
ROBUST ADAPTIVE FINITE ELEMENT

SCHEMES FOR VISCOELASTIC SOLID

DEFORMATION: AN INVESTIGATIVE

STUDY

Simon Shaw & J. R. Whiteman

BICOM: Brunei Institute of Computational Mathematics
Department of Mathematics and Statistics

Brunei University,
UB8 3PH, England.

December 8, 1998

Final report for the US Army's European Research Office Seed Project: contract number
N68171-97-M-5763, September 1997 - November 1998

WBTMIUTION 1TATEMENT A

Approrad for pohlie XW1SQM$

Distribution Unlimited rv>

vm «pALi£¥ ■mmmsEm 8f

o
Robust adaptive finite element schemes for
nonlinear viscoelastic solid deformation: an

investigative study

Final technical report by

3. R. Whiteman (Principal Investigator) and Simon Shaw

December 1998

United States Army
EUROPEAN RESEARCH OFFICE OF THE U.S. ARMY

London, England
CONTRACT NUMBER N68171-97-M-5763

CONTRACTOR:

BICOM, Brunei University, Uxbridge, UBS SPH, England

Approved for public release; distribution unlimited

o ö

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sourcel
gathering and maintaining the data needed, and completing and reviewing the collection of informatioa Send comments regarding this burden estimate or any other aspect of thi
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports 1215 MR™
Dave Highway, Suite 1204 Arlington, VA 22202^302, and to the Office of Management and Budget, Paperwork Reduction Project f0704-01881 WnMnJTl^ ^
1. AGENCY USE ONLY (Leave Blan^ 2. REPORT DATE |3. REPORT TYPE AND DATES COVERED * " :

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

13 December 1998
4. TITLE AND SUBTITLE

ROBUST ADAPTIVE FINITE ELEMENT SCHEMES FOR VISCOELASTIC SOLID
DEFORMATION

FINAL, 11 September 1997-11 November 1998

6. AUTHORS) ~

S SHAW AND J R WHITEMAN

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

BRUNEL UNIVERSITY

INSTITUTE OF COMPUTATIONAL MATHEMATICS
UXBRIDGE, MIDDLESEX UB8 3PH

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EUROPEAN RESEARCH OFFICE
UNITED STATES ARMY

223 OLD MARYLEBONE ROAD, LONDON NW1 5TH, ENGLAND

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12b. DISTRIBUTION CODE

The major goal was to develop a framework for the adaptive finite element solution of quasistatic

Ä^ m
ft?

evCre,Xt.°f ?6 PraCtiCal UtiHty °f «* iDteraaI variaWe formuTaüon
ZUlSl R Johnson of the Vehicle Technology Center, NASA, Langley, and the theoretical utility of
Ae hered taiy mtegral formulation, as used at BICOM. The first of these allows for practical software

^£^1^*^ ^ fr°m CXiSting Unear daStiCity C°deS'Whif^ ****** fSTe the derivation of mathematically rigorous a posteriori error estimates - the essential building block for

bSwt. K IT"1 SOlTSü During ±e Pr0ject we Pr°P°sed **<* developed a hybSI ataX*'
blending tiie best features of these two approaches. Also, we implemented our a PoZr?oTeTr

• timates to produce software capable of automatic spatial error control based on^apXmXT A
prototype version of this software is now mounted on Dr Johnson's workstation at NAsT Langley Fuh
details of the work undertaken on the Seed Project are also contained in the report y'

14. SUBJECT ITEMS

VISCOELASTICITY, FINITE ELEMENT METHODS, ADAPTIVITY

17. SECURITY CLASSIFICATION
OFREPORT

NSN 7540-01-230-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

107
16. PRICE CODE

20. LIMITATION OF ABSTRACT

ATTACHMENT 1 PAGE 1

ScuKUrd Fotm 298 (Rev. 2-89)

PracriW by ANSI StA Z39-I8

298-102

o

Abstract

This is the final report detailing the seed project research which was funded by the
U.S. Army through its European Research Office during the period September 1997 —
November 1998.

The primary purpose of the research funding was to enable Prof. J.R. Whiteman
and Dr. S. Shaw (BICOM, Brunei University,. Uxbridge, England) to collaborate with
Dr. A.R. Johnson (Army Research Laboratory, Vehicle Technology Center, NASA, Lang-
ley, VA, USA) toward developing a framework for the adaptive finite element solution of
quasistatic viscoelasticity problems.

The major goal was to develop this framework in the context of:

• the practical utility of the internal variable formulation, as used by Dr. Johnson;
and

• the theoretical utility of the hereditary integral formulation, as used at BICOM.

The first of these allows for practical software to be developed in a straightforward way
from existing linear elasticity codes, while the second facilitates the derivation of mathe-
matically rigorous a posteriori error estimates—the essential building block for adaptive
finite element solvers.

During the project we proposed and developed a hybrid algorithm blending the best
features of these two approaches. Also, we implemented our a posteriori error estimates to
produce software capable of automatic spatial error control based on adaptive meshing. A
prototype version of this software is now mounted on Dr. Johnson's workstation at NASA,
Langley, and a short "manual" illustrating the configuration and use of this software is
included later in this report. Full details of the work undertaken on the Seed Project are
also contained in the following pages.

o

Contents

1 Introduction 1

1.1 The report in a nutshell 1

1.2 The context 3

1 Basic Theory 5

2 Constitutive relationships 7

2.1 Hereditary constitutive relationships 7

2.2 Spring and dashpot models 8

2.3 The Reversed Maxwell Solid 12

2.4 The generalized Maxwell solid: internal variables 13

2.5 The generalized Reversed Maxwell Solid 15

2.6 Other constitutive relationships 16

3 Multidimensional internal variables 18 ^

3.1 Overview 18

3.2 Multidimensional constitutive relationships 18

3.3 Multidimensional internal variables 20

3.4 Reversed multidimensional internal variables 20

4 Model Volterra problems 22

4.1 Viscodynamics, 22

4.2 Viscostatics 24

4.3 Non-Fickian diffusion 25

5 Model internal variable problems 28

iii

/■->

)

iv CONTENTS

5.1 Overview and notation 28

5.2 Viscostatics: weak formulations 28

5.3 Viscodynamics: weak formulations 31

II Numerical Algorithms for stress analysis 33

6 Quasistatic internal variable problems 35

6.1 Overview and notation 35

6.2 Semidiscrete finite element approximation 35

6.3 Semidiscrete system equations 37

6.4 Equivalence of semidiscrete formulations 39

6.5 Fully discrete internal variables 40

6.6 Comparison of fully discrete formulations 43

7 The numerical algorithm 45

7.1 Introduction 45

7.2 Finite element discretization 46

7.3 Internal variable formulation 49

7.4 The numerical scheme 51

7.5 Numerical tests 54

7.6 consistency test 56

7.7 Spatial convergence 57

7.8 Temporal convergence 57

7.9 The general case: D ^ DT . 58

8 Adaptive error control 59

8.1 Introduction 59

8.2 A ■posteriori error estimate 60

8.3 Adaptive meshing for linear elasticity 62

8.3.1 The interpolation-error constants Iln and 11^ 64

""v 8.3.2 Example: exact solution 65

8.4 Adaptive meshing for linear viscoelasticity 66

8.4.1 The stability factor S(T) 67

o
CONTENTS v

8.4.2 Example: exact solution 68

8.5 Physical examples with "Maranyl" 69

8.5.1 Example: L-shaped lever arm 69

8.5.2 Example: a simple crack 70

8.5.3 Example: webbed angle bracket , 70

III Closure 77

9 Obtaining and using the software 79

9.1 Introduction 79

9.2 Obtaining the software 79

9.3 Defining the domain 81

9.4 Grading and generating the mesh 85

9.5 The finite element calculation 87

9.6 Some comments 94

10 Suggestions for further work 95

10.1 Overview 95

10.2 A.R. Johnson's visit to BICOM 95

10.3 Additional research areas 99

IV References 101

Chapter 1

Introduction

1.1 The report in a nutshell

This report is based on a research logbook (initiated on October 4, 1997) of our collabo-
rative research with Dr. Arthur R. Johnson (at ARL, VTC, NASA, Langley) on Internal

Variable methods applied to:

• structural viscoelasticity problems of quasistatic type with a view to their formula-
tion and subsequent adaptive solution.

The research was sponsored by the United States Army through a European Research
Office Seed Project (purchase order N68171-97-M-5763) and we would like to take this
opportunity to gratefully acknowledge this support.

This first part of the document contains a short introduction to the constitutive mod-
els used in viscoelasticity theory in terms of hereditary integrals (Chapter 2) as well as
internal variables (Chapters 2 and 3). We then indicate (Chapter 4) how the hereditary
integrals lead to memory terms appearing in the governing equations, thus resulting in
Partial Differential Volterra (or PDV) equation problems that need to solved in order
to model the physics. This material is based on the paper [50]. We also include a small
amount of detail on the phenomena of Non-Fickian Polymer diffusion and some recent
attempts by applied mathematicians to construct mathematical models. In parallel with
this Seed Project we at BICOM have also been actively engaged in developing prototype

software to model these effects.*

The Volterra operator (i.e. the memory) can be removed from the differential equa-
tions by appealing to the viscoelastic internal variables, in the manner of Johnson and
Tessler in [24] for example, and so we explore also (Chapter 5) the equations resulting

from this approach.

By "mixing and matching" the various forms of the constitutive relationship with the
governing equations, we illustrate in the next part of the report that it is possible to derive
a variety of differential equation problems which can then be addressed numerically in

* The computational modelling of problems of nonlinear diffusion in the contexts of controlled drug release
technology and percutaneous drug absorbtion (Project QR.97/2, ongoing)

1

CHAPTER 1. INTRODUCTION

order to model the problems at hand (Chapter 6). This is important because, as we also
illustrate, the numerical discretizations of various equivalent continuous problems can
result in differing numerical solutions. Prior to this Seed Project Shaw and Whiteman
had already spent a great deal of effort in deriving a posteriori error estimates for the
Volterra formulation of the quasistatic problem (see [47, 48, 52, 57, 54, 55]), and this
presents a natural entry point into the task of providing adaptive software based on error
bounds which are computable in terms of the discrete solution. On the other hand,
Johnson and colleagues have expended similar amounts of effort on practical solution
software based on internal variable formulations [25, 24, 23, 26]. Since these will result in
different numerical solutions the a posteriori estimates for the Volterra formulation cannot
be used.

Once the implications of this had been fully appreciated (i.e. a duplication of effort
in order to derive a posteriori estimates for internal variable formulations), one of our
foremost goals therefore came to be to derive a "hybrid" formulation of the problem that
would have the same numerical solution as the discrete Volterra equations, but could be
implemented algorithmically in the same manner as an internal variable method. Our
proposed algorithm is detailed in Chapter 7, along with some numerical tests to illustrate
that the numerical scheme does indeed behave as it should (in terms of convergence to the
continuous solution as the discretization is indefinitely refined).

We move on to adaptivity in Chapter 8. We first recapitulate the a posteriori error
estimate as given in [55] and then use it to implement adaptive meshing in the linear elas-
ticity context. Once the technique has been detailed the extension to the time dependent
linear quasistatic viscoelasticity case is straightforward, and we include several examples
to demonstrate adaptive space-discretization-error control by selective mesh refinement.

As noted in [47] (and seemingly also implied by others in, for example, [28, 2]) the
robust control of the time discretization error by varying the time steps is a difficult
issue for this quasistatic problem, and this is due to there being no time derivative in
the governing equation. As a result we feel that guaranteed temporal error control can be
achieved only in a more abstract way by measuring the error in a negative norm. Details of
our work in this direction are in [53, 56], the first of which gives numerical results for a very
simple case which, nevertheless, demonstrates that the resulting error control is effective.
The extension of these results to the space-time problem introduced and considered below
is non-trivial and, although we are progressing, no results are yet available.

In Chapter 9 we give a brief "manual" describing how to obtain, configure and run the
software that was used to produce the numerical results in this report. The report closes
with Chapter 10, In which we suggest further research work that would follow naturally
from this Seed Project, and then we give a complete bibliography.

The remainder of this chapter is devoted first to a brief discussion of the generic PDV
equations that arise when modelling viscoelastic effects, and then to establishing a context
and the basic notation for the entire report.

1.2. THE CONTEXT 3

1.2 The context

In their simplest form viscoelastic materials exhibit behaviour characteristic of both clas-
sical Hookean solids and Newtonian fluids. The resulting effects are important when the
material is deforming under an applied load. This load could, for example, be due to exter-
nally applied forces; internal deformation caused by a diffusing penetrant; or, constrained
thermal expansion caused by temperature gradients. See for example [30, 7, 38]. Moreover,
the material somehow keeps a record of its response history and, for this reason, viscoelas-
tic materials are said to possess memory. This memory is manifest in the constitutive
relationship between the stress and strain tensors, a and e, and as a result mathemat-
ical models of viscoelastic behaviour take the form of partial differential Vblterra (PDV)

equation problems. The canonical forms of these equations are: the elliptic Vblterra
problem,

Au(t) = f{t) + I B(t, s)u{s) ds; (1.1)
Jo

the parabolic Vblterra problem,

u'{t) + Au{t) = f{t) + f Bit, *)«(«) ds; (1.2)
Jo

and, the hyperbolic Volterra problem,

/'it) + Auit) = fit) + f Bit, s)uis) ds. (1.3)
Jo

u

These are supplied with initial and/or boundary data as appropriate, and the dependence
on the space variable x is suppressed. In these problems we use A and Bit, s) to represent
partial differential operators (acting only in the space variables) where, for example, we
could have

A := -V2 and 5(f, s) := -V • <£(i, a)V,

although for (1.1) and (1.3) the appropriate form for A is the linear elasticity operator—
with Bit, s) "similar".

The purpose of the first chapters is to illustrate how the memory terms arise in these
equations and also to summarize the various PDV equations used when modelling problems
of quasistatic and dynamic viscoelasticity, and non-Fickian diffusion in polymers. We
also indicate some of the numerical analysis work that has been carried out for these
problems (but we do not claim to be exhaustive, for a fuller account see [49]).

Throughout, the positive real number T will denote a final time and we use J := [0, T]
and 1 := (0,T] to denote time intervals. Also, for n = 1,2 or 3 we consider Q C En to be
an open bounded domain with boundary du. Furthermore, we consider dfl in the form

cK2 := TDUTN with rD D TN = 0,

CHAPTER 1. INTRODUCTION

where the closed set To Q dCl is called the Dirichlet boundary and is of positive measure
so that

I dr>o.

We call the (possibly empty) open set IV C du the Neumann boundary. The reason
for this terminology is the obvious one where we refer to the type of boundary condition
specified on these subsets. We indicate vector-valued quantities with boldface so that, for
example, we use x := (x{)f=1 to indicate a point in Rn. Tensors are indicated by a further

underlining: a = (^ij)ij=i-

Suppose that the interior of a compressible viscoelastic body Q occupies S7 and that its
surface coincides with dCl. If at a time t this body is subjected to a system of body forces
/ := (fi(x,t))i=l, for x Ed, and surface tractions g := (gi(x,t))f=1, for x € IV, then the
body G will deform from its equilibrium configuration. A material particle originally at
the point x will move to the new time dependent location x -f- u(x,t) where u := («{)"_!
denotes the displacement vector. In the linear theory these displacements define the

symmetric strain tensor £ := (£y)?j=i by the relationships:

■*<«>=K£+9- (i-4)

In addition to this strain field there will also be induced in Q a stress field described by
the symmetric stress tensor or := (ay)™ =1. This stress field rationalizes the internal force
field which is set up within Q to resist the external forces / and g.

The stress field can be related to u, f and g by Newton's second law of motion (see
later in equation (4.1)) and so it is of interest to derive a constitutive relationship
linking a; and u, or in practice, linking the tensors a and £.

Part I

Basic Theory

Chapter 2

Constitutive relationships

2.1 Hereditary constitutive relationships

In classical linear elasticity theory the constitutive relationship between stress and strain
is provided by Hooke's law:

oij = DijMSki or c = De,

where D is a positive-definite fourth-order tensor of elastic coefficients satisfying the sym-

metries

Dijki = Djiki, Dijki = Dijik, and Dijki = Dkuj.

The first two of these are implied by the symmetry of a and e while the third follows from
energy considerations. However, in viscoelasticity the third of these only applies when the
material is isotropic, see [30, Equations (1.10) and (2.62)].

One way of deriving a constitutive relationship for viscoelastic materials is to assume
that a Boltzmann superposition of stress increments can be applied where these stress
increments are related by Hooke's law to corresponding strain increments. For example,
suppose that Q is quiescent for t < 0 so that e(t) = 0 for t < 0, and that at t — 0 the body
undergoes a strain e(0). Then for t > 0 the resulting stress is assumed to be given by

o-o(t) = D(t)e(0),

where a time dependence has been introduced into the Hooke's tensor D- Physically we
expect D to be a smooth monotone decreasing function of t since it is unrealistic to expect
a to grow over time for the fixed strain g(0). (Where would the strain energy come from?)
In fact experiments on polymers show that D does in fact decrease and this phenomena
is known as stress relaxation.

Now, let At be a small time interval and set t{ := iAt. We approximate the strain
evolution by the step function

e(t) := e(ti) in [U, ti+i) for i = 0,1,2,...,

7

8 CHAPTER 2. CONSTITUTIVE RELATIONSHIPS

and then each strain increment,

Ae(ti+i) :=e(ti+i)-e(ti),

induces a stress increment according to Hooke's law:

Acj-fo) := D(ti - tj)Ae(tj) for l<j<i.

Notice that each of these stress increments will also relax according to the time dependence
of D. The total stress at time t{ is now given by superposition:

t

i=i
t

= D(ti)e(0) + £ #fe - *i) Ae(«i),
3=1

and by taking an appropriate limit we get the hereditary constitutive law as

<z(x,t) = D{t)e{u(x,0)) + f D(t-s)e{u'(x,s))ds. (2.1)
Jo

Since we are assuming that D(t) is smooth we can arrive at an alternate form by partial
integration,

e(x, t) = D(0)s(u(x, t)) - f Ds(t- s)e(u(x, s)) da, (2.2)
Jo

where the subscript s indicates partial differentiation with respect to the history variable
a. Either of these may be used as the constitutive relationship, and each demonstrates
clearly the role of memory in viscoelastic modelling.

To get a feel for the form of the time dependence of the stress relaxation tensor D we
now describe a perhaps more intuitive method for deriving these constitutive relationships.

2.2 Spring and dashpot models

We start with the physical observation that viscoelastic materials display the characteris-
tics of both elastic solids and viscous fluids. The kinetics of these type of substances are
modelled respectively by the spring and the dashpot. In these models the stress carried
by the spring is proportional to the strain in the spring and is given by Hooke's law:
a — Ee. The stress carried in the dashpot is proportional to the strain rate and is given
by Newton's law of viscosity: a = rje'.

One then models a viscoelastic material by considering a notional system of springs
and dashpots with independent stiffness and viscosity parameters. There are essentially
two ways to connect a spring to a dashpot: in series and in parallel. These are the
building blocks and are named the "Maxwell" and "Voigt" models.

2.2. SPRING AND DASHPOT MODELS

Figure 2.1: A HOOKEAN (LINEAR) SPRING: a = Ee; E IS THE SPRING STIFFNESS

E

AA/WV e, a = Ee

de
Figure 2.2: A NEWTONIAN (LINEAR) DASHPOT: a = 7/—; 77 IS THE VISCOSITY

de
e'a = r,di

The Maxwell model

Figure 2.3: THE MAXWELL MODEL

www 33—■ £,a

The Maxwell model is a series connection of a spring and dashpot. In this model £5 and
as denote the strain and stress in the spring alone, and e#, op denote those in the dashpot
alone. The total stress is given by a = as = OD and the total strain by e = es + £D-

Differentiating and using Hooke's and Newton's laws yield

* = i^£ + ^£ =*. ^. + ^ = E- (23)
dt E dt ri dt T dt' v ' ;

where r := TJ/E is the so-called relaxation time. Using <r(0) = Ee(0) this ODE is easily

solved to give

a(t) = Ee-f/Te(0)+E /V^/V^) ds,
Jo

and this is essentially (2.1) with the scalar analogue of D given by D(t) = Ee~^T.

The Voigt model

Connecting the spring and dashpot in parallel yields the Voigt model. This time £5 =
eD = e and equilibrium demands that a = as + &D, hence

de de e a
ri-- + Ee = a =► — + - = -.

dt dt T r\

10 CHAPTER 2. CONSTITUTIVE RELATIONSHIPS

Figure 2.4: THE VOIGT MODEL

\OD,£D

3

AA/WV
<?S,ES

_^e,o-

This gives the constitutive law in hereditary form as

e(t) = e-*/Te(0) + - f e^-^a^ds.
Tj Jo

The Maxwell solid

In his internal variable formulation A.R. Johnson, in for example [24], uses these basic
building blocks in the Maxwell solid. Here E0 and E\ are spring stiffnesses and a*, e* are
internal stress and strain variables. This time a* = E\e*, ep = e — e* and as = E0£s-

Also a* = an and this gives

de* de
'dt dt T at

where now r := rj/Ei. Solving this we get

rt
e*(t) = e-f/Te(0) + / e^'8^e'{s) ds = e{t) -=-J e-<'-5>/Te(a) ds. (2.4)

where e(0) could be any constant but arises here from the initial condition e*(0) = e(0).

Now, defining the stress relaxation function

D{t) := E0 + Eke-*'*

as the scalar analogue to the tensor D{t) in (2.1) and (2.2), and using this in (2.4) along
with the relation

a = as + er* = E0e + E\e* (since es = e),

gives

a{t) = E0e(t)+E1e-
t!Te(0)+ E1e-^-s^Te'(s)ds,

Jo

= D(0)e(t)- f Ds(t-s)e(s)ds.
Jo

2.2. SPRING AND DASHPOT MODELS 11

Figure 2.5: THE MAXWELL SOLID

EI
\a*,e*

HWWV-

EQ

■vww

\&D,£D

cs, £s

_^ e, a

This is the scalar analogue of equation (2.2) and suggests that we model D with the
Dirichlet-Prony series,

D(t)=<p(t)D(0)

where (p(t) is a generic stress relaxation function given by

(2.5)

N

vW=Vo + E^e ait- (2.6)
t=i

Here the (possibly x dependent) coefficients {fi}f=Q are non-negative and normalized so
that (p(0) = 1, and the (possibly x dependent) {oti)f=1 are non-negative. More generally
one could of course write (with summation not implied),

Dijki(t) := (Dijki)o + £ (Dijki)mexp(-(aijki)mt).
m=l

The Dirichlet-Prony series is an extremely convenient form to take for large scale compu-
tational approximations to problems (1.1), (1.2) and (1.3) since if

m := e~at,

then one can exploit the simple recurrence

il>(t + k) = e-akxl>{t)

to update the history term arising from a discretization of the Volterra integral. For general
Volterra problems one must usually store the entire solution history as the computation
advances through the time levels and moreover, at each time level this history needs to be
summed to approximate the integral. For such methods the number of operations required
at time level N is of the order 0(N2). The Dirichlet-Prony series provides a very useful
short cut around this 'W2 problem". (In certain special cases one can also overcome this
difficulty using other means, see for example [22, 19]).

12 CHAPTER 2. CONSTITUTIVE RELATIONSHIPS

2.3 The Reversed Maxwell Solid

One can also arrive at a Maxwell solid by switching the order in which the spring and
dashpot appear in the viscous arm of the network. We call this the Reversed Maxwell
Solid.

Figure 2.6: THE REVERSED MAXWELL SOLID

7 ic,e* pi

AA/WV

o\el

EQ

AAAAAr
\VS,£S

_^e,a

Balancing stresses such that cr* = a1 and using e1 = e — e* now gives the differential
equation for the new internal variable e* as,

—- + — = —, where r := r)/E\.
at T T

Note that e* is quite different from e* as introduced earlier for the Maxwell model, although
there is a simple connection which we demonstrate below. This time we have,

1
(t) = - f e-^-s^Te(s)ds,

T Jo

where we used e*(0) = 0 (otherwise any term of the form Ae tlT may be added on.).

Since e.s = £, the total stress a is given by,

a(t) = as + cr1 =E0es + EiE1,

= E0e + Ei(e - e*),

= (E0 + Eh)e{t) - — /* e-<*->/Te(a) ds,
T JO

= D(0)e(t) - I Ds(t- s)e(s) ds,
Jo

where again we set,

D(t) := E0 + ^ie-'/T.

This is exactly as before for the Maxwell solid, and so again represents a scalar analogue
of (2.2). The question is whether or not this reversed model is of any use, and in this
context we note the possibility of strong stability estimates for solution of this ODE.

2.4. THE GENERALIZED MAXWELL SOLID: INTERNAL VARIABLES 13

Note that e* and e* are very simply related by,

e(t)=e*(t)+e*(t).

This is obvious since the total strain in the viscous arm of the networks is the sum of the
strains in each component. This relationship is easily proven by considering the integral
representations of e*(t) and e*(f) given earlier.

Let us now briefly try to make a connection with the "ODE formulation" as described
by Janovsky et al. in [22]. Using e = e* + e* in the differential equation for e* we easily
obtain a differential relationship between e* and e* as,

de* _ e*

~dt ~~T'

The internal variable e* plays essentially the same role as (the scalar analogue of) w in

[22, Equation 4.1].

Finally in this section we note that we can also arrive at ODE's for the internal stress
variables. For the Maxwell solid we have,

da* a* .-, de
dt T at

and for the Reversed Maxwell solid we get:

de* _ _
v + Exe* = Eie,

at
da* de* _ de _ da* a*

dt dt dt dt T

Clearly er* = a* and so (again) de* /dt = e*/r.

2.4 The generalized Maxwell solid: internal variables

We now return to the Maxwell solid and generalize the conceptual spring and dashpot
model in order to motivate the choice of the Dirichlet-Prony series for the relaxation
function as given in (2.6). To begin with we assume again a state of uniaxial stress and

strain.

The generalized Maxwell solid, shown in Figure 2.7, consists of a Hookean spring
connected in parallel to a sequence of N spring-dashpot components. In this model,

eo = e, ao = EQE, and al = Eie*.

Balancing the stresses carried by each of the spring-dashpot pairs we get for each i €

{1,...,N} that,

del et _ ^e

dt Ti dt'

=► eUt) = e-'/Tie(0) + /'' e^-^e'^ds = e(t) - - f' e-W
Tie(s)ds,

JO Ti Jo

14 CHAPTER 2. CONSTITUTIVE RELATIONSHIPS

Figure 2.7: THE GENERALIZED MAXWELL SOLID.

EN

^AAAAAr—
E2

Ei

ia*N,e*N VN

I—VWW—

!°2'e2

1^11 £i

^WVW—

EQ

AAAA/Y

??2

»?1

o"o;£o

_^e,<7

where we used e*(0) = e(0) and this time we have set T{ := Ei/rj{. The total stress carried
by the assemblage is therefore given by:

a(t) = a0(t) + <ri(t) + ■ ■ ■ + <rN(t),

= E0e{t)+E1e*l{t) + --- + ENe*N(t),

= Eoe(0) + Eo(e(t) - e(0))

+ £ (Wt/Tie(0) + f Eie-^-^e'is) ds) ,

= E(t)e(0) + f E(t- s)e'(s) ds,
Jo

where

(2.7)

N

E(t):=E0 + J2Eie~i/n

i=l

The constitutive relationship (2.7) is the scalar analogue of (2.1) with the analogue of
D(t — s) given by E(t — s), which itself is an example of the Dirichlet-Prony series given
in (2.6). Note that if we set EQ := 0 then this generalized Maxwell solid actually models
a fluid since lim E(t) = 0.

2.5. THE GENERALIZED REVERSED MAXWELL SOLID 15

Again, we can also arrive at ODE's connecting the internal stresses,

dt n

since a\ = E{€.

dt

2.5 The generalized Reversed Maxwell Solid

By switching the order of the springs and dashpots in each of the viscous arms of the
generalized Maxwell solid network we arrive at the generalized Reversed Maxwell Solid.

Figure 2.8: THE GENERALIZED REVERSED MAXWELL SOLID.

VN

i

V2

i
m

<aN eN

, a2 e2

i a1 e1

EN

A/WVY

En

AAAAAr

AAAAAr

EQ

AAAAAr
|0"o,eo

^£,CT

This time we balance the stresses in each spring-dashpot pair such that o\ = Ei(e—e\)
and obtain,

del el _ e

dt Ti T{
for each i,

and where Tj := rji/Ei. Again, with £^(0) = 0 we can solve for the internal strains to get,

ej(i) = - /V<*-*>/T<£(*)<*»,
Ti JO

16 CHAPTER 2. CONSTITUTIVE RELATIONSHIPS

as expected, and we obtain the total stress from:

a(t) = a0 + E1(e-el) + --- + EN(e-e?),

= (E0 + -.. + EN)e(t) - f (^Le-<«->M + • • • + ^e-<*->M e(s)ds,
Jo \n r/v /

= E(0)e(t) - [Es(t- s)e(s) ds,
Jo

where, again, we set

E^-Eo + ^Eie-^.
N

c
1=1

This constitutive relationship between a and e is a scalar analogue of (2.2), which itself
is equivalent to (2.1). Hence the constitutive relationship generated by the generalized
Reversed Maxwell Solid is equivalent to that generated by the Maxwell Solid.

Once again it is trivial to note the connection,

e(t)=e*(t) + ei(t),

for each i, and it follows that,

d£J _ e*
dt T{'

Introducing the internal stresses we also get,

dal _ del „ de dal °*i
—v. * _(- Tft—* = Ei— = —- H—-

dt l dt dt dt Ti'

=^ £(al _ a*) + Ei (e-—-) = ^ => <r\-o$= constant = 0,
dt \ T{ J Ti

since the stress in each arm is independent of the order in which the components are
arranged.

2.6 Other constitutive relationships

The Dirichlet-Prony series is not however the only form used to model the stress relaxation
functions, for example the authors of [1] use the stretched relaxation function

<p(t)=tp0exp(-(at)p) for p 6(0,1]. (2.8)

Obviously no simple recurrence exists for this form. Another popular choice for cp is the
power law where

ip{t) - ipQtr
v for p e (0,1), (2.9)

2.6. OTHER CONSTITUTIVE RELATIONSHIPS 17

although from either of (2.1) or (2.2) this implies that either e(0) is zero irrespective of
the magnitude of the load, or c(0) is infinite. Neither of these are physically realistic and
so we would prefer to modify this law to

¥>(*) = M* + n)~p for p e (o, i), (2.io)

where (fi > 0 in order to remove the non-physical behaviour. Nonetheless, it is instructive
to see how one might "derive" the power law, and for this we borrow heavily from Chern's
thesis [4] which exploits the fractional calculus.

The formulation is based on the observed fact that viscoelastic materials behave
in a way intermediate to that of solids and fluids. Interpreting this literally yields a
constitutive law that contains fractional derivatives. Unfortunately we are unable here to
give this interpretation the depth it deserves and instead try only to illustrate the main
point. Recall that the stress in a solid is proportional to the strain while the stress in a
fluid is proportional to the strain rate. Accepting the intermediate nature of viscoelastic
materials the idea is to define the viscoelastic constitutive law as:

ff(t) = X?<°>e(*) + Bw9te(t), (2.11)

for constant fourth order tensors I?'0' and I?'1', and where a 6 [0,1). The fractional
derivative operator may be defined as:

d?e(t) := | (r(1 \ a) j\t - s)-a
£(s) cfa) , for «€[0,1). (2.12)

(Note that a can be irrational, even though the word "fractional" is always used.) By firstly
integrating by parts in (2.12) and then taking the differentiation through, Chern arrives at
a constitutive law which is suitable for use within the standard finite element framework.
Two solution schemes are considered: a solution in the Laplace transform domain and a
direct time domain solution. However, in this case there is no efficient history storage and
so the operation counts and computer memory requirement grow without bound as the
time step is diminished.

The "justification" for the power law is as follows. Carrying out this integration-
differentiation process gives

<<>=f(£=j£(o)+w^) I'(t - *>~vw *• (2-l3)

and using this in the scalar analogue of equation (2.11) we now arrive at the constitutive

law:

a(t)=Eoe(t) + ^^e(0) + f^^)l\t-S)-as'(s)ds. (2.14)

This seems to combine (2.1) and (2.2) when (p(t) is given by the power law, (2.9).

We now have several candidates for the constitutive law and these may be used to
generate a variety of differential equation problems. Later in Chapter 4 we do just this
and demonstrate how concrete forms of the abstract problems (1.1), (1.2) and (1.3), as
well as some non-standard variants, can be derived to model viscoelastic behaviour.

Chapter 3

Multidimensional internal
variables

3.1 Overview

So much for uniaxial states of stress and strain. In fact it can be shown that for each
relaxation mode (i.e. each spring-dashpot pair) in higher dimensions, there is an ODE
governing the evolution of each of the internal strain tensor components. Thus we have,

dt rm at

where the details are given below. The significance of these internal variable formula-
tions for the viscoelastic constitutive behaviour lies in the fact that it is possible to solve
some kinds of viscoelasticity problems, when the relaxation functions are in the form of a
Dirichlet-Prony series (2.6), using only a linear elasticity solver and an ODE solver. This
obviates the need to create special software for quasistatic viscoelasticity problems. For
more on this we refer again to [24] and also to [43], but we return to this topic in a later
chapter.

3.2 Multidimensional constitutive relationships

In [54] for example Shaw and Whiteman use a hereditary multidimensional constitutive

relationship of the form,

rait) = Dijkl{Q)ekl{t) - jf 9Dijkfs
S)ekl(s)ds

at each fixed point x in a viscoelastic body (see (2.2) given earlier). Here D{t) —
(Dijklit))? ■ k i=\ (f°r problems posed in En) is a fourth-order stress relaxation tensor

18

3.2. MULTIDIMENSIONAL CONSTITUTIVE RELATIONSHIPS 19

given, for example, by the Dirichlet-Prony series,

ND

Dijkl(t) := (Aj*/)o + E (Dijki)me-t/rm.
m=l

However, Johnson and Tessler in [24, equation 20.9] write this in a different form and it
is useful here to explore the connection.

Assuming that t = 0 is a reference time such that s(t) = Q for all t < 0, then the

constitutive equation is,

/t deu(s)
TO *Cijkl{t-s)-f^-ds,

= (Cijkl+ *Cijkl(0))ekl(t) -£
d *Cijk^ ~ SKkl(s) ds.

By comparing these two forms we see that

Dijki(0) = Cijkl + *Cm(0),

and also,

D'ijkm = *cijkl(t),
=> Dijki(t) = *Cijki(t)+constantijkl,

=> Dijkl{t) — *Cijki(t) + Cijkl Vt.

In fact Johnson and Tessler in [24, equation 20.7] write,

ND

*cijkl(t) := x: cs«e_t/T" for i * °»
m=l

where C*'^, C*'^,..., C*^0 are temporally constant fourth-order tensors. (In fact this is
a slight generalization of Johnson and Tessler's expression, but no matter.)

Comparing terms once again with our Dirichlet-Prony series representation of D we

see that simultaneously we must have,

ND

Dm(t) = ^H+jCjSe"^,
m=l

ND

Dijkl(t) = (Dijkl)0+ ^(Aiw)me-t/rm,
m=l

and so we infer that,

(Dijki)o = Cijki and (AjfcOm = C*^

for each m.

20 CHAPTER 3. MULTIDIMENSIONAL INTERNAL VARIABLES

3.3 Multidimensional internal variables

It is of interest to derive "ODE" representations of these hereditary constitutive relation-
ships in terms of internal strain variables. To begin we set,

e%(t) := e-'^euiO) + f e^^^^ ds = ekl{t) - i- j e^-^^e^s) ds,

and then by differentiating we obtain,

d^m = dejAV _ J_ \e-t/rmeu{0) + /
(
e-(^)/rm^(£) ds .

dt dt Tm L JO OS

Substituting for the integral now yields the family of differential equations governing the
evolution of the internal strain variables:

d^m | *efl{t) ^dekl{t)
dt Tm dt

For the stresses we note that,

ND

vijit) = Cijklekl(t) + £ C$J *£)5(t).

We can also derive ODE's for the internal stresses defined by,

•6*{t) := C*$ *ej3(t),

which gives,

<Tij{t) = Cmekl(t) + £ *<$(*)•
m=l

In this case the evolution equations are,

d Vff (*) Vff(t) dekl{t)
8t + rm vkl dt '

3.4 Reversed multidimensional internal variables

From our consideration of the Maxwell models we define the "reversed" internal strain
tensors *em(t) via,

„eJ3(t) := eki(t) - *efl(t),

and of course it follows that,

1 fl

*e?i(t) = — [e-^-s^ekl(s)ds.
Tm JO

3.4. REVERSED MULTIDIMENSIONAL INTERNAL VARIABLES 21

Then,

dt Tm

similar to before, and also,

of rm rm

These are clear analogues of the results for the scalar case given earlier.

Chapter 4

Model problems in viscoelasticity:
Volterra formulations

4.1 Visco dynamics

To obtain the governing equations for the dynamic response of a viscoelastic body one uses
Newton's second law to relate the stress field <x and the forces / and g to the acceleration,
or inertia, of the body Q. This process is familiar from linear elasticity theory and gives,
with boundary and initial data, the following. For i = 1,..., n:

QUi ~ <TijJ

m
aijnj

Ui(x,0)
u'i(x,0)

fi
0

9i

in fi x X,
in YD X Z,
in IV x I,
in il,
in Q,.

(4.1)

Here: repeated indices imply summation; 1 := (0,T) is a time interval; g is the mass-
density of Q\ and, n := (ni)"=i is the unit outward directed normal to re-

using (2.2) to substitute for the stress one arrives at the Partial Differential Volterra
(PDV) problem: find u such that

eu'l{t) - (Dijkl(0)ekl(u(t)))!:j = Mt) - f (9B&H s)
ds

£ki{u(s))) ds,
j

in fi x X with the indicated initial-boundary data. With an appropriate definition of A
and B(t, s) this is clearly a realization of the abstract problem (1.3). Note that it is "safe"
to use the Dirichlet-Prony series (2.6) or modified power law (2.10) in this problem, but
we may not use the power law (2.9) directly because we cannot then interpret 0(0).

In terms of existence, uniqueness and stability of solutions this problem has been
studied in [10, 11, 34]. Numerical schemes are given in [13, 60, 39, 42].

22

4.1. VISCODYNAMICS 23

One could also use the fractional calculus model to substitute for a: in Newton's
second law. This will yield a PDV equation of the form

On the other hand one could use (2.1) and then arrive at

Qv!{(t) - (Dijkl(t)skl(u(0)))tj = fi(t) + f (Dijkl(t - s)ekl(u'(s)))Jds.
J 0

Note that u does not occur as a natural "unknown" in this problem and so it is possible
to replace u with u' and arrive at the alternative problem: find u such that

rt
Qu'i(t) + / {Dijkl{t - s)eki(u{s)))d ds = fi(t) - (Dijkl(t)ekl(u0))j,

which makes sense if uo is smooth enough. The initial datum for this problem is now
«(0) = «i- Properties of the solution of these type of problems are studied in [11, 34] and
numerical analysis is given in [35, 32].

However, one must resist the temptation to interpret this as a parabolic problem for,
in general, it is not. To see this use the power law (2.9) with (2.5) to obtain (with g = 1
and D not x dependent for simplicity):

u'm + Dijkl f\t - s)-P(ekl(u(S))j ds = fi(t), (4.2)

where /now incorporates the additional term in UQ. In the case p = \ we find that the
operator / defined by,

1 /"* _i
Iw(t) := -7= / (t - s) 2iü(s) ds

V7T JO

has the property,

I2w(t) =I{Iw){t)= f w(s)ds,
Jo

and so may be regarded as the square root of the definite integral operator. Applying
i .

d* to both sides of (4.2) in the case p = |we arrive at

(J9 ' Ui{t) + ^Dv^kl(u(t)),j = d?ft(t).

This equation is half way between being parabolic and hyperbolic. Similar manipulations
are also possible in the case p^|, with the final time derivative being of order between
1 and 2. Numerical methods for fractional order differential equations are studied in
[41, 31, 12].

For more detail on these type of problems see [37], as well as the other papers in that
collection.

24 CHAPTER 4. MODEL VOLTERRA PROBLEMS

4.2 Viscostatics

Recall that the classical linear elasticity equations are "derived" from Newton's second
law (4.1) by dropping the inertia term gu". This corresponds to modelling the problem
at times long after the load has been applied when the transient response has died out,
and results in a very well-known elliptic problem. A similar approach can be adopted
for viscoelastic response although this time it is a true approximation since the resulting
problem is not time independent due to the persistence of the Volterra term. It seems
that this approximation can be useful when: the inertia term is negligible, which may
occur when the load is smoothly and slowly applied, or even when the applied load is such
that the dynamics of the response is dwarfed by the forced response; or when it is the
long-time creep response that is of interest. Since the time dependence persists we refer
to the resulting problems as modelling quasistatic viscoelastic response.

The governing equations for these type of problem are obtained from (4.1) by setting
gu"(t) := 0, setting J := [0,T] and discarding the initial data. Thus, for i = 1,... ,n we
have,

Ui = 0 ixxTDxJ, \ (4.3)
Gijrij = gi in FN x J,)

which are turned into differential equation problems for u by substituting for the stress
using either of (2.1) or (2.2). These give respectively the PDV problems: find u such that
for each i € {1,.. -, n},

- J (Dijkl(t - s)ekl(u'(s)))tj ds = frit) + (Dijkl(t)ekl(u(0)))tj,

and

-(Dijkl(0)skl(u(t)))tj = fi(t) - jf (^"^aN»))) da.

The first of these is essentially a Volterra first-kind equation for u', while the second is a
second-kind equation for u. In both cases one obtains «(0) by solving a linear elasticity
problem.

Numerical schemes and a priori error estimates were first provided for both of these
problems in [45]. Later and for the second-kind problem only, the estimates were improved
(in terms of the size of the error constant) in [44]. These latter results depend on by-passing
Gronwall's inequality and using more sensitive comparison results to obtain sharp data-
stability estimates. These estimates have now been generalized in [57]. Also for the second-
kind problem, o posteriori error estimates for a space-time finite element discretization of
a model problem have been given in [48] and [52]. These results are based on the error
estimates in [47] and are currently being generalized to the multidimensional problem
described above in [51], [54], [55] and [56].

4.3. NON-FICKIAN DIFFUSION 25

4.3 Non-Fickian diffusion

This section is not directly relevant to the Seed Project, but it is another illustration
of where viscoelastic effects play an important role, and therefore need to be modelled
accurately. We include this material for interest only.

In classical diffusion theory the gradient of the concentration u of an active agent (the
penetrant) diffusing through a carrier medium is related to the mass flux by Fick's law:
J = —AVu, where A is the diffusivity of the carrier substance. Conservation of mass then
demands that u' = —V • J which yields the familiar heat equation,

u'(t) = V • AVu.

If we define M(t) as the total mass of penetrant absorbed by the carrier per unit area
at time t then it is well known (from similarity solutions) that M(t) ~ £2 for Fickian

diffusion.

Diffusion in rubbery polymers, those well above their glass transition temperature
(GTT), is according to Durning in [14] adequately described by Fick's law, but the sit-
uation is much more complicated for glassy polymers, those near but above their GTT.
As the penetrant moves through the polymer it can force a phase change and so leave
behind it the polymer carrier in its rubbery state. The stiffness and relaxation properties
of the polymer change abruptly by orders of magnitude across this phase change (see for
example [18]), and as a result a differential stress is set up across the penetrant boundary.
Moreover, because the carrier is viscoelastic this stress is described by a hereditary consti-
tutive law and this behaviour provides a mechanism for the observed non-Fickian effects.
Workers in the field make the following very rough classification.

Case I diffusion: standard Fickian diffusion where M(t) ~ £2, applies to polymers in
the rubbery state high above the GTT.

Case II diffusion: non-Fickian diffusion, M(t) ~ ta where \ < a < 1, applies to glassy
polymers near to but above the GTT.

There is also a "Super Case II" category corresponding to a > 1, see [6]. For Case II
sharp fronts (rather like shocks) may appear as the penetrant diffuses through the carrier.
This front moves initially at a constant speed and then slows down, [8], and this explains
why M(t) is almost linear, and thus M'(t)—the rate of absorbtion—is almost constant.
By contrast M'(t) for Case I is, in the words of Cox in [8], "delta-function-like", and this
property of glassy polymers has an interesting application in the area of controlled drug
delivery products. Cox gives a nice example.

An active agent (the drug) is embedded into a polymer through which it cannot
diffuse. This may for example be a tablet which is to be swallowed. When the carrier is
invaded by a solvent, such as digestive fluid, the drug can then diffuse out of the polymer
through the solvent in a non-Fickian way. Since M'{t) is almost constant, this allows a
controlled, constant-rate delivery of the drug to the body for several hours.

26 CHAPTER 4. MODEL VOLTERRA PROBLEMS

The polymer doesn't have to be a tablet. In fact, according to Cohen and White in
[6] (who also describe other applications of non-Fickian diffusion), such "smart" pharma-
ceutical products can be designed to be "swallowed, smelled, surgically implanted, rubbed
on, taped on, strapped on", and can in effect be applied to any part of the body. There is
an extensive literature on this science and in addition to those already cited we refer also

to [20, 7, 15].

To get a flavour of the mathematical modelling that these researchers employ we
borrow from [5] and consider the modelling of one-space dimensional diffusion through a
glassy polymer. Our development yields a linear model, but it is unlikely that this will
reproduce the sharp fronts characteristic of polymer diffusion. The references cited deal

with realistic nonlinear models.

To account for the differential stress set up at the penetrant front Fick's law is modified
to include a stress dependence in the following way:

J — —(Xux + KOx).

Here u is the concentration, A the usual (Fickian) diffusion constant, and K is a propor-
tionality constant. Conservation of mass again demands that u' = —Jx and this gives

The stress is viscoelastic and the usual approach is to adopt the Maxwell model, given
earlier in (2.3), with the assumption that u depends linearly on strain rate e' (this is in
order to get true Case II behaviour—see [9]). Thus,

do a
— + - = /i«,
at T

where ^ is a proportionality constant. In the nonlinear theory the dependence of r on u
is crucial, but here we shall assume that T is constant. Integrating we get,

r(t)=fxe-t/Tu(0)+ß f e-^-s^Tu(s)ds.
Jo

Eliminating the stress from the transport equation and using mass conservation gives the
single differential-Volterra equation,

i'(t) = Xuxx + n/ie-^u^iO) + Kfi f e-<* s)/ruxx(s) ds.
Jo

Assuming for simplicity that u(0) = 0 we can generalize this to a multidimensional model
and obtain the PDV equation,

u'(t) = V • AVu + V • (KV f ne-^-s^Tu(s) ds) .

This is a concrete realization of the abstract problem (1.2).

4.3. NON-FICKIAN DIFFUSION 27

Equations of this nature have been studied in [36] and [21], and some numerical
analysis is given in [60, 3, 58, 40, 59]. Also, a priori and a posteriori error estimates for
a finite element discretization of a scalar prototype ODE with memory, of the type that
arises after spatial finite element semi-discretization of this problem, are provided in [46].

Chapter 5

Model problems in viscoelasticity:
internal variable formulations

5.1 Overview and notation

In this chapter we look at how to formulate viscoelasticity problems described by internal
variables. Once again our main reference is Johnson and Tessler, [24]. Before starting we
introduce some notation. For problems posed in R" we set,

Hm(Ü) := Hm(Ü) x • • ■ x Hm(Cl) (n times),

and, bearing in mind the notation introduced earlier in equations (4.1) and (4.3), we set,

H~{ve Hl(tt) : v = 0 on rD}.

Also, thinking in terms of weak formulations we also set,

(ff,e):= / aijEij(v)dü,
Jo.

and,

L(t; v):= [v ■ f(t) dÜ + I v- g(t) dT.
Jn JrN

We begin with quasistatic problems.

5.2 Viscostatics: weak formulations

We recall first the governing (quasi-equilibrium) equations for quasistatic viscoelasticity
introduced previously in (4.3). Then, using the fundamental Green's formula,

— I w JV dQ, = / wv jdCl — <p wvrin dF,
Jn J Jn 'J Jon 3

28

5.2. VISCOSTATICS: WEAK FORMULATIONS 29

and also the symmetry of the stress tensor to see that,

OijVij = r (aijvi,j + ajivj,i) = aij£ij(v)i

we then have for v G H that,

/ fiVidü = — / OijjVidQ= I OijVijdti— f aijUjVidT.
Jn Jci Jfi JrN

This implies,

/ a«e«(«) dÜ = (v ■ f(t) dtt+l v- g{t) dT.

Recalling the definitions made earlier we can write this more compactly as,

(c,e(v)) = L(t;v) \/veH.

This virtual work statement (weak formulation) is the standard "jumping off point" for
finite element approximations (to be considered later).

There now seems to be (at least) two ways to proceed. The first is to take the route
described by Johnson and Tessler in [24], we describe this first.

Route 1

We substitute for the stress using the multidimensional internal variables described earlier,
where we recall that,

ND

<Tij = Cijklekl(u(t)) + £ Cgw •*«(*)>

which gives the representation,

t ND
 r

(er,e(«))= / Cijklekl(u(t))eij(v)dSl +]T / Cg?*eJ3(*)*;(»)<*«•
Jn m-lJü

We now introduce internal displacements *um such that,

e«(U } - 2 I dxt
+ dxk) '

and this gives the virtual work statement in the form,

ND

a(u(t), v) = L{t; v) - £ *am{ *um(t), v) Vv G H.

30 CHAPTER 5. MODEL INTERNAL VARIABLE PROBLEMS

Here,

a(u(t),v) := / Cijkieki(u(t))eij(v)dn,
Jn

*a™(*um(t),v) := jf CgjreE('«m(*))etf(«)*!•

The internal strains satisfy,

d*e?, *eT, dekl

dt
kl i kl

dt

and it is important to realise that these hold at a point in space and so are effectively
ordinary differential equations.

Thinking in terms of the reversed internal variables,

£ - *£m,

we may replace these ordinary differential equations by,

d*£)b; , *^ki _ £M
Ot Tm Tm

and solve these instead. This may make more sense because we know e but not de/dt.

Thus we arrive at a statement of the problem.

Find u: J -¥ H such that,
ND

a{u{t), v) = L(t; v) - £ *am(*um(t), v) V« E H.
m=l

Here the *um are implicitly (but not uniquely) defined by the tensors
*em which in turn are given by,

d*e?, . *e% deki 'kl
dt

+ '-kl
dt

or dj^jä + j£l = eJL
Ot Tm Tm

with ^eT, = eki - *e; kl-

We now describe the second route.

Route 2

On the other hand we note that there is no need to introduce the internal displacements
*um at all. If we recall that,

Oij = CijkiEki{u) + 22 *a™,
m=l

5.3. VISCODYNAMICS: WEAK FORMULATIONS 31

where,

aij ■- ^ijkl £kh

then the virtual work statement takes the form,

ND

a(u(t),v) = L(t;v) - £ (V"(t),eH) ^ e **.
T7l=l

This generates a different problem statement.

Find u: J -t H such that,
ND

a(u(t),v)=L(t;v) - £ (V m(i),e(«)) V«6ff.
m—1

Here the internal stresses *om are given by,

dt ' rm ^ dt '

or: by V* = C*$ *£$ where, .

dt rm dt Ot Tm Tm

with .ejg = eki - *efl.

5.3 Viscodynamics: weak formulations

Given the quasistatic problem it is now straightforward to pose the viscodynamic problem.
Hence,

ND

(utt(t),v) + a(u(t),v)=L(t;v)-Y^ *am(*um(t),v) Vv E H.
m=l

The internal strain and displacement variables are exactly as given earlier. This research
project is not concerned with dynamic problems and so we leave the development of this
area to another time.

32 CHAPTER 5. MODEL INTERNAL VARIABLE PROBLEMS

Part II

Numerical Algorithms for stress
analysis

33

Chapter 6

Quasistatic internal variable
problems

6.1 Overview and notation

In this chapter we consider some of the possibilities for forming numerical algorithms
for the quasistatic problem modelled by internal variables. We consider semi- and fully
discrete schemes, in that order, and detail the computational implementation. We follow
here Route 2 as detailed earlier in Chapter 5.

First we establish our notation. If W is a function space then for a vector-valued
function w := (u>i)"=1, for which Wi G W for each i, we shall write w G W where,

W :=W x---xW (n times).

Moreover, if w := (iüy)",=1 is a second-order tensor-valued function for which toy G W
for each pair (i,j), then we set,

W = W x---xW (n times),
n times n times

:= (w x---xW\x---x (W x---xW} (n times),

and write w € W-

6.2 Semidiscrete finite element approximation

We consider the Route 2 problem in the following form. Find u G Loo(J;H) and, for
each m, *am G W^(J; L2{ty) such that,

ND

a(u(t),v) = L(t;v) - £ (Vm(*),eW) V« G H,
ro=l

35

36 CHAPTER 6. QUASISTATIC INTERNAL VARIABLE PROBLEMS

and, for each m,

d *am , *<im \ (dem .
+ ite = -5^,w Vuieiöifi),

where we define,

Alternatively, we might decide to work instead with the internal strains and then this last
set of constitutive differential equations is replaced by,

öt rm ' J \ dt

In this latter case of course we seek not only the *cm but the *em G W^(J; L2(Q)) also.
(Note also that we need u to be time differentiate, although this requirement could be
removed by employing the reversed internal variables introduced earlier in Chapter 2)

To form a notional semidiscrete approximation to this problem we firstly partition
J := [0,T] into time intervals {JijfLi, each given by,

Ji := (ti-i,U) with ki := U - ij_i

denoting the time steps. Now, for each time interval Ji we partition fi (in the usual way)
into a family of disjoint triangles suitable for piecewise linear finite element approximation,
and then let U denote the piecewise linear finite element approximation of u. We denote
the space of piecewise linear functions with respect to this mesh (i.e. during Ji) as Hi,
and we let Clj represent the jth element (i.e. triangle) in this partition.

In a similar way we let *£m denote the piecewise constant (on each element) approx-
imation to *ffm, and denote the space of piecewise constant functions with respect to this
mesh (i.e. during Ji) as Li.

In terms of the internal strains the resulting semidiscrete finite element approximation
to this Route 2 problem is: find U € Loo(J;H), satisfying U\j{ € L^J^Hi), and for
each m, \m e W^(J;L2(^)), satisfying *qm\Ji € W^(Ji;Li), such that for each
i = 1,2,... ,N in turn,

ND

a(U(t),v) = L(t;v) - £ (*$m(t),e(v)) W e Hu

m=l

where *& := C*^ *e£], and the *e£J are the finite element approximations of *e£|
satisfying (in each Ji),

d *em , *em A fde(U) \ w c r
+ , w = ' ■>w) Vw € Li-

ft rm ' J \ dt

6.3. SEMIDISCRETE SYSTEM EQUATIONS 37

6.3 Semidiscrete system equations

To represent a tensor-valued function in Li (for times t G Ji) we let {<f>ij} be a basis
consisting of piecewise constant functions in the following way,

f 1, for x G ftj = 7th element in the mesh,
4>ii '■= \ , , 10, elsewhere.

Then, faj € L{ for each j and for an arbitrary 0 € Li we have that,

i

where ay is the (constant) value of the component 0jy on the element Qj.

In the expression

(Q,w) for w E Li,

we now choose w such that Wki = <l>ij is the only non-zero component, then,

(Q,w) = / 6kiwkidCl= / 6kl<f>ijdtt,
Ja Jcij

= meas(fij)aj.

Picking Q := *gm we therefore find that,

Tin Tm

, tf? J = meas(fij) äj,

and

'3*em

dot.'
Here of course ay is the spatially constant value of *ek

n
l on £2,- and äj := —^-.

Also, since e(£7) € ^i, we let @AU) denote the spatially constant value of e(U) on
ttj and then we may write,

i

Then, with the same choice for w we have,

(de[U)w\ _ W (d^iJJ)\ _^_ f (d^jy
\ dt ■) - ?/,m.«-/.,m.«

mecis(Sij) —^-—.

38 CHAPTER 6. QUASISTATIC INTERNAL VARIABLE PROBLEMS

Thus, the finite element approximation of the internal variable constitutive equations
become,

dctj cij dßj (U)

dt Tm dt

where,

dj is the spatially constant value of *e^ on each Qj, for every pair (k, I) and for each m;

ßj is the spatially constant value of eki{U) on Clj, for each pair (k,l).

To obtain the system representation of the equilibrium equations we note first of all
that,

a(U(t),v) —► AU,

L(t;v) —» F(i),

in a straightforward way, where A is the elastic stiffness matrix and F is the load vector.
It now remains to consider the viscous term.

At this point A.R. Johnson would introduce the *Um internal displacement variables
and use the "Route 1" formulation with the evolution equations written pointwise in
terms of the *Um. Strictly, one should integrate these equations over Q since derivatives
of *Um are involved—this seems to introduce unwanted complications. We consider
constructing the viscous terms directly.

Let {ipu}i>o be the canonical piecewise linear basis with respect to the mesh during
J7i, and let {ipi}i>o be the resulting basis for H{. In the viscous term

(V"(i), £(«)),

we choose v — i/)l for some / and let S = supp('0/), then:

= E Cm *e%\nteij(rl>l)\nlmeas(nl),
ÜiCS

=: F,(t).

Defining the vector of viscous forces *Fm(t) := (F/(t))j>o in this way the system equations
take the form,

ND

AU(t) = F(t) - 2 *Fm(t),
m=l

doi al = dßjßl f u * m h o,
dt Tm dt 3 U 3

Note that *Fm is in principle easier to calculate than the stiffness contribution *Am *Um

described by Johnson and Tessler in [24], and requires less memory. However, direct access
to the isoparametric "builder" routines in the finite element code is required.

6.4. EQUIVALENCE OF SEMIDISCRETE FORMULATIONS 39

6.4 Equivalence of semidiscrete formulations

We now aim to show that the semidiscrete internal variable formulation described above is
completely equivalent (it has the same solution) to the semidiscrete Volterra formulation
that we have used previously (in for example, [45], [44], [54]).

Firstly, solving the ODE for CXJ in terms of ßj(U) and recalling the definitions of these
terms we have that,

>e%(t) = ekl(U(t)) - — fe-^-sy^ekl{U{s))ds
Tm JO

(except on element boundaries), which is expected. Thus it still makes sense to define,

,6JB(*) := ekl(U(t)) - *efl(t) = — f C-<*->/*»efc,(tf (*))*»,
Tm JO

and we still have,

°*ekl _ ekl
dt rm '

Note that by choosing w G Li such that uty- = Cl'^eki(v) for any v £ Hi we have,

(V\ie) = f *emwij(m= [*e%C*k%ekl(v)dn,

= / *<hleki(v)dn = (\m,S(v)),
Jn

fds(U) d *em

" Tm{ dt dt ,W

d*em \

where we are now working in terms of the reversed internal strains. Combining equations
then gives,

ND (Q m \
a(U(t),v) = L(t;v) - £ rm[^-,w to G Hh

m=\
dt

and where toy- := Cl'£jeki(v).

Now, bearing in mind the combined equation given above we note the following. For

Wki ■= Cijki£ij(v) and v EHi,

= I C*$ (eu(U(t)) - i- J*e-^-s^ekl(U(s))ds^j £ij(v) du,

Jn Tm Jo JU

40 CHAPTER 6. QUASISTATIC INTERNAL VARIABLE PROBLEMS

Substituting this into the "combined equation" shown above then gives,

ND ,
a(U(t),v) = L{t;v)-Y, Ct$£ki{U{t))eij{v)d£l

ND 1 ft r

m=1 Tm JO JO.

which, using the definition of a(■, •) from earlier, is the same as,

i{ Cijki + £ Gm ekl(U(t))£ij(v) dÜ = L(t; v)
m=l /

or, changing back to the "D" notation for the relaxation function,

j Dijki{^ki(U{t))eij{v) du = L(t; v)+fQjn ^^—^-SkliUis^eijiv) duds.

This is precisely the Volterra formulation we were aiming at. (Once again, this is not
surprising—but we have to be certain.) More recently (in e.g. [54]) we write this in the
form,

A(U(t), v) = L{t; v) + f B{t, s; U(s), v) ds Vu € Ht,
Jo

and we will return to this later. Now we consider a fully discrete approximation.

6.5 Fully discrete internal variables

In view of the equivalence just demonstrated it would be a neat trick to find a time dis-
cretization of the evolution equations that is equivalent to our "Volterra approximation",
and then the existing error estimates given in [54, 55] can be applied. It is doubtful
whether this can be done. However, the solutions given by the two schemes should at
least be close, and our next task is to attempt to find an expression connecting them.

Let jj be the spatially constant value of *e£|, on each ftj, for every pair (k, I) in turn,
and for each m in turn. Then by exactly the same reasoning as used above to obtain the
ODE's for the ay's we can also arrive at the family,

Qt Tm Tm

(Note that the time derivative of ßj(U) is not required.) This is still semidiscrete. To dis-
cretize in time we will use piecewise constant approximations to jj and U denoted during

6.5. FULLY DISCRETE INTERNAL VARIABLES 41

each time interval Jq = (£g_i,f9) by % and Uq. A simple finite element approximation of
the ODE's given above then yields, for q = 1,2,...,

% - V, + Mi = WEA (in each fy etc.),

subject to 7o = *e^}(0) = 0.

Setting rq := kq/Tm we have in general that,

(1 + rq)% = rqßj(Uq) + %-i,

and so the first few solutions are given by,

nßj(Ui)
71 = ^^iT
^ ra/3j(^2) , rift(17i)
72 l + r2 (l + raKl + ri)'

- = ^(t/3) ^(^2) n^(^i)
73 l + r3 (l + r3)(l + r2) (1 + r3)(l +r2)(l +n)'

It is not hard to see that in general,

7g — Z_J g '
p-1II(1 + ^)

s=p

and that this holds for every % « 7, on J, and where 7,- = *e£| on fy. (Note that this
assumes the space meshes are constant in time.) In tensor form we can write this as,

prfII(1+''<>
s=p

and where (*€jl)q denotes the fully discrete approximation to »g^1 during times in Jq.
Dropping the subscript j we therefore have that everywhere on the mesh,

(*Sm)q = E q
P —^^ except at element boundaries.

p=1II(1 + r-)
s=p

The question now arises as to how we determine the Up. For this we use a fi-
nite element discretization (in time) of the semidiscrete equilibrium equations. Using the
"combined equation" given earlier we then have, for all suitable space-time dependent test
functions v that,

rtq ^ [T ftq ND __

E / a(Uq(t),v(t))dt = / L(t;v(t))<& - E / E Wu*) " (*€m)g,w),

42 CHAPTER 6. QUASISTATIC INTERNAL VARIABLE PROBLEMS

where we used the semidiscrete equation to write, for wij = C^eki(v),

and then used the finite element approximations.

Choosing the test function v such that it is non-zero only in Jq then results in,

— 1 /■*« Ä —
a(C/g,«) = r / ü(t;«)<**- E Mui) - (*£m)?> w)

ft? •/t«-i m=l

for all v e Hq and where wij = C*k^eki{v). In this case we can write,

and so the fully discrete solutions satisfy,

r I ND \ — 1 /•*«
/ Ciiw+ECyw UK^HW^ = TT/ £(*;»)#

7" V m=l / *« ■7'«-1

E / c&£(.«5)«ey(«)<«•
m=l,/n

+

Using our explicit solution for {*em)q we then get,

r (ND \ — 1 /■*«
yn CW + E C?« I £ki(Uq)eij(v) dV=-jt i L(t;«) dt

+ E/0^E^^-^)^
m=1 P=1II(1+^)

1 /■*« , .

kqJtq

ND q

ftq

/ L(t;v),
Jtq-i

Tidying this up, we find that the fully discrete displacements satisfy,

1 /•*«
/ Ajw(0)£fct(^)eo(«) <M = T I" L& v)dt
Jn Kq Jtq-l

+Sl,(iE^))^^s-(&'^w*
Now we effect a comparison between this fully discrete solution and the one produced

by the "Volterra formulation".

6.6. COMPARISON OF FULLY DISCRETE FORMULATIONS 43

6.6 Comparison of fully discrete formulations

Setting ip := min{£, tp} we can discretize the semidiscrete Volterra problem using a piece-
wise constant temporal approximation to the displacements to get,

A(Uq,v) = -j- /'* L(t;v)dt + ^- f J2f B(t,s;Up,v)dsdt V« € Hq
Kg Jtq-i Kq Jtq-i 2 Jtp-i

For the term on the far right we have,

t 1 i / ND ft*im \

*« Vi p=l Vi vn ™^ m /

= E E rV f f f ^(t's)/Tm **) /0 CSSe„(Lfp)e«(t,) Ä1.
m=lp=l TmK« V*«-1 •/tP-1 / •/n ip:

Now, for p = q we have,

Iq f e-M/r» ^ = Tmfcg + 4 (e-^/- - l),
Jtq-1 Jta-1

while for p < q,

I' I' e-^-s)lTm dsdt = rle-^-'"-^^ (ek">Tm - l) (ek''Tm - l).
Jtq-l Jtp-1

Using these we then have that the fully discrete approximation from the Volterra formu-

lation satisfies,

 1 ft« ¥JZ (p-kq/Tm _ i \ f
A{Uq,v) = ±[L(t;v)dt+ J2 1 + I / C8Ee«(tf«)e«(«)<«

Ä9 J*<i-i m=l V rq J JQ

+ E E [- (e q/Tm -!)(e p/Tm -0 / cS«6«^)6«^)*>■
m=lp=l V r« / ,/n m=lp=l

Using,

e(tp-i-tq)/rm _ i
erp erp+1 ■ • • eri'

and expanding to first order gives,

e-fa-tp-i)/rro ?/Tm _ , , , ^

r9 ve w x; ni=P(i+rs)
+ [pq)

A similar approximation leads also to,

rq rq rqer" l + rq
v

44 CHAPTER 6. QUASISTATIC INTERNAL VARIABLE PROBLEMS

Thus, the fully discrete approximation from the Volterra formulation also satisfies,

/ DijuMeuiUjeijiv) dÜ = 1 /' * L{t- v) dt
Jil Kg Jtq-i

ND 1 r

+ E E^WP) / Ci&H{Vp)eij{v)<Kl,
m=lp=l Jil

where E(rq,rp) = 0(rqrp) is the truncation error resulting from the approximation of the
exponentials.

We can now obtain an "error equation" connecting these two numerical solutions as

follows,

ND q ~ — ND

9 (r \ t ~ ^
A(uq-uq,v) = E E nnuTT Ic5£«(^"^H'^)rfa

m=lp=l Vh=p\1-+rs)J Jn

-£ Y,E(rq,rp) / C$eu(Up)ey(v)dn.
ND q

+
m=lp=

Note also that by regarding the integrals as approximations of the rational functions we
could easily replace Up with — Up in the last term, and make an adjustment to the first
term on the right. That is, writing,

mfcrr^LL'^**-«'^
we have also,

A(Uq-Uq,v)
ND q (-I ,t ft \ r __ ___

E E Mr / / e-fi-'V'-dsdt) / CffleuiUp-UjevWdn
m=lp=l \T™Kq Jti-l JtP-l) Jn

£ J2E(rq,rp) / ClfceuiUjeaWdto.
m=\p-

The point about these results is that we can now measure the distance between the two
different numerical solutions. This opens up the possibility of using our error estimates
for the Volterra formulation to construct an adaptive solver for the internal variable for-
mulations already used by Dr. Johnson. However, in the next chapter we take a simpler
and more direct route toward an adaptive solver built on the concept of internal stress
variables.

Chapter 7

The numerical algorithm

7.1 Introduction

In this chapter we fix on the numerical scheme proposed in [54] for which both a priori and
a posteriori error estimates have been derived there and in [55, 56]. This numerical scheme
is based on the Volterra formulation of the problem and discretizes the Volterra integral
directly. The result is that the entire solution history plays a role in the a posteriori error

estimate.

With this in mind, below we pay particular attention to marrying the theoretical error
estimates derived for the Volterra formulation with a practical implementation drawing
on internal variables. We view this as especially important since the error bounds contain
a potentially troublesome (and expensive) term (denoted in the next chapter by £y)- This
term arises directly from the residual of the finite element solution associated with the
Volterra integral on de-refined meshes. It seems inconceivable that the effect of this
term can be anything other than to degrade the quality of the error estimate, and it seems
possible that an internal variable formulation could be used to remove it completely with
comparatively minor additional computational expense.

We say more about the a posteriori error estimate in the next chapter where we also
show some adaptive solutions. Here we outline the finite element discretization of the
problem and quote from [54] the a priori error estimate, and then give an alternative
numerical implementation to that in [54] by invoking internal stress variables. We term
the resulting scheme a hybrid Volterra-internal-variable formulation since the numerical
scheme and error analyses in [54, 55, 56] are all framed in the context of the Volterra
formulation, while the material below draws on the internal variables discussed in the
previous chapters and is ultimately based on the work of Johnson et al. in [24, 25, 23].

After outlining the solution algorithm we design some test problems for which we
know the exact solutions and then compute some numerical solutions, and their errors, to
demonstrate consistency, spatial convergence and temporal convergence.

45

46 CHAPTER 7. THE NUMERICAL ALGORITHM

7.2 Finite element discretization

To discretize the problem (4.3) with (2.2) using the finite element method we first identify
a suitable test space H to capture the spatial regularity, and then take the scalar product
of (4.3) with a test function and integrate by parts over the domain Q for an arbitrary
time t G J. Later we then allow the test function to be time dependent and integrate
through time as well to prepare for a space-time finite element discretization.

Since the displacements are vector valued we first define for s — 0,1,2,... the product
Hilbert spaces,

(H
S
(ü), (■,■).)== (#'(")> (• > • W)) x • • •x (#'(")> (• > • W)) (n times)>

where the inner products are given by,

(w,v)a :=^2(wi,Vi)H.
(«)■

i=l

for all w, v G HS(Q). These spaces have the natural norms || • ||s := ■</(•, -)s and, of
course, Li2(ß) = H°(£l). Also, and as is usual for time dependent problems, for a Banach
space (B, \\ • \\B) we define the Lp(0, t;B) norms by,

\\vhp(0,t;B)--=(f*\\v(s)\\P
Bds

for t E J, and with the obvious "ess sup" modification when p = oo.

Using the essential boundary condition we now define the (spatial) test space,

H := [v e Hx(0) : v = 0 on TD}, (7.1)

and (see e.g. [54] for details) arrive at the "semi-weak" problem: find u G L00(t7;i3') such
that,

A(u(t), v) = L(t; v)+ I B(t, s; u(s), v) ds V« G H, a.e. in J. (7.2)
./o

We call this problem "semi weak" because later we will integrate over J also to obtain a
"fully weak" formulation. (These terms are just labels and no mathematical significance
should be attached to the "semi" and "fully" qualifiers.) Here for the triangle,

T := {(t, s)EjxJ:0<s<tEj},

the bilinear forms A : H x H ->■ R and B : T x H x H ->R are defined by,

A(w,v) := [DijuWekiiw^ij^dn, (7.3)
Jn

B(t,s;w,v) := jj0^'s)ekl(w)slj(v)dÜ, (7.4)

7.2. FINITE ELEMENT DISCRETIZATION 47

for all iu, v G H, and L: J x H —>• R is a time dependent linear form defined by,

L(t;v):= IVf(t)dü+<f vg{t)dV. (7.5)
Jn JrN

For full details on this formulation along with some (rather standard) assumptions we
refer to [54]. In particular we ensure that (H,A(-, •)) is a Hubert space with (elastic)
energy norm || • ||# := \/A{ •, ■) and dual H', and then from [57] we have the stability
estimate,

IMIMO,*;*) < S(t)\\L\\Lp(0ft.HI). (7.6)

In this estimate S : J -» [0,00) is a stability factor which for isotropic problems can be
expressed in terms of the eigenvalues of the stress relaxation tensor (or matrix) I?. This
factor is of crucial importance since it appears in the a posteriori error estimates and
governs the rate at which the discretization errors can grow with time.

To carry out a space-time discretization we need now to allow the test function to
be time dependent and then integrate the weak form over the time interval J. Thus we
arrive at the "fully-weak" formulation of this problem as: find u G L^J; H) such that,

a(u,v)=l{v) VuGLi(J;F), (7.7)

where:

a(u,v) := / A(u(t),v{t))dt- / / B(t,s;u(s),v(t))dsdt, (7.8)
Jo Jo Jo

l(v) := [L{t;v(t))dt. (7.9)
Jo

This equation is the starting point for the space-time finite element discretization
of the problem, and to this we now turn. We firstly partition J into N time intervals
{Ji}£Li, where Ji := (<i-i,*t)> of lengths h := U - U-y > 0 and such that,

J = JiöJ2U---UjN,

so that to = 0 and tN = T. We use k to denote the piecewise constant function such that
k\ji := h.

For each of these Ji we construct on Q (in the usual way) a triangular/tetrahedral
space-mesh of Mj elements and denote the domain tt with this mesh by SV Element j of
tti will be denoted fiy and we set,

hij := diam(fiij),

and use h to denote the piecewise constant mesh function given by /i|ny := h^. We also
use hi to denote the mesh function at times t G Ji given by hi\atj := h^, and use these
notations to see that h\j{ :— hi. We need to assume that arbitrary partitions of fü x J of

48 CHAPTER 7. THE NUMERICAL ALGORITHM

this nature always exist because in an adaptive solution the {Ji} and {fl^} are of course
not known in advance.

Having now broken the prismatic domain fl x J into the laminae (or "slabs") fl x Ji,
indexed by the time levels i G N(l,iV), we define for each flj the semidiscrete (spatial)
finite element spaces,

Hi := {v G H D (C(fl))n : v is linear on fly for each j G N(l,Mj)}.

The space-time finite element spaces are now given by Vr where,

Vr := {v G LP(J;H) : v\J{ G Fr(Ji\Hi) Vi G N(1,W)}.

Here Pr(j7i;i7j) is the vector space of polynomials of degree at most r defined on Ji

with coefficients in iZj. Note that our approximating functions in Vr are continuous in
space but in general discontinuous at the knots {U}^1. These discontinuities allow the
space-meshes to change with time.

We define also the set of internal edges (for triangular fly in R), or faces (for tetra-
hedral fly in R3) in each fi{ as,

Ci := <£ C fl : 3j G N(l, Mi) such that I is an edge/face of fly j,

and the set of edges, or faces, on the Neumann boundary IV as,

Ti := \t C IV : 3j G N(l,Mj) such that £ is an edge/face of fly}.

We assume that there are respectively Nc{ and Njr. such edges in the time interval Ji.
We also define,

Kij ■■= Cj\(£in Cj) for l<j <i<N, (7.10)

as the set of internal edges/faces belonging to Cj but not to Ci. Note that Hu = 0, and
that if we control our adaptivity and allow only nested refinements such that üT{_i C Hi
for i G N(2, N), then d n Cj = Cj and Uij = 0.

Once we choose a value for r, which for us will be r = 0 or r = 1, we form the finite
element approximation to (7.7) as: find U G Vr such that,

a(U,v)=l(v) VveVr, (7.11)

and subtracting this from (7.7) gives the fundamentally important Galerkin "orthogonal-
ity" relationship:

a(u - U, v) = 0 \/v G Vr. (7.12)

This property, when coupled to the strong data stability of an associated dual backward
problem, is the basic building block in the error estimation technique developed by Johnson

7.3. INTERNAL VARIABLE FORMULATION 49

et al. in for example [16]. For our problem it is, however, of limited use since we do not
have strong temporal stability of the solution.

Note that as the foregoing suggests the material in [54, 55, 56] is applicable to both
two- and three-dimensional problems, although here we are concerned only with two-
dimensions. Also, we take r = 0 in all that follows which corresponds to a piecewise
constant temporal approximation. The numerical algorithm corresponding to piecewise
linear time discretization is summarized in [54].

In [55] we give a detailed list of assumptions on the data and in particular on the
approximation properties of the spaces {Hi} and Vr. These again are rather standard and
would be out of place here. Note also that we assume that Q is piecewise constant in
space. We could easily allow the case where D is piecewise smooth in space at the price
of an extra term in the error estimate, but the piecewise constant case is more likely to
arise in practical problems since most materials have piecewise constant properties.

The a priori error estimate for this problem is derived in [54]; it takes the following

form.

Theorem 1 (A priori Galerkin energy-error estimate) Under certain natural as-
sumptions, and for approximation in Vr, for r = 0,1, the Galerkin error e := u — U

satisfies the a priori error estimate,

II--u\\Loo(J.,H)<c(T) uh\htfu , ,,_ + n* a-™
LociJ-MiQ))

kr+ldr+lu

8V+1

Loo{J\H)J

where C(T) is a constant. This estimate holds for r = 1 only if each kq is small enough,

and depends also on the ratios kq/kq-i.

Such a result is reassuring in that it guarantees convergence and also demonstrates
the form required for the upper bound on the a posteriori estimate in order to guarantee
robustness. However, from a software implementation standpoint the a posteriori error
estimate is much more relevant since it can form the basis of an adaptive code. We consider
adaptivity in the next chapter and below illustrate the convergence of the scheme with a
few example exact solutions. First we detail the practical implementation of this scheme.

7.3 Internal variable formulation

Before we get to the numerical scheme in the next section it is useful first to re-write (7.7)
in terms of internal stress variables. Recall first that the constitutive law is given by,

a(t) = D(0)e(u{t)) - f Ds(t - s)e(u(s)) ds
Jo

(neglecting x dependence), where,

and

50 CHAPTER 7. THE NUMERICAL ALGORITHM

Also, we consider only isotropic materials and so write,

D(t) = X(t)Ix + i*(t)Iß,

where,

/l 1 0\ /l 0 0 \
Ix := 1 1 0 and 1^ := 0 1 0 ,

\0 0 0/ VO 0 1/2/

and A(t), /i(<) are given by Prony series-type relaxation functions. For the stress we then
have,

o-(<) = ?(i)-S(«;<),

where,

q(t) := D(0)e(u(t)) = instantaneous elastic stress,

S(u; t) := / Ds(t — s)e(u(s)) ds = inherited viscous stress.
Jo

Setting Aj := \{I\ and ^ := /JJIM and defining the internal stress variables,

SA>;i) := Xikfe-^-^eiuis^ds
Jo

S« Jo
we have,

E(u;t)= / D,(t-«)e(u(s))ds = 2^(«;<) +ES«(«;')•

Note that these internal variables satisfy evolution equations of the form,

VXi(ii;t) + liIlx.(uit) = XiUe(u(t)),

and also that the following "update recurrences" apply,

EA>;i) = e-W-^E^^+Xikfe-W-^eiuWds,

Sw(u;t) = 6'™«-^^) + »w j* e-m«-sh{u{s))ds.

Using these new definitions with (7.8) and (7.4) we get an alternative representation of
the history as,

I B(t,s;u(s),v)ds = j (f Ds(t - s)e(u(s))dsj • e(v)cKl,

= I H(u;t) ■ e{v)dtl.
Jn

The point to note here is that the history integral has now vanished and been replaced
by a local (in time) term. We will use a similar approach below to form the numerical
algorithm.

7.4. THE NUMERICAL SCHEME 51

7.4 The numerical scheme

To obtain a practical scheme from (7.11) in the case r = 0 we choose v such that v = 0
outside of the time interval Jq, and then v G Hq is a piecewise linear function of x during
times t € Jq. Writing Uq := U\jq for the discrete solution restricted to this time interval
equation (7.11) then becomes,

a(Uq,v) = l(v) Vv\Jv e Hq, v\j\Jq = 0,

for each q = l,2,.... Here,

/(„)= [" L(t;v)dt,
Jtq-i

and,

a(Uq,v)= f" Ao(t-tq-i;Uq,v)dt- I" I" * B(t,s;U(s),v)dsdt,
Jtq-l Jtq-l JO

where,

Ao(t-tg-i;Uq,v) := f Dijki(t-tq-i)eki(Uq)eij(v)dü.

As above, we assume throughout an isotropic material so that the tensor D can be equiv-
alently thought of (in two space dimensions) as the matrix,

(\{t)+ti{t) n{t) 0 \
D=[tx(t) \(t) + fi(t) 0 .

V 0 0 /x(*)/2/

Now, taking v to be each basis function for Hq in turn, and imposing essential bound-
ary data etc. in the usual way we arrive at the equation system,

f A(t-tq-i)dtUq= I" F(<)dt + "history".

We turn to the "history" contribution arising from the double time integral below since
we want to give an internal variable interpretation along the same lines as in the previous
section. Note that this is different to the discrete scheme presented in [54] where we
considered a direct discretization of the Volterra integral. In the equations above A and
F are essentially the same as the standard stiffness matrix and load vector that arise in
standard finite element discretizations of the linear elasticity problem. The only difference
is that the Lame functions and loads are time dependent.

In the practical scheme we integrate these equations to arrive at the problem: for
each q = 1,2,... in turn, find Ug € Hq such that,

AqUq = Fq+ "history".

52 CHAPTER 7. THE NUMERICAL ALGORITHM

Now A is precisely the stiffness matrix for linear elasticity but built with the modified
Lame functions,

rtg ttq
I \(t - tq-\) dt and / ß{t - tq-{) dt.

Jtq-i Jtq-i

For the generic Prony series relaxation function,

Nx

x(t)=X0 + J2*ie~ait>
i=l

we have,

/ * X(t - Vi) dt = kqXo + £ -(! - e~aik"), Jtq-l i=iai

where kq := tq — tq-\. These A and fi terms are then easily evaluated during equation
assembly by simple function calls. To evaluate the time integral of the load vector we
apply the following Gauss rule to the body forces / and tractions g,

I m{z) dz ta w- (m(f+) + m(f _)) + m+ (m(r)+) + m(»7_)),

where,

1 y/30 , 1 , /15 +2^/30 , 1 /15-2V30
ro±:=4±^2~' &;=2±V"^iÖ~" and %:=2±V 140 •

This rule is exact for m{z) = z7, and again we note that the load vector calculation and
assembly routines in a standard code need only be modified in a trivial way.

To build the "history" term into the equations recall that we need to include the
double time integral,

rta- rtq ftq-1
l I B(t,s;U(s),v)dsdt.

Jtq-i Jo

Recalling our internal stress variables from the previous section note first that we have,

f~l B{t,s;U{s),v)ds = £ / e-W-^VxiMtg-t) ■ e(t>)dfi,
Jo i^lJil

N« r
+ £ / e-^H-Oj) ([7iVl) • e(v)dü

From this it follows that we may write the double time integral of the strain history as,

ftq ftq-l
/ / B(t,s;U(s),v)dsdt

Jtq-\ JO

7.4. THE NUMERICAL SCHEME 53

E/[r e-^-^v^u^dt

• e(u) dft

e(t>) cftL +

Noting expressions of the form,

ftq e-U{t-tq-i) dt = z-i(1 _ e-kkq^
Jtq-i

the double time integral simplifies to give,

[tq fq~l B(t,s;U(s),v)dsdt = f/^(l-e-'^J^^Vil-eHdO

i=lJn

For a piecewise linear (spatial) finite element approximation E^(C7;<g_i), 2^.(1/;<9_i)
and e(u) (for « € .H",) are constant on each element and so these terms are trivially
integrated to determine the local viscous load vectors. Thus the solution algorithm takes
the following outline form.

Outline algorithm

Initialize: E>{ = Ew = 0 for each i.

Do: for time levels q = 1,2,...,

• Given

SAi(U;*9_i) and ^(U;^)

from the previous time step initialize, for each element ilqj, the local component
viscous force vectors,

F% = SAi([^;Vi) • e(v) and F% = £Mi(t7;t9_i) • e(v).

• From these form,

nit-nf i-Hi-e-iik")dnqj
JQqj

(and similarly for the F^).

• Form the global component viscous forces,

(and similarly for the F^).

54 CHAPTER 7. THE NUMERICAL ALGORITHM

• Assemble the global total viscous forces,

i=l i=l

• Solve the global system,

AqUq = Fq + Fv\sc.

• Update history data: UpdateViscousStresses().

next q

Stop

In all of the numerical results subsequently presented, the global equations are solved
with a diagonally scaled conjugate gradient iteration. Unless explicitly stated otherwise
we invariably use a residual tolerance of ecg = 10-7 as a stopping criterion.

After the solution of the global equations the call to UpdateViscousStresses()
performs updates of the following form,

Jta-l

The viscous stresses are now ready for the equation set to be solved at the next time level.

Note that,

k f" e-^4«-s) ds = 1 - e-lik",
Jtq-l

and so for piecewise constant temporal approximation the update equation simplifies to,

We now detail some numerical tests.

7.5 Numerical tests

In this section we demonstrate the convergence of the numerical algorithm by comparing
the known solution against artificial exact solutions. Invariably we design the loads and
tractions so that the exact displacements have the form,

Ul(x,y,t) = T(t)X(x,y) and u2(x,y,t) = T(t)Y(x,y).

These forms make it easier to determine the loads / and g.

7.5. NUMERICAL TESTS 55

In the following examples we use the data,

E = 2.776 090 556 GPa and v = 0.4, (7.13)

which imply for plane stress that,

A(0) = 1.321947 884 GPa and p{0) = 1.982 921826 GPa. (7.14)

The reason for these choices will become clear later when we look at particular data for
Maranyl Nylon 6.6. For the moment we use the arbitrary relaxation functions,

X(t) := A(0)(0.3 + 0.2e-' + 0.5e-°"), (7.15)

ft(t) := /i(0)(o.2 + 0.1e-3t + 0.2e-0-7t + 0.3e-2t+0.2e-°-2t). (7.16)

Also, since the numerical results presented below use various norms a word on how these
norms are calculated is in order.

For the energy and L^Q) norms we use a seven point Gauss rule (exact for quintics—
see e.g. [29]), while for the L^ft) norm, which we don't take too seriously, we simply use
the nodal values. We denote the resulting approximate norms with "hats" as in,

II • ||jr « II • llff, II • Um « II • ||£,(n) and || ■ ||wn) « || ■ ||£oo(n).

For the norms on time dependence we approximate the local LQO norms by sampling at
the upper end of the time interval as in,

IMIwji;fl) ~ HlLcotaiH):= IM'*)HJJ-

We then approximate the global LQO norms by:

IMIWOAH) ~ IHI^«),*;]?) := max {iMlLcotfiiJ?) -0<q<p} for tejp.

The only exception to these rules is for the results given for the L^J; i-oo(fi)) norm of
the error where we use the following approximation,

IMlLootf-;i;oo(n)) « II^Hoo :=max{|K*,)||£oo(n) :g= 1,2,...},

and where iq := (tq + tq-\)/2 denotes the midpoint of the time interval.

Also, the tables of results presented below and in the next chapter are verbatim
output from the finite element code described later in Chapter 9. The key to the column
heading is given in the table below.

56 CHAPTER 7. THE NUMERICAL ALGORITHM

"verbatim output" meaning
k_i
N elem
llu||_E
lluhlU
luhl+lel
Iuh|+est|e|
l|u-uh||_E
estl|e|I JE
inf I u-uh I
llu-uh||
lls-shll

time step k
Number of elements M
Maximum energy norm HuH/^fj-jjj) (when known)
Maximum energy norm \\U\\Laa(j.H)

\\U\\Loo(j;H) + \\u ~ U\\Loo(J.H) (when known)

Maximum energy error ||u — UWL^J.^H) (when known)
Estimated energy error £Q (T; U)
Not used — ignore this column
Exact displacement error \\u — C^||i,0O(17;i,2(n)) (when known)
Exact stress error ||g — Gh\\L00{jjL2(fi)) (when known)

7.6 consistency test

Using a domain of arbitrary shape, shown in Figure 7.1, we solve a problem for which the
Galerkin approximation is exact by setting,

T(t):=l, X(x,y):=-0.03x and Y(x,y) :=-0.04y.

For boundary conditions we impose a homogeneous Dirichlet condition on u along the
left-most vertical edge, and the same on v along the bottom-most horizontal edge. All
other edges have tractions imposed.

Since the approximation is continuous piecewise linear in x and y and discontinuous
piecewise constant in t it follows that the numerical solution should coincide with the
exact solution up to quadrature error.

We solve for a constant time step of k = 0.5 to the final time T = 1 for mesh widths
h = 0.4,0.2,0.1, The first two of these "regular" meshes are shown in Figure 7.1.

The results are shown in the table.

ki N «l«m llulI.E MuhlLE luhl+l.l luhl+««tl« llu-uhll_E •at II.II.E inf |u-uhl llu-uhll ll»-«hll
5.0000.-01 10 2.630«+03 2.630«+03 2.630«+03 2.630«+03 1.03770B«-06 2.298352«-07 1.844«-11 1.060«-11 B.488«-02
6.0000«-01 45 2.630«+03 2.630«+03 2.630«+03 2.630«+03 1.037425«-06 l.B71306«-07 1.84S«-11 1.060«-11 5.488«-02
B. 0000.-01 177 2.630«+03 2.630*403 2.630« +03 2.630.+03 1.055355«-06 1.205493«-07 1.9700-11 1.062«-11 B.B32«-02
5.0000«-01 762 2.630«+03 2.630«+03 2.630«+03 2.630«+03 1.070804«-06 8.789404«-08 1.946«-11 1.061.-11 E.E55«-02
B.0000e-01 3109 2.630.+03 2.630«+O3 2.630«+03 2.630«+03 1.094567«-06 6.704061«-08 1.940«-11 1.062«-11 6.601«-02

From the table we see that the errors are small and in fact at machine round-off once
the magnifying effect of A(0) and /x(0) are taken into account.

Repeating the calculations but with k = 0.25 instead of k — 0.5 we get the following
tabulated results.

ki N «lam llulI.E lluhll.E luhl + l.l lubl+.itl. Mu-uhlLE •>t II.II.E inf 1 u-uh 1 llu-uhll ll«-»hll
2.BOO0.-O1 10 2.630.+03 2.630«+03 2.630«+03 2.630.+03 5.411607.-09 1.337637.-09 9.561.-14 5.521.-14 3.173.-04
2.6000«-01 45 2.630«+03 2.630.+03 2.630«+03 2.630.+03 1.935447.-07 4.963813.-08 1.159«-12 2.779«-13 8.384.-03
2.B000«-01 177 2.630«+03 2.630«+03 2.630.+03 2.630.+03 2.049913.-07 3.918273.-08 1.466.-12 3.185.-13 8.049.-03
2.B000.-01 762 2.630.+03 2.630«+03 2.630.+03 2.630.+03 3.662663.-07 6.698072.-08 1.642.-12 6.039.-13 1.369.-02
2.S000.-01 3109 2.630.+03 2.630.+03 2.630.+03 2.630.+03 4.656104.-07 6.152344.-08 1.816.-12 5.880.-13 1.754.-02

The estimated error quantities shown in the tables is related to the a posteriori error
estimate and will be explained fully in the next chapter. We include it here in order to be
able to refer back later on.

7.7. SPATIAL CONVERGENCE 57

Figure 7.1: Regular meshes for h = 0.4 and h = 0.2

11 nodes, 10 elements
10 boundary sides during
times t G (0.500000,1.000000).

33 nodes, 45 elements
19 boundary sides during
times t G (0.500000,1.000000).

7.7 Spatial convergence

We now keep T(t) as above and change X(x,y) and Y(x,y) to,

X(x,y) := -0.03x7 +0.025 sin(27ra;)sin(7ry + 7r/2),

Y(x, y) := -0.04y9 + 0.035 sin(7ra: + TT/2) sin(27ry).

All other data is as before (with k = 0.5) and we again loop through the same sequence
of regular meshes to examine the spatial error convergence.

ki N *l*m MulLE lluhll.E luh|4|.| luh|4*>tl* llu-uhll.E •at IUII.E inf lu-uhl 1iu-uhl1 ll«-.hll
6.00006-01 10 8.851*403 5.866*403 8.561*403 9.183*403 6.244285*403 7.072830*403 4.919*-02 2.393*-02 2.967*408
6.0000.-01 45 8.661*403 8.065*403 8.570*403 8.689*403 2.898224*403 3.233216*403 1.325*-02 3.972*-03 1.314*408
6.0000«-0i 177 8.661*403 8.440*403 8.664*403 8.594*403 1.448311*403 1.616137*403 7.472«-03 2.378«-03 6.703*407
6.0000« -01 762 8.661*403 8.531*403 8.561*403 8.567*403 7.154630*402 7.818353*402 1.724*-03 5.423*-04 3.299*407
6.0000« -01 3109 8.661*403 8.654*403 8.561*403 8.562*403 3.422946*402 3.783819*402 2.925*-04 6.892*-05 1.559*407
6.0000.-01 12628 8.661*403 8.559*403 8.561*403 8.561*403 1.663714.402 1.866497*402 5.813«-05 1.400*-05 7.679*406

It is evident that the energy error is 0(h) as expected.

7.8 Temporal convergence

To examine the time discretization error in isolation we now set,

T(t) := 1 + 4/2 + sin(27T<), X{x,y) := -0.03a; and Y(x,y) := -0.04y.

We should expect to see errors converge to zero as fc -r 0 independently of h. Here we
choose h = 0.4 corresponding to the mesh shown on the left of Figure 7.1.

ki K *l*m llull.E lluhlLE luh|4|.| luhl+.itl. llu-nhll.E •*t II.II.E inllu-uhl llu-uhll lli-.hll
1.0000*400 10 3.945*403 3.178*403 3.269*403 3.193*403 7.677814*402 3.119966*402 1.834*-03 7.469*-03 5.821*407
6.0000*-01 10 3.946*403 4.641*403 4.834*403 4.656*403 1.986738.403 7.177276*402 1.482.-02 1.926.-02 1.340*408
2.6000.-01 10 6.589*403 4.764*403 4.967*403 4.762*403 1.798382*403 6.619429*402 3.490*-03 1.743.-02 1.218*408
1.2500«-01 10 6.589*403 6.404*403 5.420*403 5.406*403 1.060321*403 3.812406*402 l.O62*-03 1.018.-02 7.120*407
6.2500*-02 10 6.689*403 6.562*403 6.663*403 5.662*403 6.476366*402 1.988857*402 2.730*-04 6.309.-03 3.714*407
3.1250*-02 10 5.589*403 5.593*403 6.693*403 6.693*403 2.771164*402 1.006664*402 6.807*-05 2.687.-03 1.880*407
1.6626*-02 10 6.697*403 5.595*403 6.696*403 6.595*403 1.390760*402 6.052768*401 1.708*-05 1.348.-03 9.436*406
7.8125*-03 10 6.697*403 6.597*403 6.597*403 6.697*403 6.962842*401 2.629828*401 4.276*-06 6.760.-04 4.724.406
3.9O62.-03 10 6.698*403 6.697*403 6.697*403 6.697*403 3.483190*401 1.265596*401 1.069*-06 3.377.-04 2.363.406
1.9631.-03 10 5.698*403 5.598*403 5.698*403 6.696*403 1.741976*401 6.329462*400 2.672«-07 1.689.-04 1.182.406

58 CHAPTER 7. THE NUMERICAL ALGORITHM

This time we see that the energy error is O(k), again as expected.

7.9 The general case: D ^ DT

For more general anisotropic problems we cannot assume that D(t) = DT(t) unless t = 0
or t = oo. Hence A ^ AT and we would have the additional complexity of solving a
nonsymmetric system at each time level. In this case we could use the evolution equa-
tions for the internal variables and couple these to an elasticity solver (with additional
viscous loads) in an iterative solution algorithm. This is essentially the solution technique
described by Johnson and Tessler in [24] and is suited also to constitutively nonlinear
problems.

Chapter 8

Adaptive error control

8.1 Introduction

In this chapter we summarize the a posteriori error estimates developed recently by Shaw
and Whiteman, in [55, 56], for the Volterra formulation of the quasistatic problem defined
by (4.3) with (2.2). These results follow on from the exploratory work in [44, 47, 57, 53].
We then implement these error bounds in the context of an adaptive space-time finite
element solver for the linear problem with viscoelasticity described by relaxation functions
of Prony type. We note here that while the estimates themselves do not rely on this
form of relaxation function, it is the only convenient choice for numerical computation
since it leads to an economical history storage strategy (see for example [45]). Also, as
already demonstrated, the Prony series leads to a natural connection with internal variable

methods.

The plan for the chapter is as follows. We first summarize the basic error bound as
given in [55], and to do this we refer back to the weak form of the problem as well as its
space-time finite element discretization given in the previous chapter. Since in many ways
the problem is close to linear elasticity we first present the spatial error control strategy
in this context, and also give some numerical results on error control via adaptive mesh

refinement.

In [55] we give two forms for the term in the a posteriori error estimate that reflects
the time discretization error. In the first the estimate is unstable (as h ->■ 0) and so is
useless for error control. The second form on the other hand is robust but requires that the
residual be measured in a discrete negative norm. This would require a stiffness matrix
inversion and is therefore likely to be prohibitively expensive.

These difficulties are due to a lack of strong temporal stability in the underlying
differential equations which, in this context, means roughly that there are no time deriva-
tives present on the left of (4.3) (as would be the case with, say, an ODE or parabolic
equation). To overcome this fundamental limitation (which has hampered other work for
scalar pure-time Volterra equations in, for example, [28] and [2]) we are also working on
deriving a posteriori error estimates in a weak norm in [56]. This is based on the prototype
work in [57], and we expect this error estimate to allow for robust temporal error control
through adaptive time stepping as well as the adaptive meshing we describe below.

60 CHAPTER 8. ADAPTIVE ERROR CONTROL

8.2 A posteriori error estimate

In [55] we give the following basic a posteriori Galerkin-energy error estimate: for each

discrete time ti,t2,---,tp,...,

II« - U\\Loo{0jtp.tH) < S(tp)(£n(tp; U) + £j(tp; U) + £v(tP; U)), (8.1)

where £n, £j and £y are residuals which are computable in terms of the data and the
finite element solution U, and S(t) is the stability factor introduced before in (7.6).

In this section and the next we will be concerned only with £Q. This term contains
the spatial discretization error (in the case where Hij = 0 for all j < i) and can be used
to guide adaptive space mesh refinement. It is essentially identical to the residual derived
for linear elasticity by Johnson and Hansbo in [27], and this is useful because in the next
section we may illustrate its interpretation and use in this less crowded context. The
extension to viscoelasticity to come later will then be straightforward.

The residual £j is the one described earlier as being unstable (useless) or—when
written in a different form—prohibitively expensive to implement. As described above, we
eventually hope to provide an alternative error estimate in which £Q and £y are essentially
the same, while £j is stabilized at the expense of estimating the error in a weaker norm.

It is the term £y that causes the greatest difficulty in this estimate. The spatial
residuals in £Q are constructed by integrating the discrete solution over each element
to arrive at a distributional divergence of the discrete stress (compare (4.3)). This
divergence comprises two parts: the smooth function inside the element (which is zero
in our case of piecewise linear approximation), and the stress jumps across inter-element
boundaries. The difficulty arises because the stress is history dependent. This means that
we have to integrate by parts over not just the elements in the current mesh, but also over
all elements in all previous meshes. The internal edges that appeared in previous meshes
but are no loner present in the current mesh (e.g. due to derefinement) are therefore "left
behind" when forming the standard residual / + V • <zh (which constitutes £n), and so we
consign the stress jumps across these edges to the term £y. In the particular case where
only nested refinements are permitted (so that Tlij = 0 for all j < i) then no edges are
left behind in this way and we have £y = 0. This is the case in all of our examples below.

To deal with mesh derefinement would appear to require fairly complex data struc-
tures in the computer code in order to track all these resulting previous edges. Also, it is
not likely that £y will act in any way other than to degrade the quality of the estimate
since it contains historical contributions to the current stress. These can then only act to
reinforce one another in the estimate when in fact the residual could be much smaller due
to cancellation. This "loss of cancellation" problem has been noted by others in the con-
text of stress-jump residual-type estimators and the memory in the Volterra integral acts
here only to exacerbate the problem. Our feeling at the moment is that a representation
of the algorithm in terms of internal variables could go some way toward removing the £y
residual since then all hereditary information is automatically represented on the current
mesh. The price of this is that the error estimates will then be restricted to viscoelasticity
problems for which Prony series relaxation functions are appropriate. This does not seem
to be an unreasonable restriction.

8.2. A POSTERIORI ERROR ESTIMATE 61

We now look in more detail at the residual term £Q. This is defined at each discrete
time level t\,t2, •.. ,tp,... as:

€a(tp- U) := max {Unq\\hqf\\Loo{Jq.Min)) + n«||/»gS||LooW;La(n))} , (8.2)

where HQ and Ug are constants appearing in certain interpolation-error bounds, and
hq = hq(x) is the piecewise constant mesh function for the mesh during times in Jq.

The first term in the estimate is straightforward to interpret since it involves only the
1/2 (fi) norm of the body forces weighted with the mesh function. To define the second
term we need to establish various other notation.

We use n(im) = (n^)"=1 to denote the unit outward directed normal vector to the
the boundary dQim of Clim, for m G N(l,Mj), and for an edge/face f G A we use the
notation [7*]* to denote the jump in value across the edge/face £ of the components of
any 7 = (7fc)Ll- That is' iov x e £ € d and each i G N(l, N),

bk(x)]e •■= ± Jim (lk(x ~ ™{i)) —Yk(x + en®)) , (8.3)

where: n^ is a unit normal vector to the edge/face £; and, to avoid elaborate notation we
use "±" to acknowledge here that the sign of this jump quantity is of no interest at all.

We denote surface (edge/face) integrals on the element boundaries by

(w,v)e :- w-vdt with \\ ■ h-= y(-,-)i,

and we define the discrete traction,

g(t;U(t)) := (gk(t;U(t)))nk=v

where for a unit vector n,

gk(t; U(t)) := (ß«ö(0)ey(tf (t)) - jT aJ"ffi~'W(«))ds) * <8-4)

(compare the natural boundary condition in (4.3)). In general these discrete tractions will
not be uniquely defined on any edge/face £ G Ct, but the jumps {gje will.

Now, for each time level we define r\jq - (rk)k=1 by,

l\l9k(t;U(t))]tl ior£GCq,

rk(t;U(t)):={

2

\9k(t)-9k(t;U(t))\, onlV,

> 0, on TD,

and then with all of these definitions we define S G £2^) by,

\\r(t;U(t))\\L2(anqj)
S|n„, :=

,Jhqjmeas(£lqj)

62 CHAPTER 8. ADAPTIVE ERROR CONTROL

for all j G N(l, Mq). Note that,

KS||L,(n)=| E_ (8.5)

We now use £n to derive element error indicators and a mesh refinement criterion in
the context of linear elasticity.

8.3 Adaptive meshing for linear elasticity

In the linear elasticity context there is of course no time dependence and so we get the

simpler result,

II« - U\\H < Sn(U) := Uü\\hf\\Lm + I^ASH^n).

Note that the Loo norms and the subscripts p and q marking the time levels are not
needed here. Also we have temporarily set S(t) = 1. It will be straightforward to extend
the following results to the viscoelasticity problem later.

The goal is to design a mesh for which ||tx — U\\H < TOL where TOL > 0 is a
user-defined tolerance level. Further, this mesh should be optimal in the sense that the
error control is achieved with as few degrees of freedom as possible. Although impossibly
difficult to obtain in an exact sense (see for example the discussion in [17]), such a mesh
can be approximated with sensible and restrained use of an a posteriori error estimate.
We aim for a mesh size modification strategy for each element flj in the mesh.

The error control is clearly achieved if we ensure that Sa(U) < TOL, and to do this
we use the technique of equidistribution whereby each element is allowed to contribute
equally to the global error (regardless of element size). In practice this means that we
assign a local tolerance to I > 0 to each element and attempt to control the local element
errors to within to I.

For each element flj in the mesh we seek a local meshwidth hj and solution U for
which,

fg ■■= n^H/Hl^.) + n2Äj||S||£a(n,) = toi.

Rearranging this we then arrive at an adaptive mesh size selector via,

inew

\

(8.6)
nall/IH,(O,) + n?IISIIi,0i.

for each element ü.j. Then, globally, where M is the number of elements in the mesh we
get,

M M

Mxtol = ^tol = Y,Vj,

8.3. ADAPTIVE MESHING FOR LINEAR ELASTICITY 63

= nl\\hf\\l2(n) + nj\\hs\\lm > \{su{u))\

where we used the inequality a2 + b2 > (\a\ + |6|)2/2. Hence,

TOL2

£n(U) < TOL is guaranteed if tol := .

This is then our formula for the local error tolerances.

The basic form of the adaptive algorithm we implement is then as follows.

1. Set i = 0 and generate an initial mesh M .

2. Solve for the displacements Ul on M1.

3. Compute rß on each element Qj o/M\ then:

ifEj^2<TOL2/2STOP

else determine a new mesh Mt+ from (8.6)

4' Set i = i + 1 and repeat from Step 2.

At this point we should sound a note of caution. This algorithm should not be
interpreted glibly in that the else clause in Step 3 should not be taken literally. If every
element is refined according to (8.6) then, unless the initial mesh M is already nearly
optimal, one is likely to get severe over-refinement in the adapted meshes due to pollution
error. Instead, rather than attempt to derive the required mesh in a "one shot" manner
by subdividing each elements as indicated by (8.6), one should only halve the size of the
elements marked for refinement and then loop back and recompute.

Before moving on to viscoelasticity we now give a couple of examples to illustrate the
adaptive solution of linear elasticity problems. We again assume an isotropic material in
which case Hooke's law becomes,

where A and \i are the Lame coefficients related to the Young's modulus E and Poisson's
ratio v through,

A := -7i TJI r-^r and \i :=
(1 + I/)(1-2I/) l + v

Note that also \i = IG where G is the shear modulus of the material. In two-dimensional
problems in which the stress in the third direction is negligible engineers frequently employ
the plane stress approximation where,

64 CHAPTER 8. ADAPTIVE ERROR CONTROL

The first definition of A in a two-dimensional formulation implies plane strain (in which
case the strain in the third direction is assumed negligible). Typically one may use plane
stress for very thin components, and plane strain for very thick ones.

In the following examples we use the same data as before: (7.13), (7.14), (7.15) and

(7.16).

8.3.1 The interpolation-error constants Iln and 11^

To complete the description of the a posteriori error estimate for linear elasticity we need
to specify the interpolation-error constants Iln and ILj. For this we adapt the approximate
values calculated by Ludwig in [33, Tables 6.2 and 6.4]. Here the interpolation constants
are given for a variety of Poisson ratios, for plane strain with E = 1, and assuming a mesh
of right-angled triangles. The values are reproduced here in Table 8.1.

Table 8.1: Interpolation-error constants

V nfi n* Iln/IL:

0.1 1.143177 2.683068 0.426071
0.2 1.172415 2.715093 0.431814
0.3 1.197708 2.734093 0.438064
0.4 1.219404 2.741196 0.444844
0.5-e 1.237806 (2.947157) 0.42*

The value for 11^ for v —> 0.5 is not given by Ludwig. To calculate it here we assume
a scaling of Iln/ILj = 0.42 and then work from the tabulated value of Iln- These values
can be incorporated into a computer code as a look-up table and then values for any value
of v obtained by linear interpolation. The constants scale with E in the following way:

(Note also that Ludwig uses 2/z in Hooke's law where we use /z, but since this does not
affect E and v this difference is immaterial).

We need now to obtain the corresponding interpolation constants for plane stress,
note first that:

(/j, + 3A)/z
A =

ß

vE

(l-2i/)(l + i/)
E

l + v

A =

E =
/i + 2A
A

uE

(1-I/J2
E

H = l + v

E =

v =

/x + 2A

(/x + 2A)/i
Ai + A

for plane strain,

for plane stress.

H + X
So, given E and v for plane stress we can first calculate A and zz, and then work backwards
with these values to find the corresponding E and v for plane strain—E and v say. From

8.3. ADAPTIVE MESHING FOR LINEAR ELASTICITY 65

these we can then determine the interpolation constants from the table and the scaling
given above.

In our numerical results we take v — 0.4 and E = 2.776 090 556 GPa which give the
plane stress values,

A = 0.476190 476£ and fi = 0.714 285 714E.

These give the corresponding E and u plane strain values,

E = 0.918 367 346£ and P = 0.2857....

Assuming E = 1 the table gives for this Poisson ratio,

fin w 1.2 and Üe « 2.8,

and then using the scaling for E we finally get the values,

1.252198 , _ 2.9218
U* = -7E- and , Ue = -7E-

However, there is some doubt as to whether this exercise is worthwhile. These constants
represent the worse possible case in interpolation error and often end up making the a
posteriori error estimate significantly over-estimate the finite element error. To address
this difficulty we have calibrated these constants against exact solutions in order to
render the a posteriori estimates more realistic. The end result is that we divide the
values given above by a factor of ten and twenty respectively. These values are suggested
by the calculations for the exact solution given in an earlier table, but we will see below
that it is desirable to determine a more systematic calibration technique.

8.3.2 Example: exact solution

For the moment we switch off all time dependencies and viscoelasticity effects and consider
the adaptive solution of a linear elasticity problem. We use the elastic coefficients A := A(0)
and /J, := /x(0) from the previous chapter, and impose loads and tractions such that the
exact solutions are,

T(t) :=10-2, X(x,y):=-0mx20 and Y(x,y) := -0.04y20.

We need these because adaptivity doesn't really show up as useful for smooth solutions—so
we simulate a singularity.

The notation here is exactly as in the previous chapter and we impose boundary
conditions in the same way. For these numerical tests we simply solve to time T — 1 using
a single time step k = 1. The first set of results show reference solutions calculated for
uniform meshes with h — 0.4,0.2, Again, these are exactly as in the previous chapter.

66 CHAPTER 8. ADAPTIVE ERROR CONTROL

ki H «lam llulI.E lluhll.E luhl+l.l luhl+.itl. llu-uhll_E ••t II.II.E influ-uhl llu-uhll ll.-.hll

1. OOOO.+OO 10 8.023.+01 6.224.+01 6.198.+01 1.380. +02 6.317922.+01 1.277228.+02 5.289.-04 2.822.-04 3.896.+06

1.0000«+00 45 8.370.+01 6.688«+01 8.377.401 9.146.+01 6.173867.+01 6.344186.+01 1.402.-04 4.603.-05 3.109.+06

1.0000.+00 177 8.397.+01 7.671«+01 8.397.+01 6.380.+01 3.416709.+01 3.374743.+01 1.086.-04 2.062.-05 2.098.+06

1.0000.+00 762 B.398.+01 8.167.+01 B.398.+01 8.342.+01 1.954781.+01 1.700767.+01 2.818.-05 6.674.-06 1.186.+06

1.0000.+00 3109 B.398.+01 8.347«+01 8.398.+01 8.386.+01 9.2S8688.+00 8.078055.+00 1.351.-05 2.936.-06 6.496.+05

1.0000.+00 12628 8.398.+01 8.387.+01 8.398.+01 8.396.+01 4.291128.+00 3.861923.+00 2.782.-06 7.406.-07 2.656.+05

Looking at the estimated errors we now tabulate adapted solutions for TOL = 15,
12.5, 10, 7.5, 5, with h = 0.1 for the initial mesh.

ki H «l.m llulI.E lluhll.E luhl+l.l luhl+.it|. llu-uhll.E e.t II.II.E influ-uhl llu-uhll ll»-«hll

1 oooo.+oo 488 8.398.+01 8.300.+01 8.398.+01 8.376.+01 1.275528.+01 1.124042.+01 1.806.-05 3.435.-06 7.766.+06

1 0000.+00 639 8.398.+01 8.326.+01 8.398.+01 8.382.+01 1.103850.+01 9.734371.+00 1.838.-05 2.866.-06 6.731.+06

1 oooo.+oo 711 8.398.+01 8.333.+01 8.398.+01 8.386.+01 1.042688.+01 9.379712.+00 1.772.-05 2.634.-06 6.384.+05

1 oooo.+oo 1085 8.398.+01 8.360.+01 8.398.+01 8.389.+01 7.918571.+00 6.890573.+00 9.779.-06 1.720.-06 4.819.+05

1 0000.+00 1858 8.398.+01 8.377.+01 8.398.+01 8.393.+01 6.874564.+00 6.137793.+00 6.566.-06 1.122.-06 3.582.+05

Repeating these calculations but starting with an initial mesh of h = 0.2 gives the

following results.

ki K .l.m llulI.E lluhll.E luhl + l.l luhl+.itl. llu-uhll.E •>t II.II.E influ-uhl llu-uhll ll«-.hll

1. oooo.+oo 512 8.398.+01 8.302.+01 8.398.+01 8.376.+01 1.263S65.+01 1.099203.+01 2.475.-05 3.2S9.-06 7.600.+05

1.0000«+00 561 8.398.+01 8.311.+01 8.398.+01 6.375.+01 1.206217.+01 1.036425.+01 2.377.-05 2.912.-06 7.248.+05

1.0000.+00 749 8.398.+01 8.333«+01 8.398.+01 8.384.+01 1.045034.+01 9.294968« +00 1.896.-06 1.916.-06 6.337.+05

1.0000.+00 1289 8.398.+01 8.361.+01 8.398.+01 8.368.+01 7.842236.+00 6.718701.+00 1.051.-05 1.479.-06 4.728.+05

1. oooo.+oo 2403 8.398.+01 8.379«+01 8.398.+01 8.393.+01 5.561009« +00 4.808581.+00 6.485.-06 7.713.-07 3.362.+05

Although the effect on the number of elements is not too serious, this seems to verify
the popular wisdom that the effectiveness of the adaptive meshing procedure is influenced
by the initial mesh. We will show some pictures of adapted meshes in the next section
where we move on and perform the analogous numerical experiments for linear viscoelas-
ticity.

8.4 Adaptive meshing for linear viscoelasticity

With the strategy for adaptive space meshing established in the context of the linear elas-
ticity problem, it is now straightforward to extend it to the time dependent viscoelasticity
problem. All that we do is apply the mesh refinement criteria at each time level in turn, as
if we were dealing with a sequence of linear eleasticity problems. The only major difference
is the inclusion of the time dependence in the a posteriori error estimate. Recalling this
estimate from (8.1) we now assume that we are given a tolerance TOLn with which to
control the mesh such that,

S(tp)£ci(tp; U) < TOLn, for each time level: p = 1,2,..

We describe the stability factor in more detail below and for now note only that it is a
non-decreasing function. So, replacing S(tp) with S(T) and recalling the definition in (8.2)
we see that this error control will be guaranteed if we ensure that,

TOLn
^-v.q\\hqf\\hoo{jq-L2{ci)) + 'Ri\\hq(3\\L00{jq-M{n)) ^ ^T^T

8.4. ADAPTIVE MESHING FOR LINEAR VISCOELASTICITY 67

at each time level tq. The strategy is now exactly as above for the linear elasticity problem.
Assuming a local tolerance tol we derive the adaptive mesh size selector,

Lnew
aQ3 -~ ^ nnll/HL(J,;^2(^)) + n?HSHL(J,;Mn,-))'

and then S(tp)£n(tp; U) < TOLn is guaranteed if we choose

TOL2n

t0' (8.7)

tol =
2MS2(T)'

Below, in the implementation, we replace the indicated norms with practical approxima-
tions as discussed earlier. Note that in the above we have set Iln, = Hn for each q: i.e.
we take the interpolation-error constants as time independent (even though the mesh is
not), and then use the values for Iln and II* given previously.

We now outline the form of the stability factor and then follow with the extension of
the numerical results for linear elasticity to this time dependent problem. For the moment
we assume that there are no time discretization errors since we want to consider the more
difficult problem of temporal error control in a separate section below.

8.4.1 The stability factor S(T)

For an isotropic viscoelastic material in two dimensions the stability factor S(t) has been
derived rather precisely by Shaw and Whiteman in [57]. We give here only the main result
and refer to the reference for details.

For a viscoelastic solid we have,

S(t) := (l- I <j>{s)ds\ where <p{t) := max{u>i(t),w2(*)},

and,

WI(<):=-A(O)+MO)' W2(<)- m-

For example, using our test data from (7.15) and (7.16) we have,

m ■■= {
üj2{t), for 0 < t < t* := 2.28476...,

.wi(t), ioxt>t*.

these give,

S(t) := {

Ä for 0 < * < t\

IU(0) A(0)+/z(0)) '

68 CHAPTER 8. ADAPTIVE ERROR CONTROL

Note also (thinking ahead to the "Maranyl" Nylon 6.6 data given later) that for a syn-
chronous (solid) viscoelastic material there exists a generic relaxation function ip(t), nor-

malized to <p(0) = 1, and such that,

X(t) n{t)
= <P(t)- A(0) MO)

In this case we have the simpler result S(t) = \/ip(t).

8.4.2 Example: exact solution

We continue with the "singular" linear elasticity example used above, but now use the
assynchronous relaxation data for \{t) and n(t) as described by equations (7.13)—(7.16).
In particular we still take T(t) = 10~2 and solve up to time T = 1, this means that the
solution is time independent and the only time discretization error is due to numerical
integration of the load terms / and g. To keep this quadrature error "under control" we
first do some tests to determine an appropriate time step.

To follow the pattern of the linear elasticity calculations we first show results for
uniform meshes h = 0.4,0.2,... in the tables below for k = 1.0, 0.5 and 0.25. The first

table is for k = 1.0.

ki H 6l.n llulI.E lluhll.E luhl + UI luhl+.jtl« 1 lu-uhl I.E 6»t ||6||.E inf lu-uhl 1 lu-uhl 1 ll»-«hll

1.0O00«+00 10 8.023e+01 5.2376+01 8.209e+01 1.6866+02 6.321785e+01 1.6027396+02 5.0746-04 2.7746-04 2.5846+06

1.00006+00 45 8.3706+01 6.6166+01 8.4006+01 1.0326+02 5.1765306+01 7.9176716+01 1.7776-04 6.8276-05 2.0416+06

1.00006+00 177 8.3976+01 7.677.+01 8.4046+01 8.7606+01 3.417289e+01 4.2177966+01 1.3286-04 3.0486-05 1.3916+06

1.00006+00 762 B.3986+01 8.1716+01 8.401e+01 8.442*401 1.955150e+01 2.1219866+01 3.4696-05 9.7536-06 7.8346+05

1.00006+00 3109 8.3986+01 8.3486+01 6.399o+01 B. 4086+01 9.260549«+00 1.0059266+01 1.3686-05 2.6876-06 3.6156+05

The analogous results for k = 0.5 now follow.

ki N 6l6m llulI.E lluhll.E luhl + UI Iuhl+6itl6 1 lu-uhl I.E 6«t ||6||_E inf lu-uhl 1lu-uhl1 ll.-.hll

S.00006-01 10 8.0236+01 5.2426+01 8.2146+01 1.6866+02 6.3236766+01 1.6026186+02 5.1596-04 2.7916-04 3.0086+06

6.00006-01 45 8.3706+01 6.6256+01 8.4086+01 1.0326+02 6.1767556+01 7.9146046+01 1.8936-04 6.4116-06 2.3846+06

5.00006-01 177 8.3976+01 7.6806+01 8.4066+01 8.7616+01 3.4177036+01 4.2166856+01 1.4036-04 3.3986-05 1.6196+06

6.00006-01 762 8.3986+01 8.1726+01 8.4036+01 8.4436+01 1.9554156+01 2.1214876+01 3.6706-05 1.0856-05 9.1296+05

6.00006-01 3109 8.3986+01 8.3486+01 8.4006+01 8.4096+01 9.2618866+00 1.0056976+01 1.3726-05 2.7246-06 4.2196+05

And now the results for k = 0.25.

ki N «lern MulLE lluhll.E luhl + M |uh|+68t|6 1lu-uhlI.E 6Et IUII.E inf1u-uh1 1 lu-uhl 1 lli-ihll

2.50006-01 10 8.0236+01 5.2446+01 8.2166+01 1.6866+02 6.3245846+01 1.6025836+02 6.2176-04 2.8046-04 3.3616+06

2.60006-01 45 8.3706+01 6.6296+01 8.4116+01 1.0326+02 6.1773626+01 7.9134046+01 1.9426-04 6.6716-06 2.6716+06

2.5000«-01 177 8.3976+01 7.6816+01 8.4076+01 8.7626+01 3.4179126+01 4.2162336+01 1.4356-04 3.6486-05 1.8096+06

2.50006-01 762 8.3986+01 8.1726+01 8.4036+01 8.4436+01 1.9555476+01 2.1212836+01 3.7646-05 1.1326-05 1.0216+06

2.60006-01 3109 8.3986+01 8.3496+01 8.4006+01 8.4096+01 9.2625516+00 1.0056046+01 1.3766-05 2.6186-06 4.7256+05

One can see that the quadrature error has only a marginal affect on the "energy"
quantities, which are our primary concern, and hence we use only a single time step for
the following adaptive solutions.

For the adaptive solutions we use the same set of tolerances as before: TOL = 15,
12.5, 10, 7.5, 5. The initial mesh is again given by h = 0.1, and the results are shown in
the table below (with k = 1).

8.5. PHYSICAL EXAMPLES WITH "MARANYL" 69

ki N «1«D llulI.E 1lubll_E luhl + l.l luhl+«»tl«l llu-uhll.E •«t II.II.E lnf |u-uhl llu-uhll II•-■hi I
1.OOOO.+OO 69S 8.398.+01 6.331.+01 8.398«+01 8.416«+01 1.061322.401 1.166403.+01 2.015.-06 3.930.-06 4.303.+05
1.0000.+00 711 8.398«+01 8.333.+01 8.398«+01 8.415.+01 1.O42769.+01 1.171360«+01 1.986.-05 3.928.-06 4.234.+06
1.0000.+00 10S6 8.398«+01 8.359.+01 8.398«+01 6.40S.+01 8.086324«+00 8.724684.+00 1.217.-05 2.726.-06 3.261.+06
1.0000« +00 1584 8.398.+01 8.373«+01 8.398«+01 B.402.+01 6.478367«+00 7.022869.+00 8.442.-06 2.027.-06 2.612.+05
1.0000«+00 3064 8.398.+01 B.38B«+01 B.398«+01 8.400«+01 4.699467«+00 6.016549.+00 4.422.-06 1.241.-06 1.884.+06

The adapted meshes for a selection of tolerances and some plots of the stresses are
shown in the Figure 8.1.

This example is of course non-physical and is useful only because we know the exact
solution. Below we give some more physical examples using material data for a Nylon 6.6
compound.

8.5 Physical examples with "Marany 1"

We assume a synchronous material wherein A and /x exhibit the same time dependence
(which implies a constant Poisson ratio) and take the data as given by (7.13) and (7.14).
For the single stress relaxation function we take E(p(t) where,

<p(t) = J2 <Pie -ait

i=0

with:

<po = 0.183429971 aQ = 0.0
tpi = 0.385804129 ai = 53.821223820
<p2 = 0.430765899 a2 = 1.592948754

Here the ipi are dimensionless while the «j have units (years)- . These data are derived
from experimental creep response curves for Nylon 6.6 compound "Maranyl", and are
taken from [45, Equation (5.39)]. (Note that we have "modernized" the units by using the
conversion factor lpsi = 6894.8 Pa.)

8.5.1 Example: L-shaped lever arm

We now consider an example of an L-shaped lever arm as shown in Figure 8.2. The arm is
fixed rigidly in both displacements along its leftmost vertical edge. In addition a vertical
traction of —5 MPa is applied along the horizontal top edge, and a horizontal traction of
—500y kPa is applied along the rightmost vertical edge. All other data is as before (e.g.
k = 1 and T = 1).

The first tabulated results are for uniform refinements with h = 0.4, 0.2, 0.1,

ki K «l.m llulLE 1 lublI.E luhl+l.l luhl+.itl.l llu-uhll.E ••t 1 I.II.E inf |u-uhl llu-uhll ll.-.hll

1 oooo.+oo 11 0.000.+00 2.666.+02 3.629.+02 2.690.+02 2.666369.+02 3.472313.+01 1.784.-02 9.893.-03 3.200.+06

1 oooo.+oo 50 0.000.+00 3.080.+02 4.366.+02 3.109.+02 3.080140.+02 4.257241.+01 2.752.-02 1.549.-02 4.162.+06

1 0000.+00 204 0.000.+00 3.643.+02 E.010.+02 3.558.+02 3.542776.+02 3.285800.+01 3.701.-02 2.169.-02 4.812.+06
1 oooo.+oo 890 0.000.+00 3.693.+02 5.223.+02 3.700.+02 3.693209.+02 2.215892.+01 4.O05.-02 2.329.-02 5.017.+06
1 oooo.+oo 3744 0.0O0.+00 3.764.402 S.323.+02 3.765.+02 3.763879.+02 1.080548.+01 4.145.-02 2.414.-02 6.072.+06

1 0000.400 15208 0.000.+00 3.781.402 S.347.+02 3.781.+02 3.780726.+O2 7.078166.+00 4.172.-02 2.430.-02 6.094.+06

70 CHAPTER 8. ADAPTIVE ERROR CONTROL

The next table of results are for adapted solutions with TOL = 32, 24, 16, 8 and
where we again start with an initial mesh of h = 1.0. Some of the meshes and plots of the
stress surfaces are shown in the Figure 8.2.

ki H «lern llull.E lluhll.E luhl + l.l luhl+««tl« Ilu-uhll_E •st II.II.E inf 1 u-uh 1 1 lu-uhl 1 ll»-«hll

1.0000«+00 308 0.000«+00 3.642.+02 5.151.+02 3.653.+02 3.642289.+02 2.733388.+01 3.884.-02 2.268.-02 4.936.+06

1.0000«+00 60S 0.000«+00 3.715.+02 6.254.+02 3.721.+02 3.714864.+02 2.074337.+01 4.034.-02 2.357.-02 E.018.+06

1.0000«+00 1542 0.000«+00 3.757.+02 E.314.+02 3.760.+02 3.757406.+02 1.441982.+01 4.119.-02 2.402.-02 5.066«+06

1.0000«+00 6460 0.000.+00 3.782.+02 6.348.+02 3.782.+02 3.781621«+02 7.942376.+00 4.170.-02 2.430.-02 6.093.+06

Here it requires over 15,000 elements to achieve a similar estimated error as the
adaptive solution produces with only 6460 elements.

8.5.2 Example: a simple crack

We now consider a simple horizontal crack in a rectangular component. Due to symmetry
we consider only the upper half of the component, and load the top edge with a vertical

traction of 5 MPa—see Figure 8.3.

Following exactly the same pattern as above, the first tabulated results are for uniform

refinements with h = 0.4, 0.2, 0.1, —

ki H «l.m llull.E lluhll.E luhl + l.l luhl+.itl« llu-uhll.E •>t II.II.E inf lu-uhl 1lu-uhl1 ll.-.hll

1.0000«+00 8 o.ooo.+oo 2.130.+02 3.012.+02 2.144.+02 2.129519.+02 2.622603.+01 7.835.-03 2.542.-03 2.833.+06

1.0000«+00 34 0.000.+00 2.303.+02 3.256.+02 2.320«+02 2.302629.+02 2.801396.+01 1.012.-02 3.225.-03 3.172.+06

1.0000«+00 146 0.000.+O0 2.444.+02 3.456.+02 2.453«+02 2.444114.+02 2.100032.+01 1.216.-02 3.836.-03 3.356.+06

1.0000«+00 618 0.000.+00 2.E14.+02 3.555.+02 2.619«+02 2.514081«+02 1.620563.+01 1.309.-02 4.139.-03 3.460.+06

1.0000.+00 2596 0.000.+00 2.E67.+02 3.630.+02 2.569«+02 2.567010«+02 9.700642.+00 1.379.-02 4.373«-03 3.540.+06

1.0000.+00 10394 0.000.+00 2.687.+02 3.659«+02 2.588«+02 2.B87460.+02 6.990774.+00 1.405.-02 4.462«-03 3.673.+06

The next table of results are for adapted solutions with TOL = 32, 24, 16, 8 and
where we again start with an initial mesh of h = 1.0. Some of the meshes and plots of the
stress surfaces are shown in the figure.

ki N .Lin llulLE lluhll.E luhl+lel luhl+««tl. llu-uhll.E «ft II.II.E inf lu-uhl 1 lu-uhl 1 lli-ihll

1.0000.+00 146 0.000.+00 2.444.+02 3.456«+02 2.453«+02 2.444114.+02 2.100032«+01 1.216.-02 3.836«-03 3.356«+06

1.0000.+00 146 0.000.+00 2.444.+02 3.456«+02 2.453«+02 2.444114«+02 2.100032.+01 1.216«-02 3.836.-03 3.356.+06

1.0000.+00 301 0.000.+00 2.543«+02 3.697«+02 2.548«+02 2.543484«+02 1.592360«+01 1.340«-02 4.255«-03 3.620.+06

1.0000.+00 2235 O.000«+O0 2.596.+02 3.672«+02 2.697«+02 2.596160«+02 7.157102«+00 1.413«-02 4.496«-03 3.591«+06

Here it requires over 10,000 elements to achieve a similar estimated error as the
adaptive solution produces with only 2235 elements.

8.5.3 Example: webbed angle bracket

Our next example is of a webbed angle bracket as shown in Figure 8.4. The bracket
is constrained both horizontally and vertically at the two lower horizontal "pads" and
traction-loaded only at the top vertical pad on the right. The horizontal loading is —5 MPa
and the vertical — 500 kPa.

We again begin by tabulating resukts for uniform refinements with h = 0.4, 0.2,

0.1,.

8.5. PHYSICAL EXAMPLES WITH "MARANYL" 71

ki N aim llulI.E lluhll.E lohl+l«! luhl+.«tl. llu-uhll.E «■t II.II.E lnflu-uhl llu-uhll ll«-.hll
1.0000.+00 33 0.000« +00 1.790.+02 2.632«+02 1.798.+02 1.790362«+02 1.699838«+01 1.919«-02 4.961.-03 2.203.+06
1.0000«+00 39 0.000« +00 1.845«+02 2.609.+02 1.852.+02 1.844667.+02 1.681407«+01 2.007«-02 6.352«-03 2.305«+06
1.0000e+00 78 0.000« +00 1.910.+02 2.701«+02 1.922.+02 1.910198.+02 2.147025«+01 2.115«-02 6.009.-03 2.479«+06
1.0000.+00 276 0.000.+00 2.082«+02 2.944.+02 2.091«+02 2.081676«+02 1.986391«+01 2.438.-02 7.869.-03 2.717.+06
1.0000.+00 1488 0.000« +00 2.190.+02 3.097.+02 2.193.+02 2.190010«+02 1.118244.+01 2.800.-02 9.279.-03 2.869«+06
1.0000«+00 6235 0.000« +00 2.220«+02 3.139.+02 2.221«+02 2.219738«+02 6.972105«+00 2.910.-02 9.670.-03 2.913«+06
1.0000«+00 25466 0.000«+00 2.231«+02 3.166.+02 2.231.+02 2.230782.+02 4.052006«+O0 2.948.-02 9.802.-03 2.925«+06

The next table of results are for adapted solutions with TOL = 20, 15, 10, 5 and where
we now start with an initial mesh of h = 0.05 (due to the slender nature of the component).
Some of the meshes and plots of the stress surfaces are shown in the Figure 8.4.

ki H «Inn NulLE MuhlLE luhl+l.l luhl+«ltl. llu-ahll.E ..t H.II.E iaflu-uhl 1 lu-uhl 1 ll«-ihll

1.0000«+00 276 0.000.+00 2.082.+02 2.944.+02 2.091«+02 2.081676«+02 1.986391.+01 2.438.-02 7.869.-03 2.717.+06
1.0000.+00 829 0.000.+00 2.179.+02 3.082.+02 2.183«+02 2.179416.+02 1.306965.+01 2.758.-02 9.049.-03 2.859.+06

1.0000.+00 2487 0.000.+00 2.213.+02 3.130«+02 2.215«+02 2.213019.+02 9.014411.+00 2.882.-02 9.529.-03 2.903.+06

1.0000.+00 12232 0.000.+00 2.230.+02 3.164«+02 2.231«+02 2.230293.+02 4.942654.+00 2.945.-02 9.777.-03 2.925.+06

Here it requires over 25,000 elements to achieve a similar estimated error as the
adaptive solution produces with only 12,232 elements.

Each of these examples clearly demonstrates how adaptive mesh refinement, guided
by an a posteriori error estimate, can result in an acceptable solution requiring far fewer
elements that would be needed when using uniform meshes.

72 CHAPTER 8. ADAPTIVE ERROR CONTROL

Figure 8.1: Adapted meshes for the exact solution with TOL = 15, 10 and 5 (initial mesh:
h = 0.1). Also shown are plots of the stress surfaces for TOL = 10.

391 nodes, 695 elements
85 boundary sides during
times t e (0.000000,1.000000).

595 nodes, 1056 elements
132 boundary sides during
times* <E (0.000000,1.000000).

sigma12 at time = 1.000000

1656 nodes, 3064 elements
246 boundary sides during
times t G (0.000000,1.000000).

sigma11 at time = 1.000000

1 1

sigma22 at time = 1.000000

1 1 1 1

8.5. PHYSICAL EXAMPLES WITH "MARANYL" 73

Figure 8.2: Adapted meshes for the L-shaped lever arm with TOL = 32, 24 and 16 (initial
mesh: h = 0.1). Also shown are plots of the stress surfaces for TOL = 8.

186 nodes, 308 elements
62 boundary sides during
times t G (0.000000,1.000000).

347 nodes, 608 elements
84 boundary sides during
times t G (0.000000,1.000000).

836 nodes, 1542 elements
128 boundary sides during
times t G (0.000000,1.000000).

sigma11 at time = 1.000000

sigmal2 at time = 1.000000

0 o

sigma22 at time = 1.000000

0 0 0 0

74 CHAPTER 8. ADAPTIVE ERROR CONTROL

Figure 8.3: Adapted meshes for the simple symmetric crack with TOL = 24, 32 and
(initial mesh: h = 0.1). Also shown are plots of the stress surfaces for TOL = 8.

89 nodes, 146 elements
30 boundary sides during
times t e (0.000000,1.000000).

1191 nodes, 2235 elements
145 boundary sides during
times t G (0.000000,1.000000).

sigma11 at time = 1.000000

174 nodes, 301 elements
45 boundary sides during
times t e (0.000000,1.000000).

sigma12 at time = 1.000000

x10

0 0 y - - x
sigma22 at time = 1.000000

0 o

8.5. PHYSICAL EXAMPLES WITH "MARANYL" 75

Figure 8.4: Adapted meshes for the webbed angle bracket with TOL = 15, 10 and 5 (initial
mesh: h = 0.05). Also shown are plots of the stress surfaces for TOL = 10.

507 nodes, 829 elements
185 boundary sides during
times t G (0.000000,1.000000).

1393 nodes, 2487 elements
299 boundary sides during
times t € (0.000000,1.000000).

sigma 12 at time = 1.000000

6445 nodes, 12232 elements
658 boundary sides during
times t G (0.000000,1.000000).

slgma11 at time = 1.000000

0 0

sigma22 at time = 1.000000

0 0 0 0

76 CHAPTER 8. ADAPTIVE ERROR CONTROL

Part III

Closure

77

Chapter 9

Obtaining and using the software

9.1 Introduction

The C code used to generate the numerical solutions detailed in the previous chapters
is available via ftp. This chapter describes how to retrieve the source files and compile
and run them on an X-window Unix platform. We also give a short "manual" describing
how the code can be set up to solve a specific problem. We do this by choosing a simple
example problem and demonstrating how the input files should be generated to model the
domain and boundary conditions. Since the software comes packaged with the example
problems used earlier in this report, these together with this manual should provide all
the necessary information.

NOTE: this software is what we term a "research code". It has been developed in
a piecemeal fashion over a long period of time as and when new research results become
available and are suitable for implementation. Consequently, no claims are made for it
being efficient or robust, and it should not be used in a situation where its output may
have a safety or financial implication.

9.2 Obtaining the software

Firstly, connect to the Brunei University ftp server via the command,

ftp ftp.brunel.ac.uk

When prompted logon as "anonymous" and enter your email address as a password. When
you get the prompt issue the following commands:

cd icsrsss

bin
get seedproj.tar

quit

79

80 CHAPTER 9. OBTAINING AND USING THE SOFTWARE

You should now have a binary file called seedproj .tar in your local working directory.
This is a tape-archived record of the source codes created using the Unix tar utility.

The next step is to extract the directory structure. Do this with tar using the

command,

tar xvf seedproj.tar

You now should have a directory called seedproj which contains the sub-directories hold-
ing the source codes for the mesh generator and finite element solver. At this point the

archive file seedproj .tar can be deleted.

To compile the mesh generator issue the following commands:

cd seedproj/advance/source

make.

and to compile the solver type,

cd ../../quasivis/native/source

make

There is also a very simple X-window plotting program called Xwin which will be useful
later when generating the mesh. To compile this type,

cd ../../../Xwin
make

If this stage has gone well you should have three executable files, advance, f em and Xwin
in the directory,

seedproj/bin

Now change to the directory seedproj/quasivis/data and list the contents. You
will see subdirectories such as leverarm, crack, etc. These are the input files for the
numerical examples shown in previous chapters. The source files are supplied and set up
so as to solve the problem with an exact solution (see previously in Subsection 8.4.2) and
to check that the installation was successful type,

adapt exact 15

This executes the sh script file adapt and solves the problem, with TOL = 15, as specified
by the files in the exact directory. Specifically the mesh generator advance builds the
mesh according to the files in the exact directory, and then adapt launches the finite
element solver fern. After the make (i.e. compilation) stage you should see an X-window
popped to the screen showing a sequence of adapted meshes. You will also see many lines
of text rolling around the terminal screen. The end of the textual output should look like

9.3. DEFINING THE DOMAIN 81

ki H «1« MulI.E lluhll.E luhM.I
1.0000*400 695 8.398.401 8.331.401 6.398.401

Tu. D.c 1 17:15:34 GMT 1998

luh|4.atl.l lln-uhl|.E .it II.II.E influ-uhl llu-uhll ll.-.hll

8.416.401 1.061322.401 1.186403.401 2.015.-05 3.930.-06 4.303.405

(although you will certainly have a different time stamp showing). Note that these figures
agree with those shown in the first line of the table of adapted solutions in Subsection 8.4.2.
If all of this happens the installation went well, and you may now define your own domain
and quasistatic viscoelasticity problem.

9.3 Defining the domain

As the name advance suggests, the mesh generator is a (simple) implementation of the
advancing front technique. For this it is necessary only to define the boundary of the
domain according to a simple orientation rule, and provide a function h = h(x, y) that
describes the desired mesh size variation over the domain. In our implementation h =
h(x,y) is specified as a constant ho, which we term the basic mesh size, and local mesh
features and size control are effected through source points (in the file srcpnts.dat),
source lines (in the file srcline.dat), source circles (in the file srccirc.dat) and
source discs (in the file srcdisc.dat). We'll get to these later but for now note that in
this way an a priori graded mesh can be created by suitably editing one of these input
files rather than hard coding a C function, double h (double x, double y), and then
having to re-compile each time.

At the moment only two-dimensional polygonal domains are supported by advance,
with the boundary defined piecewise by the endpoints of straight-line segments. The
domain can however be multiply-connected (i.e. have an arbitrary number of "holes"),
and it would not be difficult in the future to incorporate curved boundaries.

To illustrate how to set up a domain in the way required for advance we will consider
the case of a trestle-shaped structure with—for illustration purposes only—a hole in it.
The domain is shown in Figure 9.1 and is supposed to symmetrical about the vertical edge
at x = 11cm. The lowest horizontal edge is constrained to have no vertical displacement
and, to impose the symmetry, the right-most vertical edge is constrained to have no
horizontal displacement. We assume that a load (i.e. surface traction) of #2 = — IMPa
acts vertically downward on the uppermost horizontal edge.

Each corner of the trestle has a numbered node associated with it and in between
each node we identify a numbered (shown in bold) boundary edge. Note that the node and
edge numbering must begin at zero (this is because all arrays begin with a zero subscript
in the C language). Also, although the node and edge numbering follow a simple counter-
clockwise pattern in this example, there is absolutely no need for this. The crucial thing
is that the orientation rule which we describe below is observed when defining the edge
connectivity.

Before constructing the input files we need to assign the correct boundary condition
codes to the nodes and edges. These integer values describe the type of constraint (if
any) that the node or edge is subject to, and are given by:

0 — unfixed (for interior nodes only).

82 CHAPTER 9. OBTAINING AND USING THE SOFTWARE

Figure 9.1: The left half of the trestle domain. (Measurements are in cm.)

1;

-U

;o
;r^TMpJX3vS-

;o

10 11 12

1 — Non-homogeneous Dirichlet condition - unused at the moment.

2 — Homogeneous Dirichlet condition (zero displacement).

3 — Non-homogeneous Neumann condition (prescribed traction).

4 — Homogeneous Neumann condition (zero traction).

Each node and each edge is now assigned a triple of integers made up from the above codes
(except for 0 — unfixed, this is reserved for interior nodes created by the mesh generator).
The first two elements of the triple correspond to displacements or tractions in the x and
y direction respectively, while the third element is unused at present (and so its value is
irrelevant).

This works in the following way. Nodes 3 and 4, and edge 3, at the foot of the trestle
are to be constrained so as to have no vertical displacement and this is accomplished by
setting a 2 in the second element of the triple. Also, we'll assume that there is no traction
acting horizontally along edge 3 and so the first element of the triple is set as 4. For this
part of the boundary we then get,

boundary codes for node 3 are: 4 2 0
boundary codes for node 4 are: 4 2 0
boundary codes for edge 3 are: 4 2 0

Now, for edge 0, defined by nodes 0 and 1, we assume zero horizontal traction and this
leads to us setting the first element of the triple as 4. On the other hand we have a
non-zero vertical traction acting on this edge and so the second element is set as 3. This
gives:

9.3. DEFINING THE DOMAIN 83

boundary codes for edge 0 axe: 4 3 0

By symmetry node 0 is fixed horizontally - code 2 - but is subject to vertical traction -
code 3. Thus:

boundary codes for node 0 are: 2 3 0
boundary codes for node 1 are: 4 3 0

since node 1 is free and unforced in the x direction.

Now let us take a look at edge 6 as defined by nodes 6 and 0. Due to symmetry this
edge may not move horizontally - code 2 - and must be free of vertical traction - code 4.
We get the same for node 6 and so:

boundary codes for node 6 are: 2 4 0
boundary codes for edge 6 are: 2 4 0

Every other node and edge is free to move (so we cannot use either of codes 1 or 2), but is
also traction-free. Thus for all other nodes and edges we set the boundary code as: 4 4 0.

Equipped with this information we now create the first input files for the mesh gen-
erator. Inside the seedproj/quasivis/data directory create a new subdirectory called
trestle. Change into this new directory and edit the files def start. inf, def nodes. inf
and def sides, inf as shown below (do not include the underlined headings).

The input file 'defstart.inf'

Number_of.nodes: 11
Number_of_sides: 11
bounding_box_for_graphics 0.0 0.12 -0.03 0.09

The file def start. inf simply shows the number of nodes and (necessarily the same
for polygonal domains) edges used to define the domain—in this case 11. The file also
defines a bounding box to control the graphical display of the domain. This box is
defined by a line of the form,

bounding_boxjfor_graphics x\oyf Zhigh J/iow 2/high

which describes the box by the diagonal running from {x\ovl,y\0^) to (zhigh>?/high)- ^^e

bounding box is assumed to be square by all of the graphics routines and so it is necessary
to ensure that

2-high — ^-low =z I/high 2/low

If this does not hold then the display will be distorted by a relative scale difference in the
horizontal and vertical directions. For our example we will specify all lengths in metres
and so we choose a bounding box with the line,

84 CHAPTER 9. OBTAINING AND USING THE SOFTWARE

bounding_box_forographies 0.0 0.12 -0.03 0.09

The domain fits inside this bounding box and so should appear centered in the graphical
displays. By altering the bounding box one can scale the x and y dimensions of the domain
in different ways or place it off-center, as well as reducing its apparent distance from the

eye.

The input file 'defnodes.inf'

0 2 3 0 0.11 0.06

1 4 3 0 0.01 0.06

2 4 4 0 0.01 0.04

3 4 2 0 0.02 0.01

4 4 2 0 0.04 0.01

5 4 4 0 0.05 0.04

6 2 4 0 0.11 0.04

7 4 4 0 0.04 0.04

8 4 4 0 0.02 0.04
9 4 4 0 0.02 0.05
10 4 4 0 0.04 0.05

The file defnodes.inf contains the numbered (in order) list of nodes defining the
domain, with each integer label followed by the boundary code triple and the node coordi-
nates. There is nothing special about the formatting or spacing of the fields on each line,
so long as at least one whitespace character separates each.

The input file 'defsides.inf

0 4 3 0 0 1

1 4 4 0 1 2

2 4 4 0 2 3

3 4 2 0 3 4

4 4 4 0 4 5

5 4 4 0 5 6

6 2 4 0 6 0

7 4 4 0 7 8

8 4 4 0 8 9

9 4 4 0 9 10

10 4 4 0 10 7

The file def sides, inf is similar to defnodes.inf; it contains the numbered list of
edges defining the domain. On each line the integer edge label is followed by the boundary
condition triple, and then by the pair of nodes that define the edge. For example, the line

3 4 2 0 3 4

9.4. GRADING AND GENERATING THE MESH 85

shows that edge 3 takes the boundary codes 4 2 0 and is defined by nodes 3 and 4. The
order in which these two nodes appear is crucial and must obey the orientation rule.
This rule is simple enough: it says that in travelling along the edge from the first node to
the second node the domain must be on the left. For this reason all the edges on the outer
boundary (i.e. 0 to 6) are described by a counter-clockwise node ordering, while all the
edges on the interior boundary (i.e. edges 7 to 10) are described by a clockwise ordering.

9.4 Grading and generating the mesh

As far as the mesh generator advance is concerned the domain is now completely defined,
but we cannot yet use it to create the mesh because we have to specify the mesh size
function h = h(x,y). This function should return the desired size of the triangles in
the vicinity of the point (x,y). To do this we need the files srcpnts.dat, srcline.dat,
srccirc.dat and srcdisc.dat. These files can be used to specify the basic value of h

throughout the domain, as well as any local refinements that are a priori required. You
may find it easier to simply copy these files over from another directory (e.g. .. /crack)
since they will contain helpful annotations at the bottom that describe the meaning of the
information contained in them.

Once you have copied them across edit the files srcline.dat, srccirc.dat and
srcdisc.dat and make sure that the very first entry on the first line is the integer 0.
We'll return to these files later but for now concentrate on the most important one:
srcpnts.dat.

The first entry in srcpnts .dat is ho, the basic value of h to be used throughout the
domain. Looking back at Figure 9.1 it seems reasonable to require an initial mesh consist-
ing of triangles with side length ho = 0.005 metres. To obtain this we edit srcpnts.dat
so that the first line contains the value 0.005, and ensure that the second line contains
the integer 0. We may now generate the mesh. To do this issue the command (in the
directory trestle),

../../../bin/advance I ../../../bin/Xwin

This initiates the mesh generator advance and pipes the output into the simple X-window
utility Xwin. In this case an X-window should pop to the screen and the element edges
are drawn in this window as they are created. When the mesh is complete place the
mouse cursor in the X-window and type the q button. The programs will quit and the
prompt will return in the terminal window. (Note that Xwin is a very primitive X-window
application and so the terminal may display "junk" output while it is running.)

If you now list the files in the trestle subdirectory you should see something like:

bdystart.fem defsides.inf meshinfo.fem srccirc.dat
boundary.fem defstart.inf mon.out srcdisc.dat
config.inf element.fem neighbor.fem srcline.dat
defnodes.inf memory.dat nodes.fern srcpnts.dat

86 CHAPTER 9. OBTAINING AND USING THE SOFTWARE

All except the def *. inf and src* .dat files that we created earlier are disposable (in that
they can be regenerated), and so can eventually be removed with a command line like,

rm *.fem memory.dat mon.out scratch.dat

(Note that the files mon.out and scratch.dat may or may not be present, depending on
how advance terminated. These files are always disposable and may use up a lot of disk
space—it is advisable therefore to always remove them.) The files *.fem are used by the
finite element code to determine the initial mesh. Now we have these *. f em files we can
set up and execute the finite element calculation in the next section, but for the remainder
of this section we'll explain a little more about how to use the src* .dat files to control a

priori mesh grading.

The mesh that appeared on the screen should have looked like that on the left in
Figure 9.2 and, one might think, is perfectly acceptable for the initial mesh in an adaptive
calculation. However, it is also true that an adaptive calculation can be much improved by
a sensible choice of initial mesh. For example, for the trestle it is likely that high stresses
will be present at the re-entrant corner at (0.05,0.04), and so it is sensible to build this
information into the initial mesh by asking for a finer mesh grading at this point. This
can done by introducing a source point at this corner by making an entry in the file
srcpnts .dat. Edit this file so that the first three lines are as shown below.

0.005
1
0.05 0.04 0.02 0.002

Recall that the first entry is no more than h0 = 0.005m. The second entry states
that the mesh is to contain one source point, and the third line then defines this source
point to be located at (0.05,0.04), to have a radius of influence of 0.02m and to have a
local mesh size at (0.05,0.04) of 0.002m. The mesh generator will now attempt to create a
mesh with this local size at the re-entrant corner, blending smoothly to the basic mesh size
throughout a circle of radius 0.02m. Run the mesh generator again with the command,

../../../bin/advance I ../../../bin/Xwin

and you should now get the mesh shown on the right of Figure 9.2.

On an intuitive level this seems a much more sensible choice for the initial mesh, and
it is simple to specify through the use of the input file srcpnts.dat. Any number of
source points can be added in this way, with the total number given in the second line of
the file, so long as two simple rules are followed. The local mesh size should always be
smaller than the basic mesh size, and the radius of influence should be at least twice the

basic mesh size.

Source lines, source circles and source discs can be specified in a similar way through
the input files srcline.dat, srccirc.dat and srcdisc.dat. To illustrate this edit the
file srcline. dat so that the first five lines are given by,

9.5. THE FINITE ELEMENT CALCULATION 87

Figure 9.2: Trestle mesh generated by advance. The mesh on the left has a basic value of
ho = 0.005m throughout while the one on the right has a source point at (0.05,0.04).

0.04 0.04 0.02 0.04
0.02 0.04 0.02 0.05
0.02 0.05 0.04 0.05
0.04 0.05 0.04 0.04

0.005 0.002
0.015 0.002
0.015 0.002
0.005 0.002

This now specifies a source line for each edge of the rectangular "hole" in the trestle. The
annotations in the file explain what the entries on each line actually mean, and running
the mesh generator again gives the mesh shown on the left of Figure 9.3.

The mesh now appears to be suitable for input to the finite element code and indeed
this is the one we will use below. However, we will give one more example of how to achieve
local mesh grading. To create a source circle of radius 0.008m at the point (0.08,0.05),
with a local mesh size 0.001m and radius of influence 0.01m, edit the file srccirc .dat so
that the first two lines are:

1
0.08 0.05 0.008 0.01 0.001

The first line specifies how many source circles there are while the subsequent lines (in
this only one) specify the circles themselves. The resulting mesh is shown on the right of
Figure 9.3. We have included this source circle for demonstration purposes only, it will be
of no further use so change the 1 in the first line in the file back to 0 to switch the feature
off.

9.5 The finite element calculation

We now have our initial mesh, the one on the left of Figure 9.3, and so we are ready to feed
it in to the finite element code. However, to drive the solver we must first provide the file
config.inf in the trestle directory. This file contains basic configuration parameters

CHAPTER 9. OBTAINING AND USING THE SOFTWARE

Figure 9.3: Trestle mesh generated by advance. The mesh on the left has source lines
around the perimeter of the square hole while the one on the right shows the effect of a
source circle.

for the code and, again, is best created by first copying an existing version over from
another directory (e.g. .. /crack) and then editing it so that it appears as below.

1.0 = k_init (used only if not set on command line)
1.0 = T, the final time in the time interval (0,T)
1.0e-7 Conjugate gradient residual tolerance
1.0e-2 Error tolerance, non-specific at the moment
5 5 400 400 graphics window: x, y, width, height
2.0 magnification scale for graphical output
15 (or 25) minimum permitted angle in the mesh (in degrees)
150 (or 120) maximum permitted angle in the mesh (in degrees)
5 "memscale" controls memory allocation for the mesh

This file contains algorithm parameters.

Note that only the numeric data appearing on the left of each line are used, the text to
the right being a short description of what the data are. We'll describe the meaning of
each of these in a little more detail.

k_init: This is the initial time step—it can be overridden by a command line option.

T: The final time to calculate to where the time interval is assumed finite: J := [0,T].

Since the code is not yet ready to perform adaptive time stepping we'll assume a
calculation over the short time interval [0,1] in a single time step &jnjt = T = 1. The
remaining items in this file are described below.

1. 0e-7: The residual tolerance to use as a stopping condition in the conjugate gradient
solver.

9.5. THE FINITE ELEMENT CALCULATION 89

1. Oe-2: This field is unused

5 5 400 400: These integers control the location and size of the X-window that pops
onto the screen. In this example the window will have its top and left hand edges
each 5 pixels from the edge of the screen, and will be 400 pixels square.

2.0: In the graphical display of results the displacements are shown on the mesh magnified
by this factor.

15: The minimum tolerable interior angle in a triangle—used by the mesh adapting rou-
tines to determine whether a triangle should undergo a "red" or "green" refinement.

150: The maximum tolerable interior angle in a triangle—as above.

5 "memscale": When the solver begins to execute it needs to set aside enough memory
to store the mesh. However, in an adaptive calculation it is not known a priori how
much memory the final mesh will require. Thus a mesh memscale times denser than
the initial mesh is assumed. This field can be overridden on the command line as we
show below, and in future versions of the code we will probably implement a mesh
reallocation routine so as to exploit the ability of C to perform dynamic memory
allocation. This parameter will then be redundant.

Now we come to the least user-friendly part of the set-up, specifying the loads. Change
into the directory seedpro j /quasivis/native/source. Here you will find all the C source
code for the finite element solver. The file that we need to edit to specify the loads is
lesol. c. Unfortunately a moderate amount of C coding is required here, and below we'll
go over the main points. Load lesol.c into an editor and look at the top of the file...

#include "always.h"

#include "femdata.h"

extern Prony lambda, mu;

/*/
/* Test exact solutions for a linear elasticity problem

/* Possible solutions are selected by an appropriate #define.

/* The options are:

/*
/* #define EXACT : trigonometric displacements - see notes.

/* #define LEVERARM : actual problem, nothing known
/* #define CRACK : actual problem, nothing known
/* #define WEB : actual problem, nothing known
/* #define TRESTLE : actual problem, nothing known

/*/

#define EXACT /* ... MAKE THE CHOICE */

90 CHAPTER 9. OBTAINING AND USING THE SOFTWARE

The first #include statements are directives to the compiler to include the contents of
the header files always.h and femdata.h. These can also be found in the directory
native/source and themselves contain other #include directives. They need not worry
us. The extern statement that follows next is there merely to tell the compiler that two
variables, lambda and mu, of type Prony are referenced in this file but are actually defined
elsewhere (in the file viscous.c in fact). This need not trouble us either. The next few
lines, those beginning with /* are comments and are ignored by the compiler. This is
because any material enclosed between an opening /* and a closing */ is a comment in C
and therefore plays no role in the executable code. Thus, the next non-trivial line in the
file, and the one of concern to us, is

«define EXACT /* ... MAKE THE CHOICE */

This line tells the compiler that the string EXACT has a special significance in the source
code that.follows. As the comments above this line suggest, and with regard to the
numerical results presented earlier, it is also possible to substitute EXACT with:

EXACT for the exact solution;

LEVERARM for the L-shaped domain;

CRACK for the simple crack problem;

WEB for the webbed bracket.

TRESTLE for our trestle problem.

In fact, once the role this #def ined string plays in the following code is appreciated, you
may #def ine any string of your choice in order to specify your problem. To solve our
example trestle problem change this line to:

#define TRESTLE /* ... MAKE THE CHOICE */

The next part of the file lesol. c can be ignored now until you come to the lines

/***********************************#****^
/* Displacements */
/***/

/* horizontal displacements */

real uxyt(x,y,t)
real x,y,t;

•C
real total = ZERO;

#if defined(EXACT)
total = X(x,y) * TIME(t);

#elif defined(LEVERARM)
total = (real)0.0;

#elif defined(CRACK)
total = (real)0.0;

9.5. THE FINITE ELEMENT CALCULATION 91

#elif defined(WEB)
total = (real)0.0;

#elif defined(TRESTLE)
total = (real)0.0;

#else
fprintf(stderr,"\n\t No solution defined\n\n");

#endif

return total;

}

This declares uxyt to be a C function that takes three real numbers x, y and t, giving
position and time, and returns, via the return statement, a real number—held in the real
variable total. (C programmers note: the type real is used here, via typedef, as a syn-
onym for double.) This function uxyt should return the horizontal displacement u(x, y, t)
when it is known (for the EXACT solution only) or zero (for all the others: LEVERARM,
CRACK, WEB, TRESTLE). Notice how the #def ined token EXACT is used by the compiler here
in conjunction with the "if defined" (#if def ined) and "else if defined" (#elif defined)
directives. The meaning and use of these is intuitive: since we had already #def ined the
token EXACT then the compiler only built the line

total = X(x,y) * TIME(t);

into the executable. (The symbols X and TIME are themselves defined further up the code
and need not worry us). The variable total is then set to a real value and returned as
such every time the function is called. The important point to realize here is that the
choice of which branch of the #if — #elif to build in is made at compile time, and
so if the #def ined token is changed the code must be re-compiled to reflect this. Thus
our newly #def ined token TRESTLE requires that lesol. c be re-compiled and re-linked
to produce an updated executable—this will happen automatically when we execute the
adapt script below.

As we look further down the source code we will see many other functions, each
constructed in a similar way. The "listing" of the function uxytO given above shows
how we include a new TRESTLE branch into the #if — #elif directive and this must be
repeated for every other function defined the following list.

uxyt returns real value of horizontal displacement u(x, y, t) or zero if this is unknown;

uxyt_x returns real value of ux(x, y, t) or zero if this is unknown;

uxyt_y returns real value of uy(x, y,t) or zero if this is unknown;

vxyt returns real value of vertical displacement v(x,y,t) or zero if this is unknown;

vxyt_x returns real value of vx(x, y,t) or zero if this is unknown;

vxyt_y returns real value of vy(x, y, t) or zero if this is unknown;

f lxyt returns real value of horizontal body force fi(x,y,t);

92 CHAPTER 9. OBTAINING AND USING THE SOFTWARE

f2xyt returns real value of vertical body force f2(x,y,t);

Sigmallxyt returns real value of direct stress <7ii(a;,y, t) or zero if unknown;

Sigma22xyt returns real value of direct stress 022(z, y, t) or zero if unknown;

Sigmal2xyt returns real value of shear stress an(x,y,t) or zero if unknown;

Epsilonllxyt returns real value of direct strain en(x,y,t) or zero if unknown;

Epsilon22xyt returns real value of direct strain e22 (x, y, t) or zero if unknown;

Epsilonl2xyt returns real value of shear strain £12(2;, y,t) or zero if unknown;

glxyt returns real value of horizontal traction gi(x,y, t);

g2xyt returns real value of vertical traction g2(x, y, t);

The other functions in the source code are connected with the relaxation functions A and

fi and can be accepted as they stand.

In our trestle example the only non-zero traction is vertical, of of —1 MPa in mag-
nitude, and applied along only one edge. Thus we make sure that the function glxyt

contains the lines,

#elif defined(TRESTLE)

total = (real)0.0;

#else

since there are no horizontal tractions, and also that the function g2xyt contains

#elif defined(TRESTLE)

total = -(real)1.0e6;

#else

(The type cast (real) is not mandatory in these statements—it can be ignored and left
out if desired.) Notice that we do not have to specify that #2 is only non-zero for the
specific coordinates (x, y) occurring on edge 0—this was taken care of with the boundary
condition codes supplied to the mesh generator. Since this is the only edge with the non-
zero traction boundary code 3, this C function is only invoked for element edges occurring
on this boundary edge.

The remaining task is to define the material properties. At the moment the code is still
set to use the values given by (7.13) to (7.16). However, to use the more realistic values for
Maranyl given in Section 8.5 we need to make a small change to another #def ine directive.
This one is near the top of the source file seedproj/quasivis/native/source/viscous . c.
Edit this file and change the line

9.5. THE FINITE ELEMENT CALCULATION 93

#define EXACT

to

#define MARANYL

Upon compilation, the declarations at the head of this code now set up two structure-type
variables that describe the Maranyl Nylon 6.6 relaxation function.

We are now ready to run the code. Change to the seedproj/quasivis/datadirectory
and list the files. You should see the directories exact, crack, leverarm, web and our
new one trestle, and also two /sbin/sh shell scripts adapt and run. Do not attempt
to use the latter, it was written (rather badly) in order to automate the generation of the
numerical results given earlier. Instead we shall use the simpler adapt script. Type,

adapt trestle 1.5

This moves all working files into the dump directory; sets the $PATH variable so the shell
can find the executables advance, Xwin and f em; generates the mesh according to the
*. inf and *. dat files in the trestle directory; makes and links any updated source code;
and, finally launches the finite element solver fern with the command,

fem -X -memscale 100 -adapt $T0L 1.0

Here the argument -X requests the X-window graphics, while -memscale 100 allocates
memory for a mesh a hundred times more dense that the starting mesh (the one given
earlier on the left of Figure 9.3). The argument -adapt tells the code to solve in the
adaptive mode with tolerance TOL given by the third command line argument to the
adapt script. In this case the environment variable $T0L has the value TOL = 1.5. The
final value 1.0 tells the code to apply 100% of this tolerance to spatial error control and
none to temporal error control. Eventually, when some form of temporal adaptivity is
implemented, it will be possible to have a command-line option to fern taking the form,

-adapt 1.2 0.4

This would specify a global tolerance of TOL = 1.2 with only 40% (i.e. TOLn = 0.48) going
toward controlling the spatial errors via the residual term £&,. However, until temporal
adaptivity is implemented the second value for the -adapt flag should always be 1.0.

Executing the command

adapt trestle 1.5

should produce the output lines

Id N .1.. MulI.E lluhll.E luhM.I luhl*«ft 1.1 llu-uhll.E .it II.II.E influ-uhl llu-uhll lli-.hll
1.0000.*00 1123 0.000.-KJ0 1.936.+01 2.738««01 1.939.401 l.B36795«*01 1.138819«-KX> 3.343.-03 9.364.-06' 2.670«*06

94 CHAPTER 9. OBTAINING AND USING THE SOFTWARE

Figure 9.4: Adapted meshes for the trestle problem with TOLn = 1.5 on the left and
TOLn = 1.0 on the right.

(although you'll need a wide terminal to see this clearly), as well as the adapted mesh
shown on the left of Figure 9.4.

To see the effect of the adaptivity reduce the tolerance to 1.0 and execute again with

the line

adapt trestle 1.0

This produces the output lines,

ki N «I.« HulI.E MuhlLE luhl + lel luhl+««tl«l llu-uhll_E «st I lal l_E influ-uhl I lu-uhl I ll»-«hll
l.OO00«tOO 2097 0.000«+00 1.955«+01 2.764«+01 1.957«+01 1.954769«+01 8.495796e~01 3.411«-03 9.558«-05 2.695e+05

and the adapted mesh shown on the right of Figure 9.4.

All of the program execution takes place in the .. /dump/ directory, and here you
will find four files of interest. The first is mesh0.tex which is an example of the input
files used to illustrate the displaced meshes in this document. It is a mixture of ETfjjX 2e

source which uses the TßXdraw graphics package. The other three files are sigmall_0.m,
sigma22_0.m and sigmal2_0.m. These are Matlab script files which may be executed
within Matlab as they stand and will produce the surface plots of the stresses. These were
also used earlier in this document to illustrate the numerical solutions.

Note that the directory dump is named deliberately. All files in it are disposable, in
that they can regenerated, and are potentially large and so can eat up disk space. It is
recommended that this directory be cleaned out once you have finished using the code.
However, leave the (empty) dump directory in place since its existence is assumed and
required by the script files adapt and run.

9.6 Some comments

There is clearly room for a great deal of improvement in the way the code is currently
constructed and configured. A possible way forward here would be to provide a platform-
independent Java GUI which could invoke the existing native C code through a native
Java method of a larger object. This is however not research within the scope of the seed
project and so we suggest it only as a possibility for the future.

Chapter 10

Suggestions for further work

10.1 Overview

In this short concluding chapter we give brief details of the code development work carried
out between ourselves and Dr. A.R. Johnson during his visit to BICOM in March 1998.
We then give a list of research areas that could follow naturally from the work detailed in
this report.

10.2 A.R. Johnson's visit to BICOM

During the first week of March 1998 Dr. A.R. Johnson (ARL, VTC, NASA, Langley, VA,
USA) visited BICOM with the aim of investigating how adaptivity could be built in to his
existing work on internal variables (see for example [24, 25]). During this short time we
and Dr. Johnson were able to generate a Fortran FUNCTION that was easily added on to one
of his existing finite element codes, in this case for solving viscoelastic beam problems.
This FUNCTION adaptively and automatically solves the internal variable equation over
each of the time steps taken by the larger finite element solver. Its modular nature means
that it can also be easily transplanted to function with codes written to solve problems
involving structures other than beams. In this section we will briefly outline the nature
of the algorithm and the type of error control produced, and also give a "listing" of the
FUNCTION to illustrate how this process can be easily encapsulated in a simple module.

In [24, Equation 20.38] Johnson and Tessler show how a finite element discretization
of a quasistatic viscoelasticity problem can be written in the form,

Ku = Fmech - -Fvisc at time t. (10.1)

Here: u is the vector of unknown nodal displacements; K is the finite element stiffness
matrix; Fmech the vector of external loads; and, FViSC a vector of viscous forces containing
the viscoelastic effects. The vector Fv\8c is obtained by assembling the local element level
viscous forces via,

-f vise = 2L/ W'

95

96 CHAPTER 10. SUGGESTIONS FOR FURTHER WORK

where *k is an element-level viscous-stiffness matrix, and *u a vector of unknown internal
displacements defined at the element level.

As shown by Johnson and Tessler in [24, Equation 20.37] these internal displacements
are given on each element by the solution of the evolution equation,

^ + -IH = ^. (10.2)
dt T at

Thus, to find the displacement u(t) at the given time t one has only to solve (10.1) to

give,

u{t)=K-1(Fmech-Fvisc).

It is natural to assume that -Fmech 1S known precisely and so the time discretization error
in this equation is effectively present in the term Fv{sc. It is therefore important to have
an adaptive solution algorithm for the evolution equation (10.2) so that the viscous loads
can be built accurately and cheaply. It was the derivation of such an algorithm, and its
realization and modular implementation as a Fortran FUNCTION, that formed the focus of
the collaborative work carried out at BICOM during Dr. Johnson's visit.

We give brief details of this work below, and we finish be suggesting ways in which
this work could be extended.

The internal variable equation can be considered as a collection of scalar ODE prob-
lems, each having the form: find u such that,

^ + ^ = 1 in[0,T], withU(0)=w0, (10.3)
dt T T

and where T > 0, u0, g and r > 0 are given data. Here, of course, [0,T] represents a
single time interval within the time stepping loop of the overall finite element solver, and
g is derived from the global displacement vector u. Below we set,

g du

T = ~dl'

although we could also work in terms of reversed internal variables with essentially no
change to the adaptive algorithm.

Our approach to deriving a numerical scheme is based on discretizing the single time
interval [0, T] into subintervals in the usual way,

0 = t0 < t\ < ■ ■ ■ < tq < ■ ■ ■ < tN = T,

and then defining the time steps kq = tq — tq-i, and subintervals Jq := (tg-i,tg). Before
proceeding we note that it is possible to "solve" (10.3) explicitly by introducing an inte-
grating factor, but one would then need to evaluate the resulting integral with "sufficient"
accuracy. The approach described below could thus also be described as an adaptive
quadrature algorithm, and in particular can still be applied with essentially no changes in
the nonlinear case where r = T(U).

10.2. A.R. JOHNSON'S VISIT TO BICOM 97

Our discretization of the internal variable equation (10.3) is based on the finite ele-
ment method. We introduce a piecewise constant (i.e. constant on each Jq) approxima-
tion U to u and, in particular, denote by Uq the constant approximation to u during times
t E Jq. Then, the Galerkin finite element approximation of (10.3) can be written as,

(1 + kq/T)Uq = Uq-i + I" -dt With UQ = UQ.
Jtq-l T

One obtains this time stepping scheme by taking the scalar product of (10.3) with a
piecewise constant test function, replacing u with U (interpreting the derivative in a
distributional sense) and then applying standard finite element methodology.

Using duality arguments we then arrive at the a posteriori error estimate,

\u(tN) - UN\ < (1 - e-*"/T) m« {^||<7 - U\\Loo{Jq) + \Uq -Uq^ .

Note that the quantities on the right are completely determined by the given data and the
computed solution, and so this bound can form the basis of an adaptive algorithm. We
describe this more fully below.

The drawback with the approach just taken is that the piecewise constant approxima-
tion to u is not particularly accurate. To address this we also developed and implemented
a continuous piecewise linear finite element approximation to (10.3), where we retained
the piecewise constant test function. In this case the time stepping scheme reduces to,

(1 + kq/2r)Uq = (1 - kql2T)Uq-X + / ' -dt.

For this scheme we derived the a posteriori error estimate,

\u(tN) - U(tN)\ < (1 - e-t»/') m^N {kq\\r\\Loo(Jq)},

where,

r:=l-Ut-
V-

T T

is the residual and is computable.

We use this a posteriori error estimate to generate an adaptive time stepping scheme
in the following way. Suppose we want to compute a numerical solution for which,

HtN)-U(tN)\ <TOL

is guaranteed, where TOL > 0 is a user-specified tolerance level, then it is sufficient to
ensure that,

(1 - e-'"/T) im« {Mr||wJf)} = T0L

98 CHAPTER 10. SUGGESTIONS FOR FURTHER WORK

This in turn is also guaranteed if we ensure that,

MrllWJi^TOLU-e-'"/')-1

for every q. Rearranging this leads to a simple rule for selecting the time steps in an
iterative, or adaptive, manner:

Pew = TOL(l-e-'»A)-i

q IMUooW)

This adaptive solver for (10.3) can be encapsulated as a Fortran FUNCTION as listed below.

C***
********** CONTINUOUS **********

c ********** PIECEWISE LINEAR APPROX **********

c MUST be declared as REAL*8

c

c usage:
c ustar = ivadaptl(du/dt, ic, tau_n, t_{m-l}, t_m, TOL, steps, mk)

c minimum predicted time step may be returned in mk if mk is larger
c on entry. Otherwise the value in mk is not altered

c Note that "steps" return the number of steps taken in the

c time interval (tlo, thi).

c
real*8 function ivadaptl(rhs,ic,tau,tlo,thi,TOL,steps,mk)

real*8 rhs, ic, tau, tlo, thi, TOL, t, mk
c time step, new time step, previous and current iterates

real*8 k, new_k, prevu, curru
real*8 numer, denom ! for time step control

real*8 denoml, denom2 ! for time step control

integer iter, steps

steps = 0 ! record the number of steps taken
prevu = ic ! set initial condition
k = thi - tlo ! guess initial time step
t = tlo ! current time level is (t, t+k)

c NOTE: next quantity can be supplied to save "exp" calculations
numer = TOL / (l.OdO - exp(-(thi-tlo)/tau)) ! for adaptivity
do iter = 1, 1000 ! no idea how many steps are needed!

steps = steps + 1

c get next solution
curru = (1 - k/2.0d0/tau)*prevu + rhs*k

curru = curru / (1 + k/2.0d0/tau)

c test error condition by computing a new time step,
c first find the max. value in the denominator

denoml = abs(rhs - prevu/tau - (curru-prevu)/k)
denom2 = abs(rhs - curru/tau - (curru-prevu)/k)

denom = max(denoml, denom2)
new_k = numer / denom

mk = min(mk, new_k)

next line can throw an exception
predict a new time step
and act accordingly
remember minimum predicted time step

10.3. ADDITIONAL RESEARCH AREAS 99

if(new_k .GE. k) then ! advance to next time level
t = t + k
k = MIN(new_k, thi - t)
prevu = curru
if(t .GE. thi) goto 1 ! break out if we have reached final time

else ! recompute this time level
k = new_k ! reduce k and try again at this level

end if
enddo
write(*,*) ' ERROR in ivadaptlO >

1 ivadaptl = curru ! return solution at thi
end

c**

The initial condition is given by ic and the right hand side g/r-is supplied as the
constant (on the time step) rhs. The interval [0,T] is supplied through the argument list
in the more general form [im-i,tm] and the FUNCTION returns the approximation U(tm)
to u(tm).

This approach could easily be modified to develop higher order solvers for the internal
variable equation, and then applied to more or less arbitrary viscoelasticity problems that
can be formulated with such evolution equations. The approach is also highly suited to
constitutively nonlinear problems modelled with a reduced time. In such a case r = T(U),

but this will introduce no essential complications into the adaptive scheme.

10.3 Additional research areas

This section is deliberately short and "bullet pointed". We want only to suggest areas
that could be fruitfully investigated on the back of this work, and not pre-empt the fine
detail of the topics.

• In a time dependent problem it is crucial for an adaptive algorithm to be able to
selectively de-refine as well as refine the space mesh as features in the solution evolve
or decay over time. As we explained earlier in Chapter 8, our current a posteriori
error estimates (given in detail in [55, 56]) do not allow de-refinement without the in-
clusion of a complicated and expensive residual term. We believe the internal variable
algorithm developed in this report will allow remove this expensive term for good and
therefore allow mesh de-refinement with only a modest amount of additional expense.
We plan to investigate this further at a later date.

• Temporal error control should be achievable by measuring the energy error in an
appropriately weak norm. Results for a prototype problem have already been given in
[53], and the extension of this work to the space-time quasistatic problem is underway

in [56].

• Ultimately the goal must be solve physically realistic nonlinear problems. We feel
that extending our results to constitutively nonlinear problems, characterized by a
reduced time, would be fairly straightforward, and it may even be true that the

100 CHAPTER 10. SUGGESTIONS FOR FURTHER WORK

stability estimates in [57] will hold without modification. However, nonlinearity aris-
ing from large deformations is a much more challenging problem and as yet we have
no theoretical insights that will help in the construction of adaptive software.

• Quasistatic linear plate or shell problems could also be addressed in essentially the
same way as described in this report for the "standard" two- and three-dimensional
problem. In particular, the stability estimates in [57] should apply directly.

• The space-time finite element method as illustrated in this report can also be used to
generate a posteriori error estimates and adaptive algorithms for dynamic viscoelas-
ticity problems. We hope to begin to look at this subject soon.

Part IV

References

101

Bibliography

[1] J. T. Bendler, B. Noble, and M. A. Hussain. Solution of an equation for creep in solid
polymers. In Proc. Computers in Engineering, number 3 in 1, pages 365—368, 1988.

[2] J. G. Blom and H. Brunner. The numerical solution of nonlinear Volterra integral
equations of the second kind by collocation and iterated collocation methods. SIAM

J. Sei. Stat. Comput., 8:806—830, 1987.

[3] J. R. Cannon and Y. Lin. A priori L2 error estimates for finite-element methods
for nonlinear diffusion equations with memory. SIAM J. Numer. Anal., 27:595—607,

1990.

[4] J. T. Chern. Finite element modeling of viscoelastic materials on the theory of frac-
tional calculus. PhD thesis, Penn. State Uni., USA, 1993.

[5] D. S. Cohen and A. B. White Jr. Sharp fronts due to diffusion and stress at the glass
transition in polymers. J. Polymer Sei. B: Polymer Physics, 27:1731—1747, 1989.

[6] D. S. Cohen and A. B. White Jr. Sharp fronts due to diffusion and viscoelastic
relaxation in polymers. SIAM J. Appl. Math., 51:472—483, 1991.

[7] D. S. Cohen, A. B. White Jr., and T. P. Witelski. Shock formation in a multidimen-
sional viscoelastic diffusive system. SIAM J. Appl. Math., 55:348—368, 1995.

[8] R. W. Cox. Shocks in a model for stress-driven diffusion. SIAM J. Appl. Math.,

50:1284—1299, 1990.

[9] R. W. Cox and D. S. Cohen. A mathematical model for stress driven diffusion in
polymers. J. Polymer Sei. B: Polymer Physics, 27:589—602, 1989.

[10] C. M. Dafermos. An abstract Volterra equation with applications to linear viscoelas-
ticity. J. Diff. Eqns., 7:554—569, 1970.

[11] C. M. Dafermos and J. A. Nohel. Energy methods for nonlinear hyperbolic Volterra
type equations. Qomm. Pari. Diff. Eqns., 4:219—278, 1970.

[12] Kai Diethelm. An algorithm for the numerical solution of differential equations of
fractional order. Electronic Transactions on Numerical Analysis, 5:1—6, 1997.

[13] J. Douglas and B. F. Jones. Numerical methods for integro-differential equations of
parabolic and hyperbolic types. Numer. Math., 4:96—102, 1962.

103

104 BIBLIOGRAPHY

[14] C. J. Durning. Differential sorption in viscoelastic fluids. J. Polymer Sei. B: Polymer

Physics, 23:1831—1855, 1985.

[15] David A. Edwards. Constant front speed in weakly diffusive non-Fickian systems.

SI AM J. Appl. Math., 55:1039—1058, 1995.

[16] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to adaptive methods
for differential equations. Ada Numerica, pages 105—158, 1995.

[17] Kenneth Eriksson and Claes Johnson. Adaptive finite element methods for parabolic
problems. I: a linear model problem. SIAM J. Numer. Anal, 28:43—77, 1991.

[18] J. D. Ferry. Viscoelastic properties of polymers. John Wiley and Sons Inc., 1970.

[19] E. Hairer, CH. Lubich, and M. Schlichte. Fast numerical solution of nonlinear Volterra
convolution equations. SIAM J. Sei. Stat. Comput, 6:532—541, 1985.

[20] C. K. Hayes and D. S. Cohen. The evolution of steep fronts in non-Fickian polymer-
penetrant systems. J. Polymer Sei. B: Polymer Physics, 30:145—161, 1992.

[21] Melvin L. Heard. An abstract parabolic Volterra integrodifferential equation. SIAM

J. Math. Anal, 13:81—105, 1982.

[22] V. Janovsky, Simon Shaw, M. K. Warby, and J. R. Whiteman. Numerical methods
for treating problems of viscoelastic isotropic solid deformation. J. Comput. Appl.

Math., 63:91—107, 1995.

[23] A. R. Johnson and C. J. Quigley. A viscohyperelastic Maxwell model for rubber
viscoelasticity. Rubber Chem. Technology, 65:137—153, 1992.

[24] A. R. Johnson and A. Tessler. A viscoelastic high order beam finite element. In J. R.
Whiteman, editor, The Mathematics of Finite Elements and Applications. MAFELAP

1996, pages 333—345. Wiley, Chichester, 1997.

[25] A. R. Johnson, A. Tessler, and M. Dambach. Dynamics of thick viscoelastic beams.
Journal of Engineering Materials and Technology, 119:273—278, 1997.

[26] Arthur R. Johnson and Ross G. Stacer. Rubber viscoelasticity using the physi-
cally constrained system's stretches as internal variables. Rubber Chem. Technology,

66:567—577, 1993.

[27] C. Johnson and R Hansbo. Adaptive finite element methods in computational me-
chanics. Comput. Methods Appl. Mech. Engrg., 101:143—181, 1992.

[28] H. M. Jones and S. McKee. Variable step size predictor-corrector schemes for second
kind Volterra integral equations. Math. Comp., 44:391—404, 1985.

[29] M. Kf izek and P. Neittaanmäki. Finite elementxapproximation of variational problems
and applications, volume 50 of Pitman Monographs and Surveys in Pure and Applied

Mathematics. Longman Scientific & Technical, 1990.

[30] F. J. Lockett. Nonlinear viscoelastic solids. Academic Press, 1972.

BIBLIOGRAPHY 105

[31] J. C. Lopez-Marcos. A difference scheme for a nonlinear partial integrodifferential
equation. SIAM J. Numer. Anal, 27:20—31, 1990.

[32] CH. Lubich, I. H. Sloan, and V. Thomee. Nonsmooth data error estimates for approx-
imations of an evolution equation with a positive-type memory term. Math. Comp.,

65:1—17, 1996.

[33] Marcus J. Ludwig. Finite element error estimation and adaptivity for problems of
elasticity. PhD thesis, Brunei University, England, Submitted September 1998. (See
http://www.brunel.ac.uk/~icsrbicm).

[34] R. C. MacCamy. A model for one-dimensional, nonlinear viscoelasticity. Q. Appl.
Math., 35:21—33, 1977.

[35] W. Mclean and V. Thomee. Numerical solution of an evolution equation with a
positive-type memory term. J. Austral. Math. Soc, 35:23—70, 1993.

[36] R. K. Miller. An integrodifferential equation for rigid heat conductors with memory.
J. Math. Anal. Appl., 66:313—332, 1978.

[37] J. A. Nohel. A nonlinear hyperbolic Volterra equation. In Volterra equations, volume
737 of Lecture Notes in Mathematics, pages 220—235. Spinger-Verlag, 1979.

[38] J. W. Nunziato. On heat conduction in materials with memory. Quart. Appl. Maths.,
29:187—204, 1971.

[39] A. K. Pani, V. Thomee, and L. B. Wahlbin. Numerical methods for hyperbolic and
parabolic integro-differential equations. J. Integral Equations Appl, 4:533—584, 1992.

[40] Amiya K. Pani and Todd E. Peterson. Finite element methods with numerical quadra-
ture for parabolic integrodifferential equations. SIAM J. Numer. Anal, 33:1084—

1105, 1996.

[41] J. M. Sanz-Serna. A numerical method for a partial integro-differential equation.
SIAMJ. Numer. Anal, 25:319—327, 1988.

[42] Simon Shaw, M. K. Warby, and J. R. Whiteman. An error bound via the Ritz-Vol-
terra projection for a fully discrete approximation to a hyperbolic integrodifferential
equation. Technical report, 94/3, BICOM, Brunei University, Uxbridge, U.K., 1994.
(http://www.brunel.ac.uk/~icsrbicm).

[43] Simon Shaw, M. K. Warby, and J. R. Whiteman. A comparison of hereditary integral
and internal variable approaches to numerical linear solid viscoelasticity. In Proceed-
ings of the XIII Polish Conference on Computer Methods in Mechanics, 1.997. Poznan,
May 1997 (BICOM Tech. Rep. 97/2, see http://www.brunel.ac.uk/~icsrbicm).

[44] Simon Shaw, M. K. Warby, and J. R. Whiteman. Error estimates with sharp constants
for a fading memory Volterra problem in linear solid viscoelasticity. SIAM J. Numer.
Anal, 34:1237—1254, 1997. (See also, http://www.brunel.ac.uk/~icsrbicm).

[45] Simon Shaw, M. K. Warby, J. R. Whiteman, C. Dawson, and M. F. Wheeler. Numer-
ical techniques for the treatment of quasistatic viscoelastic stress problems in linear
isotropic solids. Comput. Methods Appl. Mech. Engrg., 118:211—237, 1994.

106 BIBLIOGRAPHY

[46] Simon Shaw and J. R. Whiteman. Backward Euler and Crank-Nicolson fi-
nite element variants with rational adaptivity and a posteriori error estim-
ates for an integrodifferential equation. Submitted to Math. Comp. (see
http://www.brunel.ac.uk/~icsrbicrn), 1996.

[47] Simon Shaw and J. R. Whiteman. Discontinuous Galerkin method with a posteriori
LP(0,U) error estimate for second-kind Volterra problems. Numer. Math., 74:361—

383, 1996.

[48] Simon Shaw and J. R. Whiteman. Towards adaptive finite element schemes for par-
tial differential Volterra equation solvers. Advances in Computational Mathematics,

6:309—323, 1996.

[49] Simon Shaw and J. R. Whiteman. Applications and numerical analysis of partial
differential Volterra equations: a brief survey. Gomput. Methods Appl. Mech. Engrg.,

150:397—409, 1997.

[50] Simon Shaw and J. R. Whiteman. Some partial differential Volterra equation prob-
lems arising in viscoelasticity. Technical report, BICOM, Brunei University, Uxbridge,
England, 1997. TR97/9 (Proc. Equadiff, August 1997).

[51] Simon Shaw and J. R. Whiteman. Space-time finite element method with a posteriori
Galerkin energy-error estimate for linear quasistatic viscoelasticity problems. BICOM
Technical Report 97/7, see http://www.brunel.ac.uk/~icsrbicm, 1997.

[52] Simon Shaw and J. R. Whiteman. Towards robust adaptive finite element methods
for partial differential Volterra equation problems arising in viscoelasticity theory.
In J. R. Whiteman, editor, The Mathematics of Finite Elements and Applications.

MAFELAP 1996, pages 55—80. Wiley, Chichester, 1997.

[53] Simon Shaw and J. R. Whiteman. Negative norm error control for second-kind con-
volution Volterra equations. To appear in Numer. Math; BICOM Technical Report
98/6, see http://www.brunel.ac.uk/~icsrbicm, 1998.

[54] Simon Shaw and J. R. Whiteman. Numerical solution of linear quasistatic hereditary
viscoelasticity problems I: a priori estimates. Submitted to SIAM J. Numer: Anal;

BICOM Technical Report 98/2,
see http://www.brunel.ac.uk/~icsrbicm, 1998.

[55] Simon Shaw and J. R. Whiteman. Numerical solution of linear quasistatic hereditary
viscoelasticity problems II: a posteriori estimates. Submitted to SIAM J. Numer.

Anal; BICOM Technical Report 98/3,
see http: //www. brunel. ac. uk/~icsrbicm, 1998.

[56] Simon Shaw and J. R. Whiteman. Numerical solution of linear quasistatic hereditary
viscoelasticity problems III: u posteriori estimates in a weak norm. BICOM Technical

Report 98/4,
see http://www.brunel.ac.uk/~icsrbicm, 1998.

[57] Simon Shaw and J. R. Whiteman. Optimal long-time Lp(0,T) data stability and
semidiscrete error estimates for the Volterra formulation of the linear quasistatic

BIBLIOGRAPHY 107

viscoelasticity problem. Submitted to Numer. Math; BICOM Tech. Rep. 98/7 see:
http: //www .brunel. ac .uk/"icsrbicm., 1998.

[58] I. H. Sloan and V. Thomee. Time discretization of an integro-differential equation of
parabolic type. SIAM J. Numer. Anal, 23:1052—1061, 1986.

[59] V. Thomee and L. B. Wahlbin. Long-time numerical solution of a parabolic equation
with memory. Math. Comp., 62:477—496, 1994.

[60] E. G. Yanik and G. Fairweather. Finite element methods for parabolic and hyper-
bolic partial integro-differential equations. Nonlinear Analysis, Theory, Methods &
Applications, 12:785—809, 1988.

