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ABSTRACT 

An experimental investigation was conducted to develop a method of predicting 

cylinder indicated torques in a reciprocating engine by measurement of crankshaft angular 

velocity fluctuations. Cylinder indicated pressures were measured for all three cylinders 

of a two-stroke Diesel engine with pressure transducers. Time-resolved angular position 

was measured at the crankshaft front and at the flywheel. A six degree-of-freedom 

torsional crankshaft model was developed. Two solution methods are described to solve 

the equations of motion: a time-marching ODE solver, and a Finite Element solution in 

the time domain. Using these methods with the measured cylinder torques, the angular 

positions are predicted and compared to measured angular positions for model 

calibration. An inverse solution method was developed to determine the cylinder 

indicated torques from the measured angular position at the crankshaft endpoints. The 

method is theoretically demonstrated to be useful for explicit solutions for two-stroke 

engines up to three cylinders, and four-stroke engines up to four cylinders. Experimental 

results show that the method is useful in predicting cylinder indicated torques from 

angular velocity measurements. 

V _ 



VI 



TABLE OF CONTENTS 

I. INTRODUCTION 1 
A. MOTIVATION 1 
B. STATE OF THE ART 2 
C. OBJECTIVES 5 
D. ORGANIZATION 6 

n. CRANKSHAFT TORSIONAL MODEL 7 
A. PHYSICAL SYSTEM 7 
B. EQUATIONS OF MOTION 8 
C. CALCULATION OF MODEL PARAMETERS 10 

III. EXPERIMENTAL METHODS 11 
A. ENGINE DESCRIPTION 11 
B. ENGINE CYCLE ANALYZER (ECA) 13 
C. OPTICAL ENCODER 14 
D. MAGNETIC INDUCTION PROXIMETER 16 
E. MODULATION DOMAIN ANALYZER 17 
F. TEST MATRIX 18 

IV. METHODS FOR CYLINDER PRESSURE AND TORQUE PREDICTION 19 
A. PREDICTION OF PHASE DEVIATION FROM CYLINDER TORQUES 19 

1. Time-marching O.D.E. method 19 
2. Finite Element method 21 

B. PREDICTION OF TORQUES FROM MEASURED SHAFT SPEEDS 25 
1. Solution of Matrix Equation 25 
2. Interpolation of Data 28 
3. Signal Filtering by Fast Fourier Transform 29 
4. Numerical Differentiation 29 

C. TEST OF SOLUTION METHODS 30 
V. RESULTS 33 

A. CALIBRATION OF INERTIAL MODEL 33 
B. COMPARISON OF PREDICTED AND MEASURED TORQUES 37 

VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 41 
A. SUMMARY 41 
B. CONCLUSIONS 41 
C. RECOMMENDATIONS 42 

APPENDIX A. GEOMETRY OF ROTATING COMPONENTS 45 
APPENDIX B. GEOMETRY OF RECIPROCATING COMPONENTS 53 
APPENDIX C. NATURAL FREQUENCY AND MODAL ANALYSIS 59 
APPENDIX D. ADDITIONAL DATA PLOTS 63 
APPENDIXE. MATLAB CODES 83 
APPENDIX F. UNCERTAINTY ANALYSIS 103 
LIST OF REFERENCES 105 
INITIAL DISTRIBUTION LIST 109 

Vll 



Vlll 



NOMENCLATURE 

Symbol 
Ap 

B 
C 
[C] 
D 
Dcp 

Djb 

f 

Fr 

fei {Fre} 

H2 

cp 

[F 
g 
h 
h 
H, 
I 
[I] 
J 
J 
Jcr 

Jjb 

Jrec 

[J] 
K 
Kgyr 

[K] 
[Ke] 
[Kfe] 
L 
Le 

Lcp 

Ljb 
N 
Pcyl 

Pnet 

Pref 

Q 
R 
Ro 
Ri 
s 

Description Units 
Piston cross-sectional area in2 

Cylinder bore in 
Torsional damping lbf * in * sec/rad 
Damping matrix 
Diameter in 
Crankpin diameter in 
Main journal bearing diameter in 
Friction factor 
Connecting rod force lbf 
Net cylinder force from indicated pressure lbf 
Reaction force 
Element torque vector 
Finite Element Method torque vector 
Gravitational acceleration in/sec2 

Finite Element duration sec 
Average bearing clearance in 
Shape functions 
Weighted average of residual 
Identity matrix 
Rotating mass polar moment of inertia lbf* in*sec2 

Crankpin rotating inertia lbf* in*sec2 

Connecting rod rotating inertia lbf* in*sec2 

Main journal bearing rotating inertia lbf*in*sec2 

Reciprocating mass polar moment of inertia lbf*in*sec" 
Inertia matrix 
Torsional rigidity lbf*in./rad 
Radius of gyration in 
Torsional rigidity matrix 
Element matrix 
Finite Element Method matrix 
Connecting rod length in 
Effective shaft length in 
Crankpin length in 
Main journal bearing length in 
Crankshaft rotational velocity RPM 
Cylinder indicated pressure (absolute) lbf/in2 

Net pressure applied to cylinder lbf/in2 

Reference pressure (absolute) lbf/in2 

Flowrate gpm 
Crank throw in 
Counterweight outer radius in 
Counterweight inner radius in 
Piston linear position in 



s Piston linear velocity in/sec 
s Piston linear acceleration in/sec2 

t time sec 
tL Finite Element initial time sec 
tR Finite Element final time sec 
Tct Counterweight thickness in 
Twb Crankweb thickness in 
Aaux Auxiliary torque in*lbf 
Tcyl Cylinder indicated torque in*lbf 
Tload Load torque in*lbf 
•I par Parasitic torque (piston friction) in*lbf 
Apmp Oil pump torque in*lbf 
Arec Reciprocating torque in*lbf 
V Cylinder volume in3 

w Weighting function 
w Weight lbf 
Wf Bearing load lbf 
wrec Reciprocating weight lbf 
wwb Crankweb width in 

a Counterweight angle rad 
£ Phase deviation rad 
8 Spring deflection in • 
4> Connecting rod angle at piston pin rad 

Y Connecting rod angle at crankpin rad 

H Viscosity reyns 
6 Crank Angle rad 
6 Crankshaft rotational velocity rad/sec 

6 Crankshaft rotational acceleration rad/sec 

P Specific weight lbf/in2 

CO Natural frequency Hz 
Co Mean rotational velocity rad/sec 

BDC Bottom dead center 
BHP Brake horsepower 
CBM Condition based maintenance 
ECA Engine Cycle Analyzer 
FEM Finite Element Method 
FFT Fast Fourier Transform 
MDA Modulation Domain Analyzer 
ODE Ordinary Differential Equation 
RPM Revolutions per minute 
RSM Regularly scheduled maintenance 
TDC Top dead center 
TTL Transistor-to-Transistor Logic (signal type) 



LIST OF FIGURES 

Figure 1. Crankshaft. From Ref [19] 7 
Figure 2. Crankshaft Torsional Model. After Ref [18] 8 
Figure 3. Engine Test Stand (Front View) 12 
Figure 4. Engine Test Stand (Side View) 12 
Figure 5. Instrumentation Schematic 13 
Figure 6. Optical Disk Representation 14 
Figure 7. Optical Encoder and coupling. From Ref [21] 15 
Figure 8. Optical Encoder Mounting. From Ref [18]..' 16 
Figure 9. Proximeter mounting '. 17 
Figure 10. Linear Shape Functions. After Ref [22] 22 
Figure 11. Comparison of Solution Methods 24 
Figure 12. Torque Prediction Flowchart 26 
Figure 13. Cylinder Gas Pressures (1000 RPM, 100Ft*lbf) 27 
Figure 14. Test of Numerical Methods for Individual Torques 31 
Figure 15. Test of Numerical Methods for Total Torque 32 
Figure 16. Phase Deviation (1000 RPM, 100Ft*lbf) 35 
Figuren. Crankshaft Twist (1000 RPM, 100 Ft*lbf) 36 
Figure 18. Individual Cylinder Gas Torques (1000 RPM, 100Ft*lbf) 38 
Figure 19. Total Gas Torque (1000 RPM, 100Ft*lbf) 39 
Figure 20. Crankweb Forms. From Ref [25] 46 
Figure 21. Piston and Connecting Rod. From Ref [19] 53 
Figure 22. Geometry of Reciprocating Components 54 
Figure 23. Idealized Connecting Rod. From Ref [29] 56 
Figure 24. Torsional Vibration Modes 60 
Figure 25. Frequency Spectrum for Measured Angular Velocity at 9i (0-3000 Hz) 61 
Figure 26. Low Frequency Spectrum (0-1000 Hz) 62 
Figure 27. Phase Deviation (1000 RPM, 80 Ft*lbf) 63 
Figure 28. Phase Deviation (1000 RPM, 135 Ft*Ibf) 64 
Figure 29. Phase Deviation (1500 RPM, 135 Ft*lbf) 65 
Figure 30. Phase Deviation (1500 RPM, 160Ft*lbf) 66 
Figure 31. Phase Deviation (2000 RPM, 160Ft*lbf) 67 
Figure 32. Crankshaft Twist (1000 RPM, 80 Ft*lbf) 68 
Figure 33. Crankshaft Twist (1000 RPM, 135 Ft*lbf) ....69 
Figure 34. Crankshaft Twist (1500 RPM, 135 Ft*lbf) 70 
Figure 35. Crankshaft Twist (1500 RPM, 160Ft*lbf) 71 
Figure 36. Crankshaft Twist (2000 RPM, 160Ft*lbf) 72 
Figure 37. Individual Cylinder Gas Torques (1000 RPM, 80 Ft*lbf) 73 
Figure 38. Individual Cylinder Gas Torques (1000 RPM, 135 Ft*lbf) 74 
Figure 39. Individual Cylinder Gas Torques (1500 RPM, 135 Ft*lbf) 75 
Figure 40. Individual Cylinder Gas Torques (1500 RPM, 160 Ft*lbf) 76 
Figure 41. Individual Cylinder Gas Torques (2000 RPM, 160 Ft*lbf) 77 
Figure 42. Total Gas Torque (1000 RPM, 80 Ft*lbf) 78 
Figure 43. Total Gas Torque (1000 RPM, 135 Ft*lbf) 79 
Figure 44. Total Gas Torque (1500 RPM, 135Ft*lbf) 80 

xi 



Figure 45. Total Gas Torque (1500 RPM, 160 Ft*lbf) 81 
Figure 46. Total Gas Torque (2000 RPM, 160Ft*lbf) 82 

xu 



LIST OF TABLES 

Table 1. Model Parameter Values 10 
Table 2. Model Friction and Load Values 10 
Table 3. Engine Characteristics. From Ref [19] 11 
Table 4. Speeds and Loads for Data Series 18 
Table 5. Data Run Information 18 
Table 6. Equation Constants 45 
Table 7. Calculated Torsional Rigidities 49 
Table 8. Empirical Friction Losses 52 

xni 



XIV 



I. INTRODUCTION 

A.        MOTIVATION 

Reciprocating engines require a maintenance system to ensure readiness 

throughout operational life. Currently, particularly in military uses, this is accomplished 

with a regularly scheduled maintenance (RSM) system, where parts are checked, and 

replaced if necessary, and components are serviced at intervals based on historical 

expected failure rates. Therefore, maintenance is normally performed well before it is 

actually necessary, because the true condition of the engine is unknown. Significant 

savings could be realized with the use of a condition based maintenance (CBM) system. 

Such a system requires a means to monitor engine health during operation, or with 

operational tests that do not require significant work on the engine. 

Several classes of faults that occur in Diesel engines can be detected and localized 

by measurement of individual cylinder firing pressures. Examples include loss of 

compression ratio due to cylinder leaks, and improper combustion of fuel due to injector 

problems. Monitoring cylinder firing pressure is an excellent means of condition based 

maintenance. However, due to the harsh environment in the cylinders, the pressure 

transducers required are very expensive and short-lived. While direct measurement of 

cylinder pressures for performance monitoring is feasible and sometimes used in an 

operational engine, it is expensive. Of course, a possible solution to this problem would 

be the development of cheap, reliable pressure transducers for use in operational engines. 

Barring this, an alternative solution is the use of indirect methods for estimating cylinder 



pressures, such as the measurement of crankshaft angular velocity fluctuations along with 

an appropriate scheme for inferring the pressure waveform. 

B.       STATE OF THE ART 

The angular velocity of a reciprocating engine contains small fluctuations due to 

the variations of cylinder pressures. In general, the engine speeds up after a cylinder 

fires, then slows down as the next cylinder is compressing in preparation for combustion. 

The flywheel is intended to reduce the magnitude of these oscillations, but they are still 

present and represent a speed variation of several percent, which is a measurable amount. 

A number of researchers have investigated the possibility of predicting the cylinder 

pressure variation by measurement of these small speed oscillations. 

Freestone and Jenkins [Ref 1] measured crankshaft velocity with a proximeter 

mounted at the flywheel ring gear teeth. They developed a lumped crankshaft model, 

using inertial torque to account for the reciprocating piston masses. This model was used 

to develop a calculation of the total gas torque in the engine cylinders as a function of 

crank angle. Noting abnormally low peaks in the pressure waveform and their 

corresponding crank angle localized faults in individual cylinders. 

Mauer and Watts [Ref 2] measured angular velocity at both ends of the crankshaft 

by placing a proximeter at the flywheel ring gear teeth and at a corresponding gear 

mounted on the pulley. The phase difference between the two encoders corresponded to 

an instantaneous measurement of the total crankshaft twist, which was considered 

proportional to crankshaft torque. No mathematical model was used, so detection of 

faults was realized by comparing the measured signal to a signal recorded on a healthy 

engine. As expected, the twist signal had peaks that varied depending on which cylinder 
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was currently firing, because cylinders farther from the flywheel cause a greater twist for 

the same combustion pressure. Mauer continued this work [Ref 3], developing a lumped- 

parameter engine model to isolate cylinder specific torque. In this method, he computed 

the cylinder specific torque, defined as the integration of the total crankshaft torque from 

TDC of the cylinder in question to TDC of the next firing cylinder. In a healthy engine, 

cylinder torques will all be close to the mean, but a faulty cylinder will show a reduced 

specific torque compared to the other cylinders. 

Citron, et al. [Ref 4] used a four degree-of-freedom model of the engine-drivetrain 

system that differentiated between the flywheel and the engine. Reciprocating masses 

were accounted for by an inertial torque component and the crankshaft speed was 

measured with a proximeter at the flywheel ring gear teeth. Total cylinder gas pressures 

were reconstructed by solving the equations of motion. Individual cylinder pressures 

were inferred by assuming that the majority of the net torque at a particular point was due 

to the cylinder undergoing the power stroke. 

Connolly and Yagle [Ref 5] used a lumped engine model, assuming the total 

inertia of the crankshaft components as a single mass. An inertial torque accounted for 

reciprocating masses and the angular velocity was measured with a proximeter at the 

flywheel ring gear. A nonlinear differential equation relating combustion pressure to 

angular velocity, derived from the torque balance equation, was reformulated to a linear 

first-order differential equation relating pressure to the square of the angular velocity. 

Connolly revisited the issue [Ref 6] to reconstruct cyclic pressure variability from the 

crankshaft angular velocity. 



Lim et al. [Ref 7] predicted cylinder pressures in a four-cylinder four-stroke spark 

ignition engine by making several assumptions about the cylinder pressure as a function 

of the crank angle. The intake and exhaust strokes were assumed reference values (intake 

manifold pressure and exhaust backpressure) and the compression stroke was estimated 

as a polytropic process for each cylinder. From knowledge of the crank angle and the 

firing order, power stroke pressures were estimated for each cylinder from the measured 

angular velocity and the known load torque. The method implied a lumped crankshaft 

model. 

Iida et al. [Ref 8] measured angular velocity with a proximeter at the flywheel, 

and included a correction for tooth-to-tooth variation, determined by measurement of the 

flywheel at a constant rotational speed. A lumped engine model was used, in which an 

equation related the total engine inertia and rotational acceleration to the composite 

torque applied to the crankshaft. Integration of this equation over a cycle yielded a 

relation to determine Indicated Mean Effective Pressure (DVIEP) from the total engine 

inertia and the square of the change in the angular velocity. 

Taraza [Ref 9] developed a linear high-fidelity model of a multicylinder engine. 

Using this model, angular velocity and angular deflection were predicted for the front of 

the crankshaft and compared to measured values for an inline, four-stroke, four-cylinder 

Diesel engine, in order to verify the model parameters. He then determined harmonic 

orders for the crankshaft model, and conducted experimental measurements at these 

speeds. His results show good agreement between the measured and predicted harmonic 

order amplitudes. His conclusion was that the measured amplitudes of certain harmonic 

orders of angular motion could be used to determine engine mean indicated pressure. 



Additionally, his work demonstrated the usefulness of a high-fidelity crankshaft torsional 

model. 

Additional work on this subject [Refs 10-16] generally used a lumped crankshaft 

model with angular velocity measured at one point. 

Previous work at NPS by Bell [Ref 17] and Hudson [Ref 18], on the same engine 

used in this study, demonstrated that there is information present in the crankshaft 

rotational speed of a reciprocating engine. Hudson developed a high-fidelity model of 

the engine crankshaft, then used measured pressures to predict speed fluctuations for 

comparison with actual speed fluctuations at the crankshaft nose. Due to noise from 

vibration in the optical encoder mounting, he was unable to show good agreement for 

speed fluctuations between measured results and the model. 

To the best of the author's knowledge, no research has been reported using a 

high-fidelity torsional model to determine explicit cylinder-specific torques throughout a 

representative cycle. An engine crankshaft displays torsion that varies during a cycle, 

and along its length. This twist absorbs rotational energy that is later released when the 

twist relaxes. Previous models that consider the crankshaft as one rotating element 

neglect the effect this twist produces on the torques of individual cylinders. But when the 

intent is to localize engine faults, it is imperative that these differences between cylinders 

are considered. 

C.        OBJECTIVES 

The primary objective of this study is to develop a method of determining 

individual cylinder gas torques from measured time-resolved angular positions at the two 

endpoints of the crankshaft, using a high-fidelity torsional model of the crankshaft. 

5 



Calibrated parameters will be determined for the torsional model from calculated values 

and experimental data. 

Another objective is to develop numerical solution techniques for solving the 

equations of motion in both directions. Specifically, a method for direct integration of 

the differential equations of motion will be formulated that sets cyclic boundary 

conditions in the time domain. The reverse method, to determine cylinder gas torques 

from tine-resolved angular position data, must use data from only two measurement 

points instead of all degrees of freedom. 

D.        ORGANIZATION 

Chapter II describes the development and calibration of the crankshaft torsional 

model. The equations of motion for the crankshaft are derived and presented. 

Chapter III describes the experimental apparatus used to collect data for this 

study. Specifications for the test engine and diagrams for the instrumentation are 

presented. A summary of the various engine operating conditions used for the study is 

included. 

In Chapter IV, an explanation of the numerical methods used to solve the 

equations of motion is described. This will include numerical methods for model 

calibration as well as cylinder gas torque prediction. 

Chapter V shows the results of the engine test runs and data analysis that will 

support the thesis concept. 

Chapter VI summarizes the study, presents conclusions, and lists 

recommendations for further research in this area. 



II. CRANKSHAFT TORSIONAL MODEL 

A.       PHYSICAL SYSTEM 

The engine used in this research is a Detroit Diesel (3-53 Series) three-cylinder 

two-stroke Diesel. The crankshaft (Figure 1) is supported by four main journal bearings, 

and includes counterweight lobes on four of the six crankwebs. The front of the engine is 

to the left in the diagram. A press fitted gear at the crankshaft nose drives the oil pump, 

and auxiliary loads are driven by the timing gear, located just forward of the flywheel 

(not shown). 

COUNTERWEIGHT CONNeCTING ROO 
JOURNAl 

SEAR MAIN 
BEARING JOURNAl 

/ 
/ 

/ 

Oil PUMP 
OSIVE GEAR 

LUBRICATING 
Ott HOIS 

Figure 1. Crankshaft. From Ref [19]. 

An idealized mass-elastic torsional model is used to mathematically describe the 

angular motion of the crankshaft (Figure 2). This model, originally developed by Hudson 

[Ref 18], has been refined for the present study. Specifically, additional load torques 

were added to the model to account for the effect of the oil pump and the auxiliary loads, 

constant parasitic force was used to model the piston ring friction, and the effect of 

reciprocating torques was added.    The model consists of six concentrated masses 
7 



connected by massless idealized shafting. The mass concentrations are centered at the 

optical encoder mounting, the three crankpins, the flywheel, and the dynamometer rotor. 

Torsional rigidity and damping are indicated by K and C, respectively. Gas torques and 

load torques are applied at the mass concentrations, as indicated in parenthesis. 

Cyl#1 Cyl#2 Cyl#3 

(T1cyl+ (T2cyl+ (T3cyl+ 
T1 rec- T2rec- T3rec- 
Tparl) Tpar2) Tpar3) 

Flywheel 

Optical 
Bicoder 

0       0       0 
C12 

cil-VW 

C23 

Eh 

K2 

C34 

—3— 
AA/V 

K3 

C45 

—3— 
AW 

K4 

0       0 

Dynamometer 

C56 

-3- 
AA/VH 

K5 

0 

U   ci U    C2 U    C3 

0 
(Tload) 

(Taux) 

Figure 2. Crankshaft Torsional Model. After Ref [18]. 

B.        EQUATIONS OF MOTION 

Using the model from Figure 2, a set of six second order differential equations are 

developed to describe the rotational dynamics of the crankshaft. Since no part of the 

crankshaft is fixed, the model requires six separate angular position indications. These 

are the crank angles at each of the lumped mass points designated in the model, and they 

are designated 0i through 06. 
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C.       CALCULATION OF MODEL PARAMETERS 

The moments of inertia and the torsional rigidities can be analytically calculated 

for the model, as described in detail in Appendices A and B. It is assumed that the values 

for damping will be very low. Final values for the model are listed in Table 1. 

Table 1. Model Parameter Values 

(lbf*in*sec /rad) (10blbf*in/rad) (lbf*in*sec/rad) 
J. 0.02443 K, 3.22 C,2 0.01 
h 0.2482 K2 7.00 c2, 0.01 
h 0.1462 K3 7.00 C34 0.01 
h 0.2482 K4 10.82 C45 0.01 
h 7.2220 K5 1.304 C56 0.01 
h 0.2870 c2 0.013 

Jrec 0.04955(1-COS20) c3 0.013 
J rec.avE 0.02478 c4 0.013 

Values for the friction and auxiliary loads are more difficult to determine 

analytically. Additionally, they will vary depending on the load and speed of the engine. 

Appendix A contains a theoretical analysis of friction and load torques, and this analysis 

was used to formulate an estimate of the expected magnitudes of friction and load 

torques. The values actually used in the model are listed in Table 2. 

Table 2. Model Friction and Load Values 

RPM Load 
(ft*lbf) 

Tload 

(in*lbf) 
ipmp 

(in*lbf) 
A aux 

(in*lbf) 
Fpar(lbf) 

(per cylinder) 
1000 80 960 9.5 160 98 
1000 100 1200 9.5 168 100 
1000 135 1620 9.5 160 95 
1500 135 1620 9.5 300 155 
1500 160 1920 9.5 300 165 
2000 160 1920 9.5 460 210 

Values for the nonlinear model parameters (Trec, Jrec, and Tcy0 are determined as 

functions of 0 or t. Their derivation is described in detail in Appendices A and B. 
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III. EXPERIMENTAL METHODS 

A.       ENGINE DESCRIPTION 

The Engine used in this research was a Detroit Diesel 3-53 Series engine, with 

characteristics listed in Table 3. For this study the front of the engine is designated as the 

end where the pulley would be located; the rear is the flywheel end. The cylinders are 

numbered consecutively from front to rear, so that cylinder #1 is the farthest from the 

flywheel. Cylinders are naturally aspirated; a roots blower provides a positive crankcase 

pressure that is proportional to engine speed [Ref 18]. The engine is considered to be a 

typical example of a Diesel engine. 

Table 3. Engine Characteristics. From Ref [19] 

Model 5033-500 IN 
Type In-line two-stroke compression ignition 
Number of Cylinders 3 
Number of Main Bearings 4 
Firing Order 1-3-2; Clockwise Rotation 
Exhaust Valves per Cylinder 4 
Displacement per Cylinder 53 in3 

Compression Ratio 21.0:1 
Bore 3.875 in 
Stroke 4.50 in 
Max Rotation Speed 2800 RPM 
Peak Torque 198 ft*lbf @ 1500 RPM 
Max Power Output 92BHP 

The engine has been slightly modified. The front-end pulley was removed for 

mounting of the optical encoder to the crankshaft, and the alternator was removed (Figure 

3). The engine was mounted on a Superflow engine test stand, and was loaded by an SF- 

901 Water Brake Dynamometer (Figure 4). 
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Figure 3. Engine Test Stand (Front View) 

Figure 4. Engine Test Stand (Side View) 
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B.       ENGINE CYCLE ANALYZER (ECA) 

The Superflow Engine Cycle Analyzer (Figure 5) is a PC based data acquisition 

system. A sensor interface collects an engine load signal from the dynamometer, a crank 

angle and TDC signal from the optical encoder, and pressure signals from the 

piezoelectric pressure transducers mounted in the glow plug sockets for each cylinder. 

This information is passed to a data acquisition computer, which is used to store and 

display the pressure data. Raw pressure data are collected and phase-lock ensemble 

averaged over 11 cycles, then used in the numerical analysis programs. [Ref 20] 

Optical 
Encoder 

TDC 
and 
e, 

Signal 

Engine 

m 
Pressure Signal 

Charge Amplifiers m 
Engine Cycle 

Analyzer 
Sensor Interface 

I 
Data Acquisition 

Computer 

Flywheel Proximeter 

Dynamometer 

Load 
Signal 

9] Signal 

TDC Trigger 

TTL 
conversion 

circuit 

95 Signal 

Modulation 
Domain 
Analyzer 

I 
Data Acquisition 

Computer 

Figure 5. Instrumentation Schematic 
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C.        OPTICAL ENCODER 

A Heidenhain incremental Rotary Encoder [Ref 21] was used to collect time- 

resolved angular position at the crankshaft nose. The encoder consists of a flat optical 

disk, rigidly attached to the rotating shaft, with a specified number of evenly spaced 

windows etched near the perimeter (Figure 6). A signal is generated by photoelectric 

scanning of the disk as it rotates. The output signal is a TTL square wave, where highs 

correspond to a window passing in front of the detector. Measurement of the leading 

edge of the square wave corresponds to a time stamp for a specific angular position. The 

time differences inversely correspond to the average speed of the shaft as it rotates 

through the incremental angle. Encoders with 720 and 3,600 windows were available, 

but in either case 720 counts per revolution were collected, for an angular resolution of 

0.5°. During a run data were collected for 11 cycles at the encoder for a total of 7,920 

time stamps. 

TDC Indicator 

dt 

w(t) 

Figure 6. Optical Disk Representation 

The Optical Encoder shaft was mounted to the end of the crankshaft with a 

flexible coupling (Figure 7). The coupling allows for radial and axial vibration of the 

crankshaft that would damage the encoder, because the endplay of the crankshaft exceeds 

the design specifications for the optical encoder without the protective coupling installed. 
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Hudson [Ref 18] collected his data with the encoder mounted directly to the crankshaft, 

resulting in extremely noisy data that did not compare favorably with predicted data. 

Additionally, excessive crankshaft radial vibrations damaged several encoders. The 

coupling transmits the angular position of the crankshaft nose to within an accuracy of 

10" (4.85e-05 radians) [Ref 21]. An additional effect of the coupling is a high frequency 

torsional oscillation due to the natural frequency of the coupling/rotor combination. This 

is discussed in detail in Appendix C, and was not a significant problem since the signal of 

interest was at a much lower frequency. 

Figure 7. Optical Encoder and coupling. From Ref [21] 

The body of the encoder is rigidly mounted to the engine block to minimize noise 

due to vibration (Figure 8). The mounting of the encoder is extremely important. 

Hudson used several different mounting schemes, before settling on the mount used again 

in this study, which works very well to ensure engine vibration does not affect the 

encoder measurements. 
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Figure 8. Optical Encoder Mounting. From Ref [18] 

D.        MAGNETIC INDUCTION PROXIMETER 

A Bentley Nevada 3000 series 190 Proximitor system was used to detect passage 

of the flywheel ring gear teeth. The system consists of a ferromagnetic eddy current 

detector, which outputs a negative voltage that is a function of the distance between the 

probe end and a ferromagnetic surface. A TTL conversion circuit triggers a step change 

in voltage when the proximeter output exceeds a certain level, corresponding to a 

distance of about lA inch. The probe was mounted on a bracket fastened across the edge 

of the flywheel access panel, so that it saw the sides of the gear teeth as they passed 

(Figure 9). The output of the circuit was a square wave TTL signal; the leading edge of 

each wave corresponding to the passage of a gear tooth beneath the probe. The TTL 

output signal was sent directly to the MDA for data collection. There are 126 teeth on the 

flywheel ring gear, and during a run data were collected for 63 cycles, for a total of 7938 

time stamps. 
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Figure 9. Proximeter mounting 

E.        MODULATION DOMAIN ANALYZER 

A Hewlett Packard 53310A Modulation Domain Analyzer (MDA) was used to 

collect the time stamp data from the optical encoder and the proximeter. In either case, a 

TDC indicator (an output from the ECA) triggered the MDA. It received a TTL signal 

and recorded a time stamp at the leading edge of each wave. The MDA was able to 

collect up to 8,000 data points at a time. A single run collected 11 cycles from the optical 

encoder or 63 cycles from the flywheel proximeter, as described previously. A data 

acquisition computer controlled the MDA and received a transferred file containing the 

time stamps. 
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F. TEST MATRIX 

A series of data runs were performed to test the validity and consistency of the 

model at varying engine speeds and loads. During a run data were collected for rotational 

speed at the flywheel and crankshaft nose, cylinder pressures for the three cylinders, 

dynamometer load, and atmospheric pressure. A data series was composed of data 

collected during a single run of the engine, at varying loads and speeds, normally taking 

about an hour on a single day. A prefix letter, such as "S," designated a particular series 

so that comparisons could be restricted to data taken during a single operation of the 

engine. This was intended to eliminate any variations in operation that might take place 

as the engine condition varied over time. Table 4 shows the elements of each data series, 

indicating what variations in load and speed make up each one. Table 5 lists specific 

information for each data run. 

Table 4. Speeds and Loads for Data Series 

ENGINE 

SPEED (RPM) 

DYNAMOMETER LOAD (FT*LBF) 

80 100 135 160 180 

1000 S,U,V,W S,T,U,V,W S,T,U,V,W 
1500 S,T,U,V,W S,T,U,V,W 
2000 T,U,V,W V 

Table 5. Data Run Information 

DATA RUN Date Ambient 
Pressure 
(psia) 

Comments 

S 02 Sep 98 14.593 Heli - Cal coupling used; slippage of 
encoder shaft 

T 11 Sep 98 14.662 Heli - Cal coupling used; TDC lag 
U 08 Oct 98 14.819 Heidenhain K17 coupling used; TDC lag 
V 14 0ct98 14.730 Heidenhain K17 coupling used; TDC lag 
w 21 Oct 98 14.706 Heidenhain K17 coupling used; no lag 
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IV. METHODS FOR CYLINDER PRESSURE AND TORQUE PREDICTION 

The torsional model may be used to predict the motions of the crankshaft from 

measured applied forces, or it may be used to predict the forces from the measured 

motions. In order to do this, the differential equations of motion must be solved in both 

directions. First, two methods will be described for determining the angular positions 9i 

through 06, given the measured gas torques from the three cylinders. These solution 

methods, referred to as direct integration methods, will be used to test the validity of the 

torsional model and calibrate the parameters. Second, a method will be described for 

determining the individual cylinder gas torques Ticyi through T3Cyi, given the time- 

resolved angular position at the two ends of the crankshaft, 81 and 65. This final solution 

method, called the inverse method, will be used for detection of cylinder faults from 

measurements of crankshaft rotational velocity. 

A.       PREDICTION OF PHASE DEVIATION FROM CYLINDER TORQUES 

The equations of motion for the crankshaft model constitute a system of non- 

linear, second-order ordinary differential equations (ODEs). Calibration of the values for 

the torsional model will be conducted by first solving the differential equation for {0}, 

given the cylinder indicated torques. The predicted phase deviation and twist determined 

from {6} can be compared to measured values to determine validity of the model. 

1. Time-marching O.D.E. method 

The first method is a direct integration of the ODEs in the time domain. This is 

accomplished numerically using a fourth- and fifth-order Runge-Kutte method. First, the 

six second-order ODEs must be converted to 12 first-order ODEs as follows: 
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(8) 

These equations cannot be solved all in one step, however, because they are 

nonlinear due to the dependence of Jrec on 6, and because the Tcyis and Trecs are functions 

of time.  Instead, a "time marching" method is used where the equations are solved over 

small steps and the final condition of each step becomes the initial condition for the 

subsequent step. The values of Tcyi, Trec, and Jrec can then be approximated as a constant 

value over the step, or as a linear interpolation within the function describing the 

equation. 

This method requires significant computing time.   This is because a series of 

"shooting" iterations must be conducted to determine the initial conditions that yield 

cyclic conditions for the representative cycle (i.e., a periodic solution). Since the domain 

is an assumed representative cycle, it follows that the values of 6 and 6 at the end of the 

cycle must match those at the beginning of the cycle. The initial angular velocities 

chosen will have a significant effect on whether or not the solution 0 is "cyclic." 
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2.        Finite Element method 

Although the integration of the differential equations is an initial value problem, 

because it is assumed to describe a cyclic process the solution of the equation is known at 

future times. That is, at the end of one representative cycle, we expect all the angular 

positions to be increased by exactly 2TC radians. An alternative method for solution 

avoids the shooting iterations by setting "boundary" conditions in time, instead of initial 

conditions. The problem is then treated as a boundary value problem in time, and a Finite 

Element Method (FEM) is developed to solve a second-order differential equation for 6 

as a function of t. This method is based on Kwon and Bang [Ref 22]. 

The weak formulation of the weighted residual method is used to approximate the 

solution to a second-order matrix differential equation. To accomplish this, the weighted 

average of the residual over the domain is set to zero: 

/ = j w{j]0 + [C]6 + [K}6 - {r}}?r = {0} (9) 

and then simplified to: 

'/ '/ '' 
]{w[c]- w[j}6 + w[Klß}lt = jw^]dt - {v[jlß} (10) 
'n 'o t„ 

where w is the weighting function, and 6 is a vector corresponding to the angular position 

at the six degrees-of-freedom. 

. A Galerkin Finite Element formulation is developed, using the sum of simple 

piecewise linear shape functions to approximate the more complex real function. The 

shape functions used are set up to be 1 at a node, linearly decreasing to 0 at the adjacent 

nodes. The value of the function at any point is approximated as a linear combination of 
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the values of the two shape functions for the adjacent nodes.   Figure 10 shows these 

linear shape functions for a hypothetical element.  The function T(t) is approximated as 

T(t) = Hi(t)T(ti) + H2(t)T(tr) between the nodes.   This becomes the trial function for 

Galerkin's method, and the test functions are wi=Hi(t) and wi=H2(t). 

T(tl) H1T 

H2T 

Figure 10. Linear Shape Functions. After Ref [22] 

For a one-dimensional function, the shape functions are determined by: 

Hl(t) = t-^-     H2{t) 
t-t, 

h = tR-tL (11) 
h ' h 

But when used for a 6x6 matrix equation, the test functions must also be expanded into 

the following matrices: 

[#,] = #,[/] [H2] = H2[I] [#,] = -y[I] [H2] = j[I] 
h h 

(12) 

When substituted in Equation (10) and solved over the element from tL to IR, the result is: 

MS1-H (13) 

where 

[K*] = ] -CWfe    äJ+CWH,    HJ+CWH,    H2]\it      (14) 

and 
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{F^RMCM^ (15) 

Here, the element matrix [Ke] is 12x12 and the element torque vector {F*} is 12x1. The 

values of the torque at the two nodes, {TL} and {TR}, are 6x1 vectors. Equation (13) may 

be solved for the 6x1 vectors {0L} and {0R}, which are the approximate solutions at the 

nodes. The solution used in this study has 720 elements and 721 nodes to solve for one 

representative cycle. The element matrices for each node are assembled into a 

4326x4326 finite element matrix [Kfe] and the element torque vectors are assembled into 

a 4326x1 finite element torque vector {Ffe}. Boundary conditions are established by 

defining the value of the 6x1 vector {6} at the end nodes. This is accomplished by 

setting the first and last six lines of the finite element matrix [Kfe] to identity, and setting 

the first six and last six values in the finite element torque vector {Ffe} to the boundary 

values. The solution {0} (a 4326x1 vector, the 720 6x1 nodal solutions {0i} stacked 

vertically) is then found from the matrix equation: 

[K*$\={F*] 06) 

This method shows a marked improvement in computing efficiency over the time- 

marching method. In addition to being about three times as fast for each program run, the 

Finite Element Method avoids the shooting iterations required for the time-marching 

method, which had to be repeated as many as five times for each solution. A comparison 

of the Phase Deviation found with both methods is shown in Figure 11. The Phase 

Deviation Plot will be described in detail in the next chapter. 
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B.       PREDICTION OF TORQUES FROM MEASURED SHAFT SPEEDS 

1.        Solution of Matrix Equation 

a.        Two-Stroke Engines 

Given a properly calibrated model, the time dependent values of gas 

torque for the three cylinders (Ticyl, T2cyl, and T3Cyl) can be determined from the six 

second-order ODEs (Equations 1-6). Figure 12 outlines the solution method. By 

measurements at the flywheel and crankshaft nose, the values for 0i and 85 can be 

determined for a representative cycle. Numerical differentiation of this data yields the 

velocities and accelerations at these two points. 

With properly calibrated parameters for the torsional model, Equation (6) 

can be solved for 66, then Equation (5) can be solved for 64, and Equation (1) can be 

solved for 02. Now there are four unknowns left (63, Tlcy), T2cyi, and T3cyl) and three 

equations (Equations 2, 3, and 4). However, because this is a two-stroke engine, each 

cylinder is at reference pressure for one third of each cycle, while the exhaust and intake 

ports are uncovered. Therefore, at any one time during a representative cycle, one of the 

three cylinder torques is known, leaving three unknowns and three equations. For 

example, for the first 120 degrees of the cycle, cylinder #2 ports are open, so the pressure 

in cylinder #2 is reference pressure (See Figure 13). For the first 120 degrees, T2cyi can 

be calculated from this reference pressure. Then 63 can be calculated from Equation (3), 

and Tlcy] and T3cyl can be determined from Equations (2) and (4). The other two-thirds of 

the representative cycle are solved in a similar manner. 
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Figure 13. Cylinder Gas Pressures (1000 RPM, 100 Ft*lbf) 

Although the ports are not actually uncovered for the first and last 10 degrees, 

measurements show the assumption of reference pressure is reasonable for the entire 120 

degrees. The assumptions used here limit the feasibility of this solution method to two- 

stroke engines with three or fewer cylinders. 

b.        Four-Stroke Engines 

For a four stroke engine, two full rotations of the crankshaft must be 

considered to cover the power, exhaust, intake, and compression strokes. Over the 

representative two rotation (one cycle) period, a cylinder's pressure can be assumed to be 

equal to intake manifold pressure during the intake stroke, and exhaust back pressure 

during exhaust stroke. Therefore, for a particular cylinder, torque is known for half of the 
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cycle. The solution method above is feasible for four-stroke engines with four or fewer 

cylinders. A four cylinder engine would require a seven degree of freedom model, which 

could be explicitly solved as above, using the assumptions for intake and exhaust stroke 

pressure. 

c. Additional Assumptions for Multiple Cylinder Engines 

Engines with more than four cylinders can be analyzed by this method if 

further assumptions are made. For instance, the cylinder compression stroke can be 

estimated as a polytropic compression of an ideal gas. For a large engine with cylinders 

that fire simultaneously, the two cylinders could be lumped and considered as one inertial 

mass. Also, a measurement device may be placed internal to the engine to measure 

angular velocity at a third degree-of-freedom. 

2.        Interpolation of Data 

The rotational speed data that are collected at the optical encoder and the flywheel 

consists of information that is uniformly spaced in the angular position domain, not in the 

time domain. This arises because of the nature of the data collection (See Section ETC 

and III.D). The raw data for 0i(t) and 0s(t) are converted to values which are evenly 

spaced in the time domain for further numerical analysis (specifically, this is useful for 

filtering; see section IV.B.3). This requires interpolation of the raw data. Interpolation is 

accomplished numerically using a cubic spline method. This means that the curve is 

assumed to be a 3rd order polynomial with continuous slope at each of the data points. 

Interpolated values of 0(t) are determined for a selected evenly-spaced time basis. 
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3. Signal Filtering by Fast Fourier Transform 

The measured data for position, 0(t), and angular velocity, —-—, contain high 
at 

frequency components (where "high frequency" refers to frequencies much higher than 

about three times the rotational speed). These frequency components are due to high 

frequency torsional vibration of the crankshaft at the various natural frequencies, and 

random noise from unknown sources.  For solution of the equations necessary to predict 

torques, the position data must be differentiated once to determine angular velocity and 

twice to determine angular acceleration (see section IV.B.l). If raw data were used in the 

analysis, the high frequency components would be greatly amplified by subsequent 

differentiation.   However, the torques of primary interest in this problem oscillate at 

about three times the rotational velocity of the engine.   Therefore, the much higher 

frequency components are filtered out before differentiation in order to increase the 

signal-to-noise ratio in solving the equations for torque. 

A phase deviation signal is derived from the raw data by comparing it to the mean 

rotational speed.   This phase deviation signal is then filtered numerically using a Fast 

Fourier Transform (FFT), removing the high frequency data, and then performing an 

inverse FFT to achieve the desired filtered phase deviation signal. The cut-off frequency 

typically used was between six and nine times the rotational speed of the engine. 

4. Numerical Differentiation 

Once the angular position data has been interpolated and filtered, it must be 

differentiated once to obtain angular velocity and twice to obtain angular acceleration as 

functions of time. A central difference technique is used, where the numerical derivative 

at a point is the sum of the two adjacent differences divided by twice the time difference. 
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The endpoints are exceptions; they are determined by the single adjacent difference 

divided by the time difference (essentially a forward difference for the first point and a 

backward difference for the last point). No further filtering is required after 

differentiation. 

C.       TEST OF SOLUTION METHODS 

The methods previously discussed are used to solve the equations of motion in 

both directions. Using a set of measured cylinder indicated pressures, the accuracy of the 

numerical methods can be tested. The time-marching ODE method was used to solve for 

the crankshaft time-resolved angular positions from the measured cylinder indicated 

torques. The predicted 0i and 05 values were then used in the inverse solution method to 

predict the cylinder indicated torques. Comparison of the resulting predicted torques to 

the original measured torques can be used to quantify the accuracy of the numerical 

solution methods. The test results for individual cylinder gas torques are shown in Figure 

14, and the results for total gas torque is shown in Figure 15. These results show that the 

numerical methods tend to introduce a 2% peak-to-peak error and a 4 degree lag in the 

predicted total gas torque. 
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Figure 14. Test of Numerical Methods for Individual Torques 
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V. RESULTS 

A.       CALIBRATION OF INERTIAL MODEL 

Although the stiffness and inertial parameters of the equations of motion can be 

analytically estimated, some fine-tuning of the values is required to ensure the model 

matches the actual crankshaft. Given the measured torques in the three cylinders, and the 

methods of the previous chapters, the equations of motion may be solved for 0i through 

06. Experimental data is collected for the two measurement points, 9i and 65. Two 

useful comparisons between the measured and predicted time-resolved angular positions 

are the Phase Deviation Plot and the Crankshaft Twist Plot. 

The Phase Deviation Plot shows the oscillation of the angular position about a 

theoretical mean rotating position. It is calculated as follows: 

£(t) = 6(t)-mt (17) 

where W is the mean rotational velocity. This is the same comparison plot used by 

Hudson [Ref 18]. For a shaft rotating at a steady angular velocity, the phase deviation 

would be zero. The measured phase deviation shows the crankshaft position advancing 

during the power stroke of each cylinder, then retreating during the subsequent 

compression of the next cylinder. A comparison of the measured and predicted phase 

deviation is shown for the crankshaft nose and the flywheel (Figure 16). Plots for other 

runs are found in Appendix D. The phase deviation plot is particularly sensitive to 

assumed values of friction and load torque, and is also useful for validating the model 

inertias. For the 1000 RPM 100 Ft*lbf data, phase deviation shows a maximum error of 

about 9% at the peaks, which correspond to the cylinder compression strokes. Generally, 

the model predicted phase deviation is within 5% of the measured phase deviation for 
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both the flywheel and the crankshaft nose. The errors are calculated as a percentage of 

the maximum variation in phase deviation. 

The Crankshaft Twist Plot is simply the value of 61-65 as a function of time. It is 

a measure of the total twist along the entire length of the crankshaft. A comparison of 

measured and predicted crankshaft twist is shown in Figure 17. This plot is particularly 

useful for validating the magnitudes of the torsional rigidities used in the model. The 

peak values of the twist occur at the peaks of the gas torque, during the power stroke for 

each cylinder. As expected, the amount of twist is largest for cylinder #1, the farthest 

from the flywheel, and successively lower for cylinders #2 and #3. Correct values of 

torsional rigidity for the model should result in predicted twists comparable to the 

measured value. Comparison of the model predicted twist and the measured twist is 

shown in Figure 17, with additional plots in Appendix D. A max error of about 17% is 

seen at the peak twist values, corresponding to the cylinder power strokes. Generally, the 

model predicted twist is within about 5% of the measured twist. 

As discussed in Appendix C, analysis of the crankshaft natural frequencies can 

also be used to validate the model parameters. The analytical values derived for the 

crankshaft inertias are considered to be reasonably accurate, so the only parameters to be 

adjusted are the torsional rigidities. These are set by the comparison of measured and 

predicted natural frequencies and modes as discussed in Appendix C. Further arbitrary 

adjustment of the parameters to correct the errors in the Phase Deviation and Crankshaft 

Twist plots is not supported. 
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Figure 16. Phase Deviation (1000 RPM, 100 Ft*lbf) 
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Figure 17. Crankshaft Twist (1000 RPM, 100 Ft*Ibf) 
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B.        COMPARISON OF PREDICTED AND MEASURED TORQUES 

Inverse solution of the equations of motion allows prediction of the cylinder gas 

torques, given the time-resolved angular position at two points, 0i and 65. Comparison of 

measured and predicted gas torques for the individual cylinders is shown in Figure 18. 

Comparison is not good for individual torques. Besides quantitative errors of over 50% 

at certain points, the predicted torques show misplaced and inappropriate peaks. 

However, it appears that the errors for a particular predicted cylinder torque have 

corresponding offsetting errors in the predicted torque for the other cylinders. This is 

evident when measured and predicted total gas torques are compared (Figure 19). The 

predicted total gas torque shows peak-to-peak errors of less than 5%, plus a phase lag of 

about 5-15 degrees. Some of this error is from the numerical solution methods, as 

discussed in the previous chapter. This agreement is good enough to be used for 

localized fault detection. For this particular run of the engine, cylinder #1 gas pressure is 

significantly lower than the other two cylinders, and the predicted results detect this 

anomaly. Plots for the other data runs are contained in Appendix D. 
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VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

A. SUMMARY 

A three cylinder, two stroke Diesel engine was instrumented with a proximeter 

and an optical encoder for time-resolved angular position measurement at the flywheel 

and crankshaft nose. A torsional model for the engine crankshaft was developed and the 

corresponding equations of motion were formulated. Two separate numerical solution 

methods were developed to solve for the angular positions, given the measured cylinder 

gas torques. These methods were used to calibrate the parameters of the torsional model. 

An inverse solution method was devised to determine the cylinder gas torques, given the 

time-resolved angular positions at two of the degrees of freedom; the flywheel and the 

crankshaft nose. This inverse solution method was shown to be applicable for two-stroke 

engines of three or fewer cylinders, or for four-stroke engines of four or fewer cylinders. 

The predicted cylinder gas torques were compared to measured cylinder gas torques. 

B. CONCLUSIONS 

The torsional model accurately describes the dynamics of the actual crankshaft. 

Experimental data demonstrated that the model correctly predicted phase deviation at the 

crankshaft endpoints with an error of less than 5%. The model predicted crankshaft twist 

with an error of less than 20%. Predicted natural frequencies from the model agreed with 

the measured frequency spectrum to within 5 Hz for the three vibration modes observed. 

The Finite Element Method (FEM) for direct integration of the equations of 

motion agreed with the Time-marching ODE method to within 1%, and it reduced 
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computational time by a factor of 100 because no iterations were necessary. It was used 

as the primary means for direct integration of the equations of motion in this study. 

The inverse method for predicting cylinder gas torques showed significant errors 

in predicted individual cylinder gas torques. Quantitative errors of over 50%, as well as 

significant wave shape errors, make this method inadequate for reliable prediction of 

individual cylinder torques. However, it is the author's opinion that this error originates 

in the numerical method used. Specifically, signal filtering tends to create errors in the 

endpoints for the representative cycle. Further analysis of this problem may result in 

successful prediction of individual cylinder torques. 

The inverse method is successful in predicting total cylinder gas torque. 

Predicted total gas torque errors were less than 5%, with slight phase lag errors of 5-15 

degrees. The predicted total gas torque successfully detected a low pressure in cylinder 

#1, showing that the method is capable of localizing certain faults to a particular cylinder. 

C.       RECOMMENDATIONS 

The failure of the inverse method to predict individual cylinder torques is most 

likely due to problems with the numerical solution methods. The FFT signal filtering 

induces some errors, which were not sufficiently corrected. The engine speed was not 

exactly steady during data collection, so the filtering process backs out a monotonic trend 

in the phase deviation. That is, the filtered phase deviation is no longer exactly cyclic. A 

correction of some sort should be made for this linear error. The process of signal 

filtering also tends to alter the endpoints of the representative cycle, inducing significant 

errors in the calculated torques at the endpoints.  An alternative signal filtering process, 

which avoids these errors, might correct the errors in the results. 
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The assumption of constant parasitic force to model piston ring friction is not 

validated. The presence of crank-angle specific friction "sticking" points would have a 

significant effect on the results. One solution would be to use a motoring dynamometer 

on the engine to produce a graph of the engine friction as a function of crank angle. Also, 

a more detailed analysis of theoretical piston ring friction could lead to more accurate 

modeling. 

From measurements obtained in this study, there is an unknown fault causing 

cylinder #1 to have a lower gas pressure than the other two cylinders. As a first step, the 

fuel injectors for cylinders #1 and #2 should be swapped in order to determine the cause 

of the low pressure in cylinder #1. For follow-on experimentation, data should be 

collected for engine runs with known faults. For instance, a defective fuel injector could 

be installed to test the method's ability to detect a specific fault. 

The use of angular speed measurement internal to the engine would expand this 

method to engines with more cylinders. Although this would be a difficult process for an 

existing engine, mass-produced engines might have such an internal detector installed for 

relatively little extra cost. 

The method for determining TDC for cylinder #1 is inadequate. Currently, the 

procedure of Appendix F, Ref [18] is used to orient the TDC signal on the encoder to 

TDC for the engine. But TDC for the engine is established by a mark inscribed on the 

crankcase and the forward counterweight on the cam follower shaft. Although this shaft 

is directly geared to the crankshaft, gear backlash results in an error of one or two degrees 

when the engine is rotated to TDC.   This small error has a significant effect on the 
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magnitudes of the cylinder indicated torques. A better method would be a mark inscribed 

on the flywheel and shroud to ensure correct TDC alignment. 

A sprocket and proximeter assembly might be a more useful means of collecting 

data at the front end of the crankshaft. A 42 tooth sprocket has been obtained which may 

be mounted on the crankshaft nose with the pulley mounting bolt. Since the number of 

teeth on the flywheel (126) is a whole number multiple of 42, a precise alignment could 

be made to calibrate the static phase difference between the two ends of the crankshaft to 

zero. Then the instantaneous twist of the crankshaft could be very accurately measured 

during operation, similar to the method described by Mauer and Watts [Ref 2]. 

Additionally, this data collection method would eliminate the natural frequency torsional 

vibrations of the' optical encoder and flexible coupling. 
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APPENDIX A. GEOMETRY OF ROTATING COMPONENTS 

While a mass-elastic model has already been developed for this crankshaft [Ref 

23], it is necessary to independently calculate the model parameters in order to verify 

them, and to account for differences in the specific engine used in the research. This 

analysis was carried out using methods and equations from Wilson [Ref 24]. The 

descriptions and values for certain constants used in subsequent equations are listed in 

Table 6. 

Table 6. Equation Constants 

Svmbol Description Value 
Dcn Diameter, crankpin 2.50 in 
Dib Diameter, journal bearing 3.00 in 

k Gravitational Acceleration 386 in/sec2 

IVgyr Radius of Gyration 
Le Length, effective 
-L-'CD Length, crankpin 1.60 in 

Lib Length, journal bearing 1.50 in 
R Crankpin eccentricity 2.25 in 
Ri Counterweight Inner Radius 1.80 in 
Ro Counterweight Outer Radius 4.02 in 
Tct Counterweight Thickness 0.83 in 

Twb Crankweb Thickness 1.00 in 
W Weight 
wwb Crankweb width 3.84 in 

p Specific weight of steel 0.283 lbf/inJ 

1. Rotating Inertia 

An arbitrary objects mass polar moment of inertia is calculated as: 

J=- 
-gyr 

8 
(Al) 

where W is the weight of the object, Kgyr is the radius of gyration, and g is acceleration 

due to gravity. 
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The polar moment of inertia for a main journal bearing is determined as for a 

solid circular cylinder whose axis is aligned along the axis of rotation: 

_ WKl _ JtD)hLjhp 
(A2) 

Crankpins are also determined as a solid circular cylinder, but the cylinder axis is parallel 

to and offset from the axis of rotation by the eccentricity: 

CP        g        4g   <
PCPP 

Dl cp + R2 
(A3) 

As seen in Figure 20, the Crankwebs are of three distinctive types. Crankwebs of 

type (a) connect crankpins for cylinders 1 and 3 to the outer journal bearings, and 

crankwebs of type (b) connect those same crankpins to the inner journal bearings. 

Crankwebs of type (c) connect the crankpin for cylinder 2 to the inner journal bearings. 

(a) (b) 

Figure 20. Crankweb Forms. FromRef[25] 

(c) 

For all three types, the core geometric shape is an ellipse with one focus centered on the 

journal bearing and the other focus centered on the crankpin.   From Table 10.13 of 

Wilson [Ref 24], the radius of gyration for an ellipse can be calculated as: 
46 



(a2+b2)     2 
Kellipxe=

}—^-L + ^ (A4) 

where a and b are the minor and major axis, respectively, and c is the offset of the center 

of gravity from the axis of rotation. J can then be calculated for the elliptical portion 

from equation (Al). The counterweight lobes are then treated as semi-circular segments, 

and their contribution to mass polar moment of inertia is: 

7 = ^6oL_,< -fö-Ä,4) (A5) 

where a is the angle subtended by the counterweight lobe; 120° for crankweb (a) and 70° 

for crankweb (b). 

Rotating inertia for the dynamometer is taken from Ref [26]. The coupling shaft 

between the flywheel and the dynamometer is calculated as a circular cylinder using 

Equation (Al). 

2.        Torsional Rigidity 

For modeling of the torsional rigidity, the components of the crankshaft must be 

mathematically converted to an equivalent shaft of a constant diameter. This is a simple 

geometric problem for static twisting of the crankshaft, but becomes very complex when 

considering the dynamic crankshaft twist during engine operation. 

Wilson [Ref 24] presents a derivation of the torsional rigidity for various 

crankshaft components. The rigidity for a solid cylindrical shaft of diameter D is: 

K=-  (A6) 
32L, 

This equation can be used to determine the torsional rigidity of any solid cylindrical 

component, including the journal bearings and crankpins. For the crankweb, an effective 
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length is derived based on the bending theory of beams.   The crankweb is treated as a 

beam subjected to a bending force by the torsion on the crankshaft: 

L, = Dl 0.942A 
T W3 1
whyrwb 

(A7) 

The equivalent shafting between concentrated inertia points in the model can be 

determined by adding up the torsional rigidity of their components. However, the 

equations above assume an unconstrained crankshaft deflection due to an applied static 

torque. The true equivalent length of the crankshaft elements will be modified by several 

other factors: local deformation where the journal bearings and crankpins join the 

crankweb, bearing restraint on the journal bearing, and non-ideal lever arm at the 

crankweb because the bearing and crankpin are not attached at a single point. [Ref 24] 

Two empirical relations are considered in this study to account for increased 

rigidity of the crankshaft elements due to dynamic constrained operation while mounted 

in the engine block. The first was devised by Carter [Ref 27]: 

L*=D 
Ljh+0.ST 

L    =Dl 0.75L cp 

D4 
cp 

L D4 

and the second by Wilson [Ref 24]: 

Lejh = & 
Ljh+0ADjh 

L    =DA 
'-'ccp        ^ 

L   +0AD cp cp 

D4 
C

P 

L    =D' ecw 

\.5R 

T W3 1
 wb yv wh 

R-0.2(Dih+Dcp) 

(A8) 

T W 1 wb yr wh 

(A9) 

Table 7 compares the results obtained by each of the methods so far described with the 

values from the model supplied by Detroit Diesel [Ref 23]. The general assumptions for 

the two empirical methods are clear: Carter's method assumes a stiffer crankpin and more 

flexible crankwebs while Wilson's method is reversed [Ref 24].   The determination of 
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torsional rigidities for the model is not straightforward; it will require some calibration 

from measured data. 

Table 7. Calculated Torsional Rigidities 

Torsional Rigidity (10b lbf*in/rad) by method: 
Value Unconstrained Carter Wilson Model [Ref 23] 

Kjb 7.07 41.5 35.3 
KCD 4.60 38.4 17.7 
J^-cw 31.5 19.8 49.4 
K, 1.94 3.11 3.22 3.47 

K2, K3 2.37 6.61 7.98 9.55 
K4 3.49 10.8 12.15 13.50 

3.        Auxiliary Loads 

The auxiliary loads, with the exception of the oil pump, are driven off the timing 

gear, just forward of the flywheel. For the model, the total of the auxiliary load torque is 

considered to be placed at 65. The contribution of the individual loads can be determined 

by deriving the power required, then the torque is related to the power P by the equation: 

P 
2nN 

(A10) 

Two cam shafts are driven off the timing gear, at the rear of the crankshaft and 

just forward of the flywheel. The load due to these camshafts primarily results from three 

components: the bearing friction, the operation of the fuel injector pistons, and the 

compression of springs associated with the injectors and the valves. Bearing friction is 

determined in the next section. The action of the injector pistons is considered as a 

polytropic isothermal process of compression from 50 to 2800 psig. Work required to 

compress the springs is calculated from: 

1 
Wsprin=-K.(62

2-S?) (All) 
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where 5i and 82 are the initial and final spring deflection, respectively.  The load torque 

for the cam shafts is calculated from the work done by the shafts over one rotation. 

The fuel pump is a positive displacement gear type pump that provides a flowrate 

Q of 1 gpm at 65 psi when the engine is at 2800 RPM. Assuming a pressure at the input 

of about 15 psi, the torque required can be determined from the power P: 

P = QAp (A12) 

Since the flowrate Q is proportional to the speed N, the fuel pump torque will be a 

constant value regardless of engine speed. 

The water pump is a centrifugal pump that provides 37 gpm at 2800 RPM. Since 

a pressure drop was not provided from the service manual, its effect is estimated as 

comparable to the other auxiliary components. 

A roots blower provides the scavenging pressure that clears the pistons at the 

bottom of the stroke. This blower is rated to provide 338 cfm at 2800 RPM. 

The oil pump is a rotary style positive displacement pump rated to deliver 15 gpm 

at 2800 RPM. The power can be calculated from 

P = mhA= {Qp) 'W (A13) 

V    P    J 

where hA is the head provided by the pump m is the mass flowrate of the oil, p is the oil 

density, and Ap is the pressure increase.   The increase in fluid head due to velocity 

increase is neglected. 

4.        Friction Losses 

Journal bearing friction is accounted for by assuming that the two surfaces are 

completely separated by the lubricating film; that hydrodynamic lubrication is dominant. 
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Using the relations provided by Heywood [Ref 28], an equation to calculate the parasitic 

torque due to a bearing's friction is derived: 

2Tfr      7t2DhuN Wf 
Tfr=fWfr=*f=—}—=    -h^  ;<r = —^ (A14) 
* ' WfDh        ha LhDh 

where f is the friction factor, Wf is the bearing load, ^i is the oil viscosity, h  is the 

average bearing clearance, N is the rotation speed in RPM, and Lb and Db are the bearing 

length and diameter. This can be solved for torque to yield: 

T  =^lhßQ 
fr        Ah 

(A15) 

The friction torque is proportional to rotation speed, and independent of bearing load 

under the assumption of hydrodynamic lubrication.  This equation can be applied to the 

crankshaft main bearings, the crankpins, and the camshaft bearings. There are four main 

bearings, the coefficients Ci, C2, and C3 in the equations of motion are determined as 

one-third of the total friction for the main bearings. Crankpin friction is lumped in with 

the piston ring friction, and the friction due to the camshaft bearings is included with the 

auxiliary loads. 

Piston ring friction is not easily modeled analytically, but is instead estimated by 

empirical methods. From Heywood [Ref 28], piston friction is considered as the sum of 

two components: a boundary friction generally proportional to engine loading, and a 

hydrodynamic friction proportional to piston speed.    The exact relation is not only 

difficult to predict for any one engine, it will change as the engine's condition varies. A 

more detailed study of the ring friction is beyond the scope of this study. Although it is 

expected that the amount of piston friction varies as a function of the piston speed, a 

constant parasitic force is assumed, which corresponds to a parasitic torque Tpar which 
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varies with crank angle, as in Equation (A 16). The derivation of the force/torque 

relationship is detailed in the next Appendix. Since the magnitude of Tpar is small 

relative to Tcyi, this is considered a reasonable approximation. 

par par 

sin(0 + (j)) 

cos<p 
(Al 6) 

The estimates for loads and frictions formulated above are meant to provide a 

relative relation between them. For this study, actual losses were determined from the 

measured pressure data (Table 8). The values for Tioad and Tpar were each estimated as a 

fraction of the total losses. 

Table 8. Empirical Friction Losses 

Engine 
Speed 
(RPM) 

Dyno 
Load 
(ft*lbf) 

Cyl    #1 
Average 
Gas 
Torque 

Cyl    #2 
Average 
Gas 
Torque 

Cyl     #3 
Average 
Gas 
Torque 

Total 
Average 
Gas 
Torque 

Total 
Losses 

Efficiency 

1000 80 24.9 51.5 56.1 132.5 52.5 60.4 % 
1000 100 32.4 58.7 62.5 153.6 53.6 65.1 % 
1000 135 44.9 69.2 73.1 187.2 52.2 72.1 % 
1500 135 53.7 79.0 82.4 215.1 80.1 62.8 % 
1500 160 63.2 87.9 91.9 243.0 83.0 65.8 % 
2000 160 72.7 103.3 102.6 278.6 118.6 57.4 % 

52 



APPENDIX B. GEOMETRY OF RECIPROCATING COMPONENTS 

The nonlinear motion of the piston and connecting rod (Figure 21) presents 

unique geometrical and mathematical problems when modeling a reciprocating engine. 

The following derivations are common in the literature, but are presented here to 

document the detailed analysis required to formulate the torsional model. 

t*tu 

Figure 21. Piston and Connecting Rod. From Ref [19] 

1.        Indicated Cylinder Torque 

There are several ways to derive the relation between the gas pressure present in 

the cylinder and the resulting indicated torque applied to the crankshaft. Piston ring 

friction is ignored for this derivation; it is corrected for by a parasitic force as described 

in the previous Appendix. Figure 22 shows the relation of the piston to the crankshaft. A 

static analysis assumes two forces applied at the piston pin. Fp is the net force due to the 
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indicated cylinder pressure, minus the reference pressure applied to the underside of the 

piston from the crankcase (Fp = PnetAp). Additionally, a reaction force Fr is applied by the 

cylinder walls on the piston rings; this force constrains the piston to linear motion in the 

cylinder. The resultant force in the direction of the connecting rod is: 

Kr = 
_\{PCyl-Pj 

COS0 
(Bl) 

where Ap is the cross-sectional area of the piston, Pcy] is the indicated cylinder pressure, 

and Pref is the reference pressure. The crank angle 6 and the connecting rod angles § and 

Y are related by 

Lsin(<|)) = Rsin(8)       and       sin(y) = sin(6+<J)) (B2) 

The resultant torque applied at the crankshaft is then calculated by taking the cross- 

product of the connecting rod resultant force vector and the crankpin position vector, and 

simplifying: 

T,=FxR= lcxl R sin y = Ap(Pcyl-Pref)R 
sin(6 +(/)) 

COS0 
(B3) 

BDC TDC 

Figure 22. Geometry of Reciprocating Components 

B 
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The same result is also achieved by equating the work done at the piston with the 

work done by the torque on the crankshaft, as demonstrated by Taylor [Ref 29]: 

PnJV=Tcylde=>Tc,=Pne,Apj (B4) 

Taking the relation for s from Wilson [Ref 24], 

s = Rcos0 + Lcos<p = Rcos0 + [L2-R2sm20f2 (B5) 

then 

i?2sin0cos# 
s = 0 

(L2-i?2sin20j 
= 0 

„ .   .    /?2sin0cos# 
-Rsm0- Y (B6) 

COS<f> 

and using trigonometric relations, equation B4 will simplify to equation B3. 

2.        Reciprocating Torque 

While the rotating parts of the crankshaft maintain a nearly constant angular 

velocity, the reciprocating components are alternately accelerated and decelerated in a 

constrained linear motion. At the crankshaft, this will be seen as a load torque while the 

piston is accelerated from TDC to its maximum speed, and will supply a torque as the 

piston is decelerated to BDC. Taylor [Ref 29] formulates a method of deriving this 

reciprocating torque. 

First, it is necessary to determine the amount of the reciprocating mass. Clearly, 

the entire mass of the piston contributes, but only a portion of the connecting rod is 

reciprocating, and the rest must be considered rotating mass. A first approximation 

idealizes the connecting rod as two lumped masses connected by a massless shaft, with 

the same total mass and center of gravity as the real connecting rod (Figure 23). The 

center of gravity for the real connecting rod is simply found by balancing the rod; for this 

engine h = 3.5 in. and j = 5.3 in.' The portion labeled Wi is then added into the 
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reciprocating mass, while the remainder is considered part of the crankshaft rotating 

mass. Then, the instantaneous torque Trec is found by equating the change in the 

reciprocating mass kinetic energy with the work done by the crankshaft: 

W re^-2 

2g 
-T de => r   = rec rec 

W . ..( s ^ 

g vej 
(B7) 

Figure 23. Idealized Connecting Rod. From Ref [29] 

A small correction must then be made to account for the difference between the 

polar moment of inertia for the idealized connecting rod and the actual polar moment of 

inertia: 

W 

g 

■Rcosd 
(B8) 

Lcos0 

where Jcr is the polar moment of inertia for the actual connecting rod.   While 

Taylor derives series relations to state all values as functions of 9, for this study the angle 
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<|) and the distance s are calculated directly, then differentiated numerically within the 

program. 

3.        Reciprocating Inertia 

During engine operation, the reciprocating components contribute to the rotating 

inertia of the crankshaft. However, the magnitude of the reciprocating inertia varies as a 

function of the crank angle 6.   The rotating motion of the crankshaft drives a linear 

motion of the piston in the cylinder. When the piston is at TDC, an incremental rotation 

of the crankshaft results in zero linear motion of the piston, while at 90° the same 

incremental rotation of the crankshaft results in maximum linear motion of the piston. 

Therefore, the influence of the piston mass on the inertia seen at the crankshaft will vary 

during crankshaft rotation.    Normally, crankshaft inertial models include an average 

value of one-half the maximum reciprocating inertia to account for the reciprocating 

components.   However, in this application, we are interested in crank-angle dependent 

values of torque, so we must account for this crank-angle dependent variation of 

reciprocating inertia.   The reciprocating inertia can be calculated as a function of the 

reciprocating mass, the eccentricity, and the crank angle: 

W  R2 

Jrec = -*£—(1 - COS(20)) (B9) 
2g 

The value Wrec is the weight of the reciprocating components, as determined previously. 

Reciprocating inertia is a separate effect from the reciprocating torque already 

described.  The changing value of reciprocating inertia accounts for the extra mass that, 

along with the rotating mass, must be accelerated when the crankshaft is accelerated. The 

reciprocating torque accounts for the energy required to accelerate this reciprocating 
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mass from zero to the current rotational speed of the crankshaft, before it is added to the 

rotating mass. 
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APPENDIX C. NATURAL FREQUENCY AND MODAL ANALYSIS 

A modal analysis can be conducted for the crankshaft using the torsional model. 

Fourier analysis of the torsional vibrations measured at the optical encoder will show 

peaks corresponding to the measured natural frequencies. Comparison of the predicted 

natural frequencies from the model to these measured natural frequencies is a powerful 

calibration tool for fine-tuning the model. 

The matrix equation describing the torsional mode of the crankshaft is repeated 

here: 

[J]0 + [C]0 + [K]0 = [T] (7) 

Neglecting the damping effects, the natural frequencies are calculated by: 

[K]-[JW = [0]=* 0)2=eig{jV[K]} (Cl) 

For the given model parameters (Table 1), the results are tabulated in Figure 24. There 

are six modes of natural vibration, with the first mode being the trivial rigid-body 

oscillation, where there is no crankshaft twist. 

A natural vibration component due to the rigidity and inertia of the flexible 

coupling and the optical encoder disk is expected. The given values for the unit are: 

Jrotor= 1-45 x 10" 
6 kg*m2 

Jcou pling — J X 1U kg*m2 

Kcoupling - 200 N *m/rad 

and given 

m2 - 
is 

coupling 
UJ    — 

>upling           rotor J 

[Ref21] 

(C2) 

the natural frequency for torsional vibration for the coupling/encoder unit is: 
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CO = 1067 Hz 

Not surprisingly, a large response is seen in the measured data at precisely this frequency. 

flywheel 

^ 
•* 

Figure 24. Torsional Vibration Modes 

For highest resolution, a Fast Fourier Transform (FFT) is conducted on the 

measured angular velocity at the optical encoder over the entire 11 cycles of collected 

data. Figure 25 shows the frequency spectrum for measured data from the 1000 RPM, 

100 ft*lbf run. Spectrums obtained for other engine speeds and loads are similar. Figure 

26 is an expanded view of the low-frequency portion of the spectrum. A "comb" of 

amplitude spikes are seen, corresponding to harmonics of the engine rotation frequency, 

16.7 Hz. As expected, a large frequency response is seen at about 1060 Hz, 

corresponding to the natural frequency of the encoder/coupling unit. Additional 

responses are seen at about 430 Hz, 1130 Hz, and 1910 Hz, and these agree with three of 
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the expected modes from the torsional model. A peak seen at about 2400 Hz is from an 

unknown source; it is not present in frequency spectrums taken at other engine speeds. 

Natural frequencies that are predicted by the model but not seen in the spectrum 

are probably due to low amplitudes at the crankshaft nose. For instance, the expected 

344 Hz frequency is mostly oscillation of the dynamometer rotor with respect to the 

flywheel; the crankshaft oscillation amplitude would be much smaller. As expected, each 

of the predicted modes has a node close to the flywheel because it contains the bulk of 

the system inertia. Measurements taken at the flywheel would be expected to show 

almost no high frequency vibration, and this is seen in the measured data. 
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Figure 25. Frequency Spectrum for Measured Angular Velocity at 0i (0-3000 Hz) 
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Figure 26. Low Frequency Spectrum (0-1000 Hz) 
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Figure 27. Phase Deviation (1000 RPM, 80 Ft*Ibf) 
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X10" 1000 RPM, 135 fribf Phase Deviation 
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Figure 28. Phase Deviation (1000 RPM, 135 Ft*ibf) 
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x10"' 1500 RPM, 135 fTlbf Phase Deviation 
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Figure 29. Phase Deviation (1500 RPM, 135 Ft*lbf) 
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Figure 30. Phase Deviation (1500 RPM, 160 Ft*lbf) 
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x10" 2000 RPM, 160 ft*lbf Phase Deviation 
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Figure 31. Phase Deviation (2000 RPM, 160 Ft*lbf) 
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x10"' 1000 RPM 80 ft*lbf Crankshaft Twist 
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Figure 32. Crankshaft Twist (1000 RPM, 80 Ft*lbf) 
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x10 1000 RPM 135 ft*lbf Crankshaft Twist 
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Figure 33. Crankshaft Twist (1000 RPM, 135 Ft*Ibf) 
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Figure 34. Crankshaft Twist (1500 RPM, 135 Ft*Ibf) 
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x10"' 1500 RPM 160 ft*lbf Crankshaft Twist 
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Figure 35. Crankshaft Twist (1500 RPM, 160 Ft*lbf) 
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Figure 36. Crankshaft Twist (2000 RPM, 160 Ft*lbf) 
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Figure 37. Individual Cylinder Gas Torques (1000 RPM, 80 Ft*lbf) 
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Figure 38. Individual Cylinder Gas Torques (1000 RPM, 135 Ft*lbf) 
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Figure 39. Individual Cylinder Gas Torques (1500 RPM, 135 Ft*lbf) 
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Figure 40. Individual Cylinder Gas Torques (1500 RPM, 160 Ft*lbf) 
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Figure 41. Individual Cylinder Gas Torques (2000 RPM, 160 Ft*lbf) 
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Figure 42. Total Gas Torque (1000 RPM, 80 Ft*lbf) 
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Figure 43. Total Gas Torque (1000 RPM, 135 Ft*lbf) 
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Figure 44. Total Gas Torque (1500 RPM, 135 Ft*lbf) 
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Figure 45. Total Gas Torque (1500 RPM, 160 Ft*lbf) 
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Figure 46. Total Gas Torque (2000 RPM, 160 Ft*Ibf ) 
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APPENDIX E. MATLAB CODES 

Program used to calculate cylinder gas torques from measured pressures. 

% TORQUE36 
% This code computes the individual torque contribution of each 
% individual cylinder referenced to TDC of Nr.l Cylinder. 
% Gas torque is calculated based on measured pressures 
load walklOO.md % ECA cylinder #1 pressure data 
load wblklOO.md % ECA cylinder #2 pressure data 
load wclklOO.md % ECA cylinder #3 pressure data 
pa = reshape (walkl00,5,720); Plcyl = [pa(l,:) pa(l)]; 
pb = reshape (wblkl00,5,720); P2cyl = [pb(l,:) pb(l)]; 
pc = reshape (wclkl00,5,720); P3cyl = [pc(l,:) pc(l)]; 
W = 7.556; % Reciprocating weight (lbf) 
R = 2.25; % Crankshaft Eccentricity (in) 
B = 3.875; % Cylinder Bore (in) 
L = 8.8; % Connecting Rod length (in) 
g = 386; % Gravitational acceleration (lbf*in/secA2) 
theta = linspace(0,2*pi,721); % Crank angle vector 
N=1022; %RPM 
Load = 100; % Ft*lbf 
omega = 2*pi*N/60; % rad/sec 
dt = (60/N)/720; 
si = R*cos(theta) + sqrt(LA2 - (RA2)*sin(theta).A2); 
s2 = R*cos(theta-4*pi/3) + sqrt(LA2 - (RA2)*sin(theta-4*pi/3) A2); 
s3 = R*cos(theta-2*pi/3) + sqrt(LA2 - (RA2)*sin(theta-2*pi/3).A2); 
Spl =deriv(sl,dt); Spdl =deriv(Spl,dt);% Piston speed (in/sec) and 
Sp2 = deriv(s2,dt); Spd2 = deriv(Sp2,dt);% Piston acceleration (in/secA2) 
Sp3 = deriv(s3,dt); Spd3 = deriv(Sp3,dt); 
Tlrec = -(W/g)*Spdl.*(Spl/omega)/12; 
T2rec = -(W/g)*Spd2'.*(Sp2/omega)/12; 
T3rec = -(W/g)*Spd3.*(Sp3/omega)/12; 
Fpar = 201; % lbf Parasitic force 
Tparl =Fpar*abs(Spl/omega)/12; % ft*lbf Parasitic torque 
Tpar2 = Fpar*abs(Sp2/omega)/12; 
Tpar3 = Fpar*abs(Sp3/omega)/12; 
pref = 14.706 + 0.00205*(N-634);  % psia 
Tlcyl=-((Plcyl.*pref-pref)*(pi*BA2/4).*Spl/omega)/12; % FT*LBF 
T2cyI=-((P2cyl.*pref-pref)*(pi*BA2/4).*Sp2/omega)/12; % FT*LBF 
T3cyl=-((P3cyl.*pref-pref)*(pi*BA2/4).*Sp3/omega)/12; % FT*LBF 
Tbrg = (0.0003403)*N; % FT-LBF Bearing friction per cylinder 
Taux = 38; % FT-LBF Valve train and auxilliaries 
Tpmp = 0.792; % FT-LBF Oil pump load 
Ttot = Tlcyl+T2cyl+T3cyl-Tparl-Tpar2-Tpar3-3*Tbrg-Taux-Tpmp+Tlrec+T2rec+T3rec;% FT-LBF 
figure (1) 
degrees = theta* 180/pi; 
plot(degrees,Plcyl,'kx',degrees,P2cyl,'ko,,degrees,P3cyl,'k.') 
axis([0,360,0,90]) 
title (Cylinder Pressures referenced to TDC of #1 Cylinder1) 
xlabel (Crank Angle (degrees)) 
ylabel (Cylinder Indicated Pressure (bars, absolute)') 
legend ('Cyl#lVCyl#2yCyl#3') 
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grid 
orient landscape 
figure(2) 
plot(theta,Tlcyl,'bX',theta,T2cyl,'bO',theta,T3cyl,'b.) 
grid, hold on 
plot(theta,T 1 rec, VX',theta,T2rec, 'rO',theta,T3rec, 'r. 0 
plot (theta.Ttot, 'g',theta,Load *ones(size(theta)), 'c 0 
title(lndividual Cylinder Torque input Referenced to TDC of Nr. 1 Cylinder") 
ylabel('Gas Torque (FT-LB)') 
xlabel(T>egrees after TDC of NR. 1 Cylinder1) 
legend('Cyl #1 ','CyI #2','Cyl #3') 
orient landscape 
% COMPUTE AVERAGE TORQUE CONTRIBUTION OF EACH CYLINDER 
Tl cyl_avg=trapz(theta,T 1 cyl)/(2*pi) 
T2cyl_avg=trapz(theta,T2cyl)/(2*pi) 
T3cyl_avg=trapz(theta,T3cyl)/(2*pi) 
Avg_Torque_input=trapz(theta,Ttot)/(2*pi) 
Torque_out_to_Torque_in = Load/A vg_Torque_input 

Programs used to calculate angular positions, given cylinder gas torques 

(time-marching method). 

% MEASPRD3 
% Concurrently plots measured and predicted responses 
% using time-marching direct integration method 
% 
% Section One plots the measured response 
% 
load wl lklOO.md % Load optical encoder data file 
t = wllkl00(:,l); 
tt = diff(t); % determine dt's 
tt = (reshape(tt,720,11))'; % Phase lock one cycle 
tttt = mean(tt,l); % Ensemble average the phases 
position = linspace(0,(2*pi),721); % The known positions of the O.E. windows 
pos = position( 1:720); 
omega = (l/sum(tttt))*2*pi; % Mean rotational velocity (rad/sec) 
timem = [0 cumsum(tttt)]; % Time vector corresponding to position 
angposm = position-timem.*omega; % Angular position (radians) 
plot(timem,angposm,'rO') % Plot measured angular position vs time 
hold on 

'% 
% Section Two plots the predicted response based on pressure data 
% Uses a SIX SECOND ORDER SUMULTANEOUS EQUATION ODE SOLVER 
% Calls "deqns.m" which defines the system of 2nd order ode's 
% 
global Tload Tlcyl T2cyl T3cyl Taux Tpmp j2rec j3rec j4rec i 
load walklOO.md % ECA cylinder #1 pressure data 
load wblklOO.md % ECA cylinder #2 pressure data 
load wclklOO.md % ECA cylinder #3 pressure data 
pa = reshape (walkl00,5,720); pa = pa(l,:); 
pb = reshape (wblkl00,5,720); pb = pb(l,:); 
pc = reshape (wclkl00,5,720); pc = pc(l,:); 
Plcyl = [pa(l,:) pa(l)];% Cylinder pressures (bars) 
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P2cyl = [pb(l,:)pb(l)]; 
P3cyl = [pc(l,:)pc(l)]; 
shp = [0 0 000-1.8]*le-03; 
shv = [11111 1]*106.3; 
ic = [shp shv]; 
Tload=1200; 
timep=linspace(0,sum(tttt),721); 
angposp = zeros( 1,721); 
B = 3.875; 
R = 2.25; 
W = 7.556; 
g = 386; 
L=8.8; 
N = omega*60/(2*pi); 
pos = linspace (0,(2*pi),721); 
pref = 14.706 + 0.00205 *(N-634); 
dt = (2*pi/omega)/720; 
si = R*cos(pos) + sqrt(LA2 - (RA2)*sin(pos).A2); 
s2 = R*cos(pos-4*pi/3) + sqrt(LA2 - (RA2)*sin(pos-4*pi/3).A2); 
s3 = R*cos(pos-2*pi/3) + sqrt(LA2 - (RA2)*sin(pos-2*pi/3).A2); 
Spl = deriv(sl,dt); Spdl = deriv(Spl,dt);     % Piston speed (in/sec) and 
Sp2 = deriv(s2,dt); Spd2 = deriv(Sp2,dt); 
Sp3 = deriv(s3,dt); Spd3 = deriv(Sp3,dt); 
Fpar = 100; % 

% define IC's 
% lbf*inLoad torque 
% divide one rev into 720 divisions 
% initialize predicted position vector 
% in      Cylinder bore 
% in       Crankshaft eccentricity 
% lbf     Weight of reciprocating components 
% in/secA2 gravitational acceleration 
% in       Connecting rod length 
%RPM 

% psia 

% Piston acceleration (in/secA2) 

lbf*in 
lbf*in 

Parasitic force 
Parasitic torque Tparl =Fpar*abs(Spl/omega);       % 

Tpar2 = Fpar*abs(Sp2/omega); 
Tpar3 = Fpar*abs(Sp3/omega); 
pos = linspace (0,(2*pi),721); 
pref = 14.706 + 0.00205*(N-634);   % psia 
Tpmp = 9.5;        %lbf*in Oil pump torque 
Tlcyl = -(Plcyl.*pref-pref)*(pi*BA2/4).*Spl/omega; % (in*lbf) 
T2cyl = -(P2cyl.*pref-pref)*(pi*BA2/4).*Sp2/omega; % (in*lbf) 
T3cyl = -(P3cyl.*pref-pref)*(pi*BA2/4).*Sp3/omega; % (in*lbf) 
Taux =168; %lbf*in Valvetrain and auxilliary torque 
j2rec = (W*RA2/(2*g))*(l-cos(2*pos)); %lbf*in*secA2 
j3rec = (W*RA2/(2*g))*(l-cos(2*(pos-4*pi/3)));        %lbf*in*secA2 
j4rec = (W*RA2/(2*g))*(l-cos(2*(pos-2*pi/3)));        %lbf*in*secA2 
Tlrec = -(W/g)*Spdl.*(Spl/omega); 
T2rec = -(W/g)*Spd2.*(Sp2/omega); 
T3rec = -(W/g)*Spd3.*(Sp3/omega); 
Tlcyl = Tlcyl - Tparl + Tlrec; 
T2cyl = T2cyl - Tpar2 + T2rec; 
T3cyl = T3cyl - Tpar3 + T3rec; 
step = 1; 
theta=zeros(721,6); 
theta(l,:) = shp; 
for i = 1 :step:720; 

[T,x] = ode45('deqns',[timep(i) timep(i+step)],ic); 
ic = x(length(T),:); % reinitialize IC's from previous iteration 
theta(i+step,:) = x(length(T),l:6); 
angposp(i+step) = x(length(T),l) - omega*timep(i+step); 

end 
plotCtimep.angposp^X7)   % Plot predicted angular position vs time 
title(Time Marching ODE45 Method Comparison to Measured Data7) 
xlabel(Time (sec)") 
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ylabel(Theta one Phase Deviation (radians)') 
legend (Meas      ',Pred      ) 
grid 
orient landscape 
shaft_pos = (ic(l:6)-2*pi)' 
cycle_stat = (ic - [(shp+2*pi) shv])' 
% Plot predicted angular velocity 
figure (2) 
omegap = [shv(l) (diff(angposp)./timep(2)+omega)]; 
omegam = (l./(720*tttt))*2*pi; 
omegam = [omegam omegam(720)]; 
pIot(timep,omegap,'b',tirnep,omegam,r') 
hold on 
plot(timep,omega*ones(size(timep))) 
xlabel('time(sec)') 
ylabel('Angular Velocity (rad/sec)') 
grid, orient tall 
figure (3) 
plot(timem,angposm, 1c. ) 
hold on 
plot(timep,angposp, Ic1) 
title(Time Marching ODE45 Method Comparison to Measured Data7) 
xlabel(Time (sec)) 
ylabel(Theta one Phase Deviation (radians)) 
legend (Meas      ',Pred      ) 
grid 

% DEQNS function to determine six second order differential equations 
% To be used in ode45 fctn in measpred program 
%  
function xdot=deqns(t,x) 

global Tload Tlcyl T2cyl T3cyl Taux Tpmp j2rec j3rec j4rec i 
% Constants to be used in differential equations  

n*secA2/rad j 1-02443; 
J2-2482; 
j3=.1462; 
j4=.2482; 
j5=7.222; 
j6=.2870; 
kl=3.11e6; 
k2=7.00e6; 
k3=7.00e6; 
k4=10.82e6; 
k5=1.304e6; 
cl2=.01; 
c23=.01; 
c34=.01; 
c45=.01; 
c56=.01; 
c2=0.013; 
C3=0.013; 
c4=0.013; 
%  
% 12 first order equations which define the 

%lb* 
%lb* 
%lb* 
%lb* 
%lb* 
%lb* 
%lb* 
%lb* 
%lb* 
%lb* 
%lb*: 
%lb* 
%lb* 
%lb*: 
%lb* 
%lb* 
%lb* 
%lb* 
%lb* 

n*secA2/rad 
n*secA2/rad 
n*secA2/rad 
n*secA2/rad 
n*secA2/rad 
n/rad 
n/rad 
n/rad 
n/rad 
n/rad 
n*sec/rad 
n*sec/rad 
n*sec/rad 
n*sec/rad 
n*sec/rad 
n*sec/rad 
n*sec/rad 
n*sec/rad 
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%          original 6 second order equations of motion 
%  
xdo(l)=x(7); 
xdo(2)=x(8); 
xdo(3)=x(9); 
xdo(4)=x(10); 
xdo(5)=x(ll); 
xdo(6)=x(12); 
xdo(7)=((cl 2*x(8))-(c 12*x(7))+(kl *x(2))-(kl *x( 1 ))-Tpmp)/j 1; 
xdo(8)=(Tlcyl(i)+(c23*x(9))-((c23+cl2+c2)*x(8))+(cl2*x(7))+(k2*x(3))... 

-((kl+k2)*x(2))+(kl*x(l)))/G2+j2rec(i)); 
xdo(9)=(T2cyI(i)+(c34*x(10))-((c34+c23+c3)*x(9))+(c23*x(8))+(k3*x(4))... 

-((k2+k3)*x(3))+(k2*x(2)))/(j3+j3rec(i)); 
xdo( 10)=(T3cyl(i)+(c45 *x( 11 ))-((c45+c34+c4)*x( 10))+(c34*x(9))+(k4 *x(5))... 

-((k3+k4)*x(4))+(k3*x(3)))/(j4+j4rec(i)); 
xdo( 11 )=((c56*x( 12))+((c56+c45)*x( 11 ))+(c45 *x( 10))+(k5 *x(6))..: 

-((k4+k5)*x(5))+(k4*x(4))-Taux)/j5; 
xdo( 12)=(-Tload-(c56*x( 12))+(c56*x( 11 ))-(k5 *x(6))+(k5 *x(5)))/j6; 
xdot=xdo'; % vector defining the equations of motion 

Programs used to calculate angular positions, given measured cylinder gas 

torques (finite element method). 

% MEASPS 
% Determines and plots comparisons of the following: 
% (1) Measured response from flywheel and optical encoder data 
% (2) Predicted response from inertial model based on measured 
% pressure data from the three cylinders 
% Evaluates predicted response using a finite element formulation 
%   
% Section One plots the measured response 
%   
% Measured response from flywheel  
load w5lklOO.md % Load time data from MDA 
t= [0;w51klOO(l:7938,l)]; % Extract time data only 
tt = diff(t); % COMPUTES THE DELJTS 
tt = (reshape(tt, 126,63))'; % Phase lock one cycle 
tttt = mean(tt); % Ensemble average the phases 
dtrat = tt(l)/mean(tt(2:63,l)); 
teeth = linspace(0,2*pi,127); tooth = 2*pi/127; 
th51 = tooth*dtrat; 
pos5 = [0teeth(l:125)+th51]; 
pos5(127) = 2*pi; 
time5 = [0,cumsum(tttt)-(l -dtrat) *tttt(l)]; 
time5(127) = sum(tttt); 
omega = (l/max(time5))*2*pi; 
angpos5 = pos5-time5.*omega;%Angular position (radians) 
figure (1) 
subplot (2,1,1) 
plot(time5,angpos5,'k.') % Plot measured angular position vs time 
hold on 
% Measured response from optical encoder  
load wl lklOO.md % Load time data from MDA 
t= [0;wllkl00(l:7920,l)]; % Extract time data only 
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tt = diff(t); 
tt = (reshape(tt,720,ll))'; 
tttt = mean(tt); 
posl = Iinspace(0,(2*pi),721); 
timel = [0 cumsum(tttt)]; 
timel = timel*(max(time5)/max(timel)); 
angposl = posl-time l.*omega; 
figure (1) 
subplot (2,1,2) 
plot(time 1 ,angpos 1,1c.1) 
hold on 

% COMPUTES THE DEL_T'S 
% Phase lock one cycle 
% Ensemble average the phases 
% Crank angle position for O.E. windows 
% Time vector corresponding to position 
% Adjust times to agree 
%Angular position (radians) 

% Plot measured angular position vs time 

Section Two plots the predicted response based on pressure data % 
%  

global j2rec j3rec j4rec 
% Cylinder pressures (bars)  
load walklOO.md % ECA cylinder #1 pressure data 
load wblklOO.md % ECA cylinder #2 pressure data 
load wclklOO.md % ECA cylinder #3 pressure data 
pa = reshape (walkl00,5,720); Plcyl = [pa(l,:) pa(l)]; 
pb = reshape (wblkl00,5,720); P2cyl = [pb(l,:) pb(l)]; 
pc = reshape (wclkl00,5,720); P3cyl = [pc(l,:) pc(l)]; 
% Variable descriptions 
%   k = element matrix 
%  f = element vector 

kk = compressed system matrix 
ff = system vector 
bcdof = a vector containing dofs associated with boundary conditions 
bcval = a vector containing boundary condition values associated with 

the dofs in TDcdof 

% number of elements 
% number of nodes per element 
% number of dofs per node 
% total number of nodes in system 
% total system dofs 
% (lbf*in) 

% input data for control parameters 
%   
nel = 720; 
nnel = 2; 
ndof =6; 
nnode = 721-; 
sdof = nnode*ndof; 
Tload = 1200; 
R = 2.25; 
W = 7.556; 
g = 386; 
B = 3.875; 
L=8.8; 
N = omega*60/(2*pi); 
dt = (2*pi/omega)/720; 
si = R*cos(posl) + sqrt(LA2 - (RA2)*sin(posl) A2); 
s2 = R*cos(posl-4*pi/3) + sqrt(LA2 - (RA2)*sin(posl-4*pi/3).A2); 
s3 = R*cos(posl-2*pi/3) + sqrt(LA2 - (RA2)*sin(posl-2*pi/3).A2); 

% (in) 
% (lbf) 
% (in/secA2) 
% (in) 
% (in) 
%RPM 

Crankshaft eccentricity 
Weight of reciprocating components 
Gravitational acceleration 
Cylinder Bore 
Connecting Rod length 

Spl =deriv(sl,dt); Spdl =defiv(Spl,dt) 
Sp2 = deriv(s2,dt); Spd2 = deriv(Sp2,dt) 
Sp3 = deriv(s3,dt); Spd3 = deriv(Sp3,dt) 
Fpar=100; % 
Tparl = Fpar*abs(Spl/omega);       % 
Tpar2 = Fpar*abs(Sp2/omega); 

% Piston speed (in/sec) and 
% Piston acceleration (in/secA2) 

lbf*in    Parasitic force 
Ibf*in    Parasitic torque 



Tpar3 = Fpar*abs(Sp3/omega); 
pos = linspace (0,(2*pi),721); 
pref = 14.706 + 0.00205*(N-634);  % psia 
Tpmp = 9.5; %lbf*in Oil pump torque 
Tlcyl = -(Plcyl.*pref-pref)*(pi*BA2/4).*Spl/omega; % (in*Ibf) 
T2cyl = -(P2cyl.*pref-pref)*(pi*BA2/4).*Sp2/omega; % (in*lbf) 
T3cyl = -(P3cyl.*pref-pref)*(pi*BA2/4).*Sp3/omega; % (in*lbf) 
Taux =168; %lbf*in Valvetrain and auxilliary torque 
j2rec = (W*RA2/(2*g))*(l-cos(2*pos)); %lbf*in*secA2 
j3rec = (W*RA2/(2*g))*(l-cos(2*(pos-4*pi/3))); %lbf*in*secA2 
j4rec = (W*RA2/(2*g))*(l-cos(2*(pos-2*pi/3))); %lbf*in*secA2 
Tlrec = -(W/g)*Spdl.*(Spl/omega); 
T2rec = -(W/g)*Spd2.*(Sp2/omega); 
T3rec = -(W/g)*Spd3.*(Sp3/omega); 
Tlcyl = Tlcyl - Tparl + Tlrec; 
T2cyl = T2cyl - Tpar2 + T2rec; 
T3cyl = T3cyl - Tpar3 + T3rec; 
pack 
%  
% input data for nodal coordinate values 
%  
tcoord = linspace(0,max(time5),721); 

%  
% input data for nodal connectivity for each element 
%  
nodes = [(l:nel)',(2:nnode)T; 
%  
% input data for boundary conditions 
%    
% Dirichlet Boundary Conditions 
shp=[0 0 00 0-200]*le-05; 
bcdof=[l,2,3,4,5,6,sdof-5,sdof-4,sdof-3,sdof-2,sdof-l,sdof]; 
bcval = [shp (shp+2*pi)]; 
%  
% initialization of matrices and vectors 
%  
ff = zeros(sdof, 1);              % initialization of system force vector 
kk = zeros(sdof, 18);          % initialization of compressed system matrix 
index = zeros(sdof,l);        % initialization of kk index vector 
%    
% computation of element matrices and vectors and their assembly 
%  
for i= 1: nel; % loop for the total number of elements 

nl=nodes(i,l); nr=nodes(i,2);        % extract nodes for (iel)-th element 
tl=tcoord(nl); tr=tcoord(nr); % extract nodal coord values for the element 
k = Kelm(tl,tr,i); % compute element matrix 
f = ((tr-tl)/2)*[-Tpmp; Tlcyl(i); T2cyl(i); T3cyl(i); -Taux; -Tload;... 

-Tpmp; Tlcyl(i+1); T2cyl(i+1); T3cyl(i+1); -Taux; -Tload]; 
% compute element vector 

for ii = 1:12; % assemble element matrices and vectors 
ff((i-l)*6+ii) = ff((i-l)*6+ii) + f(ii); 
if ii<=6; 

kk((i-l)*6+ii,:) = kk((i-l)*6+ii,:) + [0,0,0,0,0,0,k(ii,:)]; 
index(i*6+ii) = (i-l)*6; 

else 
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kk((i-l)*6+ii,0 = kk((i-l)*6+ii,:) + [k(ii,:),0,0,0,0,0,0]; 
end 

end 
end 
index(l:6) = -6*[l;l;l;l;l;l]; 
%  
%   apply boundary conditions 
%  
% Dirichlet Boundary Conditions 
for i = l:length(bcdof); 

kk(bcdof(i),:) = zeros(l,18); 
kk(bcdof(i),bcdof(i)-index(bcdof(i))) = 1; 
ff(bcdof(i)) = bcval(i); 

end 
%  
%          Transform kk and ff to upper diagonal 
%   

fori=l:(sdof-l); 
f=fix((i-l)/6)*6+12; 
if i>(sdof-6); f=sdof; end 
for ii = (i+l):f; % other rows with data in column i 

v = kk(ii,i-index(ii))./kk(i,i-index(i));      % multiplier 
kk(ii,i-index(ii)) = 0; 
for j = (i+l):f; % data elements in row ii 

kk(ii,j-index(ii)) = kk(ii j-index(ii))-v*kk(i,j-index(i)); 
end 
ff(ii) = ff(ii) - v*ff(i); 

end 
end 
%-  
%           Solve matrix eqn for theta 
%  
theta = zeros(l,sdof); 
theta(sdof) = ff(sdof)/kk(sdof,sdof-index(sdof)); 
fori = (sdof-l):(-l):l; 

f=fix((i-l)/6)*6+12; 
if i>(sdof-6); f=sdof; end 
forj = (i+l):f; 

ff(i) = ff(i) - kk(i,j-index(i))*theta(j); 
end 
theta(i) = ff(i)/kk(i,i-index(i)); 

end 
theta = reshape(theta,6,nnode); 
angpospl = theta(l,:) - omega*tcoord; 
angposp5 = theta(5,:) - omega*tcoord; 
%   
% Plot predicted angular position vs time 
%   
figure (1) 
subplot(2,l,l) 
plot(tcoord,angposp5,k') 
xlabel(Time (sec)") 
title ('1000 RPM, 100 ft*lbf Phase Deviation') 
ylabelCFlywheel (Theta five) (rad)) 
grid 
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subp!ot(2,l,2) 
plot(tcoord,angpospl .TcO 
xlabel(Time (sec)") 
yIabel('Crankshaft nose (Theta one) (rad)) 
grid 
legend (Meas      ',Pred      ) 
%    
% Compare Other degrees of freedom to theta 5 
%   
twist = theta - ([l;l;l;l;l;l]*theta(5,:)); 
figure (3) 
plot (tcoord,twist(l,:),'y'), hold on 
plot (tcoord,twist(2,:),'r') 
plot (tcoord,twist(3,:),'g') 
plot (tcoord,twist(4,:),'b') 
plot (tcoord.twistCe.O/c) 
title('Angular Deviation from Theta Five (Flywheel)') 
xlabel(Time (sec)7) 
ylabel('Angular Deviation from Theta Five (radians)) 
legend ('O.E.'.'Cyl #l',Cyl #2','Cyl #3',Dyno',Measured7) 
grid 
orient landscape 
Vc- 

% Plot Measured vs. Predicted Crankshaft Twist 
%>- 
thetarl = interpl(timel,posl,tcoord,'spline'); 
thetar5 = interpl(time5,pos5,tcoord,'spline'); 
figure (6) 
plot (tcoord,thetarl-thetar5,'k.') 
grid, hold on 
plot (tcoord,twist(2,:),'k') 
title ('1000 RPM 100 ft*lbf Crankshaft Twist1) 
xlabel (Time (sec)) 
ylabel (Twist (radians)) 
legend(Meas      '.Pred      ) 

function [k] = kelm(fl,tr,i) 
% 
% KELM calculates the element matrix k, 
% given tl and tr as inputs 
% Global variables 
global j2rec j3rec j4rec 
%  
% Constants 
%  
h = tr-tl; 
jl =0.02443; %lbf*in*secA2/rad 
j2 = 0.2482; %lbf*in*secA2/rad 
j3 = 0.1462; %lbf*in*secA2/rad 
j4 = 0.2482; %lbf*in*secA2/rad 
j5 = 7.222; %lbf*in*secA2/rad 
j6 = 0.2870; %lbf*in*secA2/rad 
kl = 3.11e6; %lbf*in/rad 
k2 = 7.00e6; %lbf*in/rad 
k3 = 7.00e6; %lbf*in/rad 
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%lbf*in/rad 
%lbf*in/rad 

%Ibf*in*sec/rad 
%lbf*in*sec/rad 
%lbf*in*sec/rad 
%lbf*in*sec/rad 
%lbf*in*sec/rad 
%lbf*in*sec/rad 
%lbf*in*sec/rad 
%lbf*in*sec/rad 

k4=10.82e6; 
k5=1.304e6; 
cl2 = 0.01; 
c23 = 0.01; 
c34 = 0.01; 
c45 = 0.01; 
c56 = 0.01; 
c2 = 0.013; 
c3 = 0.013; 
c4 = 0.013; 
%  
k = zeros (12,12); 
%  

k(l,l)=l/6*(2*kl*trA3-2*kl*tlA3-3*cl2*trA2-3*cl2*tlA2+6*kl*tr*tlA2-6*jl*tr+6*... 
j 1 *tl+6*c 12*tr*tl-6*kl *trA2*tl)/hA2; 

k(l,2)=l/6*(-2*kl*trA3+2*kl*tlA3+3*cl2*trA2+3*cl2*tlA2-6*kl*tr*tlA2-6*cl2*tr*tl+.. 
6*kl*trA2*tl)/hA2; 

k(l,7)=-l/6*(-kl*trA3+kl*tlA3-3*cl2*trA2-3*cl2*tlA2-3*kl*tr*tlA2+3*kl*trA2*tl-6*... 
j 1 *tr+6*j 1 *tl+6*cl 2*tr*tI)/hA2; 

k(l,8)=-l/6*(kl*trA3-kl*tlA3+3*cl2*trA2+3*cl2*tlA2+3*kl*tr*tlA2-3*kl*trA2*tl-6*... 
cl2*tr*tI)/hA2; 

k(2,l)=l/6*(-2*kl*trA3+2*kl*tlA3+3*cl2*trA2+3*cl2*tlA2-6*kl*tr*tlA2-6*cl2*tr*tl+.. 
6*kl*trA2*tl)/hA2; 

k(2,2)=l/6*(6*k2*tr*tlA2-3*c2*trA2-3*c2*tlA2-6*j2rec(i)*tr+6*j2rec(i)*tl-6*j2*tr+... 
6*j2*tl+6*tl*tr*c23+6*tr*c2*tl-6*k2*tl*trA2+6*cl2*tr*tl-6*kl*trA2*tl+2*... 
k2*trA3-2*k2*tlA3-3*c23*trA2-3*c23*tlA2+2*kl*trA3-2*kl*tlA3-3*cl2*trA2-... 
3 *c 12*tlA2+6*k 1 *tr*tlA2)/hA2; 

k(2,3)=l/6*(-2*k2*trA3+2*k2*tlA3-6*k2*tr*tlA2+3*c23*trA2+3*c23*tlA2-6*tl*tr*c23+.. 
6*k2*tI*trA2)/hA2; 

k(2,7)=-l/6*(kl*trA3-kl*tlA3+3*cl2*trA2+3*cl2*tlA2+3*kl*tr*tlA2-3*kl*trA2*tl-6*... 
cl2*tr*tl)/hA2; 

k(2,8)=-l/6*(-3*k2*tr*tlA2-3*c2*trA2-3*c2*tlA2-6*j2rec(i)*tr+6*j2rec(i)*tl-6*j2*... 
tr+6*j2*tl+6*tl*tr*c23+6*tr*c2*tl+3*k2*tl*trA2+6*cl2*tr*tl+3*kl*trA2*... 
tl-k2*trA3+k2*tlA3-3*c23*trA2-3*c23*tlA2-kl*trA3+kl*tlA3-3*cl2*trA2-3*... 
cl2*tlA2-3*kl*tr*tlA2)/hA2; 

k(2,9)=-l/6*(k2*trA3-k2*tlA3+3*k2*tr*tlA2+3*c23*trA2+3*c23*tlA2-3*k2*tl*trA2-6*... 
tl*tr*c23)/hA2; 

k(3,2)=l/6*(-2*k2*trA3+2*k2*tlA3-6*k2*tr*tlA2+3*c23*trA2+3*c23*tlA2-6*tl*tr*c23+.. 
6*k2*tl*trA2)/hA2; 

k(3,3)=l/6*(6*k2*tr*tlA2+6*tl*tr*c23-6*k2*tl*trA2+6*k3*tr*tlA2-6*k3*trA2*tl+6*... 
tr*tl*c34+2*k2*trA3-2*k2*tlA3-3*c23*trA2-3*c23*tlA2+2*k3*trA3-2*k3*... 
tlA3-3*c34*trA2-3*c34*tlA2-3*c3*trA2-3*c3*tlA2+6*tl*c3*tr-6*j3*tr+6*... 
j3*tl-6*j3rec(i)*tr+6*j3rec(i)*tl)/hA2; 

k(3,4)=l/6*(-2*k3*trA3+2*k3*tlA3-6*k3*tr*tlA2+3*c34*trA2+3*c34*tlA2-6*tr*tl*c34+.. 
6*k3*trA2*tl)/hA2; 

k(3,8)=-l/6*(k2*trA3-k2*tlA3+3*k2*tr*tlA2+3*c23*trA2+3*c23*tlA2-3*k2*tl*trA2-6*... 
tl*tr*c23)/hA2; 

k(3,9)=-l/6*(-3*k2*tr*tlA2+6*tl*tr*c23+3*k2*tl*trA2-3*k3*tr*tlA2+3*k3*trA2*tl+6*... 
tr*tl*c34-k2*trA3+k2*tlA3-3*c23*trA2-3*c23*tlA2-k3*trA3+k3*tlA3-3*c34*... 
trA2-3*c34*tlA2-3*c3*trA2-3*c3*tlA2+6*tl*c3*tr-6*j3*tr+6*j3*tl-6*... 
j3rec(i)*tr+6*j3rec(i)*tl)/hA2; 

k(3,10)=-l/6*(k3*trA3-k3*tlA3+3*k3*tr*tlA2+3*c34*trA2+3*c34*tlA2-3*k3*trA2*tl-... 
6*tr*tl*c34)/hA2; 

k(4,3)=l/6*(-2*k3*trA3+2*k3*tlA3-6*k3*tr*tlA2+3*c34*trA2+3*c34*tlA2-6*tr*tl*c34+.. 
6*k3*trA2*tl)/hA2; 
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k(4,4)=l/6*(6*tr*c4*tl+6*tr*c45*tl+6*k3*tr*tlA2-6*k3*trA2*tl+6*tr*tl*c34+2*k3*... 
trA3-2*k3*tlA3-3*c34*trA2-3*c34*tlA2+6*tr*k4*tlA2-6*k4*tl*trA2+2*k4*... 
trA3-2*k4*tlA3-3*c45*trA2-3*c45*tlA2-3*c4*trA2-3*c4*tlA2-6*j4*tr+6*... 
j4*tl-6*j4rec(i)*tr+6*j4rec(i)*tl)/hA2; 

k(4,5)=l/6*(-2*k4*trA3+2*k4*tlA3-6*tr*k4*tlA2+3*c45*trA2+3*c45*tlA2-6*tr*c45*... 
tl+6*k4*tl*trA2)/hA2; 

k(4,9)=-1 /6*(k3 *trA3-k3 *tlA3+3 *k3 *tr*tlA2+3 *c34*trA2+3 *c34*tlA2-3*k3 *trA2*tl-6*... 
tr*tl*c34)/hA2; 

k(4,10)=-l/6*(6*tr*c4*tl+6*tr*c45*tI-3*k3*tr*tlA2+3*k3*trA2*tl+6*tr*tl*c34-k3*... 
tr'A3+k3*tlA3-3*c34*trA2-3*c34*tlA2-3*tr*k4*tlA2+3*k4*tl*trA2-k4*trA3+... 
k4*tl A3-3*c45 *trA2-3 *c45 *tlA2-3 *c4*trA2-3 *c4 *tlA2-6*j4*tr+6*j4*tl-6*. .. 
j4rec(i)*tr+6*j4rec(i)*tl)/hA2; 

k(4,ll)=-l/6*(k4*trA3-k4*tlA3-3*k4*tl*trA2+3*c45*trA2+3*c45*tlA2+3*tr*k4*tlA2-6*... 
tr*c45*tl)/hA2; 

k(5,4)=l/6*(-2*k4*trA3+2*k4*tlA3-6*tr*k4*tIA2+3*c45*trA2+3*c45*tlA2-6*tr*c45*tl+... 
6*k4*tl*trA2)/hA2; 

k(5,5)=l/6*(2*k4*trA3-2*k4*tlA3+2*k5*trA3-2*k5*tlA3-3*c45*trA2-3*c45*tlA2-3*c56*... 
tr'A2-3*c56*tlA2+6*tr*k4*tlA2+6*k5*tr*tlA2-6*j5*tr+6*j5*tl+6*tr*c45*tl+... 
6*tr*c56*tl-6*k4*tl*trA2-6*k5*trA2*tl)/hA2; 

k(5,6)=l/6*(-2*k5*trA3+2*k5*tlA3-6*k5*tr*tlA2+3*c56*trA2+3*c56*tlA2-6*tr*c56*tl+... 
6*k5*trA2*tl)/hA2; 

k(5,10)=-l/6*(k4*trA3-k4*tlA3-3*k4*tl*trA2+3*c45*trA2+3*c45*tlA2+3*tr*k4*tIA2-6*... 
tr*c45*tl)/hA2; 

k(5,ll)=-l/6*(6*tr*c45*tl-3*k5*tr*tlA2+3*k5*trA2*tl+6*tr*c56*tl-k5*trA3+k5*tlA3-... 
3*c56*trA2-3*c56*tlA2-3*tr*k4*tlA2+3*k4*tl*trA2-k4*trA3+k4*tlA3-3*c45*... 
trA2-3*c45*tlA2-6*j5*tr+6*j5*tl)/hA2; 

k(5,12)=-l/6*(k5*trA3-k5*tlA3+3*c56*trA2+3*c56*tlA2+3*k5*tr*tlA2-3*k5*trA2*tl-6*... 
tr*c56*tl)/hA2; 

k(6,5)=l/6*(-2*k5*trA3+2*k5*tlA3-6*k5*tr*tlA2+3*c56*trA2+3*c56*tlA2-6*tr*c56*tI+... 

6*k5*trA2*tl)/hA2; 
k(6,6)=l/6*(2*k5*trA3-2*k5*tlA3+6*k5*tr*tlA2-3*c56*trA2-3*c56*tlA2-6*j6*tr+6*j6*... 

tl+6*tr*c56*tl-6*k5*trA2*tl)/hA2; 
k(6,ll)=-l/6*(k5*trA3-k5*tlA3+3*c56*trA2+3*c56*tlA2+3*k5*tr*tlA2-3*k5*trA2*tl-... 

6*tr*c56*tl)/hA2; 
k(6,12)=-l/6*(-k5*trA3+k5*tlA3-3*c56*trA2-3*c56*tlA2-3*k5*tr*tlA2+3*k5*trA2*tl-... 

6*j6*tr+6*j6*tl+6*tr*c56*tl)/hA2; 
k(7,l)=-l/6*(-kl*trA3+kl*tlA3+3*cl2*trA2+3*cl2*tlA2-3*kl*tr*tlA2+3*kl*trA2*tl-,.. 

6*jl*tr+6*jl*tl-6*cl2*tr*tl)/hA2; 
k(7,2)=l/6*(-kl*trA3+kl*tlA3+3*cl2*trA2+3*cl2*tlA2-3*kl*tr*tlA2+3*kl*trA2*tl-... 

6*cl2*tr*tl)/hA2; 
k(7,7)=l/6*(2*kl*trA3-2*kl*tlA3-6*kl*trA2*tl+3*cl2*trA2+3*cl2*tlA2-6*jl*tr+6*... 

jl*tl+6*kl*tr*tlA2-6*cl2*tr*tl)/hA2; 
k(7,8)=-l/6*(2*kl*trA3-2*kl*tlA3-6*kl*trA2*tl+3*cl2*trA2+3*cl2*tlA2-6*cl2*tr*... 

tl+6*kl*tr*tlA2)/hA2; 
k(8,l)=l/6*(-kl*trA3+kl*tlA3+3*cl2*trA2+3*cl2*tlA2-3*kl*tr*tlA2+3*kl*trA2*tl-... 

6*cl2*tr*tl)/hA2; 
k(8,2)=-l/6*(-3*k2*tr*tlA2+3*c2*trA2+3*c2*tlA2-6*j2rec(i)*tr+6*j2rec(i)*tl-6*j2*... 

tr+6*j2*tl-6*tl*tr*c23-6*tr*c2*tl+3*k2*tl*trA2-6*cl2*tr*tl+3*kl*trA2*... 
tl-k2*trA3+k2*tlA3+3*c23*trA2+3*c23*tlA2-kl*trA3+kl*tlA3+3*cl2*trA2+... 
3*c 12*tlA2-3*kl *tr*tlA2)/hA2; 

k(8,3)=l/6*(-k2*trA3+k2*tlA3-3*k2*tr*tlA2+3*c23*trA2+3*c23*tlA2+3*k2*tl*trA2-... 
6*tl*tr*c23)/hA2; 

k(8,7)=-l/6*(2*kl*trA3-2*kl*tlA3-6*kl*trA2*tl+3*cl2*trA2+3*cl2*tlA2-6*cl2*tr*... 
tl+6*kl*tr*tlA2)/hA2; 

k(8,8)=l/6*(6*k2*tr*tlA2+3*c2*trA2+3*c2*tlA2-6*j2rec(i)*tr+6*j2rec(i)*tl-6*j2*... 
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tr+6*j2*tl-6*tl*tr*c23-6*tr*c2*tl-6*k2*tl*trA2-6*cl2*tr*tl-6*kl*trA2*... 
tl+2*k2*trA3-2*k2*tlA3+3*c23*trA2+3*c23*tlA2+2*kl*trA3-2*kl*tlA3+3*... 
c 12*trA2+3 *c 12*tlA2+6*k 1 *tr*tl A2)/hA2; 

k(8,9)=-l/6*(2*k2*trA3-2*k2*tlA3-6*k2*tl*trA2+3*c23*trA2+3*c23*tlA2-6*tl*tr*... 
c23+6*k2*tr*tlA2)/hA2; 

k(9,2)= 1 /6*(-k2*trA3+k2*tl A3-3 *k2*tr*tl A2+3 *c23 *trA2+3 *c23 *tl A2+3 *k2*tl *trA2-... 
6*tl*tr*c23)/hA2; 

k(9,3)=-l/6*(-3*k2*tr*tlA2-6*tl*tr*c23+3*k2*tl*trA2-3*k3*tr*tlA2+3*k3*trA2*tl-... 
6*tr*tl *c34-k2*trA3+k2*tl A3+3 *c23 *trA2+3 *c23 *tlA2-k3 *trA3+k3 *tl A3+... 
3*c34*trA2+3*c34*tlA2+3*c3*trA2+3*c3*tlA2-6*tl*c3*tr-6*j3*tr+6*j3*tl-... 
6*j3rec(i)*tr+6*j3rec(i)*tl)/hA2; 

k(9,4)= 1 /6*(-k3 *trA3+k3 *tl A3-3 *k3 *tr*tlA2+3 *c34*trA2+3 *c34*tlA2+3 *k3 *trA2*tl-... 
6*tr*tI*c34)/hA2; 

k(9,8)=-l/6*(2*k2*trA3-2*k2*tlA3-6*k2*tl*trA2+3*c23*trA2+3*c23*tlA2-6*tl*tr*... 
c23+6*k2*tr*tlA2)/hA2; 

k(9,9)=l/6*(6*k2*tr*tlA2-6*tl*tr*c23-6*k2*tl*trA2+6*k3*tr*tlA2-6*k3*trA2*tl-... 
6*tr*tI*c34+2*k2*trA3-2*k2*tlA3+3*c23*trA2+3*c23*tlA2+2*k3*trA3-... 
2*k3 *tlA3+3 *c34 *trA2+3*c34*tl A2+3 *c3 *trA2+3 *c3 *tl A2-6*tl*c3 *tr-... 
6*j3*tr+6*j3*tl-6*j3rec(i)*tr+6*j3rec(i)*tl)/hA2; 

k(9,10)=-l/6*(2*k3*trA3-2*k3*tlA3-6*k3*trA2*tl+3*c34*trA2+3*c34*tlA2-6*tr*... 
tI*c34+6*k3*tr*tlA2)/hA2; 

k(10,3)=l/6*(-k3*trA3+k3*tlA3-3*k3*tr*tlA2+3*c34*trA2+3*c34*tlA2+3*k3*trA2*tl-... 
6*tr*tl*c34)/hA2; 

k( 10,4)=-1 /6*(-6*tr*c4 *tl-6*tr*c45 *tl-3 *k3 *tr*tlA2+3 *k3 *trA2*tI-6*tr*tl *c34-... 
k3*trA3+k3*tlA3+3*c34*trA2+3*c34*tlA2-3*tr*k4*tlA2+3*k4*tI*trA2-... 
k4*trA3+k4*tlA3+3*c45*trA2+3*c45*tlA2+3*c4*trA2+3*c4*tlA2-6*j4*tr+... 
6*j4*tl-6*j4rec(i)*tr+6*j4rec(i)*tl)/hA2; 

k(10,5)=l/6*(-k4*trA3+k4*tlA3+3*k4*tl*trA2+3*c45*trA2+3*c45*tlA2-3*tr*k4*tlA2-... 
6*tr*c45*tl)/hA2; 

k(10,9)=-l/6*(2*k3*trA3-2*k3*tlA3-6*k3*trA2*tl+3*c34*trA2+3*c34*tlA2-6*tr*t!*... 
c34+6*k3*tr*tlA2)/hA2; 

k(10,10)=l/6*(-6*tr*c4*tl-6*tr*c45*tl+6*k3*tr*tlA2-6*k3*trA2*tl-6*tr*tl*c34+2*... 
k3*trA3-2*k3*tlA3+3*c34*trA2+3*c34*tlA2+6*tr*k4*tIA2-6*k4*tI*trA2+... 
2*k4*trA3-2*k4*tlA3+3*c45*trA2+3*c45*tlA2+3*c4*trA2+3*c4*tlA2-6*j4*... 
tr+6*j4*tl-6*j4rec(i)*tr+6*j4rec(i)*tl)/hA2; 

k(10,ll)=-l/6*(2*k4*trA3-2*k4*tlA3-6*k4*tl*trA2+3*c45*trA2+3*c45*tlA2-6*tr*c45*... 
tI+6*tr*k4*tlA2)/hA2; 

k(ll,4)=l/6*(-k4*trA3+k4*tlA3+3*k4*tl*trA2+3*c45*trA2+3*c45*tlA2-3*tr*k4*tlA2-... 
6*tr*c45*tl)/hA2; 

k(ll,5)=-l/6*(-6*tr*c45*tl-3*k5*tr*tlA2+3*k5*trA2*tl-6*tr*c56*tl-k5*trA3+k5*tlA3+... 
3*c56*trA2+3*c56*tlA2-3*tr*k4*tlA2+3*k4*tl*trA2-k4*trA3+k4*tIA3+3*c45*... 
trA2+3*c45*tlA2-6*j5*tr+6*j5*tl)/hA2; 

k(ll,6)=l/6*(-k5*trA3+k5*tlA3+3*c56*trA2+3*c56*tlA2-3*k5*tr*tlA2+3*k5*trA2*tl-... 
6*tr*c56*tl)/hA2; 

k(ll,10)=-l/6*(2*k4*trA3-2*k4*tlA3-6*k4*tl*trA2+3*c45*trA2+3*c45*tlA2-6*tr*c45*tI+... 
6*tr*k4*tlA2)/hA2; 

k(ll,ll)=l/6*(2*k4*trA3-2*k4*tlA3+2*k5*trA3-2*k5*tlA3+3*c45*trA2+3*c45*tlA2+3*c56*. 
trA2+3*c56*tlA2-6*k4*tl*trA2-6*k5*trA2*tl-6*j5*tr+6*j5*tl+6*tr*k4*tlA2+... 
6*k5*tr*tlA2-6*tr*c45*tl-6*tr*c56*tl)/hA2; 

k(ll,12)=-l/6*(2*k5*trA3-2*k5*tlA3-6*k5*trA2*tl+3*c56*trA2+3*c56*tlA2-6*tr*c56*tl+... 
6*k5*tr*tlA2)/hA2; 

k(12,5)=l/6*(-k5*trA3+k5*tlA3+3*c56*trA2+3*c56*tlA2-3*k5*tr*tlA2+3*k5*trA2*tl-... 
6*tr*c56*tl)/hA2; 

k(12,6)=-l/6*(-k5*trA3+k5*tlA3+3*c56*trA2+3*c56*tlA2-3*k5*tr*tlA2+3*k5*trA2*tl-... 
6*j6*tr+6*j6*tl-6*tr*c56*tl)/hA2; 
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k(12,ll)=-l/6*(2*k5*trA3-2*k5*tlA3-6*k5*trA2*tl+3*c56*trA2+3*c56*tlA2-6*tr*c56*tl+... 
6*k5*tr*tlA2)/hA2; 

k(12,12)=l/6*(2*k5*trA3-2*k5*tlA3-6*k5*trA2*tl+3*c56*trA2+3*c56*tlA2-6*j6*tr+6*j6*... 
tl+6*k5*tr*tlA2-6*tr*c56*tl)/hA2; 

Programs used to calculate cylinder gas torques, given angular position data 

at 81 and 65. 

% SPRESSF2 
%  
% Program to determine cylinder pressures in 3 cylinder 
% two stroke diesel engine, given instantaneous angular 
% velocity at two of the six degrees of freedom 
% (crankshaft nose and flywheel) 
%    
ic = [0 0 0 -1.2 -1.2 -10.4]*le-04; % set initial conditions 
%  
% load data 
%  
load w51kl00.md 
t=[0;w51kl00(l:7938,l)]; 
tt = diff (t); % COMPUTES THE DEL.T'S 
tt = reshape(tt, 126,63); % This phase locks one cycle 
mdt = mean(tt); % Mean dt for each cycle 
for i = 1:63; % Reference each cycle to its own mean 

tt(:,i) = tt(:,i)./mean(tt(:,i)); 
end 
tt = tt^meanCmdf); 
dtrat = tt(l)/mean(tt(2:63,l)); 
teeth = linspace(0,2*pi,127); tooth = 2*pi/127; 
th51 = ic(5) + tooth*dtrat; 
tttt = mean(tt); % This ensemble averages the phases 
cyctm = sum(tttt); % Time for one complete cycle 
thetar5 = [ic(5) teeth(l:125)+th51]; 
thetar5(127) = 2*pi+ic(5); 
time5 = [0,cumsum(tttt)-(l -dtrat) *tttt(l)]; 
time5(127) = cyctm; 
load wllklOO.md 
t = [0;wllkl00(l:7920,l)]; 
tt = diff(t); 
tt = reshape(tt,720,l 1)'; % Phase lock one cycle 
tt = tt(2:ll,:); 
tttt = mean(tt); % Ensemble average the phases 
thetarl = linspace(0,(2*pi),721); % Known positions of the O.E. windows 
timel = [0 cumsum(tttt)]; 
timel = timel *(cyctm/max(timel)); % Adjust times to agree 
omega = (1/cyctm) *2*pi; 
N = 512; % set number of nodes for solution 
%  — 
% calculate, interpolate, and filter position data 
%-— — — 
time = linspace(0,cyctm,N)'; 
dt = cyctm/N; 
theta = linspace(0,2*pi,N)'; 
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fcv = 100*dt;       % filtering cut-off value as ratio of sampling freq 
thetarl = interpl(timel,thetarl,time,'spline'); 
thetar5 = interpl(time5,thetar5,time,'spline'); 
thetal = theta + vfilt(thetarl-theta,fcv); 
theta5 = theta + vfilt(thetar5-theta,fcv); 
% - 
% derive velocity and acceleration data 
%  
omega 1 =deriv(thetal,dt); 
omega5 = deriv(theta5,dt); 
accell = deriv(omegal,dt); 
accel5 = deriv(omega5,dt); 
%  
% plot raw and filtered omegas for the two dofs 
%  
figure (1) 
plot (time, deriv(thetarl,dt), mX), grid, hold on 
plot (time, omegal, V) 
plot (time, deriv(thetar5,dt), 'cX) 
plot (time, omega5, T?) 
plot (time, ones(size(omega5))*omega,'g') 
title CRaw and Filtered Angular Velocity at DOFS 1 and 5) 
xlabel ('time (seconds)) 
ylabel ('angular velocity (rad/sec)) 
orient landscape 

% plot raw and filtered thetas for the two dofs 
%  
figure (2) 
plot (time, thetarl-theta, 'mXO, grid, hold on 
plot (time, thetal-theta, V) 
plot (time, thetar5-theta, 'cX) 
plot (time, theta5-theta, tO 
title (Raw and Filtered phase deviation at DOFS 1 and 5*) 
xlabel ('time (seconds)) 
ylabel ('phase deviation from mean (rad)) 
orient landscape 
%   
% set calibration data 
%  
j 1=0.02443; %lb*in*secA2/rad 
j2=0.2482; %lb*in*secA2/rad 
j3=0.1462; %lb*in*secA2/rad 
j4=0.2482; %lb*in*secA2/rad 
j5=7.222; %lb*in*secA2/rad 
j6=0.2870; %lb*in*secA2/rad 
kl=3.11e6; %lb*in/rad 
k2=7.00e6; %lb*in/rad 
k3=7.00e6; %lb*in/rad 
k4=10.82e6; %lb*in/rad 
k5=1.304e6; %lb*in/rad 
cl2=0.01 %lb*in*sec/rad 
c23=0.01 %lb*in*sec/rad 
c34=0.01 %lb*in*sec/rad 
c45=0.01 %lb*in*sec/rad 
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c56=0.01; %lb*in*sec/rad 
c2=0.013; %lb*in*sec/rad 
c3=0.013; %lb*in*sec/rad 
c4=0.013; %lb*in*sec/rad 
Tload = 1200; % lbf*in Load torque 
Fpar=100; % lbf Parasitic force 
Taux =168; % lbf*in Valvetrain and auxilliary torque 
Tpmp = 9.5; % lbf*in Oil pump torque 
%  
% Solve equations 6, 5, and 1 
%  
global AA BB CC DD TT 
icomega=105.5*[l 11111]; 
thetar2=zeros(N,l); thetar4=thetar2; thetar6=thetar2; thetar3=thetar2; 
omega2=zeros(N,l); omegar3=omega2; omega4=omega2; omegar6=omega2; 
thetar3(l) = ic(3); 
omegar3(l) = icomega(3); 
% solve equation 6 for theta6 and omega6  
bcval = [ic(6),ic(6)+2*pi]; 
AA = j6; BB = c56; CC = k5; 
DD = -Tload + c56*omega5 +k5*theta5; 
ff=zeros(N,l); 
kk = zeros(N,N); 
fori=l:(N-l); 

h = time(i+l)-time(i); 
k = -(AA/h)*[l-l;-l l] + (BB/2)*[-l 1;-1 1] + (CC*h/6)*[2 1;1 2]; 
f=(h/2)*[DD(i);DD(i+l)]; 
kk(i:i+l,i:i+l) = kk(i:i+l,i:i+l) + k; 
ff(i:i+l) = ff(i:i+l) + f; 

end 
% apply boundary conditions  
kk(l,:) = zeros(l,N); kk(N,:) = zeros(l,N); 
kk(l,l)=l; kk(N,N)=l; 
ff(l) = bcval(l); ff(N) = bcval(2); 
% solve matrix eqn  
theta6 = kk\ff; 
omegaö = deriv(theta6,dt); 
% solve equation 5 for theta4 ~T— 
thetar4 = (Taux + k5*(theta5-theta6) + c56*(omega5-omega6) +... 

k4*theta5 + j5*accel5)A4; 
theta4 = theta + vfilt(thetar4-theta,fcv); 
% - solve equation 1 for theta2  
thetar2 = (Tpmp + kl*thetarl + jl*accell)./kl; 
theta2 = theta + vfilt(thetar2-theta,fcv); 
% compute omega and accel for dofs 2 and 4  
omega2 = deriv(theta2,dt); % raw velocities 
omega4 = deriv(theta4,dt); 
accel2 = deriv(omega2,dt); % calculated accelerations 
accel4 = deriv(omega4,dt); 
%  
% Solve equations 2, 3, and 4 in three steps 
% - 
R = 2.25; % Crankshaft eccentricity (in) 
W = 7.556; % reciprocating weight(lbf) 
g = 386; % The acceleration of gravity (in/secA2) 
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B = 3.875; % Cylinder Bore (in) 
L = 8.80; % Connecting Rod length (in) 
j2rec=(W*RA2/(2*g))*(l-cos(2*theta)); %lb*in*secA2 
j3rec=(W*RA2/(2*g))*(l-cos(2*(theta-4*pi/3)));        %lb*in*secA2 
j4rec=(W*RA2/(2*g))*(l-cos(2*(theta-2*pi/3)));        %Ib*in*secA2 
Tlcyl = zeros(N,l); T2cyl=Tlcyl; T3cyl = Tlcyl; 
pref = 14.706 + 0.00205*((omega*60/(2*pi))-634);    % ref press (psia) 
Nl = min(find(thetal>=(2*pi/3))); % index for TDC Cyl #3 
N2 = min(find(thetal>=(4*pi/3))); % index for TDC Cyl #2 
acceB = zeros(size(accel2)); 
si = R*cos(theta) + sqrt(LA2 - (RA2)*sin(theta).A2); 
s2 = R*cos(theta-4*pi/3) + sqrt(LA2 - (RA2)*sin(theta-4*pi/3) A2); 
s3 = R*cos(theta-2*pi/3) + sqrt(LA2 - (RA2)*sin(theta-2*pi/3) A2); 
Spl = deriv(sl,dt); Spdl = deriv(Spl,dt); % Piston speed (in/sec) and 
Sp2 = deriv(s2,dt); Spd2 = deriv(Sp2,dt); % Piston acceleration (in/secA2) 
Sp3 = deriv(s3,dt); Spd3 = deriv(Sp3,dt); 
Tlrec = -(W/g)*Spdl.*(Spl/omega); % in*lbf Reciprocating torque 
T2rec = -(W/g)*Spd2.*(Sp2/omega); 
T3rec = -(W/g)*Spd3.*(Sp3/omega); 
Tparl = Fpar*abs(Spl/omega); % in*lbfParasitic torque 
Tpar2 = Fpar*abs(Sp2/omega); 
Tpar3 = Fpar*abs(Sp3/omega); 
% Step one: Determine known values of Tcyl from pref  
% (known values of Tcyl are 0)  
% Step two: Solve for theta3 throughout cycle  
% solve equation 2 for theta3  
thetar3(Nl:(N2-l)) = ((j2+j2rec(Nl:(N2-l))).*accel2(Nl:(N2-l)) + ... 

cl2*(omega2(Nl:(N2-l))-omegal(Nl:(N2-l))) +... 
kl*(theta2(Nl:(N2-l))-thetal(Nl:(N2-l))) + k2*theta2(Nl:(N2-l)) + ... 
c2*omega2(Nl:(N2-l)) - Tlcyl(Nl:(N2-l)) - Tlrec(Nl:(N2-l)) + ... 
Tparl(Nl:(N2-l)))./k2; 

% solve equation 3 for theta3 and omega3  
BB = c23+c34+c3; CC = k2+k3; 
DDT = T2cyl + T2rec - Tpar2 + c23*omega2 + k2*theta2 + c34*omega4 + k3*theta4; 
fori= l:(Nl-2); 

AA = j3+j3rec(i:i+l); TT = time(i:i+l); DD = DDT(i:i+l); 
[T,X]=ode45('seqns2',[time(i),time(i+l)],[thetar3(i);omegar3(i)]); 
thetar3(i+l) = X(length(T),l); 
omegar3(i+l) = X(length(T),2); 

end 
% solve equation 4 for theta3  
thetar3(N2:N) = ((j4+j4rec(N2:N)).*acceI4(N2:N) + k3*theta4(N2:N) + ... 

(c45+c4)*omega4(N2:N) - c45*omega5(N2:N) + k4*(theta4(N2:N) -... 
theta5(N2:N)) - T3cyl(N2:N) - T3rec(N2:N) + Tpar3(N2:N))./k3; 

% filter theta3 and derive omega3 and acceB  
theta3 = theta + vfilt(thetar3-theta,fcv); 
omega3 = deriv(theta3,dt); 
acceB = deriv(omega3,dt); 
% Step three: solve for remaining Tcyl values  
% solve equation 2 for Tlcyl  
Tlcyl(l:(Nl-l)) = -Tlrec(l:(Nl-l)) + Tparl(l:(Nl-l)) + (j2+j2rec(l:(Nl-l))).*acceI2(l:(Nl-l)) + , 

cl2*(omega2(l:(Nl-l))-omegal(l:(Nl-l))) + kl*(theta2(l:(Nl-l))-thetal(l:(Nl-l))) +... 
c23*(omega2(l:(Nl-l))-omega3(l:(Nl-l))) + k2*(theta2(l:(Nl-l))-theta3(l:(Nl-l))) +... 
c2*omega2(l:(Nl-l)); 

Tlcyl(N2:N) = -Tlrec(N2:N) + Tparl(N2:N) + (j2+j2rec(N2:N)).*accel2(N2:N) + ... 
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cl2*(omega2(N2:N)-omegal(N2:N)) + kl*(theta2(N2:N)-thetal(N2:N)) + ... 
c23*(omega2(N2:N)-omega3(N2:N)) + k2*(theta2(N2:N)-theta3(N2:N)) + ... 
c2*omega2(N2:N); 

% solve equation 3 for T2cyl  
T2cyl(Nl:N) = -T2rec(Nl:N) + Tpar2(Nl:N) + (j3+j3rec(Nl:N)).*accel3(Nl:N) + ... 

c23*(omega3(Nl:N)-omega2(Nl:N)) + k2*(theta3(Nl:N)-theta2(Nl:N)) + ... 
c34*(omega3(Nl:N)-omega4(Nl:N)) + k3*(theta3(Nl:N)-theta4(Nl:N)) + ... 
c3*omega3(Nl:N); 

% solve equation 4 for T3cyl  
T3cyl(l:(N2-l)) = -T3rec(l:(N2-l)) + Tpar3(l:(N2-l)) + (j4+j4rec(l:(N2-l))).*accel4(l:(N2-l)) + 

c34*(omega4(l:(N2-l))-omega3(l:(N2-l))) + k3*(theta4(l:(N2-l))-theta3(l:(N2-l))) +... 
c45*(omega4(l:(N2-l))-omega5(l:(N2-l))) + k4*(theta4(l:(N2-l))-theta5(l:(N2-l))) +... 
c4*omega4(l:(N2-l)); 

% Convert to FT*LBF  
Tlcyl = Tlcyl./12; 
T2cyl = T2cyl./12; 
T3cyl = T3cyl./12; 
%  
% Determine and plot measured/predicted cylinder torques 
%  
load walklOO.md % ECA cylinder #1 pressure data 
load wblklOO.md % ECA cylinder #2 pressure data 
load wclklOO.md % ECA cylinder #3 pressure data 
pa = reshape (walkl00,5,720); Plcyl = [pa(l,:) pa(l)]; 
pb = reshape (wblklOO.5,720); P2cyl = [pb(l,:) pb(l)]; 
pc = reshape (wclkl00,5,720); P3cyl = [pc(l,:) pc(l)]; 
pos = linspace(0,2*pi,721); 
dtm = (2*pi/omega)/720; 
slm = R*cos(pos) + sqrt(LA2 - (RA2)*sin(pos).A2); 
s2m = R*cos(pos-4*pi/3) + sqrt(LA2 - (RA2)*sin(pos-4*pi/3).A2); 
s3m = R*cos(pos-2*pi/3) + sqrt(LA2 - (RA2)*sin(pos-2*pi/3).A2); 
Splm = deriv(slm,dtm);    % Piston speed (in/sec) 
Sp2m = deriv(s2m,dtm); 
Sp3m = deriv(s3m,dtm); 
Tlcylm = -((Plcyl.*pref-pref)*(pi*BA2/4).*Splm/omega)/12; % (ft*lbf) 
T2cylm = -((P2cyl.*pref-pref)*(pi*BA2/4).*Sp2m/omega)/12; % (ft*lbf) 
T3cylm = -((P3cyl.*pref-pref)*(pi*BA2/4).*Sp3m/omega)/12; % (ft*lbf) 
figure(3) 
plot(pos/ricylm,'bX',pos,T2cylm,'bO',pos,T3cylm,'b.') 
legendCCyl #1 ','Cyl #2','Cyl #30 
grid, hold on 
plot(thetal,Tlcyl,'rX',thetal,T2cyl,'rO',thetal,T3cyl,'r.') 
title(Measured (blue) and Predicted (red) Cylinder Gas Torques') 
ylabel(Torque (ft*lbf)') 
xlabeK'Crank Angle) 
orient landscape 
figure (4) 
plot(pos,T 1 cylm+T2cylm+T3cylm, ft) 
grid, hold on 
plot(thetal,Tlcyl+T2cyl+T3cyl,'r') 
title(Measured (blue) and Predicted (red) Total Cylinder Gas Torque") 
ylabel (Torque (ft*lbf)') 
xlabel ('Crank Angle) 
orient landscape 
figure(5) 
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degm= 180*pos/pi; 
degp= 180*theta/pi; 
subplot(3,l,l) 
plot(degm,Tlcylm,'k.') 
grid, hold on 
plottdegp/Tlcyl.TO 
legend (Meas      ',Pred      *) 
ylabel ('Cyl #1 Torque (ft*lbf)') 
title('1000 RPM, 100 ft*lbf Cylinder Gas Torques') 
axis([0,360,-500,1000]) 
subplot(3,l,2) 
plot(degm,T2cylm,Tc.') 
grid, hold on 
plot(degp,T2cyI,'k') 
ylabel ('Cyl #2 Torque (ft*lbf)') 
axis([0,360,-500,1000]) 
subplot(3,l,3) 
plot(degm,T3cylm, Tc. 0 
grid, hold on 
plot(degp,T3cyl,'k') 
ylabel ('Cyl#3 Torque (ft*lbf)') 
xlabel('Crank Angle (deg)') 
axis([0,360,-500,1000]) 
orient tall 
figure (6) 
plot(degm,T 1 cylm+T2cylm+T3cylm, Tc. *) 
grid, hold on 
plot(degp,Tlcyl+T2cyl+T3cyl,'k') 
title ('1000 RPM, 100 ft*lbf Total Cylinder Gas Torque) 
legend (Meas      ',Pred      ) 
ylabel (Total Cylinder Gas Torque (ft*lbf)') 
xlabel ('Crank Angle (deg)) 
axis([0,360,-400,800]) 
orient tall 

% DERIV 
% Function to determine 1-D derivative of a vector using 
% a central difference technique. 
% Xd = Deriv(X,dt) 
% Returns the derivative of the vector X as a function of 
% t, given the time step dt. Default value for dt is 1. 
function xd = deriv(x,dt) 
if nargin == 1; 
dt=l; 

end 
N = length(x); 
xd = zeros(size(x)); 
xdf = diff(x); 
xd(2:(N-l)) = (xdf(2:(N-l)) + xdf(l:(N-2)))./(2*dt); 
xd(l) = xdf(l)/dt; 
xd(N) = xdf(N-l)/dt; 
% Forward difference format 
%xd(l:N-l) = xdf/dt; 
%xd(N)=xd(l); 
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% SEQNS2 
% Function to solve arbitrary 2nd order ode in form 
% AAxdd + BBxd + CCx = DD 
% where AA, BB, CC, and DD are global variables 
function xdot=seqns2(t,x) 
global AA BB CC DD TT 
DDS = DD(1) + diff(DD)*(t-TT(l))/diff(TT); 
AAS = AA(1) + diff(AA)*(t-TT(l))/diff(TT); 
xdot = zeros(2,l); 
xdot(l) = x(2); 
xdot(2) = (DDS - BB.*x(2) - CC.*x(l))./AAS; 

% VFILT 
% Function performs fast fourier transform filtration 
% of high frequency components of given data 
% Y = VFILT(X,FCV) 
% Y is filtered data 
% X is input data 
% FCV is frequency cutoff value (as a fraction of 
% the sampling frequency) 
function Y = vfilt(x,fcv) 
N = length(x); 
D = fft(x); 
ico = fix(fcv*N); 
DF = zeros(l,N); 
DF(l:(ico+l)) = D(l:(ico+l)); 
DF((N-ico+l):N) = D((N-ico+l):N); 
Y = ifft(DF); 
Y = real(Y); 
Y = reshape(Y,size(x)); 

% number of data points 
% Fourier transform of data 
% index in D 

% filter high frequencies 
% mirror image data 
% inverse fft 

Program used for analysis of torsional model natural frequencies and modal 

shapes. 

%          NATFREQ 
%  
% Determines natural frequencies of torsional model 
j 1=0.02443; %lb*in*secA2/rad 

%lb*in*secA2/rad 
%lb*in*secA2/rad 
%lb*in*secA2/rad 
%lb*in*secA2/rad 
%lb*in*secA2/rad 

j2=0.2482; 
j3=0.1462; 
j4=0.2482; 
j5=7.222; 
j6=0.2870; 
jrec=0.02478; 
kl=3.11e6; 
k2=7.00e6; 
k3=7.00e6; 
k4=10.82e6; 
k5=1.304e6; 
c 12=0.01; 
c23=0.01; 
c34=0.01; 
c45=0.01; 

%lb*in/rad 
%lb*in/rad 
%lb*in/rad 
%lb*in/rad 
%lb*in/rad 
%lb*in*sec/rad 
%lb*in*sec/rad 
%lb*in*sec/rad 
%lb*in*sec/rad 
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c56=0.01; %lb*in*sec/rad 
c2=0.013; %lb*in*sec/rad 
c3=0.013; %lb*in*sec/rad 
c4=0.013; %lb*in*sec/rad 

J = [j 1 0 0 0 0 0;0 j2+jrec 0 0 0 0;0 0 j3+jrec 0 0 0;... 
0 0 0 j4+jrec 0 0;0 0 0 0 j5 0;0 0 0 0 0 j6]; 

%  
K = [kl -kl 0 0 0 0;-kl kl+k2 -k2 0 0 0;0 -k2 k2+k3 -k3 0 0;. 

0 0 -k3 k3+k4 -k4 0;0 0 0 -k4 k4+k5 -k5;0 0 0 0 -k5 k5]; 
% — - 
ws = eig(K/J); 
w = sqrt(ws) % (rad/sec) natural frequencies 
whz = w/(2*pi)    % (Hz) natural frequencies 
for i= 1:6; 

kj = K-J*w(i)A2; 
A(l,i) = l; 
A(2,i) = -A(l,i)*kj(l,l)/kj(l,2); 
A(3,i) = (-A(l,i)*kj(2,l)-A(2,i)*kj(2,2))/kj(2,3); 
A(4,i) = (-A(2,i)*kj(3,2)-A(3,i)*kj(3,3))/kj(3,4); 
A(5,i) = (-A(3,i)*kj(4,3)-A(4,i)*kj(4,4))/kj(4,5); 
A(6,i) = (-A(4,i)*kj(5,4)-A(5,i)*kj(5,5))/kj(5,6); 

end 
[whz.I] = sort(abs(whz)); 
A 
figure (1) 
for i = 2:6; 

subplot(5,l,i-l) 
plot(A(:,I(i)),'k'), grid, hold on 
plot(A(:,I(i)),'ko') 
ylabel ([num2str(whz(i),4),'Hzl) 
%title ([Mode ',num2str(i,l)]) 

end 
orient tall 
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APPENDIX F. UNCERTAINTY ANALYSIS 

Various sources of error will affect the accuracy of results in this study. The 

following discussion contains a qualitative summary of the potential sources of 

experimental uncertainty. 

1. Optical Encoder 

The use of the flexible coupling results in a torsional oscillation of the encoder 

disk about the actual angular position of the crankshaft nose (61). The frequency of the 

oscillation is apparent from the measured data and discussed in Appendix C. Heidenhain 

[Ref 21] lists a kinematic error of transfer of ±10" for the encoder coupling, 

corresponding to a vibrational amplitude of about 1 x 10"4 radians. The oscillation seen 

in experimental data varies from about that value up to 1 x 10"3 radians. But this high 

frequency oscillation is easily filtered out of the raw data, and its amplitude is still an 

order of magnitude smaller than the amplitude of the crankshaft angular velocity 

fluctuations. 

The 3600 count optical encoder allows a theoretical adjustment to within 0.1°, but 

this is only as accurate as the TDC alignment for the engine. Due to an inadequate 

method of determining TDC, this error may grow to 1 or 2°. 

2. Flywheel 

The TDC position for the flywheel data is determined by a comparison of the first 

At to subsequent values, assuming that the crankshaft has zero twist at TDC. This is a 

reasonable assumption, but not completely accurate. Therefore, an expected error is 

introduced due to ambiguity in determination of the flywheel TDC angular position. 
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Tooth to tooth variation will result in a cyclic error for the flywheel data. A 

motoring measurement of the flywheel at a constant speed could be used to generate a 

correction signal, eliminating this error [Ref 8]. This was not done for this study, 

assuming the error would be small relative to the measured velocity fluctuations. 

A radial vibration is present in the flywheel during engine operation. Since the 

proximeter is mounted to view the ring gear teeth from the side, this radial vibration will 

cause the position of the proximeter relative to the tooth to oscillate up and down. This 

up and down oscillation will induce a cyclic variation in the pulse width not associated 

with crankshaft rotational velocity fluctuations. However, it is expected that this 

variation is reasonably small enough to be ignored. 

3.        Measurement Error 

Engine speed and load vary slowly during data collection. Since data for the 

various runs are not collected simultaneously, there are small differences in speed and 

load for data comprising a set. Typically, engine speed variation was within 20 RPM of 

the stated value, and load was within 1 ft*lbf. A correction is made in the pressure 

prediction program to account for small differences in rotation speed between the 0i and 

05 data. 
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