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ULTRASHORT PULSES IN MULTICOMPONENT MEDIA AND PHOTONIC BANDGAP 
STRUCTURES 

In accordance with the contract the main goals of the research were: 

a. Study of the specific features of ultrashort pulse propagation and dynamic nonlinear 
Bragg diffraction in two-and three-dimensional photonic bandgap structures; 

b. Develop methods for the control of pulse duration and shape and; 
c. Investigate coherent methods of the ultrashort pulse formation, based on the coherent 

interactions in multi-component media and photonic bandgap structures. 

The research included the following phases: 

1. The development of the mathematical algorithms and computations for the Maxwell- 
Bloch equations in the general case of ultrashort pulses to describe a pulse dynamics beyond the 
slowly varying envelope approximation; 

2. The study of the complete set of the Maxwell-Bloch equations with the aim of 
determining conditions for self-similar pulse propagation; 

3. The investigation of the specific features of pulse amplification in the multi-component 
media and gain grating to define the optimal conditions for coherent pulse compression and 
amplification; 

4. Study of the characteristic properties of the coherent interactions in the three-level 
atomic media for the development of the methods of pulse parameter control; 

5. Exploration of the possibility for self-similar pulse formation during the process of the 
nonlinear diffraction in the excited photonic bandgap structures and gain grating. 

In accordance with the above mentioned goals we have developed the mathematical 
algorithms for the study of the dynamics of superradiance by the multicomponent media. The 
developed algorithms enable us to determine the optimal component distribution to get the pulse 
of the highest intensity and shortest duration. The study of the dynamics of the two-component 
superradiance has shown that the generation can occur even in the case when the concentration 
of resonantly absorbing atoms exceeds the concentration of the resonantly amplifying ones. In 
this case the net population inversion is negative during the whole process of emission. 
Nevertheless the superradiance pulses with a sufficiently high power and sufficiently short 
duration can be produced in comparison with the mono-component superradiative media [1]. 

The specific features of the pulse propagation and amplification in the multicomponent 
media have been investigated. The results of the computer simulations enable us to find the new 
type of pulses with the stable pulse area. These pulses propagate in the two-component media in 
pairs. In dependent on the initial distance between pulses they propagate as a bound pair, 
colliding pulses or solitary pair [2,3]. The dynamics of such pulse evolution is a demonstration of 
the new self-organizing processes in the resonant light-matter interactions [4]. 

The dynamics of the bichromatic field propagation in the media of the three-level atoms 
or molecules have been investigated. The selfsimilar solutions of this problem have been found in 
the form of the phasemodulated simulton and Raman solitons [5,6]. 

We have developed the mathematical algorithms for the study of the dynamics of the 
femtosecond pulse propagation in the medium of the two-level atoms. The conditions for the 
generation of harmonics of the incident pulse frequency are determined. The results of 
preliminary computer simulations enable us to estimate the required parameters for the quasi- 
continuum emission by the atomic gases. 



We have developed the theory of superradiance by a system of the two-level atoms 
embedded in the dielectric host. The computer simulations based on the generalized Maxwell- 
Bloch equations show that the near dipoje-dipole interaction of dense collection of two-level 
atoms is enhanced by the presence of the host material, decreasing the pulse temporal width and 
increasing the peak pulse intensity of superradiative emission. We showed that the inversion- 
dependent detuning effect appears in the highly dense and thin dielectric medium. This effect 
manifests itself in the beating of the emitted pulse intensity. This is a specific feature for the 
systems consisting from the identical two-level atoms. As it was shown earlier that if the 
superradiative medium consists of two species of the two-level atoms with the different dipole 
moments of the resonant transitions than the detuning between the two components can result in 
the increase of the peak pulse intensity. Therefore the incorporation of the local-field effects into 
the theory of the two-component superradiance demonstrate the benefits of the two-component 
solid state superradiative medium [10]. 

We investigated the spatial-temporal nonlinear dynamics of formation and propagation of 
ultrashort optical pulses in resonant photonic crystals [7-9,12]. The equations of nonlinear 
dynamic diffraction for general case of two-wave diffraction problem in multidimensional 
periodic resonant structures have been derived from the semiclassical Maxwell-Bloch equations 
describing the coherent light-matter interaction under Bragg condition. It has been created the 
computer program to carry out the numerical simulation of nonlinear diffraction under different 
boundary conditions. By means of analytical and numerical integration of the equations we have 
studied the process of formation and propagation of Bragg solitary waves for the different 
geometric schemes of diffraction. It has been shown that nonlinear solitary waves appear both in 
the case of Bragg and Laue geometry of diffraction. In the first case the nonlinear resonant 
interaction leads to arising of propagating gap solitary waves as well to the formation of standing 
Bragg waves and coherent inverse population grating in the structure. In the case of the Laue 
diffraction the incident field does not reflect at the sample boundary, because there is no the 
Bragg band gap for transmitting field. Two diffracted modes are coupled due to reflection on the 
crystallographic planes within structure. We have obtained exact expression for novel kind of 
coupled-mode soliton. It is a Laue soliton which propagates in the direction of the normal to 
reciprocal lattice vector. Computer simulation allows to investigate the process of Laue soliton 
formation from incident field, and furthermore, the possibility of arising of so called "0-field" 
[12]. This field consists of two coupled diffracted modes with opposite singes of amplitudes, so 
the sum of the mode amplitudes is equal to zero. As a result, the total 0-field with large partial 
mode amplitudes propagates through the resonant structure like linear field without nonlinear 
interaction with two-level atoms. 

It has been predicted earlier that the gap soliton of self-induced transparency propagates at 
the Bragg frequency in discrete resonant structure, which consist of a set of ultrathin layers of 
two-level atoms [10]. We considered theoretically the short pulse transmission in a resonant one- 
dimensional Bragg structure with arbitrary periodic modulation of atomic density. This model 
could be realized, for instance, in experiments with colloidal crystals. It has been found the 
analytical and numerical solutions of Maxwell-Bloch equations, which describe the spatio- 
temporal dynamics of gap solitary wave formation and propagation in the case when the 
frequency is in the linear forbidden gap band of arbitrary resonant periodic Bragg structure. The 
velocity and form of the pulse depends on the profile of atomic density modulation. The pulse 
propagation in sinusoidal structure is similar to the case of discrete Bragg structure. We studied 
also the coherent decay of optically-written sinusoidal gain grating under Bragg condition. 
Describing this process by numerical solution of coupled-mode Maxwell-Bloch equations we 
investigated the dependence of the spatio-temporal dynamics of field and inverse population of 



atoms on frequency shift and initial inverse population. The coherent interaction of incident pulse 
with the gain grating leads to its amplification and shortening. 
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Abstract—Specific features of superradiance in two-component media are discussed. It is demonstrated that 
the adoption of a resonantly absorbing component into a superradiant medium opens up new opportunities to 
control the parameters of superradiance pulses. 

1. INTRODUCTION 

Superradiance is a collective coherent spontaneous 
decay of a system of excited atoms or molecules. This 
phenomenon was predicted by Dicke [1] in 1954. It was 
demonstrated that the growth in the number density of 
excited particles increases the rate of radiative sponta- 
neous decay, and incoherent decay, when radiation 
intensity is proportional to the number of excited parti- 
cles N (ISP ~ N), is replaced by coherent spontaneous 
decay—superradiance. The intensity of superradiance 
is proportional to the number of excited particles 
squared (ISR ~ N2). Consequently, in a macroscopic sys- 
tem, when N > 1, coherent radiation is much stronger 
than incoherent radiation. In the first experiment [2, 3], 
the superradiance intensity was higher than the inten- 
sity of ordinary spontaneous emission by a factor of 
more than 1010. 

Investigation of superradiance in gas media [4-7] 
and metal vapors [8-10] can be considered as the first 
stage of the experimental confirmation of the theory of 
superradiance. In first experiments, the density of 
excited atoms or molecules fell within the range n0 — 
1010-1012 cm-3. Subsequently, the density of excited 
particles was increased by two to three orders of mag- 
nitude. At the next stage, superradiance from solids, 
where n0 ~ 1016 cm-3, has been studied [11,12]. 

Initially, superradiance was considered as a method 
of cavity-free lasing, since there were no mirrors on the 
boundaries of active superradiant media, and even cell 
ends were cut at a Brewster angle. However, currently, 
the theory of superradiance in an optical cavity [13,14], 
the theory of mode superradiance [15], and the theory 
of superradiance in two-component media [16-20] are 
being developed. Two-component media are of great 
interest for the generation of high-power short coherent 
pulses [16-18, 20]. Superradiance pulses from two- 
component media are characterized by considerable 
delay times, appreciably exceeding the durations of 
superradiance pulses, which may allow us to substan- 
tially loosen requirements to the duration of the pump- 
ing pulse [17]. The feasibility of the experimental 
implementation of two-component superradiance and 
the problems associated with the choice of resonant 

media are discussed in [20]. The specific features that 
distinguish two-component media from one-compo- 
nent media are due to more versatile dynamics of pulse 
generation and amplification [16, 21] in two-compo- 
nent media. Therefore, two-component media exhibit 
the regimes, e.g., subthreshold pulse amplification [22] 
or superradiance without inversion, considered in this 
paper, that cannot arise in one-component media. 
Therefore, the investigation of the properties of two- 
component media and the application of such media 
provide an opportunity to propose new methods of las- 
ing and compression of short coherent pulses. 

2. FORMULATION OF THE PROBLEM 

Let us investigate the dynamics of superradiance in 
a medium that consists of atoms of two sorts, a and b, 
with different values of the transition dipole moment, 
da < db. Since the Rabi frequency is proportional to the 
magnitude of the transition dipole moment, fl - d, we 
have Q, < Q.b. Atoms with a higher Rabi frequency 
(atoms of the b sort) will be referred to as fast atoms, 
whereas atoms of the a sort will be referred to as slow 
atoms. We also assume that atoms in the two-compo- 
nent medium satisfy the resonance conditions (Fig. 1), 
i.e., the relation 

(Ob = coa + A,    |A| <§ coa, (»fc, (1) 

is met for the relevant transition frequencies. 

We consider a two-component medium where fast 
atoms initially reside in the ground state and slow atoms 
are excited by a pumping pulse with a finite duration. 

Slow atom Fastatom 

3 

% 

u>b = aa + A 

Fig. 1. Energy diagram of the levels of slow and fast atoms 
in a two-component medium. 
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The generation process in such a medium is governed 
by a set of Maxwell-Bloch equations for slowly varying 
envelopes of counterpropagating waves (al2), polariza- 
tions of fast (/>ii2) and slow (Px 2) atoms, and population 
differences between the levels 2 and 1 (r) for fast atoms 
and levels 3 and 2 (R) for slow atoms [16]: 

9ii    3«!       „ „ l + R        r0 + r _ + _ = P1+/,I + ßo__ + ?0__) 

da2    da2      _ _ 1 + R        r0 + r 
lf-^ = P2 + P2 + Q0— + qo—, 

dt 

dP2 

+ aaPi = ßaa,/?, 

-^-2 + aaP2 = ßfla2/?, 

-J£ + (ab + iA)Pl = $baxr, 

-J£ + (<xb + iA)p2 = $ba2r, 

(2) 

aI ^JTZ ''pump 
exp (t-toY 

"pump 

^ = -{a\P\+a2p2). 

The field amplitude a(x, t) in the set of equations (2) 
is normalized in such a manner that n(x, f) = \a(x, t)\2 

is the quantum number density expressed in units of 
the density of slow atoms, na = NJV. The population 
of slow atoms varies within the range -1 < R < 1, 
whereas the population of fast atoms varies within the 
range -r0 < r < r0. In other words, the amplitude of pop- 
ulation variation for fast atoms is determined by the 
ratio of component concentrations: r0 = NbINa. 

The model described above demonstrates a good 
agreement between the results of numerical simulation 
[17] and the data of real physical experiments [23] in 
the case of a one-component medium. 

3. THE MAIN RESULTS 
Numerical simulation shows that the spatiotemporal 

dynamics of superradiance in a two-component 
medium qualitatively differs from the dynamics of 
superradiance in a one-component medium [16,17]. In 
a one-component medium, generation starts at the 
boundary of the active medium. Then, generation 
evolves toward the inside of the medium. In a two-com- 
ponent medium, generation arises inside the medium, 

/ 
0.4 

0.2 

EL 
kt 

s~^ 

200 
t 

400 

**-±r0 = 0.3 
-^r0 = 0.2 
A/o = 0.1 
r0 = 0 

Fig. 2. Intensity profiles of superradiance pulses in a two- 
component medium for different concentrations of fast 
atoms. 

which increases the efficiency of the release of the 
energy stored in the medium. 

These effects are illustrated by Fig. 2, which dis- 
plays the intensity profiles of superradiance pulses in a 
two-component medium plotted for different concen- 
trations r0 of fast atoms. The first generation pulse 
arises in a medium where r0 = 0. In other words, this 
pulse is a pulse of superradiance of a one-component 
medium. As can be seen from Fig. 2, adding fast reso- 
nant atoms that initially reside in the ground state to a 
superradiant medium, one can considerably increase 
the peak intensity of superradiance pulses and simulta- 
neously reduce their duration. Thus, Fig. 2 clearly dem- 
onstrates that the intensity of two-component superra- 
diance may be substantially higher than the intensity of 
one-component superradiance. 

Evidently, the growth in the density of fast atoms 
increases absorption in the medium and, therefore, can- 
not give rise to a permanent growth in the intensity of 
superradiance pulses. When the concentration of fast 
atoms becomes higher than a certain threshold [16,17], 
generation in a two-component medium becomes 
impossible. Thus, two-component superradiance has a 
threshold character. However, the threshold concentra- 
tion of fast atoms r^ may vary, depending on the param- 
eters of a two-component medium. In particular, the 
value of rm can be made large [18,19]. In such a situa- 
tion, the regime of superradiance without inversion 
becomes possible. 

Figure 3 displays the intensity (Fig. 3a) and duration 
(Fig. 3b) of superradiance pulses in a two-component 
medium as functions of the concentration of fast 
atoms. Recall that the normalization was introduced 
in such a manner that the concentration of fast atoms 
is expressed in units of the number of slow atoms. 

LASER PHYSICS     Vol. 8     No. 2     1998 
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Fig. 3. (a) Intensity and (b) duration of superradiance pulses 
in a two-component medium as functions of the concentra- 
tion of fast atoms, (c) Intensity profiles of superradiance 
pulses for different concentrations of fast atoms: (i) r0 = 1.0, 
(2) 1.1, (J) 1.2, (4) 1.3, and (5) 1.4. 

Consequently, the equality r0 = 1 implies that the concen- 
trations of slow and fast atoms are equal to each other in 
a two-component medium. Vertical dashed lines in Fig. 
3 indicate the value r0 = 1. At this point, the concentra- 
tion of slow atoms is equal to the concentration of fast 
atoms, and the net population difference (R0 - r0) is 
equal to zero. As can be seen from Fig. 3, generation 
can arise in a two-component medium even when the 
number of resonant atoms in the ground state is greater 
than the number of excited resonant atoms. Note that, 
in the range r0 > 1, where the concentration of atoms in 
the ground state is greater than the concentration of 
excited atoms, and the total population difference in a 
two-component medium is negative, (/?0 - r0) < 0, 
superradiance pulses with a sufficiently high power and 
sufficiently short duration can be produced within the 
entire generation process. 

The regime considered above can be referred to as 
superradiance without inversion. Figure 3c displays the 
intensity profiles of superradiance pulses for various 
concentrations r0 of fast atoms. As can be seen from 
Fig. 3c, the pulses of two-component superradiance are 
characterized by considerable delay times, which 
appreciably exceed the duration of these pulses. 
Although the intensity of superradiance pulses lowers 
with the increase in the concentration of the fast com- 
ponent in the range r0 > 1, the intensity of such pulses 
is „comparable with the maximum intensity, which is 
achieved in the case under study when r0 = 0.75. 

Note that the situation considered above is not opti- 
mal. Varying parameters of two-component media, one 

can further increase the peak intensity of the generated 
pulses and reduce their duration [18,19]. 

The insertion of a two-component inhomoge- 
neously broadened superradiant medium into an optical 
cavity [24] opens up broad opportunities in controlling 
parameters of superradiance pulses. In the case of cav- 
ity-free superradiance, two pulses propagating along 
the active medium in opposite directions are produced. 
We can accumulate the energy of two pulses of cavity- 
free superradiance in a single superradiance pulse by 
implementing a cavity with a single totally reflecting 
mirror. In such a situation, due to the coherence of 
interaction, the peak intensity will be increased at least 
by a factor of four, and the duration of the cavity super- 
radiance pulse will be reduced. Varying the configura- 
tion of the optical cavity, parameters of inhomoge- 
neously broadened two-component media [24], and the 
distribution of the fast component, one can increase the 
intensity of the generated pulses. Thus, two-component 
media provide an opportunity to produce superradiance 
pulses with much higher power and much shorter dura- 
tion than in the case of conventional one-component 
media. Therefore, the investigation of the properties of 
two-component media opens up new opportunities in 
controlling the parameters and the waveform of the 
generated pulses. 
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ABSTRACT 

The theory of superradiance by an ensemble of two-level atoms embedded in a dielectric 
host is developed. It is shown that the near dipole-dipole interaction of a dense collection of 
two-level atoms is enhanced by the presence of the host material, decreasing the pulse temporal 
width and increasing the peak pulse intensity of superradiative emission. The influence of the 
inversion-dependent detuning effect on the parameters of the emitted pulses is investigated. 

Keywords: superradiance, local field, multicomponent media 

1. INTRODUCTION 

Most of the theory of superradiance * deals with atomic and molecular gas media or metal 
vapors 2"4. The atomic or molecular density in this case is small and lies in the range (10-10 )cm", 
therefore we can neglect the local-field effects, because the mean distance between the particles is 
greater than the wavelength of radiation. The situation is drastically changed if we deal with the solid 
state superradiative 5'6 or superfluorescent 7 medium. In this case the presence of the linearly 
polarizable host changes the local field at the resonant atoms. The macroscopic field E and local 
field EL are related by well known Lorentz equation 

EL=E + ^P (1) L 3 

where P is the volume polarization due to the host material and resonant atoms. 

2. MAIN EQUATIONS 

By taking into account this relationship we should modify the Maxwell-Bloch equations 
describing the interaction of the coherent electro-magnetic wave with an ensemble of the two-level 

9-11 atoms 



Here we study the dynamics of superradiative decay by an ensemble of the two-level atoms 
embedded in the crystal host. It is assumed that the dielectric function of the host can be represented 
by a complex constant. This assumption is met when the wave emitted by the superradiative two- 
level atoms is far from resonance with the host material. Also we assume that the active volume has a 
pencil-like form with a Fresnel number about unity. Therefore, consistent with the plane wave 
approximation, we can use one dimensional equations for the vector potential amplitudes {AFB(x,t)) 
of counterpropagating electro-magnetic waves, the resonant transition current density amplitudes 
{JF,B(XJ)) associated with these electro-magnetic waves, and population inversion density (R(x,t)). 
In the slowly varying envelope approximation 12 the equations of motion accounting the local field 
effects 10'n are 

~Jt~^~2hc~ (f*A*FJF+f AFfF+f*A*BJB+f ABfB) 

2 w i 
-if -f)—t(\JF\2 +\JB\2)-ri(R«-Req) 3nco 

(2a) 

^ R\ 1 //•*   A*    r J-    A       r* x t r* /-x     2?Z"/ * 

IT = ~2hc~ (/ ABJF
 

+ f AFJB)
 •" (/   _/) W     B F  ~ Y'   l (2b) 

^f = i(A-^^\2fRo)JF + °) ^ f {AFR,+ABRy)-i^-\ju\2 fJ^-y^J, (2c) 

^ = KA-^WV^)^+^^(^^+^X)-'^WV^X-^Ä (2d) 

d AF       c   d Ap     Incf co e, 
-^ 

+
 -JT^ = ^7-

J
F-^T

A
F (2e) dt      yjsr    dx       co sr 2 er 

d AB       c    d AB     In cf co st 

~JT~JZ~JX~ 
=
 1O~77

JB
~~2T

AB (2f) 

where A = co - coa is the detuning of the field carrier frequency co from the atomic resonance 
frequency coa, /u is the matrix element of the transition dipole moment, y\\ and y± are the 
longitudinal and transverse relaxation rates, respectively, and 

/=nn (3) 
is a local-field enhancement factor due to the presence of the linear dielectric host of complex 
dielectric constant s = sr + is,. Note that Eq. (2b) stems from the coupling of the forward 
(subscript F) and backward (subscript B) field amplitude and polarization waves which are coupled 
via the inversion density   R = RQ+R1 e2ikx + R* e'2ikx.  If we neglect coupling of the forward and 



backward waves 13,    and assume that the superradiance decay time is much shorter than the 
independent atom radiative lifetime, Eqs. (2) become 

^ = -^-(f4jF+fAFfF+f
tA;jB+fABfB)-(ft-f)^(\JF\2+\JB\

2) 
dt        2nc inco 

(4a) 

dt 
+ (^-i-A+i^|rf/^) JF^^^-A^ R0 (4b) 

dAFJL +   c    JAF^^IXCI J        ?L±A (4C) 

dt       JZ    dx        cosr     
F'B     2 sr   

F'B 

In the wave equation, Eq. (4c), the positive sign is associated with the forward propagating wave AF 

and the negative sign is associated with the backward propagating wave AB. 

For numerical calculations, it is expedient to scale Eqs. (4) such that 

-~ = -T if "FJF + f aFjF + f aBjB + f aBjB) - —- {\jF\   +\jB\ ) (5a) 
dt 2 3       TO) 

~Jtr+v ±T     m ly"' Tf  °J JF'B = h QF'B ^ ( ^ 
daFB      daFB      f   _        COT ei 

-jr+-^^=T.J^-^v"^ (5c) 

with A = 0. In Eqs. (5) we have introduced the dimensionless coordinate x'  and dimensionless 
time V 

x ,    t 
x = — , t =- 

L T 

where 

X = 

and L is an active volume length. The scaled amplitudes and polarization densities are given by 



"■Fß ~ ^ aF,B 

ch 
F,B ~ 77 JF,B O T 

respectively, where 

2 nch, 
Sz = 

(O 

The dimensionless parameters a, ß 8 are 

27Cü)\JU\
2
 r2 

ß = h 

x    2fß 
ö = ~-  

5  COT 

In the case f = f* and  yx, the equation of motion for atomic variables produce the well 
known Bloch integral of motion 

Z   \j,(x', tf + 1 ß R2 (x', t) = 2 ß R2 (x' ,0) (6) 
i=F,B 

Note that the range of R is defined by the number density N such that -N <R(x',t) <N. 
In the computer simulations we use the following boundary conditions 

aF(0,t) = aB(x'=l,t) = 0 (7) 

In this case the equations of motion for the field amplitudes and population inversion 
density produce the following equation for the atomic decay rate 

I(i) = -j-}dc'[R(x',t) + ^- Z   Mx'.OfWlMx^l.OI2 

01 o V Z  i=F,B J 
(8) 

3. COMPUTER SIMULATIONS. 

Here we present the results of the computer simulations on the superradiance dynamics by 
the system of the two-level atoms embedded into the dielectric host. Let us start from the study of 
the influence of the enhancement factor / on the parameters of the emitted pulses. If we assume that 



/ 

0.3 

lSR 

0.2 

0.1 

0.0 
0 

1.5 

lD 

1.0 

/" 

-    0.5 
2 0 ■ /-'2 

Fig. 1   (a) Intensity profile of the superradiance pulse.     Peak pulse intensity (b), temporal 
pulse width (c) and delay time (d) of superradiance pulse as a function of the enhancement factor. 



the factor / is a real constant and omit the inversion-dependent detuning term in the generalized 
Bloch Eqs. (5), then these equations will coincide with the traditional Bloch equations where the 
amplitude a is substituted by the product of the amplitude and the enhancement factor fa. Fig. la 
shows the profile of the superradiance pulse for the case when the enhancement factor is equal to 
unity and parameters a and ß are a = 1, ß =100. In this case we have the oscillatory regime of 
superradiance 3, when the emitted intensity has the profile of the damped oscillations. The results of 
the computer simulations show that the variation in the magnitude of the enhancement factor / 
retains the oscillatory structure of the emitted pulse but changes the peak pulse intensity (Fig. lb), 
delay time (Fig.lc) and pulse temporal width (Fig.Id). The peak pulse intensity increases linearly 
with /, while the delay time and pulse temporal width are inversely proportional to / Thus the 
variation in the index of the host enables us to control the emitted pulse parameters. 

The second difference in the generalized and traditional Maxwell-Bloch equations consists 
in the appearance of the inversion-dependent detuning. Fig. 2 shows the superradiance pulse intensity 
profiles for the different values of the parameter 8= 10"2 (a), 1 (b) 5 (c), 10 (d), 15 (e), 20 (f). It is 
seen that the peak pulse intensity decreases and pulse temporal width increases with the increase in 
the magnitude of the parameter 8. The time-dependent detuning distorts the pulse shape. The 
damped oscillations are now replaced by beating at different frequencies. As a result the pulse 
temporal spectrum is split and broadened. Notice that in accordance with the Eq. (6) the parameter 
8 is normally smaller than unity. The effect of the time-dependent detuning becomes important in 
the relatively thin and highly dense dielectric host. 

4. CONCLUSIONS 

The theory of superradiance by a system of the two-level atoms embedded in the dielectric 
host has been developed. The computer simulations based on the generalized Maxwell-Bloch 
equations show that the near dipole-dipole interaction of dense collection of two-level atoms is 
enhanced by the presence of the host material, decreasing the pulse temporal width and increasing 
the peak pulse intensity of superradiative emission. We showed that the inversion-dependent 
detuning effect appears in the highly dense and thin dielectric medium. This effect manifests itself in 
the beating of the emitted pulse intensity. This is a specific feature for systems consisting of identical 
two-level atoms. It was shown in 14"16 that if the superradiative medium consists of two species of 
the two-level atoms with the different dipole moments of the resonant transitions, then the detuning 
between the two components can result in the increase of the peak pulse intensity 15. Therefore the 
incorporation of the local-field effects into the theory of the two-component superradiance may 
demonstrate the benefits of the two-component solid state superradiative medium. 
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ABSTRACT 

The formation and propagation of nonlinear solitary waves under Bragg condition in multidimensional 
resonant photonic crystals is described by analytical and numerical solutions of two-wave diffraction Maxwell- 
Bloch equations. The existence of nonlinear solitary waves both in the Bragg and in the Laue geometry of 

diffraction has been shown. 

Keywords: solitary waves, photonic crystals, resonant interaction, nonlinear Bragg diffraction. 

1. INTRODUCTION 

The coherent and nonlinear optics of photonic bandgap structures, or photonic crystals, has been at the 
heart of scientific interest and research in the last years1. This is due to the finding of the novel kind of nonlinear 
solitary waves which are propagated at Bragg frequency within the linear forbidden gap band of the periodic 
medium It has been shown that gap solitons and oscillating solitary waves exist in periodical structures with 
resonant2,3 and Kerr4'5 nonlinearity. These waves are formed by two counterpropagating coupled Bragg modes m 
ID structures The progress in a technology allows now to create multidimensional photonic crystals . Several 
recent investigations on light-matter interaction in these crystals has been carried out for 2D structures of glass 
and air8 rods and 3D colloidal crystals9'10. Here we study theoretically the dynamics of formation and propagation 
of nonlinear solitary waves in the general case of two-wave Bragg diffraction problem in2D and 3D resonant 

photonic crystals. The vector Bragg condition kh = k0+H for the wave vectors k0 and kh of the incident and 

diffracted waves and the reciprocal lattice vector H is to be satisfied in this case. The equations of two-wave 
nonlinear dynamic diffraction have been derived from the semiclassical Maxwell-Bloch equations describing the 
coherent light-matter interaction under Bragg condition. By means of analytical and numerical integration of the 
equations we investigated the process of formation and propagation of Bragg solitary waves for the different 
geometric schemes of diffraction. It has been shown that nonlinear solitary waves appear both in the case of Bragg 
geometry of diffraction like gap solitons and in the case of Laue geometry of diffraction like so called two-wave 
Laue solitons of self-induced transparency. The Laue soliton propagates in the direction of the normal to 
reciprocal lattice vector. The numerical simulation of diffraction process has given the possibility to study the 
wave dynamics in a finite medium under different boundary conditions. 

2.  MAIN EQUATIONS FOR NONLINEAR TWO-WAVE DYNAMIC BRAGG DIFFRACTION 

3D photonic crystal in our model is formed by the periodically distributed clusters of resonant two-level 
atoms (Fig. 1). The period of the lattice is about wave length X and the cluster size is assumed to be less than A. 

Corresponding reciprocal lattice of the crystal is 3D too, but if two wave vectors and reciprocal lattice vector H 
exact satisfy the Bragg condition (Fig. 2) 



kh=k0+H 

we are able to replace three-dimensional problem of diffraction by two-dimensional problem using two-wave 
approximation and taking into account only two strong Bragg modes Eoh (f, t) of quasimonochromatic field 

E(f, t) within the structure 

E(f,t) = -[E0(f J)exp(ik0r-i cot)+Eh(r,t) exp(ikhr-i at)]+ c.c. 
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Fig. 1. Distribution of atomic density in 3D resonant 
crystal. 
photonic crystal. 
lattice 

Fig. 2. Reciprocal lattice of the photonic 

Orientation of wave vectors and reciprocal 

vector under exact Bragg condition. 

To describe the coherent interaction of light with resonant two-level medium the semiclassical approach 
has been used. Generalizing the Maxwell-Bloch equations of diffraction problem for ID structure2 we have 
derived the following main equations of nonlinear two-wave dynamic Bragg diffraction in resonant 3D photonic 
crystals: 

dk0 dt 

d£lh{r,t)    mh(r,t) 
• + ■ = r. lP{rj), 

dkh dt 

dt 

(1) 

where the directional derivative is given by ~—f = (gradQ.) • -pr, Q0 h = 2T (ju/h)E0 h,  E0 h are the 
ok \k\ ' 

slowly-varying envelope of complex electric field amplitudes of the incident and diffracted waves, P is the 
dimensionless characteristic of complex atomic polarization, n is the inverse population of atoms, cooperative 

time is given by   Tc
2 = 8;r7J / 3cpJ?, p is the density of resonant atoms, ju   is the matrix element of the 

projection of the transition dipole moment, c is the light velocity. 



Analytical and numerical solutions of Eqs. (1) describing the spatial-temporal dynamics of field and atomic 
inverse population for different schemes of diffraction geometry are studied below. 

3. NONLINEAR GAP SOLITARY WAVES IN THE BRAGG GEOMETRY OF DIFFRACTION 

Figure 3 illustrates the wave vectors orientation at the   Bragg geometry of diffraction on crystallographic planes of 
photonic crystal. In linear case of light-matter interaction the well known phenomenon of total Bragg reflection takes place 

because of the existence of forbidden gap band of the structure. 
Here we show that nonlinear resonant interaction leads to the 
possibility of gap solitary waves propagation at the 2D geometry of 
diffraction as well to the formation of standing Bragg waves and 
coherent inverse population grating in the structure. 

3.1 Gap 27r-pulse. Analytical results. 

The mail diffraction equations (1) can be written in the following 
form: 

' 
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Fig. 3. The Bragg geometry of diffraction on 
crystallographic planes of photonic crystal. 

dx 

P = -sm8. 

h .; C/ii/l -1    d^h 
siny/- 

dy 
= x -2c~lP 

dt      c        ' (2) 

0(rj)= ]n0(Fj)+nh(r,t)dt, 

where 6 is the Bloch angle, (p and ^"are the angles between wave vectors and x-axis. The simplest solution can be 

derived for symmetrical diffraction geometry <p- y/ and homogeneous fields with respect to the x coordinate: 

da 
dx 

OJL = a 

Then Eqs. (2) are reduced to the sine-Gordon equation for 6(y, t) 

(csin^j Oyy -9n = 2rc
-2 sin'0. 

Solving the Eq. (3) we get the following exact one-soliton gap 27i-pulse solution: 

(l±l/) 
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n0,h(y,t) = ±K—-Ln(y,t), 
2w 

Cl(yj) = Q.0+Q.h=2r 'sech 
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csin^ (l + 2r2/rc
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Gap 27r-pulse of self-induced transparency (4) propagates at the slow velocity v along the y-direction. The 

angle of diffraction (p is additional parameter. 

3.2 Gap solitary waves in a finite structure. Numerical results. 

To study the process of formation and propagation of gap solitary waves under condition of 2D Bragg 
diffraction in a finite structure, the numerical simulation of a boundary problem has been carried out. We used the 
following form for an incident pulse 

Q0(y = 0;x,t) = Q0 (x)sech 
rt-t^ 

V   T0   J 

' t  \       1       " 
Q0 (x) = -O0 < 

(5) 

1 - tanh 

1 + tanh 

X        Xr 

jC        Xr 

-10,- 

x = |-./|. 

The gap 27t-pulse is formed in the structure if amplitude and duration of the incident pulse (5) are do =3 10    s" 

\ TO=2TC, rc=10"13 s, and ^=45° (Fig. 4). 
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Fig. 4. Spatial distribution of the amplitudes of incident and diffracted fields and spatial-temporal dynamics of 
atomic inverse population in gap 27t-pulse in finite photonic crystal. 
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Fig. 5. Spatial and spatial-temporal dynamics of formation of atomic inverse population grating by localized 
standing Bragg waves. Amplitude of the incident field is large Qo =5.5 1013 s"1, and strong light-matter 
interaction is characterized by short rc=5.5 10"  s; TO=5.5TC,  (p=A5 . 

If the light-matter interaction is stronger, the cooperative time becomes shorter, and the incident pulse 
with enough large amplitude decays on three pulses within the structure (Fig. 5). The first pulse has enough 
energy to form a gap soliton-like pulse and propagates through the structure at the constant velocity (4). Other two 
pulses stop due to the formation of localized standing Bragg waves. Corresponding distribution of atomic inverse 
population represents the spatial grating of coherent inverse population. The grating slowly decays emitting light 
in two Bragg modes which propagate along the x-direction. 

4. NONLINEAR SOLITARY WAVES IN THE LAUE GEOMETRY OF DIFFRACTION 

Figure 6 shows the Laue scheme of diffraction. The incident field does not feel the total Bragg reflection 
near the boundary, because there is not the Bragg band gap for a field propagating in the x-direction. Two 
diffracted modes are coupled due to reflection on the crystallographic planes within structure. In this part of the 
paper we obtain exact expression for novel kind of coupled-mode soliton: Laue soliton. Computer simulation 
allows to investigate the process of Laue soliton formation from incident field, and furthermore, the possibility of 
arising of so called "0-field". This field consists of two coupled diffracted modes with opposite singes of 
amplitudes, so the sum of the mode amplitudes is equal to zero. As a result, the total 0-field with large partial 
mode amplitudes propagates through the resonant structure like linear field without nonlinear interaction with 
two-level atoms. 
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4.1 Laue two-wave soliton and "0-field". Analytical 
results. 

Let the symmetrical diffraction scheme ($>= y/) be realized, 
and fields are homogeneous with respect to the y 
coordinate 

da 0,/j 

dy 
= 0. 

Then Eqs. (2) takes the form 

dQ0     dQ.0 

Fig.    6.    The    Laue    scheme    of   diffraction    on 
crystallographic planes of photonic crystal. 
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II is not hard to transform from Eqs. (6) to equations for the function Q. — QQ + Q/, 

n = 6>„ 
c cos (pO^ + 6tl = -2r~2 s'mO. (7) 

Eq. (7) is the sine-Gordon equation and has the form like that for self-induced transparency problem in homogeneous 
medium. It has the following soliton solution 

Q.{x,t) = 2r 'sechf- 
t-xlv 

V = 
c cos<p 

2 ./ , 2  * l + 2rVr, 

(8) 

(9) 

The expressions (8) and (9) describe dynamics of slow soliton consisting of two diffracted waves. It is interesting 

to obtain solutions for each modes Q.Q and Qh ■ Making transformation of Eqs. (6) for the function QT = Q0 — Q.h , we 
obtain the following linear equation 

dor   dor 
c costp- ■ + ■ 0. 

dx       dt 
The solution of Eq. (10) is just a linear wave 

QT = Q~ (£ = x - c cos^? /) 

which propagates in the structure at the fast velocity c cos tp. 

(10) 



This result looks surprising, because the sum of two diffracted modes Q moves as a soliton at the slow velocity 
(9), but the difference Cl" has the fast velocity c cos#>. It is possible only in the cases if Q or CT is equal to zero. 

Let us to consider the first case, when the field sum is not equal to zero but the difference is zero 

or = n0 - nh=o, 

It means that amplitudes of two modes are equal each other. Using formula (8), we obtain the following solutions for both 
waves: 

1         1        ft-xlv\ ,    N 
Q0 = Qh = -Q = -sechl 1 . (11) 

4* C >• C * 

This is two-wave Laue soliton, or Laue 27i-pulse, coupling two diffracted modes with equal amplitudes. 
Another case is realized when the field sum is zero but the difference is not equal to zero: 

n = Q0+Qh = 0,   6 = 0, 

or = nQ-nh*o, 

hence 

Qn = -0 h-> 

0 = 0,   v = c cos(p. 
(12) 

We have called the linear solution (12) "0-field" because it is characterized by the sum 0=0, and propagating through 

the structure, it does not interact with resonant atoms {0=0), even if the amplitude of each diffracted mode is rather 
large. 

4.2 Laue solitary waves in a finite structure. Numerical results. 

Now it is time to put a question, is it possible to excite the Laue soliton (11) and 0-field (12) within a finite 
photonic crystal by outside incident field? To answer the question we have solved a boundary problem by means of 
numerical integration of Eqs. (1). The following form of incident pulse has been used: 

Q0(x = 0;y,t) = H0 (y)sech 

1 - tanh 
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Figure 7 illustrates the result of numerical simulation of nonlinear Laue diffraction of the incident pulse (13) in 
finite photon crystal when pulse amplitude Qo =2 10 s" , pulse duration Zo=0.3 TC, TC=3 10" s, and ^=30 . The 
Laue soliton and 0-field are formed within the structure. Their parameters (the sign and the value of mode amplitudes, 
velocity and duration) agree with analytical results (11) and (12). Fast 0-field outstrips the slow Laue soliton and does not 



excite resonant atoms. Figure 8 shows the spatio-temporal dynamic of the Laue soliton and 0-field formation and 
propagation. 

0-field 

Qo(x,y) j^Kt 
Laue soliton Qh(x,y) 

fi(x,y)=Q0+Qh 

Fig. 7. The Laue soliton and 0-field pulse. Spatial distribution of two diffracted modes of field and inverse population of 
atoms in the structure. 
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Fig. 8. The Laue soliton and 0-field pulse. Spatio-temporal dynamics of one mode of field and inverse population. 
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Fig. 9. The O-field pulse. Spatial distribution of diffracted modes of field when Qo=2 10   s", To=3.3rc, rc-3 10"   s, 

and <p^30°. 
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Fig. 10. Spatial-temporal dynamics of inverse population of atoms and one mode of field in the process of 0-field 
formation and propagation. 

-14_ In the case of strong light-matter interaction (short rc=3 10" s), only 0-field pulse arises (Fig. 9). Note that 
although the 0-field consists of linear waves, it is formed due to strong nonlinear interaction of incident field with resonant 
atoms near the structure boundary. In Fig. 10, we can see the large value of inverse population of atoms near the boundary 

x«0. 

5. CONCLUSION 

The developed above theory of nonlinear two-wave Bragg diffraction of coherent light in a resonant 
multidimensional photonic crystal allows to predict a number of novel kinds of nonlinear solitary waves: the Laue soliton, 
0-field, propagating and standing gap solitary waves. These phenomena could be observed experimentally, for instance, in 
an opal 3D photonic crystal with embedded dye molecules10 or in 2D structure of air-rods filled with dye solution8. 
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It is well known that the lack of the pumping sources of required intensity is one of 

the main difficulties in developing of the y-laser scheme based on the nuclei with lifetime of 

about 10 us or smaller. Recently [1,2] it was shown that the dynamics of the two- 

component superradiance (SR) is significantly different from that for monocomponent 

superradiative media. Specifically the delay time of the two-component SR can exceed the 

SR pulse temporal width for a few order of magnitude. It is the SR delay time that 

determines the duration of pumping. Therefore the adoption into the active media of y-laser 

the second resonantly absorbing component can significantly weaken the requirements for 

the intensity of pumping. 

The two-component active medium consists of the nuclei of the two species. The 

nuclei have resonant or quasiresonant radiative transitions ( a>b = coa + A, \A\ « a>a, a>b) 

and differ in the value of radiative lifetime xsp
(a,b). The nuclei with the short lifetime 

Tsp® < TSp
(a) will be called by fast component and the nuclei with the long lifetime in the 

resonant transitions will be called by slow component. It is assumed that the slow 

component is excited into the upper state of the resonant transition by some source of 

external pumping. The second component is initially in the low state of the resonant 

transitions that should be the ground or metastable state. 

The superradiative decay of the two-component active medium results in the emission 

of the coherent pulse of y-radiation. The parameters of SR pulse depend essentially on the 

ratio of concentrations (r0/Ro) of slow (R0) and fast (r0) components. The results of the 

computer simulations show that the increase of the concentration of the resonantly 

absorbing component results in the increase of the SR peak pulse intensity and delay time, 

while the pulse temporal width decreases. There is some threshold value of the ratio 

(r0
(th) /Ro). The SR emission terminates when the concentration of the resonantly absorbing 

component exceeds the threshold value (r0
(th)). We discuss the dependency of threshold 

concentration on the active medium parameters. 
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It is not necessary to have the exact resonance between the two components. The 

results of the computer simulations show that there is an optimal detuning between the 

component transitions frequencies (A = Ob - <%). We discuss the dependency of the SR 

pulse parameters on the detuning (4) and active medium parameters. 

It was shown [1] that in the two-component media the regime of inversionless SR is 

possible. In this case the concentration of the fast resonantly absorbing component exceeds 

that for slow component. The inversionless SR is characterized by the highest value of the 

delay time. Thus this regime is the most promising for y-lasing. 

This work was supported by Russian Foundation for Basic Research (No.96-02- 

19285) and European Research Office of the US Army (No. 68171-97-M-5698). 
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COHERENT INTERACTIONS IN THREE-LEVEL MEDIUM: PHASE- 

MODULATED SIMULTON AND RAMAN SOLITON, EXPERIMENTAL 
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The coherent interaction of the Dichromatic field with a system of three- 

level atoms is considered. The new solutions of this problem corresponding to 

phase-modulated simulton and Raman soliton have been found in analytical form. 

It is shown that the Stokes pulses of cooperative and stimulated Raman scattering 

have the different spectra. Both results are of great interest for interpreting the 

results of relevant experiments. 



COHERENT INTERACTIONS IN THREE-LEVEL MEDIUM: PHASE- 

MODULATED SMULTON AND RAMAN SOLITON, EXPERIMENTAL 

CRITERION FOR COOPERATIVE RAMAN SCATTERING 

Anatoli V. Andreev 

Physics Department, M. VLomonosov Moscow State University, Vorobievy Gory, 

Moscow 119899 Russia 

Charles M. Bowden 

US.Army Missile Command, Weapons Sciences Directorate Research, 

Development and Engineering Center, Redstone Arsenal, AL 35898-5248 USA 

There is a growing interest in the studies of the resonant Raman scattering 

in the molecular systems in the last decade. This interest is twofold and due to the 

progress m the generation of the ultrashort pulses of FIR emission and the lack of 

the theory adequately explaining the dynamics of the Raman sollten formation. 

The lower pressure molecular gases are the most significant class of the active 

media for the coherent FIR sources. These media are the narrow band systems, 

therefore the nonlinear coherent processes such as superradiance (SR), 

cooperative (CRS) and stimulated (SRS) Raman scattermg play a decisive role in 

the pulse generation, amplification and propagation. 

We report here the results of the theoretical study that enable us to 

determine the form of solitary pulses at adjacent transitions of a three-level atom 

or molecule at arbitrary ratio of the oscillator strengths. The conditions under 

which the sunultons and Raman solitons arise in the A and V scheme in resonant 

and off-resonant cases are discussed in detail. These conditions depend on the of 

oscillator strengths at the adjacent transitions, frequency detuning and amplitude 

of the pumping pulse in the case of Raman soliton. Since the profiles of the 

solitary pulses are described in analytical form, this can be extremely useful in 

studying the properties of solitonhke excitations observed in various experiments. 



The results of the computer simulations on the resonant Raman scattering 

in three-level medium enable us to determine conditions for the optimal 

conversion of the frequency and shape of pulses. The study of the temporal 

spectra of the Stokes pulses has shown that the detuning of the pumping pulse 

from the exact resonance allows to distinguish the SR, CRS and SRS processes. 

This feature is illustrated in Fig. 1 where the temporal spectra of the Stokes pulse 

are shown for different molecular gas pressure. We can see that for the 

dimensionless pressure p<\ the spectrum is symmetric. This region of pressure 

corresponds to SR emission. For CRS process (l<p<4) the shift of the pulse 

carrier frequency is opposite to the detuning of the pumping pulse, Ap = 2. For 

SRS process (p>4) the shift coincides with the detuning. 



^K P=0.5 

10 
-10 -6 ' ' 
FIGURE CAPTION 

Fig.l. The power spectrum of the Stokes pulse for the different gas 

pressure p, the pulse carrier frequency © coincides with the frequency of the 

Stokes transition co = ©32 , when A = 0. 
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}WE7 Fig. 3. Excitonic (a and c: Edet = 1.500 
V) and free-carrier (c and d: Edet = 1.530 eV) 
IH-LH quantum beats measured in spectrally 
nd time-resolved pump-probe experiments. The 
ime derivative of the transmission change is plot- 
ed versus delay between pump and probe. In- 
erts: applied polarizations of pump and probe 
'ulses plus theoretically predicted relative ampli- 
udes of the oscillations (numbers). 

IH-LH quantum beats are important in spec- 
rally resolved pump-probe signals even close 
o the absorption edge. 
Paul-Drude-Institut für Festkörperelektronik, 
~)-10117Berlin, Germany 

K. Leo et al, Appl. Phys. Lett. 57, 19 
(1990). 
M. Joschko et al, Phys. Rev. Lett. 78, 737 
(1997). 
S. Schmitt-Rink et al, Phys. Rev. B 46, 
10460(1992). 
P. Enders et al, Phys. Rev. B 51, 16695 
(1995). 

|WE8 9:45 am 

lltrafast adiabatic population transfer in 
-doped semiconductor quantum wells 

.. Binder, M. Lindberg* Optical Sciences 
'enter, University of Arizona, Tucson, Arizona 
5721 

(i atomic and molecular physics, coherent op- 
cal techniques allowing for almost complete 
ltrafast transfer of a population between dif- 
:rent molecular eigenstates has been devel- 
ped and refined for many years.1-3 One par- 
cularly successful scheme is called stimulated 
.aman scattering by delayed pulses (STIRAP). 
Within this scheme, it is possible to transfer a 
opulation between two nonoptically coupled 
tates by using a third state (which is optically 
oupled to both the initial and the final state) 
rithout actually occupying it, in the end, at all. 

As for semiconductors, the question arises 
whether similar techniques can be used to 
•ansfer, for example, holes from the heavy- 
ole (HH) band to the light-hole (LH) band 
rithout creating electrons in the process. We 
ave studied this problem theoretically and 
ave identified parameter regimes where we 
elieve the delayed-pulse scheme can be effi- 

-800     -400       0        400 
TIME       [fs] 

800 

QWE8 Fig. 1. Density versus time for the HH 
density (solid line), LH density (dash-dotted 
line), and conduction-band density (dotted line). 
The unit length is ot0 = 135Ä. The optical pulses 
are far detuned from the exciton resonances, and 
their duration is 400 fs (FWHM in intensity). 

E-E„ 
10      20 
[meV] 

QWE8 Fig. 2. Linear optical absorption spec- 
tra, including HH and LH exciton resonances: 
nondoped quantum well (dotted line), doped 
quantum well before (dash-dotted line), and after 
(solid line) the adiabatic transfer. 

ciently applied to the HH-LH population 
transfer. 

The theory is built of similar elements as the 
one used to study dark states in semiconduc- 
tors.4 It involves a numerical solution of the 
equation-of-motion for the interband polar- 
izations and intraband populations within an 
appropriate six-band model. It takes into ac- 
count the Coulomb interaction and, thus, lin- 
ear and nonlinear exciton effects. 

As an example, we show in Fig. 1 the density 
response of one (of the two degenerate) HH 
band, one LH band, and one conduction band 
for optimized light-field parameters including 
400-fs pulses far detuned from the exciton 
resonances. In the calculation, the other three 
bands are also taken into account. However, 
due to optical selection rules, they are com- 
pletely off-resonant and do not yield the trans- 
fer characteristics shown in Fig. 1. The initial 
HH density is due to p-doping. The absorption 
spectra for the nondoped quantum well, and 
for the doped quantum well before and imme- 
diately after the population transfer, are shown 
in Fig. 2. In our calculations the population 
transfer has an almost dramatic effect on the 
spectrum: it creates the HH exciton at the ex- 
pense of the LH exciton. This feature could 
prove to be useful in ultrafast optical switching 
applications. 
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Nonlinear solitary waves in two-and 
three-dimensional resonant periodic 
structures 

B.I. Mantsyzov, Department of Physics, 
Moscow State University, Moscow 119899, 
Russia; E-mail: mants@phys.msu.su 

The study of the nonlinear interactions in pe- 
riodic structures has gained considerable in- 
terest in the past few years.1 This is due to the 
finding of the novel kind of nonlinear solitary 
waves that are propagated at Bragg frequency 
within the linear forbidden gap band of the 
periodic medium. It has been shown that gap 
solitons and oscillating solitary waves exist in 
one-dimensional structures with resonant2 

and Kerr3 nonlinearity. These waves are 
formed by'two counterpropagating coupled 
Bragg modes. Here we investigate theoretically 
the dynamics of formation and propagation of 
nonlinear solitary waves in the general case of 
two-wave diffraction problem in two- and 
three-dimensional periodic resonant struc- 
tures. The vector Bragg condition kh = k0 + H 
for the wave vectors k0 and kh of the incident 
and diffracted waves and the reciprocal lattice 
vector H is to be satisfied in this problem. 

The equations of two-wave nonlinear dy- 
namic diffraction have been derived from the 
semiclassical Maxwell-Bloch equations de- 
scribing the coherent light-matter interaction 
under the Bragg condition. By means of ana- 
lytical and numerical integration of the equa- 
tions, we investigated the process of formation 
and propagation of Bragg solitary waves for the 
different geometric schemes of diffraction. It 
has been shown that nonlinear solitary waves 
appear both in the case of Bragg geometry of 
diffraction, such as gap two-wave solitons, and 
in the case of Laue geometry of diffraction, 
such as two-wave solitons of nonlinear Bor- 
rmann effect. The "Laue soliton" propagates in 
the direction of the normal to reciprocal lattice 
vector. The numerical simulation of the dif- 
fraction process has provided the possibility of 
studying the wave dynamics in a finite medium 
under different boundary conditions. 

This work was supported by the European 
Research Office of the U.S. Army, Contract 
No. 68171-97-M-5698, and by the Russian 
Foundation for Basic Research, Grant No. 96- 
02-19285. 

1. Development and Applications of Photonic 
Band Gap Materials, CM. Bowden, J.P. 
Dowling, H.O. Everitt, eds. Special issue of 
J. Opt. Soc. Am. B 10,279 (1993). 
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