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1o Electrodynemic equaticns of megnetic hydrodynamics have the

3E F2d
S =rtv X Bl + - AR (1.1)

divH = 0,
where ¥ ig magnetic field veetor, ¥ - veloc“?‘*ty vector of the confuct-
ing fluid, ¢ - conductivity, ¢ - velocity of light,

Electric eurrent density

j= - rotH (1.2)

Iet vs congider steady, axially symmetricel, meridian flowe in
which the tangential compoprsnts of the welocity and currents is sbeent
P )

vy =0, Ja=0 ' (1.3)
f oniitien (1.3)s we obtain from equation (1.1)

bMeking uwe o
elatione:

the following re
var'“‘erx:O (i.é)

2 (v Hy) a(v,H,) o (6*35 1 AHy H, #H, (1.5)
dz + or 7 4=nc - )
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In the case ¢f the meridian flow of sn inecompressible fluid at
the velocity v, = v, (for example, between two eocaxial cylinders with
redii & and b) we arrive st the syetem of eguations

H.=0, Hy=0 (1.8)

0Hy 5 My, 5 (@2}’;& § 8Hy, Hy
5 T e ST\ e TV H ‘“r*) ("mﬂ) (. |

"and the equations of motion will be written in the i’orm

£y f
? 8Hy . Hy ) % . . ° (1.8
'5{13—‘"” (He 5 tm)o ox H' (+8)

In the plane case, egquetions (1.8) are simultsneous when H is
arbitrary. In the axially symmetrical case this is achieved approx-
imately when the values of HE/Y ure smsil,

We seek the solution of egustion (1.7) by Fourier msthod in the
form .

Hylx, 1y = X @) R (r) (2.82)

Computations give X (z) = Aekx o Behr

("m“!xm 2 ) (&'9):

2?:6»@

R ()= CJ (A} 4-DY (k1)

where J., Y, are Bscasl functions of the firet order, of the first and
second kind. : ‘

In eddition, the linear function of the rsdius Hep = Kr setise
fies equation (1.8). Therefore, the solution may be written in the

form o

Hy(z, r)= 2 (A" 4 Be" ™) ICJ, ) + DY (M)l - Kr (1.10)
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The values of ),i are determined from the boundary conditions
of the problem, The cylinder surfaces limiting the flow are congide
ered to be non-conducting. Therefore, the density on them of the
radial cowponent of the current, j,, must equal zero

I-{z, a) =0, Je(z, B) =0 {1.41).
or, ip accordance with (1.2), we will write the boundary conditicns in
the form ,

oAy ( "”&') =0
F. resfi - Iz Panb
Hence

1,00 YL (b — J (b)Y (ea) = 0 (1.12)




Coefficient K i3 determined by the total axial current

I = Kn(b*—a) (1.124)

bdecordingly, solution (1.10) ie written in the form

Ho(z, r)= 3 (Ae" 4 B/e*2%) (¥, (ha) Ty (W) —

i=1 ,
. i ’ .
| ‘”Jﬂkm}l0¢)+“;@EfET'A (1.13)
wvhere Ai' and Ei' are new constants which are determined, for example,

by the given distribution of current in two cross sections. ®
Tet us note the effect of the flow velocity v, on the flow of
electric eurrent in the conducting fluid. Let the electric current
flow off with @ nonuniform density distribution over the radius in
eross section X = ¢ which has some first system of eleectrodes.
The second eleetrode is located on Xx'z 4 o2 oOr on X VE -
whieh eorresponds to the electrie current flowing off with the flow.
or against the flow., Since ¥ L0 end ky » 0, we have from the
boupdary econdition of the flow parameters at infinity:

Ir the forwer cage ~
Hy'~ exp [(1 4+ VI + o0 g-] | (1.44)
In the latter case

He*~ exp [(1 +VITomy| (1.15)

1.,e. the non-uniformity of the current density is attenuated uore
repidly sgainst the flow than with the flow of the fluid.

With the decresse of the relstion (b = #)/r in the limit we go
over to the plane csse for which the solution is exact.

2. Iet us show similarly to the well knowp exaet sclutions for
the Tlows of viscous incompressible fluia / 2=l _/thet in the case of
the meridian flows of incompressible conducting fluid, the equations
of magnetohydrodnamics ‘

b, 30, 1t ap 1, 9H,
e B = T T e Timl B (2.1)
dv, au, top 4 g ¢ &(rHy) .
2 s e N 22)
o du v .
X oo = ‘ )
ox + ar + , (2 3)

-8 ' 9 2 [ PHy il 1 9H, H,) .

3‘5(”“”‘)_{.3; (v:Ho) = 4rc ( art tgmt T Hm TR ‘ (2:4)
permit the following clags of automatiecally scaled solutions: inde-
repdent veriables and the defining parsmeters are r, X, c?/o, Fe

Let us consider in a similar manner [T?;Z motions which are
defined by parsmeters r, X, c?/a‘, P end, in addition, by only one

-— 3 -




‘d.tmensional constant A
(A} = LoTeM : (2.5)

When
2+ +3=0 : (2.6)
there exists only one dimensionless variable C = x/r.

* _ ', _ Therefore, there exists on the basis of the dimension theory
[ "/ the following cless of automatically scaled solutionsd)

P ey
= g O w= g3 (27
* VEr (e Ve |
Homgm 00 p=(35)EPO @

where funetions f, ¢, 4) s P are definéd by the following system of
ordinary differential equations: :

(F U~ —~fo+ P + ;O =0
qy’(f.-Cq;)mcpq:»-—CP'wZP»——%—'m’ »-‘:0‘ (2.9
I
A4+ (X —/+ D +2pD =0
Let us introduce function X = £ —C ¢ which is associated with
the function of the current ¥ by the relation:
’ 4 o
b=ry (f=y—% 9o=—x) (=10)
~he first one of the equstions (2.9) may be integrated by make
ing use of the third one of them, Ve will obtain

2= + P+ + ®? =y = const A (2.11)

and will represgent the remsining equations (2.9) in ihe form

O AL — AT = by (2.12)
(1O + (K= —2(®=0 (2.13)

1) It is interesting to note that a broader class of automatically
scaled solutions with respest to parameter S, o/r corresponds to

e

the approximate statement of the problem / 5;/ vwhen Rz &5/ 03/‘0“9 71,



In the‘clees of the flows being considered, the eguipotential
surfaces are defm&d with the aid of Oum's generslized law:

+

' ’BH‘
fe=— =o(E— »xm\ (2.44)
B (rHy) f : o
. 'icrt ri drs =8 [E:t‘ + ry v.Hg J ‘ (2.15)
Yhenee
. i ' .
U—:-;-[(!—%C’)@ — 3@} (2.1&)

vhere U is the potential of the electric field E.
The direction of the currsnt slong the rays passing thfcurn the
origin of coordinstes is characteristic of the flows being considered.
Iet ug examine some exsmples.

Conical Discherge in Unbounded Medium., - Let the electrical
discharge be concentrated in the conical region (Figure 1) heving the
central angle of %% = ar c‘T’E@ Qutaids the discharge region the meg-
' ﬁetié fialé coincides with the field of the straight current

: A
Ho= o4,

OO = ‘”‘5"" AVIe g K1, C<ty (247

Fi%ure l.

Then from squetions (? 12) and (E.l’%‘) follows x@);f when
g 44‘0 and the problem is reduced %o the integration of equa‘{n ons

{2.12) and (2.13) within the conieal region ¢ ?Q’ with the boundary
conditions:

GC)=Ki, yG)=fy
(condition of the continuity of the solution)
L€)=0 , _ {2.18)

Nim@®Q)T =0, By ((){=0 when L—»o0 (condition on the axis)
The ralations cited completely define the solution and

determine the conneetion betwsen £, and T.

' When the central angles of the conleal region are smell

(§'¢, f&l), we mey write the following solution confining ourselves

to the first terms of the decomposition with respact to €=l

1@ = a+ (o —2 (3) 2= (5] + o™ .19
o©) = &[1- ‘ %m%+%(¢’~3)-§?]+0'(¢f‘) .



Here
af =/t 4 —}K’l’. B = 2402 (fy ~a) (2 — 3a) 0o’ + ]

and fn iz defined by the relation

pfof — itk fet-n)] = kRe )

The form of the lines of the current in such a flow Is shown

in Figure 1. Conical discharge produces the wotlor of the fluld
{ejeetion). The nececssity for the ovcurrence of the ejection hes
been demonstreted in the work / & “/

Dischargs in s Coniesl Channel wiih Non-Copducting Walle.
In thig case the bourdery conditions have the form

r)=0,  @C)=KI

B

lim D () =0, im{y' (=0 mpr (> (2.21)

rd the eonstant ¥ will be gatevmin:® by the tpowert of the

1qe goures gt the origin of iv2 ecoordipstes (sec gimilarly in

/ 5 ). Whan . 1, one mey write the foll¥owing aprrovie-
+

b rolutioﬁe

L Q)= & 4 4 —LFe + o) 2 +0(9)

2.22)
i : I 1 .
O =5 [1-Fa + T B g] 0
whare ' Py _ 122K
a=V LK+ P(L), b= BRI -
e=Lte@r~ 1)~} 4@ ) Fatt L1 ] '
i pioture of the current liues in the case of an impulse

source of zerc power iz given in Figurs 2. The flow analyzed ig
gharacterized by the sccumulestion of ihe flow foward the axis,
apvroxdmate golution can be writien sinmilarly when e & 1,
A picture of the line of the current is given in Figure 3:

(O =alt—tT) o), PO =gt bal Lo @20

LI




where , v -

be==KIJ
a® = %[32,3: B bar 2 V24 4 A 4] Msz + ][2‘%32’;02} (2.25)

3. The anzlogy of the electrodynsmic snd viscous flows

of 2 fiuid 1s known. In the case of & viscous
£iuid, the kalancing of the paraircters of &

rctatiCﬂJl flow correspeonds to eguation (1.7).

Let ue comsider, for example, the axie
ally synmmetrical f£low of a viscous fIuid which
moves inside a eylindricel boundary having
raediue r, at the constant longitudinel veloe
elty =V, without fricticn ageinst the wells,
(The simplifying assumption concerning the sbe- Figure 2.
gsence of friction sgainst the walls is schieved
in some casss in prectice. For exe%ple, freely rotating walls sre
used in centrifugel pumps). From the condition of continuity

4 8% . '
— & (r0) + =3- + ax A I (3.1)

Making uvse of the conditions
O [0r =0 (7x = 1), Ouy /3% =0 exizl symeetry (3.12)

and of the condition on the wall (v, 20)rar,: we find that the
redial velocity equals zero eVErvxhere. In the absence of mass
forees, the equation of motion will be written similsrly to (1.7
in the form

3o, 3*1)9 3%, joay "a) '
Uy 3r -V e ——-V(a’t +-;- Er ‘—-'—-;;* (3.2)

where ¥  is the csafficien* of kinemutic viscositye

Owing to the effect of viscosity during the motion of the
flow along axis %, the nvnun1formit} of tengential velocities will
be diminishing, O vy /Px ~» G, and the profile of the tangential
veloeity vea epproaches the luw of the rotatior of solids,

}c.%rﬁe. Vo =wr, where «? is the engular veloceity of rotation.
The process of bslencing some given small nonmuniformity of
velocities elomg x vwhen v 'r/¥ L1 (v,' is the differencs of the

redial velocity from zero) is defined by the differential equation
(3,2) the solution of which ie carried out as shown in Section 1.

‘7 w——




In the particular case when the
profiles of the veloelty vg-o'r
vary slong axis x in e like manner,
the velocity profiles ere defined by
the following relation upen with~
arawal from the source of the flow of
rotation

Vg == r + ¢g eXp [ e .

vy -
ez e - (3.3)
i]/';’j‘;“ +3.39 );’;] J:( 1.84 I

Plus sign in the relation (3.3) corrssponds %o x<£0 and

minus sign - to x>0, i.e. the more intensive balncing of the

nonuniformity of the tangentisl velocities occurs im the direction

opposite the flow of the f£luid.

1% follows from the relation (3.3} that the rate of balancing

{ncreases with the diminubion of the nupber for RargVe/»¥ o

The balancing of the paremeters of ths rotational turbulent

fiow, in waich unlike the laminar viscous fiow l_ 6 _7 attennztion
will be inversely proportionmal to Xx

i

(vaz -wr)m =

can be exemined in & similar manner.

le

Z2a

3

L} -

Submitted 1L april 1959

LITERATURE CITED

L. Do Landau, Ye. M, Lifghits - Electrodynamics of Continuous
Mediz. GITIL (Techniecsl Texbooks State Publishing
House), 1957. ' '

L. T. Sedov - Similarity snd Dimension Methods in Mechanics.
GITTL (Technical Textbooks State Publishing Housa ),
Lkth edition, 1957.

N, A. Slezkin - Dynamics of Viscous Compressible Fluide
GITTL (Technical Textbocks State Publishing House), 1955.

. Do Landau, Ye. M, Lifshits ~ Mechanics of Continuous Medie.
GITTL (Technical Textbooks State Publishing House), 1953.




LITEXATURE CITED (Comt'd)

5¢ Ve Ne Zhigulev « Theory of Bleetrie Discharge in a Conducting
Medium. DN SSSR (Papers of the Academy of Sciences
UesR), volume 124, No. 6, 1959.

6. Ge Lo Grodzovskiy - Belancing the Non-Uniformity of Veloelty
Field in Axislly Symmetrical Turbulent and Laminar
Flow. DAN S55® (Papers of the Academy of Sciences

UsaR), volume XCVII, Noe 4, 1954.

#1561




THIS PURLICATION WAS PREPARED UNDER CONTRACT TO THE
UNITED STATES JOINT PUBLICATIONS RESEARCH SERVICE
A FEDERAL GOVERNMENT ORGANIZATION ESTABLISHED
TO SERVICE THE TRANSLATION AND EESEARCH NEEDS
OF THE VARIOUS GOVERNMENT DEPARTMENTS



