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I. This is «• translation of ths article written 
by G, 1. Grodiaovsfciy, A, jxfc Byukalov, V, V, Tokare? e 
and A» I. Tolstykh' in the Bulletins of the Academy cf 
Sciences USSR,'Division of Technical Sciences, 
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-JL-- Electr-odynsmic equations of magnetic hydrodynamics have the 
form £_  %J 

divH = 0, ~ = roUrxHi+r^-AH (1.1) 

where E  is magnetic field .vector, v - velocity vector of the conduct- 
ing fluid» <T- conductivity, c - velocity of light. 

Electric current density. 

Let us consider steady, axial ly syisastrieal, meridian flows in. 
which the tangential components of the velocity and. currents is absent 

s* = 0,   j* = 0 (1.3) 

Making use of condition (1-3)», we obtain from equation (.1*1) 
the following relations: 

vxHr-~vrHx^Q (1.4) 

—   1 



In the case of the meridian flow of an incompressible fluid at 
the velocity vx » vQ (.for ex&nple, between two coaxial cylinders with 
radii a and b) we arrive at the system of equations 

fffS=0,   HX**Q (1.6) ; 

+*£"£■) (•-•£)    «•'> &x 2 to»   2 \ de* 

'and the equations of motion will be written in the form 
3H» 

In the plane ease, equations (1*8) are simultaneous when H is 
arbitrary* In the axially symmetrical case this is achieved approx- 
imately when the values of £3wr aI*e s®all* 

We seek the solution of equation. (!»?) by Fourier method in the 
form 

fh(x, r)~X(z)R(r) 
(1.3a) 

Computations give % (x) = Ae*>x -j- Be*** 

where J, , Y-, are Beesel functions of the first order, of the first and 
second Rind* 

In addition, the linear function of the radius Up - Kr satis- 
fies equation (1,8),. Therefore, the solution may be written in the 
form _ 

CO 

«•(*. r) - 2 (A/isx + BA^IC^CM + AKiMl + *r   (140) 

The values of Xi are determined from the boundary conditions 
of the problem» The cylinder surfaces limiting the flow are consid- 
ered to be non-conducting* Therefore, the density on them of the 
radial component of the currents jr, must equal aero 

/,(*, a) = 0,   /r(t86)-0 (Ml). 

or, in accordance with (1.2),. we will write the boundary conditions in. 
the form 

Hence 



Coefficient K Is  determined by the total axial current 

/ = A'*(65~-a2) (1.12(0 

Accordingly, solution (.1*10) is written in the form 
00 

- Jx (V) I', (V) + ,(/,g8) r (i.13) 

where Ai« and B^ are new constants which are determined, for example» 

'by the given distribution of current in two cross sections. 
Let us note the effect of the flow velocity vQ on the flow of 

electric current in the conducting fluid.* Let the electric current 
flow off with a nonuniform density distribution over the radius in 
cross section x, » 0 which has some first system of electrodes. 

The second electrode is located on Xg'» «f* <^°   or on x2««-~o^ 
which eorresponds to the electtfier current flowing off with the flow, 
or against the flow. Since k^O and k9 >0» we have from the 
boundary eonditio» of the flow parameters, at infinity: 

In the former case 

H*'~ exp [(1 H- VTUFlM) •£] (1.14) 

In the latter case 

JV~ exp [(i + KT+W) r] <u5> 

i.e. the non-uniformity of the current density is attenuated more 
rapidly against the flow than with the flow of the fluid» 

With the decrease of the relation (b — a)/r in the limit we go 
over to the plane case for which the solution is exact. 

2* Let us show similarly to the well known exact solutions for 
the flows of viscous incompressible fluid / 2"4 _/that in the case of 
the meridian flows of incompressible conducting fluid, the equations 
of magnetohyöroänamics 

dvx 3vx i   »p      1   u    dM* (2|) 
*   8x     '   ^   dr f   <?x     4*p 9x 

J$L + i!L + i « 0 (2.3) 
dx    ^   dr   ^   r 

a It r*   {''M*        Pi's   .   i   MU        li*\    lo/, 

permit the following class of automstical3y sealed solutions: inde- 
pendent variables and the defining parameters are r, x, c-/<r, fr 

Let us consider in a similar manner £   '_/ motions which are 
defined by parameters r, x, c2/ tr,  fand, in addition, by only one 



dimensional constant A 

[A] = L*>T?*M (2.5) 

When 

2?2 + ?,-f3 = 0 (2.6) 

there exists only one dimensionless variable \ * x/r. 
* _ ? _ Therefore, there exists on the basis of the dimension theory 
l_   'J  the following class of automatically scaled solutions1' 

where functions f,f% $ , P are defined by the following system of 
ordinary differential equations: 

I /' (/ ~ c?) - ft + P' + ~ w - o 
^(/ — Opj — ff — CP' —2/> —^<M>'*=0 (2.9) 

(1 + C2) «^ + (3C — / -j- C?) «I»' + 2? <t> = 0 

Let us introduce function X r f —£f vi*ieh ^s associated with 
the function of the current f' by the relation: 

The first one of the equations (2.9) may be integrated by mak- 
ing use of the third one of them. We will obtain 

Xfc-Cx'J + P + T^-T»«»"* (21!> 

and will represent the remaining equations (2.9) in the form 

1) It is interesting to note that a broader class of automatically 
scaled solutions with respect to parameter £|3 oc^/r cQrresponös__to 
the approximate statement of the problem £ ^>'J  when E= l&fi/c-sftf >>1. 



In the class of the flows being considered, the äquipotential 
surfaces are defined with the aid of Ohm's generalized lawt 

J*«8 
Air     &. 33T-tf(£--Tr«W*) 

1*       An  r|  dr = « [£"* + 7" *V#« 
Whence 

—fld+CW 

(2.14) 

(2.15) 

(2.16) , 

where Ü is the potential of the electric field E* 
The direction of the current along the rays passing through the 

origin of coordinates is characteristic of the flows being considered. 
Let us\ examine some examples. 

Conical Discharge in Unbounded Medium. -> Let the electrical 
discharge be concentrated in the conical region (Fig-are 1) having the 
central angle of %  ss arc Ig-^» Outside the discharge region the mag- 
netic afield coincides with the field of the straight current 

figure 1« 

21        A 
tr  "~  r  % 

*KI, C<Co (2.17) 

Then from equations (2.12) and (.2,13) follows %(Qsz *0 «hen 
F <g0  end the problem is reduced to the integration 'of equations 

(.2.12) and (2.13) within the conical region K >€0 
witfe ths boundary 

conditions i 

(condition of the continuity- of the solution) 
X'{Ca) = 0 (2.18) 

iiraO(C)C«0,  lim'x'(C)C"=Owhen C_*ao- (condition on the axis) 

The relations cited completely define the solution and 
determine the connection between f0 and I. 

When the central angles of the conical region are smell 
(Co .3^1)» we may write the following solution, confining ourselves 

to the first teraas of the decomposition-with respect to £"* ■ 

X(0«^(/O~-»)(H[
2
"~(T)>°"     (2.i9)' 
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Here 

** -/.* + 4- #W        p* » 24C/(/0 -«) {{2/e - 3«) V + «] 

and    f    Is defined by the relation 

The form of the lines of the current in such a flow is shown. 
in Figure 1.    Conical discharge produce« the motion of the fluid 
(ejection).    The necessity for the  of- cur re nee of the ejection ht*s 
beets demonstrsted in the work £ 5 _/ » 

Discharge in a Coniesl Channel with Non-Conducting Walle.    - 
In this ease the boundary conditions! have the form 

z(C.)«o,      <&&)-»#/ 
UmC<I>(C) = Of        !imtx'(Q = 0     «p*   C-*<» (221) 

znd the constant    ^ will be öeiwn*?^? by the "power"  of the 
impulse source st the origin of tb? coordinates (sec similarly in 
£3 J/)*    ^ih&n      £ e   J^-lr one may write the following approxi- 
mate  solution; 

X<C)~a+c~~V(e + <i>~r + 0<C~s) 

««■ft« W - *> - i^W1«)^^] 

(2.22) 

(2.23) 

i> picture of the current  lines in the ease of an impulse 
source of.zero power is give» in Figur© 2»    The flow analyzed ie 
orhnr-scteriasd by the accumulation of the flow toward the axis,    in 
approximate solution can be written similarly when       *»«    <^J   1» 
A picture of the line of the current is given is Figure 3: 

x(0 fl(C_£t*) + o<C»),        O-(C)-6--g-C+6«P + 0(P)l   (2.24) 



where 
h^KJ 

a* = 1 [i26« + Wo* +- Wtf V^4TFV ] « k12* + ^VI <2-«) 

3» The analogy of the electrocSynaroic and viscous flows 
of a fluid is known. In the ease of a viscous 
fluid, the balancing of the parameters of a 
rotational flow corresponds to equation (1*?)» 

Let us consider,, for example, the axi- 
ally symmetrical- flow of a viscous fluid which 
moves inside a cylindrical boundary having 
radius. x      at the constant longitudinal velo- « 
city v'x

svo without friction against the wells* 
(The simplifying assumption concerning the ab-       Figure 2. 
sence of friction against the walls Is achieved 
in some cases in practice. For example, freely rotating walls »re 
used in centrifugal pumps). From the condition of continuity 

7 &<"'> + ~f = 0 (3.1) 

Making use of the conditions 

dvx /dx~0       (ffx=? p0),   <?ß& / d& = 0  axi a 1 cyror. e tr y (3.3a) 

and of the condition on the wall (vr=0)r»r , we find that the 
radial velocity equals zero everywhere. In the absence of mass 
fcx-ces, the equation of motion will be written similarly to (1.7) 
in the form 

to* 

where \t     is the coefficient of kinematic viscosity. 
Owing to the effect of viscosity during the motion of the 

flow along axis x, the nonuniformity of tangential velocities will 
be diminishing, *'v#./Ax. ->0, and the profile of the tangential 
velocity v-&,   approaches the law of the rotation of solids, 

lim TA «4A>r, where **-> is the angular velocity of rotation. 

The process of balancing some given small nonunifonaity of 
velocities along x when vT'r/*?<.l  (vr» is the difference of the 
redial velocity from zero) is defined by the differential equation 
(3.2) the solution of which is carried out as shown in Section 1. 



In the particular case whan the 
profiles of the -velocity vp-^r 
vary along axis %   in a like manner, 
the velocity profiles ere defined by 
the following relation upon with- 
drawal from the source of the flow of 
rotation 

(3.3) 

Figure 3. 

Plus sign in the relation {33)  corresponds to x<0 ana 
minus sign - to x>0r i»e* the more ijitensive balancing of the 
nonuniformity of the tangential velocities occurs in the direction 
opposite the flow of the fluid. 

It follows from the relation (3*3}  that the rate of balancing 
increases with the diminution of the number for ütt&J.»>     . 

The balancing of the parameters of the rotational turbulent 
flow, in which unlike the laminar viscous flow £ 6 J attenuation 
will be inversely proportional to x 

Ofe -**r)~ j 

can be examined in a similar manner. 

Subletted 14 April 1959 
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