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ULTRASHORT PULSES IN MULTICOMPONENT MEDIA AND PHOTONIC BANDGAP
STRUCTURES

In accordance with the contract the main goals of the research were:

a. Study of the specific features of ultrashort pulse propagation and dynamic nonlinear
Bragg diffraction in two-and three-dimensional photonic bandgap structures;

b. Develop methods for the control of pulse duration and shape and;

c. Investigate coherent methods of the ultrashort pulse formation, based on the coherent
interactions in multi-component media and photonic bandgap structures.

The research included the following phases:

1. The development of the mathematical algorithms and computations for the Maxwell-
Bloch equations in the general case of ultrashort pulses to describe a pulse dynamics beyond the
slowly varying envelope approximation;

2. The study of the complete set of the Maxwell-Bloch equations with the aim of
determining conditions for self-similar pulse propagation;

3. The investigation of the specific features of pulse amplification in the multi-component
media and gain grating to define the optimal conditions for coherent pulse compression and
amplification, ‘

4. Study of the characteristic properties of the coherent interactions in the three-level
atomic media for the development of the methods of pulse parameter control;

5. Exploration of the possibility for self-similar pulse formation during the process of the
nonlinear diffraction in the excited photonic bandgap structures and gain grating.

In accordance with the above mentioned goals we have developed the mathematical
algorithms for the study of the dynamics of superradiance by the multicomponent media. The
developed algorithms enable us to determine the optimal component distribution to get the pulse
of the highest intensity and shortest duration. The study of the dynamics of the two-component
superradiance has shown that the generation can occur even in the case when the concentration
of resonantly absorbing atoms exceeds the concentration of the resonantly amplifying ones. In
this case the net population inversion is negative during the whole process of emission.
Nevertheless the superradiance pulses with a sufficiently high power and sufficiently short
duration can be produced in comparison with the mono-component superradiative media [1].

The specific features of the pulse propagation and amplification in the multicomponent
media have been investigated. The results of the computer simulations enable us to find the new
type of pulses with the stable pulse area. These pulses propagate in the two-component media in
pairs. In dependent on the initial distance between pulses they propagate as a bound pair,
colliding pulses or solitary pair [2,3]. The dynamics of such pulse evolution is a demonstration of
the new self-organizing processes in the resonant light-matter interactions [4].

The dynamics of the bichromatic field propagation in the media of the three-level atoms
or molecules have been investigated. The selfsimilar solutions of this problem have been found in
the form of the phasemodulated simulton and Raman solitons [5,6].

We have developed the mathematical algorithms for the study of the dynamics of the
femtosecond pulse propagation in the medium of the two-level atoms. The conditions for the
generation of harmonics of the incident pulse frequency ‘are determined. The results of
preliminary computer simulations enable us to estimate the required parameters for the quasi-
continuum emission by the atomic gases.
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We have developed the theory of superradiance by a system of the two-level atoms
embedded in the dielectric host. The computer simulations based on the generalized Maxwell-
Bloch equations show that the near dipole-dipole interaction of dense collection of two-level
atoms is enhanced by the presence of the host material, decreasing the pulse temporal width and
increasing the peak pulse intensity of superradiative emission. We showed that the inversion-
dependent detuning effect appears in the highly dense and thin dielectric medium. This effect
manifests itself in the beating of the emitted pulse intensity. This is a specific feature for the
systems consisting from the identical two-level atoms. As it was shown earlier that if the
superradiative medium consists of two species of the two-level atoms with the different dipole
moments of the resonant transitions than the detuning between the two components can result in
the increase of the peak pulse intensity. Therefore the incorporation of the local-field effects into
the theory of the two-component superradiance demonstrate the benefits of the two-component
solid state superradiative medium [10].

We investigated the spatial-temporal nonlinear dynamics of formation and propagation of
ultrashort optical pulses in resonant photonic crystals [7-9,12]. The equations of nonlinear
dynamic diffraction for general case of two-wave diffraction problem in multidimensional
periodic resonant structures have been derived from the semiclassical Maxwell-Bloch equations
describing the coherent light-matter interaction under Bragg condition. It has been created the
computer program to carry out the numerical simulation of nonlinear diffraction under different
boundary conditions. By means of analytical and numerical integration of the equations we have
studied the process of formation and propagation of Bragg solitary waves for the different
geometric schemes of diffraction. It has been shown that nonlinear solitary waves appear both in
the case of Bragg and Laue geometry of diffraction. In the first case the nonlinear resonant
interaction leads to arising of propagating gap solitary waves as well to the formation of standing
Bragg waves and coherent inverse population grating in the structure. In the case of the Laue
diffraction the incident field does not reflect at the sample boundary, because there is no the
Bragg band gap for transmitting field. Two diffracted modes are coupled due to reflection on the
crystallographic planes within structure. We have obtained exact expression for novel kind of
coupled-mode soliton. It is a Laue soliton which propagates in the direction of the normal to
reciprocal lattice vector. Computer simulation allows to investigate the process of Laue soliton
formation from incident field, and furthermore, the possibility of arising of so called “0-field”
[12]. This field consists of two coupled diffracted modes with opposite singes of amplitudes, so
the sum of the mode amplitudes is equal to zero. As a result, the total 0-field with large partial
mode amplitudes propagates through the resonant structure like linear field without nonlinear
interaction with two-level atoms.

It has been predicted earlier that the gap soliton of self-induced transparency propagates at
the Bragg frequency in discrete resonant structure, which consist of a set of ultrathin layers of
two-level atoms [10]. We considered theoretically the short pulse transmission in a resonant one-
dimensional Bragg structure with arbitrary periodic modulation of atomic density. This model
could be realized, for instance, in experiments with colloidal crystals. It has been found the
analytical and numerical solutions of Maxwell-Bloch equations, which describe the spatio-
temporal dynamics of gap solitary wave formation and propagation in the case when the
frequency is in the linear forbidden gap band of arbitrary resonant periodic Bragg structure. The
velocity and form of the pulse depends on the profile of atomic density modulation. The pulse
propagation in sinusoidal structure is similar to the case of discrete Bragg structure. We studied
also the coherent decay of optically-written sinusoidal gain grating under Bragg condition.
Describing this process by numerical solution of coupled-mode Maxwell-Bloch equations we
investigated the dependence of the spatio-temporal dynamics of field and inverse population of




atoms on frequency shift and initial inverse population. The coherent interaction of incident pulse
with the gain grating leads to its amplification and shortening.
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Abstract—Specific features of superradiance in two-component media are discussed. It is demonstrated that
the adoption of a resonantly absorbing component into a superradlant medium opens up new opportunities to

control the parameters of superradiance pulses.

1. INTRODUCTION

Superradiance is a collective coherent spontaneous
decay of a system of excited atoms or molecules. This
phenomenon was predicted by Dicke [1] in 1954. It was
demonstrated that the growth in the number density of
excited particles increases the rate of radiative sponta-
neous decay, and incoherent decay, when radiation
intensity is proportional to the number of excited parti-
cles N (Isp ~ N), is replaced by coherent spontaneous
decay—superradiance. The intensity of superradiance
is proportional to the number of excited particles
squared (Igz ~ N?). Consequently, ina macroscoplc sys-
tem, when N > 1, coherent radiation is much stronger
than incoherent radiation. In the first experiment [2, 3],
the superradiance intensity was higher than the inten-
sity of ordinary spontaneous emission by a factor of
more than 10'°.

Investigation of superradiance in gas media [4-7]
and metal vapors [8-10] can be considered as the first
stage of the experimental confirmation of the theory of
superradiance. In first experiments, the density of
excited atoms or molecules fell within the range ny =
1019-10'? ¢m™3. Subsequently, the density of excited
particles was increased by two to three orders of mag-
nitude. At the next stage, superradiance from solids,
where ng = 10'6 cm™3, has been studied [11, 12].

Initially, superradiance was considered as a method
of cavity-free lasing, since there were no mirrors on the
boundaries of active superradiant media, and even cell
ends were cut at a Brewster angle. However, currently,
the theory of superradiance in an optical cavity [13, 14],
the theory of mode superradiance [15], and the theory
of superradiance in two-component media [16-20] are
being developed. Two-component media are of great
interest for the generation of high-power short coherent
pulses [16-18, 20]. Superradiance pulses from two-
component media are characterized by considerable
delay times, appreciably exceeding the durations of
superradiance pulses, which may allow us to substan-
tially 1oosen requirements to the duration of the pump-
ing pulse [17]. The feasibility of the experimental
implementation of two-component superradiance and
the problems associated with the choice of resonant

media are discussed in [20]. The specific features that
distinguish two-component media from one-compo-
nent media are due to more versatile dynamics of pulse
generation and amplification [16, 21] in two-compo-
nent media. Therefore, two-component media exhibit
the regimes, e.g., subthreshold pulse amplification [22]
or superradiance without inversion, considered in this
paper, that cannot arise in one-component media.
Therefore, the investigation of the properties of two-
component media and the application of such media
provide an opportunity to propose new methods of las-
ing and compression of short coherent pulses.

2. FORMULATION OF THE PROBLEM

Let us investigate the dynamics of superradiance in

a medium that consists of atoms of two sorts, a and b, -
with different values of the transition dipole moment,
d, < dj. Since the Rabi frequency is proportional to the
magnitude of the transition dipole moment, Q ~ d, we
have €, < €,. Atoms with a higher Rabi frequency
(atoms of the b sort) will be referred to as fast atoms,
whereas atoms of the a sort will be referred to as slow
atoms. We also assume that atoms in the two-compo-
nent medium satisfy the resonance conditions (Fig. 1),
i.e., the relation

0, =0, +4A, Al <o, 0, )]

is met for the relevant transition frequencies.

We consider a two-component medium where fast
atoms initially reside in the ground state and slow atoms
are excited by a pumping pulse with a finite duration.

Slow atom Fast atom
—3 ..t..2
W, @
2 1
1 W, =0, +A

Fig. 1. Energy diagram of the levels of slow and fast atoms
in a two-component medium.
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SPECIFIC FEATURES OF SUPERRADIANCE IN TWO-COMPONENT MEDIA

The generation process in such a medium is governed
by a set of Maxwell-Bloch equations for slowly varying
envelopes of counterpropagating waves (a; ,), polariza-
tions of fast (p, ,) and slow (P, ,) atoms, and population
differences between the levels 2 and 1 (r) for fast atoms
and levels 3 and 2 (R) for slow atoms [16]:

da, da, 1+4R _ro+r
3 o T P1+P1+Qo—2 *+ 905
da, 9da, 1+R ro+r
375 = Petpt Qo +d0—
dP
—ét—l+aapl = Baa1R>
oP
a_t2+aaP2 = BaaZR’
(2)
dp, .
_a""*'(ab’*'lA)Pl = Byar,
. t
0 ,
-ait2+(oc,,+zA)p2 = B,a,r,
IR 11 (t—to)’
=— = —(a; P+ ayPy) + — exp{ ,
ot o N/ Cpump 'rgump

d
a—: = —(a,p; +a,p,).

The field amplitude a(x, £) in the set of equations (2)
is normalized in such a manner that n(x, ) = Ja(x, £)|?
is the quantum number density expressed in units of
the density of slow atoms, n, = N,/ V. The population
of slow atoms varies within the range -1 < R < 1,
whereas the population of fast atoms varies within the

-range —rp < r < rp. In other words, the amplitude of pop-
ulation variation for fast atoms is determined by the
ratio of component concentrations: ry = N,/N,.

The model described above demonstrates a good
agreement between the results of numerical simulation
[17] and the data of real physical experiments [23] in
the case of a one-component medium.

3. THE MAIN RESULTS

Numerical simulation shows that the spatiotemporal
dynamics of superradiance in a two-component
medium qualitatively differs from the dynamics of
syperradiance in a one-component medium [16, 17]. In
a one-component medium, generation starts at the
boundary of the active medium. Then, generation
evolves toward the inside of the medium. In a two-com-
ponent medium, generation arises inside the medium,
No.2 1998
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Fig. 2. Intensity profiles of superradiance pulses in a two-
component medium for different concentrations of fast
atoms.

which increases the efficiency of the release of the
energy stored in the medium.

These effects are illustrated by Fig. 2, which dis-
plays the intensity profiles of superradiance pulses in a
two-component medium plotted for different concen-
trations r, of fast atoms. The first generation pulse
arises in a medium where ry = 0. In other words, this
pulse is a pulse of superradiance of a one-component
medium. As can be seen from Fig. 2, adding fast reso-
nant atoms that initially reside in the ground state to a
superradiant medium, one can considerably increase
the peak intensity of superradiance pulses and simulta-
neously reduce their duration. Thus, Fig. 2 clearly dem-
onstrates that the intensity of two-component superra-
diance may be substantially higher than the intensity of
one-component superradiance.

Evidently, the growth in the density of fast atoms
increases absorption in the medium and, therefore, can-
not give rise to a permanent growth in the intensity of
superradiance pulses. When the concentrdtion of fast
atoms becomes higher than a certain threshold [16, 17],

‘generation in a two-component medium becomes

impossible. Thus, two-component superradiance has a
threshold character. However, the threshold concentra-
tion of fast atoms r,, may vary, depending on the param-
eters of a two-component medium. In particular, the
value of ry, can be made large [18, 19]. In such a situa-
tion, the regime of superradiance without inversion
becomes possible.

Figure 3 displays the intensity (Fig. 3a) and duration
(Fig. 3b) of superradiance pulses in a two-component
medium as functions of the concentration of fast
atoms. Recall that the normalization was introduced
in such a manner that the concentration of fast atoms
is expressed in units of the number of slow atoms.
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Fig. 3. (a) Intensity and (b) duration of superradiance pulses
in a two-component medium as functions of the concentra-
tion of fast atoms. (c) Intensity profiles of superradiance
pulses for different concentrations of fast atoms: (I) rg = 1.0,
2)1.1,(3) 12,4 1.3,and (5) 1.4.

Consequently, the equality r, = 1 implies that the concen-
trations of slow and fast atoms are equal to each other in
a two-component medium. Vertical dashed lines in Fig.
3 indicate the value ry = 1. At this point, the concentra-
tion of slow atoms is equal to the concentration of fast
atoms, and the net population difference (Ry — rp) is
equal to zero. As can be seen from Fig. 3, generation
can arise in a two-component medium even when the
number of resonant atoms in the ground state is greater
than the number of excited resonant atoms. Note that,
in the range ry > 1, where the concentration of atoms in
the ground state is greater than the concentration of
excited atoms, and the total population difference in a
two-component medium is negative, (Ry — ry) < 0,
superradiance pulses with a sufficiently high power and
sufficiently short duration can be produced within the
entire generation process.

The regime considered above can be referred to as
superradiance without inversion. Figure 3c displays the
intensity profiles of superradiance pulses for various

. concentrations ry of fast atoms. As can be seen from

Fig. 3c, the pulses of two-component superradiance are
characterized by considerable delay times, which
appreciably exceed the duration of these pulses.
Although the intensity of superradiance pulses lowers
with the increase in the concentration of the fast com-
ponent in the range ry > 1, the intensity of such pulses
is.comparable with the maximum intensity, which is
achieved in the case under study when ry = 0.75.

Note that the situation considered above is not opti-
mal. Varying parameters of two-component media, one

can further increase the peak intensity of the generated
pulses and reduce their duration [18, 19].

The insertion of a two-component inhomoge-
neously broadened superradiant medium into an optical
cavity [24] opens up broad opportunities in controlling
parameters of superradiance pulses. In the case of cav-
ity-free superradiance, two pulses propagating along
the active medium in opposite directions are produced.
We can accumulate the energy of two pulses of cavity-
free superradiance in a single superradiance pulse by
implementing a cavity with a single totally reflecting
mirror. In such a situation, due to the coherence of
interaction, the peak intensity will be increased at least
by a factor of four, and the duration of the cavity super-
radiance pulse will be reduced. Varying the configura-
tion of the optical cavity, parameters of inhomoge-
neously broadened two-component media [24], and the
distribution of the fast component, one can increase the
intensity of the generated pulses. Thus, two-component
media provide an opportunity to produce superradiance
pulses with much higher power and much shorter dura-
tion than in the case of conventional one-component
media. Therefore, the investigation of the properties of
two-component media opens up new opportunities in
controlling the parameters and the waveform of the
generated pulses.
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ABSTRACT

The theory of superradiance by an ensemble of two-level atoms embedded in a dielectric
host is developed. It is shown that the near dipole-dipole interaction of a dense collection of
two-level atoms is enhanced by the presence of the host material, decreasing the pulse temporal
width and increasing the peak pulse intensity of superradiative emission. The influence of the
inversion-dependent detuning effect on the parameters of the emitted pulses is investigated.

Keywords: superradiance, local field, multicomponent media

1. INTRODUCTION

Most of the theory of superradiance ! deals with atomic and molecular gas media or metal
vapors >*. The atomic or molecular density in this case is small and lies in the range (10°-10")em™,
therefore we can neglect the local-field effects, because the mean distance between the particles is
greater than the wavelength of radiation. The situation is drastically changed if we deal with the solid
state superradiative >° or superfluorescent " medium. In this case the presence of the linearly
~ polarizable host changes the local field at the resonant atoms. The macroscopic field £ and local
field E; are related by well known Lorentz equation * ‘

4r :
E, =E+ TP M
where P is the volume polarization due to the host material and resonant atoms.

2. MAIN EQUATIONS

By taking into account this relationship we should modify the Maxwell-Bloch equations
describing the interaction of the coherent electro-magnetic wave with an ensemble of the two-level
9-11 .
atoms ~ .



Here we study the dynamics of superradiative decay by an ensemble of the two-level atoms
embedded in the crystal host. It is assumed that the dielectric function of the host can be represented
by a complex constant. This assumption is met when the wave emitted by the superradiative two-
level atoms is far from resonance with the host material. Also we assume that the active volume has a
pencil-like form with a Fresnel number about unity. Therefore, consistent with the plane wave
approximation, we can use one dimensional equations for the vector potential amplitudes (4z5(%,2))
of counterpropagating electro-magnetic waves, the resonant transition current density amplitudes
(Jpg(x t)) associated with these electro-magnetlc waves, and population inversion density (R(x,z)).

In the slowly varying envelope approximation > the equations of motion accounting the local field

effects 1% are

AR, 1
S L= [ Adi + f ApTy + [ Ty 4 f 45T3)
(22)

G DLl 1) - 7 BB
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ot £ Ry sy + T ST ARy + AR i\ £ IR 7.5 (4)
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where A4 = @ - @, is the detuning of the field carrier frequency @ from the atomic resonance
frequency @, u is the matrix element of the transition dipole moment, », and 7 are the
longitudinal and transverse relaxation rates, respectively, and

(4 ®

is a local-field enhancement factor due to the presence of the linear dielectric host of complex
dielectric constant & = & + ig. Note that Eq. (2b) stems from the coupling of the forward
(subscript F) and backward (subscript B) field amplitude and polarization waves which are coupled

via the inversion density R =R, + R, e** + R e If we neglect coupling of the forward and




backward waves ©, and assume that the superradiance decay time is much shorter than the

independent atom radiative lifetime, Eqs. (2) become

l
7R'ti=—-2—}l—(f Apdp +f Apdp + f Apds + f AgJp)—(f f) . Z(IJFI +1J51")
(4a)
aJ o Axm o®|uf f
;f+(nezAH§gmff&)#w=—7g—”%g&) (4b)
é’AFB c 5AFB 27Z'Cf &
 or " ws F’B_zg,A” (4c)

In the wave equation, Eq. (4c), the positive sign is associated with the forward propagating wave Ar
and the negative sign is associated with the backward propagating wave Ap.

For numerical calculations, it is expedient to scale Eqs. (4) such that

AR, 1 i(f-f)
O o e+ f ans + S sy + a3 -5 TL e 1P (50
OJr.p 2’|’ 7 f
. (VLTJ” _|ﬂ| tf Ro) Jrp =" Qpp Ry (5b)
a1 h
dapy Jdarp f 0T g
4 =L
ot~ Ix &, Jre ™7 g, 9r.5 (5¢)

with A = 0. In Egs. (5) we have introduced the dimensionless coordinate x’ and dimensionless
time ¢’

.X ; t
X =—, =—
L T
where
L&,
’[':

and L is an active volume length. The scaled amplitudes and polarization densities are given by




App = Sapp

ch
JF,B = E JF.B

respectively, where

2rnch

S2

@

The dimensionless parameters «, £, § are

a=y,7

~27ra)|y|212
p= h
s 210
o7

In the case f=f* and 7, the equation of motion for atomic variables produce the well
known Bloch integral of motion

i=§B 17, (" OF +2 B R*(x',£) =2 B R*(x',0) (6)

Note that the range of R is defined by the number density N such that -N <R(x’#) <N.
In the computer simulations we use the following boundary conditions

ap(0,f)=az(x'=1,£)=0 ' (7

In this case the equations of motion for the field amplitudes and population inversion
density produce the following equation for the atomic decay rate

10 =2 Jar R0+ % 2 (a0 ) =5, lap (= 10 ®)
Ity 2 i=F,B ,

3. COMPUTER SIMULATIONS.

Here we present the results of the computer simulations on the superradiance- dynamics by
the system of the two-level atoms embedded into the dielectric host. Let us start from the study of
the influence of the enhancement factor f on the parameters of the emitted pulses. If we assume that
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Fig.1 (a) Intensity profile of the superradiance pulse. ~ Peak pulse intensity (b), temporal
pulse width (c) and delay time (d) of superradiance pulse as a function of the enhancement factor.




the factor f is a real constant and omit the inversion-dependent detuning term in the generalized
Bloch Eqs. (5), then these equations will coincide with the traditional Bloch equations where the
amplitude a is substituted by the product of the amplitude and the enhancement factor fa. Fig. la
shows the profile of the superradiance pulse for the case when the enhancement factor is equal to
unity and parameters « and S are a=1, §=100. In this case we have the oscillatory regime of
superradiance >, when the emitted intensity has the profile of the damped oscillations. The results of
the computer simulations show that the variation in the magnitude of the enhancement factor f
retains the oscillatory structure of the emitted pulse but changes the peak pulse intensity (Fig.1b),
delay time (Fig.1c) and pulse temporal width (Fig.1d). The peak pulse intensity increases linearly
with f, while the delay time and pulse temporal width are inversely proportional to f. Thus the
variation in the index of the host enables us to control the emitted pulse parameters.

The second difference in the generalized and traditional Maxwell-Bloch equations consists
in the appearance of the inversion-dependent detuning. Fig. 2 shows the superradiance pulse intensity
profiles for the different values of the parameter &= 102 (a), 1 (b), 5 (c), 10 (d), 15 (e), 20 (). Itis
seen that the peak pulse intensity decreases and pulse temporal width increases with the increase in
the magnitude of the parameter & The time-dependent detuning distorts the pulse shape. The
damped oscillations are now replaced by beating at different frequencies. As a result the pulse
temporal spectrum is split and broadened. Notice that in accordance with the Eq. (6) the parameter
S is normally smaller than unity. The effect of the time-dependent detuning becomes important in
the relatively thin and highly dense dielectric host.

4, CONCLUSIONS

The theory of superradiance by a system of the two-level atoms embedded in the dielectric
host has been developed. The computer simulations based on the generalized Maxwell-Bloch
equations show that the near dipole-dipole interaction of dense collection of two-level atoms is
enhanced by the presence of the host material, decreasing the pulse temporal width and increasing
the peak pulse intensity of superradiative emission. We showed that the inversion-dependent
detuning effect appears in the highly dense and thin dielectric medium. This effect manifests itself in
- the beating of the emitted pulse intensity. This is a specific feature for systems consisting of identical
two-level atoms. It was shown in '*' that if the superradiative medium consists of two species of
the two-level atoms with the different dipole moments of the resonant transitions, then the detuning
between the two components can result in the increase of the peak pulse intensity **. Therefore the
incorporation of the local-field effects into the theory of the two-component superradiance may °
demonstrate the benefits of the two-component solid state superradiative medium.
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ABSTRACT

The formation and propagation of nonlinear solitary waves under Bragg condition in multidimensional '
resonant photonic crystals is described by analytical and numerical solutions of two-wave diffraction Maxwell-
Bloch equations. The existence of nonlinear solitary waves both in the Bragg and in the Laue geometry of
diffraction has been shown.

Keywords: solitary waves, photonic crystals, resonant interaction, nonlinear Bragg diffraction.

1. INTRODUCTION

The coherent and nonlinear optics of photonic bandgap structures, or photonic crystals, has been at the
heart of scientific interest and research in the last years'. This is due to the finding of the novel kind of nonlinear
solitary waves which are propagated at Bragg frequency within the linear forbidden gap band of the periodic
medium. It has been shown that gap solitons and oscillating solitary waves exist in periodical structures with
resonant®® and Kerr™® nonlinearity. These waves are formed by two counterpropagating coupled Bragg modes in
1D structures. The progress in a technology allows now to create multidimensional photonic crystals®. Several
recent investigations on light-matter interaction in these crystals has been carried out for 2D structures of glass’
and air® rods and 3D colloidal crystals>'°. Here we study theoretically the dynamics of formation and propagation
of nonlinear solitary waves in the general case of two-wave Bragg diffraction problem in 2D and 3D resonant

photonic crystals. The vector Bragg condition k), = Eo + H for the wave vectors Eo and k, , of the incident and

diffracted waves and the reciprocal lattice vector / is to be satisfied in this case. The equations of two-wave
nonlinear dynamic diffraction have been derived from the semiclassical Maxwell-Bloch equations describing the
coherent light-matter interaction under Bragg condition. By means of analytical and numerical integration of the
equations we investigated the process of formation and propagation of Bragg solitary waves for the different
geometric schemes of diffraction. It has been shown that nonlinear solitary waves appear both in the case of Bragg
geometry of diffraction like gap solitons and in the case of Laue geometry of diffraction like so called two-wave
Laue solitons of self-induced transparency. The Laue soliton propagates in the direction of the normal to
reciprocal lattice vector. The numerical simulation of diffraction process has given the possibility to study the
wave dynamics in a finite medium under different boundary conditions.

2. MAIN EQUATIONS FOR NONLINEAR TWO-WAVE DYNAMIC BRAGG DIFFRACTION

3D photonic crystal in our model is formed by the periodically distributed clusters of resonant two-level
atoms (Fig. 1). The period of the lattice is about wave length A and the cluster size is assumed to be less than A
Corresponding reciprocal lattice of the crystal is 3D too, but if two wave vectors and reciprocal lattice vector H
exact satisfy the Bragg condition (Fig. 2)




k,=ky+H

we are able to replace three-dimensional problem of diffraction by two-dimensional problem using two-wave
approximation and taking into account only two strong Bragg modes E, ,(¥,f) of quasimonochromatic field

E(7,t) within the structure

1 — -
EF, )= E[EO(F’t) exp(ik7 —iwt) + E, (¥, t)exp(ik,7 —iwt)]+c.c.

cluster of g S

esonant ~~—y ~" o ~

wom O OO
. .0

Fig. 2. Reciprocal lattice of the photonic

Fig. 1. Distribution of atomic density in 3D resonant
crystal.

photonic crystal.

lattice

Orientation of wave vectors and reciprocal
vector under exact Bragg condition.
To describe the coherent interaction of light with resonant two-level medium the semiclassical approach

has been used. Generalizing the Maxwell-Bloch equations of diffraction problem for 1D structure® we have
derived the following main equations of nonlinear two-wave dynamic Bragg diffraction in resonant 3D photonic

crystals:
o7t) Q7).
C 0’)]—(‘0 + é’t = Tc P(r,t)’
o071 aF
¢ ﬁ]_éh + 0”1‘ =7 P(r:t)>
OP(FA) o v )
_% = n(r,t)[Qo(r,t) + Qh(r,t)],
onl\F,t . BN
_”((9_;2 - _Re{P (7.0 (7.1) +Qh(r,¢)]})

)

oQ k-
where the directional derivative is given by i (grad Q)‘—];.—l, Q,, =27, (u/M)Ey,,, Ey) are the

slowly-varying envelope of complex electric field amplitudes of the incident and diffracted waves, P is the
dimensionless characteristic of complex atomic polarization, 72 is the inverse population of atoms, cooperative

time is given by 7> = 827, / 3cpA?, p is the density of resonant atoms, 4 is the matrix element of the

projection of the transition dipole moment, ¢ is the light velocity.




Analytical and numerical solutions of Eqs. (1) describing the spatial-temporal dynamics of field and atomic
inverse population for different schemes of diffraction geometry are studied below.

3. NONLINEAR GAP SOLITARY WAVES IN THE BRAGG GEOMETRY OF DIFFRACTION

Figure 3 illustrates the wave vectors orientation at the Bragg geometry of diffraction on crystallographic planes of
photonic crystal. In linear case of light-matter interaction the well known phenomenon of total Bragg reflection takes place
because of the existence of forbidden gap band of the structure:
Here we show that nonlinear resonant interaction leads to the
possibility of gap solitary waves propagation at the 2D geometry of

diffraction as well to the formation of standing Bragg waves and
¥y V4 coherent inverse population grating in the structure.
.A/(D H 3.1 Gap 2n-pulse. Analytical results.
k\< : w  The mail diffraction equations (1) can be written in the following
(/SN I form:
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Fig. 3. The Bragg geometry of diffraction on P =—sind '

crystallographic planes of photonic crystal.

07.1) = [04(F.1)+0, (7. 1)a,

-
where € is the Bloch angle, ¢ and { are the angles between wave vectors and x-axis. The simplest solution can be
derived for symmetrical diffraction geometry =y and homogeneous fields with respect to the X coordinate:
Q,,

=0
Ox

Then Egs. (2) are reduced to the sine-Gordon equation for &(3,2)

) . 2 - .
(csmgﬁ) 6,y — 6, = 27,7 siné. (3)
Solving the Eq. (3) we get the following exact one-soliton gap 2n-pulse solution:

(1+2)
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Gap 2n-pulse of self-induced transparency (4) propagates at the slow velocity v along the y-direction. The
angle of diffraction ¢ is additional parameter.

3.2 Gap solitary waves in a finite structure. Numerical results.
To study the process of formation and propagation of gap solitary waves under condition of 2D Bragg

diffraction in a finite structure, the numerical simulation of a boundary problem has been carried out. We used the
following form for an incident pulse

¢ -1
Qo()’ = O;x,t) =Q, (x) sech( . OJ,

) b
)

X

] 1- tanh( —

Xo
/
X0
1+ tanh
/
)

The gap 2n-pulse is formed in the structure if amplitude and duration of the incident pulse (5) are Q=3 10"¢
U =21, 7=10"s, and ¢=45° (Fig. 4).

Fig. 4. Spatial distribution of the amplitudes of incident and diffracted fields and spatial-temporal dynamics of
atomic inverse population in gap 2zn-pulse in finite photonic crystal.




n(y,t;x=250)

Fig. 5. Spatial and spatial-temporal dynamics of formation of atomic inverse population grating by localized
standing Bragg waves. Amplitude of the incident field is large £ =5.5 10" s and strong light-matter
interaction is characterized by short 7,=5.5 10%s ; 75=5.51, ¢=450.

If the light-matter interaction is stronger, the cooperative time becomes shorter, and the incident pulse
with enough large amplitude decays on three pulses within the structure (Fig. 5). The first pulse has enough
energy to form a gap soliton-like pulse and propagates through the structure at the constant velocity (4). Other two
pulses stop due to the formation of localized standing Bragg waves. Corresponding distribution of atomic inverse
population represents the spatial grating of coherent inverse population. The grating slowly decays emitting light
in two Bragg modes which propagate along the x-direction.

4., NONLINEAR SOLITARY WAVES IN THE LAUE GEOMETRY OF DIFFRACTION

Figure 6 shows the Laue scheme of diffraction. The incident field does not feel the total Bragg reflection
near the boundary, because there is not the Bragg band gap for a field propagating in the x-direction. Two
diffracted modes are coupled due to reflection on the crystallographic planes within structure. In this part of the
paper we obtain exact expression for novel kind of coupled-mode soliton: Laue soliton. Computer simulation
allows to investigate the process of Laue soliton formation from incident field, and furthermore, the possibility of
arising of so called “O-field”. This field consists of two coupled diffracted modes with opposite singes of
amplitudes, so the sum of the mode amplitudes is equal to zero. As a result, the total 0-field with large partial
mode amplitudes propagates through the resonant structure like linear field without nonlinear interaction with
two-level atoms.



4.1 Laue two-wave soliton and “0-field”. Analytical

results.
x S
H : Let the symmetrical diffraction scheme (@= /) be realized,
\ /' P and fields are homogeneous with respect to the
coordinate
N/ o My _,
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Fig. 6. The Laue scheme of diffraction on ccosp——+——=1, P,
crystallographic planes of photonic crystal. ox ot (6)
P =—siné,

6(x,1) = J['QO(x,‘f) +Q, (x,1)dl.

-

It is not hard to transform from Eqs. (6) to equations for the function Q = Qg + €,

Q=4,
ccospf, +6, =27, sind. @)

Eq. (7) is the sine-Gordon equation and has the form like that for self-induced transparency problem in homogeneous
medium. It has the following soliton solution ’

t-x/ | |
Qx,1) =277 sech(—?—l) s ®)
___ccosp ‘
RPN ©)

The expressions (8) and (9) describe dynamics of slow soliton consisting of two diffracted waves. It is interesting
to obtain solutions for each modes 2y and £2;, . Making transformation of Eqs. (6) for the function ™ = Q; — €, | we
obtain the following linear equation

oqQ oy 0 10
C cos — =0,

¢ ox ot . (10)

The solution of Eq. (10) is just a linear wave

Q =Q"(E=x-ccospt)

which propagates in the structure at the fast velocity ¢ cosg.




This result looks surprising, because the sum of two diffracted modes {2 moves as a soliton at the slow velocity

(9), but the difference €2 has the fast velocity ¢ cos@ . It is possible only in the cases if Q or € is equal to zero.
Let us to consider the first case, when the field sum is not equal to zero but the difference is zero

Q— =Q0_Qh:O,
Q=6 #0.

It means that amplitudes of two modes are equal each other. Using formula (8), we obtain the following solutions for both
waves:

11 (t-x/
Q=0 =50 = ;sech(¥j : an

This is two-wave Laue soliton, or Laue 2n-pulse, coupling two diffracted modes with equal amplitudes.
Another case is realized when the field sum is zero but the difference is not equal to zero:

0=0,+9,=0, #=0,

Q_ = QO _Qh ;t O,
hence
QO = _Qh’

(12)

6=0, v=ccosg.

We have called the linear solution (12) “0-field” because it is characterized by the sum £2=0, and propagating through
the structure, it does not interact with resonant atoms ( & =0 ), even if the amplitude of each diffracted mode is rather
large.

4.2 Laue solitary waves in a finite structure. Numerical results.

Now it is time to put a question, is it possible to excite the Laue soliton (11) and 0-field (12) within a finite
photonic crystal by outside incident field? To answer the question we have solved a boundary problem by means of
numerical integration of Egs. (1). The following form of incident pulse has been used:

Qo(x :VO;y,t) = Qo'(y)sech(t ~ to),

%
- l
1—tanh(%), y= (0,5], | (13)
o (y):EQO Y~ Yo /
1+ tanh ) y= E’l .

Figure 7 illustrates the result of numerical simulation of nonlinear Laue diffraction of the incident pulse (13) in
finite photon crystal when pulse amplitude Qo =2 108 57, pulse duration %=0.37%, 7=3 105, and =3 0°. The
Laue soliton and 0-field are formed within the structure. Their parameters (the sign and the value of mode amplitudes,
velocity and duration) agree with analytical results (11) and (12). Fast 0-field outstrips the slow Laue soliton and does not




excite resonant atoms. Figure 8 shows the spatio-temporal dynamic of the Laue soliton and O-field formation and
propagation.

O-field

Fig. 7. The Laue soliton and 0-field pulse. Spatial distribution of two diffracted modes of field and inverse population of
atoms in the structure.

Qo(x,t;y=40

y

7

¢
|

Fig. 8. The Laue soliton and 0-field pulse. Spatio-temporal dynamics of one mode of field and inverse population.



Fig. 9. The 0-field pulse. Spatial distribution of diffracted modes of field when Qo=2 10° s, 7=337,, 7=3 10™s,
and (p=300.

n(x,t;y=400)

1500

Fig. 10. Spatial-temporal dynamics of inverse population of atoms and one mode of field in the process of O-field
formation and propagation.

In the case of strong light-matter interaction (short 7,=3 10™s), only 0-field pulse arises (Fig. 9). Note that
although the 0-field consists of linear waves, it is formed due to strong nonlinear interaction of incident field with resonant
atoms near the structure boundary. In Fig. 10, we can see the large value of inverse population of atoms near the boundary

x=~0.

S. CONCLUSION

The developed above theory of nonlinear two-wave Bragg diffraction of coherent light in a resonant
multidimensional photonic crystal allows to predict a number of novel kinds of nonlinear solitary waves: the Laue soliton,
0-field, propagating and standing gap solitary waves. These phenomena could be observed experimentally , for instance, in
an opal 3D photonic crystal with embedded dye molecules'® or in 2D structure of air-rods filled with dye solution®.
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TWO-COMPONENT SUPERRADIANCE SCHEME OF 7-LASING
A.V.Andreev and P.V.Polevoy
Physics Department, M.V.Lomonosov Moscow State University,
Vorobievy Gory, Moscow 119899, Russia.
Fax: (095) 939-3113, E-mail: andreev@sr.phys.msu.su

It is well known that the lack of the pumping sources of required intensity is one of
the main difficulties in developing of the y-laser scheme based on the nuclei with lifetime of
about 10 ps or smaller. Recently [1,2] it was shown that the dynamics of the two-
component superradiance (SR) is significantly different from that for monocomponent
superradiative media. Specifically the delay time of the two-component SR can exceed the
SR pulse temporal width for a few order of magnitude. It is the SR delay time that
determines the duration of pumping. Therefore the adoption into the active media of y-laser
the second reson;mtly absorbing component can significantly weaken the requirements for
the intensity of pumping.

The two-component active medium consists of the nuclei of the two species. The
nuclei have resonant or quasiresonant radiative transitions (@ = @ + 4, |4] << @, @)
and differ in the value of radiative lifetime 7,“”. The nuclei with the short lifetime
7,7 < qp(") will be called by fast component and the nuclei with the long lifetime in the
resonant transitions will be called by slow component. It is assumed that the slow
component is excited into the upper state of the resonant transition by some source of
external pumping. The second component is initially in the low state of the resonant
transitions that should be the ground or metastable state.

The superradiative decay of the two-component active medium results in fhe emission
of the coherent pulse of y-radiation. The parameters of SR pulse depend essentially on the
ratio of concentrations (rp/Rp) of slow (Ry) and fast (r9) components. The results of the
computer simulations show that the increase of the concentration of the resonantly
absorbing component results in the increase of the SR peak pulse intensity and delay time,
while the pulse temporal width decreases. There is some threshold value of the ratio
(rs™ /Rg). The SR emission terminates when the concentration of the resonantly absorbing
component exceeds the threshold value (™). We discuss the dependency of threshold

concentration on the active medium parameters.
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It is not necessary to have the exact resonance between the two components. The
results of the computer simulations show that there is an optimal detuning between the
component transitions frequencies (4 = @ - ax). We discuss the dependency of the SR
pulse parameters on the detuning (4) and active medium parameters.

It was shown [1] that in the two-component media the regime of inversionless SR is
possible. In this case the concentration of the fast resonantly absorbing component exceeds

that for slow component. The inversionless SR is characterized by the highest value of the

delay time. Thus this regime is the most promising for y-lasing.

This work was supported by Russian Foundation for Basic Research (No.96-02-
19285) and European Research Office of the US Army (No. 68171-97-M-5698).
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COHERENT INTERACTIONS IN THREE-LEVEL MEDIUM: PHASE-
MODULATED SIMULTON AND RAMAN SOLITON, EXPERIMENTAL
CRITERION FOR COOPERATIVE RAMAN SCATTERING
Anatoli V. Andreev
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Moscow 119899 Russia
Charles M. Bowden
U.S.Army Missile Command, Weapons Sciences Directorate Research,
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The coherent interaction of the bichromatic field with a system of three-
level atoms 1s considered. The new solutions of this problem corresponding to
phase-modulated simulton and Raman soliton have been found in analytical form.
It is shown that the Stokes pulses of cooperative and stimulated Raman scattering
have the different spectra. Both results are of great interest for interpreting the

results of relevant experiments.




COHERENT INTERACTIONS IN THREE-LEVEL MEDIUM: PHASE-
MODULATED SIMULTON AND RAMAN SOLITON, EXPERIMENTAL
CRITERION FOR COOPERATIVE RAMAN SCATTERING
Anatoli V. Andreev
Physics Department, M. V Lomonosov Moscow State University, Vorobievy Gory,
Moscow 119899 Russia
Charles M. Bowden

U.S.Army Missile Command, Weapons Sciences Directorate Research,

Development and Engineering Center, Redstone Arsenal, AL 35898-5248 USA

There is a growing interest in the studies of the resonant Raman scattering
in the molecular systems in the last decade. This interest is twofold and due to the
progress in the generation of the ultrashort pulses of FIR emission and the lack of
the theory adequately explaining the dynamics of the Raman soliton formation.
The lower pressure molecular gases are the most significant class of the active
media for the coherent FIR sources. These media are the narrow band systems,
therefore the mnonlinear coherent processes such as superradiance (SR),
cooperative (CRS) and stimulated (SRS) Raman scattering play a decisive role in
the pulse generation, amplification and propagation.

We report here the results of the theoretical study that enable us to
determine the form of solitary pulses at adjacent transitions of a three-leve] atom
or molecule at arbitrary ratio of the oscillator strengths. The conditions under
which the simultons and Raman solitons arise in the A and V scheme in resonant
and off-resonant cases are discussed in detail. These conditions depend on the of
oscillator strengths at the adjacent transitions, frequency detuning and amplitude
of the pumping pulse in the case of Raman soliton. Since the profiles of the
solitary pulses are described in analytical form, this can be extremely useful in

studying the properties of solitonlike excitations observed in various experiments.




The results of the computer simulations on the resonant Raman scattering
in three-level medium enable us to determine conditions for the optimal
conversion of the frequency and shape of pulses. The study of the temporal
spectra of the Stokes pulses has shown that the detuning of the pumping pulse
from the exact resonance allows to distinguish the SR, CRS and SRS processes.
This feature is illustrated in Fig.1 where the temporal spectra of the Stokes pulse
are shown for different molecular gas pressure. We can see that for the
dimensionless pressure p<l the spectrum is symmetric. This region of pressure

. corresponds to SR emission. For CRS process (1<p<4) the shift of the pulse
carrier frequency is opposite to the detuning of the pumping pulse, A, = 2. For
SRS process (p>4) the shift coincides with the detuning.




VA AN P=05
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FIGURE CAPTION
Fig.1. The power spectrum of the Stokes pulse for the different gas

pressure p, the pulse carrier frequency @ coincides with the frequency of the

Stokes transition ® = ®3; , when A= 0.
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WE7 Fig.3. Excitonic(aand c: Ey, = 1.500

V) and free-carrier (c and d: Ey,, = 1.530 €V)
H-LH quantum beats measured in spectrally

nd time-resolved pump-probe experiments. The
me derivative of the transmission change is plot-
d versus delay between pump and probe. In-
rts: applied polarizations of pump and probe
ulses plus theoretically predicted relative ampli-
des of the oscillations (numbers).

H-LH quantum beats are important in spec-
ally resolved pump-probe signals even close
the absorption edge.
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Itrafast adiabatic population transfer in-

oped semiconductor quantum wells

. Binder, M. Lindberg* Optical Sciences
enter, University of Arizona, Tucson, Arizona
5721

atomic and molecular physics, coherent op-
cal techniques allowing for almost complete
ltrafast transfer of a population between dif-
rent molecular eigenstates has been devel-
ped and refined for many years.!-*> One par-
cularly successful scheme is called stimulated
aman scattering by delayed pulses (STIRAP).

ithin this scheme, it is possible to transfer a
opulation between two nonoptically coupled
ates by using a third state (which is optically

upled to both the initial and the final state)
ithout actually occupying it, in the end, at all.

As for semiconductors, the question arises
hether similar techniques can be used to
ansfer, for example, holes from the heavy-
ole (HH) band to the light-hole (LH) band
ithout creating electrons in the process. We
ave studied this problem theoretically and
ave identified parameter regimes where we
elieve the delayed-pulse scheme can be effi-

DENSITY [a,°]
= =N
(=] (7 [=]

e
n

QWE8 Fig.1. Density versus time for the HH
density (solid line), LH density (dash-dotted
line), and conduction-band density (dotted line).
The unit length is oy = 135A. The optical pulses
are far detuned from the exciton resonances, and
their duration is 400 fs (FWHM in intensity).

_ N W A

ABSORPTION [arb. units]

-20 -10 0 10 20 30
E-E, [meV]

QWES Fig.2. Linear optical absorption spec-
tra, including HH and LH exciton resonances:
nondoped quantum well (dotted line), doped
quantum well before (dash-dotted line), and after
(solid line) the adiabatic transfer.

ciently applied to the HH-LH population
transfer.

The theory is built of similar elements as the
one used to study dark states in semiconduc-
tors.# It involves a numerical solution of the
equation-of-motion for the interband polar-
izations and intraband populations within an
appropriate six-band model. It takes into ac-
count the Coulomb interaction and, thus, lin-
ear and nonlinear exciton effects.

As an example, we show in Fig. 1 the density
response of one (of the two degenerate) HH
band, one LH band, and one conduction band
for optimized light-field parameters including
400-fs pulses far detuned from the exciton
resonances. In the calculation, the other three
bands are also taken into account. However,
due to optical selection rules, they are com-
pletely off-resonant and do not yield the trans-
fer characteristics shown in Fig. 1. The initial
HH density is due to p-doping. The absorption
spectra for the nondoped quantum well, and
for the doped quantum well before and imme-
diately after the population transfer, are shown
in Fig. 2. In our calculations the population
transfer has an almost dramatic effect on the
spectrum: it creates the HH exciton at the ex-
pense of the LH exciton. This feature could
prove to be useful in ultrafast optical switching
applications.
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Nonlinear solitary waves in two-and
three-dimensional resonant periodic
structures

B.I. Mantsyzov, Department of Physics,
Moscow State University, Moscow 119899,
Russia; E-mail: mants@phys.msu.su

The study of the nonlinear interactions in pe-
riodic structures has gained considerable in-
terest in the past few years.! This is due to the
finding of the novel kind of nonlinear solitary
waves that are propagated at Bragg frequency
within the linear forbidden gap band of the
periodic medium. It has been shown that gap
solitons and oscillating solitary waves exist in
one-dimensional structures with resonant?
and Kerr® nonlinearity. These waves are
formed by ‘two counterpropagating coupled

Bragg modes. Here we investigate theoretically

the dynamics of formation and propagation of

nonlinear solitary waves in the general case of
two-wave diffraction problem in two- and
three-dimensional periodic resonant struc-

tures. The vector Bragg conditionk, = k, + H

for the wave vectors kg, and k;, of the incident

and diffracted waves and the reciprocal lattice
vector H is to be satisfied in this problem.

The equations of two-wave nonlinear dy-
namic diffraction have been derived from the
semiclassical Maxwell-Bloch equations de-
scribing the coherent light-matter interaction
under the Bragg condition. By means of ana-
Iytical and numerical integration of the equa-
tions, we investigated the process of formation
and propagation of Bragg solitary waves for the
different geometric schemes of diffraction. It
has been shown that nonlinear solitary waves
appear both in the case of Bragg geometry of
diffraction, such as gap two-wave solitons, and
in the case of Laue geometry of diffraction,
such as two-wave solitons of nonlinear Bor-
rmann effect. The “Laue soliton” propagates in
the direction of the normal to reciprocal lattice
vector. The numerical simulation of the dif-
fraction process has provided the possibility of
studying the wave dynamics in a finite medium
under different boundary conditions.

This work was supported by the European
Research Office of the U.S. Army, Contract
No. 68171-97-M-5698, and by the Russian
Foundation for Basic Research, Grant No. 96-
02-19285. '

1. Development and Applications of Photonic
Band Gap Materials, CM. Bowden, J.P.
Dowling, H.O. Everitt, eds. Special issue of
J. Opt. Soc. Am. B 10, 279 (1993).
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