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Abstract 

This is the final report detailing the seed project research which was funded by the 
U.S. Army through its European Research Office during the period September 1997 — 
November 1998. 

The primary purpose of the research funding was to enable Prof. J.R. Whiteman 
and Dr. S. Shaw (BICOM, Brunei University,. Uxbridge, England) to collaborate with 
Dr. A.R. Johnson (Army Research Laboratory, Vehicle Technology Center, NASA, Lang- 
ley, VA, USA) toward developing a framework for the adaptive finite element solution of 
quasistatic viscoelasticity problems. 

The major goal was to develop this framework in the context of: 

• the practical utility of the internal variable formulation, as used by Dr. Johnson; 
and 

• the theoretical utility of the hereditary integral formulation, as used at BICOM. 

The first of these allows for practical software to be developed in a straightforward way 
from existing linear elasticity codes, while the second facilitates the derivation of mathe- 
matically rigorous a posteriori error estimates—the essential building block for adaptive 
finite element solvers. 

During the project we proposed and developed a hybrid algorithm blending the best 
features of these two approaches. Also, we implemented our a posteriori error estimates to 
produce software capable of automatic spatial error control based on adaptive meshing. A 
prototype version of this software is now mounted on Dr. Johnson's workstation at NASA, 
Langley, and a short "manual" illustrating the configuration and use of this software is 
included later in this report. Full details of the work undertaken on the Seed Project are 
also contained in the following pages. 
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Chapter 1 

Introduction 

1.1    The report in a nutshell 

This report is based on a research logbook (initiated on October 4, 1997) of our collabo- 
rative research with Dr. Arthur R. Johnson (at ARL, VTC, NASA, Langley) on Internal 

Variable methods applied to: 

• structural viscoelasticity problems of quasistatic type with a view to their formula- 
tion and subsequent adaptive solution. 

The research was sponsored by the United States Army through a European Research 
Office Seed Project (purchase order N68171-97-M-5763) and we would like to take this 
opportunity to gratefully acknowledge this support. 

This first part of the document contains a short introduction to the constitutive mod- 
els used in viscoelasticity theory in terms of hereditary integrals (Chapter 2) as well as 
internal variables (Chapters 2 and 3). We then indicate (Chapter 4) how the hereditary 
integrals lead to memory terms appearing in the governing equations, thus resulting in 
Partial Differential Volterra (or PDV) equation problems that need to solved in order 
to model the physics. This material is based on the paper [50]. We also include a small 
amount of detail on the phenomena of Non-Fickian Polymer diffusion and some recent 
attempts by applied mathematicians to construct mathematical models. In parallel with 
this Seed Project we at BICOM have also been actively engaged in developing prototype 

software to model these effects.* 

The Volterra operator (i.e. the memory) can be removed from the differential equa- 
tions by appealing to the viscoelastic internal variables, in the manner of Johnson and 
Tessler in [24] for example, and so we explore also (Chapter 5) the equations resulting 

from this approach. 

By "mixing and matching" the various forms of the constitutive relationship with the 
governing equations, we illustrate in the next part of the report that it is possible to derive 
a variety of differential equation problems which can then be addressed numerically in 

* The computational modelling of problems of nonlinear diffusion in the contexts of controlled drug release 
technology and percutaneous drug absorbtion (Project QR.97/2, ongoing) 

1 



CHAPTER 1.   INTRODUCTION 

order to model the problems at hand (Chapter 6). This is important because, as we also 
illustrate, the numerical discretizations of various equivalent continuous problems can 
result in differing numerical solutions. Prior to this Seed Project Shaw and Whiteman 
had already spent a great deal of effort in deriving a posteriori error estimates for the 
Volterra formulation of the quasistatic problem (see [47, 48, 52, 57, 54, 55]), and this 
presents a natural entry point into the task of providing adaptive software based on error 
bounds which are computable in terms of the discrete solution. On the other hand, 
Johnson and colleagues have expended similar amounts of effort on practical solution 
software based on internal variable formulations [25, 24, 23, 26]. Since these will result in 
different numerical solutions the a posteriori estimates for the Volterra formulation cannot 
be used. 

Once the implications of this had been fully appreciated (i.e. a duplication of effort 
in order to derive a posteriori estimates for internal variable formulations), one of our 
foremost goals therefore came to be to derive a "hybrid" formulation of the problem that 
would have the same numerical solution as the discrete Volterra equations, but could be 
implemented algorithmically in the same manner as an internal variable method. Our 
proposed algorithm is detailed in Chapter 7, along with some numerical tests to illustrate 
that the numerical scheme does indeed behave as it should (in terms of convergence to the 
continuous solution as the discretization is indefinitely refined). 

We move on to adaptivity in Chapter 8. We first recapitulate the a posteriori error 
estimate as given in [55] and then use it to implement adaptive meshing in the linear elas- 
ticity context. Once the technique has been detailed the extension to the time dependent 
linear quasistatic viscoelasticity case is straightforward, and we include several examples 
to demonstrate adaptive space-discretization-error control by selective mesh refinement. 

As noted in [47] (and seemingly also implied by others in, for example, [28, 2]) the 
robust control of the time discretization error by varying the time steps is a difficult 
issue for this quasistatic problem, and this is due to there being no time derivative in 
the governing equation. As a result we feel that guaranteed temporal error control can be 
achieved only in a more abstract way by measuring the error in a negative norm. Details of 
our work in this direction are in [53, 56], the first of which gives numerical results for a very 
simple case which, nevertheless, demonstrates that the resulting error control is effective. 
The extension of these results to the space-time problem introduced and considered below 
is non-trivial and, although we are progressing, no results are yet available. 

In Chapter 9 we give a brief "manual" describing how to obtain, configure and run the 
software that was used to produce the numerical results in this report. The report closes 
with Chapter 10, In which we suggest further research work that would follow naturally 
from this Seed Project, and then we give a complete bibliography. 

The remainder of this chapter is devoted first to a brief discussion of the generic PDV 
equations that arise when modelling viscoelastic effects, and then to establishing a context 
and the basic notation for the entire report. 
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1.2 The context 

In their simplest form viscoelastic materials exhibit behaviour characteristic of both clas- 
sical Hookean solids and Newtonian fluids. The resulting effects are important when the 
material is deforming under an applied load. This load could, for example, be due to exter- 
nally applied forces; internal deformation caused by a diffusing penetrant; or, constrained 
thermal expansion caused by temperature gradients. See for example [30, 7, 38]. Moreover, 
the material somehow keeps a record of its response history and, for this reason, viscoelas- 
tic materials are said to possess memory. This memory is manifest in the constitutive 
relationship between the stress and strain tensors, a and e, and as a result mathemat- 
ical models of viscoelastic behaviour take the form of partial differential Vblterra (PDV) 

equation problems. The canonical forms of these equations are: the elliptic Vblterra 
problem, 

Au(t) = f{t) + I B(t, s)u{s) ds; (1.1) 
Jo 

the parabolic Vblterra problem, 

u'{t) + Au{t) = f{t) + f Bit, *)«(«) ds; (1.2) 
Jo 

and, the hyperbolic Volterra problem, 

/'it) + Auit) = fit) + f Bit, s)uis) ds. (1.3) 
Jo 

u 

These are supplied with initial and/or boundary data as appropriate, and the dependence 
on the space variable x is suppressed. In these problems we use A and Bit, s) to represent 
partial differential operators (acting only in the space variables) where, for example, we 
could have 

A := -V2 and        5(f, s) := -V • <£(i, a)V, 

although for (1.1) and (1.3) the appropriate form for A is the linear elasticity operator— 
with Bit, s) "similar". 

The purpose of the first chapters is to illustrate how the memory terms arise in these 
equations and also to summarize the various PDV equations used when modelling problems 
of quasistatic and dynamic viscoelasticity, and non-Fickian diffusion in polymers. We 
also indicate some of the numerical analysis work that has been carried out for these 
problems (but we do not claim to be exhaustive, for a fuller account see [49]). 

Throughout, the positive real number T will denote a final time and we use J := [0, T] 
and 1 := (0,T] to denote time intervals. Also, for n = 1,2 or 3 we consider Q C En to be 
an open bounded domain with boundary du. Furthermore, we consider dfl in the form 

cK2 := TDUTN with rD D TN = 0, 
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where the closed set To Q dCl is called the Dirichlet boundary and is of positive measure 
so that 

I dr>o. 

We call the (possibly empty) open set IV C du the Neumann boundary. The reason 
for this terminology is the obvious one where we refer to the type of boundary condition 
specified on these subsets. We indicate vector-valued quantities with boldface so that, for 
example, we use x := (x{)f=1 to indicate a point in Rn. Tensors are indicated by a further 

underlining: a = (^ij)ij=i- 

Suppose that the interior of a compressible viscoelastic body Q occupies S7 and that its 
surface coincides with dCl. If at a time t this body is subjected to a system of body forces 
/ := (fi(x,t))i=l, for x Ed, and surface tractions g := (gi(x,t))f=1, for x € IV, then the 
body G will deform from its equilibrium configuration. A material particle originally at 
the point x will move to the new time dependent location x -f- u(x,t) where u := («{)"_! 
denotes the displacement vector. In the linear theory these displacements define the 

symmetric strain tensor £ := (£y )?j=i by the relationships: 

■*<«>=K£+9- (i-4) 

In addition to this strain field there will also be induced in Q a stress field described by 
the symmetric stress tensor or := (ay)™ =1. This stress field rationalizes the internal force 
field which is set up within Q to resist the external forces / and g. 

The stress field can be related to u, f and g by Newton's second law of motion (see 
later in equation (4.1)) and so it is of interest to derive a constitutive relationship 
linking a; and u, or in practice, linking the tensors a and £. 
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Basic Theory 



Chapter 2 

Constitutive relationships 

2.1    Hereditary constitutive relationships 

In classical linear elasticity theory the constitutive relationship between stress and strain 
is provided by Hooke's law: 

oij = DijMSki       or       c = De, 

where D is a positive-definite fourth-order tensor of elastic coefficients satisfying the sym- 

metries 

Dijki = Djiki,       Dijki = Dijik, and        Dijki = Dkuj. 

The first two of these are implied by the symmetry of a and e while the third follows from 
energy considerations. However, in viscoelasticity the third of these only applies when the 
material is isotropic, see [30, Equations (1.10) and (2.62)]. 

One way of deriving a constitutive relationship for viscoelastic materials is to assume 
that a Boltzmann superposition of stress increments can be applied where these stress 
increments are related by Hooke's law to corresponding strain increments. For example, 
suppose that Q is quiescent for t < 0 so that e(t) = 0 for t < 0, and that at t — 0 the body 
undergoes a strain e(0). Then for t > 0 the resulting stress is assumed to be given by 

o-o(t) = D(t)e(0), 

where a time dependence has been introduced into the Hooke's tensor D- Physically we 
expect D to be a smooth monotone decreasing function of t since it is unrealistic to expect 
a to grow over time for the fixed strain g(0). (Where would the strain energy come from?) 
In fact experiments on polymers show that D does in fact decrease and this phenomena 
is known as stress relaxation. 

Now, let At be a small time interval and set t{ := iAt. We approximate the strain 
evolution by the step function 

e(t) := e(ti) in [U, ti+i) for i = 0,1,2,..., 

7 
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and then each strain increment, 

Ae(ti+i) :=e(ti+i)-e(ti), 

induces a stress increment according to Hooke's law: 

Acj-fo) := D(ti - tj)Ae(tj) for l<j<i. 

Notice that each of these stress increments will also relax according to the time dependence 
of D. The total stress at time t{ is now given by superposition: 

t 

i=i 
t 

=   D(ti)e(0) + £ #fe - *i) Ae(«i), 
3=1 

and by taking an appropriate limit we get the hereditary constitutive law as 

<z(x,t) = D{t)e{u(x,0)) + f D(t-s)e{u'(x,s))ds. (2.1) 
Jo 

Since we are assuming that D(t) is smooth we can arrive at an alternate form by partial 
integration, 

e(x, t) = D(0)s(u(x, t)) - f Ds(t- s)e(u(x, s)) da, (2.2) 
Jo 

where the subscript s indicates partial differentiation with respect to the history variable 
a. Either of these may be used as the constitutive relationship, and each demonstrates 
clearly the role of memory in viscoelastic modelling. 

To get a feel for the form of the time dependence of the stress relaxation tensor D we 
now describe a perhaps more intuitive method for deriving these constitutive relationships. 

2.2    Spring and dashpot models 

We start with the physical observation that viscoelastic materials display the characteris- 
tics of both elastic solids and viscous fluids. The kinetics of these type of substances are 
modelled respectively by the spring and the dashpot. In these models the stress carried 
by the spring is proportional to the strain in the spring and is given by Hooke's law: 
a — Ee. The stress carried in the dashpot is proportional to the strain rate and is given 
by Newton's law of viscosity: a = rje'. 

One then models a viscoelastic material by considering a notional system of springs 
and dashpots with independent stiffness and viscosity parameters. There are essentially 
two ways to connect a spring to a dashpot: in series and in parallel. These are the 
building blocks and are named the "Maxwell" and "Voigt" models. 



2.2.   SPRING AND DASHPOT MODELS 

Figure 2.1: A HOOKEAN (LINEAR) SPRING: a = Ee; E IS THE SPRING STIFFNESS 

E 

AA/WV e, a = Ee 

de 
Figure 2.2: A NEWTONIAN (LINEAR) DASHPOT: a = 7/—; 77 IS THE VISCOSITY 

de 
e'a = r,di 

The Maxwell model 

Figure 2.3: THE MAXWELL MODEL 

www 33—■ £,a 

The Maxwell model is a series connection of a spring and dashpot. In this model £5 and 
as denote the strain and stress in the spring alone, and e#, op denote those in the dashpot 
alone. The total stress is given by a = as = OD and the total strain by e = es + £D- 

Differentiating and using Hooke's and Newton's laws yield 

* = i^£ + ^£     =*.     ^. + ^ = E- (23) 
dt     E dt       ri dt     T        dt' v ' ; 

where r := TJ/E is the so-called relaxation time. Using <r(0) = Ee(0) this ODE is easily 

solved to give 

a(t) = Ee-f/Te(0)+E /V^/V^) ds, 
Jo 

and this is essentially (2.1) with the scalar analogue of D given by D(t) = Ee~^T. 

The Voigt model 

Connecting the spring and dashpot in parallel yields the Voigt model. This time £5 = 
eD = e and equilibrium demands that a = as + &D, hence 

de de     e      a 
ri-- + Ee = a     =►     — + - = -. 

dt dt      T      r\ 
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Figure 2.4: THE VOIGT MODEL 

\OD,£D 

3 

AA/WV 
<?S,ES 

_^e,o- 

This gives the constitutive law in hereditary form as 

e(t) = e-*/Te(0) + - f e^-^a^ds. 
Tj Jo 

The Maxwell solid 

In his internal variable formulation A.R. Johnson, in for example [24], uses these basic 
building blocks in the Maxwell solid. Here E0 and E\ are spring stiffnesses and a*, e* are 
internal stress and strain variables. This time a* = E\e*, ep = e — e* and as = E0£s- 

Also a* = an and this gives 

de* de 
'dt dt      T      at 

where now r := rj/Ei. Solving this we get 

rt 
e*(t) = e-f/Te(0) + / e^'8^e'{s) ds = e{t) -=-J e-<'-5>/Te(a) ds. (2.4) 

where e(0) could be any constant but arises here from the initial condition e*(0) = e(0). 

Now, defining the stress relaxation function 

D{t) := E0 + Eke-*'* 

as the scalar analogue to the tensor D{t) in (2.1) and (2.2), and using this in (2.4) along 
with the relation 

a = as + er* = E0e + E\e*        (since es = e), 

gives 

a{t)    =   E0e(t)+E1e-
t!Te(0)+      E1e-^-s^Te'(s)ds, 

Jo 

=    D(0)e(t)- f Ds(t-s)e(s)ds. 
Jo 
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Figure 2.5: THE MAXWELL SOLID 

EI 
\a*,e* 

HWWV- 

EQ 

■vww 

\&D,£D 

cs, £s 

_^ e, a 

This is the scalar analogue of equation (2.2) and suggests that we model D with the 
Dirichlet-Prony series, 

D(t)=<p(t)D(0) 

where (p(t) is a generic stress relaxation function given by 

(2.5) 

N 

vW=Vo + E^e ait- (2.6) 
t=i 

Here the (possibly x dependent) coefficients {fi}f=Q are non-negative and normalized so 
that (p(0) = 1, and the (possibly x dependent) {oti)f=1 are non-negative. More generally 
one could of course write (with summation not implied), 

Dijki(t) := (Dijki)o + £ (Dijki)mexp(-(aijki)mt). 
m=l 

The Dirichlet-Prony series is an extremely convenient form to take for large scale compu- 
tational approximations to problems (1.1), (1.2) and (1.3) since if 

m := e~at, 

then one can exploit the simple recurrence 

il>(t + k) = e-akxl>{t) 

to update the history term arising from a discretization of the Volterra integral. For general 
Volterra problems one must usually store the entire solution history as the computation 
advances through the time levels and moreover, at each time level this history needs to be 
summed to approximate the integral. For such methods the number of operations required 
at time level N is of the order 0(N2). The Dirichlet-Prony series provides a very useful 
short cut around this 'W2 problem". (In certain special cases one can also overcome this 
difficulty using other means, see for example [22, 19]). 
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2.3    The Reversed Maxwell Solid 

One can also arrive at a Maxwell solid by switching the order in which the spring and 
dashpot appear in the viscous arm of the network. We call this the Reversed Maxwell 
Solid. 

Figure 2.6: THE REVERSED MAXWELL SOLID 

*7 ic*,e* pi 

AA/WV 

o\el 

EQ 

AAAAAr 
\VS,£S 

_^e,a 

Balancing stresses such that cr* = a1 and using e1 = e — e* now gives the differential 
equation for the new internal variable e* as, 

—- + — = —, where r := r)/E\. 
at       T      T 

Note that e* is quite different from e* as introduced earlier for the Maxwell model, although 
there is a simple connection which we demonstrate below. This time we have, 

1 
(t) = - f e-^-s^Te(s)ds, 

T Jo 

where we used e*(0) = 0 (otherwise any term of the form Ae tlT may be added on.). 

Since e.s = £, the total stress a is given by, 

a(t)   =   as + cr1 =E0es + EiE1, 

=   E0e + Ei(e - e*), 

=    (E0 + Eh)e{t) - — /* e-<*->/Te(a) ds, 
T   JO 

=   D(0)e(t) - I Ds(t- s)e(s) ds, 
Jo 

where again we set, 

D(t) := E0 + ^ie-'/T. 

This is exactly as before for the Maxwell solid, and so again represents a scalar analogue 
of (2.2). The question is whether or not this reversed model is of any use, and in this 
context we note the possibility of strong stability estimates for solution of this ODE. 
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Note that e* and e* are very simply related by, 

e(t)=e*(t)+e*(t). 

This is obvious since the total strain in the viscous arm of the networks is the sum of the 
strains in each component. This relationship is easily proven by considering the integral 
representations of e*(t) and e*(f) given earlier. 

Let us now briefly try to make a connection with the "ODE formulation" as described 
by Janovsky et al. in [22]. Using e = e* + e* in the differential equation for e* we easily 
obtain a differential relationship between e* and e* as, 

de* _ e* 

~dt ~~T' 

The internal variable e* plays essentially the same role as (the scalar analogue of) w in 

[22, Equation 4.1]. 

Finally in this section we note that we can also arrive at ODE's for the internal stress 
variables. For the Maxwell solid we have, 

da*     a*      .-, de 
dt       T at 

and for the Reversed Maxwell solid we get: 

de*     _ _ 
v      + Exe* = Eie, 

at 
da* de* _     de _ da*     a* 

dt dt dt       dt       T 

Clearly er* = a* and so (again) de* /dt = e*/r. 

2.4    The generalized Maxwell solid: internal variables 

We now return to the Maxwell solid and generalize the conceptual spring and dashpot 
model in order to motivate the choice of the Dirichlet-Prony series for the relaxation 
function as given in (2.6). To begin with we assume again a state of uniaxial stress and 

strain. 

The generalized Maxwell solid, shown in Figure 2.7, consists of a Hookean spring 
connected in parallel to a sequence of N spring-dashpot components. In this model, 

eo = e,        ao = EQE, and        al = Eie*. 

Balancing the stresses carried by each of the spring-dashpot pairs we get for each i € 

{1,...,N} that, 

del     et _ ^e 

dt      Ti      dt' 

=► eUt) = e-'/Tie(0) + /'' e^-^e'^ds = e(t) - - f' e-W
Tie(s)ds, 

JO Ti Jo 



14 CHAPTER 2.   CONSTITUTIVE RELATIONSHIPS 

Figure 2.7: THE GENERALIZED MAXWELL SOLID. 
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where we used e*(0) = e(0) and this time we have set T{ := Ei/rj{. The total stress carried 
by the assemblage is therefore given by: 

a(t)   =   a0(t) + <ri(t) + ■ ■ ■ + <rN(t), 

=   E0e{t)+E1e*l{t) + --- + ENe*N(t), 

=   Eoe(0) + Eo(e(t) - e(0)) 

+ £ (Wt/Tie(0) + f Eie-^-^e'is) ds) , 

=   E(t)e(0) + f E(t- s)e'(s) ds, 
Jo 

where 

(2.7) 

N 

E(t):=E0 + J2Eie~i/n 

i=l 

The constitutive relationship (2.7) is the scalar analogue of (2.1) with the analogue of 
D(t — s) given by E(t — s), which itself is an example of the Dirichlet-Prony series given 
in (2.6). Note that if we set EQ := 0 then this generalized Maxwell solid actually models 
a fluid since lim E(t) = 0. 
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Again, we can also arrive at ODE's connecting the internal stresses, 

dt     n 

since a\ = E{€. 

dt 

2.5    The generalized Reversed Maxwell Solid 

By switching the order of the springs and dashpots in each of the viscous arms of the 
generalized Maxwell solid network we arrive at the generalized Reversed Maxwell Solid. 

Figure 2.8: THE GENERALIZED REVERSED MAXWELL SOLID. 
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This time we balance the stresses in each spring-dashpot pair such that o\ = Ei(e—e\) 
and obtain, 

del     el _ e 

dt Ti T{ 
for each i, 

and where Tj := rji/Ei. Again, with £^(0) = 0 we can solve for the internal strains to get, 

ej(i) = - /V<*-*>/T<£(*)<*», 
Ti JO 
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as expected, and we obtain the total stress from: 

a(t)    =   a0 + E1(e-el) + --- + EN(e-e?), 

=   (E0 + -.. + EN)e(t) - f (^Le-<«->M + • • • + ^e-<*->M e(s)ds, 
Jo \n r/v / 

=   E(0)e(t) - [ Es(t- s)e(s) ds, 
Jo 

where, again, we set 

E^-Eo + ^Eie-^. 
N 

c 
1=1 

This constitutive relationship between a and e is a scalar analogue of (2.2), which itself 
is equivalent to (2.1). Hence the constitutive relationship generated by the generalized 
Reversed Maxwell Solid is equivalent to that generated by the Maxwell Solid. 

Once again it is trivial to note the connection, 

e(t)=e*(t) + ei(t), 

for each i, and it follows that, 

d£J _ e* 
dt       T{' 

Introducing the internal stresses we also get, 

dal      _ del      „ de     dal     °*i 
—v.  * _(- Tft—* = Ei— = —- H—- 

dt        l dt dt       dt       Ti' 

=^ £(al _ a*) + Ei (e-—- ) = ^     =>     <r\-o$= constant = 0, 
dt \     T{      J Ti 

since the stress in each arm is independent of the order in which the components are 
arranged. 

2.6    Other constitutive relationships 

The Dirichlet-Prony series is not however the only form used to model the stress relaxation 
functions, for example the authors of [1] use the stretched relaxation function 

<p(t)=tp0exp(-(at)p) for p 6(0,1]. (2.8) 

Obviously no simple recurrence exists for this form. Another popular choice for cp is the 
power law where 

ip{t) - ipQtr
v for p e (0,1), (2.9) 
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although from either of (2.1) or (2.2) this implies that either e(0) is zero irrespective of 
the magnitude of the load, or c(0) is infinite. Neither of these are physically realistic and 
so we would prefer to modify this law to 

¥>(*) = M* + n)~p      for p e (o, i), (2.io) 

where (fi > 0 in order to remove the non-physical behaviour. Nonetheless, it is instructive 
to see how one might "derive" the power law, and for this we borrow heavily from Chern's 
thesis [4] which exploits the fractional calculus. 

The formulation is based on the observed fact that viscoelastic materials behave 
in a way intermediate to that of solids and fluids. Interpreting this literally yields a 
constitutive law that contains fractional derivatives. Unfortunately we are unable here to 
give this interpretation the depth it deserves and instead try only to illustrate the main 
point. Recall that the stress in a solid is proportional to the strain while the stress in a 
fluid is proportional to the strain rate. Accepting the intermediate nature of viscoelastic 
materials the idea is to define the viscoelastic constitutive law as: 

ff(t) = X?<°>e(*) + Bw9te(t), (2.11) 

for constant fourth order tensors I?'0' and I?'1', and where a 6 [0,1). The fractional 
derivative operator may be defined as: 

d?e(t) := | (r(1 \ a) j\t - s)-a
£(s) cfa) , for «€[0,1). (2.12) 

(Note that a can be irrational, even though the word "fractional" is always used.) By firstly 
integrating by parts in (2.12) and then taking the differentiation through, Chern arrives at 
a constitutive law which is suitable for use within the standard finite element framework. 
Two solution schemes are considered: a solution in the Laplace transform domain and a 
direct time domain solution. However, in this case there is no efficient history storage and 
so the operation counts and computer memory requirement grow without bound as the 
time step is diminished. 

The "justification" for the power law is as follows. Carrying out this integration- 
differentiation process gives 

*<<*>=f(£=j£(o)+w^) I'(t - *>~vw *• (2-l3) 

and using this in the scalar analogue of equation (2.11) we now arrive at the constitutive 

law: 

a(t)=Eoe(t) + ^^e(0) + f^^)l\t-S)-as'(s)ds. (2.14) 

This seems to combine (2.1) and (2.2) when (p(t) is given by the power law, (2.9). 

We now have several candidates for the constitutive law and these may be used to 
generate a variety of differential equation problems. Later in Chapter 4 we do just this 
and demonstrate how concrete forms of the abstract problems (1.1), (1.2) and (1.3), as 
well as some non-standard variants, can be derived to model viscoelastic behaviour. 



Chapter 3 

Multidimensional internal 
variables 

3.1    Overview 

So much for uniaxial states of stress and strain. In fact it can be shown that for each 
relaxation mode (i.e. each spring-dashpot pair) in higher dimensions, there is an ODE 
governing the evolution of each of the internal strain tensor components. Thus we have, 

dt rm at 

where the details are given below. The significance of these internal variable formula- 
tions for the viscoelastic constitutive behaviour lies in the fact that it is possible to solve 
some kinds of viscoelasticity problems, when the relaxation functions are in the form of a 
Dirichlet-Prony series (2.6), using only a linear elasticity solver and an ODE solver. This 
obviates the need to create special software for quasistatic viscoelasticity problems. For 
more on this we refer again to [24] and also to [43], but we return to this topic in a later 
chapter. 

3.2    Multidimensional constitutive relationships 

In [54] for example Shaw and Whiteman use a hereditary multidimensional constitutive 

relationship of the form, 

rait) = Dijkl{Q)ekl{t) - jf 9Dijkfs     
S)ekl(s)ds 

at each fixed point x in a viscoelastic body (see (2.2) given earlier).    Here D{t)   — 
(Dijklit))? ■ k i=\   (f°r problems posed in En) is a fourth-order stress relaxation tensor 

18 
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given, for example, by the Dirichlet-Prony series, 

ND 

Dijkl(t) := (Aj*/)o + E (Dijki)me-t/rm. 
m=l 

However, Johnson and Tessler in [24, equation 20.9] write this in a different form and it 
is useful here to explore the connection. 

Assuming that t = 0 is a reference time such that s(t) = Q for all t < 0, then the 

constitutive equation is, 

/t deu(s) 
TO *Cijkl{t-s)-f^-ds, 

=   (Cijkl+ *Cijkl(0))ekl(t) -£
d *Cijk^ ~ SKkl(s) ds. 

By comparing these two forms we see that 

Dijki(0) = Cijkl + *Cm(0), 

and also, 

D'ijkm = *cijkl(t), 
=>     Dijki(t)    =    *Cijki(t)+constantijkl, 

=>      Dijkl{t)    —      *Cijki(t) + Cijkl Vt. 

In fact Johnson and Tessler in [24, equation 20.7] write, 

ND 

*cijkl(t) := x: cs«e_t/T"   for i * °» 
m=l 

where C*'^, C*'^,..., C*^0 are temporally constant fourth-order tensors. (In fact this is 
a slight generalization of Johnson and Tessler's expression, but no matter.) 

Comparing terms once again with our Dirichlet-Prony series representation of D we 

see that simultaneously we must have, 

ND 

Dm(t)   =   ^H+jCjSe"^, 
m=l 

ND 

Dijkl(t)   =   (Dijkl)0+ ^(Aiw)me-t/rm, 
m=l 

and so we infer that, 

(Dijki)o = Cijki and (AjfcOm = C*^ 

for each m. 
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3.3    Multidimensional internal variables 

It is of interest to derive "ODE" representations of these hereditary constitutive relation- 
ships in terms of internal strain variables. To begin we set, 

*e%(t) := e-'^euiO) + f e^^^^ ds = ekl{t) - i- j* e^-^^e^s) ds, 

and then by differentiating we obtain, 

d^m = dejAV _ J_ \e-t/rmeu{0) + /
(
e-(^)/rm^(£) ds   . 

dt dt Tm  L JO OS 

Substituting for the integral now yields the family of differential equations governing the 
evolution of the internal strain variables: 

d^m |   *efl{t) ^dekl{t) 
dt Tm dt 

For the stresses we note that, 

ND 

vijit) = Cijklekl(t) + £ C$J *£)5(t). 

We can also derive ODE's for the internal stresses defined by, 

•6*{t) := C*$ *ej3(t), 

which gives, 

<Tij{t) = Cmekl(t) + £  *<$(*)• 
m=l 

In this case the evolution equations are, 

d Vff (*)       Vff(t) dekl{t) 
8t       +     rm vkl    dt    ' 

3.4    Reversed multidimensional internal variables 

From our consideration of the Maxwell models we define the "reversed" internal strain 
tensors *em(t) via, 

„eJ3(t) := eki(t) - *efl(t), 

and of course it follows that, 

1    fl 

*e?i(t) = — [ e-^-s^ekl(s)ds. 
Tm JO 
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Then, 

dt Tm 

similar to before, and also, 

of rm rm 

These are clear analogues of the results for the scalar case given earlier. 



Chapter 4 

Model problems in viscoelasticity: 
Volterra formulations 

4.1    Visco dynamics 

To obtain the governing equations for the dynamic response of a viscoelastic body one uses 
Newton's second law to relate the stress field <x and the forces / and g to the acceleration, 
or inertia, of the body Q. This process is familiar from linear elasticity theory and gives, 
with boundary and initial data, the following. For i = 1,..., n: 

QUi   ~ <TijJ 

m 
aijnj 

Ui(x,0) 
u'i(x,0) 

fi 
0 

9i 

in fi x X, 
in YD X Z, 
in IV x I, 
in il, 
in Q,. 

(4.1) 

Here: repeated indices imply summation; 1 := (0,T) is a time interval; g is the mass- 
density of Q\ and, n := (ni)"=i is the unit outward directed normal to re- 

using (2.2) to substitute for the stress one arrives at the Partial Differential Volterra 
(PDV) problem: find u such that 

eu'l{t) - (Dijkl(0)ekl(u(t)))!:j = Mt) - f (9B&H s) 
ds 

£ki{u(s)))    ds, 
j 

in fi x X with the indicated initial-boundary data. With an appropriate definition of A 
and B(t, s) this is clearly a realization of the abstract problem (1.3). Note that it is "safe" 
to use the Dirichlet-Prony series (2.6) or modified power law (2.10) in this problem, but 
we may not use the power law (2.9) directly because we cannot then interpret 0(0). 

In terms of existence, uniqueness and stability of solutions this problem has been 
studied in [10, 11, 34]. Numerical schemes are given in [13, 60, 39, 42]. 

22 
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One could also use the fractional calculus model to substitute for a: in Newton's 
second law. This will yield a PDV equation of the form 

On the other hand one could use (2.1) and then arrive at 

Qv!{(t) - (Dijkl(t)skl(u(0)))tj = fi(t) + f (Dijkl(t - s)ekl(u'(s)))Jds. 
J 0 

Note that u does not occur as a natural "unknown" in this problem and so it is possible 
to replace u with u' and arrive at the alternative problem: find u such that 

rt 
Qu'i(t) + /  {Dijkl{t - s)eki(u{s)))d ds = fi(t) - (Dijkl(t)ekl(u0))j, 

which makes sense if uo is smooth enough. The initial datum for this problem is now 
«(0) = «i- Properties of the solution of these type of problems are studied in [11, 34] and 
numerical analysis is given in [35, 32]. 

However, one must resist the temptation to interpret this as a parabolic problem for, 
in general, it is not. To see this use the power law (2.9) with (2.5) to obtain (with g = 1 
and D not x dependent for simplicity): 

u'm + Dijkl f\t - s)-P(ekl(u(S))j ds = fi(t), (4.2) 

where /now incorporates the additional term in UQ. In the case p = \ we find that the 
operator / defined by, 

1    /"* _i 
Iw(t) := -7= / (t - s)   2iü(s) ds 

V7T JO 

has the property, 

I2w(t) =I{Iw){t)= f w(s)ds, 
Jo 

and so may be regarded as the square root of the definite integral operator. Applying 
i . 

d* to both sides of (4.2) in the case p = |we arrive at 

(J9 ' Ui{t) + ^Dv^kl(u(t)),j = d?ft(t). 

This equation is half way between being parabolic and hyperbolic. Similar manipulations 
are also possible in the case p^|, with the final time derivative being of order between 
1 and 2. Numerical methods for fractional order differential equations are studied in 
[41, 31, 12]. 

For more detail on these type of problems see [37], as well as the other papers in that 
collection. 
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4.2    Viscostatics 

Recall that the classical linear elasticity equations are "derived" from Newton's second 
law (4.1) by dropping the inertia term gu". This corresponds to modelling the problem 
at times long after the load has been applied when the transient response has died out, 
and results in a very well-known elliptic problem. A similar approach can be adopted 
for viscoelastic response although this time it is a true approximation since the resulting 
problem is not time independent due to the persistence of the Volterra term. It seems 
that this approximation can be useful when: the inertia term is negligible, which may 
occur when the load is smoothly and slowly applied, or even when the applied load is such 
that the dynamics of the response is dwarfed by the forced response; or when it is the 
long-time creep response that is of interest. Since the time dependence persists we refer 
to the resulting problems as modelling quasistatic viscoelastic response. 

The governing equations for these type of problem are obtained from (4.1) by setting 
gu"(t) := 0, setting J := [0,T] and discarding the initial data. Thus, for i = 1,... ,n we 
have, 

Ui   =   0 ixxTDxJ, \ (4.3) 
Gijrij    =    gi in FN x J,        ) 

which are turned into differential equation problems for u by substituting for the stress 
using either of (2.1) or (2.2). These give respectively the PDV problems: find u such that 
for each i € {1,.. -, n}, 

- J (Dijkl(t - s)ekl(u'(s)))tj ds = frit) + (Dijkl(t)ekl(u(0)))tj, 

and 

-(Dijkl(0)skl(u(t)))tj = fi(t) - jf (^"^aN»)))    da. 

The first of these is essentially a Volterra first-kind equation for u', while the second is a 
second-kind equation for u. In both cases one obtains «(0) by solving a linear elasticity 
problem. 

Numerical schemes and a priori error estimates were first provided for both of these 
problems in [45]. Later and for the second-kind problem only, the estimates were improved 
(in terms of the size of the error constant) in [44]. These latter results depend on by-passing 
Gronwall's inequality and using more sensitive comparison results to obtain sharp data- 
stability estimates. These estimates have now been generalized in [57]. Also for the second- 
kind problem, o posteriori error estimates for a space-time finite element discretization of 
a model problem have been given in [48] and [52]. These results are based on the error 
estimates in [47] and are currently being generalized to the multidimensional problem 
described above in [51], [54], [55] and [56]. 
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4.3    Non-Fickian diffusion 

This section is not directly relevant to the Seed Project, but it is another illustration 
of where viscoelastic effects play an important role, and therefore need to be modelled 
accurately. We include this material for interest only. 

In classical diffusion theory the gradient of the concentration u of an active agent (the 
penetrant) diffusing through a carrier medium is related to the mass flux by Fick's law: 
J = —AVu, where A is the diffusivity of the carrier substance. Conservation of mass then 
demands that u' = —V • J which yields the familiar heat equation, 

u'(t) = V • AVu. 

If we define M(t) as the total mass of penetrant absorbed by the carrier per unit area 
at time t then it is well known (from similarity solutions) that M(t) ~ £2 for Fickian 

diffusion. 

Diffusion in rubbery polymers, those well above their glass transition temperature 
(GTT), is according to Durning in [14] adequately described by Fick's law, but the sit- 
uation is much more complicated for glassy polymers, those near but above their GTT. 
As the penetrant moves through the polymer it can force a phase change and so leave 
behind it the polymer carrier in its rubbery state. The stiffness and relaxation properties 
of the polymer change abruptly by orders of magnitude across this phase change (see for 
example [18]), and as a result a differential stress is set up across the penetrant boundary. 
Moreover, because the carrier is viscoelastic this stress is described by a hereditary consti- 
tutive law and this behaviour provides a mechanism for the observed non-Fickian effects. 
Workers in the field make the following very rough classification. 

Case I diffusion: standard Fickian diffusion where M(t) ~ £2, applies to polymers in 
the rubbery state high above the GTT. 

Case II diffusion: non-Fickian diffusion, M(t) ~ ta where \ < a < 1, applies to glassy 
polymers near to but above the GTT. 

There is also a "Super Case II" category corresponding to a > 1, see [6]. For Case II 
sharp fronts (rather like shocks) may appear as the penetrant diffuses through the carrier. 
This front moves initially at a constant speed and then slows down, [8], and this explains 
why M(t) is almost linear, and thus M'(t)—the rate of absorbtion—is almost constant. 
By contrast M'(t) for Case I is, in the words of Cox in [8], "delta-function-like", and this 
property of glassy polymers has an interesting application in the area of controlled drug 
delivery products. Cox gives a nice example. 

An active agent (the drug) is embedded into a polymer through which it cannot 
diffuse. This may for example be a tablet which is to be swallowed. When the carrier is 
invaded by a solvent, such as digestive fluid, the drug can then diffuse out of the polymer 
through the solvent in a non-Fickian way. Since M'{t) is almost constant, this allows a 
controlled, constant-rate delivery of the drug to the body for several hours. 
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The polymer doesn't have to be a tablet. In fact, according to Cohen and White in 
[6] (who also describe other applications of non-Fickian diffusion), such "smart" pharma- 
ceutical products can be designed to be "swallowed, smelled, surgically implanted, rubbed 
on, taped on, strapped on", and can in effect be applied to any part of the body. There is 
an extensive literature on this science and in addition to those already cited we refer also 

to [20, 7, 15]. 

To get a flavour of the mathematical modelling that these researchers employ we 
borrow from [5] and consider the modelling of one-space dimensional diffusion through a 
glassy polymer. Our development yields a linear model, but it is unlikely that this will 
reproduce the sharp fronts characteristic of polymer diffusion. The references cited deal 

with realistic nonlinear models. 

To account for the differential stress set up at the penetrant front Fick's law is modified 
to include a stress dependence in the following way: 

J — —(Xux + KOx). 

Here u is the concentration, A the usual (Fickian) diffusion constant, and K is a propor- 
tionality constant. Conservation of mass again demands that u' = —Jx and this gives 

The stress is viscoelastic and the usual approach is to adopt the Maxwell model, given 
earlier in (2.3), with the assumption that u depends linearly on strain rate e' (this is in 
order to get true Case II behaviour—see [9]). Thus, 

do     a 
— + - = /i«, 
at     T 

where ^ is a proportionality constant. In the nonlinear theory the dependence of r on u 
is crucial, but here we shall assume that T is constant. Integrating we get, 

r(t)=fxe-t/Tu(0)+ß f e-^-s^Tu(s)ds. 
Jo 

Eliminating the stress from the transport equation and using mass conservation gives the 
single differential-Volterra equation, 

i'(t) = Xuxx + n/ie-^u^iO) + Kfi f e-<* s)/ruxx(s) ds. 
Jo 

Assuming for simplicity that u(0) = 0 we can generalize this to a multidimensional model 
and obtain the PDV equation, 

u'(t) = V • AVu + V • (KV f ne-^-s^Tu(s) ds) . 

This is a concrete realization of the abstract problem (1.2). 
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Equations of this nature have been studied in [36] and [21], and some numerical 
analysis is given in [60, 3, 58, 40, 59]. Also, a priori and a posteriori error estimates for 
a finite element discretization of a scalar prototype ODE with memory, of the type that 
arises after spatial finite element semi-discretization of this problem, are provided in [46]. 



Chapter 5 

Model problems in viscoelasticity: 
internal variable formulations 

5.1    Overview and notation 

In this chapter we look at how to formulate viscoelasticity problems described by internal 
variables. Once again our main reference is Johnson and Tessler, [24]. Before starting we 
introduce some notation. For problems posed in R" we set, 

Hm(Ü) := Hm(Ü) x • • ■ x Hm(Cl) (n times), 

and, bearing in mind the notation introduced earlier in equations (4.1) and (4.3), we set, 

H~{ve Hl(tt) : v = 0 on rD}. 

Also, thinking in terms of weak formulations we also set, 

(ff,e):= / aijEij(v)dü, 
Jo. 

and, 

L(t; v):= [ v ■ f(t) dÜ + I   v- g(t) dT. 
Jn JrN 

We begin with quasistatic problems. 

5.2    Viscostatics: weak formulations 

We recall first the governing (quasi-equilibrium) equations for quasistatic viscoelasticity 
introduced previously in (4.3). Then, using the fundamental Green's formula, 

— I w JV dQ, = / wv jdCl — <p   wvrin dF, 
Jn   J Jn     'J Jon       3 

28 
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and also the symmetry of the stress tensor to see that, 

OijVij = r (aijvi,j + ajivj,i) = aij£ij(v)i 

we then have for v G H that, 

/ fiVidü = — / OijjVidQ= I OijVijdti— f    aijUjVidT. 
Jn Jci Jfi JrN 

This implies, 

/ a«e«(«) dÜ = ( v ■ f(t) dtt+l   v- g{t) dT. 

Recalling the definitions made earlier we can write this more compactly as, 

(c,e(v)) = L(t;v)       \/veH. 

This virtual work statement (weak formulation) is the standard "jumping off point" for 
finite element approximations (to be considered later). 

There now seems to be (at least) two ways to proceed. The first is to take the route 
described by Johnson and Tessler in [24], we describe this first. 

Route 1 

We substitute for the stress using the multidimensional internal variables described earlier, 
where we recall that, 

ND 

<Tij = Cijklekl(u(t)) + £ Cgw •*«(*)> 

which gives the representation, 

t ND
   r 

(er,e(«))= / Cijklekl(u(t))eij(v)dSl + ]T / Cg?*eJ3(*)*;(»)<*«• 
Jn m-lJü 

We now introduce internal displacements  *um such that, 

e«(   U  } - 2 I  dxt   
+   dxk ) ' 

and this gives the virtual work statement in the form, 

ND 

a(u(t), v) = L{t; v) - £  *am{ *um(t), v)       Vv G H. 
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Here, 

a(u(t),v)    :=    / Cijkieki(u(t))eij(v)dn, 
Jn 

*a™(*um(t),v)   :=   jf CgjreE('«m(*))etf(«)*!• 

The internal strains satisfy, 

d*e?,       *eT,      dekl 

dt 
kl    i kl 

dt 

and it is important to realise that these hold at a point in space and so are effectively 
ordinary differential equations. 

Thinking in terms of the reversed internal variables, 

£ -  *£m, 

we may replace these ordinary differential equations by, 

d*£)b;  ,   *^ki _ £M 
Ot Tm Tm 

and solve these instead. This may make more sense because we know e but not de/dt. 

Thus we arrive at a statement of the problem. 

Find u: J -¥ H such that, 
ND 

a{u{t), v) = L(t; v) - £  *am( *um(t), v)       V« E H. 
m=l 

Here the  *um are implicitly (but not uniquely) defined by the tensors 
*em which in turn are given by, 

d*e?,  .   *e%      deki 'kl 
dt 

+ '-kl 
dt 

or dj^jä + j£l = eJL 
Ot Tm Tm 

with ^eT, = eki - *e; kl- 

We now describe the second route. 

Route 2 

On the other hand we note that there is no need to introduce the internal displacements 
*um at all. If we recall that, 

Oij = CijkiEki{u) + 22  *a™, 
m=l 
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where, 

aij ■- ^ijkl   £kh 

then the virtual work statement takes the form, 

ND 

a(u(t),v) = L(t;v) - £ ( V"(t),eH)       ^ e **. 
T7l=l 

This generates a different problem statement. 

Find u: J -t H such that, 
ND 

a(u(t),v)=L(t;v) - £ (V m(i),e(«))      V«6ff. 
m—1 

Here the internal stresses *om are given by, 

dt     '    rm       ^ dt ' 

or: by V* = C*$ *£$ where, . 

dt         rm        dt Ot              Tm          Tm 

with .ejg = eki - *efl. 

5.3    Viscodynamics: weak formulations 

Given the quasistatic problem it is now straightforward to pose the viscodynamic problem. 
Hence, 

ND 

(utt(t),v) + a(u(t),v)=L(t;v)-Y^  *am(*um(t),v)       Vv E H. 
m=l 

The internal strain and displacement variables are exactly as given earlier. This research 
project is not concerned with dynamic problems and so we leave the development of this 
area to another time. 
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Part II 

Numerical Algorithms for stress 
analysis 
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Chapter 6 

Quasistatic internal variable 
problems 

6.1    Overview and notation 

In this chapter we consider some of the possibilities for forming numerical algorithms 
for the quasistatic problem modelled by internal variables. We consider semi- and fully 
discrete schemes, in that order, and detail the computational implementation. We follow 
here Route 2 as detailed earlier in Chapter 5. 

First we establish our notation.   If W is a function space then for a vector-valued 
function w := (u>i)"=1, for which Wi G W for each i, we shall write w G W where, 

W :=W x---xW (n times). 

Moreover, if w := (iüy)",=1 is a second-order tensor-valued function for which toy G W 
for each pair (i,j), then we set, 

W    =    W x---xW (n times), 
n times n times 

:=    (w x---xW\x---x (W x---xW} (n times), 

and write w € W- 

6.2    Semidiscrete finite element approximation 

We consider the Route 2 problem in the following form. Find u G Loo(J;H) and, for 
each m,  *am G W^(J; L2{ty) such that, 

ND 

a(u(t),v) = L(t;v) - £ ( Vm(*),eW)        V« G H, 
ro=l 

35 



36 CHAPTER 6.   QUASISTATIC INTERNAL VARIABLE PROBLEMS 

and, for each m, 

d *am ,   *<im    \     (dem     . 
+ ite   =   -5^,w        Vuieiöifi), 

where we define, 

Alternatively, we might decide to work instead with the internal strains and then this last 
set of constitutive differential equations is replaced by, 

öt rm '    J      \   dt 

In this latter case of course we seek not only the *cm but the *em G W^(J; L2(Q)) also. 
(Note also that we need u to be time differentiate, although this requirement could be 
removed by employing the reversed internal variables introduced earlier in Chapter 2) 

To form a notional semidiscrete approximation to this problem we firstly partition 
J := [0,T] into time intervals {JijfLi, each given by, 

Ji := (ti-i,U) with ki := U - ij_i 

denoting the time steps. Now, for each time interval Ji we partition fi (in the usual way) 
into a family of disjoint triangles suitable for piecewise linear finite element approximation, 
and then let U denote the piecewise linear finite element approximation of u. We denote 
the space of piecewise linear functions with respect to this mesh (i.e. during Ji) as Hi, 
and we let Clj represent the jth element (i.e. triangle) in this partition. 

In a similar way we let *£m denote the piecewise constant (on each element) approx- 
imation to *ffm, and denote the space of piecewise constant functions with respect to this 
mesh (i.e. during Ji) as Li. 

In terms of the internal strains the resulting semidiscrete finite element approximation 
to this Route 2 problem is: find U € Loo(J;H), satisfying U\j{ € L^J^Hi), and for 
each m, \m e W^(J;L2(^)), satisfying *qm\Ji € W^(Ji;Li), such that for each 
i = 1,2,... ,N in turn, 

ND 

a(U(t),v) = L(t;v) - £ ( *$m(t),e(v))       W e Hu 

m=l 

where *& := C*^ *e£], and the *e£J are the finite element approximations of *e£| 
satisfying (in each Ji), 

d *em ,   *em     A     fde(U)     \       w   c r 
+ , w   =        '     ■>w)       Vw € Li- 

ft       rm '   J    \   dt 
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6.3    Semidiscrete system equations 

To represent a tensor-valued function in Li (for times t G Ji) we let {<f>ij} be a basis 
consisting of piecewise constant functions in the following way, 

f 1,    for x G ftj = 7th element in the mesh, 
4>ii '■= \ ,       , 10,   elsewhere. 

Then, faj € L{ for each j and for an arbitrary 0 € Li we have that, 

i 

where ay is the (constant) value of the component 0jy on the element Qj. 

In the expression 

(Q,w)        for w E Li, 

we now choose w such that Wki = <l>ij is the only non-zero component, then, 

(Q,w)   =    / 6kiwkidCl= /   6kl<f>ijdtt, 
Ja Jcij 

=   meas(fij)aj. 

Picking Q := *gm we therefore find that, 

Tin Tm 

, tf? J = meas(fij) äj, 

and 

'3*em 

dot.' 
Here of course ay is the spatially constant value of *ek

n
l on £2,- and äj := —^-. 

Also, since e(£7) € ^i, we let @AU) denote the spatially constant value of e(U) on 
ttj and then we may write, 

i 

Then, with the same choice for w we have, 

(de[U)w\   _   W  (d^iJJ)\   _^_ f  (d^jy 
\    dt ■) - ?/,m.«-/.,m.« 

mecis(Sij) —^-—. 
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Thus, the finite element approximation of the internal variable constitutive equations 
become, 

dctj      cij      dßj (U) 

dt      Tm dt 

where, 

dj is the spatially constant value of *e^ on each Qj, for every pair (k, I) and for each m; 

ßj is the spatially constant value of eki{U) on Clj, for each pair (k,l). 

To obtain the system representation of the equilibrium equations we note first of all 
that, 

a(U(t),v)   —►   AU, 

L(t;v)    —»   F(i), 

in a straightforward way, where A is the elastic stiffness matrix and F is the load vector. 
It now remains to consider the viscous term. 

At this point A.R. Johnson would introduce the *Um internal displacement variables 
and use the "Route 1" formulation with the evolution equations written pointwise in 
terms of the *Um. Strictly, one should integrate these equations over Q since derivatives 
of *Um are involved—this seems to introduce unwanted complications. We consider 
constructing the viscous terms directly. 

Let {ipu}i>o be the canonical piecewise linear basis with respect to the mesh during 
J7i, and let {ipi}i>o be the resulting basis for H{. In the viscous term 

(V"(i), £(«)), 

we choose v — i/)l for some / and let S = supp('0/), then: 

=     E Cm *e%\nteij(rl>l)\nlmeas(nl), 
ÜiCS 

=:    F,(t). 

Defining the vector of viscous forces *Fm(t) := (F/(t))j>o in this way the system equations 
take the form, 

ND 

AU(t) = F(t) - 2  *Fm(t), 
m=l 

doi     al = dßjßl        f      u * m h o, 
dt        Tm dt 3 U 3 

Note that *Fm is in principle easier to calculate than the stiffness contribution *Am *Um 

described by Johnson and Tessler in [24], and requires less memory. However, direct access 
to the isoparametric "builder" routines in the finite element code is required. 
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6.4    Equivalence of semidiscrete formulations 

We now aim to show that the semidiscrete internal variable formulation described above is 
completely equivalent (it has the same solution) to the semidiscrete Volterra formulation 
that we have used previously (in for example, [45], [44], [54]). 

Firstly, solving the ODE for CXJ in terms of ßj(U) and recalling the definitions of these 
terms we have that, 

>e%(t) = ekl(U(t)) - — fe-^-sy^ekl{U{s))ds 
Tm JO 

(except on element boundaries), which is expected. Thus it still makes sense to define, 

,6JB(*) := ekl(U(t)) - *efl(t) = — f C-<*->/*»efc,(tf (*))*», 
Tm JO 

and we still have, 

°*ekl _     ekl 
dt rm ' 

Note that by choosing w G Li such that uty- = Cl'^eki(v) for any v £ Hi we have, 

(V\ie)   =    f  *emwij(m= [  *e%C*k%ekl(v)dn, 

=    / *<hleki(v)dn = (\m,S(v)), 
Jn 

fds(U)     d *em 

"   Tm{   dt dt   ,W 

d*em    \ 

where we are now working in terms of the reversed internal strains. Combining equations 
then gives, 

ND        (Q     m       \ 
a(U(t),v) = L(t;v) - £ rm[^-,w to G Hh 

m=\ 
dt 

and where toy- := Cl'£jeki(v). 

Now, bearing in mind the combined equation given above we note the following. For 

Wki ■= Cijki£ij(v) and v EHi, 

= I C*$ (eu(U(t)) - i- J*e-^-s^ekl(U(s))ds^j £ij(v) du, 

Jn Tm Jo JU 
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Substituting this into the "combined equation" shown above then gives, 

ND    , 
a(U(t),v)    =   L{t;v)-Y,      Ct$£ki{U{t))eij{v)d£l 

ND   1    ft r 

m=1 Tm JO  JO. 

which, using the definition of a( ■, •) from earlier, is the same as, 

i{ Cijki + £ Gm    ekl(U(t))£ij(v) dÜ = L(t; v) 
m=l / 

or, changing back to the "D" notation for the relaxation function, 

j Dijki{^ki(U{t))eij{v) du = L(t; v)+fQjn ^^—^-SkliUis^eijiv) duds. 

This is precisely the Volterra formulation we were aiming at. (Once again, this is not 
surprising—but we have to be certain.) More recently (in e.g. [54]) we write this in the 
form, 

A(U(t), v) = L{t; v) + f B{t, s; U(s), v) ds       Vu € Ht, 
Jo 

and we will return to this later. Now we consider a fully discrete approximation. 

6.5    Fully discrete internal variables 

In view of the equivalence just demonstrated it would be a neat trick to find a time dis- 
cretization of the evolution equations that is equivalent to our "Volterra approximation", 
and then the existing error estimates given in [54, 55] can be applied. It is doubtful 
whether this can be done. However, the solutions given by the two schemes should at 
least be close, and our next task is to attempt to find an expression connecting them. 

Let jj be the spatially constant value of *e£|, on each ftj, for every pair (k, I) in turn, 
and for each m in turn. Then by exactly the same reasoning as used above to obtain the 
ODE's for the ay's we can also arrive at the family, 

Qt Tm Tm 

(Note that the time derivative of ßj(U) is not required.) This is still semidiscrete. To dis- 
cretize in time we will use piecewise constant approximations to jj and U denoted during 
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each time interval Jq = (£g_i,f9) by % and Uq. A simple finite element approximation of 
the ODE's given above then yields, for q = 1,2,..., 

% - V, + Mi = WEA        (in each fy etc.), 

subject to 7o = *e^}(0) = 0. 

Setting rq := kq/Tm we have in general that, 

(1 + rq)% = rqßj(Uq) + %-i, 

and so the first few solutions are given by, 

nßj(Ui) 
71 = ^^iT 
^ ra/3j(^2)  ,       rift(17i) 
72 l + r2        (l + raKl + ri)' 

-    =   ^(t/3) ^(^2) n^(^i) 
73 l + r3        (l + r3)(l + r2)     (1 + r3)(l +r2)(l +n)' 

It is not hard to see that in general, 

7g — Z_J   g ' 
p-1II(1 + ^) 

s=p 

and that this holds for every % « 7, on J, and where 7,- = *e£| on fy. (Note that this 
assumes the space meshes are constant in time.) In tensor form we can write this as, 

prfII(1+''<> 
s=p 

and where (*€jl)q denotes the fully discrete approximation to »g^1 during times in Jq. 
Dropping the subscript j we therefore have that everywhere on the mesh, 

(*Sm)q = E   q
P   —^^ except at element boundaries. 

p=1II(1 + r-) 
s=p 

The question now arises as to how we determine the Up. For this we use a fi- 
nite element discretization (in time) of the semidiscrete equilibrium equations. Using the 
"combined equation" given earlier we then have, for all suitable space-time dependent test 
functions v that, 

rtq       ^ [T ftq     ND __ 

E /     a(Uq(t),v(t))dt = /   L(t;v(t))<& - E /      E Wu*) " (*€m)g,w), 
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where we used the semidiscrete equation to write, for wij = C^eki(v), 

and then used the finite element approximations. 

Choosing the test function v such that it is non-zero only in Jq then results in, 

— 1    /■*« Ä      — 
a(C/g,«) = r /    ü(t;«)<**- E Mui) - (*£m)?> w) 

ft? •/t«-i m=l 

for all v e Hq and where wij = C*k^eki{v). In this case we can write, 

and so the fully discrete solutions satisfy, 

r I ND \       — 1   /•*« 
/   Ciiw+ECyw UK^HW^  =  TT/    £(*;»)# 

7" V m=l / *« ■7'«-1 

E / c&£(.«5)«ey(«)<«• 
m=l,/n 

+ 

Using our explicit solution for {*em)q we then get, 

r ( ND        \      — 1   /■*« 
yn    CW + E C?« I £ki(Uq)eij(v) dV=-jt   i L(t;«) dt 

+ E/0^E^^-^)^ 
m=1      P=1II(1+^) 

1   /■*«    ,    . 

kqJtq 

ND     q 

ftq 

/     L(t;v), 
Jtq-i 

Tidying this up, we find that the fully discrete displacements satisfy, 

1   /•*« 
/ Ajw(0)£fct(^)eo(«) <M = T I"  L& v)dt 
Jn Kq Jtq-l 

+Sl,(iE^))^^s-(&'^w* 
Now we effect a comparison between this fully discrete solution and the one produced 

by the "Volterra formulation". 
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6.6    Comparison of fully discrete formulations 

Setting ip := min{£, tp} we can discretize the semidiscrete Volterra problem using a piece- 
wise constant temporal approximation to the displacements to get, 

A(Uq,v) = -j- /'*   L(t;v)dt + ^- f   J2f  B(t,s;Up,v)dsdt       V« € Hq 
Kg Jtq-i Kq Jtq-i       2 Jtp-i 

For the term on the far right we have, 

t 1 i       / ND   ft*im \ 

*« Vi p=l Vi vn ™^  m / 

= E E rV f f   f ^(t's)/Tm **) /0 CSSe„(Lfp)e«(t,) Ä1. 
m=lp=l TmK«  V*«-1 •/tP-1 / •/n ip: 

Now, for p = q we have, 

Iq    f     e-M/r» ^ = Tmfcg + 4 (e-^/- - l), 
Jtq-1 Jta-1 

while for p < q, 

I'    I'  e-^-s)lTm dsdt = rle-^-'"-^^ (ek">Tm - l) (ek''Tm - l). 
Jtq-l Jtp-1 

Using these we then have that the fully discrete approximation from the Volterra formu- 

lation satisfies, 

  1      ft« ¥JZ   ( p-kq/Tm _ i \     f   
A{Uq,v) = ±[    L(t;v)dt+ J2    1 + I     / C8Ee«(tf«)e«(«)<« 

Ä9 J*<i-i m=l V rq J JQ 

+ E E [- (e q/Tm -!)(e p/Tm -0  / cS«6«^)6«^)*>■ 
m=lp=l V r« / ,/n m=lp=l 

Using, 

e(tp-i-tq)/rm _  i  
erp erp+1 ■ • • eri' 

and expanding to first order gives, 

e-fa-tp-i)/rro        ?/Tm _    , , ,         ^  

r9     ve      w      x;   ni=P(i+rs)
+ [pq) 

A similar approximation leads also to, 

rq rq        rqer"      l + rq 
v 
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Thus, the fully discrete approximation from the Volterra formulation also satisfies, 

/ DijuMeuiUjeijiv) dÜ = 1 /' *  L{t- v) dt 
Jil Kg Jtq-i 

ND    1 r   

+ E E^WP) / Ci&H{Vp)eij{v)<Kl, 
m=lp=l Jil 

where E(rq,rp) = 0(rqrp) is the truncation error resulting from the approximation of the 
exponentials. 

We can now obtain an "error equation" connecting these two numerical solutions as 

follows, 

ND   q ~      — ND
   

9   ( r \   t ~      ^ 
A(uq-uq,v) =  E E  nnuTT   Ic5£«(^"^H'^)rfa 

m=lp=l Vh=p\1-+rs)J Jn 

-£ Y,E(rq,rp) / C$eu(Up)ey(v)dn. 
ND     q 

+ 
m=lp= 

Note also that by regarding the integrals as approximations of the rational functions we 
could easily replace Up with — Up in the last term, and make an adjustment to the first 
term on the right. That is, writing, 

mfcrr^LL'^**-«'^ 
we have also, 

A(Uq-Uq,v) 
ND    q    (    -I        ,t       ft \    r __       ___ 

E E Mr /      /      e-fi-'V'-dsdt) / CffleuiUp-UjevWdn 
m=lp=l \T™Kq Jti-l JtP-l ) Jn 

£ J2E(rq,rp) / ClfceuiUjeaWdto. 
m=\p- 

The point about these results is that we can now measure the distance between the two 
different numerical solutions. This opens up the possibility of using our error estimates 
for the Volterra formulation to construct an adaptive solver for the internal variable for- 
mulations already used by Dr. Johnson. However, in the next chapter we take a simpler 
and more direct route toward an adaptive solver built on the concept of internal stress 
variables. 



Chapter 7 

The numerical algorithm 

7.1    Introduction 

In this chapter we fix on the numerical scheme proposed in [54] for which both a priori and 
a posteriori error estimates have been derived there and in [55, 56]. This numerical scheme 
is based on the Volterra formulation of the problem and discretizes the Volterra integral 
directly. The result is that the entire solution history plays a role in the a posteriori error 

estimate. 

With this in mind, below we pay particular attention to marrying the theoretical error 
estimates derived for the Volterra formulation with a practical implementation drawing 
on internal variables. We view this as especially important since the error bounds contain 
a potentially troublesome (and expensive) term (denoted in the next chapter by £y)- This 
term arises directly from the residual of the finite element solution associated with the 
Volterra integral on de-refined meshes. It seems inconceivable that the effect of this 
term can be anything other than to degrade the quality of the error estimate, and it seems 
possible that an internal variable formulation could be used to remove it completely with 
comparatively minor additional computational expense. 

We say more about the a posteriori error estimate in the next chapter where we also 
show some adaptive solutions. Here we outline the finite element discretization of the 
problem and quote from [54] the a priori error estimate, and then give an alternative 
numerical implementation to that in [54] by invoking internal stress variables. We term 
the resulting scheme a hybrid Volterra-internal-variable formulation since the numerical 
scheme and error analyses in [54, 55, 56] are all framed in the context of the Volterra 
formulation, while the material below draws on the internal variables discussed in the 
previous chapters and is ultimately based on the work of Johnson et al. in [24, 25, 23]. 

After outlining the solution algorithm we design some test problems for which we 
know the exact solutions and then compute some numerical solutions, and their errors, to 
demonstrate consistency, spatial convergence and temporal convergence. 

45 
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7.2    Finite element discretization 

To discretize the problem (4.3) with (2.2) using the finite element method we first identify 
a suitable test space H to capture the spatial regularity, and then take the scalar product 
of (4.3) with a test function and integrate by parts over the domain Q for an arbitrary 
time t G J. Later we then allow the test function to be time dependent and integrate 
through time as well to prepare for a space-time finite element discretization. 

Since the displacements are vector valued we first define for s — 0,1,2,... the product 
Hilbert spaces, 

(H
S
(ü), (■,■).)== (#'(")> (• > • W)) x • • •x (#'(")> (• > • W))   (n times)> 

where the inner products are given by, 

(w,v)a :=^2(wi,Vi)H. 
(«)■ 

i=l 

for all w, v G HS(Q). These spaces have the natural norms || • ||s := ■</(•, -)s and, of 
course, Li2(ß) = H°(£l). Also, and as is usual for time dependent problems, for a Banach 
space (B, \\ • \\B) we define the Lp(0, t;B) norms by, 

\\vhp(0,t;B)--=(f*\\v(s)\\P
Bds 

for t E J, and with the obvious "ess sup" modification when p = oo. 

Using the essential boundary condition we now define the (spatial) test space, 

H := [v e Hx(0) : v = 0 on TD}, (7.1) 

and (see e.g. [54] for details) arrive at the "semi-weak" problem: find u G L00(t7;i3') such 
that, 

A(u(t), v) = L(t; v)+ I B(t, s; u(s), v) ds       V« G H, a.e. in J. (7.2) 
./o 

We call this problem "semi weak" because later we will integrate over J also to obtain a 
"fully weak" formulation. (These terms are just labels and no mathematical significance 
should be attached to the "semi" and "fully" qualifiers.) Here for the triangle, 

T := {(t, s)EjxJ:0<s<tEj}, 

the bilinear forms A : H x H ->■ R and B : T x H x H ->R are defined by, 

A(w,v)    :=     [ DijuWekiiw^ij^dn, (7.3) 
Jn 

B(t,s;w,v)    :=    jj0^'s)ekl(w)slj(v)dÜ, (7.4) 
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for all iu, v G H, and L: J x H —>• R is a time dependent linear form defined by, 

L(t;v):= IVf(t)dü+<f   vg{t)dV. (7.5) 
Jn JrN 

For full details on this formulation along with some (rather standard) assumptions we 
refer to [54]. In particular we ensure that (H,A(-, •)) is a Hubert space with (elastic) 
energy norm || • ||# := \/A{ •, ■) and dual H', and then from [57] we have the stability 
estimate, 

IMIMO,*;*) < S(t)\\L\\Lp(0ft.HI). (7.6) 

In this estimate S : J -» [0,00) is a stability factor which for isotropic problems can be 
expressed in terms of the eigenvalues of the stress relaxation tensor (or matrix) I?. This 
factor is of crucial importance since it appears in the a posteriori error estimates and 
governs the rate at which the discretization errors can grow with time. 

To carry out a space-time discretization we need now to allow the test function to 
be time dependent and then integrate the weak form over the time interval J. Thus we 
arrive at the "fully-weak" formulation of this problem as: find u G L^J; H) such that, 

a(u,v)=l{v)       VuGLi(J;F), (7.7) 

where: 

a(u,v)    :=    /   A(u(t),v{t))dt- /     /  B(t,s;u(s),v(t))dsdt, (7.8) 
Jo Jo   Jo 

l(v)    :=    [   L{t;v(t))dt. (7.9) 
Jo 

This equation is the starting point for the space-time finite element discretization 
of the problem, and to this we now turn. We firstly partition J into N time intervals 
{Ji}£Li, where Ji := (<i-i,*t)> of lengths h := U - U-y > 0 and such that, 

J = JiöJ2U---UjN, 

so that to = 0 and tN = T. We use k to denote the piecewise constant function such that 
k\ji := h. 

For each of these Ji we construct on Q (in the usual way) a triangular/tetrahedral 
space-mesh of Mj elements and denote the domain tt with this mesh by SV Element j of 
tti will be denoted fiy and we set, 

hij := diam(fiij), 

and use h to denote the piecewise constant mesh function given by /i|ny := h^. We also 
use hi to denote the mesh function at times t G Ji given by hi\atj := h^, and use these 
notations to see that h\j{ :— hi. We need to assume that arbitrary partitions of fü x J of 
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this nature always exist because in an adaptive solution the {Ji} and {fl^} are of course 
not known in advance. 

Having now broken the prismatic domain fl x J into the laminae (or "slabs") fl x Ji, 
indexed by the time levels i G N(l,iV), we define for each flj the semidiscrete (spatial) 
finite element spaces, 

Hi := {v G H D (C(fl))n : v is linear on fly for each j G N(l,Mj)}. 

The space-time finite element spaces are now given by Vr where, 

Vr := {v G LP(J;H) : v\J{ G Fr(Ji\Hi) Vi G N(1,W)}. 

Here Pr(j7i;i7j) is the vector space of polynomials of degree at most r defined on Ji 

with coefficients in iZj. Note that our approximating functions in Vr are continuous in 
space but in general discontinuous at the knots {U}^1. These discontinuities allow the 
space-meshes to change with time. 

We define also the set of internal edges (for triangular fly in R ), or faces (for tetra- 
hedral fly in R3) in each fi{ as, 

Ci := <£ C fl : 3j G N(l, Mi) such that I is an edge/face of fly j, 

and the set of edges, or faces, on the Neumann boundary IV as, 

Ti := \t C IV : 3j G N(l,Mj) such that £ is an edge/face of fly}. 

We assume that there are respectively Nc{ and Njr. such edges in the time interval Ji. 
We also define, 

Kij ■■= Cj\(£in Cj) for l<j <i<N, (7.10) 

as the set of internal edges/faces belonging to Cj but not to Ci. Note that Hu = 0, and 
that if we control our adaptivity and allow only nested refinements such that üT{_i C Hi 
for i G N(2, N), then d n Cj = Cj and Uij = 0. 

Once we choose a value for r, which for us will be r = 0 or r = 1, we form the finite 
element approximation to (7.7) as: find U G Vr such that, 

a(U,v)=l(v)       VveVr, (7.11) 

and subtracting this from (7.7) gives the fundamentally important Galerkin "orthogonal- 
ity" relationship: 

a(u - U, v) = 0       \/v G Vr. (7.12) 

This property, when coupled to the strong data stability of an associated dual backward 
problem, is the basic building block in the error estimation technique developed by Johnson 
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et al. in for example [16]. For our problem it is, however, of limited use since we do not 
have strong temporal stability of the solution. 

Note that as the foregoing suggests the material in [54, 55, 56] is applicable to both 
two- and three-dimensional problems, although here we are concerned only with two- 
dimensions. Also, we take r = 0 in all that follows which corresponds to a piecewise 
constant temporal approximation. The numerical algorithm corresponding to piecewise 
linear time discretization is summarized in [54]. 

In [55] we give a detailed list of assumptions on the data and in particular on the 
approximation properties of the spaces {Hi} and Vr. These again are rather standard and 
would be out of place here. Note also that we assume that Q is piecewise constant in 
space. We could easily allow the case where D is piecewise smooth in space at the price 
of an extra term in the error estimate, but the piecewise constant case is more likely to 
arise in practical problems since most materials have piecewise constant properties. 

The a priori error estimate for this problem is derived in [54]; it takes the following 

form. 

Theorem 1 (A priori Galerkin energy-error estimate) Under certain natural as- 
sumptions, and for approximation in Vr, for r = 0,1, the Galerkin error e := u — U 

satisfies the a priori error estimate, 

II--u\\Loo(J.,H)<c(T) uh\htfu , ,,_ + n* a-™ 
LociJ-MiQ)) 

kr+ldr+lu 

8V+1 

Loo{J\H)J 

where C(T) is a constant.  This estimate holds for r = 1 only if each kq is small enough, 

and depends also on the ratios kq/kq-i. 

Such a result is reassuring in that it guarantees convergence and also demonstrates 
the form required for the upper bound on the a posteriori estimate in order to guarantee 
robustness. However, from a software implementation standpoint the a posteriori error 
estimate is much more relevant since it can form the basis of an adaptive code. We consider 
adaptivity in the next chapter and below illustrate the convergence of the scheme with a 
few example exact solutions. First we detail the practical implementation of this scheme. 

7.3    Internal variable formulation 

Before we get to the numerical scheme in the next section it is useful first to re-write (7.7) 
in terms of internal stress variables. Recall first that the constitutive law is given by, 

a(t) = D(0)e(u{t)) - f Ds(t - s)e(u(s)) ds 
Jo 

(neglecting x dependence), where, 

and 
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Also, we consider only isotropic materials and so write, 

D(t) = X(t)Ix + i*(t)Iß, 

where, 

/l    1    0\ /l    0      0  \ 
Ix :=     1    1    0 and 1^ :=     0    1      0      , 

\0    0   0/ VO    0    1/2/ 

and A(t), /i(<) are given by Prony series-type relaxation functions. For the stress we then 
have, 

o-(<) = ?(i)-S(«;<), 

where, 

q(t)   :=   D(0)e(u(t)) = instantaneous elastic stress, 

S(u; t)   :=    / Ds(t — s)e(u(s)) ds = inherited viscous stress. 
Jo 

Setting Aj := \{I\ and ^ := /JJIM and defining the internal stress variables, 

SA>;i)    :=   Xikfe-^-^eiuis^ds 
Jo 

S« Jo 
we have, 

E(u;t)= /  D,(t-«)e(u(s))ds = 2^(«;<) +ES«(«;')• 

Note that these internal variables satisfy evolution equations of the form, 

VXi(ii;t) + liIlx.(uit) = XiUe(u(t)), 

and also that the following "update recurrences" apply, 

EA>;i)    =   e-W-^E^^+Xikfe-W-^eiuWds, 

Sw(u;t)    =   6'™«-^^) + »w j* e-m«-sh{u{s))ds. 

Using these new definitions with (7.8) and (7.4) we get an alternative representation of 
the history as, 

I B(t,s;u(s),v)ds   =    j  (f Ds(t - s)e(u(s))dsj • e(v)cKl, 

=     I H(u;t) ■ e{v)dtl. 
Jn 

The point to note here is that the history integral has now vanished and been replaced 
by a local (in time) term.  We will use a similar approach below to form the numerical 
algorithm. 
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7.4    The numerical scheme 

To obtain a practical scheme from (7.11) in the case r = 0 we choose v such that v = 0 
outside of the time interval Jq, and then v G Hq is a piecewise linear function of x during 
times t € Jq. Writing Uq := U\jq for the discrete solution restricted to this time interval 
equation (7.11) then becomes, 

a(Uq,v) = l(v)       Vv\Jv e Hq, v\j\Jq = 0, 

for each q = l,2,.... Here, 

/(„)= ["  L(t;v)dt, 
Jtq-i 

and, 

a(Uq,v)= f"  Ao(t-tq-i;Uq,v)dt- I"    I" * B(t,s;U(s),v)dsdt, 
Jtq-l Jtq-l JO 

where, 

Ao(t-tg-i;Uq,v) := f Dijki(t-tq-i)eki(Uq)eij(v)dü. 

As above, we assume throughout an isotropic material so that the tensor D can be equiv- 
alently thought of (in two space dimensions) as the matrix, 

(\{t)+ti{t) n{t) 0     \ 
D=[       tx(t) \(t) + fi(t)       0        . 

V        0 0 /x(*)/2/ 

Now, taking v to be each basis function for Hq in turn, and imposing essential bound- 
ary data etc. in the usual way we arrive at the equation system, 

f  A(t-tq-i)dtUq= I"  F(<)dt + "history". 

We turn to the "history" contribution arising from the double time integral below since 
we want to give an internal variable interpretation along the same lines as in the previous 
section. Note that this is different to the discrete scheme presented in [54] where we 
considered a direct discretization of the Volterra integral. In the equations above A and 
F are essentially the same as the standard stiffness matrix and load vector that arise in 
standard finite element discretizations of the linear elasticity problem. The only difference 
is that the Lame functions and loads are time dependent. 

In the practical scheme we integrate these equations to arrive at the problem: for 
each q = 1,2,... in turn, find Ug € Hq such that, 

AqUq = Fq+  "history". 
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Now A is precisely the stiffness matrix for linear elasticity but built with the modified 
Lame functions, 

rtg ttq 
I      \(t - tq-\) dt        and /      ß{t - tq-{) dt. 

Jtq-i Jtq-i 

For the generic Prony series relaxation function, 

Nx 

x(t)=X0 + J2*ie~ait> 
i=l 

we have, 

/ *  X(t - Vi) dt = kqXo + £ -(! - e~aik"), Jtq-l i=iai 

where kq := tq — tq-\. These A and fi terms are then easily evaluated during equation 
assembly by simple function calls. To evaluate the time integral of the load vector we 
apply the following Gauss rule to the body forces / and tractions g, 

I   m{z) dz ta w- (m(f+) + m(f _)) + m+ (m(r)+) + m(»7_)), 

where, 

1      y/30      ,        1  ,    /15 +2^/30 , 1       /15-2V30 
ro±:=4±^2~'    &;=2±V"^iÖ~"     and     %:=2±V       140      • 

This rule is exact for m{z) = z7, and again we note that the load vector calculation and 
assembly routines in a standard code need only be modified in a trivial way. 

To build the "history" term into the equations recall that we need to include the 
double time integral, 

rta- rtq        ftq-1 
l       I       B(t,s;U(s),v)dsdt. 

Jtq-i Jo 

Recalling our internal stress variables from the previous section note first that we have, 

f~l B{t,s;U{s),v)ds   =    £ / e-W-^VxiMtg-t) ■ e(t>)dfi, 
Jo i^lJil 

N«   r 
+   £ / e-^H-Oj)   ([7iVl) • e(v)dü 

From this it follows that we may write the double time integral of the strain history as, 

ftq        ftq-l 
/       /        B(t,s;U(s),v)dsdt 

Jtq-\   JO 
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E/[r e-^-^v^u^dt 

• e(u) dft 

e(t>) cftL + 

Noting expressions of the form, 

ftq  e-U{t-tq-i) dt = z-i(1 _ e-kkq^ 
Jtq-i 

the double time integral simplifies to give, 

[tq   fq~l B(t,s;U(s),v)dsdt   =   f/^(l-e-'^J^^Vil-eHdO 

i=lJn 

For a piecewise linear (spatial) finite element approximation E^(C7;<g_i), 2^.(1/;<9_i) 
and e(u) (for « € .H",) are constant on each element and so these terms are trivially 
integrated to determine the local viscous load vectors. Thus the solution algorithm takes 
the following outline form. 

Outline algorithm 

Initialize: E>{ = Ew = 0 for each i. 

Do: for time levels q = 1,2,..., 

• Given 

SAi(U;*9_i) and ^(U;^) 

from the previous time step initialize, for each element ilqj, the local component 
viscous force vectors, 

F% = SAi([^;Vi) • e(v)        and        F% = £Mi(t7;t9_i) • e(v). 

• From these form, 

nit-nf i-Hi-e-iik")dnqj 
JQqj 

(and similarly for the F^). 

• Form the global component viscous forces, 

(and similarly for the F^). 



54 CHAPTER 7.   THE NUMERICAL ALGORITHM 

• Assemble the global total viscous forces, 

i=l i=l 

• Solve the global system, 

AqUq = Fq + Fv\sc. 

• Update history data: UpdateViscousStresses(). 

next q 

Stop 

In all of the numerical results subsequently presented, the global equations are solved 
with a diagonally scaled conjugate gradient iteration. Unless explicitly stated otherwise 
we invariably use a residual tolerance of ecg = 10-7 as a stopping criterion. 

After the solution of the global equations the call to UpdateViscousStresses() 
performs updates of the following form, 

Jta-l 

The viscous stresses are now ready for the equation set to be solved at the next time level. 

Note that, 

k f"  e-^4«-s) ds = 1 - e-lik", 
Jtq-l 

and so for piecewise constant temporal approximation the update equation simplifies to, 

We now detail some numerical tests. 

7.5    Numerical tests 

In this section we demonstrate the convergence of the numerical algorithm by comparing 
the known solution against artificial exact solutions. Invariably we design the loads and 
tractions so that the exact displacements have the form, 

Ul(x,y,t) = T(t)X(x,y) and u2(x,y,t) = T(t)Y(x,y). 

These forms make it easier to determine the loads / and g. 
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In the following examples we use the data, 

E = 2.776 090 556 GPa and v = 0.4, (7.13) 

which imply for plane stress that, 

A(0) = 1.321947 884 GPa        and        p{0) = 1.982 921826 GPa. (7.14) 

The reason for these choices will become clear later when we look at particular data for 
Maranyl Nylon 6.6. For the moment we use the arbitrary relaxation functions, 

X(t)   :=   A(0)(0.3 + 0.2e-' + 0.5e-°"), (7.15) 

ft(t)   :=   /i(0)(o.2 + 0.1e-3t + 0.2e-0-7t + 0.3e-2t+0.2e-°-2t). (7.16) 

Also, since the numerical results presented below use various norms a word on how these 
norms are calculated is in order. 

For the energy and L^Q) norms we use a seven point Gauss rule (exact for quintics— 
see e.g. [29]), while for the L^ft) norm, which we don't take too seriously, we simply use 
the nodal values. We denote the resulting approximate norms with "hats" as in, 

II • ||jr « II • llff,        II • Um « II • ||£,(n) and || ■ ||wn) « || ■ ||£oo(n). 

For the norms on time dependence we approximate the local LQO norms by sampling at 
the upper end of the time interval as in, 

IMIwji;fl) ~ HlLcotaiH):= IM'*)HJJ- 

We then approximate the global LQO norms by: 

IMIWOAH) ~ IHI^«),*;]?) := max {iMlLcotfiiJ?) -0<q<p} for tejp. 

The only exception to these rules is for the results given for the L^J; i-oo(fi)) norm of 
the error where we use the following approximation, 

IMlLootf-;i;oo(n)) « II^Hoo :=max{|K*,)||£oo(n) :g= 1,2,...}, 

and where iq := (tq + tq-\)/2 denotes the midpoint of the time interval. 

Also, the tables of results presented below and in the next chapter are verbatim 
output from the finite element code described later in Chapter 9. The key to the column 
heading is given in the table below. 
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"verbatim output" meaning 
k_i 
N elem 
llu||_E 
lluhlU 
luhl+lel 
Iuh|+est|e| 
l|u-uh||_E 
estl|e|I JE 
inf I u-uh I 
llu-uh|| 
lls-shll 

time step k 
Number of elements M 
Maximum energy norm HuH/^fj-jjj) (when known) 
Maximum energy norm \\U\\Laa(j.H) 

\\U\\Loo(j;H) + \\u ~ U\\Loo(J.H) (when known) 

Maximum energy error ||u — UWL^J.^H) (when known) 
Estimated energy error £Q (T; U) 
Not used — ignore this column 
Exact displacement error \\u — C^||i,0O(17;i,2(n)) (when known) 
Exact stress error ||g — Gh\\L00{jjL2(fi)) (when known)  

7.6    consistency test 

Using a domain of arbitrary shape, shown in Figure 7.1, we solve a problem for which the 
Galerkin approximation is exact by setting, 

T(t):=l,        X(x,y):=-0.03x        and Y(x,y) :=-0.04y. 

For boundary conditions we impose a homogeneous Dirichlet condition on u along the 
left-most vertical edge, and the same on v along the bottom-most horizontal edge. All 
other edges have tractions imposed. 

Since the approximation is continuous piecewise linear in x and y and discontinuous 
piecewise constant in t it follows that the numerical solution should coincide with the 
exact solution up to quadrature error. 

We solve for a constant time step of k = 0.5 to the final time T = 1 for mesh widths 
h = 0.4,0.2,0.1, The first two of these "regular" meshes are shown in Figure 7.1. 

The results are shown in the table. 

ki N «l«m llulI.E MuhlLE luhl+l.l luhl+««tl« llu-uhll_E •at   II.II.E inf |u-uhl llu-uhll ll»-«hll 
5.0000.-01 10 2.630«+03 2.630«+03 2.630«+03 2.630«+03 1.03770B«-06 2.298352«-07 1.844«-11 1.060«-11 B.488«-02 
6.0000«-01 45 2.630«+03 2.630«+03 2.630«+03 2.630«+03 1.037425«-06 l.B71306«-07 1.84S«-11 1.060«-11 5.488«-02 
B. 0000.-01 177 2.630«+03 2.630*403 2.630« +03 2.630.+03 1.055355«-06 1.205493«-07 1.9700-11 1.062«-11 B.B32«-02 
5.0000«-01 762 2.630«+03 2.630«+03 2.630«+03 2.630«+03 1.070804«-06 8.789404«-08 1.946«-11 1.061.-11 E.E55«-02 
B.0000e-01 3109 2.630.+03 2.630«+O3 2.630«+03 2.630«+03 1.094567«-06 6.704061«-08 1.940«-11 1.062«-11 6.601«-02 

From the table we see that the errors are small and in fact at machine round-off once 
the magnifying effect of A(0) and /x(0) are taken into account. 

Repeating the calculations but with k = 0.25 instead of k — 0.5 we get the following 
tabulated results. 

ki N «lam llulI.E lluhll.E luhl + l.l lubl+.itl. Mu-uhlLE •>t   II.II.E inf 1 u-uh 1 llu-uhll ll«-»hll 
2.BOO0.-O1 10 2.630.+03 2.630«+03 2.630«+03 2.630.+03 5.411607.-09 1.337637.-09 9.561.-14 5.521.-14 3.173.-04 
2.6000«-01 45 2.630«+03 2.630.+03 2.630«+03 2.630.+03 1.935447.-07 4.963813.-08 1.159«-12 2.779«-13 8.384.-03 
2.B000«-01 177 2.630«+03 2.630«+03 2.630.+03 2.630.+03 2.049913.-07 3.918273.-08 1.466.-12 3.185.-13 8.049.-03 
2.B000.-01 762 2.630.+03 2.630«+03 2.630.+03 2.630.+03 3.662663.-07 6.698072.-08 1.642.-12 6.039.-13 1.369.-02 
2.S000.-01 3109 2.630.+03 2.630.+03 2.630.+03 2.630.+03 4.656104.-07 6.152344.-08 1.816.-12 5.880.-13 1.754.-02 

The estimated error quantities shown in the tables is related to the a posteriori error 
estimate and will be explained fully in the next chapter. We include it here in order to be 
able to refer back later on. 
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Figure 7.1: Regular meshes for h = 0.4 and h = 0.2 

11 nodes, 10 elements 
10 boundary sides during 
times t G (0.500000,1.000000). 

33 nodes, 45 elements 
19 boundary sides during 
times t G (0.500000,1.000000). 

7.7    Spatial convergence 

We now keep T(t) as above and change X(x,y) and Y(x,y) to, 

X(x,y)   :=   -0.03x7 +0.025 sin(27ra;)sin(7ry + 7r/2), 

Y(x, y)   :=   -0.04y9 + 0.035 sin(7ra: + TT/2) sin(27ry). 

All other data is as before (with k = 0.5) and we again loop through the same sequence 
of regular meshes to examine the spatial error convergence. 

ki N *l*m MulLE lluhll.E luh|4|.| luh|4*>tl* llu-uhll.E •at   IUII.E inf lu-uhl 1iu-uhl1 ll«-.hll 
6.00006-01 10 8.851*403 5.866*403 8.561*403 9.183*403 6.244285*403 7.072830*403 4.919*-02 2.393*-02 2.967*408 
6.0000.-01 45 8.661*403 8.065*403 8.570*403 8.689*403 2.898224*403 3.233216*403 1.325*-02 3.972*-03 1.314*408 
6.0000«-0i 177 8.661*403 8.440*403 8.664*403 8.594*403 1.448311*403 1.616137*403 7.472«-03 2.378«-03 6.703*407 
6.0000« -01 762 8.661*403 8.531*403 8.561*403 8.567*403 7.154630*402 7.818353*402 1.724*-03 5.423*-04 3.299*407 
6.0000« -01 3109 8.661*403 8.654*403 8.561*403 8.562*403 3.422946*402 3.783819*402 2.925*-04 6.892*-05 1.559*407 
6.0000.-01 12628 8.661*403 8.559*403 8.561*403 8.561*403 1.663714.402 1.866497*402 5.813«-05 1.400*-05 7.679*406 

It is evident that the energy error is 0(h) as expected. 

7.8    Temporal convergence 

To examine the time discretization error in isolation we now set, 

T(t) := 1 + 4/2 + sin(27T<),        X{x,y) := -0.03a; and Y(x,y) := -0.04y. 

We should expect to see errors converge to zero as fc -r 0 independently of h.  Here we 
choose h = 0.4 corresponding to the mesh shown on the left of Figure 7.1. 

ki K *l*m llull.E lluhlLE luh|4|.| luhl+.itl. llu-nhll.E •*t   II.II.E inllu-uhl llu-uhll lli-.hll 
1.0000*400 10 3.945*403 3.178*403 3.269*403 3.193*403 7.677814*402 3.119966*402 1.834*-03 7.469*-03 5.821*407 
6.0000*-01 10 3.946*403 4.641*403 4.834*403 4.656*403 1.986738.403 7.177276*402 1.482.-02 1.926.-02 1.340*408 
2.6000.-01 10 6.589*403 4.764*403 4.967*403 4.762*403 1.798382*403 6.619429*402 3.490*-03 1.743.-02 1.218*408 
1.2500«-01 10 6.589*403 6.404*403 5.420*403 5.406*403 1.060321*403 3.812406*402 l.O62*-03 1.018.-02 7.120*407 
6.2500*-02 10 6.689*403 6.562*403 6.663*403 5.662*403 6.476366*402 1.988857*402 2.730*-04 6.309.-03 3.714*407 
3.1250*-02 10 5.589*403 5.593*403 6.693*403 6.693*403 2.771164*402 1.006664*402 6.807*-05 2.687.-03 1.880*407 
1.6626*-02 10 6.697*403 5.595*403 6.696*403 6.595*403 1.390760*402 6.052768*401 1.708*-05 1.348.-03 9.436*406 
7.8125*-03 10 6.697*403 6.597*403 6.597*403 6.697*403 6.962842*401 2.629828*401 4.276*-06 6.760.-04 4.724.406 
3.9O62.-03 10 6.698*403 6.697*403 6.697*403 6.697*403 3.483190*401 1.265596*401 1.069*-06 3.377.-04 2.363.406 
1.9631.-03 10 5.698*403 5.598*403 5.698*403 6.696*403 1.741976*401 6.329462*400 2.672«-07 1.689.-04 1.182.406 
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This time we see that the energy error is O(k), again as expected. 

7.9    The general case: D ^ DT 

For more general anisotropic problems we cannot assume that D(t) = DT(t) unless t = 0 
or t = oo. Hence A ^ AT and we would have the additional complexity of solving a 
nonsymmetric system at each time level. In this case we could use the evolution equa- 
tions for the internal variables and couple these to an elasticity solver (with additional 
viscous loads) in an iterative solution algorithm. This is essentially the solution technique 
described by Johnson and Tessler in [24] and is suited also to constitutively nonlinear 
problems. 



Chapter 8 

Adaptive error control 

8.1    Introduction 

In this chapter we summarize the a posteriori error estimates developed recently by Shaw 
and Whiteman, in [55, 56], for the Volterra formulation of the quasistatic problem defined 
by (4.3) with (2.2). These results follow on from the exploratory work in [44, 47, 57, 53]. 
We then implement these error bounds in the context of an adaptive space-time finite 
element solver for the linear problem with viscoelasticity described by relaxation functions 
of Prony type. We note here that while the estimates themselves do not rely on this 
form of relaxation function, it is the only convenient choice for numerical computation 
since it leads to an economical history storage strategy (see for example [45]). Also, as 
already demonstrated, the Prony series leads to a natural connection with internal variable 

methods. 

The plan for the chapter is as follows. We first summarize the basic error bound as 
given in [55], and to do this we refer back to the weak form of the problem as well as its 
space-time finite element discretization given in the previous chapter. Since in many ways 
the problem is close to linear elasticity we first present the spatial error control strategy 
in this context, and also give some numerical results on error control via adaptive mesh 

refinement. 

In [55] we give two forms for the term in the a posteriori error estimate that reflects 
the time discretization error. In the first the estimate is unstable (as h ->■ 0) and so is 
useless for error control. The second form on the other hand is robust but requires that the 
residual be measured in a discrete negative norm. This would require a stiffness matrix 
inversion and is therefore likely to be prohibitively expensive. 

These difficulties are due to a lack of strong temporal stability in the underlying 
differential equations which, in this context, means roughly that there are no time deriva- 
tives present on the left of (4.3) (as would be the case with, say, an ODE or parabolic 
equation). To overcome this fundamental limitation (which has hampered other work for 
scalar pure-time Volterra equations in, for example, [28] and [2]) we are also working on 
deriving a posteriori error estimates in a weak norm in [56]. This is based on the prototype 
work in [57], and we expect this error estimate to allow for robust temporal error control 
through adaptive time stepping as well as the adaptive meshing we describe below. 
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8.2     A posteriori error estimate 

In [55] we give the following basic a posteriori Galerkin-energy error estimate:  for each 

discrete time ti,t2,---,tp,..., 

II« - U\\Loo{0jtp.tH) < S(tp)(£n(tp; U) + £j(tp; U) + £v(tP; U)), (8.1) 

where £n, £j and £y are residuals which are computable in terms of the data and the 
finite element solution U, and S(t) is the stability factor introduced before in (7.6). 

In this section and the next we will be concerned only with £Q. This term contains 
the spatial discretization error (in the case where Hij = 0 for all j < i) and can be used 
to guide adaptive space mesh refinement. It is essentially identical to the residual derived 
for linear elasticity by Johnson and Hansbo in [27], and this is useful because in the next 
section we may illustrate its interpretation and use in this less crowded context. The 
extension to viscoelasticity to come later will then be straightforward. 

The residual £j is the one described earlier as being unstable (useless) or—when 
written in a different form—prohibitively expensive to implement. As described above, we 
eventually hope to provide an alternative error estimate in which £Q and £y are essentially 
the same, while £j is stabilized at the expense of estimating the error in a weaker norm. 

It is the term £y that causes the greatest difficulty in this estimate. The spatial 
residuals in £Q are constructed by integrating the discrete solution over each element 
to arrive at a distributional divergence of the discrete stress (compare (4.3)). This 
divergence comprises two parts: the smooth function inside the element (which is zero 
in our case of piecewise linear approximation), and the stress jumps across inter-element 
boundaries. The difficulty arises because the stress is history dependent. This means that 
we have to integrate by parts over not just the elements in the current mesh, but also over 
all elements in all previous meshes. The internal edges that appeared in previous meshes 
but are no loner present in the current mesh (e.g. due to derefinement) are therefore "left 
behind" when forming the standard residual / + V • <zh (which constitutes £n), and so we 
consign the stress jumps across these edges to the term £y. In the particular case where 
only nested refinements are permitted (so that Tlij = 0 for all j < i) then no edges are 
left behind in this way and we have £y = 0. This is the case in all of our examples below. 

To deal with mesh derefinement would appear to require fairly complex data struc- 
tures in the computer code in order to track all these resulting previous edges. Also, it is 
not likely that £y will act in any way other than to degrade the quality of the estimate 
since it contains historical contributions to the current stress. These can then only act to 
reinforce one another in the estimate when in fact the residual could be much smaller due 
to cancellation. This "loss of cancellation" problem has been noted by others in the con- 
text of stress-jump residual-type estimators and the memory in the Volterra integral acts 
here only to exacerbate the problem. Our feeling at the moment is that a representation 
of the algorithm in terms of internal variables could go some way toward removing the £y 
residual since then all hereditary information is automatically represented on the current 
mesh. The price of this is that the error estimates will then be restricted to viscoelasticity 
problems for which Prony series relaxation functions are appropriate. This does not seem 
to be an unreasonable restriction. 
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We now look in more detail at the residual term £Q. This is defined at each discrete 
time level t\,t2, •.. ,tp,... as: 

€a(tp- U) := max {Unq\\hqf\\Loo{Jq.Min)) + n«||/»gS||LooW;La(n))} , (8.2) 

where HQ   and Ug are constants appearing in certain interpolation-error bounds, and 
hq = hq(x) is the piecewise constant mesh function for the mesh during times in Jq. 

The first term in the estimate is straightforward to interpret since it involves only the 
1/2 (fi) norm of the body forces weighted with the mesh function. To define the second 
term we need to establish various other notation. 

We use n(im) = (n^ )"=1 to denote the unit outward directed normal vector to the 
the boundary dQim of Clim, for m G N(l,Mj), and for an edge/face f G A we use the 
notation [7*]* to denote the jump in value across the edge/face £ of the components of 
any 7 = (7fc)Ll- That is' iov x e £ € d and each i G N(l, N), 

bk(x)]e •■= ± Jim (lk(x ~ ™{i)) —Yk(x + en®)) , (8.3) 

where: n^ is a unit normal vector to the edge/face £; and, to avoid elaborate notation we 
use "±" to acknowledge here that the sign of this jump quantity is of no interest at all. 

We denote surface (edge/face) integrals on the element boundaries by 

(w,v)e :-     w-vdt        with \\ ■ h-= y(-,-)i, 

and we define the discrete traction, 

g(t;U(t)) := (gk(t;U(t)))nk=v 

where for a unit vector n, 

gk(t; U(t)) := (ß«ö(0)ey(tf (t)) - jT aJ"ffi~'W(«))ds) * <8-4) 

(compare the natural boundary condition in (4.3)). In general these discrete tractions will 
not be uniquely defined on any edge/face £ G Ct, but the jumps {gje will. 

Now, for each time level we define r\jq - (rk)k=1 by, 

l\l9k(t;U(t))]tl        ior£GCq, 

rk(t;U(t)):={ 

2 

\9k(t)-9k(t;U(t))\,   onlV, 

> 0, on TD, 

and then with all of these definitions we define S G £2^) by, 

\\r(t;U(t))\\L2(anqj) 
S|n„, := 

,Jhqjmeas(£lqj) 
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for all j G N(l, Mq). Note that, 

KS||L,(n)=|    E_ (8.5) 

We now use £n to derive element error indicators and a mesh refinement criterion in 
the context of linear elasticity. 

8.3    Adaptive meshing for linear elasticity 

In the linear elasticity context there is of course no time dependence and so we get the 

simpler result, 

II« - U\\H < Sn(U) := Uü\\hf\\Lm + I^ASH^n). 

Note that the Loo norms and the subscripts p and q marking the time levels are not 
needed here. Also we have temporarily set S(t) = 1. It will be straightforward to extend 
the following results to the viscoelasticity problem later. 

The goal is to design a mesh for which ||tx — U\\H < TOL where TOL > 0 is a 
user-defined tolerance level. Further, this mesh should be optimal in the sense that the 
error control is achieved with as few degrees of freedom as possible. Although impossibly 
difficult to obtain in an exact sense (see for example the discussion in [17]), such a mesh 
can be approximated with sensible and restrained use of an a posteriori error estimate. 
We aim for a mesh size modification strategy for each element flj in the mesh. 

The error control is clearly achieved if we ensure that Sa(U) < TOL, and to do this 
we use the technique of equidistribution whereby each element is allowed to contribute 
equally to the global error (regardless of element size). In practice this means that we 
assign a local tolerance to I > 0 to each element and attempt to control the local element 
errors to within to I. 

For each element flj in the mesh we seek a local meshwidth hj and solution U for 
which, 

fg ■■= n^H/Hl^.) + n2Äj||S||£a(n,) = toi. 

Rearranging this we then arrive at an adaptive mesh size selector via, 

inew  

\ 

(8.6) 
nall/IH,(O,) + n?IISIIi,0i. 

for each element ü.j. Then, globally, where M is the number of elements in the mesh we 
get, 

M M 

Mxtol    =    ^tol  =  Y,Vj, 
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= nl\\hf\\l2(n) + nj\\hs\\lm   >   \{su{u))\ 

where we used the inequality a2 + b2 > (\a\ + |6|)2/2. Hence, 

TOL2 

£n(U) < TOL        is guaranteed if        tol := . 

This is then our formula for the local error tolerances. 

The basic form of the adaptive algorithm we implement is then as follows. 

1. Set i = 0 and generate an initial mesh M . 

2. Solve for the displacements Ul on M1. 

3. Compute rß on each element Qj o/M\ then: 

ifEj^2<TOL2/2STOP 

else determine a new mesh Mt+  from (8.6) 

4' Set i = i + 1 and repeat from Step 2. 

At this point we should sound a note of caution. This algorithm should not be 
interpreted glibly in that the else clause in Step 3 should not be taken literally. If every 
element is refined according to (8.6) then, unless the initial mesh M is already nearly 
optimal, one is likely to get severe over-refinement in the adapted meshes due to pollution 
error. Instead, rather than attempt to derive the required mesh in a "one shot" manner 
by subdividing each elements as indicated by (8.6), one should only halve the size of the 
elements marked for refinement and then loop back and recompute. 

Before moving on to viscoelasticity we now give a couple of examples to illustrate the 
adaptive solution of linear elasticity problems. We again assume an isotropic material in 
which case Hooke's law becomes, 

where A and \i are the Lame coefficients related to the Young's modulus E and Poisson's 
ratio v through, 

A := -7i TJI r-^r and \i := 
(1 + I/)(1-2I/) l + v 

Note that also \i = IG where G is the shear modulus of the material. In two-dimensional 
problems in which the stress in the third direction is negligible engineers frequently employ 
the plane stress approximation where, 



64 CHAPTER 8.   ADAPTIVE ERROR CONTROL 

The first definition of A in a two-dimensional formulation implies plane strain (in which 
case the strain in the third direction is assumed negligible). Typically one may use plane 
stress for very thin components, and plane strain for very thick ones. 

In the following examples we use the same data as before: (7.13), (7.14), (7.15) and 

(7.16). 

8.3.1    The interpolation-error constants Iln and 11^ 

To complete the description of the a posteriori error estimate for linear elasticity we need 
to specify the interpolation-error constants Iln and ILj. For this we adapt the approximate 
values calculated by Ludwig in [33, Tables 6.2 and 6.4]. Here the interpolation constants 
are given for a variety of Poisson ratios, for plane strain with E = 1, and assuming a mesh 
of right-angled triangles. The values are reproduced here in Table 8.1. 

Table 8.1: Interpolation-error constants 

V nfi n* Iln/IL: 

0.1 1.143177 2.683068 0.426071 
0.2 1.172415 2.715093 0.431814 
0.3 1.197708 2.734093 0.438064 
0.4 1.219404 2.741196 0.444844 
0.5-e 1.237806 (2.947157) 0.42* 

The value for 11^ for v —> 0.5 is not given by Ludwig. To calculate it here we assume 
a scaling of Iln/ILj = 0.42 and then work from the tabulated value of Iln- These values 
can be incorporated into a computer code as a look-up table and then values for any value 
of v obtained by linear interpolation. The constants scale with E in the following way: 

(Note also that Ludwig uses 2/z in Hooke's law where we use /z, but since this does not 
affect E and v this difference is immaterial). 

We need now to obtain the corresponding interpolation constants for plane stress, 
note first that: 

(/j, + 3A)/z 
A = 

ß 

vE 

(l-2i/)(l + i/) 
E 

l + v 

A = 

E = 
/i + 2A 
A 

uE 

(1-I/J2 
E 

H = l + v 

E = 

v = 

/x + 2A 

(/x + 2A)/i 
Ai + A 

for plane strain, 

for plane stress. 

H + X 
So, given E and v for plane stress we can first calculate A and zz, and then work backwards 
with these values to find the corresponding E and v for plane strain—E and v say. From 



8.3.   ADAPTIVE MESHING FOR LINEAR ELASTICITY 65 

these we can then determine the interpolation constants from the table and the scaling 
given above. 

In our numerical results we take v — 0.4 and E = 2.776 090 556 GPa which give the 
plane stress values, 

A = 0.476190 476£        and        fi = 0.714 285 714E. 

These give the corresponding E and u plane strain values, 

E = 0.918 367 346£        and        P = 0.2857.... 

Assuming E = 1 the table gives for this Poisson ratio, 

fin w 1.2        and        Üe « 2.8, 

and then using the scaling for E we finally get the values, 

1.252198 ,        _      2.9218 
U* = -7E-     and   , Ue = -7E- 

However, there is some doubt as to whether this exercise is worthwhile. These constants 
represent the worse possible case in interpolation error and often end up making the a 
posteriori error estimate significantly over-estimate the finite element error. To address 
this difficulty we have calibrated these constants against exact solutions in order to 
render the a posteriori estimates more realistic. The end result is that we divide the 
values given above by a factor of ten and twenty respectively. These values are suggested 
by the calculations for the exact solution given in an earlier table, but we will see below 
that it is desirable to determine a more systematic calibration technique. 

8.3.2    Example: exact solution 

For the moment we switch off all time dependencies and viscoelasticity effects and consider 
the adaptive solution of a linear elasticity problem. We use the elastic coefficients A := A(0) 
and /J, := /x(0) from the previous chapter, and impose loads and tractions such that the 
exact solutions are, 

T(t) :=10-2,        X(x,y):=-0mx20 and Y(x,y) := -0.04y20. 

We need these because adaptivity doesn't really show up as useful for smooth solutions—so 
we simulate a singularity. 

The notation here is exactly as in the previous chapter and we impose boundary 
conditions in the same way. For these numerical tests we simply solve to time T — 1 using 
a single time step k = 1. The first set of results show reference solutions calculated for 
uniform meshes with h — 0.4,0.2, Again, these are exactly as in the previous chapter. 
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ki H «lam llulI.E lluhll.E luhl+l.l luhl+.itl. llu-uhll_E ••t II.II.E influ-uhl llu-uhll ll.-.hll 

1. OOOO.+OO 10 8.023.+01 6.224.+01 6.198.+01 1.380. +02 6.317922.+01 1.277228.+02 5.289.-04 2.822.-04 3.896.+06 

1.0000«+00 45 8.370.+01 6.688«+01 8.377.401 9.146.+01 6.173867.+01 6.344186.+01 1.402.-04 4.603.-05 3.109.+06 

1.0000.+00 177 8.397.+01 7.671«+01 8.397.+01 6.380.+01 3.416709.+01 3.374743.+01 1.086.-04 2.062.-05 2.098.+06 

1.0000.+00 762 B.398.+01 8.167.+01 B.398.+01 8.342.+01 1.954781.+01 1.700767.+01 2.818.-05 6.674.-06 1.186.+06 

1.0000.+00 3109 B.398.+01 8.347«+01 8.398.+01 8.386.+01 9.2S8688.+00 8.078055.+00 1.351.-05 2.936.-06 6.496.+05 

1.0000.+00 12628  8.398.+01  8.387.+01  8.398.+01  8.396.+01  4.291128.+00  3.861923.+00 2.782.-06 7.406.-07 2.656.+05 

Looking at the estimated errors we now tabulate adapted solutions for TOL = 15, 
12.5, 10, 7.5, 5, with h = 0.1 for the initial mesh. 

ki H «l.m llulI.E lluhll.E luhl+l.l luhl+.it|. llu-uhll.E e.t II.II.E influ-uhl llu-uhll ll»-«hll 

1 oooo.+oo 488 8.398.+01 8.300.+01 8.398.+01 8.376.+01 1.275528.+01 1.124042.+01 1.806.-05 3.435.-06 7.766.+06 

1 0000.+00 639 8.398.+01 8.326.+01 8.398.+01 8.382.+01 1.103850.+01 9.734371.+00 1.838.-05 2.866.-06 6.731.+06 

1 oooo.+oo 711 8.398.+01 8.333.+01 8.398.+01 8.386.+01 1.042688.+01 9.379712.+00 1.772.-05 2.634.-06 6.384.+05 

1 oooo.+oo 1085 8.398.+01 8.360.+01 8.398.+01 8.389.+01 7.918571.+00 6.890573.+00 9.779.-06 1.720.-06 4.819.+05 

1 0000.+00 1858 8.398.+01 8.377.+01 8.398.+01 8.393.+01 6.874564.+00 6.137793.+00 6.566.-06 1.122.-06 3.582.+05 

Repeating these calculations but starting with an initial mesh of h = 0.2 gives the 

following results. 

ki K .l.m llulI.E lluhll.E luhl + l.l luhl+.itl. llu-uhll.E •>t II.II.E influ-uhl llu-uhll ll«-.hll 

1. oooo.+oo 512 8.398.+01 8.302.+01 8.398.+01 8.376.+01 1.263S65.+01 1.099203.+01 2.475.-05 3.2S9.-06 7.600.+05 

1.0000«+00 561 8.398.+01 8.311.+01 8.398.+01 6.375.+01 1.206217.+01 1.036425.+01 2.377.-05 2.912.-06 7.248.+05 

1.0000.+00 749 8.398.+01 8.333«+01 8.398.+01 8.384.+01 1.045034.+01 9.294968« +00 1.896.-06 1.916.-06 6.337.+05 

1.0000.+00 1289 8.398.+01 8.361.+01 8.398.+01 8.368.+01 7.842236.+00 6.718701.+00 1.051.-05 1.479.-06 4.728.+05 

1. oooo.+oo 2403 8.398.+01 8.379«+01 8.398.+01 8.393.+01 5.561009« +00 4.808581.+00 6.485.-06 7.713.-07 3.362.+05 

Although the effect on the number of elements is not too serious, this seems to verify 
the popular wisdom that the effectiveness of the adaptive meshing procedure is influenced 
by the initial mesh. We will show some pictures of adapted meshes in the next section 
where we move on and perform the analogous numerical experiments for linear viscoelas- 
ticity. 

8.4    Adaptive meshing for linear viscoelasticity 

With the strategy for adaptive space meshing established in the context of the linear elas- 
ticity problem, it is now straightforward to extend it to the time dependent viscoelasticity 
problem. All that we do is apply the mesh refinement criteria at each time level in turn, as 
if we were dealing with a sequence of linear eleasticity problems. The only major difference 
is the inclusion of the time dependence in the a posteriori error estimate. Recalling this 
estimate from (8.1) we now assume that we are given a tolerance TOLn with which to 
control the mesh such that, 

S(tp)£ci(tp; U) < TOLn, for each time level: p = 1,2,.. 

We describe the stability factor in more detail below and for now note only that it is a 
non-decreasing function. So, replacing S(tp) with S(T) and recalling the definition in (8.2) 
we see that this error control will be guaranteed if we ensure that, 

TOLn 
^-v.q\\hqf\\hoo{jq-L2{ci)) + 'Ri\\hq(3\\L00{jq-M{n)) ^ ^T^T 
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at each time level tq. The strategy is now exactly as above for the linear elasticity problem. 
Assuming a local tolerance tol we derive the adaptive mesh size selector, 

Lnew  
aQ3     -~ ^ nnll/HL(J,;^2(^)) + n?HSHL(J,;Mn,-))' 

and then S(tp)£n(tp; U) < TOLn is guaranteed if we choose 

TOL2n 

t0' (8.7) 

tol = 
2MS2(T)' 

Below, in the implementation, we replace the indicated norms with practical approxima- 
tions as discussed earlier. Note that in the above we have set Iln, = Hn for each q: i.e. 
we take the interpolation-error constants as time independent (even though the mesh is 
not), and then use the values for Iln and II* given previously. 

We now outline the form of the stability factor and then follow with the extension of 
the numerical results for linear elasticity to this time dependent problem. For the moment 
we assume that there are no time discretization errors since we want to consider the more 
difficult problem of temporal error control in a separate section below. 

8.4.1    The stability factor S(T) 

For an isotropic viscoelastic material in two dimensions the stability factor S(t) has been 
derived rather precisely by Shaw and Whiteman in [57]. We give here only the main result 
and refer to the reference for details. 

For a viscoelastic solid we have, 

S(t) := (l- I <j>{s)ds\ where        <p{t) := max{u>i(t),w2(*)}, 

and, 

WI(<):=-A(O)+MO)'       W2(<)- m- 

For example, using our test data from (7.15) and (7.16) we have, 

m ■■= { 
üj2{t),    for 0 < t < t* := 2.28476..., 

.wi(t),    ioxt>t*. 

these give, 

S(t) := { 

Ä for 0 < * < t\ 

IU(0) A(0)+/z(0) )     ' 
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Note also (thinking ahead to the "Maranyl" Nylon 6.6 data given later) that for a syn- 
chronous (solid) viscoelastic material there exists a generic relaxation function ip(t), nor- 

malized to <p(0) = 1, and such that, 

X(t)      n{t) 
= <P(t)- A(0)     MO) 

In this case we have the simpler result S(t) = \/ip(t). 

8.4.2    Example: exact solution 

We continue with the "singular" linear elasticity example used above, but now use the 
assynchronous relaxation data for \{t) and n(t) as described by equations (7.13)—(7.16). 
In particular we still take T(t) = 10~2 and solve up to time T = 1, this means that the 
solution is time independent and the only time discretization error is due to numerical 
integration of the load terms / and g. To keep this quadrature error "under control" we 
first do some tests to determine an appropriate time step. 

To follow the pattern of the linear elasticity calculations we first show results for 
uniform meshes h = 0.4,0.2,... in the tables below for k = 1.0, 0.5 and 0.25. The first 

table is for k = 1.0. 

ki H 6l.n llulI.E lluhll.E luhl + UI luhl+.jtl« 1 lu-uhl I.E 6»t ||6||.E inf lu-uhl 1 lu-uhl 1 ll»-«hll 

1.0O00«+00 10 8.023e+01 5.2376+01 8.209e+01 1.6866+02 6.321785e+01 1.6027396+02 5.0746-04 2.7746-04 2.5846+06 

1.00006+00 45 8.3706+01 6.6166+01 8.4006+01 1.0326+02 5.1765306+01 7.9176716+01 1.7776-04 6.8276-05 2.0416+06 

1.00006+00 177 8.3976+01 7.677.+01 8.4046+01 8.7606+01 3.417289e+01 4.2177966+01 1.3286-04 3.0486-05 1.3916+06 

1.00006+00 762 B.3986+01 8.1716+01 8.401e+01 8.442*401 1.955150e+01 2.1219866+01 3.4696-05 9.7536-06 7.8346+05 

1.00006+00 3109 8.3986+01 8.3486+01 6.399o+01 B. 4086+01 9.260549«+00 1.0059266+01 1.3686-05 2.6876-06 3.6156+05 

The analogous results for k = 0.5 now follow. 

ki N 6l6m llulI.E lluhll.E luhl + UI Iuhl+6itl6 1 lu-uhl I.E 6«t ||6||_E inf lu-uhl 1lu-uhl1 ll.-.hll 

S.00006-01 10 8.0236+01 5.2426+01 8.2146+01 1.6866+02 6.3236766+01 1.6026186+02 5.1596-04 2.7916-04 3.0086+06 

6.00006-01 45 8.3706+01 6.6256+01 8.4086+01 1.0326+02 6.1767556+01 7.9146046+01 1.8936-04 6.4116-06 2.3846+06 

5.00006-01 177 8.3976+01 7.6806+01 8.4066+01 8.7616+01 3.4177036+01 4.2166856+01 1.4036-04 3.3986-05 1.6196+06 

6.00006-01 762 8.3986+01 8.1726+01 8.4036+01 8.4436+01 1.9554156+01 2.1214876+01 3.6706-05 1.0856-05 9.1296+05 

6.00006-01 3109 8.3986+01 8.3486+01 8.4006+01 8.4096+01 9.2618866+00 1.0056976+01 1.3726-05 2.7246-06 4.2196+05 

And now the results for k = 0.25. 

ki N «lern MulLE lluhll.E luhl + M |uh|+68t|6 1lu-uhlI.E 6Et IUII.E inf1u-uh1 1 lu-uhl 1 lli-ihll 

2.50006-01 10 8.0236+01 5.2446+01 8.2166+01 1.6866+02 6.3245846+01 1.6025836+02 6.2176-04 2.8046-04 3.3616+06 

2.60006-01 45 8.3706+01 6.6296+01 8.4116+01 1.0326+02 6.1773626+01 7.9134046+01 1.9426-04 6.6716-06 2.6716+06 

2.5000«-01 177 8.3976+01 7.6816+01 8.4076+01 8.7626+01 3.4179126+01 4.2162336+01 1.4356-04 3.6486-05 1.8096+06 

2.50006-01 762 8.3986+01 8.1726+01 8.4036+01 8.4436+01 1.9555476+01 2.1212836+01 3.7646-05 1.1326-05 1.0216+06 

2.60006-01 3109 8.3986+01 8.3496+01 8.4006+01 8.4096+01 9.2625516+00 1.0056046+01 1.3766-05 2.6186-06 4.7256+05 

One can see that the quadrature error has only a marginal affect on the "energy" 
quantities, which are our primary concern, and hence we use only a single time step for 
the following adaptive solutions. 

For the adaptive solutions we use the same set of tolerances as before: TOL = 15, 
12.5, 10, 7.5, 5. The initial mesh is again given by h = 0.1, and the results are shown in 
the table below (with k = 1). 



8.5.   PHYSICAL EXAMPLES WITH "MARANYL" 69 

ki N   «1«D llulI.E 1lubll_E luhl + l.l luhl+«»tl«l llu-uhll.E •«t   II.II.E lnf |u-uhl llu-uhll II•-■hi I 
1.OOOO.+OO 69S 8.398.+01 6.331.+01 8.398«+01 8.416«+01 1.061322.401 1.166403.+01 2.015.-06 3.930.-06 4.303.+05 
1.0000.+00 711 8.398«+01 8.333.+01 8.398«+01 8.415.+01 1.O42769.+01 1.171360«+01 1.986.-05 3.928.-06 4.234.+06 
1.0000.+00 10S6 8.398«+01 8.359.+01 8.398«+01 6.40S.+01 8.086324«+00 8.724684.+00 1.217.-05 2.726.-06 3.261.+06 
1.0000« +00 1584 8.398.+01 8.373«+01 8.398«+01 B.402.+01 6.478367«+00 7.022869.+00 8.442.-06 2.027.-06 2.612.+05 
1.0000«+00 3064 8.398.+01 B.38B«+01 B.398«+01 8.400«+01 4.699467«+00 6.016549.+00 4.422.-06 1.241.-06 1.884.+06 

The adapted meshes for a selection of tolerances and some plots of the stresses are 
shown in the Figure 8.1. 

This example is of course non-physical and is useful only because we know the exact 
solution. Below we give some more physical examples using material data for a Nylon 6.6 
compound. 

8.5    Physical examples with "Marany 1" 

We assume a synchronous material wherein A and /x exhibit the same time dependence 
(which implies a constant Poisson ratio) and take the data as given by (7.13) and (7.14). 
For the single stress relaxation function we take E(p(t) where, 

<p(t) = J2 <Pie -ait 

i=0 

with: 

<po    =   0.183429971 aQ   =   0.0 
tpi    =   0.385804129 ai    =    53.821223820 
<p2    =   0.430765899 a2   =   1.592948754 

Here the ipi are dimensionless while the «j have units (years)- . These data are derived 
from experimental creep response curves for Nylon 6.6 compound "Maranyl", and are 
taken from [45, Equation (5.39)]. (Note that we have "modernized" the units by using the 
conversion factor lpsi = 6894.8 Pa.) 

8.5.1    Example: L-shaped lever arm 

We now consider an example of an L-shaped lever arm as shown in Figure 8.2. The arm is 
fixed rigidly in both displacements along its leftmost vertical edge. In addition a vertical 
traction of —5 MPa is applied along the horizontal top edge, and a horizontal traction of 
—500y kPa is applied along the rightmost vertical edge. All other data is as before (e.g. 
k = 1 and T = 1). 

The first tabulated results are for uniform refinements with h = 0.4, 0.2, 0.1,  

ki K «l.m llulLE 1 lublI.E luhl+l.l luhl+.itl.l llu-uhll.E ••t   1 I.II.E inf |u-uhl llu-uhll ll.-.hll 

1 oooo.+oo 11 0.000.+00 2.666.+02 3.629.+02 2.690.+02 2.666369.+02 3.472313.+01 1.784.-02 9.893.-03 3.200.+06 

1 oooo.+oo 50 0.000.+00 3.080.+02 4.366.+02 3.109.+02 3.080140.+02 4.257241.+01 2.752.-02 1.549.-02 4.162.+06 

1 0000.+00 204 0.000.+00 3.643.+02 E.010.+02 3.558.+02 3.542776.+02 3.285800.+01 3.701.-02 2.169.-02 4.812.+06 
1 oooo.+oo 890 0.000.+00 3.693.+02 5.223.+02 3.700.+02 3.693209.+02 2.215892.+01 4.O05.-02 2.329.-02 5.017.+06 
1 oooo.+oo 3744 0.0O0.+00 3.764.402 S.323.+02 3.765.+02 3.763879.+02 1.080548.+01 4.145.-02 2.414.-02 6.072.+06 

1 0000.400 15208 0.000.+00 3.781.402 S.347.+02 3.781.+02 3.780726.+O2 7.078166.+00 4.172.-02 2.430.-02 6.094.+06 
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The next table of results are for adapted solutions with TOL = 32, 24, 16, 8 and 
where we again start with an initial mesh of h = 1.0. Some of the meshes and plots of the 
stress surfaces are shown in the Figure 8.2. 

ki H «lern llull.E lluhll.E luhl + l.l luhl+««tl« Ilu-uhll_E •st II.II.E inf 1 u-uh 1 1 lu-uhl 1 ll»-«hll 

1.0000«+00 308 0.000«+00 3.642.+02 5.151.+02 3.653.+02 3.642289.+02 2.733388.+01 3.884.-02 2.268.-02 4.936.+06 

1.0000«+00 60S 0.000«+00 3.715.+02 6.254.+02 3.721.+02 3.714864.+02 2.074337.+01 4.034.-02 2.357.-02 E.018.+06 

1.0000«+00 1542 0.000«+00 3.757.+02 E.314.+02 3.760.+02 3.757406.+02 1.441982.+01 4.119.-02 2.402.-02 5.066«+06 

1.0000«+00 6460 0.000.+00 3.782.+02 6.348.+02 3.782.+02 3.781621«+02 7.942376.+00 4.170.-02 2.430.-02 6.093.+06 

Here it requires over 15,000 elements to achieve a similar estimated error as the 
adaptive solution produces with only 6460 elements. 

8.5.2    Example: a simple crack 

We now consider a simple horizontal crack in a rectangular component. Due to symmetry 
we consider only the upper half of the component, and load the top edge with a vertical 

traction of 5 MPa—see Figure 8.3. 

Following exactly the same pattern as above, the first tabulated results are for uniform 

refinements with h = 0.4, 0.2, 0.1, — 

ki H «l.m llull.E lluhll.E luhl + l.l luhl+.itl« llu-uhll.E •>t II.II.E inf lu-uhl 1lu-uhl1 ll.-.hll 

1.0000«+00 8 o.ooo.+oo 2.130.+02 3.012.+02 2.144.+02 2.129519.+02 2.622603.+01 7.835.-03 2.542.-03 2.833.+06 

1.0000«+00 34 0.000.+00 2.303.+02 3.256.+02 2.320«+02 2.302629.+02 2.801396.+01 1.012.-02 3.225.-03 3.172.+06 

1.0000«+00 146 0.000.+O0 2.444.+02 3.456.+02 2.453«+02 2.444114.+02 2.100032.+01 1.216.-02 3.836.-03 3.356.+06 

1.0000«+00 618 0.000.+00 2.E14.+02 3.555.+02 2.619«+02 2.514081«+02 1.620563.+01 1.309.-02 4.139.-03 3.460.+06 

1.0000.+00 2596 0.000.+00 2.E67.+02 3.630.+02 2.569«+02 2.567010«+02 9.700642.+00 1.379.-02 4.373«-03 3.540.+06 

1.0000.+00 10394 0.000.+00 2.687.+02 3.659«+02 2.588«+02 2.B87460.+02 6.990774.+00 1.405.-02 4.462«-03 3.673.+06 

The next table of results are for adapted solutions with TOL = 32, 24, 16, 8 and 
where we again start with an initial mesh of h = 1.0. Some of the meshes and plots of the 
stress surfaces are shown in the figure. 

ki N .Lin llulLE lluhll.E luhl+lel luhl+««tl. llu-uhll.E «ft II.II.E inf lu-uhl 1 lu-uhl 1 lli-ihll 

1.0000.+00 146 0.000.+00 2.444.+02 3.456«+02 2.453«+02 2.444114.+02 2.100032«+01 1.216.-02 3.836«-03 3.356«+06 

1.0000.+00 146 0.000.+00 2.444.+02 3.456«+02 2.453«+02 2.444114«+02 2.100032.+01 1.216«-02 3.836.-03 3.356.+06 

1.0000.+00 301 0.000.+00 2.543«+02 3.697«+02 2.548«+02 2.543484«+02 1.592360«+01 1.340«-02 4.255«-03 3.620.+06 

1.0000.+00 2235 O.000«+O0 2.596.+02 3.672«+02 2.697«+02 2.596160«+02 7.157102«+00 1.413«-02 4.496«-03 3.591«+06 

Here it requires over 10,000 elements to achieve a similar estimated error as the 
adaptive solution produces with only 2235 elements. 

8.5.3    Example: webbed angle bracket 

Our next example is of a webbed angle bracket as shown in Figure 8.4. The bracket 
is constrained both horizontally and vertically at the two lower horizontal "pads" and 
traction-loaded only at the top vertical pad on the right. The horizontal loading is —5 MPa 
and the vertical — 500 kPa. 

We again begin by tabulating resukts for uniform refinements with h = 0.4, 0.2, 

0.1,. 
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ki N aim llulI.E lluhll.E lohl+l«! luhl+.«tl. llu-uhll.E «■t   II.II.E lnflu-uhl llu-uhll ll«-.hll 
1.0000.+00 33 0.000« +00 1.790.+02 2.632«+02 1.798.+02 1.790362«+02 1.699838«+01 1.919«-02 4.961.-03 2.203.+06 
1.0000«+00 39 0.000« +00 1.845«+02 2.609.+02 1.852.+02 1.844667.+02 1.681407«+01 2.007«-02 6.352«-03 2.305«+06 
1.0000e+00 78 0.000« +00 1.910.+02 2.701«+02 1.922.+02 1.910198.+02 2.147025«+01 2.115«-02 6.009.-03 2.479«+06 
1.0000.+00 276 0.000.+00 2.082«+02 2.944.+02 2.091«+02 2.081676«+02 1.986391«+01 2.438.-02 7.869.-03 2.717.+06 
1.0000.+00 1488 0.000« +00 2.190.+02 3.097.+02 2.193.+02 2.190010«+02 1.118244.+01 2.800.-02 9.279.-03 2.869«+06 
1.0000«+00 6235 0.000« +00 2.220«+02 3.139.+02 2.221«+02 2.219738«+02 6.972105«+00 2.910.-02 9.670.-03 2.913«+06 
1.0000«+00 25466 0.000«+00 2.231«+02 3.166.+02 2.231.+02 2.230782.+02 4.052006«+O0 2.948.-02 9.802.-03 2.925«+06 

The next table of results are for adapted solutions with TOL = 20, 15, 10, 5 and where 
we now start with an initial mesh of h = 0.05 (due to the slender nature of the component). 
Some of the meshes and plots of the stress surfaces are shown in the Figure 8.4. 

ki H «Inn NulLE MuhlLE luhl+l.l luhl+«ltl. llu-ahll.E ..t   H.II.E iaflu-uhl 1 lu-uhl 1 ll«-ihll 

1.0000«+00 276 0.000.+00 2.082.+02 2.944.+02 2.091«+02 2.081676«+02 1.986391.+01 2.438.-02 7.869.-03 2.717.+06 
1.0000.+00 829 0.000.+00 2.179.+02 3.082.+02 2.183«+02 2.179416.+02 1.306965.+01 2.758.-02 9.049.-03 2.859.+06 

1.0000.+00 2487 0.000.+00 2.213.+02 3.130«+02 2.215«+02 2.213019.+02 9.014411.+00 2.882.-02 9.529.-03 2.903.+06 

1.0000.+00 12232 0.000.+00 2.230.+02 3.164«+02 2.231«+02 2.230293.+02 4.942654.+00 2.945.-02 9.777.-03 2.925.+06 

Here it requires over 25,000 elements to achieve a similar estimated error as the 
adaptive solution produces with only 12,232 elements. 

Each of these examples clearly demonstrates how adaptive mesh refinement, guided 
by an a posteriori error estimate, can result in an acceptable solution requiring far fewer 
elements that would be needed when using uniform meshes. 
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Figure 8.1: Adapted meshes for the exact solution with TOL = 15, 10 and 5 (initial mesh: 
h = 0.1). Also shown are plots of the stress surfaces for TOL = 10. 
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Figure 8.2: Adapted meshes for the L-shaped lever arm with TOL = 32, 24 and 16 (initial 
mesh: h = 0.1). Also shown are plots of the stress surfaces for TOL = 8. 
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Figure 8.3:  Adapted meshes for the simple symmetric crack with TOL = 24, 32 and 
(initial mesh: h = 0.1). Also shown are plots of the stress surfaces for TOL = 8. 
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Figure 8.4: Adapted meshes for the webbed angle bracket with TOL = 15, 10 and 5 (initial 
mesh: h = 0.05). Also shown are plots of the stress surfaces for TOL = 10. 
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Part III 

Closure 
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Chapter 9 

Obtaining and using the software 

9.1    Introduction 

The C code used to generate the numerical solutions detailed in the previous chapters 
is available via ftp. This chapter describes how to retrieve the source files and compile 
and run them on an X-window Unix platform. We also give a short "manual" describing 
how the code can be set up to solve a specific problem. We do this by choosing a simple 
example problem and demonstrating how the input files should be generated to model the 
domain and boundary conditions. Since the software comes packaged with the example 
problems used earlier in this report, these together with this manual should provide all 
the necessary information. 

NOTE: this software is what we term a "research code". It has been developed in 
a piecemeal fashion over a long period of time as and when new research results become 
available and are suitable for implementation. Consequently, no claims are made for it 
being efficient or robust, and it should not be used in a situation where its output may 
have a safety or financial implication. 

9.2    Obtaining the software 

Firstly, connect to the Brunei University ftp server via the command, 

ftp ftp.brunel.ac.uk 

When prompted logon as "anonymous" and enter your email address as a password. When 
you get the prompt issue the following commands: 

cd icsrsss 

bin 
get seedproj.tar 

quit 

79 
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You should now have a binary file called seedproj .tar in your local working directory. 
This is a tape-archived record of the source codes created using the Unix tar utility. 

The next step is to extract the directory structure.    Do this with tar using the 

command, 

tar xvf seedproj.tar 

You now should have a directory called seedproj which contains the sub-directories hold- 
ing the source codes for the mesh generator and finite element solver. At this point the 

archive file seedproj .tar can be deleted. 

To compile the mesh generator issue the following commands: 

cd seedproj/advance/source 

make. 

and to compile the solver type, 

cd ../../quasivis/native/source 

make 

There is also a very simple X-window plotting program called Xwin which will be useful 
later when generating the mesh. To compile this type, 

cd ../../../Xwin 
make 

If this stage has gone well you should have three executable files, advance, f em and Xwin 
in the directory, 

seedproj/bin 

Now change to the directory seedproj/quasivis/data and list the contents. You 
will see subdirectories such as leverarm, crack, etc. These are the input files for the 
numerical examples shown in previous chapters. The source files are supplied and set up 
so as to solve the problem with an exact solution (see previously in Subsection 8.4.2) and 
to check that the installation was successful type, 

adapt exact 15 

This executes the sh script file adapt and solves the problem, with TOL = 15, as specified 
by the files in the exact directory. Specifically the mesh generator advance builds the 
mesh according to the files in the exact directory, and then adapt launches the finite 
element solver fern. After the make (i.e. compilation) stage you should see an X-window 
popped to the screen showing a sequence of adapted meshes. You will also see many lines 
of text rolling around the terminal screen. The end of the textual output should look like 
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ki               H «1«    MulI.E lluhll.E luhM.I 
1.0000*400    695          8.398.401 8.331.401 6.398.401 

Tu. D.c    1 17:15:34 GMT 1998 

luh|4.atl.l lln-uhl|.E    .it II.II.E  influ-uhl  llu-uhll   ll.-.hll 

8.416.401  1.061322.401  1.186403.401  2.015.-05 3.930.-06 4.303.405 

(although you will certainly have a different time stamp showing). Note that these figures 
agree with those shown in the first line of the table of adapted solutions in Subsection 8.4.2. 
If all of this happens the installation went well, and you may now define your own domain 
and quasistatic viscoelasticity problem. 

9.3    Defining the domain 

As the name advance suggests, the mesh generator is a (simple) implementation of the 
advancing front technique. For this it is necessary only to define the boundary of the 
domain according to a simple orientation rule, and provide a function h = h(x, y) that 
describes the desired mesh size variation over the domain. In our implementation h = 
h(x,y) is specified as a constant ho, which we term the basic mesh size, and local mesh 
features and size control are effected through source points (in the file srcpnts.dat), 
source lines (in the file srcline.dat), source circles (in the file srccirc.dat) and 
source discs (in the file srcdisc.dat). We'll get to these later but for now note that in 
this way an a priori graded mesh can be created by suitably editing one of these input 
files rather than hard coding a C function, double h (double x, double y), and then 
having to re-compile each time. 

At the moment only two-dimensional polygonal domains are supported by advance, 
with the boundary defined piecewise by the endpoints of straight-line segments. The 
domain can however be multiply-connected (i.e. have an arbitrary number of "holes"), 
and it would not be difficult in the future to incorporate curved boundaries. 

To illustrate how to set up a domain in the way required for advance we will consider 
the case of a trestle-shaped structure with—for illustration purposes only—a hole in it. 
The domain is shown in Figure 9.1 and is supposed to symmetrical about the vertical edge 
at x = 11cm. The lowest horizontal edge is constrained to have no vertical displacement 
and, to impose the symmetry, the right-most vertical edge is constrained to have no 
horizontal displacement. We assume that a load (i.e. surface traction) of #2 = — IMPa 
acts vertically downward on the uppermost horizontal edge. 

Each corner of the trestle has a numbered node associated with it and in between 
each node we identify a numbered (shown in bold) boundary edge. Note that the node and 
edge numbering must begin at zero (this is because all arrays begin with a zero subscript 
in the C language). Also, although the node and edge numbering follow a simple counter- 
clockwise pattern in this example, there is absolutely no need for this. The crucial thing 
is that the orientation rule which we describe below is observed when defining the edge 
connectivity. 

Before constructing the input files we need to assign the correct boundary condition 
codes to the nodes and edges. These integer values describe the type of constraint (if 
any) that the node or edge is subject to, and are given by: 

0 — unfixed (for interior nodes only). 
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Figure 9.1: The left half of the trestle domain. (Measurements are in cm.) 
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1 — Non-homogeneous Dirichlet condition - unused at the moment. 

2 — Homogeneous Dirichlet condition (zero displacement). 

3 — Non-homogeneous Neumann condition (prescribed traction). 

4 — Homogeneous Neumann condition (zero traction). 

Each node and each edge is now assigned a triple of integers made up from the above codes 
(except for 0 — unfixed, this is reserved for interior nodes created by the mesh generator). 
The first two elements of the triple correspond to displacements or tractions in the x and 
y direction respectively, while the third element is unused at present (and so its value is 
irrelevant). 

This works in the following way. Nodes 3 and 4, and edge 3, at the foot of the trestle 
are to be constrained so as to have no vertical displacement and this is accomplished by 
setting a 2 in the second element of the triple. Also, we'll assume that there is no traction 
acting horizontally along edge 3 and so the first element of the triple is set as 4. For this 
part of the boundary we then get, 

boundary codes for node 3 are: 4 2 0 
boundary codes for node 4 are: 4 2 0 
boundary codes for edge 3 are: 4 2 0 

Now, for edge 0, defined by nodes 0 and 1, we assume zero horizontal traction and this 
leads to us setting the first element of the triple as 4. On the other hand we have a 
non-zero vertical traction acting on this edge and so the second element is set as 3. This 
gives: 
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boundary codes for edge 0 axe: 4 3 0 

By symmetry node 0 is fixed horizontally - code 2 - but is subject to vertical traction - 
code 3. Thus: 

boundary codes for node 0 are: 2 3 0 
boundary codes for node 1 are: 4 3 0 

since node 1 is free and unforced in the x direction. 

Now let us take a look at edge 6 as defined by nodes 6 and 0. Due to symmetry this 
edge may not move horizontally - code 2 - and must be free of vertical traction - code 4. 
We get the same for node 6 and so: 

boundary codes for node 6 are: 2 4 0 
boundary codes for edge 6 are: 2 4 0 

Every other node and edge is free to move (so we cannot use either of codes 1 or 2), but is 
also traction-free. Thus for all other nodes and edges we set the boundary code as: 4 4 0. 

Equipped with this information we now create the first input files for the mesh gen- 
erator. Inside the seedproj/quasivis/data directory create a new subdirectory called 
trestle. Change into this new directory and edit the files def start. inf, def nodes. inf 
and def sides, inf as shown below (do not include the underlined headings). 

The input file  'defstart.inf' 

Number_of.nodes: 11 
Number_of_sides: 11 
bounding_box_for_graphics     0.0    0.12    -0.03    0.09 

The file def start. inf simply shows the number of nodes and (necessarily the same 
for polygonal domains) edges used to define the domain—in this case 11. The file also 
defines a bounding box to control the graphical display of the domain. This box is 
defined by a line of the form, 

bounding_boxjfor_graphics       x\oyf   Zhigh    J/iow    2/high 

which describes the box by the diagonal running from {x\ovl,y\0^) to (zhigh>?/high)- ^^e 

bounding box is assumed to be square by all of the graphics routines and so it is necessary 
to ensure that 

2-high — ^-low =z I/high      2/low 

If this does not hold then the display will be distorted by a relative scale difference in the 
horizontal and vertical directions. For our example we will specify all lengths in metres 
and so we choose a bounding box with the line, 
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bounding_box_forographies      0.0    0.12    -0.03    0.09 

The domain fits inside this bounding box and so should appear centered in the graphical 
displays. By altering the bounding box one can scale the x and y dimensions of the domain 
in different ways or place it off-center, as well as reducing its apparent distance from the 

eye. 

The input file  'defnodes.inf' 

0 2 3 0 0.11 0.06 

1 4 3 0 0.01 0.06 

2 4 4 0 0.01 0.04 

3 4 2 0 0.02 0.01 

4 4 2 0 0.04 0.01 

5 4 4 0 0.05 0.04 

6 2 4 0 0.11 0.04 

7 4 4 0 0.04 0.04 

8 4 4 0 0.02 0.04 
9 4 4 0 0.02 0.05 
10 4 4 0 0.04 0.05 

The file defnodes.inf contains the numbered (in order) list of nodes defining the 
domain, with each integer label followed by the boundary code triple and the node coordi- 
nates. There is nothing special about the formatting or spacing of the fields on each line, 
so long as at least one whitespace character separates each. 

The input file  'defsides.inf 

0 4 3 0 0 1 

1 4 4 0 1 2 

2 4 4 0 2 3 

3 4 2 0 3 4 

4 4 4 0 4 5 

5 4 4 0 5 6 

6 2 4 0 6 0 

7 4 4 0 7 8 

8 4 4 0 8 9 

9 4 4 0 9 10 

10 4 4 0       10 7 

The file def sides, inf is similar to defnodes.inf; it contains the numbered list of 
edges defining the domain. On each line the integer edge label is followed by the boundary 
condition triple, and then by the pair of nodes that define the edge. For example, the line 

3    4 2 0      3    4 
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shows that edge 3 takes the boundary codes 4 2 0 and is defined by nodes 3 and 4. The 
order in which these two nodes appear is crucial and must obey the orientation rule. 
This rule is simple enough: it says that in travelling along the edge from the first node to 
the second node the domain must be on the left. For this reason all the edges on the outer 
boundary (i.e. 0 to 6) are described by a counter-clockwise node ordering, while all the 
edges on the interior boundary (i.e. edges 7 to 10) are described by a clockwise ordering. 

9.4    Grading and generating the mesh 

As far as the mesh generator advance is concerned the domain is now completely defined, 
but we cannot yet use it to create the mesh because we have to specify the mesh size 
function h = h(x,y). This function should return the desired size of the triangles in 
the vicinity of the point (x,y). To do this we need the files srcpnts.dat, srcline.dat, 
srccirc.dat and srcdisc.dat. These files can be used to specify the basic value of h 

throughout the domain, as well as any local refinements that are a priori required. You 
may find it easier to simply copy these files over from another directory (e.g. .. /crack) 
since they will contain helpful annotations at the bottom that describe the meaning of the 
information contained in them. 

Once you have copied them across edit the files srcline.dat, srccirc.dat and 
srcdisc.dat and make sure that the very first entry on the first line is the integer 0. 
We'll return to these files later but for now concentrate on the most important one: 
srcpnts.dat. 

The first entry in srcpnts .dat is ho, the basic value of h to be used throughout the 
domain. Looking back at Figure 9.1 it seems reasonable to require an initial mesh consist- 
ing of triangles with side length ho = 0.005 metres. To obtain this we edit srcpnts.dat 
so that the first line contains the value 0.005, and ensure that the second line contains 
the integer 0. We may now generate the mesh. To do this issue the command (in the 
directory trestle), 

../../../bin/advance  I   ../../../bin/Xwin 

This initiates the mesh generator advance and pipes the output into the simple X-window 
utility Xwin. In this case an X-window should pop to the screen and the element edges 
are drawn in this window as they are created. When the mesh is complete place the 
mouse cursor in the X-window and type the q button. The programs will quit and the 
prompt will return in the terminal window. (Note that Xwin is a very primitive X-window 
application and so the terminal may display "junk" output while it is running.) 

If you now list the files in the trestle subdirectory you should see something like: 

bdystart.fem defsides.inf meshinfo.fem srccirc.dat 
boundary.fem defstart.inf mon.out srcdisc.dat 
config.inf element.fem neighbor.fem srcline.dat 
defnodes.inf memory.dat nodes.fern srcpnts.dat 
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All except the def *. inf and src* .dat files that we created earlier are disposable (in that 
they can be regenerated), and so can eventually be removed with a command line like, 

rm *.fem memory.dat mon.out scratch.dat 

(Note that the files mon.out and scratch.dat may or may not be present, depending on 
how advance terminated. These files are always disposable and may use up a lot of disk 
space—it is advisable therefore to always remove them.) The files *.fem are used by the 
finite element code to determine the initial mesh. Now we have these *. f em files we can 
set up and execute the finite element calculation in the next section, but for the remainder 
of this section we'll explain a little more about how to use the src* .dat files to control a 

priori mesh grading. 

The mesh that appeared on the screen should have looked like that on the left in 
Figure 9.2 and, one might think, is perfectly acceptable for the initial mesh in an adaptive 
calculation. However, it is also true that an adaptive calculation can be much improved by 
a sensible choice of initial mesh. For example, for the trestle it is likely that high stresses 
will be present at the re-entrant corner at (0.05,0.04), and so it is sensible to build this 
information into the initial mesh by asking for a finer mesh grading at this point. This 
can done by introducing a source point at this corner by making an entry in the file 
srcpnts .dat. Edit this file so that the first three lines are as shown below. 

0.005 
1 
0.05        0.04 0.02        0.002 

Recall that the first entry is no more than h0 = 0.005m. The second entry states 
that the mesh is to contain one source point, and the third line then defines this source 
point to be located at (0.05,0.04), to have a radius of influence of 0.02m and to have a 
local mesh size at (0.05,0.04) of 0.002m. The mesh generator will now attempt to create a 
mesh with this local size at the re-entrant corner, blending smoothly to the basic mesh size 
throughout a circle of radius 0.02m. Run the mesh generator again with the command, 

../../../bin/advance  I   ../../../bin/Xwin 

and you should now get the mesh shown on the right of Figure 9.2. 

On an intuitive level this seems a much more sensible choice for the initial mesh, and 
it is simple to specify through the use of the input file srcpnts.dat. Any number of 
source points can be added in this way, with the total number given in the second line of 
the file, so long as two simple rules are followed. The local mesh size should always be 
smaller than the basic mesh size, and the radius of influence should be at least twice the 

basic mesh size. 

Source lines, source circles and source discs can be specified in a similar way through 
the input files srcline.dat, srccirc.dat and srcdisc.dat. To illustrate this edit the 
file srcline. dat so that the first five lines are given by, 
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Figure 9.2: Trestle mesh generated by advance. The mesh on the left has a basic value of 
ho = 0.005m throughout while the one on the right has a source point at (0.05,0.04). 

0.04 0.04 0.02 0.04 
0.02 0.04 0.02 0.05 
0.02 0.05 0.04 0.05 
0.04 0.05 0.04 0.04 

0.005 0.002 
0.015 0.002 
0.015 0.002 
0.005 0.002 

This now specifies a source line for each edge of the rectangular "hole" in the trestle. The 
annotations in the file explain what the entries on each line actually mean, and running 
the mesh generator again gives the mesh shown on the left of Figure 9.3. 

The mesh now appears to be suitable for input to the finite element code and indeed 
this is the one we will use below. However, we will give one more example of how to achieve 
local mesh grading. To create a source circle of radius 0.008m at the point (0.08,0.05), 
with a local mesh size 0.001m and radius of influence 0.01m, edit the file srccirc .dat so 
that the first two lines are: 

1 
0.08 0.05 0.008 0.01 0.001 

The first line specifies how many source circles there are while the subsequent lines (in 
this only one) specify the circles themselves. The resulting mesh is shown on the right of 
Figure 9.3. We have included this source circle for demonstration purposes only, it will be 
of no further use so change the 1 in the first line in the file back to 0 to switch the feature 
off. 

9.5    The finite element calculation 

We now have our initial mesh, the one on the left of Figure 9.3, and so we are ready to feed 
it in to the finite element code. However, to drive the solver we must first provide the file 
config.inf in the trestle directory.  This file contains basic configuration parameters 
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Figure 9.3: Trestle mesh generated by advance. The mesh on the left has source lines 
around the perimeter of the square hole while the one on the right shows the effect of a 
source circle. 

for the code and, again, is best created by first copying an existing version over from 
another directory (e.g.  .. /crack) and then editing it so that it appears as below. 

1.0      = k_init  (used only if not set on command line) 
1.0      = T,  the final time in the time interval  (0,T) 
1.0e-7      Conjugate gradient residual tolerance 
1.0e-2      Error tolerance, non-specific at the moment 
5 5 400 400    graphics window:  x,  y, width, height 
2.0      magnification scale for graphical output 
15 (or 25) minimum permitted angle in the mesh (in degrees) 
150      (or 120) maximum permitted angle in the mesh (in degrees) 
5 "memscale" controls memory allocation for the mesh 

This file contains algorithm parameters. 

Note that only the numeric data appearing on the left of each line are used, the text to 
the right being a short description of what the data are. We'll describe the meaning of 
each of these in a little more detail. 

k_init: This is the initial time step—it can be overridden by a command line option. 

T: The final time to calculate to where the time interval is assumed finite: J := [0,T]. 

Since the code is not yet ready to perform adaptive time stepping we'll assume a 
calculation over the short time interval [0,1] in a single time step &jnjt = T = 1. The 
remaining items in this file are described below. 

1. 0e-7: The residual tolerance to use as a stopping condition in the conjugate gradient 
solver. 
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1. Oe-2: This field is unused 

5 5 400 400: These integers control the location and size of the X-window that pops 
onto the screen. In this example the window will have its top and left hand edges 
each 5 pixels from the edge of the screen, and will be 400 pixels square. 

2.0: In the graphical display of results the displacements are shown on the mesh magnified 
by this factor. 

15: The minimum tolerable interior angle in a triangle—used by the mesh adapting rou- 
tines to determine whether a triangle should undergo a "red" or "green" refinement. 

150: The maximum tolerable interior angle in a triangle—as above. 

5 "memscale": When the solver begins to execute it needs to set aside enough memory 
to store the mesh. However, in an adaptive calculation it is not known a priori how 
much memory the final mesh will require. Thus a mesh memscale times denser than 
the initial mesh is assumed. This field can be overridden on the command line as we 
show below, and in future versions of the code we will probably implement a mesh 
reallocation routine so as to exploit the ability of C to perform dynamic memory 
allocation. This parameter will then be redundant. 

Now we come to the least user-friendly part of the set-up, specifying the loads. Change 
into the directory seedpro j /quasivis/native/source. Here you will find all the C source 
code for the finite element solver. The file that we need to edit to specify the loads is 
lesol. c. Unfortunately a moderate amount of C coding is required here, and below we'll 
go over the main points. Load lesol.c into an editor and look at the top of the file... 

#include "always.h" 

#include "femdata.h" 

extern Prony lambda, mu; 

/*/ 
/* Test exact solutions for a linear elasticity problem 

/* Possible solutions are selected by an appropriate #define. 

/* The options are: 

/* 
/* #define EXACT     : trigonometric displacements - see notes. 

/* #define LEVERARM : actual problem, nothing known 
/* #define CRACK : actual problem, nothing known 
/* #define WEB : actual problem, nothing known 
/* #define TRESTLE : actual problem, nothing known 

/*/ 

#define EXACT /* ... MAKE THE CHOICE */ 
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The first #include statements are directives to the compiler to include the contents of 
the header files always.h and femdata.h. These can also be found in the directory 
native/source and themselves contain other #include directives. They need not worry 
us. The extern statement that follows next is there merely to tell the compiler that two 
variables, lambda and mu, of type Prony are referenced in this file but are actually defined 
elsewhere (in the file viscous.c in fact). This need not trouble us either. The next few 
lines, those beginning with /* are comments and are ignored by the compiler. This is 
because any material enclosed between an opening /* and a closing */ is a comment in C 
and therefore plays no role in the executable code. Thus, the next non-trivial line in the 
file, and the one of concern to us, is 

«define EXACT    /*   ...  MAKE THE CHOICE */ 

This line tells the compiler that the string EXACT has a special significance in the source 
code that.follows. As the comments above this line suggest, and with regard to the 
numerical results presented earlier, it is also possible to substitute EXACT with: 

EXACT for the exact solution; 

LEVERARM for the L-shaped domain; 

CRACK for the simple crack problem; 

WEB for the webbed bracket. 

TRESTLE for our trestle problem. 

In fact, once the role this #def ined string plays in the following code is appreciated, you 
may #def ine any string of your choice in order to specify your problem. To solve our 
example trestle problem change this line to: 

#define TRESTLE    /*   ...  MAKE THE CHOICE */ 

The next part of the file lesol. c can be ignored now until you come to the lines 

/***********************************#****^ 
/* Displacements */ 
/***********************************************************************/ 

/* horizontal displacements */ 

real uxyt(x,y,t) 
real x,y,t; 

•C 
real total = ZERO; 

#if defined(EXACT) 
total = X(x,y) * TIME(t); 

#elif defined(LEVERARM) 
total = (real)0.0; 

#elif defined(CRACK) 
total = (real)0.0; 
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#elif defined(WEB) 
total = (real)0.0; 

#elif defined(TRESTLE) 
total = (real)0.0; 

#else 
fprintf(stderr,"\n\t No solution defined\n\n"); 

#endif 

return total; 

} 

This declares uxyt to be a C function that takes three real numbers x, y and t, giving 
position and time, and returns, via the return statement, a real number—held in the real 
variable total. (C programmers note: the type real is used here, via typedef, as a syn- 
onym for double.) This function uxyt should return the horizontal displacement u(x, y, t) 
when it is known (for the EXACT solution only) or zero (for all the others: LEVERARM, 
CRACK, WEB, TRESTLE). Notice how the #def ined token EXACT is used by the compiler here 
in conjunction with the "if defined" (#if def ined) and "else if defined" (#elif defined) 
directives. The meaning and use of these is intuitive: since we had already #def ined the 
token EXACT then the compiler only built the line 

total = X(x,y) * TIME(t); 

into the executable. (The symbols X and TIME are themselves defined further up the code 
and need not worry us). The variable total is then set to a real value and returned as 
such every time the function is called. The important point to realize here is that the 
choice of which branch of the #if — #elif to build in is made at compile time, and 
so if the #def ined token is changed the code must be re-compiled to reflect this. Thus 
our newly #def ined token TRESTLE requires that lesol. c be re-compiled and re-linked 
to produce an updated executable—this will happen automatically when we execute the 
adapt script below. 

As we look further down the source code we will see many other functions, each 
constructed in a similar way. The "listing" of the function uxytO given above shows 
how we include a new TRESTLE branch into the #if — #elif directive and this must be 
repeated for every other function defined the following list. 

uxyt returns real value of horizontal displacement u(x, y, t) or zero if this is unknown; 

uxyt_x returns real value of ux(x, y, t) or zero if this is unknown; 

uxyt_y returns real value of uy(x, y,t) or zero if this is unknown; 

vxyt returns real value of vertical displacement v(x,y,t) or zero if this is unknown; 

vxyt_x returns real value of vx(x, y,t) or zero if this is unknown; 

vxyt_y returns real value of vy(x, y, t) or zero if this is unknown; 

f lxyt returns real value of horizontal body force fi(x,y,t); 
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f2xyt returns real value of vertical body force f2(x,y,t); 

Sigmallxyt returns real value of direct stress <7ii(a;,y, t) or zero if unknown; 

Sigma22xyt returns real value of direct stress 022(z, y, t) or zero if unknown; 

Sigmal2xyt returns real value of shear stress an(x,y,t) or zero if unknown; 

Epsilonllxyt returns real value of direct strain en(x,y,t) or zero if unknown; 

Epsilon22xyt returns real value of direct strain e22 (x, y, t) or zero if unknown; 

Epsilonl2xyt returns real value of shear strain £12(2;, y,t) or zero if unknown; 

glxyt returns real value of horizontal traction gi(x,y, t); 

g2xyt returns real value of vertical traction g2(x, y, t); 

The other functions in the source code are connected with the relaxation functions A and 

fi and can be accepted as they stand. 

In our trestle example the only non-zero traction is vertical, of of —1 MPa in mag- 
nitude, and applied along only one edge. Thus we make sure that the function glxyt 

contains the lines, 

#elif defined(TRESTLE) 

total = (real)0.0; 

#else 

since there are no horizontal tractions, and also that the function g2xyt contains 

#elif defined(TRESTLE) 

total = -(real)1.0e6; 

#else 

(The type cast (real) is not mandatory in these statements—it can be ignored and left 
out if desired.) Notice that we do not have to specify that #2 is only non-zero for the 
specific coordinates (x, y) occurring on edge 0—this was taken care of with the boundary 
condition codes supplied to the mesh generator. Since this is the only edge with the non- 
zero traction boundary code 3, this C function is only invoked for element edges occurring 
on this boundary edge. 

The remaining task is to define the material properties. At the moment the code is still 
set to use the values given by (7.13) to (7.16). However, to use the more realistic values for 
Maranyl given in Section 8.5 we need to make a small change to another #def ine directive. 
This one is near the top of the source file seedproj/quasivis/native/source/viscous . c. 
Edit this file and change the line 



9.5.   THE FINITE ELEMENT CALCULATION 93 

#define EXACT 

to 

#define MARANYL 

Upon compilation, the declarations at the head of this code now set up two structure-type 
variables that describe the Maranyl Nylon 6.6 relaxation function. 

We are now ready to run the code. Change to the seedproj/quasivis/datadirectory 
and list the files. You should see the directories exact, crack, leverarm, web and our 
new one trestle, and also two /sbin/sh shell scripts adapt and run. Do not attempt 
to use the latter, it was written (rather badly) in order to automate the generation of the 
numerical results given earlier. Instead we shall use the simpler adapt script. Type, 

adapt trestle 1.5 

This moves all working files into the dump directory; sets the $PATH variable so the shell 
can find the executables advance, Xwin and f em; generates the mesh according to the 
*. inf and *. dat files in the trestle directory; makes and links any updated source code; 
and, finally launches the finite element solver fern with the command, 

fem -X -memscale 100 -adapt $T0L 1.0 

Here the argument -X requests the X-window graphics, while -memscale 100 allocates 
memory for a mesh a hundred times more dense that the starting mesh (the one given 
earlier on the left of Figure 9.3). The argument -adapt tells the code to solve in the 
adaptive mode with tolerance TOL given by the third command line argument to the 
adapt script. In this case the environment variable $T0L has the value TOL = 1.5. The 
final value 1.0 tells the code to apply 100% of this tolerance to spatial error control and 
none to temporal error control. Eventually, when some form of temporal adaptivity is 
implemented, it will be possible to have a command-line option to fern taking the form, 

-adapt 1.2 0.4 

This would specify a global tolerance of TOL = 1.2 with only 40% (i.e. TOLn = 0.48) going 
toward controlling the spatial errors via the residual term £&,. However, until temporal 
adaptivity is implemented the second value for the -adapt flag should always be 1.0. 

Executing the command 

adapt trestle 1.5 

should produce the output lines 

Id N .1..     MulI.E lluhll.E luhM.I luhl*«ft 1.1    llu-uhll.E .it   II.II.E       influ-uhl      llu-uhll        lli-.hll 
1.0000.*00     1123        0.000.-KJ0       1.936.+01       2.738««01       1.939.401       l.B36795«*01       1.138819«-KX>    3.343.-03    9.364.-06' 2.670«*06 
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Figure 9.4:  Adapted meshes for the trestle problem with TOLn = 1.5 on the left and 
TOLn = 1.0 on the right. 

(although you'll need a wide terminal to see this clearly), as well as the adapted mesh 
shown on the left of Figure 9.4. 

To see the effect of the adaptivity reduce the tolerance to 1.0 and execute again with 

the line 

adapt trestle 1.0 

This produces the output lines, 

ki N «I.«     HulI.E MuhlLE luhl + lel luhl+««tl«l    llu-uhll_E «st   I lal l_E       influ-uhl      I lu-uhl I        ll»-«hll 
l.OO00«tOO    2097 0.000«+00       1.955«+01       2.764«+01       1.957«+01       1.954769«+01       8.495796e~01     3.411«-03    9.558«-05     2.695e+05 

and the adapted mesh shown on the right of Figure 9.4. 

All of the program execution takes place in the .. /dump/ directory, and here you 
will find four files of interest. The first is mesh0.tex which is an example of the input 
files used to illustrate the displaced meshes in this document. It is a mixture of ETfjjX 2e 

source which uses the TßXdraw graphics package. The other three files are sigmall_0.m, 
sigma22_0.m and sigmal2_0.m. These are Matlab script files which may be executed 
within Matlab as they stand and will produce the surface plots of the stresses. These were 
also used earlier in this document to illustrate the numerical solutions. 

Note that the directory dump is named deliberately. All files in it are disposable, in 
that they can regenerated, and are potentially large and so can eat up disk space. It is 
recommended that this directory be cleaned out once you have finished using the code. 
However, leave the (empty) dump directory in place since its existence is assumed and 
required by the script files adapt and run. 

9.6    Some comments 

There is clearly room for a great deal of improvement in the way the code is currently 
constructed and configured. A possible way forward here would be to provide a platform- 
independent Java GUI which could invoke the existing native C code through a native 
Java method of a larger object. This is however not research within the scope of the seed 
project and so we suggest it only as a possibility for the future. 



Chapter 10 

Suggestions for further work 

10.1 Overview 

In this short concluding chapter we give brief details of the code development work carried 
out between ourselves and Dr. A.R. Johnson during his visit to BICOM in March 1998. 
We then give a list of research areas that could follow naturally from the work detailed in 
this report. 

10.2 A.R. Johnson's visit to BICOM 

During the first week of March 1998 Dr. A.R. Johnson (ARL, VTC, NASA, Langley, VA, 
USA) visited BICOM with the aim of investigating how adaptivity could be built in to his 
existing work on internal variables (see for example [24, 25]). During this short time we 
and Dr. Johnson were able to generate a Fortran FUNCTION that was easily added on to one 
of his existing finite element codes, in this case for solving viscoelastic beam problems. 
This FUNCTION adaptively and automatically solves the internal variable equation over 
each of the time steps taken by the larger finite element solver. Its modular nature means 
that it can also be easily transplanted to function with codes written to solve problems 
involving structures other than beams. In this section we will briefly outline the nature 
of the algorithm and the type of error control produced, and also give a "listing" of the 
FUNCTION to illustrate how this process can be easily encapsulated in a simple module. 

In [24, Equation 20.38] Johnson and Tessler show how a finite element discretization 
of a quasistatic viscoelasticity problem can be written in the form, 

Ku = Fmech - -Fvisc at time t. (10.1) 

Here: u is the vector of unknown nodal displacements; K is the finite element stiffness 
matrix; Fmech the vector of external loads; and, FViSC a vector of viscous forces containing 
the viscoelastic effects. The vector Fv\8c is obtained by assembling the local element level 
viscous forces via, 

-f vise = 2L/ W' 

95 
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where *k is an element-level viscous-stiffness matrix, and *u a vector of unknown internal 
displacements defined at the element level. 

As shown by Johnson and Tessler in [24, Equation 20.37] these internal displacements 
are given on each element by the solution of the evolution equation, 

^ + -IH = ^. (10.2) 
dt T        at 

Thus, to find the displacement u(t) at the given time t one has only to solve (10.1) to 

give, 

u{t)=K-1(Fmech-Fvisc). 

It is natural to assume that -Fmech 1S known precisely and so the time discretization error 
in this equation is effectively present in the term Fv{sc. It is therefore important to have 
an adaptive solution algorithm for the evolution equation (10.2) so that the viscous loads 
can be built accurately and cheaply. It was the derivation of such an algorithm, and its 
realization and modular implementation as a Fortran FUNCTION, that formed the focus of 
the collaborative work carried out at BICOM during Dr. Johnson's visit. 

We give brief details of this work below, and we finish be suggesting ways in which 
this work could be extended. 

The internal variable equation can be considered as a collection of scalar ODE prob- 
lems, each having the form: find u such that, 

^ + ^ = 1 in[0,T], withU(0)=w0, (10.3) 
dt T T 

and where T > 0, u0, g and r > 0 are given data. Here, of course, [0,T] represents a 
single time interval within the time stepping loop of the overall finite element solver, and 
g is derived from the global displacement vector u. Below we set, 

g      du 

T = ~dl' 

although we could also work in terms of reversed internal variables with essentially no 
change to the adaptive algorithm. 

Our approach to deriving a numerical scheme is based on discretizing the single time 
interval [0, T] into subintervals in the usual way, 

0 = t0 < t\ < ■ ■ ■ < tq < ■ ■ ■ < tN = T, 

and then defining the time steps kq = tq — tq-i, and subintervals Jq := (tg-i,tg). Before 
proceeding we note that it is possible to "solve" (10.3) explicitly by introducing an inte- 
grating factor, but one would then need to evaluate the resulting integral with "sufficient" 
accuracy. The approach described below could thus also be described as an adaptive 
quadrature algorithm, and in particular can still be applied with essentially no changes in 
the nonlinear case where r = T(U). 
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Our discretization of the internal variable equation (10.3) is based on the finite ele- 
ment method. We introduce a piecewise constant (i.e. constant on each Jq) approxima- 
tion U to u and, in particular, denote by Uq the constant approximation to u during times 
t E Jq. Then, the Galerkin finite element approximation of (10.3) can be written as, 

(1 + kq/T)Uq = Uq-i +   I"    -dt With UQ = UQ. 
Jtq-l   T 

One obtains this time stepping scheme by taking the scalar product of (10.3) with a 
piecewise constant test function, replacing u with U (interpreting the derivative in a 
distributional sense) and then applying standard finite element methodology. 

Using duality arguments we then arrive at the a posteriori error estimate, 

\u(tN) - UN\ < (1 - e-*"/T) m« {^||<7 - U\\Loo{Jq) + \Uq -Uq^ . 

Note that the quantities on the right are completely determined by the given data and the 
computed solution, and so this bound can form the basis of an adaptive algorithm. We 
describe this more fully below. 

The drawback with the approach just taken is that the piecewise constant approxima- 
tion to u is not particularly accurate. To address this we also developed and implemented 
a continuous piecewise linear finite element approximation to (10.3), where we retained 
the piecewise constant test function. In this case the time stepping scheme reduces to, 

(1 + kq/2r)Uq = (1 - kql2T)Uq-X + / '   -dt. 

For this scheme we derived the a posteriori error estimate, 

\u(tN) - U(tN)\ < (1 - e-t»/') m^N {kq\\r\\Loo(Jq)}, 

where, 

r:=l-Ut-
V- 

T T 

is the residual and is computable. 

We use this a posteriori error estimate to generate an adaptive time stepping scheme 
in the following way. Suppose we want to compute a numerical solution for which, 

HtN)-U(tN)\ <TOL 

is guaranteed, where TOL > 0 is a user-specified tolerance level, then it is sufficient to 
ensure that, 

(1 - e-'"/T) im« {Mr||wJf)} = T0L 
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This in turn is also guaranteed if we ensure that, 

MrllWJi^TOLU-e-'"/')-1 

for every q.   Rearranging this leads to a simple rule for selecting the time steps in an 
iterative, or adaptive, manner: 

Pew = TOL(l-e-'»A)-i 

q IMUooW) 

This adaptive solver for (10.3) can be encapsulated as a Fortran FUNCTION as listed below. 

C********************************************************* 
********** CONTINUOUS ********** 

c ********** PIECEWISE LINEAR APPROX ********** 

c  MUST be declared as REAL*8   

c 

c usage: 
c ustar = ivadaptl(du/dt, ic, tau_n, t_{m-l}, t_m, TOL, steps, mk) 

c minimum predicted time step may be returned in mk if mk is larger 
c on entry. Otherwise the value in mk is not altered 

c Note that "steps" return the number of steps taken in the 

c time interval (tlo, thi). 

c 
real*8 function ivadaptl(rhs,ic,tau,tlo,thi,TOL,steps,mk) 

real*8 rhs, ic, tau, tlo, thi, TOL, t, mk 
c     time step, new time step, previous and current iterates 

real*8 k, new_k, prevu, curru 
real*8 numer, denom ! for time step control 

real*8 denoml, denom2        ! for time step control 

integer iter, steps 

steps = 0 ! record the number of steps taken 
prevu = ic ! set initial condition 
k = thi - tlo      ! guess initial time step 
t = tlo ! current time level is (t, t+k) 

c     NOTE: next quantity can be supplied to save "exp" calculations 
numer = TOL / ( l.OdO - exp(-(thi-tlo)/tau) ) ! for adaptivity 
do iter = 1, 1000   ! no idea how many steps are needed! 

steps = steps + 1 

c      get next solution 
curru = (1 - k/2.0d0/tau)*prevu + rhs*k 

curru = curru / (1 + k/2.0d0/tau) 

c      test error condition by computing a new time step, 
c      first find the max. value in the denominator 

denoml = abs( rhs - prevu/tau - (curru-prevu)/k ) 
denom2 = abs( rhs - curru/tau - (curru-prevu)/k ) 

denom = max(denoml, denom2) 
new_k = numer / denom 

mk = min(mk, new_k) 

next line can throw an exception 
predict a new time step 
and act accordingly 
remember minimum predicted time step 
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if( new_k .GE. k ) then !  advance to next time level 
t = t + k 
k = MIN( new_k, thi - t ) 
prevu = curru 
if( t   .GE.  thi )  goto 1   !  break out if we have reached final time 

else !  recompute this time level 
k = new_k !  reduce k and try again at this level 

end if 
enddo 
write(*,*)   ' ERROR in ivadaptlO    > 

1 ivadaptl = curru    !  return solution at thi 
end 

c************************************************************************** 

The initial condition is given by ic and the right hand side g/r-is supplied as the 
constant (on the time step) rhs. The interval [0,T] is supplied through the argument list 
in the more general form [im-i,tm] and the FUNCTION returns the approximation U(tm) 
to u(tm). 

This approach could easily be modified to develop higher order solvers for the internal 
variable equation, and then applied to more or less arbitrary viscoelasticity problems that 
can be formulated with such evolution equations. The approach is also highly suited to 
constitutively nonlinear problems modelled with a reduced time. In such a case r = T(U), 

but this will introduce no essential complications into the adaptive scheme. 

10.3    Additional research areas 

This section is deliberately short and "bullet pointed". We want only to suggest areas 
that could be fruitfully investigated on the back of this work, and not pre-empt the fine 
detail of the topics. 

• In a time dependent problem it is crucial for an adaptive algorithm to be able to 
selectively de-refine as well as refine the space mesh as features in the solution evolve 
or decay over time. As we explained earlier in Chapter 8, our current a posteriori 
error estimates (given in detail in [55, 56]) do not allow de-refinement without the in- 
clusion of a complicated and expensive residual term. We believe the internal variable 
algorithm developed in this report will allow remove this expensive term for good and 
therefore allow mesh de-refinement with only a modest amount of additional expense. 
We plan to investigate this further at a later date. 

• Temporal error control should be achievable by measuring the energy error in an 
appropriately weak norm. Results for a prototype problem have already been given in 
[53], and the extension of this work to the space-time quasistatic problem is underway 

in [56]. 

• Ultimately the goal must be solve physically realistic nonlinear problems. We feel 
that extending our results to constitutively nonlinear problems, characterized by a 
reduced time, would be fairly straightforward, and it may even be true that the 
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stability estimates in [57] will hold without modification. However, nonlinearity aris- 
ing from large deformations is a much more challenging problem and as yet we have 
no theoretical insights that will help in the construction of adaptive software. 

• Quasistatic linear plate or shell problems could also be addressed in essentially the 
same way as described in this report for the "standard" two- and three-dimensional 
problem. In particular, the stability estimates in [57] should apply directly. 

• The space-time finite element method as illustrated in this report can also be used to 
generate a posteriori error estimates and adaptive algorithms for dynamic viscoelas- 
ticity problems. We hope to begin to look at this subject soon. 
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