter what preemptive, fixed priority scheduling technique or implementation 

language is used [50:4,8]. RMA, as a more general analytical set of techniques, intends 

to provide insight into the temporal behavior of a set of tasks [50:9,12]. To accomplish 

this evaluation, RMA uses the analytical support tools developed to support RMS and 

the above extensions. If a set of tasks does not follow RMS priority assignments, the 

RMA tools can only tell the temporal characteristics of the optimal schedule but cannot 

guarantee the task set will behave that way [46]. The analytical tools (RMA) developed to 

support and extend RMS can be used to determine if it is possible for a set of fixed priority, 

preemptively scheduled tasks to meet its critical deadlines, but not if a given non-RMS 

implementation will be successful. 

To further distinguish the analysis technique, RMA, from the application of RMA 

tools and extensions to a task set whose priorities were assigned according to RMS guide- 

lines, the literature uses the term Generalized Rate Monotonie Scheduling (GRMS) for 

that latter case [55]. The GRMS acronym provides important distinctions from both RMA 

and the basic, restrictive techniques embodied in the RMS designation. GRMS is the term 

used in this document to mean RMA techniques applied to a set of RMS-scheduled tasks 

(i.e., task execution order defined by task period-based priority assignments). 

3.3.3 Real- Time Concerns Summary. When control systems were sim- 

ple, the application of an informal, ad-hoc, "code-and-test" approach to validating control 
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system design (including logical and temporal correctness) may have been acceptable. But 

with the advent of integrated and complicated computerized control systems, a disciplined 

engineering approach to validating system design is necessary (as early in the development 

life-cycle as possible). Validation must go beyond logical accuracy, to include system reli- 

ability and timeliness of response. Separating logical and temporal concerns help bring a 

more formal, disciplined approach to the development of "hard real-time" computer sys- 

tems [41:184]. The GRMS techniques allow for such a separation of concerns. GRMS 

also supplies simple tools to determine, in a formal, well-defined way, whether a given set 

of tasks can meet its critical deadlines. 

Rather than dealing with the schedulability issue in software, why not just use faster 

hardware—it would be less of a cultural shift. For real-time systems, speed of response 

is important only so far as it helps ensure tight deadlines are met. An improvement 

in "computing power" (speed of the calculations) does not necessarily imply a better 

control system [59:11]. Predictably quick response to unexpected events, a high level of 

"schedulable utilization,"2 and stability during overload (critical tasks must always meet 

their deadlines, even during times of transient overloading) are the most important issues 

for real-time systems [55:68]. If the result is perfect, but it does not arrive when it is 

supposed to (i.e., misses a critical deadline), the controllability of the system suffers. The 

"schedulability" of a task set, then, is concerned with the timeliness and predictability of 

its set of tasks—can critical tasks meet their deadlines? And if not, can it be predicted 

which tasks will miss their deadlines? What are the results of missing those deadlines? 

But how can one determine if a set of tasks can meet its deadlines? Testing for 

temporal correctness cannot provide 100% task set coverage (i.e., one cannot feasibly test 

every possible contingency) to ensure the design always meets its critical deadlines [59:11]. 

Therefore, some other technique for determining temporal correctness must be found to 

determine the adequacy of a real-time systems design. Scheduling theory seeks to find 

disciplined, structured alternatives for designing temporal correctness into a system, rather 

than "testing it in," and analyzing the timing characteristics of an implemented set of tasks. 

2The processor utilization above which task set schedulability can no longer be guaranteed. Also known 
as the point of Breakdown Utilization [37:171]. 
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3.3.4 Computer Concern Conclusions. Many papers have been pub- 

lished to extend RMS. The basis for this interest in RMS is its simplicity and power. As 

already mentioned, since RMS is an "optimal" algorithm for ensuring a given task set can 

meet its deadlines, it can be used instead of any other preemptive, fixed priority scheduling 

technique. Also, RMS makes it easy for developers to assign priorities (semantic impor- 

tance has no role in priority assignment) and determine if a given task set can meet it 

deadlines (using simple equations related to utilization bound or "scheduling point" calcu- 

lations) . Certain programming restrictions are imposed to implement a set of tasks within 

true GRMS guidelines, but these restrictions do not hinder good software development 

practices [52:19-24]. As long as the formal, yet simple, rules are followed, GRMS has 

proven to be a well-rounded scheduling technique (perhaps the only one [41:182]). 

This issue is critical—the team needed to be able to determine the "correctness" of 

a given control system implementation. Whatever alternatives were considered needed to 

support schedulability analysis to one extent or another. Obviously, the more support an 

alternative had for a well-defined analysis technique, the better. As the RMA techniques 

have some of the most well-defined tools, and have a large body of literature supporting 

the techniques, it was the technique of choice. 

3.4     Subsystem Trade Study 

Since determining the "best" embedded control system for SIMS AT was simply an- 

other problem to be solved, the same steps established for the overall research effort was 

used to solve this problem. A trade study of potential solutions, both vendor-integrated 

and independent, team-integrated components were considered during this Preliminary 

Design life-cycle phase. 

3.4-1 Issue Formulation. Moving from Concept Exploration to Prelimi- 

nary Design requires a natural shift in emphasis from determination of customer needs to 

considering potential clases of solutions. As a result, some tasks of the Issue Formulation 

step from the previous phase—Problem Statement, Constraints, and Alterables, and the 

alternatives being considered—had to be revisited. 
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3.^.1.1 Problem Statement. The problem statement was again modi- 

fied to reflect the emphasis for this life-cycle phase: 

Considering SIMSAT is a satellite system simulator to be used as an experi- 
mental test bed for AFIT, define those vendors that can meet the original de- 
sign requirements and select the best C&DH subsystem solution to support Air 
Force/DoD research and provide a sound instructional aid to AFIT instructors 
teaching in satellite control and dynamics. 

This statement also formalizes the change from a system-wide definition to a predominant 

focus on the design of the C&DH subsystem. The other portions of the system went 

through their Preliminary Design phase as well, but not until the C&DH subsystem was in 

Detailed Design (see Section 4.2, page 4-2). For this reason, this phase will be documented 

as a C&DH exclusive phase. 

3.4-1.2 Additional Constraints and Alterables. The Problem State- 

ment above alluded to the only alternatives to be evaluated during this life-cycle phase: 

C&DH subsystems. As mentioned at the beginning of the chapter, for a C&DH subsystem 

trade study to be conducted, nominal values for the rest of the system had to be assumed 

to allow for meaningful comparison of potential C&DH alternatives. While this would also 

have required a sensitivity analysis similiar to what will be done in the next life-cycle phase, 

the "best" solution was so clearly dominant, the team (along with the CDM) determined 

that no such analysis was required. 

Constraints. Numerous embedded controller/single-board com- 

puter, real-time operating systems, and control system development software vendors exist 

in the commercial market today. While the constraints developed in the first life-cycle 

phase still applied, some additional qualification criteria for selecting eligible C&DH sys- 

tems was developed as a result of that first iteration through the activity matrix. The 

following characteristics were determined to be the constraints for the selection of candi- 

date control system solutions: 

• graphical, digital development and operating environment 

• commercially available 

3-10 



• easily accessible technical support (competency was assumed) 

• support a range of operating voltages (expected ADACS would drive the power re- 

quirements; a valid C&DH alternative would require voltage regulation/transformation 

circuitry if not an integral capability) 

• operate with battery power (would have required power conversion circuitry if not 

an integral capability) 

• support some level of wireless operation (if control could not be separated between 

the ground and the satellite, then support for transmitting sensor signals from the 

satellite and effector signals to the satellite had to be provided) 

Alterables. While the alterables developed in the first life-cycle 

phase also still applied, some additional C&DH attributes (to directly support the Initial 

Needs previously identified) for evaluating eligible C&DH systems were developed. The 

following characteristics were determined to be tradeable characteristics for the candidate 

C&DH sub-system solutions: 

• totally integrated solutions (processing hardware, operating and development soft- 

ware, support hardware) 

• efficient executable code generation (allow larger task sets to be executed on a given 

system) 

• non-proprietary development environment (using MATLAB/SIMULINK or similiar com- 

mon tool as a foundation is preferred) 

3.4-1-3 Value System Design. With the addition of real-time concerns 

introduced earlier in this chapter, they needed to be factored into the values hierarchy. The 

concerns that need to be added include: 

• Schedulability Analysis: Consider how well the system supports the ability to 

determine if the planned task set can meet its deadlines. A high score would indicate 

complete support for the GRMS environment, including operating system support 

and modeling capability for all components and I/O 

3-11 



• Communications Latency: Consider how long it takes from the time a signal gets 

generated until it reaches the processor. The more parts a signal has to traverse from 

sensor to processor, the longer it will take, and the lower it scored. 

• Development Environment: Consider the support for an integrated, graphical 

development environment: development, simulation, compilation, execution, moni- 

toring, and control are all aspects of this measure. 

• Level of Integration: Consider how much effort will be involved in pulling the 

system together. The DSPACE system is the "goal" the other possible alternatives 

will be measured against. 

These issues were added to the value hierarchy in the form of evaluation considerations 

again, with the hierarchy for the trade study transformed as shown in Figure 3.2. 
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Figure 3.2     C&DH Trade Study Value Hierarchy 

The intent at this stage of the design effort is to continue with a qualitative compar- 

ison between alternatives to allow for relatively quick completion of this life-cycle phase. 
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3.4-1-4 System Synthesis. With the framework now updated to sup- 

port Preliminary Design, a list of candidate C&DH subsytems was developed to capture 

the solutions available on the market today to compete with the DSPACE system previ- 

ously purchased. The SGT approach used previously was not appropriate for this phase 

as the team did not look at multiple subsystem components, but rather at point solutions 

representing the continuum of solutions available for the C&DH subsystem. 

To simplify the comparison, the assumed system configuration for the alternatives 

was equivalent to the DSPACE system already purchased: 

• embedded controller 

• development software supported by simulation package 

• capable of being extended to a-satellite-based installation (including development 

and operating system software support) 

Again, due to time constraints, the candidates selected were only a sampling of the 

systems available today, but the CDM was comfortable those candidates were a sufficient 

representation to permit adequate comparison of the DSPACE alternative to others. The 

candidate systems selected for evaluation were: 

Integration of Piece Parts. This solution would involve searching 

tech reports, catalogs, and the Internet for the pieces required to pull together a total 

system, to include the software (development, compilation, monitoring and control, etc.), 

electronic components, and supporting hardware. There are a plethora of hardware and 

software solutions available, the difficulty will come in trying to find the best system, or 

even a solution comparable to the DSPACE system. 

MATRIX^- Solution. This solution would take advantage the inte- 

grated hardware and software environment. Integrated Systems, Inc. (ISI) produces an 

entire range of products to support aerospace and automotive products. However, its flex- 

ibility could be a problem; there may be some additional complexity in implementation 

useful for high-powered, mass produced, work-group oriented system developments. It is 

essentially the opposite end of the spectrum from the first alternative. 
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DSPACE Solution. This solution struck a balance, whereby a lot of 

power is available, but with limited, well-defined options. It may not be appropriate for 

all applications, but for systems that require simple implementation and maintenance, it 

appears to be the most straight-forward. 

The next section will evaluate the alternatives to determine if this list can be narrowed 

any further. 

3.4-2 Analysis. To assess the relative value of each alternative against the 

Preliminary Design values hierarchy, the same technique was used as in the previous life- 

cycle phase. Figure 3.3 shows a summary of the qualitative scores for the trade study 

alternatives. For those evaluation considerations that have another level below them, the 

lower level measures are assumed to provide the means to determine the "value" of that 

consideration, so those "measures" are addressed in the following discussion. Using the 

same criteria and assumptions as those used in the C&DH subsystem evaluation of the 

previous chapter (summarized in Figure 2.4, page 2-22), the alternatives were qualitatively 

scored in each of the lowest level evaluation considerations in the trade study value hier- 

archy (Figure 3.2). As in the previous evaluation, '5' is the highest score possible and the 

scores represent the total system score, assuming the other SIMS AT subsystems were the 

best they could be, and only the C&DH alternatives varied. 

The following descriptions explain why the alternatives scored the way they did: 

Total Cost Since the comparison is between the DSPACE solution already purchased 

and the other two solutions, the DSPACE solution got the highest score—it was 

effectively "given" to the team. Assuming time had permitted, the next best solution 

would have been the Piece Part solution as equivalent parts could be selected until the 

price was a low as possible. While unlimited time was not available, the assumption 

was there would be sufficient time to make it cheaper than the MATRIX^ solution. As 

the MATRIX^ solution is an "industrial strength" development environment, it was 

extremely expensive. As an aside, if the DSPACE components werer not available, 

the baseline used in this comparison (i.e., one processor, two I/O cards, connection 
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Alternative Total Cost Total Time Data Capability Simulation Fidelity 
Integrated Piece Parts 3 1 ■«■■■•5     ".....:..:.. 2 
MATRIXx Solution 0 3 5        .,.,.:,..,.-.-:, 4 
dSPACE Solution 5 ...,.,, . 5     . •       :5       . ■™5  :..:. 

Alternative Num. of Hazards Haz. Severity Command & Ctrl Angular Capability 
Integrated Piece Parts 3 3 4 3 
MATRIXx Solution ■ :5 "      5   ■■■ ..   '::,:5,. 3 
dSPACE Solution .,,,:    .5 ....   ■■■■'■ .. 5      :-5-:-. 3 

Alternative Develop. Env. Latency Sched. Analysis 
Integrated Piece Parts 2 3 2 
MATRIXx Solution 5' .,:,:,      3 .  .    '    4.:T-'   

dSPACE Solution ■-.■::; :.5- 3 4 

Figure 3.3      C&DH Trade Study Evaluation Matrix 

panels, software development environment) would have cost less than $23,000, which 

is still less than a comparable MATRIXx solution. 

Total Time/Level of Integration Since the Piece Part solution has little-to-no inte- 

gration off-the-shelf, integration time for that solution was assumed to be the worst, 

with the MATRIXx second due to all the configuration required. The time required to 

decide what to buy would also be the worst for the Piece Part solution, trying to find 

pieces that will work together at a reasonable price. Since the DSPACE system was 

already in place, only the installation time was an issue, which was expected to also 

be less due to in-house expertise on the DSPACE system. In addition, since it was 

already in-place, the system-level impact of any integration issues for the DSPACE 

solution were assumed to be negligible. 
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Number of Hazards This was expected to be about the same for each of the alternatives. 

But since the Piece Part solution was not previously integrated and tested together, 

that alternative may have some unexpected interactions. 

Hazard Severity Again, all the alternatives were expected to mostly have the same fail- 

ure modes. Again, since the integrated solutions both go through some "burn-in" 

testing before delivery, and are also qualified to some standard, they were expected 

to have less things that could go wrong. For the purposes of this measure, the team 

assumed the Piece Part solution could be expected to have more that could go wrong, 

one or two that could lead to a more significant failure than the integrated solutions. 

Data Capability Since there are sound COTS data acquistion packages available, and 

the DSPACE and MATRIX^ solutions inherently provide that capability, all solutions 

get the same score. 

Ease of Use/Development Environment Again, the DSPACE and MATRIXX solu- 

tions were considered virtually identical due to completeness of the development 

environment (graphical, integrated solution for creating, compiling, and loading pro- 

grams onto the target processor, all built upon a well-defined underlying system; 

graphical control and monitoring also included). Finding the equivalent Piece Part 

was determined to be somewhat unlikely. 

Simulation Fidelity The Piece Part solution was expected to have the most trouble with 

this, but there should be components available that could be used with MATLAB, 

SIMULINK, etc. to generate code, then compile it with the vendor's compiler. Devel- 

opment of the SIMULINK blocks for those components would likely take time though. 

The MATRIXx solution, as an "universal" solution, would not have the component 

problem, but would require some tailoring to establish the level of fidelity available 

from the DSPACE solution. 

Command &: Control Most of the alternative distinctions that might contribute to scor- 

ing differences in the area of satellite performance had already been addressed with 

the exception of the extent of control immediately available. The DSPACE and 

MATRIX^ solutions were clearly equivalent, having a professional staff (and cus- 
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tomer base) that has developed software/routines/blocks for nearly every imaginable 

level of control. The Piece Part solution would likely have very limited pre-defined 

and tested routines. 

Robustness/Schedulability Analysis The DSPACE operating system manual indi- 

cates it schedules task sets using GRMS techniques, but the extent of that support 

is unclear. The MATRIX^ materials available indicates it supports the Priority Ceil- 

ing Protocol and "pre-emptive, time-based" scheduling, but whether it applies all 

the techniques (support for aperiodicity, etc.) is unclear. Finding a real-time oper- 

ating system that would support GRMS might have been possible, but ensuring it 

adequately supported all the rest of the Piece Part solution was deemed unlikely. 

Robustness/Communications Latency This is a system-level issue that will have more 

impact during the Detailed Design phase of the C&DH life-cycle when trying to de- 

cide about where to have the programs execute. Assigned a nominal value for the 

purposes of this evaluation. 

Angular Capability Since the on-satellite equipment was assumed to not change for 

these three alternatives, they were assumed to be of the same value. They were 

assigned a nominal value for the purposes of this evaluation. 

3.4-3 Interpretation. From the table shown in Figure 3.3, it is clear the 

DSPACE option is at least as good as the other alternatives in each evaluation consid- 

eration, and the best alternative in terms of Cost, Time, and Simulation Fidelity. While 

the difference in the Cost value would have been reduced if the team had to purchase the 

DSPACE system, it still would have remained the best choice. Since the DSPACE system 

was such a clear winner, it was not necessary to reconsider the decision to do the compar- 

isons qualitatively. For example, if the MATRIX^ solution had cost nearly the same, as the 

"nominal" DSPACE system, more quantitative comparisons may have been required to 

better differentiate between the two alternatives (in particular some of the impacts the ro- 

bust MATRIX^ solution would have on the "user-friendly" goals desired from the SIMS AT 

C&DH subsystem). 
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3.4-4 Trade Study Summary. With confirmation of the validity of the 

DSPACE choice, the next step was to begin the Detailed Design life-cycle phase and define 

how best to allocate the software tasks. 
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IV.   Detailed Design 

4>1     Overview 

With the DSPACE system chosen as the system to be used for the C&DH subsystem, 

this chapter goes to the next level of detail: what design should be implemented in the 

next life-cycle phase? The activity matrix for this chapter, shown in Figure 4.1, reflects 

the shift in focus from Preliminary to Detailed Design for this life-cycle phase. 
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Figure 4.1     Issue Formulation (Design) Activity Matrix 

To evaluate specific C&DH subsystem alternatives from a system perspective (rather 

than as an isolated subsystem) required assuming a baseline for the rest of the subsystems, 

then considering the system-wide impacts of each C&DH alternatives. This put the al- 

ternatives in the appropriate portion of the common units transfer functions1. Then, the 

team provided inputs on the degree of system variation for the various attributes to observe 

the likely range of values for each C&DH alternative. This variation had the potential of 

showing that subsystem interactions would cause a change in the recommended C&DH 

1For instance, the impact of cost to the CDM could not be addressed by comparing the $10,000 cost of 
one C&DH alternative vs. $9,000 for another, but rather the total system cost for integrating either one, 
including all the costs of the other subsystems. Looking at Figure C.l, page C-3, it is clear that a $1,000 
difference in system cost has more impact on the CDM when the nominal system cost is $90,000 than when 
it is $20,000. 
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alternative under adverse conditions. This provided the team some of the insight they 

needed to evaluate the risks involved with whatever recommendation they made to the 

CDM. The data for the baseline system combined with the various C&DH alternatives for 

this phase are contained in Appendix B. This chapter largely concludes the documenta- 

tion of the "research" part of this system design effort—the next life-cycle phase takes the 

CDM-selected design and brings it to fruition. 

In this hybrid Design phase2, the only significant non-C&DH "decision" reached was 

for the ADACS subsystem. But since that decision was driven by the cost budget (the 

Control Moment Gyros far exceeded the available budget), this phase will be documented as 

a C&DH-exclusive phase. While this chapter will summarize the results of the non-C&DH 

subsystem "design choices" developed during their Preliminary Design phase, consult [8] 

for additional clarification. 

Before making design decisions, some issues covered in Conceptual Design and Pre- 

liminary Design required further definition, while others would be left for future steps. 

The products of the Problem Definition and Value System Design tasks require updating 

to provide a more detailed framework to support specific design decisions. This chap- 

ter further documents the additional detail developed for the Analysis step of the hybrid 

Design phase in the SIMSAT design process. The chapter concludes with interface spec- 

ification data for the C&DH alternatives that will be implemented in the next life-cycle 

phase, Implementation. 

4-2    Issue Formulation 

Since the issues typically finalized in this step (interfaces, key players, assumptions, 

etc.) were already identified in the Conceptual Design phase, few things changed. The 

Scope was unchanged, no additional Relevant Disciplines were identified, no new Actors 

needed to be considered, and the Initial Needs and Problem Elements still adequately 

captured the system boundaries and requirements. The Problem Statement only required 

2With the need for the C&DH subsystem to be completed before the rest of SIMSAT, the C&DH design 
entered Detailed Design as the rest of SIMSAT design effort entered Preliminary Design. 
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a shift in emphasis to recognize the detailed design nature of this phase. In addition, during 

the evaluation of the value hierarchy, the list of Constraints was again found lacking. 

4-2.1 Problem Definition. As this task covered issues for the entire life- 

cycle when first defined in Chapter II, the only issues that need to be documented in each 

life-cycle phase are those areas that change as a result of decisions in previous life-cycles, 

or where short-comings are identified. The parts of this task that need to be updated for 

this life-cycle phase are the Problem Statement (which is updated in every life-cycle phase) 

and the list of Constraints. 

4.2.1.1 Problem Statement.        To reflect the selection of DSPACE as 

the C&DH solution, the updated Problem Statement became 

Considering the satellite system simulator is to be used as an experimental test 
bed for Air Force Institute of Technology (AFIT), define the detailed DSPACE 

architecture to meet the design requirements and select the best DSPACE ar- 
chitecture to support Air Force/DoD research and provide a sound teaching aid 
to AFIT instructors teaching in satellite control and dynamics. 

As before, this statement is based upon the overall intent of the design effort, modified 

slightly to delineate the focus of this iteration through the problem-solving process. 

4.2.1.2 Constraints.      Due to the results of the previous life-cycle phase 

decisions and other process developments, the list of constraints added the following: 

• perform all three types of experiments 

• implement with a dSPACE, Inc. solution (result of the previous iteration) 

• transmitted RF power limited to that allowable in an office environment 

• all electrically powered devices will be protected against damage from over-voltage, 

under-voltage, and short circuits 

• slew rate sensing must support the slew capability of the system3 

3This Measure of Merit (MOM) was, until late in this life-cycle phase, considered critical to system-level 
evaluations.  Once the team decided it had little-to-no impact (no system alternatives would address the 
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• all SIMSAT motion must halt within 10 sec of being commanded to stop 

• SIMSAT must make use of all the motion envelope available to it 

4.2.1.3 Tradeables. Armed with the results of the system Concept 

Exploration life-cycle phase, the CDM worked with the team to develop a more detailed 

list of desired system attributes. As these are not "requirements" but the range of values 

he was willing to accept, they are considered design tradeables within the ranges shown. 

• run a 10-60 minute experiment 

• slew 30°-100° in 10 seconds 

• pointing accuracy of 0.001° and 0.01° 

• support 100-135 lbs. payload weight 

• provide 100-400W to the payload 

Also, the CDM assumed that any experimental "requirements" that were more stringent 

would be handled by the experimenter. 

4.2.1.4 Detailed System Definition. Before updating the values hier- 

archy, the concept map in Figure 4.2 was developed to ensure all the pertinent elements of 

SIMSAT were captured, along with their inter-relationship. Since the C&DH subsystem 

was the major design driver at this point in the system development, the concept map is 

somewhat C&DH-centric. 

From this rather free-form diagram, the team developed a more concise, product- 

oriented functional layout of the system (Figures 4.3 and 4.4). These figures were intended 

to capture, in more functional detail, the boundaries between subsystems without confining 

the team to any particular solutions. Since some of the detailed design decisions were still 

to be made, the team had to make some simplifying assumptions to develop this diagram. 

For instance, Figure 4.3 refers to a ground-based "Controller Assembly" that executes the 

control software—a design decision that would not actually be made until later in this 

MOM), time limitations prevented revisiting the LOGICAL DECISIONS models to remove the MOM. All the 
C&DH subssytem results reported in this chapter used 'no value' scores for this MOM 
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Figure 4.2     SIMSAT Concept Map 

life-cycle phase.   That box (and others) were placeholders in the diagrams to allow the 

team to work on defining interactions, and interfaces, between subsystems. 

4'2.2 Detailed Value System Design. As the values hierarchy for this 

phase has to become more elaborate to support detailed decision-making, some comments 

regarding the team's approach to the values hierarchy design are in order. Since this was a 

hybrid Design phase for the overall SIMSAT system, the values hierarchy reflects that vary- 

ing level of detail: significant low-level design attributes for the C&DH subsystem, higher 

level measures to support the other subsystem design decisions. In addition, the team 

selected/developed measures to support the desirable value hierarchy properties defined 

by Kirkwood [28:16-19]: 
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'GROUND" FUNCTIONAL LAYOUT 

USER INTERFACE 
Input desired actions 

Desired Action COMMAND ASSEMBLY 
Converts desired actions into 
actual commands, incorporates 
command "library" 

CMDR 

CONTROLLER ASSEMBLY 
Uses commands and current 
satellite telemetry to determine 
necessary satellite maneuvers 

NOTATION: 
CMDR = desired command word 
CMDU = usable command data 
CMDD = digital command data 
CMDRF=xmltted command data 
TLMR = raw telemetry data 
TLMU = usable telemetry data 
TLMD = digital telemetry data 
TLMRF = xmitted telemetry data 
DISP = display format for user 

DISP 
CMDU TLMU 

DATA HANDLING ASSEMBLY 
Converts satellite maneuver 
commands into digital format for 
xmit; converts digital recv telemetry 
into usable telemetry data 

CMDD 

TLMD 

COMMUNICATIONS ASSEMBLY 
Xmits commands data and receives 
telemetry data 

Figure 4.3     Ground Station Functional Layout [8] 
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'SATELLITE" FUNCTIONAL LAYOUT 

COMMUNICATIONS ASSEMBLY 
Xmits telemetry data and receives 
command data 

CMDD TLMD 

DATA HANDLING ASSEMBLY 
Converts satellite maneuver 
commands from digital format for 
implementation; converts telemetry 
data into digital format for xmit 

TLMR 

POWER ASSEMBLY 
Powers all satellite subsystems; 
returns power telemetry data 

ATTITUDE DETERMINATION ASSEMBLY 
Determines satellite position, velocity, 
acceleration, and other necessary data; 
sends this data to data handling system 

ATTITUDE CONTROL ASSEMBLY 
Uses satellite maneuver commands 
to command necessary actuators; fires 
necessary actuators and collects 
feedback telemetry on actuators 

Desired Action 

Figure 4.4     Satellite Functional Layout [8] 
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• Completeness: required to ensure adequate differentation between alternatives can 

be made (also known being "collectively exhaustive"). This led to a more exhaustive 

values hierarchy, particularly for the fundamental Performance value. There are two 

aspects to this property: 

1. the measures/metrics provide realistic representation of how well a given alter- 

native satisfies the user 

2. to know how well an alternative satisfies the user, one needs only know how well 

the alternative performed at the lowest level of evaluation considerations (the 

level just above the measures) 

• Nonredundancy: none of the measures/metrics should directly or indirectly score 

how well an alternative satisfies the user more than once (also known as being "mu- 

tually exclusive"). Violation of this principle would lead to excessive value ("double- 

counting" ) being placed on some aspect of an alternative. 

• Decomposability/Independence: within each evaluation consideration, the value 

of each of the measures/metrics or evaluation considerations for the next level do not 

depend upon the score/value of the others. This drove the development of Total 

time as the measure to be evaluated (based upon the estimated total time to order, 

produce, ship, etc.) instead of trying to score each constituent time measure. 

• Operability: every part of the hierarchy must be understandable to the user, and 

it must all fit together in a way that makes sense to him. As Kirkwood points 

out [28:18], "... it may be necessary to compromise ... some of the other desirable 

characteristics ..." to make it user-friendly. Kirkwood also contends that finding a 

way to strike this balance is more of an art than a science. 

• Small Size: unless driven by some other property, the smaller the hierarchy the 

better. The three main reasons for this are: 

1. 'less' is easier to communicate (related to the Operability property above) 

2. less time would be required to collect and document the data for each mea- 

sure/metric in the hierarchy 
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3. each additional measure requires the determination of the type of data to be 

collected, how to transform the data to "common units" to allow combining 

disparate measures for determining an aggregated alternative score, and how to 

communciate the final alternative evaluation results 

With regard to the last property, Kirkwood cautions that a careful balance must be struck 

between the time spent developing/defining measures and the time that will need to be 

spent assessing alternatives [28:28]. He makes a case that, while naturally occuring metrics 

maybe tempting, there are few of them, and most natural measures cannot deal with 

interactions that typically need to be considered between related metrics [28:25]. His 

observation is that a carefully "defined metric" (also known as a "proxy") will not only ease 

data collection, it can use the proxy definition to capture the interaction between natural 

measures, making it easier to communicate the result of the alternative evaluations. 

For all these reasons, the overall values hierarchy shown in Figure 4.5 was developed in 

coordination with the CDM to make sure the assessment of design alternatives considered 

the issues important to him, while observing the guidelines above. The fundamental values 

of the previous hierarchies remained unchanged, but the refinement of the supporting 

details (called "evaluation considerations" [28:11-12]) led to a significant modification of 

the hierarchy. While the next section describes what the evaluation considerations and and 

measures are trying to capture, a more formal definition of the Measures of Merit (MOMs) 

can be found in Section 4.3.4 (page 4-21). How those measures are used to quantitatively 

evaluate the alternatives is covered in Section 4.4.1 (page 4-28). 

4.2.3 Measures Defined. This section describes the pertinent aspects of 

the alternatives being evaluated with respect to the CDM's values. Figure 4.5 shows how 

the team further elaborated the fundamental values (capitalized boldface) of Figure 2.3 

into 15 evaluation considerations (boldfaced) and 24 metrics (in italics): 

• COST 

- Capital Cost: 

4-9 



SIMSAT 
Design 

Cost 

Capital Cost 

Purch $ -i 
ntegration $ 

I— Purch $ + I— 0 & M $ ($/yr) 

Safety 
X 

Eqp't Damage Personnel Risk 

L Rel. D amage Index r 
rob. of Failure 
amage Severity 

Rel. Injury index 

Lprob. of Failure 
'— Injury Severity 

Schedule 

I Total Delivery Wks 

Order Wks 
Production Wks 
Delivery Wks 

1— Integration 
Wks 

Performance 

(BELOW) 

Controllability 

-Processor Sched. 
Analysis 

-Comm. Latency 
•Bandwidth Req't 

Grd Station Capability 

Control System 
Analysis 

-Development 
Environment 

!—Motion Simulation 

Execution 

Data Capability 

Post Mission 
Data Analysis 

■—Real-Time Data 

Ease of Use 

Command & Control 

-User Interface 
-Command 

Capability 

Performance 

Satellite Movement 

-Slew Rate 
Sensing 

-Pos. Sensing 
Accuracy 

-    Slew 
Capability 

-Torque 
-Moments of 

Inertia 

0 8 M Time 

-Maint. & Test 
Time 

Turn Around 
Time 

Robustness 
I 

Range of Experiments Available Margins 

— Interface 
Modularity 
Experiment Types 

Mass 
■—Power 

Figure 4.5     Full SIMSAT Values Hierarchy 
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* Purchase + Integration Cost: what are the one-time dollars spent on parts 

and labor to implement SIMS AT? 

— O&M Cost: 

* Annual Operations and Maintenance Cost: what is the annual cost to op- 

erate and maintain SIMS ATI 

PERFORMANCE 

— Execution: how well will the alternative perform experiments? 

* Controllability: how much can SIMS AT do and still be controllable? 

• Processor Schedulability Analysis: how much support for RMA schedu- 

lability analysis does the alternative support? 

■ Communications Latency: how great is the delay from sensor to pro- 

cessor to effector? 

■ Bandwidth Requirement: how much bandwidth is required to maintain 

control of SIMS ATI 

* Data Capability: how much data does the alternative provide? 

• Post-Mission Data Analysis: able to collect data for post-mission anal- 

ysis? 

• Real-Time Data: able to see how/what SIMS AT and its payload are 

doing during experiment execution? 

* Satellite Movement: 

■ Position Sensing Accuracy: how accurately can position be measured? 

• Slew Capability: how far can the satellite move in a given period of 

time? Consider torque generation and the moment of inertia of the 

satellite system 

— Robustness: what variety of experiments can SIMSAT support? 
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* Range of Experiments: what range of experiments does the alternative 

support? 

• Interface Modularity: how easy is it to install rearrange assets (a mea- 

sure of flexibility)? 

• Experiment Types: of the desired experiment types, which can be run? 

* Available Margins: how much margin is available for experiment use? 

• Mass: how much more mass can SIMS AT support after the "base" 

SIMS AT systems are installed? 

• Power: how much more power can be drawn from the SIMS AT power 

system after the "base" SIMS AT systems are installed? 

Ease of Use: how easy is the total alternative to use? 

* Ground Station Capability: how easy is the ground station part of the 

system to use for pre-deployment activities? 

• Control System Analysis: how easy is it to define the system in MATLAB 

and generate Bode Plots, etc. to validate system control stability? (A 

one-time "cost" to develop missing system elements) 

• Development Environment: how easy is it to program the control laws? 

• Motion Simulation: can the alternative predict and show how the satel- 

lite will move before actually moving the satellite? 

* Command and Control: how easily can SIMSAT be controlled during 

experiment execution? 

• User Interface: how intuitive is the user interface? 

• Command Capability: how much of the satellite and payload/experiment 

activities can be controlled from the ground? 

* O &; M Time: how much time will be spent keeping the system going? 
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• Maintenance and Test Time: how much time (relatively) will be spent 

getting the system ready to run experiments (how easy is it to connect 

the payload to the satellite)? 

■ Turn-Around Time: how much time, in a one hour experiment, will be 

spent changing batteries? 

• SAFETY: The Relative Hazard Index used for each measure below is documented 

in Appendix C, Figure C.4, page C-6. 

- Equipment Damage: 

* Relative Damage Index: what is the index for damage? (a proxy measure 

combining the probability of failure and the estimated injury severity for a 

failures) 

- Personnel Risk: 

* Relative Injury Index: what is the index for injury? (a proxy measure 

combining the probability of failure and the estimated injury severity for a 

failures) 

• SCHEDULE 

- Total Delivery Time: how much time will be required to order, produce, deliver, 

and integrate all the parts from all the subsystems? 

The results of this iteration of the VSD task were the key to the rest of the process. 

In the next section, alternatives were generated to address at least one of the fundamental 

values. Section 4.3 documents the tools and techniques the team used to collect data 

and perform the initial analysis of the alternatives considering the attributes developed 

in this step. In the final section for this life-cycle phase (Section 4.4), the CDM provides 

the weighting criteria for each of the MOMs and evaluation considerations for the "ideal" 

solution. That final step algebraically totals the "level of satisfaction" measures each 

solution provides the CDM. To aid in the Decision-Making task, the team used LOGICAL 
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DECISIONS [56], which uses the values hierarchy as its foundation (see 4.4.1, page 4-28, for 

more details on LOGICAL DECISIONS). 

4-2.4     System Synthesis. If there are no alternatives to choose from, 

there is no decision to be made. While there are a number of different ways to generate 

alternatives, the team decided to continue using the Strategy Generation Table (SGT) 

technique [28:47]. While at the end of this phase it turned out that the C&DH architecture 

selection was the only decision made, each subsystem expert initially developed a non- 

dominated set of subsystem alternatives4 to establish a system baseline. The system level 

solutions were then generated by permuting those subsystem solutions into integrated 

system solutions. The following subsections mention the choices of non-C&DH subsystem 

alternatives. For more details on those alternatives, consult the full team thesis [8]. 

4.2.4.1 Attitude Determination and Control System. The main 

concern for this system was the generation of torque to move the satellite—the deter- 

mination of attitude, position, velocity, and acceleration was not considered during this 

iteration. The classes of alternatives available were Control Moment Gyros (CMGs) and 

Momentum Wheels (MWs). 

4.2.4.2 Power System. At this stage of the life-cycle, the main concern 

for this subsystem was the generation of power for all the other systems on the satellite. 

The classes of alternatives initially considered were Single and Distributed sources. 

4-2.4-3    Structures. The structural issues the team tried to address 

at this phase of the life-cycle was the gross arrangement of subsystems. The two main 

alternatives considered for this subsystem was whether the subsystems would be built-up 

in a "milkcrate" which would then be attached to the ends of the satellite, or if each 

subsystem would be built up on a disk, then the disks got stacked on top of one another 

in a "barbell" fashion. 

^Dominated Alternatives are those alternatives that score worse on every attribute than at least one 
other alternative. Thus, the non-dominated set is that set of alternatives that are the "best" in at least 
one attribute than every other potential alternative. 
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4-2.4-4 C&DH. During Concept Exploration, it became clear the C&DH 

subsystem was dependent upon the communications subsystem. At that point, the team 

effectively combined the two subsystems, assumed an adequate wireless communications 

solution existed somewhere in the commercial world. Then at the end of this C&DH 

design effort, the AutoBox5 communications requirements were passed to the next life- 

cycle phase for the overall SIMS AT design effort as a design constraint. The combined 

C&DH/communication subsystem alternatives generated in this step focused on satisfying 

the overall control system requirements. 

At a coarse level, the alternatives available for using the DSPACE system were to 

either install an AutoBox on the satellite or run discrete sensor and effector (those elements 

that cause something to happen) signals from the satellite systems back to the ground. 

Within these major alternatives, there were some other choices related to where the control 

system task set executes. 

First, the potential task set had to be defined: what were the likely group of tasks 

the C&DH system would need to handle? Based upon Figure 4.2, 4.3, 4.4 and [29], this 

notional task set was developed: 

Attitude Determination and Control: the set of tasks that evaluates user commands, 

determines satellite status, and reacts to resolve any discrepancies between the two. 

Major sub-tasks include: 

• detection of satellite position, velocity, and acceleration (called ADAC.MEASURE) 

• resolution of error between ADAC.MEASURE and the commanded satellite 

position, velocity, and/or acceleration (called ADAC.EXEC) 

Experiment Control: the set of tasks that evaluates user commands, determines ex- 

periment status, and reacts to resolve any discrepancies between the two. Major 

sub-tasks include: 

• determination of experiment status (called EXP.MEASURE) 

5A dSPACE, Inc. product that houses the processor and data acquisition boards in a self-contained, 
power-conditioned, shock mounted enclosure. The AutoBox is therefore ideal for satellite installation. It 
is designed with an integrated ethernet card to send a 10Mbps data stream to another computer running 
the user interface. 

4-15 



A 
D 
A 
C 

E 
X 
P 

COMMAND 
Input 

Transformation 
-|-> 

CONTROL 
-> —■*■ —^ 

User | Transfer 
Functions Satellite | 

>' M 

DISPLAY Data 
Transformation 

< ;  MEASURE 
< . *  ■*  

virouna 
Processing ) 

saieuue 
Processing 

ADAC and EXP tasks include the corresponding MEASUREMENT task 

Figure 4.6     SIMS AT Real-Time Software Architecture 

• resolution of errors between EXP.MEASURE and the commanded experiment 

(called EXREXEC) 

User Interface: the set of tasks that allows the user to command the satellite and deter- 

mine the status of the system 

• translate user inputs to control system commands (INPUT Transformation) 

• control the data displayed to the user (DISPLAY Transformation) 

— translate user inputs to displayed graphics 

— translate satellite response to displayed graphics 

The inter-relationship between these problem elements, the user, and SIMSAT can easily 

be seen in the Real-Time Soßware Architecture, Figure 4.6. 

The diagram also portrays the idea that some of the tasks could be located on 

different processors. Separating the control and associated measurement tasks would lead 

to a very fine-grained software solution that would require significant communications 
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overhead. This would lead to the multi-processor saturation effect shown in Figure A.3 

and discussed on page A-17. To reduce the impact of this effect, associated control and 

measurement tasks should always be hosted on the same processor. 

The question mark in Figure 4.6 represents the primary decision of this phase: 

what is the best allocation of real-time control tasks between satellite and ground 
processing? 

The communication requirement between ADAC and EXP sets of tasks was expected to 

be low enough that the overhead would not prevent the separation of those task sets, at 

least for simple task sets. 

From the multi-processor saturation effect discussion mentioned earlier, running all 

the tasks on a single processor (the most coarsely grained, totally independent solution) 

would lead to the best performance. However, the task set could become too complicated 

to execute all the above tasks on a single processor. The alternatives that arise from that 

difficulty include purchasing additional processor boards or using the available DSPACE 

assets and reallocating some of the tasks to the ground station. Considering the lim- 

ited time and schedule budget resources available to this research effort, the purchase of 

additional processing hardware was considered infeasible. 

One additional consideration used to generate the C&DH alternatives: if the tasks 

execute on the ground station, how will the sensor and effector signals be connected to 

the ground processor? The two alternatives identified to satisfy that requirement were: 

1.) use the AutoBox strictly for signal consolidation, or 2.) design/select a different 

COTS solution. The second alternative would require additional research and integration 

work, but could also provide additional flexibility in the arrangement of parts and power 

efficiency. These, and other issues, were factored into the values hierarchy, and will be 

evaluated in the following sections. 

4-2.5 Alternatives Summary. In summary, the potential task allocations 

for this control system structure were: 

• ADAC and EXP tasks on the satellite (All on Sat) 
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• EXP on the satellite, ADAC on the ground (Split) 

• All tasks executing on the ground—AutoBox providing signal consolidation (Grd 

w/ AutoBox) 

• All tasks executing on the ground—a COTS solution providing signal consolidation 

(Grd w/o AutoBox) 

Table 4.1 presents a summary of the subsystem alternatives; system solutions could 

then have been generated by permuting through the table to generate 32 (2 x 2 x 4 x 2) 

solutions. As no other subsystem decisions were made during this life-cycle phase6, the 

following sections evaluate the C&DH solutions, seeking the best solution to the CDM's 

needs, from a systems perspective. 

ADACS Power C&DH Structures 

All on Sat 
CMGs Single Source Split Milkcrate 
MWs Distributed Grd w/ AutoBox Barbell 

Grd w/o AutoBox 

Table 4.1     Strategy Generation Table 

4-3    Analysis 

This section addresses the team's efforts at collecting data, converting that data into 

common units, and assessing the alternatives developed in the previous section for potential 

improvement in areas of weakness. The actual collection of data was only a minor part 

of the process—as mentioned in the previous chapter, gathering "good" data without first 

defining the type and character of the desired data would be pure luck. 

Likewise, converting the collected data to common units was typically just a matter of 

plugging the measured value into a straight-forward formula for that aspect of the solution 

to determine the value of that "score". But determining an appropriate conversion formula 

6The narrowing of ADACS alternatives to Momentum Wheels is not strictly a "decision"—the economic 
elimination caused the Momentum Wheels to become one of the first defined parts of the baseline system. 
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was typically an iterative process. The information documented in this section reflects the 

final formulas developed in conjunction with the CDM and detailed in Appendix C. 

To quantitatively determine the "best" solution in this part of the problem-solving 

process, data must be collected. But since the various measures are inherently unrelated 

in what they measure and the units used to do the measureing, there needs to be a way to 

determine how much the CDM values the data collected for each of the alternatives. These 

issues are addressed by the Hall tasks Systems Modeling and Systems Analysis, respectively, 

within this Sage step. Each of the Hall tasks will be addressed in a separate section. 

Before getting into the details of those steps, four aspects of data collection need to 

be addressed: resolution, scale, data quality, and range. Each is addressed in the following 

subsections. 

4-3.1     Resolution. Before deciding on how to implement the measures, 

called "Measures of Merit" (MOMs) in this document (called "metrics," "measures of 

effectiveness," and simply "measures" in the literature), certain considerations have to be 

addressed. First, what resolution would be needed? This choice of resolution should be 

based on the intrinsic nature of the attribute, the level of detail available from the data 

source, and what resolution the CDM requires to make a decision. Of course every MOM 

is different, so these considerations had to be addressed for each one. Each measurable has 

a resolution, but all measures do not need to have the same type. Three resolution classes 

were considered for each attribute: 

1. Binary: yes/no, off/on, does/doesn't exist, etc. 

2. Finite Number of classes: low, medium, high; level of technology: old, current, 

cutting edge, etc. 

3. Continuous Real Numbers: continuous response, cost of hardware, 0-1000, 1000- 

1500 etc. 
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4-3.2 Scale. The next aspect the team addressed was Scale. Closely related 

to resolution, Scale deals with how the levels of a measure are arranged and the relationship 

of those levels to each other. There were four classes of scales considered for each attribute: 

1. Nominal: arbitrarily named with no particular order (e.g., apples, oranges, grape- 

fruit, raspberries, etc. are types of fruit) 

2. Ordinal: inherent ordering, no specific spacing (e.g., None, Some, Partial, Full) 

3. Interval: units of measure are equal, no fixed zero 

4. Ratio: units of measure are equal, fixed zero, ratio comparisons possible (i.e., "A is 

twice as good as B") 

Relations inherently exist between resolution and scale. Nominal and ordinal mea- 

sures are typically related to resolution levels 1 and 2 above, interval and ratio relate to 

level 3. 

4.3.3 Quality of Data. In any data collection effort, there will be some 

estimates of data. In many cases, this "uncertainty" is handled by using a "confidence indi- 

cator" to derate the score for a given measure when there are varying degrees of confidence 

between alternatives and their measures. A typical confidence derating scheme might be: 

Confidence Indicator De-Rating Multiplier 

Highly Confident (HC) 0.9 
Very Confident (VC) 0.7 

Confident (C) 0.5 
Semi-Confident (SC) 0.3 
Not Confident (NC) 0.1 

Table 4.2     Confidence De-Rating 

In this research effort, the team chose not to use derating multipliers because of the 

degree of mental modeling employed in the evaluation of alternatives This led to a fairly 

consistent level of data quality between alternatives (i.e., the same level of data uncertainty 

exists between alternatives for any given measure), negating the need for the multiplier. 
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In that case, derating the data needlessly narrows the score margins between competing 

alternatives. 

4..3.3.1 Range. Compared to the other aspects of data collection, estab- 

lishing a measure's range is relatively intuitive: the range of values the CDM is willing to 

accept for a particular measure. Anything outside that range will either be unacceptable, 

or represents an improvement in the measure the CDM is not willing to pay any extra for. 

Keep in mind that some of these measures will have greater value for lower scores (such as 

Cost), while others will have greater value from higher scores (such as Ease of Use). That 

conversion, as well as the "normalization" of all the different measures to common units, 

will be addressed in System Analysis, Section 4.3.6 (page 4-23). 

4.3.4 System Modeling. As mentioned in Chapter II, this step in the 

Problem Solving process has three main sub-steps: 

1. define the scales and resolution for each of the measures of merit identified in the 

values hierarchy 

2. determine the expected quality and range for each of the measures of merit identified 

in the values hierarchy 

3. collect the data using the scale and resolution decisions above. If there is any un- 

certainty about the actual value a given alternative will have, try to find ways to 

describe the uncertainty probabilistically 

With the measures in the values hierarchy completely defined, the team developed the 

scale and resolution for each measure. Table 4.3 records the results of the team's effort. 

4.3.5 Data Collection. During the Concept Exploration life-cycle phase, 

the team collected all data through mental modeling, largely based on knowledge previ- 

ously accumulated. For this iteration, additional information was required to fill in the 

details for some of the measures. To collect the data, the team conducted open publication 

searches, group consensus, manufacturers data (either brouchures and catalogs, or their 
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Measure Resol'n Scale Range Units 

Capital Cost Real Ratio 10 - 100 $1,000 
0 & M Cost Real Ratio 0-20 $1,000 

Total Del. Time Real Ratio 12-56 weeks 

Rel. Damage Ind. Finite Interval 10-20 — 

Rel. Injury Ind. Finite Interval 10-20 — 

Bandwidth Req'ts Finite Ordin. Low, Med, High — 

Comm. Latency Finite Ordin. Minimal, Mod., Significant — 

Ctrl. Sys. Analysis Finite Ordin. Minimal, Partial, Full — 

Development Env Finite Ordin. Text, Graphical, Visual — 

Exp. Types Finite Ordin. None, Educ, Rigid, Flex — 

Interface Modul'y Finite Ordin. None, Some, Partial, Full — 

Maint. k Test Time Finite Ordin. V. Low, Low, Med, High, V. High — 

Mass Margin Real Ratio 0-300 kgs 
Motion Sim. Binary Nomin. Yes, No — 

Pos. Sens'g Ace. Real Ratio 10-1 -> 10~a — 

Post-Msn Anly's Binary Nomin. Yes, No — 

Power Margin Real Ratio 0-15 Amp-Hrs 
Proc. Sched. Anly's Finite Ordin. None, Unsupp'd, Mod., Full — 

Real-Time Data Binary Nomin. Yes, No — 

Slew Capability Real Ratio 3-10 deg/sec 
Turn Around Time Real Ratio 0-8 hrs 

User Interface Finite Ordin. Minimal, Partial, Full — 

Table 4.3     Measures of Merit Details 

web sites), and observations of "obvious" characteristics7. The information gathered was 

then typically used in mental modeling to assess the alternative attributes. Direct mea- 

sures, such as Capital Cost, could be used directly, while most of the others, such as Total 

Delivery Time required some extrapolation and assumptions developed during the mental 

modeling exercises. 

Appendix B contains the tables of raw data the team collected for the four alterna- 

tives. Appendix B also provides the basis for the scores assigned to the various measures. 

As mentioned before, the data in Appendix B reflects SIMSAT system-level data (not just 

for the C&DH subsystem) as the C&DH subsystem alternatives were varied. To capture 

7 Obvious means the data for the measurable was readily apparent to even the most casual observer. For 
the MOMs the team employed this technique on, there was always an extremely limited range of data to 
be discovered (typically, the MOM had a Y/N type of resolution). 
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the uncertainties in the collected system-level data, the appendix also contains an estimate 

of variability in the data around the most-likely value for each of the alternative measures. 

To summarize the nominal data, Table 4.4 contains the most-likely score for each mea- 

sure of each C&DH subsystem alternative (measures arranged alphabetically within each 

fundamental value). 

Prom the data in this table, none of the alternatives was dominant—all four had 

strengths in different areas. But the CDM would consider some attributes more critical 

than others. To factor that consideration into the analysis, the data collected had to 

be converted to common units, and weights assigned to each measure. This provides a 

mechanism to algebraically combine the score in a way that reflects how valuable a given 

piece of data is across the spectrum of possible scores for that MOM, and how relatively 

important a given MOM is to the CDM. Both of these issues are addressed in Section 4.4.1, 

starting on page 4-28. 

4-3.6 System Analysis. Chapter II discusses the aspects of this step in 

detail. In summary, this step is used to: 

1. define the functions used to convert the measures to common units 

2. convert the raw data to common units and consider the results—if what was expected 

to be a "good" alternative turns out to be less remarkable, determine why and either 

• develop a new altermative to address the shortcoming or 

• change the raw data to common units transform to mirror CDM expectations 

The team routinely met with the CDM to develop the transform functions for each of 

the measures of merit—the common units range was established as 0-10. Appendix C con- 

tains the resulting system-level common units transform functions. Table 4.5 consolidates 

the results of those functions in one place with Table 4.6 as the key to the abbreviations. 

Based upon this information, the nominal C&DH alternative values (from the raw 

data in Table 4.4) are shown in Table 4.7 (again, with a baseline system configuration). 
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4.-3.7 Summary. Unlike the previous life-cycle phases, the "common units" 

answers in this phase show no dominant alternative; the All on Sat option would appear 

to be the best if all that was considered was the number of high marks it got. But if the 

CDM determines the weight of some attribute in the Grd w/ AutoBox solution was THE 

most important attribute (not likely since that would imply all the rest do not matter), 

the latter solution could turn out to be the "preferred" solution. The next section goes 

through the multi-attribute comparison process required in a situation like this. 

4.4    Interpretation 

Now that all the data has been collected, converted to common units, and weights 

assigned to each portion of the values hierarchy, the final step in the problem-solving pro- 

cess can begin. This section focuses on the Decision-Making task, taking the "common 

unit" values developed from taking the raw data of Table 4.4 through the value functions 

and corresponding details of Appendix C. After completing the analysis of the data, the 

chapter concludes with a recommendation for the best C&DH alternative, and the implica- 

tions ofthat choice for the next phase (i.e., any new constraints, problem elements, etc.). 

A critical piece of that documentation is the physical interface and connector diagrams 

for power and signal wires to help define those constraints. The Implementation of the 

optimal architecture defined in this chapter is covered in Chapter V. 

By the Sage summary documented in Table 1.2, this section documents the Hall 

Decision-Making and Plan for the Next Phase tasks. Each task is covered in a separate 

subsection as before. 

4-4-1     Decision-Making. In many ways, this was the focus of all the 

previous work in the problem-solving process. The ultimate goal of the process was to 

determine the "best" solution to a problem, and the process to this point either formally 

defined the problem, elucidated the aspects of the solution the CDM would use to determine 

the value of a given solution, generated a variety of solutions, collected data for those 

solutions, normalized that data, or considered the implications of that data (determined 

the non-dominated solution set, optimized alternatives as appropriate, etc.). This chapter 

4-28 



documents how the team took the results of all that work, determined how to algebraically 

combine the data to rank alternatives, and make a final recommendation. Once the ranking 

of alternatives was complete, the final section of this chapter documents the implications 

of that decision to the rest of the life-cycle. 

To complete the decision-making process, the system-level value of each alternative 

had to be determined. Since the C&DH subsystem was more defined than the other 

subsystems, some assumptions were made about the expected scores for each of the system- 

level attributes without the C&DH system. The impacts of each C&DH alternative was 

then factored into the baseline system design to assess the integrated system. Then a 

sensitivity analysis was conducted to see if the alternative rankings changed with changes 

in the fundamental value weights. If any of those changes caused a re-ordering of the 

alternatives, a sensitivity analysis of the next level was conducted to provide detailed 

insight into the impact of the attributes. Finally, to determine the risk of selecting a given 

C&DH alternative, a range of values was included along with the original values and the 

results graphed to get a visual indication of the amount of overlap. Each of these steps is 

covered in a sub-section below. 

4-4-1-1 Alternative Valuation. The technique used to algebraically 

combine the scores for each alternative to determine an alternative's Total Value (or TV 

of a given alternative) is explained by Kirkwood [28:72]. The process takes the normalized 

value of each measure, multiplies it by an appropriate weighting factor, and sums all the 

weighted, normalized values. A simplified version of the formula to determine TV of 

alternative (x) is: 

TV{x) = Y,WiVi(x)   |l> = l} (41) 

where 

i = attribute under consideration 
n = number of attributes 
u>i = weight for attribute i 
Vi (x) = normalized value of attribute i for alternative (x) 
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I,..J^..1.2 Attribute Weight Development. The difficulty is in devel- 

oping an analytically sound technique for determining weights for each attribute. Recall 

that the normalized values for each attribute were established by the team and CDM to 

vary from 0-10. To be analytically sound, TV(x) must also vary from 0-10 [28:61]. To 

accomplish this, the weights associated with each attribute supporting a given evaluation 

consideration must sum to 1, all the way to the top design goal ("Best SIMS AT Design"). 

In other words, the weights associated with Mass Margin and Power Margin must sum 

to 1 (so that the Available Margins evaluation consideration falls in the range of 0-10), 

and the weights associated with the Cost, Schedule, Safety, and Performance fundamental 

values must sum to 1. 

With the raw data available to them, the team worked with the CDM to assign 

weights using these guidelines. Kirkwood describes some rigorous techniques [28:68-72] 

for establishing attribute weights. In this effort, however, the weights were established in 

a less formal, bottoms-up approach. With the time constraints the team was operating 

under, and the familiarity the CDM had with this analytic technique made this compro- 

mise acceptable to him—he was satisfied the resultant weighting of the value hierarchy 

accurately reflected his perspectives. 

Figure 4.7 depicts the final values hierarchy, with weights assigned to each evaluation 

consideration and alternative attribute. But the attribute weights shown in Figure 4.7 are 

not the same as the Wi{x) in equation 4.1—IOJ is the combined value of all the weights 

between the attribute and the top of the hierarchy. For example, WRei_jnj_[nd = 1.0 x 

0.8 x 0.1 = 0.08. After the math is done for all the attributes, the total of the weights 

should still sum to 1 (as shown in the second part of equation 4.1). Table 4.8 records the 

effective weights for each attribute (IOJ), arranged in order of overall importance. This table 

provided a final sanity check for the CDM to make sure that those attributes he considered 

important fell higher on the table than those attributes considered less important. In fact, 

analysis using data such as that shown in Table 4.8 led the CDM to revise his weights until 

the Performance attributes he considered critical were near the top of the list. 

With all the data now in place, the nominal ranking of C&DH alternatives could take 

place. The team chose to use LOGICAL DECISIONS [56] to record the data and calculate the 
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Attribute Weight 

Total Delivery Time 0.20 
Capital Cost 0.16 

Relative Injury Index 0.06 
Mass Margin 0.045 
Power Margin 0.045 

Ops & Maintenance Cost 0.04 
Relative Damage Index 0.04 

Experiment Types 0.036 
Communications Latency 0.032 

Slew Capability 0.032 
Slew Rate Sensing 0.032 

Command Capability 0.03 
User Interface 0.03 

Post-Misson Analysis 0.028 
Bandwidth Requirements 0.024 

Interface Modularity 0.024 
Processor Schedulability Analysis 0.024 

Control System Analysis 0.02 
Development Environment 0.02 

Motion Simulation 0.02 
Position Sensing Accuracy 0.016 
Maintenance & Test Time 0.015 

Turn Around Time 0.015 
Real-Time Data 0.012 

TOTAL: 1.0 

Table 4.8     Attribute Weights 
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results due to its power in dealing with multi-attribute problems. LOGICAL DECISIONS was 

very intuitive, using a values hierarchy-based model for its algorithmic solutions. It also 

provided graphical manipulation tools to help define the transform functions, and provided 

a wide variety of techniques for generating weights8 for the entire values hierarchy. 

After the value functions were defined for each attribute, and weights assigned, data 

entry for alternatives was accomplished through a spreadsheet-like interface. At that point, 

LOGICAL DECISIONS could produce a wide variety of reports, such as the ranking of al- 

ternatives (by fundamental values, evaluation considerations, and measures), sensitivity 

analysis, and effective weights (based upon the range of "value" for a given attribute and 

the weight of that attribute). 

The first graph the team used was a pictorial ranking of the alternatives and how the 

fundamental values scored for each of those alternatives. The ranking of C&DH alternatives 

is shown in Figure 4.8. 

4-4-% Sensitivity Analysis. Sensitivity analysis is typically handled in two 

different, yet related, ways. One-way sensitivity analysis varies one characteristic at a time 

to see what happens to the ranking of alternatives. A typical one-way analysis is to vary the 

weights [28:82], one at a time to see where the rankings change (i.e., considering how close 

the "best" alternative is to changing if the CDM were to reassess the previously assigned 

weights). As mentioned in the reference, this analysis is not simply a matter of changing 

the weight of one attribute—the sum of all attribute weights must still sum to 1, and the 

ratio of the non-varying weights must be maintained. While Kirkwood provides a complex 

formula to address this issue, LOGICAL DECISIONS handles the issue automatically. 

Another form of One-way sensitivity analysis compares two alternatives, to see where 

their relative strengths are. Because the attributes are typically ordered from the greatest 

impact to the least, the resulting diagram is cone-shaped and the diagram is commonly 

referred to as a "tornado" diagram [7:161-162]. A limited form of this type of analysis is 

Weights can be entered directly into LOGICAL DECISIONS, as in this effort, or LOGICAL DECISIONS can 
be used to help apply the more rigorous weight definition techniques described by Kirkwood [28:68-72] 
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Ranking for SIMSAT Design Goal 

Alternative Utility 
All on Sat 8.39 

Split 8.01 
Grd w/ AutoBox 7.66 

Grd w/o AutoBox 6.95 

■ Performance | Schedule 
Safety 

•: cost 

Preference Set = Computer Architecture 

Figure 4.8     Ranking of C&DH Alternatives 

also handled by LOGICAL DECISIONS (only looks at one pair of alternatives at a time), the 

results of which are contained in Section 4.4.2.2. 

Two-way sensitivity analysis considers the results of the tornado diagrams. Using 

the two most critical characteristics (those with the longest bars), a comparison between 

them (one on the x-axis, the other on the y-axis) is done to find the boundaries between 

alternatives as each is varied across its range. However, no such tool was found in LOGICAL 

DECISIONS, and time did not permit transferring the model to another tool, such as DPL, 

to perform this analysis. Considering the limited overlap between alternatives shown in 

Figure 4.16, page 4.16, this shortcoming did not concern the CDM—he was satisfied with 

the results of the sensitivity and risk analysis documented below. 

4'4'%-l     One-Way Analysis Pt.   I. Producing an exhaustive set of 

one-way analysis charts is unnecessary; the only charts that have to be generated are those 

that convey useful information. In other words, if the first set of charts shows alternatives 
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A, B, and C were consistently ranked first, second, and third for the Cost, Safety, and 

Schedule values, but re-order to, say, C, B, and A under the Performance value, the only 

set of charts that would need to be explored further are those related to Performance (to 

determine why the ranking changed). This exploration is important for two reasons: 

1. it provides a sanity check to ensure the ranking for a given measure/evaluation con- 

sideration turns out as expected 

2. once the measure/evaluation consideration causing the reversal is found, the CDM 

can better assess the risks involved with choosing one alternative over another (i.e., 

the likelihood that the values assigned to that attribute are valid) 

As will be seen in the following figures, there was no need to go any farther than the first 

level; there were no alternative rank reversals. 

This rationale for determining how far to conduct this sensitivity analysis implies 

starting at the top of the value hierarchy, and continuing toward the bottom as required. 

Figure 4.9 provides the LOGICAL DECISIONS results of varying the weight of the Cost value. 

From this diagram, the recommended alternative was not sensitive to the weight assigned 

to Cost, so the "best" alternative would remain the alternative of choice. 

Figure 4.10 provides the results of varying the weight of the Schedule value. From this 

diagram it was again clear that the "best" alternative would always remain the alternative 

of choice. 

Figure 4.11 provides the results of varying the weight of the Safety value. Again, 

the "best" alternative would not change. It was interesting to note that, when Safety is 

the only thing that matters, the Grd w/o AutoBox alternative is totally unacceptable, but 

any of the AutoBox alternatives were acceptable. That makes sense based upon the scores 

assigned to each of the relative safety attributes (Table 4.4, page 4-24). 

Figure 4.12 provides the results of varying the weight of the Performance value. 

As before, the "best" alternative would always remain the alternative of choice. In fact, 

as Performance becomes more important, the "best" alternative becomes an even better 

choice. And because of the order of the alternatives, choosing the "best" alternative will 
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A4 - Grd w/o AutoBox 

Figure 4.9     Sensitivity Graph—Cost Weight 

Best 

Value 

Worst 

Percent of Weight on Schedule Goal 
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— A2-Split 
—— A3 - Grd w/ AutoBox 
— A4 - Grd w/o AutoBox 

Figure 4.10     Sensitivity Graph—Schedule Weight 
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Figure 4.11      Sensitivity Graph—Safety Weight 
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Figure 4.12      Sensitivity Graph—Performance Weight 
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have little risk: either of the next two alternatives could be implemented with a few more 

parts and a little extra integration time. 

Prom all indications in this part of the one-way sensitivity analysis, there will be no 

change in the recommended alternative. As another check, the team ran the second type 

of one-way sensitivity analysis. 

4.A-2.2 One-Way Analysis Pt. II. Following logic similiar to that of 

the One- Way Analysis, the comparisons of alternatives must start from the top and work 

its way down. If there is a indication that a given attribute for a lower ranked alternative 

is significantly better than that of the alternative being compared to, it may be worth 

doing a comparison with the next highest alternative to see whether it could factor into a 

rank reversal as well. Intuitively, it would seem that attribute should also have shown up 

in the one-way analysis, but this is not always the case (it may be weighted very lightly). 

Using that philosophy, Figure 4.13 provides the results of comparing the first two 

alternatives. Clearly, the "top" alternative was better than the second choice. 

Figure 4.14 provides the results of comparing the next two alternatives. Clearly, 

the "second" alternative was better than the third choice, nearly as convincingly as the 

first comparison. The reason Total Cost did not factor into this comparison was that the 

only difference between these alternatives was where the software was executing (satellite 

vs. the ground). 

Figure 4.15 provides the results of comparing the final two alternatives. While the 

"third" alternative was still better than the non-AutoBox alternative, the reasons were 

much different than in the previous comparisons. The Grd w/ AutoBox alternative was 

preferred over the other alternative in a number of different areas, but not by much. But 

the Grd w/o AutoBox alternative was actually preferred in a few other areas (it was a little 

better for Slew Capability and "Other" categories). Based upon CDM input, the chances 

of those attributes out-weighing the other characteristics was very slim, so no additional 

comparisons were run. 
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Overall Value for AU on Sat 
Split 
Difference 

8.39 
8.01 
0.38 
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Preference Set = Computer Architecture 

Figure 4.13     Tornado Diagram—All Sat vs. Split 
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Figure 4.14     Tornado Diagram—Split vs. Grd w/ AutoBox 
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Overall Value for Grd w/ AutoBox 7.66 
Grd vv/o AutoBox 6.95 
Difference 0.71 
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Figure 4.15     Tornado Diagram—Grd w/ AutoBox vs. Grd w/o AutoBox 
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Prom this one-way analysis, the recommendation remained the same: implement the 

DSPACE solution with the AutoBox and execute all the control software on the satellite. 

4-4-3 Recommendation. From all this analysis on the C&DH system, a 

clear recommendation was delivered, as well as sound rationale for that choice. Since the 

other subsystem alternatives either were not able to differentiate between alternatives, or 

ended up with only one set of potential alternatives, there were no system-level interactions 

to worry about. 

As one final check, the team surveyed the market to develop a reasonable range 

of values their subsystems might cause in the system-level measures. These ranges were 

then used to assess the potential that the "nominal" C&DH alternative results might 

overlap. This overlap would require CDM consideration of the risks involved in choosing 

the recommended alternative. The ranges of values the team developed are summarized 

in Appendix B, along with some background data on how all the numbers were arrived at. 

Figure 4.16 shows there was some minor overlap of the first and second, second and third 

alternatives. 

This risk involved in this overlap can be dealt with fairly easily. Recall that the range 

of attribute scores used to generate that graph assumed a uniform distribution for the range 

to create a worst case scenario. As the team made fairly conservative estimates for the 

nominal values to begin with, a uniform distribution is overly conservative, particularly 

on the negative value size (i.e., it is less likely the cost estimates were too low than the 

estimates being too high. While no quanitification of that conservatism was attempted, the 

team expected it would be enough to overcome the minimal overlap between alternatives. 

And even if that were not enough to eliminate the risk completely, the team realized 

the time and money involved in changing from the primary to either the second or third 

alternative was very trivial. 

For those reasons, the overlap does not impact the primary recommendation: 

Implement the AutoBox solution with all the control software executing on the 
satellite 
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Figure 4.16     Risk Graph: Range of System Values 

The results for this hybrid design phase are reflected in Table 4.9. As before, con- 

sult [8] for the rationale behind the non-C&DH subsystem choices. 

4-5    Plan for Next Life-Cycle Phase 

As the C&DH subsystem was defined and implemented before the remainder of the 

system, once the C&DH design was finalized, it effectively defined some new constraints 

for the interfaces for the on-going SIMSAT design. Since this was the final design phase 

for the C&DH subsystem (the next chapter documents the implementation of the system), 

this section documents the interfaces the rest of SIMSAT must now support. As a result 

of selecting the DSPACE/AutoBox solution, the rest of the system was now constrained 

to support the following interfaces: 
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Subsystem Final Choice 

Attitude Determination k, 
Control 

Momentum 
Wheels 

Power Generation & 
Distribution 

No Clear 
Choice 

Command & Data Handling/ 
Communications 

AutoBox 
On 

Structural 
Support 

No Clear 
Choice 

Table 4.9     SIMSAT Subsystem Choices 

1. Power: 

• 8-36VDC; overvoltage protected to 100V, but >36VDC not recommended for 

long-term usage [10:3] 

• 10-20A startup current (approximate startup power for <1 sec is about 240W; 

higher current for lower voltage) [10:3] 

• 60W steady-state power draw (empirically derived for setup with initial card 

complement) 

• 6 mm2 minimum diameter wire due to initial current demand [10:1] 

• proprietary power interface pinout shown in Figure 4.17 [10:2] 

- install an in-line switch on the positive supply line so the power supply can 

reach full power before AutoBox tries to come on-line (otherwise AutoBox 

may prevent power supply from reaching nominal operating condition due 

to the high AutoBox startup current demands) 

- connect pins A2 (power) and 4 (remote sensing) to the switched positive 

power supply connection 

2. Physical: Figure 4.18 provides an isometric drawing of the AutoBox to define the 

physical envelope it occupies, as well as the bolt pattern for mounting it on the 

satellite 
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Figure 4.17     AutoBox Power Cable Interface 
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Figure 4.18     AutoBox Dimensions 
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3. Signal: 

• 32 in (from the sensors); on-satellite termination panel along with associated 

cabling fabricated to interface with the DS2003 [12] card using the DSPACE- 

provided connector and protective shell. 

• 32 out (to the effectors); on-satellite termination panel along with associated 

cabling fabricated to interface with the DS2103 [14] card using the DSPACE- 

provided connector and protective shell. 

• all I/O signals are analog voltages to represent levels; possible range of voltages 

is ±5 or ±10 volts 

• ethernet connection (10 Mbps) between the Simulation PC and AutoBox 

• any cards to be installed in the AutoBox must use the ISA interface 

• 2 serial lines (RS-422-A high density sub-D connector) between the RealMotion 

PC and AutoBox 
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V.   Implementation 

5.1     Overview 

This chapter will document the implementation of the C&DH system, including hard- 

ware and software installation issues and system validation. And, while not included in this 

chapter, the Operator's Manual (Appendix D) is a natural extension of this chapter, taking 

the procedures used to validate the system installation in this chapter, and transformed 

them into the steps required to use the system: how to start the AutoBox, which icons to 

click on, and the dialog box inputs (and their rationale) when the required "inputs" may 

be unclear. 

While this chapter represents a major shift in focus from design to implementation, 

it also represents another shift in the relationship between this design effort and that of 

the rest of the team. Since most, if not all, of the design decisions have been made for 

the C&DH subsystem, the "perceptual level" [38:606] this effort considers is now clearly 

separate from the rest of the SIMS AT design effort. Rather than using words to define 

this shift, consider Figure 5.1. 

Levels 
Supra- 

System (M) 
System 

(S) 
Sub-System 

(P) 

A Environment 

B *Unit Environment 

C Sub-Unit *Unit Environment 

D Sub-Unit *Unit 

E Sub-Unit 

Figure 5.1     Perception Levels [38] 
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At this stage of the design effort, the overall SIMS AT effort is considered to be at the 

Supra-System level, while the C&DH subsystem could now be considered a system onto 

itself without any loss in SE process integrity. The C&DH Unit focus (level C) is clearly 

a Sub-Unit of SIMS AT, which is at level B. In addition, the rest of SIMS AT effectively 

can be treated as Environment from level C because the interfaces between C&DH and 

SIMSAT have now been formally been defined. While the C&DH subsystem had been 

treated as an integral part of the total design effort until now, it effectively became a pre- 

defined, constrained subsystem while the rest of the SIMSAT design effort progressed into 

Detailed Design. This distinction was important because the focus of the problem-solving 

process for the two design efforts diverged significantly at this stage of development. 

This portion of the system life-cycle documents the steps required to physically man- 

ifest the system designed in previous life-cycle phases. Until this phase, the application of 

the activity matrix has been clear—there have been obvious issues to be resolved. In the 

Implementation/Operation phase for a single subsystem, trying to use the same problem- 

solving framework became less clear. In fact, initial consideration of the aspects of the 

life-cycle documented in this chapter (Figure 5.2) seemed to indicate the process might 

even be inappropriate. 
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Figure 5.2     Implementation Phase Activity Matrix 
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Upon further consideration, the team realized the framework would be the basis for 

resolving any problems that might arise during Implementation—the actual steps required 

for implementation and operation would be guided by the needs of the customer (system 

requirements) and values hierarchy (what the CDM considered important). Using these as 

a foundation, the team implemented the C&DH system, and informally applied the remain- 

der of the problem-solving steps any time a decision had to be made about implementation 

or operation details1. Because these issues were varied and insignificant compared to the 

systems issues addressed in previous chapters, each one will not be documented separately. 

The only steps formally readdressed for this phase were Issue Formulation (specifically, 

the Problem Statement, Problem Elements, and Value System Design), and Interpretation 

(specifically, Plan for the Next Phase). The first of these problem-solving steps will be 

documented in a section of this chapter, followed by sections for Implementation and Op- 

eration. The Plan for the Next Phase step will be documented in the next chapter (Future 

Work). 

5.2    Issue Formulation 

5.2.1 Problem Statement. To capture the change in emphasis from design 

issues to implementation and operational issues, the problem statement became: 

Considering the satellite system simulator is to be used as an experimental test 
bed for Air Force Institute of Technology (AFIT), implement the DSPACE sys- 
tem so that it meets the original SIMSAT design requirements, maximizing as 
many of the previously defined design goals to support Air Force/DoD research, 
and provide a sound visual aid to AFIT instructors teaching satellite control 
and dynamics. 

5.2.2 Problem Elements. For the implementation of the C&DH subsys- 

tem, the focus turned to preparing the system for integration into the rest of the system, 

and making it ready for development work. The following list of Problem Elements reflects 

that shift in focus: 

1CDM-approved due to the time-constraints of the design effort 
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• User Interface Design 

• Development Work "Bench" 

• Signal and Power cable layouts 

5.2.3 Value System Design. As mentioned before, the problems faced 

during this life-cycle phase were minor compared to those encountered earlier in the system 

life-cycle. Rather than trying to update the values hierarchy everytime a problem had to 

be resolved during implementation of the C&DH subsystem, the team made decisions 

base upon the "spirit" of the values hierarchy used in Detailed Design phase, effectively 

eliminating the specific measures of the previous hierarchy while retaining the fundamental 

values and the first tier of evaluation considerations. Combined with their previously 

assigned weights, the more abstract hierarchy formed the basis for making good decisions 

(from the perspective of satisfying the CDM) during this life-cycle phase. The intent of 

the values hierarchy at this stage was to provide a "values focus" to the decisions being 

made, as opposed to quantitatively comparing alternatives. The abstract values hierachy 

is shown in Figure 5.3. 

Cost 
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Capital Cost 

SIMSAT 
Design 

0.2 
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0 & M Cost 

Performance 
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Execution 

0.5 

0.3 

Robustness 

0.1 Safety 
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Eqp't Damage Personnel Risk 

0.2 Schedule 
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Figure 5.3     SIMSAT Abstract Value Hierarchy 
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5.3    Subsystem Installation 

Once the framework was established to guide the C&DH subsystem implementation, 

the user manuals for the hardware and software were consulted to install the DSPACE 

system. Because the DSPACE system is as integrated and well-defined as it is, no sig- 

nificant decisions had to be made. The only issue that had to be resolved was a "test 

bench" power source to power the AutoBox prior to installation on the satellite. Using the 

notional values hierarchy in Figure 5.3, the desirable attributes established for the "right" 

power supply were: 

• portable; rack-mounted preferred 

• variable voltage: 

- AutoBox can function in the 8-36VDC range 

- ADACS motors need higher voltage to reach higher torque values 

- higher voltage requires lower current (AutoBox DC-DC power converter uses 

constant 60W) 

• simulate satellite power bus as close as possible (300-400W) 

Fortunately just such a power supply was found within the AFIT inventory and was 

used to power the AutoBox for system installation and validation. The first part of Ap- 

pendix D provides a consolidated look at the procedures used to implement and validate 

the DSPACE system. 

In accordance with the original desire to be user-friendly and adaptable, the Sim- 

ulation PC and power supply were installed in a roll-around cart, along with a pair of 

DSPACE connection panels. These connection panels allows signals to go between the 

AutoBox and whatever experiment it might be controlling2. 

After the installation was validated, all the integration work that could be done with 

the DSPACE system was complete. Some Windows95 shortcuts were developed to ease the 

2This installation decision provides capability beyond that strictly required for SIMSAT—this exper- 
imental control system can now be moved around the building and used for other facilities as deemed 
necessary by AFIT. 
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future developer's workload and are documented in Appendix D, beginning on page D-35. 

The latter half of that appendix also includes an operator's manual with detailed step-by- 

step instructions for implementing SIMULINK/DSPACE models, beginning on page D-26. 

5.4    SIMS AT Integration Issues 

Since this design effort led the rest of the SIMSAT design effort, DSPACE integra- 

tion with the rest of the system could not take place. The issues in this category were 

intentionally left for the team to take care of during the final system integration. Design 

constraints for the rest of the subsystems to adequately support the C&DH subsystem 

were identified in Section 4.5, page 4-42. Once the rest of the SIMSAT subsystems are 

ready for DSPACE integration, the following issues need to be addressed: 

5.4-1 Wireless System Integration. Mentioned above, this integration 

issue was borne out of the initial division of subsystems that separated the communications 

and C&DH subsystem. It is such a critical integration issue, it deserved specific mention. 

Design constraints for the communication subsystem to adequately support the C&DH 

subsystem were identified in Section 4.5, page 4-43. Some of the issues that need to be 

addressed include how to load drivers into the AutoBox, or how to install an "ethernet 

modem" instead, to take the signal from the existing ethernet cards and just modulate 

them for transmission to the ground. The impacts of the additional overhead need to be 

carefully considered. 

5.4-2 Connector Panels. For SIMSAT, more compact connector boards 

need to be fabricated for interfacing with the DSPACE I/O boards. The connectors on 

those boards will need to be smaller than the BNC connectors on the DSPACE connection 

panels to reduce space and weight. The team will also need to fabricated the cabling to 

run between AutoBox and the on-satellite connector boards. These cables will need to be 

terminated the DSPACE-provided high density connectors and protective shells to allow 

connection to the AutoBox. Sensor/effector location and wiring modularity will also need 
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to be carefully planned to provide additional signal routing flexibility to and from the 

AutoBox. 

5.4-3 Recording Data. While the original intent of the research effort may 

not have intended to develop the ability to record and replay data, that goal appeared 

feasible. Unfortunately, time did not permit determining how DSPACE implements data 

acquisition. While no mechanism was immediately apparent for retaining generated data 

in Trace, Cockpit, or RealMotion. Based upon the mixed levels of user-friendliness within 

the DSPACE system, the solution could be straight-forward or could be convoluted. But 

the dSPACE, Inc. tech support has always managed to provide answers in short order. 

5.5    Summary 

While the brevity of this chapter does not do justice to the time spent integrating 

this subsystem, the vast majority of the work was just following the "cookbook"—if you 

knew which book and page to use. To reduce the headaches and missteps for anyone that 

wants to duplicate the AFIT SIMS AT installation, the first half of Appendix D provides 

a detailed procedure for how the system was implemented and validated. The steps listed 

there reflect updates to the installation procedures in the hardware and software manuals 

based upon the original installation experience. 
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VI.   Research Summary and 

Recommendations 

6.1 Overview 

This chapter concludes the body of this document by describing, at a top level, 

the results and products of this research effort, followed by some recommended research 

extensions. 

6.2 Research Summary 

This research effort went through four iterations, or life-cycle phases, of a systematic 

problem-solving process in search of the best implementation of the Command and Data 

Handling (C&DH) subsystem for the AFIT Simulation Satellite {SIMSAT). The research 

detailed in this document was only the first part of a team effort, the conclusion of which 

will be documented in [8]. This section summarizes the development of the team's Systems 

Engineering process, and the research results from each of those life-cycle phases. 

6.2.1 System Engineering Process. As recommended by Sage [49:67- 

68], the team considered some of the potential SE processes documented in the literature 

and decided that a modified Sage/Hall process would be best for the application at hand. 

Once the Knowledge dimension of Hall's 3-D Morphology was defined (see Figure 1.4, 

page 1-14), the SE process boils down to an "activity matrix" [49:47] that the disciplines 

iterate through. After considering the factors recommended by Sage [49:68], the team 

developed the activity matrix in Figure 6.1 to guide their activities. 

As the team moved down the rows in the activity matrix, the level of detail for their 

design activities increased. The next section summarizes the shifting levels of detail by 

describing the results produced during each life-cycle phase. 
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Figure 6.1     SIMSAT Team Activity Matrix 

6.2.2 Life-Cycle Results. The evaluation of C&DH alternatives in each 

life-cycle phase considered total system impacts of the alternatives, as opposed to just 

assessing the alternatives in isolation. This prevented developing "optimal" subsystem 

solutions that would have actually led to sub-optimal system-level solutions. 

During Concept Exploration, classes of solutions for the C&DH subsystem were qual- 

itatively evaluated in Chapter II against a relatively abstract values hierarchy (Figure 2.3, 

page 2-13). That assessment determined that a Graphical, Digital Computer Assisted Con- 

trol System would provide the best value to the CDM. The other alternatives were either 

too arcane, too complicated, or could not provide the capabilites the user desired. 

The Preliminary Design life-cycle phase (Chapter III) conducted a trade study of 

some of the Graphical Digital Computer solutions (comparable to the DSPACE solution1) 

commercially available toady. The DSPACE solution turned out to be the best alternative 

in that study. While cost was one of the main drivers for that outcome, other aspects of 

the competing alternatives eliminated them from consideration. The performance impacts 

and lack of "user-friendly" attributes of the non-integrated solution, coupled with the 

time it would take to integrate and validate the subsystem, made it clearly the worst 

1The DSPACE system had been partially purchased before this research was initiated. That effectively 
established it as a "no-cost" baseline against which the other two alternatives were compared. 
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alternative. The only other truly integrated solution found during the market survey 

was intended for developing flight-qualified software in a corporate environment (i.e., an 

army of programmers working to implement a large, complicated control system). While 

extremely robust and flexible, the MATRIX^ solution was totally unsuitable for the user 

friendly, "rapid prototyping" type of development environment needed in this facility. 

Chapter IV describes the Detailed Design steps used to determine how best to im- 

plement the software architecture within the DSPACE framework. As more detailed in- 

formation could be gathered for this life-cycle phase (enough of the system was sufficiently 

defined to know what to look at), quantitative analysis tools were used to compare the 

alternatives. Hosting all the control software on the satellite, using the AutoBox, turned 

out to be the best software architecture, largely because of the Performance impacts of 

the other alternatives. As most of those measures were somewhat qualitative (using the 

constructed scales documented in Appendix C), there was some non-trivial risk in that 

choice. However, since the next two alternatives do not require substantial time or money 

to implement, the impact of improperly estimating the value of those measures was very 

limited, while the potential benefit was significant. 

As the DSPACE solution (specifically with AutoBox) established a firm interface 

between the C&DH subsystem and the rest of SIMS AT, the C&DH was largely treated as 

an independent subsystem (while still maintaining focus on the CDM's values) in the Im- 

plementation life-cycle phase. Since all the design decisions had been made by this point, 

this phase integrated all the C&DH subsystem components and validated the installed 

DSPACE system. While the installation discussed in Chapter V, and documented in the 

first part of Appendix D, effectively followed the rout installation procedures provided in 

the various manuals, the team remained focused on the CDM's values whenever implemen- 

tation decisions had to be made (i.e., computer configurations, software shortcuts, power 

supply selection, etc.). Some guidelines for system integration were also noted at the end 

of this life-cycle phase to support C&DH integration with the rest of the system. 

As smooth as this summary makes the process sound, there were some tertiary issues 

that had to be addressed during the design effort. 
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6.2.3 Lessons Learned. Several things occured during this effort that, had 

the team anticipated, would have saved them some aggravation. 

The first problem the team encountered related to the way the system was func- 

tionally decomposed. Their lack of practical experience in the design of complex systems 

(particularly with respect to subsystem interactions, and how those interactions should fac- 

tor into the system decomposition) caused them to overlook the critical inter-relationship 

between the C&DH and communications subsystems. The arbitrary decision to split those 

two systems appeared harmless during Concept Exploration. But it eventually became 

clear the communication system was an integral part of the C&DH system, and should 

have been included in this portion of the overall design effort to avoid having to revalidate 

the system after converting it from a wired to a wireless communication system. Based 

upon the compatibility problems that can occur between network cards2, this could become 

a major integration issue. 

The next major problem the team experienced was also related to integration issues. 

Faced with a short deadline to order subsystem components before the end of the fiscal year, 

thorough interface studies were not completed before the remaining DSPACE components 

and some motors were ordered. Only upon delivery did it become clear that the motors, as 

delivered, would not work in conjunction with the DSPACE system configuration required 

for other aspects of the SIMS AT system. New motors have since been identified, but were 

not available for integration testing prior to the completion of this design effort. 

6.3    Research Extensions 

While the common adage tells us that "the work is not finished until the paperwork is 

done," research of any meaning is rarely ever complete—there are always things that could 

be undertaken as extensions to the "finished" work. Such is the case here—the following 

sections address several different types of research extensions more completely. There are 

at least four areas of research that could be supported by SIMS AT and could directly 

2The entire operating system and development environment had to be reinstalled on the Simulation PC 
after trying to get two different network cards to work together. 
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improve satellite research and education efforts. Thge first three areas are concerned with 

the schedulability of task sets, while the fourth is concerned with upgrading the test facility. 

6.3.1 Scheduling Analysis Tools. The first recommended extension to 

this research involves the development an analysis tool to estimate the ability of a task set 

to meet its deadlines on the TI C40 digital signal processor (DSP) prior to loading and 

executing it. DSPACE has done quite a bit of work estimating the amount of time required 

for a variety of overhead tasks. Some system lagtimes and overhead time requirements 

include: 

Task Time (ns) Source 

Context Switch 6,000-12,000 [19:71] 

Mux Settle Time 333 [12:29] 

Analog Settle Time 10,000 [14:24] 

ADC Convert Time 7,000 (l)-75,000 (32ch) [18:67] 

DAC Convert Time 2,500 (l)-24,000 (32ch) [18:74] 

Building upon efforts such as [5] would allow experimenters to determine if a given 

task set is schedulable prior to actually executing the task set and would limit the amount 

of ad-hoc "code-and-test" steps required to develop a valid set of control laws. 

But if the tool (or the DSPACE system) indicates the task set is unschedulable, what 

are the options? There are two main ways to solve the problem: increase the processing 

power or optimize the software. Each option will be addressed in next two recommended 

research extensions. 

6.3.2     Distributed  Control. To improve the processing power of the 

DSPACE system, one of three different techniques can be chosen: multiple C40's net- 

worked together, a quad-processor version of the C40 DSP, and a 400MHz DEC Alpha- 

based co-processor card. Each one of these turns out to be a type of distributed control; 

several considerations factor into the decision of which is the best solution. 
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There are really two aspects to this proposed extension: the increase in the size of 

control laws that can be executed using multiple, cooperative DSPs and determining the 

impact of using a wireless ethernet connection between those processors (as opposed to 

a direct, Proprietary High-Speed [PHS] bus connection) if part of the processing is done 

on the ground and part on the satellite. While related, the first is trying to increase the 

schedulable task set, while the second is intended to determine if the overhead associated 

with a wireless connection is too great a penalty to allow separation of tasks. In particular, 

the latter effort is intended to investigate the feasibility of separating the inner and outer 

control loops of the SIMS AT system so that more elaborate experiments can be run on 

the satellite. Each will now be addressed independently. 

6.3.2.1    Enhanced Task Set Processing. If the control system can 

be logically partitioned into completely independent task sets, the multi-processor board 

might be a viable option. But, the greater the dependency between tasks residing on dif- 

ferent processors, the more communication overhead there will be, increasing the blocking 

that will occur (see Figure A.3, page A-17 and the accompanying paragraphs for more 

insight into this issue). In addition, the farther apart the processors are, the greater the 

communication overhead will be due to the per-transaction transmission delay. In some 

specialized cases, the Quad C40 processor board would help reduce the per-transaction 

penalty, but any appreciable dependencies between the processor task sets would still im- 

pact the speedup of the multi-processor configuration. 

Since a quad-processor solution cannot provide quadruple speed-up (with the very 

rare exception of 4 independent, equal loading task sets), conquering most schedulability 

problems can be accomplished by increasing the raw speed of the main processor (as with 

the Alpha solution). This is not contrary to the "increased speed does not mean better 

control" axiom previously mentioned—the context of that misconception was in comparing 

general and real-time computing. Once a real-time operating system (RTOS) is used to 

ensure predictability and prevent events (i.e., deadlock, uncontrolled priority inversion, 

etc.) from threatening the completion of time-constrained tasks, speed is a good thing. 

Since the SEMOS that comes from dSPACE, Inc.   is a true RTOS, the speed available 

6-6 



from the Alpha co-processor (or the multi-processor board) could help solve scheduling 

problems. 

6.3.2.2 Impact of Wireless Ethernet. The other related extension 

to this research is the use of the SIMS AT computer architecture to investigate/quantify 

the impact of splitting the control laws across a wireless ethernet connection. This is a 

short-coming of the data available from DSPACE—there is no data available addresing 

the amount of overhead involved in communicating over such a link. In fact, no data 

was even found for a wired ethernet connection. This would be important data to have to 

determine if a physically separated multiprocessor environment can provide ANY speedup, 

or if the communications penalty is too great. This additional data can also be factored 

into the analysis to help the experimenter make appropriate choices about how to alloact 

the control system task(s). 

6.3.3 Optimizing Program Code. In case the analysis tools indicate the 

DSPACE compiled code is not schedulable, and multi-processor (or Alpha-based) opera- 

tion is not feasible, another option is to develop optimization tools for the C-code generated 

by the DSPACE software. Automated generation tools are notorious for generating sub- 

optimum code due to their need to support a number of different uses and execution 

platforms. Since most of the code generated for SIMSAT and its experiments will be very 

similar, there may be some overhead code that could be stripped out of the "generic" 

DSPACE C code, resulting in optimized "SIMSAT-C" code that might be schedulable. 

Depending upon the techniques required to implement this "tool," the results of the re- 

search extension could be an automated tool that would read the generic code and produce 

the optimized code automatically, or it could just be a set of guidelines for a programmer 

to use based upon the particular control system being implemented. Either one would be 

useful, with the automated tool being the preferred solution. 

6.3.4 Test Bench Fabrication. In Section D.4, page D-35, an experi- 

mentation philosophy was described. To adequately support that philosophy, it would be 

advantageous to develop a modular test bench "docking station" that would allow easy 
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installation of the AutoBox, AD ACS, and experiment components on a test bench. The 

docking station would duplicate the SIMS AT signal and power interfaces (including a 

power system that would duplicate the SIMS AT power bus), mounting points and protec- 

tive shields for devices that rotate or move, and high-fidelity simulated hardware (such as 

sensors) to allow for full hardware-in-the-loop testing prior to operating payloads on the 

satellite. 

6.4    Summary 

This design effort effectively developed and implemented a Systems Engineering pro- 

cess to design and implement the C&DH subsystem for the AFIT SIMSAT But issues re- 

main for follow-on SIMSAT integration and research extensions. While not an exhaustive 

list of potential extensions to this research, the extensions listed in this chapter represent 

those that were expected to have the most potential of significant return for AFIT/ENY. 

But other departments may also be able to benefit from some of the potential research 

topics the SIMSAT test platform, or its subsystems (even in a test bench setup), could 

provide. 



Appendix A.   Real-Time Control Issues 

A. 1     Overview 

The intent of this appendix is to justify the selection of the Rate Monotonie schedul- 

ing technique as the most analytically sound technique in the literature today and describe 

the potential analytic power of the technique, assuming all operating system, hardware, 

and development tools support it. Unfortunately, no system on the market manages that 

level of support, so the enhancements still required were listed in Chapter VI. 

As mentioned in Chapter I, computerized control systems (among others) fall into 

two types of "real-time" systems: hard and soft. "Hard" real-time control systems require 

accurate results from all necessary computations before some well-defined deadline, guar- 

anteed. For example, if the tasks that define the behavior of a computerized flight control 

system miss deadlines, the aircraft could become uncontrollable. For "hard" real-time 

control systems, accurate results must be computed before some pre-defined, application- 

specific deadline is reached. For this type of system, a logically correct answer is useless 

if it is produced too late for the system to respond to user inputs or maintain system 

stability. 

SIMS AT can be characterized as a "hard" real-time system: if the control system 

fails to meet its deadlines, the satellite could become unstable. The satellite could begin 

spinning out of control, or the control system might miss some of its sensing deadlines 

and not realize it needs to command a momentum wheel to slow, stop, or reverse. The 

latter case could theoretically cause one of the Momentum Wheels to rotate faster than 

the structural limits of its wheels, causing it to literally "throw" itself apart. 

By the same token, the C&DH subsystem on SIMSAT needs to be as flexible as 

the rest of the subsystems—it should be able to support a variety of experiments, and be 

easily adapted to new experiments. It needs to allow the user to quickly compile, load, 

and run new control laws. And before actually operating the system, the development 

environment should give clear indications if the control laws, as programmed, will act 

"correctly"—logically and temporally. 
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Many development environments provide ways to simulate the system, but this is a 

limited way to validate a system—you can never do enough testing to prove a task set is 

temporally sound. Proving a system is sound can only be done analytically. And any such 

analysis assumes complete knowledge and quantification of the environment the system 

operates in as well as how the system itself functions. While thorough investigation might 

yield sufficient information about task periods, execution times, etc., in most systems there 

are certain stochastic (and even chaotic) behaviors that will wreak havoc on many control 

systems. Some scheduling algorithms can catastrophically fail when overload conditons 

occur while others may just miss deadlines. On the other hand, some scheduling techniques 

can tell you which deadlines will be missed, and which deadlines will be met, no matter how 

significant the overload. All these issues are key to being able to implement a systematic 

design and conduct technically sound analysis to analytically guarantee the system will 

act the way it should (given sufficient data about the system and environment). 

This appendix begins by describing different preemptive scheduling techniques for 

determining the "schedulability" of a program containing "hard" real-time tasks. That is 

followed by an explanation of the basic RMS algorithm—an "optimal" scheduling technique 

that can be used to analytically validate the schedulability of any task set. RMS also has 

the desirable property of graceful degradation of system control (if it degrades at all) 

during overload conditions. After a summary of some of the extensions to the basic RMS 

algorithm, this review will illustrate what is to be gained from using the extensions for 

single and multi-processor real-time systems. In general, each section in this review is 

dedicated to the one main paper. Unless otherwise noted, all statements, examples, and 

data in that section are drawn from the main paper of that section. 

To provide a context for RMS, the first paper [43] covers several different scheduling 

techniques. Since the focus of this review is the RMS family of techniques, the next paper 

summarized and evaluated is the classic RMS paper by Liu and Layland [39]. Subsequent 

papers examined in this review will describe some recent efforts to extend the restrictive 

academic theories of Liu and Layland into a more usable suite of scheduling tools. The 

Software Engineering Institute (SEI) prepared a tutorial [52] on the basic RMS technique 

and then outlined an anthology of RMS extensions dealing with relaxing the utilization 
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bound, aperiodic tasks, and task synchronization (a mechanism to allow interdependent 

tasks to work cooperatively). The fourth set of papers presents some of the scheduling 

complexities introduced by a network of interdependent processors. 

A.2    Real-Time Scheduling 

The number of techniques available to try and schedule a set of tasks to meet its 

deadlines is almost as numerous as scheduling theory authors. However, as C. D. Locke 

observes in [43], all the different priority-based scheduling techniques can be grouped into 

five major categories: 

• Cyclic Executive 

• Fixed Priority 

• Shortest Process Time 

• Earliest Deadline 

• Shortest Slack Time 

Each of these algorithms take their name from the technique used to determine the 

order of task execution. The first two of these techniques are of most interest to this review. 

The Cyclic Executive algorithm is of interest because it is the predominant scheduling 

technique used in real-time systems today [4:120]. The family of Fixed Priority algorithms 

is of interest because it includes the Rate Monotonie Scheduling technique, which is the 

primary focus of this review. 

The remaining three algorithms are not useful for most real-time applications. The 

Shortest Process Time algorithm is unable to limit "lateness" to zero or negative values 

(i.e., meeting or beating deadlines). The Earliest Deadline technique will fail unpredictably 

when the processor becomes overloaded (i.e., cannot meet all the deadlines). And since 

there is a 100% certainty that transient overloading will occur at some time in nearly every 

real-time system, the likelihood of unpredictable system failure prevents the use of Earliest 

Deadline scheduling for any critical control systems. 

The final algorithm, Shortest Slack Time, is possibly the most insidious. If the impact 

of system overhead is ignored, the technique appears very attractive: it has the advantage 
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of providing an "optimal" schedule: "if a process set is feasibly schedulable, [this] scheduler 

will produce a successful schedule" [43]. This algorithm behaves as if it is waiting until a 

task is as close to its deadline as possible before beginning execution (zero slack-time). But 

since system tasks that need to execute will typically preempt any other executing task, a 

zero slack-time user task would miss its deadline. The results of this missed deadline could 

be "disastrous." Therefore, to preclude catastrophic failures, system preemption must be 

restricted. However, limiting system preemptions will produce unwanted side effects in 

handling other timing limitations. For these reasons, this algorithm is rarely used. 

Since these three techniques are not useful for real-time systems, nothing further will 

be mentioned about them in this overview. The remainder of this section will be spent on 

the Cyclic Executive and Fixed Priority techniques. 

A.2.1 Cyclic Executive. The Cyclic Executive appears to be a straight- 

forward scheduling technique, and is one of the most common scheduling techniques in use 

today [4:120]. Its basic premise is that a program is made up of a set of tasks that will 

repeatedly execute (see Figure A.l). Each time this set of tasks starts to execute, a new 

"Major Cycle" begins. The major cycle will recur at a periodic rate, typically initiated by 

a hardware timer. 

The major cycle is then divided into a number of equal sized frames, called "Minor 

Cycles." A block of periodic, non-preemptible statements (a "task") is then assigned to 

each minor cycle.  Frame size is dictated by the task with the longest execution time in 
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the major cycle. To ensure all deadlines will be met, each task must finish its execution 

within its assigned frame. 

If the task does not complete within its allotted time, frame overrun occurs. There 

are traditionally two ways to deal with this common error condition, but neither is very 

acceptable: abort the errant task, or allow the entire timeline to slip. Either "solution" will 

likely cause unexpected results, appearing to the user as non-repeatable system failures. 

These "intermittent faults" may be indistinguishable from transient hardware failures, such 

as a bad connection or failing logic device. 

But if frame overruns can be avoided, a real-time system scheduled with this tech- 

nique can be guaranteed to meet all its deadlines since the timing requirements are handled 

as the system is designed. Unfortunately this technique creates an inexorable connection 

between the logical and temporal correctness of the design. Tying these two distinct issues 

together creates an unnecessary and undesirable coupling of concerns: if some hardware 

or software changes force modification of the task code, the entire time-line will need to 

be reevaluated to ensure the temporal correctness has not been sacrificed. For example, 

the task that uses the most computation time determines the size of the minor cycle or 

"frame." If some change to the code for that task further increases the time it takes that 

task to execute, some adjustment to the timeline will be required: either the task will need 

to use more than one of the currently empty minor frames, or the minor frame must be 

enlarged. The latter option is less attractive since it also forces an revaluation of the major 

cycle. But if no free minor frames exist, the entire timing scheme will need to be redone. 

Requiring programmers to piece code segments together to hand-tune the time-line of 

task execution is analogous to forcing them to go back to manual page overlays for memory 

management. As one of the major tenets of software engineering is information hiding to 

avoid this type of modification "ripple," finding a temporal version of encapsulation is very 

important. Establishing a separation between logical and temporal concerns would provide 

such an analog and would allow the application of disciplined engineering principles to the 

entire software development process, improving the maintainability of the system. [52:1,2] 
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A.2.2 Fixed Priority. This class of techniques assigns a priority to each 

task based upon some "application-specific criteria." This priority will, in general, not 

change during execution. This class of techniques also tends to be preemptive in nature: 

when a task is ready to execute, it will interrupt any lower priority task that may be 

executing. With this technique it is obvious the highest priority task would meet its 

deadlines, but schedulability determination for lower priority tasks would be, in general, 

more difficult. This technique, therefore, will provide more graceful degradation (than the 

cyclic executive solution) during overload conditions. 

The reason for difficulty in determining low priority task schedulability is related 

to non-deterministic order of execution inherent in multi-tasking control systems. For 

example, assume a low priority task, 77, is prevented from starting execution until: 

t = tdeadlinei       Haski. execution.time 

(this extreme case may or may not occur). But during this critical execution period 

for T;, high priority task T^ becomes ready to execute and preempts T%. NO matter how 

little time T^ requires for execution, T\ will not be able to meet its deadline. 

The inability to guarantee schedulability when using this technique, coupled with the 

difficulty of dealing with non-deterministic task execution order, prevented frequent use of 

this type of algorithm until Liu and Layland published their landmark paper detailing the 

Rate Monotonie Scheduling theory [39]. As will be seen, their algorithm is an "optimal" 

fixed priority, preemptive scheduling technique that CAN guarantee whether a set of tasks 

will meet its deadlines or not, and provides a set of tools to help intuitively conceptualize 

task set execution behavior. 

A.3    Rate Monotonie Scheduling (RMS) 

In their classic scheduling theory paper [39], Liu and Layland recognized the lack 

of adequate formal techniques for determining whether a set of tasks could co-exist on a 

single processor and still meet all required deadlines. Their paper intended to provide the 

practicing computer scientist a set of formal analytical tools to answer the schedulability 

question prior to implementation. 
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A.3.1     Assumptions. In developing their model, Liu and Layland made 

some simplifying assumptions as to how tasks are implemented, how those tasks execute, 

and how they interact. Their simplifying assumptions include: 

1. Tasks only execute when they are "requested" and task requests are periodic 

2. Tasks must be complete before the next request is acted upon 

3. Tasks execute independent of other tasks 

4. Tasks require the same amount of time to complete every time they execute 

5. Aperiodic tasks are "special" and displace the normal set of tasks as "special" needs 
arise (fault recovery, etc.) 

Since Liu and Layland sought to develop a quantitative approach to determining the 

schedulability of a task set, they needed to define the salient characteristics of a given task. 

Liu and Layland designated the amount of time a task, n, requires for execution as Cj. 

And since the above simplifications assume periodic tasks, Liu and Layland assumed task 

Ti has a consistent period, designated T;. Liu and Layland contended (and later proved) 

that, based upon the above assumptions, a given task TJ could be completely characterized 

by its corresponding Ci (Liu and Layland suggest using the maximum observed execution 

time as the estimate) and Tj. 

A.3.2     Static Priority Scheduling. Once they defined the necessary 

variables, Liu and Layland developed an "Optimum" Static Priority Scheduling Algorithm 

by proving a number of theorems. Defining each of these italicized terms will provide an 

overview of their algorithm. 

By "Optimum," Liu and Layland meant that if any fixed/static priority scheduling 

algorithm could schedule a task set, their RMS algorithm could also determine a way to 

successfully schedule that task set. In other words, if RMS cannot determine a scheduling 

assignment to allow a set of tasks to meet their deadlines, no other fixed priority scheduling 

algorithm can either. 

A Scheduling Algorithm is a technique for determining which task should execute at 

any given moment. The algorithm Liu and Layland described assigns a priority to a task 

prior to program execution, and maintains the priority during execution (i.e., the Priority 
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is Static). The algorithm determines task priority based exclusively upon the period (Tj) 

of task Tj. As the task period decreases, the Rate, or frequency, of task execution increases. 

The more frequently a task must execute, the higher the assigned priority. The assigned 

priority, then, increases "MONOTONIC&lly" as a function of the rate of task execution. 

Hence the name Liu and Layland assigned to this algorithm: Rate Monotonie Scheduling. 

A.3.3    Schedulability Determination. To determine task set schedu- 

lability using the RMS algorithm, Liu and Layland defined processor utilization as the 

sum of U(i) = §t for all tasks, T;, assigned to a processor.   They went on to prove the 
-t i 

foundational theorem for RMS schedulability: 

THEOREM 5: For a set of m tasks with fixed priority order [of execu- 
tion, determined by the RMS algorithm], the least upper bound to processor 
utilization is m(21/m - 1). 

This theorem states that for a large task set (m tasks -¥ oo), the bound for processor 

utilization is ln(2) = 0.6931. This result states that, ignoring all other factors, if the 

total processor utilization of a given task set remains below 69.31%, the task set will meet 

all its deadlines. This algorithm has the added benefit that, even if a set of m tasks is 

unschedulable, as long as the cumulative utilization factor for the first k of those m tasks 

is less than k(2llk — 1), those k tasks will meet all their deadlines. For this reason, RMS 

is called a "stable algorithm," with the set of k tasks called the Stable Set. 

While Liu and Layland provided the basis for calculating the ultimate processor 

utilization limit, they generally left the impact of smaller task sets to the reader's imagina- 

tion. For a smaller task set, the limit to processor utilization is less restrictive, but rapidly 

approaches the asymptotic limit of ln(2): 

TASK SET SIZE    UTILIZATION BOUND 
1 1.0 
2 0.8284 
3 0.7798 

6 0.7348 

16 0.7084 

32 0.7007 

64 0.6969 

128 0.6950 
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Even with all these benefits, RMS did not find much of an audience initially. Part 

of the acceptance problem was the overly restrictive 69.31% processor utilization bound 

for large task sets. In addition to this problem, assuming a task set of only independent, 

periodic tasks reduces the general applicability of the model (few, if any, applications have 

only periodic tasks). Liu and Layland realized their 'periodic task' assumption was one of 

the most "indefensible" they made, but gave no technique for overcoming this major flaw. 

The next paper reviewed will provide several techniques to deal with these (and other) 

limitations. 

In summary, RMS is built around a set of simple equations for determining task 

priorities and whether a set of prioritized tasks will meet its deadlines or not. If RMS 

indicates that all deadlines cannot be guaranteed, the equations (and the above chart) 

indicate which set of task deadlines can be guaranteed. This Stable Set of tasks {T\ ... r^) 

will have a total utilization lower than the bound defined by k{2llk — 1). This characteristic 

is distinctive: in other unstable scheduling algorithms, if one deadline is missed, the rest 

of the deadlines may not be met. Therefore, RMS provides for more graceful degradation 

during overload, and the set of tasks that will likely fail is well-defined. 

A.3.4 Dynamic Scheduling. This same paper included a technique to sup- 

port dynamic priority assignment, called the Deadline-Driven Scheduling Algorithm [39:55]. 

If this technique can be shown to be as easy as the static RMS technique, it would seem, at 

first glance, to be preferrable. However, the literature seems to indicate that commercial 

developers prefer static priority scheduling techniques for the following reasons [53:3]: 

1. In practice, the difference in performance is minimal. 

2. While potentially less efficient, static priority scheduling techniques tend to be more 

stable in overload conditions than dynamic techniques. 

Since this technique is essentially an "Earliest Deadline First" scheduling technique 

(which has already been shown to fail unpredictably when overload conditions occur [43:52]), 

this technique has not received much attention. This review, therefore, will not investigate 

this, or any other, dynamic technique further. 
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A.4    RMS Extensions 

Because of the increasing complexity of numerous real-time computer applications 

and the advent of Ada, there has been renewed interest in the basic RMS technique for 

two main reasons: 

• The Cyclic Executive model does not map well to the Ada real-time programming 

paradigm [52:1,2], or any other modern, object-based programming language. 

• There was no existing scheduling model that provided the tools necessary for a disci- 

plined, analytical, engineering approach to determining the timing behavior of pro- 

grams. 

Many papers have been published since the mid-1980s addressing ways to overcome 

the initial RMS weaknesses. In [52], the authors provided a very understandable expla- 

nation of the basic RMS technique, and then summarized an anthology of the techniques 

necessary to make RMS a viable design and analysis tool: 

• a method to "relax" the worst-case utilization limit 

• several different ways to handle aperiodic tasks 

• resolving task synchronization issues (a mechanism to allow interdependent tasks to 

work cooperatively) 

Even though this reference includes "Ada" in its title, the authors spend most of their time 

explaining some extensions to RMS. This summary of RMS and its enhancements shows 

what makes the GRMS techniques an applicable suite of tools for any language (in fact, 

by the time the SEI was publishing articles, reports, and a book intended for more than 

just a military audience, they made it clear that RMS was not strictly applicable to Ada). 

A.4-1 RMS Reiterated and Relaxed. The authors begin their report 

by restating and explaining theorem 5 of Liu and Layland (above). They note that this 

theorem is a sufficient (worst-case) algorithm. To provide a more realistic limit, the authors 

include another, more complicated, technique for use if the simple, sufficient algorithm fails 

to verify task set schedulability. The authors extract this technique from the results of a 
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theorem in [37]. For a set of tasks to be schedulable, one of the inequalities from the family 

of equations described by the following formula will be true: 

Vi>l<i<n,min(2c,-7i-r^l + ^-)<l (A.1) 
jr[       "fc    J-j "A; 

(k,i)eRi 

where # = {(*,/) \l<k<i,l = 1,...,L^J} 

Equation A.l produces a family of inequalities and appears very complicated. By way 

of explanation, the authors provide a set of examples to aid in understanding how equa- 

tion A.l is applied. Their most complete example follows: 

Example 3: [52:6 - 7] 3 Periodic Tasks: 

Exec. Utiliz'n Cumul. 

ask Time Period Factor Utilization RMS Limit 

Ci Ti Ui U 

r\ 40 100 0.400 0.400 1.0 

T2 40 150 0.267 0.667 0.828 

n 100 350 0.286 0.953 0.780 

(See figure A.2 for a graphical representation) 

By Liu and Layland's theorem 5, the first two tasks are guaranteed to meet their 

deadlines since their Cumulative Utilization was less than the RMS Limit (i.e., T\ and 

r2 are the Stable Set). Equation A.l (which develops the idea of scheduling points) is 

necessary to determine if any phasing of the task set will allow r3 to meet its deadlines (as 

long as one of the task phasings holds, the task set will meet all its deadlines): 

1.) Ci + C2 + C3<T1 40 + 40 +100 <? 100 no l = l,k = l 

2.) 2Ci + C2 + C3<T2 80 + 40 +100 <? 150 no l = l,k = 2 

3.) 2Ci + 2C2 + C3 < 2Ti 80 + 80 + 100 <? 200 no I = 2, k = 1 

4.) 3Ci + 2C2 + C3 < 2T2 120 + 80 + 100 <? 300 YES I = 2, k = 2 or I = 3, k = 1 
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Ci    Ti UÜ1  Priority 

x,   20    100 0.20        1 

x2   40    150 0.267      2 

t,   100  350 0.286      3 

Total: 0.753 [^ 0.779 = (2<1/3>-l)] 

Figure A.2     Rate Monotonie Timeline 

5.)      4Ci + 3C2 + C3<T3 160 + 120 + 100 <? 350    no l = l,k = 3 

This example shows that, while theorem 5 of Liu and Lay land could not guarantee 

all deadlines would be met, applying equation A.l shows that after 300 units of time (#4 

above), T\ will run three times, r2 will run twice, and T3 will run once. Since an arrangement 

of tasks has been found that allows all the necessary computations to complete prior to 

their required deadlines, the tasks will meet their deadlines at all times [52:7]. 

A.4-2     Aperiodic   Tasks. In general, real-time tasks (and their timing 

requirements) are well-defined and the majority occur on a regular, repeating basis. In 

their paper [39], Liu and Layland used those facts to make the simplifying assumption 

of programs with only periodic tasks. Unfortunately, most real-time systems also have 

aperiodic task requirements driven by aperiodic events (a pilot pushing a button to change 

a display, a sensor failure, etc.). Since aperiodic events occur unexpectedly, they do not 

have deadlines the same way periodic events do. In general, aperiodic events are urgent 

in nature, and quick control system reaction. Several techniques exist to allow aperiodic 

tasks to be handled by the GRMS family of algorithms. 
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The authors detail the Deferrable Server (DS) and Sporadic Server (SS) algorithms. 

The DS technique was obtained from [36]. The SS technique was borrowed from [58]. Both 

techniques create a "Server" task defined by some Cs execution time every Ts units of time. 

In other words, the Server is treated as a periodic task and is assigned a portion of the 

available computational resources (Us — ^-). These Server tasks can then be treated as 

any other periodic task and used to evaluate schedulability. 

A.4-3 Task Synchronization. Since one of the most important things 

in real-time systems is that critical deadlines are met, anything that can threaten the 

ability to accurately predict schedulability must be addressed. Two such issues recur in 

the literature: priority inversion and mutual deadlock. How mutual deadlock can prevent 

deadlines from being met is self-evident: if two tasks are waiting for a semaphore to be 

released the other task has locked (called deadlock), neither of them will meet any of their 

deadlines. 

One task sending data to another is a form of task synchronization. This type of 

synchronization could be called "communicating." Multiple tasks sharing a resource, such 

as memory or an input/output device, is a more complex use for synchronization. To 

prevent interference between processes accessing the shared resource, each task using the 

shared resource implements a "critical section" to prevent multiple tasks from simulta- 

neously accessing that shared resource. The coordination of critical sections is a form of 

task synchronization. This type of synchronization makes use of one or more mechanisms 

to prevent tasks from accessing a shared resource if another task is using it. Typically, 

semaphores are used for this type of mutual exclusion, and that is where caution must be 

exercised to avoid creating deadlock. 

For real-time programming, task priorities also factor into the concerns about critical 

sections. Lower priority tasks that begin to use a shared resource will prevent higher 

priority tasks from executing until the lower priority task finishes its critical section. This 

problem is called "priority inversion" and results in a period of "blocking" time. An 

admirable design goal would be to completely eliminate priority inversion; the best that 

can be done is to limit the inversion to only one out-of-order task execution.  If a set of 

A-13 



low priority tasks prevent a high priority task from executing, the high priority task may 

end up not being able to meet its deadlines. While protective mechanisms for critical 

sections is obviously needed, these mechanisms can threaten task set schedulability since 

they can lead to unbounded blocking [30:2-4-2-5]. So if priority inversion is not tightly 

controlled, schedulability and responsiveness can be hurt. While priority inversion and 

blocking cannot be completely eliminated, they can be limited. 

The Liu and Lay land paper assumed that the tasks being analyzed were independent, 

and therefore no support for synchronization was necessary. Unfortunately, real-world 

applications rarely require only independent tasks to produce even a simple result. The 

authors of [37] include a summary of a technique that provides for bounded blocking 

and freedom from mutual deadlock. The technique is called the Priority Ceiling Protocol 

(PCP). This protocol is discussed in a number of different papers and technical reports, 

but the authors extracted their data from [25]. 

To implement the protocol in any object-based language (like Ada), several rules 

must be followed (directly from [25:20, 21]): 

1. There must be no critical sections guarded by a semaphore (one of the mechanisms 
available to protect critical sections; in other words, all the CLIENT tasks that would 
access this semaphore before proceeding into their critical section are contained in 
this SERVER task as the bodies of the Ada ACCEPT [or other language equivalent] 
statements). 

2. There must be no conditional or timed entry calls. 

3. Each task must be assigned a priority. 

4. A SERVER task must have an (assigned) priority lower than that of its CLIENT 
tasks. 

While these requirements may seem overly restrictive, the authors of [25] are confident 

that "a useful set of real-time applications can be programmed using the limited form of 

SERVER tasks currently allowed by [this] protocol." For the reader interested in "pure" 

PCP, [25] provides a thorough set of examples to help understand PCP functionality. 

While this protocol is very powerful, it is difficult to implement, and requires compiler 

support not available in many real-time kernel runtimes [50:pt. 2, pg. 12]. A suitable 

emulator, called the Highest Locker's Protocol (HLP), can be implemented in a number 
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of real-time programming languages fairly easily. Since the performance difference between 

the two models is relatively insignificant [50:pt. 2, pg. 12], modeling this simpler technique 

in anlaytical tools should not be very hard, and would respresent a conservative estimation 

of schedulability (if a task set does use PCP, it should be even more schedulable than 

the HLP implemented task set). Once a set of tasks is implemented using PCP (or an 

emulator, such as HLP), the authors prove that the task set will meet its deadlines if the 

following inequality is true: 

.     ^ + --- + ^ + maxÄ...,^i)<n(2V"-l) (A.2) 
-*1 J-n J-l J-n-1 

Equation A.2 is a generalization of Theorem 5 of [39] with the addition of blocking 

factors (remember, Theorem 5 assumed independent tasks). Because equation A.2 is a 

generalization of the original theorem, it is also a worst-case ('sufficient') scenario. This 

equation also has a more complicated counterpart for use if the simple, sufficient algorithm 

fails to verify task set schedulability. The authors extract this technique from the results 

of a theorem in [37]. If a set of tasks is schedulable, one of the inequalities from the family 

of equations described by the following formula would be true: 

(k,l)eRi 

where Ri is defined in equation A.l and B{ is the worst-case blocking for TJ 

Like equation (A.l), this equation produces a family of inequalities and appears very 

complicated. By way of explanation, the authors again provide an example as an aid to 

understanding. Since the equations just add a blocking factor to those used to explain 

equation A.l, the example will not be repeated here. The most important new idea is that 

the longest blocking possible (max(i?;)) is the largest Cj of all the lower priority tasks. 

This limited blocking is due to the implementation of PCP. 
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A.5    Distributed Real-Time Control Issues 

The use of a distributed system of cooperating multi-processors for a large "plant" 

(such as a manufacturing facility or modern aircraft) has become common practice in 

the last few years. The same has occurred for the embedded control of aircraft and space- 

oriented systems. The days of isolated/specialized computers to control aircraft and space- 

oriented subsystems are gone. Integrated multi-processor/multi-tasking "computers" that 

work closely together are planned for several new aircraft and space-oriented systems to 

provide improved reliability, maintainability, and redundancy management while making 

more efficient use of available resources. 

Integrating the control of related systems provides more efficient control of all systems 

involved. The premise is that, for example, the control of a thrust vectoring engine and 

the influence of the aerodynamic control surfaces could work cooperatively to change the 

attitude, direction, etc. of aircraft. Providing a means for these controllers to collaborate 

would relieve the pilot of some workload and improve performance. 

However, this type of integrated control system would greatly increase the syn- 

chronization (and therefore the communication) requirements of the system. As more 

systems become interdependent, the penalties of interprocessor communication increase. 

This is called the "saturation effect" and is pictured in Figure A.3 [23]. The probabil- 

ity of contention-free communication (i.e., no other processor trying to communicate at 

the same time) will quickly and drastically decrease as the communication requirements 

increase. The accompanying reduction in throughput is due to increased contention for 

shared resources and the additional amount of overhead required to support appropriate 

interprocessor communication (i.e., more processors, more overhead). As tasks must wait 

an unpredictable amount of time for media access (since contentions may or may not exist), 

task execution time will appear to fluctuate, potentially threatening the schedulability of 

the task set. Any attempt to model integrated multi-processor distributed control sys- 

tems will need to consider this dynamic behavior and its impact on predicting task set 

schedulability. 
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Figure A.3     The Multi-Processor Saturation Effect   [23] 

Shaffer, in [51] showed that assigning interdependent tasks to the same processor will 

reduce interprocessor synchronization. Since most of the synchronization requirements are 

now within the same processor, this regime will help reduce communication overhead for 

the entire system. 

The more independent the threads of execution are on each processor, the greater the 

increase in the computation to communication ratio (effectively enlarging the granularity 

of the application), reducing the impact of the communication workload. In fact, [61] states 

"... ideally, the controller task size must be very large, so that [the resulting communica- 

tions overhead] does not become the primary limit on the sample time achievable." In this 

context, sample time is an indication of how well the control system is performing. In other 

words, if the "granularity" of the application (size of the task set within one processor) 

is large enough, the communication penalties will be minimized. So judicious distribution 

of tasks can help reduce the impact of interprocessor synchronization and communication, 

no matter what communication media is used. 

A.5.1 Interprocessor Communication and I/O. Interprocessor syn- 

chronization can be modeled as a set of server tasks [41]. And since aperiodic tasks can 

be modeled as periodic ones using the Deferrable or Sporadic Server [52:11,12], commu- 

nications between periodic and/or aperiodic tasks on multiple processors can be handled 
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this way. In addition, since input and output (I/O) could be characterized as a type of 

communication, it can, under certain circumstances, also be modeled with a set of periodic 

servers [31], similiar to what is shown in Figure A.4. This technique does require some 

underlying communication subsystem support (such as in [60] and [54]). 

Taskl 

Server 

Figure A.4     Communication Server 

A.5.2    Required Hardware Support. Though this review focuses on 

predicting the schedulability of software tasks using GRMS, support from the underlying 

hardware cannot be ignored. The general requirements for GRMS support from the 

communication subsystem [60:43] are the abilities to: 

• Establish message priorities 

• Resolve media contention by preemption 

• Prioritize resolution by having sufficient number of priority levels comparable to 

priorities of the tasks simultaneously competing for media access 

Just as in the computational arena, the difference between real-time and general 

communications is the introduction of concerns about time [60:42]. Current communication 
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architectures may not provide the underlying support necessary to implement GRMS, and 

may impact the schedulability of any distributed control system. The next section provides 

some additional insight into the impact communications systems can have on real-time 

systems. 

A.6    Communication Architectures 

Most common networking communication systems are not designed to support real- 

time communications, particularly the type of support GRMS requires (limited priority 

inversion, etc.). Ethernet, one of the most common communications architectures, falls 

into that non-support category. But since the baseline SIMSAT control system uses that 

architecture, the remediation of the impact of using the protocol needs to be considered. 

Venkatramani [63] considers Ethernet the architecture of choice for most networked 

environments because 

• newer Ethernet technologies are being developed to increase the data rates to 100Mb/sec 

• recent hardware support has enhanced the scalability of the architecture 

• prices will continue to be low (even for the newer technologies) due to economies of 

scale 

But as he indicates, the major problem with Ethernet as a real-time communications 

network is the contention-based protocol it uses for medium access: 

"Multiple nodes compete for access to the channel and on detecting a collision, 
backoff for a random interval before attempting retransmission. Hence, Ether- 
net does not provide deterministic access times to the network. Although the 
Ethernet protocol has a provision for prioritized access arbitration, this mecha- 
nism does not in itself offer guaranteed bandwidth to an arbitrary pair of nodes. 
Besides most commodity Ethernet controllers do not necessarily implement this 
feature." [63:282] 

His article details a real-time Ethernet protocol (called 'RETHER') that can be imple- 

mented without any hardware modifications, addressing one of the short-comings he found 

with several other proposed modifications to the Ethernet protocol.  One other problem 
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the RETHER protocol addresses is how to limit the impact on non-real-time traffic on the 

network—it is a hybrid implementation to allow on existing networks. While the main 

thrust of this development was to improve the performance of multi-media applications 

over commercial LANs, the issues addressed in the article still apply to real-time control 

applications. 

Since SIMSAT, implemented with the DSPACE AutoBox system, is based upon the 

Ethernet protocol, the issues raised in this article could become an issue. But as long as 

the Ethernet system being used remains a peer-to-peer network (the only nodes on the 

network are the Simulation PC and the AutoBox), there will be no interference from other 

nodes. This paper, therefore, provided good rationale for NOT connecting the AutoBox 

to the existing AFIT network. 

A.7    Analytical Tools 

As indicated in Chapter I, GRMS and other theoretical techniques require additional 

analytical support to handle the impact of the underlying run-time environment. That 

is where RAT ESI M began [5]. RATE SIM was intended to simulate the impact of 

system tasks on the ability of the user task set to meet its deadline when executing in 

a particular run-time environment (with user provided information about the run-time 

being used and the salient characteristics of the intended user task set: d, Tj, and task 

interdependencies). But RATESIM requires extensions to provide analytical support 

for periodic and aperiodic tasks, task synchronization (intra- and inter-processor), and 

various input/output principles. Even if extended, RATESIM would require the user to 

determine all the system task parameters, including those for the communication system. 

While this would be a one-time task, the value of extending RATESIM to exclusively 

support the SIMSAT effort should not be dismissed. 
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A. 8    Conclusion 

Why, if the Cyclic Executive has been the scheduling technique of choice for numerous 

real-time systems in the past, should GRMS replace it? The Cyclic Executive has several 

problems, which include: 

• Incompatibility with many object-based real-time programming paradigms (such as 

Ada) [52:1] 

• Inflexibility when computational loads vary leads to missed deadlines or wasted re- 

sources [5:2-3],   [60:42] 

• Praility during frame overrun error handling can lead to a wave of missed dead- 

lines [43:51] 

• Necessary use of harmonic task execution rates results in unnecessary additional 

"computational" load on the processor (processor time spent doing nothing, waiting 

for the next minor cycle to start) [41:182] 

• Complexity of hand-crafted time-lines and complications of handling multiple modes 

leads to excessively high development costs [60:42] 

• Interaction of logical constructs and scheduling decisions causes expensive design 

modifications since the entire time-line must be reevaluated if code changes alter the 

timing assumptions made in the original development [43:51] 

• Informality of time-line development and documentation reduces maintainability (in- 

creasing overall lifecycle costs) [60:42] 

Every one of these problems has been effectively handled by GRMS techniques: 

• Direct support for the Ada real-time programming paradigm [52:2] (and by extension, 

other object-based languages [24:20]) 

• Critical tasks (in the Stable Set) will ALWAYS meet their deadlines, no matter what 

other tasks get added (unless those tasks are higher priority) [41:182],   [52:9] 
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• Separation of logical and temporal concerns possible with the RMS scheduling tech- 

nique remove the concerns about the relationship of execution time between tasks 

and schedulability of the task set [52] 

• Adapts to changing computational loads [60:42] 

• Use of simple, formal tools to handle all temporal concerns reduces development 

costs [52] 

• Use of formal mathematical analysis tools for schedulability determination reduces 

design modification costs and therefore improves maintainability [52] 

In short, GRMS provides a formal, systematic approach to schedulability analy- 

sis, matching very well with contemporary systems and software engineering philosophies. 

Chapter VI provides some suggestions on how to update the experimental setup and ana- 

lytical tools to more adequately support true pre-experiment temporal analysis. 
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Appendix B.   Raw Data Details 

B.l     Overview 

This appendix provides a detailed description of the system level data used to eval- 

uate alternatives during the Detailed Design life-cycle phase. The data also includes the 

range of data the team estimated each attribute might take. The estimates are Rough Or- 

der of Magnitude estimates based upon typical manufacturers information for the various 

subsystems and also consider how the subsystems interact with respect to these system 

level measures. 

Variability data was based upon engineering estimates generated after researching 

the various subsystem alternatives. As the data for the DSPACE system was readily 

available and more defined than the data for the non-DSPACE alternative, the variability 

data in the tables is greater for the latter alternative. While all the continuous, direct 

measures include variability, the constructed scale measures do not for two main reasons: 

1. the attribute was determined to only be influenced by the C&DH subsystem 

2. the attribute variability is captured by the inherent "range" of any constructed score 

assignment (i.e., a Partial Control Systems Analysis score assessment for a given 

alternative does not mean the measure was expected to take on one value, but rather 

falls in the range of "50-90% of the elements are defined") 

As in the rest of this document, the four alternatives addressed in this appendix are: 

All on Sat: both the ADAC and EXP task sets execute in the AutoBox 

Split: ADAC tasks run on the ground, while the EXP tasks are running on AutoBox 

Grd w/ AutoBox: all tasks executing on the ground, with AutoBox providing signal 

consolidation to and from the satellite 

Grd w/o AutoBox: all tasks executing on the ground, using something other than the 

AutoBox to consolidate the data signals. DSPACE software environment was main- 

tained. 
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The following sections present the data for each fundamental value: Cost, Schedule, 

Safety, and Performance, followed by a section that consolidates the results. 

B.2    Cost Data 

Alternative Purch + Integ $ O & M $ Notes 

All on Sat $29.5K ± $0.5K $8.0K ± $0.25K 
Split $34.5K ± $0.5K $8.0K ± $0.25K Extra Processor 

Grd w/ AutoBox $34.5K ± $0.5K $8.0K ± $0.25K Extra Processor 
Grd w/o AutoBox S34.5K ± $0.5K $8.5K ± $0.5K Aerospace Parts 

Table B.l     Raw Data Range—Cost 

The estimated purchase and integration costs were broken down as: 

• ADACS: $17,000 (motors, wheels, sensors, misc. parts) 

• Power System: $5,000 (batteries, chargers, distribution/regulation system, etc.) 

• Structures: $500 (misc. parts and fabrication costs) 

• C&DH: $7,000 (AutoBox, wireless LAN, misc. cabling) 

These baseline costs were for the All on Sat option. The increase in cost for the Split and 

the Grd w/ AutoBox reflect the need for an additional processor and software upgrade 

to support a multi-processor environment. The increase in cost for the final alternative 

is related to the purchase other parts to replace the functionality of the AutoBox; the 

expectation was that those parts would likely approximate the AutoBox alternatives. 

The estimated annual operation and maintenance costs (periodic maintenance, con- 

sumables, misc. parts) were broken down as: 

• ADACS: $5,000 

• Power System: $2,000 

• Structures: $0 

• C&DH: $1,000 
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These baseline costs were for all the AutoBox options. The increase in cost for the final 

alternative was attributed to the increased likelihood that components of a non-integrated 

solution are less reliable than those of an integrated solution. This would obviously drive 

up O&M costs. 

B.3    Schedule Data 

Alternative Total Delivery Weeks Notes 

All on Sat 34 ± 1 week 
Split 35 ± 1 week Additional Processor 

Grd w/ AutoBox 37 ± 1 week Software Integration 
Grd w/o AutoBox 40 ± 2 week More Integration 

Table B.2     Raw Data Range—Schedule 

The CDM needs the system available for usage a little more than a year after this 

study was started. For the system to be "available," subsystem parts have to be ordered, 

delivered, and integrated. The order and delivery time for each system has to be completed 

before system-level integration can begin, so the data in the table was based upon how 

long it would take to receive all the subsystems, followed by the integration time, which 

was assumed to be the time required to make the subsystem functional. 

To capture the impact of both subsystem and system-level integration, the team 

assumed the integration time would not start until all subsystems had delivered, and then 

would proceed sequentially rather than concurrently. This decision was based upon the 

idea that only limited integration could be done before all systems were available, and some 

of the initial integration would have to be reaccomplished during system-level integration. 

Past experience suggested the need for a rather significant contingency buffer as well. 

The times shown in the table above were based upon the following baselines: 

• ADACS: 5 (order) + 10 (delivery) = 15 weeks; 6 weeks integration 

• Power System: 8 (order) + 4 (delivery) = 12 weeks; 4 weeks integration 

• Structures: 2 (order) + 3 (delivery) = 5 weeks; 2 weeks integration 
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• C&DH: 4 (order) + 15 (delivery) = 19 weeks; 3 weeks integration 

Prom this data, the baseline All on Sat schedule impact was 19 + 15 = 34 weeks. The 

additional week for going to the Split option was for the impact of ordering additional 

hardware and software. The time increase for the Grd w/ AutoBox option reflects that 

same impact as well as an increase in software integration time. The score shown for the 

Grd w/o AutoBox option reflects the additional order time required (6 vs. 4 weeks) to 

determine the parts to be ordered, and increased integration time (6 weeks) required to 

make disparate parts function as a subsystem. 

B.4    Safety Data 

Alternative Rel. Damage Ind. Rel. Injury Ind. Notes 

All on Sat 18 ± 1 18 ± 1 
Split 18 ± 1 18 ± 1 

Grd w/ AutoBox 18 ± 1 18 ± 1 
Grd w/o AutoBox 16 ±2 16 ±2 More Parts 

Table B.3     Raw Data Range—Safety 

As all of the subsystems were expected to either be commercial products or carefully 

designed, both the equipment and personnel safety indicators were expected to be very 

high. To provide some conservatism, the team decided to reduce the safety ratings a little 

for unanticipated interactions between the subsystems (the baseline scores) and reduce it 

further for non-validated integration (the final alternative). 

B.5    Performance Data 

As the Performance value "sub-tree" is so big, the following measures are organized 

alphabetically, two measures described at a time. 

The baseline All on Sat alternative is defined as only needing to send the Display 

and Command updates. The more functionality that moves to the ground, the higher the 
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Alternative B'width Req'ts Cmd Capab. Notes 

All on Sat Low Pull 
Split Mod Full More Signals 

Grd w/ AutoBox High Full All on Grd 
Grd w/o AutoBox High Full All on Grd 

Table B.4     Raw Data Range—Performance (Bandwidth/Command Capability) 

Bandwidth requirements. Since both Grd options have all the tasks running on the ground 

station, their Bandwidth requirements are the worst. 

For Command Capability, the team assumed that some form of that alternative could 

be found to provide that functionality. This measure was originally included to measure 

more than just C&DH functionality, but when other subsystem alternative choices were 

no longer possible or necessary, the usefulness of this measure was minimized. 

Alternative Comm Lat'cy Ctrl Sys. Anlys. Notes 

All on Sat Minimum Full 
Split Moderate Full Incr. Overhead 

Grd w/ AutoBox Significant Full High Overhead 
Grd w/o AutoBox Significant Partial High Ovhd/Parts 

Table B.5     Raw Data Range—Performance (Comm. Latency/Ctrl. Sys. Analysis) 

While correlated to Bandwidth, Communications Latency was concerned with what 

part of the control system is impacted by communication systems delays. An impact to 

the outer control loop creates different problems than an impact to the inner control loop. 

By definition, the All on Sat alternative would have the most impact, and both the Grd 

options would have the worst impact. 

For Control Systems Analysis support, the DSPACE integrated solutions are all as- 

sumed to provide at least 90% of the needed system elements. About the only parts not 

previously defined would be those common to each of the alternatives (communication sys- 

tem, sensors, effectors, etc.). The Grd w/o AutoBox option, though, will require definition 

of most elements. 
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Alternative Develop. Env Exp. Types Notes 

All on Sat Obj. Oriented Full 
Split Obj. Oriented Full 

Grd w/ AutoBox Obj. Oriented Full 
Grd w/o AutoBox Graphical Rigid Non-Integrated 

Table B.6     Raw Data Range—Performance (Develop. Environ./Exper. Types) 

Again, the DSPACE Development Environment is intuitive and Object-Oriented 

since it is built upon the SlMULINK foundation. As the last alternative is not using 

DSPACE hardware on the satellite, there is a significant gap in the available "building 

blocks", at least initially. 

The Experiment Types measure was established with the assumption that if an al- 

ternative could do the 3-Axis (Rigid) experiments it could do the Educational experiments 

as well. And if a alternative could do 3-Axis (Flex) experiments, it was assumed to be 

capable of doing all three. One of the initial assumptions for this design effort was that 

the integrated DSPACE solution had sufficient power to handle all the Experiment Types. 

While the performance may suffer as the tasks move off the satellite (as reflected in other 

measures), the team expected the integrated DSPACE solution would still support a full 

complement of experiment types. Once additional, non-DSPACE hardware got added to 

the system, the team thought SIMS AT might not be able to support more than the 3-Axis 

(Rigid) experiment. 

Alternative Intfc Modul'ty Maint/Test Time Notes 

All on Sat Partial Very Low 
Split Partial Very Low 

Grd w/ AutoBox Partial Very Low 
Grd w/o AutoBox Full Low Part: Flex./Time 

Table B.7     Raw Data Range—Performance (Interface Modularity/Maint. & Test Time) 

To maintain system integrity, the team assumed DSPACE components could not 

be easily replaced, giving each of the integrated DSPACE solutions only a Partial score 

for Interface Modularity.   But since the Grd w/o AutoBox alternative was based upon 

B-6 



the integration of variety of pieces, it would allow for Full component substitution or 

replacement. 

But this has an adverse impact when considering Maintenance and Test Time. 

Changing something that impacts a set of non-integrated parts will take longer to val- 

idate, thus the down-graded score for the Grd w/o AutoBox alternative. 

Alternative Mass Marg. Motion Sim. Notes 

All on Sat 100 ±5 Yes 
Split 100 ±5 Yes 

Grd w/ AutoBox 100 ±5 Yes 
Grd w/o AutoBox 120 ± 10 Yes No AutoBox 

Table B.8     Raw Data Range—Performance (Mass Margin/Motion Simulation) 

The team developed the baseline system mass by estimating the mass required for 

each of the subsystems: 

• ADACS: 18 kg (motors, wheels, sensors, misc. parts) 

• Power System: 7 kg (batteries, distribution/regulation system, etc.) 

• Structures: 15 kg (misc. integration and support parts) 

• C&DH: 10 kg (AutoBox, wireless LAN, misc. cabling) 

The baseline mass for the DSPACE-based options is 50 kg, leaving a 100 kg Mass 

Margin beyond the air-bearing capacity of 150 kg. The increase in mass margin for the 

Grd w/o AutoBox reflects the likelihood that the signal consolidation equipment required 

would be lighter and more compact than the AutoBox solution. 

The Motion Simulation measure was a vestige of the Simulation Fidelity consideration 

in the Concept Exploration values hierarchy that the team originally thought might play 

a factor during this life-cycle. As it turned out, the data seemed to indicate that all the 

alternatives evaluated in this effort would support some ability to simulate the actions of 

the system prior to actual implementation. 
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Alternative Pos. Sens'g Post Msn Anlys. Notes 

All on Sat io-2 Yes 
Split lO"2 Yes 

Grd w/ AutoBox io-2 Yes 
Grd w/o AutoBox io-2 Yes 

Table B.9     Raw Data Range—Performance (Pos'n Sensing/Post-Mission Anlys.) 

Like Motion Simulation above, both these measures were expected to be a factor 

when the values hierarchy was developed, but once the data was collected, the team found 

the measures to have little use in helping to differentiate alternatives. 

Alternative Pwr Margin Proc. Sch. Anlys. Notes 

All on Sat 7 ± 2 A-hr Full 
Split 7 ± 2 A-hr Full 

Grd w/ AutoBox 7 ± 2 A-hr Full 
Grd w/o AutoBox 10 ± 5 A-hr Mod Optimized Parts 

Table B.10     Raw Data Range—Performance (Power Margin/Proc. Sched. Anlys.) 

The team developed the baseline system power needs by estimating the power re- 

quired for each of the subsystems: 

• ADACS: 200 W (motors, wheels, sensors, misc. parts) 

• Power System: 0 W (assuming negligible losses in the system) 

• Structures: 0 W (no powered parts) 

• C&DH: 145 W (AutoBox, wireless LAN) 

The baseline power requirement for the DSPACE-based options is 345 W; assuming 

a nominal voltage of 24 VDC and experiment duration goal of 60 minutes, the demand 

works out to 12.32 A-hr. Adding a little more load for line losses, and considering the power 

system was originally sized to support 20 A-hr, the DSPACE baseline alternatives Power 

Margin were estimated at 7 A-hr. The increase in power margin for the Grd w/o AutoBox 

reflects the likelihood that the signal consolidation equipment required could be chosen 

to be more energy-efficient than the AutoBox solution (the power C&DH requirement 

dropped to 50 W => 250 W total =>■ 10 A-Hr requirement and margin). 
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The DSPACE alternatives clearly support Rate Monotonie Analysis [19:75], so re- 

ceive full credit for the Processor Schedulability Analysis measure. And while the Grd 

w/o AutoBox alternative still uses the same software, some hand-coding would likely be 

required to support schedulability analysis using the non-DSPACE hardware (a Moderate 

score). 

Alternative R-T Data Slew Capab. Notes 

All on Sat Yes 60 ± 5 deg/10 sec 
Split Yes 60 ± 5 deg/10 sec 

Grd w/ AutoBox Yes 60 ± 5 deg/10 sec 
Grd w/o AutoBox Yes 70 ± 10 deg/10 sec Parts Flex. 

Table B.ll     Raw Data Range—Performance (Real-Time Data/Slew Capability) 

Like the Post Mission Data Analysis measure, the Real- Time Data Acquisition mea- 

sure was expected to provide some differentiation between alternatives. As it turned out, 

all the alternatives supported some type of data acquisition. 

The team made the assumption that the Momentum Wheels being designed would be 

able to support a Slew Capability of 60°/10 sec in the baseline system configuration (with 

AutoBox on the satellite). As the Grd w/o AutoBox option integrate piece parts housed 

on the satellite, the team assumed there would be more flexibility in locating those parts 

to reduce moments of inertia (MOI). The team also expected the MOI would improve with 

the reduced subsystem weights. 

Alternative Turn Time User Intfc Notes 

All on Sat 1 hour Full 
Split 1 hour Full 

Grd w/ AutoBox 1 hour Full 
Grd w/o AutoBox 1 hour Partial Non-DSPACE Hardware 

Table B.12     Raw Data Range—Performance (Turn-Around Time/User Interface) 

At the beginning of this life-cycle phase, the team anticipated the need for a measure 

to determine how easy it was to remove and replace batteries. Turn-Around Time was in- 

tended to measure the impact of structural designs on the "maintainability" of the system. 
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As neither Structures or Power alternatives (i.e., those that interact with this measure) 

were not considered during this life-cycle phase, this became another "dead" measure, not 

adding any information to the alternative selection process. 

As the DSPACE solutions provided a tightly integrated solution, including a well- 

developed User Interface, it satisfied the criteria for a Full score. Adding non-DSPACE 

hardware to the last solution in the table meant the user interface would require some 

work before the system would be ready for full implementation. 

Finally, as mentioned before, since team reached no resolution regarding the Slew 

Rate Sensing measure, the evaluation of C&DH alternatives assumed no value being added 

to any of the alternatives for this measure. Had time permitted, the team would have gone 

back, updated the values hierarchy, and changed the LOGICAL DECISIONS model to get 

more spread between the alternatives considered. 

B.6    Consolidation of System Data 

Alternative Min. Value Nom. Value Max. Value 

All on Sat 7.53 7.73 7.94 
Split 7.08 7.28 7.48 

Grd w/ AutoBox 6.64 6.84 7.04 
Grd w/o AutoBox 5.34 5.77 6.12 

Table B.13     Overall Value Range 

This table reflects the range of values after taking the data from the previous tables, 

transforming it into common units, and adjusting it with the weights shown in Table 4.8 

(page 4-31). To speed the analysis conducted during Detailed Design, the variability data 

in the tables of this appendix was assumed to be uniformally distributed for each measure. 

The resulting variability in the Overall value for each alternative was conservative. If 

there had been no overlap in the value scores, that conservatism would not have been an 

issue. In addition, the minimal overlap that does occur in this application does not create 

a high risk because the implementation impact between the top three alternatives was 
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very minimal (primarily a software update). As a result, the All on Sat alternative is the 

preferred solution. 
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Appendix C.   Common Units 

C. 1     Overview 

A variety of techniques have been developed to quantitatively compare multiple at- 

tribute alternatives, the most analytically accurate of which is Multi-Attribute Utility 

(or Value1) Theory [32]. This technique requires the normalization of real-world data 

to a common scale (or units) to allow for algebraic summation which could be called a 

decision-making equation. The mathematical functions to do this conversion are called 

utility (or value) functions. To ensure the CDM's values are appropriately factored into 

that summation, weights are assigned (as in Section 4.4.1.2, page 4-30) to each evaluation 

consideration and real-world measure of merit (MOM) after the data is collected to ensure 

the range of data is considered in determining those weights. 

The conversion from actual data to common units should always be done with a 

relatively continuous "function," even for the Y/N constructed measures. The need for 

a continuous function when dealing with continuous data is inherenty obvious; the need 

for such a function for discrete data is not quite so clear. Kirkwood points out [28:26] 

that typically constructed scales will not capture every consideration that may need to 

be factored into an MOM assessment for a given solution. This may lead to a situation 

where technical judgement leads to a score that is between two values of the constructed 

scale. Having built a piecewise linear value function provides a means for converting that 

intermediate score to an appropriate value for the decision-making equation [28:63]. 

With that in mind, the following pages document the functions the developed with 

the CDM to convert the raw data collected into common units. The functions are arranged 

in alphabetic order, by fundamental value (Cost, Schedule, Safety, Performance), to make 

them easier to locate. Also included is the definition of terms used in constructed measures 

(i.e., "Moderate" vs. "Low" for each measure) as well as the value used to establish the 

continuous transform functions used for some natural measures (such as Capital Cost). 

lrrhe difference between Value and Utility is the introduction of uncertainty. Since uncertainties are 
being handled in other ways in this design effort, uncertainty in this context, and the risks it introduces, 
will be ignored 
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The transform for these continuous functions is based upon [28:68], whereby the 

team worked with the CDM to choose a single comparison between a real-world data point 

and the value that point has to the CDM. While this may not be the most technically 

exhaustive method for building the transform functions (see [7:469-487] for more robust 

techniques), the CDM was comfortable enough with how the decision-making tools fit with 

his perspectives that he was willing to live with this compromise for the sake of expedient 

analysis. 

Rather than having to worry about all the math that goes into transforming that 

one point to a continuous exponential function, the team again used LOGICAL DECISIONS 

to derive the transform function. The "transform" point is included on the figure for the 

continuous measures to confirm the curve represents the CDM's perspectives2. 

2Due to some rounding problems in EXCEL, the curves do not always match exactly.   However the 
functions included with the graph do represent the CDM's transform function for the "transform" point. 

C-2 



Capital Cost 
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C.2    Cost 

Figure C.l     Capital Cost Value Function 

C. 2.1 Capital Cost. This measure is a continuous "direct" measure reflect- 

ing the estimated total cost to purchase and integrate system. The costs include all the 

primary subsystem components, support parts, and any labor required for the one-time 

fabrication of the system. The CDM generated this function by selecting the following 

value comparison; LOGICAL DECISIONS generated the rest: 

Value($50K) = 7 
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Figure C.2     0 & M Cost Value Function 

C.2.2 Operations and Maintenance Cost. This measure is a contin- 

uous "direct" measure reflecting the estimated yearly cost to operate and maintain the 

system. The recurring costs include all the consumables, repair parts, and labor required 

to keep the system running each year. The CDM generated this function by selecting the 

following value comparison; LOGICAL DECISIONS generated the rest: 

Value($5K) = 7 
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Figure C.3     Total Time Value Function 

C.3    Schedule 

C.3.1 Total Time. The only measure for the Schedule fundamental value 

is Total Time. This measure was a continuous "direct" measure reflecting the summation 

of the time required to order, produce, deliver, and integrate the entire SIMSAT system. 

The CDM generated this function by selecting the following value comparison; LOGICAL 

DECISIONS generated the rest: 

Value(48 weeks) = 5 
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C.4    Safety 

The Safety measures documented in this appendix for Equipment Risk and Personnel 

Risk each use the term "index," based on the table shown in Figure C.4. That table was 

developed as suggested in [3:7-8, A3-A4], as coordinated with the CDM. 

Failure:     System Loss Major Damaqe   Minor Damaae Injury/Damaqe 
Catas Crit                Marg Negl 

°<*as   1^3^ 
^$^^$            6 
:^^^^^           9 

9                       11 

10 
12 
15 

Rem               g ■iiWy .:.:.:-:.■ "14      ;:;:;! 18 
Improb            10 14                        13 20 

Severity of     Death or       Severe Injury,     Minor Injury,     Less than Minor 
Failure Probability: 

0.01 Likely to occur frequently 
0.0001 -> 0.01      Occur several times in 5 years 

0.00001 -> 0.0001   Likely to occur sometime in 5 years 
0.000001 -> 0.00001 May occur sometime in 5 years 

< 0.000001        So unlikely can assume may not fail Improb 

System Loss means at least 90% of SIMSAT must be replaced 
Major Damage means 50-90% of SIMSAT must be replaced 
Minor Damage means 25-50% of SIMSAT must be replaced 
Less than Minor damage means 0-25% of SIMSAT must be replaced 

Severe Injury means at least 1 day of work is missed 
Minor Injury means a visit to the hospital is required, but no work is missed 
Less than Minor Injury means that, at worst, only minimal first aid is required 

Risk index Acceptability 
1-5       Unacceptable 
6-9       Undesirable 

10-17     Acceptable with review 
18-20     Acceptable as is 

Figure C.4     Hazard Index Table 
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Figure C.5     Relative Damage Index Value Function 

C.Jt-.l     Relative Damage Index.      See Figure C.4 (page C-6) for definition 

of this constructed scale, a combination of probability of failure, and severity ofthat failure. 
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Figure C.6     Relative Injury Index Value Function 

C.4-2    Relative Injury Index.      See Figure C.4 (page C-6) for definition of 

this constructed scale, a combination of probability of failure, and severity of that failure. 
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Figure C.7     Bandwidth Requirements Value Function 

C. 5    Performance 

C.5.1     Bandwidth Requirements. 

LEVEL 

High 

Moderate 

Low 

DEFINITION 

All signals need to be sent 

Display/Command and ADACS signals need to be sent 

Only Display/Command updates need to be sent 
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Command Capability 
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Figure C.8     Command Capability Value Function 

C.5.2     Command Capability. 

LEVEL DEFINITION 

Start/Stop Sat. runs independently; Grd only command start and stop 

ADAC Only Satellite attitude and direction controlled 

Full Everything (ADAC and payload) controllable from Grd 
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Figure C.9     Communications Latency Value Function 

C.5.3    Communications Latency. 

LEVEL 

Significant 

Moderate 

Minimal 

DEFINITION 

Delay impacts both inner and outer control loops 

Delay impacts only outer control loop 

Only delay is between user interface and control loop(s) 
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Figure CIO     Control Systems Analysis Value Function 

C.5.4     Control Systems Analysis. 

LEVEL DEFINITION 

Minimal 

Partial 

Full 

<50% of desired system elements defined or the 
remaining elements are difficult to define 

50-90% of desired system elements defined; simple to 
define the rest 

>90% of desired system elements defined 
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Development Environment 
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Figure C.ll     Development Environment Value Function 

C.5.5    Development Environment. 

LEVEL DEFINITION 

Text 

Graphical 

Object-Oriented 

Time-intensive entry of control laws; prone to errors 

Not all aspects of control system available as "building blocks" 
but more user-friendly than Text 

Graphical; all critical elements available as "building blocks" 
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Figure C.12     Experiment Types Value Function 

C.5.6    Experiment Types. 

LEVEL 

None 

Educational 

Rigid 

Full 

DEFINITION 

No experiments possible 

Education/teaching usage only 

Can do Education and 3-Axis Rigid experiments 

Can do all the desired experiments 
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Figure C.13     Interface Modularity Value Function 

C.5.7    Interface Modularity. 

LEVEL DEFINITION 

None 

Some 

Partial 

Full 

Only complete subsystems can be replaced 
with payload parts, not components 

10-50% of components/sub-sub-systems can be 
relocated or substituted with payload parts 

50-75% of components/sub-sub-systems can be 
relocated or substituted with payload parts 

All components/sub-sub-systems can be relocated or 
substituted with payload parts 
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Figure C.14     Maintenance & Test Time Value Function 

C.5.8    Maintenance and Test Time. 

LEVEL DEFINITION 

V-High 

High 

Completely reconfigure to conduct new experiments; 
requires system validation before test run (> 100 min) 

Experiment installation and validation requires 76-100 min 
total time 

Mod 

Low 

V_Low 

Experiment installation and validation requires 36-75 min 
total time 

Experiment installation and validation requires 16-35 min 
total time 

Snap-in/snap-out; experiment installation and validation 
requires 0-15 min total time 
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Figure C.15     Mass Margin Value Function 

C. 5.9 Mass Margin. This measure is a continuous "direct" measure reflect- 

ing the estimated mass the air bearing assembly can support after all the required baseline 

SIMS AT components are installed. The CDM generated this function by selecting the 

following value comparison; LOGICAL DECISIONS generated the rest: 

Value(100 kg) = 8 
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Figure C.16     Motion Simulation Value Function 

C.5.10    Motion Simulation. 
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Figure C.17     Position Sensing Capability Value Function 

C.5.11 Position Sensing Capability. This measure is a continuous "di- 

rect" measure reflecting how accurately SIMS'AT can sense position. The CDM generated 

this function by selecting the following value comparison; LOGICAL DECISIONS generated 

the rest: 

x = 0.005 -> log(a?) = -2.301...; Value(z) = 9 
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Post-Mission Analysis No Yes 
Value 0 10 

Figure C.18     Post-Mission Data Analysis Value Function 

C.5.12    Post-Mission Data Analysis. 
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Figure C.19     Power Margin Value Function 

C.5.13     Power Margin. This measure is a continuous "direct" measure 

reflecting the estimated power the battery system can support after all the required baseline 

SIMS AT components are installed (at the nominal system voltage). The CDM generated 

this function by selecting the following value comparison; LOGICAL DECISIONS generated 

the rest: 

Value(2 Amp-hrs) = 5 
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Processor Schedulability Analysis 
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Figure C.20     Processor Schedulability Analysis Value Function 

C.5.I4     Processor Schedulability Analysis.      See Appendix A for addi- 

tional rationale on Rate Monotonie Analysis (RMA) as the scheduling technique of choice. 

LEVEL DEFINITION 

None RMA is not supported; insufficient data regarding OS scheduling 
technique to assess likelihood and impact of missed deadlines 

Unsupported RMA is not supported; but sufficient data data regarding OS 
scheduling technique to assess likelihood and impact 
of missed deadlines 

Moderate RMA supported at least indirectly; some hand-coding required 
to fully implement 

Full RMA supported directly in both hardware and software 
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Real-Time Data Analysis 
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Figure C.21     Real-Time Data Value Function 

C.5.15    Real-Time Data. 
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Figure C.22     Slew Capability 

C.5.16 Slew Capability. This measure is a continuous "direct" measure 

reflecting how far SIMS AT can slew in a 10 second timeframe. The CDM generated this 

function by selecting the following value comparison; LOGICAL DECISIONS generated the 

rest: 

Value(60 degrees) = 7 
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Slew Rate Sensing 
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Figure C.23     Slew Rate Sensing 

C.5.17 Slew Rate Sensing. Prior to the completion of the Detailed Design 

phase for the C&DH subsystem, the team could not settle on a useful definition for this 

measure. Faced with the choice of taking the measure out of the values hierarchy (and 

the corresponding LOGICAL DECISIONS models), then having to re-implement it later, 

the team decided to leave it in, and give the C&DH alternatives a '0' score for it. Had 

more ADACS issues been addressed during this design phase, this issue would have been 

resolved. As the choice of a C&DH subsystem really has little impact on this aspect of 

the system design (i.e., none of the alternatives would be distinguishable strictly on the 

basis of this measure), this decision would not cause any impact to the rankings of the 

alternatives, only their numerical score (some of the overall weight of the measures was 

consumed by a non-contributing measure). 
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Figure C.24     Turn-around Time Value Function 

C.5.18 Turn-Around Time. This measure is a continuous "direct" mea- 

sure reflecting the worst case time between when batteries were available for experiments. 

The measure is impacted by both the number of spare batteries available and the recharge 

cycle time. For example, a single set of batteries that last 4 hours and take 8 hours to 

recharge would score an 8 and a value of 0 (based upon Figure C.24). Adding another 

set of 4 hour batteries would score a 4 for a value of 0.45, while 3 sets of batteries would 

allow the first set to recharge by the time the third ran down, resulting in 0 turn-time for a 

value of 10. The CDM generated this function by selecting the following value comparison; 

LOGICAL DECISIONS generated the rest: 

Value(3 hours) = 1 
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Figure C.25     User Interface Value Function 

C.5.19     User Interface. 

LEVEL DEFINITION 

Minimal <50% of controls and displays can be done graphically 

Partial 50-90% of controls and displays can be done graphically 

Full >90% of controls and displays can be done graphically 
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Appendix D.   Installation and Operation 

Manual 

D. 1     Overview 

This appendix is organized into four sections. The first section provides detailed 

instructions for installing the DSPACE system as configured at the conclusion of this re- 

search. The next section adapts those procedures to explain how to generate, compile, 

and run experiments on the SIMSAT DSPACE installation. Immediately following those 

is a section that discusses experiment implementation philosophy. Finally, all the Win- 

dows95/NT shortcuts implemented to improve the user-friendliness of the development 

and control environment are shown. 

D.2    DSPACE Installation 

The following procedures were those used to prepare the DSPACE system for inte- 

gration with the rest of SIMSAT as it became available. The implementation steps listed 

were written in the tone of an instruction manual to assist in re-implemenetation of the 

system if required. That precaution is not overly conservative since computer system sta- 

bility, while certainly enhanced once implementation was complete, cannot be guaranteed: 

catastrophic hardware or software failures could still occur. 

D.2.1 Preliminaries. Before installing hardware and software, two prelim- 

inary steps have to be taken to ensure the rest of the installation goes smoothly: 

1. For the NT machine (RealMotion PC host), ensure you have administrator priv- 

iledges to install software 

2. Install the execution keys (dongles) on the parallel ports of the appropriate host PCs: 

(a) Simulation PC serial number 2624 

(b) RealMotion PC serial number 2627 
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D.2.2    Implementing the Simulation PC/AutoBox Environment. 

This is the heart of the control system and development environment for SIMS AT. While 

the steps below do not necessarily reflect the actual order used to install the DSPACE 

system, the order of tasks reflect the lessons learned during the installation to help others 

avoid our mis-steps. This consolidated installation process also reduces the need to have 

the individual instruction manuals available. 

1. Install the DSPACE cards into AutoBox 

• NOTE: position the I/O cards as far from the power supply as possible to reduce 

EMI concerns [44] 

• Install the boards into the following AutoBox ISA slots (slot 0 is the Power 

Supply): 

1. 486 Single Board Computer (SBC) with an ethernet interface for control of 

the ISA bus and communication with the Simulation PC, along with a FlashDisk 

to store data and software (SBC pre-installed by dSPACE, Inc.) [1] 

2. DS820 Interface card for communications between the AutoBox and the 

RealMotion PC over dedicated serial lines (RS-422-A; high density sub-D con- 

nectors) [9] 

3. DS1003 TI C40 Digital Signal Processing Board (with 1.256M memory); 

the actual control system processor and Proprietary High Speed (PHS) bus 

master [11] 

4. RESERVED (potential future expansion slot for wireless LAN—to be deter- 

mined in the companion thesis [8]) 

5. empty 

6. DS2003 Multi-Channel A/D Converter I/O Board [12] 

7. DS2103 Multi-Channel D/A Converter I/O Board [14] 

• Connect the PHS (gray) ribbon cable from the DS1003 PHS connector [11:78] 

to the I/O boards. NOTE: the connector mated to the termination strip must 

be attached to the last I/O board (in this installation, the DS2103 board) 
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• Connect the thin-film ribbon cables from DS1003 port 0 [11:78] to DS820 plug 

1 [9:3] and DS1003 port 3 to DS820 port 2 (see Figure D.l) 

P2    P1     PO 
I II IE 
IZZICZDC 

P5    P4     P3 

DS1003 
Tl C40 DSP 

Card 

^ 
P2    P1 

DS820 
Communications 

Card 

Figure D.l     Ribbon Cable Connection: DS820 to DS1003 

• Mount the CP2003/2103 connection panels [13] and connect them to the cor- 

responding AutoBox I/O cards. The ports on the rear of the AutoBox are 

designed so the connectors can only be installed one way; no specific descrip- 

tion of the connectors is required. This setup will be sufficient for bench testing, 

but see Chapter V, page 5-6 for more details on the requirements for the satellite 

installation. 

2. Install the DSPACE cards into the RealMotion PC (and connect to the AutoBox) 

• Install the remaining DS1003 TI C40 Digital Signal processing board (512K 

memory) into the RealMotion PC 

• Install the remaining DS820 Interface board into the RealMotion PC 

• Connect the ribbon cables from the DS1003 to the DS820 as previously (again, 

see figure D.l) 

• Connect the serial cables from the RealMotion PC DS820 to the AutoBox 

DS820 [9:3] 

D-3 



3. Power the AutoBox 

(a) fabricate a power cable with a connector wired IAW Figure D.22 (page D-27) 

!! WARNING!! 

Ensure the polarity is correct 

(Pin A2 (Brown) and 4 (Green) to [+] 

and Al (Blue) to [-] on present cable) 

(b) connect power cable to AutoBox and power supply; VERIFY POLARITY 

(c) ensure power supply voltage is set in the 8-36VDC range 

• steady state power is ~ 60W in the present configuration 

• startup power required for the DC-DC power supply is quite high (~ 240W) 

• RECOMMENDATION: set voltage to at least 20VDC—most power sup- 

plies available during this installation were current limited to 15-20 A 

(d) turn on the power suppy, then the in-line switch. If properly wired, powered, 

and configured: 

• the power supply should indicate a draw equivalent to ~ 60W 

• the AutoBox should first sound a single beep 

• a triple beep indicates the AutoBox is prepared to communicate with the 

Simulation PC 

4. Install the Software 

• Install MATLAB and the TI C Compiler on the Simulation PC machine before 

the DSPACE software. Make note of the installation directories—for the present 

SIMS AT installation: 

(a) MATLAB (ver. 5.x): C:\MATLAB; must include these toolboxes: 

- SlMULINK 
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- Real-Time Workshop 

(b) TI C Compiler (ver. 5.0): C:\C30T00LS 

• Install the DSPACE software 

(a) while not required, copying the files from the dSPACE, Inc. provided "Key 

Disk" to a hard drive directory (such as C:\dSPACE.KEY) makes the in- 

stallation faster (and effectively backs up the license files). Ensure the 

"Key-Disk" being used matches the dongle for the machine the software is 

being installed on. 

(b) insert the DSPACE CD-ROM into the CD-ROM drive and run CDSETUP. EXE 

- install the DSPACE software on the same hard drive as MATLAB 

- specify the path to the "Key-Disk" files as that directory created in the 

previous step or A: \ (the default) 

- verify the DSPACE software to be installed: 

i. for the Simulation PC host, the installed software must include: 

* TI C Compiler v. 4.7 (the ver. 5.0 compiler installed above so 

DSPACE sees a valid C Compiler installation. But ver. 5.0 has 

bugs, so the DSPACE software installs ver. 4.7 in its place) 

* BASEN (v. 1.4.2) [18] 

* Real-Time Kernel (v. 1.1) [18] 

* SEMOSN (v. 1.5.1) [18] 

* COCKPIT40N (v. 3.2.4) [16] 

* MLIBN (v. 3.0.1) [21] 

* MTRACE40N (v. 3.0.1) [22] 

* RTI1003 (v. 3.1) [19] 

* TRACE40N (v. 3.2.4) [17] 

ii. for the RealMotion PC host, the following software must be installed: 

* BASEN (v. 1.4.2) [18] 

* SEMOSN (v. 1.5.1) [18] 
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* RealMotion (v. 1.03) [15] 

iii. Once the software is finished installing, 

* go to a DOS prompt 

* change to the C: \DSP_CIT\C40}directory 

* type ADDLIB RMSERV to complete the installation of the REALMO- 

TION software 

(c) DSPACE software configuration options used for this installation: 

- installation group: "dSPACE Tools" 

- single processor installations 

- Simulation PC memory configuration (C40 card in AutoBox): 

* Local Bank 0: 1 MB 

* Local Bank 1: 0 MB 

* Global Bank: 256K 

- RealMotion PC memory configuration: 

* Local Bank 0: 256 KB 

* Local Bank 1: 0 MB 

* Global Bank: 256K 

(d) Build the Parallel Runtime Library: 

- go to a DOS prompt 

- change to the C: \DSP_CIT subdirectory 

- typemk30 -v40 —h -o2 prts40.src [20:2] 

• After the software installation is complete, open Control Panel and double- 

click the WIBU Key icon. If all is in order, a graphic of the dongle will appear 

with a set of numbers in it1 (Figure D.2) 

5. Establish the AutoBox/Simulation PC Network 

1Some PC's may have the parallel port turned off in BIOS. If the WIBU Key Icon in Control Panel does 
not display numbers as in Figure D.2, check the BIOS setup to determine if the port is turned on or off 
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WIBU-BOX Update 

Contents      |      Jest 

WIBU-BOX Tree: 

■§ Desktop 

Ö~M^ My Computer 

$--Jr LPT1 
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ß COM2 

Hg Network 

Setup      I      Install      ]      Diagnosis     |     About 

]      Server     )      Network     |     WIBU-BOX Context 
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»m ffiahceh- Help* 

Figure D.2     WIBU-Key Dialog Box 

• no concerns about I/O addresses and interrupts; cards are configured before 

shipment to use the defaults of AutoBox 

• ethernet protocol implements a non-deterministic means of media access (the 

problems that can introduce into real-time control systems is addressed in Ap- 

pendix A, page A-19) 

!! WARNING!! 

Only install the Simulation PC/AutoBox 

system in a peer-to-peer configuration to prevent 

control system instability (though [20:5] implies otherwise) 

• Simulation PC requires connection to AFIT network. To avoid network hard- 

ware and software difficulties, use two network cards from the same manufac- 
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turer (one for connecting to AFIT and one for connecting to AutoBox) for the 

initial system installation and validation 

• default AutoBox address set by dSPACE, Inc. as 192.100.100.98 

• validate the networked development/command environment (ethernet between 

AutoBox and Simulation PC) 

(a) in Control Panel | Network | Protocols | TCP/IP Protocol | IP Ad- 

dress set the TCP/IP address for the AutoBox network card in the Simu- 

lation PC to 192.100.100.1 (disable all other protocols) 

(b) physically connect the Simulation PC and AutoBox together using the pro- 

vided RJ-45 cable 

(c) set the Simulation PC card to use the appropriate connection, if required 

(lOBaseT instead of BNC) 

(d) PING the connections to make sure the network is in place. Go to a DOS 

prompt and type: 

- PING 192.100.100.1 to confirm Simulation PC network card is pow- 

ered and responsive 

- PING 192.100.100.98 to ensure AutoBox is powered and responsive 

to the Simulation PC 

- will see the responses in Figure D.3 if everything is working correctly. 

Will see a "Request timed out" reply if not 

(e) determine if DSPACE can use the network: 

- connect the Simulation PC to the AutoBox: at the DOS prompt, type 

DC0NTN /C 192.100.100.98 

- if all is well, the system will respond as in Figure D.4 

(f) at the DOS prompt, type SED40NET /b AutoBox to find the board; the 

system editor will not immediately find it (Figure D.5): 

i. Choose Search DS1003 processor board <3>   to locate the card 
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'■'£ MS-DOS Prompt F?REa 

3 DNal Ml Ms AJ 
C:\>i>ing 1 ?2.100. 1DD. 1 

Pinging 192.100.100.1 with 32 bytes of data: 

Reply front 192.100.100.1: bytes=32 tirce<10ns TTL = 32 
Reply fron 192.100.100.1: bytes=32 tine=1ns TTL=32 
Reply fron 192.100.100.1: bytes=32 tine<10ns TTL=32 
Reply fron 192.100.100.1: bytes=32 tine<10ns TTL=32 

C:\>ping 192.100.100.98 

Pinging 192.100.100.98 with 32 bytes of data: 

Reply fron 192.100.100.98: 
Reply fron 192.100.100.98: 

bytes=32 tine=1ns TTL=6l) 
bytes=32 time=1ns TTL=6% 

Reply fron 192.100.100.98: bytes=32 tine<1flns TTL = 61r 
Reply fron 192.100.100.98: bytes=32 tirne=1ns TTL=6'r 

Figure D.3     PING Session Results 

ä MS-DOS Prompt 

MTO   3 aNal Bl &\& AJ 

Figure D.4     Connection to AutoBox Confirmation 
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1 "'s SED40NET SBE3I 
1 Auto ^j i;;i if Ü Miss id 
SEDHONET - DS1003 Processor Board Editor, Us ;.'ii - 32, CO 1397 by dSPACE CnbH 

ds1003 processor board not detected 

Edit system setup for monitor   
Display list of aoailable boards   

Edit range setup information for monitor .... 

 CD 
  (2) 
 (3) 
 (4) 
.... (q) 

Select    (_) 

Figure D.5     Initial System Editor Menu 

ii. Input the name, and memory/interrupt configurations (accept the de- 

faults) 

- Name: AutoBox 

- Memory Offset: ODH 

- I/O Port Offset: 0318H 

iii. Save the setup by choosing Edit system setup for monitor <1>; ac- 

cept the defaults (see Figure D.6) 

iv. Choose Display list of available boards <2>; editor should find 

the I/O boards (Figure D.7): 

- DS2003 (20H offset) 

- DS2103 (90H offset) 

v. Quit the System Setup by typing <q> once 

vi. Quit the System Editor and return to the DOS prompt by typing <q> 
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V:SED40NET □aa 
I   ^*°    3 OlNül 13 
SEB40NET - DS1D03 Processor Board Editor, Us 5.41 - 32, CO 1997 by dSPflCE GmbH 
DS1D03 - autobox - I/O [031811] - 64 KB at [0DD080H] 
102* KU local ROM CbankO), 0 KU local RAM (bankD, 256 KU global ROM 

Edit system setup 

Edit uatchdog node [retry]   
Edit watchdog enable flag [off] 
Edit uatchdog period [disabled] 
Quit edit   

Figure D.6     Edit System Setup Menu 

QÖE 
Ä^      TJ ("3 ^gg   gj|   Efjg  A 

SEB40NET - 0S1003 Processor Board Editor, Us 5.41 - 32, (C) 1997 by dSPOCE GmbH 
0S10D3 - autobox - I/O [0318H] - 64 KB at [0D00D0H] 
1024 KU local ROM CbankO), 0 KU local ROM Cbank«, 256 KU global ROM 

Show DSP-CITpro peripheral boards available 

BS2003 MUX ft/0 board found at I/O bus offset   
0S2103 Multichannel D/fl board found at I/O bus offset 

Press any key to continue C__) 

Figure D.7     I/O Board Search Results 
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6. Setup the Local RealMotion PC Processor 

(a) at a DOS prompt, type SED40 /b RealMot; the system editor will again not 

immediately find it (similiar to Figure D.5): 

i. Choose Search DS1003 processor board <3>   to locate the card 

ii. Input the name, and memory/interrupt configurations (accept the defaults) 

• Name: RealMot 

• Memory Offset: ODH 

• I/O Port Offset: 0318H 

iii. Save the setup by choosing Edit system setup for monitor <1>; accept 

the defaults (see Figure D.6) 

iv. Choose Display list of available boards <2>; editor should not find 

any I/O boards 

v. Quit the System Setup by typing <q> once 

vi. Quit the System Editor and return to the DOS prompt by typing <q> 

At this point the system installation is complete. A set of simple models to validate 

the system will be used in the next section to validate the system and provide a short 

tutorial on operating the software. Fortunately the complicated steps listed above were 

only required until the team developed tools to take advantage of the Windows95 graph- 

ical interface. The next section will also demonstrate those tools developed to ease the 

experimenter's workload. 

D.2.3 Auto Box/Simulation PC Operation Demonstration. This 

section will use a short example to demonstrate how to use the AutoBox/Simulation PC 

portion of the system (the next section will cover the RealMotion PC validation). Sec- 

tion D.3 (the Operator's Manual starting on page D-26) should be usedto for more detailed 

information on how to develop and implement a SIMS AT experiment using the AutoBox. 

The following example assumes the system has not been turned off or disconnected 

from the AutoBox since completing the tasks in the previous section.   To re-accomplish 
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those tasks, see the steps spelled out in Section D.3 (page D-26). To begin the demonstra- 

tion, double-click on the dSPACE Files icon on the desktop (all the files contained in that 

folder are detailed in Section D.5, page D-35). Figure D.8 will appear, which has all the 

shortcuts necessary to build, compile and load, monitor, and control an experiment. Each 

of these will be demonstrated in a following subsection. 

;1B C:\WINDOWS\DESKTOP\dSPACE Files 

File   Edit   View   Help 

QsEl 

ER 
Simulink 

Trace 

10 ob|ed(7) 

dSPACE       PingAutoBox     Connect to    Show Versions 
Directory AutoBox 

, _„ ,_, „, SsjAj 
[£p^* 2MP EJS3 

dSPACE System Editor Monitor 
Library 

EC 
iCockpiti 

\3Mm 

Figure D.8     dSPACE Files Folder Contents 

D.2.3.1 Building the Model. Double-clicking on the dSPACE Library- 

choice will start MATLAB and load the Real-Time Interface library for the DSPACE com- 

ponents currently installed (Figure D.9). Double-clicking the DEM02 button will bring up 

a set of choices, including 2 pre-defined demonstration models for the DSPACE system 

(Figure D.10): one developed by dSPACE, Inc., the other adapted for the particular I/O 

boards currently installed (PT2 with 10). The latter will be used for this demonstration. 

Double-clicking PT2 with 10 opens up the demonstration SlMULlNK model (Fig- 

ure D.ll), enhanced with DSPACE building blocks for the installed I/O boards. This 

model has been previously validated, so all that needs to be done is compile and load 

the model onto the DSP. See Appendix D, page D-29, for more information on building a 

model from scratch using traditional SIMULINK blocks. 
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Libiary: Rtilibms 

File   Edit   View   Sir-viaHor:   Format   Too::; 

HÜ 

AflT/SIMSAT    (1999)      | 

Simulink INTLIB DS2003 DEM02 

PHS-bus EXTRAS DS2103 T     DEMOS   |     Read Me   | 

RTI1003 Board Library 
Version 3.1 

RTI Library dSPACE 

Figure D.9     DSPACE Library Menu 

. File   £dit   Vjew   S.»;...:-:.ti'-r-   FotmaJ 

Libiaiy: DSDEM02M BRE3 

AHT/SIMSAT    (1999) 

GETTING STARTED 

PT2 

EXAMPLES WITH I/O BOARDS 

|      I    PT2 with I/O (v. 2) 

INTERRUPTS 

□ Hardware       I     |   Software 
Interrupts Interrupts 

RTI1003 Demo Models 
Version 3.1 dSPACE 

>.. 

Figure D.10     DEM02 Library Menu 
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MUX_ADC I Second Order 

La» 
0.7 Mux 
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1 DS2003_ 31 Model! Slider 
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dSPACE i AFIT/SIMSAT (1999) | 
I  

Figure D.ll     PT2 with 10 SIMULINK Model 

D.2.3.2 Compile and Load the Model. Before compiling the model, 

verify the Tools | RTI Options | RTW dialog box has been updated so the Make Command 

entry reflects the AutoBox board name (as in Figure D.12 [19:51]). 

After validating the RTI Options have been changed, compile the model by choos- 

ing Tools | RTI Build. The process of compiling, linking, and loading can be observed 

by opening the MATLAB command window where error messages will be displayed. If 

everything works correctly, the following words will appear as the compilation proceeds: 

*** Starting RTI build procedure with RTI1003 3.1  (28-Apr-1998) 

### Starting RTW build procedure for model:  PT2_I02 
### Invoking Target Language Compiler on PT2_I02.rtw 
tic -r PT2_I02.rtw c:\dsp_cit\matlab\rtil003\tlc\rtil003.tlc -0. 
-Ic:\dsp_cit\matlab\rtil003\tlc 
-Ic:\dsp_cit\matlab\rtil003\sfcn\ml5_2\ 
-Ic:\dsp_cit\matlab\rtil003\sfcn\ml5_2\ 
-IC:\MATLAB\rtw\c\tlc -aInlineParameters=0 
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J Simulation parameters: PT2_I02 

Solver   Workspace I/O    Diagnostics   RTW    RTW External 

Code generation 

nTxl 

System target file: j rtil 003.tlc 

I- Inline parameters    p Retain .rtw file 

Build options 

Template makefile:   | rtil 003n.tmf 

Make command: 

I make_rti BOARD=autobox 

F" Generate code only 

RTI Settings.. 

Apply :V3(t Help 

Figure D.12     RTI Options (Board Name) 

### Creating project marker file:  rtw_proj.tmw 
### Creating PT2_I02.mk from rtil003n.tmf 
### Building PT2_I02:  dsmake -f PT2_I02.mk BOARD=autobox 

BUILDING PROGRAM (single timer task mode) 

Initial SimState:  default  (defined in srtframe.c) 

[srtframe.c] 
[pt2_io2.c] 
[rt_sim.c] 
[odel.c] 

LINKING PROGRAM ... 

LOADING PROGRAM ... 

M0N40NET - DS1003 Processor Board Monitor, Vs 5.4 - 32, (C) 1997 by dSPACE GmbH 

DS1003 - autobox - I/O [0318H] - 64 KB at [0D0000H] 

1024 KW local RAM (bankO), 0 KW local RAM (bankl), 256 KW global RAM 
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Searching DS1003 peripherals ... 

Loading system setup ... 

Loading setup PT2.I02.stp ... 

Loading object module PT2_I02.obj ... 

DSP started ... 

DOWNLOAD SUCCEEDED 

### Successful completion of RTW build procedure for model: PT2_I02 

*** Finished RTI build procedure for model PT2_I02 

The model is now loaded and running, ready to be monitored and controlled using TRACE 

and COCKPIT. 

D.2.3.3 Monitoring and Controlling the Model. For a control sys- 

tem application such as SIMS AT, a program running on the DSP in the AutoBox has 

little use if the user has no ability to observe and control the process. That is where the 

DSPACE TRACE and COCKPIT packages come into play. 

TRACE Initialization. Continuing with the previous model, and 

assuming the AutoBox DSP is loaded and running (based upon the procedures from the 

previous section), TRACE is loaded first. Double-clicking the TRACE icon in the dSPACE 

Files folder opens the TRACE control window, which opens with the last file used by 

TRACE. TO load the .trc file of interest, use the File | Load Trace File to locate the 

PT2I02.TRC file to support the program currently running on the AutoBox. Figure D.13 

shows what the control panel looks like when the correct file is loaded. 

At the same time the control window for TRACE is opened, a window to display a 

trace of the desired signals is opened. Once the experiment for PT2 with 10 is loaded, and 

the START button is pressed in the control window, the plots in the trace window begin 

to display real-time data. Figure D.14 shows the input signal as well as the output signal 

from the top Second Order Lag shown in Figure D.H. 

D-17 



0e Options geferenc* Jiace Jä5«Jow Help : 

PT;JO:-(IC C.\MATLAB\bin\ 

Dowmarnijfirig       j 

JT race capture aborted 

«BMoJlf 

_=KB5W«öflr1-.'0!.j»l 
wi B SU« IS.»,: ■■üii'1 

;.     6 V«r. 

: a* P i»K>.alGen**» AncJHu. 

Jl 

Figure D.13     TRACE Control Window—PT2102 Loaded 
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Figure D.14     TRACE Plot Window—PT2I02 Running 
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Just seeing the response of the system without changing parameters to see how the 

response changes does not fully demonstrate the DSPACE system is ready for integration 

into the SIMS AT system. Once the TRACE model is running with the initial values of 

the various model parameters, COCKPIT can be started to control certain pre-selected 

parameters. 

COCKPIT Initialization. COCKPIT provides the means to control 

the application running on the AutoBox. This section validates our installation using the 

same model as in the previous section. This validation assumes the model is still running on 

the AutoBox, and TRACE is still active. Double-clicking the COCKPIT icon in the dSPACE 

Files folder opens the COCKPIT window, which is initially blank. If previously defined, a 

.ccs file can then be opened (File | Open) which loads the corresponding .trc file, as well 

as any previously defined controls for that program. If no .ccs file has been previously 

saved, the TRACE file must first be loaded, then the desired controls can be defined. To 

load the .trc file of interest, use File | Load Trace File to locate the file; PT2I02.TRC 

in this case, to match the file currently in use by TRACE for this demo. Figure D.15 shows 

what a simple cockpit control (a slider for the top Gain block in Figure D.ll) looks like. 

As the controls and displays are placed on the user interface "form," the parameter 

they control is established by double-clicking on the control or display, and selecting the 

P: parameters for controls, and the B: parameters for the displays. Once the design is 

complete, and saved, it is ready to run. Clicking the Start button links the COCKPIT 

controls to the program executing on the AutoBox, and displayed in TRACE. For this 

simple control, the display changes appearance (editing is not possible when COCKPIT is 

connected to the DSP—see Figure D.16). 

Moving the slider all the way to the value shown in Figure D.16 impacts the TRACE 

outputs (Figure D.17—the amplitude of the signal drops, as expected). This validates 

the entire AutoBox/Simulation PC installation. It is now ready for integration with the 

remainder of the SIMS AT system. The AutoBox/RealMotion PC installation still needs 

to be validated, but it is not a requirement to monitor and control SIMS AT (it provides 

for the real-time and post-mission display of data). 
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Figure D.15     COCKPIT Window—PT2I02 Loaded 
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Figure D.16      COCKPIT Window—PT2I02 Running 
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This simple implementation only validated that COCKPIT could be used to access the 

program running on the AutoBox. Further information regarding the COCKPIT interface 

and its capabilities can be found in Section D.3.5, page D-32. 

D.2.4     RealMotion PC Operation Demonstration. This section 

will use a short example to demonstrate how to use the RealMotion PC portion of the 

system. The following example does NOT assume the system has previously loaded the 

correct model into the AutoBox since this program uses a different model for validation 

and does not run on the Simulation PC. This section describes how to link a REALMOTION 

simulation to a program running on the local C40. 

D.2.5 Initialize RealMotion PC DSP. To begin the demonstration, 

double-click on the dSPACE Files icon on the desktop of the WindowsNT machine (again, 

all the files contained in that folder are detailed in Section D.5, page D-35). Figure D.18 

will appear, which has all the shortcuts necessary to build, compile and load, monitor and 

control an experiment. Each of these will be demonstrated in a following subsection. 

m C:\WINNT\Profiles\AII Users... HiQ 

File   Edit   View   Help 

la 
Simulink 

! RealMotion! 

8 object(s) 

\U&"* 121 
dSPACE dSPACE 
Library Directory 

R mS tream    S how Versions 

Ml 
IÖ 

System Editor       Monitor 

3.41KB A 

Figure D.18     dSPACE Files Folder Contents (NT Machine) 
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C:\DSP_CIT\DEMOSSJtEflLt1OT\2MASS\2WISS.lPOiiion40 2i»ass  /h Real 

HON40  - DS1003   Processor Board Monitor.   Us  5.4  -  32,   CO   1997 by dSPACE GmbH 

DS10B3  -    realmot   -  I/O   [0208H]   - 64 KB  at   [0D8000H] 
256   KU  local  RAM  <bankB).   B  KU  local  RAM  Cbankl).   256   KM global  RAM 

Searching  DS1003   peripherals   ... 
Loading  systen  setup   ... 

Loading  setup 2mass.stp   ... 
Loading  object  module  2mass.obj   ... 

DSP  started   ... 

C:\DSP_CITsDEM0S\REALM0TS2MASSs2MASS.lPO 

Figure D.19     Loading 2MASS Program 

D.2.5.1 Loading the File. Before the REALMOTION system can link to 

the DSP, the DSP has to have the corresponding file already executing on the DSP. As the 

demo model (2MASS) has already been compiled, it just needed to be loaded onto the Real- 

Motion PC DSP. This was accomplished by double-clicking on the dSPACE Directory 

and changing to the directory containing the 2MASS object file. Loading the object file 

was then accomplished by typing M0N40 2MASS -B RealMot. The results are shown in 

Figure D.19; the file successfully loaded onto the DSP and the DSP began executing the 

file (essentially the same response as that documented in the AutoB'ox/'Simulation PC 

Operation Demonstration) section. 

Double-Clicking the RealMotion icon opens up the dual REALMOTION windows. 

The first, graphical window, initially appears blank. Upon loading the 2MASS model (Fig- 

ure D.20), the pieces start to move in the off-line mode (simulating the motion using the 

RealMotion PC microprocessor). The second window is a status window that, much like 

the MATLAB command window, provides a textual record of user initiated changes made 

to the graphical window (re-sizing, changing the processing mode, etc.). Figure D.21 shows 
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Figure D.20     REALMOTION Graphical Window 
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Status Window ml 
I Member tt 1       1152 Polygons  0 Uectors loaded i_*J 
[Processing Part 1 in Geometry File : spring_y.mou 
'  Loaded   1152 Polygons into display structure. 
Nenber tt 2       1152 Polygons  0 Uectors loaded i 

Processing Part 1 in Geonetry File : block.mou 
Loaded   6 Polygons into display structure. 
Member tt 3       6 Polygons  0 Uectors loaded into 
Processing Part 1 in Geonetry File : block.mou 
Loaded   6 Polygons into display structure. 
Member tt 4       6 Polygons  0 Uectors loaded into 

Processing Part 1 in Geonetry File : cyl2_y.nou     m.J 
I Loaded   72 Polygons into display structure. 
| Henber tt 5       72 Polygons  0 Uectors loaded int "|J 
{Processing Part 1 in Geonetry File : cyl1_y.mou     II 
I Loaded   24 Polygons into display structure. 
I Nenber tt 6       24 Polygons  0 Uectors loaded int*y 
prying to allocate a greater amount of memory       |s"| 

Initialised 1500 Frames, 2412 polygons, 0 uectors 

[Loading Tine : 0 h 0 nin 1 sec 

Structure size (elements) 
used 
allocated 

Display memory (MB): 
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allocated 

Mixed Polygons/Wire, WIN« 1 
DSP reading online Data   
DNLIHE-nnimation, connected to DSP 
Online data transfer started 

661824 
991800 

2.52466 
3.78342 

<IT 

Figure D.21     REALMOTION Status Window 
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the status window after the 2MASS model is loaded, and REALMOTION is switched to the 

on-line mode. 

As Figure D.21 shows that REALMOTION switched to the on-line mode, this com- 

pletes the validation of the RealMotion PC local processor installation. Difficulties with 

the disparate Simulation PC and RealMotion PC installations prevented any further val- 

idation of the RealMotion PC subsystem. Prior to using REALMOTION for any SIMS AT 

experiments required the 3-D representations from REALMOTION, the rest of the installa- 

tion must be validated. 

D.2.5.2 Summary. This section described how to install the system (in 

case it had to be done again in the future), including how to implement a very simple, 

pre-defined model on both the Simulation PC and the RealMotion PC. Implementation 

of those models served to validate the installation as well as make use of the shortcuts 

documented in Section D.5, starting at page D-35. 

D.3    Operations Manual 

This section adapts the installation instructions of the previous section into the 

procedures required to build a model, generate the source code, compile the program and 

load it onto the AutoBox, and control the system. 

D.3.1     Power the AutoBox. 

1. Make sure the in-line switch is in the OFF position 

2. Verify the power connection is consistent with the Figure D.22 [ENSURE pins A2 

and 4 are connected to the positive terminal and terminal Al is connected to the 

return side of the power bus (negative)] 

3. Turn on the power supply and make sure the voltage is set to at least 20VDC to 

reduce the required startup current 

4. Turn on the AutoBox using the in-line switch 
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A- 
4r 

\ »5     «4     »3      / 
(Cable connector side) 

PIN# Function Color 
A1 Pwr (-) Blu 
1 NC 
2 NC 
3 NC 
4 Remote Grn 
5 NC 
A2 Pwr (+) Brn 

Figure D.22     Power Cable Interface 

5. If the AutoBox beeps once, followed shortly afterward by three beeps, the AutoBox 

is ready to operate 

D.3.2     Connect to the AutoBox. 

1. Open the dSPACE Files folder from the Windows95 desktop (Figure D.23) 

2. Verify the AutoBox is ready to communicate by double-clicking the Ping AutoBox 

icon in the folder 

3. If do not get a Request Timed Out response, AutoBox is ready to communicate [20:9] 

4. Double-click on the Connect to AutoBox icon in the folder (Figure D.23); the screen 

will flash and quickly return to Windows95 interface, indicating the connection is 

complete 

5. To validate the connection, double-click the System Editor icon; if the connection is 

valid, the screen will appear as in Figure D.24 (the autobox notation on the second 

line, after the 'DS1003' label) 
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File   Edit   View   Help 
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Simulink 

[FJ 
Trace 

10object(s) 

H» 
[fjgy Er Us EP 

dSPACE       PingAutoBox     Connect to    Show Versions 
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Figure D.23     dSPACE Files Folder Contents 

'% SED40NET na 
~M°   H oNal ®| og|g A 

SED40HET - DS1BD3 Processor Board Editor, Us 5.41 - 32, CO 1997 by dSPftCE GmbH 
DS1B03 - autobox - I/O [031811] - 64 KB at [OBOOfJOH] 
1024 KU local RAM CbankO), 0 KM local BUM (bankD, 256 KU global BAM 

Edit system setup for monitor   
Display list of available boards   
Search DS1003 processor board   
Edit range setup information for monitor 
Quit editor   

Figure D.24     Connected System Editor Menu 
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The next step is required only if the model of interest has not been previously com- 

plied, or must be updated before being loaded. If an executable image of the subject model 

has been developed, proceed directly to Section D.3.4. 

D.3.3    Build and Compile the Model. 

1. Prom the dSPACE Files folder (Figure D.23), double-click dSPACE Library icon; 

Figure D.25 will appear 

Library: Rtilibms 

File   £dit   Vjew   Simulator;   Format   Tooi; 

Simulink ] INTLIB DS2003 DEM02 

PHS-bUS ]       EXTRAS   |       DS2103    | DEMOS 

RTI1003 Board Library 
Version 3.1 

RTI Library 

l.inixf 

AHT/SIMSAT    (1999)      | 

Info 

Read Me 

dSPACE 

Figure D.25      dSPACE Library Menu 

2. Double-click on the SIMULINK button to open the SIMULINK models interface; build 

(or open) your model as required 

3. Before compiling the model, ensure the Tools | RTI Options | RTW dialog box ap- 

pears as in Figure D.26 (notably the Make Command choice reflects the AutoBox board 

name [19:51]) 

4. Compile and load the model (called XXX for this example) by choosing Tools | RTI 

Build.   The process can be observed by opening the MATLAB command window 
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■■/ Simulation paiameters: PT2_I02 

Solver   Workspace I/O J Diagnostics   RTW    RTW External 

Code generation 

EH 

System target file: |rti1003.tlc 

f" Inline parameters    !*> Retain .rtw file 

Build options 

Template makefile:  j rti1003n.tmf 

Make command: 

! j make_rti BOARD=autobox 

f~ Generate code only 

RTI Settings... Build 

Apply Help Close 

Figure D.26     RTI Options (Board Name) 

where error messages will be displayed as problems occur.  If the compilation and 

load process are flawless, the last three lines of output will say something like: 

DOWNLOAD SUCCEEDED 

### Successful completion of RTW build procedure for model: XXXX 

*** Finished RTI build procedure for model XXXX 

5. The model is now loaded and running, ready for control (COCKPIT) and monitoring 

(TRACE). 

D.3.4    Load the Model on the AutoBox. 

1. From the dSPACE Files folder (Figure D.23), double-click Monitor icon; Figure D.27 

will appear 
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DSP   is  RESET. 

.oad  object nodule         (1) 
testai-t DSP      (2: 
SESET DSP       (3: 

  u: 
lead / write  PHS-bus       (5: 
)uit monitor  and  disable  DSP       (d: 

  <q: 

Figure D.27     dSPACE Monitor Menu 

2. Choose option Load Object Module <i> and input the .OBJ file (full pathname) to 

send to the AutoBox (XXXX for this example) 

3. The process can be observed by opening the MATLAB command window where error 

messages will be displayed, or the following words if compilation was successful: 

M0N40NET - DS1003 Processor Board Monitor, Vs 5.4 - 32,   (C)   1997 by dSPACE GmbH 

DS1003 -    autobox - I/O   [0318H]  - 64 KB at   [0D0000H] 
1024 KW local RAM  (bankO),  0 KW local RAM  (bankl),  256 KW global RAM 

Searching DS1003 peripherals  ... 
Loading system setup  ... 

Loading setup XXXX.stp  ... 
Loading object module XXXX.obj   ... 

DSP started  ... 

DOWNLOAD SUCCEEDED 
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### Successful completion of RTW build procedure for model:  XXXX 

*** Finished RTI build procedure for model XXXX 

4. The model is now loaded and running, ready for control (COCKPIT) and monitoring 

(TRACE). 

TRACE and COCKPIT are DSPACE software packages that provide the user access 

to the executing program to see the results of certain operations and control aspects of 

the program execution, respectively. When a program is compiled, using the steps above, 

a .TRC file is created that contains the information these programs need to tie into the 

program executing in the AutoBox. Rather than repeating the TRACE and COCKPIT 

procedures here, refer to the procedures specified in Section D.2.3.3 (page D-17) on how 

to link TRACE and COCKPIT to the program running on the DSP. 

D.3.5     COCKPIT   Capabilities. While only a simple interface was "de- 

signed" in previous sections, COCKPIT can be used is used to construct a very robust, 

user-friendly interface to the contol system. Besides readily accessible form design tools 

(i.e., size and alignment of controls, grouping of controls, fonts and colors, etc.), COCKPIT 

provides a wide variety of controls and displays, including: 

• Input Controls [16:85-93] 

- Button Array—a user-designed matrix of radiobuttons; when one of the but- 

tons is pushed, the specified value is sent to the DSP. One of the buttons must 

be specified as the initial value. Similiar to a RadioButton (below), but has 

more design flexibility. 

- Data Array—a list of files/data arrays that, when selected and the Download 

button pushed, will be downloaded to the DSP at the specified starting address. 

- OnOff Button—a momentary switch; when pressed, one piece of data is sent 

to the DSP, when released (or not pressed), the initialization data is sent. 

- Pushbutton—data is only sent to the DSP when the button is pressed; typi- 

cally used to reset some value modified by the DSP. 
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Output Controls [16:94-110] 

- Alert—a True/False LED-like indicator. When the logical condition is True, 

the LED is green, when False it turns red. Normal equality and inequality- 

conditions can be checked for the parameter of interest. Alert can also be set 

to momentarily beep when the condition transitions from False to True. 

- Bar—a vertical gauge, reminiscent of a thermometer, to indicate the status of 

a program variable within user-specified bounds. 

- Display—a user-configured segmented numeric display. Numeric format is 

specified using a subset of C format codes for the printf 0 function. 

- Gauge—a dial gauge, reminiscent of an analog speedometer, with user-specified 

minimum and maximum values (no "out of range" condition indicated). 

- Message Bar—displays different text messages as the parameter of interest 

crosses pre-defined thresholds. 

- Multi-Stage Alert—looks like the Alert display, but changes color as the 

parameter of interest crosses pre-defined thresholds. 

- Sound—generates a tone who's frequency is based upon the value of the pa- 

rameter of interest. 

Input/Output Controls [16:111-127] 

- Check Button-a toggle button that displays the state it is currently in. On 

of the states must be specified as the initial state. 

- Incremental Input—a display box for the parameter of interest that starts 

at a pre-defined value, but is adjusted up and down (in pre-defined increments) 

by clicking on the up/down arrows on the side of the display box. Each time 

one of the buttons is pressed, the DSP is sent the updated value. The value can 

also be updated directly from the keyboard when the control is selected. 

- Knob—a rotary control that can vary between the user-specified bounds. A 

scaling factor is also displayed with the knob. An initial value (and an increment 

D-33 



for moving the knob with the up/down arrow keys) must also be stipulated. 

When not active, the control indicates the current status of the parameter. 

- Numeric Input—a direct numeric input block that only updates the value in 

the DSP when the ENTER key is pressed. When another control is selected, the 

block will provide real-time indication of the parameter's value. An initial value 

is required. 

- RadioButton—a device with up to eight states for the parameter of interest, 

only one of which can be selected at a time. An initial value can be specified. 

While less flexible than the ButtonArray control, this control indicates the 

current state of the parameter. 

- Slider—a linear control that can vary between user specified bounds. A scaling 

factor and "out of range" indicators are also displayed with the slider. An initial 

value (and an increment for moving the indicator with the up/down arrow keys) 

must also be stipulated. The control can be oriented vertically or horizontally. 

When not active, the control indicates current status of the parameter. 

- Table Editor—a complicated spreadsheet-like lookup table (one- or two-dimensional); 

see [16:124-127] for more information. 

• Special Controls [16:128-134] 

- Frame—a fixed rectangle to establish a border around a set of COCKPIT con- 

trols. Font, foreground and backgound colors are all user-specified. 

- Image—a box to hold a .BMP or .GIF images to display logos or other visually 

appealing backgrounds. Box is sized automatically to hold the specified image 

file. Other COCKPIT controls can overlay the image. 

- Start Executable—a button to start another program. The text displayed on 

the button is the same as the program name. 

- Static Text—a box used to hold descriptive text. Limited to 255 characters. 

Typically used for labelling the desktop or providing descriptive explanations 

on how to use elements of the desktop. 
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D.4    Experiment Philosophy 

Just as the SE Process had a time dimension that increased the level of detail con- 

sidered in each iteration, the implementation of an experiment should go from a total 

software implementation (all satellite and experiment hardware simulated by the software) 

to a fully functional SIMS AT system/experiment. And as the logic dimension of the SE 

process was applied during each life-cycle iteration, each of the development steps listed in 

Section D.3 (analogous to the "problem-solving process") should be applied during each 

of the experiment implementation iterations. Before moving to the next phase of imple- 

mentation, any anomalous behavior must be explained or cleared up. To reduce the risks 

of a "bad" experiment, the experiment implementation phases should progress as shown 

in this list: 

1. entire control system simulated; control laws executing on the Simulation PC 

2. Processor-In-the-Loop (PIL); 

3. Partial Hardware-In-the-Loop (HIL); baseline SIMS AT installed (such as the mo- 

mentum wheels, sensors, etc.), but on a test bench 

4. Evolution to full HIL; also an ordered progression: 

(a) baseline SIMS AT and pay load implemented on a test bench 

(b) baseline SIMS AT and pay load verified on the satellite, motion constrained 

(c) unrestricted experiment execution 

D.5    Windows95/NT Implementation 

The value of the graphical interface is the intuitive approach the user can take to 

accomplish complicated tasks. As shown in Section D.2.3, the tasks required to get a 

model running on the DSPACE system with only the tools provided by dSPACE, Inc. can 

be very complicated. To ease that workload, a folder called dSPACE Files (Figure D.31, 

page D-38 for the Simulation PC and Figure D.39, page D-43) was developed to house the 

following "shortcuts" to the tools the experimenter needs to make implementation (and 
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of SIMSAT control systems easier. Each of the figures below shows the entries required to 

establish a particular shortcut in the event any of them need to be recreated. The icons 

shown for each shortcut are either native to the application (as in the case of COCKPIT, 

TRACE, etc.) or selected arbitrarily from one of the icon libraries provided by Windows95 

and NT (specifically, SHELL32.DLL). 

D.5.1     Common Shortcuts.     The SHOW VERSIONS, SIMULINK and dSPACE 

Library icons are common to both the Simulation PC and RealMotion PC machines. 

Show Versions Properties 

General   Shortcut 

Show Versions 

Target type: 

Target location: 

Target: 

Application 

SETUP 

*H1JHIftttii|kV1^i|rf>:*^;r-im 

SJart in: 

Shortcut key:    |None 

Run: Normal window 

Find Target...        Change Icon. 

OK Cancel 

Figure D.28     SHOW VERSIONS Shortcut 

D-36 



Simulink Piopeilies 

General   Shortcut | 

Simulink 

t type: Application 

Target location: bin 

Iatget:       J1A2EUEM3 

;     Start in: C:\MATLAB\bin 

i- Shortcutkey:    |None 

Run: Normal window 

Find Target... 

[Ü 

Change Icon.. 

OK Cancel 

Figure D.29     SIMULINK Shortcut 

dSPACE Library Properties 

General   Shortcut | 

dSPACE Library 

Iarget:       ]HHBfliqflffl«l-ll=lllll« 

Start in: C:\MATLAB\bin 

Shortcutkey:    |None 

Run: Normal window 

Rnd Target...   j 

an 

~3 

Change Icon... 

OK       |       Cancel     |: i-.OpiJ 

Figure D.30     dSPACE Library Shortcut 

D-37 
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Et 
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Figure D.31     dSPACE Files Folder Contents 

D.5.2    Simulation PC Shortcuts. 
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dSPACE Ditectoiy Piopeities 

General   Program I Font   j Memory! Screen   Misc 

dSPACE Directory 

Working:        |CADSP_CIT 

Batch file: 

Shortcut key:  (None 

fjun: 1 Normal window 

F loose on exi 

HM 

Cmd.line: C:\WIND0WS\C0MMAND.C0M 

"3 

Advanced... Change Icon.., 

OK Cancel Apply 

Figure D.32     dSPACE Directory Shortcut—Simulation PC 

Ping AutoBox Properties 

General   Shortcut j 

Ping AutoBox 

an 

Target type: Application 

Target location: WINDOWS 

Iarget:       kTOIil^g^JliH^^HL-Jihl'M 

Start in: C:\WIND0WS 

Shortcut key:    |None 

Run: Normal window 

Find Target... Change Icon... 

OK Cancel 

Figure D.33     Ping Shortcut 
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Connect to AutoBox Properties 

^General   Shortcut] 

«1 
Connect to AutoBox 

HäßS 

M 

Target type: Application 

Target location: exe 

Jarget: imfJJ.ILIMJJ.il.kilil.il!!!!.!., 

Start in: C:\DSP_CIT\exe 

Shortcutkey:    |None 

Run: ' Normal window 

Find Target...        Change Icon..: 

OK Cancel A-nb 

Figure D.34     Connect To AutoBox Shortcut 

System Editor Properties                                                        HB! 

,   General   Shortcut | 

iöj         System Edi or 

■■     T 

T 

I 

arget type:              A 

arget location:        e 

»plication 

—      \miaMi«3mMmi\t\M*ii*atsm B! 

;      Start in:             C:\DSP_CIT\exe 

Shortcut key:    JNone 

R 

> 

in.                jNorma window                                              ^1 

5nd Target...        Change Icon... i 

■ 

OK       | Cancel A .v 

Figure D.35     SYSTEM EDITOR Shortcut—Simulation PC 
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Monitor Properties 

General   Shortcut | 

•   WäJ     Monitor 

Target type: Application 

Target location: exe 

laiget: P riT\e<e\MÜN4U'ET.EXE /bAu 

Start in: 

Shortcut key:    |None 

Run: 

CADSP CITWe 

Normal window 

Find Target...        Change Icon... 

OK Cancel Apclvi 

Figure D.36     MONITOR Shortcut—Simulation PC 

Trace Properties 

General   Shortcut | 

Trace 

Target type: 

Target location: 

Iarget: 

Application 

exe 

mnaxMsmvm MBJUUbMUM 

Start in: 

Shortcut key:    [None 

f     Run: 

CADSP CITVsxe 

Normal window 

uu 

"r j 

find Target...        Change Icon... 

OK Cancel Apply 

Figure D.37     TRACE Shortcut—Simulation PC 
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Cockpit Piopeities ma 
General Shortcut 

Cockpit 

Target ty 

Target lo 

pe: 

cation 

Application 

exe 

Mi* xiwrmwrnhnrsmnMnm 

Start in: |CADSP_CIT\exe 

Shortcut key:   (None 

Run: ' Normal window 

£ind Target...        Change Icon... 

OK Cancel Aoplj 

Figure D.38     COCKPIT Shortcut—Simulation PC 
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ft C:\WINNT\Profiles\AII Users. 

File   Edit   View   Help 

EHE 

Simulink dSPACE dSPACE 
Library Directory 

Ax*? 
D 
Ml 

; RealMotion;      RmStream    Show Versions 

System Editor       Monitor 

jSobject(s) 3 41KB Ji 

Figure D.39     dSPACE Files Directory—RealMotion PC 

D.5.3    RealMotion PC Shortcuts. 
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dSPACE Directory Piopeities 

General   Shortcut | Options | Font   | Layout j Colors | 

|Uj||        dSPACE Diiectorji 

Target type: Application 

Target location: system32 

Target 

Start in: ICVDSP CIT 

Shortcut Key:   P°ne 

Run: Normal window jj 

Find Target..   I    Change Icon... I 

OK J       Cancel     |        Apply 

Figure D.40     dSPACE Directory Shortcut—RealMotion PC 

System bailor Properties 

Genetal   Shortcut | Options| Font   | Layout] Colors] 

aa 

H:J         System Editor 

Target type:             Application 

Target location:         exe 

Jargel:       |liMrtH5hlHmMjama*Hl5a8fl> 

H7   f;:j .    i^^-^-A': ';:-if:jv \-.,±J. 

Start in:            |C:\DSP_CIT\exe 

ShortcutKey:   |None 

Run:              j Normal window 

£ind Target.. Change Icon... | 

!.: 

OK Cancel 

Figure D.41     SYSTEM EDITOR Shortcut—RealMotion PC 
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Monitor Piopeities 

General   Shortcut | Options | Font   | Layout | Colors | 

iui... Monitor 

Target type 

Target toca 

larget: 

Application 

on:        exe 

: 

- 

iMHiMdMHiBiailiL 

\s   |v:r; ^ S;;p-^f^^ \ 

II;EM*B*I:I:ESM 

Start in: 

Shortcut Ke 

Run: 

. |C:\DSP_CIT\exe .. 
y:   (None 

(Norm al window                                         Jjj 

find Target..        Change Icon... 1 

OK I       Cancel «* 

Figure D.42     MONITOR Shortcut—RealMotion PC 

1 HealMotion Properlies                                                           BE31 

General 

* 

Shortcut 1 

RealMotion 

Target 

Target 

ype:             Application 

ocation:          exe 

IraftUAHmUJMHitl^ai:! aima 

F fl t.- :•! iepa-ak vlemcry >i;;-,:c>:- 

Start in: C:\DSP_OT\DEM0S\REALM0T 

Shortcut Key: None 

Bun: Normal window                                             H 

Find Target...   |    £hange Icon... 

OK       |       Cancel cf'Fl1 

Figure D.43     REALMOTION Shortcut 
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RmStieam Properties 

General   Shortcut 

«x.t 

Target type: Application 

Target location: exe 

IA!iH:Mlim!:i!ai:]*SI*5i 

f Run in Separate Memory Space 

Start ire JCADSP_CIT\DEM0S\REALM0T 

Shortcut Key:   |None 

Run: (Normal window                                          H 

£ind Target...    |    Change Icon...  | 

OK Cancel ::;PH:-; 

Figure D.44     REALMOTION STREAM Shortcut 
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