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Non-Cooperative Air Target Identification Using
Radar

(RTO MP-6)

Executive Summary

The rapid and reliable identification of (air-) targets at maximum surveillance systems and weapon
systems range is still a challenging problem which has a long history in NATO research studies. The
different techniques that have been proposed to solve this problem may roughly be divided into two
classes: cooperative and non-cooperative techniques. Cooperative techniques (often referred to as IFF -
Identification Friend or Foe - techniques) are already operational in the radar domain, e.g. in airborne
radars. NATO fighter aircraft are equipped with transponder systems answering on authorized
interrogations by transmitting a predetermined coded signal. By this, friendly aircraft may be identified
but positive identification of hostile or neutral aircraft is not possible.

This could in principle be achieved by the so-called non-cooperative identification techniques which
rely on a comparison between the measured target signature with a reference data base. As one of the
most promising techniques with long-range capability, radar based NCTI can be characterized. New
developments in radar techniques should allow for major advances in radar based NCTI.

The symposium addressed many aspects of the topic "Non-Cooperative Air Target Identification using
Radar". It started with a discussion on system requirements. The question of radar waveforms best
suited for the NCTI problem was investigated. Evaluation of micro-Doppler effect and of acoustic
signatures were discussed. Some emphasis was laid on the discussion of the benefits of fully
polarimetric radar for the signature extraction and on the problems combined with calibration of fully
polarimetric radars. The problem to establish and to interpret 2D-ISAR images was given some
emphasis. Application of Time-Frequency Distributions in case of manoeuvering aircraft was proposed
and different pre-processing steps investigated. Different algorithms and approaches for
classification/identification of targets based on HRR or 2D-ISAR imagery were presented. The question
which features should be derived from the radar signal information found a broad interest. Real time
classification using optical processors was addressed and data fusion algorithms using simultaneous
JEM and HRR information. The really challenging question of how to establish reference data bases for
the classification/identification process was broadly discussed. There was the common understanding
that this task can only be solved by the exploitation of modelling techniques. Besides other advantages
this is the only practical way to get access to data of hostile aircraft. Many approaches are considered in
different countries, relying on scale-model measurements or on CAD models plus computer prediction
respectively. Implementation of the different techniques in real systems seems to be feasible at least as
far as the JEM and HRR techniques are concerned. A technical demonstrator for the evaluation of the
NCTI algorithms was presented and upgrades of fighter radars that will make the implementation of the
above mentioned techniques into existing systems possible.
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L 'identification radar des cibles ae~riennes non
cooperatives

(RTO-MP-6)

Synthe'se

L'identification rapide et fiable distance maximale de cibles a~riennes par les syst~mes de
surveillance et les syst~mes d' armes demneure un probl~me d6licat, qui a fait d' ailleurs 1'objet de
nomnbreuses 6tudes dans l'OTAN. Pour r~soudre ce probl~me, deux grandes categories existent :les
techniques coop6ratives et non-coop6ratives. Les premi~res, souvent appel~es 1FF (identification arni-
ennemi) sont dejA utilis~es avec les radars, par exemple a6roport6s. Les avions de combat de l'OTAN
sont 6quip6s de r6pondeurs qui, en cas d'interrogation envoient des signaux codes. Ces dispositifs ne
permettent d'identifier que les avions amis, mais non les a~ronefs ennemnis ou neutres.

Ces demniers pourraient, en principe, atre rep~r~s avec ce qu'il est convenu. d'appeler les techniques
d'identification de cibles a~riennes non-coop~ratives (NCTI) qui comparent la signature de la cible et
une base de donn~es de r~f~rence. La NCTI avec un support radar peut 6tre consid6r6e comme l'une des
techniques tr~s prometteuse pour la detection longue port~e. Les progr~s escompt~s dans le domaine
des techniques radar devraient amener des avanc6es importantes pour le principe NCTI.

Le symposium a examin6 les aspects de l'identification radar des cibles a~riennes non-cooperatives. Les
specifications du syst~me ont d' abord 6t pass~es en revue avant d' 6tudier les formes d' onde les mieux
adapt6es au NCTI. L'6valuation de l'effet micro-Doppler et des signatures acoustiques a Wt, ensuite,
discut~e. Une place importante a 6t6 accord6e A la discussion des avantages que pourraient apporter les
radars enti~rement polarim6triques pour 1' extraction de la signature, sans oublier les probl~mes
soulev~s par leur 6talonnage. La conf6rence s'est pench~e 6galement sur la prise d'images et
1'interpretation ISAR-2D. Une proposition d' attribution temps-fr6quence aux a6ronefs en 6volution a
6t6 6mise ainsi que les diff6rentes 6tapes possibles pour un pr6-traitement. Diff~rents approches et
algorithmes de la classification/identification des cibles, bases sur l'imagerie HRR et ISAR-2D), ont 6t
pr~sent~s. La question de savoir quelles caract~ristiques devaient etre extraites des informations radar a
6t suivie avec grand int~r~t. La classification en temps reel A l'aide de processeurs optiques ainsi que
les algorithmes de fusionnement des donn~es h base d'informations JEM et HRR simultan~es a
6galement fait F'objet de discussions.

Le d~licat problme de 1'6tablissement de bases de donn~es de r~f~rence pour 6tablir une
classification/identification a Wt6 voqu~e dans ses grandes lignes. Un consensus s' est de'gag6 sur le fait
qu'il ne pouvait 8tre r6solu que par le biais des techniques de mod~lisation qui, seules permettent, de
fagon pratique, d' acc~der aux donn6es concernant des avions ennemis. De nombreuses 6tudes sont en
cours A L'heure actuelle dans diff~rents pays, basses sur des calculs A partir de mod~les A l'6chelle, de
mod~les CAO coupl6s A des predictions de mod~les informatiques. L'installation de ces techniques sur
des syst~mes existants semble possible, du momns en ce qui concerne les techniques JEM et HRR. Un
d~monstrateur technologique pour l'~valuation des algorithmes NCTI a 6t6 pr~sent6, ainsi que des
versions am~lior~es de radars d'avions de combat qui permettront l'installation de ces techniques.
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Preface

Identification of aircraft is a critical function in both command and control (C 2) and weapon systems. Since
many years work is going on in a variety of NATO countries to develop an identification system which will allow
for reliable identification of friendly, hostile and neutral aircraft at maximum surveillance systems and weapon
systems range. Different sources could in principle be exploited for the identification process, one of which is the
so called "cooperative" component, often addressed as IFF (Identification Friend Foe) systems. This source relies
on the response of an interrogated aircraft via a transponder and a predefined code, by this identifying an aircraft
as a friendly one. Missing response is an indication for a hostile or neutral aircraft but there is no positive
hostile/neutral aircraft identification. An incorrect identification can result in fratricide or engagement of civilian
aircraft, both of which happened in recent conflicts.

Systems having the potential for identification of friendly, hostile and neutral aircraft are elements of the so-
called "Non-Co-operative Target Identification (NCTI)" system class. These systems operate by comparing the
received signatures (radar, infrared, acoustic, etc.) of an aircraft against a database of known signatures. As one of
the most promising techniques with long-range capability, radar based NCTI can be characterized. Recent
developments in radar techniques improving e.g. the resolution capabilities of the radar systems and new more
advanced processing techniques should allow for major advances in radar based NCTI.

There is no doubt that a future identification system will be a "system of systems" where different entries will be
used for the final declaration of a target as friend, foe or neutral. In this system the cooperative IFF mode and the
non-co-operative mode together with auxiliary informations from other sources (ESM, intelligence, flight/mission
plans, airspace control procedures, track by origin, flight profile and target behaviour, etc.) will form the input
information in a data combining process (see proposed NATO Identification Data Combining Process (IDCP)).

This Symposium will concentrate on the discussion of the non-co-operative component. Its scope is to serve as a
forum where experts from the whole alliance will be able to present and discuss novel technical solutions and
novel processing techniques to the NCTI problem, and by that will help to explore current capabilities in all
topics that are of relevance to the problem of non-co-operative air target identification using radar and even
beyond this special application.

Dr. J. SCHILLER Mr. R.L. CRANOS
Germany USA

Co-Chairmen
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NON-COOPERATIVE AIR TARGET IDENTIFICATION BY RADAR

Research Activities of the Panel 10, RSG.12 (DRG)
J. Schiller, Chairman RSG.12

Forschungsinstitut fOr Hochfrequenzphysik
Wachtberg-Werthoven, Germany

Background

In 1984 RSG.12 started its first working phase. In the first TOR you can read the
following sentences:

"Probably the most serious defficiency in NATO's air defence capability.., is the lack of
a rapid and reliable means of identiflying all objects at max;mum weapon and
surveillance system range. To improve identification capabilities and to ensure high
confidence in positive air target identification, more advanced techniques and additional
sources have been proposed (STANAG 4162 on the "Technical Characteristics of the
NATO Identification System (NIS)). These include Non-Cooperative Target Identification
(NCTI) by radar."

By that the focus of the RSG.12 activities was defined. What has been achieved in the
meantime?

Overview on the different phases of work of RSG.12

Since 1984 RSG.12 has completed three phases of work:

Phase I 1984-1988

- The first phase was dedicated to elaboration of a survey and detailed discussion on
candidate techniques applicable to Non-Co-operative Target Identification (NCTI) of
air targets by radar.

Phase II 1988-1992

- As Jet Engine Modulation (JEM) was found to be the most promising and easiest
implementable technique, the second phase focused on investigation of

JEM-techniques for NCTI of aircraft.

Phase III 1992- 1996

- While JEM-techniques were found to provide a powerful NCTI capability under
certain prerequisites they showed some drawbacks as far as detection ranges and all
aspect capabilities were concerned. For this reason the capabilities of Radar Imaging
Techniques in the context of NCTI were investigated within this phase.

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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Phase IV 1997 - 1999

- Radar Imaging Techniques showed to be a very promising approach for
non-cooperative air target identification. These techniques have the potential of
overcoming at least some of the shortcomings of the JEM-techniques but the
establishment of reference data bases is a challenging and still unsolved problem. So
the present working phase focusses on investigations on the quality of reference data
generated via modelling techniques. Besides that the improvement in identification
performance using fully polarimetric data will be investigated.

More detailed description of the different working phases

Phase I: Survey of candidate techniques for NCTI of aircraft using radar

- Participating nations: Denmark, France, Germany, The Netherlands, Norway, United
Kingdom, United States of America, SHAPE Technical Centre

- The following candidate techniques were discussed:

High Range Resolution (HRR)
High Cross Range Resolution by Inverse Synthetic Aperture Radar (ISAR)
Combination of HRR and ISAR
Jet Engine Modulation (JEM)
Helicopter Rotor Modulation (HERM)
Backscatter Modulation by Aircraft Vibration
Target Backscatter Fluctuation
Polarimetric Techniques
Resonance Region Techniques
Non-Linear Scattering Effect.

Most promising technique

As most promising technique applicable to NCTI of air targets JEM (or HERM) were
identified.

- Extractable target (turbine) features should be independent of target aspect
- Relatively simple target data base

Promising techniques

Radar Imaging Techniques (HRR and 2-D-ISAR) were anticipated as promising
techniques.

Problems:

- Features will be sensitive to target aspect changes
- Features will be sensitive to changes in external load configurations
- High demands on radar bandwith
- No simple reference data base
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Beneficial to NCTI techniques

Adding polarimetric capabilities to other NCTI techniques

In principle useful

- Aircraft Vibrations. Restricted to mmW or shorter wavelengths

Hard to estimate

- NCTI techniques in the resonant region

Limited NCTI capability

- Target Backscatter Fluctuation

Most probably will only allow for discrimination between rather broad target classes
(e.g. jet aircraft and propeller aircraft)

No NCTI capability

- Non-linear scattering techniques

Most probably only allows for discrimination between metallic objects and non-metallic
objects

System considerations

- All techniques require relatively long dwell times and /or high prf modes

=> Severe problems for surveillance radar modes

- Candidates most suited to the incorporation of NCTI techniques will be tracking
radars and multifunctional active phased array radar systems

Phase II 1988 - 1992: Radar Signal Modulation Techniques for NCTI

Participating nations: Canada, Denmark, France, Germany, The Netherlands, Norway,
United Kingdom, United States of America, SHAPE Technical Centre

For phase II RSG.12 decided to investigate on the technique, that was identified as
most promising technique for NCTI of aircraft using radar

Objective of the study

- To gain a better understanding of the capabilities and limitations of RSM/JEM
techniques and to derive reliable estimates for achievable percentages of correct
classification/identification and NCTI confidence factors in operational environment
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Trials

- A prerequisit for further investigations was a common data base of real data

- RSG.12 initiated, organized and conducted a multinational cooperative field trial at
WTD 81 Greding, Germany

- The name "TIME" (Target Identification by Modulation Exploitation) was assigned to
this trial

- The trial TIME lasted from 3 - 28 April 1989

- Twenty-three aircraft from different member nations participated in the trial
representing 16 different aircraft types

- Six different radar systems operating in the L, S, C, X and Ku bands were provided
by the nations

The trial TIME turned out to be very effective in establishing a comprehensive common
data base for the following investigations; data of trial TIME have been exchanged
between the nations of RSG.12 and are still available

Main Conclusions of the study

- The Study showed that JEM techniques can provide a powerful tool for the
non-cooperative identification of aircraft.

- Principal radar candidates for application of JEM techniques are lock-follow weapon
system tracker/illuminator radars, multi-function phased array radars with high prf
modes, and airborne interception radars.

Databases for JEM techniques are relatively simple but

- JEM techniques do not provide an all-aspect NCTI capability.

- They require a relatively high Signal-to-Noise ratio.

The Study ended with a Final Report on Radar Signal Modulation Techniques (NATO
SECRET) (Technical Report AC/243 (Panel 10) TR/5.

Phase III 1992 - 1996: Radar Imaging Techniques for NCTI of Aircraft

Participating nations: Denmark, France, Germany, The Netherlands, Norway, United
Kingdom, United States of America, NC3 A.

To overcome some of the shortcomings of the JEM techniques RSG.12 started in phase
III the study on techniques having additional potential in NCTI of aircraft. The work
focused on radar imaging techniques.

What do we understand by "radar imaging techniques" ?

The idea is having high resolved target RCS presentations in the slant-range and
cross-range (2-DISAR techniques) dimensions.
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Workshop

- In order to get a fast survey and a better understanding of the state of the art in the
field of one- and two-dimensional radar imaging and data analysis RSG.12 organized
a two days workshop on "Radar Imaging and Classification Techniques".

- The Workshop took place at FGAN, Werthhoven, Germany on 28-29 January 1993.
Papers were published in the Technical Proceedings AC/243(Panel 10) TP/1.

- The Workshop was very succesful in giving an overview of the state of the art in radar
imaging and in developing ideas on analysis of radar images with respect to target
identification.

Trials

- Again a prerequisit for relevant investigations was a common data base of real,
in-flight measured aircraft data. Because of the lack of any available data and to
establish a common data base for the further investigations, RSG.12 conducted two
multinational field trials in 1992 and 1993.

1992 Trials

- The trials of 1992 took place in autumn 1992 in the air spaces of the United Kingdom,
of Germany and France.

- Two long-range radars participated,

the BYSON radar of DERA, Great Malvern, UK and
the TIRA radar of FGAN, Wachtberg-Werthhoven, GE.

BYSON-radar parameters: - S-Band
- stepped frequency waveform
- 400 MHz bandwith

TIRA system parameters: - Ku-Band
- chirp
- 800 MHz bandwith

- The BYSON radar collected HRR - profiles, the TIRA radar had the potential for both,
HRR-profiles and 2-D-ISAR imagery.

- In the trials 9 different types of aircraft, provided by the RSG.12 member nations,
participated.

- Total recording times were 9 hours for the BYSON and 8 hours for the TIRA system
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1993 Trials

- In October 1993 the "AIDA" (Aircraft Imagery Data Acquisition) trials were conducted
in the airspace of The Netherlands near Volkel.

- Its purpose was to build up a library of 2D-ISAR radar images of fighter aircraft.

- Four radar-systems participated in the measurements; two of these were long-range
stationary systems (TIRA of FGAN, located at Werthhoven/GE and FELSTAR-radar
of TNO/FEL, located at The Hague) and two were short-range mobile systems (MPR
of DERA and RAMSES of ONERA).

FELSTAR parameters: - S-Band
- stepped frequency waveform
- 450 MHz bandwith

TIRA-system: - Ku-Band
- chirp waveform
- 800 MHz bandwith

MPR-system: - X-Band
- stepped frequency waveform
- 200 MHz bandwith

RAMSES system: - Band
- chirp waveform
- 200 MHz bandwith

- In the trials 15 different aircraft participated, respresenting 13 different aircraft types

- Total flight time was about 30 hours

The trials in 1992 and 1993 again were very successful, the recorded data showed to
be of high quality according to the requirements for the following investigations

Data distribution

- All the data were distributed among the member nations of RSG.12 and are still
available

- Two approaches were investigated:

i) one dimensional High-Range-Resolution (HRR)- techniques for NCTI

ii) two dimensional ISAR imaging techniques for NCTI

- The different nations developed their own approaches for solving the identification
problem based on the HRR or 2D-ISAR aircraft data.

- The results of the classification processes were distributed and discussed among the
group members and the structures of the different classifiers were illustrated.
Classifier codes were not exchanged.
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Main Conclusions

- The study showed that target identification based on HRR is a highly promising NCTI
technique for fighter size or larger aircraft. It has an all aspect capability and
moderate demands on signal-to-noise ratio and shows real time capability.

- A definite answer on the capabilities of 2D-ISAR based identification could not be
given. It turned out that the existing database still is not broad enough for statistically
relevant conclusions. The performance is less satisfactory than expected. Reasons
may be found in problems in imaging algorithms or features used. In any case this
technique presently is not real time capable in a fighter aircraft.

- A necessary prerequisit for identification techniques based on radar images of the
targets is a database of HRR resp. 2D-ISAR signatures form the different aircraft
types.

The study ended with a Final report on Radar Imaging Techniques for NCTI of Aircraft
(Technical Report AC/243 (Panel 1O)TR/14; NATO SECRET).

Phase IV 1997-1999: Present working phase

Participating nations : Canada, Denmark, France, Germany, Greece, Italy, The
Netherlands, Norway, Spain, United Kingdom, United States of America, NC3A

The focus of the present working phase is on the following topics :

- Further research in the area of 2D-ISAR imagery (autofocus methods, problem of
manoeuvering targets) before the background of still not satisfying identification
results

- Investigate on the applicability of radar signature modelling techniques for establishing
a reference data base of HHR or 2D-ISAR data including hostile targets.

- Investigate on the improvement in identification rates under all aspects and for all
targets if data fusion techniques are applied, combining specifically JEM, HRR and
2D-ISAR techniques.

- Investigate on possible improvements in identification performance, if fully
polarimetric signature data is used.

Trials

For the question of model validation, to find out about the benefit of fully polarimetric
data and for a better understanding of problems in 2D-ISAR imagery a (limited) number
of fully instrumented aircraft field trials was necessary.

The trials under the name CARMINA ( Correlated Attitude Radar Measurements of
Images of Non-cooperative Aircraft) were conducted in the time frame November to
February 1997/1998.
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Six aircraft performed test flights under observation of the

- TIRA - system of FGAN/GE
- BYSON-radar of DERA/UK
- MERIC-system of ONERA/FR
- HYPERBRAHMS-system of DGA/FR
- FELSTAR-system of TNO-FEL/NL

in the Dutch, the UK and the French airspace

Partly the aircraft were instrumented with INS-systems. Four aircraft were fitted with an
external attitude measurement system (ARDS - pod).

MERIC radar system: - X-band
- stepped frequency waveform
- 300 MHz bandwith
- fully polarimetric system

HYPERBRAHMS: - seven frequency bands from 500 MHz to 34 GHz
- high prf mode
- detection of JEM lines

The trials were succesfully finalized in February 1998. The radar data will be distributed
in May/June.

In parallel the member nations started their work in scale-model measurements resp.
computer modelling of those targets, that have participated in the CARMINA trials.

Expectations on this Symposium

This Symposium should act as a forum to bring together experts of the different
disciplines that deal with problems related to the work in the fields of Automatic Target
Recognition.

We hope that we will find a forum to discuss especially on the ideas of

- Target Characterization

- Target Classification

- Feature Extraction

- Modelling Techniques

in the area of air target identification and related areas.

At the end of this Symposium I hope we will leave with a lot of new, stimulating ideas, to
go on in our different but related areas of research work for developing tools and
methods for the Non-cooperative (air) target identification.
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MILORD : a Technical Demonstrator for Long Range Radar Identification

Christian DELHOTE, Michel MORUZZIS
THOMSON-CSF/ AIRSYS

7 rue des Mathurins, BP 10, Bagneux, France

ABSTRACT jamming, and therefore reducing the time available for
air defence.

The objective of the MILORD project (Moyen
d'Identification Longue portde d'Objectifs Radar In this context, the techniques of echo radar analysis
DWsignds) is to build a technical demonstrator for radar can bring a decisive benefit to the implementation of
NCTR techniques in short, medium and long range, to the following functions on non-cooperative air targets:
assess the performance of these techniques in real numbering, classification of platform type, model
environment, to bring out the conditions of their recognition within the type.
utilisation and to anticipate the recognition modes that
may be embedded in the future surveillance and Radar recognition techniques are numerous, bearing
multifunction ground based and airborne radars, simultaneously on kinematics, rotating parts or target

geometry, furthermore they can be coarse for a simple
The need for a technical demonstrator for identification classification, or fine for model recognition within the
radar techniques derives from a two-fold requirement: class.

* from an operational point of view, to prove that it is After a reminder in Chapter 2 of the issues linked to the
possible to fill an important gap of the air NCTR (Non Cooperative Target Recognition) function,
surveillance systems, Chapter 3 describes the MILORD project in detail.

0 from a technical point of view, to validate modes of
target analysis that are adapted to the specificity and 2. NCTR RADAR
constraints of long range radar detection, and to
play a federative role for all these techniques. 2.1 INTRODUCTION

MILORD is a federative, multi-application project from
the DGA (D6lgation Gdn6rale AI rArmement) whose 2.1.1 Objective

participants are THOMSON-CSF (AIRSYS and RCM)
and the ONERA. Air target recognition is conventionally split into two

parts (see Figure 1) : the recognition of friendly targets
by means of cooperative means (IFF, ...), and the

1. INTRODUCTION recognition of unknown or hostile targets by different
sensors, including the radar.

The efficiency of the territory defence, projected forces,
or Navy ships heavily depends on the available reaction
time, after the identification of an hostile aircraft. Recognition & Identification Means

In order to increase this reaction time, it is necessary to
add long identification capabilities to long range Non Cooperative
surveillance sensors. Depending on the detection
system, these capabilities may be integrated into the
present or future surveillance and multifunction radars
through specific modes of target analysis, or supplied IFF Procedures MIDS

by a specialised auxiliary sensor.
Radar ESM Acoustic Optronics

Indeed, in present air defence systems, the operational
need for target identification is only partially met by Figure 1
IFF-type systems. This need derives simultaneously
from the requirement of knowing the air situation, and
preparing possible ripostes, fit to the threat : jamming, The main assets expected from the NCTR function are:
interception, engagement of weapon systems. This need
for identification is amplified by the recent * a better understanding of the tactical situation,
improvement of threats that make attacks by stealthy • a more detailed assessment of threat (hierarchy of
platforms possible - even at a low degree -, using low threats, priority in processing),
altitude penetration techniques, radar discretion and • a reduction of fratricide risk,

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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"* a reduction in reaction time (for example for an simplify the database and the merging-recognition
interception by fighters), process.

"* an optimisation of the riposte (interception,
selection of appropriate weapon system), * Step 3:

"* the selection and operation of protection means (for the set of values enters the merging-recognition process
example, in a context of ARM threat), that elaborates the supposed class of the target with an

"* an optimisation of the surveillance means associated confidence, after a comparison with a
(adaptation of processing to target type in order to database. This merging-recognition process can be
optimise detection and localisation quality, and considered in two ways :
adaptation of transmitted waveforms in order to * a recognition process elaborated for each
optimise the discretion). characteristic variable, followed by a merging of the

local decisions of recognition (symbolic fusion),
We discuss below the physical variables and the * a merging-recognition process on the whole set of
recognition methods that can be used in radar in order variables extracted for the different analysis modes
to reach the desired objective. (numerical fusion).

2.1.2 Physical features * Step 4:
this step consists in the making of the database itself. It

The physical features accessible in radar, which can is normally made before engaging the recognition

give information on the target type come mainly from process. This database is made up from existing

three sources: knowledge (based on measurements and/or models).

* target navigation:
data such as altitude, speed, acceleration or trajectory,-
behaviour, can already provide information on rough
target classes (helicopter, missile, combat fighter, ... )

* propulsion mode:
the analysis of the rotating parts allows, in a first stage
("coarse"), to distinguish the propulsion type (helicopter
blade, propeller, jet engine, ... ), then in a second stage Data ..

("fine"), to find detailed characteristics in the type of :
propulsion (frequency of blade occurrence, number of Raar

blades and rotation speed of a jet engine, ... ) PocessingS..............
:Processed:J

* physical structure of the target: :Doata ....
as for the rotating parts, we can distinguish a "coarse " .......

analysis (spatial resolution at the scale of the Fusion Class
Parameter Recognition &

dimensions of small air targets), where macroscopic Confidence

information on the target is indicated (size, length,
width,...), and a "fine" analysis, where detailed
information is given (position of air inlets, cockpit, Figure 2
wings, ... ).

The performances of the NCTR function will depend on
2.1.3 Recognition process, each steps :

From the physical variables accessible to the radar, in * quality of radar measurements (resolution,

order to obtain the desired recognition objectives, the measurement error, ...)

NCTR process is typically split down in four broad * relevance of extracted characteristic variables,
steps (see Figure 2). * efficient exploitation of measurement

complementarities through the merging process,
* Step 1: * representativity of the database.
using appropriate waveforms and processing (see
Chapter 2.2), the radar carries out measurements on The following chapters discuss each of these steps in
kinematics by tracking filtering or tracking, detail.
measurements on rotating parts by spectrum analysis,
and measurements on the target spatial structure. 2.2 MEASUREMENTS AND RADAR PROCESSING

* Step 2: 2.2.1 Kinematics
from these measurements, the variables that areronthesidermed relevantsf the NCriafunction, alg wAfter plot extraction, an adaptive Kalman filter using a

3D state vector is able to provide the basic inputs (target
their quality, are extracted so as to reduce data flow, to
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coordinates, velocity and acceleration and associated the desired resolution, then motion compensation is
covariance matrix). From this basic inputs, discriminant required; it can be performed with simple phase
parameters may be computed together with their correction, but when accurate compensation is required
accuracies. it can be necessary to use autofocusing techniques.

Both coherent and non coherent range profiles can be
2.2.2 Doppler processing generated; non coherent profiles are less informative but

It is used to provide an estimate of the target short term in general more resistant to target motion.
spectrum which strongly depends on the fast moving Doppler pre-processing may be required for removing

parts of it (helicopter blades, jet engine rotors, spurious spectral components such as clutter echoes or

propellers). The waveform parameters (PRF and JEM.

duration) must be optimised in order to get the best Figure 5 is an example of a range profile obtained with

estimate, an operational S-Band Radar.

It may be necessary to add a rejection filter to eliminate

the spurious components .such as clutter which could
otherwise strongly affect the spectrum and thus its
analysis.
Furthermore, for moving targets, one must compensate
the target velocity before extracting any spectrum
parameter.
Finally one must take care of the possible spectrum
foldover which may occur if the target spectrum
bandwidth is larger than the PRF.

Figures 3 and 4 show respectively a typical helicopter . A,

and propeller aircraft spectrum.

Figure 5

2.2.4 Cross-Range Processing

One-dimension target cross-range profiles (ID ISAR)
may be obtained with simple fixed frequency
waveforms. It is produced by the differences of radial
velocities between the different target scatterers which

-m are generated by the target rotation as seen by the radar.
This effect may be due to an actual target rotation (such
as roll/ pitch for a ship) and also to the variation of

Figure 3 aspect angle which occurs during a simple translation
(this is the case for an aircraft flying at a constant
course on a non-radial trajectory).
Cross-range profiling is illustrated on Figure 6 obtained
with the same S-band Radar as above.

Figur. 4

Figure 4

Figure 6

2.2.3 Down-Range Processing

High Range Resolution may be obtained through several 2.2.5 2D (nD) Processing
radar techniques (short pulse, pulse compression, 2D (or nD) target images can be obtained by the
multifrequency, stepped frequency,...). If target range (on targementan ID obtaing, by as:
motion during the analysis time becomes comparable to
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Doppler and HRR which gives the target Doppler (covariance matrix) are generally added to these
spectrum as a function of the target down-range values.
dimension (such an image may be used to locate the
mobile parts of the target); Figure 7 gives an For the rotating parts, two types of variables are
example of such an image for a simulated extracted depending on the level of measurement
helicopter, resolution;

* for the "coarse" level (short analysis time),
the extracted variables are of the following

types : spectrum width, flatness, purity,
detection of isolated flashes for time
processing. These information allow to
decide on the existence and nature of the

461 -rotating parts (blades, propellers, jet
engine)

"* for the "fine" level (long analysis time),

the extracted variables are mainly the
frequency or period steps. These

.................................... ............................................ inform ation m ay allow to decide on the
aircraft model in the aircraft class
(Mirage, MiG, ...), or on the helicopter

Figure 7 model in the helicopter class (Puma,
Gazelle, ... )

*ISAR and HRR which gives the distribution of For the spatial structure, as for the rotating parts,
target scattering centres in a 2D plane (such images two types of variables are extracted depending on
are generated from holography for instance in the level of measurement resolution;
measurement chambers); accurate target motion for the "coarse" level (resolution at the
compensation is required for such a processing scale of target size), variables of the
because long analysis time are often necessary. This following type are extracted:
method is illustrated on Figure 8 which shows a 2D - RCS of the target (the resolution
representation of a simulated aircraft. may be much greater than the

.. .. size of the target)
12 - target dimensions (length, width,

* for the "fine" level (several "pixel" in the

target), the measurements (responses or
images) in high resolution allow the

analysis of the localisation and properties
of the scattering centres and diffraction

S-edges. The characteristic variables for

these measurements are less known,
several are candidates

S......-. the "N" first statistical moments
of the spatial process (average,standard deviation,...),

0 4 0 10 U

di,,.wvwr Trsrnswe (dX•On) - the position (ID or 2D) of the

scatterers, possibly with their
Figure 8 associated diagram....

- a simple average in power of the

measurements (ID or 2D) over
2.3 EXTRACTION OF CHARACTERISTIC an angular sector (typically
PARAMETERS several degrees)

This operation consists in keeping only relevant Though the impact of the choice of these parameters
variables for recognition from radar measurements, onto the NCTR performance is still to be assessed, it is
through nonlinear process: necessary to extract and to use their respective qualities

(accuracies) in order to control the robustness of the
* For kinematics, the variables kept are mainly the decision (avoid false decisions).

true speed vector of the target (possibly its
acceleration), the position and orientation in space Extracting and processing the quality of each
of the target (among others, its attitude and parameters for target recognition is in fact equivalent to
altitude). Indications on their uncertainty the CFAR method for target detection.
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2.4 MERGING AND RECOGNITION If for the attributes of the kinematics and for certain
attributes of the spectral analysis the nature and

The merging-recognition process may be designed in structure of data are relatively simple (there are intrinsic

two ways: data such as speed domain, number of blades, frequency
of rotation of blades, ...), the case of attributes, relative

"* a process of local recognition per variable, followed to high 1D or 2D spatial resolution and/or associated to

by a simple merging of the local recognition the spectrum, is more complex.

decisions,
"* a global and complex process of merging - Indeed, in this last case, the database may

recognition on the whole set of variables, simultaneously comprise intrinsic data relative to the
structure of the target (length, width, ... ), hybrid data

The main merging techniques that can be considered are (value and position of scatterers, ...), and upstream data

fuzzy logic, evidence theory, Bayesian inference, and (pulse responses or images).

expert systems. Depending on the chosen technique, the
prerequisite knowledge required on the variables can An in-depth analysis, joint to the reflection on the
vary, it may range from fine knowledge on statistical extraction of characteristic parameters, must be made so

law to simple heuristic rules. as to define the nature of the data to be stored
(reasonable memory size), and to elaborate the best

The quality of the merging process will play a very possible structure for the database.

important role in the radar NCTR performances because
the variables to be merged, though extracted from the In a second step, it will be necessary to build this

same sensor, are: database. Here again, the case of the intrinsic data is
relatively simple, because these ones are easily

"* of very different nature (see Chapter 2.2), which accessible (in specialised literature for example). On the

makes the merging difficult, opposite, the hybrid or upstream data are more difficult

"* generally strongly complementary, precisely to obtain; they may come either from measurements, or

because they are very different, which makes from electromagnetic modelling.

merging more interesting in terms of performance
improvement, The elaboration of the database from existing

"* of very variable quality (for example, depending on measurements poses two problems:
the distance of the target, of its angular presentation,
of the presence of spurious signals - clutter, t completeness:jamming, .... ) the measurements must be complete both in the number

of representative targets, and also for a given target, in

For example, the absence of jet engine lines alone is not radar measurement parameters (sufficient frequency

strongly discriminating because even for a jet aircraft bandwidth, complete elevation and azimuth angular

the JEM is only visible into a cone in the front view. On sectors, ...)

the other hand, the absence of jet engine lines for a fast
flying incoming target indicates that it is more surely a * representativity:
missile than an airplane. Conversely, the presence of measurements are made in a particular context of

JEM, even without information on the target aspect environment, trajectory and sensor (waveform,

,reveals that it is a plane. signal/noise ratio), which must not particularise the
angle, rdatabase.

2.5 DATABASE Generally, the two requirements above (completeness
and representativity) are not met by existing

2.5.1 Issue measurements.

Target recognition will be possible only with a 2.5.2 Modelling
catalogue containing the characteristics of the targets
relative to the different recognition techniques. The electromagnetic modelling of targets allows, from

CAD models of the target and methods of digital
Therefore, this database will have several inputs, computing (GO and PO asymptotic techniques, method
Roughly, we shall have an input per recognition of moments, or hybridisation techniques method), to
technique : obtain all the required radar data depending on the

" Kinematics, desired parameters (frequency, polarisation, angles, ... )

"* Spectral analysis, coarse and fine, Provided that the corresponding CAD models are
" ID or 2D spatial analysis, coarse and fine, available, the electromagnetic modelling of targets
"* Joint ID or 2D spatial analysis and spectral allows to solve the completeness problem mentioned in

analysis. the previous chapter.
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But the problem of representativity remains, because
there remains lacks in the modelling for instance for For each of these levels (classification and recognition
cockpits and air intakes, small details, and composite of the model), one can define performance criteria in
materials (helicopter blades, ULM, UAV,...). In the the form of probabilities
short term, the modelling of small air targets made up
with composite materials (large glass panels, composite s of good classification (recognition),
material, blade) does not appear to be representative 9 of false classification (recognition),
enough to build up a database. 0 of non decision.
On the other hand, for airplanes, the problem of small
cockpit may be addressed separately and solutions do Some general remarks can be made on these last values:
exist to better address the air intake issue (these
solutions use the method called "factorisation" which a) for a given probability of good classification, the
splits the object into different volumes, each one being introduction of a "non decision" class allows a
processed by the more efficient electromagnetic. This better control of the probability of false
modelling effort is planned in the MILORD project. classification, which must remain small,

b) for a given range, the performances in classification
2.6 PERFORMANCES are better than in recognition,

c) in order to obtain good recognition performances,

The radar NCTR performances of the air targets will of the radar must be able to measure parameters whose

course depend on the radar-target distance, and on the signal/noise ratio may be lower than the one of the

measurements accessible by the considered radar, target cell (for example with a 5 to 10 dB loss). For
the power budget the recognition range is then

Two levels are generally distinguished: smaller than the detection range. However it can be

* a level of classification of platform type, improved by increasing the energy (specific

• a level of recognition of the model in the type. waveforms).

The "classification" level aims at separating targets in 3. MILORD

broad categories, it utilises rather "coarse"
measurements (distance range of about a few meters, 3.1 OBJECTIVE
short Doppler analysis time).
If the whole set of kinematics measurements and The objective of the MILORD project is, by means of a
"coarse" measurements can be obtained, six classes can radar sensor of sufficient performance, to be able to
be considered (not withstanding the "unknown" class obtain all the relevant data for the radar NCTR function,
corresponding to a non-decision): that is
• helicopter/ UAV,
• small turboprop, * to go deeply into a fine NCTR algorithmic
* large turboprop, knowledge (elaboration of measurements, extraction
* small jet, of characteristic variables, databases, ... ),
* large jet, 0 to carry out a real-time demonstration of the NCTR
* missile function,

T to validate separately each of the techniques used,
The "recognition" level will define the type in the class and to examine their complementarity depending on
(for example, Mirage 2000 in the "small jet" class), different applications (federative role),
This level requires "fine" measurements (long Doppler 0 to assess NCTR performances (probability of good
analysis time, spatial resolution of about one meter, and false classification/ recognition) in real
even some decimetres) -see Figure 9 below- environment depending on techniques,

* to make recommendations for the implementation of
Helicopter Airplane Misl a NCRoperational function for present and future

radars, in the framework of various applications
(multi-applicative role).

Propeller Jet

3.2 FUNCTIONAL ARCHITECTURE

Small Large Fighter Carrier

Figure 10 describes the functional architecture of theF" Type of target - recognition demonstrator, which comprises :

* a radar sensor able to transmit and receive the
different waveforms required for recognition, with

Target class/ type + confidence sufficient power level (in order to insure the
or non decision signal/noise ratio),

* a recognition processor able to process the radar
Figure 9 sensor data so as to achieve target recognition,
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"* a recording device allowing to store the data at 3.3 SPECIFICATIONS OF THE RADAR AND
different stages of the processing chain so as to RECOGNITION PROCESSOR
build a database,

"* a MMI (Man-Machine Interface) allowing to control Federative and multi-application aspect of the MILORD
the system and to display the results. project puts important constraints on the radar

Target.. ..... in C band operation, because its achieves a good"Target" 'Target : Radar

Lock Track Sensor trade-off between S band (long range air defence
. . I .. radars) and X band (airborne radars),

[co._ing 0 very various waveforms capacities, especially
Surveillance Tracking Device * tracking waveforms,

Functon Function •* Low, Medium and High PRF (at least 40
SikHz) so as to cover the different Doppler/

ISAR applications,
Recognition Function * High Range Resolution waveforms (at

least 300 MHz bandwidth) with different

Figure 10 methods (chirp, stepped frequency,..) in
order to compare their behaviour,

* coherent analysis times for durations
The operation of the system requires a surveillance ranging from some tens of ms to several
function allowing to provide a designation to the seconds (ISAR).
recognition system which furthermore comprises a * for the antenna and data processing, a capacity to
tracking function. This tracking function is made either track the target in elevation/azimuth/range,
by inserting periodically a tracking waveform between •a high power budget (range greater than 200 km on
its recognition waveforms, or by using a second radar plane) so as to be able to test long range NCTR
used for trajectography and designation. modes, and also to analyse the benefits for the

NCTR of small scatterers or rotating parts of muchFigure 11 details the functional architecture of the lwrlvlta h ifaeoe
reconiton rocesor whch cmprseslower level than the airframe one,

recognition processor, which comprises : a very comprehensive experiment logistic
environment (mission preparation, calibration,

"* an input/output interface for the dialogue with the target aq isiion comuniation andbrecong
radartarget acquisition, communication and recording

"radar, means,...), available and movable for carrying out
w a scheduler for the sequencing of the radar various experiments,
"waveforms, d a reduced cost of the sensor so as to allocate the
carreg outim dital signaResolutda Rap snge fr greatest part of the available budget to the study of
carrying out the High Resolution Range and the NCTR function itself.
Doppler processing,

"• a recognition processing, used for extracting the For the recognition processor, two parts can be
attributes required for recognition, then for the
carrying out of the final fusion in order to give the
type of the target. • the hardware and software tools which, from

recorded data, allow, in non real time mode, the
Sw*r analysis and improvement of processing, along with

the assessment of performances.
- the hardware and software tools which allow in real

Vo time on the site to insure the validity of the recorded
measurements and to carry out a convincing
demonstration of the recognition capacities.

W~rdon R-1IUrn. Rw ording
sOecoPn Device

For the recognition processor the "digital signal
processing" part (pulse compression, coherent

SP.-Mn • processing,...) is made in real time (at radar time scale),
on the other hand the recognition processing part

I--------- -- - (extraction of characteristic variables, fusion, ...) can be
made in quasi-real time (at the time scale of some
seconds) without affecting the demonstrative aspect.

Figure 11 3.4 PHYSICAL DESCRIPTION

Within the framework of the MILORD project, the
chosen approach is to use existing equipment as far as
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possible, provided they meet the specifications
presented in Chapter 3.3. The two ARMOR radars installed on the MONGE are

interconnected with other onboard sensors
3.4.1 Radar (instrumentation radars SAVOIE and GASCOGNE,

The ARMOR onboard the BEM (BAtiment d'Essais et telemetry and optical means,..) -see Figure 13-.

de Mesures) MONGE is the only radar that meets all the
specifications at the price of minor modifications.
Furthermore, the integration of the recognition
processor in the sensor requires only software
modifications of the time management and display
console of the ARMOR.
ARMOR (see Figure 12) is a very long range tracking
radar used for restoring target trajectories for test ranges
applications. Its large instantaneous bandwidth is used
to perform off-line analysis of target radar cross section.
Multiple receiving channels allow Co and Cross
polarisation analysis.

Figure 13

3.4.2 Recognition Processor

For the recognition processor, the digital signal
processing part is made by existing boards based on
DSP, the recognition processing part along with the
MMI are carried out by a standard workstation. The
recording means are dimensioned to record at least 30
mn of continuous measurements, that is a capacity of
several Gb.

3.5 PROJECT SCHEDULE

The project extends over 4 years in four main phases

F a definition study for defining the NCTR
Figure 12 requirement objectives, the waveforms and

modifications to carry out on the ARMOR, the

It uses a high gain C-Band monopulse antenna with a recognition algorithms and the recognition
10m diameter Cassegrain reflector. The transmitter has processor,
a first wideband TWT stage and a final high power * a realisation and integration phase,
Klystron (this last stage will not be required for the * a "technical" trial phase for validating the overall
purpose of MILORD). performances of the radar, testing and tuning the

NCTR processing, and for recording target
Various High Range and/or Doppler Resolution signatures (of at least 8 different types),
waveforms can be generated through the wideband * a "final" trial phase for completing the recorded
channel, which is used for the measurement function: signatures, demonstrating the recognition capacities
* VHR [stretch waveform (ramp mode) using a long in quasi real time, assessing the recognition

FM pulse], Low PRF performances with respect to the different analysis
• HR [pulse compression], High PRF modes, and finally for extrapolating the previous
* HR [short pulse], Very High PRF results for the different applications, and bringing
For MILORD on plans to yet improve the current VHR out recommendations for the implementation of a
waveform by using a multiple ramp mode. NCTR operational function.

Other waveforms can be generated through the 4. ACKNOWLEDGEMENTS
narrowband channel, which is mainly used for the
tracking function. For the purpose of MILORD it is Acknowledgements are due to the technical departments
planned to modify the frequency synthesiser in order to of the French DGA (D616gation Gdn6rale A l'Armement)
generate Stepped Frequency Waveforms for Synthetic who participated to the works reported in this paper and
Range Profiling through the existing narrowband more especially to the STTC (Service des Techniques et
channel. Technologies Communes) who is responsible for the
The radar stability is compatible with ISAR processing; MILORD project.
this characteristic has already been used to provide high
resolution 2D images of distant targets.
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POLARIMETRY - FOR THE FULL STORY

E. Krogager

Danish Defence Research Establishment
Ryvangs Al16 1, DK-2100 Copenhagen, Denmark

T: +45 39151736 F: +45 39291533 E-mail: ek@ddre.dk

1. SUMMARY a vector field, this description is incomplete, even very
incomplete. An electromagnetic field must be regarded in terms

This paper is dealing with one of the special topics which have of two orthogonal components, e.g., linear basis components
become important in modern radar, namely, polarimetric Horizontal and Vertical. The field may be thought of as being
imaging techniques [1]. Although the fundamental capabilities generated by transmitting a signal simultaneously via two
of polarimetric radar, that is, radar utilizing the polarization of different paths: One via a horizontally polarized antenna,
the transmitted and received waves, have been known since the another via a vertically polarized antenna, and with a certain
early days of radar back in the fifties, it is only in recent years amplitude and phase difference between the two components.
that such techniques have actually been implemented for The resulting total electric field is then described by a vector,
practical utilization. There are a variety of reasons for that, i.e., direction and amplitude, which in general traces an ellipse
some major reasons being the cost and complexity of as a function of time, or as a function of distance along the
polarimetric radars, and an apparent lack of appreciation of direction of propagation. Two main parameters characterizing
what polarization can actually be used for. Not least within the the polarization ellipse are: 1. The orientation angle, 0, of the
NATO community, as regards operational systems, the main axis of the ellipse relative to the first axis, the x-axis, of
utilization of information carried with the polarization of the reference basis, and 2. The ellipticity angle, u. Two
electromagnetic waves, is virtually nonexistent. A main purpose particularly important special cases are: 1. Linear polarization,
of this paper is to try to point to the necessity of utilizing for which u is zero, and 2. Circular polarization, for which -C
polarimetric information in order to optimize the use of radar equals ±450.
for military as well as civilian applications.

4. TRANSMIT/RECEIVE COMBINATIONS
2. TRADITIONAL RADAR IMAGING Since both the transmitted and the received polarization states
Traditional radar may largely be understood in terms of can thus be resolved into two mutually orthogonal polarization
amplitudes and phases of the involved plane waves which in the states, there are four combinations of transmit and receive
simplest form are just continuous waveforms. The parameters polarizations that need to be measured in order to aquire the full
that can be measured with such a radar are the amplitude and amount of polarimetric target information for a given radar
the phase and/or frequency of the wave reflected from the system. The four possible combinations are usually represented
target, relative to the amplitude and phase of the wave in the form of a 2x2 target scattering matrix with complex
transmitted towards the target. For a moving target, the elements, i.e., each element has associated with it an amplitude
frequency of the reflected wave will be shifted according to the and a phase. A main point here is, that no matter which
Doppler-effect, and the velocity of the target can thus be particular polarization is transmitted towards a given target, the
determined from the Doppler-shift. In more sophisticated polarization of the reflected wave will in general be elliptically
systems, high resolution of Doppler-shift and high resolution of polarized. This means that when we use a radar which has the
range propagation delay can be obtained by the use of long same, fixed polarization for transmission and reception, we will
observation times and wide frequency bandwidths, respectively, only measure a fraction of the potentially available information
Thus, if the target is rotating, as it effectively is when moving contained in the reflected signal, i.e., we will only measure one
in such a way as to change aspect relative to the radar, then the of the elements of the scattering matrix. Not least in military
different parts of the target will produce (slightly) different applications, this could mean a critical lack of information
Doppler-shifts which form the basis for high resolution SAR which could otherwise be available.
and ISAR, where SAR stands for Synthetic Aperture Radar,
referring to the fact that the technique may also be considered 5. POLARIMETRIC CHARACTERISTICS OF
as one of synthesizing a very long array antenna by taking data ELEMENTARY SCATTERERS
samples corresponding to each element of the array. High To illustrate the basic power of polarimetry, Fig. 1 shows the
Doppler-resolution, obtained by long observation times (in the scattering matrices for some important elementary scatterers.
order of 1-10 seconds), may thus be used to produce a one- To the upper left, we have shown the so-called voltage equation
dimensional signature of the target. Somehow similarly, a high for a polarimetric radar. This equation states the voltage at the
range resolution profile of the target can be produced by output of the receiver for a given radar with the following key
illuminating the target with a waveform consisting of very parameters: A given transmit polarization, characterized by the
narrow pulses, which is equivalent to using signals with polarization vector, pr; a given receive polarization vector,
frequency components within a quite wide bandwidth. characterized by the polarization vector, PR, and a given target

scattering matrix, [S]. The propagation factor and some other
3. VECTOR FIELDS system parameters can be ignored for the present discussion. By
When dealing with traditional single polarization data we look measuring the received voltage for the four combinations of
at the signals only in a scalar, i.e., an amplitude and phase transmit and receive polarization, we can thus measure the
description. However, as the electromagnetic field is by nature target scattering matrix. It is noted in passing, that for

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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monostatic radars with co-located transmit and receive may be completely isolated by a polarimetric radar. The
antennas, the two off-diagonal terms, in this case, HV and VH, advantage of utilizing this property seems quite evident, not
are normally identical, i.e., the scattering matrix is only for interpretation and classification of radar imagery, but
symmetrical, which of course simplifies matters considerably. also for the pre-processing of such data. Motion compensation
Now, starting with the sphere, it has the identity matrix as its for ISAR imaging of moving targets, for example, relies on
characteristic scattering matrix, with equal responses for HH estimating as accurately as possible the phase history of one or
and VV polarizations. This matrix is characteristic for any odd- more reference points. The accuracy of such reference phase
bounce scatterer, like plates and tri-hedrals, i.e., three-sided histories should be significantly improved by avoiding
corner reflectors. Next, the dipole has this characteristic interference problems of the above nature.
scattering matrix which contains the orientation angle, 0, of the
dipole around the line of sight, which means that this angle can 7. FEATURE EXTRACTION
actually be measured with a polarimetric radar. For this type of In relation to target identification problems, the issue of feature
target, it makes a great deal of difference, whether HH or VV extraction is an important one, since any classification
polarizations are used, while a polarimetric radar will always procedure relies on the selection of features that characterize the
measure the same total power, independent of whether linear, target. With single polarization data, only rather simple and
circular, or any other reference polarizations are used. The rather arbitrary amplitude and phase related features can be
diplane, i.e., the two-sided corner reflector, shown to the lower extracted, and simple geometrical information, like overall size
left, also contains the orientation angle around line of sight, and and relative position of distinct scattering contributions, can be
we note for this type of target a characteristic phase difference estimated. However, with fully polarimetric data, much more
between the two co-polar responses, which is characteristic for well-defined and robust amplitude and phase related features
any even-bounce reflector. We further note, that the combined can be extracted, related to physical scattering mechanisms and
response from a sphere plus a diplane yields the response from target orientation. Further, more detailed geometrical
a dipole, which means that for more general, complex targets information, like type and orientation of distinct scatterers, can
we must expect to see significant differences between the single be estimated.
polarization HH and VV components. The helix is shown here
as a more peculiar type of target with the characteristics that it 8. SPHERE, DIPLANE, HELIX DECOMPOSITION
transforms incident linear polarization to reflected circular The scattering matrix thus represents all the target characteristic
polarization. However, although the helix is a somehow information, and there are a wide variety of methods available
artificial target, it should be observed that the helix scattering for dealing with this information. We have already touched on
matrix can also be produced by two diplanes with a relative the concept of decomposition in relation to separating even- and
orientation of 450 and a relative displacement along line of sight odd-bounce scatterers, as one example of polarimetric
of 1/8 wavelength. This means that for practical targets with processing.Typical techniques deal with polarimetric data in
two or several double-bounce scatterers in a resolution cell, terms of target characteristic parameters, scattering
helix-like scattering may also be found. It should be quite clear mechanisms, optimum polarizations, and so on. A recent
at this point, that a polarimetric radar is able to measure a great review of target decomposition theorems in radar polarimetry
deal of target characteristics that would never be revealed by a may be found in [2]. Here, we shall confine ourselves to a
single polarization radar. The single polarization radar may particular decomposition method that was introduced by the
even happen to get zero or near zero response from a target author about eight years ago, based on the observation that any
which otherwise has a significant effective radar cross section. general scattering matrix can be resolved into the three

elementary target components [3], [4],[5]: A sphere, a diplane,
6. COMBINED SCATTERING FROM SPHERE AND and a helix with some proper phase relations between them:
DIPLANE IS] ej' {ej' k, IS ],hem
The ability of a polarimetric radar to distinguish scatterers of
different nature may be seen by considering the combined + kd []S ]dplane( o) + kh [S ]helix( 0)}
scattering from a sphere and a diplane. The combined response where
from a sphere and a (non-rotated) diplane with a certain range 1 0
displacement relative to the sphere can be represented by the 1 01
linear basis scattering matrix, [S ],he-e [0 1

IS]=.Ia+be-J2kAr 0 j 2 kAr cos20 sin20- c

2]0 a-b[e- IS {]dpke(o) sin20 -cos20]

where a represents the sphere contribution, and b represents the
diplane contribution. From this scattering matrix one can-lT.SO-I +j]
readily see that the two different scatterers can be completely [S]heix(o) 1 ej2I 1  i
separated, even if they are both located within the same 2

resolution cell. Thus, by adding the HH and VV terms, thesphere (in general odd-bounce) contribution may be determined, 9. RESPONSES IN CIRCULAR BASIS
while the diplane (in general even-bounce) contribution results The relation between the sphere, diplane, helix decomposition

from taking the difference between HH and VV. This property anthcual catten chnismie. the actualophysi
of fully polarimetric data is very important, because it reveals is particularly clear when considering the responses from these
a way to separate - or decompose - scattering contributions of targets in a circular basis, as shown in this Table 1.
different nature. While even-bounce and odd-bounce
contributions interfere in single polarization radar data, they
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Table 1 To look at some actual applications of polarimetric techniques
to high resolution imaging data, we shall consider some color

images generated from an RGB color process, where three
LL RR LR different component magnitudes are used to modulate each of

Sphere NO NO YES the fundamental colors, red, green, and blue.

Diplane YES YES NO Table 2

Right helix YES NO NO
Red Green BlueLeft helix NO YES NO

LIN HV HH VV
Thus, the sphere is visible with the LR (or RL) term, but not
with the two co-polar terms, while the opposite is the case for CIRC RL RR LL

the diplane. A helix is visible with either the LL or the RR SDH k, k, kh
combination, depending on whether it is of right or left sense.
Hence, the diplane component is represented by either the LL SIGHEL left kL right kh
or the RR component, depending on whether the helix is of left
or right sense, while the helix component is obtained as the
difference between the magnitudes of the LL and RR elements. Four different types of modulation are shown Table 2. 1. bIN,
Therefore, this decomposition can be measured directly in the obtained by using directly the magnitudes of the elements of the
circular basis, independent of the incidental overall orientation scattering matrix in the linear basis. 2. CIRC, similar to LIN,circulanl ofsi, th e pret ndeo the linde nl ol sn but in the circular basis. 3. SDH, the sphere, diplane, helixdecomposition. 4. SIGHEL, where the sense of the helix

10. PARAMETERS OF ROLL INVARIANT SPHERE, component of SDH is considered. The latter is relevant, because

DIPLANE, HELIX DECOMPOSITION it is interesting to see whether the sense of the helix component

The relations between the components of the decomposition and varies mostly randomly, or whether there are some more

the elements of the scattering matrix in a circular basis, systematic, consistent variations between right and left sense.

mentioned above, are given as 13. MODEL TARGET FOR 2-D POL-ISAR SIMULATION
-- SRJl First, we shall consider some simulated polarimetric ISAR data,

on which the decomposition technique was first tested during ak - ISLL; k, - ISRRI stay at Georgia Tech Research Institute (GTRI) in 1990. For
+ S lJ - JS, , k- - ISLLI - IS I this purpose, a model target was defined as shown in Fig. 2,

( I composed of a number of different single scatterers: spheres of
2 (PoJ + 

tPLL - ) different magnitudes, diplanes of different orientation angles,
o = I - q0LL ÷ it) trihedrals of different orientation angles, and also some pairs of

4 (dihedrals to check the appearance of helix-like scattering. The
0= p - (q0RR + qPLL) socalled TRACK model of GTRI was used for computing dataR 2 simulating measurements on a rotating platform.

11. TRANSFORMATION FROM LINEAR TO CIRCULAR Examples of the polarimetric images generated from the
BASIS simulated data are shown in Fig. 3. Each of the single
Often, measurements are carried out using linearly polarized polarization images reveal only part of the total information
antennas, but transformation to the circular basis is quite available. The so-called maxpol image, on the other hand,
simple, reveals for each pixel the effective intensity. This parameter

represents the maximum value of radar cross section that would
S = j S +i- (S2 - Sd) be measured, if the optimum radar polarization had been usedSRR = j SHV ' H for each individual pixel. However, the maxpol image still

SLL- 2(SH H- SH ) doesn't reveal any phase or scattering mechanism related

S= - (SHH S+ information. Such information appears from the decomposition
2 ~components, and in particular the color-composite of all three

components is a very useful representation of the data in just
whereby quantities measured in the linear basis may be easily one image. It should be noted though, that only three out of the
related to the sphere, diplane, helix decomposition. five available parametersare represented in such an image.

More generally, once a full scattering matrix is given in one 14. APPLICATION TO POLARIMETRIC SAR DATA
basis, it can be readily transformed to any other general The data used for the results presented with this paper have
elliptical basis. Thus, one can synthesize what the response, been acquired with the Danish polarimetric SAR system which
would be using any other transmit and receive polarizations, has been developed at the Electromagnetics Institute (EMI),
With single polarization data, this would of course be Technical University of Denmark (TUD) [6],[7],[8]. This
impossible. system, EMISAR, now makes up the key instrument for

research at the Danish Center for Remote Sensing (DCRS)
12. RGB COLOR MODULATION FOR VARIOUS which was established at EMI in 1994.
DECOMPOSITIONS
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The system, originally a C-band single polarization system, was no phase difference between HH- and VV-components, while
upgraded to full polarimetric capability in 1993, and the a diplane has a phase difference of it between these
performance has been demonstrated through numerous components.
measurement campaigns. A remarkable feature of this civilian
radar is its high resolution of 2 m in both range and cross-range The method denoted SIGHEL (signed helicity) aims at
together with the full-polarimetric, wide-swath capability, separating the helix-component of the sphere, diplane, helix
which makes it a powerful tool for many demanding decomposition into the two categories: left and right sense.
applications, including classification and identification of Thereby it becomes possible to investigate the distribution
natural and man-made targets. between left and right sense of the helix-component. For

distributed, natural targets with azimuthal symmetry, the
A fully polarimetric L-band channel was added to the EMISAR correlation between co- and cross-polarized components in the
system in 1995, and successfully tested during several missions linear basis is usually assumed to be zero, and helicity might be
in 1995. This has added significantly to the capabilities and the expected to be evenly distributed between left and right sense in
utility of the system, because the polarimetric scattering such areas. However, it has been found that certain types of
characteristics of a target are in general highly wavelength targets exhibit consistently one dominating sense of helicity,
dependent [9]. depending on carrier wavelength. This observation has for

instance been made in agricultural areas, and is likely to be
Also, interferometric modes are presently implemented. A related to the fact that various crop types have distinct
repeat-track mode in which the radar steers the aircraft enables preferences and characteristics with regards to twine and
the aircraft to fly a desired track with meter accuracy, and composition [12],[13]. However, further investigations based
additional antennas are installed to provide for single pass on detailed ground truth studies is required before firm con-
across-track interferometry [10]. clusions can be reached.-

An important issue in connection with the use of fully In order to keep this paper in grayscale print, examples of the
polarimetric data is the quality of system calibration, since a images discussed above are included on the last pages in the
correct interpretation of relative phases and amplitudes of the form of a black and white print of an rgb image as well as the
scattering matrix can only be made with a sufficiently accurate corresponding separated red, green, and blue component
calibration. To ensure this, the present system accommodates images. Although they do not provide the same overview of the
unique features for internal calibration and for ensuring system data as a one-page color-composite image would do, some of
stability. External calibration is carried out just before and after the features provided by polarimetric processing are clearly
a mapping sequence, and calibration reflectors as well as seen. The scene is from the agricultural research center at
distributed targets may be used to verify and improve the Foulum, Denmark, with the research center located in the lower
calibration [11]. left corner of the images, and a variety of farm fields, woods,

etc. are seen around the center.
The three sets of color-modulation parameters, denoted in Table
2 as LIN, CIRC, and SDH, all represent useful information for 15. IMPROVEMENT OF SAR AND ISAR IMAGES BY
discrimination and contrast improvement in high resolution THE USE OF POLARIMETRIC DATA
polarimetric SAR imaging. The ability of LIN to distinguish Several problems are still identified in connection with the SAR
targets with predominant HH, HV, or VV returns provides an and ISAR (Inverse SAR) imaging technique for general non-
efficient way of revealing target characteristics which favor the cooperative targets and scenarios. Two key elements of the
generation (scattering) of a specific linear polarization, related ISAR principle are a motion compensation and a rotation
to target geometry. On the other hand, the parameters of LIN compensation which are required to obtain a sufficiently high
are not directly related to a specific scattering mechanism, as cross-range resolution. Both of these pose a major problem
are the parameters of SDH. For example, a horizontal or a because the phase information required for carrying out these
vertical diplane (commonly found in areas with man-made compensations is difficult to establish with sufficient reliability.
targets) produces HH and VV components of equal magnitudes,
which is also the case for an odd-bounce target like a sphere, a It is of interest to consider whether the use of fully polarimetric
plate, or a trihedral. Hence, LIN will not discriminate between data could be advantageous in this connection. In the light of the
these two otherwise very different types of targets. To separate decomposition of the scattering matrix presented above, it is
these targets, LIN must be used in conjunction with for example apparent that the chance of localizing suited individual
a plot of the phase difference between HH and VV. In the scatterers would increase significantly if fully polarimetric data
decomposition, this is already accomplished because the were available for each resolution cell. Thus, instead of just
parameters of the decomposition incorporate the phases as well searching for a resolution cell with a strong scatterer, one could
as the amplitudes of the elements of the linear basis matrix, then search for a resolution cell with a pure type of scattering,
The orientation angle, however, is hidden in the other two either of the odd-bounce or the even-bounce type. If such a
parameters in this approach and would have to be displayed in resolution cell can be found, chances are much better that the
a different type of image. corresponding back-scattering is due to a distinct single

scatterer, which is required in order to obtain a well suited
It should be noted that only the three component magnitudes are phase history for motion compensation. Similar considerations
used in these images. Additional information is actually present can be applied to the other data corrections that were mentioned
in the polarimetric data in the form of parameters like phases above.
and orientation angles. For example, the phase difference
between HH and VV returns may be utilized to generate images Although two-dimensional imaging of course provides a much
where certain types of scatterers stand out. Thus, a sphere has better visualization of the radar reflectivity distribution of a
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Figure 5.Red channel off [Igurc 4.
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ISAR Image Interpretation

Peter N.R. Stoyle
Defence & Evaluation Research Agency (DERA)

St Andrews Road, MALVERN, Worcs WR14 3PS, U.K.
Tel: (44) 1684 894900, Fax: (44) 1684 894504, Email: pnstoyle@dera.gov.uk

It is an obvious point but it always interesting to know

1. SUMMARY what we are seeing in an ISAR image, in terms of EM
scattering mechanisms. A time-honored procedure is to

This paper represents an early stage of the author's take the scaled ISAR image and overlay an optical

research into the Interpretation of ISAR. Necessarily outline (preferably showing the features of the aircraft)

Interpretation must proceed from an EM scattering having the same projection. The experienced interpreter

theory viewpoint. As the author's past experience has can then make statements about each major 'blob' in the

electromagnetics, the treatment at this stage ISAR image based on their correspondence with thenot been in knownrfeaturescandtgeometryeandawithihis/her
is far from deep or comprehensive, but nonetheless known features and geometry, and with his/her

attempts to survey how some typical scattering experience. For example, cavity returns usually appear in

phenomena might manifest in an ISAR image. Also, the R/XR neighbourhood of the engine, and also down-

some questions and techniques relating to Image range of this.

Interpretation are raised and discussed. For example, ISAR Image Interpretation (abbrev. Is~mI) is closely
pure monostatic measurements can sometimes fail topositively diagnose a particular scattering mechanism allied to various important areas for the EM, NCTI and

posiivey dagnse paticuar caterig mchaism radar modelling specialist. Firstly, ISAR imaging, both
(even when including polarization information). It is then radar mongspeciais Firstl y oA im aingaske, cn bitatc masurmens povid suh a bistatic and monostatic, is a direct way of obtainingasked, can bistatic m easurem ents provide such a im g s o d f ra t n ph o e a. A su h 2 D I R
diagnosis? Also the important question of the adequacy images of diffraction phenomenta. As such 2-D ISAR
of point scatterer models (PSM) of air targets is raised. (and possibly 3-D despite its current lack of practicality)
Where the PSM model fails, what simple extension can shudbofengraritrstotepreEreplace it? researcher than zero dimensional RCS, which has beenthe traditional tool of interpretation in academic papers.

Keywords: This was doubtless partly due to cost, but now the cost of

Radar Imaging, ISAR, Electromagnetic Scattering, doing full ISAR imaging has come down. There is not

Travelling Waves, Radar Cross Section very much in the open unclassified literature on IsInt
specifically in relation to ISAR, although the recent book

Abbreviations used: [1] contains very many pertinent observations, some of
which are followed up here.

DE Differential EquationDFT Discrete Fourier Transform Secondly IsImI is important for understanding how toEM ElectroMagnetic reduce RCS, and in understanding the main mechanismsFF Far Field involved in backscatter. This paper attempts to classifyFT Fourier Transform a few generic scattering mechanisms, with a view toISAR Inverse Synthetic Aperture Radar finding simple ways to understand the mainsISAR Imagrse Synthe perpuretRato characteristics of each. For each scattering mechanism,LOS Line of Sight some consideration is given to how it might be actuallyMoM Method of Moments characterized by measurements, including bistaticNCTI Non-Cooperative Target Identification measurements if fully polarimetric monostatic will not

PO Physical Optics suffice.
PTD Physical Theory of Diffraction
PSM Point Scatterer Model Thirdly in the matter of prediction code and NCTI

RCS Radar Cross Section database validation, it is crucial to understand

Rx Receiver/Receive mechanisms in relation to target features, as much

TW Travelling Wave(s) qualitatively as quantitatively. Do we have to model

Tx Transmitter/Transmit down to the level of rivets, plates and minor surface

U/C Unclassified irregularities, or how important is it to model sensors

XR Cross-Range etc.? The often-noted discrepancies between prediction
codes, scale model measurements and full-scale

2. Introduction measurements highlights the fact that certain key

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.



4-2

elements of backscatter modelling are still far from monostatic characteristics of the various scattering
perfectly understood, but ISAR imaging gives us a very mechanisms to be examined in some more detail below.
good tool to investigate the sources of the discrepancies. Occasionally monostatic ISAR measurements (in

conjunction with polarimetry and the other techniques
Finally, it is important to understand to what degree above) will perhaps give a strong suspicion or indication

PSM's are adequate to model a target. For example that a certain mechanism is in play. But they may not be
many autofocus methods implicitly tend to assume that sufficient to uniquely identify that mechanism beyond all
there are one or several scatterers which are well- doubt, in which case bistatic measurements may be
behaved in the sense of looking like a resolved point considered for a more positive diagnosis. For a given
scatterer. Synthetic models of targets for monostatic angular traverse A0 with mid aspect 0o, as is well-known
imaging radar simulations are often PSM's. A PSM (or [4] a monostatic ISAR image will have a XR resolution
equivalently a PO) assumption is made when making X(2A4)), whereas a bistatic image has resolution V/AO. To
Near Field monostatic ISAR measurements and be comparable on the same basis, the equivalent bistatic
extrapolating them to the Far Field. image should traverse angle +A0 about the mid aspect Oo

- we shall return to this shortly.
2. Scattering Mechanisms and Diagnosis Aids

A perfect conductor has been assumed in the 3. Point Scatterers
following incomplete list of scattering types. Dielectrics The signature of an isolated point scatterer is that it is
and other materials will be examined later in the study. largely non-dispersive with respect to frequency (i.e. has
List of Scatterer Classification Categories Examined approximately linear phase in the raw data domain over
1. True point scatterer (Linear Phase in both frequency the bandwidth used to form the ISAR image). Also that

and aspect angle, over some aspect angle range) over some specified aspect angle range it has linear
2. Unresolved scatterers and continuous distributions phase in the raw or range profile domain. These two

of point scatterers properties guarantee that under FT, the scatterer
3. Sliding scatterers transforms to a fixed R & XR position in the image
4. Surface Discontinuities domain, i.e. a point. Often rather than establishing linear
5. Travelling and Creeping Waves phases in the raw data domain say, it is easier to reason
6. Edge Diffraction that the scatterer must be localised in the image domain
7. Multiple Bounce Interactions due to localisation of the radiating current, or from ray-
8. Dispersive Cavity Interactions tracing arguments. A typical example of a point
The above categories are not in all cases mutually scatterer might be a highly localised target feature such
exclusive, for example a multiple bounce return can look as a bump or facet on the target surface of dimensions
like a point scatterer. As well as the mechanisms, we less than a resolution cell size.
need to consider what tools and general techniques are
available to the Image interpreter, listed as follows: Let us next consider sampling the Far Field of a
Aids to Interpretation/Diagnosis of TSAR Images larger facet such as a rectangular metal strip or plate
1. Superposition of Aircraft Optical Outline and scaled illuminated by a plane wave at near normal incidence.

ISAR image. Apply knowledge of likely scattering From Physical Optics (PO) the assumption is that the
mechanisms in relation to the known geometry and strip current is uniform (its magnitude is uniform) and
disposition of sensors etc., to deduce or to guess given by 3= ZIA X 1 i . It can readily shown that
what each image feature is. the PO assumption is equivalent to the strip acting as a

2. Utilise image editing techniques to excise an area re-radiating rectangular aperture antenna of width D say
around a scattering centre, and to do a phase (a full derivation is quite lengthy, see e.g. [3]). [3]
(Rihaczek-type) analysis on it to determine if it is arrives at the expression (for the monostatic case)
resolved. For the details, consult [1]. W12

3. Polarimetry can be a useful tool to gain more E,(u) = (x ).e 4dj(xfX).tan(a) x
information on the type of scatterer. There are where ox iste incidence or aspect angle relative to the
expert papers on this topic in this conference, see normal, p(x) = 1 for -WP5 x•D/2, =0 elsewhere, and x =
e.g. [2]. x'/X where x' is cross-range. The integral is seen to be

4. Specialist Signal Processing (such as wavelet the Fourier transform of the pulse-type function p(x),
transformations on raw ISAR data) can be useful which is a sinc function. In ISAR measurements we are
when analysing cavity and other types of returns, measuring complex samples from discrete points on this
Refs [9,10]. sinc function (of width V/D for bistatic, X/(2D) for

5. Bistatic measurements contain more information monostatic). The sinc function is of course modulated by
than monostatic. They can reveal some shape the usual complex phase exponential due to the range
information and the presence of interaction between the s trip phase ene. To to the Ragescaterer. berate of the strip phase centre. To form the TSAR imagescatterers. we just take the inverse DFT of these samples which

Method 1 will be assumed here as a baseline that one can weoust tak inverse DFTlof theseample whi
alwaysaround normal incidence include the main beam, take the
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modulus and we retrieve a constant magnitude quadratic type of phase characteristic which should
reflectivity over the XR width D of the strip. So the generally be sufficient to distinguish it from other
ISAR image of a strip at near-normal incidence gives an scattering phenomena. A succession of stacked
image of the strip. In effect we are imaging the 'specular overlapping ISAR subimages, either bistatic or
flash' of the strip and it appears like a line source in XR, monostatic formed over smallish angles A0, should show
i.e. a continuous line distribution of point scatterers the migration of a sliding XR scatterer peak when seen
which are unresolvable. Clearly in the inverse domain as a 'movie'. This will be tested during this study as a
we now have a non-linear phase which is the diagnostic measure.
superposition of the linear phases of the original
continuous distribution of scatterers. Edge Diffraction

If we now consider imaging the strip somewhat Diffraction at a wedge-like edge is a non-PO
away from normal incidence (but not so obliquely that phenomenon involving truncation of the current as we
travelling waves -see later - are significant), we are now pass into the shadow region. A rigorous treatment of
taking samples on just the sidelobes of the sinc function. edge diffraction is afforded by Mitzner's Incremental
Over small angles, to quite a good approximation these Length Diffraction Coefficients (abbrev. ILDC) which is
sidelobes are just a sinusoid of spatial frequency 2DA/, a PTD approach. The current at a finite length edge can
which on inverse DFT transforms to 2 points separated be regarded as a sum of a PO current (which as already
by a XR distance D. So what we see in this case is just seen can give rise to line or point scatterers) and a
the endpoints of the strip. One can also reason as below fictitious equivalent edge current due to Michaeli, which
that seeing the endpoints is due to rapid truncation of the by definition appears like a line source localised along
induced currents near those points. We are assuming of the edge. From stationary phase considerations these
course in the above that the ISAR sample spacing is less edges will appear stronger when the backscatter
than X/(2D), the usual Nyquist sampling condition. direction is along Keller's GTD cone of specular

Next we consider a current on a surface and suppose diffraction directions. The conclusion here is that edges
that this current has some discontinuity on the surface (like specular reflections from strip-like facets as we saw
due to surface geometry (sharp bend or curvature say), or earlier) will look line or point scatterers.
due to truncation at an edge. For a step-like discontinuity No very specific diagnostics for edges are put
say, we can consider the current as being the sum of two forward here. The simple inspection of the ISAR image
currents on two contiguous strips like the above. When in relation to the superimposed optical outline will
these are FT'ed, and subsequently Inverse DFT'ed to usually confirm the collocation of edge returns with the
form the ISAR image (subject to Nyquist sampling being physical edges, with the strongest returns (for sharp
satisfied of course for the overall XR length D of the leading edges) observed when the polarisation vector is
surface), we will image the step in reflectivity in the right such that the E-vector is parallel with the edge. In the
position. when cutting across the specular region of the opposite polarisation, travelling waves are set up and the
surface. For aspect angle ranges not including the strongest return tends to be from the trailing edge at
specular region, we will see just the end-points of the oblique (i.e. near grazing) incidence angles. One could
steps, i.e just the locations of the discontinuities will be go further toward a positive diagnosis if full bistatic
seen. In modelling terms, the most efficient way of measurements were performed. This would resolve the
storing the above information may be in terms of the XR surface currents, in principle to a W/2 resolution, and thus
directivity pattern of the strip or facet (the inverse allow diagnosis of the currents responsible for edge
Fourier domain to the image domain), rather than by diffraction. However full bistatic measurements, even if
enumeration of point scatterers. just at a single frequency and Tx angle, represent a large
Looking ahead a moment to travelling waves (TIW's), if number of measurements and the practicality issues are
there is a local surface impedance change, the current not straightforward. Full bistatic current imaging is
and in particular the TW current itself might be mentioned in the literature as a viable and useful
continuous, but due to there being reflected and analytical procedure, for example in [5, Chapter 4],
transmitted TWs from the impedance inhomogeneity, the though principally for use as a visualisation tool with
derivative of the current will be discontinuous, and again MoM3D Moments code outputs.
it can be shown that the discontinuities act like point
scatterers. 4. EM Interaction Phenomena

Sliding Point Scatterers This section looks at some backscatter phenomena which
For a curved surface, the set of surface patches are not purely local in origin but involve interaction at a

reflecting specularly back to the Tx can move in R & XR distance.
in a way unlike a point attached to a rigid body. Such
reflections will having a shifting, unstable Doppler or Travelling Waves
Cross-range, and will often therefore fail to focus up as a Travelling waves are surface waves of freespace
point with the standard ISAR FT processing. As wavelength X, which propagate over geodesics of the
Rihaczek [1] notes, such a scatterering centre will have a illuminated surface. Creeping waves are TW's which
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have propagated into the shadow region, but which then An alternative way of viewing TW's is as a
radiate due to the curvature of the shadow face and are phenomenon of surface waves generated by edge
thus attenuated as they travel . There are a number of diffraction, see e.g. [6, Chapter 12]. Consider a V-
ways to gain a picture how travelling waves arise. One is polarised wave impinging on a horizontal metal strip or
via analysis of the case of a thin wire of length h. plate near the Peters angle. In this viewpoint, there is a
Hallen's equation for a thin z-axis directed wire is forward TW travelling just above the strip surface
simply derived from Maxwell's equations in many launched off the leading edge (the point of 'attachment'),
antenna texts, see e.g. [6], as: it travels parallel to the surface and is diffracted off theS2 A 2.k 2 . E z' trailing edge (so-called 2nd order diffraction) as the TW

z + k A = J .Z which gives the monostatic backscatter return. From

Z "(0 edge diffraction theory [8] the TW current falls off as
where k=21cA, and co=kc. From this linear DE the =l/4x as we go away from the trailing edge, i.e. as if
solution for the vector potential A, is given by a from a line source. This current though decaying still
homogenous term + a forcing integral from the right launches a backward TW in the Peters angle direction,
hand side: and in the ISAR image the TW will appear to emanate

mainly from the location of the current close to the
o +trailing edge (point of 'detachment').
w EHigher order diffractions (further 'reflections' of thewhere E,' z=i_ E. s in . e O is the incident TW off the ends of the strip) do occur, but their

contributions are normally negligible. A conclusion here
field strength, 0 is the angle the (assumed plane) incident is that in VV polarisation the trailing edge will give a
wave makes to the negative z-direction on the wire, and more significant return, whereas in HH polarisation, both
K is a constant. The current I, is related to A, via the edges will tend give returns though at a lower level. A
defining integral equation for vector potential: TW return, like edge diffraction generally, can often be

A h e - rd significant in magnitude, though they are typically well
4 f J ( Z' ) r . d z down on specular returns. PO-based EM codes do not

normally include either effect unless they are

where r = [a 2 + (z - z' )2 ]1 incorporated as extras.
The TW is the first example of an interacting

When the wire radius a is << X, one can argue from this scattering mechanism, involving multiple reflections,
that except near the end points A, c.I where c is a cavity bounces or edge diffractions. The TW return as
constant. Substituting we get: noted above will appear like a point-scatterer at the

Z itrailing edge of the strip, as just noted. Thus from a
cA =C, cos(kz)4_CC '.sin(kz)4-e.-Z(z!.sink(z-ze).dY monostatic viewpoint it can be modelled as a point

whence the constants C1 & C2 can be determined from scatterer, but with an associated near-endfire directivity.
the boundary condition that current is zero at the ends of If the strip is in fact a curved surface, the TW return will
the wire, z=O & z=h. On performing the integration the then have a range slightly down-range of the trailing
only terms remaining are terms in cos(kz), sin(kz) and edge (and at the same XR), because the curved path
e/•k'O. The last term gives rise to the specular reflection length over the surface is longer than the LOS range.
and the first 2 terms can be regrouped as a term in e)' TW's are often traversing a surface not only from front
representing a forward travelling wave in the negative z to back and to front again, but they can resonate in many
direction and a backward (reflected) TW ejIc in the directions, and will also radiate from any surface
positive z direction. The reflected TW is what radiates discontinuities encountered. Creeping waves are TW's
back (in the manner of an endfire antenna, see e.g. [7]), traversing the back of an object whilst being
in the monostatic backscatter direction when the angle 0 continuously edge diffracted, and finally reappearing in
is within a certain narrow range in the neighbourhood of the backscattering direction. But normally if the back of
the so-called Peter's angle, calculated from endfire the object is more than just a few wavelengths long,
antenna theory, typically about 15 or 20'. these waves are very much attenuated in magnitude and

If we have several wires, we get a set of DE's their effects are unlikely to be seen.
similar to the above, coupled through their forcing terms, We have already given some largely well-known
as the incident wave now includes the near electric field diagnostic hints on how TW's manifest. Further
produced by the current on each wire. But we may still diagnostics which could be made are as follows. One
expect TW terms to be present to force satisfaction of procedure would be to make full bistatic measurements
the boundary conditions on current. And in the general in Azimuth and possibly Elevation to image the currents
case of a surface, as is well-known this is electrically to near V/2 resolution, for a given Tx illumination
equivalent to a suitable grid of thin wires. The same direction. The wavelength X• currents responsible for
kind of TW terms can be expected to be present as for TW's and creeping waves may then be extractable.
the wire case. Another bistatic diagnostic tool is less costly in number

of measurements and is tentatively suggested here,
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although it largely remains to be investigated. At the end show up on monostatic measurements, but bistatic can
of Section 2 above, the bistatic image equivalent to a give information such as the orientation of the facets.
small to medium angle ISAR monostatic image was For a general cavity whose interior is curved, further
introduced. The conjecture here is that when ISAR investigation is required as to what bistatic
mono- and equivalent bi-static images are compared, that measurements can yield in this important (as it occurs
the main differences noted in the magnitude and position commonly) case. But it is likely again that, properly
of scatterers between the two images will be attributable processed and interpreted, bistatic contains shape
to interaction phenomena. Genuine single bounce point information about the cavity geometry.
scatterers should appear the same in both images, even if
they are continuous distributions, or sliding scatterers. Dispersive Cavities
But for example a standard retroreflective Corner If any dimension of a cavity is of wavelength order,
Reflector will be appear like a strong point scatterer to a then the cavity returns may become noticeably
wide range of monostatic aspect angles, but in the dispersive, i.e. non-linear with frequency. This means
equivalent bistatic image it will give a strong return only that the ISAR images of such cavities may be very
very close to the monostatic backscatter directions, but smeared in range as well as possibly in XR. If just one
away from these only a small return. Thus the return 'waveguide-type' mode is excited across the range of
strength which is integrated will differ in the two cases. aspects used to form the ISAR image, there is likely to
Similarly a cavity viewed monostatically will have be little XR smearing, but normally a mixture of modes
different modes excited as the Tx angle changes, but will be excited in amounts depending on the aspect. Each
bistatically the same modes are imaged as the mode will have a different phase centre to we can expect
illumination is fixed and the Rx probe angle varies - here the return phase to be highly non-linear in general. To
again one can expect the images to differ. The edges of determine how exactly a cavity appears in an ISAR
a sphere imaged monostatically will not be seen because image, a modal analysis needs to be performed. It is
the sphere always just looks like a point, but bistatically hoped later in the study to perform simulations for
the creeping wave at the edge, or at least the current regular cavities such as cylindrical or rectangular (in
which gives rise to it, may become visible. In a similar which the Helmholtz equation is separable and
way one might expect a general TW to look different in analytically solvable in these coordinate systems); for
the bistatic image, but the details have not been irregular cavities an analysis of the type put forward in
sufficiently clarified at the time of writing. [11] will numerically determine the modes. How does

one determine what modes are excited? One way is, for
Non-Dispersive Multiple Bounces each mode, to determine the tangential fields or

Retroreflective (abbrev. RR) specular reflection equivalent currents at the aperture. From this the
from a set of planar facets such as irregular corner or radiation pattern in the FF can easily be determined. If
large (i.e. electrically large compared to X) cavity will mode k contributes a proportion cxk to the FF in a certain
normally be a strong reflection and appear to come in direction p, then by reciprocity this will be the
XR from the average XR of the first and last facet proportion in which mode k is excited by an incident
involved in the RR chain. The range is the path length plane wave arriving from the aspect (p.
along any ray, and is the same for all rays associated
with a given RR mechanism. All ray reflections appear Related to the previous observations, if full bistatic
then to emanate from the one point with the R & XR just measurements are made on a cavity at a single
discussed. Thus this type of RR will appear like a true frequency, what is imaged at a given frequency and Tx
point scatterer, with directivity pattern a function of illumination direction is the equivalent current over the
aspect angle - since the projected facet area involved in aperture on a Vd2 grid. The appropriate spatial frequency
the RR changes with aspect. There may be m different component of that current will reradiate in the
sets of facets involved in RR, each valid over possibly monostatic direction. This component will be seen to
slightly different ranges of aspect angles - in this case up vary quite rapidly in magnitude and phase as the
to m point scatterers at different ranges will be observed frequency is changed, due to the frequency dispersion.
in the image of the facetted cavity. Moreover, the cavity can be economically modelled, not

More generally still, the cavity or corner will have directly via a PSM of course, but by the magnitude and
curved surfaces, and we thus have a hybrid of the above phase of this component, stored as a piecewise linear
and the sliding scatterer case. As the aspect changes the function of frequency.
'point scatterers' above will move about in XR and
shightly in R too, leading to non-linear phase behaviour Finally, the conjecture is made here, that if the
and some observed smearing, aperture current has been estimated to within V/2

The strength of RR returns and the likely presence accuracy via bistatic Rx measurements on a 2d(2D) angle
of multiple delayed returns as a "down-range trail" are grid (where D is the aperture dimension) for all Tx
indicators of a cavity. Not all cavities are RR of course - positions on a similar grid, then the shape of the cavity
for these, the facet angles are such that the strong returns can be determined from this information.
go out in bistatic directions. Such a cavity may hardly
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CONCLUSIONS
These will be presented for clarity as a series of bullet
points.
"* Need to use existing codes such as NEC, and some

specialist simulations and measurements, to confirm
some of the above observations.

"* The work has only looked at good conductors, and
needs extension to cover other common materials
such as dielectrics.

"* Further investigation of the practicality of bistatic
measurement modes as a diagnostic tool is
indicated, also of their potential to yield shape
information.

"* The methodology needs to be integrated with
existing techniques such as polarimetry and signal,
analysis.

"* Bring any key insights to bear on the target
modelling and NCTI database problem.
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Abstract- Fourier transforms are the basis for conven- applying the Fourier transform [1], [2].
tional SAR and ISAR (range-Doppler) imaging. Target ro- These Doppler processing methods based on the Fourier
tation during the coherent integration time results in a time-
varying Doppler frequency shift that produces, after Fourier transform work best when the Doppler spectrum of the
transform, a smeared Doppler spectrum and a blurred im- radar phase history is stationary during the imaging time,
age. Sophisticated motion compensation algorithms must be which is sometimes referred to as the synthetic aperture
applied to obtain focussed images using Fourier techniques. time, coherent mtegration time, or coherent processing in-

However, image blurring can be mitigated without re-

sorting to sophisticated focusing algorithms by using time- terval (CPI), etc.. If the target being imaged is maneuver-
frequency transforms in place of the Fourier transform for ing during this CPI, the Doppler spectrum becomes time-
Doppler processing. Various time-frequency transforms are varying and the reconstructed image will be blurred. So-
described and compared. Range-Doppler images of maneu-
vering aircraft produced by conventional Fourier transform phisticated motion compensation algorithms that adjust

methods are compared with those produced produced by the phase of each echo being processed must then be ap-
time-frequency transform methods. A set of NATO pro- plied before application of the Fourier transform.
vided ISAR data illustrates the benefit of using the latter. As defined, the Fourier transform is a method of global

spectral analysis that only indicates what frequency com-
ponents are contained in the analyzed signal; it does not
indicate how these components vary with time. Because of
the time-varying behavior of the Doppler frequency spec-
trum, the analysis is more effective by using time-frequency
transforms. Short imaging time may minimize the effect of
image blurring caused by time-varying Doppler spectrum.
However, short time also reduces the Doppler resolution.

Radar Rsceiver The use of time-frequency transform allows us to obtain
the instantaneous Doppler spectrum. By optimally balanc-
ing between the resolution and the cross-term interferences,

Range Range 4 Phase Fourier a high resolution instantaneous Doppler spectrum can be
corsion " Tracking/Alignme Correction achieved and, thus, the image blurring problem caused by

Rane Dtime-varying Doppler frequency shifts can be circumvented.
Target z'

Fig. 1. Diagram of conventional radar image processing. z cordinate
syste m

1. Introduction /Ix.

The purpose of forming radar images is to reveal useful AR
features of targets that can be used for target recognition
and classification. The imaging process consists of a range f " - " T -T

processing followed by Doppler processing, as illustrated in
Fig. 

e 
1.Radar 

uFig.I. Ea tercoordirnate
The algorithmic implementation of the range compres- earth lix system

sion in the range processing generally depends on the radar system

waveform (e.g. step-frequency (SF) waveform or linear fre- Fig. 2. Three coordinate systems: earth coordinate (e,f,g), radar

quency modulation (LFM) waveform). For some waveform coordinate (u,v,w) and target coordinate (x,y,z).

such as SF, the range compression is performed by the
Fourier transform. However, in conventional radar imag-
ing systems, the Doppler processing is always achieved by 2. Dynamics of Maneuvering Targets

*This work was supported by the time-frequency/time-scale analy- We define a maneuvering target as having translational
sis program managed by the Office of Naval Research. and rotational, possibly nonuniform motions during the

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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CPI, which we define to be between time t = 0 and t = T. The instantaneous range to the reference scatterer from
We also assume the radar sensor is located at the origin of the origin of the radar coordinate (u,v) becomes
the (u,v,w) frame of reference, as indicated in Fig.2 where
the (e,f,g) frame is defined as the earth coordinate frame. rt = (Q 2 + (P 2 )1/2

The target's center of mass is denoted in (u,v,w) coordi- = {R 0
2 + d2 + 2Ro[xcos(O - Ot) - ysin(O -0)]11/2

nates as a function of time at t = 0, R(u, v, w, t = 0) = R- Re + xcos(O - qt) - ysin(O - ot) (1)
and at any t, R(u, v, w, t) = Rt.

We presume a reference scatterer is located at P(x, y, z) A frequently used set of rotational motions is roll, pitch
and has a distance d from the origin in an inertial (x,y,z) and yaw. As shown in Fig.4, for an aircraft heading along
coordinate, as shown in Fig.3. We also define the head- the x-axis, roll corresponds to a rotation 0r about the x-
ing of the target to be always aligned with the x-axis of axis, pitch corresponds to a rotation 91 about y-axis, and
the inertial frame. Thus, translation and rotational co- yaw corresponds to a rotation 9y about the z-axis. If the
ordinate transformations can express the positions of this order of rotations is a roll, followed by a pitch, and finally,
reference scatterer at any time during the CPI in terms of a yaw, then the composite roll, pitch and yaw motions can
the radar's (u,v,w) coordinate system. The instantaneous be represented by a rotation matrix
position vector to the reference scatterer is the vector sum Rot(Or, 0p, Oy)
7t = At + d*, or more precisely, Roll(x, Or)Pitch(y, Op)Yaw(z, Oy) (2)

[Ut, Vt, wt]-T = Trans(Tu(t),Tv(t),Tw(t)) 
.

Rot (Ou (t), , (t), Ow (t)) . [X, Y, Z] -T rW Yaw Z

where Trans(*) is the coordinate translation matrix that

expresses the position vector OS in the (u,v,w) coordinate Rotation

system and Rot(*) is the coordinate rotation matrix that Pitch Roll

expresses the vector SP in the (u,v,w) coordinate system. V

Y ' P: (x,y,z) Translation___

Targe A "•s y/

coordinate , Radar
system Origin of Origin of

V . . . . . .. "rv . . ' r a d a r c o o r d in a t e t h e lo c a l c o o r d in a t e

rt I\ sine y Fig. 4. Target rotation.

Radar R, X

coordinate i I The roll matrix can be expressed as [3]
system

I_ _ Q 1 0 0 0

Roll (x$,Or) 0 coSOy -sinuy 0
0 sin9y coso9 0 ' (3)

Fig. 3. Radar and target coordinates. 0 0 0 1

the pitch matrix is
For simplicity, we only analyze 2-dimensional coordi-

nate systems where the (x,y)-coordinate has a translation cOSp 0 sinOp 0
(T0 , T,) from the (u,v)-coordinate and has a rotation 0 Pitch(yO)= 0 1 0 0 (
about the (u',v')-coordinate. The (u',v')-coordinate has '' -sin9, 0 cosOp 0 ' (4)
only translation from the (u,v)-coordinate but no transla- 0 0 0 1
tion from the (x,y)-coordinate. In this case, the translation and the yaw matrix is
matrix becomes

1[co~s9, -sflO,
[1 OT(t)Y sir, cosO, 0 0

Trans(T.(t),Tv(t)) = 0 1 T0 (t) Yaw(z,0y) ] 01 0 (5)
0 0 1 0 0 0 101

where T0 (t) = Rocosot and T,(t) = Rosinot. The rotation Therefore, the rotation matrix can be expressed as
matrix becomes

all a12 a 13  0
[cosO -sinO 0 Rot (0,,0, Oy)= a 2 1 a 22  a 23  0 (6)

Rot (0,0,9)= sinO cos9 0 a31 a 32  a33  0
0 0 1 0 0 0 1
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where Target
coordinate

all = cosO coso.; y p system y

a 12 = -cosOpsin0; vY

a 13  sinOp;

a 21  sinOrsinOpcosoy + cossinOy; rrx.

a22 = sinOrsinOpsinOy - cosOrcosOy;
a 2 3  = -sinOcosOp;

Radar
a31  = cos9,.sin0pcosoy - sinO,.sinOy coordinateT
a32 = cosOsinOpsinOy + sin0,cosO8; system Tt T,

a 33  = COS0rCosOp. U

When there is a translational motion represented by a Fig. 5. Maneuvering target.
vector [T., T,, Tm], the translation matrix is

1 0 0 T 1
0 1 0 Tv where

Trans(T•,TI,TJ) = 0 0 1 T, Rt = R(t) = Ro + VRt + aRt2 /2

0 0 0 11 and

Thus, the composite translation and rotation matrix be- ot = 9(t) 0o + Qt + at 2 /2.

comes We can assume the angle of the reference scatterer in the

Trans(T., T,, Tw)Rot(O,, 0, Oy) = radar coordinate system is also a function of time:

all a12 a 13  Tu 1t = O(t) = 0o + Abt
a2 1  a2 2 a 23  Tv
a32  a32 a 33  Tv (7) where AO is determined by the target's trajectory as well0 0 0 1J as the rotation of the target.The phase of the returned signal from the reference scat-

Any scatterer on the target will move from its initial loca- terer is
tion [uo, vo, wo] to a new location [ut, vt, wt]: 2 rt

all a 12  a 1 3  Tu I 0 t)= 2f--
Vt = a21 a22 a23 Tv VO . 27rf 2[Rt + xcos(Ot - Ot) - ysin(Ot - Ot)]
wt a31 a32 a33 Tw wo e

10 0 0 1 1 (10
or Since the time-derivative of the phase is frequency, by tak-

ut a1[uo + a1 2VO + a13wo + Tu ing time-derivative of the phase function, the Doppler fre-
vt = a 21uo + a22vo + a 23wo + Tv (8) quency shift can be derived as
Wt a31uo +- a32Vo +- a33Wo +- Tw 2

1f1 ID n f-- VR

When the target is maneuvering, the Doppler frequency 2f
spectrum of the returned signal from the target be- + -Jx[- sin(Oo - O0)(Q - AO)C

comes time-varying, and the reconstructed image becomes - cos(Eo -_0)(Q -

blurred. In the next section, we will discuss the time- 2!

varying Doppler spectrum induced by the target maneu- 2f y[cos(Oo - 0o)(P- AO)
vering. c

3. Target Maneuvering Induced Time- - sin(eo _ 00)(p _ AO) 2t(

Varying Doppler Spectrum For simplicity, we take a look at the following two cases
Target maneuvering is mainly caused by target's trans- and examine target rotating induced time-varying spectra.

lational and fast rotational motions. Assume a target has The first case is a target with yaw motion only, i.e.,
translational and rotational motions only in the x-y plane 0 r = Op = 0 and 0, = Qyt, where Q, is the yaw rate as
as shown in Fig.5. At a time t, the target coordinate system shown in Fig.6, the rotation matrix becomes
(x,y) becomes (x',y') by a translational motion and a ro-
tational motion. Thus, the range of the reference scatterer cos0y -sin0y 0 0
from the radar becomes Rot(r,0Op, Oy) = sinOy cosOy 0 0 (12)

0 0 1 0
rt = r(t) •- Rt + xcos(Ot - Ot) - ysin(Ot - Ot), (9) 0 0 0 1
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Assuming the initial range from the radar to the center Pitch x
of rotation Ro is much larger than the dimension of thez P
target, the range from the radar to the scatterer at (x, y)
can be approximately expressed as

R = Ro + cosEox - sinOoy (13)
R Center of rotation

where 00 is the initial yaw angle as shown in Fig.6. 0  ( f' C r

Radar

y Fig. 7. A target with pitch motion.

Target

The second case is a target with pitch motion only, i.e.,
00 U Or = 9y = 0 and 0, = Qt, where 0, is the pitch rate as

0 "shown in Fig.7, the rotation matrix becomes

Radar Center of rotationx•,z cOS9p 0 sinOp 01
( ,y, ) Rot(r, 0p, y) -= 0 1 0 0 (20)(Xy')-sin~p 0 cOSOp 0

0 0 0 1
Fig. 6. A target with yaw motion.

A scatterer at (x, y, z) will transform to a new location

Because of the yaw motion, a scatterer at (x, y, z) will (x', y', z'), where
transform to a new location (x', y', z'), where x' = cos0px + sinOpz (21)

X' = cosoyx - sinOyy (14) Y' = y (22)

y' = sin9yx + cos8yy (15) z' = -sinOpx + cosOpz. (23)

z' = z (16) The new range becomes

and the new range becomes R'(t) = Ro + cospox' + sinl'oz'

R'(t) = Ro + coseox' - sinE9oy' = Ro + cos(Op + T1o)x + sin(Op + To)z

= Ro + cos(Oy + E1o)x - sin(Oy + E0o)y = Ro + cos(Qpt + Fo)x + sin(Qpt + IFo)z,

= Ro + cos(Qyt + E1o)x (24)

-sin(Q•t + E0o)y. (17) where To is the initial pitch angle.

Thus, the phase of the returned signal from the target
Thus, the phase of the returned signal from the target becomes

becomes

2R'(t) IR(t) = 27f2R'(t)c
OtR(t) = 27rf -C

c 2[Ro + cos(•[R+ ot ± o)x + sin(itt + o2o)z]°
r + 2[Ro+cos(Qpt + Eo)x-sin(Qxt + Eoz)y. 2f c

c(18) (25)

and the Doppler frequency shift becomes
By taking the time-derivative of the phase function, the
Doppler frequency shift can be derived as = 2f

kpi~h -[x(-Q, sin To' - cost COI'o)
C

2f fl 2 tcs +z(qco COS o _ (26)=-[x(-Qy sinE 0 -o - -CS 2tsinTo)]. (26)

-y(ny cos Go - Q 2yt sin Oo)] (19) Even if the pitch rate Qp is a constant, the motion-induced
Doppler frequency shift fDpi,,h is still time-varying.

We can see that even if the rotation rate Q. is a constant, Fig.8 shows the rotational motion induced time-varying
the yaw motion-induced Doppler frequency shift fDy,. can Doppler spectrum for a given rotation rate (Q, = 0.2
still be time-varying. rad/s) and different initial rotation angles. To represent the
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-40 Time..rig Dopl frequencyshift (e00m.e..) dow function, the frequency resolution of the STFT is de-
Iniootial angle-10, d e gog) termined by the window size. There is a trade-off between

the time-resolution and the frequency resolution. A larger
-°° ,window has higher frequency resolution but lower time res-•-100 -. M1-1 20olution.

...... , .3 d4.2 Wigner-Ville Distribution

S.... •• The power spectrum P(w) of a non-stationary signal s(t)
_160 Inm ..... 4001)o~oo is the Fourier transform of the auto-correlation function

0 R(T) of the signal. One approach for achieving high en-
ergy concentration in both the time and frequency domains

-200 L o. 0.0 f.4 0 .5 0 .6 o, o.0 is to use the auto-correlation function and make it time-
Time (sec dependent.

Fig. 8. Rotational motion-induced time-varying Doppler spectrum. The Fourier transform of a time-dependent auto-
correlation function R(t, T) is a time-dependent power spec-
trum of the signal, which is a function of time and fre-

time-varying spectrum accurately, time-frequency trans- quency, i.e.,

forms should be used. P(t, w) = R(t, -r)exp{-jwr}dr (28)
4. Time-Frequency Transforms -00

Because of the time-varying behavior of the Doppler fre- When the time-dependent auto-correlation function is
quency shift, an efficient method to solve the problem of defined as
the smeared Fourier frequency spectrum and, hence, the R(t, r) = s(t + [)s (t - -) (29)
blurred image is to apply a high-resolution time-frequency T t

tranformto he Dpple prcessng.The time-dependent power spectrum becomestransform to the Doppler processing.

By replacing the Fourier transform with a high resolu- WVD(t,w) = -(t + -rs* (t _expr-iw-ldT (30
tion time-frequency transform, the image blurring caused W ) =

by the time-varying Doppler frequency shifts can be miti-gated without applying sophisticated motion copnsto which is the Wigner-Ville distribution (WVD) [6].
ga tedowith out applyime-requeng sophisticatedcom pensation Because of the high resolution and the accuracy of the
algorithms. The time-frequency transform actually decom- time-frequency representation, the WVD can be the can-
poses the phase function into instantaneous time slices. didate for time-varying spectral analysis. However, there
At each time slice, the Doppler frequency components are
fixed, possessing the Doppler resolution provided by the is a problem of cross-term interference associated with
time-frequency transform. it. When the signal contains more than one component,

In principle, any time-frequency transform can be used to the WVD will generate cross-term interference that occurs
replace the Fourier transform for radar image reconstruc- at spurious locations of the time-frequency plane and of-tion. However, a desired time~frequency transform should ten obscures the useful time-varying spectrum paitterns.
have high resolution in both the time and frequency do- To reduce the cross-term interference, the filtered WVD
mains, and should accurately reflectthe instantaneous fre- can be used to preserve the useful properties of the time-
maincs, and shoul accrated snlet tvarying spectrum with slightly reduced time-frequency res-
quencies of the analyzed signal. olution and largely reduced cross-term interference. The

Time-frequency transforms include linear transforms, WVD with a linear low-pass filter is characterized as a Co-
such as the short-time Fourier transform (STFT), and hi- hen's class, such as Choi-Williams distribution [5], and the
linear transforms, such as the Wigner-Ville distribution distribution with a non-linear low-pass filter is the time-
(WVD) and the time-frequency distribution series (TFDS). frequency distribution series [7].
In the following sub-sections, we will review each of these
methods in terms of their respective time-frequency reso- 4.3 Time-Frequency Distribution Series
lutions. Since the cross-term is localized at the mid-point of two

4.1 Short-Time Fourier Transform (STFT) signal components and its magnitude is oscillatory in the
e itime-frequency domain [4], [5], we could first decompose

The STFT is the simplest way for time-varying spectral the WVD as the sum of 2-D localized functions, such as
analysis and defined as 2-D Gabor expansion,

STFT(t, w) = S2 s(7)w(r - t)exp{--jwT}dr (27) WVD(t, w) = E ED ,n,p,qHm,n,p,q(t, w) (31)
f "" m,n p,q

where s(t) is a signal and w(t) is a short-time window func- where {Dm.n,.p,q} are the coefficients of the expansion, and

tion. Hm,n,p,q(t,w) is a 2-D Gaussian function given by

The joint time-frequency resolution of the STFT is lim- (t - mAT)2

ited by the uncertainty principle. With a time-limited win- Hrm,n,p,q(t, W) = exp{ ( - a )2 + jnAWt}
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x exp{-a 2 (w - pAW)2 + jqATw} (32) reflect the true instantaneous frequencies of the signal. The
STFT has lower time-frequency concentration and a devi-where the parameters m and po are the time index and the ation from the true instantaneous frequencies.

frequency index, respectively, n and q characterize the rate in the the instantaneous bandid i r
In this example, the instantaneous bandwidth in normal-

of oscillation of the 2D Gaussian functions, and AT and ized frequency is 0.007 for the WVD, 0.012 for the 4th-order
AW are the time sampling step and the frequency sampling TeDS, and 0.03 for the STFT. Thus, the time-frequency

step, respectively. concentration of the STFT is about 4.3 times lower than
The instantaneous frequency is mainly determined by that of the WVD and about 2.4 times lower than that of

those Hm,n,p,q(t,w) which possess low oscillation. The the 4th-order TFDS.
highly oscillatory Hm,n,p,q(t,W) has a smaller average, Because of the flexibility and adaptability of the TFDS,
hence has negligible influence to the instantaneous fre- We will use this method to illustrate the benefits of the
quency. Since the highly oscillatory terms Hm,n,p,q(tW) time-varying specthis m d to rat te bedar imaging.
are directly associated with cross-terms [4], [5], if we use
the leading terms (with small n and q) to represent the 5. Radar Imaging of Maneuvering Targets
time-varying spectrum, the resulting presentation is ex-
pected to well delineate the time-varying spectrum with
limited cross-term interference. This is the time-frequency X u
distribution series (TFDS) [7] Y

TFDSd(tw) = > S Dm,n,p,qHi,n,p,q(tw) (33)m,p nl+JqI<d

where d denotes the order of TFDS, which balances the Range
resolution and cross-term interference. When d is small, " .' Fouierspec

TFDSd(t, w) has low cross-term interference but poor res-
olution; when d is large, TFDSd(t, w) has good resolution
but strong cross-term interference.

ltdar t4
(a) STFT (b) TFDS-4 (c) WVD Doppler t

1 1 1

0. Range tj Time-varying spectrum0.50 0.5 0.5 /

0 0 0 0 Fig. 10. Time-varying spectral analysis of radar range-Doppler im-
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 age.

Instant. freq. Instant. freq. Instant, freq.
11Fig.10 shows a rotating aircraft about the z-axis with a

""0.5 0.5 constant rotation rate of Q. Let us examine a scatterer
0 at the wing-tip of the aircraft (x, y). Because of target
0 50 rotation, at the end of image frame time the scatterer at

50 100 150 200 5 50 100 150 200 250 50 100 150 200 250 the wing-tip will move to x', y'.
Instant. bandwidth Instant. bandwidth Instant. bandwidth If the Fourier transform is taken from t = 0 to t = P,

0.2! 0.2 0.2 the reconstructed range-Doppler image of the wing-tip is

"ý0.1 0.1 0.1 smeared as illustrated in Fig.10. However, if a time-
6 0frequency transform is used, at time instants t1, t2 , t 3, and0 0 04 ahtm-apigiae ftewn-i eoe

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250 t4, each time-sampling image of the wing-tip becomes a

Time Time Time clear dot and, thus, the image blurring problem can be
circumvented [81.

Fig. 9. Performance comparison in terms of the instantaneous fre-

quency (dotted line: true instantaneous frequency) and the in-
stantaneous bandwidth using a linear chirp signal with a Gaus- Time-range-Doppler cubesian envelope: (a) STFT, (b) 4th-order TFDS and (c) WVD.• aa _•J• // p

trnfr Doppler

Fig.9 shows a comparison of the energy concentration, N
and the instantaneous bandwidth for the STFT, the TFDS 

fand the WVD. The WVD has highest time-frequency con- TF
centration or lowest instantaneous bandwidth, and the in- s
stantaneous frequency accurately reflects the true instan-

taneous frequency of the signal. Depending on the or- Time

der of the distribution, the TFDS has slightly lower time-
frequencyFig. 11. The time-frequency transform based image formation.
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The Fourier transform generates only one image frame rotational motion that makes image blurring. After stan-
from an M x N I & Q data, where the data consists of dard motion compensation processing, the uncompensated
M time history series, each having the length of N. How- phase error still causes the Doppler spectrum to be time-
ever, the time-frequency transform is applied to each time varying as shown in Fig.12(a). If we use the Fourier trans-
history series and generates an N x N time-Doppler dis- form to this time-varying Doppler spectrum, we obtain a
tribution. By combining the M time-Doppler distributions blurred image in the Doppler domain (Fig.13(a)). By re-
at M range cells, the N x M x N time-range-Doppler cube placing the Fourier analysis with the time-varying spec-
Q (rm, f, tr) can be formed. At a particular time instant tral analysis, the single Fourier image frame becomes a
ti, only one range-Doppler image frame Q (r, ft, = ti) sequence of time-varying image frames. Each of them rep-
can be extracted from the cube as shown in Fig.11. There resents a full radar range-Doppler image at a particular
are a total of N image frames available, and every one time instant. Fig.13(b) shows one of the image frames
represents a full range-Doppler image at a particular time from the sequence of frames. We can easily see that by
instant. using the time-frequency transform, the smeared Fourier

5.1 Simulated Maneuvering Aircraft F-16 image in Fig.13(a) is resolved into a sequence of cleared
time-frequency images.

(a) Time-varying spectrum (b) 5.2 MPR AIDA Data

200 (s) FFT image (b) 3rt 32 pulses
120 120

S100lo 100(

C,60 60 "

a. •),.(4 ,-

2a 20

(c) Fni Fourier spectr um 20 40 so en10 0120 2o00 no en e 0120
range range

(c) i nd 32 puales (d) 3rd 32 pulses
120 120
100 100

Fg~~~s 600oomeso20

12. Time-varying spectral analyse of the time history series 20s40 6e n ig om e 2 s 00s120
at a range cell: (a) the time-varying spectrum; (b) the Fourier range range
spectrum, and (c) the analyzed time history series at a range ar aes f MPR AIDA data ae
cell. Fi) 14. fReques f = AIDA5data (a) theque; (b)

the 2-D super-resolution image from the let 32 pulses, (c) the
2-D super-resolution image from the 2nd 32 pulses, and (d) the
2-D super-resolution image from the 3rd 32 pulses.

(a) Fourier Transform

The radar parameters for the MPR AIDA data are:
0 (1) center frequency fo = 9.605(GHz), (2) frequency step

(df =6.O(MHz), (3) number of frequency steps N = 35,
sup(4) number of pulses M 128, and (5) pulse repetition
frequency (PRF) PRE 20(KHz). Fig.14 shows the

F-W FFT image of the MPR-130 data compared with a super-
(b)1 Time-Frequency Transform resolution ISAR image reconstructed only from the first 32

Fi.1. aiaeo _tesmuae _arrf wtpulses of the same data (Fig.14(b)), the second 32 pulses
(Fig.14(c)), and the third 32 pulses (Fig.14(d)). The 2-D

trsor f__ _super-resolution processing expanded the 35x32 raw data
to a 128x128 image.

However, the time-frequency transform takes the whole
35x128 raw data and generates a stack of time-frequency

a -ya e aimages. Compared with the super-resolution method, the
Fig. 13. Radar image of the simulated aircraft with maneuvering time-frequency transform has better cross-range resolution.

hy using (a) the Fourier transform, and (h) the time-frequency Fig.15 shows 5 frames (frame no.4 to frame no.8) extracted
transform. from the sequence of 16 time-varying image frames. We

can easily see that by using the time-frequency transform,
Returned data from an Aircraft F-16 is simulated with the time-varying spectrum can be represented very well

a X-band step-frequency radar. The aircraft has only fast and, as a result, the smeared Fourier image is resolved into
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(a) FFT image (b) TF frame 4 (c) TF frame 5 (a)FFT image (b)TF frame 3 (clTF frame 6

120 120 120 
"1a,10 100 0,100 00 0

204060801012040806 8 1010801000 0 00220ag 2040 e 8001020 24000002
0 4 8010 20 801010 g ageR

oo ( a T 1 1a20:120

10 .20 120 so t-00

~80 80 * ~ 80 8040 40

140 60 8010000 20 40 60 80100120 20 40 60 80100120

20 40 60 801001 20 0 40 60 80 100120 20 40 60 80 100120 2

range Range Range

range range range Fig. 17. ISAR images of FGAN data (a) the FFT image; (b)-(f) the
Fig. 15. A sequence of image frame of the MPR730 aircraft generated time-frequency frames.

by time-frequency transform.

vering targets, and provided an insight into the blurring

a sequence of time-varying images, which not only have problem of radar images. We discussed the restriction of
superior resolution, but also shows the Doppler change and the Fourier analysis for radar image reconstruction and
range walk in time. proposed a time-frequency approach to replace the Fourier

5.3 NATO TIRA and ARDS Data analysis.
The NATO TIRA and ARDS data was collected by To represent time-varying spectra, a high resolution

FGAN using a Ku-band radar operating at 16.7GHz wih a time-frequency analysis is desirable. We compared the
bandwidth of 800MHz to achieve 0.1875m range resolution. time-frequency concentration and the instantaneous fre-
The total number of range cells is 1024. A set of ARDS quency of the commonly used algorithms (the STFT and

the WVD) and the TEDS. We applied the TFDS to our
data is also available to generate trajectories, angular po- tm-ayn nlssfrrdriaig
sitions and rotation rates. ievrigaayisfrrdriaig

We only take a small portion of the data (y97blf15) We used simulated data as well as real data to demon-
where the target is located. 128 pulses (from pulse no.100 strate the capability of the time-frequency transform to
to no.227) and 128 range cells are used to generate the radar imaging of maneuvering targets. The result clearly

img fthe target. Fig.16 shows the aligned range pro- shows that the time-frequency transform can be used to
fimaes ofte h ag rcsig h g-ope mg replace the Fourier analysis as a means of radar image for-

file afer he ang prcesing.Therane-Dpplr iage mation that eliminates the image blurring problem.
generated by FFT after applying the phase correction is
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COHERENT RANDOM NOISE RADAR TECHNOLOGY FOR COVERT
SURVEILLANCE OF NON-COOPERATIVE TARGETS

Ram M. Narayanan
Department of Electrical Engineering

Center for Electro-Optics
University of Nebraska-Lincoln

Lincoln, NE 68588-0511, U.S.A.

isci PD1 AMPI ANT
1. SUMMARY Transmit

An ultrawideband random noise radar system operating over Antenna

the 1-2 GHz frequency range has been developed and tested AMP2
at the University of Nebraska. A unique signal processing 0 C2 PD2 MXRI Receive
scheme is used to inject coherence in the system by per- - PD3 AMP4 MIX AMP3 Antenna
forming heterodyne correlation of the reflected signal with a MXR.
time-delayed replica of the transmit waveform. Heterodyne L
correlation preserves the phase of the reflected signal during FLP • t5FL2
the downconversion process, thereby permitting the extrac- i\ _\ .
tion of the ultrawideband polarimetric scattering properties of D4 PD5 PD6
the target for enhancing target identification. The phase co-
herence can also be exploited to obtain azimuthal tracking of
targets using principles of interferometry, while the wide in- AM_ 7 X-pIL Apt
stantaneous bandwidth of the system can be used to achieve C-POL Ampt
fine range resolution. The system can also be used to ob- I-PIL Phase

tain linear as well as rotational Doppler information on non- P

stationary targets. Simulation results and experimental mea- 1QDI IQD2
surements confirm the ability of the ultrawideband random L ---. I
noise radar system to be usable for polarimetry, interferom- X-POL Phase
etry, and Doppler estimation. 2

The advantage of the random noise radar system is its covert- Figure 1: Block diagram of ultrawideband polarimetric ran-
ness feature, i.e., its immunity for detection and jamming. dom noise radar system.
Furthermore, the ultrawideband signal has the ability to pro-
vide high-resolution images on non-cooperative targets, while
system phase coherence can be exploited to enhance target into two in-phase components in power divider PD1. One
detection and reduce clutter. This paper will summarize the of these outputs is amplified in a 34 dB gain power ampli-
results obtained using this unique radar system, and address fier AMP1, which has a 1 dB gain compression point greater
the extension of this technique for tracking position and ve- than +40 dBm. Thus, the average power output of AMPI is
locity of non-cooperative targets in a covert manner. +30 dBm (1 W), but the amplifier is capable of faithfully am-

Keywords: random noise radar, covert, polarimetry, interfer- plifying noise spikes that can be as high as 10 dB above the

ometry, Doppler estimation mean noise power. The output of the amplifier is connected to
a dual-polarized broadband (1-2 GHz) log-periodic transmit

2. RANDOM NOISE RADAR POLARIMETRY antenna ANT1. The log-periodic antenna, in addition to be-

2.1 Description of Polarimetric Random Noise Radar Sys- ing broadband, has desirable features such as a constant gain
tem of 7.5 dB with frequency, and superior cross-polar isolation of

A block diagram of the polarimetric random noise radar sys- greater than 20 dB.

tem is shown in Figure 1. This system was designed to detect The other output arm of the power divider PD1 is connected
and identify shallow buried objects, such as landmines. The to a combination of a fixed and variable delay lines DL1 and
noise signal is generated by OSCI which provides a wide- DL2 respectively. These delay lines are used to provide the
band noise signal with a Gaussian amplitude distribution and necessary time delay for the sampled transmit signal so that it
a constant power spectral density in the 1-2 GHz frequency can be correlated with the received signal scattered from ob-
range, with a power output of 0 dBm. This output is split jects or interfaces at the appropriate depth corresponding to

the delay. Since the total probing depths are of the order of

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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1 m maximum, the delay lines are relatively short with max- AMP6) and I/Q detector IQD2 (equivalent to IQD1).
imum losses of not more than 1 dB. The variable delay line The system therefore produces the following outputs at vari-
can be rapidly programmed to step through the entire range ous depths as set by the delay lines: (a) Co-polarized ampli-
of available delays, so that various probing depths can be ob- tude, (b) Co-polarized phase angle, (c) Cross-polarized am-
tained. plitude, and (d) Cross-polarized phase angle.

In order to perform coherent processing of the noise signals, Thus, the system outputs can be related to the polarimetric
a unique frequency translation scheme is proposed. The pri- scattering characteristics of the target.
mary component of this technique is a 160 MHz phase-locked
oscillator OSC2. This is connected via a power divider PD2 2.2 Theory of Random Noise Polarimetry

to the IF input terminal of MXR1. The output of MXR1 is Since the transmitted signal has a random amplitude distri-
the lower sideband of the mixing process, which lies within bution and a uniform power spectral density, we model the
the 0.84-1.84 GHz frequency range. This coherent noise sig- transmit voltage wave vt(t) as
nal is split by power divider PD3 into two channels: the co-
polarized and the cross-polarized channels. Also the sec- vt(t) = a(t) cos(wo + 6w)t (1)
ond output of the power divider PD2 is again split into two
160 MHz signals in power divider PD4. where a(t) takes into account the amplitude distribution, and

6~w(t) takes into account the frequency spectrum of vt(t). w0

We will now discuss the signal processing of the co-polarized is the center frequency of transmission. We assume that a(t)

channel. The cross- polarized channel operation is essentially follows a Gaussian distribution while Sw(t) follows a uni-

identical, so it will not be repeated. One of the outputs of form distribution, and that both a(t) and 6w(t) are ergodic

PD3 is amplified in a 19 dB gain amplifier AMP4. Since this processe.butho r, we assmeth a(t) and 6w (t) are

signal is noiselike, the amplifier AMP4 is chosen so as to pro- uncorrelated and statistically independent.

vide a linear output of +10 dBm minimum. This signal is used

as the local oscillator (LO) input to a biasable mixer MXR2, The average power transmitted Pt, is given by

whose RF input is obtained from the co-polarized channel of
the receive antenna ANT2 and a 20 dB gain low noise ampli- Pt- (2)
fier AMP2. The receive antenna is identical to the transmit R,

antenna. Amplifier AMP2 is used to improve the noise fig- . where R, is the characteristic system impedance, and a bar
ure at the receiver input. Mixer MXR2 is DC-biased in the over a variable denotes its time average value. Since a(t) and
square-law region which ensures that the mixing process is bw(t) are independent, we can write
efficient for low LO drive levels. In general, the RF input
signal to the mixer MXR2 consists of transmitted noise at 1- vt(t) = a2 (t)cos2 {(wo + 6w)t}

2 GHz scattered and reflected from various objects/interfaces.
However, since the LO signal has a unique delay associated COS1W 0 + dknf

with it, only the signal scattered from the appropriate, depth = 1-a2 (t) (3)
(i.e., range) bin will mix with the LO to yield a IF signal at a 2

frequency of exactly 160 MHz. Signals scattered or reflected since the average value of cos 2 (.) is ½. Thus,
from other depth bins, will not provide a constant frequency

of 160 MHz. The output of the mixer MXR2 is connected to a 1 a

narrowband bandpass filter FLI of center frequency 160 MHz (4)
and bandwidth 5 MHz, ensuring that only 160 MHz signals
get through. The output of filter FLI at 160 MHz is split into Consider an object of complex reflectivity R exp{jqo} buried
two outputs in power divider PD5. One of these outputs is at a depth d. To simplify the analysis, we assume that both the
amplified and detected in a 70 dB dynamic range 160 MHz magnitude R and the phase angle 0b, of the object reflectivity
logarithmic amplifier AMP6. The other output of the power are invariant with frequency. If the dielectric constant of soil is
divider PD5 is connected to one of the inputs of an I/Q de- ,r(= c' - jc.), the phase velocity of the electromagnetic wave
tector IQD1, whose reference input is one of the outputs from is
PD4. Both of the signals are exactly at 160 MHz; thus the I/Q c
detector provides the in-phase (I) and quadrature (Q) compo- vV - (5)
nents of the phase difference between the two signals. Since - (5
frequency translation preserves phase differences, the I and Q if we assume that the soil medium is lossless, i.e., c" <<
outputs can be related to the polarimetric co-polarized scatter- ring harcteistis o th bured bjet orintrfae.c'. Thus, the two-way delay for a signal that is transmitted,
ing characteristics of the buried object or interface,.elce n riiga tercieatna ,ireflected and arriving at the receive antenna, -r, is
In a similar fashion, the cross-polarized channel is simultane-
ously processed using amplifier AMP5 (equivalent to AMP4), 2d = 2dVT (6)
biasable mixer MXR3 (equivalent to MXR2), 160 MHz band- VP - (6)
pass filter FLI (equivalent to FL2), power divider PD5 (equiv-
alent to PD6), logarithmic amplifier AMP7 (equivalent to For lossy media, the phase velocity vp is slower than the loss-

less case, thereby increasing the two-way signal delay T.
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Let the propagation constant in soil, -y, be given by The average value of 0 as measured by the I/Q detector is

y = a + j,3 (7) 9 = - W'T + 0o, - 2/3d (17)

where a is the attenuation constant and /3 is the phase con- Note that / is simply the value of/3 at w = w, which is

stant. In general, a and /3 both increase with frequency. Thus, VC(1
the two-way propagation factor is given by 3 (18)

A(d) = exp{-2 7 d} We therefore obtain

= exp{-2ad}exp{-2j/3d} (8) 0 , - 2wýxfi7d (19)

The time varying expression for the received voltage vr(t) can
now be obtained as the time-delayed version of vi (t) modified Thus, a measurement of the average value of 0 yields the

to include the effects of scattering and two-way propagation. phase angle 0,.

Thus, Until this point, we have not considered the effects of polar-
ization. If the antenna can simultaneously measure both the

vr(t) = a(t - -) R exp{-2ad}, co-polarized and the cross-polarized scattered power, and if

COS{I(W, + 6W)(t - T) + , - 2/3d} (9) the hardware for both co-polarized and cross-polarized chan-
nels are identical, then we can measure Pec, Pr, Kc and 0x

The time-delayed sample of the transmit signal is where the subscripts "c" and "x" refer to the co-polarized and
the cross-polarized channels respectively.

vi(t - T) = a(t - T)COS{(Wo + 6w)(t - r)} (10) Thus
Po = K2 R2 (20)

When this signal is passed through a double sideband upcon- (

verter whose IF frequency is w', the lower sideband output Pr, = K 2RX (21)

v•(t - T) is Thus the ratio of P, to P, yields the power depolarization

vt'(t - r) = a(t - T)COS{(Wo - W' + 6W)(t - T)} (11) ratio, D, which is seen to be independent of the system trans-
fer function, i.e.,

The difference frequency from the mixing process of vr(t) Pr R 2
and v'(t - r) yields a voltage vd(t) given by -P- - 2 = D (22)

vd(t) = KRa2 (t - r)exp{-2ad} (12) Furthermore, we have

cos{w'(t - r) + 0,, - 2/3d}

where K 1 is some constant. Note that this signal is always
centered around w'. The average amplitude of this signal, V and

is given by 0- = 0oX - w'T - 2/3d (24)

Vd = K1Ra2 (t - r)exp{-2aod} Thus the difference between 0-- and 0-, yields the phase angle

= 2KIRRoPt exp{-2aod} (13) between the cross-polarized and co-polarized channels, again
seen to be independent of the system.

where a• is the value of a at w = w.. The average power in
this signal, Pr, is given by Ox - Oc = 00X - 00C (25)

-d 2 The resolution properties of the system can be easily observed

P, - = 2K2R oPt2exp{-4a•d}R 2  by considering a received signal from another range (or depth)
2R& bin whose delay is different from r. Let the delay from the

= K 2R2  (14) buried object be r', but the delay within the system be r. In

where K 2 is a constant. Thus measurement of the power P, this case, v, (t) is now modified and expressed as v' (t) as fol-

yields the square of the reflection coefficient magnitude. lows:

In order to measure the phase 0., consider the output of the v'.(t) = a(t - T') exp{-2ad}.

I/Q detector fed by vd(t) and vl (t), where v, (t) is given by cos{(w, + bw')(t - T') + 0, - 2/3d} (26)

vi(t) = cos w't (15) When this signal is mixed with vt(t - r), we get vd (t) given

Since both of these signals are at the same frequency w', the by

I/Q detector can unambiguously measurethe phase difference, vd(t) = Ra(t - T)a(t - T')exp{-2ad}•
0, given by Cos{W'(t - T) - Wo(t - r') + 6w'(t - r')

0(t) = -W'T + ¢o - 2/3d (16) -6w(t- r) + ¢o - 2/3d} (27)
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Since the noise voltage a(t) has an impulse-like function of polarization is horizontal). We recognize So as the total re-
the form sin x/l, for its temporal correlation function, we flected power (sum of the co-polarized and cross-polarized re-
have the result flected power). Si is recognized as the difference between the

co-polarized and cross-polarized reflected power. S2 is pro-
a(ti)a(t2 ) = 0 (28) portional to the cosine of the polarimetric phase angle, while

BS3 is proportional to the sine of the polarimetric phase angle
for jt1 - tz >> 1/B, where B is the system bandwidth. dO. Both S2 and 53 are weighted by the absolute electric field
Thus, the average power in the signal v'(t) can be shown to amplitudes of the reflected co-polarized and cross-polarized
be equal to zero. signals, as can be seen from their definitions. It is also to be

We see, therefore, that unless the internal time delay is exactly noted that

matched to the expected time delay, the output of the detector S2 = S2 + S2 + S. (36)
is zero. As we step the internal time delay r from zero to
the maximum expected value, the depth profile of scattering The use of 52 and 53 is very helpful in detecting targets, since
can be built up by the system, so that not only can targets be these parameters move in opposite directions and thereby pro-
identified, but they can also be localized. vide additional information about the reflected signal. When

In practice, the practical system will suffer from drawbacks 52 is high, 53 is low, and vice versa. Thus, no matter what the

such as system non-linearities in amplitude and phase that can polarimetric phase angle is, the target image is bound to show

degrade the detection efficiency and resolution. In an ideal up in either 52 or 53, or sometimes in both.

case, the resolution is determined by the system bandwidth 2.3 Simulation Results

B. The resolution Ad is given by Various computer simulations were performed to evaluate the

Ad - VC C performance of the radar system design. These simulations
2B = •2-B (29) were performed for various combinations of soil type, soilmoisture, depth of target burial, as well as polarimetric re-

For c = 3 x 108 m/sec and B = 1 GHz, we get sponse of the buried target. Ground reflections as well as un-
correlated system noise were added to the received signal to

15 simulate realistic field conditions. Results of simulations us-
Ad cm. (30) ing random noise as the probing signal are shown in Figures 2

and 3. In Figure 2, the reflectivity of the buried object is as-
_ sumed to be 1 exp {j00 }, while in Figure 3, the reflectivity of

For dry soil, e' !-- 3 and for wet soil, c' - 25. Thus the reso-r r -the buried object is assumed to be I exp {jg0°}. The objects
lution varies from 8.6 cm in dry soil to 3 cm in wet soil, with tre assumed to be 1ocxtedjat 0a.dThe o bjectsare assumed to be located at a depth of 5 cm in clayey soil
an intermediate value of about 5 cm. (48% clay, 40% silt) with 10% volumetric moisture whose di-
From the raw data collected by the radar system, we generate electric constant was computed as c, = 4.56 - j 1.32. The fol-
images based on the Stokes matrix formulation for facilitating lowing plots are shown in the figures: (a) Transmitted signal
the detection and recognition of targets using the polarimetric amplitude vs. time, (b) Transmitted signal shifted by ± w' to
information on the buried target. The Stokes vector is a con- simulate the double sideband upconversion, (c) Received sig-
venient method for representing the polarization state of an nal amplitude vs. time after two-way propagation and reflec-
electromagnetic wave, and is denoted as [S], given by tion, (d) Multiplied output of signals in (b) and (c) above vs.

time, (e) Spectrum of filtered output in (d) showing the peak
[ S01 at w', and (f) Multiplied output in (d) filtered at w', showing

[5'] = 52 j(31) the input signal at the I/Q detector vs. time (solid line). As
52 Jcan be seen, the polarimetric phase of the reflection from the[ 53 buried object is clearly evident in Figures 2(f) and 3(f). These

whose individual elements are defined as follows: signals are 900 out of phase, consistent with the 900 phase

difference in their assumed reflectivity.

So = IEHI2 + I EV2 (32) 2.4 Experimental Results

S1 = IEH12 - 1Ev12 (33) The radar system was used to gather data from an assortment
S2 = 2IEHIIEvI COSOd (34) of different buried objects in a specially designed sand box,

3.5 m long, 1.5 m wide and 1 m deep. Metallic as well as
S'3  = 21 EH 11Ev sin O (35) non-metallic objects were buried at different depths and ori-

In the above equations, Od is the polarimetric phase angle, entations. The radar antennas were scanned over the surface

i.e, the difference between the phase angle of the horizon- as data were collected continuously.

tally received signal and the vertically received signal. Also, A typical raw image obtained using the polarimetric random
I EH!I and lEvi are the electric field amplitudes of the horizon- noise radar is shown in Figure 4. The figure contains four
tally and vertically polarized received signals, whose squared images from one radar scan over various buried objects. The
values represent the co-polarized reflected power and cross- top image is the co-polarized received power. The second im-
polarized reflected power respectively (assuming the transmit age is the cross-polarized received power. The third image
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Figure 2: Simulated waveforms for target reflectivity of Figure 3: Simulated waveforms for target reflectivity of
1 exp{j0°}: (a) Transmit waveform, (b) Upconverter output 1 exp{j0°}: (a) Transmit waveform, (b) Upconverter output
waveform, (c) Received waveform, (d) Mixer output wave- waveform, (c) Received waveform, (d) Mixer output wave-
form, (e) Spectrum of mixer output, and (f) Filtered mixer out- form, (e) Spectrum of mixer output, and (f) Filtered mixer out-
put waveform - solid line. out waveform - solid line.

is the depolarization ratio, and the fourth image is the abso- image. It enhances image intensities above the mean inten-
lute phase difference between the co-polarized and the cross- sity of the entire image, thereby enhancing target detectabil-
polarized received channels. ity, while simultaneously eliminating clutter, identified as low

The image pertains to a metal plate, 23 cm in diameter and intensity areas, by setting these to zero digital number. As
2 cm thick, and an identical wooden plate. Both plates were will be shown, these post-processing operations are success-
buried at a depth of 23 cm below the surface, with a lateral ful in reducing clutter and enhancing target detectability. The
separation of 23 cm. In this image, it is easy to detect the smoothing and thresholding operations were performed on all
metal plate, but the wooden plate is not clearly observable four Stokes matrix images.
on account of its low dielectric contrast with respect to the The corresponding post-processed image of Figure 5 shows
soil medium. Further data processing using the polarimetric So (top left), S, (bottom left), S2 (top right), and. S3 (bot-
phase information may make this object more visible, and one tom right). Both objects, especially the wooden plate (right
such technique based on Stokes matrix processing is discussed object) are detectable in the S, image, thereby demonstrating
below, the advantage of polarimetric processing.

Stokes matrix images were generated and combined with sim- 3. RANDOM NOISE INTERFEROMETRY
pie image processing operations to improve target detectabil-
ity and clutter rejection. The smoothing filter is used for re- 3.1 Description of Random Noise Interferometer

duction of radar clutter and noise. It was found from the orig- A simplified block diagram of the random noise radar in-
inal raw data that high-frequency tonal variations were preva- terferometer is shown in Figure 6. The noise source OSC1
lent in regions without targets, and these grainy variations produces a signal with a Gaussian amplitude distribution and
were attributed to the fact that the soil volume was inhomoge- a constant power spectral density in the 1-2 GHz frequency
neous, and contained voids and rocks. The smoothing opera- range at an average output power level of 0 dBm (1 mW). The
tion, when performed, results in low pass filtering and elimi- noise source output is split into two equal in-phase compo-
nates the high-frequency noise components. The thresholding nents in power divider PD1. One of the outputs is amplified
operation is applied on the global scale to the entire smoothed in a broadband 34 dB gain medium power amplifier AMP1,
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Figure 4: Raw image of a metal plate and a wooden plate Figure 5: Post-processed image of a metal plate and a
buried at same depth: (a) co-polarized received power, (b) wooden plate buried at same depth: (a) So-image smoothed
cross-polarized received power, (c) depolarization ratio, and and thresholded, (b) Sl-image, smoothed and thresholded,
(d) polarimetric phase difference. (c) S2-image, smoothed and thresholded, and (d) S3 -image,

smoothed and thresholded.

and transmitted via a horn antenna ANT1, whose E/H plane
beamwidths and gain at 1.5 GHz are 230, 340, and 17 dB, re-
spectively. The other output is connected to a combination of is preserved in the mixing operation. This 160 MHz signal is

a fixed delay line DLI and a digitally controlled variable de- filtered in a 160 MHz bandpass filter FLi, and split in a power

lay line DL2. The fixed delay line is used to set the minimum divider PD5, one of which is amplified in a logarithmic ampli-

range to the target, while the variable delay line can be pro- fier AMP7 to yield the signal amplitude, while the other is fed

grammed for delays from 0 to 19.968 nsec in 0.156 nsec steps. to the I/Q detector IQD I fed by the 160 MHz master oscilla-

The delay line output is mixed with the output of a 160 MHz tor to yield the in-phase (I) and quadrature (Q) components of

phase-locked oscillator OSC2 (through a power divider PD2) the signal phase. A similar receiver is used for the second re-

in a lower sideband upconverter MXR1. The upconverter out- ceive chain that is received by the antenna ANT3. Receive an-

put, in the 0.84-1.84 GHz frequency range, feeds a power di- tennas ANT2 and ANT3 are broadband constant 7.5 dB gain

vider PD3, whose two outputs feed each receive chain, log-periodic antennas with E/H plane beamwidths of 65' and
100' respectively. Knowledge of the instantaneous phase of

One of the outputs is amplified in AMP4 and fed to a mixer the receive signal at each antenna can yield the azimuthal an-
MXR2. The other input to this mixer is the signal received gle at which the scattered signal from the target arrives at the
by one of the receive antennas ANT2 in the 1-2 GHz range, receiver.
subsequently amplified in a low noise amplifier AMP2. The
output of mixer MXR2 is thus always at 160 MHz, since the 3.2 Theory of Random Noise Interferometry

two inputs to the mixer are shifted by 160 MHz. However, the Consider a simple interferometer shown in Figure 7. The
phase of the receive signal at the input to the antenna ANT2 spacing between the two receive antennas is 2d, while the
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Figure 6: Block diagram of the random noise radar interfer- Figure 7: Geometry of simple interferometer
ometer

transmit antenna is located at the center of the baseline. Let exp {j [(wO + 6w)t + 0o -

the range to the target, measured from the center of the base- (Wo + 6W))(2R - dsin 0)]
line, be R. We assume that R > 2d. Also, we assume that the e
transmit and receive antenna patterns are broad compared to
the angle subtended at the target by the two receive antennas. Let a phase shift of Aqb (positive or negative) be added to V' 2.

We assume that the transmit waveform, V, can be represented We have
in phasor form as

'ý = A exp {j(wo + bw)t}3)rj2 = exp {jAqb} = Ap. (42)

j. =W{ + 6wt} )O6W)
where A is the Gaussian distributed amplitude, w0 is the center exp1{ [(W0 + &)t+0 0
frequency of transmission and 6w is the uniformly distributed
frequency variation. (2R - dsin0) + Ad I
Let R1 and R 2 be the distance from the target to each receive
antenna, as shown. We can show that The cross-correlation of the signal received by the left antenna

and the phase-shifted signal received by the right antenna is
R1 -•R -dsin0 (38) gvebgiven by

and
R2 R + dsin0 (39) (VrIV, 2 ) = p (A 2 ) (43)

where 0 is the target's azimuthal location with respect to the (exp Jj [d sinC + ÷ A )
boresight direction. 0 is positive for targets located towards
the right side of the boresight axis, and negative for targets 2(A 2) f [-2wodsin0 +(
located towards the left side of the boresight axis. =pAexp j[ - (44)

The phasor representation for the voltage at the left receive , 26w d sin 0
antenna, Vri, is given by (exp [-j c J)

Vril = Ap (40) where the expectation operator (.) denotes the time average,
exp + 6w)t+Fo (WO--6W)e (2R+ d sin 0)d and the random variables A and 6w are assumed to be uncor-

ex jIc lI related.

where p and qOo are the magnitude and phase of the target's The total power received by either receive antenna is given by
reflection coefficient, respectively. ( V * ) = 1* ) = *

Similarly, the phasor representation for the voltage at the right
receive antenna, Vr2, is The ratio of the cross-correlated power to the total power re-

V•2 = Ap. (41) ceived, as a function of the phase shift AOb introduced, is de-
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noted by C(Aq), and is given by

)= + Aq • (46)

(exp { 2w x sin 0
c/

In (46), we recognize the term within the expectation operator
as the instantaneous phase shift introduced due to the varying m 2.75

instantaneous frequency. Since this frequency variation is a 2.,5

zero-mean uniformly distributed random variable, we assume IM."Amp!Itde(rnV) 

-15

that the average phase shift introduced by the frequency ex- 125 •.
cursion around the center frequency, w0, is zero, thus making °•9s
the second term reduce to unity. We have, therefore,

C(AqS) =exp{jk[-2woSin9O+Ao1}.• d] 4)°,-.••*•. . .•,,•''

As Aq¢ is varied, the value of C'(Aq5) varies, and its maximum
value occurs at Aq$= A~5 ma when Figure 8: Range-angle map of target located on boresight

2wod sin9 axis.

A¢,+A0 (47)

e

Thus, we have

9=sin-f [ 2w0 d ] (49).

600-Knowledge of wo and d, and measurement of Ava, the correct
amount of phase shift (positive or negative) to be added to Vr2 •
to maximize C', will yield 9, the azimuth angle at which thetarget is located. 

on ,0

3.3 Experimental Results •2The results of measurements made using the random noise in- .
terferometer system are shown in this section. The transmit •0-
antenna was located at the center of a 40-cm long baseline,"°
which was chosen to optimize the azimuthal scanning accu-,®°0racy. The receive antennas were located at each end of thebaseline. The angle 9 is measured from the normal to the
baseline, with positive angles to the right, and negative angles to , 2

to the left. The polarization used was vertical.

The first experiment was performed to check if the interferom- Figure 9: Range-angle map of target located at an angle of
eter could correctly locate a target placed along the boresight 15. 950 to right of boresight axis.direction, i.e., 9 = 0% At this location, the phase at each re-

ceive antenna is the same. The target used was a large corner
reflector of side 45.72 cm, whose radar cross section (RCS) variable delay line, as in the previous case. The range-angle
at 1.5 GHz was computed as 4.576 sq.m (+6.6 dBsm). The map, shown in Figure 9, correctly locates the target in rangetarget was placed at a range of 2.134 m from the center of the and in azimuth. The slight reduction in the signal amplitude is
baseline. The range-angle map, shown in Figure 8, correctly attributed to the slightly increased range to the target as com-
places the target in range and in azimuth. The amplitude of pared to the previous case.
the reflected signal is indicated by the height of the spike. 4.DPLR STM IO UIN CHE NTANIn the second experiment, the same corner reflector was DOM NOISE RADAR
moved 0.61 m to the right. It was thus located at a rangeof 2.2 19 m and an azimuth angle of +15.95g. This caused 4.1 Configuration of Random Noise Doppler Estimation
a phase difference between the signals received by each re- Systemceive antenna, which was processed to locate the target in az- A simplified block diagram of the random noise Doppler radarimuth. The range determination was made by stepping the is shown in Fig. 10. The noise source OSC1 produces a sig-
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A2 RECTVE ANT3. Receive antennas ANT2 and ANT3 are broadband
P ANTENNA constant 7.5 dB gain log-periodic antennas with E/H plane

sc IANTI TRANSMIT beamwidths of 650 and 100', respectively.
ANTENNA

•o•:2,° U3 RIGHT 4.2 Theory of Doppler Estimation Using Coherent Ran-
N RECEIVE dom Noise Radar

DL2 ANTENNA

OSC2 2 MXR1 AMP4P2 y AMP3 Since the transmitted amplitude has a Gaussian amplitude dis-
SAMXR tribution and uniform power spectral density, it can be mod-

MXR3 eled as:
PD3 AMP-5FL

vt(t) = a(t) cos {(wo + 6w) t + ¢1 (50)

S PD5 PD where a(t) represents the Gaussian amplitude distribution, wo
P,4 AM6 ~RIGHT is the center frequency at 1.5 GHz, 6w is uniformly distributedAMPLITUDE

AMP7 LEFfU over the 0.5 GHz frequency range, and Ot is the arbitrary
AMPLITUDE transmitter phase.I LEFT

Q CHANNEL The time delayed version of the transmitted signal, vt (t), is
IQDII RIGHT mixed in MXR1 with the reference frequency Wref at 160

Q CHANNEL MHz to produce the lower side band output, Vml (t), given
IQD2 by:

Figure 10: Block diagram of random noise Doppler radar sys-
tem. vmi(t) = kla(t - -) cos {(wo + 6w - Wref) (t - r)} (51)

where k, is some constant and r is the delay.

nal with a Gaussian amplitude distribution, constant PSD, and The echo from the target is expressed as
average output level of 0 dBm (1 mW) in the 1-2 GHz fre-
quency range. The noise source output is split into two equal vr(t) = k2a(t)pcos (wo + SW) t_- - + +, (52)
in-phase components in power divider PD1. One of the out- C
puts is amplified in a broadband 34 dB gain medium power where c is the velocity of light, p and 0, are the amplitude and
amplifier AMPI and transmitted via a horn antenna ANTI. phase of the vet oflit, and the te ampresend
The E/H plane beamwidths and gain of ANTI at 1.5 GHz are phase of the target reflectivity, and the term 2R/c represents
23', 340, and 17 dB respectively. The second output of PD1 the time taken by the transmitted wave to return to the receiver

is connected to a combination of a fixed delay line DL1 and a from the target, at range R.

digitally controlled variable delay line DL2. The fixed delay The instantaneous phase of the echo voltage can be defined
line is used to set the minimum range to the target, while the as:
variable delay line can be programmed for delays from 0 to
19.968 ns in 0.156 ns steps. The delay line output is mixed 0br=( (-4-0)
with the output of a 160 MHz phase-locked oscillator OSC2 A
(through power divider PD2) in a lower sideband upconverter where
MXR1. The upconverter output, in the 0.84-1.84 GHz fre-
quency range, feeds power divider PD3, whose outputs feed A c (54)
each receive chain. fo + bf

One of the outputs of PD3 is amplified in AMP4 and fed to is the instantaneous wavelength.
mixer MXR2. A 1-2 GHz signal received by antenna ANT2 If the target is in motion, 0, will change with time, and equa-
and amplified through low noise amplifier AMP2 provides tion (52) can be written as
the second input to mixer MXR2. Thus, the output of mixer
MXR2 is always at 160 MHz, since the two mixer inputs are 47rV
shifted by 160 MHz. However, the phase of the received sig- v,(t) = k2a(t)p cos I(Wc, + 6W - A )t + ± t + 0b8  (55)
nal at the input to antenna ANT2 is preserved in the mixing
operation. where V is the target velocity given by dR/dt and k2 is a

The 160 MHz output of MXR2 is filtered in a 160 MHz band- constant.
pass filter FL1 and split in power divider PD5. One of the This received echo is mixed with the output of MXR1 at a
outputs of PD5 is amplified in logarithmic amplifier AMP7 to delay time set equal to 2R/c, yielding
yield the signal amplitude, and the other output is fed to I/Q
detector IQD 1. The 160 MHz master oscillator OSC2 also 2 4_V

feeds IQD1. Thus, IQDI yields the in-phase (I) and quadra- Vm 2 (t) = k 3pa2 (t) cos (Wref - )t + (56)

ture (Q) components of the received signal. A similar receiver
is used for the second receive chain connected to antenna where k 3 is some constant.
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The output of MXR2 and wref are fed to the I/Q detector pro- 4.3 Simulation Results
ducing inphase and quadrature components that are propor- Various simulations were performed to evaluate the perfor-
tional to the cosine and sine of the phase difference respec- mance of the radar system. Results of these simulations are
tively, shown in Figures 11 and 12.

I 4 _rV In Figure 11, the simulated Doppler spectra of linear motion

I = kx cos ~L~- t+? (57) are presented. The target is assumed to be moving along the

boresight direction towards the radar with constant velocities
of (a) 1.1 m/s, (b) 1.8 m/s, (c) 2.3 m/s, and (d) 2.3 ± 1 m/s.

Q = kQ sin rV t + (58) From these figures, it is seen that as the target velocity in-
A. creases, the Doppler center frequency and spread increase.

The spread is symmetric around the center frequency, for a
where k, and kQ represent the amplitudes of the I and Q corn- constant target velocity i.e. cases (a), (b) and (c), and the tar-
ponents, respectively. We note that the I and Q outputs are get velocity can be extracted using equations (60), (61) and
time-varying functions depending upon the target velocity V. (63). Figure 11 (d) corresponds to a case with non-uniform
The Doppler frequency fd, is given by (1/21r) times the total velocity which shows that as the target velocity changes, the
phase, and can be shown to be equal to: Doppler spread is asymmetric around the center frequency.

2V The lower cutoff frequency yields information on the mini-

fd T (59) mum speed, and the upper cutoff frequency yields information
on the maximum speed.

In the above equation, the negative sign appears due to the fact In Figure 12, the Doppler spectra of a fixed rotating target are
that a positive radial velocity generates a negative Doppler presented for 40 rpm and 75 rpm, respectively. The radius of
shift and is associated with an outward moving target. Note rotation is assumed to be 0.15 m. The spectrum contains all
that Doppler frequency is not a constant but varies due to frequencies from - fdh to + fdh, including frequencies at and
the varying nature of the instantaneous wavelength A. Since, close to DC. The outer skirt of the spectra corresponds to the
A varies between 0.15 m and 0.3 m corresponding to a fre- upper limit of the transmitted frequency and provides infor-
quency variation between 1-2 GHz, the Doppler frequencies mation on the target's rotational speed if its radius is known.
vary from fda to fdh. The relationship between fdl, fdh, and Also, it is seen that as the rotational speed increases, the spec-
fdo, the mean Doppler corresponding to transmit frequency of trum correspondingly widens.
1.5 GHz, can be shown to be: 4.4 Experimental Results

f 2t = 2 fdo and fdh = 4 fdo (60) The results of Doppler measurements carried out using the
3 -random noise radar are shown in Figures 13 and 14. The

target approached along boresight direction with approximate
Knowing either the upper or lower Doppler frequency, the tar- uniform velocities of 1.1 m/s, 1.8 m/s, and 2.3 m/s. These
get velocity V can be computed as targets were small comer reflectors with side lengths of 10

cm. The total range of the radar is subdivided into 22 range
V = •fdi = •f4 h (61) bins, each having a resolution of 15 cm, and the radar was

operated in the 20th range bin. Since a single target passes
However, in practice, all random frequencies in the range of through a specific range bin very swiftly, the number of col-
1-2 GHz are not always present. Therefore, it is required that lected samples will be too small for meaningful observation.
the frequency components be averaged over longer intervals. To overcome this, a linear array of 10 corner reflectors was
Since samples are uncorrelated and statistically independent fabricated on a 0.5 m long wooden strip. This wooden strip
of each other, an average power spectral density, S(w) from was then used as the target. For comparison purposes and to
N trials can be computed as obtain a good reference, each experiment was also repeated at

a fixed 1 GHz transmitted frequency. Furthermore, all exper-
i-N (w) (62) iments were repeated eight times, and their respective PSD's

w Swere averaged as shown in equation (62).

Figures 13 shows the Doppler spectra of linear motion using
where Si(w) is the PSD estimate at each frequency per trial, the fixed 1 GHz reference frequency at the abovementioned
and N is the total number of trials, three velocities. The respective Doppler components corre-

This averaging results in a peak Doppler spectra correspond- sponding to these velocities are (a) 7 Hz, (b) 12 Hz, and (c)

ing to 15-16 Hz and corresponding calculated target velocities are
(d) 1.05 m/s, (e) 1.8 m/s and (f) 2.3 m/s, respectively. Figure

2V (6 13 also depicts the average Doppler spectra of linear motion
(63) using the 1-2 GHz random noise signal at the same respectivef•-A 0

velocities. The central peaks of the Doppler spectra corre-
where A0 = 0.2 m, corresponding to the mean transmit fre- sponding to mean transmit frequency of 1.5 GHz are at (d)
quency of 1.5 GHz.
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Figure 11: Simulated Doppler Spectra of Linear Motion
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Figure 12: Simulated Doppler Spectra of Rotating Target

I1I Hz, (e) 17-18 Hz, and (f) 22-23 Hz. The estimated tar- shown in Figures 12(a) and 12(b). This again proves that the
get velocities corresponding to these Doppler frequencies are random noise radar is indeed capable of estimating Doppler
1.1 m/s, 1.8 rn/s and 2.3 m/s, respectively. These velocities frequencies, though for rotational Doppler further investiga-
compare very well with the estimated velocities using fixed tions are required.
frequency transmission. It may also be noted that we have 5. CONCLUSIONS
not suppressed the DC components in these figures. Figure Ti ae a ecie oeuiu plctoso h o
14 shows the Doppler spectra of a rotational target at (a) 40 Ti ae a ecie oeuiu plctoso h o
rpm and (b) 75 rpm. The radius of rotation is 0. 15 m, and the herent random noise radar concept. The concept synergisti-
results were averaged over four experiments. The experimen- cally combines the advantages of ultrawideband random noise
tal results compare very favorably with the simulated results radar transmission with the power of coherent signal process-
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this feature makes such a system a promising candidate for Miceli of the U.S. Office of Naval Research under contract
covert surveiilance of non-cooperative targets. N00014-97-1-0200. Their support and active participation in
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Abstract- Aircraft identification by RCS has several measurements obtained at approximately 9.01 GHz
limitations. Estimates of RCS probability density with a PRF of 8.2 or 11.2 kHz (see Table 1). The
functions are not independent of aspect angle. Fur- data were further culled to consider almost exclu-
thermore, the RCS, modeled as a stochastic process,
is neither stationary nor ergodic. These difficulties in sively flight profiles exhibiting only a linear change
the exploitation of RCS have led to the exploration of in azimuth aspect angle.
the aspect angle dependence of glint phenomenology
from simple and complex targets. III. SPATIAL SPECTRA OF SIMPLE TARGETS

The RCS amplitude as a function of aspect angle for Let RCS(O) be the radar cross section as a function
simple targets can be predicted. The result is a com- of 0; define the spatial spectra of a target as the
plex periodic function of aspect dependent on target Fourier transform of RCS(O), F{RCS(/)}.
interscatterer distances. A Fourier transform of the
aspect angle space yields spatial spectra suitable for
use in a matched filter. Consider Fig. 1, an idealization of two perfectly re-

flecting spheres separated by a distance d, rotated
Perturbations of the target due to turbulence and/or about an angle, 0, and illuminated by a RF carrier
flexing is treated as a noise in aspect angle. For
targets that have different interscatterer spacing but of wavelength A. It is desired to determine the far
similar target noise, the results are unique RCS prob- field function RCS(9).
ability distributions.

Let the far field voltage in the receiver from the
The spatial spectra for several targets of opportunity Ler shere, sphere 1, b e

are shown. Successful classifier results using a linear closer sphere, sphere 1, be

correlator and a neural network (NN) indicate merit
in the approach. For larger class sizes, several re- V1 =-Ajej (
search opportunities present themselves. Discussions
of these and recommendations for future directions where A1 is proportional to the reflection coefficient
of the work are presented. magnitude and 01 is proportional to the reflection

coefficient phase. Similarly, the far field signal from

I. INTRODUCTION the more distant sphere, sphere 2, including the in-

Modern RSM (Radar Signal Modulation) algorithms creased electrical path length, is
have several limitations: restricted aspect angle cov-
erage and ambiguity between several target classes. V2 - A 2e ( T2+•si()) (2)

Practical constraints favor subclass techniques that
minimize radar modifications. In this paper, deter- If it is assumed that the spheres have the same re-
ministic and stochastic discriminants of RCS (Radar flection coefficients, then the received signal has the
Cross Section) are explored as mechanisms for sub- form
class ID. V = V1 + V2 = Alej~0 (1 + eiTsin(6)) (3)

IL. THE RCS DATA and the RCS power is

The RCS measurements were provided by NRaD,
San Diego, California, via NRL's colleagues at RCS(O) oc VV* = 2A 2ej 2 0 '(1+cos(2dsin(O))) (4)
NAWC/AD. Coherent calibrated X-band radar data A
was collected using a stepped frequency RF wave- This may be simplified by using a trigonometric
form. Each frequency employed a pulse width of 1
usec. A detailed description of the data collection, identity:
the radar modes, and the flight profiles may be found 2 2 d

in [1]. RCS(9) oc 4AIe' 2 'cos (-.sin(9)) (5)

From this database, the analysis concentrated on Neglecting the amplitude coefficient in Eq. 5:

This research was supported, in part, by Dr. D. Davis, of RCS(O) = Cos2(d-sin(O))
the Naval Air Warfare Center, Warminster, PA., USA. (

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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A plot of this function is shown in Fig. 2. Next, and radar PRF

the Fourier spectrum of RCS(O) may be calculated dO

from the following expansion (Eq. 7): Actual Sample Interval = d, (14)
PRF

RCS(O) = Z fnejn° (7) the possibility of undersampling is real.

whee tNext, consider obtaining an analytic function of
where the Fourier coefficients f, are determined by I RCS(O) for real flying targets. The modeling mustJ 2,r include the contribution due to multiple bounce,

fn RCS(O)e-Jn0 d9 (8) physical optics, creeping waves, polarization, prop-
270 agation through the non-homogenous air medium,

where RCS(O) = cos2(4sin(O)). To solve Eq. 8 aspect angle dependency of the reflection coefficient

explicitly, RCS(O) must first be expressed in terms magnitude and phase, true 3-d aspect angle relative

of exponentials: to the radar, bounded dynamic range of the radar

receiver, and so on.I + .1(j2dsin(O) --- sin(O))

RCS(O) = + +(O+
(9) In addition, there are dynamic effects that must be

Thus Eq. 8 becomes considered aside from the obvious gross changes in

aspect angle of varying flight profiles. The airframe,

ft =• f1 e-rLdO ± a non-rigid body, has vibrational and flexing modes

S 2
7r ( ei['sin(o)_nOl + (10) peculiar to the mechanical architecture of the spe-

s--0 cific airframe (see Fig. 4). The rotating blades inside

e-jf8din(°)+n°)dO the jet engines doppler modulate the signal, while
/ )the engines generate mechanical vibrations observed

A table of integrals [2] provides the solutions: on the airframe skin. Air turbulence, another sig-
nificant source of vibration of the airframe and its

[7 e+±j(asin(O)+nO°)dO = 21r(-1)nJn(C,) (11) skin, is a function of the relative air speed and den-
sity (target altitude). (For example, see Fig. 5, the

and power spectral density of vibration in the cockpit of
2nr the F-14 [3].)

/o e±j(a•sin()-no)dW = 27rJn(a) (12)
In the next section, perturbations of the target

where Jn (a) is a Bessel function of the first kind of and/or flexing are considered jointly as a single noise

order n. Thus, Eq. 10 reduces to in aspect angle. It is assumed that the underlying

f=6n.0 1 j (d) +(2d)] RCS(O) is fixed. The RCS probability density func-

ffl 2 + 4 J, + (-1)AJn (13) tion (PDF) dependency may then be explored as a
function of the underlying spatial spectra.

where 6n.0 is the Kronecker delta function. Eq.13 in- IV. STATISTICS OF A SIMPLE TARGET
dicates that the spectral characteristics are functions

of d and A. Thus, for the idealized two scatterer case, Consider the two simple scatterer idealization of Fig

the spatial spectrum can serve as a discriminant. 1 and its corresponding spatial function, RCS(O) =
cos2(Asin(O)). Now examine two local windows of

Observe that the function RCS(O) is not a bandlim- this function shown in Fig 2. Clearly, the local win-

ited signal. Still, it is possible to estimate a sam- dows have different spatial frequency contents. It

pling requirement if the Nyquist spatial sampling is desired to determine the RCS PDFs within each

frequency is taken as f, = 2 where 9
mrn is the window.

smallest change in aspect angle between minima (see
the definition of 0mn in Fig. 2). The corresponding Let the first window be modeled as a fixed frequency

upper bound on the Nyquist spatial sampling inter- spatial sinusoid of frequency nl:

val in degrees azimuth as a function of carrier fre-

quency and selected interscatterer distances is plot- r RCS(O) W(O) sin(ntO) (15)

ted in Fig 3. and, similarly, let the second window be modeled at
another spatial frequency of n 2 :

The implications are significant. At X-band, a tar-
get composed of two scatterers separated by 70 me- RCS2 (O) = W(O) sin(n2 0) (16)

ters requires measurements on the order of 10-2 de-

grees/sample. Since the actual spatial sampling in- where ni # n 2 , W(O) = 1 for -7r < 0 < 7r, and

terval is a function of both the flight dynamics dO W(0' = 0 elsewhere. Now if fo (0) is the PDF of the



7-3

aspect angle noise of the target, then the PDFs of A. Spatial Spectral Correlation
the RCS for each window are obtained by a simple The preprocessing necessary for spatial spectral cor-
transformation of random variables [4]: relation on live data is illustrated in Fig. 8. First

m1 the RCS function of time is converted into RCS(O)

fr, (Ti) E fo (j) (17) by inverting the track history. Then the Fourier

(rl =1 E nicos(nlj)j transform of the RCS(O) yields the spatial spectra,
F{RCS(0)}. Thus, the correlation between class j

=M2 and class k is computed by treating the spectral den-
k- i n h E -fo(nk)0 (18) sity as deterministic vectors:k=1 jn~os(n2---001l

where Oj are the m, roots of Eq. 15, and 0k are the corr(Fj{RCS(9)}, Fk{RCS(0)}) (
m 2 roots of Eq. 16. F JRCS(O). (21)

jF,{RCS(O)}I iFk{RCS(O)}j

Next, the conditions of equality between fr, (ri) and The spatial spectra of four target classes (with the
fr2(r 2 ) may be examined. Equating Eq. 17 and Eq. DC term removed) are shown in Fig. 9. Samples ex-
18: tracted from the data set were confined to 9.01-9.04

MI m2 GHz and constant "1t and restricted to the aspect
fo(,) fo(Ok) of dZ ics~i9(19) angle range of30.9-56.3 degrees. The four targetSn1c--•nOj)t = n2cos(n20k)i confusion matrix is shown in Table 3.j=l k=1

Eq. 19 is true if fo(O) is uniform and nl = n2. If A brief exploration was made of the intra-class cor-
n1 5 n2 and fe(9) is Gaussian with finite variance relation of
then Eq. 19 is not true. The transformation of fo(0)
into fr(r) is illustrated graphically in Fig. 6. corr(F,{RCS(O) }, Fj fRCS(AO) })

Actual measurements of the variance for typical where Fj{RCS(O)} is taken over the entire range of

fighter perturbations [5] are shown in Table 2. Re- 30.9 to 56.3 degrees for target class j; Fj{RCS(AO)}

ferring to Fig. 3, for two scatterers separated by 70 is also from target class j but over the range of 30.9

meters at W-band, the smallest minimum to mini- to (30.9 + AO) such that 2 < AO < 25.4 degrees.

mum separation in RCS(O) is on the order of 10-' The results of the same four targets appear in Fig.

degrees. In this scenario the yaw variance of 0.02 10.

degrees suggests that the RCS PDF would resemble
Fig. 6b more than Fig. 6a. The earlier analysis suggests that targets viewed as

scatterers with different inter-scatterer distances will

Fly-by measurements of a single target's RCS PDF have different spatial spectra. The off-diagonal ele-

were examined over narrow ranges (0.5 degrees) of ments of the confusion matrix support this analysis,
azimuth aspect angle. The Parzen approximation given some idealized assumptions. The assumptions

was used to estimate the RCS PDF [6]: include ideal measurements and sampling and noise-
free observations. Note that if these assumptions are

1 n relaxed and it is further assumed that the spatial
ftr() = n E g(r - ri) (20) spectrum is corrupted with additive white Gaussian

i=i noise, the matched filter is still optimal.

where go is a Gaussian kernal of zero mean and Given the ideal assumptions, the intra-class ob-
unit variance, and r, are the RCS samples in dBsm. served decorrelation of
The PDF estimates (Fig. 7) suggest that the narrow
aspect angle PDF is non-stationary (and therefore Fj {RCS(O)} Fj {RCS(AO) }
non-ergodic) with respect to aspect angle. Indeed,
the earlier analysis argues that fr(r) is a function of also supports the argument that the spectral content
aspect angle. is a function of the aspect angle. This phenomenon

is implicit in the earlier analysis of two simple scat-

V. CLASSIFICATION terers.

Next, two classification methods motivated by the
earlier analysis are presented. Both methods are ap-
plied to RCS measurements of live targets. The first The earlier analysis and Parzen estimates argue that
method is spatial spectral correlation. The second the RCS PDF is a function of the local spatial fre-
method uses function approximation to map RCS quency content, which is in turn a function of aspect
and aspect angle into unique aircraft classes, angle. This suggests that a mapping of the RCS
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PDF into class must necessarily include aspect an- attempting to scale these methods for larger class
gle. The rest of this section reports the results of an numbers. One problem is the representational ba-
initial look using a NN as a function approximation sis of the spatial spectrum itself. The RCS(O) =
tool. cos2 (dsin(O)) function for two simple scatterers

yields a Fourier decomposition which is not band-
Five two-layer feed-forward NNs were trained func- limited. This is due to the frequency modulation
tionally to approximate target class from RCS mea- in the spatial domain, clearly evident in Fig. 2. In
surements and aspect angle. The five NNs were cho- light of this, the authors suggest that it may be fruit-
sen to span 10 degree azimuth increments from -25 to ful to examine non-Fourier kernals and other trans-
+25 degrees. The input of each network consisted forms that exhibit locality (wavelets). The effects of
of 33 elements, 32 of which were single frequency stochastic sampling on ID performance also must be
measurements of RCS from the radar's stepped fre- assessed.
quency waveform starting at 9.01 GHz with each
sample separated by 16 MHz. The aspect angle com- VII. CONCLUSION

pleted the 33rd element of the input vector. The out-
put vector consisted of a two element vector forming Aircraft identification by RCS has several limita-
a binary code respresent 4 target classes. tions. Estimates of RCS probability density func-

tions are not independent of aspect angle. It has
Training was implemented with a variation of the been shown that fine aspect angle RCS, modeled as a
back error progation algorithm [7]. Each NN was stochastic process, is neither stationary nor ergodic.
trained with 200 randomly chosen samples. The test
set came from another 1000 randomly chosen sam-
ples outside the training set. The cumulative ID The RCS amplitude as a function of aspect angle
performance for single looks only (no decision class for simple targets can be predicted. The result is
voting) is shown in Fig. 11. a complex periodic function of aspect dependent on

target inter-scatterer distances. A Fourier transform
VI. DISCUSSION of the aspect angle space yields spatial spectra that

This section opens with identification of the major can form the basis of a matched filter.

sources of error; it concludes with a discussion of
several research opportunities. Perturbations of the target due to turbulence and/or

flexing is treated as a noise in aspect angle. For tar-
The analysis presented at the beginning of this pa- gets that have different interscatterer spacing but
per assumed two highly idealized scatterers. The similar target noise, the results are unique RCS
RCS(O) function for real complex (many scatter- probability distributions.
ers) targets must necessarily include contributions
from multiple bounce, physical optics, creeping The fly-by spatial spectra for four targets were calcu-
waves, polarization, propagation through the non- lated. Successful classifier results using a linear cor-
homogenous air medium, aspect angle dependency relator and a neural network to map relatively nar-
of the reflection coefficient magnitude and phase, row aspect angle RCS PDFs and aspect angle into
true 3-d aspect angle relative to the radar, bounded class number supports the analysis. For larger class
dynamic range of the radar receiver, etc. Although sizes several research opportunities present them-
these contributions have been omitted from the dis- selves, including the use of non-Fourier kernals, to
cussions herein, the authors maintain that the spec- more compactly represent the spatial frequency con-
tral content of RCS(G) is still a function of aspect tent.
angle and target geometry.
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Target Base Freq Freq Step PRF Number of
Class (GHz) Size (MHz) (KHz) Freq Steps

GR60 9.01 3.7 8.2 128

GR61 9.04 3.7 8.2 128

GR62 9.04 3.7 8.1 128

GR65 9.01 3.7 11.1 128

Table 1. The 4 target classes used in this study came from a large database measured with a stepped
frequency radar. The data was culled to look only at the base frequency and flight profiles with uniform
aspect angle changes (11.

Parameter 0.1 sec 0.5 sec 1.0 sec

Roll 0.20 0.40 0.40

Pitch 0.06 0.07 0.07

Yaw 0.02 0.07 0.08

Table 2. Angle variance over time for a typical fighter [5].

Target GR60 GR61 GR62 GR65
Class

GR60 1.00 0.76 0.66 0.78

GR61 0.76 1.00 0.62 0.68

GR62 0.66 0.62 1.00 0.70

GR65 0.78 0.68 0.70 1.00

Table 3. Inter-class confusion matrix for the 4 target classes. The entries are the correlation values
between spatial spectra. Specifics: Single trial. GR60 & GR61 from 56.3 to 30.3 degrees, GR62 & GR65
from 30.3 to 56.3 degrees. Straight line interpolation of track histories.
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Sphere 1

Y
Figure 1. Two ideal scatterers rotating about an angle in the receiving antenna's far field.
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Figure 2. RCS as a function of aspect angle, for the two scatterers in Fig. 1.
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Nyquist Sample Interval versus Carrier Frequency
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Figure 3. The upper bound of the Nyquist sample interval as a function of carrier frequency for
the fuinction shown in Figure 2.

Figure 4. F-14 Fuselage vertical bending mode (from pg 30Oof [3]).
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Figure 5. The power spectral density of a vibration sensor in the cockpit of an F-14, for three

different altitudes at the same air speed (from pg 40 of (31).
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Figure 6. Graphical transformation of aspect angle PDF into RCS PDF for tw¢o different functions
of RCS(theta).
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Correlation of F(RCS( theta )) vs F(RCS( delta theta))
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Figure 10. Intra-class correlation of the spatial spectra for 4 targets.
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THE EFFECTS OF SMALL RANDOM AIRCRAFT ROTATIONAL MOTION
ON THE TARGET SIGNATURES

S. K. Wong

Defence Research Establishment Ottawa
3701 Carling Ave.

Ottawa, Ontario
Canada KIA 0Z4

image of an aircraft; it offers a rapid means to
ABSTRACT characterize an air target. HRR also has an all

aspect capability; the signal to noise ratio
Small random rotational motion of an aircraft (SNR) requirement is moderate. Moreover,
can affect the fidelity of the target's High this technique is applicable to a wide range of
Range Resolution range profile. A multiple new generation of ground, naval and airborne
scattering point source model has been radars.
developed to investigate the distorting effect
on a simulated target. Results indicate that Stepped Frequency Wave Form
even when the target possesses a very small (SF WF) is a common technique for generating
amount of random rotational motion during HRR range profile; in particular, it is well
radar interrogation using a stepped frequency suited for phased array radar which has a
waveform scan, sizeable distortion can still narrow instantaneous bandwidth. SFWF
occur, making target identification more consists of a sequence of narrow band radar
difficult. The well known range walk effect of pulses. However, over the duration of the
the target during the radar scan offers a partial SFWF scan, small random motion of the
explanation for the distortion of the target's target due to air turbulence, aircraft control
range profile. A more interesting situation jitter and maneuvering of the aircraft could be
emerges when the rotational motion is time- sufficient enough to introduce distortion to the
varying; a more severe distortion can occur as target's HRR range profile. This distorting
a result, leading to dispersive and glint-like effect would consequently have a detrimental
phenomena and spurious peaks appearing in effect on the target identification process,
the target's range profile. These anomalies reducing the effectiveness of the NCTR
can be quantitatively explained by the creation system.
of many side-bands in the phase of the
rotating scatterers on the target. In this paper, a quantitative

examination of the distorting effect on the
target's range profile relating to the SFWF-

1. INTRODUCTION HRR technique is given. In Section 2, a brief
overview of the SFWF technique is given. In

The problem of Non-Cooperative Section 3, the distorting effects on a simulated
Target Recognition (NCTR) of air targets target resulting from random rotational motion
using High Range Resolution (HRR) range of the target are illustrated. In Section 4,
profile has been a subject of considerable computational results illustrating
interests in recent years. Target identification quantitatively the distortion on the target's
based on HRR is looked upon as a highly HRR range profile due to random rotational
promising technique for NCTR. The HRR motions are presented; physical
range profile is a simple one-dimensional characterization of the distorting effect using

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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a simple model is given to provide some N
physical insight. In Section 5, prospective tD = (3)
solution on how the distortion problem could PRF
be mitigated for NCTR identificationprocessing is discussed. The PRF is mostly dictated by the radar

operating range. For example, to detect and
2. STEPPED FREQUENCY WAVE identify a target out to a range of 75 Km, the

FORM maximum PRF is restricted to 2 kHz or less.
The number of transmitted pulses N in the

Stepped Frequency Wave Form SFWF depends on the stepped frequency size
(SFWF) consists of a sequence of narrow Af and the range resolution AR. In order to
bandwidth pulses (a few MHz) transmitted view a target within an unambiguous range
with fixed, uniform, pulse-to-pulse frequency window of W=50 m, it requires a Af= c/2W =
change. The effective bandwidth P3 of the 3MHz. From Equations (1) and (2), to acquire
SFWF is determined by the frequency step a range resolution AR = 0.5 m, the number of
size Af and the number of frequency steps N; pulses required is N = c/(2 AR At) = 100. The
i.e. corresponding radar dwell time is thus tD =

P = NAf (1) N/PRF= 100/2000 = 50ms.

3. MODEL OF DISTORTION IN THE
The resulting range resolution AR of the target TARGET'S RANGE PROFILE
profile is

(2) 3.1 Multiple-Point Source Target

2P3 An aircraft can have turning, pitching,
rolling and yawing motions along with
translational motion. The yaw rotational

where c is the speed of light. For example, if motion is the most dominant motion in
the effective bandwidth 03 is 300 MHz, the producing distortion in the target's range
range resolution of the target is 0.5 m. Hence profile. To describe the distorting effect due
most of the major scattering centers of the to rotational motion, a complex target is
target can be resolved clearly in the HRR represented by a large number of spatially
range profile to give a distinct signature of the separated scattering centers; this is applicable
target. However, the radar dwell time to the case when the target dimensions are
associated with using SFWF in generating a significantly greater than the radar wavelength
HRR profile could present a problem. The (Ref. 1). A multiple point source target
SFWF is transmitted on a pulse to pulse basis simulating a F- 16 is given in Figure 1. Each
in order to measure the phase of the echo by of the scattering centers is not any geometric
comparing the received echo to the point on the target, but it represents a
transmitted reference pulse (i.e. coherent combination of specular scattering sources
detection). However, this coherent mode of which return a signal. A group of scatterers
operation restricts the maximum pulse are statistically independent from one another;
repetition frequency (PRF) of the SFWF scan that is to say, the echo signal of the target is
in order to achieve a desired operational radar the sum of all the phase amplitude
detection range. As a result, a relatively long contributions from each of the scatterers. The
dwell time is required to transmit N number of total electric field of the radar echo from the
pulses. The radar dwell time of the SFWF target is given by
scan to acquire one HRR range profile is
given by E gi exp j 27tft + (Ri - vt - X(t)) (4)
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where X' is the field amplitude, fc is the Xi (t) is hence given by
transmitted radar carrier frequency, R is the Xj W = (xi cos (6(t) 0 - Y,, sin (6(t) t)) - xo~i (8)
radar's line of sight range, v is the radial
velocity of the target along the radar's line of
sight and X is the radial displacement along
the radar's line of sight due to the rotational where co(t) is a time-dependent angular
motion of the target. The subscript i denotes rotational rate.
the i-th scatterer of the target.

To generate the HRR range profile, the
I,Q in-phase and quadrature signals are 3.2 Random Rotational Motion of the
measured; they are given by, Target

I = Re [, E exp(j4)#(t))] Small random yaw rotational motion
• Jcan be described by stochastic process using

Q=imf IM exp(J4i(o))] (5) the Markov Chain. Random variations in the
angular orientation of a target as given by
Niklasson and Nilsson (Ref.3) is employed
here; a plot of angular orientation as a
function of time is given in Figure 2. To

where study the distorting effect on the target's range
41fi profile due to random rotation, four 50ms

4)i = #- (Ri - vt - Xi(t)) (6) intervals are selected from Figure 2 to
C simulate four different SFWF-HRR radar

scans; these are indicated by the dashed line
segments in Figure 2. It can be seen from

is the phase of the i-th scatterer. The first Figure 2 that the angular variation of the target
term in Equation (6) describes the time delay within a 50 ms duration can be very small,
of the i-th scatterer which allows the forming less than 0.05 degree. However, the rate of
of the target's range profile. The second term temporal change in the angular variation can
describes the Doppler effect due to the be quite high in some of these temporal
translational motion of the target; in general, segments; for example, "segment 4" in Figure
this terms causes a shift in the target's range 2 corresponds to a frequency of about 30 Hz.
profile in the unambiguous window and This large rate of oscillation in the angular
broadens the range profile of the target orientation of the target perhaps may not be
(Ref.2). It is assumed in this paper that the realistic; but it may provide useful insight into
radial velocity of the target will be perfectly the characteristics of a time-varying rotating
compensated (i.e. v =0); thus the second term target. This will be discussed in details in
is ignored. The third term describes the line- Section 4.
of-sight Doppler effect on the i-th scatterer
due to the rotational motion of the target. In general, the angular displacement of
Given that the i-th scatterer has a pair of a target as a function of time as shown in
coordinates (x0 , y0 ) initially with respect to Figure 2 can be described by,
the center of rotation, the subsequent change o(t) = E(an cos(!Q,,t) + b,,sin(Q,,t))
to the pair of coordinates of the i-th scatterer n (9)
due to angular rotation of the target is given
by b \ where an and bn are amplitude coefficients

=-o ( Ws(t)t) -. sin(WOt) 1)l (7 and K2 n= mt, n=l,2,3,'. To simplify the
si cos(t)t) cosin(t) t) )o (7) analysis and to get a clearer physical insight,

0(t) of interest is approximated by a simple
single-frequency sinusoidal function. The
corresponding rotational rate, o(t) is derived
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from the time-varying angular displacement along the fuselage of the target are acquiring
given by, Doppler component along the radar's line of

d 0(t) sight at this aspect orientation. Furthermore,
• d(t) t (10) it can be seen from Figure 4 that as the

d t rotational motion becomes more rapidly time
varying, the target's range profile exhibits
increasing dispersive characteristics; this is

Hence, the rotational rate ( in rad/s) of the four shown by curves d and e in Figure 4. A more
selected time segments in Figure 2 can be quantitative characterization of the distorting
expressed as, effect on the target profile will be given in the

1: % = 0.09 next section.2:1 (t 0.07sn19t+()

2: 2(t) = 0.07sin(10nt + I) The amount of distortion in the
3: (a3(t) = 0.06 sin(207it + (D) target's range profile is also dependent on the
4: co4 (t) = 0.16sin(60tt + (D) radar cross-section (RCS) of the scatterers.

Figures 5 and 6 show the target profiles of the
F- 16 simulated target when all the scattering

where 0 < (D < 27 is an arbitrary value to give centers have the same relative RCS for 0
a non-zero initial rotational rate at time t = 0; degree and 60 degree aspect angles
(D = 7r/2 is used here. respectively. It is conceivable that, in reality,

the RCS of the scatterers on the wings of the
target can be larger due to the wing pylons
and mounted bombs and missiles. It can be

3.3 Distortion of the Range Profile due to seen from Figures 5 and 6 that the distortion is
Rotation considerably bigger in the target's range

profile in this case. A more lightly weighted
When rotational motion is introduced Kaiser-Bessel window is applied to Figures 5

to the target, the HRR range profile of the and 6 since all scatterers on the target have
target can suffer considerable distortion. identical RCS; hence the resolution of the
Figures 3 and 4 show the range profiles of a range profiles appears to be sharper than those
simulated F-16 target with different rotational in Figures 3 and 4. With the sharper
motions given by Equation (11) at aspect resolution of the target's range profile, it is
angles of 0 degree (nose-on) and 60 degrees more apparent that glint-like phenomenon
respectively. At nose-on aspect, the range where scatterers appear to wander beyond the
profile suffers only a relatively minor physical extent of the target also occurs; this
distortion. Most of the distortion is coming is illustrated by curve e in Figure 6.
from the scatterers in the wings area (see
Figure 1). Since these scatterers are 20dB
weaker than the ones located on the fuselage, 4. CHARACTERIZATION OF THE
they have a minor overall effect on the target's DISTORTING EFFECT ON THE
range profile. Nevertheless, the distortion is TARGET'S RANGE PROFILE
still clearly evident as shown in Figure 3. A
Kaiser-Bessel weighting window is applied to In order to better understand the
the range profile processing to suppress the underlying mechanism of the distorting effect
scatterer sidelobes so that the 20dB smaller on the target's range profile, it is useful to
scatterers show up in the range profiles, examine the behaviour of a single rotating

scatterer. Given that a single scatterer is
As the target is viewed at a 60 degree isolated from the target and that at a given

aspect angle, the distortion in the target's instant of time t, the rotating scatterer has a
range profile becomes more severe; this is geometry that is depicted in Figure 7, the
shown in Figure 4. The more profound instantaneous Doppler velocity of the scatterer
distortion in the range profile in this case is along the radar's line of sight is given by,
due to the fact that the stronger scatterers
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VD =Y (12) shown in Figure 8 (i.e., the displacement
between curves a and b). In comparison, the
actual physical displacement of the scatterer
during the SFWF scan is given by,

where co is the target's instantaneous N
rotational rate and y0 is the moment arm of the D = Yo PRF (15)
rotation. Assuming co = 0.1 rad/s and y0 = 15
m, VD = 1.5 m/s; this is a rather small Doppler
velocity. Note that in the case of a F-16
aircraft, the distance between the wing tip and Thus the actual movement along the radar's
the fuselage is only 5 m; hence a scatterer at line of sight, D = 1.5 x (100/2000) = 0.075 m,
the wing tip would have a even smaller is only a fraction of one range cell. This range
Doppler velocity ofVD = 0.5 m/s. walk problem is a well known effect (Ref. 1)

and partially explains the distorting effect of
To characterize the range profile of a the target's range profile due to rotation.

rotating scatterer, time dependent rotating
rates co(t) given by, A more interesting situation emerges

1: (01 = 0.10 when the rotating scatterer has an oscillating
motion as given by co(t) in Equation (13);

2: 62 (t) = 0.10 sin(10 i t + rs) range profiles of the scatterer with time-
2 varying rotation are shown as curves c, d and

3: 3 (t) =0.10 sin(20rt + (13) e in Figure 8. In these instances, the range
2 profile of the single scatterer exhibits

4: co4(t) = 0.10sin(60tt + 7C ) considerable distortion. Dispersive behaviour
2 and glint-like multiple peaks that span tens of

meters occur (e.g., curve e in Figure 8). Thus
a time-varying rotational motion provides a

are used; co2(t), co3(t) and co4(t) correspond to significant source of distortion to a complex
rotational motion with angular fluctuation target's range profile.
frequency of 5 Hz, 10 Hz and 30 Hz
respectively. In the case of a constant To reconcile with these anomalous
rotational rate (e.g., col = 0.1 rad/s), the dispersive and glint-like characteristics, it is
scatterer's range profile suffers a range walk more useful to analyze the phase of an
during the SFWF scan; this is illustrated as oscillating scatterer in a slightly different
curve b in Figure 8. The static range profile of manner. From Equation (8), the phase of the
the scatterer is shown as curve a in Figure 8 scatterer detected is given by,
for reference. The number of range cell
migrated along the unambiguous range r =exp j2Hfx(t))
window as a result of the Doppler velocity vD C (16)

Scoy0 of the scatterer is given by (Ref. 4), = exp(i 4 f [x0cos(wo(t)t) - yosin(G(t)t) - x0]J

M =2f N

c PRF

Using the geometry given in Figure 7, the x-
coordinate of the scatterer is xo =0; moreover,

where fc is the carrier frequency and N/PRF since cot = 0.1 x 0.05 = 0.05 << 1, sin(co(t)t)
is the duration of the SFWF scan. Given can be approximated by co(t)t. Thus Equation
N= 100, PRF=2 kHz, coy 0 = 1.5 m/s and f c = (16) can be rewritten as,
10 GHz, the number of range cell migrated M (
= 5. Since unambiguous range window is 50 = exp -j4tyotw(t) (17)
m containing N = 100 points, each range cell, c)
therefore, corresponds to 0.5 m. Hence the
rotating scatterer has range walked 2.5 m as
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Substituting wo(t) by o 0sin(Qt+CD), Equation range profile of a complex target.
(17) becomes,

ex( -j Coyotsin(Ot + 4) 5. DISCUSSION ON THE PROBLEM
J OF REMOVING THE DISTORTION

= exp(-jxsin(y)) FROM THE TARGET'S RANGE
PROFILE

where x = (47rf,/c)co0y 0t and y = 92t + (D. In non-cooperative target recognition
Expanding Equation (18) using Bessel (NCTR), a detected unknown target is
functions, it becomes, compared with a set of target signatures or

4) = exp(-jxsin(y)) signature parameters that are stored in a
= Cos(xsin(y)) - jsin(xsin(y)) library database for identification. In an
= (Jo(x) + 2J 2(x)cos(2y) + 2J 4(x)cos(4y) + ... ) (19) operational NCTR system, the library

-j(2J1 (x)sin(y) + 2J 3(x)sin(3y) database is likely generated by computer
+ 2J5 (x)sin(5y) + ... ) model computations of static targets (Ref. 5);

any distortion in the unknown target's range
profile could, therefore, be quite problematic

It can be seen from Equation (19) that the to the target identification process. Thus the
range profile of a time dependent rotating removal of distortion in the detected target's
scatterer consist of many side-band signature could be an essential part of the
components. The existence of the side-bands NCTR process.
offers an explanation of the dispersive-like
multiple peaks and glint-like character of the Intuitively, it is obvious that if the
single scatterer's range profile; this is stepped frequency waveform (SFWF) scan
illustrated quantitatively in Figure 9. The can be performed quickly, the target's HRR
range profile of a single scatterer given by range profile would have much less distortion
curve d in Figure 8 is used as an example in due to rotational motion. One prospective
the illustration; it has a time-oscillating solution would be increasing the PRF of the
rotational motion given by (03 (t) in Equation SFWF scan. Figures 10 and 11 show that by
(13). When 12 Bessel function components increasing the PRF to a high enough value, the
are used to represent the phase 4) in Equation intrinsic range profile of the target can be
(19), the resulting profile is narrower than the captured without any noticeable distortion.
actual profile; this is shown as the dashed Figure 10 corresponds to the constant
curve in b of Figure 9. As more Bessel rotational motion case as given by curve b of
function components are added to the phase Figure 6 and Figure 11 corresponds to the
expression, the resulting profile is time-varying rotational motion case as given
approaching the actual profile; this is shown by curve e of Figure 6. In both cases, at PRF
as the dashed curve in c of Figure 9 using 18 = 20 kHz or higher, the target's HRR range
components. When 22 Bessel function profile approaches that of a static target.
components are applied, the resulting profile However, although increasing the PRF seems
is almost an exact replica of the actual profile; to offer a simple solution to the distortion
this is shown as a dashed curve in d of Figure problem, there is difficulty in arbitrarily
9. In summary, when a scatterer experiences increasing the PRF in practice. The SFWF
time-varying rotational motion, its range technique requires coherent detection to
profile could display dispersive characteristic generate the HRR range profile. In a coherent
and could exhibit many spurious peaks; this is radar system, the phase of the echo signal is
a consequence of the multiple side-band measured by comparing the received signal to
characteristics in the phase of a time-varying a reference sample of the transmitted signal.
rotating scatterer. The analysis given in this In order to measure the phase, the received
section has demonstrated quantitatively how signal must be compared with the transmitted
these anomalous behaviours could have signal on a pulse to pulse basis. As a result,
arisen, resulting in profound distortion in the the maximum effective operational radar
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range of the SFWF-HRR technique will be
shortened if the PRF is increased; i.e., 3. L. Niklasson and J. E. Nilsson, "Radar

C- 2Imaging of Air Targets using HRR
Rmax PRF (20) and Time Filtering at High Radar

Frequencies", Proceedings of the
International Conference on Radar,p.582, 3-6 May, Paris, France 1994.

For example, if the PRF is 2 kHz, the

maximum radar range R max is 75 km. 4. A. Scheer and J. L. Kurtz, "Coherent
However, if the PRF is increased to 20 kHz, R Radar Performance Estimation",
max is only 7.5 km, and when PRF = 50 kHz, R Artech House, Boston, 1993.
max is just 3 km. Thus, it is not hard to see that
a high PRF would not offer an useful 5. S. Wong, S. Kashyap, A. Louie, S.
operational radar range. Techniques for Gauthier and E. Riseborough, "Target
working around the limited PRF problem such Identification in the Frequency
as having many synthesizers to sort the pulses Domain", NATO Symposium on Non-
in the air or measure the transmitted pulse and Cooperative Air Target Identification
store it for processing on each pulse have been using Radar", Paper 19, Mannheim,
proposed (Ref.2,4). But these are complex Germany, April 22-24, 1998.
and expensive solutions that are still remained
to be tried and proven.

6. CONCLUSION

NCTR techniques for identifying air
targets using the HRR range profiles can be
subjected to distortion due to small random
perturbing motion of the target. Rotational
motion, in particular, can be quite problematic
in introducing distortion to the HRR range
profile. It has been shown in this paper that
even a very small rotational motion induced in
the target is sufficient to generate sizeable
distortion; this could potentially create
difficulty in the target identification process.
SFWF techniques are especially susceptible to
the distortion problem because of the
relatively long dwell time of the radar
waveform.
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Figure 1 A multiple scattering point source model of a simulated F-16 target.
Relative RCS: circle 0 dB, triangle = -10 dB, square = -20 dB.
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t. (si

Figure 2 Random angular variations of a target as a function of time (Ref. 3)
The four selected time segments are shown as dashed lines. Temporal oscillating
frequency: 1) 0 Hz, 2) 5 Hz, 3) 10 Hz, 4) 30 Hz.
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Figure 3 HRR range profile of a simulated F-16 target for different target rotational
motions at 0 degree aspect. Target has scatterers of different relative RCS as
given in Figure 1. a) static, b) o1, c) 0)2 (t), d) o(3 (t), e) (04 (t). Kaiser-Bessel
weighting window parameter 7a = 0.6.
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Figure 4 HRR range profile of a simulated F-16 target for different target rotational
motions at 60 degree aspect. Target has scatterers of different relative RCS as
given in Figure 1. a) static, b) o1, c) (o2 (t), d) co3 (t), e) (04 (t). Kaiser-Bessel
weighting window parameter 7ta 0.6.
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Figure 5 HRR range profile of a simulated F-16 target for different target rotational
motions at 0 degree aspect. All scatterers on the target have the same relative
RCS. a) static, b) (o1, c) c02 (t), d) C03 (t), e) 0o4 (t). Kaiser-Bessel weighting
window parameter 7ra = 0.2.
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Figure 6 HRR range profile of a simulated F-16 target for different target rotational
motions at 60 degree aspect. All scatterers on the target have the same relative
RCS. a) static, b) (o,, c) Co2 (t), d) Co (t), e) (04 (t). Kaiser-Bessel weighting
window parameter 7ra = 0.2.
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INSTANTANEOUS SCATTERER
VELOCITY TOWARD THE RADAR

RADAR
TARGET

Figure 7 Schematic of a single rotating scatterer.
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Figure 8 The range profile of a single scatterer. Target's rotational motion: a) static, b) 0)1,
C) (032(t), d) (033(t), e) (04 (t).
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Figure 9 The effects of multiple side-bands of an oscillating scatterer on its range profile.
co, (t) = 0.1 sin(607tt+lt/2). a) actual profile, b) profile containing 12 Bessel
function components (light dashed), c) profile containing 18 Bessel function
components (light dashed), d) profile containing 22 Bessel function coinponents
(light dashed).
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Figure 10 HRR range profile of a simulated F-16 target at various PRFs.
Target rotational motion, wo = 0.09 rad/s: a) static reference (co=0)
PRF b)2 kHz, c)5 kHz,1d) 0kHz, e)2 z,f)5kHz.
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Figure 11 HRR range profile of a simulated F- 16 target at various PRFs.
Target rotational motion, co = 0.16 sin(60rct+-t/2) rad/s: a) static reference (co=O)
PRF= b) 2 kHz, c) 5 kHz, d) 10 kHz, e) 20 kHz, f) 50 kHz.
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MERIC* - Recent developments

( *Moyen Experimental pour la Reconnaissance et l'Identification des Cibles )

P. Brouard, S. Attia, R. Guern

Office National d'Etudes et de Recherches A6rospatiales
B.P. 72 92322 Chatillon Cedex, France

RESUME Ses applications principales concernent la
furtivit6 radar en configuration monostatique et

In this paper we present some recent bistatique (Surface Equivalente Radar et
technological developments in a ground based analyse des fluctuations dues aux moteurs et
radar station named MERIC. We describe the compresseurs) ainsi que la mise au point de
X band polarimetric radar and some of its m6thodes de reconnaissance et d'identification
applications: de cibles a6riennes.

* Simultaneous measurement of the four Cet article propose une description des
terms of the polarimetric backscattering composantes du moyen de mesure avec le radar
matrix; bande X polarim6trique et la base bistatique
-Study of wide band coherent waveform bande Ku.
(up to 300 MHz);
*HRR measurements and 2 D Imaging. I1 d6crit les 6tapes de traitement du signal et

illustre les capacit6s d'analyses par des r6sultats
Some results obtained on cooperative aircrafts de mesures effectu6es sur des avions
are presented. We also describe the "state of the coop6ratifs.
art" in the development of a bistatic Ku band
radar which should be operationnal in the mid
of 1998.

1.- Introduction

SLa station radar sol MERIC (Figure 1) est un
syst~me exp6rimental fonctionnant en bande X
(mesures polarim6triques) et en bande Ku
(mesures bistatiques sur une seule
polarisation).

Une grande modularit6 lui permet d'effectuer 2.- Les moyens d'essais
des relev6s sur des cibles fixes, des cibles
mobiles ou du fouillis de sol. Sa vocation Le moyen de mesures comprend un radar
premiere est d'enrichir les banques de donn6es polarim6trique en bande X et un syst~me
existantes et de servir de base aux 6tudes bistatique en bande Ku.
men6es actuellement t I'ONERA sur les themes
suivants : L'infrastructure commune A ces radars est

"* Haute r6solution distance; constitu6e de deux afffts Bofors, motoris6s,
"* Polarim6trie ; 6quip6s chacun d'une poutre sur laquelle sont
"* Imagerie ISAR (Inverse Synthetic fix6es les antennes ainsi qu'une cam6ra vid6o.

Aperture Radar) ;
"* Bistatisme. Des logements aux dos des antennes ainsi

qu'un caisson 6tanche plac6 en retrait de la
Ce moyen, mis en oeuvre par 1rONERA, a ete poutre reqoivent une partie de l'61ectronique
financ6 par la D616gation G6n6rale A hyperfr6quence (ATOP, amplificateurs faible
l'Armement. bruit, oscillateurs...).

Deux shelters compl~tent l'infrastructure.

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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2.1.3 - Num~risation et stockage des signaux
Les codes mis en oeuvre sont des rampes
lin6aires de fr~quence avec en g~n~ral un La chaine d'acquisition num6rique est celle du
rapport cyclique unit6. Ces choix sont motiv6s syst~me RAMSES (Radar A6roport6 Multi-
par les 6l6ments suivants: Spectral d'Etude de Signatures).

"* Simplification de l'architecture de la H --- ~----~ Sortie Vr

chaine de reception (melange avec un polarisation- H

signal r~plique unique) ;

"* Traitements par analyse spectrale;I 
otevr"* Bilan de liaison. Enr&6.eter

polarisuationV

2.1.2 - Chaines hyperfr6q~uences et antennes

Les chaines hyperfr~quences comprennent un Figurek4 Matrice de commutation.
premier 6tage capable d'6mettre simultan6ment
Sur deux canaux radar des rampes lin~aires de Elle comporte deux num~riseurs RTD 710 A
fr6quence de pentes inverses. pouvant 6chantillonner quatre voies r6elles A

100 Mechls Sur 10 bits, un "concentrateur" et
La figure 3 montre une repr6sentation temps- un enregistreur num6rique AMPEX DCRsi.
fr~quence de ces formes d'ondes.

FREQUENCE PARAMETRES CARACTERISTIQUES

Fo + Bp BANDE I _ X__
BANDEDE 300 MHz

Fo+ p/ MODULATION
EMETIFAJRS IAMPLI. ETAT SOLIDE
PUISSANCE I low

Fo POLARISATIONS I LINEAIRES
-EMISSION POLAR. SIMULTANEE ou

Tr/2 Tr ______ALTERNEE

Fo rqec edbtd arme TEMPS AN'ENE ARABLES
Fo: fr qund e das ne dbut cde Iar m e- GAIN I37 dB

Tr: banide dae sacrnce du code LARGEUR LOBE 3 dB --- 20
Tr:p~od d rcurene u od IISOLATION POL. - -- 20 dB I

Figure 3: codes orthogonaux. Tableau 1: Caracteiristiques principales de la
station MERIC.

Plac~e entre ce premier ensemble et les
amplificateurs de puissance, une matrice de Le concentrateur effectue le multiplexage des
commutation (figure 4) permet de choisir entre: signaux num6ris6s avec des donn~es auxiliaires

(temps IRIG, coordonn6es de la cible, position
"* M'mission simultan6e de codes de la r~plique,...) destinies aux traitements en

orthogonaux sur les polarisations temps diff&r6.
horizontale (H) et verticale (V) ;

L'enregistreur AMPEX a une capacit6 de
"* 1'6mission altemn~e, d'une r6currence Ai stockage de 48 Giga-octets et un debit d'entr6e

l'autre, sur les polarisations H et V soit de 107 Mb/s.
d'un code identique soit de codes
orthogonaux. Le temps de comm-utation 2.1.4 - Gestion temps r6el de l'installation
peut 6tre r6duit A quelques nano-secondes.

Durant un essai, le s~quencement temps reel
Le tableau 1 rassemble les caract6ristiques des mesures est r6parti en deux phases. La
principales de la station MERIC. premiere est utilis6e pour contr~ler le radar et

int~gre une autocalibration par r~injection.

La seconde correspond ý la mesure sur cible.
Les operations suivantes y sont effectu6es au
rythme de la d6signation d'objectif:
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Ku
Ku

DATA LINK

figure 5: synoptique du radar bande Ku

* Estimation de la distance et de Dans le tableau 2 sont rassembl6es les
la vitesse de la cible ; principales caract6ristiques de cette station.

* SMection de la forme d'onde; 2.3 - ttalons

* Asservissement de la r6plique A Les moyens d'essais comprennent 6galement
la distance estim6e de la cible; un tri~dre, un di~dre et un r6pondeur actif

- Transmission A i'enregistreur (PARC) en bande X qui sont utilis6s dans les
des donn6es auxiliaires. phases d'6talonnage polarim6trique. Une

sph~re ou un PARC en bande Ku seront
2.2 - Base bistatig~ue bande Ku utilis6s pour l'6talonnage de la base bistatique.

Cette configuration est en cours de
d6veloppement et permettra A moyen terme,
d'6tudier :

PARAMETRE CARACTERISTIQUES

"* Les signatures bistatiques; BANDE Ku

" L giag em-ctfBANDEDE 150 MHz
* Le guidagesemi-actif;MODULATION _______

EMETTEURS ATOP
"* Les trajets multiples. PUISSANCE 200 W

POLARISATIONS LMNAIRES
La base sera compos6e de deux sous- dmission HouV
ensembles (6mission et r6ception), distants de 5 reception HouV
A 30 kin, fonctionnant en bande Ku. La figure A~NTEN PARABOLIQUIES
5 illustre l'architecture g6n6rale de ce syst~me GAIN 37 dB
de mesures. LARGEUR LOBE 3 dB 20

ISOLAT1ON POL. 20 dB

Des r~cepteurs GPS assureront la
synchronisation temps-fr~quence des deux sites Tableau 2: Caractiristiques principales de la
et une liaison data-link permettra 1'6change station bistatique
bidirectionnel de donn6es num6riques et
analogiques.
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3 - TRAITEMENT DU SIGNAL On peut e~galement effectuer un traitement
Doppler pour l'analyse des parties tournantes

Les traitements assurent l'exploitation des ou la formation d'images ISAR.
enregistrements effectu6s en bande X mais
certains de leurs modules seront utilisables 3.2. 1- Profils distances et niveaux de SER
pour les mesures bistatiques.

Le calcul consiste 'a moyenner en puissance des
Plusleurs parties composent ces traitements: reponses impulsionnelles align6es

correspondant A un secteur de pr6sentation de la
"* Mise en forme et 6talonnage des donn~es; cible et parall~lement ý analyser statistiquement

leurs, fluctuations.
"* Calcul des niveaux de SER ;

Une m~me planche (Figure 7) regroupe la
"* Analyse des modulations li6es aux parties r6ponse impulsionnelle moyenne et un profil

toumnantes; d'inte'gration permettant de determiner
rapidement la SER de chaque portion de la

"* Calcul des images ISAR (utilisation de la cible.
technique du radar h synth~se d'ouverture).

Les valeurs ainsi obtenues correspondent A une
3.1 - Mise en forme et 6talonnage des donn6es SER moyenne pour un domaine de fr6quence

(bande passante du code utilis6) et un secteur
Ce module extrait les donn~es enregistr6es et angulaire (variation d'attitude de la cible entre la
les "d~multiplexe" pour constituer quatre premie're et la derni~re re'ponse impulsionnelle
fichiers associ~s aux polarisations directes et utilis6e).
crois6es. Un cinqui~me fichier rassemble les
param~tres d'essais (coordonn6es de la cible, Ce type d'analyse est effectu6 sur les quatre
position du code r6plique, ...) pour chaque canaux polarim6triques.
recurrence du code 6mis.

Les r6ponses impulsionnelles (figure 6 en R EPONSE IPUSONNELLE

annexe) de la cible sont obtenues par analyse ,

spectrale du signal de m6lange pond6r6 par une
fen~tre de Hamming. Elles sont ensuite
6talonn~es en amplitude A partir des 616ments
suivants :

"* Distance de la cible; _________________

"* Rinjections incluant les 6metteurs Figure 7: Prisentation des niveaux de SER
de puissance (op6ration r6p6t6e pour
chaque enregistrement) ; 3.2.2 Analyse Doppler

"* Relev6s sur des objets 6talons Le traitement Doppler des r6ponses
statiques (Tri~dres, di~dre, PARC) ou impulsionnelles est effectu6 pour deux types
mobiles (sphere tract~e ou largu6e). d'analyse :

Les r~ponses impulsionnelles sont alors - l'identification des parties toumnantes;
align~es par une m~thode utilisant une - l'imagerie ISAR.
correlation amplitude. Cette op6ration est
effectu6e sur les deux voies copolaires A partir L'identification d'un avion ou d'un h~licopt~re
de la totalit6 ou d'une partie seulement de la peut se faire A partir de la signature de ses
r6ponse impulsionnelle centr6e sur la cible. parties tournantes (pales, h6lice, aubes de

compresseur ou de turbines,...).
3.2 - Exploitation des mesures

Un traitement Doppler, sur des r6ponses
Un moyen d'exploiter les reponses impulsionnelles contiguds, permet de dissocier
impulsionnelles consiste 'a calculer la SER de la en vitesse chacune de ces composantes.
cible observ~e et A l'associer A un profil
distance moyen.
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Le spectre obtenu occupe une bande de 5. Conclusion
fr6quence de largeur lITr avec une resolution

Dople de Les mesures effectu6es avec la station MERIC
Dope eNTr ousur diff6rentes cibles ont permis de valider une

configuration d'essai obi les quatre termes de la
- Tr: p6riode de r6currence du code; matrice de r6trodiffusion sont obtenus
- N: Nombre de r6currences utilis6es. simultan6ment grAce A l'utilisation de codes

Une autre mani~re d'exploiter la vitesse des otooax
cibles consiste A former des images ISAR. Cette m6thode semble bien adapt~e A des

mesures sur des cibles rapides mais elle
Cette technique combine la haute r6solution complexifie les chaines radar (deux canaux A
distance (d6coupe de la cible suivant l'axe de l'6miission et quatre A la reception).
vis~e radar) A une analyse transverse pour
extraire les vitesses diff6rentielles radiales Aujourd'hui un travail d'investigation est men6
affectant les points brillants et former des dans le domaine de 1'6talonnage [1I] de
images 3D ( distance radiale, distance tranverse mani~re A d6finir de nouvelles proc6dures
et niveau de SER) reposant sur:

Le calcul des images ISAR comprend deux *Des 6talons dont la matrice de
6tapes: r6trodiffusion est parfaitement connue

* Copenatin ds mgratonsDoplersurth~oriquement ou mesur~e en chambre" Comensaiondes igrtion Doplersuranechdfque;
un ensemble de r~ponses impulsionnelles
r6-align6es (m6thode de focalisation de type *Des m6thodes de calibration peu sensibles
DSA: Dominant Scaterrer Algorithm, MSA: A l'environnement (bruit de mesure, fouillis
Multiple Scaterrers Algorithm ou autre); de sol, et au positionnement des 6talons).

"* CZT (Chirp Z Transform) pour obtenir les D'autre part, des travaux sont conduits pour
r~ponses transverses. permettre l'autonomie de la station radar en

Pour la compensation Doppler, la technique coop6ra etives.rahe ecils o
retenue depend du type de presentation mais en oprtvs
g~n6ral, pour des avions, la m~thode DSA Enfin, des premiers essais en configuration
foumnit des r6sultats satisfaisants. bistatique devraient bient6t 6tre conduits.

4.- Pr6sentation de r6sultats

Pour illustrer les capacit6s de mesure et REFERENCE:
d'analyse de cette station radar, des images
ISAR (figures 8 et 9) obtenues sur des avions I ] "The Polarimetric Calibration Trade-Off'
sont pr6sent~es. Mine C. Titin-Schnaider - NATO-symposium

Les r6solutions spatiales sont inf6rieures au 22 - 24 April 1998 - Mannheim
m~tre et les dynamiques d'affichage
sup~rieures A 20 dB .

Associ6e A la planche, une silhouette d'avion
rend compte de l'attitude de la cible au moment
de la mesure.

Sur ces images, en vue quasi lat~rale, les
niveaux de SER sont sensiblement plus faibles
sur les polarisations croise'es que sur les
polarisations directes.

Ce W'est g~n6ralement pas le cas pour des
profils avant ou arri~re ofi l'cart d'amplitude
est r~duit A quelques decibels.
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HRR Identification and Imaging of Air Targets
with a MultiMode Tactical Radar System

Dr. Marshall Greenspan
Director of Technology

Northrop Grumman Norden Systems
10 Norden Place

Norwalk, Connecticut 06856-5300
USA

1. SUMMARY the Israel Air Force F-4 Super Phantom 2000 aircraft'. These
This paper describes how a slightly modified version of the production radar variants had been modified for enhanced
AN/APG-76 radar was recently used to automatically collect range resolution and had been subsequently used in several
high range resolution (HRR) Ku-band airborne target US government-funded data collection activities2'3.
signatures from a variety of commercial aircraft flying past
Norden's roof-top test facility*. The radar modifications 3.1 Baseline ANAPG-76 System
included both enhanced range resolution and changes to the The AN/APG-76 radar was originally designed to provide
radar modal control. Quality of the collected signature data high resolution synthetic aperture radar (SAR) ground maps
was confirmed by processing sets of contiguously-collected with simultaneous overlays showing the location of all-speed
coherent HRR profiles into well-focused and scaled two- surface moving vehicles within the SAR image frame.
dimensional range-Doppler images of the target aircraft.
Compatibility of the signature data with HRR target In addition to its extensive high resolution air-to-surface
identification algorithms was verified by passing the data target modes, the AN/APG-76 includes many air-target modes
through a basic HRR-based Bayesian classifier and comparing such as wide sector, multi-bar search and precision 3-axis
the classification results and normalized distance scores to single target track (STT) modes. These modes, coupled to an
predictions based on the statistics of the training data. integral 9 state Kalman filter, provides the system with the

ability to rapidly detect, acquire, and track highly
2. INTRODUCTION maneuvering air target vehicles and to extract precision
Advances in both the capabilities of new wide-bandwidth estimates of the target's 3 axis position, velocity, and
coherent multi-mode strike radar systems and breakthroughs acceleration.
in the computational power available in emerging airborne
digital signal processors has made it feasible to incorporate a Using a classical medium PRF pulse Doppler waveform set
tactically useful airborne target classification capability into modeled after the AN/APG-68 radar in the F-I16 aircraft, the
modem low-cost multi-mission fighter aircraft. Such modem AN/APG-76 reliably achieves medium range all-aspect look-
multi-mode strike radars typically contain the capability to up or look-down acquisition and track of fighter-sized targets
perform a variety of air search, acquisition, and precision under a wide variety of background clutter conditions. Target
track functions in an air-defense role as well as to generate data supplied by the radar in these air targeting modes is
wide bandwidth high resolution SAR images in a tactical presented to the pilot as symbology on the multi-function
surface target identification or strike role. Thus, it should be display (MFD) and is simultaneously passed to the weapon
possible to interleave or otherwise combine these two fire control system.
inherent radar capabilities to allow non-cooperative airborne
target identification to be accomplished as a normal part of
the platform's air defense mission role. In such an advanced
system configuration, HRR target signatures collected during
airborne search frames would aid in prioritizing detected
threats and enhanced quality HRR profiles supplemented with
2-D air target images would confirm threat identification
decisions during longer target tracking dwells.

3. RADAR DESCRIPTION
The HRR signatures described in this paper were collected
with slightly modified versions of the Ku-band AN/APG-76
radar originally developed in the mid-1980's by Norden
Systems under contract to the Government of Israel for use in

The author would like to express his appreciation to Dr.
William J. Miceli of the Office of Naval Research for his
sponsorship of portions of this work under US Navy contract Figure 1. Baseline ANIAPG-76 in F4 Super Phantom
number N00014-95-C-0199.

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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The current air target modes of the AN/APG-76 radar use Maxmum Range
only narrow band waveforms and are functionally separate -.35 km
from the air to surface modes. However, since both are
implemented within the same common radar elements, there
is no physical reason why wider-bandwidth SAR-type Common Field
waveforms could not have been interspersed with the narrow of View Area
band waveforms to enable the automatic capture of coherent
wide bandwidth signatures from the airborne targets virtually +0
simultaneously with the air-to-air search or track functions.

imum Range3.2 HRR Modifications 600 6 km
Following the design and delivery of the first production
AN/APG-76 radars, Norden embarked on a series of
enhancements to the radar to increase its capabilities and its op
utility to a variety of new missions. Among these
enhancements was the addition of a wide bandwidth stretch
waveform generator and associated RF deramping circuitry to Figure 2. Rooftop Signature Collection Geometry
provide enhanced range resolution for target identification.
This enhanced bandwidth high range resolution capability
was initially applied to the air-to-surface modes and enabled AN/APG-76 radars operating side-by-side to accomplish our
the in-flight generation and display of both 1.0 and 0.3 meter objective. This side-by-side rooftop air target signature
resolution SAR imagery as well as the post-flight generation collection configuration is illustrated in Figure 2. One of the
of high resolution 3-D SAR topographic images . two radars was designated as the air target tracking radar and

The utility of high resolution SAR for the recognition of ships was used to acquire and track any selected airborne target
and surface vehicles has been well documented and, in many entering it's field of view.
situations, provides the level of detail needed for positive
target identification. Furthermore, such high resolution SAR Three dimensional tracking data from this first sensor was
images are compatible with automatic target detection and then used to slave the second identical AN/APG-76 radar that
cueing algorithms that can be added to the in-flight image was maintained in a high resolution SAR mode of operation.
processor to significantly reduce operator workload and Since the lateral separation of the two radars was in the order

5compensate for operator fatigue . of 23 meters and targets could be acquired and tracked
anywhere within their mutual +/- 60 degree azimuth coverageAlthough initially implemented to enhance the ground region, the target track data from the first radar was on-the-fly

targeting capabilities of the AN/APG-76, this same HRR parallax and range corrected by a small interface data
waveform modification can also be employed to enhance the processing unit operating at the common 20 Hz data rate on
extraction of information from airborne targets detected and
tracked by the current air-to-air modes. To verify this the interconnecting MIL-STD-1553B serial interface. Range
assertion, Norden Systems, under sponsorship of the Office of and angle rate soalso simultaneously corrected by the same
Naval Research, undertook the collection of 1.0 and 0.3 meter method to enable smooth angular pointing of the second radar
HRR data on air targets using these same resolution as well as correct dynamic positioning of its rather limited
waveforms operating in conjunction with the existing built-in HRR range swath on the selected airborne target.
air target search and air target track modes of this high 4. AIRBORNE TARGET DATA COLLECTION
performance radar system - i.e., detecting and tracking air The Norden Systems Norwalk, Connecticut, facility is
targets of opportunity with the air target waveforms and
subsequently locking the new wide bandwidth stretch conveniently located on the Eastern coast of the United States
waveform HRR target profiling mode to the target's along the New York to Boston commercial air traffic corridor.
dynamically changing range location. The high accuracy 3-D Since funds for the project were limited, it was decided to
target tracking data, available simultaneously from the utilize the large number of commercial aircraft traveling in the
precision air target track modes, was used to both control the corridor as targets of opportunity for the data collection effort.
radar antenna azimuth and elevation angle steering as well as
for subsequent signal processing and establishment of proper Using this approach, over a period of only a few days, we
Doppler to cross-range image scaling, were able to capture extended sequences of high quality radar

signatures from 32 different aircraft flying by the laboratory3.3. Rooftop Experimental Setup facility at ranges between 6.5 and 30 km using both 1.0 and
Although the modified AN-APG-76 radar had the capability 0.3 mt resolution raa aveors Tn t four oth e
of operating in both classical low RF bandwidth air-target 0.3 meter resolution radar waveforms. Twenty four of the
modes and significantly higher bandwidth SAR-type modes, target aircraft were seen in various crossing geometries, six
there was no mode control software included in the radar to were in nominally nose-on geometries, and two were tracked
automatically intersperse these two waveforms to enable at 0.3 meter resolution in a virtually direct fly-over
simultaneous 3-D air target tracking and HRR signature configuration. The air target flight profile collection
extraction. Thus, to avoid the need to develop new radar geometry for two typical track sequences are illustrated in
control software, we decided to utilize two separate Figure 3.
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"*Civilian aircraft, likely deHavilland Dash 8 turbo prop
-TARGET 125_1221_29 * RIG TME 125_12_21__29 May 5,1997 EDT

- * Closing at Range -9.3 km
Nordcn Lab -/ - - •• -• . Range & cross range resolution -0.3 m

I/T Lab * Dwell time 1.04 secs
Norwalk. . - . TARGET 1251 04 * Bright Spot autofocus processing

6.5 to 30 km
] -[]Long Island, Range

Long Island Sound NY Rng

Figure 3. Two Air Target Profile Collections

A typical data collection sequence on a selected airborne Doppler
target lasted from several seconds to nearly a minute
depending upon its range and crossing rate. During this Figure 5. Civilian TurboProp Aircraft at 9.3 km
collection period the target aspect angle as seen from the As illustrated, the images were sharply focused in both
radar typically varied through several 10's of degrees and, dimensions and, with the exception of significant Doppler
with the nominal wide-band radar PRF in the area of 2 kHz, sidebands at the ranges containing the engines, were
there were usually more than enough pulse samples available extremely free of range or Doppler sidelobe artifacts. Asetof
on any specific target to support processing of the coherent outline drawings of the deHavilland Dash 8 Turboprop
slant range vs aspect angle data array in any of several aircraft is shown in Figure 6 for comparison with the scaled
desirable ways. This high PRF also ensured that the target range-Doppler radar image shown in Figure 5.
Doppler spectrum was fully un-aliased so that a valid Doppler
spectrum of each range cell could be reconstructed from the
radar-sampled data.

Since the tracking data from the air target tracker Kalman
filter provided full 6 degree-of-freedom tracking information i- Wng span 25.91 9m

on the target throughout the data collection sequence, it was Length - overall 22.25m
also a relatively simple task to both tag the data with a
reasonably good estimate of the target aspect angle as well as
to range and range-rate compensate the wideband coherent "3
signature data for range walk and Doppler drift effects.

Figure 6. deHavilland DHC 8 Series 300 TurboProp
5. AIR TARGET IMAGING The algorithms used for this air target imaging demonstration
To validate the quality of the aircraft data collected during the were adapted from a set of Moving Target Imaging (MTIm)
program, sets of complex-valued target range profiles algorithms originally developed under Office of Naval
contiguously-collected over nominal 2.5 degree aspect angle Research sponsorship for the imaging of surface moving
segments of the two flight trajectories illustrated in Figure 3 vehicles in SAR imagery. Of key importance to the formation
were range-Doppler processed to form 2-dimensional range- of properly scaled (range & cross-range) imagery from the
Doppler images of the airborne targets with nominally equal nominal range and Doppler imagery is the quality of the
(1.0 or 0.3 m) range and cross-range resolutions. The results precision 9 degree-of-freedom target track data provided by
of this 2-D range-Doppler image processing are shown in the baseline AN/APG-76 radar.
Figure 4 and Figure 5.

6. HRR TARGET IDENTIFICATION"* Civilian aircraft from NYC airport ... type unknown To evaluate the suitability of the collected HRR data for target
"* HIG time 125:11:51:04 - May 5, 1997 EST identification purposes, a simple M-class HRR profile
"* East to West Approaching at Range of - 10.4 km identification system as illustrated in Figure 7 was
"* Range & cross range resolution -0.3 ml
"* Dwell time of 3.15 seconds constructed. The implementation, based on mature pattern
"* Overlapping images with 2.6 seconds overlap recognition technology, represented the target signature by a
"* Bright Spot autofocus one dimensional feature vector and based its classification

decision on well developed detection theory of hypotheses
testing using a Bayes minimum error distance criterion6 .

In this HRR target identification process, successive wide
Doppler I Doppler bandwidth radar returns are passed into the Feature Extractor

where they are range aligned, and then non-coherently
combined to improve the signal to noise ratio. The combined
returns define the radar high resolution range profiles from

Figure 4. Time-Sequential Images of a Civilian Aircraft which the target magnitude feature vectors are extracted. For
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training, these feature vectors are sent to the training To validate both the HRR identification process as well as the
algorithm for target structure evaluation and exploitation. For consistency of the collected HRR air target profiles, several
testing, these feature vectors are sent to the Minimum Error segments of the collected data were passed through the
Bayesian Classifier for target decision declaration, training and testing portions of the process. Classification

results and distributions of normalized distance scores were
The Training Algorithm estimates statistical properties of the found to be consistent with theoretical expectations based on
target feature vectors using an assumption of statistical the statistical characteristics of the training samples. As
independence among feature elements. Outputs of the expected, the HRR target identification process performed
training algorithm are sorted and stored in the Target best when the candidate targets subtended a large number of
Templates Library. A mean feature vector and a variance range cells, the number of unique classes were small, and the
feature vector are kept in the library for each of the target inter-class profile differences were large compared to the
classes. intra-class variations. Conversely, poorer performance was

seen when the number of range cells subtended by the target

During the testing phase, the M class Minimum Error was small or when the candidate target classes had HRR

Bayesian Classifier takes a feature vector from the Feature profiles with a significant amount of statistical overlap.

Extractor, measures normalized distances of the feature vector
to all target templates in the library, and assigns a target class 7. SUMMARY AND CONCLUSIONS
based on the minimum of these distances. The AN/APG-76 multi-mode tactical strike radar sensor was

designed from the bottom up as both a capable all-aspect,
The performance of the HRR Target Identification Process is look-up and look-down air-to-air search and track radar as
measured by inserting previously sequestered target data well as a high resolution SAR imaging and targeting sensor.
samples into the process and comparing classifier declarations The combination of these two capabilities provides the means
with apriori known target truth data. Probabilities of correct to add airframe-based target identification capabilities to its
versus incorrect classification decisions are then estimated by already impressive suite of capabilities that support both air
repeating this process with a large number of test data and surface target missions.
samples.
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The polarimetric calibration best trade-offs

Titin-Schnaider Cecile
ONERA

Chemin de la Hunikre et des Joncherettes
91120 Palaiseau, France
email : titin@onera.fr

1. INTRODUCTION linearly frequency modulated pulses is analyzed, with
A polarimetric radar must be able to measure the four the aim of defining the best suited phase calibration
terms (magnitude and phase) of the observed targets method in each case. Only one period of the signal is

scattering matrices. The phase calibration of considered.

measurements is a critical step, because it determines
the degree of validity in using polarimetric parameters 2.1 Linear FM phase analysis
( Huynen theory ... ) for discrimining and identifying 9 A linear FM signal with slope p and center
the targets. Simulations have shown that a phase frequency fer is transmitted:
control better than ±5degrees in radar channels is
desirable to derive significant calculation of Zero (T) = e J2

"emT e jtT2
polarimetric parameters.
The aim of full polarimetric radar calibration is to The signal travels to a punctual scattering center
compensate the distortions of waves propagating in the (scattering coefficient S ) located at range d and back
four T/R radar channels: hH, vH, hV, vW. 2d
Measurements are altered by two types of distortions: again, during the time Td = - . The received signal

unbalanced propagation delays in the four channels is: c

and polarization coupling between channels.
For each radar, a strategy of calibration must be Zrecl (T) = S Zem (T - Td)
designed to find a trade-off between accuracy and The received signal is mixed with a replica of the
reliability of the results, in operational conditions: the transmitted signal generated on the carrier frequency
number of standard targets must be as reduced as
possible, the degree of realism of standard targets frep:
theoretical scattering matrix versus frequency J2nfreT j'rT pT2

variations and positioning errors must be carefully Zrep (T) = e e

controlled. giving the demodulated signal:
This article shows the importance of taking into
account the transmit waveform, the radar architecture Zrec2 (T) = ZrecI (T) Z~ep (T - Trep)

and the phase distortions in channels. Investigations
about calibration of the ONERA experimental radars
are made: RAMSES (airborne based radar providing f 3  frep

SAR images) and MERIC [4] (ground based radar
designed for air target signature analysis and ISAR
imaging). Zrec2 ree fern
Two concepts of fully polarimetric radar may be
considered, depending on the way the two td
orthogonally polarized signals (H and V) are

transmitted: alternately or simultaneously. The present
work devoted to phase calibration problems and de
solutions may complete the Guili's papers [2] which conversion deramping

widely discuss the advantages and drawbacks of the
two concepts. Figure I : A theoretical receiving channel

2. PHASE ANALYSIS 9 The starting time of the replica sets the time origin

The phase behaviour through the radar channels for of the returned pulse (defining the reference range).

several designs of polarimetric radar transmitting

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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The change of variable: t = T -Tepallows to travel radar-target-radar from a punctual scatterer to
give:

define: td =Td Trep txY = t + Y (2)

The demodulated signal can therefore be written: The resulting mesured signal in channel xY is:

Zrec 2 (t) = S Zem (t - td ) Zrep(t) (1) ZxY= SxYW* - p(td + r ),t)

W* (em,td+rxI)W*f 2 , xy) (3)

f xyXY ) xY (W (ptd, rY + Y )C+ (td)

+ii •The terms C+(rx') and WprxYr ), being of
f0 Rsecond order with respect to channels delays will be

. neglected when delays are small enough.

2.2 Linear FM with positive slope
T * In case of a radar transmitting a linear FM with

positive slope p towards a punctual target, the FF17

t applied to the measured signal (3) gives a peak for the

Figure 2 A positive linear FM with carrier frequency frequency:

fo , pulse bandwidth B and pulse duration Tinp V = F - p(td + rY) (4)

The phase associated to the peak is deduced from (3):

* To clarify the notations, let us separate the pure 1 ( xY Y

carrier frequency terms as : xY = 'PxY -
2 •fem d + T1 -- 2f2 T2  (5)

W(f 0 ,t)= ej'o +0 ptdT + +xY

and the linear FM terms of given slope p (respectively This relation shows that the target phase (OxY (the
positive and negative) as: wanted information) is distorted by several types of

J Pt2 -j .Pt 2 undesired phase terms:
C+ (t) = e C (t) = e = C+ (t) - a) The propagating phase terms:

In this way, the signal (1) after mixing can be written: before mixing: 2;r fern ( d +TY )

Zrec2(t) = S W 2 -Ptdt)VW*em'td )C+(td) after mixing: 2;r f 2 (zr2) .-...

where: f 2 = fen - frep -b) The residual video phase (RVP) ir p 2t is a

td1

* Finaly, the value of the carrier frequency is deterministic phase term.
reduced through a mixing with a pure wave. The signal -c) A phase term resulting from the coupling between
at the end of the channel i e the measured signal is: the residual video phase and the various channels

Z (t) = Zrec2 (t - r 2 ) W* (f 3 , t) propagation delays

It depends on the round trip duration td and on the
T2 being the duration of the wave propagation from total delay in channel xY:

the mixing. rt = 1Y +2 +.....

Z (t)=S W tF-Ptd,t)W*V2 -Ptd,r2) The total delay may include also other contributions

W * (fer, td ) C+ (td) like the delay before the beginning of sampling

-d) The residual unknown constant phase 1 xY which
The carrier frequency F = f2 - f3 of the resulting must not be forgotten.

signals is generally low. • The above calculations enable us to conclude

* The propagation delay r Y (duration of the wave that the measured phase can be written in the

propagation in the T/R radar channel xY before the following general form:

mixing) changes the round trip duration td of the wave
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rxY 9x -2;Vf t, -21r fi rixv The sign of the two phase terms depending on range
= fis thus changed.

i1 (6) The phase of the ratio of measured signals resulting
+ ,.,ptd rxy + np (d + AxY from the transmission of two linear FM with the same

+i=XYnegative slope -p, verifies the relation (7) for which p

The T/R channel xY is divided in I elements. Each is changed into -p.
element i is characterized by its carrier frequency The phase of measured signals ratio corresponding to

fi and its propagation duration ij'Y. linear FM with opposite slope, for instance

9 Polarimetry is only concerned with relative phases. {xY }+ /{aB }_may be written as:
The methods of relative calibration are exclusively
using ratios of channels measurements on the same •fxY r-4aB 1= 6xy - -aB )+ 2 P(d
target, in order to eliminate the absolute phase terms - 27r fernf -

and to generate differential phase terms. - 2;r f rfB )-2irf2 rY r2B (10)
The phase of measured signals ratios + 2 nPtd (4ift+ O )+ (TxY - ••B )
{ZXY }• /Zat }+ corresponding to linear FM with same

SIsUnlike the linear FM with same slope, the phase terms
(positive) slope are: in this case depending on range are not substracted but

{xY }--{1aB I = xY-aB - added. The calibration has to take into account some
phase terms depending on absolute delays instead of

-27r fem(TY -4"B )- 2if 2 (r'Y -trB) (7) relative ones.

+ 27iptd (rtxY - re + (Txy - TgaB)

It depends only on differential delays between the 3. METHODS OF CALIBRATION
radar T/R channels xY and aB. . In a first step, channel cross-polarization is assumed to
e The channels delays before deramping shift in be sufficient low. Therefore, only channel inbalance
range the peaks of punctual scattering centers, has to be corrected.
The differential frequency shift between channels xY
and aB is: The target c measurement Z5C, in channel xY is

xY -vaB p(xY aB directly proportional to the theoretical scattering
coefficient 

S :
In the SAR case, the four images hH, hV, vH and vV xY

are slightly translated in range between them. ZC= D Sc (11)
An estimate of the relative frequency shift
A , = pAr with respect to the frequency resolution cell the distortions being represented by Dx.

'5v = l/Timp is given by: The aim of the relative calibration is to estimate as

Av accurately as possible the relative value of the
- = B Ar distortion coefficients.8v

Az being an estimate of the mean differential delay
between any two channels 3.1 Single standard target method
It is less than the resolution cell, when : B A r << I If there were an ideal target 'o' whose scattering matrix

is perfectly known, and which does not require precise
positionning and orientation adjustement, the

2.3 Linear FM with negative slope calibration formula of any target 'c' would be very
The measured signal corresponding to a transmit chirp simple:
with negative slope, is obtained by changing the slope r - _

p into -p. Thus, the same scattering center gives a peak Sy - ZhOH SxY ZxCY (12)
for a frequency symetric about F : Sn Zoy soHF ZCH

XY =rxY H x h H

V F + p(td+TY ) (8) with xY = {hV, vH or vV}.
Moreover, to fulfil a good signal to noise ratio, the

Theyphas asoc d to tern peak is: )'-2nffour terms of the standard target scattering matrix must

ýXy = 'PXY - 21r fern (~d + ,xy 2)zf 2,r' be sufficiently high (in particular, they must not be
(9) theoretically zero)

2rnp td rxtXY-p (d Y + TxI A PARC could be used as a single standard target,
provided that its theoretical scattering matrix is known
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well enough and that all positionning problems are Sc (Zd Z t  
1/2 c

solved. vH - Zhv Wh' Zvn (18)

Sh 'H vV ) Zh

3.2 Sarabandi methods Equations (14,17,18) were first proposed [1] by
To perform reliable mesurements " in realistic Sarabandi.

conditions, it is preferable to make a minimum of The advantages of the Sarabandi method are:

assumptions on standard target theoretical scattering -a) If a trihedral and a dihedral (whose vertex is tilted
matrices and to consider calibration laws with low in the radar wave plane, by about 45 degrees relatively
sensitivity to standard target positionning. to the local horizontal) are used as standard targets, it

is shown that the method has little sensitivity to
Copolar measurements on a trihedral comer 't channel cross-polarization coupling.

(Sth =St ,St =St =0) gives: -b) Any target with high cross-polar RCS , may be

DhH _ z'used instead of a dihedral (if the radar cross-coupling
= (13) is negligible), because we are only applying the

Dvv W reciprocity principle.

and consequently the first calibration formula:
ZCThe drawbacks of the Sarabandi method are:

SvV... = -a) the sign ambiguity of cross-polarized terms,
SSV ) Z (Zh) -b) the dihedral alignement problems, to get a good

zH ) -)hsignal to clutter ratio.

The reciprocity principle applied to a dihedral comer
,d, (Sdv =Svdt Svv =Sd = 0) whose vertex is

,d W vv h= 3.2.2 Generalized Sarabandi method
tilted by 45 degrees about the line of sight from the In the simultaneous transmit radar case (four receive
local horizontal, gives: channels), relation (16) is not true.

Dvn Zd A new parameter I has to be introduced:
(vH W15

D Zd ,=(~ vhv Zhv (19)
At this point two cases have to be examined, according = -,v Dhv
to the validity of the relation: )

DhHDvv =Dhv DvH (16) giving the relations /2DAv=(Dh D vv )1/

3.2.1 Classical Sarabandi method DAHv =D Dvv j Y

The distortions in radar channels are supposed to
satisfy the condition (16). In the case of a switched v h DV /1/2

transmit radar (only two receive channels v and h) -D = DH
distortions in receive and transmit channels are DhH D hH

independant : The calibration formula (17) and (18) become:.x, = D., Dy C d t 21

and consequently verify (16). -ýv= 7 tZvH ZhH hV (20)
The distortion ratio hv/hH may be written in the form: SJtH Zhd Zv ZC

Dhv _(Dhv Dhv) = Dhv Dvv s/2 r V H
St(21)

S Dy OD DR 7 S ZvH W Z21

•(ZVt v.I/
_ ZZhV vV The parameter 7' can be estimated from

yW h measurements on a PARC (Polarimetric Active Radar

which yield the second calibration formula: Calibrator) [3] with orthogonal antennas.

Sy ZdH Z Z(7 1/2 ¢ Its theoretical scattering matrix is known as

SliV= V (17) 1 tg be
sh V 

1
e P 1 (0) (22)

In the same way, the third formula can be deduced, The PARC gives an estimate of 7 independant of its

orientation angle 6.
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h Z Z (0) /2 Therefore, the classical Sarabandi method is well

= ( (23) suited to calibrate the measurements of a switched
t ZPv (9) ZP (O) transmit radar.

It can be easily demonstrated that the estimate of 7 is * This type of polarimetric radar transmits only

also independant of the polarization coupling, linear FM of same slope (for instance positive).
Any calibration method uses only measurements ratios

4. CALIBRATION IMPLEMENTATION of linear FM with same slope, giving phase term like
(7). In each waveform parameters case, the
contribution of the term depending linearly on range

4. 1 The switched transmit radar has to be estimated. It can be written in the form:
* The switched transmit radar (figure 3) provides the
entire scattering matrix through two successive (pulse =2 •r p Ar td

to pulse) transmission of linear FM waveforms of where Az denotes the mean differential delay between

same slope on the two orthogonally polarized transmit any two channels.
channels (H and V), while receiving the target return
through the two orthogonally polarized receive Let consider a typical case of the RAMSES radar SAR

channels v and h. waveform:

Linear FM slope: p = 5 1012 Hz / sec

Transmit channels Pulse bandwidth: B =100 MHz
•L "/ v Pulse duration: Timp =33 jisec

Estimate of the mean differential delay: A i = 1 n sec

Pulsemduratin: =33secse

h Swath: d m'a =1500m (i.e. tdax =l0psec)

d., v The variation of 0 1 on the total swath is not

Receive channels negligible being:

A0 1 = 2 zC p Ar tda = 18 degrees
Figure 3: Simplified scheme of a switched transmit Its variation on the temporal resolution cell

radar 8td = (tv / p)= l/iTmp ) :

The polarization switching technique leads to a 8D =2(r.p A1 &d =2 Yr T/Timp )= 0,01 degrees

complete retrieval of the target scattering matrix in a

time 2Tr (Tr being the pulse repetition period), is negligible.

Therefore the Doppler sampling frequency is halved
with respect to a conventional non polarimetric radar. tI the RAt E case, the librating octo take into account the linear variation of

A delay of Tr is introduced between the measurement measurements ratio as a function of range.

of the couples of elements ( IhH, SvH) and The classical Sarabandi method (14, 16, 18) needs to
kno two linears phas lawementsan

(ShVS W ), and may generate some decorrelation know two linear phase laws VvV-VhH and

between them. VPhV -- vH" The linear law eVpV -- phH is provided

This radar type fulfills property (16) because the by several trihedral corner reflectors deployed in range

receiving and the transmitting channels are on the calibration area (x on figure 4).

independant: DXY = Dx Dr The linear law 'PhV --qvH is estimated by averaging

As, there are only two receiving channels (h and v), the field clutter in each range cell (averaged clutter

the delays in transmit channels can be separated from being supposed to satisfy the reciprocity principle).

the delays in receive channels: The use of clutter properties allows to avoid using an

deramping: . Y =Y +x array of diagonal corner dihedrals. Moreover the
- before i = +clutter solution allows to escape from the corner

- after deramping: dihedrals positionning problems: their very assymetric
2 scattering lobe, making it very difficult to reach a

good signal to noise ratio.
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On figure 4, it can be seen that four areas returning a From the slopes of lines (PvV - (hH and 9hV --vH,
very poor signal to noise ratio (beginning and end of
the swath, runways) are not taken into account the differential delays A rem end ATrec can be
(dashed lines) in the calculation of the least square estimated. On Figure 4, it can be seen that the slopes
line. lie.of the two lines (h--VvV and 'PhV -- vH are very
The calibration coefficients deduced from the o o hH

calibration area may be used on any other area, if the similar. Therefore, the delays between the receive
radar parameters have not changed. channels seems to be dominant.

4. 2 The simultaneous transmit radar
Two linear FM signals of inverse slope are transmitted

m~y ....... 4000col- ......-- 0.D128. b=1.188 simultaneously. The returned signal is first separated

according to its horizontal (h) and vertical (v)
Jill

components. The four measurements ZhH ZhV
2 .. . . . ... . . . . . . . . . . . . ...... h H . . . . . .. .h.. .. . . .

,1 x •''ZvH Zvv are simultaneously collected at the end of

"1 . . the four receiving channels after deramping with the

S, appropriate replicas of the transmitted signals (figure
, 0 . ..... ...... ....... ...... 5 ) .

-2-

500 1000 1500 2000 2500 3000
disto..e hV

Figure 4 : cross-polar hV-vH and copolar hH-vV
differential phases before calibration as function of
range cell number

vV

The slope of these two lines can be theoretically

deduced from (7): _

D(('xY -(aB) a X B) vH v

(the slope p being an algebric number).

In any switched transmit radar, the delays rem and Figure 5: Receiver simplified scheme of a

V in the transmit channels can be separated from simultaneous transmit radar

the delays rhec and z-'ec in the receive channels: The radar complexity is increased by the need of two
xY XY XY Y X transmitters and four receive channels, in particular.

Ttot T I+ 2 + 2 ..... ='rem +Trec
Therefore: * The measurement ratios may be divided into two

"TV - To A + rec classes according to whether they contain
hV vH measurements belonging to the same (same slope
Tiot T-ot ATem-Arrec linear FM) transmit polarizations ( for instance

where: Zxn/Zan ) or to different (inverse slope linear FM)

Arem is the differential delay between the two
transmit channels (Aem = V H transmit polarizations ( for instance Zx V/ZaH)

Tem Te~m ~The first case leads to the same measurement ratios

A Trec is the differential delay between the two receive than in the switched radar.

channels(ATrec-- rc rh The second case causes the appearance of two( rec Trec different phase terms depending on range:
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=r p-rd - the switched transmit technique allowing a range
ptd independant calibration, the phase variation being

03 =2 . p (d2 negligible:
wAT)1 = 2 ir p AT tdax = 0,24 deg rees

where rdenotes the estimate of the mean total delay The classical Sarabandi method using two standardin a T/R channel.RVP which is eliminated in the switched radar targets (a trihedral and a dihedral) is appropriate.
The wThe price to be paid is the compensation for time
case is doubled, giving the deterministic phase term d
0 *" delay between the two pairs of elements ShHI SvH

Let consider a typical case of the MERIC radar ISAR and (ShV , Svv ) of the calibrated scattering matrix.
waveform parameters:

p=510 12Hz/sec B=IOOMHz Timp =33usec 5. CONCLUSION
The present paper, shows in the RAMSES and MERIC

AT =I nsec r=33nsec (10m) case that:

and swath: dmax = 20 mi (i.e. tmax = 133 nsec) - the phase calibration problem must be taken into
d account at the radar design and waveform definition

The variations on the total swath are not negligible: steps,

A0 2 = 4 ir p r tdax = 14 deg rees - the distortions of signals propagating in the radar
S 32 dechannels must be theoretically known to be able to

=. max " = 32 deg rees define a suited calibration strategy,
- the calibration process results in a trade-off

The variations on the temporal resolution cell is: between accuracy, practical conditions of
8D 2 =4;rprTtd=4;r(-/Timp )=0,65 deg rees measurements and costs requirements

80T3 = 4 7rptd Std <4,,ptmi 8t =3degrees

Some care must be taken to correct the deterministic 6. REFERENCES
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FORME D'ONDE OPTIMISEE POUR L'IMAGERIE ET L'IDENTIFICATION DE CIBLES

M. DINNICHERT

Office National d'Etudes et de Recherches AMrospatiales (ONERA),
29, Av. de la Division Leclerc, B.P. 72, 92322 Chdtillon Cedex, France

Certaines d'entre elles ont 6t6 mises en oeuvre
1. INTRODUCTION au centre de Palaiseau pour imager des avions

civils en approche de l'a6roport de Paris-Orly.
Les contraintes op6rationnelles d'un radar
d6pendent bien 6videmment des missions qu'on
lui attribue. Un radar dMd6 A l'identification de 2. DESCRIPTION DES FORMES D'ONDE
cibles non coop6ratives doit exploiter au
maximum les informations dont ii dispose, A
savoir :

"* la cin6matique de la cible, 21L ad ntna~

"* son spectre Doppler,
"* sa r6ponse impulsionnelle obtenue par haute Cette forme d'onde utilise le principe du

resolution distance (HRD), "deramping" en reception. Une onde
"* sa r~ponse transverse obtenue par ISAR, hyperfr6quence d'amplitude constante est
"* l'imagerie 2D modul~e lin6airement dans le temps pendant
"* sa r~ponse polarim~trique, une dur&e T sur une bande de fr6quence AF.
"* les associations possibles de ces L'onde reque, retard&e par le trajet aller retour

informations. sur la cible, est d6modul6e par une r~plique de
Une es arat~ritiqes r~pod~rnte du l'onde 6mise, elle m~me retard6e d'un temps r'.

Uredecar acou tristiques pission erats dahut Le signal resultant de ce m6lange foumnit un
radar pour rdistace satt misonpsa est l at ensemble de composantes spectrales qui est

r~soutin dstace.Cett coposnteestl'image du profil distance de la cible vis&e,
n~cessaire et son association avec d'autres figure 14. Ce profil est obtenu par FFT du
analyses (spectrale, polarim~trique) est la c16 de signal de m6lange.
l'identification radar. Plusieurs analyses
(confort6es par des mesures exp6rimentales) L'int6r&t majeur du "deramping" est de r6aliser
ont montr6 qu'une resolution de 0,5 m (radiale 1'6chantillonnage du signal sur une bande
et transverse) ainsi qu'une dynamique video largement inf6rieure a la bande spectrale
d'analyse de 30 dB sont n~cessaires. La bande 6ieprl aa.E oteate adfiut

spetrae A6metrese ~dut drecemet d la de mise en oeuvre de cette forme d'onde r6sideresolution radiale requise, soit 300 Mhz. dans 1'61aboration des circuits large bande A
Deux families distinctes de forme d'onde sont I'6mission et a la r6ception.
candidates pour 6mettre cette bande : Le rapprochement (ou 1'61oignement) de la
"* la bande "instantan~e", utilisant la voie large cible introduit un d6calage g6n~ral du profil de

bande du *radar et gdn6r~e ii l'aide d'une la cible dans la fenetre d'analyse mais introduit
rampe de fr~quence dans l'impulsion. aussi un terme de phase quadratique qui

"* Ia bande "synth6tique", utilisant la voie d6grade la r6ponse impulsionnelle de la cible.
bande 6troite du radar et g6n6r~e par une
excursion de la fr6quence d'6mission On admet que le terme v.AF.T/c ne doit pas
d'impulsion ii impulsion (ou de rafale A exc6der I pour un traitement par FIT pond6r~e
rafale). (fen~tre de Hamming). Pour une forme d'onde

L'obet e c paierest e p~seterlescaract~ris6e par AF=300 Mhz et T=100 ps, la
L'objeritiqdesc paietrin est de formese'ntere valeur limite de vitesse cible ne n~cessitant pas

operant sur 300 Mhz de bande et susceptibles ae omiesnesatont pas done 1 m/sespa cette
d'&tre int~gr~es dans un radar imageur. arbe esn a ocme a et

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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contrainte. Cette forme d'onde peut 6tre aussi Vr AVr Iv - jnderdocpsdasr
utilis6e dans le contexte de difense de th6Atre r VIndeadocpsdasr

contre des missiles balistiques tactiques (phases AV, =
de poursuite et engagement). r lX 4BT

Pour 1' identification d'une cible A longue
2.2 La bande synth~tique distance (200 km par exemple) qui n6cessite

une PRI de l'ordre de 1,5 ms et pour N=128 et
Sansmodlaton ans11ipulionAF=2,5 Mhz, l'erreur d'estimation vitesse ne
Sansmoduatio das l'mpuliondevra pas exc6der 1,2 m/s. Outre la dur6e de la

rafale synth~tique, ce type de forme d' onde
Les s~quencements de formes d'onde de type n6cessite une ou des formes d'onde d'appoint
bande synth6tique peuvent 8tre relativernent pour recaler la vitesse de la cible A identifier.
vari6s suivant les applications et les missions
que 1'on attribue au radar. Le s~quencement le De plus, ]a fonction d'ambigufft6 de cette forme
plus simple consiste A 6mettre une serie d'onde est plut~t appropri~e A l'analyse d'une
d'impulsions, d6cal~es les unes par rapport aux cible unique en environnement clair A cause de
autres d'un pas constant en fr6quence AF, la pr6sence de lobes de p6riodicit6 importants.
figure 1. Cette forme d'onde, tr~s pr6dictible, La figure 2 illustre la r~ponse impulsionnelle
peut 8tre utilis6e par des radars bande 6troite ne d'une telle forme d'onde avec les
disposant pas de modulation dans l'impulsion. caract~ristiques suivantes:

*T=5 gs
*B=1/T=O,2 Mhz

- . N=128
*AF=2,5 Mhz

0

I--rep lrebande _tro Ie

T 
IR 2

Letatmn s .2s n ex6ae 0 Id.I

ditnts igue1 -260 4 2 rl0em2 0 6

Figurte 1i - Squencimpusin de'un aflee forme d'onde A BTiD
brande snthr6tiupe sans moulatinsml da e Onntel rIeced omrussrmot

profls b 'se rrsoulion qui enrg::r pou deIT(isd ~idct) odre

Le traitemeivntse. reulise enr deuxlpp dutapesadpt
"diasticts, figu pe15 nit nue ~ u ad 6rie et formei enne

* Iaq preiee eitane est le ftrage uio ad pourand Figurine 2-Rpour impasinerldes pour dne

Ontroite quchaqe impulsion de la rafale. Lei folye ermed d'ointde lct ave BT=1

proflse bepasse rdsolution q'i ergisrae pou fore FF'd (picase d de cep6riodicit6) pod&esl
l'dtape~~pns suvnt.selm nth~u par d'elpe du ltrgeu adepla

r Ia secod implsapee odse la ben une FF1 srm badI tot.Cte fre dod s

chaque =Nil.R.dasl e case distance basse r6solution pu iesonepuriae e ilsd
acc~er u pofi hate ~soutin. onguse uprpinoreuret Ia60 m. Paruotre, rouine

Le trme .B.Tc nedoi pasexc~er analysr e dhqe raid deraboient e d Ulcae avecacett
Onimoitere que mieramouvmn de la ciblh e iduit form d'onde r cause ladiledeet pacasedicstaneI
un terme de phaselo qudatqendn qui traemp la rpars synthctiqu e et due da largeur de a
r'6pisons impu]aionnele. d'erla cible. Ce terde rotpars mde 'mulationd dite rsponselag
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Avec modulation dans l'impulsion 0

Une mani~re de contr6ler ces remont6es de -5.nd~rot

lobes de FF17 est de moduler les impulsions de -10
la rafale synth~tique pour r~duire la taille de la
case distance. Une faqon simple d'obtenir cette 1

reduction de case distance est de r6aliser une
modulation lin6aire de fr6quence dans
l'impulsion (chirp) ,figure 3. -25 ~ i$

f -30

PRI 4

-60 40 -20 0 20 40 60

forme d'onde A BT=250
Modulation pseudo-ai~atoire de la rafale

B - Une autre mani~re de r~duire les lobes parasites
de la r~ponse synth6tique est de rendre lesII~ ~~ ~ ________ -param~tres ade la forme d' onde pseudo-

al~toies.Lafigure 5 montre un s~quencement
extr~me, oti la dur~e de 1'impulsion, la bande

Figure 3 - S~quencement d'une forme d'onde de chaque impulsion et chaque PRI varient
bande synthetique avec modulation dans dans la rafale.

l'impulsion
En fait, la cible a un profil qui s'6tale dans la
case distance basse resolution et ii est important
de v~rifier qu'une cible hors de cette case
distance n'ait pas d'influence sur la cible en
cours d'analyse. Le crit~re choisi est
d'identifier le niveau des lobes de p6riodicit6
sur quelques cases distance basse r6solution. La
figure 4 permet de visualiser les r6ponses de
plusieurs filtres FF17 de 1'analyse synth~tique.
Ces filtres ont 6t6 choisis pour couvrir la taille AF
de la case distance basse resolution A 3 dB. La
forme d' onde simul~e est la suivante:
"* T=50 jis
"* BT=250 (B=5 MHz)
"* N=128
"* AF=3 MHz Figure 5- Sdquencement d'une forme d'onde

bande synthdtique & modulation pseudo
Le chirp est pond~r6 en amplitude (Hamming) al~atoire
et les lobes de pdriodicit6 n'exc~dent pas -28
dB car uls sont pond6r~s par l'enveloppe de la Bien que toutes les combinaisons de sequence
r6ponse basse resolution. Dans ce cas pr6cis, aI~atoire soient possibles, certaines pr6sentent
384 Mhz de bande sont n~cessaires pour des sp6cificit~s difficilement acceptables du
garantir 0,5 m de r6solution (la FF17 128 points point de vue traitement radar :
est elle aussi pond~r6e). La bande passante de *Si la dur~e des impulsions nWest pas
chaque impulsion est sup6rieure au saut de constante, le traitemnent radar doit mettre en
frdquence AF. oeuvre un filtre 6galiseur puisque 1'6nergie

contenue dans chaque impulsion n'est pas
constante.
Si la PRI W'est pas constante dans la rafale,
un traitement ý base de FF17 classique ne
convient plus pour la reconstitution du
profil de la cible. Un filtrage adapt6 ?i
chaque cellule haute r6solution doit 6tre
effectu6 pour reconstituer le profil. Ce type
de s~quencement n6cessite plus de charge
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de calcul mais a des performances de CCME f
non n~gligeables.
11I reste donc la possibilit6 de moduler la
bande de chaque impulsion pour conserver
un traitement haute r6solution le plus simple
possible.

Nous avons simul6 une forme d'onde oii B est
al6atoire avec les param~tres suivant:

"* T=5 gs
"* 4MHz<B<6MHz
"* N=128
"* AF=2 MHz

La figure 6 illustre la rdponse large bande. Le
niveau des lobes de p~riodicit6 est A -28 dB
environ. Ce niveau est du m~me ordre de Figure 7 - S6quencement pseudo al6atoire
grandeur que celui de la forme d'onde avec d'une forme d'onde bande synth6tique
modulation dans l'impulsion. Par contre, la C p efredod s euoppu
r6solution synth6tique est l~g~rement d6grad6e Censtype auDe plrqu formes d'onde esAeuoppu
saut de fa r6quene AF.uedel ~ucind loi monotone (en fr~quence). Le caract~re non

sautde r~qunceAF.pr6dictible de cette forme d'onde la rend
La modulation al6atoire dans les impulsions momns sensible aux techniques de brouillage.
d'une rafale de type bande synth~tique Un brouilleur A bruit doit 8tre large bande pour
n'apporte pas d'am6lioration majeure ni en esp6rer couvrir toute la bande synthdtique.
terme de resolution radiale hi en terme de
dynamnique d'analyse (niveau des pics de
p~riodicit6). Par contre, ce type de forme 2.3 Recherche de la forme d'onde optimum
d'onde a des qualitds de faible probabilit6
d'interception (LPI :low probability of Quand le radar ne dispose pas de ]a bande
Intercept) vis-A-vis d'un rdcepteur ESM dans instdntan6e ne'cessaire pour r6aliser conve-
un contexte de guerre 6lectronique intense. nablement la fonction identification, nous

0 avons vu qu'une solution est d'6mettre un train
-5 re nd I d'impulsions d~cal~es en frdquence et couvrant

ýa "I Ia bande d6sir~e. Cette m6thode pr6sente des
-10 inconv~nients op6rationnels important, surtout
-15 AI a dur~e d'6mission de la rafale. L'objet de ce

chapitre est d'6valuer le meilleur compromis en
cQ -20terme de correction de mouvement (li~e a la
2-25 -dur6e d'impulsion) et de dynamnique

d'analyse.

-35 - Rafale ti deux impulsions

-4:-4Dans un premier temps, nous consid6rons que
-60 20 40la bande totale n'est couverte que par deux

50 60 40 -20 profll0em 0 4 60 impulsions. Le traitement de reception envisag6
en m est de type "deramping". La pente de

Figure 6 - Faisceau de r6ponses bande modulation des chirp peut Wte du signe du saut
6troite et r~ponses large bande de fr6quence, soit du signe oppos6. Le saut de

S,6guencement pseudo ale~toire de la rafale fr6quence entre les deux impulsions est
inf~rieur ou 6gal A la bande de modulation

La particularit6 de cette forme d'onde est d'une impulsion pour 6viter l'apparition de
d'avoir un s6quencement non ordonn6 des "mplobsiodelrleau" dn I .o
porteuses de chaque impulsion, figure 7. Ceci a imuionle
pour cons6quence de briser le couplage
distance-Doppler classique des lois lin~aires en La figure 8 montre la r~ponse impulsionnelle
fr~quence. de ]a forme d'onde suivante

*T=100 gs
*B=150 MHz
*N=2
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*AF=l50 MHz 0

La pond6ration du chirp permet naturellement a5ýndqt~t

d'abaisser le niveau des lobes de la r6ponse -10
"large bande", mais les lobes de la r~ponse 1-

synth6ticjue sont inchanges. Le niveau de ces
lobes ne peut 6tre abaiss6 car ii nWest pas M 2

envisageable de pond~rer une FFT 2 points.-2
0 2 30 I

-5 ~-40 I -II

-in-45 -

50 *8 . -6 -4 -2 0 2 4 6 8 10
I F profil en m

-2 Figure 9 - Rdponse impulsionnelle de la forme
-25 ebnnSml d'onde A 16 impulsions

--rp aocbnd e

En considdrant le crit~re selon lequel
I'estimation de la vitesse radiale de la cible doit

-35 &8re inf~rieure A Avrmax < C/4Bto ), B,,, 6tant
-40 la bande totale d'excursion et T le temps total

-8 -6 -4 -2rfil en m 2 0 pour 6mettre B,.,, on en d6duit le tableau ci-
Figure 8 - R~ponses impulsionnelles d'une dessous. La PRE de 750 Hz est dimensionn6

double rampe pond6r~e pour r6aliser l'identification de cibles A 200 km
Un traitement synth~tique sur deux impulsions et B,.t=300 MHz.
permet d'accdder en thdorie A une rdsolution _____

double de celle de l'impulsion unique, mais le N-4, B=1 50Mhz, AF=75 MHz Av=47mr/s
traitement associe induit des lobes secondaires _____________ _____

forts qui ddgradent le profil distance d'une
cible et ]a dynamique d'analyse. N=8, B=100 Mhz, AF=50 MHz Av=23 rn/s

Rafale 4 plusieurs impulsions N=16, B=50 Mhz, AF=25 MHz Av=12 rn/s

Le dimensionnement de cette forme d' onde On retiendra que pour des cibles en
d6coule des conclusions pr6cddentes. Le rapprochement et pour les formes d'onde
dimensionnement optimum doit garantir un prdsent6es ici, il est n~cessaire d'effectuer une
temps d'6mission de la rafale le plus court correction du mouvement des cibles sur les
possible tout en maintenant une resolution profils basse resolution avant de rdaliser le
finale de l'ordre de 0,5 m et des lobes profil haute r6solution de ces cibles.
secondaires faibles. Le problme revient A
d~finir le nombre d'impulsions dans la rafale et
leur composition spectrale. La premi~re forme 3. IMAGES SUR DONNEES REELLES
d'onde examin~e est la suivante:

* T=100 lts Nous pr6sentons ici quelques images radar
* 13=50 MHz obtenues sur donndes r~elles. Compte tenu de
* N=16 la configuration du site, les formes mises en
* AF=25 MHz oeuvre sont destin6es A de l'identification
La figure 9 montre ]a r~ponse large bande et courte port~e.
plusieurs filtres de FF1' r6sultant de l'analyse
synth~tique. Les chirp et Ia FF1' sont ponddr~s
par une loi de Hamming. Le niveau des lobes 3.1 Forme d'onde 1
secondaires reste inf6rieur A -25 dB pour tous
les filtres de ]a case distance. La bande totale est
de 400 Mhz. Compte tenu des ponddrations qui Les caract~ristiques principales de cette forme
6largissent ]a rdponse synth6tique, la resolution d'onde sont les suivantes
finale est de 0,5 m. * T=12,8 las

"* PRI=132 lis
"* B=150 MHz
"* N=2
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* AF=150 MHz 
dB______________ 0

La cible est un Airbus de moyenne taille
enregistr~e en polarisation VV. L'image est 3

floue et on constate un d~doublement des
points brillants de la cible sur 1'axe distance. go-____~w
Cet effet 6tait pr6dictible A partir des -10
simulations et plus particuli~rement en 10
observant la figure 8. La resolution de cette
image n'est pas sup6rieure A celle obtenue sur 0*
une demi-bande de 150 MHz.

-10 -2
0B-2

-20 
_0,

go. 4 -- 25

-30 06

10. '10 - 2,44 -3
430 .20 -1 0 0 1 0 20 s0

xrangs (in)

0 -15 Figure 11 - Images radar d'un 747 en
polarisation VV

-10 go Sur ce fichier de mesures, nous avons 6valu6 le
Maw- temps de coh6rence d'une telle cible sur une

26passe de 1,1 s comportant 8192 profils. On

(fr~quence, polarisation, type de cible, attitude,

etc ... ) le temps de coherence de la cible est de
.30 10 20 30 l'ordre de 0,3 s (seuil h 0,8). Ceci montre bien
Figure 10 l'importance de limiter le temps n~cessaire

pour former une image.

3.2 Forme d'onde 2 La dimension polarim~trique peut 6tre ajout~e
A l'imagerie radar. La figure 12 illustre la

Les caract~ristiques principales de cette forme signature d'un Airbus en polarisation VV
d'onde sont les suivantes tandis que la figure 13 montre sa signature en

polarisation VH. On constate que la transition
"* T= 12,8 gs aile/carlingue signe plus sur la voie VH que sur
"* PRI=132j1.s la voie VV. Ceci est probablement dii aux
"* B=36 MHz r~flexions multiples (effet di~dre). Les
"* N=16 compensations de mouvement ont W
"* AF=18 MHz effectu~es s6par~ment sur chaque voie. Une

compensation de mouvement globale doitCes enregistrements concernent un Boeing 747 permettre d'am6liorer la focalisation de
en polarisation VV. Les images radar de la l'image et l'analyse du comportement
figure I1I ont 6t r~alis~es avec 128 profils polarim6trique de chaque point brillant.
haute r6solution. La rdsolution transverse est
donc d'environ 2,5 m, compte -tenu de la
fr6quence porteuse et de la pr6sentation de
I' appareil.
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20dB 0 chatnes d'6mission et de reception. Ces
r~flexions ont pour arri~re plan la modification
de L'ARMOR sur le batiment Monge pour

.~augmenter sa bande de traitement de 150 MHz
____ ý 300 Mhz dans le cadre d'un futur

10. 1 d6veloppement exploratoire. Mais les formes
6 10 d'onde pr6sent~es ici sont directement

-a- &transposables pour un radar a~roport6 op6rant
Jml~ywen mode SAR.

0 -15

Le dimensionnement de ces formes d'onde est
.2 influenc6 par les objectifs de la mission

J6 op~rationnelle du radar. Certaines de ces
-1 formes d'onde pr~sentent en outre des qualit~s

-25 de CME int~ressantes. Nous avons d6montr6
-i ,68 M sur des mesures la validit6 du concept. Pour

o2 0 .2M13 couvrir 300 MHz, une rampe de 8 impulsions
.0-16 -10 .5 0 6 10 16 -20 modu1~es portant chacune 75 Mhz et

Xrange (m) recouvrantes A 50% parait 6tre un choix
Figure 12 - Image radar d'un Airbus en int~ressant.

polarisation VV

dB
20. 0

10-

-10

0. -16

.6
.20

-10

-26

*20 .2M13
-20 -16 -10 -5 0 6 10 16 20

Xrange (in)

Figure 13 - Image radar d'un Airbus en
polarisation VH

4. CONCLUSION

Ce document passe en revue diff~rentes formes
d'onde pouvant 8tre mises en oeuvre dans un
traitement radar A haute r6solution. L'effort
porte surtout sur les formes d'onde dites
«<hybrides »>, dans lesquelles chaque impulsion
d'une rafale porte une fraction de ]a bande
totale. Ces impulsions ont la particularit6 d'8tre
modul~es, ý I'inverse de la bande synth~tique
g6n6ralement abord~e dans ]a litt~rature.
L'intdr&t premier de ces formes d'onde est
d'augmenter la r~solution radiale du radar sans
modifier les composants hyperfr~quence des
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f

SE SR RLPHi ULl

t

Figure 14 - Illustration du type de r6ception par "deramping'

prnfil synthptique complet

20-2

-40 profils en m

Figure 15 - Illustration de la reconstitution du profil synth6tique
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AIRCRAFT IDENTIFICATION VIA TWO-DIMENSIONAL IMAGING

A. W. Rihaczek
S. J. Hershkowitz

MARK Resources, Inc.
3878 Carson Street, Suite 210

Torrance, CA 90503 USA

B. I. Hauss
T. K. Samec
TRW, Inc.

One Space Park
Redondo Beach, CA 90278 USA

1. INTRODUCTION appear to be to process the image further. We can
attempt to find a way of removing the duct returns,

We have developed a workable technology for and in some fashion cleaning the image to bring out
noncooperative aircraft identification, based on the the shape of the aircraft. One might be successful
theory of Complex-Image Analysis [1] and implemen- in some cases, but not in most others.
ted in an expert system. For the final adjustment
of the algorithms and large-scale testing to The backscattering of man-made targets at radar
determine performance, we need suitable data on a wavelengths is rather different from that at optical
variety of aircraft under different conditions of wavelengths. At radar wavelengths, the return is
flight. Unfortunately, such data do not exist dominated by the backscattering from such features
within NATO. Until suitable data become available, as corners, cavities, and electronic devices. The
the development of the identification system cannot most important features are on the fuselage, and
be finished. In this paper we discuss how we most of them are near the centerline. There is
identify aircraft, and what considerations have led little shape information to be extracted. Although
to the chosen approach. the wings seems to give shape information, there are

the problems of banking, rolling, and flexing. The
2. WHY TWO-DIMENSIONAL IMAGING conclusion is that identification must be based on

IS NEEDED measuring the positions of observable features and,
when possible, their characteristics. We may add

Two-dimensional imaging has disadvantages in that it such information as a capability for carrying wing
requires a motion compensation and dwell time on the tip missiles, number of engines, and similar
target. Although a system based on one-dimensional recognizable features, but most of the information
range resolution would be much simpler, one problem on which identification can be based is in the
is that wing responses are folded onto the fuselage positions of features on the fuselage.
responses, in a different way for different aspect
angles. A more serious problem is that range 4. THE CONSISTENCY OF FEATURES
resolution becomes very ineffective in resolving
scatterers on the fuselage as the aspect angle Identification via feature detection evidently is
approaches broadside. However, the most serious practical only if the observable features persist
problem, which by itself would force one to go to over relatively large aspect angle sectors. This
two-dimensional resolution, is the need to resolve will be the case if the above statement as to the
the delayed duct returns of fighter aircraft from sources of observable backscattering is true. In
the fuselage returns. Figure 1 shows the ISAR image this case we will also be able to use diagrams,
of an aircraft in peaks plot form, where each local photographs, and models to predict the feature
maximum in the intensity image is indicated by a positions of the aircraft to be identified. We will
dot, the size of which is proportional to the peak illustrate the consistency of features via turntable
amplitude. Crossrange Gate 9 contains the delayed measurements, for which we have ground truth.
duct returns. Without crossrange resolution all
dots will be translated onto a vertical line, with Figure 3 shows the match via a deformable template
obvious consequences from the delayed duct returns. between the measured feature positions extracted
The problem is particularly serious for small aspect from an image at 50 off nose-on and the feature
angles. We need the most efficient method for their positions obtained from a diagram of the aircraft.
suppression, which is Doppler resolution, and hence, Range resolution is 0.30 m, and crossrange
two-dimensional imaging. resolution is 1 m. The important part of the match

is the match in range, because for low crossrange
3. HOW WE UTILIZE A TWO-DIMENSIONAL resolution we weight the match more heavily in range.IMAGE than in crossrange.

Because we are accustomed to identifying targets by Figure 4 gives the analogous positional match for an
eye from photographs, the obvious approach is to aspect angle of 451, which is 40° larger than in
attempt to do the same with radar images. Figure 2 Figure 3. Crossrange resolution is somewhat worse
shows the conventional ISAR image of the aircraft. at 1.35 m. The feature database is the same as for
It is clear that this obvious approach has a problem the small aspect angle, except that we have added
for the image in Figure 2. The solution would one feature which would be visible only at a large

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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aspect angle. Examination of Figure 4 shows that First, suppose that it is acceptable to model an
Features E and M are missing in the new image, and aircraft by a set of point scatterers in fixed
Features K and p are shifted along the fuselage. At positions on the aircraft.. Even in this idealized
a much larger angle, in particular if crossrange situation the use of the intensity image will
resolution is worse rather than better, we would degrade resolution performance by a factor of two.
expect one or the other response to disappear. For In practice, we cannot afford to degrade resolution
some scatterers we would also expect some changes in to such a degree. We must utilize the complex
positions over such a large change in aspect angle. image, intensity and phase, in order to realize the
With some experience, they should be predictable. inherent resolution performance of radar.
Nevertheless, it is remarkable how little has
changed despite an aspect angle increase by 40'. Second, as already stated, the observable features

in a radar image are corner-like features, cavities,
5. HOW MUCH CROSSRANGE RESOLUTION electronic devices, and other devices that "trap"

IS NEEDED the radar signal. The phase centers of such
features often shift with aspect angle or frequency,

When we consider the need for crossrange resolution, and the associated phase modulation will cause a
we must keep in mind that the objective is to spreading of responses and the generation of
measure scatterer positions rather than to determine spurious responses which cannot be handled in an
the shape of the aircraft. Here we must distinguish intensity image. It is the phase of the image that
between measurement accuracy and resolution, contains the information needed to deal with these
Resolution refers to the width of a response, effects.
whereas measurement accuracy refers to how well the
position of the response peak can be defined. 8. PROCESSING ALGORITHMS BASED ON
Depending on the background interference, MATHEMATICAL TARGET MODELS
measurement accuracy for a resolved scatterer varies
from less than 10% of the response width to perhaps If a man-made target could be modeled by a set of
3%. Thus, even when crossrange resolution is, say, point scatterers in fixed positions, one could write
2 m, we can measure the peak position to a few mathematical equations to be implemented as the
centimeters. Moreover, in the process of measuring processing algorithm. But an aircraft (or even
the positions of interfering responses we can worse, a ground vehicle) cannot be modeled in such a
automatically estimate the interference level and fashion. As a consequence, all algorithms based on
thus estimate the measurement errors. The practical the concept of a fixed point scatterer must fail in
policy is to let the choice of crossrange resolution the sense that they cannot be the basis for an
be governed by the need to resolve the delayed duct operational system with acceptable performance. To
returns. In cases where there are no delayed duct overcome this problem the complexity of the
returns, we can choose the crossrange resolution so mathematical models has been increased to a
that wing tip missiles do not interfere with considerable degree to attempt to account for a
measurements on the fuselage features. variety of effects. However, we have analyzed real

data on countless targets under a variety of
6. THE NEED FOR ADAPTIVE PROCESSING conditions, using the Complex-Image Analysis

technology. Based on this experience, which goes
The crossrange resolution requirements will back to the early 1980s, we claim that man-made
sometimes be governed by the need to suppress the targets of such complexity as aircraft and ground
delayed duct returns, and sometimes by the need to vehicles cannot be modeled mathematically with
resolve the wing tips. This implies, also, that the sufficient realism for identification. The
required crossrange resolution depends on the aspect approaches based on mathematical target models have
angle. Moreover, if an aircraft flies steadily and not led to a workable operational system in the past
dwell time is available, it is easy to achieve high 30 years, and we predict they will not lead to such
crossrange resolution if it is needed. On the other a system in the next 30 years.
hand, if an aircraft is maneuvering it may not be
possible to achieve a good enough motion 9. THE EXPERT SYSTEM APPROACH
compensation to allow measurement of the feature
positions in an image formed from the entire dwell. If mathematical equations cannot be the basis of the
Because of this large variability of conditions, the processing, how can suitable processing algorithms
processing must be adaptive. The processor must be developed? The answer is that one has to study
measure the existing conditions (based on imaging) the characteristics of each response in the complex
and choose the correct procedure. image, and determine whether the associated

backscattering is from a stable phase center or from
7. THE NEED FOR UTILIZING THE COMPLEX a shifting phase center. One must understand how to

IMAG realize the inherent resolution capability of radar.
One must learn how to deal with interference when

It has been customary to treat radar images like the resolution is inadequate. One must learn to
photographs, that is, to utilize only the intensity distinguish between the spreading of a response
image and discard the underlying phase. This is caused by interference between two scatterers and
totally unacceptable in practice, for two reasons. the phase center wander of a single scatterer. Real

data pose a whole range of such problems, and one
must gain the necessary knowledge and insight by
analyzing a large variety of data.
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After one has gained sufficient experience to be 12. CONCLUSIONS
able to solve the problem at hand, the entire
procedure must be automated. This will generally Aircraft identification is a difficult problem, as
require a series of iterations until the automated is the identification of ground vehicles, ships, and
system achieves the same performance as a trained other targets. In fact, all problems involving high
analyst. By the definition of the term, one must resolution of man-made targets are difficult. In an
develop an expert system. It is far more difficult, operational sense, they cannot be solved with the
cumbersome, and time consuming than implementing conventional technology, because the phase of the
mathematical equations in accordance with some processor output must be utilized and done so
target model, but for complicated man-made targets without any mathematical target models. We are
there is no alternative. Just as an expert never confident that the approach discussed in this paper
reaches the point where he knows everything, such an is the basis for an operational identification
expert system is never likely to completely solve a system, but finishing its development requires
complicated practical problem. However, the suitable data.
development of the system is deemed to be finished
when the performance is acceptable.

REFERENCE
10. AUTOMATION RESULTS

1. Rihaczek, A. W., and S. J. Hershkowitz, Radar
We have been handicapped by not having problem-free Resolution and Complex-Image Analysis (Artech
aircraft data, and this makes it difficult to House, 1996).
perfect a method. We have recently been able to
realistically test our manual algorithms by using
turntable data with ground truth. As illustrated by
Figures 3 and 4, these algorithms work rather well.

The turntable data also permit us to meaningfully
test the automated algorithms, and improve them if
needed. We have not finished this task as of the
time this paper was written. Nevertheless, the
results obtained so far are satisfactory, although
they will be further improved. In Figure 5 we show
a comparison of the feature measurement performed on
turntable data manually and with automated
algorithms. The Xs designate the scatterer
positions derived with manual processing, and the Os
give the positions obtained with fully automated
processing. The automated processing missed several
scatterers, but these are weak ones. Nevertheless,
we have found in the past that the results from
manual processing can be duplicated, and we expect
to do this again. Slight differences in the
measured positions do not matter, in particular in
crossrange, because they will not prevent aircraft
identification. In Figure 6 we show analogous
results for flight test data. The automated
processing missed four weak responses. Otherwise
the agreement is excellent, with some less important
crossrange differences.

11. THE PROBLEMS WITH FLIGHT TEST DATA

Since it is not possible to develop an aircraft
identification system based on mathematical models
of aircraft, we need flight test data. We have good
data available for stationary and moving ground
vehicles, and also for ships. No suitable data are
available for aircraft. Every set of available data
has serious problems. They range from the use of an
unsuitable waveform that makes jet engine returns an
unsolvable problem, to radars that work but have too
low a bandwidth for small fighter aircraft, to
radars that are too unstable, and to radars that
operate at too low a carrier frequency. These
problems are NATO-wide. Unless suitable data are
collected, there will be no operational aircraft
identification system.
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Dispersive Scattering for Radar-Based Target
Classification and Duct-Induced Image Artifact Mitigation

Brett Borden
Research and Technology Group
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China Lake, CA 93555-6100

USA

Summary. The standard radar high-frequency Ak _ k2 - k1.
weak-scatterer model is inappropriate to targets with Im (x): see equation (7).
inlets and cavities, and range-resolved images created
under this model assumption often display artifacts Jn (x): Bessel function of the first kind of order n.
associated with these structures. Since inlets and k(,c)- (max{kl, kc,m} + k2 )/2.
cavities (typically) make a strong contribution to the Ak(l,c) - k2 - max{ki, kc,m}.
radar field scattered from aircraft targets, these ar-
tifacts often confound the image interpretation pro- Yn (x): Bessel function of the second kind of order n.

cess and considerable effort has been spent in recent Kn(x): modified Bessel function of order n.
years to model, isolate, and remove these sources of Yv{f}(n) =- f (x) V/ Y,(rx) dx: Y,-transform of
error. Many of the more complete and accurate scat- the function f.
tering models require extensive knowledge about the
cavity/inlet shape and size and, moreover, are nu- PI{f}: see equation (12).

merically intensive-features that make them unsuit- FJ{f}: Fourier transform of f.
able for many imaging applications. We examine an '- I{f}: Struve transform of f, see equation (13).
older (first order) model based on a weak-scattering
modal expansion of the structure which appears to be H,(x): Struve function of order v.

well-suited to radar imaging. In addition, the analy- L2 (0, oo): set of functions square-integrable over R+.
sis shows how cavity/inlet shape-specific information T: threshold parameter used in truncation filter.
may be estimated from an ordinary radar image.

List of Symbols. 1. Introduction. Radar imaging systems usually

p(x): target object function. exploit the properties of a linear, non-dispersive mod-

E(k): radar scattered field (measured data). el to recover an object function p(x) from measured
data E(k) [1,2]-although it has been recognized that

wo: angular frequency of harmonic field component. this so-called 'weak, point-scatterer' model is invalid

c: wave speed (free space). for many practical scattering situations [3-5]. Despite

k = w/c: wave number. this acknowledged limitation, the resulting analyti-
cal convenience of this traditional approach remains

W(x, cu): spatially-varying point-spread function ac- quite compelling and algorithm designers are loath to
counting for image artifacts (see equation (3)). abandon it altogether. While there are many scat-

(k1 , k2): wavenumber support of the data. tering situations that are well-approximated as non-

S(x, k): strength of image artifact. interacting point subtargets, scattering bodies con-
sisting of ducts or cavities can significantly deviate

/3(x, k): phase off-set of image artifact. from the point-scatterer assumption. Typically, these

Sm and 0,m: strength and phase of waveguide mode re-entrant structures are dispersive in the sense that
expansion terms (see equation (4)). p(x) has a strong dependence on the frequency of

Xinflet: location of the duct/cavity entrance. the interrogating radar signal. Reconstructing such
a p(x) under a non-dispersive assumption results in

wc,m: cutoff frequency of m-th mode. unwanted image artifacts which are sometimes dif-

L: effective length of waveguide. ficult to associate with specific target features and

ý(x): windowed Fourier estimate of p. which may obscure other (correctly modeled) image
sinc(r)=x-I sin x. elements. Figure 1 is an example ISAR image dis-

playing the kind of artifacts that are associated with
k = (k1 + k2)/2. re-entrant target structures.

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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30- .r, -V 2 -10 0 and receiver are co-located) it can be shown [1,2] that
two Intenity, dB the weak scatterer far-field response E (k) due to an

harmonic excitation of a target can be written:

-E (k) L p (x') e dx' (1)

20- This is a linear superposition of waves radiating from
locations in the support of the target with local scat-

JW • dl• .titerer strength proportional to p (x). The incident in-

'" terrogating wave has: angular frequency w; speed c;k •wave number k = w/c; and the factor of 2 accounts
for the 2-way travel distance from the radar to the
target and back again.

10 Equation (1) is basically a Fourier transform relation-
ship between the target object function p and the
measured data E. Because of this, frequency domain

-20 0 20 filtering is a sometimes suggested approach to elimi-

nating cavity- and duct-dispersion artifacts. The idea

1I Example of duct dispersion in ISAR image. is simple to understand: in the image domain, 'ordi-
nary' scattering centers behave as point targets while
dispersive scatterers display a distributed structure.

Owing to the importance of ducts and cavities in air- Consequently, in the Fourier transform domain the
borne target image reconstruction-they often con- point-like scatterers will be distributed while the dis-
tribute the strongest part of the radar return-a sig- persion artifacts will be localized. Filtering the peaks
nificant effort has been made to accurately model out of the transform domain data, followed by in-
and predict their scattering behavior. Much of this verse transformation, should (in principle) mitigate
work has concentrated on accurately calculating the duct dispersion image artifacts.
radar cross-section of known structures, and the de-
vised methods are (typically) numerically intensive While this Fourier domain filtering approach is some-
and require extensive a priori size and shape infor- times successful, there are many situations for which
mation [6-14]. Such direct scattering approaches are it fails-typically, by removing legitimate (i.e., non-
often inappropriate to the problem of identification dispersive) target structures from the filtered image.
of unknown targets because their complexity, which To help understand this, we will use a more 'complete'
is required for predictive accuracy, makes them com- target model which retains much of the 'fixed, point-
putationally unwieldy. scatterer' nature of p. This is accomplished by fixing

an effective phase-center to a single location on the
Below, we will examine an old and relatively simple target and describing the variations in p by includ-
model for duct and cavity scattering. We will demon- ing a dispersive phase term in the radar signal. In
strate how this model leads to a very simple interpre- this way, any position shifts 0 are accounted for by
tation of the first-order properties of radar scattering a general dispersion relation. With this modification,
from cavities and inlets while maintaining much of the equation (1) can be written
complexity seen in actual radar data. We begin by
establishing notation. Following this, we present the E (k)
weak modal expansion model and its consequences Mk p (xW) W(x' x") (2)
to image interpretation. This model characterizes an - i2kx'

inlet/cavity by a set of shape-dependent parameters × e- dx' dx",
and, in section 3, we present a simple method for ex-
tracting this information from complex radar images
and filtering-out their effects. Our approach is related k2
to recent dispersive-scatterer identification methods W(x1, x/1) S(x', k') ei(2k'x'-20 (x',k'))

[15-17] but is easily extended to target parameter Jk, (3)
identification and (may) prove useful in target recog- x ei2k'(xz-"T') dk',
nition problems.

S(x', kV) < 1 accounts for varying strength and the in-
2. A Modified Scattering Model. In a mono- terval (kl, k2) represents the data (bandwidth) limits.
static scattering situation (in which the transmitter Equations (2) and (3) demonstrate how the effects of
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complex scattering centers can be interpreted as be- where Jo(ý) is the Bessel function of the first kind,
ing due to a spatially varying point-spread function then we can write
W(x, x') acting on an object function consisting of
weak, isotropic, and frequency-independent scatterers
fixed at effective phase-center locations on the target. I (x) = d i x/ A '2k, 2

If we treat a target duct or cavity as a waveguide, then k2  (9)
the point-spread function (3) associated with termi- x dk V/1 (kcr/k)2 ei2k(z-")

nated waveguides of effective length L, with entrance lrnax(ki,k....)

located at xinlet (which we shall take as the phase cen-
ter associated with this structure), can be expressed
in a modal expansion by: Equation (9) is somewhat easier to interpret than

S(x, k) ei(2 kx-20(x'k)) (7): I,(x) is a convolution of J0 (2kc,mX/ - L2 ) and
M ~ ~k2 ik

1m Mx (4) f (ki,kc, ) 1 - (kcm/k)2 ei2kx dk. If we use the

-k S Sm(k) ei(2k-2I'm(•'k)) approximation
m=1

The phase term frm depends upon the so-called 'cut-.k2
off' frequencies wc,m = ckc,m which are labeled by V 1 - (kc,m/k) 2 ei2k(x-xz") dk
the mode indices m [18]. The cutoff frequencies also J max(k,k,,v) (10)
allow us to limit the terms in the modal sum to a Ak(1,,) sinc(Ak(I,•)(x - x") ei2k(',)(x-")

M = max{mlkc,m < k2 }. The weak-scatterer ap-
proximation yields

2kx + 2L k 2 - k. if _ = xinlet; where k(1,c) = (max(ki, kc,m) + k2 )/2 and Ak(1,,)

21m(X, k) = 'm k2 - max(ki, kc,m), then it is easy to see that the

2kx, otherwise. down-range effects of the inlet will appear as the func-

(5) tion Jo(x), shifted according to x --ý /x 2 - L 2 , di-
(This approximation neglects multiple scattering be- lated by x -- 2kc,mX, and 'blurred' by the function
tween the open and closed ends of the waveguide but sinc(Ak(1,,)x).
is otherwise known to be quite good [9].) If we assume The approximation (10) is discussed in [20, 21] where
that Sm is a slowly varying function of k (in compar- it is shown that when kcm < k, the approximation
ison to the phase term) then applying this result and is very good. When kc,m - k1 , the general effect is'inverting' (2) yieldsisvrgodWhnk,"kthgeraefcts

to scale the sinc(Ak(1,c)x) function by a factor a < 1
f ( while closely retaining its general shape. Since kc,m

(x) ]2 dx' p (x') typically increases with increasing m, this means that

M ]k2  higher modes will contribute proportionally less to

Sm I k- 1 ei 2 kx the image 13(x) and that modes for which kcm k,

LM= 1
k if X,= xinlet; (6) will be reduced by a • .5. In addition, the scale

xe i k2 ,,ý dk1 , factor Ak(,,) = k2 - max(ki, kc,m) means that when
e kc,m > kl the sinc(Ak(l,c)x) blurring function will

[sinc(Ak(x - x')) otherwise cause the associated image elements to be less sharply

X ei2k(x-x')] o wdefined.

where k = (k1 + k2)/2 and zAk = k2 - k1. 3. Modified Frequency-Domain Filtering. The

The image ý(x) can be understood in terms of the results of equations (9) and (10) imply that we should
object p(x) by examining the integral treat the model parameters L and {kc,m} within the

Jk2 context of the Bessel function approximation. More-

IM(Z) = W k-1 e- i2LN 
2 k e i2kx dk. (7) over, this model demonstrates why Fourier domain

Jk filtering will not be generally correct: the form of the
If we substitute [19] argument of J0(2kc,mv/x2 - L2 ) means that the fre-

quency components will be blurred and shifted un-

Si2L- 2 ik 2 - k2  der Fourier transformation. While it is possible to
CV m correct for this analytically, such a procedure wouldI O 2kc C,2 - e (8) introduce distortion in the non-dispersive scattering

,m elements. An alternate approach rejects the Fourier
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transform in favor of the Y,-transform which can be Fourier transform

employed to show that [19]

- 2K] Jo (2kc,m x
2 

-L
2) xnY-l (21rx) dx

= - (K0  K 2 if kc,m> r,

(-1)yo (2L9 2 0- kc,m if1 12 kc,m,194 1. 198

where Y (ý) is the Bessel function of the second kind
(of order v), K0 (ý) is the modified Bessel function of P transform
order 0, and n = 0,1,..., oo. Since Ko(ý) and -Yo(ý)
both rise sharply to oo as ý -+ 0, this result suggests
a method for isolating the parameters kc,m from the
image fi(x) - SL(X) Jo(2kc,m X2 

- L 2) where SL(X) .

denotes the unit step at x = L.

Define the transformation

189 190 192 194 196 198
7){p}(n) = rK ý(x)xnyl(2Kx) dx, (12) ,,m-'

Figure 2 Comparison between Fourier and P0 domain rep-

for n > 0. Then it is easy to see from equations resentations of a measured range profile (from the data used

(6-11) that Pn(K) will be sharply peaked when K = in figure 1). The imperfect match between these two repre-

r.<y the P-transform sentations means that filtering will affect the final (artifact-
kc,m, k •_ t _ k2 . (Conveniently, hemitigated) image in different ways.
of a point scatterer will have strength proportional
to Y1l(2rx) which, for large radar frequencies, will
generally be very small in comparison to IYo(e)[ and Figure 3 shows the scattered return from the wave-
IKo(e)I for c small.) guide when the frequency band was 12.16-13.26 GHz

and aspect angle 0 i 7r/6. Plotted is the magnitude
Figure 2 compares and contrasts the PO-transform of the Fourier transform of the scattered field data
with the Fourier transform. These data are time- (in dBsm with range increasing to the right). The
domain range profile measurements of the B272 used duct-related artifacts can be seen extending for many
to create the ISAR image displayed in figure 1. Note multiples of the length of the target. For test purposes
that while there is a rough correspondence between we introduced an additional artificial signal into the
the Fourier domain and the P0 representation, there measured data. This signal was generated (in the fre-
is not a one-to-one mapping and identical filters ap- quency domain) by simply adding the complex array
plied to each will generally be expected to lead to generated by 0.02 exp(i2kj * 10) and corresponds to
different results. a point scatterer located at x = 10 m with strength

The reciprocal transform to (12) is not quite as well less than that of the duct artifacts (so that it cannot

defined. It can be shown [22], however, that be seen in figure 3).

7-(0{f}(x) = f(K) H, (xr.) (xi)) 1/ 2 dn, (13) 0-

_F -20 - f]] ~ r

where H,(x) is the Struve function, obeys 7-H, Y, W -0
Y, 7-, I for functions in L 2(0, oo) when -1 < v <
0. C7-40-

4. Some Experimental Results. The simplest -60

illustration is based on anechoic chamber measure- y meters

ments of a truncated waveguide. We launched a (step-
ped-frequency) pulse at the open end of a terminated Figure 3 Intensity of the field scattered from an open ended
103 cm length of WR284 rectangular waveguide. waveguide terminated after 103 cm.
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The image artifacts in figure 3 are to be reduced by tual filter applied was identical to that applied in the
filtering in the Pa-transform domain. As part of our P2 transform domain used to generate figure 5. Note
initial investigation, we applied a simple truncation the significant differences in the resultant 'cleaned'
filter: {fPn(t) : IP,(')l > -r} -4 0 where T is a user images of figures 5 and 6. (Of course, this choice of
defined threshold. Figure 4 is the 'cleaned' recon- filter is almost certainly not optimal to both trans-
struction formed by inverting the filtered results with form domains and was chosen to illustrate the differ-
T = .3 x max{P21l}J,. Note that the point scatterer ent results.)
at x = 10 m is now clearly visible and that the duct-
related artifacts have indeed been reduced. 30-

-40 -30 -20 -10 0
image intensity, dB

0,

b0

_40- 20-

-60

0 10 20 30
y meters

Figure 4 'Cleaned' image corresponding to figure 3. To remove
the dispersion-induced artifacts, the filter {P7n() IP:n(K)I >
.3 x max{IP 21}.} -4 0 was applied in the P2 domain and the 10
result was inverted using the Struve transform.

-20 0 20A more tantalizing example is based on the ISAR im- cross-range, meters
age of figure 1. Applying the truncation filter (with
,r = .4 x max{IjP2(Q')I}) to the P 2-transform of each Figure 6 Fourier-based 'clean' version of figure 1.
of the down-range cuts in the right half of figure 1,
and inverting results in the filtered image shown in
figure 5. The example of figure 5 is intended to demonstrate

the applicability of this Ps,-transform based filtering
0- ..30 20 10 technique to ISAR images. Moreover, the example of

ime intensity, d figure 3 shows that the filtering method can be ap-
plied to HRR range profiles-at least when the target

4 is very simple. Range profiles of more complex tar-
S'•, -gets cannot be expected to display such promising

results, however, because the images are comprised of
cross-range integrated target components. (So that

20 the HRR image may consist of multiple ducts and cav-
ities that will all be 'lumped together' and it may be
difficult to select a phase center (origin) for the cal-
culation of equation (12).) Nevertheless, when the
target contains only one significant dispersive feature,
the method may be appropriate. Figure 7 shows the
(modest) 'improvement' that can occur in HRR pro-

Si files of aircraft targets. (Note, however, that without
10 - a clear baseline against which to compare this result,

the actual improvement may be illusory.)
-20 0 20

cross-range, meters 5. Discussion and Conclusion. The reader should

be cautioned against drawing too optimistic of conclu-sions from the results of figure 5 and a truly convinc-

ing test of the algorithm would be one which reduces
For comparison purposes, the data of figure 1 were artifacts while leaving underlying target images ele-
also filtered using Fourier domain methods. The ac- ments unaltered. For such a test to be performed, of
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course, such underlying image elements must be in- kind of spectral estimation does not require estima-
dependently established-as was done in the example tion of Xinlet or L. The down-side is that the mode
of figures 3 and 4. strength Sm associated with the kc,m depends on tar-

get aspect [18] and so the spectral peak strength (as
Because of the one-sided nature of the P 0•-transform opposed to spectral peak position) can significantly
(equation (12)), origin placement is important. Our affect correlation-based library search schemes. This
choice in all of these examples has been to place this idea is a current area of research.
origin at the 'mouth' of the re-entrant structure. This
choice presupposes that Zinlet can be determined from
the unmitigated image and this may not always be Acknowledgments. This work was supported by

possible. To a lesser extent, accurate representation the Office of Naval Research.
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Performance of a Target Identification Algorithm as a Function of the Discriminant Post-Processing Techniques
Utilized
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SUMMARY' template (or exemplar or model), and a computation rule

A target identification algorithm can be thought of as to generate scalar quantities (the discriminants) that

being comprised of a pre-processor, discriminant represent the goodness-of-fit of the signature to the

generator, and a post-processor. The pre-processor forms algorithm's stored information. The post-processor is a

and otherwise conditions the target signatures. The decision/declaration rule that utilizes the output

discriminant generator forms scalar quantities that discriminants to generate the overall algorithm's

represent the closeness-of-fit of each signature to the determination of the ID of the subject target and how that

target classes of interest. Finally, the post-processor ID should be reported.

utilizes those scalars to form a decision as to the target A number of different techniques for post-processing the
that the signature came from; i.e., the identity of the target discriminants from a template-based quadratic classifier
being examined. as applied to measured high-range-resolution (HRR)

In this paper, we start with a full set of discriminants profiles of air targets have been evaluated in an effort to

generated by a particular pre-processor and discriminant improve upon the target identification (ID) algorithm's

generator operating on high-range-resolution (HRR) overall ID performance. The ID performance measures
signatures of aircraft, and we perform various that are obtained by applying the techniques described inexperiments to determine the effect on algorithm this document are given relative to the performance of theperformance of applying various post-processing algorithm when it utilizes a particular 'baseline' post-

techniques. The overall target identification algorithm is processing technique.
described, numerous post-processing techniques are This document has several sections. The background
introduced, and their effects on performance are section, Section 2, generally describes : feature vectors,
tabulated. It is shown that optimal combined templates, objective ID performance metrics, and the
performance of these techniques does not necessarily computation of a quadratic metric. Section 3 describes
follow from combining the individual best-performing the baseline algorithm as well as the test feature vectors
techniques. That is, an optimal post-processing and the templates that were utilized throughout, and
architecture cannot be derived from a simple search of the Section 4 begins the analyses by describing and
diagonal of the multi-dimensional set of post-processing discussing two options available for restricting the
options. utilization of discriminants to only those that come from

Keywords: Target Identification, Performance specific template-related subsets. Section Five continues

Evaluation, Quadratic Classifier, Discriminant Post- the discussion of the analyses by describing specific post-

Processing, Radar, High Range Resolution processing methods employed with the specified subsets
of discriminants that we actually exercised and the ID

1. INTRODUCTION AND OVERVIEW performance derived from them individually and in

Target ID algorithms may be viewed as being comprised Section 6 we introduce the option of utilizing different

of three parts: the pre-processor, the discriminant decision thresholds for each target class and illustrate the

generator, and the post-processor. The pre-processor ID performance that can be obtained by combining a

forms and otherwise conditions signatures. in preparation number of the discussed post-processing techniques in a

for discriminant generation in the on-line algorithm, and single post-processing architecture. Finally, in Section 7,
includes the process of template (or exemplar or model) the results are summarized and conclusions are formed.

formation in the training phase of the algorithm
development effort. The discriminant generator is an on-
line engine that utilizes each incoming signature, stored 2. BACKGROUND

2.1. Feature vectors

'This work was supported in part by Air Force Research The feature vectors utilized in these experiments are
Laboratory Contract #F33615-94-C- 1439. simply vectorizations of radar HRR profiles of air targets,

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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where the vectors are indexed by range bin number. As depending on the accuracy with which the radar can
we do not attempt 'feature extraction' in the statistical estimate target pose angle. A comparison is simply the
pattern recognition sense, but rather utilize the entire application of the quadratic metric to a feature vector and
signature as the target representation, for the purposes of a template resulting in a single discriminant.
this paper, feature vector, signature, and HRR profile are After a comparison, the algorithm generally will make an
used interchangeably. internal decision as to the target type (or class) associated

2.2. Templates with the best discriminant. The "best" discriminant is the

A template is a statistical representation of a number of one that is closest to -oo. The best discriminant is then

feature vectors. It has two parts: the mean of the feature compared to a decision threshold. There may be a single

vectors and the standard deviation of the feature vectors. decision threshold that is utilized independent of the

The amplitude for a particular feature component of the target class selected -- the single-threshold configuration -
- or there may be a threshold chosen for each possiblem ean portion of the tem plate is form ed b y, averaging the t r e l s -t e m li l h e h l l oi hvalues of each feature vector at the feature component. target class -- the multiple threshold algorithm

The amplitude for a particular feature component of the configuration. In either case, if the discriminant is lesssThedamplitude fiat particula ofthetemlatu e omponent oft than the subject threshold, then the feature vector will be
standard deviation portion of the template is similarly associated with the identified target type. If not, the
calculated. feature vector will be identified with the "unknown
Radar feature vectors can be highly dependent on the target" designation. If the algorithm is to base its
orientation of the target (or pose) with respect to the declaration on a single one-look decision then the
sensor. Therefore, the feature vectors that are used to external decision and the one-look decision (or internal
form a template normally come from an appropriately decision) are one and the same.
sized angular sector around a specific target pose. This is
called the pose sector corresponding to the template.
2.3 The quadratic metric Multilook decisions are based on a number of internal

decisions and, therefore, a number of feature vectors. If
The quadratic metric, as used here, is a distance metric declarations are to be based on some fixed number of
that is used as a measure of the distance between a feature internal decisions (for example, N) then the target class
vector and a template. If a feature vector is represented declared by a multilook decision algorithm is the one that
by the vectors/ and the mean and standard deviation is declared more than some number M, M > N/2 times
portions of the template are represented by the vectors ui over N looks, (that is, over N feature vectors). This holds
and a'i, respectively, where i is an index to the feature for both the known taiget classes and the unknown class.
components and where there are K feature components, If none of the target classes are declared M times or more,
then the quadratic metric between the feature vector and then a "no decision" declaration is made.
template is given by the discriminant Notice that one-look decisions have two possible

k (si, -,P)2 outcomes: a declaration for one of the known target

D 2 + 2.OWn(ri,) (1) classes or a declaration for the unknown target. A

=i 'i multilook decision has an additional possibility: "no

2.4. One-look decisions and decision thresholds decision."

For the tests reported in this paper the declared identity of 2.6 Confusion matrices

a target is based on applying the quadratic metric to a A standard way for reporting the performance of a target
number of feature vectors from the target. For the classifier is via a confusion matrix. One possible format
"baseline" algorithm, the algorithm against which all for a confusion matrix is illustrated by Table 2 in Section
innovations are compared, an internal decision is made 4. The table has one row for each target type represented
each time a feature vector is processed by the algorithm, by the test feature vectors and a column for each target
After a specified number of internal decisions are made, type represented by the templates of the ID classifier.
they are processed to form a declaration. Declarations, The probability of correctly identifying a target is shown
also referred to as external decisions, are reported to the along the diagonal that starts at the upper left comer of
user of the ID algorithm, the matrix. For example, the probability of correctly

identifying target class 3 feature vectors is p3,3. Other
The classifier will normally utilize one item efra entries in the matrix indicate the probability of mis-
target of interest at each pose sector of interest. identifying feature vectors, of declaring the feature
Processing a feature vector entails comparing it to all or vetr"UKONoofmknnodcsn

to some subset of the templates used by the classifier, declarations. Two columns of the confusion matrix
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shown in Table 2 are the probability of decision, Pd, and classifier that results from the application of the various
the decision confidence, Pcof. For the feature vectors of post-processing techniques are given in terms of
any one class, the probability of decision is the percentage reduction in the errors in P cf tnuof

probability that the algorithm will make a declaration for p , P P
any of the known classes -- in this case, T1I through T 10. the baseline configuration of the classifier. These errors

This excludes the unknown target class and no decision will be denoted by EPd , EI~o,, and E Positive
declarations. The decision confidence for the target class values indicate a reduction in errors, negative values
of any one of the feature vectors indicates the probability indicate an increase in errors, and zero indicates no
of correct ID, given that a declaration for one of the change in errors when compared to the baseline. Thus,
known target classes has been made. EPI = 50\%, for example, indicates that the subject

2.7 Averaged performance measures innovation has resulted in moving Pd halfway up to

A confusion matrix may contain a good deal of 100% declaration from the Pd performance that the
information about the performance of a target classifier baseline algorithm achieved.
and offers a way to compare the performance of one ID
algorithm to another. Another way to compare the
performance of one algorithm to another is to compare
summaries of their confusion matricies. For this research, 3 DESCRIPTION OF THE BASELINE
three numbers are used to summarize performance: the 3.DSRITION EXPERIMENTALGORITHM AND EXPERIMENT
average probability of decision P, the average decisiond The baseline configuration of the classifier is the one to
confidence Fconi, and the average probability of which all other configurations of the classifier are

unknown target mis-identification P compared. This configuration uses a 4/7 decision logic,
compares each feature vector to all templates in the

Pd is an average of all D entries in the confusion matrix classifier, and uses a single, common pre-decision
that pertain to feature vectors from the known target threshold for all of the target classes.
classes. Likewise, P is an average of all Conf entries 3.1 The measured test feature vectors

in the confusion matrix that pertain to feature vectors The feature vectors used to test the classifier in its various
from the known target classes: S I through S 10. These configurations represent 14 different target classes: 10
two performance values are entirely independent of the from targets that are "known" to the classifier and four
presence of feature vectors from the "unknown" target from targets that are unknown to the classifier. All of the

classes: SI I through S 14. T, , the average probability of feature vectors were derived from radar data gathered by
unknown target mis-identification, is an average of all D a ground-based radar.
entries in the probability of decision column of the matrix Each feature vector has associated with it estimates of the
that pertain to feature vectors from the unknown target target's azimuth and elevation pose angles, which
classes, represent the orientation of the target at the time the

d P andP can be as an feature vector was obtained. The angular orientation of
' computed simply all targets can be expressed in terms of two angles of a

average over the target classes or as a weighted average, spherical coordinate system. They will be referred to as
where the contribution from each class is weighted by the azimuth and elevation angles and, by a specified
number of test feature vectors in that class. For reporting convention, they define the orientation of the target from
here, the former is used rather than the latter. the point-of-view of the sensor.

It is desirable for the algorithm to have 77d and P that The exact number of feature vectors used from each ofare as high as possible, and P as low as possible. A the 14 target classes are displayed in Table 1. There are a
- total of 56,574 feature vectors of which 53,074 are from

perfect score for an algorithm would thus be Pd = 100 among the known target classes and 3,500 are from the

%;P = 100%; Pr,, = 0%. Values for Pd or Po,,nf among the unknown classes.

that are less than 100% and for P, that are greater than
0% are considered to be errors. The performance of the
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Table 1. The distribution of the test feature vectors over the fourteen target classes.

Target Class Number of Feature Vectors Known to Classifier?

1 4480 YES

2 3808 YES
3 3248 YES

4 4368 YES

5 7000 YES

6 7000 YES
7 2639 YES

8 7000 YES
9 6531 YES

10 7000 YES
11 875 NO

12 875 NO

13 875 NO

14 875 NO

3.2 The templates 3.4. The baseline performance

The templates used by this classifier are based on The baseline performance is expressed in terms of a
measured radar information that was chosen as confusion matrix and is summarized by the performance
independent from the feature vectors used to test the parameter averages. Since the purpose of this paper is to
algorithm. Each template is formed by obtaining compare the performance of the different post-processing
statistics on feature vectors whose poses span some techniques, it is not important for the absolute
number of degrees in both azimuth and elevation. Each performance of the baseline to be reported here.
template, therefore, represents the target over some range Therefore, only the form of the baseline performance is
of orientations over which the target feature vectors given. Table 2 is used to represent the performance of the
maintain some degree of stability. quadratic classifier in its baseline configuration. Here,

For each target class known to the classifier, there are a feature vectors from a total of 14 target classes were

set of templates that represent the target over the range in classified by a ten-target classifier. There is one row for

azimuth and elevation of pose angles of interest. In this each of the 14 different target classes represented by the

implementation of the algorithm the templates for a given feature vectors and one column for each target class

target do not overlap. The experiments described herein represented by the templates of the classifier. There are
also five additional columns in the matrixes: one each forare conducted over 40 templates for each target. These the unknown target type, no decision declarations,

40 templates cover a rectangular region of pose space. t probabili t of decision decide and
-probability of decision, decision confidence, and

probability of mis-identification.

3.3. The discriminants

The baseline classifier processes each feature vector the
same way: it determines the quadratic metric between the
feature vector and each of the 400 templates employed by
the classifier -- 40 for each often target classes. Each
comparison results in a discriminant, therefore, for each
test feature vector processed by the classifier there will be
a set of 400 discriminants. The discriminants may be
stored along with other descriptive information, such as
the radar's target orientation estimate and, for
performance scoring, the target's identity.



15-5

Table 2. An example of a confusion matrix. The symbols in place represent performance in terms of percentage.

Average Pd Pd ; Average Conf =Pony ; Average MU = P

S T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 UNK ND P, Pconf MIS-ID
I1 p11 p1,2 p1,3 pl,4 p1,5 p1,6 p1,7 p1,8 p1,9 p1,10 Ui NDi Di ConA MIDi
2 A2,1 p2,2 p2,3 p2,4 p2,5 p2,6 p2,7 p2,8 ,2,9 p2,10 U2 ND2 D2 Conk MID2
3 p3,1 p3,2 p3,3 p3,4 p3,5 p3,6 p3,7 p3,8 p3,9 P3,10 U3 ND3 D3 Con, MIDi
4 p1,1 p4,2 p4,3 p4,4 p4,5 p4,6 p4,7 p4,8 p4,9 p4,10 U4 ND4 D4 ConA MID4

5 p5,1 p5,2 p5,3 p5,4 ,0,5 p5,6 p3,7 p3,8 p0,9 p5,10 U5 NDs D5 Conk MID5
6 p63,1 p6,2 p3,3 16,4 p6,5 p6,6 p6,7 p6,8 p4,9 p6,10 U6 ND6 D6 Con4 MID6
7 p7,1 p7,2 p7,3 p7,4 p7,5 p7,6 p7,7 p7,8 p7 ,9  p7,10 U7 ND7 D7 Con, MID7
8 p3,1 p3,2 p3,3 p3,4 p3,5 p3,6 p3,7 p3,8 p3,9 p3,10 U8 NDa Da ConA MID8
9 A9,1 42,2 A9,3 42,4 19,5 42,6 09,7 p9,8 p9,9 42,10 U9 ND9 D9 .Con, MID9

10 p10,1 p10,2 p10,3 p10,4 p10,5 ,p10,6 p10,7 p10,8 p10,9 p10,10 Uio NDio Di Con/o MIDio
II p11,1 p11,2 p11,3 1p11,4 p11,5 p,11,6 p11,7 p11,8 p11,9 p11,10 UliI NDii Dii ConI MUii
12 p12,1 p.12,2 p12,3 p12,4 p12,5 p12,6 p12,7 p12,8 p,12,9 p12,10 U12 ND12 D12 Con02 MU12
13 p13,1 p13,2 p13,3 p13,4 p13,5 p13,6 p13,7 p13,8 p13,9 P13,10 U13 ND13 M13 C00n3 MU13
14 p,14,1 p14,2 p14,3 p14,4 p14,5 p14,6 p14,7 p14,8 p14,9 p14,10 U14 ND14 D01 ConA 4 MUi4

4. DESCRIPTION OF TEMPLATE-RELATED vector-template match is determined. For the purpose of
OPTIONS brevity, let us say that a template activates or is activated

In developing a template-based ID algorithm, it is when it most closely matches a feature vector.

incumbent upon the designer to create templates that best When a template is activated, a register assigned to the
represent the targets of interest over the pose angles of template is incremented by 1 to keep track of the number
interest. Once that is accomplished, there still remain of times the template has activated during a test.
options as to how the constellation of templates will be Similarly, another register keeps track of the number of
utilized in the algorithm, times the template has activated correctly. A template is

4.1. Template utility analysis said to activate correctly when the target class associated
with the template is the same as the target class associated

While it is incumbent on the designer to create the full with the feature vector that caused the template to
template representation of each target over all poses, it is activate.
not necessarily incumbent upon him to utilize all these
templates in his algorithm. Whether based on measured The performance of each template may be measured by
or modeled data, it is possible that specific templates for first passing the test feature vectors from the ten known
specific targets at specific pose angles are simply bad. If target classes through the classifier, then by comparing
one has the luxury to go back in the process and improve the number of correct activations to the total number of
these poorly performing templates, then one should activations. The ratio of these two numbers for each
certainly do so. However, if one cannot go that far back template can be used to determine which templates are
into the process, there is another alternative, most useful and which are under performing.

4.1.1. Individual template performance 4.1.2. The elimination of low-performing templates

An analysis of the individual performance of each Templates that incorrectly activate most of the time
template was conducted to determine their quality and attract feature vectors from the "wrong" target classes
perhaps to help to focus efforts on performance most of the time. It may, therefore, be possible to
improvement which might involve improving feature increase overall algorithm performance by improving
vector formation, improving template formation, or these specific templates or simply by eliminating these
algorithm issues. To form this analysis the 400 templates from the algorithm entirely.
discriminants from each feature vector of the known
target classes were processed in a single-look manner. In our experiments, the average performance of the
Among these discriminants, one from each of the 400 algorithm in terms of the percentage reduction of error in
templates, the one corresponding to the best feature the Pd, P'onf, and Pro. of the baseline case that is
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obtained by eliminating all templates that have a correct These template restrictions have been applied to the
activation rating of less than some specified percentage baseline test with the results summarized by the

are as follows: EPd = 0.52%, EPIonf = 2.83%, performance parameters shown in Table 3. For these

and EP = 0.0%. tests, the pre-decision threshold was adjusted so that Pd
matched that of the baseline test.

As can be seen, the elimination of the lower performing These results show that by reducing the search to a 3X3
templates had the affect of reducing, although slightly, p b
the error of the average probability of decision and, a bit pattern both co,, and ]',, errors are significantly

more significantly, the error in the average decision reduced. Using the lXI search pattern to further reduce

confidence. The error in J7 was not changed. One the search for best feature vector-template matches

would conclude that such an approach, while slightly slightly reduces u the error but at the cost of slightly

improving performance, does not significantly improve increasing P error. For this particular data set, thecon!f
the algorithm's overall performance. best choice seems clearly to be a 3X3 search.

4.2. Sector search restriction Table 3. Reduction of average performance errors
relative to the baseline case.

The baseline configuration of the post-processor
compares each feature vector to all templates used by the Template EP EPcof EP
classifier. However, the post processor has the capability Search

of using the aspect angle information associated with Restriction

each feature vector to limit feature vector-template 3x3 0.0 35.19 37.04
comparisons to just those templates that match the IxI 0.0 -5.93 7.41
estimated angle associated with the test feature vector or,
to perhaps, neighboring templates. Limiting the number
of templates in this way will reduce the number of 5. DESCRIPTION OF DISCRIMINANT-RELATED
calculations required by the classifier and, perhaps, will OPTIONS
reduce the number of opportunities that the classifier has 5.1. Introduction
to mis-identify a feature vector. The "best" selection for
this parameter for a given application will be a function Once the pre-processing, discriminant generation, and

of the accuracy of the pose estimate the sensor can pose-angle search strategies have been established, then
supply. decision logics must be considered. Herein we take the

maximum number of looks available for a given decision
to be 7, as dictated by the sensor mode that generated the

Recall that exactly 40 templates for each target class are data. We thus have options as to the type of logic and
required to cover the pose angle range of interest. The computations we implement to best utilize up to 7 HRR
post processor algorithm used to process discriminants profiles per decision.
was set up to process three different pose searches for
discriminants: ALL, 3X3 and IXI. For the baseline test,
the "ALL" search pattern was employed: that is, each The M!N = 4/7 decision logic was used to establish the
feature vector was compared to all of the templates of the baseline performance. This logic can be made more
classifier, and this corresponds to the assumption that the stringent by using 5/7 or 6/7. These more stringent
pose angle estimate supplied by the radar is too coarse to decision logics were applied to the baseline test to
discern poses within the pose region of interest, determine their effect on performance.

When the I XI search pattern is applied to a test feature For these tests, the single pre-decision threshold was
vector, the feature vector is compared to just the single adjusted so that the average probability of decision
templates from each target class that covers the reported matched that of the baseline test whenever possible. The
pose of the test feature vector. When the 3X3 search results of these tests are summarized by Table 4.
pattern is used each feature vector is compared to the In going from the 4/7 decision logic used by the baseline
single templates from each target class that cover the
reported pose of the test feature vector and all of the to the 5/7 decision logic, P o,,f error has been cut

immediately neighboring templates. This forms a 3X3 approximately in half with no change to either 7d or
configuration of templates. I . This, clearly, performs better than the baseline.
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Use of the 6/7 decision logic, on the other hand, baseline case and the post-decision threshold was chosen

significantly decreased P,, error but increased both the to yield average probability of decisions that is as close to
that of the baseline as possible. Results of these tests are

Pd error and the P.. error. Of these choices for this reported in Table 5. The performance of all three of these
application, it is clear that the 5/7 decision logic is best, as cases are inferior to the baseline case.

it induces no change in Pd and Pumiss-id while closing 5.4. Discriminant integration
the gap between P and 100% by almost half, 47.4 1%. Another method for processing discriminants is to locate

the best one or more discriminants for each feature vector
Table 4. Reduction of average performance errors

relative to the baseline case for the cases where 5/7 and and from each of the target classes associated with the

6/7 decisions logics are used along with a single pre- templates and to determine the difference between those

decision threshold. discriminants and the pre-decision threshold. The
differences are formulated so that the better a feature

M/N Decision EPd EPoy EP.. vector matches a template the more positive the
Logic difference will be. A register is maintained for all of the

5/7 0.0 47.41 0.0 target classes represented by the templates of the
classifier and the unknown class. Each time a difference

6/7 -29.99 70.37 -395.19 is calculated (there will be one for each target class
represented by the templates) it is added to the
appropriate register. In addition, the best of the

5.3. Decision scoring differences is added to the register for the unknown class.

Another variation on the 4/7 decision logic test is to use If the largest of the sums corresponds to one of the known
not just the best matching discriminant from each feature target classes then that class will be declared. If the
vector-template comparison but the best two, three or preceding is not the case then if the sum corresponding to
four discriminants. For this study this variation has been the "Unknown class" is less than 0.0 the unknown class is
explored, declared. Otherwise the "no decision" declaration is

This technique utilizes one score for each target class made.

represented by the templates and one for the unknown The discriminant integration technique using the best one
class. Initially the score assigned to each of these classes through four discriminants per feature vector has been
is 0. The value of 1 is added to the target class associated applied to the baseline case. In all of these cases the pre-
with the template providing the best match with a test decision threshold used is the same as that used for the
feature vector. A score of 0.5, 0.25, and 0.125, baseline case and the post-decision threshold was chosen
respectively, are added to the target classes associated to yield average probability of decisions that is as close to
with the templates giving the second, third and fourth best that of the baseline as possible.
matches. In all cases, whenever any of the discriminants A summary of the average performance measures from
are above the pre-decision thresholds they are compared single pre-decision scoring tests and from the
to, the appropriate score is added to the unknown target discriminant integration tests is given in Table 5. In all
class. After the scores for a number of feature vectors
have been accumulated the largest of the scores is four cases the error in P,. has been greatly increased
compared to a post-decision threshold. If the score is with either very little reduction or significant increases in
above the post-decision threshold then the declaration P. In this case, one would likely conclude that the
will be for the associated target class; otherwise, a "no ne a

decision" declaration is made. baseline algorithm is superior to any of the variations
investigated.

The decision scoring technique using the best two
through four discriminants per feature vector has been
applied to the baseline case. In all of these cases the pre-
decision threshold used is the same as that used for the
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Table 5. The reduction in average performance errors relative to the baseline case for the cases where the single pre-
decision threshold, scoring, and discriminant integration tests using one, two, three and four discriminants per feature
vector are used.

Decision Number of EP
Method Discriminants EPd EPco,,nf EP,,,

Scoring 2 -0.15 2.22 -14.81

Scoring 3 -1.93 -2.22 -11.11

Scoring 4 -0.45 -18.15 -37.04

Disc. Intg. 1 0.30 4.07 -18.52

Disc. Intg. 2 0.22 -5.93 -25.93

Disc. Intg. 3 0.22 -14.81 -29.63

Disc. Intg. 4 0.15 -22.96 -29.63

6. COMBINED TECHNIQUES confidence error by 16.67% and the error rate in the mis-

In the preceding section the alternate post-processing identification of unknowns by 44.44%.

techniques were applied one at a time. In this section 6.2 Multiple pre-decision thresholds and template
some combinations of these techniques have been applied elimination
and the results discussed. In all cases, whenever possible, The baseline results are compared to the result of using
the post-decision threshold was adjusted so that the the scoring decision method and the discriminant

performance parameter Pd of these tests match as nearly integration method when eliminating poorly performing

as possible that of the baseline case. templates and utilizing multiple pre-decision thresholds.
6.1. Multiple pre-decision thresholds For the scoring decision technique, tests using the best

two through the best four discriminants for each test
The baseline results are compared to the result of using feature vector have been performed. For the discriminant
the scoring decision technique and the discriminant integration tests the best one through four discriminants
integration technique with multiple pre-decision for each test feature vector and for each of the classifier's
thresholds. For the scoring decision method the best two ten target classes have been performed. The performance
through best four discriminants are used for each test of each template was analyzed and all templates that
feature vector. For the soft integration method the best activated correctly 40 percent of the time or less were
one through four best discriminants are used for each test excluded from the process.
feature vector and for each of ten target classes The results of all of these tests are summarized by Table
represented by the classifier's templates. 7. In comparing the baseline performance to the other it

The results of all of these tests are summarized by Table is clear that the baseline test, the test that uses a single
6. In comparing the baseline performance to the others it pre-decision threshold for all ten target classes, is inferior
is clear that the baseline test, the test that uses a single to the multiple predecision threshold tests. These results
pre-decision threshold for all ten target classes, is inferior show that the addition of template elimination to this
to the multiple pre-decision threshold tests. These results configuration of the algorithm seems to provide a perhaps
show that there is some potential merit to using multiple insignificant improvement to the two-discriminant and
pre-decision thresholds in conjunction with other three-discriminant decision integration options, similar to
techniques. For example, by combining multiple its affect on the 4/7 logic case.
thresholds with three-discriminant integration, we are
able to hold the declaration rate while reducing
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Table 6. The reduction in average performance errors relative to the baseline case for the cases that use multiple pre-
decision thresholds: three of the tests used the scoring technique and four used discriminant integration.

Decision Number of EP~- EP
Method Discriminants ,,U

Scoring 2 -3.05 25.99 33.33

Scoring 3 -2.01 18.15 51.85

Scoring 4 -8.18 20.74 51.85

Disc. Intg. 1 -0.22 0.00 40.74

Disc. Intg. 2 -0.22 10.74 51.85

Disc. Intg. 3 0.00 16.67 44.44

Disc. Intg. 4 0.15 8.89 44.44

Table 7. The reduction in average performance errors relative to the baseline case for the cases where the multiple pre-
decision thresholds and template elimination are used.

Decision Number of EP. E
Method Discriminants d Eo,! EP,.

Scoring 2 -6.10 51.11 33.33

Scoring 3 -2.08 28.52 51.85

Scoring 4 -8.93 34.44 51.85

Disc. Intg. 1 -0.37 6.30 44.44

Disc. Intg. 2 0.15 13.33 51.85

Disc. Intg. 3 0.67 15.93 44.44

Disc. Intg. 4 -0.37 14.07 44.44

6.3. Single threshold and 3X3 search 6.4. Multiple thresholds, 3X3 search and template
The baseline results are compared to the results from the elimination
scoring decision method and the discriminant integration The baseline results are compared to the results of the
techniques utilizing a 3X3 search. For the scoring scoring decision technique and the discriminant
decision technique the best 2 through best 4 discriminants integration technique. For the scoring decision technique
are utilized for each test feature vector. For the tests using the best two through four discriminants for
discriminant integration method the best one through each feature vector have been performed. For the
three discriminants per feature vector and for each target discriminant integration technique tests for the best one
class of the classifier are used. In all cases the same pre- and two discriminants (for each test feature vector and for
decision threshold is used for all ten target classes, each target class of the classifier), were performed. All

The result of these tests are given in Table 8. In templates with a performance of some specified
comparing the baseline performance to the other tests in percentage or below are eliminated and search is
this group it is clear that the baseline test was restricted to a 3X3 set of sectors.
outperformed by the discriminant integration tests where The result of these tests are given in Table 9 below.
the best one and two discriminants are used. Further Among the tests in this group it is clear that the decision
analysis would be performed to determine how the 3- integration techniques listed give results that are superior
discriminant integration test listed compares to the to the baseline and to all variations considered to this
baseline case for the requirement of the particular point. The scoring methods, however, for most

application. The loss in P would likely be considered applications would be considered inferior.
prohibitive for most applications.
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Table 8. The reduction in average performance errors relative to the baseline for cases utilizing the single pre-decision
thresholds, the 3X3 search pattern, and either scoring or discriminant integration.

Decision Number of
Method Discriminants Ci C, n E

Scoring 2 -28.05 24.44 37.04

Scoring 3 -44.49 28.52 44.44

Scoring 4 -52.01 28.89 51.85

Disc. Intg. 1 0.15 32.59 29.63

Disc. Intg. 2 0.07 29.26 14.81

Disc. Intg. 3 0.15 20.37 -11.11

Table 9. The reduction in average performance errors relative to the baseline for cases utilizing multiple pre-decision
thresholds, the 3X3 search pattern, and the elimination of all templates performing under 40%.

Decision Number of EP
Method Discriminants d EE

Scoring 2 -51.49 71.85 88.89

Scoring 3 -71.80 75.93 88.89

Scoring 4 -84.15 76.30 88.89

Disc. Intg. 1 -0.30 50.00 74.04

Disc. Intg. 2 0.22 50.37 59.26

7. SUMMARY AND CONCLUSIONS The conclusion is a cautionary one. In the overall
algorithm development process, it has long been

A number of tests have been performed by post- recognized that the dimensionality of parameter and
processing the outputs of a quadratic HRR air-target techniques that one can employ in even a simple
algorithm in an effort to improve upon its overall ID algorithmic structure is much too large for one to
performance. The results of one of the techniques, taken exhaustively test all combinations to find an optimum
as a baseline case, was used as a reference to which all of configuration. As a result, we often evaluate a single
the other techniques were compared by providing percent parameter or technique at a time. The sequence of
change in identification performance. experiments reported herein shows that not only can one

For the data used it is clear that the single modification to not presume to find an optimal solution for the overall

the baseline that offered the most significant increase in target ID algorithm instantiation by 'searching the

performance is the use of 5/7 vice 4/7 decision logic, diagonal,' but that 'searching the diagonal' does not

However, among all of the modifications to the baseline suffice even for the restricted case of finding an optimal

reported here, the combination of techniques that offered post-processing algorithm.

the most significant increase in performance over the
baseline was the one employing multiple pre-decision
thresholds, a 3X3 template search pattern, template
elimination and discriminant integration.
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Applications of the whole data set or simply choosing an arbitrary subset of

Unsupervised Clustering Algorithms the data points as a basis set, one can use clustering tech-
A tn niques to find a basis set which more accurately represents

to Aircraft Identification Using the distribution of the data points. We can find these basis

High Range Resolution Radar sets, by finding the cluster centers which are the mean data
points that can best represent all members of a single clus-
ter. By finding the mean data point of each cluster, we can

Dzung 'Tri Pham create templates that can reduce the amount of data that
need to be stored with minimum loss of information. These

US Air Force Research Laboratory (AFRL/SNZ) templates are then used in a template matching algorithm.

Wright Patterson AFB B. Problem Statement
Dayton, OH 45433-7318 This paper investigates the use of clustering techniques

U.S.A. to enhance NCTI algorithm performance with synthetic
database range profiles and to reduce the total number of
required templates per class that must be stored in the
database. By evaluating the "natural" signature clusters

Abstracti- in the synthetic database we will eliminate redundancy be-
Identification of aircraft from high range resolution (HRR) tween individual signatures. We will also increase the ac-
radar range profiles requires a database of information cap- curacy in constructing signature templates by grouping like
turing the variability of the individual range profiles as a signatures during template construction. This promises im-
function of viewing aspect. This database can be a col- proved performance in template matching algorithms.
lection of individual signatures or a collection of average
signatures distributed over the region of viewing aspect C. Scope and Approach
of interest. An efficient database is one which captures Computer-synthesized range profiles of three aircraft, gen-
the intrinsic variability of the HRR signatures without ei- erated at 1 degree increments in a 31X36 degrees aspect an-
ther excessive redundancy (over-characterization) typical of gle window of interest (a total of 1116 signature profiles per
single-signature databases or without the loss of information aircraft) will be used as training data to create templates us-
(under-characterization) common when averaging arbitrary ing several clustering techniques. These templates will then
groups of signatures. be used in template matching algorithms and tested using
The identification of "natural" clustering of similar HRR ground-to-air measured data on the same three classes of
signatures provides a means for creating efficient databases aircraft (over 15,000 signatures total). By the use of cluster-
of either individual signatures or of signature templates. Us- ing techniques to create templates, this paper analyzes the
ing a k-means and the Kohonen self-organizing feature net, ability to improve classification performance and the abil-
we identify the natural clustering of the HRR radar range ity to reduce the number of templates required to maintain
profiles into groups of similar signatures based on the match baseline performance.
quality metric (Euclidean distance) used within a Vector The approach taken in this investigation is composed of two
Quantizer (VQ) classification algorithm. This greatly re- steps. The first step is to implement a batch K-means al-
duces the redundancy in such databases while retaining clas- gorithm and the Kohonen clustering algorithm described
sification performance. by Rogers, et al. [7]. The second step is to apply these
Such clusters can be useful in template-based algorithms techniques to the HRR problem to determine if classifica-
where groups of signatures are averaged to produce a tem- tion performance can be increased and to determine if the
plate. Instead of basing the group of signatures to be aver- amount of data stored can be reduced while maintaining
aged on arbitrary regions of viewing aspect, the averages are equivalent performance levels.
taken over the signatures contained in the natural clusters
which have been identified. II. THEORY AND METHODOLOGY
The benefits of applying natural cluster identification to A Overall Methodology and System
individual-sigifature HRR data preparation are decreased
algorithm memory and computational requirements with a This section presents the details of the system that was im-
consequent decrease in the time required to perform iden- plemented to accomplish our investigation. First, we discuss
tification calculations. When applied to template databases the general approach followed in the batch k-means cluster-
the benefits are improved identification performance. ing algorithm with variations in the ways of initializing the
This paper describes the techniques used for identifying algorithm. Next, we will describe the implementation of
HRR signature clusters and describes the statistical prop- the general approach of the Kohonen Self-Organizing Fea-
erties of such clusters. tures Maps (SOFM) algorithm. Finally, we will detail how
Keywords: Automatic target recognition (ATR), Non- to implement a Vector Quantizer (VQ) as our classifier using
cooperative target recognition (NCTI), Combat Identifica- codebooks generated from our two clustering techniques. A
tion, High range resolution (HRR) radar, Clustering, K- flow chart of how to build the codebooks and to implement a
means, Kohonen, and Pattern Recognition VQ procedure is given in Figure 1. In the following sections

we will go into the details of the different parts that will go
I. INTRODUCTION into our system.

A. Background B. Clustering Techniques

Clustering analysis is one of the basic tools for identifying Clustering algorithms attempt to find the underlying rela-
structure in data. Clustering tries to partition objects in N tionship of input patterns using the assumption that inputs
disjointed subsets using some sort of similarity metric. That of the same class will naturally cluster together. How effec-
is, if we had M objects, where M > N, we want to partition tively the algorithm clusters depends greatly on the similar-
this set of M objects into N subsets. Where the members ity measures used. Ideally, when the algorithm is effective,
of each N subsets are said to belong to the same cluster and we achieve an optimal number of clusters that have samples
are more similar to each other than to members of different that are similar to each other based on our similarity met-
subsets or clusters. The objective is to automatically search ric, with small variance. Each cluster is represented by a
a database containing a large number of different objects and single point called a cluster center or codeword. A full set
to group them into subsets of similar objects called clusters, of codewords is known as a codebook. This codebook, once
The ability to form such clusters has a number of applica- created, can be used to classify new samples by comparing
tions in target recognition. Rather than just simply using the input sample to each codeword. The codeword most

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",

held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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Sz5. Compute codebook membership by determining the
closest codebook vector for each data point.

6. Update the location of each codebook vector to the
centroid of all the data points that are members of each

Mg.- codebook vector's domain. Go to Step 2.
7. The algorithm has converged and the procedure is ter-

minated.
Figure 2 is the basic flow diagram for the general approach
taken for the k-means algorithm.

Voctor'

Fig. 1. Flow chart of how to build a codebook and to implement a Fig. 2. Flow chart of k-mean algorithm
VQ

A major limitation of k-means clustering is the location of
final codebook vectors may be influenced by how we set

similar to the input, by use of the similarity metric, is the the initial positions of the codebook vectors and the or-
class where the input belongs [7]. der of presentation of the training samples, which will ul-

In the following subsections, two well known unsupervised timately belong to different codebook vectors. The proper
learning algorithms will be introduced. The two algorithms choice of codebook initialization scheme is key in avoiding
are k-means and Kohonen's self organizing maps algorithm, this problem. A variety of codebook initialization schemes

have been developed in hope of providing accelerated con-
B.1. K-Means Algorithm. Linde, Buzo, and Gray [5] describe vergence, achieving better clusters that more accurately
the General Lloyd Algorithm used to design a vector quan- represent the distribution of the data points, and provide
tizer. The General Lloyd Algorithm is often referred to as the flexibility in the number of cluster centers needed to
the LBG Algorithm and when the distance function is cho- represent the data. Linde, et al. [5] suggests a splitting
sen to be Euclidean, the algorithm is known as the k-means method (LBG algorithm), whereby the k-means algorithm
algorithm. The k-means algorithm attempts to minimize is applied at each power of two (giving codebook sizes of 1,
the euclidean distance from all members in a codebook vec- 2, 4, 8, ... ). Katsavounidis, et al. [3] proposed a maxi-min
tor to that of the input vector. This minimization is done method, where the cluster centers are placed so that they
through an iterative method which terminates when an av- are maximumly separated. This method is based on the idea
erage distortion metric stabilizes [8]. that widely separated data points are likely members of dif-
Specifically, the k-means algorithm starts with choosing the ferent classes. While recently, DeSimio, et al. [2] proposed
number of cluster centers k that will represent the distri- a Karhunen-Loeve initialization (KLI) scheme, whereby the
bution. The algorithm then involves the following simple cluster centers are placed along the principal component
iterative method: Assume we are given that there are N axis of the training data's covariance matrix. For this pa-
data samples x", and we wish to find a set of k clusters per we will limit our study to the latter two techniques, the
representative vector uj where j = 1,...,k. The algorithm maxi-min and the KLI.
tries to cluster the data samples x? into k disjoint subsets
Sj containing Nj data samples, where each subset represents B.2. Kohonen's Self-Organizing Maps Algorithm. One of the

a cluster. The attempt is to make the samples in the same most obvious characteristics of the human brain's operation,
cluster be somehow more similar than samples in different and one of the most central problems in information sciences

clusters. One way to make this into a well defined problem is the economic representation of data with all their interre-

is to select a criterion function that measures the cluster- lationships. In the subconscious information processing and
ing quality of any data partition. The most widely used in thinking there is a general tendency to compress informa-
criterion function for clustering is the sum-of-squared-error tion by forming reduced representations of the most relevant
criterion given by [1] facts, without the loss of knowledge about their interrela-

tionships. In this self-organizing process, we are aiming at

K mappings that will transform a signal pattern of arbitrary
x-' s-• 2dimensionality onto a one- or two-dimensional array [4].

J . 2..1 xI - uj II (1) The Kohonen self-organizing features map, an unsupervised
j=1 nES. learning algorithm, will serve as an example of the self-

organizing process. Since this is an unsupervised algorithm,
where uj is the mean of the data sample in set Sj and is the data is unlabeled. We will base our treatment of Ko-
given by honen self-organizing feature maps on a similar outline as

1 E found in Rogers, et al. [7]. The Kohonen network is shown
ui = N- 2.. (2) in Figure 3.

nýESj Before we continue our development, it is assumed that the
reader has a basic understanding of artificial neural net-

The following are the steps in the k-means algorithm [8]: works. For the reader that has never encountered neural
1. Select a stopping criterion which is defined as an ac- networks before or for a review of the topic, the reader is

ceptable level of total Euclidean distance. referred to Lippmann [6] or Rogers and Kabrisky [7].
2. Choose the number of codebook vectors k. Some basic characteristics of the Kohonen net is that it is
3. Using some initialization technique, select the initial feed-forward only and consists of an input layer and usually,

locations for the k codebook vectors. It is acceptable a two-dimensional output or clustering layer. It mathemat-
to use the location of k samples randomly selected from ically transforms multidimensional input data vectors and
the design set as the randomly selected initial locations, maps it to the output vectors. The distribution of the out-

4. Calculate the Euclidean distance between each data put nodes is spread according to the pdf of the input data.
point and each codebook vector. If the total Euclidean If it is properly trained the nodes of the Kohonen output
distance is less than the stopping criterion, go to Step layer that are spatially close are sensitive to similar inputs.
7. The similarity measure of the input is determined by the
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relevant facts without loss of knowledge about their inter-
relationships. The hope is that the projection onto the two
dimensional space retains the interrelationships of what is
close in the higher dimensional space. Sorry to say, but this
projection is not unique and the multi-dimensional data rep-

Output resentation may be too restrictive of a view. Roger, et al.
propose a good analogy of this problem. They refer to it

Nodes as the flattened-fauna analogy [7]. Suppose we came upon a
once three dimensional animal that has been flattened along/the road side. The projection of the three dimensional ani-
mal onto the two dimensional roadway is dependent on the
position of the animal when it was flattened. You would
hope that the foot and ankle would be close together on
the flattened version and we could keep their basic physical
interrelationships. Unfortunately, too often the ear of the
creature, which is not close in physical relationship to the

X0 Xi XN-1 ankle, may end up next to the ankle in the two dimensional
Input representation. This problem gets worse as the dimension-

ality of the original space increases. This implies that the
order in which the input vectors are presented to the algo-

Fig..3. Two-dimensional array of output nodes used to form fea- rithm will determine the resulting end projection. Similarly
ture maps. Every input is connected to every output node via a Rogers, et al. have found that the result of the Kohonen
variable connection weight. learning algorithm will be different for different initial ran-

dom weights.
But things are seldom as confused as they are depicted by

similarity metric used during the training phase and weight the flattened-fauna analogy. The actual Kohonen weights
adjustments. A heuristic for a well trained Kohonen net is are of the same dimensionality of the input data. Therefore,
that every output node has an equal opportunity of winning it is only when the weights are projected onto the Kohonen
or firing. The winning node is the one whose weights are layer that the distortion of the high-dimensional distances
closest or most similar to that of the unlabeled input, occurs.
The following are the steps in the Kohonen net [7]:

1. Select a learning rate of the Kohonen map for the stop- C. Classifier
ping criterion. For example, the learning rate will be The classifier we chose to use is a Vector Quantizer (VQ).
small if the distortion measure of the total map changes In this section we will describe the actual implementation
little between epoch/trial, of a VQ for classification. The following are the steps to

2. Choose the dimension of the output layer (m x n). implement our VQ classifier:
3. Initialize the weights to small random value and the 1. Assume we have M classes. Create a codebook for each

neighborhood size. The weight can be initialized by class CB 1 ,...,CBM.
using a uniform distribution from -0.5 to +0.5 'or a po- 2. For each input vector, xi, compare each of its features
tentially better method is to initialize to training ex- with each codeword's features and find the distance
emplars. metric dmin for all codewords in all codebooks. For in-

4. Select both the learning rate by which to adjust the stance, if we had a c dimensional input vector, we would
winning codebook vector and the codebook vector's have c distance metrics for each codeword comparison.
neighbors (these can be the same). 3. Accumulate or sum all the distance metrics for each

5. Randomly select a normalized input vector and com- codeword to compute the total distortion, Di.
pute the distance to each codebook vector. The clos- 4. Choose the codeword with the minimum value of total
est codebook vector to the input vector is the winning distortion, Di. The class j* that owns the codebook
node. with the winning codeword is declared as the class for

6. Conscience (this is an optional step). Check to make that input vector. The VQ then outputs the winning
sure the winning node has not already won its share of codeword and associated minimum total distortion.
input vectors for this epoch through the data. If it has, These steps are illustrated in Figure 5. This approach has
pick the node with the second closest codebook vector been applied to the Speaker Identification problem with
to the input vector. very good results. P(error) ;z 2% for 20 speakers using Mel-

7. Using the learning rate, update the codebook vector of Frequency Cepstral Coefficient (MFCC) as features.
the winning node, moving it closer to the input vector.
Similarly, update the nodes of the neighbors using the
learning rate selected for neighborhood updates. CB d-,

8. Repeat Steps 5 through 7 for all input vectors.
9. Change the learning rates and/or change the neighbor-

hood size and run another epoch. Once the weights of
networks are not changing significantly go to Step 10. D-

10. The algorithm has converged and the procedure is
terminated.

Figure 4 is the basic flow diagram for the general approach _

taken for the Kohonen algorithm.

TW poer Wuac ThJql Codebook Fig. 5. Flow Chart of the VQ
M ng Vectors

Fig. 4. Flow chart of Kohonen process III. EXPERIMENTS AND RESULTS

Identification of aircraft from HRR radar range profiles re-
One problem commonly noted with the Kohonen algorithm quires a database of information capturing the variabilities
is that it represents a compression of multidimensional data of the individual range profiles as a function of viewing as-
to just one or two dimensions. The goal is to compress in- pect. This database can be a collection of individual sig-
formation by forming reduced representations of the most natures or a collection of averaged signatures distributed
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over the region of viewing aspects of interest. An efficient C. Kohonen SOFM Experiment
database is one which captures the intrinsic variabilities of As with k-means, to avoid under-characterization in our
the HRR signatures without either excessive redundancies database, we will now try the Kohonen algorithm with two
typical of single-signature databases, or without loss of in- different output nodes structures.
formation common when averaging arbitrary groups of sig-

natures into templates. C.1. Output Nodes Structures. The results of clustering with
As mentioned before, there are two main thrusts in our in- a Kohonen algorithm using a 6x7 output nodes structure is
vestigation. First, we investigate the use of clustering tech- shown in Figure 11. The results of clustering with a Koho-
niques to increase the accuracy in constructing signature nen algorithm using a 1X42 output nodes structure is shown
templates for improved performance in template matching in Figure 12.
algorithms. Second, we investigate the potential of reducing
the total number of required templates per class that must D. Analysis of Results
be stored in the database. Several observations are immediately apparent upon inspec-

tion of the plots in Figures 7, 8, 9, 10, and 11. First, the
A. Description of baseline experiment clusters are not nicely grouped in 5x5 azimuth and eleva-
One way to prevent over-characterization in our database tion windows. Therefore, by averaging arbitrary groups
is to use a template approach over that of single-signature of signatures like those done with the arbritary 5x5 win-
databases. The easiest way to form templates is with group- dows we have a good chance of under-characterization in
ing of range profiles in a certain azimuth/elevation. These our database. For instance, looking at aspect window 1 to 5
signatures are grouped into small sets which span a spec- degrees in elevation by 0 to 5 in degrees azimuth in Figures
ified azimuth and elevation area, see Figure 6. The az- 7 - 11. We see in this 5x5 degrees window that it contains
imuth/elevation windows are grouped in such a manner as aspects belonging to many different clusters. Grouping all
to hopefully guarantee stationarity in the measured range these aspects into one template would be very undesirable
profiles making up the window. For our investigation we and cause loss of information due to under-characterization.
will use 5 degrees by 5 degrees template regions to create Another observation is that every clustering variation has
each template for our baseline results with the VQ. Over different final clusters. We noted earlier that depending on
our total aspect window of interests this would result in 42 how we initialize our set of initial parameters the final re-
total templates per class. sults would be different. But if we examine the clustering

results closely we see that there are also some basic simi-
larities in the final results. For instance, if we look at each
Figure in the 11 to 12 degrees azimuth over -10 to -30 eleva-

SECTORING tion we see that these signatures always group to the same
cluster. Many other similar grouping exists and is consistent
between the clustering techniques.
We must always keep in mind that good representation does
not always mean good classification performance. In the
next section we will look at the classification results of our
three class problem using a VQ classifier. The classifier will

use the templates created from our different clustering tech-

E. Classification Performance

This section presents and summarizes the results obtained
from applying the methodology and classifier described ear-
lier. Results are presented in the form of confusion matrices
for the full, three-class comparisons. To determine the vari-
abilities of our results, a 97.5% confidence intervals are given

Fig. 6. Aircraft mxn window sectoring for all estimates of the classification rates.

E.1. Baseline Results Using 5x5 Azimuth/Elevation Templates.
We will take the classification results from using the 5x5 az-

B. K-Means Experiment imuth/elevation window templates for our baseline results.

To avoid under-characterization in our database, where This is a good baseline to see if clustering can improve on
there is loss of information that is common when averaging our classification results, since this is the same technique
arbitrary groups of signatures, we will cluster the signatures for templates creation currently being employed by Wright
to get better representation. We will first try the k-means Laboratory. See Table I.
algorithm with three different initialization schemes.

E.2. Batch K-Means and Kohonen Performance Results. We now
B.1. 5x5 Averaging Initialization. Since we are using 5x5 de- take the templates created from the K-means and Koho-
grees window templates for our baseline results, these tem- nen clustering techniques shown in Sections 5.4 and 5.5 and
plates might serve as good locations for initial codewords employing a VQ to the three class problem to give us our
to use with our k-means algorithm. The results are shown performance results. The classification results are given in
in Figure 8. The figure shows the total aspect window of Tables II, III, IV, V, and VI.
interest for all three classes. The different shading shows a
particular cluster that each individual aspect would belong E.3. Integration. To further increase classification perfor-
to. We have a total of 42 clusters since this is the amount of mance we could employ a couple of different integration
clusters used with a 5x5 azimuth/elevation window method. schemes to improve our classifier. What we could do is take

a 5 out of 8 or a full integration of the single-look perfor-
B.2. Maxi-Min Initialization. The results of clustering with a mance and build confidence in our decision. What we mean
k-means algorithm using the maxi-min initialization scheme by single-look performance, is that for every input vector
is shown in Figure 9. we get, we will make a decision on its class. For a 5 out of 8

scheme we would take 8 single-look decisions and if at least
B.3. KLI Initialization. The results of clustering with a 5 out of the eight single-look decisions are of the same class
k-means algorithm using the KLI initialization scheme is then we would classify the target as that class. If there are
shown in Figure 10. less than 5 out of 8 then we would make no declaration. In
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Averge Distotion Rs #f Cod. & W~~s TargetA

the 5 out of 8 scheme, as we continue to get more inputs we oAe rs.o rrr

would add this new input to our group of eight. Then we
would throw away the oldest input and make a new decision 0.075 . ....... . ............ ...... .............

with our new group of eight. In full integration we would 0.07.

not throw away the oldest input, but make a decision on the
class if there are (5/8)% or 62.5% of all the decisions are of "00 o 10 is 20 2s a 40 vs
the same class. o7 Average Oietor. .. of co.rds orrgetB
The results are given for each templates creation techniques
and both the 5 out of 8 and full integration results are shown. • ...Pd stands for probability of declaration. Which means for i: ..

every opportunity to declare, how often do we make a deci- a
sion of the target class. P0 stands for probability of correct " 0 5 10 is 20 25 o0 a 40 40

classification. Which means for every declaration, how often Averag, ODvorio n.#of Cod-erforTargtC

do we make the right decision of the target class. I
See Tables VII, VIII, IX, X, XI, and XII for the integration .o.... . .
results. e 7i1
F. Discussion of Classification Results " O 0. 5 10 i-s 20 -2-I3 - 3 --- 0- 45

tO 1 15 00 25 0 3o 5 40 40

The objective of this section was the investigation of clus- Nbe, of Codeordo

tering techniques to enhance algorithm's performance using Fig. 7. Average Distortion versus Total Number of Codewords
a synthetic database range profiles and testing it on mea-
sured range profiles. Our results show that the algorithm's
performance on templates created by clustering synthetic
signatures was either enhanced or equivalent to the baseline B. Contributions
in most cases. Up to a 15% increase in performance was
achieved for Class A and up to a 10% increase in Class C a This paper introduced a method for integrating cluster-

depending on clustering techniques. Class B had no signifi- ing techniques into templates creation to improve algo-

cant changes in performance but this is probably attributed rithm performance and minimize database size. Instead

to the high baseline performance of Class B. While improv- of creating templates, basing the group of signatures to

ing performance overall, there was no significant instances be averaged on arbitrary regions of viewing aspects, the

of detriment to performance caused by clustering, averages are taken over the signatures contained in the

The integration performance showed that great improve- natural clusters which can be identified.

ment is attainable from using the techniques. The drawback * The analysis showed that the proper clustering of sig-

is that computation time for a decision is also increased, natures into natural clusters can improve classification

This could be a major drawback if only a few seconds could performance between 10% to 15% for some classes. It

determines an engagement outcome. also showed that by clustering, the performance was
not significantly lower in any of the cases.

G. Data Reduction Study * The analysis also showed that the proper clustering of
signatures into natural clusters can reduce the database

In this section we investigated the potential of reducing the required by a factor of four. This would lead to
total number of required templates per class that must be decreased algorithm's memory and computational re-
stored in the database with minimum loss of information. quirements, with a consequent decrease in the time re-
In this experiment we chose the Kohonen clustering algo- quired to perform the required identification calcula-
rithm as the method to generate the required number of M tions.
codewords. We chose the Kohonen algorithm with a 1XM This paper also applied a VQ classifier to the HUR iden-
output layer since, from our performance results, the Ko- tification problem with very good results. With the use
honen with a 1X42 output achieved very good results. We of the VQ results we were able to explore the value of
chose M to be 1, 2, 3, 4, 5, 8, 10, 12, 15, 20, 25, 30, 35, and single look classification versus multi-look (integration)
42. We then graphed the total average distortions versus classification. The use of multi-look classification can
the number of M codewords. This plot is shown in Figure prove crucial in maintaining high performance as the
7. number of classes are increased to a usable size.
From Figure 7 we see that the average distortion falls as we
increase the number of codewords, but at a certain point
we ceased to lower the distortion. This break point is some- C. Summary of Results
where around 10 codewords for our aspect window of inter- The results of the experiments are summarized in Table
ests, any less than that and we have under-characterization, XIV. The performance is reported for each experiment on
any more and we have over-characterization. The classifi- all three targets and the A% is the value of increased or
cation results with only 10 codewords per class is given in decreased performance as compared to the baseline perfor-
Figure XIII. These results are comparable to those results mance. The results obtained in this paper lead to several
using 42 codewords per class, interesting conclusions:

IV. CONCLUSIONS AND RECOMMENDATIONS * Each clustering iteration did improve performance over
A. Conclusions the baseline results with a 5x5 window adhoc template

formation, while not causing any significant detriment
The primary objectives of this research was to examine the to performance.
use of clustering techniques to enhance algorithm perfor- * As we noted earlier, depending on how we initialized
mance with synthetic database range profiles, and to reduce our clustering algorithms the final clusters will be some-
the total number of required templates per class that must what unique. This representation even though differ-
be stored in the database. Both objectives were met by ap- ent for each clustering iteration is a better method for
plying two unsupervised algorithms (k-means and Kohonen) template creation to improve data representation and
to the HRR problem. We have provided a brief description classification.
of the theoretical background for the two methods. We have * Our experiment at data reduction, using only 10 code-
presented the performance results for the clustering tech- words rather than 42 codewords, also was quite success-
niques using a Vector Quantizer classifier. The purpose of ful. We were able to maintain the classification perfor-
this chapter is to summarize the results of this research and mance while reducing the amount of data stored in the
to draw some general conclusions based on these results, database by a factor of four.
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"* All of the classification performances can be increased [4] Kohonen, Teuvo. Self-Organization and Associative Memory
by the use of a multi-look or integration classifier (Second Edition). Springer-Verlag, 1965.
schemes. In fact, for our three class problem we were [5] Linde, Y., A. Buzo and R. M. Gray. "An Algorithm for Vec-

able to attain 100% performance on all classes for all tor Quantizer Design," IEEE Transactions on Communication,

clustering schemes and the baseline. COM-28(1):84 - 95 (January 1980).

"* The use of k-means and Kohonen for clustering of the [6] Lippmann, Richard P. "An Introduction to Computing and Neu-

HRR data proved to significantly increase classification ral Nets," IEEE ASSP Magazine, .4 (1987).

performances in most cases, while no significant detri- [7] Rogers, Steven K., Mathew Kabrisky Dennis W. Ruck and Gre-

ment in performances was observed, gory L. Tarr. An Introduction to Biological and Artificial Neural

"* The clustering of signatures can create an efficient Networks. Bellingham, Washington: SPIE Optical Engineering

database which capture the intrinsic variability of the Press, 1991.

HRR signatures without either loss of information or [8] Rogers, Steven K. "Introduction to Perceptrons: Advanced Top-

without excessive redundancy. ics in Neural Networks." April 1996.

"* The benefits of applying natural cluster to classification
algorithms are increased performances, decreased algo-
rithm's memory, and computational requirements with
a consequent decrease in the time required to perform
the required identification calculations.

D. Follow-on Research

The research discussed in this paper is by no means exhaus-
tive. As with any large undertaking, there are many areas
left for further research. Some possible enhancements are
listed below:

"* The number of classes in this investigation was lim-
ited to just three classes of fighter size aircraft. Fur-
ther investigation on a more complex problem with a
larger number of mixed size aircraft could be interest-
ing. Clustering with a more complex problem could
prove to have greater payoff on performance, database
size, and computational complexity and time.

"* The aspect window investigated was also very limited.
Expansion of the aspect window to include the entire
sphere of possible aspect angle should be done.

"* Investigation needs to be done to see if integration
classifiers can be operationally viable. Can we per-
form classification in a timely manner that will give
the warfighter the necessary time to act on the infor-
mation?

"* The integration experiment showed that most of the in-
put vectors gave correct classifications. There are a few
out-lying input vectors that are somehow distorted and
giveing us incorrect classifications. This distortion can
be caused by misalignment, antenna flashes, EMI/RFI,
atmospheric interference, clutter, radar calibration, low
signal to noise, etc. Further investigation needs to look
at either prescreening input signatures for these prob-
lems and eliminating the distortion or the input signa-
tures itself.

"* One of the main areas of possible improvement to the
HRR problem is to lower the dimensionality of the
problem by doing features selection and saliency. Using
every range bin is not a very viable feature in that it is
so dependent on alignment and the information is only
located in a small subset of the range bins.

"* We know that there are differences between the syn-
thetic generated signatures and the measured signa-
tures. Even though the synthetic signatures do not
completly model every characteristic correctly there
are many characteristics that are modeled well. There-
fore we need to find the common information space be-
tween the synthetic and measure signatures and use
this information to come up with good features for our
classifiers or use this information to help improve the
synthetic predictions.
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Fig. 8. Clustering results for 5x5 averaging initialization for total aspect window
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Fig. 9. Clustering results for Maxi-min initialization for total aspect window
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Fig. 10. Clustering results for KLI initialization for total aspect window
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Fig. 11. Clustering results for Kohonen with 6x7 output nodes for total aspect window
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Fig. 12. Clustering results for Kohonen with 6x42 output nodes for total aspect window

Actual AssignedClass -c 97.5 % Confidence
Class Target A C Target B Target C (%) Interval (%)

Target A 5064 974 866 73.28 4- 1.05
Target B 72 4367 276 92.62 E; 0.75
Target C 10 1678 3121 64.90 )- 1.35

TABLE I

BASELINE RESULTS WITH A VECTOR QUANTIZER USING 5X5 WINDOW TEMPILATES AND CONFUSION TABLE

Actual Assigned Class .c 97.5 % Confidence
Class Target A Target B Target C (%) - Interval (%)

Target A 5089 1047 768 73.71 4- 1.04
Target B 1 25 4231 459 89.73 =E 0.87
Target C 3 5 1379 3425 71.22 -4 1.28

TABLE II

BATCH K-MEAN WITH 5X5 AVERAGE INITIALIZATION CLASSIFICATION RESULTS AND CONFUSION TABLE
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Actual Assigned Class P, 97.5 % Confidence
Class Target A Target B Target C (%) Interval (%)

Target A 6081 465 358 88.08 :h 0.76
Target B 62 4519 134 95.84 - 0.57
Target C 80 1422 3307 68.77 - 1.31

TABLE III

BATCH K-MEAN WITH MAXI-MIN INITIALIZATION CLASSIFICATION RESULTS AND CONFUSION TABLE

Actual Assigned Class PC 97.5 % Confidence
Class Target A Target B Target C ( (%) Interval (%)

Target A 5404 628 872 78.27 ± 0.97
Target B 74 4253 388 90.20 ± 0.85
Target C 14 1146 3649 75.88 ± 1.21

TABLE IV

BATCH K-MEAN WITH KLI INITIALIZATION CLASSIFICATION RESULTS AND CONFUSION TABLE

Actual Assigned Class PC 97.5 % Confidence
Class Target A Target B Target C (%) Interval (%)

Target A 6004 307 593 86.96 ± 0.79
Target B 205 4206 304 89.20 ± 0.89
Target C 43 1367 3399 70.68 ± 1.29

TABLE V

KOHONEN WITH 6x7 OUTPUT LAYER NODES CLASSIFICATION RESULTS AND CONFUSION TABLE

Actual Assigned Class P, 97.5 % Confidence
Class Target A Target B Target C (%) Interval (%)

Target A 6156 274 474 89.17 ± 0.73
Target B 72 4437 206 94.10 ± 0.67
Target C 43 1458 3308 68.79 ± 1.31

TABLE VI

KOHONEN WITH 1x42 OUTPUT LAYER NODES CLASSIFICATION RESULTS AND CONFUSION TABLE

5x5 window templates
Target 5 out of 8 results full integration results
Class Pd (0) Pc (%) Pd 000 PC (%)

Target A 83.27 93.35 100 100
Target B 97.81 99.72 100 100
Target C 87.11 73.61 94.42 100

TABLE VII

5 OUT OF 8 AND FULL INTEGRATION PERFORMANCE RESULTS FOR 5x5 WINDOW TEMPLATES

5x5 Average Initialization
Target 5 out of 8 results full integration results
Class Pd M PC 0 Pd (%) Pc M

Target A 83.63 93.50 100 100
Target B 97.71 99.13 100 100
Target C 89.05 82.86 100 100

TABLE VIII
5 OUT OF 8 AND FULL INTEGRATION PERFORMANCE RESULTS FOR 5x5 AVERAGE INITIALIZATION

Maxi-min Initialization
Target 5 out of 8 results full integration results
Class Pd (0) PC (%) Pd 0 Pc (

Target A 95.66 99.15 99.94 100
Target B 99.70 100 100 100
Target C 86.88 79.31 100 100

TABLE IX

5 OUT OF 8 AND FULL INTEGRATION PERFORMANCE RESULTS FOR MAXI-MIN INITIALIZATION

KLI Initialization
Target 5 out of 8 results full integration results
Class Pd 0() PC 0O) Pd 0 PC 0

Target A 87.81 97.06 100 100
Target B 97.58 99.50 100 100
Target C 91.27 87.22 100 100

TABLE X

5 OUT OF 8 AND FULL INTEGRATION PERFORMANCE RESULTS FOR KLI INITIALIZATION



16-10

6x7 Kohonen
Target 5 out of 8 results full integration results
Class Pad 0 Pc (%) Pd 0 PC M

Target A 94.49 98.37 100 100
Target B 96.43 99.23 100 100
Target C 88.09 81.63 100 100

TABLE XI

5 OUT OF 8 AND FULL INTEGRATION PERFORMANCE RESULTS FOR 6x7 KOHONEN

1x42 Kohonen
Target 5 out of 8 results full integration results
Class Pd (%) PC (%) Pd (%) Pc M

Target A 96.38 98.83 100 100
Target B 99.17 100 100 100
Target C 87.90 79.18 100 100

TABLE XII

5 OUT OF 8 AND FULL INTEGRATION PERFORMANCE RESULTS FOR 1x42 KOHONEN

Actual Assigned Class Pc 97.5 % Confidence
Class Target A Target B Target C (%) Interval (%)

Target A 5797 469 638 83.97 ± 0.87
Target B 60 4445 210 94.25 ± 0.66
Target C 41 1712 3056 63.55 ± 1.36

TABLE XIII

RESULTS FOR KOHONEN WITH 1X10 OUTPUT LAYER

Summary of Results
Target class Target A Target B Target C

Pc (%)M Pc (%) A (%) Pc (%) A (%)
Baseline Result of VQ using 5x5 window templates 73.28 92.62 64.90

Batch k-means with 5x5 Avg. Init. 73.71 0.43 89.73 -2.88 71.22 6.32
Batch k-means with Maxi-min Init. 88.08 14.80 95.84 3.22 68.77 3.87

Batch k-means with KLI Init. 78.27 4.99 90.20 -2.42 75.88 10.98
Kohonen with 6x7 output layer nodes 86.96 13.68 89.20 -3.41 70.68 5.78

Kohonen with 1x42 output layer nodes 89.17 15.89 94.10 1.48 68.79 3.89
Kohonen with lxlO output layer nodes 83.97 10.69 94.25 1.63 63.55 -1.35

TABLE XIV

SUMMARY OF RESULTS
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Statistical Feature Based HRR Radar Classification

Richard A. Mitchell and John J. Westerkamp*
Automatic Target Recognition Branch

USAF AFRL/SNAT, 2010 Fifth Street, Bldg 23
Wright Patterson AFB, OH 45433-7001, USA

SUMMARY 0 Toge, 1 Targ, 2

T h e statistical featu re b ased (StaF ) classifi er is ........
presented for robust high range resolution (HRR) radar i-#', --1 J :J

0 5N10 S m 1.0 150

aircraft identification which was originally developed 10...... .i..i
in [1]. The target features used for classification are the [J . -A. Mj x.. : ... . .
amplitude and location of HRR signature peaks. These o so 1 Io o SO . I
features are selected "on the fly" with no a priori .i0
assumptions about the number or location of the o 0 0 .50 2 0 5

features. Therefore, the number of features extracted 0o:-.. o 00 ISO M 100 S IO

depends on the inform ation content of the observed 5.. . . .
signature. This approach causes the number, location soso0• , 0 0 50 . .. 0o

and amplitude of the extracted features to be random 7. .
variables. Classification decisions and confidence levels 00 so 1. 1. 0 50 ISO 200
are calculated at the feature level and fused over the 0.

observation to obtain overall target classifications. A
primary goal for this research is to increase classifier
robustness to maintain high performance known target Figure 1: One Second Sequence of HRR for Two Aircraft

identification while minimizing errors from unknown
target. The StaF classifier performance is compared to
a baseline quadratic classifier approach in two different dimension. For this reason the signatures exhibit a

unknown target tests. Results are presented large degree of variability over small changes in viewing

demonstrating that the StaF classifier can significantly aspect. An example of signature variability seen in
reduce errors associated with unknown targets while figure 1, which shows sequential observations of two
maintaining a high probability of correct classification, different aircraft over a period of 1 second (200ms

between observations). In both cases the change in the
1 INTRODUCTION angular view of the targets was less than 1 degree in

The goal of automatic target recognition (ATR) azimuth and elevation. The degree of variability seen in
technology is to identify targets from observed sensor these signatures is very typical. Because of this high
information. The need for this technology is evident degree of variability, most identification approaches for
from the numerous "friendly fire" incidents that have HRR are statistical in nature.
occurred over the past several years. One sensor
technology used for ATR of aircraft is high range Using basic statistical pattern recognition techniques,
resolution (HRR) radar [1-4]. This sensor collects a the HRR target classes have been shown to be fairly
"range profile" or "signature" of an aircraft. The separable for small sets of target classes [5]. The

information contained in this signature is the difficulties for the ATR primarily lie in the specified

magnitude of the radar scattering as a function of performance requirements. These requirements are high

range along the line of sight of the radar. The goal for declaration probability (Pd,,), high probability of

HRR ATR is to use known information about specific correct identification of known targets (P..) and low

aircraft to identify them when they are observed, probability of misidentifying unknown targets
(Pi-,unk). Here the terms "known" and "unknown"

Analysis of HRR sensor data is very difficult because it refer to targets in the training database and those that
collapses three dimensional information into a single are not.

rmitchel@mbvlab.wpafb.af.mil, jwester@mbvlab.wpafb.af.mil Pdec specifies the probability that a target identification

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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2q The basic statistical modeling concept is to estimate
I 116 the probability that a peak occurs in a specific location

"7 ...........Orl.... Snlt" .. I, given that the observation is from target wi.

.' Further, the probability that the peak has amplitude aj
.e•. uiaduai. given that the peak is at the location 1j and that the
Extr•udd Featue Migurfl observation is of target wi must be determined. The

"�I primary statistics required to determine these
i.,.. ... probabilities are the peak location probability function

........... ... .J(PLPF) and the peak amplitude probability density
14 65 function (PDF). The PLPF specifies the probability

that a peak occurs in a specific location for each

k~Apide 0.00.71 0.5 0.7 10.4 10.0 10.7510.9511.6 10.6 10.7 10.7510.250 individual target. The peak amplitude PDF is based on

the amplitude of the peaks given that a peak occurs in
Figure 2: Feature Based Target Identification Algorithm a given range bin for a specific target. The PLPF and
Concept peak amplitude PDF are discussed in section 2.1.

Given the PLPF and peak amplitude PDF,

is declared if a known target is observed. P,• specifies classification decisions can be made for individual

the probability of correctly classifying a target given features extracted from an observation. Section 2.2

that an identification declaration has been made. The discusses the calculations to determine the class

last performance requirement, Pmis-..k, specifies the likelihoods and class a posteriori probabilities for

percentage of unknown target observations that are individual extracted features. The feature level

erroneously identified as some known target class. This classifications will then be fused using Dempster-Shafer

unknown target identification requirement is especially (D-S) evidence theory. The reason for using D-S over

difficult since it is not possible to train on an Bayes is that D-S has the inherent ability to
"unknown" target class. For this reason some measure incorporate decision uncertainty. This is desirable since

of confidence must be included in the classification it allows one to assign confidence values to the

process. Then classifier decisions with low confidence classification decisions. The fusion of the features will

can be rejected either because the target is unknown or be discussed further in section 2.2.3.

because more information is required to make a Confidence levels associated with a classification are
assigned at the feature level. They are based on the

To achieve these difficult performance goals, a classifier joint likelihood of the peak locations and amplitudes.

must be very robust. Part of achieving robustness is The goal of the confidence value is to determine the

the selection of high quality features that compactly probability that the feature based classification is

represent the target information while retaining target associated with a correct hypothesis. This information

class separability. Through the understanding of the is accrued in the D-S algorithm, allowing the fused

radar phenomenology, one useful set of features is the decision confidence to be assessed. This ability becomes

peaks in the radar signatures. This is because the peak extremely important when one needs to reject unknown

information identifies the size and range location of target observations. Determination of these confidence

scatterers on the target. Such a feature based classifier levels will be discussed in section 2.2.1.

concept is shown in figure 2. How one statisticallycatrsthis information, given the data variability, The notation used throughout this paper will be as
captures is formation is the dat of ity, follows. Target class hypotheses are defined as the set
and uses it for classification is the subject of this QýI1W, n o nagrtmtandoresearch. •2 = { wi,W2,. .. ,w,•} for an algorithm trained on ni

target classes. For the examples in this paper it is

2 STATISTICAL FEATURE BASED (StaF) assumed that n = 5. The peak location data are

CLASSIFIER represented by L = {11, 12, ... , 1k} and the peak
amplitude data by A = {al,a2,. .. ,ak} for k extracted

The StaF classification algorithm is based on the peaks from an observed target signature.
statistical behavior of extracted features. The features
used are the location and amplitude of salient peaks in 2.1 Feature Statistics Estimation
the HRR target signatures. The extracted peak The statistics models required for the StaF classifier are
information from an observation is determined on the the peak location probability function (PLPF) and the
fly with no restrictions being placed on number or feature amplitude PDF. Estimation of these
location of features. distributions are discussed in sections 2.1.1 and 2.1.2
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0.4Peak Location Probability Function by two parameters, the mean and variance. These

parameters are calculated for each range bin from the
0.35 amplitudes of the extracted peaks of the training

ensemble. The resulting mean and standard deviation
0.3 for one target class are plotted in figure 4.

0.25 2.2 Target Class Likelihoods and Probabilities
Given the peak location probability functions (PLPF)

1 0.2- and amplitude PDFs, class likelihoods and probabilities
0 must be calculated for a set of features. The feature

Ott5 location likelihoods are found by evaluating the PLPF

at a specific feature location. For example, assume a
0.1 feature is found at location 60. For the target class

0.05 -associated with the PLPF in figure 3, the probability or
likelihood that a feature is observed at that location is

20 40 I approximately P(lj = 601wi) = 0.25.
Rnge Bin Nnotnbr

The amplitude likelihoods are found in a similar way

Figure 3: Parzen estimate of peak location probability using a mathematical expression for the Gaussian PDF.
function. The parameters of the Gaussian PDF are the estimated

mean and variance terms as discussed in the previous
section. The likelihood that the observed feature

respectively. amplitude is the result of observing target class wi is.

2.1.1 PLPF Estimation found by evaluating

The role of the PLPF is to determine the probability (oj-p)21 -r• 1
that a peak will be observed in a specific range bin p(ajIwily) = e
given that the observation was from some class wi. pj l= ij

This probability is estimated from the peak locations of
the training ensemble for each target class. A Parzen where/,ij and aij are the conditional mean and

estimator with a normal kernel function along the, standard deviation for peak location bj given class wi.

range dimension is employed to estimate the PLPF [6]. Note that this likelihood is conditioned on both the

An example of a Parzen estimated PLPF is shown in target class and the feature location.

figure 3. Figure 5 re-emphasizes that these likelihoods are based

With this function, class probabilities are associated on a single peak feature . Additionally this figure

with peak locations. This information alone, however, demonstrates how the location and amplitude

is not enough to make robust class identification. The likelihoods are combined. The joint peak location and

additional information will come from the conditional amplitude likelihood is calculated by multiplying the

peak amplitude statistics. The next subsection will individual likelihoods,

discuss how these statistics are generated. p(ajljlwi) = p(aj~wilj)P(lj wi). (2)

2.1.2 Peak Amplitude Probability Density Function
The amplitude statistics are conditional on the From the joint likelihoods a posteriori probabilities are

occurrence of a peak in a specific location and for a calculated using Bayes rule,
given target class. This estimation approach ensures
that the amplitude statistics are based only on the P(willjaj) = n(lja 1 Iwi)P(wi) (3)
detected features rather than a specific range bin E p(lyay wQP(wm)
location. m=l

The form of the amplitude statistical distribution is
assumed to be Normal within a given range bin. While One problem associated with the Bayesian probability
it is known that the magnitude of the signatures has a calculations is that only relative probabilistic
Rician distribution, the Gaussian assumption is information is considered rather than global
reasonable if a "power transform" is performed [6]. information. This is because (3) normalizes the
Making this transformation significantly simplifies the probabilities relative to the likelihoods of some set of
problem since the normal PDF is completely specified target hypotheses. Therefore, only probabilistic
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Figure 4: Conditional amplitude (a) mean and (b) standard deviation.
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Figure 5: Feature level likelihood generation
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information about a class relative to the probabilities of
some set of other classes is given.

0.9_

Consider the case that an observation is from a target 0.8
for which no statistics are available. If that observation 0.7

looks statistically more like one class, say class wl, than
the other classes, the Bayesian probabilities would ý0-,
appear to be very confident that the observation
belonged to class wi. In reality the likelihood, U0...

p(aj i wi), may be very low. This decision would result 0.3
in an error. Therefore, if it is possible that unknown 0..

targets will be observed, then Bayes decision alone will
not be able to reject incorrect decisions due to the 0..

unknown target. The information required to eliminate [ . ..0 0.005 0.01 0.015 0.02 0.0-15

these errors can be obtained from the likelihood values. Uih-hood, p(./1 )

The inclusion of likelihood information in this Figure 6: In-Class likelihood CDF used to determine
algorithm will be in the form of a confidence measure. decision confidence.
The determination of the confidence will be discussed
in section 2.2.1. Then how the individual peak
confidence levels and a posteriori probabilities are used and P(p(a, llwi) < 1.0) = 1 represent the minimum and
to determine class beliefs are discussed in section 2.2.2. maximum confidence values.
Section 2.2.3 presents an approach to accrue the class
beliefs to obtain an overall observation classification To obtain the confidence measure a target class
decision. Finally, the determination of the classification hypothesis, why,, must be made. It is therefore
decision quality (or rejection of unknown target classes) assumed that the observation belongs to class Whyp,
will be discussed in section 2.2.4. resulting in the in-class likelihood p(a3 j IjhWhyp). The

Whyp decision confidence for peak j is calculated by
2.2.1 Confidence Measures evaluating the likelihood CDF at p(ajlj Whyp). This
The most complicating requirement with HRR ID of value represents the confidence that the observed peak
aircraft is the rejection of unknown target classes. This is associated with class w1hyp. To clarify, if.
problem occurs because it is impossible to train a p(ali IWhyp) = 0.015, then the confidence level
classifier to recognize every possible aircraft. Therefore, associated with the classification decision is
the ID algorithm must only make classification approximately 0.9 when using the CDF in figure 6.
decisions when the statistical confidence is very high.

It should be noted that the confidence value is
The decision confidence measures are based on the class associated with a specific target class hypothesis, Whyp.

likelihoods. To do this, in-class likelihood PDFs are Therefore, each target hypothesis of interest must have
developed using equation (2) for each class. The an associated confidence value for each of the k
likelihood statistics are obtained by comparing the extracted peaks in an observation. Typically this
training exemplars with their own statistical model. corresponds to calculating a confidence value for each
The actual likelihood PDFs are then estimated using a of the n target classes, wi. How these beliefs are used is
Parzen estimator with a normal kernel function, the subject of the next section.

Observing that the likelihoods are class-conditional 2.2.2 Multi-hypothesis Belief
probabilities, larger likelihood decisions should have In the beginning of this section the basic probabilistic
higher confidence level. A function that mirrors this information to perform classification was obtained for
concept is the cumulative distribution function (CDF). individual peak features. These data are the class
For this reason the CDF of in-class likelihood PDFs is likelihood, a posteriori probabilities and decision
used to determine the decision confidence. An example confidence. These are used to develop a set of beliefs
of a likelihood CDF is shown in figure 6. At any for specific target hypotheses. This is graphically
likelihood x the CDF evaluates the probability represented in figure 7.
P(p(a, llwi) < x), which is represents the decision
confidence. Note that both the likelihoods and the Figure 7 shows that the confidences are obtained
CDFs are probabilities and therefore their values are in directly from the joint likelihoods, as discussed in the
the range [0, 1]. Additionally, P(p(a, llwi) <_ 0.0) = 0 previous section. The confidences are then used to
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Class Likelihoods Class Confidence feature decisions. The manner in which these features

Target 1 0.0166 Cca la Tet 1 0.8578 are fused is presented in the next section.
Target 2 0.0010 Calculate Class Target 2 0.1288
Target 3 0.0011 Confidence Target 3 0.1267
Target4 0.0032 Values Target4 0.2720 2.2.3 Multi-Peak Evidence Accrual
.Tag.etS1 0.0011 Target 5 0.1477 For each feature extracted from an observation a belief

Bayes hypothesis matrix is generated as seen in figure 8. Each
of these matrices contain evidence that is accrued to

Targetl 0.7242 aid in the acceptance or rejection of each target class
Target 2 0.0435
Target 3 0.0492 hypothesis.
Target 4 0.1372
Taget5 8.0458 /The beliefs are fused using Dempster's rule of

Class Probabilities combination [7]. This rule is actually very similar to
Hypothesis Belief Matrix Bayes rule as applied here. In fact the sum of the

Ta°et Hypthesi beliefs and uncertainties (5) equates to unity just as the
Target I Target 2 Target 3 Target 4 Target 5

Target 1 0.6212 0.0933 0.0918 0.1970 0.1070 Bayesian probabilities. For this application this rule is
Target 2 0.0373 0.0056 0.0055 0.0118 0.0064
Target 3 0.0422 0.0063 0.0062 0.0134 0.0073 calculated as
Target 4 0.1177 0.0177 0.0174 0.0373 0.0203
Target 5 0.0393 0.0059 0.0058 0.0125 0.0068 a U

2

Uncertainty 0.1422 0.8712 0.8733 0.7280 0.8523 b(aa2) b(al)b(a2) + Ub(a2) b(a) (6)

Figure 7: Generation of the belief hypothesis matrix 1 - E _b(al)b(a2)
j=1 k=1

k€i

weight the class a posteriori probabilities to create a where the denominator normalizes the beliefs. The
belief in a specific target class. The beliefs are found fused uncertainty can be updated with the new beliefs
using using (5) or by

b.hY,(willjaj) = C.,,h PP(wiIljaj), (4)
where C' is the confidence that the jth peak is U1'2  U(7)

Whyp 7
n n

associated with the target hypothesis Whyp. Since the 1 -

confidence is based on a class hypothesis the beliefs k= bactually generate a table, each column of which is k k=1
associated with a particular class hypothesis, as seen in
figure 7. Additionally, an uncertainty value is
calculated as U= 1- C' and appended to the Equations (6) and (7) show the fusion of information
bottom of belief hypothesis matrix. Note that since the for two different features. As demonstrated in figure 8,
sum of the a posteriori probabilities is unity, the sum of these equations are recursively applied to the entire set
the beliefs and uncertainty for any given hypothesis is of extracted features to calculate the overall class
also unity, beliefs and uncertainties for a specific class hypothesis.

The calculations are performed for each combination of
U target class in the training set and for each target

+Whyp ÷ b~,,, (willaj) 1. (5) hypothesis. If a classifier is trained on five target classes
=1 and a hypothesis is made for each class, the resulting

set of beliefs is shown at the bottom of figure 8.
Generation of the beliefs and uncertainties in this way
directly ties the confidence that an observed feature is This belief table consists of accrued belief for each
associated with a target hypothesis. For this reason, a target class given each target class hypothesis.
high uncertainty occurs when the likelihood that the Additionally, the last element of each column is the
observed feature is not associated with the hypothesized fused uncertainty associated with a specific target class
target. This is exactly the type of information that is hypothesis. The target classification decision is made
needed to reject unknown target observations, by selecting the largest belief on the diagonal of this

table. These are the belief values for a specific target
It is not expected, however, that the individual class wL under the hypothesis that the correct class is
peak-based classifications and uncertainty values will indeed target class wi. The degree to which the
result in robust classifier performance, rather they are classification decision is accepted depends on the
bits of evidence that are accrued. Robustness and uncertainty, Ui. How the uncertainty is used in the
confidence are obtained through fusion of the individual decision process is the topic of the next section.
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Recursively Accrue Information using Dempster-Shafer
0'j othes0

Tarret I Target 2 Tahrget 3 Target 4 Target 5
Trget 1 0 -8606 0.2278 0.1624 0.3838 0.2380
Target 2 0.0085 01671 0.0745 0.0329 0.1384
Target 3 0.0329 0.2286 0.1443 0.2548

Target 4 0.0776 0.1248 0.0730 OA025 0.0673
Target 5 0.0195 0.1904 0.0640 0.0333 0-2892

Figure 8: Belief hypothesis evidence accrual.

2.2.4 Decision Rejection Based on Low Confidence
Using the fusion techniques described above, one
obtains a target class belief and uncertainty under some
target class hypothesis. The decision uncertainty is
used to determine the quality of the target
classification. The specific interest is to determine when
classification errors are made. The approach to .In-...vs. Out-of-ClassUnmertantyCDF

rejecting incorrect decisions is identical for known and - - e ,
unknown targets. Out-of-class Uncertaint

The technique statistically models the uncertainty 0.7 ............ ..........

associated with a correct target class hypothesis. These .... . ............ . . .......

data are generated by using in-class uncertainty °". .......

statistics determined from the training ensemble. These F
"in-class" statistics are the uncertainties associated
with classification of target class wi under the 0. ................... . ...... . I

hypothesis that the target is from class wi. An example 0.2.

of an in-class and an out-of-class uncertainty CDF, ~ ,o .1 ... ......... .....
with several thresholds, is shown in figure 9. The
technique for setting classification thresholds is known -6 - -3 -l

as a Neyman-Pearson decision rule [6]. Ob-tvai-on Daision Uncootoy. Log,( Y

3 RESULTS Figure 9: Uncertainty CDFs with decision thresholds.

The StaF classification algorithm described in this
paper and in [1, 2] has been used to generate classifier
results for aircraft using HRR radar data. The primary
purpose of the testing in this paper is to determine the
capability of the StaF classifier to reject unknown
targets while maintaining high known target
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identification rates. StaF classifier results are compared a function of Pdc. The LOOM results are shown in
to baseline results from a constrained quadratic figure 10 for both the baseline and StaF classifiers. It is
classifier [6]. found that the baseline classifier performs better than

the StaF classifier for single-look decisions. However,
To determine the classifier performance three the StaF classifier exceeds the baseline performance for
classification parameters are calculated. These multi-look decisions. However, the performance of both
parameters are Pdec, Pc, and Pmis,--unk, as defined in methods is so good that the difference in performance
section 1. Both P,, and Pmis-uk are conditional may be negligible. However, the interesting results
probabilities, dependent on a target class identification involve the Emis-unk vs. Pdec ROC curves.
declaration. For this reason P, and Pmis-unk are
plotted as a function of Pdc. Plots such as these are The Pmis-unk vs. Pdec ROC curves are shown in figure
typically called receiver operator characteristic (ROC) 11 for both the baseline and StaF classifiers. For the
curves. From these plots the classifier performance is single-look results the performance is fairly equivalent.
totally specified once a Pde, value is selected. However, the StaF classifier again begins to out

perform the baseline classifier. In fact, for the five-look
For the StaF classifier the quality of classification result at 0.95 declaration rate, the StaF classifier
decisions is based on the level of uncertainty associated Pmi.-.,,nk is approximately 44% lower than that of the
with those decisions. Rejection of these uncertain baseline classifier. This is a significant improvement in
decisions is performed by setting uncertainty thresholds performance. In general, the knee of the multi-look
as discussed in section 2.2.4. If the uncertainty is StaF ROC curves is approaching the lower right hand
greater than the threshold, no decision will be made corner more quickly than the baseline classifier. This
regarding the observation. The baseline classifier results in lower Pmi,-.uk for a given Pdg, as desired.
unknown rejection is essentially the same, only the
rejection criteria is based on the likelihood values. 3.2 True Unknown Target Test
Selection of a decision threshold directly effects the The results shown in the previous section show that the
Pdc and indirectly effects P., and Pmis-unk. StaF classifier performs better than the baseline for

multiple observation decisions. However, the results
Previous results have shown that the StaF classifier were limited to five target classes. In this section a
performs better than the baseline classifier when similar test is performed only additional targets are
evidence is accumulated over multiple observations [2]. introduced. The known target classes and data are
The results were based on classification of five target exactly the same as those found in the LOOM test.
classes using a target class leave-one-out-method However, the unknown targets are five totally different
(LOOM) to simulate unknown target classes [6]. The target classes. Therefore, this test has five true known
new results presented in this paper are based on a true and five true unknown targets in the test.
five known, five unknown target test. The five known
targets are exactly the same five as used in the LOOM Since the known target classes are exactly the same as
test. The five unknown targets are five totally different in the LOOM test it is expected that the Pr should be
targets. In section 3.1 the LOOM results are presented. very similar. The performance will not be identical
Then in section 3.2 the new true five known five because the LOOM test was really only a four target
unknown target test results are presented and test. The five-look performance P. vs. Pdc, ROC
compared with the LOOM results. curve is shown in figure 12 for both the baseline and

StaF classifier. As expected, when compared to the
3.1 LOOM Unknown Target Test five-look results shown in figure 10 the performance is
Rejection of unknown target classes is typically a very similar. The one-look Pe results do show a
difficult problem in ATR. Adjusting the classifier to significant drop in performance but the multi-look
reject unknown targets requires the declaration rate to results are very similar to the LOOM results.
be severely reduced. Even then the performance is
unreliable. To improve the performance it is often While the known target performance was essentially
necessary to accrue evidence over multiple target known from the LOOM test, the unknown target
observations. For the tests presented in this section rejection performance is not. The classifiers were
performance results are generated for one, two and five trained with no information about the unknown
observations. The benefit of this evidence accrual will targets. Any degredation in performance is due purely
be obvious when evaluating the performance. to the expansion of the known target set (from four to

five) and the difference in similarity of the unknown
The unknown target tests results are presented as two targets to the known targets. The results are shown in
sets of curves. The first set of ROC curves relate P. as figure 13.
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Figure 10: LOOM correct classification vs. declaration rate for the (a) baseline and (b) StaF classifiers.
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Figure 11: LOOM unknown target error vs. declaration rate for the (a) baseline and (b) StaF classifiers.
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Figure 12: True unknown test correct classification vs. declaration rate for the (a) baseline and (b) StaF classifiers.
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Figure 13: True unknown test probability of mis-identifying an unknown target vs. declaration rate for the (a)
baseline and (b) StaF classifiers.

The unknown target error rates are found to be higher one may be optimizing the classifier based on data that
for this test configuration than for the LOOM test. is not representative of the entire data space. For this
However, the StaF classifier once again performed reason the thresholds will not be changed based on this
better than the baseline for the five-look decisions. At test information.
a declaration rate of 95% the baseline classifier
misidentifies unknown targets at a rate of 3.3 CONCLUSION
approximately 25% whereas the StaF only misidentifies To date, most HRR ID algorithms have remained very
at a rate of approximately 15%. This is a 60% basic [8], using the entire range profile as a feature
reduction in unknown target errors when the StaF vector. Often this approach was taken because the
classifier is used. signatures were so random that reliable feature

extraction was difficult. Even when features were
While the two ROC curves characterize the overall extracted [4, 9,101, effective classification techniques
performance, it is sometimes helpful to view the more were not available.
detailed information associated with confusion
matrices. For this reason a five-look StaF confusion The StaF classifier is a unique feature based approach
matrix is included in table 1. Here an operating point for classification of HRR signals [1]. The classifier is
is specified for five-looks decisions with Pdoc = 0.95. based on the location and amplitude of signature peak
The performance is then specified to have a Pcc = 1.0 features. One unique aspect is that the peak locations
and a Pmnis-unk = 0.15. are not predefined in the classifier training. The

features are instead extracted on the fly based only on
Investigation of the unknown errors show that target information contained within the observed signature.
Unknown 2 is the most difficult of the unknown targets Therefore, the number and locations of the features are
to reject. Approximately 27% of Unknown 2 variable from one observation to the next. Additionally,

observations tested were classified as either Target 2 or the classifier generates decision uncertainties which help
Target 4. Additionally it is observed that target to determine the quality of the classification decision.
Unknown 5 was misidentified 14% of the time. More
importantly, both Udknown 2 and Unknown 5 Results were presented from two different tests. Both
appeared to be misidentified as Target 4. This is of tests showed that the StaF classifier more effectively
interest because it is also noted that Target 4 was rejected unknown targets, relative to the baseline
correctly identified 100% of the time and declared with classifier. This unknown rejection performance was
a probability of 99%. These two pieces of information obtae in i ntaining equal or better correct
indicate that the declaration threshold for Target 4 classification performance. These results are very
may be set too high, resulting in fewer rejections than encouraging but they may be optimistic for both
desired. It is tempting to modify this threshold to classifiers because. This is because one complicating
reduce the unknown target misidentification errors but factor has not been factored into the results. This
such modifications should not be made. Thresholds factor is the registration of the observation to the
should never be changed based on test results because statistical model. In these test it was assumed that the
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Table 1: Five-Look StaF Classifier Results, Pdec = 0.95
Target 1 Target 2 Target 3 Target 4 Target 5 Reject

Target 1 0.89 0 0 0 0 0.11
Target 2 0 0.94 0 0 0 0.06
Target 3 0 0 0.99 0 0 0.01
Target 4 0 0 0 0.99 0 0.01
Target 5 0 0 0 0 0.95 0.05

Unknown 1 0.10 0 0 0 0.03 0.87
Unknown 2 0.01 0.13 0 0.14 0 0.73
Unknown 3 0 0.13 0 0 0 0.87
Unknown 4 0 0 0.03 0.02 0.06 0.90
Unknown 5 0.01 0 0 0.13 0 0.86

correct registration was known between the Transactions on Aerospace and Electronic Systems,
observations and the target statistics. Submitted December 1997.

In a field test, the observations need to be registered [3] E. T. Jaynes and C. R. Smith, "Theory of radar
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Non-cooperative target identification of isolated aircraft with
real-time optical feature extraction and classification of high

range resolution data

Charles Garvin* and Kelvin H. Wagner

Optoelectronic Computing Systems Center
Department of Electrical and Computer Engineering

University of Colorado, Boulder, CO 80309-0525

Abstract 1 Introduction

Real-time non-cooperative target identifica- Target recognition using shape-, and position-
tion of wide bandwidth high resolution radar dependent radar reflectivity was suggested as early
(HRR) returns is beyond the capabilities of many as thirty years ago, 1 and has remained an area of
conventional digital signal processing approaches active research throughout this time. As the variety
due to limitations on available computing re- of applications for wide bandwidth'radar sensors in-
sources, and is an appropriate task for a high- creases, so too does the need for high-speed process-
speed optical classifier. We have designed and ing of radar data. In person-in-the-loop situations
constructed a feature-based adaptive multi-layer such as fire control and autonomous situations such
optical classifier for this task. The demonstrator as smart weapon guidance, the need for real-time
consists of a feature extractor which computes pulse-to-pulse non-cooperative target identification
a time-frequency representation of HRR returns (NTCI) is critical. NCTI on a pulse-to-pulse basis
cascaded into an adaptive linear machine uti- using HRR returns requires greater spatio-temporal
lizing multiplexed photorefractive volume holo- processing resources than are typically available us-
grams. Optical adaptation of stored weights en- ing general-purpose digital computing hardware. Op-
ables the classifier to learn to identify a train- tical signal processing architectures provide the spa-
ing set of aircraft radar range profiles. The tial parallelism and computation speed that are nec-
trained optical system identifies aircraft with essary to meet the requirements of real-time high-
varying orientation and/or range from the radar bandwidth radar processing. NCTI is therefore an
using untrained HRR returns from the same air- appropriate task for a high-speed optical classifier
craft. Single radar pulse classification of air- architecture. In this paper we review the design and
craft is demonstrated using labeled range pro- operation of an optical signal processing architec-
files extracted from 1987 Paris Airshow data. ture for adaptive spatio-temporal feature based sig-
Although trained on a single head-on aspect nal processing that is well matched to a NCTI prob-
profile for each class, surprisingly good gener- lem and we present experimental demonstration of
alization performance has been demonstrated, single radar pulse classification of isolated aircraft.
and the optically trained weights generalize over In section 2, we describe the adaptive multi-
limited aspect and unlimited range variations layer optical architecture and discuss the training
of the targets. These results demonstrate the and operation of the classifier. In the third sec-
power of adaptive optical connectionist systems tion we present experimental results of single-pulse
for challenging real-world signal processing prob- non-cooperative radar target identification of iso-
lems such as real-time non-cooperative classifi- lated aircraft radar returns using a one-of-four class
cation of isolated aircraft targets using a single problem. We recommend future applications and
radar range profile. additional research in the final section.

2 Adaptive optical classifier
* Current address: Lockheed Martin Sanders,

65 Spit Brook Rd, Nashua, NH, 03061-0868; The proper role of adaptive optical architectures
charles.g.garvin@lmco; (603) 885-6816. is to leverage high operational speed and parallelism

to provide timely solutions to otherwise intractable
processing problems. This paper describes and demon-

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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strates an adaptive optical classifier consisting of lens through a combiner cube to an output CCD
an acousto-optic (AO) feature extractor cascaded array and onto the write side of an OASLM. Us-
through an optically addressed spatial light modula- ing this combiner cube, this light is added to light
tor (OASLM) into a volume holographic implemen- diffracted from a single f, = 100 MHz TeO 2 AO de-
tation of a trainable linear classifier. Using a multi- vice (similarly imaged and filtered) in the other arm
ple exposure error-driven learning scheme, the classi- of the interferometer. A Dove prism is used to ori-
fier interconnection weights adapt to classify the AO ent the doubly-diffracted images of the AO devices
preprocessed features of wide-bandwidth temporal in one arm orthogonal to the singly-diffracted light
signal training sets. Error feedback for the learning from the other arm to create a two-dimensional in-
procedure, along with device control for the different terference plane. A spherical lens system images the
modules making up the classifier, is provided using output light from one port of the combiner cube to
a computer. The cascaded optical classifier in fig- a camera (or other time- integrating, square law de-
ure 1 demonstrates the unique applicability of opti- tector), the other output port can be used simulta-
cal computing components to problems of real-time neously to illuminate the OASLM. The output of a
wide-bandwidth temporal signal classification. The square law, time-integrating detector results in the
main subsystems of this cascaded optical classifier baseband cross term on a spatial carrier (cos(k --)
are described in detail in the following sections. where k is determined by horizontal and vertical tilts

of the combiner cube), all riding on a signal depen-

2.1 Acousto-optic triple product pro- dent bias
cessor feature extractor C(x,y) = bias±2cos(.r-) (1)

The feature extractor used in the cascaded clas- S1 t - )S2 (t + Y- S3 (t - ) dt
sifier is a time-integrating (TI) triple product proces- Va Va

sor (TPP).2 The TPP provides a high dimensional

computational feature with range invariance 3 which where x and y are shown in figure 2.5 Different time-

is highly separable even with a single layer classifier, frequency transforms 6 can be implemented with the

Previous implementations of the TI TPP, 4 used the AO TPP by appropriately programmable input sig-

processor output from the CCD detector and elec- nals. Making the substitution t - - - t', and as-
tronic postprocessing to classify the results. This suming a single purely real signal as the modulation

serial processing acts to restrict the system through- to all three AO devices results in the triple autocor-

put and the massive quantities of data produced se- relation of the modulation S(t) as the output of the

riously overburdens the electronic digital postpro- AO TPP

cessing. An optical classifier with a parallel interface C(S : r,, ry) = 2 cos(S'(7y - Tx)) (2)
that matches the data throughput can be used as a 2
post-processor, thus avoiding the electronic bottle- - (t')S(t'- 7)S(t'- 7) dt
neck. SSt)~ t -)(' )d

For rapid processing of high data rate tempo- The coordinates in this representation are mixed
ral signals (such as radar returns), the TPP archi- funcoofite phis rdinates
tecture is implemented using bulk acousto-optic de- functions of the physical coordinates
vices, one AO device for each processed signal. The 2y x - y
combined multiplicative and additive architecture is ax -- , - (3)
shown in figure 2. Expanded, collimated argon laser va Va

light (514.5 nm) is split into two arms of a Mach- An optically addressed spatial light modulator pro-
Zehnder interferometer. In one arm of the inter- vides the necessary temporal integration in equa-
ferometer, light in the first diffracted order of one tion 3, along with an adjustable saturating intensity
f- = 50 MHz center frequency TeO 2 AO device is nonlinearity. In the cascaded optical system shown
passed through another f, = 50 MHz TeO 2 AO de- in figure 1, the read light illuminating the OASLM
vice. A 1:1 telescope is used to reverse image the is modulated by the feature computed by the TPP
illuminated aperture of the first AO device onto the and integrated on the OASLM, and the resulting
second AO device, and the intervening Fourier plane schlieren filtered image is used as the input to the
is used to spatially filter out the undiffracted light, adaptive holographic classifier. Schlieren filtering re-
The doubly-diffracted light from these two AO de- moves the bias terms and demodulates a single side-
vices is similarly imaged and filtered with another band of the triple product integral from the spatial

carrier. A Hughes homeotropically-aligned nematic
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liquid crystal light valve (LCLV) is currently used In a single-layer neural classifier, the classifier weights
as the OASLM, although ferroelectric liquid crys- Wik for a set of orthogonal vectors can be computed
tal SLMs have also been used in the same role to using a single pass of a learning rule such as the Hebb
obtain faster response. Schlieren imaged AO TPP rule. In order to correctly classify non-orthogonal
outputs for two low-pass filtered radar range profiles features, iterative error-driven learning algorithms
are shown in figures 4e and 4f. can be used. 8  For each training epoch of the it-

erative procedure, the weights are modified by the

2.2 Adaptive photorefractive classifier outer product of the network error and the feature
vector i for each exemplar randomly selected with-

The adaptive volume holographic classifier im- out replacement from the training set of P signals.
plements a bank of correlators in which the matched In such a procedure, the weights after the first epoch
filter functions are represented by weights stored in of training are given by the outer product relation
a series of angularly-multiplexed volume holograms
in a photorefractive crystal. In this implementation P
of a linear machine, the angle of a plane wave ref- Wik = > Di x` (5)
erence beam represents the output class. Volume
holographic storage of the classifier weights using a
photorefractive crystal provides the advantages of where DP is the desired output vector that corre-

real-time adaptivity along with large weight capac- sponds to the J-th input signal S" which is trans-

ity and fully parallel weight accessibility. Classi- formed by the AO TPP in equation 3 into the inter-

fier weights Wij are stored using the interference mediate representation vector P' = C(S'). In a su-

between the triple autocorrelation for exemplars of pervised error-driven learning algorithm, repetitive

a specific signal class and the plane wave reference comparison of network outputs to the labeled train-
corresponding to that class. Using a dynamic holo- ing set inputs provides the corrections to modify the

graphic storage material allows the modification of stored weights using the generic weight update of
the stored weights which permits the implementa- equation Whew = WId + AWik. The gradient de-

tion of complex on-line learning algorithms. Pho- scent least-mean-square learning procedur used here
torefractive dynamics mimic weight decay, so an in- computes AWik = -p(Di - Oi)Xk to modify the net-

cremental recording scheme7 is used to store multi- work input/output mapping. Network performance

ple classifiers to equal diffraction efficiencies. When is monitored using the sum-of-squared-error met-ple~~~~~~~~~ ~~ ~~~ lsiir to eqa ifato fiinie.W e i:ae=-j1Dj - Oill' computed dr-
the stored weights are being read out, only the rela- ric: SSE = Z =1 Z jY=l
tively low power signal beam (schlieren imaged out- ter each epoch.

put of the OASLM) illuminates the photorefractive The feed forward optical training passes the

crystal. This readout beam is diffracted by the stored acousto-optically computed TPP feature of each

gratings into plane wave reconstructions at the ap- training signal through a thresholding square law

propriate angles. When the diffracted plane waves nonlinearity and interferes the schlieren image of the

are Fourier transformed onto a linear array of de- modulated LCLV output in the photorefractive ma-

tectors using a lens, each class corresponds to a dif- terial with a corresponding coherent plane-wave ref-

ferent spatial location on the detector array. The erence. On the first pass through the training sig-

detector output is compared with the desired out- nals, one appropriately scheduled exposure is made

put using a digital computer. In what follows, we for each schlieren-imaged AO TPP feature interfered

first describe the single-layer network and training with the desired reference beam at the predeter-

algorithm. Next, the optical implementation of the mined Bragg resolved angles to store these features

training procedure using photorefractive weight stor- in the photorefractive material with equal diffrac-

age is described. tion efficiency. 9 Subsequent training epochs require
With representing the input feature vector (with more complex exposure sequences based on incre-

O[N'] components lexicographically ordered in the mental pertubations to the existing weights. For
two spatial dimensions computed by the AO TPP), each pattern on the OASLM; the error for all L out-
g(...) representing the thresholding (activation) func- puts must be computed and all of the holograms will
tion, and Oi representing the i-th threshold level, the potentially need to be reexposed and the decay of
i-th output (of L) of the linear machine is given by the previously exposed holograms must be compen-

sated. Using multiple volume hologram storage dy-
(N 2  T namics,' 0 and assuming the reference beam is much

Oi(.) =g WikXk - Oi (4) stronger than the AO TPP pattern, the expression
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for the weight evolution is appropriate recorded hologram. Exposure time or
08W•k _amplitude modulation encodes the magnitude of the

Mt - aRi(t)x0(t) - fl(IlRill2 + Y Ijxk 12)Wik - error signal, and the sign of the error signal corre-
k sponds to the phase of the reference beam relative to

(6) the signal beam. To reinforce the stored hologram
The parameter ca represents learning gain and fl rep- representing an interconnection weight between two
resents decay or forgetting rate of the photorefrac- vectors, the hologram is re-exposed with the origi-
tive material. For subsequent epochs, the photore- nal set of input/output vectors. To erase an exist-
fractive material is exposed using the AO TPP fea- ing stored hologram, the reference beam with phase
ture of each signal in the training set sequentially delayed by rr-radians and at the appropriate angle
along with every reference beam thus xk(t) is held illuminates the photorefractive material along with
constant while each of the reference beams Ri(t) is a signal. In the cascaded systems discussed here,
appropriately exposed. The exposure time for these a voltage-controlled nematic liquid crystal variable
updates is a small fraction of the photorefractive waveplate shifts the reference phase by wr-radians for
material time constant modified by the product of selective, coherent erasure.
the magnitude of the corresponding error (Di - O)
and a learning rate p. The error term (DA - Oi) in 2.3 Computer control of the cascaded
the weight update expression can be bipolar so that system
either selective enhancement or erasure of individ-
ual weights may be necessary. Each reference beam A laboratory computer is used for control and
is used to enhance desired weights or is 7r-shifted some operation functions of the classifier. For exam-
to erase undesired weights, depending on the sign ple, the signals for the classification demonstration
of the computed error. To account for their inco- exist in the computer disk archive and are supplied
herent erasure during selective erasure of undesired to the cascaded classifier using an arbitrary wave-
weights, desired weights are given a small enhance- form generator. The computer controls all of the
ment during each epoch. The connection weights instruments necessary to implement the learning al-
incrementally approach the desired mapping until gorithm over a GPIB bus. This computer provides a
the measured performance exceeds a set threshold user interface and accomplishes the gradient-based
where training ceases. error driven learning algorithm to identify each of

Selective coherent erasure of photorefractively three radar range profile targets with the cascaded
stored volume holograms is accomplished by induc- optical classifier. User modifiable control parameters
ing a rr-radian phase-shift in the interference fringes (e.g. maximum number of epochs, minimum error
produced by the signal and reference beams in the threshold, etc.) permit tuning of the learning be-
photorefractive material and then re-exposing the haviour. The operation of the optical system can be
volume hologram. With the weights of a linear clas- monitored by the user during learning, and the com-
sifier stored as volume holograms in a photorefrac- puter tracks the initial classification performance af-
tive material, this process has been used to imple- ter one training epoch, the current classifier perfor-
ment an error-driven training procedure. Modifica- mance on the training set and the overall training
tion of many stored 'holograms is accomplished by performance over the training time using a learning
supplying a number of angularly multiplexed refer- curve which reports the sum of squared classifica-
ence beams whose phase and amplitude are inde- tion error. After the optical system has learned the
pendently controlled by error-signals Ej = (Di - Oj) training data, the user interface provides for testing
proportional to the difference between the detected using untrained radar data from the disk archive.
reference beams reconstructed by the stored holo-
grams and a desired target vector D during the
training cycle described above. The bipolar error- 3 Radar target classification
signal is interpreted in the following manner: pos-
itive values represent the need to reinforce a holo- Classification speed is a critical factor in a radar
gram diffracting incident light to a given angle; neg- t ification appiation. inglempulseocla
ative values represent the need to reduce the effi- sification of radar range returns is computationally
ciency of that hologram. To implement this bipolar intensive and may not be amenable to conventional
error-signal, it is necessary to vary the phase and DSP techniques, and so it is a valuable demonstra-
the exposure time of each reference beam in such a tion problem for the adaptive cascaded optical elas-
manner that they selectively reinforce or erase the sifter architecture. What follows is a review of the
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radar data used in the training and test sets and a driven learning scheme. Figure 5a shows normal-
summary of optical classification results. ized linescans from the* reconstructed plane wave

references focussed onto a detector array when the

3.1 Radar profile dataset trained classifier was tested using the training sig-
nals; these are the presynaptic outputs of the trained

The dataset used in these classification experi- optical system. When each training signal was pre-
ments were made available to us by the USAF Rome sented to the feature extractor the appropriate class
Laboratories. The radar data were taken using a was indicated by the strongest diffraction from the
linear-FM radar in the S-band (2-4 GHz). The radar volume hologram, allowing simple threshold detec-
waveform consisted of linearly chirped 77 psec pulses tion. Figure 5b shows the corresponding learning
with a 320 MHz chirp bandwidth (range resolution curve. Figure 6 shows representative normalized

- 2B- 0.5 m). Labeled 0.5 meter resolution range presynaptic outputs when the (5 meter data) trained
profiles were extracted from these data with the classifier was tested using a test set of ten head-on
radar acquisition hardware during illumination (see (±100 estimated) aspect aircraft radar range pro-
figures 3a and 3b for examples). Varying numbers files randomly selected from two different encounters
(ranging from 1 to 30) of individual pulse returns for each of the four target classes. When each test
were reported together with range azimuth and ele- profile was presented to the feature extractor, the
vation estimates extracted from radar antenna gim- appropriate class was indicated; 100 % correct clas-
bal position, as well as target aspect angle estimate sification of all profiles in the set of ten untrained
(±10deg) from radar tracking results. From the radar range profiles was demonstrated for each of
available data, 6 classes were sampled into indepen- the four classes of aircraft.
dent training, validation, and test sets. Training For optical networks trained over a shorter num-
data were randomly extracted from these available her of epochs, good generalization is still observed.
data; the results shown below use nominal head-on Figure 7 shows the generalization performance for
aspect training data only. The initial radar profile two trained optical networks, one for 1 meter resolu-
training sets for the adaptive classifier were low-pass tion data and another for 5 meter resolution data. In
filtered, resampled at a lower sampling rate (one the case of these the 1 meter data, training was shut
tenth), and normalized to maximum value to con- down after only three epochs to avoid overfitting,
struct two datasets which are used in the following and this network demonstrated 95% correct gener-
experiments. Two range profiles in the 5 meter res- alization over fourty untrained profiles. For the 5
olution training set are shown in figures 4a and 4b. meter resolution data, 80% generalization over un-

trained profiles was observed for training as short as

3.2 Isolated aircraft classification eight epochs.

from radar range profiles Unfixed holograms stored in a photorefractive
material can suffer "dark-intensity" mediated de-

In figure 4c and 4d, a small window of the cay, slowly erasing due to thermal processes. Var-
Schlieren-filtered outputs from the AO triple auto- ious techniques have been demonstrated to counter
correlator is shown for two of the radar range profiles the effects of dark decay including thermal fixing, 1 1

used in training the adaptive classifier. The triple electrical fixing, 1 2 amplification, 1 3 and periodic re-
autocorrelation representation is not an orthogonal- freshing. 1 4 In order to characterize dark decay in
izing transformation for general radar range returns, the cascaded optical classifier, measurements of the
however, it is reasonable to expect that this trans- classification performance on a test set were taken
formation provides more readily linearly separable over a period of several days following training. The
representations of the exemplars of radar range re- results of these measurements are shown in figure 8.
turns. Digital simulations of the triple autocorrela- Figure 8a documents that profiles in the test set
tion representation and the adaptive classifier have are properly classified at the end of training. Three
been used to motivate this assertion. hours after training, untrained signals were correctly

A typical optical classification experimental re- classified as shown in figure 8b. Figure 8c shows
sult of the cascaded system is shown in figure 5 for classification after 6 hours of dark decay. Even ap-
a one-of-four aircraft recognition problem using 5 proximately two days after training, 100 % correct
meter resolution radar profiles. Optically-computed classification of all untrained exemplars is demon-
triple product features of single pulse returns were strated. Although there is significant dark decay,
stored in the photorefractive crystal to equal diffrac- the trained classifier correctly identifies the training
tion efficiency using an incremental recording error- set properly even after dark decay. Stored hologram
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fixing using one of the aforementioned techniques [2] T. Turpin, "Time integrating optical proces-
would provide unlimited future classifications using sors," Proc. SPIE, vol. 154, Real Time Signal
these trained weights. Processing, pp. 196-203, 1978.

[3] A. Lohmann "Pattern recognition based on
triple correlation," Optik, 78 (3), pp. 117, 1988.

4 Summary [4] I.J. Abramovitz, N.J. Berg, and M.W. Casse-
day, "Coherent time-integration processors," inWe have constructed an adaptive multi-layer Acotisto-optic signal processing: Theory and

optical classifier system consisting of an electroni- im le et atio n, e. . ce rg, and J n.

cally reprogrammable AO triple product processor Marcel Dekker, NY. 1983.

cascaded through an OASLM into a volume holo- [5] C. Garvin, and K. Wagner, "Real-time sig-
graphic implementation of a linear machine with nal classification with an acousto-optic triple-
adaptive weights stored in a photorefractive ma- product processor cascaded into a volume holo-
terial. We have demonstrated that photorefrac- graphic classifier," Appl. Opt. 35(20), pp. 3937-
tively stored weights can be adaptively modified im- grahi cla A O 3 ) 9
plementing a gradient descent error-driven learning [6] L. Cohen, "Time-frequency distributions,"
paradigm. We have shown that this optical connec- Proc. IEEE, vol. 77 (7), pp. 941-981, 1989.
tionist system can be used for the classification of [7] Y. Taketomi, J. Ford, H. Sasaki, J. Ma, Y. Fain-
isolated aircraft targets using the triple autocorre- man, and S. H. Lee, "Incremental recording for
lation representation of their radar range profiles. photorefractive hologram multiplexing," Opt.
These results demonstrate the success of using the Lett., 2 (16), pp. 2427-79, November 15, 1991.
optical generalized linear classifier for real-time clas- [8] K. Wagner, and D. Psaltis, "Multilayer optical
sification of isolated aircraft targets using a single learning networks," Appl. Opt., 26 (23), pp.
radar range profile. 5061-5076, December, 1987.

More extensive characterization of the training [9] A.C. Strasser, E.S. Maniloff, K.M. John-
and generalization performance of this multi-layer son, and S. Goggin, "Procedure for recording
adaptive optical classifier is warranted. We intend multiple-exposure holograms with equal diffrac-
to examine the training and generalization perfor- tion efficiency in photorefractive media," Opt.
mance of the alternate time-frequency representa- Lett., 14, pp. 6-8, 1989
tions which can be computed using the AO TPP. Us- [10] D. Psaltis, D. Brady, and K. Wagner, "Adap-
ing feature evaluation techniques such as relevance tive optical networks using photorefractive
assessment and hierarchical clustering, other time- crystals," Applied Optics, 27(9), pp. 1752-
frequency feature sets (besides the triple autocorre-
lation) will be examined using a model of the multi- 17 1 May 1988.[11] J.J. Amodei, W. Phillips, and D.L. Staebler,
layer optical classifier before attempting to imple- "Improved electrooptic materials and fixing
ment them optically. Additional radar training sets techniques for holographic materials," Appl.
will be examined (including distributed radar tar- Opt. 11, pp 390-396, (1972).
gets) to explore the applicability of this optical sys- [12] Y. Qiao, S. Orlov, D. Psaltis, and R.R. Neur-
tem to other classification tasks. gaonkar, "Electrical fixing of photorefractive

holograms in Sr 0 .75Ba 0 .25Nb 206," Opt. Lett.,
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Figure 1: Cascaded optical classification network schematic: AO triple product processor cascaded
through a liquid crystal light valve (LCLV) into a holographic classifier with weights stored in a
photorefractive crystal (PR xtal).
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Figure 2: Acousto-optic triple product processing architecture.
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Figure 3: Two characteristic radar range profiles from 1987 Pairs airshow dataset; all profiles are
all taken with head-on aspect (±100): a. type 7; b. type 9.
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Figure 4: Low-passed radar range profiles of: a. type 1 aircraft; b. type 9 aircraft; and optically
computed triple autocorrelation of: c. type 1 aircraft; d. type 9 aircraft.
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20-pt profiles training Learning Curve
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Figure 5: Training set performance for 5 meter data (single pulse return for each of four aircraft):
a. typical presynaptic output; b. learning curve.
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Figure 6: For all possible shifts of the input signals from the untrained testing set, 100 % correct
optical classification of four radar range profiles from 1987 Pairs airshow dataset is demonstrated
using the cascaded processor.
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training sets: one head-on (1.Om and 5.0m) profile of each of four
classes

test sets: ten head-on (1.Om and 5.0m) (±100) profiles of each of
four classes

c .Om profiles 5.0m profiles
class 1 class 2 class 3 class 4 class 1 class 2 class 3 class 4

class 1 10 0 0 0 class 1 8 1 1 0
class 2 0 9 1 0 class 2 2 8 0 0
class 3 1 0 9 0 class 3 0 4 6 0
class 4 0 0 0 10 class 4 0 0 0 10

Figure 7: Confusion matricies for cascaded optical classifier trained using 1.0m and 5.Om resolution
radar profiles and tested using ten untrained profiles for each class.
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Figure 8: Optical classification of 5.Om profile test set a) immediately; after dark storage: b) 6
hours; c) 45 hours; d) generalization score over decay time.
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TARGET IDENTIFICATION IN THE FREQUENCY DOMAIN

S. K. Wong, S. Kashyap, A. Louie, S. Gauthier and E. Riseborough

Defence Research Establishment Ottawa
3701 Carling Ave.

Ottawa, Ontario
Canada KIA 0Z4

ABSTRACT capability. To improve identification
capabilities and to ensure high confidence in

An alternative approach to the development of positive air target identification, advanced
an identification algorithm for non- techniques for non-cooperative target
cooperative target recognition (NCTR) is recognition (NCTR) are of great interest to the
presented. Instead of making use of the military. For example, in times of conflict and
features from the conventional range profile of crisis, a positive identification on what is
the unknown target, information in the detected is crucial to determining the
frequency domain is utilized in the appropriate response. Because of the present
identification process. The frequency domain inability to solve the identification problem,
algorithm developed in this paper uses the very inflexible airspace control orders are
same High Range Resolution (HRR) based currently invoked which often seriously
data as in the conventional range profile restrict the full exploitation of the very
analysis. A number of preprocessing powerful weapon systems available.
requirements that are needed in the Moreover, past experience indicates that there
conventional HRR range profile analysis can is a need for proper defence of high-value
be eliminated by working in the frequency assets such as naval vessels from potential
domain; for example, range profile hostile attacks, while at the same time
localization, alignment with library references, preventing fratricide.
background noise floor determination, Jet
Engine Modulation signal removal, I/Q in- Identification based on High Range
phase and quadrature gain and phase Resolution (HRR) range profiles is looked
imbalance checks and target velocity upon as a highly promising technique for
compensation. Thus the identification process NCTR. HRR offers a very simple and rapid
can be made more efficient and has a greater way to characterize an air target through the
potential to achieve real time operation. A use of radar range profiles; this range profile
template matching algorithm has been is essentially a 1-D radar image of the target.
developed for target identification. Highly It has an all aspect capability. The signal-to-
accurate identification has been obtained even noise ratio requirement is moderate; positive
when the input signal to noise ratio is as low identification may be performed at maximum
as two. An eighty-six percent over-all detection range and only a very short dwell
identification rate has been achieved, time is required. This technique is applicable

to a wide range of a new generation of ground,
naval and airborne radars.

1. INTRODUCTION Virtually all HRR-NCTR
identification analysis found in the open

The ability to recognize targets literature uses range profiles. Since the
quickly, at long distance and under all frequency domain is complementary to the
weather, day or night conditions has the range (time) domain in the HRR analysis, we
potential to greatly enhance battle or defence propose to investigate NCTR identification

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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algorithms in the frequency domain as an A SFWF consists of a sequence of
alternative to the conventional range profile temporal radar pulses transmitted with a fixed,
approach. Moreover, HRR-based in-phase uniform change in frequency from one pulse
and quadrature data are already in the to another. Each pulse within the train of
frequency domain; thus, it seems natural that pulses has a relatively narrow bandwidth (< 1
NCTR in the frequency domain should be MHz). The total effective radar bandwidth is
exploited. It has already been recognized that determined by the product of the frequency
NCTR analysis can be more efficient in the step size and the number of frequency steps in
frequency domain (Refs. 1, 2); but there has the train of pulses; i.e.,
never been any detailed study reported in the = NAf
literature.

In this paper, a detailed examination of
HRR-based target identification will be given, where N is the number of frequency steps and
A background on HRR-based target signatures Af is the frequency step size between adjacent
is given in Section 2. We will discuss some of emitting carrier frequencies. The resulting
the problems one could expect to encounter in range resolution of the SFWF HRR range
working with the HRR range profiles and profile is given by,
what kind of preprocessing is required to
prepare the HRR range profile for target AR = (2)
recognition in Section 3. To mitigate, or to 213
eliminate some of these problems, we
propose, in Section 4, a more efficient
approach to target recognition by working in where c is the speed of light. For example, if
the frequency domain using the same HRR the effective bandwidth 03 = 500MHz, the
based data. A detailed description on how the range resolution of the target is 30 cm.
frequency domain analysis can overcome the
preprocessing problems encountered in HRR
range profiles will be discussed. A target The SFWF produces a range profile
identification algorithm based on analysis in from a phase shift generated by means of a
the frequency domain will be given in change in the frequency of the transmitting
Sections 5 and 6, and results of the radar pulses. Assuming the velocity of the
identification analysis will be presented in target is negligible, the range to target from
Section 7. the SFWF process is given by

2. HIGH RANGE RESOLUTION Ro A (3)
(HRR) STEPPED FREQUENCY 4n Af
WAVEFORM

There are several ways to generate where AO is the phase shift and Af is the
HRR-based target profiles; for example, short frequency step size of the SFWF. Since the
temporal pulses, frequency modulated pulse phase change is cyclic, ambiguity will exist
compression, and stepped frequency for AO = AO + m27r; that is to say,
waveforms. Because of the technology and c A( c m2n
the flexibility associated with stepped R- = -_ + e m2_
frequency wave-forms (SFWFs), many radar 47, Af 47r Af
systems are using SFWFs in the HRR imaging (4)
process. SFWFs remove the requirements for = Ro + m-
wide instantaneous bandwidth and high A/D 2Af
sampling rates. Moreover, SFWFs are
particularly well suited to phased array radar
systems, which have relatively narrow
instantaneous bandwidths.
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where m is an integer (e. g., m=1,2,3 ...). where 47rfR/c is the phase delay due to the
Thus, a HRR target range profile will appear range target; 4nfvt/c and 2nrfat2/c are the
inside an unambiguous range window defined phase delays due to the radial velocity and
by radial acceleration of the target along the line

of sight of the radar receiver respectively. The
Ru = c (5) phase information is obtained by mixing the

2Af received echo with a reference sample of the
transmitted signal (in difference frequency
mode) on a pulse to pulse basis because of the

The location of the target profile inside the change in frequency from pulse to pulse. This
unambiguous window depends on the amount restricts the PRF operation of the SFWF-
of frequency shift that is produced by the HRR operation by allowing only one pulse '"in
scatterer on the target; this is known as the the air" at any one time. The PRF depends on
induced phase shift frequency. Furthermore, the maximum radar detection range desired;
the periodic nature of the range profile, which for example, to obtain a maximum detection
is a consequence of the phase, means that part range of 75 km, the SFWF operation would be
of the target can "wrap" around the same limited to a maximum PRF of 2 KHz. A
unambiguous window and the target appears limited PRF operation has a couple of
to break up into two pieces; this is known as consequences. A low PRF means an increase
aliasing. Thus a check has to be performed to in radar dwell time in collecting the HRR
correct for any aliasing effect since this data. Moreover, a lower PRF increases the
creates potential problems in localizing the ramp repetition interval (RRI), demanding a
target range profile within the unambiguous more stringent velocity compensation. For
window. This is important because the input example, if the target's velocity is significant,
HRR target profile has to be aligned with a broadening of the HRR range profile will
reference profile in the target identification occur as a result. Figure 1 shows a computer-
process (Ref. 3). model generated range profile of a F 16 aircraft

with radial velocities v=0, 20, 300 m/s
respectively. The shifting and broadening of

3. PREPROCESSING FOR HRR the target's range profile as a result of the
RANGE PROFILES target's velocity are quite evident. The results

shown in Figure 1 suggest that velocity
In processing the SFWF to obtain a compensation to within at least 20 m/s is

HRR range profile, other problems also required to restore the fidelity of the range
emerge; corrections have to be made before profile sufficiently for identification
the target identification process can proceed. processing.
In collecting the I and Q samples from each
pulse in the SFWF, coherent detection is Problems may also arise from the
employed to extract the relative phase from generation of the I,Q in-phase and quadrature
the target echo. The I and Q in-phase and data. The HRR profile may be distorted if
quadrature signals detected are defined as, there is any imbalance present in the I,Q

I = AcosOquadrature phase and/or gain caused by the
Q = A os0 (6) I,Q network being off calibration. In addition,

if there is a d.c. offset in the quadrature
network, another error may be introduced.
Figure 2 shows the error introduced to the F16

where A is the detected radar echo amplitude range profile due to gain imbalance; spurious
of the radar return; 0 is the relative phase peaks appear in the profile as a result of gain
between the echo return and the outgoing imbalance. Similar distortion is produced by
pulse reference and is given by, phase imbalance and these two effects are

additive in the range profile. Furthermore,
0 R-vt - at(7) d.c. offset in the I,Q signals also introduces

,2 spurious peaks. To summarize, potential
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problems in the calibration of the I,Q signals operational NCTR system, accurate
will manifest themselves as spurious identification and real time operation.
scatterers, corrupting the HRR range profile if
checks are not made. The real time constraint and various

preprocessing requirements associated with
Noise constitutes a part of any signal. HRR range profiles provide motivations to

In the HRR range profile, noise in the signal look for an alternative method to perform
gives rise to a "noise floor" that can mask the target recognition. However, it must be
presence of some of the weaker scatterers in emphasized that we want to keep the HRR-
the range profile. The noise level has to be based data for analysis because they provide
determined from the HRR range profile to an all aspect capability and HRR is
establish a threshold level for the compatible with a wide range of radar
identification process to "see" above the noise, systems. We are interested in eliminating or
Rotating parts in an aircraft target such as the mitigating some of the problems in signal
compressor blades and the turbine blades of processing encountered in HRR range
the engines produce extraneous components to profiles. At the same time, we are looking for
the I,Q signal known as JEM (Jet Engine a more efficient way to process target
Modulation). The JEM component introduces recognition in real time. Processing in the
spurious peaks in the HRR range profile (Ref. frequency domain of the HRR-based data
4). Doppler filtering has to be performed to offers solutions to the problems mentioned
remove the JEM signal from the input to get above. We will discuss in detail how some of
rid of the spurious JEM lines in the HRR the problems encountered in the range profile
range profile. To summarize briefly, there can be solved by working in the frequency
are a number of preprocessing requirements domain.
that must be dealt with before target
recognition can proceed when working with
the HRR range profile. These are: 4. FREQUENCY DOMAIN ANALYSIS

1. Localization of target profile in the Since the HRR-based data in SFWF
unamngibuous window, are collected in the frequency domain (i.e. I,Q

2. Target radial velocity and acceleration quadrature pair at each frequency), it seems
compensation. more logical to work directly with the

3. I,Q phase and gain imbalance checks frequency data. The amplitude of the radar
and corrections. echo, detected at a given frequency of the

4. Noise floor determination from the SFWF, is chosen as the working parameter.
input range profile. Unlike in the HRR range profile where

5. JEM signal removal aliasing can occur, there is no aliasing in the
6. Target profile alignment with library frequency domain; alignment of frequency

reference. spectra between the input frequency profile
and library reference profiles is automatically

Furthermore, a practical NCTR system done since the echo amplitude is expressed as
must be able to identify a target in real time. a function of frequency. Furthermore,
Real time may be loosely defined as the time working with the frequency spectrum, there is
taken to identify the target between the range no need for velocity and acceleration
when the target is first detected and the compensation of the target. This is because
maximum weapon system range of the there is no phase information contained in the
defence platform. Depending on the target's frequency spectrum; i.e., the detected echo
speed, heading and the range where the target amplitude
is detected, real time can be anywhere from i2
10-20 seconds to 2-3 minutes. In the context A = +2
of NCTR, real time is generally considered to A 2 (COS20 + sin%) (8)
be a duration of less than one minute. Thus,
there are two parallel requirements for an
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where cos20+sin2 0 = 1. produces a more or less flat spectrum as a
function of frequency. The coherent term is a

It may be a contentious issue whether consequence of spatial interference effect due
phase information is really needed in target to different path lengths from different parts
identification. Reviewing briefly, the phase of the target. Thus the coherent term, which is
information contained in the I,Q in-phase and a function of the relative phase difference,
quadrature data is essential when an inverse produces distinctive frequency spectra
Fourier transform is performed to obtain the because of the different geometric
range profile. This is because it is the phase distributions of the variable R for different
variations among different scatterers on a target types (see Equation (10)). Moreover,
target that separate the scatterers along the different radar reflectivities from various parts
range axis in obtaining a distinctive range of the target (i.e. the A's in the second term of
profile. It can be argued that the frequency Equation (9) ) also contribute distinctive
spectrum also provides a distinctive signature variations to the frequency spectrum for
of the target; the absence of phase information different target types. Figure 4 shows the
is thus irrelevant when working in the computer-model generated frequency spectra
frequency domain. To see how a distinctive of two different aircraft ( F- 16, F- 18) at the
signature is embedded in the frequency same aspect orientation.
spectrum, let us examine the signal amplitude
detected at each frequency. The radar echo Another interesting aspect of working
amplitude is the sum of all contributions of in the frequency domain is that the notion of
the reflected radar signal from various parts of range resolution no longer has any meaning.
the target, i.e. Range resolution is only relevant to the HRR

range profile for resolving the location of the=(z'Ai eJ4")( Ai -e -j4) major scattering centers. Recall that in order

to attain a certain level of range resolution in
A~ AA + 2AjA, cos (4j- (9) the HRR range profile, a given number of

j<i i pulses and a given frequency step size are
required as given by Equation (1). However
working in the frequency domain, the number
of frequency data points are flexible and can

where Ai is the reflected electric field be adapted to the PRF used and the radar
amplitude from the i-th patch of the target in dwell time available. One could have a larger
which the target is divided into many patches or a smaller piece of the frequency signature
to describe the variations of radar return from of the target; the subsequent identification
different locations of the target ( see Figure 3). process would be relatively insensitive to the
The relative phase difference between the i-th size of the frequency spectrum. Moreover, the
patch and the j-th patch is given by size or length of the target has no role in the

frequency spectrum; hence the SFWF does not
0 -i - 4t (Ri - Rj) (10) have to slave to a certain frequency step size

C Af to conform to a desired unambiguous
"viewing" window (Equation (5)) as in the
case of the HRR range profile.

where R1 and Rj are the distances of the i-th
and j-th patches on the target to the radar In the real world, any detected or
receiver respectively. Note that the relative processed signal will be contaminated with
phase difference is a function of frequency noise to some extent. We will examine how
and is independent of the target's motion. much the noise plays a role in the
Thus the detected radar echo is composed of identification process. A random noise
a non-coherent part ( the first term in Equation, waveform can be added to both the I and Q
(9)) and a coherent term ( the second term of channels of the target signal in the form,
Equation (9) ). The non-coherent term is
relatively insensitive to frequency; hence it



19-6

S, ) Kr(J) 5. TARGET IDENTIFICATION

SQ(f) = Q(f) + Kq(J) (11) ALGORITHM

To decide which classification method
would be the best one for an operational
NCTR system, there are two major issues that

where r and q are two independent random must be considered, identification accuracy
noise vectors as a function of frequency and real time operation. As a general rule of
varying from +1 to - 1. K is a scaling factor thumb, the more computationally intensive the
that gives any desired signal to noise ratio algorithm, the better the identification
(SNR). In the frequency amplitude parameter, accuracy tends to be. However, in order for

A the NCTR system to be operational, it must
SNR - r,, (12) function in real time. Depending on the

(Kp)r,, number of target types, the number of
permutations of configuration for each target
type, the sizes of the azimuth and elevation

where A = + Q2 , p = r2 + q2 and the angle ranges in a search, the number of
subscript rms denotes root mean square value. signatures that have to be searched can be
In applying a random vector to r and q, we quite substantial (approximately on the order
assume that the noise waveform is white and of 10' to 10). Under the two simultaneous
non-Gaussian, i.e. the noise amplitude is requirements of high accuracy and real time
random in distribution and uncorrelated in operation, we believe that cross correlation
time ( frequency here because the SFWF may offer the best solution to the
sweeps the frequency in time). It is found that identification problem. Cross correlation is a
it is much easier to work with noise in the template matching technique. It is simple and
frequency domain than in the range domain, has an intrinsic parallel algorithmic structure;
When the noisey I,Q signals are transformed hence it is very efficient and can readily meet
to the range profile, it can be shown that even the real time criterion. In relating to the
at a modest noise level (in I,Q), some of the Bayesian analysis, the cross correlation
less prominent scatterers in the range profile function is essentially the likelihood function.
are already overwhelmed by the noise floor; A more detailed discussion on how the cross
but in the frequency domain, the spectrum is correlation emerged from the Bayesian
still quite distinctive. This is illustrated in formalism is given by Smith and Goggan
Figure 5. (Ref. 5).

JEM signal can also present a problem 6. CROSS CORRELATION
in the HRR range profile; it shows up as FUNCTION
spurious scattering peaks. Thus the JEM
signal has to be removed from the range The cross correlation between two
profile so that it will not corrupt the signature functions F and G is defined by,
and degrade the identification process. In the
frequency domain, the JEM signal resembles CFG(m) = I [F(i) G(i-m)] (13)
scintillation noise. superimposed on the target
signal (Ref. 4). Treating JEM signal as noise
in our identification algorithm, we will show
later that the presence of JEM and noise where i and m are the abscissa coordinates.
would not adversely affect the identification We sum over all i components within the
of the target in the frequency domain, domain of the translated template. Thus, the

cross correlation is used as a measure of the
similarity between the template and the region
of the unknown input in the vicinity of m. It
should be noted here that both the functions F
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and G are normalized functions. We define functions in this manner makes the template
the normalization of a function f as, matching process very sensitive to pattern

f(i) changes and provides rather good
F(i) - (14) identification accuracy.

7. NUMERICAL RESULTS OF THE
IDENTIFICATION ALGORITHM

such that
A survey of the literature indicates that

>,F(i)0= ____ =1 15 the most practical approach to target
_" fQ))(5 recognition would be a system in which the

unknown target signature is matched against
reference signatures generated by computer
model computations. There are at least two

i.e., the area under the normalized function is reasons why the computed signatures are
1. We choose to normalize the functions in needed to serve as library references:
the cross correlation function defined in the
manner above instead of using the 1. It will not be possible to establish a
conventional Cauchy-Schwarz inequality database by real measurements that
definition (Ref. 6). Normalization in this satisfy the needs for sufficient data
manner is intended to accomplish two under all possible aspect and elevation
purposes. First, in order to identify a given angles and for all possible target types.
target, the detected signature of the target 2. Hostile targets are not normally
should be independent of the range at which it available for measurements.
is detected, the transmitted power of the radar
pulses and the sensitivity (i.e., dynamic range) In this paper, we have generated target
of the receiver. We look for a normalized signatures using the XPATCH
waveform that is invariant to the "radar electromagnetic code. HRR-based data were
equation" given by, Pr - Pe /R4, where Pr is the generated for representing different target
received power, P. is the transmitted power types such as the F16, F18, F4 and F14. A
and R is the distance to target. Second, the total of 570 signatures were computed at
normalization definition given in Equation different aspect angles from 0 to 180 degrees,
(15) gives the average value of function F as, spanning the frequency range from 10.0 to

N 10.6 GHz. These have been stored as library
E F(i) reference templates. Each of the model-

avg N i=1 t 1 (16) generated signatures takes a considerableF~g- N N amount of time to generate; thus it takes a
sizeable effort to compile a very large set of

signatures. To generate a large number of
signatures in the library, an alternative means

where N is the number of data points. It is of generating pseudo target signatures quickly
important to note that all functions F, was employed. A further 6200 "bogus"
regardless of target types, will have the same signatures were added to the library database
average value given by Equation (16); that is to simulate a large file search environment for
to say, signatures of different target types the algorithm. These bogus signatures were
fluctuate about the same average value, generated for a dummy target with a random
Hence, template matching using cross parameter for the number of scattering centers
correlation of the normalized signatures (i.e. target may have 5 to 15 scattering
defined above is effectively a measure of the centers) and a random length parameter (i.e.
deviation from a common average value from 10 to 30 meters). The larger library database
both the input and the library reference. It provides a more stressing search environment
turns out empirically that normalizing the to test the algorithm. To test the identification
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rate, the algorithm was required to identify However, if the input signature did not already
correctly the target type and aspect angle; the have a reference in the library, the
algorithm must pick out a correct match from identification rate depended on whether the
a database of 6750 reference profiles. Since library database was adequate. It would be
we do not have any real target signature helpful to expand on what is meant by having
available as input at present, we use some of an adequate library. The library contained
the computed signatures as unknown inputs, target signatures with a given aspect angle
Some of the signatures were already in the increment size; initially, an aspect increment
database; some were not in the database but of 0.20 was used. This angle increment
required the algorithm to come up with the seemed to be satisfactory, for most aspect
closest match from the database. Non- angles, to achieve a high identification rate.
Gaussian white noise was added to the test But at some target aspects (for example, near
input signatures giving SNR as small as 2 nose-on for the F 16), the 0.20 increment in the
(i.e., 3 dB). Figure 6 shows an example of the reference library was too coarse; the correct
signatures before and after the addition of identification rate suffered considerably and
noise. was only -50% (9 out of 20 tries).

Ad hoc factors are added to the cross Intuitively, the problem of high mis-
correlation function in Equation (13). The ad identification rate using a 0.2 degree aspect
hoc factors are designed to measure the increment in the library can be attributed to
relative change between the input and the having too many similarly correlated matches
reference signatures with respect to the between the library reference templates and
common average given by Equation (16) and the input signature. It seems reasonable to
to track any prospective large random believe that subtle differences in the target
fluctuation from the noise. These factors help matching can be further differentiated by
to improve the template matching accuracy in using a finer angular increment in the library
the identification process. The cross templates. When we reduced the aspect
correlation CFG is modified as, increment in the library to 0.1 degree, the

C ) [F(i) G(i-m) Q(F(i),G(i-m)) correct identification rate increased back up to
, (17) 90% (9 out of 10 tries) in the aspect regions

R(oQ(F), o2 (G))J where the identification rate was zero before.
This confirms our conjecture that better
discrimination in the target matching may be

where Q and R are metric relations between F possible by refining the aspect angle
and G and a' is the variance. Although the ad increment in the library. However, there is a
hoc factors can be perceived as parameters penalty we have to pay for reducing the angle
without any clear underlying rationale in the increment; with a two times finer angle
view of orthodox or conventional statistics, increment, the computational and memory
this approach is frequently applied in practice requirements increase by a factor of four.
(Refs. 6,7). This is because both the aspect and elevation

angles must be refined in a real system.
Over 100 different test target Although from the example above, refined

signatures at various aspect angles with increments are needed only at some aspect
various amounts of noise added were tried as angles; it is anticipated that different target
inputs. Results from the identification types would behave differently at different
algorithm indicate that 100% correct aspect angles. Hence, the angle increment
identification was achieved (i.e., 100 out of refinement must be applied uniformly at all
100 tries) as long as there was already a angles for all target types.
signature in the library database. Correct
identification was achieved even if the input Increases in the amount of
signature had a SNR as low as 2. For computation and memory required to
example, the noisy inputs similar to the one accommodate finer angular resolution are
shown in Figure 6 were identified'correctly. substantial; this makes real time operation
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become much more difficult to realize. Any The positive results above using a
increase in computational time has a negative coarser aspect increment in the library
impact on the effectiveness of an operational template files indicate that there could be a
NCTR system; the time taken to identify a significant impact on an operational NCTR
target is just as critical as the accuracy of the system. By increasing the library angular
identification process from a practical point of increment size from 0.1 degree to 0.5 degree
view. This dilemma motivatesus to look for but still retaining reliable accurate
an alternative approach. Instead of decreasing identification, there is a corresponding saving
the size of the aspect angle increment to in computational time and memory capacity
further discriminate subtle differences, it can requirements by a factor of about 25. With
be argued that increasing the aspect angle this scale of reduction in computing
increment size in the library can also help to requirements, a real time (less than one
reduce the number of similarly correlated minute) NCTR system is within reach. To
matches by simply having fewer templates to illustrate with an example, consider that an
compare. We embark on increasing the unknown target has to be searched in a 5
angular increment of the library templates to degree (azimuth) by 5 degree (elevation)
0.5 degree between signatures and we force sector. Using the 0.5 degree increment in the
the input signature to match the closest library, this corresponds to 100 searches per
template in a coarser set of library templates. target type. Suppose there are 20 different
As described previously, the frequency target types and each target type has 5
amplitude profile is a sensitive function of the different possible configurations; a modest
aspect angle change due to the speckle effect, size NCTR system thus has to search through
From Equation (10), it is noted that the 10' library templates to make an
relative phase is a function of both the identification. The current test algorithm
frequency and the geometrical location of the described here searches through 6750 library
scatterer relative to one another on the target. templates and takes 190 seconds to compute
We may interpret that a small aspect change the most probable identification on a SUN
corresponds to a slight shift in the relative sparc 1000 computer. This includes the
locations of the scatterers. It can be argued reading of 6750 library profiles from external
intuitively that for a small aspect rotation (say memory which takes up 80 of the 190
less than 0.5 degree), the relative phase can be seconds. All the computations in the
kept relatively unchanged by shifting the algorithm are done sequentially. By
frequency slightly to compensate for any reprogramming the algorithm in a parallel
change in the geometrical orientation of the structure and running it on a faster machine, a
target. This is in fact largely confirmed to be factor of 5 in reduction in computing time
the case from examining the computed should be attainable without much technical
frequency spectra. difficulty with current computing technology.

Making use of this fact to force a best The tolerance of the algorithm to high
match, the input signature was shifted 5 noise level in the input signature also has
frequency bins in both the left and right another benefit. JEM signals embedded in the
directions with respect to each of the library frequency spectrum display characteristics
templates in computing a correlation value that are very similar to those of scintillation
(i.e. -5_•m_<5 in Equation (17)). The algorithm noise. In our approach, we treat the JEM
then computed the most likely target that gave signal as if it is another source of noise in the
the best match with the input. Computed input spectrum. No additional processing is
results indicate that 30 out of 35 tries (86%) required to remove the JEM signal; hence this
were correctly identified. When the input represents an extra level of efficiency in the
signature was not frequency shifted (m=0) to identification algorithm.
maximize the correlation, the identification
rate fell dramatically.
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8. CONCLUSION approaches for high range resolution
radar", SPIE Vol.1700, "Automatic

We have proposed an alternative Object Recignition II", p.146, 1992.
approach to the development of target
identification by analyzing the frequency 2. K. B. Eom, "Non-cooperative target
domain of the HRR-based data. There are classification using hierarchical
many advantages in taking this approach: modeling of HRR radar signatures",

Proc. SPIE, Vol.2757, pp.194-205,
1. It eliminates signal pre-processing, 1996.

thus reducing error and distortion
introduced to the data before 3. D. Iny and M. Morici, "Quantitative
identification processing. analysis of HRR NCTR performance

2. This approach simplifies the system drivers", Proc. SPIE, "Radar Sensor
hardware; i.e. the possibility of Technology", pp144-152, April, 1996.
eliminating the quadrature network. It
allows an incoherent mode of radar 4. M. Moruzzi, M. Fuentes and J. P.
operation, hence offering more Henry, "Experiment of high range
flexibility in the radar waveform, e.g., resolution techniques with a long
number of pulses transmitted per range multifunction radar",
SFWF scan, size of the frequency step International Conference on Radar,
size, higher PRF operation. PP257-262, Paris, France, May 1994.

3. It tolerates high noise level and JEM
signal contamination; this is important 5. C. R. Smith and P. M. Goggans,
in an operational environment. "Radar Target Identification", IEEE

4. It permits an efficient parallel Antennas and Propagation Magazine,
structured algorithm that can be Vol.35, No.2, pp.27-38, April 1993.
implemented both in the hardware and
software of the computing processor 6. R. 0. Duda and P. E. Hart, "Pattern
and has potential for meeting the real Classification and Scene Analysis",
time requirement. John Wiley and Sons, New York,

5. It could permit rapid target insertion 1973.
capability in the field to support a
flexible and sustained deployment of 7. D. S. Sivia, "Data Analysis, a
the NCTR system; i.e., the library Bayesian Tutorial", Clarendon Press,
needs only I,Q in-phase and Oxford, 1996.
quadrature data (coherent mode) or
frequency amplitude data (non-
coherent mode) without any
preprocessing or training of the library
set.

The numerical simulations conducted in this
paper have demonstrated a high identification
rate can be achieved using the cross
correlation method in the frequency domain.
Real time operation may also be attainable.
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Figure 1 The HRR range profile of a F-16 target with different radial target velocities along

the radar's line of sight. (Target aspect = 0 degrees).
solid: v=O m/s; dashed: v=20 m/s; dot-dashed: v=300 m/s.
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Figure 2 The effect of I,Q gain imbalance on the F-16's HRR range profile.
Gain ratio, G = A /AQ
solid: G=I (no gain imbalance), dashed: G=1.5.
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Figure 3 Model of the F- 16 target for computing the scattering return from the aircraft.
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Figure 4 Frequency spectra of two different aircraft at 0 degree aspect.
solid: F-16; dashed: F-18.
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Figure 5a HRR range profile of the F-16 target (aspect = 0 degrees).
solid: no noise included; dashed: signal with noise added, SNR=25.
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Figure 5b Frequency spectra of the F- 16 target (aspect = 0 degrees).
solid: no noise included; dashed: signal with noise added, SNR=25.
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Figure 6 Frequency spectra of the F-16 target with and Without noise added (aspect = 4
degrees).
solid (thick): signal, dashed (thin): noise; solid (thin): signal+noise, SNR=2.
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1. SUMMARY a nearest neighbour classifier) is that the classifier
will in general form part of a hierarchical decision

This paper considers a mixture model approach making process. Classification is not an end in itself

to automatic target recognition using high resolution and will lead to some actions. Cost of making deci-

radar measurements. The mixture model approach sions will need to be considered. Also, supplementary

is motivated from several perspectives including re- domain-specific information (such as intelligence re-

quirements that the target classifier is robust to am- ports) may need to be combined with sensor-derived

plitude scaling, rotation and transformation of the results in the decision making process. Therefore it is

target. important that a classifier gives some measure of con-

Latent variable models are considered as a means fidence that a pattern belongs to a particular class.

of modelling target density. These provide an ex- This is provided by the probability of class member-

plicit means of modelling the dependence on angle of ship.

view of the radar return. This dependence may be The most common measure of the performance of
modelled using a nonlinear transformation such as a a classification rule is misclassification rate or error
radial basis function network. rate. Error rate suffers from several disadvantages

A more simple model with separate components [17]. Error rate is deficient in that it treats all mis-
is considered. Estimation of the model parameters is classifications equally and does not distinguish be-
achieved using the expectation-maximisation (EM) tween p(jlx) = 1 and p(jlz) = 0.51, which for a
algorithm. Gamma mixtures are introduced and the two-class case results in the same classification; that
EM re-estimation equations derived. These mod- is, it does not distinguish between estimates of the
els are applied to the classification of high resolution probabilities of class membership that are close to
radar range profiles of ships (where results are com- the threshold of 0.5 and those far from 0.5. Also,
pared with a previously-published self-organising error rate does not distinguish between a rule that is
map approach) and ISAR images of vehicles. bad because classes heavily overlap in data space or

a rule that is bad because probabilities of class mem-

2. INTRODUCTION bership are poorly estimated. Discussion of classifier
performance assessment is beyond the scope of the
current paper and has been treated elsewhere [17].This paper develops work in [16] and addresses the

problem of automatic target recognition using mix- However, estimation of the posterior probabilities,
ture models of radar target density and applies these p(j~x), through estimation of the class-conditional
models to the classification of radar range profiles densities, p(xlj) and Bayes theorem (1) is not with-
of ships and ISAR images of vehicles. Our aim is out its difficulties. The main difficulty is in the es-
to obtain an estimate of the posterior probability of timation of target densities for data lying in a high-
class membership, p(jjx), for class j and measure- dimensional space. For the range profile data consid-
ment vector x. We seek to achieve this via Bayes ered later in this paper, the data vectors xi lie in a
theorem, 130-dimensional space (xi E iR,30 ) and nonparamet-

p(xlj)p(j) ric methods of density estimation (for example, ker-
p(jIx) = Sp(x I)pU) (1) nel methods) are impractical due to the unrealistic

amounts of data required for accurate density esti-
mation. An alternative approach is to trade flexibil-

where p(xlj) are the class-conditional densities and ity for robustness and to use some simple parametric
p(j) are the class priors. The reason why we seek di- forms for the densities (for example, normal distri-
rect estimates of p(jlx) rather than to design a clas- butions) for which good estimates of the parameters
sifier with class decisions as the output (for example, may be obtained. Yet these may impose too much

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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rigidity on the allowable forms of the density. We do this through mixture distributions.
The variance in the estimates of the parameters We shall assume that data are gathered on each

of a simple model may be lower than that of a of C target types as a function of aspect angle. For
more complex model, but it would be expected to simplicity, we assume a single angle coordinate (data
yield biased probability estimates for much of the x gathered as a function of azimuth at a fixed elevation)
space. However, if simple classification is the main although in principle azimuth and elevation may be
aim, then bias may not be relevant: the best achiev- considered. The data comprise radar cross section
able classification results will be obtained provided range profiles and a set of d measurements corre-
3(ilx) > f•lx) whenever p(ilx) > p(j•x) (see, for sponding to d range gates encompassing the target
example, [7]). is extracted'. Thus, for each class, j, the training

Alternatively, we may estimate the posterior prob- data set is {xi, i = 1,..., Nj; x E IRdI, where Nj is
abilities of class membership directly through a dis- the number of patterns in class j. The xi are usually
criminative function approach such as a neural net- ordered by angle. On test, we cannot assume that
work. These models provide approximations asymp- we know the physical position of the target precisely.
totically to the probabilities of class membership [9]. Therefore, we must have a strategy for extracting an
However, the amount of data required is excessive for appropriate set of d range gate measurements from
high-dimensional data problems. There are several the range profile.
ways to circumvent this problem including linear pro- We start from the premise that we wish to model
jections (such as principal components analysis) and the probability density function of the target return,
nonlinear projections [14, 15] to a lower dimensional p,(x), c = 1,..., C, where x is a set of target mea-
subspace. surements. We choose to model this density as a fi-

The approach considered in this paper is to model nite mixture [6, 13]. Mixture models have been used
the density as a mixture of simple parametric forms with success in a wide variety of applications and here
whose parameters are estimated through some opti- we consider their application to radar target mod-
misation procedure. The advantage of such an ap- elling. We motivate their use by addressing, in turn,
proach, as we see in Section 3, is that it may be used several important issues concerning the properties of
to incorporate desirable features such as robustness the probability density function. We drop the suffix
to translation of a test image with respect to some c since we are not concerned with a specific class.
centroid position (due to uncertainty in the true cen-
troid) and robustness to scale. Further, angular de- 3.1 Latent Variable Model
pendence of the target return can naturally be ex-
pressed as a mixture, and different scattering models We assume that the distribution of radar returns
may also be incorporated into the same framework. is characterised by a latent variable 0,

The basic distribution that we use at the heart of r
our model is a gamma distribution whose use may P(x) = fp(x 1)p(6)dO
be motivated from physical arguments and results of
empirical investigations. = ]p(xrIP(0))p(0)d0

The outline of the paper is as follows. Section 3
describes the mixture model approach to target clas- where T(O) are parameters characterising the distri-
sification and how robustness of the model may be bution and are functions of the variable 0. In the
incorporated into the mixture model framework. A case of the gamma distribution (discussed in section
nonlinear latent variable models for density estima- 3.6), they are the mean and the order parameters.
tion is introduced as a means of modelling target den- For the radar target data, 0 is univariate and can be
sity (section 3.1) and a special case of independent interpreted as angle.
mixture components considered. Section 4 derives Figure 1 illustrates the basic model. The latent
the re-estimation procedure for the mixture model space is represented by an angle 0. This is mapped
parameters. Section 5"presents results of applying to a parameter space, T(O), by a nonlinear model
the basic mixture model approach to the classifica- (for example, a radial basis function network (RBF)).
tion of radar range profiles; section 6 presents results Data is generated according to the probability distri-
of applying the approach to ISAR image data. The bution p(xJ6). In the data space, the data can be
paper concludes with a summary of the main results viewed as perturbations from a closed-loop contour.
and discussion of ways forward. If we suppose that TF(0) does not vary too rapidly

with 0, then we may approximate the integral above

3. MIXTURE MODELS by a finite sum,
gp(z:) = Z-•pip(xliP(ei)) (2)

In constructing the target probability density i T(

function, we wish to exploit expected structure in the iFor the ISAR data, the d measurements correspond to the
data, without making assumptions that are too re- d cells in the ISAR image. However, the discussion in this
strictive or unrealistic, such as normal distributions. section is confined to radar range profiles.
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or in matrix form
x U =V-

p(xNW ) M =S-

X1(O where V = [V11I...IjVh], S = [s11I...I18h] and 4ý
[0(0)1 . .. 10(0,)] and O(Ok) is the h-dimensional

RBF vector with ith component Oi(Ok). Thus, the pa-
rameters of each component, I1 k and Mk, depend on
the same set of underlying parameters, V and S.

The distribution, p(x), may now be regarded as

E tdepending on two sets of vectors that characterise
the means and order parameters: the d x h matrices

Figure 1. Latent variable model. V and S,
S= p(X IS, V)

where the Oi are samples on a regular grid. Equa- Given a data set {1i, i = 1, n}, we seek to max-

tion (2) is a finite mixture distribution and the prob- imise the log likelihood

lem of calculating p(x) is replaced by one of calcu- n
lating, or specifying, the component distributions, L = j ln[p(xjlS, V)]
p(zl•(0j)), the parameters associated these distri- j=1
butions, and the component distribution weights, pi.
Given a data set, and some simple parametric form with respect to the parameters of the model S and
for each of the p(x I(0j)), a maximum likelihood ap- V. We shall not present the details of parameter
proach, perhaps based on the EM algorithm, may be estimation for latent variable models here, but note

employed, that
Here, we shall regard the variable 6 as angle ofviewote thallreget. thisaye amtvaria tee qusan-e o1. A radial basis function provides a flexible modelview of the target. T his m ay be a m ultivariate quan- f r t e n ni e r t a s o m t o r m l t n

tity comprising azimuth and elevation, but in the ex- for the nonlinear transformation from latent
amples of section 5, we consider azimuth only. Thus, space to data space.
Equation (7) states that for a given angle of look, 0, 2. An EM scheme may be derived for the
the target return, x, is a sample from a distribution, model parameters, but unless simplifications
p(xl0), and the total distribution is an integral over are made, the update equations for the means
all angles of look. and order parameters are coupled, thus re-

For the gamma mixture model, there are two sets quiring some nonlinear optimisation scheme for
of parameters: the component means, t and the or- their solution.
der parameters, m (both E Rd). For g components,
we wish to re-estimate {mk,k = 1,.. .,g} and the 3. For normal mixtures, Bishop et al [1, 2] have
means, {Pk, k = 1,... ,g}, which we regard as func- derived EM update equations.
tions of underlying variables, 0 (in the ship and ve-
hicle data 0 is univariate), 4. Smoothness may be ensured through incorpo-

ration of a suitable prior on the models.
h

t, i(0) = _vi(0) 3. 2 Using Angular Information

(3)
h

m M m() S Ad() Knowledge of the angle at which measurements
are made is not necessary as part of the latent vari-
able model, but if it is available, how would we use

where €i is a set of h specified basis functions (for it during training and test? During training, we
example, radial basis functions) defined on the space would use 6i as part of the maximum likelihood re-
characterised by 0 and {vj, i = 1,..., h} and {si, i estimation. Suppose that the training data comprise
1,.. . , h} are sets of weights to be determined, radar range profile (or ISAR) measurements together

The means and order parameters of the kth group with the angle of look. Thus, we are given the data

are {(X i, 0i), i = 1, ... , n}. We may write the joint dis-
h tribution as

k i=1 p(6,O) = p(X9)p(O) (4)

h

mk = 3 si~i(Ok) where the conditional density p(z 1o) depends on pa-
rameters that describe the density. If we assume a
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gamma mixture with mean and order parameters be- 3.3 A Special Case

ing a nonlinear function of angle, then
In section 3.1, dependence of the target probabil-

p(x 16) = p(:r 1, S, V) ity density function on angle was used to motivate a

The log likelihood, L, is given by mixture model approach to modelling the radar re-
turns from targets. This dependence was achieved by

L • =modelling the distribution parameters as a nonlinear
L = lE In {p(x •, 5, V)p(6i)} function of a latent variable, with the interpretation

of angle. Sampling this distribution gave rise to a
which we maximise as a function of S and V. We mixture model, whose components shared parame-
may use a simple gradient scheme. The resulting ters. We now make a simplification. We model each
parameters are used to characterise p(, 6) (4) for component separately.
each class. We express the overall distribution for a given tar-

On test, we may have the measurement x only; get, p(x), as
that is, we assume that we do not know the heading
of the target. Alternatively, we may have an estimate p)= [p(x)p(O)d0 (7)
6 of the heading 0, from which we are able to obtain
a distribution for the true aspect 6, p(o[0). for some variable 6, notionally an angle coordinate.

If we have a measurement x and an estimate of A finite sample approximation to (7), based on g
angle 6, then we require p(x, 6) given by components, is

p(Xr 6) = /p(x•6)p(0jb)d~p(b) (5)
p(W) = -p(XI)p(ei) (8)

If the estimate is very close to the true angle, we may i=1
make the approximation where EPi = 1 and pi = p(6j)d62 .

p(x, 6) = p(Ax1)p(A) (6) This is a finite mixture model of the form (2), but
differs from (2) in that the parameters of each compo-

otherwise, we must approximate the integral by sum- nent dlo not depend on the parameters of the function
ming over a range of 0. Our training procedure has TI(0), but are independent.
given S and V and hence p(x 1b). We then use these The interpretation of 0 as angle allows a simple
as our estimates of density in Bayes rule to obtain scheme to be employed for obtaining the parameters
posterior probabilities. of the mixture (8), as follows. Suppose that we have

If we do not have an estimate of angle in the test data gathered as a function of azimuth. Partition
conditions then we must use the radar measurements, the data set according to angle into g equal-sized
X only, sectors. Use the data within each sector to esti-

p = np(rO)p(6)d0 mate the parameters (maximum likelihood estima-
=I tion) of each component distribution separately (as-
1 nl suming a simple parametric form, such as exponential
n P(G i iI0i) or gamma). The component distribution weights are

i=1 set to pi = 1/g. This scheirie does not maximise the
where the summation is over the training samples, likelihood of the data given the mixture model (8),
and we have taken a uniform prior on 0. but provides an approximation in which the likeli-

In (5) and (6) we are using our estimate 6 of the hood of the data within each sector, given the local
heading as part of our decision making; that is, we model is maximised.
may use angular information to improve performance Thus, a mixture model arises naturally if we con-
of the classifier. Alternatively, if we know target type sider the target density to be a function of an-
(or have an estimate) we may use it to get a better gle. Initialisation of the mixture components can be
estimate of heading - in a tracking situation for ex- achieved using a data set labelled by angle. Refine-
ample. As an illustration, suppose that target type ment of the mixture components using a full maxi-
is known. We require p(O6  , xi), the distribution of mum likelihood approach is described in Section 4.
true angle given an estimate of angle and the radar
measurements (for example, the range profile). This 3.4 Robustness to Shifts
may be written, using Bayes theorem, as

pO[b, = p(Xj6)p(0I6) If we gather our training data2 by positioning a
=6  vehicle on a turntable, then we know the range gate

fp(X1O)p(61[) in which the physical centre of the target lies. Given

where the integral may be approximated by a finite a test range profile, then ideally we need to extract
sum. Thus, the radar image is used to refine target 2 We assume that the training data comprise measurements
orientation estimates. on a fixed number of range gates that span the target.
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the test image x so that the centre of the target lies 3.5 Robustness to Amplitude Variation
in the same range gate. We then evaluate p(x) for
each class. However, in practice, we do not know the We may need to scale the test image to normalise
physical centre of the target (we may not know it for the data (the test samples may be measured at a dif-
the training data if the target translates as it rotates - ferent signal-to-noise ratio that the training data).
see Section 5), but we can calculate a centroid using In the above analysis, we partitioned the data gener-
the test range profile. We then need to extract d ated by a component according to the centroid posi-
range gates around this centroid by deciding which tion. We may also partition according to the overall
range gate (1 to d) to position the centroid in. amplitude level of the test pattern. Let A denote

Consider a single component of the mixture, some overall amplitude measurement of a pattern.
p(xjOi). Suppose that we generate data from this
component by random sampling. For each sample p(xlOi) = j-p(xjli,A)pi(A)
generated calculate its centroid. The centroid posi- A

tions will not necessarily be in the same range gate where p( 1i0, A) is the probability distribution of
as the centroid of the distribution mean. There samples whose overall amplitude is A, assumed to
will be a distribution, p(s,), of centroid positions, take discrete values.
S" E {1,...,d}. To evaluate for a given x, we scale it to have am-

We may partition the distribution, p(xj6j), ac- plitude A and substitute into
cording to the centroids of the generated data,

p(A10) = _pi(S,0)p(XIOi,S,) (9) p(x) = Zpi. _,p(xij,A)pi(A)
s: i=1 A

where p(xIj6, s,) is the probability distribution of Thus, in a similar manner to robustness to shifts, we
samples whose centroids are in cell s,. can treat robustness to amplitude scaling by formu-

The quantity pi(s,) is the probability that the cen- lating a mixture model.

troid occurs in s, from data generated by p(x!6j). It For computational convenience, we need to dis-

is determined by the distribution, p(xlai) and may cretize A. Also, we need to define a scheme for cal-

be estimated from that distribution through Monte culating the amplitude of a pattern. As in the cen-

Carlo simulation, by generating data and noting the troid situation, in principle it does not matter how

distribution of centroid positions. The probabilities, we calculate A, given x, since we integrate over the

pi(s,n), depend on i, the mixture component. distribution of A. In practice, it may be important.
Therefore, the overall target distribution may be If our estimator of amplitude has a narrow distribu-

written as the mixture, tion, then we could take the one extreme that the
amplitude distribution is approximated by one cell

9 d at the distribution mean. Thus, all test images are
p(x) = A P,(s,,)P(xIOi, s-) (10) scaled to the distribution mean.

i=1 a,~l

To evaluate the above equation for a test sample 3.6 Target Distribution
x, we may position the centroid of x over each allow-
able centroid position (that is, each possible centroid We still need to specify the forms of the mixture
position permitted by the distributions, p(xjij)) in component distributions. For example, we may again
turn, then take an exponential distribution, although gamma

distributions may be more appropriate. The gamma
1. sum over centroid. positions (many may not distribution

contribute since pi (s,) = 0, the centroid po- M I
sition is not allowable for that component) p(x) - (m--')[p exp

2. sum over components. (M P/P
has as special cases the Swerling 1 and 2 models (m -

Thus, we have expressed the robustness to pattern 1, Rayleigh statistics), Swerling 3 and 4 (m = 2) and

translation problem as a mixture formulation (Equa- the non-fluctuating target (m -i o3), although other

tions (9) and (10)). In theory, the particular algo- values of m have been observed empirically [12].

rithm used to calculate the centroid position is unim- A simple multivariate form is to assume indepen-

portant. Although the distribution of centroid posi- dece of range gates so is t he component distribu-

tions depends on this algorithm, we integrate over all tion is given by

possible centroid positions. In practice, however, it

may be preferable to have an estimate of centroid po- d " / \rnij-1

sition with a narrow distribution, pi(sn). This would P(X0i0) = f 2(mij - ).ij \"-ij x
reduce computational costs since for many values of j=1
Sn, Pi(sn) = 0 - samples with that centroid do not (mp '
occur for p(Ie), exp\) m---x.
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where mij is the order parameter for range gate j of p(x)

component i and pij is the mean.
We may of course represent the component distri-

bution itself as a mixture in order to model different
scattering distributions. Further, we may partition P(O) p(O0 (09)
it into two basic components, p(i

p(xl~i) = ptt(x) +p,,n(x) (I1 P(X101) PAXli) PAX10g)

where t(x) is a target distribution, n(x) a noise or
clutter distribution and pt and p, are prior probabil- Pn Pt
ities (pt + p. = 1). This allows the presence of noise
to be taken into account.

3.7 Summary n(x) t(x)

In this section we have described several different
ways in which mixture models may arise in a target Pt/ Pt2
modelling situation.

1. to incorporate angular dependencies.

2. to ensure robustness to uncertainty in target
centroid position. Figure 2. A representation of a target mixture

3. to ensure robustness to overall amplitude vari- model trained using gathered data for each tar-
ation. get separately.

4. to model different types of target behaviour.

5. to incorporate both noise and target models to amplitude (suitably quantised). We then evaluate
reduce sensitivity to noise on test. the probability density function for the component

and sum over all amplitudes and centroid positions.
thet atpridv ges of te mxixte model aproahe dis- This is shown in Figure 3 for a model where compo-

that it provides a simple flexible model for the dis- netigvsretoheectodpstosadtw

tribution of target returns, while also incorporating amplitude values.

into the same framework features such as robustness

that are important in a practical implementation.
How do we use it in practice? In training a model, 4. PARAMETER ESTIMATION

we specify the form of the component distributions,
p(xjOi) (either as single component exponential or We now address the problem of estimating the pa-
gamma, or as a mixture), the number of component rameters of the mixture components. We shall adopt
distributions in the mixture (ideally, this is deter- a maximum likelihood approach and derive update
mined from the data) and use a maximum likeli- equations for the model parameters for gamma mix-
hood approach to determine the model parameters ture models.
for each class in turn. The training model is depicted Given a set of n observations (x1 , . . ., x,), the like-
schematically in Figure 2. In the figure, p(xl6i) is lihood function is
expressed as a sum of a noise distribution and a tar- , 9
get distribution, which itself is modelled as a sum of L 0 (¶') = r .Y- PJP(Xilr 3  (12)
two distributions. In the examples of Section 5, we i=1 j=1
simply use a single component multivariate gamma
distribution for p(xIOj). where IQ denotes the set of parameters {1,p, .. }

Once the parameters of the component distribu- and Ij are the parameters associated with com-
tions have been obtained, we consider each compo- ponent j. In general, it is not possible to solve
nent in turn to estimate (perhaps through Monte OLo/O'P = 0 explicitly for the parameters of the
Carlo simulation) the distribution of centroid posi- model and iterative schemes must be employed. One
tions and amplitudes. approach for maximising the likelihood L 0(T) is to

On test, we need to extract a test image from a set use a general class of iterative procedures known as
of range gates and scale appropriately. For each com- EM (Expectation-Maximisation) algorithms, intro-
ponent, we extract the image so that its centroid lies duced in the context of missing data estimation by
in each of the allowable centroid positions for that Dempster, Laird and Rubin [5], though it had ap-
component. Similarly, we scale it to each possible peared in many forms previously.
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pW distribution (independence assumption)3

d r) 1-kx×

t9(p(Oi) Og) j=l (,mik:'!z

TI I i~j Ik
pX[xI0) p(:•[Oi) p(•l0g) 3x•mkx'

where x = (X1, Xd)*, the vector of measurements;
the parameters of the kth group, Xk are {fIk, mjk}

P(si) where k = (p4,.. ./d)* and mjk is the value of m

for the kth group and jth range gate.
The re-estimation of the mean vector of the kth

p(x[Oi, 83) mixture component is

1: WikX i

p(Ai) (A 2 ) , - l (15)

-1

P(X(S 3 ,A,)10jS 3 , A,) P(X(S 3 , A 2 )IOS 3 ,A 2 ) and the mjk satisfy

Figure 3. Evaluating the probability density ( "
function for a test range profile, x. x(si,Aj) -w0klog J
is the test image extracted so that its centroid V(mjk) - (16)
is at si and amplitude is Aj. >3

i=1

where v(m) = log(m)- 0(m) and 0(m) is the
digamma function.

The EM procedure is well known (for example, The function v(m) satisfies the property that
Titterington et al [13]) and we do not present the
stages in the derivation of the re-estimation equa- V(m) 1 ým + 1 + ... as m oo
tions here, simply quoting results. 1 m 2

Let 'i'm) be the estimate of the parameters of the v2(m) ; m + coast, as m 0

kth component at the mth stage of the iteration. Let Therefore, there is at least one solution m > 0 for
wij be the probability of group j given xi and T(m), which v(m) = 6 for 6 > 0. A simple gradient scheme
given by should be sufficient to obtain a solution.

Thus, the operations in the maximisation of the
EM procedure are to estimate pk using (15) and then

p(m)p(a,. •(m)) to solve (16) for the mjk, using an iterative gradient

wij Pm)(IP m)) (13) procedure.

5. APPLICATION TO RADAR
RANGE PROFILES

The the re-estimate of the component weights, pj,
is given by 5.1 Ship Data

The data consist of range profiles of ships of seven

I (n class types. There are 19 files, each of which contains

(4 ) 3 We are assuming that each mixture component can be rep-
resented by a product of univariate gamma distributions. This
does not imply that we are making the independence assump-
tion for the mixture distribution, but only for each component.
Thus, interpreting i as an angle indicator, we are assuming
that locally the range gates are independent, but not globally

We assume that each range gate has a mixture of since scatterers move from one range gate to another as the
gamma distributions, with components given by the target rotates.



20-8

range profiles of a ship which are recorded as the ship centroids measured for each mixture component. It
turns through 360 degrees. The aspect angle of the was found that most samples (> 99%) lay within two
ship varies smoothly as one steps through the file range gates of the position of the centroid of the com-
and the centroid of the ship drifts across range gates ponent mean. Therefore on test, a test pattern was
as the ship turns. Each range profile consists of 130 shifted to all positions within 2 range gates of the
measurements on radar returns from 130 range gates. component mean.
These data sets have been used by Luttrell [10] and The amplitude of the test pattern was scaled to
details are given in Table 1. The data sets are divided the amplitude of the component mean.

Target Class no of profiles 5.3 Ship Profiles
Train Test

1 3334 20852 2636, 4128 2116 Below we give results of the method applied to the
ship data. We report confusion matrices despite their3 2604, 2248, 2923 2476, 3619 limitations as measures of classifier performance. Ide-

4 8879, 3516 4966,2560 ally we would like to say how well the estimate of the
5 3872 3643 posterior density, P(jix), approximates the true den-
6 1696 2216 sity p(jlx). A measure of this discrepancy is the re-
7 1839 liability of the classifier [11] or imprecision [8]. How-

Table 1. Details of data files ever, p(jlx) is unknown in practice and techniques
for evaluating bounds ,it mprecision are currently

into 11 training files and 8 test files. As we can see under investigation.

from the table, there is no test data available for class
7. Several other classes have more than one rotation 5.3.1 Experiment 1
available for training and testing.

In each of the experiments below, 1200 samples In this experiment, the classifier is trained with 40
over 360 degrees from each of the training set files components per file and tested on the test data files
were used in model training. This enables compari- with the ship orientated so that it is in the range
son to be made with the results of Luttrell [10]. ±40 degrees bow-on or stern-on to the radar. This

restriction is applied so that the results may be com-
5.2 Implementation Details pared with those given by Luttrell [10], where a classi-

fier based on a self-organising network was designed.

In each experiment, a mixture model density was Table 2 reproduces the results of Luttrell [10] and
constructed (using the basic approach described in gives the mixture model results alongside.
section 3) for each file and those densities correspond- True Class
ing to the same target type are combined with equal 1 2 3 4 5 6
weight. For a mixture model with g components, the 1 84.4 8.9 8.5 4.2 2.3 10.3
parameters of the mixture model were initialised by 2 12.6 86.1 5.8 6.0 0.5 10.7
dividing the data into g equal angle sectors and for Predicted 3 0.6 0.2 68.9 3.4 5.5 23.2Class 4 1.0 2.0 5.5 73.1 17.0 11.4
each sector separately calculating the maximum like- 5 0.8 0.0 5.3 8.8 57.1 0.9
lihood estimate of the mean and order parameters of 6 0.3 0.0 2.9 1.7 11.3 37.7
the gamma distribution. The EM algorithm was run 7 0.3 2.9 3.1 2.8 6.3 5.8
on the whole training data set and the final value of True Class
the log likelihood, log(L), at convergence recorded., 1 2 3 4 5 6

There has been considerable research into model 1 72.0 4.4 2.9 5.2 1.7 6.0
selection for multivariate mixtures. We adopted a 2 11.3 70.7 10.1 4.8 2.8 8.5

Predicted 3 9.3 10.0 67.7 10.0 24.6 20.2
simple approach and took our model selection crite- Class 4 0.6 3.0 1.8 59.6 4.4 0.7
rion to be 5 0.2 2.3 3.3 9.0 57.9 2.3

6 2.5 5.9 9.8 4.5 6.2 59.7
AIC2 = -2log(L) + 2Np 7 4.2 3.6 4.4 6.7 2.3 2.5

where Np is the number of parameters in the model, Table 2. Gamma mixture results (top) and self-
organising network results (bottom) [10] for a

Np = 2(d + 1)g - 1 test set pattern ±40 degrees bow-on or stern-
on to the radar.

This has been considered by Bozdogan and Sclove [3];
other measures are described and assessed be Celeux
and Soromenho [4]. The average classification performance on test of

Once the components of the mixture model have the mixture model approach is 67.9% compared to
been determined, samples form the component dis- 64.6% given by Luttrell [10]. There are some notable
tributions were generated and the distribution of the differences in performance: there is much better clas-
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sification rate on classes 1 and 2 and much poorer -

performance on class 6. "

85

80

5.3.2 Experiment 2 8

In this experiment, mixture models were trained with
varying numbers of components and tested on the
whole of the test set (there is no angle restriction). so

Again, 1200 samples per file were used and Figure 4
plots the model selection criterion AIC2 as a function 40 X 8m ,W ix

number of mfimur corpwwý

of the number of components for each of the training
files. Figure 5 plots the classification rate as a func- Figure 5. Classification rate as a function of
tion of the number of components, where each model the number of mixture components for the ship
has the same number of components. The minimum data.
of AIC2 occurs for each of the 11 files when the num-
ber of components is given by (80, 80, 70, 70, 60, 80,
70, 70, 50, 70, 100). Thus, each model requires a 6. APPLICATION TO ISAR IMAGES
different number of components. The classification
performance for this model is given in table 3. 6.1 Vehicle Data

The overall classification rate is 64% for the se-
lected model. This is about the level of the plateau The data comprise single polarisation ISAR im-
region in Figure 5. Thus the AIC2 criterion has pro- ages of three vehicles measured on a turntable. There
vided a model that is close to the best test set per- are two rotations of each vehicle. For each vehicle
formance over the range of model sizes considered. and each rotation, there are 2000 patterns. The im-

age size is 16 x 20.
4-0.. A third data set of 'similar' vehicles, but not the
400l=O fi 2....

.............. same measure type, was also considered as part of an
0 fl,,l?........ 7experiment into classifier robustness - see the paper

2 ..... by Britton in these proceedings
"k "-"".--- -. , - ....

-,Oo ... ... : -------- 6.2 R esults
soms

0

S......... Results for the training set, the second rotation
.:......... and the separate 'test' set (that differed in some de--IOOOOO ~~-- -. ------ -...• ... ... ------ - ------ --------

... - tail from the training data) are given in Figure 6.... ... ~ ~ .... ............... I...... ta..rm.h.tani g da.) ae.ie.i.F g re 6

..... ..... *. . - .Each data set was modelled using a gamma mixture0 4X SO 80 1W0 12

ooni.. po-ta. model in which the means and order parameters were
re-estimated. Again, the criterion ACI2 was used to

Figure 4. AIC2 as a function of the number of control the complexity of the model. In terms of mod-
mixture components for each file in the training elling the data on the second rotation, performance
set. is still increasing at 70 components per class. The

AIC2 measure has not reached a minimum at this
point.

True Glass 7. SUMMARY AND DISCUSSION
1 2 3 4 5 6

1 59.1 5.6 6.5 5.7 0.5 10.0
2 12.1 67.2 3.2 1.7 0.0 5.3 In this paper we have developed a gamma mixture

Predicted 3 5.7 8.9 64.2 5.5 3.4 28.9 model approach to the classification of radar range
Class 4 9.9 10.5 11.0 72.5 25.2 20.7 profiles and ISAR images. A latent variable model

5 0.1 4.3 8.3 12.9 67.3 3.1 was introduced as one means of modelling the smooth
6 12.8 2.8 4.0 1.0 2.3 30.7
7 0.2 0.7 2.9 0.6 1.3 1.2 variation of the underlying distribution with angle.

EM update equations for the model parameters of
Table 3. Gamma mixture results for the whole a basic mixture model were derived. Robustness to
test set for a model chosen according to mini- amplitude scaling of the test pattern and unknown
mum values of AIC2. orientation and location of the target can be taken

into account in the mixture model framework. The
approach has been applied to the classification of ship
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95 .Advances in Neural Information Processing Systems
9, pages 354-360. MIT Press, 1997.

[3] H. Bozdogan and S. Sclove. Multi-sample cluster
85 / analysis using Alaike's information criterion. Annals

,... of Institute of Statistical Mathematics, 36:163-180,
8' -, --,, - 1984.

70 [4] G. Celeux and G. Soromenho. An entropy crite-
7n0 rion for assessing the number of clusters in a mix-
es ture model. Journal of Classification, 13(2):195-212,
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S...[5] A. Dempster, N. Laird, and D. Rubin. M aximum
likelihood from incomplete data via the EM algo-

00 00 80 70
•0 ,ub.n ,uf H.,.r. nl rithm. Journal of the Royal Statistical Society B,

39:1-38, 1977.

Figure 6. Classification rate as a function of the [6] B. Everitt and D. Hand. Finite Mixture Distribu-
number of mixture components for the vehicle tions. Monographs on Statistics and Applied Prob-

data. ability. Chapman and Hall, London, 1981.
[7] J. Friedman. On bias, variance, 0/1 loss, and the

curse of dimensionality. Data Mining and Knowledge
Discovery, 1:55-77, 1996.

profiles (giving improved performance, in terms of [8] D. Hand. Construction and Assessment of Classifi-
error rate, achieved compared with previously pub- cation Rules. John Wiley, Chichester, 1997.
lished results) and to ISAR images of vehicles. [9] D. Lowe and A. Webb. Optimized feature extraction

However, error rate is only one measure of perfor- and the bayes decision in feed-forward classifier net-HwcevItoer, eror rte is hon goone measue ofaperfo- works. IEEE Transactions on Pattern Analysis and
mance. It does not tell us how good the classifier Machine Intelligence, 13(4):355-364, 1991.
is. We may get an error rate of 40% say, but if the [10] S. Luttrell. Using self-organising maps to classify
classes are indeed separable.(for the given features), radar range profiles. In 4th International Confer-
then we could improve performance by better classi- ence on Artificial Neural Networks, pages 335-340,
fier design. Yet, if the Bayes error rate is itself 40%, Cambridge, 1995. IEE, IEE.
then we are wasting effort trying to improve classifier [11] G. McLachlan. Discriminant Analysis and Statis-
design. We must seek additional variables or features. tical Pattern Recognition. John Wiley, New York,
This is one of the motivations behind the work in this 1992.
paper: to provide estimates of the posterior proba- [12] M. Skolnik. Introduction to Radar Systems.
bilities that may be combined with other information McGraw-Hill Book Company, New York, secondbifitiesxatpl misclaysbicaiomined with, dot inform fion edition, 1980.
(for example, misclassification costS, domain-specific [13] D. Titterington, A. Smith, and U. Makov. Statisti-
data, intelligence reports) in a hierarchical manner cal Analysis of Finite Mixture Distributions. John
for decision making. Wiley and Sons, New York, 1985.

Thus, we have developed a semi-parametric den- [14] A. Webb. Multidimensional scaling by iterative
sity estimator that incorporates robustness features majorisation using radial basis functions. Pattern
and makes use of physical/empirical scattering dis- Recognition, 28(5):753-759, 1995.
tributions. The approach may not give better per- [15] A. Webb. An approach to nonlinear principal
formance in terms of error rate than some other clas- components analysis using radially-symmetric ker-
sifiers (although it is clearly better than single com- nel functions. Statistics and Computing, 6:159-168,
ponent parametric distributions), but hopefully bet- 1996.
ter approximations to the true posterior probabili- [16] A. Webb. Gamma mixture models for target recog-nition. 1997. (submitted for publication).
ties. This is difficult to assess and remains an issue [17] K. Yu, D. Hand, and A. Webb. Evaluating the im-
for continuing study: Initial work is reported by Yu et precision of classification rules. 1997. (submitted for
al [17]. Other areas for further work include further publication).
assessment on two-dimensional (SAR/ISAR) images,
development of the latent variable models and sensi-
tivity to noise and clutter.
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1. SUMMARY panels. Cylindrical structures or spheres with the
same dimensions have significant lower values of

The paper presents the current state of work at radar cross section, because only a small region
DLR to analyse a generic airplane design with around the specular point contributes to the back-
stealth characteristics using theoretical and ex- scattered field. The field incident to the other
perimental tools. The theories implemented in the regions of the vaulted surface is scattered into
computer codes and the measurement facilities other directions. The circular disc with the radius
are described. The procedures to produce scale of 1 m has 10 dB respectively 20 dB higher levels
models are discussed. The results of a mono- and than the frigate or the airplane. The front view of
bistatic analysis over a wide frequency band are the stealth airplane has a very low cross section
presented. In addition, implications for the detec- like a bird. Therefor the demands in accuracy and
tion probability and an analysis of the target sensitivity to the experimental as well as to the
fluctuations relevant for radar detection are theoretical tools are very high.
shown. The steps pursued in further investigations
are outlined, circular disc, R = m

frigate, side view

large airlane, side view
stealth design DLR-F7 side view

2. INTRODUCTION small airplane, side view
large airplane, front view
circular disc, R = 0.1 m

The visibility of an object for radar systems pesphere'R=1 m IF

depends on the magnitude of the received radar p manSsphere, R = 0.1m

power Pr, which can be calculated using the radar A bird

equitation: all1 birdSoprojectile, cal. 7.62. front view

P, PtGt a ^ I , DLR - nineorrdrrne 89 GH3

-80 dBsm -40 dBsm 0 dBsm 40 dBsm 80 dBsm

The transmitted Power P,, the gain of the trans- Fig. 1: Typical values for the radar cross section
mitting antenna G,, the effective area of the re- of some targets at 10 GHz.
ceiving antenna A, and the distance R are the most
important parameters of the radar system and of Two computer codes (SIGMA for the monostatic
the wave propagation in free space. The scattering and BISTRO for the bistatic case), both based on
characteristic of the object is defined by the radar Physical Optics Method (PO) [ 1, 2], have been
cross section (T. This parameter has the dimension and will still be developed at DLR. These codes
of an area and is usually given in logarithmic are applied together with the well-known com-
scale relative to one square meter (dBsm). In Fig. puter code NEC-2 [31, based on the Integral
1 the estimated values of (7 are given for a number Equation Method (IEM), to analyse the
of significant objects. The greatest values of G can monostatic and bistatic scattering behaviour of the
be found for the specular reflection of flat discs or generic airplane F7 (internal designation) with

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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stealth characteristics over a wider range of fre- field of electrically large structures. SIGMA is
quencies. Since also mono- and bistatic measure- conceived for the monostatic case only while
ments have to be carried out to validate the theo- BISTRO is applicable in the bistatic case too.
retical predictions, at least at certain frequencies, Both codes use a procedure to sort out the illumi-
the complete analysis will result in a comprehen- nated panels. In contrast to BISTRO, whose
sive work. simple Hidden Surface Algorithm is only applica-

ble for convex objects until now, SIGMA can be
This paper reports the present state of the RCS- used for non-convex surfaces including double
analysis. Since criteria are needed to estimate the reflections. In SIGMA the contribution of the
efficiency of this and future configurations the edge diffracted field is implemented using the
radar data of the F7 further are submitted to a Method of Equivalent Currents (MEC). So
recently established radar range model DORA SIGMA can optionally be used as a Physical
(Detection of Objects by Radar) to predict the Theory of Diffraction (PTD) code for arbitrary
range for a special radar system. aspects of observations.

The following section outlines the theories used As PO and PTD are high frequency methods they
in the above-mentioned RCS codes as well as of are only applicable down to a minimum ratio of
the radar range code. Special attention is given to the object dimensions to the wavelength. For a
evaluate the overlapping region between the code long time this minimum was thought to be several
SIGMA that is based on high-frequency methods wavelengths. Detailed investigations in the last
and NEC-2 based on low frequency methods. years [4] have shown that for much lower ratios

very good results can be achieved. This extension
These tests were carried out with basis structures of the wavelength domain to higher values for a
like an ogival cylinder. The third section deals given object is of great importance because the
with the design and production of scale models area of application of IEM now joins to this of PO
adequate for measurements in the X- and W-band. and PTD. Therefore the development of a special
Section four describes the bistatic scatter field test hybrid method for this transition area seems to be
range operating in the W-band that recently was unnecessary.
modified to carry out monostatic measurements.

To use IEM the well-known computer code NEC-
The data of this test range were used for compari- 2 was applied for the investigated objects. For
son with the predicted values. In section five the wire-grid models the Electric Field Integral
results for the F7 collected by the several tools are Equation is chosen. The Method of Moments is
presented and discussed. For a special radar used to calculate the currents along the wires. As
system the efficiency of different fluctuation the interactions of all segments are considered in
models is estimated by determining the radar the impedance matrix it takes a long CPU time
range. In the conclusion the essentials of the and great storage requirements to solve the com-
analysis are summarized and the future work is plex linear system of equations.
indicated.

In order to compare the PO, PTD and IEM results
3. BASIC THEORIES USED IN SIGMA, an ogival cylinder (Fig. 2) with dimensions 4 X x
BISTRO, NEC-2 AND DORA 2 X x 4 X was modelled with flat panels for PO

and PTD and with wires for IEM. The size of this
3.1 RCS Calculations object compared to the wavelength is already

large for IEM and quite small for PO and PTD.
The computer codes SIGMA and BISTRO, both Fig. 3 shows the RCS for the horizontal polariza-
developed at DLR, are based on the PO theory. tion. Nevertheless the correspondence between
As a high frequency approximation PO is very the three results is quite good.
well suited for the calculation of the scattered
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consists of flat panels . In the case of a monostatic
4X radar which is positioned in flight direction most

of the energy of the radar pulses is reflected to the
sides and only a very small amount is reflected

42:. due to edge effects to the radar system.The length
22" of the plane is 15 m and the wingspan of 10 m.

Fig. 2: Sketch of an ogival cylinder For the electromagnetic calculations the computer
models BISTRO and SIGMA are used. Both

-20 models use the approximation of Physical Optics
-22 . (PO). Since SIGMA and BISTRO use a panel

model of the object there is no deviation from the
.24

-2~ ____ .. real shape.

-32

8° 30° 68° 90* 128* 188* 18O*

Fig. 3: RCS (HH-polarization) of the ogival
cylinder by experiments, JEM and PTD

3.2 Design of a Stealth Airplane Fig. 4: Computer model of the DLR-F7 stealth~
design

The demand for the design of a stealth airplane is
a low radar cross section in order to prevent the 3.3 Determination of Detection Range
detection by radar. Fig. 4 presents a computer
model of the design DLR-F7 which actually is As an extension to the RCS calculations, a tool to
under test in the Institute of Radio Frequency determine detection probabilities was developed

Techoloy i Obepfafenofe wit repec to and the distance, in which the object under inves-
its stealth characteristics and in the Institute of tigation can be detected by a radar with the given
Design Aerodynamics in Braunschweig with properties. The starting point is the radar equation
respect to aerodynamic features, for the signal to noise ratio (S/N) for a target at

distance R
The plane is a generic structure to test the tools. It S_ PtnKz.G2o-(t,q(,)a,2  1()
is fully metallized; the jet inlets are closed 'and '-= 4IL

further details are neglected at present. The radarN (4)RkTSS 11

cross section is designed to be less than 30 dBsm with Pt as peak transmitter power, Krt the uncom-
for a cone of ±150 around the flight direction. The pressed pulse width, G the antenna gain, G(&,p)
design was carried out under high frequency the polar and azimuth angle dependent RCS, n the
considerations for monostatic radars. As men- number of integrated pulses, kB as Boltzmann's
tioned above, flat surfaces and parts of curved constant, Tsy ssse os eprtr n
surfaces which are oriented perpendicular to the variou a sdtoa lsystem ose tepraue.n
incident radar waves cause high cross sections. It
was the concept of the proposal to avoid all those A signal corresponding to S/N is now fed into a
surfaces including cylinders and spheres. detector which is able to detect the object with

probability Pd (S/N), respectively Pd (R) via (3). ItThe actual airplane arrangement completely is known since the early work of Swerling [5] that
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RCS fluctuations diminish the detection prob- statistical goodness-of-fit test; he applied
ability; the correct form to describe these fluctua- Chi-squared and Kolmogorov-Smimov tests. The
tions in the case of airplanes has been subject of latter is a parameter free test and is implemented
discussions in the past [6]. So the RCS fluctua- in the program, too. Nevertheless since the detec-
tions were investigated and the consequences on tion probability and finally the radar range is in
detection probability in detail using calculated the center of interest, another more powerful
RCS data for the F7, which agree reasonably well method is used for discrimination: the description
with experimental results (see section 6.3). For of the data which is best capable of reproducing
the calculations "scan to scan" fluctuations were Pd calculated from (3) with the (exact) histogram
assumed, which are realized for example in the distribution, or the range Rrmax determined from it,
case of a typical airport surveillance radar, for is to be preferred.
which the scan rate is large compared to the target
fluctuation time constant. For a quadratic detector 4. DESIGN AND PRODUCTION OF SCALE
and incoherent integration of n pulses, Pd is then MODELS
given by

In order to verify the calculated results of the F7-
Pd =I ,P (X)Pd)rcum(X)dx (3) design measurements had to be planned at scaled

detection probability for a target frequencies with scale models. To prepare the
where Pd is the detecton ration a tas necessary datasets and technical drawings Auto-
with constant signal to noise ration x, which was CAD-12 was used. Starting with the volume
originally found by Marcum [5], and X = S/N a model of the F7 a surface model was created in
random variable distributed with a probability the first step. Using a simple conversion program
density function Px(x). outside AutoCAD a panel model dataset for

SIGMA and BISTRO was generated. In a secondSThe probability density function results from the se hsdtstwscnetdit iegistep this dataset was converted into a wire-grid
random variation of the aspect angle (O,(p) due to model for NEC-2. In order to produce a scale
rolling and yawing motion of the airplane via the model with factor 1:10 (Fig. 5) in a mechanical
a(,(p)-dependence. To obtain Px (x) a statistical workshop technical drawings of all panels in-
analysis of c(5p) around a certain azimuth were cluding the angles to the connecting panels have
therefore performed. The computer code allows been produced. The fuselage was manufactured
currently only one-dimensional data analysis; so from a honeycombed material covered with
airplane rolling has to be neglected - with un- plywood and the wings from a compact foam
known implications on the results. The probabil- material. Finally the model was covered with
ity density function obtained is then available as silver.
a histogram; Pd can be calculated from (3). In
order to generalize the treatment to unknown
targets and to decrease computer effort to calcu-
late Pd, it can be advantageous to find a paramet-
ric form for Px(x). Several distributions have been
investigated, and are implemented in the com-
puter code: Swerling's models 1 and 3 [5], gener-
alized Chi-squared, lognormal, and Weibull
distributions. Their parameters are found as the
maximum likelyhood estimators. Detection prob-
abilities are calculated using Shnidman's algo-
rithm [7].

Finally a tool is needed to judge the quality of the Fig. 5: Manually manufactured model of DLR-F7
different representations. Dowdy [8] proposed a (1:10)
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but the quality of the models has not been suffi-
cient. The material did not hold the geometric
forms during the process of hardening. Especially
the thin structures of the wings have vaulted.
Following a thumb rule the accuracy of the sur-
face of the structure should be better than 2/16 or
0.2 mm for 94 GHz. To fulfil these demands we
now make the models with the CAD milling
machine. The data for the input are also directly
obtained from the AutoCAD data set. Fig. 7
shows an aluminium model after milling the
upper surface. The first models are obviously
much more accurate then the STL models. Meas-

Fig. 6: Models manufactured in Stereo Lithogra- urements to compare the models with different
phy Technique (1:100; 1:200) accuracy are planned for the near future.

Smaller scale models with factor 1:100 and 1:200 5. MEASUREMENT FACILITY
were produced using stereolithography (STL)
(Fig. 6). This technique is based on a special kind For monostatic and bistatic RCS measurements at
of synthetic resin that is hardened by focused laser 94 GHz (X = 3.2 mm) a full polarimetric indoor
light. The laser itself is positioned automatically range in an anechoic chamber was constructed
corresponding to the data in a special STL dataset. (Fig. 8). The distance from the transmitter and the
This contains the triangular surface model of the receiver to the center of the investigated object is
object and was exported by AutoCAD starting 3.2 m. The object (maximum diameter 64 mm) is
from the volume model of the F7. Finally the positioned on a styrene column. In the monostatic
resin model was covered with gold in a galvanic case the object is rotated (0' - 360'), in the
process. The 1:200 model was measured at a bistatic case the receiver is moved at a swivel arm
frequency of 94 GHz. For the measurement of the (bistatic angle: 8' - 1800). In order to make coher-
1:100 model the test range has to be arranged ent measurements the local oscillators of receiver
with other antennas to satisfy the far field condi- and transmitter are locked to a common reference
tion. source. Reliable bistatic measurements are possi-

ble excluding ±40 around the forward scattering
angle. The noise level is at -50 dBsm and the
dynamic range is 50 dB.

Fig. 7: First step of manufacturing by a CAD
milling machine

Fig. 8: Indoor test range for mono- and bistatic
The STL technique is very fast and inexpensive, RCS measurements at 94 GHz.
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6. RESULTS

6.1 Monostatic RCS Results by SIGMA,
NEC-2 and Measurements

The monostatic results of the measurements using
the 1:200 scale model have been compared with
the calculated results. Therefore SIGMA has been
applied without using the equivalent edge currents
(PO) as well as with them (PTD). As most of the
edges at F7 are horizontal Fig. 10 shows the
monostatic RCS values for the more interesting
horizontal case for an aspect angle range from 00
(nose of F7) to 1200. For levels under -50 dB only
noise could be measured. At 500 the influence of
the front edge of the wing is obvious. At this
maximum the correspondence between the meas-
ured value and the PTD result is very good

Fig. 9: Frontends of the 94 GHz test range in the whereas PO yields no maximum. The high level
set-up for monostatic measurements. from 900 to 1000 is founded in the rudder and the

correspondence of all methods is very good.
Fig. 9 shows the equipment for monostatic mea-
surements. The scalar lens antennas are mounted In Fig. 11 the results of PO and PTD are com-
directly on the receiving and transmitting front- pared with those of the TEM for the 1:200 model
ends. A layer of glass between the antennas (450 at a frequency of 10 GHz for horizontal polariza-
to the axis of radiation) is used as optical power tion. NEC- 2 was applied using a wire-grid model
divider for the transmitted and received signal. By of F7. Investigations with NEC-2 using a panel
this arrangement the centers of radiation of both model have also been done but the Magnetic Field
antennas are in the same position, which is neces- Integral Equation, which is applied in NEC in the
sary for real monostatic measurements. The case of a panel model, fails for the F7 because of
crosstalking between transmitting and receiving the thin wings. For low and high aspect angles the
channel is very low and an easy change from difference between the SIGMA and NEC results
monostatic to bistatic measurements is possible. is quite high. This is not remarkable because for

this aspect angles the F7 has a geometric cross

-10 -I -io
exper. . -- EM

.2o ......... PO.0o ......... PO

----- PTD ---- T

-30 -30

-60 **60

0. 15' 30' 45' 60' 75' 90' 105' 120' 0' 30 ' 60' 90' 120' 150' 180

Fig. 10: Monostatic RCS results by SIGMA Fig. 11: Monostatic RCS results by SIGMA
(PO, PTD) and experiments for the 1:200 (P0, PTD) and NEC-2 (TEM) for the 1:200
scale model at 94 Gl~z scale model at 10 GHz
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section in the order of X2 and therefore is outside quency dependence of the signature exists. This is

the application area of high frequency approxi- illustrated by the pattern shown in Fig. 12. The
mations as PO and PTD. The very good corre- thin black curves show the RCS for HH-

spondence at the absolute maximum is surprising polarization and the thick grey curves for VV-
and again shows that PO and PTD are applicable polarization. One realizes that the stealth charac-

to objects that have diameters of just a few teristics are nearly lost at lower frequencies.
wavelengths.

Based on experimental or theoretical RCS results
Fig. 12 shows an overview of a wide frequency further simulations can follow. Estimations of the
range that can be treated without a gap with the radar range with the computer code DORA (see
IEM and the PTD. For the 1:200 scale model the 6.3) or generating radar images by SAR-
RCS levels for both polarizations have been processing can be done.
calculated with the IEM (1 GHz, 10 GHz) and the
PTD (100 GHz, 1000 GHz). An interesting fact is O dB
that the low RCS level at approximately 00 for
high frequencies rises dramatically with decreas-
ing frequency. This means that for metallic air-
crafts a stealth design is only effective for high
frequencies whereas for lower frequencies other
methods have to be used.

M -2

-80 dB

__ __N 0 dB

N

0

-20-"

"E N

50 00

O9 ~ol--

00 .30o 0 9030 1 180•
-80 dB

DLR-F7
model 1:200
length 87mm Fig. 13: Radar image of the DLR-F7 from the
-W

HH front (upper picture) and from broad side (lowerpicture)
Fig. 12: Overview of the calculated T over a wide

frequency range for-the 1:200 scale model Fig. 13 shows the SAR-images of the DLR-F7

observed from top under 450 for nose-on-view
Especially in stealth-applications a strong fre- and broadside-view, respectively. The RCS data
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have been simulated with SIGMA. The resolution than the calculated ones. The reason for this
in range and azimuth can be obtained by the difference is that at these angles the horizontal
analysis of the Doppler shift and the dependency edge of the wing and the horizontal edge behind
of the frequency. It is obvious that the good the nose respectively cause a higher level of the
stealth properties around the flight direction scattered field and that no edge correction cur-
cannot be maintained for broadside view. From rents have been incorporated into BISTRO up to
such and similar pictures it is possible to decide now.
between more or less favorable flight paths.

6.3 Prediction of the Radar Range
6.2 Bistatic RCS Results by BISTRO and
Measurements In Fig. 15 there is shown an example of detection

range analysis described in section 3.3. Radar data
Bistatic measurements using the 1:200 scale typical for an airport surveillance radar are as-
model of the F7 have been carried out for hor- sumed (scan to scan fluctuations, incoherent
zontal and vertical polarization and the results integration of n = 10 pulses, quadratic detection).
have been compared with the PO results of Starting from RCS data calculated with PTD for
BISTRO. Fig. 14 shows ; for both polarizations a horizontal cut through the F7 (in 1:1 scale, for
for the case that the transmitter is located 450 X = 30 mm) the detection range as a function of
from the axis of the aircraft. For both polariza- the central azimuth (p is shown for the F7 treated
tions the correspondence between calculated and exactly and approximated as Swerling 1, Swer-
measured results is quite good with the exception ling 3 and Chi-squared target. Further an angular
that for the horizontal polarization the measured weighting function of exp(-z 4)-shape with a full
values at 100 and at 680 are essentially higher
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Fig. 14: Bistatic RCS results by BISTRO and measurements for the 1:200 scale model for VV-
polarization (left pictures) and HH-polarization (right pictures)
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Fig. 15: Predicted radar range for the F7 seen in two aspect angles - nose (left) and broad side
(right) view, solid Histogram, dotted Swerling 1, dashed Swerling 3, dash-dotted Chi-Squared

width at half maximum of 10 [6] was used. The parameter-models cannot be performed in detail.
two selected aspect angles shown in Fig. 15
correspond to nose on (at 00 - left diagram) and In order to judge the F7 construction under elec-
broad side view (around 900 - right diagram). tromagnetic considerations an analysis of the

detection range over a wide angular area around
It can be seen that the two-parameter Chi-squared the nose-on view (Fig. 16) was performed. The
distribution is far better in predicting Rm.x than result is a map in the (,0, (p)-plane as shown in
the one-parameter Swerling miodels. The maxi- Fig. 17. The underlying RCS calculations include
mum absolute deviation amounts to 63.8 km for edge diffraction. A cone of 450 half width has
the Swerling 1 target and even 85 km for Swer- been evaluated.
ling 3 at p = 92.80. Thus the error is comparable
with the exact value of Rm. (histo) = 68.4 km at The RCS has to be calculated ona mesh which is
this aspect. As a global measure of the capability narrow enough to reproduce relevant structures
to predict R (a, the relative deviation from the without loss of information. Since the width of
reference value Rm, (histo), averaged over the RCS peaks varies linear with the frequency the
whole azimuth range [0', 180'], can be taken. It number of points at which the RCS has to be
is 3.7% for Chi-squared compared to 13.3% and calculated within a given 2-dimensional angular
18.3% for Swerling 1 and 3, respectively. Both cone varies with the square of the frequency. In
other (two parameter) models - lognormal and order to save both computer CPU time and disk
Weibull - reproduce the range with approximately space the wavelength had to be increased to
the same quality as the Chi-squared model with e = 100 mn. With that the RCS-data for one
mean relative deviations of 4.1% and 4.6%. At quadrant of the present range map of 450 half
the moment a comparison between the three two-
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width and a linear mesh spacing of 0.04' could be lower part of the picture the airplane is seen from
obtained with four hours CPU time on an IBM above or below, respectively, with elevations
RS/6000-990 workstation or about 12 hours on a between -450 and +45' and in the right/left part
Pentium 133 PC. from the right /left side, again in a cone -45' to

+450. Light colouring stands for large detection
ranges as indicated by the bars in the pictures.
The displayed range is 0<• R< 162 km.

Both pictures in Fig. 17 reveal several structures
which have to be explained; their interpretation in
turn leads to consequences for the airplane design.
For both polarizations the maximum RCS and
therefore detection range lies in the lower half and

_ is visible as broad spots right at the edge of the
investigated range. These spots arise from specu-
lar reflection by the small triangular panels which
close the engine inlets (see Fig. 4). For a real
airplane, the engine inlets would certainly be
realized differently. So deviations from the dis-
played behaviour in that region would be ex-
pected. The broad lines starting at these spots end
at a triangular structure in the central upper half,

Fig 16: Aviews corresponding to the which appears dark in the case of HH-polarization
range maps in Fig. 17 (Fig. 17 left). In that region the complete engine

inlet structure becomes invisible and the signal is
Radar parameters are assumed as in section 3.3 mainly caused by the upper nose panels of the
and the wavelength dependent parameters (e.g. airplane.
antenna gain) scaled to X = 100 umm. To explain
Fig. 17, the corresponding airplane views are The other dominating features in Fig. 17 are
indicated in Fig. 16. The center of the maps caused by edge diffraction. For HH-polarization
corresponds to nose on aspect; in the upper or (Fig. 17 left) the two vertical lines at azimuth

Fig. 17: Detection range maps for HH- (left) and VV- polarizations (right). Display range:
0 - 162 km in linear scale
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(p = +200 which are broken in the middle (eleva- 7. CONCLUSIONS AND FUTURE WORK
tion * = 00) arise from the signature of the wing
back edges. Future efforts will concentrate to complete the

analysis and improve the theoretical and experi-
The breaks are caused by the shading of the mental tools. The computer code BISTRO for
wing's back edges by the wings themselves. The instance has to be extended by an edge diffraction
front edges of the wings appear at an azimuth of contribution. The deviations in the values pre-
(p = +50', outside the range of that image. dicted by different codes must be clarified as well

as the differences between predicted and experi-

Corresponding to the wing back edges for HH- mental results. The surface accuracy of the scale

polarization a strong effect can be seen for VV- models should also be taken into consideration.
polarization caused by the back edge of the rudder One option implemented in SIGMA is the capac-

unit as the broken horizontal line in the top part of ity to treat non-metallic structures. At this time

Fig. 17 (right) at 1 = 30'. Again, the back edge is however there are no reliable validations. For this

shaded by the rudder around azimuth (p = 0'. purpose not only the theory but also the experi-
mental setups to evaluate material parameters
must be completed.

These figures demonstrate the importance of the

consideration of edge effects in calculating RCS
and detection range, and consequently the impor-
tance of efforts to reduce this edge contribution The authors would like to thank Karl-Heinz
by coating with radar absorbing materials or Dreher who has carried out the mono- and bistatic
constructive measures, e.g. rounding of the edges. scatter field measurements for the 1:200 scale

model with great care and Stefanie v. d. Piepen
Given the large detection ranges at the maxima of wo was engage in teo atie comper

Fig. 15 for example, one could be sceptical about co an engaphic repration the

the potential of this construction in view of stealth results.

requirements. There are nevertheless several

aspects which have not yet been taken into ac-
count: first of all, the large ranges at broadside
aspect angles will be reduced for a real radar by [1] D. Klement, J. Preissner, V. Stein
Doppler filtering (which is not modelled here), "Special Problems in Applying the Physical
since the Doppler shift at (p = 90' is zero. Optics Method for Backscatter Calculations of

Complicated Objects",
Another feature not yet implemented is tracking. IEEE-A&P, Vol. 36, No. 2, 1988, p. 228-237.

Since the angular regions of large detection

widths are narrow, in general there is little time [2] E. Kemptner, M. Ruppel
for the radar to initiate a track. As an example the "Vergleich bistatischer Streufeldmessungen mit
maximum at (p = 810 in Fig. 15 for an airplane in Rechenergebnissen nach der Integral-

40 km distance would lead to possible detection gleichungsmethode und der physikalisch-

during an interval of a few seconds; after that optischen Naiherung"

interval, a new track would be lost again. Frequenz, Vol. 49 No. 3 - 4, 1995, p. 90 - 95

At this point it has to be taken into account that [3] G.J. Burke, A.J. Poggio
there are mostly monostatic radars detecting an "Numerical Electromagnetics Code (NEC-2)-
approaching airplane in front view. So the F7 Method of Moments."
stealth airplane is optimized around this angle. Technical Document 116, Naval Ocean System
And as it can be seen in Fig. 15 (left) the detec- Center, San Diego, California, Jan. 1981.
tion range for an angle of (p = +5' is about 5 km.
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[4] E. Kemptner, D. Klement, V. Stein IRE Trans. Antennas and Propagation, vol. 9, pp.
"Validation of the PO-Based RCS-Code SIGMA 228, 1961.
by Using IEM and Experiments",
Proceedings of ACES 1996', Monterey, Califor- [7] D.A. Shnidman
nia, USA, 2.-2.3.1996, p. 719-724. "Evaluation of probability of detection for several

target fluctuation models"
[5] P. Swerling Technical note 1975-35, MIT, Lincoln Labara-
"Probability of detection for fluctuating targets", tory, Lexington, Massachusetts, 1975.
IRE Trans. Information Theory, vol. 6, pp. 269 -
308, 1960; J.I. Marcum, "Mathematical appen- [8] P.C. Dowdy
dix", ibid., pp. 145 - 267. Originally published as "RCS probability distribution function model-
RAND Res. Memo. RM-1217 (1954) and ing of a fluctuating target"
RM-753 (1948), resp. Proceedings of the 1991 IEEE National Radar

Conference, New York, 1991, IEEE, pp. 164 -
[6] L. Peters Jr. and F.C. Weimer 168.
"Reply to comments by R.H. De Lano"
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RADAR MEASUREMENTS ON SCALED MODELS

Jiirgen Kruse, Manfred Hochmann, Dirk Bringmann
Daimler-Benz Aerospace AG
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Hiinefeldstr. 1-5, D-28183 Bremen

Tel.: +49 421 538 3291
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1. SUMMARY On the basis of the data obtained, radar signature
Within the scope of the development of military aircraft with characteristics can be determined which are distinguishable
reduced radar cross section (stealth), radar signature by aspect angle, frequency polarization and pulse response.
measurements on scaled models play an important part. In addition, precise scatter center resolution also permits the
Their significance can be compared to that of model simulation of stealth measures that might have been
measurements in wind tunnels. In addition, radar signature implemented on individual components so that also modified
measurements of this type could also be envisaged for the radar signatures can be entered into appropriate databases
future generation of basic data for non-cooperative target (stealth retrofit). In this way, radar signature measurements
identification. on scaled models constitute a valuable means for analyzing

also external aircraft types in different equipment conditions.
This paper serves to discuss the prerequisites for this type of
model measurements and to illustrate them with the help of
examples. 2. INTRODUCTION

In current aircraft development, reduced signature has
Coherent radar signature measurements on models are become one of the primary aspects. This design criterium
carried out at Daimler Benz Aerospace at frequencies of up has recently joined the other ones such as flying
to a maximum of 100 GHz. This means that the models have characteristics, design, armament, etc. Aircraft design is
to be manufactured with utmost care and that the measuring particularly influenced by considerations concerning a
techniques and set-ups used have to be implemented with the reduced radar signature. This is illustrated by the example of
highest precision. This paper presents examples of a series of the F 117 or B2 aircraft types. Sharp rounded leading edges
different aircraft models, discusses the scope of their or internal loading of weapon systems are quite recent
equipment and the way they are manufactured. developments and for their implementation it was necessary

to achieve an optimum between the different design criteria.
Coherent radar signature measurements are subject to special It is to be expected that, in future, attention will have to be
requirements with regard to constancy as measurements for paid not only to reduced aircraft signature but also to
this purpose extend over several hours. The main task signature characteristics because of non-cooperative target
consists in compensating influences through induced identification.
vibrations, thermal expansion, angular accuracies of the
rotary stand and the phase drift of the measuring equipmerit. Since all of these criteria play a decisive role already in the
Owing to the extensive measurement range, polarimetric early stages of aircraft design, these properties are
radar signatures are obtained over wide frequency bands (up investigated by means of model measurements and signature
to 30 GHz) with a high degree of detail with regard to radar calculations.
scatter centers. It is shown how such scatter center
measurements could be subjected to further processing, As there is still a lack of sufficiently powerful computers
permitting the additional assessment of details with regard to which could be used for exact determination of signatures by
their signature properties. Also polarimetric signatures are means of calculation procedures, signature measurements are
presented with the help of examples. often performed with the help of scaled models.

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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3. AIR VEHICLE MODELS FOR RADAR SIGNATURE With this type of models and with the help of measuring
MEASUREMENTS methods still to be described it is possible to determine the
Both dielectric materials and metals are used for radar signature and also to detect any possible modifications
manufacturing aircraft models for signature measurements. of the radar signature that might have been introduced, e.g.
Although metallic bodies permit a highly accurate by additionally mounted radar absorbers. Fig. 5 shows a
reproduction of details such as flap slots, air data sensors, rudder fitted with a suitably scaled radar absorber whose
etc. by appropriate machining, extensive use of plastic absorption effect corresponds to that of a real absorber. In
materials has been made in the past for the manufacture of this way it becomes possible to predict forms of radar
aircraft models. This is mainly explained by the important signatures without any prior possibility of their observation
weight of metallic bodies. At Dasa, objects for signature or detection.
measurements which exceed the size of approx. 1 meter are
mainly made from dielectric materials. In the aerodynamic 4. COHERENT RADAR SIGNATURE
area, these models are made from metal so as to be able to MEASUREMENTS
support the high mechanical loads exercised by the airflow in For determination of radar signatures on scaled objects it is,
the wind tunnel [Fig. 1]. After certain modifications at first, necessary to comply with the known scaling laws.
(suspension), these models can also be used for radar
signature testing. The costs entailed by the implementation of This means that the measuring frequency fm is increased with
these models amount to approx. 600,000 Deutschmarks for regard to the original frequency f in accordance with the
the configuration model and another 700,000 Deutschmarks scaling factor k so that the following equation applies:
for the associated external loads including pylons.

f = k f.
An alternative possibility consists in the manufacture of
scaled models made from dielectric materials which are In a concrete measuring situation this means that the result
either directly conductive (e.g. carbon fibers) or have to be achieved with a 1:10 model subjected to a measuring
provided with an add-on "metallization". In the case of add- frequency of 100 GHz would be the reflection of an original
on metallization, either low-resistance conductive varnishes aircraft at 10 Ghz. From these figures it becomes evident
are applied or the model is covered with appropriate that excessively reduced model scales (e.g. < 1:10) will not
conductive foils. When using these procedures, special lead to any meaningful measuring results. As regards
attention has to be paid to the low resistance of the coating measurements above 100 GHz, it can be said that the
or foil as unsatisfactory implementations can be detected financial and technical effort required for the performance of
only by means of imaging methods. Fig. 2 shows a surface wideband coherent measurements would be entirely out of
where the conductivity of the conductive foil used is proportion.
insufficient. The imaging procedure shows clearly how the
different webs have been laid. In this context it should also However, in order to provide solutions also in this kind of
be seen to it that also the adhesive of the foil is sufficiently situations, an extrapolation procedure has been developed for
conductive. the measurement of ship models. The frigate shown in Fig.

6 was built as 1:33 RCS model (4 m long) and would thus
Other models used at Daimler-Benz-Aerospace have been have required a measuring frequency of 330 Ghz to
coated with nickel-, silver- or copper-based conductive reproduce the original frequency of 10 GHz. Therefore the
varnish. Fig. 3 shows the 1:10 model of the F117 stealth wideband response of the RCS at 8 to 18 GHz was
aircraft. Also details such as the four air data sensors or the extrapolated to 330 GHz, using support points in the 26 to 40
serrated frame of the IR window in the front area have been GHz and 70 to 100 GHz range [Fig. 7]. The comparison
modeled here. between the results obtained in this manner and RCS

measurements on the original frigate presented a satisfactory
Also stereolithographic methods have been used recently for agreement (A = 2.2 dB). Nevertheless it should be said that
the manufacture of this type of models, permitting scaled procedures of this type should be used in exceptional cases
modeling of complicated geometries such as engine air only as the reproduction of particular reflection conditions
inlets. Fig. 4 shows the engine air inlet model constructed to will always furnish a somewhat distorted picture. As a
1:20 of the B2 aircraft. This model had been manufactured general rule, scaled measurements are performed with the
by this procedure and was then integrated into the overall help of an appropriate increase of the measuring frequency,
model. as described in the foregoing.
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The results obtained with model measurements are of interest The entire measurement process is computer-controlled
for a number of users. The following analyses can be which permits selective elimination of measurement errors.
generated: This includes, among other items, the substraction of the

empty room (without test object), calibration of frequency
o Distribution of radar scatter centers responses and phase drift as well as far-field correction.
o Scatter center concentration point, glint
o Simulation of stealth measures For substraction of the empty room, its reflection
o Pulse response characteristic is measured with regard to amount and phase
o Polarimetric signature and subtracted from the test object measurement. As the
o Low-frequency signature time elapsed between empty room and object measurement

may vary and phases may become subject to variations in the
These data require high-precision measurements. In the meantime through temperature fluctuations or equipment
following, the various measures will be described which drifting, room reflections are not fully eliminated upon
have been introduced into Dasa's radar signature empty room subtraction - a small amount of empty room
measurement (RaSigma) systems in order to ensure noise will remain as measurement error. In order to reduce
compliance with requirements. For performance of radar these errors to a minimum in practical measurement
signature measurements, three measurement chambers are procedures, the Dasa measurement chambers and equipment
available in Bremen (two at Dasa, one at STN ATLAS racks are air-conditioned and the rotary stand, the
Elektronik). All of them operate in accordance with the same measurement chamber and the antenna supports are
measuring principle and are handled by the same Dasa team. seismically decoupled. In addition, a defined fixed target is
This measuring and analysis team is backed by an overall used to check and, if required, compensate residual phase
experience of 42,000 measuring hours. drifts at regular intervals during the measuring phases.

The wideband measuring systems used (0.5 to 100 GHz) are These special efforts are required in order to obtain a
based on the equivalence of complex scatter amplitudes coherent radar image which will serve as a basis for the
which are measured over a wide band and of short pulses performance of additional analyses concerning the
resulting through Fourier transform. Measurement data are characteristics of the different scatter centers and the overall
obtained by scanning the test object within a discrete signature.
frequency raster with high frequency stability. The portions
reflected by the test object are recorded via the network This set-up also permits the performance of a far-field
analyzer which calculates amplitude ratio and phase correction of the electromagnetic field aimed at correcting
difference. The maximum distances between the frequency the measuring distance between antenna and object which is
support points result from the unambiguous range of the generally too short. Fig. 8 shows the effect of this far-field
Fourier transform in longitudinal direction and those of the correction. The object measured here is a cylinder which is
angular support points (object rotation) from the 5 meters long. The radar image is shown with and without
unambiguous range in transverse direction (extension of the correction. The effect can be observed in the RCS response,
test object in transverse direction). This means that, the i.e. in those cases where no correction has been made, the
bigger the test object and the measurement chamber, the peak as plotted against the angle becomes significantly wider
smaller the frequency and angular measurement steps and especially in the case of extensively distributed scatter
the longer the measuring time. By contrast, the resolution of centers (cylinder across antenna).
the radar scatter centers (separability of two scatter centers)
is determined, in longitudinal direction, by the frequency 5. ANALYSIS OF HIGH-RESOLUTION RADAR
band width used and, in transverse direction, by the adopted IMAGES
angular range. The maximum value of the resolution reached Radar signature measurements are conducted in the
in the longitudinal direction A y is determined in accordance described manner for different aspect angles with regard to
with the equation the test object. The test object is measured on the rotary

stand within the relevant angular range using defined angular
c measurement steps. The RCS values thus obtained depend on

Ay = - frequency and aspect angle. They can be represented not
2B only as one-dimensional but also as two- or three-

dimensional scatter center distribution.
where c stands for the velocity of light and B for the
frequency band width.



22-4

Reconstruction of a two-dimensional radar image is achieved Fig. 13 shows the K-space of an aircraft model across the
by means of conventional tomographic procedures: The original frequency range comprised between 0.376 and 2.175
scatter response calculated for a constant aspect angle is GHz. Fig. 13a illustrates the RCS resulting with an HH
distributed via a rear projection algorithm within the imaging polarization. Reflections in the front aspect which are caused
area over all matrix elements along the relevant phase fronts by the engine inlet are clearly visible. The maximum linear
(wave fronts) [cf. Fig. 9]. The coherent superposition for all RCS has been plotted in Fig. 13b whereas Fig. 13c shows
aspect angles provides a microwave image where the test the associated polarization angle a. The same type of
object is represented without distortions. Due to the evaluation is illustrated in Fig. 14 for a dispenser, with
equivalence between local scatter center distributions and the application of the same original frequency range that has
spatial frequency domain resulting from a two-dimensional been mentioned above. A noticeable feature of this image is
Fourier transform it now becomes possible to determine a the heavily pronounced formation of signature islets which is
far-field RCS which depends on frequency and aspect angle. due, on the one hand, to the smaller quantity of individual
The spatial frequency domain corresponds to a polar scatter centers and, on the other, also to the smaller size of
coordinate system where the length of a vector starting from the object. The emphasis in Figs. 15a to c lies on the
the origin of the coordinate system corresponds to the associated polarization signatures for the frequency range
frequency and where the angle with regard to the x-axis comprised between 0.025 and 0.625 GHz. In this frequency
corresponds to the aspect angle [cf. Fig. 10]. This means range, stealth measures on air vehicles will be without effect
that a radial section through the spatial frequency domain as their size as compared to the wave length is too small.
corresponds to the well-known polar diagrams. All other Gains which can be achieved by means of optimum choice of
polar diagrams shown have been taken from the relevant polarization can be clearly seen in all cases.
spatial frequency domains.

In addition to polarization analyses of this type, Dasa also
With the help of a spatial filter function (two-dimensional generates pulse responses with the help of model
low-pass filtering) local partial areas or individual scatter measurements. These analyses could also be simulated with
centers can be filtered from the two-dimensional radar image variable pulse forms. Fig. 16 shows the pulse response of
[Fig. 11] and transformed into the spatial frequency domain two different air vehicles. With the RaSigma analysis
so that their frequency- and aspect-angle-dependent software, stealth measures on defined scatter centers can be
backscatter can be investigated in depth [Fig. 12]. Thanks to simulated and the effects on the pulse response or the 2-D
the filtering which is exactly matched to the local scatter image analyzed.
area, it is possible to suppress, to a large extent, all those
interference effects which cannot be eliminated through the With the help of scatter center analyses, it is easy to simulate
travel time of the incoming wave alone. This permits, for stealth measures from the signature database on an air
example, to filter out not only undesired residual reflections vehicle to be camouflaged. For this purpose, defined
of the rotary stand but also the residual empty space error reflection areas to be camouflaged, e.g. fuselage or air
which is not superimposed on the test object. This error is vehicle nose, are filtered from the radar image and
produced by the fact that the test object masks certain areas transformed into the complex spatial frequency domain.
of the measuring chamber and thus produces an empty room Here the scatter amplitudes are attenuated in accordance with
shadow. the frequency-dependent absorption behaviour of a fictitious

absorber and coherently superimposed on the non-
Fig. 11 shows the image of an air vehicle with airbreathing camouflaged reflection portions which had also been
engines. The individual scatter centers can be clearly previously transformed into the spatial frequency domain.
identified. From the K-space, an important backscatter in the
side aspect can be clearly distinguished whereas, from the CONCLUSION
front, the air vehicle's backscatter is somewhat less. This Radar signature measurements on scaled models can be used
RCS has been subjected to a far-field correction. A for a variety of analyses. It has been demonstrated that, in
concentric section through the K-space will then yield the spite of the reduced dimensions of the air vehicles, images of
well-known RCS polar diagram which, however, does not scatter centers could be produced and signature anomalies
supply any information on signature anomalies. By contrast, detected. The associated procedures are extremely important
such information is provided with the help of the K-space. not only for the design of new systems but also for the
From Fig. 11 the potential offered by such K-space assessment of existing ones. The decisive importance of
visualizations becomes quite obvious. An even better controlling the measuring situation especially in the case of
illustration of this fact is provided by the polarimetric RCS imaging radar procedures has been explained. Scatter center
investigations conducted on air vehicles and aircraft models, responses, pulse responses and polarimetric signatures have

been illustrated by a series of examples.
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Fig. 1: 1:11 scaled metallic model Fig. 2: Radarsignature measurement on
of TORNADO aircraft a large plate covered with foils

of insufficient electrical
conductivity

Iv

Fig. 3: 1:10 scaled model ofFI17 aircraft Fig. 4: Scaled engine inlet model of B2
aircraft manufactured by means of
stereo-lithographic methods
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Fig. 9: 1 -dimensional imaging and 2-dimensional
image reconstruction
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Fig. 13: Polanimetric signatures of an aircraft model (elevation angle 0', original fr~equency range
0.376 ... 2.175 GHz)

Fig. 14: Polarimetric signatures of a dispenser model (elevation angle 0', original frequency
range 0.376 ... 2.175 GHz)
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Fig. 15: Polanimetric signatures of a dispenser model (elevation angle 00, original frequency range 0.025 ... 0.625 GHz)
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Fig. 16: Pulse response of two different flight vehicle models



23-1

A comparison on radar range profiles between in-flight measurements and
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ABSTRACT named RAPPORT. Section III will depict the background of
The validation of Radar Cross Section (RCS) prediction radar range profiles, followed by a description of the range
techniques against real measurements is crucial to acquire profile acquisition in the subsequent section. Section V
confidence in predictions when measurements are not avail- describes which predictions are made. Subsequently, section
able. In this paper we present the results of a comparison on VI shows the comparison between the measurements and the
one-dimensional signatures, i.e. radar range profiles. The predictions, followed by a discussion in section VII. The final
profiles were measured from a target of opportunity, a Boeing section draws the conclusion.
737. At the same aspect angles and frequencies, profiles were For the remainder of this paper we will use the abbreviations
predicted using a high-frequency RCS-prediction code in PRP and MRP for 'predicted range profile and 'measured
conjunction with a digitised model of the Boeing. Despite the range profile', respectively.
assumptions and simplifications in both the prediction code
and the aircraft model, a fairly good agreement is observed on II. HIGH-FREQUENCY RCS-PREDICTIONS
head-on and tail-on aspect angles. The correspondence on CODES
broad-side aspect angles is seen to be much better: despite Most high-frequency electromagnetic scattering codes are
differences in peak amplitudes, normalised correlation coeffi- based on a combination of Physical Optics (PO) and ray
cients up to 0.9 are observed, tracing (related to GO, that is, Geometrical Optics) as was

first suggested by Knott [1] and further described by Knott [2]
I. INTRODUCTION and Zolnick [3].
For a few decades, RCS-prediction techniques have been Methods based on PO and GO can be used in the high fre-
under development for predicting the total amount of radar quency region of electromagnetic scattering. Here, 'high
reflection of an object at a certain frequency and seen under a frequency' means that the object needs to be larger than,
particular aspect angle. When the target dimensions are much typically, five wavelengths.
larger than the wavelength (high-frequency approximation) the In the Geometrical Optics or GO-approximation it is assumed
combination of Physical Optics and Geometrical Optics has that the radar energy propagates along ray paths, governed by
shown to be a fruitful approach for predicting the RCS of the Fermats principle. It is determined which part of the object is
target [1, 2, 3]. visible to the radar and provides thereby the incident field on
Prediction techniques can be used to compute radar range an object (ray tracing). If an obstacle is encountered, the
profiles - these signatures are essentially one-dimensional reflected field is determined using the theory of Physical
'images' of aircraft. They are promising candidates for the Optics (PO) [7].
recognition of targets because they depend on the target The combination of PO and GO also enables us to calculate
geometry [4, 5, 6]. We want to be able to predict profiles the scattering due to multiple bounces, likely to occur in
using an RCS-prediction method and an accurate geometrical corners and cavities [3]. This is an important property, as these
description of the target. For future use, predicted profiles can multiple bounces are known to be major contributors to the
be used to build a target library for aircraft recognition. total RCS of complex, man-made objects like aircraft, vehicles
In a short, earlier paper [12] the results of a comparison and ships.
between predicted range profiles and profiles measured at When the incident field is reflected by the object, the contri-
broad-side aspect angles only were shown. This report addi- bution to RCS is computed by PO. Additionally, GO is used to
tionally includes: 1) profiles from near tail-on and nose-on compute the direction of the reflected field towards other parts
aspect angles, 2) an assessment of range profile variability as a of the object, This result is then used as incident field for
function of aspect angle and 3) an approach to improve the further reflections and is treated identically to the procedure
estimate of aspect angle using the predicted and measured for the first reflection.
radar data. In most techniques the ray-tracing implementation is based
The organisation of this paper is as follows: in the next upon (a variant of) the shooting and bouncing ray (SBR)
section, we will briefly treat high-frequency prediction codes technique [8]: a dense grid of rays is shot from the incident
and the implementation that has been chosen for our program, direction towards the target. Rays are traced according to the

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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law of Geometrical Optics as they bounce around the target. We produced the range profiles by emitting a bandwidth B

At the exit point of each ray, an integration is performed to using N pulses with linearly increasing frequencies, called a

sum up the contribution to the total scattered field. A well- stepped frequency waveform [ 11]. The coherent responses (N

known example of a such a code is XPATCH [9]. The SBR complex numbers) are, after optional windowing and/or zero-

method has the disadvantage that a sampling density of ten padding, Fourier transformed and from the resulting sequence

rays per wavelength has to be used to obtain accurate results. the phases are discarded - only the magnitudes are considered.

RAPPORT, acronym for Radar signature Analysis and The target aspect angle can be expressed as a coordinate pair

Prediction by Physical Optics and Ray-Tracing, is an RCS- (ca,O) where a is the aspect azimuth and 0 is the aspect

prediction code developed at TNO-FEL. It is similar to most elevation. See figure 2. We define the aspect elevation 0 as the

other high-frequency electromagnetic scattering codes; see angle between the radar line of sight and the plane through the
Brand [10] for a description. wingtips and nose of the aircraft. The elevation is positive if

RAPPORT contains however a fundamental advantage the aircraft is viewed from underneath. We define the aspect

compared to most other codes that lies in the ray-tracing azimuth x as the angle between

implementation. In RAPPORT the illuminated area on the • the direction of the nose of the aircraft and
object is reconstructed explicitly with a certain accuracy, using * the direction of the radar line of sight projected on the
a non-uniform or backward ray tracing algorithm. Once the plane through nose and wingtips.
area is known for a certain aspect angle and object, the RCS
can be calculated for any desired frequency. RAPPORT is plane through nose and wingtips
computationally more efficient than SBR techniques as the ray

density to obtain the same accuracy is far less.
The objects used by RAPPORT must be described by a direction of nose
combination of flat polygonal plates. All plates are subdivided
into triangular patches calledfacets, with a maximum size that
is user controlled. The procedure is to step-wise decrease the
patch sizes until convergence is achieved.
The number of multiple reflections that has a significant

contribution to the RCS is determined by a similar refinement
procedure, i.e., take an increasing number of reflections into

account until the total RCS converges.
Features that are not implemented in RAPPORT, but will
certainly result in an improved estimate of the actual range
profiles, are edge diffraction and the reflection on dielectric radar

materials. Currently, all facets are assumed to be perfectly
conducting. Fig. 2: Definition of aspect elevation, 0, and aspect azimuth (a.

In this particular orientation both a and 0 are positive.

III. RADAR RANGE PROFILES
A range profile can be viewed as a one dimensional 'image' of Thus, the aspect azimuth is zero if the aircraft is viewed from

an aircraft, where the parts of the aircraft that reflect the radar nose-on and 1800 degrees if viewed from tail-on. Finally, the

radiation, that is, the scatterers, are projected onto the line of aspect azimuth is chosen positive if the target is viewed from

sight. See figure 1. the starboard side and negative if viewed from the port side.
We will assume, however, that the aircraft is symmetric such
that a range profile measured at aspect azimuth -ax is the same
as a range profile measured at ax.
The range resolution of a profile can be described in terms of

radar line its capability to resolve point targets that are separated in
of sight range. The fundamental relationship for the inherent range

resolution AR associated with radar bandwidth B is [11]

CAR=Y- (1)
2B

Where c is the speed of light.

Usually, a windowing function is applied before Fourier
Transforming to reduce spectral leakage. The price to pay is a
reduction in resolution, expressed in the factor y"!>. For both

Fig. 1: A range profile of an aircraft viewed from the left hand our measurements and the predictions we applied a Hamming
side. Responses from the aircraft scafterers (circles) weighting which lowers the first sidelobe to -43 dB. For this
are projected onto the line of sight, resulting in a radar window, y--l.3.
range profile (bottom). (Geometrical data by Viewpoint Range profiles depend strongly on the aspect angle. If an
Datalabs International.) aircraft rotates over a large azimuth angle, such that the
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outermost scatterers move from one resolution cell to the elements may vary rapidly if a sequence of consecutively
other, the measured range profiles during this rotation suffer measured range profiles is considered - the change in aspect
from Rotational Range Migration (RRM) [4]. angle is due mainly to small aircraft yaw motions during the
See figure 3. Suppose we look at an aircraft at broad-side, and recording time. The peak positions, however, do not alter.
consider the outermost point left (tip of the nose) and right Thus the following view may be adopted: during the meas-
(end of the tail). Let L be the distance between these points. urement of a sequence of range profiles in real flight, the
Now, these points do not change their relative position in aircraft rotates with respect to the radar. Over large rotations
range over more than a resolution cell if the change in aspect the profiles decorrelate due to Rotational Range Migration. A
azimuth Aa is less than small sector may be defined where RRM does not occur,

AR which is called an RRM-sector.Aa <AaRRM =-~ [rad] (2)n()

Thus, a range profile measured at (a,0) does not differ due to
Rotational Range Migration from a range profile measured at
(a+Aa,0) if AoC<AQXRRM. AO
Rotational range migration also occurs if the aspect elevation
changes. See figure 4. Points on the aircraft that are maximally radar

separated in vertical direction change their relative path length
to the radar with Vsin(AO) while rotating over an angle of AO. L(l-cs(AG))f2 L(-.os(Af)fi2

Similarly, scatterers that are maximally separated in horizontaldirection change their relative path length with Fig. 4: Differential path length due to change in aspect eleva-
direction chan oe theirrelatiwe pthae tengh withe mtion. In this geometry, the aircraft has its nose pointed

2>(LI-cs(A))/. Noe tat e hve tkenthemaxmumperpendicular on the paper (towards the reader) and
possible separation of scatterers on the wing tips also equal to perpendic n thepatow th rd a
L as most civil aircraft, including the target under considera-
tion, are nearly 'square'. Thus, we may write for the change in It is unfeasible to measure, and computationally very expen-
aspect elevation AO that does not imply a difference due toctevational rAne m atidoesnot sive to predict, range profiles at the dense sampling interval

that is required to follow all speckle variations - we would
O-AR), arcsin(AR)) [rad] typically need several hundreds of profiles per square degree.
L V We therefore settle for a lower sampling density required to

(3) avoid RRM, thereby assuring that the positions of the scatter-
ers are well-determined. Then, in the comparison of MRPs

Another effect, speckle, causes range profile variability for with PRPs, it should be kept in mind that the amplitudes of
much smaller changes in aspect angle. It is caused if in a range profile elements that contain multiple scatterers will not
single resolution cell two distinct scatterers are present - then, be accurately predicted as it cannot be determined precisely
only a slight rotation of the aircraft in aspect azimuth or what the relative phases of the individual scatterers are. Note,
elevation is enough to change the differential path length to however, that most range-cells will not contain multiple
the radar over half the wavelength. This causes the sum of the scatterers if the resolution is high.
two scatter contributions to turn from constructive to destruc- Let us now make a final remark on the sampling of range
tive interference within tiny changes of aspect angle; generally profiles in aspect angle. For L and V usually the aircraft length
between one and two orders of magnitude smaller than the (or wingspan) and the aircraft height are taken. These are,
aspect angle changes associated with Rotational Range however, the maximum dimensions of the aircraft. Therefore,
Migration. equations 2 and 3 give in practice a smaller RRM-sector than

LAa they will be in reality because radar scatterers are not neces-

I ic sarily present on the outermost parts of the aircraft.

IV. IN-FLIGHT RANGE PROFILE MEASURE-
MENTS

In this paper we consider three legs of fifty range profiles
each, acquired in the autumn of 1995 from three Boeings 737.

L During the measurements information from a secondary radar
radar was available, which identified the aircraft as a Boeing 737

from either the 300- or the 500 series. The secondary radar
uses the same code-name for both series, therefore it is not

possible to tell which of the types was actually measured.

Fig. 3: The differential path of the outermost scatterers due to The two aircraft types are identical apart from the length of the
a small change in aspect elevation of Aix equals LAcc. fuselage, being 33.4 m and 31.0 m for the 300 and the 500

series, respectively. The geometrical model we have available
The effect of speckle is that the amplitudes of the range profile for our comparison is a Boeing 737-500. We must be aware,
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therefore, that the MRP-PRP-correlation may be poorer if the V. RAPPORT RANGE PROFILE PREDICTIONS

measured target was actually a Boeing 737-300. The aircraft model used in this report is a commercially

The range profiles were measured with the FELSTAR S-band available Boeing 737-500 (manufactured by Viewpoint

radar located at TNO-FEL in the Hague, the Netherlands. A Datalabs International, Orem, Utah, USA.); figure 6 shows the

bandwidth of just over 450 MHz was emitted in 324 steps of model at a few aspect angles. The object description compares
1.4 MHz each. very well with the real object with respect to the external
From these parameters and the maximum target length dimensions. The engines, however, are closed near the front
(L=33.4 m) and height (V=1 I m, landing gear stowed) we find entrance. This will clearly have influence on the computed

that the range resolution is 43 cm, and the aspect angle range profiles, because the engine is a cavity; such structures

changes associated with Rotational Range Migration are 0.74 are known to have a large RCS [3]. Also, there are no ar-
and 2.2 degrees for the aspect azimuth and aspect elevation, rangements, nor in the model nor in the RCS-prediction code
respectively, to produce contributions from the rotating parts in the engine.
The MRPs used in this paper were calibrated for system errors,
virtually free of influences of radial velocity and acceleration
and two-fold oversampled to (partly) reveal spectral contribu-
tions that are within grid-points. As mentioned before, the
comparison was done on the magnitudes of the profiles only.
An MRP thus consists of 648 real numbers.
For each range profile, we estimated the target aspect angle
(a,0) from the tracking data, taking into account the target
position, motion and roll-angles. Figure 5 shows the aspect

angles of the range profiles we use in this comparison. We
unfortunately have no firm estimate of the errors in the aspect
angle coordinates. The differences in aspect angles will be
fairly accurate - a bias on both aspect azimuth and elevation
for the whole leg could nevertheless be present. We are
confident, however, that the bias for a particular leg will be
within 5 degrees for both ac and 0.5 -.......... .......................

4 - .... ............

-15 -14 -13 -12 1Fig. 6: The Boeing 737-500 model. The topmost figure

a [deq] corresponds to the average viewing angle of leg i, the
second to leg ii and the third to leg iii. (Geometrical data

.i9.by Viewpoint Datalabs International.)

The geometrical description of the aircraft consists of 8,361

polygons. Subdivision by RAPPORT until convergence was
reached, led to an internal geometry description consisting of

91 92 93 94 95 27,248 facets. Making the number of reflections larger than
a [d eq three did not add significantly to the total RCS, therefore the

4. maximum number of reflections was chosen to be three.

) ,.We used RAPPORT for the prediction at exactly the same 324
3 ... frequencies as at which the measurements were performed,

and at each of the estimated MRP aspect angles shown in
figure 5. We thus mimicked the measurement of a stepped

-170 -171 -172 -173 -174 frequency waveform. The predicted radar data was processed
a [deg] in the same fashion as the real data, i.e. Hamming weighting,

zero-padding, Fourier Transforming and taking the absolute
Fig. 5: Aspect angles of measured range profiles used in values. We thus produced 150 PRPs.

comparison. For a further experiment on leg ii, we computed range profiles

on a grid around the estimated aspect angles. As discussed
Figure 6 shows for each of the legs how the aircraft is seen by earlier, we settle for a sampling in order to avoid Rotational
the radar. Range Migration. We chose steps of 0.6 degrees in aspect
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azimuth and steps of 2.5 degrees in aspect elevation. See 1. Shift the entire leg over a chosen angle in both aspect
figure 7. azimuth and aspect elevation.

2. Consider the aspect angle of a shifted MRP. Find the PRP

Leg ii in the grid of aspect angles that is closest in aspect angle.
20 3. Perform step 2 for all MRPs, such that for each MRP a

S....................................... PRP is found. (Note that for several MRPs the same PRP

15 ....................................... can be found, as neighbouring MRPs differ less in aspect
angle than the neighbouring PRPs in the grid.)

10...................................... 
4. Compute TI for each MRP-PRP pair and average.

"...,,...=o*...........=.e e... .......... Leg 1 Leg 2;

5 . e .........*Joo~e oo....................

................................

0 .......................................

80 90 100.
jal [deg]

Fig. 7: Grid at which additional range profiles were computed Leg3 Shtd le 2

(dots) around the aspect angles of leg ii (solid).

VI. COMPARISON RESULTS

To quantify the similarity between a predicted and a measured
range profile we chose a straightforward measure: the Maxi- ..

mum Correlation Coefficient TI. This number is the peak value
of of the normalised correlation function. If x is a vector Fig. 9: For each of the three legs hundred range profiles are

representing the MRP and if y is a vector representing the shown as a grey scale image (white: lowest, black:

PRP, this similarity measure is defined as highest amplitude). The fifty predictions are shown at
the top and the fifty measurements at the bottom of

=max(x • y) (4) each sub-figure. The profiles in the bottom-right show
i the results of optimal shift from leg 2. The horizontal

Here ',' denotes the inner product of the two vectors and x(i) is extend is 35 m for all images.
the original vector x, but circularly shifted over i positions to
the right. For example, if xt1 ) - x = -/430 [12 3 4] then If the procedure is repeated for several shifts in aspect azimuth
j2) = /'1430 [3 4 1 2]. Both x and y are normalised: it means that and aspect elevation, figure 10 is the result. It shows that the
the sum of squares of the elements (=total energy) equals one. average correlation coefficient increases from 0.80 to 0.85 if a
Therefore, if the PRP and the MRP are identical apart from a proper shift is chosen.
discrete shift, TI equals unity.
The resulting MRPs and PRPs at the same aspect angles are 10 0.85
shown in figure 8 in the two topmost diagrams and the bottom
left diagram. They show ten measured range profiles (thin
lines), each of them aligned with the predicted profile at the 5 0.8

same aspect angle (thick lines). The aircraft contour is aligned
with the PRP's. From the fifty profiles we show only the five • 0 0.75
that have the poorest correlation (the downmost five profiles)
and the five that show the best correlation (the topmost five 0.7
profiles). For all profiles the magnitudes are shown. The -5

average Maximum Correlation Coefficients are 0.72, 0.80 and 0.65
0.69 for leg i, ii and iii, respectively. -10
In figure 9, another representation of the data is shown: stacks -10 0 10
of the predicted and measured profiles are displayed as imager. A ot

Comparing an MRP to a PRP at exactly the same aspect aspect Fig. 10: Average Maximum Correlation Coefficients <T1> as
angles disregards the possiblity that there are likely to be function of the shift over aspect azimuth and aspect
errors in the aspect angle estimates of the MRPs. For leg ii we elevation for leg ii. The maximum <il> is found at a shift
therefore carried out the following procedure using the PRPs of Aca = 2.5 and AO = -2.
computed at the grid of aspect angles.
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Leg 1 Leg 2

0.59 0.89

R a n g e [ m 7 R a n g e 0 .8 9

S iii iii:i ii~i:i::i:i0 .0 .8

S•• ::/, 0.-81 0ii•:iii:iL .8. 9
i~ 0.81•! 0.88.

0.8.

0. 64

10 20 30 40 15 20 25 30 35 40 45
Range [m] Range [m]

Leg 3 Shifted Leg 2

0.78 0.89
0.76ii~i~ 0.89

0 .7 6 0 .9 1

0.64 6 8

I I .......... - - 0 0.64 0.7

10 20 30 40 15 20 25 30 35 40 45

Range [m] Range [m]

Fig. 8: For each of the three legs ten range profiles are shown. The measurements are shown by thin, the predictions by thick lines.
The radar is situated at the left-hand side. The numbers in the figures display il. Only the five profiles in the leg with lowest
correlation (bottom five) and the five profiles with highest correlation (top five) are displayed. For the two topmost figures and
the bottom left figure, the PRP's are computed at the estimated aspect angles. The profiles in the bottom-right show the re-
sults of optimal shift from leg ii. In the top-left corner of each figure a bar shows the projected difference in fuselage length
between the 300 and 500 series of the Boeing.
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The profiles in the bottom right diagram of figure 8 show the engines and features that differ from aircraft to aircraft
same ten MRPs of leg ii, but now aligned with profiles that from the same type.
were searched for in the grid. A slightly better match is As the results show, for broad-side views the aircraft range
observed. We have thus found a better estimate of the target profiles can very well be modelled by Physical Optics and
attitude, i.e. (ax, 0), with respect to the radar. Raytracing only. The main difference is that the MRPs

have a clear signal component between the main peaks in
VII. OBSERVATIONS AND DISCUSSION the profile. For nose-on and tail-on aspect angles, the
1. Viewing figures 8 and 9 we observe for leg i (near nose- Physical Optics and Raytracing approximation predicts the

on) and for leg iii (near tail-on) a fairly good agreement most prominent scatterers, but more reflective processes
between MRPs and PRPs. The correspondence for leg ii and better models need to be utilised to account for the
(near-broad side) is much better. Even for the MRP-PRP other contributions in the range profile. Apparently, most
pairs with lowest ri, the correspondence is quite good for of the extra non-explained signal in these profiles is due to
leg ii and still present for leg iii. the engines: cavities and rotating fans and turbines.
These results are very encouraging for the use of RCS-
prediction codes for computing radar range profiles of 6. We also observe that for leg ii the main features on the
complex targets. aircraft, like the fuselage, the engines and theflap tracks

(the two dihedral-like structures on each of the wings) can
2. The convincing correspondence for the broad-side case, well be seen in the range profiles.

leg ii, is clearly favoured by the aspect angle under which
we see the aircraft: we do not have reflections from cavi- 7. We used the Maximum Correlation Coefficien rj as a
ties or turbines as we have at head-on and tail-on aspect measure of similarity between MRPs and PRPs. This pa-
angles. Also, at these aspect angles not many range cells rameter can however be quite low, even if a correspon-
contain multiple scatterers that give rise to inaccurate am- dence between the peaks is observed. As an example, see
plitudes. figure 8, bottom-most profile in the bottom-right figure.

For this MRP-PRP pair, a low in is found even though
3. For leg iii, we may have actually measured a Boeing 737- most peaks in the PRP are also present in the MRP. The

300 instead of the somewhat smaller Boeing 737-500 as reason is that Tj is sensitive to differences in the relative
we do see extra signal in the MRP left from the leftmost amplitudes of scatterers - unfortunately these are the fea-
scatterer in the PRP. tures that are difficult to predict accurately (see point 5). It

is therefore of interest to investigate a better measure of
4. Viewing the same figures again, it is seen that, although similarity that is less sensitive to amplitude. Such a meas-

the peak positions are quite well predicted, the amplitudes ure will also benefit a future direction of research, the
match less well. One of probable causes is speckle: to pre- classification of MRPs with PRPs.
dict the amplitudes of range cells that contain multiple
scatterers, the model and the real target should have the VIII. CONCLUSION
same aspect angle within a few hundredths of a degree. In this paper we have demonstrated that RCS-prediction codes
Also, the target approximation by small flat patches can be used to mimic the measurement of radar range profiles
(instead of round surfaces) and a perfectly conducting of complex targets at three different aspect angles. For broad-

surface (instead of dielectric surfaces) is only a first ap- side aspect angles it was shown to be possible to improve the
proximation to the actual scattering mechanisms, and is estimate of target attitude.
therefore likely to produce inaccuracies in amplitude. Even though several reflective processes are not included in
One of the obvious causes of amplitude mismatch is the the prediction code and the model is a simplified representa-
normalisation. As no noise-power is present in the PRPs tion of the true target, the correspondence is convincing.
its normalisation pushes the signal components to higher
values compared to the MRPs. This is mainly seen in the IX. ACKNOWLEDGEMENTS
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SUMMARY
1 INTRODUCTION

This paper describes an electromagnetic computer
prediction code for generating radar cross section (RCS), Xpatch is a general-purpose radar signature prediction code
time-domain signatures and synthetic aperture radar (SAR) and environment for calculating high-frequency
images of realistic 3-D vehicles. The vehicle, typically an electromagnetic scattering from complex objects described
airplane or a ground vehicle, is represented by a computer- by several different computer-aided design (CAD)
aided design (CAD) file with triangular facets, IGES representations. Xpatch has been developed by DEMACO
curved surfaces (NURBS or B-Splines), or solid in Champaign, Illinois under the joint Tri-Service
geometries. The computer code, Xpatch, based on the sponsorship of Air Force Research Laboratory at Wright-
shooting-and-bouncing-ray technique (SBR), is used to Patterson AFB, Ohio and Kirtland AFB, New Mexico; the
calculate the polarimetric radar return from the vehicles Army Research Laboratory at Ft. Belvoir, Virginia; and
represented by these different CAD files. Xpatch the Naval Air Warfare Center at Pt. Mugu, California.
computes the first-bounce Physical Optics (PO) plus the The X-Window MotifrM Graphical User Interface (GUT)
Physical Theory of Diffraction (PTD) contributions. combines CAD geometry pre-processing and analysis
Xpatch calculates the multi-bounce ray contributions by tools, along with the Xpatch prediction codes, and post-
using Geometric Optics (GO) and PO for complex prediction analysis tools. This GUI allows the user to
vehicles with materials. It has been found that the multi- perform end-to-end predictions analysis all in one package.
bounce contributions are crucial for many aspect angles of
all classes of vehicles. Without the multi-bounce Xpatch is based on the high-frequency SBR technique',2,3

calculations, the radar return is typically 10 to 15 dB too that is capable of calculating the fully polarimetric radar
low. Examples of predicted range profiles, SAR imagery, return from complex geometries represented by different
and RCS for several different geometries are compared CAD geometry types. Both the first-bounce PO plus the
with measured data to demonstrate the quality of the PTD contributions and the multi-bounce geometric optic
predictions. The comparisons are from the UHF through ray contributions are included in the computation. For the
the Ka frequency ranges for simple and complex targets. first-bounce calculations, the most time-consuming aspect
One of the powers of Xpatch is the traceback feature, is shadow and blockage checks on the geometry. A
where it is possible to see the cause and effect of different hardware and software Z-buffering technique is used in
target features. Examples of these features are also Xpatch for highly accurate and fast calculations. Once the
presented in this paper. Recent enhancements to Xpatch geometry's blocked and shadowed surfaces are determined,
include improvements for millimeter wave (MMW) the first-bounce contribution is calculated using PO. The
applications and hybridization with Finite Element first-bounce PO calculation can be accomplished using a
Methods (FEM) for small geometric features and fast frequency-domain integration4 or by a time-domain
augmentation of additional IGES entities to support technique developed by Sheppard, et. a15. An option
trimmed and untrimmed surfaces. exists to include the first order metal edge diffraction by

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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using the Ufimstev-Mitzner incremental diffraction valid only for perfect electric conducting targets.
coefficients. Although blockage on edges is taken into Computation times for the narrow angle (30) X-band SAR
account by ray tracing, higher order edge diffractions due imagery of a tank, using the direct time-domain approach,
to multiple interactions is not included. Plans exist to takes approximately four minutes on an HP 720
incorporate higher order diffraction's in future releases, workstation. Similarly, using IGES surface

representations increases the frequency-domain run time
To calculate the multi-bouhce effects, a set of parallel rays for the same 200,000 facet vehicle to about 160 minutes
are launched from the incidence plane towards the on an HP 720 workstation. For this reason, a new
geometry. Each ray is traced as it bounces from one part technique has been developed in Xpatch that incorporates
of the geometry to another, until it exits the geometry. the surface curvature into a flat-faceted geometry file and
The field on the ray-tube at each bounce point is calculated can be used as an optional prediction method if curved
by the theory of GO and the associated backscattered field surface computations become too time intensive. This
is calculated by PO if the bounce point is visible to the hybrid geometry file provides fast computation associated
observer. The multi-bounce calculations include the with flat-facet targets and accounts for the surface
effects of polarization, ray divergence factor, and material curvature to improve the amplitude calculations by
reflection coefficients for frequency-dependent, multi- including the ray divergence factor. One drawback of this
layered materials, and for semi-transparent materials such hybrid approach, depending on the surface curvature, is
as radomes and dielectric covered cavities or objects. At that 200,000 plus facets are required to represent a typical
each bounce point the blockage to the observation point is fighter class vehicle and this means larger core memory
checked and then a frequency-domain or a time-domain requirements. Work is ongoing to develop a hybrid ray
physical optics integration 6 of the induced surface currents tracer that combines facets and NURBS into one geometry
are performed to calculate the far-field contribution at each representation of the vehicle to optimize computational
bounce point. Contributions from all rays are then speed, memory, and accuracy requirements.
summed up at a far-field observation point to give the
final scattered field. The Xpatch codes have been parallelized on the Intel

Paragon, IBM SP2, and Cray T3E using MPI. Current
Given the geometry and incident angle, rays are launched production capacity is 14,000+ (1024 X-band frequency
from a shooting window determined by the bounding box points) signatures or images per day on the 480-node Intel
of the geometry. As an example, consider a typical paragon. Research is proceeding in several areas to
fighter airplane (F-15 in Figure 1) illuminated at an improve performance and accuracy. Optimization of the
incidence elevation of -15' and azimuth of -15'. The ray tracer and associated electromagnetic calculations in
shooting window is 674 X by 397 X at 10 GHz. Xpatch is also an ongoing effort. Research to augment
Accuracy using a SBR type technique RCS and range Xpatch with low-frequency codes such as finite elements,
profile (time-domain) calculations requires a minimum ray finite difference time-domain, and MoM solutions is
density of 10 rays per linear wavelength. Using this underway. Hybridization is being pursued to improve the
minimum ray density, 23 million rays are launched at the Xpatch prediction code suites' accuracy for cavities,
3-D CAD representation of the F-15 shown in Figure 1, antennas, and vehicle details less than 10 linear
of which 4 million rays actually hit the geometry. The wavelengths in size. Hybridization of Xpatch with a
minimum required ray density for SAR imagery can also FEM code is complete and can now be used to perform
be reduced to two or three rays per linear wavelength, calculations on small features of a vehicle such as cracks
depending upon geometry complexity and the amount of and gaps 7.
multi-bounce contributions required to accurately calculate
the backscattered field from the geometry. An interesting 2 CODE CAPABILITIES
display of the multi-bounce effect is presented in Figure 2
for near broadside incidence of a tank. This figure clearly The electromagnetic part of Xpatch consists of roughly
illustrates the necessity of using the SBR technique to 50,000 lines of FORTRAN and C, the other parts of the
capture all of the multiple bounce effects in backscattering package consist of over 250,000 lines mostly in C and
predictions. There was a limit of 15 bounces used for the C++. Xpatch consists of three parts:
multi-bounce calculation in Figure 2. The first-bounce
calculation was done using the Z-buffer technique 4 and the 1) Electromagnetics: XpatchF, Xpatch.
geometry was represented using triangular facets. 2) CAD and visualization tools: Cifer, XEdge, XYplot,

McRange, and McImage.
Presently, a typical frequency-domain range profile 3) GUI.
computation with 1,024 frequencies (50 bounces, 10
rays/k, X-band, 200,000 facet vehicle) takes Typical output files from electromagnetic computations:
approximately 40 minutes on an HP 720 workstation. 1) Complex scattered far-field or RCS in dBsm (0-D
Performing the same calculation directly in the time- signature).
domain on the same HP 720 workstation takes 2) Range profile (1-D signature).
approximately 20 minutes6 . This technique is currently 3) Synthetic radar image SAR (2-D signature).
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Xpatch, insight into scattering causes and effects on
A summary of Xpatch electromagnetic capabilities is targets is provided through another tool, McRange.
given in Table 1. Any code in Xpatch can be used McRange displays the CAD geometry with its
individually as an independent unit, or it can be used as a corresponding range profile in the same range coordinate
component in the integrated GUI package. The GUI system (Figure 6). User-defined vertical solid lines on
consists of multiple pre- and post- prediction analysis the plots illustrate the tie of scatter location to a physical
tools: Cifer, XEdge, XYplot, McRange, and McImage. attribute on the geometry. These GUI tools are very
Cifer is a file translator package that translates CAD useful to evaluate the fidelity of CAD geometries, set up
formats from one CAD system to another and also the run parameter, monitor the computational run, and
translates data into the required formats for the Xpatch analyze the causes and effects of scattering.
electromagnetic codes and the related tools. XEdge is a
CAD processing and analysis tool for evaluating geometry 3 VALIDATION RESULTS
fidelity and provides a limited toolset for simple CAD
modifications. Xpatch has been extensively validated against primitive

objects and full scale complex vehicles 9",". The results
XEdge is a visualization tool allowing the user to display for different geometries are shown in Figures 7 through
the CAD geometry and evaluate the physical integrity of 13 with a comparison of measured and predicted data. The
the geometry to determine if the proper material results in Figure 7 are for a perfect electric conducting
assignments have been made, if normals are correct, and if (PEC) trihedral with two hemispheres embedded into the
the surfaces are properly modeled. XYplot is a plotting sides of the trihedral. As Figure 7 illustrates, the
package for producing xy-plots of the data. McRange predictions for this complex object are good except at the
allows the user to display the CAD file with measured low RCS levels and at aspect angles of 10 and 80
and predicted time-domain signatures to evaluate the cause degrees. The poorer agreement at 10 and 80 degrees is
and effect of scattering. McImage allows the user to due to higher order multiple diffraction;'s from the edges
overlay a CAD file with a predicted or measured SAR of the trihedral and the surfaces of the trihedral. These
image and also allows the user to evaluate the cause and higher order effects are currently not modeled in Xpatch.
effect of the scattering. All of these tools have been For the cylindrical duct in Figure 8, 30X in diameter by
integrated into one package with the GUI to allow the user 100% in length, the agreement for this large complex
to perform a seamless analysis of a complete cylindrical cavity is very good. The discrepancies in
electromagnetic prediction task. An example of the GUI Figure 8 are also due to higher order interaction terms
is shown in Figure 3. The GUI provides access to file that are not currently modeled in Xpatch. The
management, Cifer, geometry display and analysis tools, comparison of results in Figure 9, between measured and
computational settings, job control and status, results predicted data for an almond shaped object, are also in
displays, signal processing tools, and an on line help very good agreement except for the higher order
system. interaction scattering taking place at the tip of the

almond. Figure 10 is a comparison of measurements and
The complex object geometry representation for Xpatch predictions using the hybrid SBR technique for the object
radar scattering predictions can be either triangular flat- body and the finite element method (FEM) for the gap.
facets, BRL-CADTM constructive solid geometries, or Figure 11 is a comparison of exact solution and predicted
IGES -114 surface formats. By far, the most popular data for a bulk material loaded rectangular waveguide.
format is the triangular facet file because the computation Agreement here is also very good. Figure 12 is the
time is about four times faster than the time for curved comparison of Xpatch and a MoM code. Figure 13 is a
surface or solid geometry representations. Figure 1 is a comparison of an actual aircraft time-domain response
facet model of a fighter aircraft, and Figure 4 is a view of and an Xpatch predicted response. As is illustrated in
a solid model for a typical tank. Figures 13 and 14, the agreement between measured and

Xpatch predicted data is excellent. Figure 15 is a
One of the most important aspects of radar prediction is Mclmage rendering of a predicted SAR image of an actual
the integrity of the CAD geometry file. To analyze the aircraft. This image was computed with the SBR
CAD geometry, tools such as XEdge, have been technique using the direct time-domain method and
developed. These tools visualize, rotate, evaluate required a computation time of four minutes on a Silicon
geometry normals, and inspect geometry surface integrity Graphics workstation. Imagery such as this can be used
and connectivity (Figure 1). After the geometry has been as a diagnostic tool to study the cause and effect of
visualized and evaluated for integrity the next step is to scattering.
set up the run parameters to compute the electromagnetic 4 CONCLUSIONS
scattering from the CAD geometry. The run parameters
for Xpatch have all been integrated into a GUI that Xpatch provides realistic RCS, range profiles, and 2-D
allows for easy input and assignment of the run SAR imagery calculations for complex geometry types
parameter. An example input file for Xpatch is from 500 MHz to 100 GHz. Deficiencies in the existing
illustrated in Figure 5. After the computations with CAD models contribute major errors in the predictions.
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Model deficiencies include poor or missing detail, 5. R. A. Sheppard, T. D. Olson, and C. S. Liang, 1992
inaccurate surface curvature, and improper modeling of IEEE Antennas and Propagation's Society
small features and materials. The result is incomplete International Symposium, Chicago Illinois: 1992
and inaccurate RCS, range profiles, and 2-D SAR Digest, Volume III, page 1311.
images. More accurate CAD geometries can correct the
deficiencies, but modeling is time-consuming and 6. J. Jin, S. Ni, and S. W. Lee, "Hybridization of SBR
difficult. Additionally, the ultimate level of fidelity and FEM for scattering for large bodies with cracks
required for a CAD geometry is unknown. Research is and cavities," EM Lab Report for NASA NAG 3-
ongoing to quantify the level of fidelity required from 1474, University of Illinois, Urbana, Nov. 1994.
CAD models for different frequency ranges and
applications. 7. H. Ling and R. Bhalla, "Time-Domain Ray-Tube

Integration Formula for the Shooting-and-Bouncing-
The code, Xpatch, is providing accurate signatures for the Ray Technique," Technical Report NASA Grant NCC
many different targets at all aspects. Xpatch currently 3-273, The University of Texas, Austin Texas
does not perform calculations for semi-transparent radar (1993).
materials, antenna scattering and some of the higher order
scattering effects such as traveling waves, and creeping 8. E. M. Miller, D. J. Andersh, and A. J. Terzuoli, Jr,
waves. The major conclusion, thus far, is that the range IEEE Antennas and Propagation's Society
profiles created with Xpatch and flat-faceted CAD files are International Symposium, Ann Arbor Michigan:
adequate to use in generating a signature data base for 1993 Digest, Volume III, page 1404.
target identification algorithm testing, development, and
radar testing. 9. D. J. Andersh, S. W. Lee, et al., "Xpatch: a high-

frequency electromagnetic scattering prediction code
Xpatch does not currently perform calculations for some and environment for complex three-dimensional
of the higher order scattering effects such as traveling objects," IEEE Antennas and Propagation Magazine,
waves, surface waves, resonant effects, and creeping Vol. 36, No. 1, February 1994, pp. 65 - 69.
waves. Ongoing research to augment Xpatch for these
scattering phenomena is currently in progress, with 10 J. Bauldauf, S. W. Lee, L. Lin, S. K. Jeng, S. M.
emphasis on new methods and hybridizing the predictions Scarbourgh, and C. L. Yu, "High-Frequency
with low-frequency methods. The Xpatch prediction code Scattering from Trihedral Corner Reflectors and Oter
suite is being upgraded to perform full vehicle in scene Benchmark Targets: SBR vs Experiment," IEEE
predictions from UHF through Ka band. The major Trans. Antennas & Propagation., vol. 39, 1345:1352
conclusion thus far is that the predictions created with (1991).
Xpatch are adequate to use in studying the radar
signatures of complex 3-D objects over a wide range of
frequencies. 6 ILLUSTRATIONS
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Figure 3. Xpatch GUI menu bar.

a)

Figure 4. Solid model CAD (BRL-CAD) geometry of a tank used
with Xpatch.

b)
Figure 1. Example of visual ray tracer (a) and faceted aircraft CAD a)

model (b) using visualization tools (XEdge) available in Xpatch.

201

-20 ...... ... ['

0 so to0 ISO 200 250 300 350

Figure 2. Range (time-domain response) profile plots as a function of b)
range for single bounce (solid line) po calculations versus multi- Figure 5. Xpatch GUI electromagnetic input control pages:
bounce (dashed line) for a tank at an off cardinal angle of 45' Az and a) XpatchF input page; b) XpatchT input page
depression of 45° at 10 GHz.



24-6

27

a) Geometry description.
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b) Data comparison.
L Figure 7. Comparison of predicted data to measured data for a FEC
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post prediction tool (McRange) (Note solid lines can be drawn from Figure 8. Comparison of predicted data to a modal solution for a
the bottom plot connecting to the upper CAD file showing scattering shorted cylindrical duct, f = 10 GHz, VV Pol , 0' diameter =95.9
cause and effect). b) RCS using Psplot for 360 degree RCS display. cm, length = 254 cm.
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and that by the exact Moment Method for a dihedral with a crack for
the incident HH polarization7.
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dielectric material inside at 10 GHz. The incident E-field is in Z- at X-band and compared to measured data at multiple aspect angle.
direction.
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Figure 15. Prediction of an SAR image of an aircraft at X-band and
displayed with CAD geometry using the McImage analysis tool.
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1. Summary process called the FACETS Electromagnetic
Analysis System (FEMAS) that translates the

This paper describes the main high frequency engineering description of the target geometry
electromagnetic prediction code for generating into a form suitable for the FACETS
radar target signature data used in DERA. The electromagnetic analyses algorithms. The target
FACETS code was developed by Racal-Thom geometry description is based on PATRAN, a
over a thirteen year period and is a state-of-the- commercial CAD software package, which
art RCS prediction code based on physical describes the target surface through a set of
optics, geometrical optics and physical theory of bicubic patches.
diffraction algorithms. It is an extensively
validated code and is supported on a wide range FEMAS consists of eight software packages:
of computer architectures, both serial and * PACT, a program to check the CAD
parallel. description and translate the data format to

the FACETS data format;
A large number of resources have been used in e GRANIES, nominates electromagnetic
developing this capability and in order to attributes to the CAD target geometry model;
maximise the return on our investment we have * PRISM, automatic pre-processor for
developed ways of using this software to define identifying multiple scattering surfaces;
radar target models that can be used in larger a MESH, modifies the bicubic patches to flat
synthetic modelling environments. In particular, faceted surfaces to user-specified wavelength
we have developed two different target signature criteria;
fluctuation models for use in radar system a PIES, produces complex engine models;
assessment modelling. One of these is based on * GROUND, program to account for ground
the standard Swerling model and the other is a plane interactions;
new stochastic model that does not need to make e FACETS, the electromagnetic program
any assumption about the distribution function of containing all the scattering algorithm
the target. This new method is superior to the software;
traditional Swerling description of target e FCL, the command language for setting up
characteristics and offers a more accurate prediction runs.
representation of target RCS. Both methods that
we have developed provide the ability to model A range of post-processing software provides a
target glint as well as target RCS levels, number of signature visualisation options and

ISAR imaging capabilities. The software system
2. Introduction can run on a wide range of computer

architectures, both serial and parallel, and
The FACETS code (Frequency Asymptotic Code although originally written in FORTRAN it has
for Electromagnetic Scattering) is a radar cross- now been restructured in C and C++.
section (RCS) prediction program for large
complex targets. It has been developed for The target surface is represented as a mesh of
DERA by Racal-Thom continuously over this planar quadrilateral facets and this representation
last thirteen years. The code is based on a enables a closed-form evaluation of the physical
sequence of high-frequency asymptotic optics integral to be calculated efficiently. This
techniques, which are physical optics, flat-faceted target representation is obtained
geometrical optics and the physical theory of from the bicubic surface patch description
diffraction. FACETS is wrapped up in a system generated by the CAD model. A shadowing

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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algorithm is used to account for target self- evaluated and added to the direct scattered fields
shadowing where one part of the target obscures from the target.
the surface at another part of the target. At The wide range of scattering mechanisms
shadow boundaries the physical optics surface available in the FACETS code provides a range
currents can be modified to propagate energy of output scattering options. Monostatic or
into the shadow region of the target. If the bistatic RCS can be selected; near-field or far-
surface is rough the effect of surface roughness field scattering calculations are possible; full
on the scattered fields is also accounted for. vector polarisation scattering matrix data are

available; and a frequency sweep option allows
Multiple scattering on the target is modelled by a the generation of RCS imagery through a two-
combination of geometrical and physical optics dimensional Fourier transform giving cross-
for surface to surface interactions and reflection range and down-range scattering centres.
to diffraction scattering incorporates the physical
theory of diffraction. The surfaces of the target 3. Target Radar Signature
may have a number of different electromagnetic Representation
characteristics. For example, some surface
patches may be perfectly conducting and others 3.1 The target modelling problem
may be coated with radar absorbing material,
RAM. Scattering from the RAM surface may be There are many RCS prediction codes in
calculated through specification of the material existence and some of these offer a significant
parameters of the RAM material or by using a and validated capability for determining radar
look-up table for the material coating. signature characteristics. Initially, the challenge

for the radar signature prediction modellers was
Trailing and leading edge diffraction is modelled to provide tools that were able to assist the
using the physical theory of diffraction. electromagnetic design of military platforms and
Diffraction scattering may be direct, indirect or weapons systems. This challenge has been
from hidden edges lying within the shadow successfully completed and there are several
region of the target. Sharp or blunt edges can be prediction codes in existence that are used for
calculated or obtained through a look-up table. the design of military vehicles. The new
Diffraction from slots or gaps can be obtained challenge, now that these codes exist, is the
from a look-up table, question of whether there are better ways to use

the results generated by these codes so that radar
The code is capable of predicting scattered fields engineers and system designers can develop
from cavities, such as engine ducts. This is enhanced products.
achieved by using first order ray tracing, also
known as the shooting and bouncing ray method, The radar cross-section of complex targets is a
SBR. First order ray tracing accounts for ray complicated function of target aspect, radar
beam divergence effects where the curvature of frequency and polarisation. There are large
each ray bundle is modified by the curvature of numbers of scattering centres on these targets,
the reflecting surfaces that intersect the energy not all of which are independent from one
flux of the ray. Physical optics is used at the exit another. Energy scattered in the direction of the
aperture to calculate the cavity signature. Engine radar receiver is a coherent summation of these
duct scattering involves modelling the engine scattering centres and for radar targets of any
detail and any other internal objects, such as significant size the radar typically sees a strongly
vanes and splitter plates normally found in fluctuating signal. Consequently, the radar
engine ducts. Ducts may be bifurcated and senses the target as a scintillating signal and we
contain RAM surfaces. Both direct and indirect need to consider the best way to describe the
duct illumination are modelled. target signature characteristics to the radar if we

are to provide effective target modelling for the
FACETS also deals with the situation where the purpose of radar performance assessment.
target signature is modified by the proximity of a Although the prediction process is deterministic,
ground-plane. The ground-plane gives rise to the target aspect is not known precisely, target
additional scattered fields and these fields are dynamics are not known, structural deformations

are unknown and so on. So we conclude that a
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statistical or fluctuating representation of the target we found that an azimuth window of 10'
target signature is necessary for the evaluation of was appropriate.
radar performance.

The standard model for describing glint statistics

3.2 The standard fluctuating target is a normal probability density function,
model

(o-p) 2

The traditional method of specifying the e 2s2

fluctuations in target cross-section is the p(cr) = (2)
Marcum-Swerling model. This model permits a 2irs

mathematical analysis of several important radar
performance parameters and we can use It mean glint

predictive modelling techniques to determine the s standard deviation

most appropriate fluctuation model for a given
target. Glint data were analysed for each elevation angle

using a sliding azimuth window. Figure 3 shows

We describe here a process of target an example of one azimuth cut of predicted glint

representation by means of a measure of the data with mean and median curves for a sliding

average RCS together with a Swerling 50 window. The mean and median curves are

characteristic. We have assumed a simple always close and we found it necessary to use

airframe target representation and have used this small windows to be sufficiently representative
to demonstrate our modelling process. RCS data of the glint fluctuation. From the evaluation of

are predicted and analysed at each elevation this simple target we found that the glint data fits
angle using a sliding azimuth window. Mean a normal probability density function and that

RCS as shown in figure 1 is clearly seen to be mean and standard deviation values, obtained

dependent on the window width and is distorted after smoothing the data with a 50 azimuth
by peak values. The median RCS characteristic window, are sufficient to describe the glint

in figure 2 is clearly less sensitive to window characteristics.
size and we conclude that the median is a more
appropriate representation of average RCS. 3.3 A stochastic RCS target model

These RCS data were fitted to a gamma We now address the question, posed earlier, of
distribution so that we can determine the best whether there are better ways to use the results
Swerling model for the target. generated by our radar signature prediction

codes to obtain an improved representation of a

VV0 lev, / radar target signature. The method that we have

p(o') = (1) developed applies to both RCS and glint
'"VF(V) characteristics. It is superior to the traditional

Swerling model and requires more data storage
than the single parameter description of the

a the RCS value Swerling model. However, the data storage
v the gamma order parameter requirements are insignificant and make the

(v=l Swerling cases 1 and 2) model easy to implement.

(v=2 Swerling cases 3 and 4)
mean RCS The method makes no assumption about the

statistical distribution of the RCS data. The
Analysing the data we found that the Swerling simple target representation is used to illustrate
prescription is inappropriate when narrow RCS the benefits of the target signature model. Data
maxima are present. When the statistics are were generated by the FACETS code for full
insensitive to window size the g. parameter is azimuth coverage over a range of elevation
large and the mean RCS is close to the median. angles from -60' to +60'. This data is sub-
We conclude that, when the mean RCS is divided into a number of sectors and average
replaced by the median value, we must specify RCS values determined for each sector. The glint
the Swerling 3 or 4 cases. For this simple test characteristics of each sector are described
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through mean and standard deviation values. The We have also demonstrated that target glint
sector data are offset and scaled to give a pool of information is readily obtained and modelled b
normalised data values and a subset of this data prediction methods.
is chosen to represent the target signature
parameters. On completion of this process we The second method of representing fluctuating
obtain a set of numbers, typically five hundred, radar target signature characteristics that we have
which we use to reconstruct the target signature developed is a new stochastic method. Unlike
characteristics, the Swerling model the method makes no

assumption about the statistical distribution of
Figure 4 illustrates the result of applying this RCS data. The method that we have developed
process to our simple target. The top graph applies to both RCS and glint characteristics and
shows the original predicted RCS data plotted as it is superior to the traditional Swerling model. It
a function of azimuth and the lower graph shows does require more data storage than the single
the reconstructed RCS data. Clearly, the parameter description of the Swerling model.
reconstruction process has been successful. The However, the data storage requirements are
glint data have been reconstructed and are shown insignificant and the model is easy to implement.
in figure 5. This process has been equally
successful in providing a model of glint. 5. Acknowledgements
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The FACETS RCS prediction code has been (c) British Crown Copyright 1998 /DERA
described in this paper and we have taken this
code and applied it to generating target RCS and Reproduced with the permission of the Controller of Her
glint data. We have argued that the capabilities Britannic Majesty's Stationery Office.
of this code and other high quality signature
prediction codes are such that they can provide (NOTE 1998 year of first open dissemination)
detailed signature characteristics of radar targets.
However, this is a deterministic approach and we
described the nature of radar target signatures as
seen by a radar system as fundamentally
statistical.

Consequently, we have posed the question as to
the best way to represent target signature
information generated by sophisticated
prediction software, such as FACETS.
Backscattered electromagnetic fields from
targets are sensed as fluctuating signals and it is
inappropriate to select a single value foruse in
radar system analysis.

We have described two approaches to generating
radar target signature models using RCS
predictive modelling software. The first method
uses the traditional Swerling model and we have
shown that RCS signature characteristics can be
obtained through software modelling processes.
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Figure 5. Stochastic model glint reconstruction
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1. SUMMARY Z0  Vacuum impedance
r position vector of a generic point on the object

The aim of the proposed paper consists in describing surface
the main current capabilities in the electromagnetic ii normal versor to the surface
scattering prediction techniques available at Alenia • versor in the reflected radiation direction
Aeronautica. versor in the incident radiation direction
Two simulation codes have been developed devoted to er electric polarisation of the receiver
the prediction of the radar cross section (R.C.S.): electric permittivity
RADSAL (RADar Signature And Imaging) and eletic permittivity
STASME (STAtionary Solution of Maxwell Equation). t magnetic permeability
RADSAI is based on Physical Optic (PO) and W

Incremental Length Diffraction Coefficient (ILDC) to Cnx maximun wave velocity in the media
evaluate the radar signature of a scatterer on high
frequency problems (target much larger than one
wavelength). STASME solves directly the Maxwell 3. INTRODUCTION
equations and is based on the Finite Difference Time
Domain (FD-TD) method: it allows to calculate the During the past few decades, research in
radar signature particularly in the resonance region electromagnetic scattering by a variety of targets
(target dimension comparable to few wavelengths), assumed more importance because of its direct
Both codes have a close link with a standard CAD relevance to all radar applications and, in particular, to
system (CATIA) for the correct definition of the radar used for military and space operation where the
geometry of the considered target. main objectives are to locate, identify and classify
Dedicated Pre Processor and Post Processor tools had unknown targets. A typical radar accomplishes the
been developed to generate the suitable mesh of the objectives by processing the received signals, which
object and for visualising the computed results. Typical generally consist of the radiation scattered by the target
available outputs consist not only in the estimated containing the information distinctive for its
R.C.S., but also in parameters able to give identification. The received scattered signal power is
electromagnetic information on the target certification directly proportional to the R.C.S. of the target from
such as the reflection coefficients, the currents which the importance of this parameter follows for its
distribution, the near field, amplitude, phase, etc.. classification.
STASME and RADSAI had been validated by the Aeronautical Division of Alenia Aerospazio has
comparison with measurements and other analogous achieved the capability to evaluate the radar signature
simulation codes referring to standard test cases. of complex targets, in particular of aircraft, by in house
Presently these tools are used in all the Alenia development of two electromagnetic scattering
Aeronautica programs that require low observability simulation tools.
analysis and detailed electromagnetic field evaluations For the users, the most important difference between
reducing the costs of the alternative very expensive two tools consists in the geometry modellisation and in
measurements. the operative frequency range of the associated solvers

(high frequency and resonance frequency range respect
2. LIST OF SYMBOLS to the target main dimension). Globally the two solvers

allow to analyse a wide range of scattering problems of
aeronautical interest.

E' Incident electric field Each tool takes into account all phases needed for a
Et Total electric field complete EM analysis:
Es Scattered electric field 1. Pre Processing phase: including CAD modellisation
H' Incident magnetic field of the target, its electromagnetic characterisation and
Ht Total magnetic field mesh generation suitable for the chosen solver.
k Wave number 2. Computation phase: for the evaluation of the physical
k Wavelength behaviour of the target subjected to an external EM

T'o0  Green potential in far field field by a simulation solver.

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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3. Post Processing phase: associated to the visualization direction, X,Y,Z, and the dimension of the cubic cell.
and manipulation of the computed data. The software developed to generate the orthogonal
For some analysis it is possible to utilize the output mesh is written using FORTRAN 77 language. It can
obtained using a tool like input data for the other one. run on all machines that support a FORTRAN
In the following, each tool, named like the associated compiler. Actually it works both on Silicon Graphic
solver, will be described in more detail. In the last part (SGI) workstations and on CRAY J90 4 cpus machine.
of the paper an example of interaction between the tools In Figure 2 the mesh obtained starting from the
will be illustrated. CATIA model of Figure 1 is shown: it includes

280x180x66=3326400 cubic cells of 5 cm length. For
4. STASME TOOL the considered example, mesh generator required 2371s

on CRAY J90 to create the shown mesh.
4.1 Pre Processing
This phase foresees different steps that lead to: NI NJ 9 1 *SUR42 1
"* the definition of the CAD model of the considered VOL 8474.801 9125.199 749.800 1150.200 49.800 850.200

NTABNUNV 29 4 2
target; NPUNPV 22 34

"* the generation of a CAD output file suitable for grid VOL 8474.900 9125.100 1008.059 1150.100 823.904 850.100

generator; TAB XYZ .9125000000E+04.1150000000E+04.8500000000E+03
TAB XYZ -.I 102307579E-08.1450066865E+03.6604034098E-01

* the mesh generation; TAB XYZ .5162291927E-08.4769969014E-01 -2663076119E+02

* the definition of the electromagnetic parameters TAB XYZ -.3648892744E-08.3117961244E+01 .5687696871E+00
TAB XYZ -.6500000000E+03 .OOOOOOOOOOE+00 .1 136868377E-12necessary for the computation. TAB XYZ .4420144251E-09.OOOOOOOOOOE+00.OOOOOOOOOOE+00

For all Alenia Aeronautica applications Dassault TAB XYZ -.2024535206E-08.OOOOOOOOOOE+00.OOOOOOOOOOE+00
System CATIA is utilized as CAD system. For EM TAB XYZ .1480657374E-08.OOOOOOOOOOE+00.OOOOOOOOOOE+00

scattering analysis it is possible to hold of all the
CATIA models of the aircraft developed inside the
company. Figure 1 shows the CATIA model of a
previous aircraft study. Mesh generator is able to take into account of different

materials (conductor, dielectric and dispersive
materials) by the indexes that characterize the surfaces
in the neutral file: media index is associated to the
vertices of the cubic cell.

.KX Two algorithms had been developed to visualize and
modify the obtained geometry: the first shows the
comprehensive studied volume using different colours
to characterize the material (see Figure 2), and the
second is able to visualize and modify single section of
the created mesh. The last allows to do little
modification of the starting model without generating a

S. .... new CATIA model.

Figure 1: CATIA model

CATIA has a Geometry Interface package that allows
to read the model and write it on a legible neutral file.
In the CATIA system the model can be described by
surfaces and curves; surfaces are composed by patches.
Neutral file contains information on the surfaces that
defines the CATIA model: for each surface the number
of patches, the material index, the occupied volume and
the coefficients that describe the single patch
polynomial are given. In Table 1 an example of a Figure 2: cartesian mesh
neutral file is shown.
A suitable software had been developed to be able to
read these information and generate the mesh for The visualization softwares had been written in
STASME solver. As it will be described in the FORTRAN 77 using graphical libraries of UNIRAS

following paragraph 4.2, the solver needs of a cartesian package available on the SGI workstations.
mesh of cubic cells to perform its analysis. Besides the Before performing the computations it is necessary to
neutral file by CATIA, the mesh generator needs like define the electromagnetic parameter suitable for the
an input the number of grid points for each spatial analysis, such as:
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"* source: plane wave, pulse, etc.; difference approximation see [3]. Electric and magnetic
"* azimuth and elevation of the incident wave; field components are interleaved in space to allow a
"* frequency; natural satisfaction of tangential field continuity

"* electromagnetic characterisation of media: conditions at media interface. The study volume is

for each index: F = E'-i Ell , ýt = ý1 I- iV 'l represented by cubic cartesian lattice. Figure 3
illustrates the positions of the electric and magnetic

"* chosen output: near fields, far fields, R.C.S., etc... ieldscmpoes ins iticel of the ele t D a ttic
field components inside a unit cell of the FD-TD lattice:

4.2 Solver Theoretical Background each electric field component is surrounded by four

The analysis of electromagnetic fields generated in the circulating magnetic field components, and vice versa.

scattering of waves by complex objects presents many Electromagnetic characteristic of the local media (6,pt

difficulties, especially if such scatterers include and a) are assigned at each of them.

openings or parts having characteristic dimensions
comparable to the incident radiation wavelength. In _EX

many cases the only alternative to experimental V,`:
measurements is the direct solution of Maxwell's E iz,, EY
Equations by numerical analysis methods. -------- ,
As a numerical modelling approach for these purposes *-
the Finite Difference Time Domain solution of E
Maxwell's time dependent curl equations was chosen.
The starting point are Maxwell's curl equation: H" '

4 ..x xSEz ,"
gaH(?, t) - .4 Y

_ _ _ -V x E(i:, t) - a H~ir, t)H.--A......(1) H,

FaECr,t) =~HitOEit0E')-V x Hi(f, t) - cye E(-, t)

Ex X

where E(Yt) and I(f,t) are the electric and the Figure 3 lattice unit cell in cartesian coordinates

magnetic field, F the local electric permittivity, ý. the
magnetic permeability, Ge the electric conductivity and For a simulation, a region of space including the object
am the magnetic conductivity. The solution is uniquely is selected for field sampling in space and time. The

method assumes that at the time t=O an incident plane
determined by the initial conditions E(iO) and H(,O). wave enters in the study volume where all fields are
If the considered domain is finite, using numerical placed equal to zero. Propagation of the incident wave
techniques the initial conditions can be replaced by the is simulated by the repeatedly implementation of the
simulation of all incoming waves [1],[2]. Let us finite difference analog of the Maxwell's curl
suppose: equations. This procedure, named time-stepping,

continues until the desired late-time response or steady-
E(?,t) = Ew(?,t)eiw state (for R.C.S. analysis) behaviour is achieved.

(2) At each time step, the system of equations to update the

H(ft) f Y e'wt field components is fully explicit, so that it is not
I( I(,t)e necessary to solve a system of linear simultaneous

equations: as a consequence the required computer
Substituting in the (1), we obtain: storage and running time are proportional to N, where

N is the number of the unknown electromagnetic fields
____wrt -+in the modelled volume.

H - All outgoing scattered waves analogs ideally propagate

(3) through the lattice truncation planes with negligible

&sEw(f' t) reflection to exit the sampling region: for incident
=V x H,(,t)-(iw& +a,)Ew(ij) plane wave problem, a very efficient boundary method,Ot that will be described in the following paragraph 4.2.1,

was developed. For problem considering internal
The time dependency of the terms E,(F,t) and domain sources, a perfectly matched layer method [4]
H,. (it) takes into account of transient variations, was adopted to solve boundary conditions.
Equations (3) represent the starting formulation for FD- Using FD-TD method to solve Maxwell's equations,
TD. phenomena such as induction of surface currents,
It does not employ potentials, instead it applies second scattering and multiple scattering, penetration through

order accurate central difference approximations for apertures, cavity excitation, creeping and travelling
time and space derivatives of the electric and magnetic waves are modelled in an automatic way time step by
fields directly to the differential operators of the curl time step. Self-consistency of the modellisation is
equations: for an accurate description of the central assured if the spatial discretisation 8 and the temporal

variation At are well resolved by the space and time
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sampling process. The values of 8 and At are achieved case (E = Exi + Eyj ; H = Hzk ). Based on Yee's
by reasons of accuracy and stability of the algorithm, scheme, the location of Hz, Ex and Ey field components
To assure the accuracy of the computed spatial within the unit cell is shown in Figure 4, while Figure 5
derivative in (3), 8 had to be small compared to the illustrates fields components nodal location in
wavelength: 8 should be small enough to allow correspondence of boundary layers.
resolution of the main surfaces or volumetric details of
the model. Anyway to obtain an uncertainty of near
field less than ±2% it needs 6 X 2/20. While to ensure
the time-stepping algorithm stability, At has to satisfy: (01j+l) (i+1 ,j+1)

At•< Cmax~~3 (4) Ey H

or, in other words, the temporal variation has to be at y
least less than the time necessary to go through the unit A (ij) Ex 0+1,j)
cell by the main diagonal to the maximum wave
velocity ema, within the model.
For each iteration time fields components are updated
and the near-fields values are available. Starting from Figure 4: EM fields components location within unit cell
near field values is possible to derive every parameters
of electromagnetic interest. Referring to Figure 5 if we suppose to have to evaluate
For radar cross section computation, the near field the Ey component related to the points along the
values are transformed into the corresponding far field boundary 2 (NI;J), we should know, for the central
values by mean of free-space Green's function using [5] difference discretisation of the partial derivatives, the
methodology. From far field values the RCS is so H. values at (NI-1,J) and at (NIJ) grid points. As
defined: HZ(NI,J) values are not evaluated by FD-TD method,

the following procedure has been developed:s2 s2

a = limn4i 2 E 2 li4r2H2  (5) * For each time iteration of the algorithm the
r-*o El r-+x H' scattered Ey component is evaluated for every

points of the boundary:

where r represents the distance between the scatterer
and the observer. R.C.S. has the dimension of an area Es = Et - El (7)

and is expressed in m2 , but generally it is possible to
refer to R.C.S. as dBsm using the following expression: where Et, E' and Ei represent the total, the scattered

and the incident field respectively.
0
Y(dBsm) = 101Oglo0a(. 2 ) (6)

(1,NJ) Boundary 3 (NI.NJ)

4.2.1 Boundary Condition E iN EH. (NI.N)

The solver is based on Yee's algorithm that requires the
knowledge of the fields a half-cell to each side of the
point on which the difference approximations are
applied. Hence central differences cannot be
implemented on the outer boundary of the domain, the - _

information a half-cell outside the boundary is missing. B, l.2

Many techniques had been employed in computing
E (1.1) E, (2.1) E, (M-l)codes to absorb the outgoing waves and solve boundary .,H,, N,-I.) H (Nil)

• •tý H. (1.1) H,(N-1 I) HO I•1

conditions, such as the "radiating boundary", the - _, E. (2.1) . -l., (.il)

"matched layer" and the "one-way approximation". (1,) Bonary 1 (NI,1)

None of these techniques is faultless and a small
amount of numerical reflections occurs in practical Figure 5: fields components nodal location in
computations. In this paragraph a simple procedure correspondence of a boundary layer

will be described, suitable to simulate electromagnetic
scattering problem in stationary conditions using an
incident plane wave. * Then the finite-difference approximation of
It consists in placing the boundary to a quarter of Maxwell's equation is used for the scattered field:
wavelength from the scatterer and implementing the
Yee algorithm in all the integration domain except on Ey - iwE) (8)
the outer border. t = (- w
To analyse numerically the boundary condition by the
proposed procedure, let us consider a bidimensional TE which, using FD-TD analog, becomes:
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E- 1 (NI, J) - En(Nj) 4.3 Post Processing
y- At E (9) The output values provided by the solver consist in the

near field components of the electric and magnetic field
-1, J) -2 E(NIJ in correspondence of each vertex of the considered

H, 2(N11,J)-H, (NIJ i'-[En.1(NI,J)-nN'
FS 2 ,Y)Y mesh.

Post Processing algorithms are able to manipulate the
near field data in a way to obtain the desired output

Because HZ(NI,J) is unknown, instead of doing an such as: far field, radar cross section, antenna radiation
central difference approximation of the spatial diagram, current distributions, phase data, reflection
partial derivative aH /igy as in (9), it is profitable coefficients and so on. Graphical programs allow to
to do a left approximation around the point (NI,J). display the different computed values using the more
In this way the second member of (9) becomes: suitable visualization. The programs created for

visualization are written in FORTRAN 77 language
n+ n+ ]using graphical library of UNIRAS package and run on

H (NI - 1, J) - H,2 (NI - 2 J)/ SGI workstation.
-- i[ E(NIJ)] Globally it is possible, for example, to display: polar or2 linear diagram for R.C.S. and antenna radiation(10) diagram, shaded or contour map images for near field

in correspondence of defined geometry sections,

Since we use an incident plane wave and we put the current distribution on geometry surface, etc.
scatterer far from the boundary, we can suppose the Figures 6 shows a 2D section of the near field obtained
scattered wave is nearly plane near the boundaryt for a two NACA profiles geometry (binaca) at steady

Based on this assumption, we can utilize the state condition using a contour map visualization.

expression, proper in free space:

Then (10) becomes:

2 -SI2E (N ) Ey+'(NI,J)+E (N1,j)

(12 HZ 2 N ,)- Y -

that, utilized in (1), gives: Figure 6: near fields contour map for a binaca geometry

l-i oeAt cAtEy+'(N-,J) 2 - En(NIj)+ Figure 7 displays the induced current distribution on an
1 I +(i Noat + c Y aircraft surface due to an external incident plane wave.

2 8 Figure 8 illustrates the radiation pattern obtained for a

2 At 1 X/4 monopole antenna.
Et8 Hz 2 (NI- l,J) (13)l+i o)At cat

2 8

* When, added to the incident field E1 (NIJ), it
represents the total field along the boundary 2.

An analog procedure is utilized along all the boundary X .
layers in which it is not possible to evaluate the fields
using central difference approximation. Apart from the " .....
other boundary conditions the procedure is simple to ... . .. ...
implement and gives good results. A literature test [61
has been executed to verify the occurring numerical
reflection [7] and many testcases, solved using this
technique, have been submitted to international
workshops obtaining a validation. Also the Alenia Figure 7: surface induced current distribution
solver, that is based on this methodology to solve
boundary condition, has been validated [8] by the
Electromagnetic Code Consortium benchmark [9].
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5.2 RADSAI theoretical background
00 RADSAI solver is devoted to the computation of the

radar cross section of an aircraft and to the definition
of its main scattering centers.
The principal scattering phenomena that contribute to
the radar cross section of an object are:
e surface reflection;
* vertices and wedges diffraction;

* multiple reflections;
90 .... .......... ......... ....................... o * creeping and travelling waves.

RADSAI solver has been developed to consider only the
first two phenomena in a way to obtain a robust and fast
code for the preliminary design phase.

120 120•

Figure 8: radiation pattern of a V14 monopole antenna

5. RADSAI TOOL

5.1 Pre Processing
RADSAI tool needs the same steps as STASME to
reach the desired solution.
Also in this case the used CAD models are generated by
CATIA system. For RADSAI grid generator the
suitable CATIA output has to include the curves that Figure 9: triangular plane panels geometry
describe the object at fixed section (for examples
sections to constant values of X for the fusolage, to Surface reflections represent the predominant
constant values of Y for the wing and to constant values contribution to the radar cross section from a

of Z for the vertical tail plane). Mesh generator uses quantitative point of view. Its theoretical prediction had

these information to create a geometrical model made been based on Physical Optic (PO) method. This
by oriented triangular plane panels. Figure 9 shows an method allows to evaluate the scattered electromagnetic
example of RADSAI geometry. The side dimension of field by the approximate evaluation of the induced field
each panel needs to be greater than five times the on reflective surfaces. In far field condition the
considered wavelength to satisfy high frequency scattered electromagnetic fields due to PO can be
conditions. Electromagnetic characteristics (thickness, expressed by [101:

s and ýt) can be associated to each panel to include
absorbing material: by default the panels represent ýs =ikog [fix _E0gx (i×hx eik -1)dS (14)
conductive media. The grid generator had been 0

developed in Alenia Aeronautica and it is a Fortran 77
code that utilizes graphical library (UNIRAS package) H =fi x E-ik'-dS ()
to create interactively the scatterer geometry. The code [fl x [ +Z 0s x

runs on a SGI workstation.
For each analysis it is necessary to define the The surface electromagnetic field can be evaluated by
characteristics of the incident radiation, such as the approximation of the tangent plane that is to
frequency, polarisation, direction of illumination, and consider each elementary surface as perfectly plane and
output typology (monostatic R.C.S. or bistatic R.C.S.). smooth. For perfectly conductive surfaces it is possible
Last step before the computation foresees the definition to consider:
of the scattering elements, surface or wedges, visible
respect to the direction of illumination : an hidden lines fix =0 i x H=2fi x R' (16)
numerical techniques had been developed to perform
this aim. Some elements can be oriented in the same
direction of the incident radiation or can be placed in that, substituted in (14), gives:
the shadow cone of other portions of the analysed
object: for the computation only visible parts are '= _2ikZn'o×/ fiiiik {i-)dS (17)
considered. 

s I \ x J

This expression is implemented in RADSAI solver to
evaluate the R.C.S. of the target computing the integral
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only for the illuminated surfaces. Substituting (17) in 10 different frequency it needs about 2 cpu hours on
(5), it is possible to obtain the R.C.S. square root like: CRAY J90.

The main limits of the code are due to the neglected
.k scattering phenomena, such as travelling and creeping

-, waves, that does not allow to consider the effects
produced by discontinuities, apertures, cavities and etc..

Generally the surface integral in (18) can be solved In presence of cavities and apertures in the considered

analytically only for simple geometry. Gordon analysis geometry, they are generally closed by panels for the

[11] allows to simplify the computation by transforming computation.

the surface integral in (18) into a linear integral on the Anyway the simulated physical phenomena, surface

outline of each surface element. For conductive reflection and wedge diffraction, permit to evaluate

material and normal incident plane wave on a plane with good approximation the R.C.S. of a given

panel, the (18) reduces to simple wellknown configuration requiring limited computation time and

expression: memory storage.

4rA 2  5.3 Post Processing
(19) RADSAI is able to give different output results:

comprehensive monostatic or bistatic R.C.S. of the
target, complex R.C.S. values associated to each

where A represents the plane panel area. geometry elements. The outputs can be graphically
The solver is also able to consider the contribution to visualized in such a way to choose among linear or
the reflection due to dielectric material by an extension polar visualization of the R.C.S.: see Figg. 10 and 11.
of classical PO method due to an Alenia Aeronautica
development in collaboration with the Electronic
Engineering Department of Genova University [12].
The diffraction contribution by vertices and wedges is
computed by the implementation of the ILDC method
in the solver. It was proposed by Mitzner [13] in 1974
and it allows to widen the achievable Physical Theory
of Diffraction (PDT) solution to the diffraction
directions outside the Keller cone [14]. A more detailed
description of the implemented method is available
in[15]. ,0-
Globally the R.C.S. computation is obtained by the
application of the suitable technique to the different 5
scattering elements that characterized the object. For
each visible element respect to the illumination
direction and obtained by hidden lines procedure, the
contribution to the comprehensive R.C.S. is evaluated
as follows:

°12.

S. . . . . . . . . . . . . . . . .. . , . . . . •
VUeil + ad°ff= /' e (20) 0 25 7 .. 1... 7

Figure 10: R.C.S. linear plot (a.u.)

where (p represents the phase difference between the 0.

terms. Then the comprehensive R.C.S. of the target is WD0

the sum of the different N contributions:

cr = • n•(21) Z°"

RADSAI solver had been validated by the comparison
of computed results with experimental data: the 27A0.

validation had demonstrated a good agreement in the
frequency range for which the adopted numerical
techniques are devoted. The solver is written in Fortran
77 language and uses double precision variables on 32
bit computer. It can run on SGI workstation or on ...
CRAY J90 machine. The solver is very profitable by
the time consuming point of view: for example to
obtain the global R.C.S. map (-180°_<azimuth•l80 0 ,-
90°<elevation<900 , 0.20 step) of a transport aircraft for lB"

Figure 11: R.C.S polar plot (a.u.)



26-8

It is also possible to obtain a shaded image of the This output elaboration allows to individuate, in the
signature related to each panels as shown in Figure 12. preliminary design phase, the main scattering sources

for the incident directions considered critical. In Figure
13 an example is shown for an incident wave to -20' in
azimuth and 0' in elevation.
All post-processing programs are written in Fortran 77
language using graphical library included in a UNIRAS
package available on SGI workstation.

........... iiiiiii: ... . . . . . .. .. .. .6. APPLICATION

... ............. As we declared in the previous paragraphs, RADSAI........... .........
•iiMll ::. Itool is not able to consider cavities, ducts and apertures,

........ ::>. that are indeed very important in an aircraft radar cross
"section definition. To overcome this limit and to

enhance the tools application field, STASME and
RADSAI capabilities are integrated by a closed link
procedure.
Let us consider the case of an intake duct. The adopted
procedure foresees to close the aperture using panels
with electromagnetic characteristics equivalent to the
media that generates the same reflected power observed

Figure 12: shaded image of single panel R.C.S. to the cavity aperture. STASME tool allows to execute
a detailed analysis of the electromagnetic behaviour of

Starting from the complex R.C.S. values associated to the duct when subjected to an external electromagnetic
each visible element of the geometry it is possible to field for different incident angles. STASME is able to
derive an indication of the scattering centers, 'hot evalute the E and H fields in correspondence of the
spots', of the considered configuration by a aperture and to derive the equivalent F and 4. If we
tridimensional exploitation of the signature in function suppose s=c'lo and p.=po and:
of Range and Cross Range parameters. Range
represents geometrical coordinates related to the
geometry evaluated along the incident direction, while =E - 11o (20)
Cross Range is associated to coordinates in the normal H ,I •-(&-i-) - =-1- (0
direction respect to the incident radiation.

DOWN RANGE it follows:

(21

12500 .. . By STASME analysis a matrix containing the
equivalent s and pt at each incidence angle is derived
for the desired frequencies. Using these F and gi values

I:!0: in RADSAI, it is possible to include apertures in the
R.C.S. computation to high frequency range. STASME
capabilities to evaluated correct values of the

7S- . .equivalent electromagnetic characteristics had been
tested by considering measured data.
A schematisation of the illustrated procedure is shown

A in Figure 14.

2000 CONCLUSION2500• -. •!

In this paper an overview of Alenia Aeronautica

0 capabilities in electromagnetic scattering simulation
has been proposed.

,, .... .. . , Particularly two simulation codes, devoted to the
-CRoS -7S5o -5o0 -250 0 prediction of the radar cross section, have beenCROSS RANGE

described: RADSAI, for high frequency problems, and
Figure 13: scattering centers representation STASME, for resonance problems. Solver dedicated

Pre Processor and Post Processor tools had been
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developed to generate the suitable mesh of the object Trans. Elect. Comp., EMC-24, n° 4, pp. 433-440,
and for visualising the results. In the paper they have November 1983
been illustrated and some examples have been shown.

STASME 6 K. Mei, J. Fang, "Superabsorption - a Method to

k Improve Absorbing Boundary Conditions", IEEE
output E, H Trans. Ant. Prop., vol. 40, n 9, September 1992

7 V. Volpi, 'Simple Boundary Conditions for Plane
Wave Scattering Problems Using FD-TD Method',
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Automatic Recognition of Air Targets for Future SHORAD Radars

Michel MORUZZIS, Nathalie COLIN
Thomson-CSF/ AIRSYS

7-9 rue des Mathurins, BP 10, Bagneux, France

ABSTRACT 2. NCTR REQUIREMENTS

For fulfilling the needs of future SHORAD (SHORt The term "NCTR" covers several aspects, all
Range Air Defence), new radar concepts are being complementary to the detection and localisation of an
studied for both forces escort and area defence. NCTR unknown target. This function is aimed at giving some
(Non Cooperative Target Recognition) is required for additional information regarding the nature of the target
these new systems especially for improving their (number, identity, class, intention, nationality,..) and
performances in terms of situation assessment, ECCM even its change in nature (patrol splitting, ordnance
(Electronic Counter-Counter Measures) optimisation delivering, kill assessment,..). On a technical point of
and weapon assignment. view, one often uses the following terms:

* numbering; which aims at giving the number of
This paper gives an overview of the studies currently target within a given domain (in general the radar
under progress for specifying the NCTR function. resolution cell),

0 classification; which allows to give a coarse class
The operational objectives and the full NCTR process label to the target (for instance, air targets main
design are presented in the first part of this paper. The classes are: aircraft, helicopters, missiles, UAVs;
following section is dedicated to radar waveforms and sometimes one may refine some classes -for
signal processing attributes. instance the "aircraft" class can be split into "jet

aircraft" and "propeller aircraft"-),
Then one introduces the method used for target class 0 recognition; whose objective is to give the type of
estimation from measured attributes; this method being target within its class (for instance "F16" or
based on Fuzzy Logic and Theory of Possibility, one "Grippen" within the "jet aircraft" class),
emphasises the main mechanisms of this method and 0 identification, which is more an operational than a
one illustrates how reference data (membership function technical level in the sense that it gives the target
and density of possibility) are managed. intention (friend, foe, neutral,..); this last level is

strongly dependant on the tactical environment and
The last part of the paper highlights the simulation tools is in general evaluated at an upper operational level
and models used for the evaluation of the function; in the decision chain.
performances are illustrated by typical results.

On a technical point of view only the three first levels
In conclusion, future works and perspectives are are considered. They correspond to an increasing
outlined and one shows how one can extrapolate the hierarchy in the requirements regarding both the
designed method to achieve a more precise target necessary knowledge and the measurement techniques.
recognition level. In this last perspective, constraints
and needs in terms of target modelling are discussed. 2.1 SHORAD operational needs

1. INTRODUCTION Regarding the air threat, the organisation of modern

battlefield defence relies on two major components:
Target Recognition is a function which is now required 0 Air Defence, whose main missions are Close Air
for future radars. As such, it must be considered in the Support, Tactical Air Intelligence, Interception and
early design phases because main radar characteristics Suppression of Enemy Air Defence,
such as coverage, waveforms and processing • Anti-Aircraft Artillery, which is mainly involved in
capabilities are driven by the NCTR objectives. Own Forces Escort and Area Defence.

For future battlefield short range radars, several projects The overall efficiency of this system relies on sensors
are being studied for forces escort and for area defence, which must detect the threat as soon as possible in order
All these projects take in account the NCTR needs at to:
different levels; specific developments are undertaken • provide the concerned units a real time alert,
for the detailed definition of their NCTR function and 0 trigger the counter-measures,
are related hereafter. 0 neutralise the threat at a secure range.

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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2.1.1 Radar concepts This analysis resulted in the following list of features:
0 RCS (narrowband and wideband),

Previous studies showed that one must define two 0 Doppler spectrum purity,
categories of radars adapted to two different operational 0 Doppler spectrum width,
missions (Own-Force Escort and Area Defence). 0 Range profile length,

The radar corresponding to the first mission must be 2.2 Design of NCTR function
compact enough to be integrated within a highly mobile
weapon system. Its primary targets are hovering The recognition of targets by radars is a specific task,
helicopters. The possible candidates are 2D or 3D far more complicated than other pattern recognition
radars. problems. It is mainly due to the following

characteristics:
The second mission (Area Defence) requires a smarter 0 the number of possible objects to analyse is very
surveillance radar to be fit in a mobile shelter and large,
providing detection at a longer range. Its primary * the available knowledge on their characteristics is
targets are missiles and hovering helicopters. It is rapidly limited (when one looks for detailed
required that the radar has a 3D dual-band capability, information) and often uncertain,
Several antenna concepts are candidates including fixed * the discriminating power of any measurement is
antenna or rotating antenna with a possible staring highly variable with the target behaviour (for
mode. In all cases this radar has a multifunction instance the EM signature, including the Doppler
capability for spatially managing several waveforms spectrum, is highly variable with the target aspect
dedicated to search and target recognition. angle),

0 some characteristics may be discriminant but
2.1.2 NCTR Requirements fugitive (for instance a blade flash, a sudden

acceleration,..),
For Short Range Area Defence applications it is 0 radar measurements are sometimes difficult to
required that the NCTR function provides the following analyse (for instance because of spectral
classification: ambiguities, propagation,...)
"* Helicopter, * radar measurements are always contaminated by
"* Aircraft, interferences (thermal noise, clutter, jamming,
"* Missile, internal limitations such as stability,...),
"* UAVs. * measurement errors may be highly variable.

Apart from the kinematics, the following radar features The consequence is that in general there is no unique
can be used for this level of classification: discriminant feature and that strong false alarm (false
"* RCS (narrowband or wideband), decision) may occur if one does not take care of the
"* Doppler Spectrum -DS-, measurement errors.
"* High Resolution Down-Range Profiles -HRDR-,
"* High Resolution Cross-Range Profiles -HRCR-, This can be translated in terms of function architecture
"* 2D imagery (DS+HRDR or DS+HRCR or in which one finds several feature sources (coming from

HRDR+HRCR), both signal and data processing), and a recognition
"• Polarimetry. processing able to:

0 merge these different features together,
A first selection of features was made according to a * time integrate,
trade-off analysis in which one considered the following 0 evaluate and provide the (current) target ID and its
criteria: confidence level,
"* permanence (as much as possible the information 0 decide of the best measurement (waveform) to make

must be obtained independently of the target for the next step (burst, scan,...).
behaviour -HRCR and imagery using HRCR is not a
prime candidate according to this criterion because A scheme for such an architecture is shown on Figure 1.
they need a variation of the target aspect angle-),

"* potential (which covers both the a priori capacity of
the feature to separate the classes and the capacity Data

to supply more refined information for future | Signal Daca

improvements),Prcsig roein

"* feasibility (regarding the type of radars which will 0 T .

be used), R- Ww-F- Wvfr ,R e o gnt ID R~eat ion

* maturity (which consists to prefer the features for Management Processing Processing

which some experience was gained in an operational t
environment -according to this criterion, the Operator
polarimetry was downgraded in our analysis-). Figure 1
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3. SYSTEM SPECIFICATIONS
The range ambiguity is:

In terms of system specifications the definition of RR = C /(2. AF)
features to be extracted from the signal processing are
the most critical because it puts requirements on the The range resolution is:
radar design (waveforms) and cost (processing power). RR = C (2.B)
This chapter is dedicated to this analysis.

When no Doppler processing is required (no clutter, no
3.1 NCTR waveforms spectral component to filter out) and for a limited range

resolution (for instance lm), one can use a high PRF
NCTR waveforms can be split into two categories: short waveform (for instance with a 2 ms duration).
"* standard waveforms, which are designed for search

and track and which are used for the kinematics part For a cluttered environment requiring a Doppler
of the NCTR function. In addition they can be used processing and a better range resolution, that can lead to
for giving an estimate of the target RCS (in general a total dwell time of about 250 ms.
in narrowband) provided that the processing is able
to estimate the parameters included in the radar One finds that the necessary dwell times for both
range equation, Doppler and HRR waveforms are of the same order of

"* specific waveforms, which are scheduled on request magnitude and can both vary from 2 ms to 250 ms.
by the recognition processing.

For the purpose of our application, one defined two 3.2 NCTR attributes at Signal Processing level
categories of specific waveforms (Doppler and High
Range Resolution), whose duration vary from 2 ms to Each attribute already defined (see 2.1.2 above) is
250 ms depending on their objective and environment, detailed hereafter:

3.1.1 Doppler waveforms 3.2.1 Narrowband RCS

For helicopters one can define two types of waveforms: It is based on the radar range equation and a calibrated
"* long; dedicated to the measurement of blade flashes reference. It takes in account the following real time

period, with a PRF compatible with the blade flash estimations:
duration, * Propagation factor

"* short; dedicated to the analysis of the flash spectrum • Losses (transmitter, receiver, propagation)
when it occurs, having the same PRF requirement. * Antenna beam losses,

* Processing gains and losses (pulse compression,
For jet and propeller aircraft, one defined an Doppler filtering),
intermediate waveform able to separate the spectral
lines of propeller engines which is the most important Among these, the most difficult estimation is the
constraints in terms of frequency resolution. In order to propagation factor which must make some assumption
minimise the Doppler ambiguities (JEM Doppler line onto the environment conditions.
foldover), the PRF is the highest compatible with the
constraints of radar energy (duty cycle) and detection The RCS measurement accuracy is computed from the
performance (ground clutter in range ambiguity). different elementary accuracies occurring in its

estimation. It must be noted that it requires a specific
3.1.2 HRR waveforms (higher order) CFAR (Constant False Alarm Ratio)

estimator.
For this study we defined a Synthetic Bandwidth HRR
using a burst to burst Stepped Frequency waveform. 3.2.2 Doppler spectrum purity
This kind of waveform is the less demanding in terms
of hardware constraints (its uses a conventional Performed after Doppler processing, it is based on an
narrowband mono channel transmit/ receive front end); estimation of the contrast between the airframe Doppler
its counterpart is that it needs a dwell time proportional line and the remaining of the target spectrum. It is
to the desired bandwidth. aimed at detecting any spectral component revealing

some rotating part on the target.
The total dwell time is given by the following It uses an estimation of the clutter level based on a
relationship: CFAR circuit and an estimation of the Doppler transfer

T = NBu,ý, * NB._, * T, functions.

The Doppler resolution is: Its accuracy is estimated by using the same inputs and
R. = 1 I (Nlt.,, * TR) by making some assumptions regarding the probability

distributions of interference signal (thermal noise,
The total bandwidth is: clutter, stability).

B =NB.., * AF
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3.2.3 Doppler spectrum width For a given parameter X (for instance the RCS), each
class C (for instance the "missile" class) is represented

Also performed after Doppler processing, it is based on by a "Membership Function" MJ(X) whose value
a detection procedure and on an estimation of the (ranging in [0,1]) indicates the degree of membership to
extreme Doppler components. Basically it relies on the the class.
following relationship: This function summarises the available knowledge

B = N. b about the class C for the parameter X. It does not take
where N is the number of consecutive detected Doppler in account the measurement process.
filters and b their elementary width. As for range CFAR This is simply an extension of the classical Boolean
it can be necessary to eliminate the Doppler filters in logic for which only 0 or 1 values or used.
the vicinity of the airframe line to prevent errors due to It must be noted that any shape of the function may be
the helicopter hub signature. used, including discrete ones.

Its accuracy is based on both the Doppler transfer Figure 2 gives 4 examples of Membership Functions.
function and on the CFAR levels.

3.2.4 WidehandRCS 1

Performed after HRR processing it is based on the
summation of every component included in the range
profile. 0 0Each component is processed in the same way as for the x x

narrowband RCS estimation.

The accuracy is computed from the accuracy of each1
elementary component which is itself estimated in the
same manner as for the narrowband RCS estimation.

3.2.5 Range profile length x x

It is basically the same process as for the Doppler width
estimation, and uses the same kind of inputs for the Figure 2
estimation of its accuracy (transfer functions and CFAR 4.1.2 Representation of measurements
levels)

In order to represent the measurement process one uses
4. EXTRACTION OF TARGET CLASS another function called "Density of Possibility" D(X)

which gives the degree of Possibility of the parameter
Among the different techniques able to manage the X.
specificities of radar target recognition (see 2.2 above), This function is highly dynamic because it is a
one chose the Fuzzy logic because it provides a smart representation of the measurement itself.
way to handle the most important requirements:
* explicit and simple description of uncertainties on A simple example is given by a measurement corrupted

both knowledge and measurement errors, by a Gaussian noise. Let X be the actual (unknown)
* simple computations, value, x the measured value and a the standard
* easy multi-feature merging and time integration, deviation of the measurement error.

Given an estimation ay' of a, one can define D(X) in a
It is reminded here that the first point is mandatory for s imay (e F re 3) ch as:

simple way (see Figure 3) such as:
mastering the false alarm (taking in account the * D(X) = 0 if IX-xI > k2.a'
measurement errors in such a recognition procedure is a * D(X) = I if IX-xl < kl.a',
direct extension of the CFAR method for the detection * linear interpolation otherwise.
purpose).

More details concerning the different techniques and DX)
their relative advantages can be found in [2], [3], [4],1
[5].

4.1 Fuzzy logic principles

They can be summarised by four main elements:
0 1_

4.1.1 Representation of classes x-k 2 0' x-k1 u' x+k1 u' x+k2a' X

Figure 3
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It can be noted that this function does depend only on .
the radar and is independent of the classes. Furthermore
it is well suited to the representation of fugitive
behaviour because one can easily express the fact that
some values of the parameter X are still possible x
(D(X)=1). This is the case for instance if X represents
the Doppler contrast as long as, even if one measured a Mcx) 1-DX)

strong contrast, one can express that it may be small for 1

another target aspect angle (but not conversely) -see
Figure 4-.

N -------------- ----

D(X) x

Figure 5

The complete process for a parameter X and a class C is
illustrated on Figure 6.

0 Mc(X)

x+kloy' x+k=a' X

5 Pc0
Figure 4 P ar Density DiX) Possibility & to

of Possibility Necessity Ncx merging
computation computation stage

4.1.3 Correspondence between classes and
measurements Figure 6

The degree of matching between a measurement 4.1.4 Merging
(represented by a Density of Possibility D(X)) and a
class (represented by a Membership Function M,(X)) is Several methods can be used for merging the results
represented by two values called "Possibility" Pox and (Pcx, and Ncx) coming from different parameters (Xi)
"Necessity" Ncx. for a given class (C).

The simplest ones come from the classical "and" and
They are given by the following relationships (see "or" operator and are easy to interpret in terms of target
Figure 5) behaviour.

PCx = Maxx { Min [ M(X), D(X)] } The basic relationships are as follows:

NCx = Minx { Max [ Mc (X), 1-D(X)] for a "and" merging:

The Possibility gives the degree of overlapping between Pc = Min { Max [ 1-Wi,Pcx] )
the class and the measurement. It is null only if there is Nc=Min, { Max [1-Wi Ncx= )
not any common parts between MJ(X) and D(X).

for a "or" merging:
If the Possibility is 0 then one can reject the assertion

"according to X, the class is C". P,= Max, { Min [Wi Pcx ]

Nc = Max, { Min[ Wi , Ncx] }

The Necessity gives the degree of inclusion of D(X) In the above equations Wi represents the weight
into MJ(X). It is equal to I only if D(X) is totally attached to the parameter Xi. (Max (Wi) =1).
included into MJ(X).

The above mechanism can be used for time integration.
If the Necessity is 1 then one may accept the assertion Furthermore, it may be implemented in a recursive way
"according to X, the class is C". thus avoiding the drawback of memory size. Figure 7

illustrates a complete generic merging/ integration
structure for a given class.
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PPN C1 RICS Membership Functions (C-Band)

Parameter 1 kp1.. (.*Op.. -S....... Y . ........... ..........................
P2, N2u, c-, o ---- - -.

Parameter2 Fusion p m decinon - -........

Parameter n 
_ 

N

Figure 7 c- -/ - -Of

4.2 Illustration
Figure 8

For the SHORAD application one defined:
" the 20 (more) Membership functions corresponding 5. SIMULATION TOOLS AND MODELS

to the four main classes (missiles, aircraft,
helicopters and UAVs), and the five parameters In order to evaluate the complete process one designed
(RCS narrowband, RCS wideband, Doppler a simulation based on existing modules (target models,
spectrum purity, Doppler spectrum width, Range front end and processing simulations) on which one
profile length), -in fact one defined more adapted the specific waveforms, signal processing,
membership functions for some parameters such as parameter extraction and classification.
the RCS which is a function of the target aspect At this stage, merging and time integration was not yet
angle- implemented; the results are thus given for each

"* the 5 Densities of Possibility corresponding to the parameter before fusion.
measurements performed on each parameter.

5.1 Simulation framework
It is not intended here to give all these results but it was
thought interesting to illustrate the reasoning for one Figure 9 illustrates the complete simulation framework.
example concerning the RCS of aircraft and missile in
front view (0' aspect angle). The elaboration of these
membership functions was based on the following: •l ~Doppler

"* specialised literature (see [6], [7]) which gives some processing

synthesis and models concerning the average RCS Trajectory pro Reco
simulatsing

values for aircraft and missiles, 
HRR

"* application of existing models giving a coarse processing

relationship between the target dimensions and its Waveforms
RCS; for these models we used a database
containing a description of physical characteristics Figure 9
for almost all existing aircraft,

"• these synthesis were completed by considering the
RCS fluctuation (it is reminded that the measured
RCS is an instantaneous value which may fluctuate 5.2 Target models

according to the radar frequency and to the target
aspect angle), 5.2.1 Principles

"* furthermore the results were checked with existing
measurements obtained during live trials (see [8], The main requirements regarding the target signature

[9], [10]). model was as follows:
0 capability of generic modelling (aircraft, helicopter,

The resulting Membership functions are illustrated on missile, UAV, ...) with no CAD (Computer Aided

Figure 8 (it is reminded that these functions are for C- Design) digital database

Band, front view and covers all types of aircraft - * capability to represent the signature as a function of:

including liners and small private aircraft- and all air to - aspect angle,
surface missiles. - frequency,

- time (rotating parts, random component)
On a practical point of view, small values of RCS which * high frequency modelling (the application was in C-
can be used for discriminating missiles are of limited band for targets of several meters -up to several tens
interest because they often correspond to situations of meters-),
where the SNR is low then the accuracy is bad. The * computation time compatible with Monte-Carlo
main interest of this parameter will then be for large performance assessment.
RCS values thus allowing to discriminate aircraft.
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One used a discrete scatterer model based on physical
optic for determining the main characteristic (maximum
RCS, directivity) of each contribution. The number,
location and physical characteristics of each scatterer
was defined from external characteristics of actual
targets and the resulting signature was tuned with actual
data.

Several types of generic scatterers are taken into
account in this model:
"* stationary, for representing the reflection of fixed

element of the target (cockpit, fuselage, wing
leading and trailing edges, fins,...); they are defined
by their location, maximum RCS, backscatter

direction and width,
"* modulated, for representing the small rotating Figure 11

elements (such as jet engine rotors); they are For comparison one shows on Figure 12 an actual
defined as the stationary scatterers but in addition measurement obtained during live trials on the same
they have a modulation frequency and initial phase, helicopter as the simulated one.

"* mobile, for representing the large rotating elements
(such as helicopter blades); they are defined by their
centre and period of rotation, dimension and "a'mi!' P*ground

reflectivity. The RCS of such elements is computed
as a function of aspect angle which is itself a 13dD

function of time,
"* random, to take in account high frequency bI.4.

components such as vibration or multiple reflections
on small parts of the target.

5.2.2 Illustration Figure 12
Figure 10 illustrates the RCS of a simulated helicopter Figure 13 is an example of a front view (00 aspect

r 10 iusctronofaspete thge R (Sofazsimulted helm-sicper angle) HRR profile. The different echoes correspond to
as a function of aspect angle (azimuth from 900 -sidethsiuaesctrrsavnacorbtonnte
view- to 1000) for a fixed frequency (6 GHz) and with the simulated scatterers having a contribution in theview- toforward direction (cabin, engine air intake, engine
no time contribution (blade or tail rotor). One can see

compartment, hub, landing structure, rear stabiliser,
the specular reflection occurring on the rear part of the random discontinuities).

fuselage (around 950) and the fast RCS variations ......... discontinuitie

generated by the different amplitude/ phase combination
of elementary contributors when the aspect angle
changes.

6
000MH, - HH - Po d -1-ol: 0.,0 d. -

i ............. ............ .. ..... .... .. .. .. .. .. .. .... ..!............... .................. .-. ....
Figure 13

90. 93 9. 93. 9 , 99 90 99 30

5.3 Scenarios for test
Figure 10

Figure 11I shows an example of a front view (00 aspect Several scenarios were defined for testing the method.

angle) Doppler spectrum corresponding to a (receding) Four targets were defined (helicopter, jet aircraft,

blade return. One clearly sees the airframe line and the missile and UAV) and located at a range where the

blade echo. average SNR is about 20 dB for the search mode.
For each target one defined several aspect angles
according to the following table:



30-8

Front Side Rear
(00) (900) (1800) Doppler Spectrum Purity - UAV - Front view-

Helicopter " /
Aircraft " / 0,8Ps
Missile / / 0,6 U Possibility

UAV / " / 0,4. C3 Necessity
0,2

Table 1 0
Msl Other

5.3 Typical results and analysis
Figure 15

The UAV in front view is chosen to illustrate the
different results. For each parameter one presents the 5.3.3 Doppler spectrum width
Possibility and Necessity corresponding to each class.
It is reminded that one can use these results as follows:
"* when the Possibility is 0 one must reject the By using a shorter Doppler waveform (which could be

the result of a sliding window applied onto the previousassertion "according to the parameter P the targetlogDperwvfm)neicassteNRfa
class is C", long Doppler waveform) one increases the SNR of a
"class in Ce Npossible wide spectrum (representative of an helicopter
a when the Necessity is 1 then one may accept the blade return). On Figure 16 one sees that the measured
assertion "according to the parameter P the target width is not compatible with an helicopter; one must

then reject the helicopter class (Possibility=0). All other

5.3.1 Narrowband RCS classes (aircraft, missile and UAV) are possible
(Necessity=l).

Figure 14 shows that possible classes could be either
UAV or missile. However one may not reject the Doppler Spectrum Width - UAV - Front view -
aircraft and helicopter classes because the measured
RCS is in a region where all classes overlap. For this 1
case the RCS is not a discriminant feature. 0,8 E Possibility0,6 iý

0,4 6] Necessity

RCS - Narrowband - UAV - Front view - 0,2

HelD Other

0,8 [ Possibilityi Figure 16

0,6 M[ Necessity

0,4 5.3.4 Wideband RCS
0,2

0 fAlthough the measured value is slightly different from

UAV Msl A/c Helo the Narrowband RCS, the same conclusion can be
drawn -see Figure 17-.

Figure 14
RCS - Wideband - UAV - Front view -

5.3.2 Doppler spectrum purity 1

This parameter was measured with a long Doppler 0,8

waveform. Propeller modulation was detected. Figure 0,6 Possibili
16 shows that, because the spectrum is not a single line 0,4 C]Necessity
one must reject the missile class (Possibility=0). All 0,2

other classes (aircraft, helicopter and UAV) are possible 0
(Necessity =1). UAV Msl A/c Helo

Figure 17

5.3.5 Range profile length

The estimated length is close to the simulated target
one. The difference is due to the presence of propeller
modulation residue which was not filtered out by a
Doppler pre-processing. Figure 18 shows that the
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aircraft and helicopter classes should be rejected by this
parameter (Possibility=0). UAV and missile classes can 0 NCTR is one of the most important function of
be accepted (Necessity=l). future radars,

* it is required to (at least) make the following
HRR Profile Length - UAV - Front view - discrimination: Helicopters, Aircraft, Missiles,

UAVs,

0,89 * in order to achieve these objectives and according to
0,7 a trade-off analysis the following parameters are
0,6 n •Possibility recommended:
0,5 M Necessity - from conventional waveform: RCS (and

0,4 kinematics -to be further analysed-),
0,3 - from specific Doppler waveform:
0,2o, spectrum purity and width (at least)0 A O 

- from specific HRR waveform: RCS,
UAV Msl A/c Helo profile length (at least).

F Fuzzy logic is a smart method for handling the
Figure 18 whole recognition process:

5.3.6 Synthesis - knowledge description and uncertainty,
- measurement accuracies,

Table 2 summarises the conclusion which can be drawn - simple computations with real time
from the different measurements. In this table one put: confidence assessment,
"* "Yes" if the Necessity is 1, - multi-parameter merging and time
"* "No" is the Possibility is 0, integration.
" "'?" otherwise.

* according to preliminary tests already performed it
We added a last line corresponding to the result of a appears that:
"and" merging process. From this merging one would - on-line estimation of parameters
decide with no ambiguity that the target is a UAV. accuracies is mandatory for NCTR false

alarm control,
However one must point out that this would be obtained - attention is to be paid to interference
thanks to: (clutter) estimation for mastering
"* the spectrum purity which rejected the "missile" robustness,

class, - range profiles can be distorted by Doppler
"* the spectrum width which rejected the "helicopter" modulations such as JEM (Jet Engine

class, Modulation) or HERM (HElicopter Rotor
"* the profile length which rejected the "aircraft" class. Modulation); a Doppler pre-processing is

required to filter out these components,
It must also be mentioned that, for this case (but this - not any proposed parameter can be
must not be generalised), the RCS measurements are removed at this stage of the developments.
not discriminant.

6.2 Future works

_H A M U
Narrowband RCS ? ? Yes Yes These works will be carried on thanks to the MILORD
Spectrum purity Yes Yes No Yes project (see [1]). In particular it will allow the definition
Spectrum width No Yes Yes Yes of kinematics and fusion procedures.
Wideband RCS ? ? Yes Yes

Profile length No No Yes Yes Furthermore MILORD will also give important
"And" No No No Yes conclusions regarding the possibilities of a more

detailed NCTR analysis, at the "recognition" level. It
Table 2 will incorporate first results and recommendations

regarding the methodology to be used for managing the
necessary knowledge using models, anechoic chamber

6. CONCLUSIONS measurements and live trials data.

6.1 NCTR: a key function for future SHORAD However additional activities will be required for

specific applications such as SHORAD. In particular it
This paper which summarises some works undertaken is thought that performance assessment in cluttered
for the definition of future SHORAD systems intends to environment would require complementary trials and
show that: that studies should be undertaken for defining real time

waveform selection procedures.
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SUMMARY (formerly McDonnell Douglas). The combined system,

referenced as MFOS in this paper, was provided to the Army

This paper describes a Multi-Functional Optical System by Boeing and the Naval Air Warfare Center (NAWC) in
(MFOS) which contains passive imaging cameras and an support of this ACT II program.
active microDoppler Ladar. The imaging cameras cover Field tests were conducted at the Ft Bliss Air Defense Battle
visible, mid-wave infrared (MWIR), and long-wave infrared Lab Support Element's (AD BLSE) Short Range Air Defense
(LWIR) wavelength bands. The Ladar is a CO2 based Ladar (SHORAD) range. Fixed-wingjet aircraft, fixed-wing
that is capable of measuring the macroDoppler (velocity) of a propeller aircraft, and rotary wing aircraft were provided as
moving target and the microDoppler (vibration signature) of airborne targets by the AD BLSE and engaged by the MFOS.
the target. Imaging cameras provide a capability for close-in The targets flew typical operational patterns for attack and
classification/identification of targets by target size and/or surveillance missions. A portable search radar, provided by
shape at ranges where target images can be resolved. At the Army, detected and tracked these targets. The angularlongermyrangesc(e10akin),awherethtargetrimagesTcannotube
longer ranges (> c 0 km), where target images cannot be bearings of all targets being tracked by the radar were sent
resolved to provide clear classification, the Ladar provides a over a digital radio network to selectively cue MFOS. After
classification/identification capability using microDoppler performing slew-to-cue, the MFOS acquired, tracked, and
(vibration) signatures. The Ladar's macroDoppler signal classified all of these targets at Beyond Visual Range (BVR).
gives target velocity along the Ladar's line of sight. Its
microDoppler gives a spectrum of vibrations present on the The results of this test demonstrated how an integrated
surface of the target. Target vibrations, whether structural coherent detection Ladar on a stabilized gimbal can provide an
resonance or direct engine vibrations are unique to the type of adjunct to the FAAD SHORAD elements for BVR
target. MicroDoppler signals can be exploited for non- classification and identification.
cooperative classification/identification. INTRODUCTION

As part of an Advanced Concept & Technology II (ACT II) A continuing problem of the modem battlefield is that the
program, rotary-wing, fixed-wing jet, and fixed-wing
propeller aircraft were flown against the MFOS in simulated range performance of existing weapons exceeds the range
Forward Area Air Defense (FAAD) scenarios. MFOS Ladar performance of existing sensors with identificationmicroDoppler results are presented for each of these aircraft, capability. The inclination of defensive systems is to shoot

first and then identify what has been shot. However, this
A coherent detection Ladar, which was developed by Boeing leads to fratricide - the destruction of friendly resources.
North American (formerly Rockwell) for the Naval Air There is a strong need for a long range aircraft
Warfare Center - Aircraft Division, Patuxent River, was classification/identification capability so that friendly forces
integrated with a Multi-Functional Optical System testbed, will not be engaged by fire units.
which was developed, maintained, and operated by Boeing

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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Current cooperative Identification Friend/Foe (IFF) systems stabilized, two-axis compound gimbal system with improved
provide positive identification of friendly targets that payload size and weight capacity over the production MMS.

respond to interrogation signals. They do not positively Objectives
identify hostile targets since no response is given to
interrogations. There is a need for a non-cooperative The objective of this funded effort was to evaluate the existing
classification/identification system. The microDoppler MFOS testbed in the Army's FAAD engagement scenario and
system discussed in this paper provides such a capability, to demonstrate the capability of this technology to detect,

The Boeing Company recently demonstrated a CO2 based track, and classify evolving threats to the close battle area.

microDoppler Ladar system during the Army's Live A Multi-Functional Optical System testbed developed,
Experiment II (Live Ex II) field tests. The demonstration maintained, and operated by Boeing, was provided as
was funded as an Advanced Concept & Technology II contractor furnished equipment. The coherent detection Ladar
(ACT II) program. This paper presents an overview of the was provided as Government Furnished Equipment (GFE) by
ACT II program, the microDoppler system, the Live Ex II the Naval Air Warfare Center - Aircraft Division, Patuxent
test results, and it gives a description of the applicability to River for the Army's Live Experiment II field tests.
non-cooperative target identification/classification. Approach

BACKGROUND
The approach that Boeing took to meet this objective was to

The Army's ACT II program was established to encourage use hardware and software from its existing Non-Cooperative
application of technologies that are mature or nearing Target Classification program. This equipment is jointly
maturity in the commercial sector to address Army owned by Boeing and the U.S. Navy. This hardware was used
concerns. The ACT II program provides funding to to classify and/or identify airborne targets in a realistic
demonstrate the technical feasibility of such technologies Forward Area Air Defense scenario.
that, if successful, can either become a part of the regular

fundd Amy rseach ad dvelomen proram beThe goal was to demonstrate the long range Non-Cooperativefunded Army research and development program, be

selected for entry into the Army Warfighting Rapid Target Classification (NCTC) capability of a Multi-Functional

Acquisition Program, or transition directly to an end item. Optical System and to develop cost-effective operational
concepts for integrating this enhanced combat identification

The basic objective of this ACT II program was to capability into Forward Area Air Defense . The incorporation
demonstrate the capability of a coherent detection Ladar of a NCTC capability will make it possible for FAAD rules of
microDoppler system to perform Beyond Visual Range engagement to be changed, and it will permit Beyond Visual
Identification (BVRID) against rotary wing, fixed wing, Range engagements allowing FAAD weapons to be used to
unmanned aerial vehicle (UAV), and cruise missile type their full potential.
targets. MFOS uses optical cameras (visible and infrared) that can
Current Army air defense doctrine requires that FAAD detect and track unresolved targets out to about three times
SHORAD fire units have visual verification of threat targets BVR. MFOS then utilizes a coherent detection Ladar, which
to eliminate fratricide. This requirement limits the effective measures target vibration signatures, to classify targets within
range of SHORAD fire units to distances shorter than the two seconds after detection allowing weapon commit well
maximum range of their weapons. A long range identification before the range of visual identification.
capability such as microDoppler can increase the effective
range of weapon systems by allowing early engagement of The imaging cameras are utilized to acquire and track

targets. unidentified air targets. Once a target is in passive IR track,
the MFOS Ladar, which is boresighted with the cameras,

The Boeing Company, with the cooperation of the Army AD illuminates the target for a few seconds and classifies the
BLSE, demonstrated the utility of advanced passive and active target using microDoppler signature returns. Target position
Electro-Optic (EO) technology enhancements to the Army's and closing speed are also measured and displayed. Target
FAAD. These EO enhancements, which are based on existing classification and identification are accomplished through
developments by industry, will provide a significant combat comparison of the microDoppler signature with known target
identification capability to FAAD and other situations where signature characteristics stored in a computer database. Since
target classification/identification is needed. Boeing has these are audible signatures, they can be fed into headphones
developed a Multi-Functional Optical System testbed for long for operator-assisted identification much like Navy anti-
range target detection, track, and classification of low- submarine warfare systems.
observable cruise missiles, unmanned air vehicles, fixed wing
aircraft, and rotary wing aircraft. The MFOS testbed, a A functional sketch of the system operating in conjunction

derivative of Boeing's Army Mast Mounted Sight (MMS) with a search radar is shown in Figure 1. MFOS can be cued

product which is used on the OH-58D Kiowa Warrior, by radar for target detection, track, and classification or it can

consists of advanced next-generation, passive infrared perform an independent sector search. In addition, using high

cameras and a state-of-the-art active, coherent detection resolution IR camera measurements, MFOS can detect low

Ladar. These sensors have been integrated onto the upgraded radar cross section air targets or threats that have sophisticated

MMS gimbal in the MFOS testbed. The gimbal is a highly radar jamming equipment that elude radar. Since the search
mode is passive, detection of MFOS's location is difficult.
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Figure 1. Search Radar Cues MFOS to Target Using Digital Data Link.

flat, open-frame, magnetic positioners, which have high
The existing MFOS testbed is shown in Figure 2. This testbed bath and two-axis motion. T h g al e is

is crretlyconfgurd fr feld pertio andis he amebandwidth and two-axis motion. The gimbal system is
is currently configured for field operation and is the same capable of azimuth coverage of ± 1900 and elevation coverage
testbed that has been successfully tested at low power at the of_+ 300. During Live Ex II tests, the gimbal was mounted

Naval Command, Control, and Ocean Surveillance Center, within Boeing's 40 foot trailer. Azimuth coverage was

Point Loma, CA, where it engaged surface and air targets out limited by the trailer . th slewand ac

tolimited by the trailer walls to m40r. The slew and acceleration
rates of the gimbals are 45°/sec and 450/sec, respectively.

SYSTEM CONFIGURATION

The MFOS, as an integrated system, consists of: sensors,
stabilized gimbal, Off-Gimbal Optical Transfer System
(OGOTS), support electronics box, controls and display
console. Each of these components is described in detail in
the following paragraphs. Photographs of the major physical
components are shown in Figure 3.

Sensors

The MFOS sensors, which are mounted on the gimbal and
housed within shrouds, consist of passive cameras (visible,
MWIR, and LWIR) and an active Ladar. The passive electro-
optic cameras transform the optical scene into electrical
signals for the tracker and display monitors. The Ladar
provides target range, 2-dimensional (angle/angle/range)
image data, and Doppler (i.e., velocity and vibration)
measurements. Table I shows the specifications of the
passive cameras and the Ladar.

Gimbal and Stabilization

A two-axis compound gimbal system controls the direction of
the optical line of sight of the turret. Figure 2 shows the
gimbal with MFOS sensors installed and shrouds removed.
The coarse gimbals are driven by high efficiency, brushless, Figure 2. Two-Axis Gimbal Supports Multiple Sensors
permanent magnet, gear motors. The fine gimbals are driven
by Boeing's proprietary "paddle torquers." These torquers are
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L-50549

Optical Director/Turret Support Electronics Box Controls and Display Console
"* Sensors N Executive Controller

"* MWIR Camera N Imaging Tracker U Situation Display
"* LWIR Camera U Master Power Supply U Video Display
"* Visible Camera U Thermal Control Unit N Ladar Controller
"* Ladar U Turret Controller

"* Beam Expander U Ladar Signal Processor
"* Scan Mirror N Classifier
"* Ladar Power Supply 0 Hand Controller
"* Ladar Support Electronics E Signal/Data/Control Links
"* Scan Controller
"* Active Isolation
"* Signal/Data/Control Links

Figure 3. MFOS Equipment Forms a Self Contained MicroDoppler Test and Evaluation System.

sensor payload weight on gimbal. Total size of the completeThe active stabilization system is the same gyro-stabilized gimbal and pedestal is 57 inches x 30 inches x 30 inches.

system presently used on Boeing's MMS. This Boeing

proprietary stabilization system controls the sensors' optical The range coverage of the system is limited on the long end
line of sight to better than 20 microradians, thus providing by the sensitivity of the Ladar (30 kin) or earth curvature and
highly stabilized viewing and reliable tracker operation. on the short end by look angle to target and azimuth/elevatio-.
Together, the gimbal and its mounting pedestal weigh 500 lbs limitations.
and they are capable of supporting and additional 200 lbs of

Table 1. MFOS Sensor Specifications

Sensor Performance Area Specification
Visible CCD Camera FOV (narrow) 20

Resolution 50 microradians

Aperture 4.0 inch diameter
.. Illuminance Range I-to 100 Irm/m 2

MWIR Camera (320 x 240 HgCdTe FOV (narrow) 20
array) Resolution 122 microradians

Aperture 6 inch diameter

NEI 1.E-I.. W/cm2

LWIR Camera (Scanned 120 element FOV (narrow) 2.220
linear array Common Module FLIR) Resolution 170 microradians

Aperture 6.6 inch diameter
NEI 1E-13 W/cm 2

Ladar Aperture 6 inches
Power <20 Watts
Weight <100 lbs.

Beam Control Accuracy 3 microradians
Noise <10 mm per second

Range Resolution 1 foot
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acquire and track targets before it can classify targets. A flow
Off-Gimbal Optical Transfer System (OGOTS) diagram (Figure 4) shows the steps that must be performed to

The OGOTS transfers laser energy from the laser source classify targets. Detection can occur by using the infrared
located in the base of the gimbal mounting pedestal to a beam cameras to scan the horizon for targets. The field-of-view
expander and scan mirror located on the stabilized gimbal. (FOV) for the IR cameras is limited to 8' in wide FOV
The unique requirement is to transfer the laser beam in such a setting. A better (more systematic) approach to detection uses
way that the beam is not misaligned or obstructed as the the Azimuth and Elevation outputs from a scanning radar to
gimbal rotates to track a target. cue the MFOS to within the 8' wide FOV or 2' narrow FOV

windows of the imaging cameras. Once a target is detected,
The OGOTS satisfies this requirement by transferring the the MFOS operator puts it under automatic track. MFOS
laser beam along the rotation axes of the gimbals. A CO 2  Azimuth and Elevation angles can be compared with radar
laser is mounted in the base below the gimbal. The laser

beam enters the OGOTS vertically along the azimuth axis of angles to confirm that the correct target is being tracked.
Once a target is being tracked, the microDoppler Ladar can be

the coarse gimbal. The beam continues upward, independent used to give positive non-cooperative
of a rotation in azimuth, to the axis of the fine elevation classification/identification. A flow diagram of the Ladar
gimbal where another folding mirror reflects the beam along processing is shown in Figure 5. The laser beam reflected
the elevation axis. The beam is then folded upwa row from the target is Doppler shifted from the outgoing beam.
thersecondarymirrorof the beam expandero telescome.From The Doppler shifted difference frequency is proportional to
there, the beam expands downward to the 6-inch diameter the speed of the target and is called macroDoppler. It appears
primary mirror where it s irecollimated before proceeding to as an FM carrier signal. Target vibrations give an FM
the scan mirror. Since this is a monostatic transceiver, the modulation (i.e. microDoppler signal) and can be detected
reflected energy from the target follows the reverse path. using FM demodulation techniques.

Support Electronics Box Radar Cue

The Support Electronics Box (SEB) is enclosed and located The MFOS was connected to the Forward Area Air Defense
near the gimbal and sensors to minimize the length of critical Command and Communication (FAAD C2) system through
signal paths. The SEB controls sensor selection and gimbal the Enhanced Position Location Reporting System (EPLRS)
functions and contains the power supply hardware as well as which was provided GFE by the AD BLSE. Radar cue
the Integrated Mission System Processor (IMSP), which information was sent to MFOS over the EPLRS network.
operates at 1.4 GFLOPS. The IMSP provides overall system EPLRS provided velocity, range, azimuth, and altitude of the
control and tracking functions. The SEB includes the target. Using this information MFOS performed a Slew to
interfaces for the IMSP, the video distribution electronics, the Cue (STC) and acquired targets. MFOS only received target
power control/distribution assembly, and other equipment, information through EPLRS and did not provide information
cables, and controls necessary to perform mission operations. back onto the EPLRS network.

The SEB also contains a thermal' control system, which Data Recording
consists of two chillers. One chiller is the fine control of the Video from the visible CCD, LWIR, and MWIR cameras was
temperature of the Ladar's master oscillator; the other chiller recorded on VHS tape along with IRIG time. Also, the Ladar
removes bulk heat from the Ladar power amplifier and the output with IRIG time was recorded on a digital data recorder
electronics in the MFOS gimbal and pedestal. for additional post processing analysis. Target position data

Controls and Display Console versus IRIG time was recorded during flights for post test
correlation of microDoppler signals versus target range.

The Controls and Display Console (CDC) allows an operator

to control MFOS manually or automatically by computer. Handover
The CDC displays sensor images, range, speed, target The Army search radar detected and tracked airborne targets
classification, and general system status information, and sent targets metrics (range, angular position, and velocity)

The CDC controls Ladar functions for target ranging, to MFOS via the EPLRS network. MFOS used the target
imaging, and Doppler measurements. cueing information as an input for its prepoint capability.

MFOS, with its wide field of view (FOV) of 8 degrees or
A Situation Display presents system status and a graphical narrow FOV of 2, was slewed to the calculated angular
representation of the target in relation to the MFOS location, direction of the target and performed a search to detect the
A 1553 interface allows the operator to cue the direction of target. As targets were detected in the angular handover
the gimbal with data from the Army's search radar and to window, the Ladar performed range and velocity
transmit target data to the weapon fire control system or a C21 measurements to correlate to the FAAD C2 target metrics.
network. Once the range and velocity were correlated, a microDoppler

SYSTEM OPERATION measurement was performed to quantify the targets' vibrationsignature for BVRID.
There are two major hurdles that must be overcome in order to

classify/identify airborne targets. First, the MFOS must
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Figure 4. Target Engagement Procedure
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Signal Extraction and FM Signal
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0 Target ID
0 Target Range Signature Comparesn
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ETarget Bearing

Figure 5. Non-Cooperative Targets are Classified using Coherent Ladar MicroDoppler Signature Measurements.

LIVE EXPERIMENT II Test Configuration

The ACT II Enhanced Combat ID engagements were As part of the Live Experiment II, a search radar was
integrated into AD BLSE's Live Experiment 11 field tests connected to FAAD C2 which was connected through the

which were conducted from I - 12 December 1997 at the Enhanced Position Location Reporting System (EPLRS)

SHORAD Range, New Mexico. network to the MFOS as shown in Figure 1.
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Data Link rotary and fixed-wing targets. The microDoppler signatures
of these targets were measured and documented during the

The MFOS was connected to the Forward Area Air Defense airborne eage mens.Te f ollowing f s L

Commandairborne engagements. The following figures show LOFAR

the Enhanced Position Location Reporting System (EPLRS) Grams of the microDoppler signatures for each of the targetsthe nhacedPosiionLoctionReprtig Sytem(EPRS) observed during the Live Ex II tests. The LOFAR gram is a

that was provided GFE by the AD BLSE. The radar tracks reres ofri ng tesus fee an ime.
and target metrics were displayed on a Handheld Terminal representation of signal strength versus frequency and time.

and argt meric wee diplaed o a andeld ermnal For the following plots, frequency is plotted along the x-axis

Unit (HTU) providing target range, speed, azimuth angle, in Hertz and time is plotted along the y-axis in seconds.

elevation angle, and altitude. Using this information, MFOS in al in e is gvnbte arkne the ines.

performed a slew to cue to acquire and track the target.

MFOS did not provide any information back onto the EPLRS The LOFAR gram of Figure 7 shows the spectrum from a
network. rotary-wing target's microDoppler. The main rotor passing

Test Results frequency of 24.5 Hz is clearly visible.

Live Ex II tests provided the following MFOS data outputs: 10
visible video, MWIR video, LWIR video, macroDoppler
plots, digitized microDoppler data versus IRIG time, and a l
target position versus IRIG time.U I,, , ,, I , I is I II "I

Video 0 0 200 300
Video from visible, MWIR, and LWIR cameras was recorded

for test review and validation of microDoppler signatures. Figure 7. LOFAR Gram of Rotary-wing Target
IRIG time was recorded on an available audio channel on thevideo tape. The microDoppler signature shown in the LOFAR gram of

Figure 8 is that from a fighter aircraft with jet engines.
MacroDoppler Signatures Distinct lines occur at 187 and 257 Hz. Broadband energy is

Figure 6 is a sample macroDoppler plot. Frequency (MHz) is also present from DC out to 40 Hz.

on the x-axis, time (sec) is on the y-axis, and signal intensity
is shown by pixel shading (black is higher amplitude than 10
white). The black line in the figure is the macroDoppler
signal from an airborne target. The macroDoppler frequency 0
corresponds to the target's velocity along the Ladar's line-of- I I I I
sight (LOS). Variations in this frequency (wavy line) occur
when the target speed changes or when the target changes its 0 100 200 300
heading relative to the Ladar.heading __relativetothe________ Figure 8. LOFAR Gram of Fixed-wing Jet

A Bi-Plane's microDoppler signature (Figure 9) shows
engine vibration energy at 31, 62, and 93 Hz. A structural
noise frequency is seen at 150 Hz. This aircraft contains
many structural components made of wood and its wings and
fuselage are covered with canvas.

10

0 100 200 300
Figure 9. LOFAR Gram of Fixed-wing Bi-Plane

Figure 10 is the LOFAR gram for a Piper Cherokee aircraft.
This aircraft is used during most system verification exercises

and it provides a common target for "calibrating"
performance. Its engine vibration frequencies show up in the

Figure 6. MacroDoppler Signal Indicates Target Velocity and microDoppler signature at 75, 150, and 225 Hz.

Speed/Direction Variations.

MicroDoppler Signatures

Live Ex 11 provided realistic, target engagement scenarios
against multiple airborne threats. These threats included
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0 I' ' ' " I " ' ' I' ' ' I

0 100 200 300
Figure 10. LOFAR Gram of Fixed-wing Piper Cherokee

A Long EZ aircraft was used to simulate a UAV. This
"homemade" aircraft is a push prop design with composite
structure. The simulated unmanned air vehicle (UAV)
microDoppler signature, (Figure 11), shows the main rotor
frequency at 82 Hz, with structural and noise lines at 29, 56,
and 109 Hz.10MI

0 100 200 300
Figure 11. LOFAR Gram of Fixed-wing Surrogate UAV

FAAD Results

The results of this field test demonstrated the capability of a
microDoppler LADAR system to provide non-cooperative
target classification/identification at beyond visual range.

The Live Ex II tests demonstrated the capability of MFOS to
perform a slew-to-cue using data from an existing radar. The
key to MFOS' operational effectiveness is the minimized time
(latency) between radar detection and microDoppler
classification. This latency can be minimized by reducing the
coverage of each microDoppler Ladar to selective threat
corridors.

Prioritizing of threats based on the threat's classification,
range, direction, and speed will determine the engagement
sequence used by the weapon systems.

Participation in the next All Service Combat Identification
and Evaluation Team (ASCIET) Exercise is planned to
evaluate the MFOS microDoppler classification/identification
of airborne targets under more realistic operational conditions.
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1. SUMMARY There is considerable evidence that the basic functional unit
A new class of networks for the classification of spatio- for higher-level processing in the cortex is the netlet or
temporal signals (signatures) of the kind that can be neuronal assembly (neuronal pool or group) [2]-[11]. This
generated in automated target recognition (ATR) and other evidence includes extensive analytical and modeling work of
remote sensing applications are described. The networks netlets carried out independently by several groups in the
consist of parametrically and nonlinearly coupled bifurcation past. Nearly all that body of work points to the possibility
processing elements and are biologically inspired in that they that netlet dynamics, may be adequately described by the
incorporate several known or plausible organizational discrete time evolution of the activity A(n), which is the
attributes of the cortex. The cortex is that part of the brain percentage of neurons in the netlet active at time n. Plots of
that is the seat of higher-level brain functions including the A(n+l) vs. A(n), called return maps, obtained under a range
classification, recognition, and learning of sensory data that of circumstances and assumptions are found to invariably
is usually not static but continually changing in time. The resemble a distorted version of the quadratic or logistic map,
networks described are shown to: (a) employ compact a nonlinear irreversible iterative map on the unit interval that
dynamical attractors to classify spatio-temporal inputs, (b) exhibits complex orbits (fixed-point, period-m, or chaotic)
exhibit ultrastability through multiple state-determined depending on the value of a nonlinearity (control or
bifurcations, (c) compute with diverse attractors, i.e., not bifurcation) parameter [12]. The similarity between the
only with static (fixed-point) attractors as in conventional netlet's return map A(n+l) vs. A(n) and that of the logistic
neural net models but also with dynamic (periodic and map has also been noted by Harth [11] who also mentions
chaotic) attractors, and (d) exhibit behavior reminiscent to that complex and unpredictable sequences A(n) were
that seen in functional magnetic resonance imaging (fMRI) observed in some of their early simulations of netlets
of brain activity. As such, dynamical networks, offer a new suggesting that certain regions of the netlet's parameter space
setting for studying the way the brain handles dynamic can lead to observation of chaos in addition to the periodic
patterns and for using the knowledge gained to design and fixed point modalities they usually observed.
artificial brain-like recognition systems.

In light of this evidence we have conjectured that cortical

2. INTRODUCTION networks can be mathematically modeled and numerically
In automated recognition of aerospace objects using radar, it studied in an efficient way by means of parametrically
is frequently possible to generate a sequence of target coupled populations of logistic processing elements [13]. To
signatures rapidly at regular time intervals that convey test this conjecture we have studied the dynamics of such a
information about the nature and the way the signature network when it is subjected to dynamic input: external
depends on aspect. The signatures can be range-profiles of stimulus patterns that changed in time. The networks we
the target, Doppler spreads, or sets of suitably extracted study differ from coupled map lattices (CMLs), [14]-[15], in
features. The possibility of using such target signatures as several ways: (a) The networks described here employ
training sets for neural networks has attracted much interest, parametric rather than the diffuse coupling used in CMLs,
The motivation was that a trained network may be able to (b) The coupling is nonlinear to represent the possibility that
identify a target from a single look (echo), obviating thereby the interaction between cortical netlets can .depend on the
the more involved and difficult task of forming an image in activity of the netlets and on the density of active fibers
order to recognize the target (see for example [1] and connecting one netlet to another, (c) Parametrically coupled
references therein). One can intuitively appreciate that the logistic nets (PCLNs) can be externally driven by dynamic
design and performance of neural based ATR systems can be or static patterns, or by composite patterns that are partially
enhanced by incorporating in the recognition process detail time varying and partially stationary, (d) In the PCLN,
about the way target signatures change in time. This requires control over network dynamics is gradually handed over
the development of neural networks that can naturally accept from initially entirely extrinsic control to eventually
and handle dynamic input patterns , and not only static ones intrinsically dominated control. This gradual transfer of
as has been the case in the past [1]. control over network dynamics from extrinsic to intrinsic is

biologically plausible and is inspired by the remarkable
In this paper, we describe a new class of biologically biophysical observation made by Freeman and coworkers
inspired dynamical networks that are naturally suited for [16] regarding gradual disappearance of the trace of a
handling (accepting and classifying) dynamic input patterns. sensory stimulus applied to the olfactory bulb of rabbit as it
The networks described incorporate attributes of critical was followed deeper in the sensory cortex where it was
networks and are shown to possess functional properties that found to eventually vanish in a sea of intrinsically dominated
make them potentially useful for the design of a new activity. Similar behavior has apparently been observed by
generation of intelligent recognition systems. Freeman's group in other sensory modalities.

3. PARAMETRICALLY COUPLED LOGISTIC The argument for the handing-over of control over dynamics
NETWORKS is reinforced by another view, held by brain scientists (see

for example [17] and [18]), namely that an animal or

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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organism surviving in a complex uncontrolled environment cell with state variable ui (n)E [0,1] being produced in the
is constantly buffeted by energy and forces created by the simulation conveniently by a stimulus generating logistic
environment that act on its sensory organs where they are
converted into sensory data from which information and map according to: ui(n+l)=l tsui(nXl-ui(n)) with
meaning are extracted by the cortex. More simply: ui (0)= 0.5 and /u being a fixed control parameter of the i-
information and meaning are created in the brain and not in
the environment. To do so effectively, the cortex must be th stimulus generating logistic map. Selecting /.t in [0,4]
unhampered by steady influences of sensory data while it is enables the production of a wide range of stationary, periodic
making sense of the trace of sensory data it has already (period-m) or chaotic patterns ui (n) or any desired mix of
received. This implies that the cortex receives transient
(gradually fading) influences of sensory data rather than such patterns on i depending on the values one selects for

steady ones. The above view, considering that the cortex is a / . Thus by adjusting the control vector ;Us of the N
high-dimensional nonlinear dynamical system whose stimulus generating logistic cells, a wide variety of spatio-
behavior can be described in a state-space of suitable temporal driving signals can be conveniently produced and
dimension, agrees with the picture of the transient or
decaying trace of the sensory data serving to guide the state- applied to the network. The coupling factor cs ranges

space trajectory of the system, in its initial stages, towards a between 0 and -0. For example cý = 0 produces
"loss region" of the state space. While this is happening,
control over the dynamics (trajectory) by intrinsic influences gS (n)= 4 which means the extrinsic contribution into eq.(1)
such as memory (reflecting its past learned experience), tends to make ui(n) high with the result that the i-th
context, and other factors steadily increase to enable them to
play a maximum role in the interpretation and "making- processing cell is more prone to exhibit a chaotic orbit. On

sense", so to speak, of the sensory data through the system the other hand c =- yields gSf(n)=0, because the state
convergence to an attractor within the loss region that would variable ui of the logistic map is in [0,1]. This means that
classify the original input stimulus. We expect this intriguing
view of biological information processing, and how it small values of c4 introduce disorder while larger values
distinctly differs from standard approaches to the processing introduce inhibition. Similarly, the quantity gy (n) in eq.(1)
of information, to have an increasing impact on the design
philosophy of future brain-like artificial intelligent systems represents the input from the j-th processing cell to the i-th

including ATR systems. processing cell; it has a form similar to gS (n), namely

parametrically coupled logistic maps may offer an effective g in)= n[x j (n)
way to study the functional complexity of cortical networks being the state variable of the j -th logistic processing cell
in order to understand the way they perform higher-level of the network governed by: xj(n+l)= uj(nXl-xj(n))
functions, including the handling (classification, recognition, where uj (n) is given by eq.(1) and xj (n) is also in [0,1].
and generation) of spatio-temporal patterns. Such higher-
level functions are beyond the capabilities of present day Note the nonlinear dependence of gf (n) on ui (n) and of
sigmoidal networks, and incorporating them in artificial xj (n) serves two purposes. One, it confines their
network offers a possible means for increasing their giy(n) on
functional repertoire, processing power, and widening their combined contribution to u(i(n) to the allowable range [0,4],
scope of application into ATR and other areas. and second, the values of cs and cij provide control over

The network studied is shown in Fig. 1. For simplicity and the level of excitation/disorder on the one hand and
ease of displaying its state evolution in time, a one- inhibition on the other, that are injected into the dynamics of
dimensional topology is chosen. It consists of a one- the i-th cell, and hence into the network as a whole, by the i-
dimensional array of N parametrically coupled logistic th sensory cell or by the j-th processing cell respectively.
maps Lii = 1,2,...N. Parametric coupling means the The parameter a in eq.(l) is a positive real constants whose

nonlinearity, (control or bifurcation parameter) ui (n) of the value determines the speed with which control over the
dynamics of the network is handed over from initially

i-th map is not fixed but is modulated in time. In the entirely extrinsic control to eventually dominantly intrinsic
network, -i (n) is modulated by both extrinsic and intrinsic control. A value of eo = 1 means that initially the dynamics

influences according to of the network are totally controlled by the extrinsic

-e(n) i+ n (sensory) pattern and a = 0 means there is no fading of the
2N.~g effect of extrinsic input.
2Ni j=i-Ni

e(n)= -0 exp(-on) The handing-over of control over dynamics from extrinsic to
intrinsic control, together with the fact that

Isi (n) i = 1,2,...N, the control parameters of the processing
In eq.(1) in1,2u..., N, the first term represents the extrinsic elements(PEs) in the network, are state-dependent, lead to
(sensory) input to the i-th logistic processing element or cell, ultrastability of the PCLN. Ultrastability means that the
the second term represents the net intrinsic input to the i-th network's parameters can always be chosen in a range where
cell through feedback from all other cells connected to it every applied stimulus always leads to a stimulus specific
including itself (self-feedback), n is discrete integer time, static or dynamic compact attractor in the state space of the
2Ni is the number of logistic cells connected to the i-th cell network via multiple bifurcations (rapid switchings of

i.e. the number of cells falling within a "connection radius behavior at critical points). The compactness of the attractors
Rc" that is taken to be identical for all cells, is explained below.

g S (n)= 4(ui (n))cJ is the extrinsic (sensory) input to the i-th 4. SIMULATION RESULTS
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The behavior of the PCLN was numerically studied for can operate in natural and artificial environments where time
N = 100 under a variety of conditions and parameter values varying signatures are the norm and not the exception.
and rich behavior was observed. Particularly interesting was
the behavior when local connectivity was used where In particular the following functional characteristics and
Ni << N to reflect the dominance of presumably short- attributes of networks of parametrically coupled bifurcation

range interconnection between netlets of the cortex. When (here logistic) processing elements are noteworthy:

self-connection of cells was allowed and the followingparaeter wer use: R ranomlyselet[din [01] Ability to accept spatio-temporal inputs (dynamic input
parameters were used: R, randomly selected in 11 patterns). This expands the repertoire of neural based

Eo,= 1, a = 0.1, cs = 0.5, ui (o)= 0.5, random coupling signal processing systems, which is presently confined
into stationary inputs because of inherent limitations of

coefficients i.e., cij randomly and uniformly selected inth network s use t n inputs.

[a,b], and random initial state vector T(O) i.e. xi(O)

randomly and uniformly selected in [0,1], the network The characteristic convergence of network activity to a

exhibited isolated clusters of activity for values of the small number of isolated active cells (PEs), or groups
03 (clusters) of cells, in a large background of inactive

constants a ranging in [0,0.3] and b -which furnished a cells (see examples in Figs 2-4) means these networks

mix of chaos and order inducing coupling functions. can be made to produce trajectories in their N-
Examples of the behavior of the network are shown in Dimensional state-space that are confined to limited or
Figs.2, 3, and 4 for different forms of the stimulus generating compact "volumes" of their state space, i.e., to compact

vector gs , i.e. for different spatio-temporal inputs. Detailed dynamic attractors. Such dynamic attractors can be

descriptions of these figures are given in the figure captions. composed of combinations of fixed-point, periodic, and
The form of isolated clustering, and the orbits of cells within chaotic orbits. As such they combine levels of order and

clusters seen in these figures are stimulus specific and chaos that are under the designer's control.
independent of initial state of the network, as would be
desired. The clustering was relatively rapid occuring usually The convergence to such compact dynamic attractors is
within the first tens to hundreds of iterations depending on relatively fast and controlled occuring, typically, within
the value of a . Cell orbits of different type i.e., fixed-point, the first few tens or hundreds of iterations, depending

period-m (m-cycle that repeat), intermittent, and chaotic can on the value of the parameter a which determines the

coexist within a cluster and often the period-m orbits of cells speed with which control over network dynamics is
within well separated clusters were not only phase-locked handed over from extrinsic to intrinsic control.

but synchronized. This latter behavior conforms with
synchronized oscillations of local field potentials observed Compact dynamic attractors are stimulus specific.
by several workers in the brain of cat and monkey and with Distinct input patterns produce distinct attractors and
Eckhorn's modeling of that behavior in networks of spiking similar input patterns converge to the same compact
neurons [191-[24]. dynamic attractor. This latter property suggests that

compact dynamic attractors can possess basins of
Most interesting is the isolated clustering which is attraction analogous to the attraction basins in
reminiscent to the isolated clusters of brain activity seen in conventional neural networks which exhibit however
functional magnetic resonance imaging (fMRI) and positron only static (point) attractors and not dynamic ones.
emission tomography (PET) images of brain activity in
individuals subjected to sensory stimulus or when The compact dynamic attractors the network converges
performing an assigned cognitive or motor task. to are also dependent on the coupling factors cij of the

The conceptual similarity of the isolated clustering behavior network. In the simulations presented here, ci, are

in PCLNs and the clustering of brain activity seen in fMRI selected randomly because the goal at present was to
and PET raises an interesting scientific question: if PCLNs probe and understand the network dynamics. In the
are valid models of cortical nets then the clusters of brain future however we expect that structured (nonrandom)
activity "hot-spots" seen in fMRI and PET should also ci1 matrixes, arrived at via suitably developed
exhibit analogous temporal activity. Unfortunately the time algorithm for adaptation and learning, would be utilized
resolution of fMRI and PET at present is too coarse to in these networks. It is worth noting that clustering into
discern any temporal activity within the "hot spots" because a small number of small isolated pockets of activity can
both measure the change in blood flow to active brain be desirable and beneficial in the study of adaptation
regions. An increasing number of studies employing PET and learning algorithms based on mutual information
and fMRI show however that different sensory stimuli or for example because of the sparsity of the resulting
assigned cognitive tasks can "light-up" the same brain spots. mutual information matrix and the greatly reduced
This strongly suggests a role for temporal encoding to enable computational effort needed to generate it from the
differentiation. It would be interesting to see if future orbits of the few active cells in the network that
technological advances in functional brain imaging could characterize the input.
provide the needed temporal resolution to verify the
prediction of the PCLN. Ability to exhibit ultrastability which means that

network parameters can always be suitably selected so
5. DISCUSSIONS that every dynamic input pattern applied to the network
The generally rich behavior we observe with PCLNs causes the network to converge to an associated
including the remarkable specific behaviors described above compact dynamic attractor. This occurs through
have no parallel in sigmoidal neural network, and apparently repeated bifurcations of the network because the control
also in coupled map lattices and cellular automata. Therefore parameters ,Ui (n) of the network is state-dependent, in
we believe that the use of PCLNs to model cortical networks
and higher-level brain functions provide a unique tool and addition to being inflenced by the extrinsic stimulus

opportunity for the development of intelligent systems that (see eq.(l)).
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" The behavior of the network under extrinsic stimulus is 13. N. Farhat and E. del Moral Hemandez, "Recurrent nets
independent of the initial state vector 7(0) (i.e. with recursive processing elements: Paradigm for

xi (0o i = 1,2,...N ) of the network. Note however the dynamical computing," SPIE, vol. 2324, SPIE,
Bellingham, Wash. (1996), p. 158-170.

initial states ui(OQi=1,2,...N, of the input stimulus 14. K. Kaneko, in Theory and applications of Coupled Map

generating logistic cells (see Fig.1) are fixed to Lattices, K. Kanako (Ed.), J. Wiley, New York, (1993),
guarantee repeatability and coherence of the spatio- pp. 1-49.
temporal input patterns used to drive the network. 15. J. Crutchfield and K. Kanako, in Directions in Chaos,

vol. 1, World Scientific Publishing Co., Singapore,
" In the absence of extrinsic input, i.e. when the network (1987), pp. 272-353.

is undriven, the response of the network was seen, in 16. W.J. Freeman, Societies of Brains, LEA Associates
simulations not reported here, to depend on the initial Publishers, Hillsdale, N.J., (1995).
state of the network in a manner analogous to that in 17. S. Franklin, Artificial Minds, MIT Press, Cambridge,
conventional recurrent networks (Hopfield-type MA (1995).
networks) that compute with static (point) attractors. 18. W. Ross Ashby, Design For A Brain, J. Wiley and
The behavior here would be similar but with both Sons, London (1960).
dynamic in addition to static attractors occuring. Basins 19. C.M. Gray and W. Singer, "Stimulus specific neuronal
of attraction delineated by probing with different initial oscillations in the cat visual cortex: a cortical functional
states are also present just like conventional point unit," Soc. Neurosci. abstr., 404, (1987).
attractor network. 20. _,"Stimulus dependent neuronal oscillations in the

cat visual cortex area 17," Neuroscience, vol. 22,
" We have been able to conceive of networks that can be [suppl.], (1987).

made to exhibit all three types of attractors found in 21. C.M Gray, P. Konig, A.K. Engel and W. Singer,
dynamical systems, i.e., networks that "compute" with "Oscillatory responses in cat visual cortex exhibit inter-
diverse attractors. This is significant because cortical columnar synchronization which reflect global stimulus
network can be viewed as high-dimensional dynamical properties," Nature, vol. 338, pp. 334-337, (1989).
systems that are known o exhibit all three types of 22. C.M. Gray and W. Singer, "Stimulus specific neuronal
attractors in their state-space depending on the location oscillation in orientation columns in cat visual cortex",
in parameter space. Because conventional neural Proc. Natl. Acad. Sci., USA, vol.86, pp.1698-1702,
networks exhibit point attractors only, they can not be (1989).
used in the modeling and study of cortical networks and 23. R. Eckhorn, M. Arndt and P. Dike, "Feature linking via
the higher-level brain functions they produce. The synchronization among distributed assemblies:
dynamical networks presented here are however quite simulation results from cat visual cortex," Neural
suited for this modeling task. Computation, vol. 2, pp. 293-307, (1990).
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FIGURE CAPTIONS

Fig. 1. Parametrically coupled logistic network (PCLN) consisting of N bifurcation (logistic) processing elements
or cells. The network employs (a) novel biologically plausible nonlinear (activity) dependent coupling
functions between cells each representing a netlet and (b) a biologically plausible gradual transfer of control
over network dynamics from initially totally extrinsic (sensory) control to nearly totally intrinsic control. The
network can be driven externally by spatio-temporal inputs provided by the stimulus generating network that
employs an array of uncoupled logistic maps to conveniently produce a variety of static, time-periodic,
chaotic, or composite signals made of any mix of these three-types of signals. The quantized versions of the
coupling functions are useful for studying the coarse-grain dynamics of the PCLN.

Fig. 2(a). Example of the behavior of the driven parametrically coupled logistic net of N = 100 cells. Cells are

numbered vertically from i = 0 to 99. Each cell has self-connection and is connected to its adjacent cells with

probability of ½/. The stimulus generating vector ;s is shown in the leftmost panel, the spatio-temporal

pattern ui (n) produced by the i -th stimulus generating logistic element is shown in the next panel for the

last ten ( n = 90 to n = 99 ) iterations. The central large panel shows the temporal evolution of the state vector
-Y(n)= {xi (n) i = 0,1...N = 99} for the first hundred iterations (n = 0,l,2,...,99). The next panel to the right

of the central panel is the power spectrum of exp(2;jxi (n)) where the variable xi (n) is regarded as a phase

variable. The last panel to the right is the color code used to represent xi (n). The initial states xi (0) for

iterating the logistic processing cells was selected randomly in [0,I] and the control parameter pi (n) was

that of eq. (1) of the text. Note the rapid emergence of clusters and convergence into "steady state" i.e.,
persistent types of orbits: for example period-4 orbit for i = 9, fixed point for i = 22 period-2 for i = 51,
chaotic orbit for i = 29 . Cells with fixed point orbits, encoded by uniform color line, are easily identified in

the central panel. The pattern of isolated clusters shown is specific to the stimulus vector ;YS . It is

independent of the initial state vector Y(0) but depends as expected and desired on the matrix of coupling

coefficients cij which was selected randomly in [0,3] in order to allow the appearance of some chaotic orbits

within the isolated clusters. (Changing the range of cij to [0.3,3] eliminates chaos in the orbits and results in

isolated clusters containing cells with period-m and/or fixed-point orbits only). Other parameters of the
network were a =0.1 and e, =1. The convergent pattern of isolated clusters shown in this figure was

extended to iteration n = 100-199 as shown in Fig. 2(b) which shows clearly the three types of orbits: fixed-
point, period-m, and chaotic. Note the sparse isolated clusters of activity in a large background of silent cells
in this figure, which are typical, indicate the orbits occupy a compact region of the 100-dimensional state-
space of the network i.e., a compact dynamic attractors that can combine order and chaos..

Fig. 2(b). Same as Fig. 2(a) but for iterations 100-199 to show persistence of the convergent state after it emerges at
about the 60-th iteration (see Fig. 2(a)).

Fig. 3. Same conditions as in Fig. 2(a) but with a different stimulus generating vector f-s to show that the

associated compact dynamic attractor is stimulus specific by way of appearance of three new active cells as
compared to the orbits diagram in Fig. 2(b).Note the three new orbits are sufficient to place the compact
dynamic attractor associated with Fig. 3 at different location in state-space in the network that does not
overlap with the location of the compact dynamic attractor associated with Fig. 2(b).

Fig. 4. Same condition as in Fig. 2(a) but with stimulus generating vector 77S that differs slightly from that shown
in Fig. 2. This illustrates that similar spatio-temporal inputs are classified by the same compact dynamic
attractor and that compact dynamic attractors possess basins of attraction.
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Non-Cooperative Helicopter Detection by Acoustical Sensors

Gunnar R. Becker

STN ATLAS Elektronik GmbH, Dept LFE5
Land and Airborne Systems Division

Sebaldsbruecker Heerstr.235
28305 Bremen, Germany

Abstract In this paper we will describe the main key mo-

dules of such an acoustic system for the detec-

This paper discusses the potential of acoustic tion and tracking of helicopters. We are focus-

sensors and arrays for non-cooperative air target sing on helicopters since they are a severe pro-

detection. Acoustic sensors, i. e. microphones, blem in surveillance. Combat helicopter usually

are passive and make use of the sound emitted fly nap-of-the-earth, masked by terrain or vege-

by the targets themselves. It is shown that tation, and are hardly to detect by other means.

acoustic systems can provide valuable
information such as detection, tracking and
classification of air targets. The paper mainly 2. Detection of Helicopters
focuses on low flying combat helicopters,
because they are difficult to detect by other The acoustic signature of helicopters is characte-
means. It turns out that Radar and acoustics are ristic for this class of targets. The main contribu-
sensors with complementary performance. tions are spectral lines due to blade passing fre-

quencies of main and tail rotor. Similar features
can be found in Radar signatures of helicopters.

1. Introduction An example of a typical signature is presented in
Fig. 1. In the lower right you can see the acou-

Any air target emits sound which can be detec- stic spectrogram of the helicopter approaching

ted by acoustical sensors. Signal processing is the microphone. The spectral lines are clearly

able to analyze the sound and give valuable in- visible and detectable. At the left hand you find

formation for the military, e.g. azimuth of target the sound pressure in the analyzed frequency
and class of target. In contrast to Radar acoustics band and the broad band noise level, respective-

offers some interesting features: ly. This broad band noise is removed in the
spectrogram to enhance the contributions of the

- Acoustic systems are designed as passive spectral lines and yield an estimate of the signal-

systems, i. e. they do not radiate energy to-noise-ratio (SNR). As can be seen from the

themselves but use the energy emitted by the averaged spectra in the top two windows of Fig.

targets itself. 1, there is a significant broadband noise contri-
bution (upper: with broad band noise, lower:

- Acoustic systems cover the full azimuth at broad band noise removed).
once but are still able to bear target direction. In order to obtain a reliable measure for the early

- Acoustic systems do not require line-of-sight detection of approaching helicopters the spec-
conditions to operate. trograms are analyzed. Spectral lines are detec-

ted and extracted automatically. The result of

- The hardware requirements are much lower for such an analysis is shown in Fig. 2. for the same

acoustic systems. The processing can easily be run as above. In addition a confidence measure
done on a PC or DSP in realtime. Typical ('Konfidenz') is deduced, given at the left hand

overall bandwidth is 50 kHz. of the sketch.

- Extreme low power consumption can be This confidence measure serves as detection
achieved by specific wake-up circuitry, resul- measure. As can be seen the confidence increa-

ting in operation times of typically up to four ses significantly as soon as the spectrogram ex-

weeks. hibits target features, i. e. the harmonics of the
blade passing frequencies and thus allows for an

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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early detection of the helicopter. Using more sophisticated algorithms even the
bearing of e. g. two targets at the same time is

Since acoustics is not that much effected by ob- possible. This is demonstrated with Fig. 6. Du-
stacles it is possible to detect targets even ring this run a tank drove on a nearby track whi-
though they are not visible from the sensor posi- le a helicopter was passing the array.
tion. This is demonstrated in Fig. 3. It shows a
measurement, where microphones have been Combining two or more acoustic arrays to a dis-
deployed across a hillside from one base to the tributed sensor network furthermore allows to
other. The hill rised the surrounding site by localize and track targets in an area under ob-
about 25 m. The signatures of an approach of a servation. Typical distances between the arrays
helicopter flying nap-on the-earth are measured are in the order of hundreds of meters.
at both base positions and presented at the bot-
tom of the sketch. As can be seen, the signature
of the helicopter can even be detected with the 3. Classification
microphone deep in the shadow of the hillside,
whereas a Radar would have no chance. The acoustic signatures of different classes of

targets (e. g. ground targets, helicopters, fixed
This example clearly demonstrates the superori- wing aircraft) vary, while they are very similar
ty of acoustics in situations, where line-of-side- within the classes itself. This offers the potential
conditions are hardly to expect. to discriminate the different classes. In addition

the acoustic 'fingerprint' of helicopters is stron-
gly related with the blade passing frequencies.

2. Acoustic Bearing and Tracking Identifying these frequencies in the acoustic
spectra at least allows to reduce the types of he-

It is well known from Sonar that the directions licopters possible. Both classical and neural net
to sound emitting targets can be evaluated. This approaches have been succesfully applied to the
has been the most powerful sensor system in anti problem.
submarine warfare (ASW) so far.

Instead of using a single microphone a number 4. Military Relevance
of omnidirectional microphones are used to
build a so called acoustic array. Such an array is In the previous sections the potential for non-
presented in Fig. 4, being integrated into a mine cooperative air target detection and classification
prototype. The array shown comprises of seven by acoustic means has been discussed and de-
microphones, six of them are located on a circle monstrated. Since acoustic systems make use of
with a diameter of approximately one meter. The the targets sound they are especially suited for
seventh microphone is located in the centre. As the observation of low flying air targets, such as
sound propagates across the array phase shifts helicopters, drones, etc.
occur between the different microphone posi-
tions. There exist various algorithms to invert Acoustic devices can be used in unattended, au-
these phase shifts in order to obtain the bearing tonomous systems, because of their low power
of the sound source. These algorithms are sum- consumption. They therefore can operate for
marized under the term 'beamforming'. weeks with batteries only. Signal processing will

be integrated on board the systems, including
STN ATLAS has implemented time-delay- and detection, classification and tracking. The more
frequency-domain-beamformers on PC's and complex processing, however, will only be swit-
DSP's. They allow for the estimation of the bea- ched on as long as a potential target is detected.
ring in realtime. Fig. 5 shows the evolution of
the bearing estimates during a fly-by of a heli- Radar and acoustics are complementary sensors.
copter. The horizontal axis covers 360'. The While Radar is the better solution for long range
energy is plotted over angle for a number of sub- and unmasked targets, acoustics is superior for
sequent evaluations. It turns out that the bearing 360' surveillance, unattended and covert opera-
estimates are much better than one might expect tion as well as the detection of masked targets.
from the 3-dB-beamwidth of the arrays mainlo-
be. The combination of both principles will result in
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a new type of multisensor. In that case the acou-
stic subsystem will cue Radar and provide infor-
mation such as detection and bearing. Radar
then will operate only if a relevant target is pre-
sent.

5. Conclusion

This paper discusses the potential of acoustics
for non-cooperative air target detection, tracking
and classification. It has been shown that acou-
stic sensors and arrays offer a great potential,
especially for low flying targets, e. g. helicop-
ters. Unattended operation is possible. Radar
and acoustics may be combined to exploit the
complementary features of the sensors.

This work has been supported by BMVg Ru IV/4
and BWB FE IV/6.
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Fig. 5 Acoustic bearing of a passing helicopter, arriving from 210' and departing to 700
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SUMMARY 2.2 Statistical model
In this paper we exploit high resolution millimetre wave radar A general rule in classification is that the separation of classes
ISAR imagery to develop a vehicle classification algorithm, is best exploited when the maximum a priori knowledge of the
which is robust to orientation and position of the vehicle in the statistical behaviour of the classes is utilised in the classifier [1,
scene. A statistical model of the aspect dependent fluctuations 2]. T hereore, the most is way in effectie

of te rdarsigatues f avarety f vhices s dvelpedand 2]. Therefore, the most promising way of developing effective
of the radar signatures of a variety of vehicles is developed and radar classification algorithms is to devise accurate statistical
is then used to define the Maximum Likelihood (ML) models of objects, which can then be used as the basis for the

classification algorithm. The performance of this algorithm is

compared with that achieved using a number of alternative sub- application of statistical pattern classifiers.

optimal classification tests, again utilising the statistical model. It is often recognised that the radar signature of an object is
It is shown that the statistical model can provide a fairly very sensitive to changes in viewing angle. In general, the
accurate representation of the fading characteristics of the vehicles of interest, are complex structures with a combination
vehicle and that the performance of the ML algorithm is very of odd and even bounce scatterers, and a single profile could
high under conditions of perfect knowledge of the position and not be expected to adequately describe such a vehicle at all
orientation of the vehicle in the scene. However, in real aspects. Clearly, the model must contain more than one
applications in which these parameters have to be estimated, template.
some performance degradation is observed. In comparison, the A typical vehicle can be modelled for radar signature purposes
sub-optimal tests are shown to offer increased robustness to as a large number of distinct scattering centres. Given this
uncertainties in the vehicle location. The models and techniques model the variation in the vehicle signature then arises from
reported here provide a robust approach for general radar two effects. Firstly, as the viewing angle changes the distance of
classification problems. each of the scatters in the range gate to the radar changes. This

1. INTRODUCTION results in a change in the coherent addition of the backscattered
This paper presents a vehicle classification algorithm for ISAR signal from each of the scatterers as measured at the radarThi paer resntsa vhice cassfictio alorihm or SAR giving a changes in the measured radar cross section (RCS).

imagery, which classifies vehicles into three classes. The Secondly, changes in the viewing angle lead to changes in the

algorithm utilises a statistically derived model of the vehicles to nerond strngth of ttererin ange bin contributin

account for the changes in ISAR imagery as vehicle rotates on a tomte ack scattered ic als re in chngesuint
turntble.to the backscattered signal which also results in changes in the

turntable. measured RCS.

The paper is structured in the following way; section 2 The approach adapted for model described in this paper exploits
describes the design of the classification algorithm and a two-scale statistical model to describe the fluctuations of the
summarises the range of classification tests evaluated. The RCS. The application of such a model is based upon the
performance of the algorithm is presented in section 3 and assertion that the above two mechanisms giving rise to the RCS
discussed in section 4. Conclusions are then presented. fluctuations operate on different rates of change in angle from

2. ALGORITHM DESCRIPTION which the vehicle is viewed.

2.1 Introduction To determine the appropriate statistical model for vehicle ISAR

The classification of the vehicle signature under test involves images, the normalised moments of the value of each pixel

it's comparison with representations of the three different class where examined over a range of azimuth windows (50, 100,

types, and therefore requires 'class templates' to be identified. 200). This allowed the appropriate statistical model to be
These were constructed by averaging ISAR images of typical selected together with size of azimuth window over which the
vehicles belonging to each class over adjacent 50 windows as model held. When the angle swept exceeds this window,

they rotated around 3600, thus producing seventy two templates obviously, a different set of model parameters is required.

for each class type. This model is referred to as the Angular The values of the second, third and fourth normalised moments
Decomposition (AD) model and is explained in section 2.2. found with the vehicle ISAR data matched those expected for

The algorithm described below consists of two main parts. The an exponential distribution when a 50 azimuth window was
first part is the alignment of the vehicle with the templates used. The exponential distribution has particular significance
representing the classes under consideration, and the second because it is the distribution of RCS expected of a radar cell
part is the mathematical tests used to classify the vehicles, containing a large number of randomly interfering scatterers. As

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.



G-2

the size of the angular window was increased the values of the The process developed to achieve this initially median filters
normalised moments were found to increase. This is the radar image and applies a threshold to give a binary image.
characteristic of a two-scale process and reflects the impact of After this binary morphological opening and closing are used to
different scatterers contributing to the RCS fluctuations in the clean-up the image by removing isolated regions, amalgamating
two halves of the angular window. A change in scatterer adjacent regions and smoothing region outlines. In order to
population across the angular window implies that the RCS isolate the vehicle region, the centre of mass of this binary
fluctuation has a different mean value in the two halves of the image is found and isolated by region growing from this point.
window. Therefore, although locally the RCS distribution may This should remove any regions which are not associated with
be exponential, combination of the RCS fluctuations from two the vehicle. The centre of mass of the remaining region is then
processes with different mean values will not maintain the used as the centre of the vehicle. Obviously, the radiometric
exponential form in the composite distribution. Generally the centre of the image is unlikely to correspond to the geometric
normalised moments of the combined distribution will be centre of the vehicle. Consequently, it is necessary to apply the
higher than those of the two components, which was found same centre estimation process to the templates, so that the
when larger azimuth windows were used. This analysis similar offsets, between the estimated centre and actual
therefore indicates that a two scale process can be used to geometric centre, are applied to the test data and the templates
model the fluctuations in the radar signature of vehicles. Within which will then bring them into better alignment.
this two-scale process the RCS fluctuations due to the As the position estimate is solely dependent on the signature
interference of the scatterers within a resolution cell occurs on a
smaller scale of angular change than the RCS fluctuations due azimut e , th estimat wl hve sme uncertin

to changes in the number and strength of the scatterers. asiadth it. The mate of hese uncertainti
associated with it. The magnitudes of these uncertainties have

The analysis of normalised moments has suggested that over been estimated empirically to be ± 1 pixel in cross-range and ±2
angular windows of 50 the RCS in each pixel conforms to the pixels in down-range. Within the classification algorithm, these
exponential distribution. The exponential distribution is defined are accommodated by allowing a range of possible alignments
by a single parameter, its mean value. Consequently, a complete between the signature under test and the templates. At each
description of the statistics of the RCS signature of the vehicle position considered within the estimated error bounds, the
can be expressed by the average of the ISAR images obtained vehicle region within the radar image is extracted using a mask
over a 50 window. of vehicle dimensions. It is then positioned over each of the
The statistical model derived above does not constitute a templates so that the vehicle and template pixels with
compete desttistic modhel d vedhabove dognares no d consti e a corresponding co-ordinates can be compared. In order to
complete description of the vehicle signature needed for the account for the vehicle orientation, the signature under test is
development of an algorithm. This is because any correlation extracted using a mask at all possible orientations and compared
between the RCS fluctuations in one pixel with those in other with the corresponding template. For each distance metric, thepixels needs to be accounted for within the modelling of the best value resulting from this comparison over the range of

signature. However, analysis of the vehicle signature indicates possible alinm and tais is us er clasica on

that there are not large correlations between the RCS possible alignmentsandorientationsisusedforclassification.
fluctuations of any pair of pixels. Therefore, for the purposes of 2.4 Classification Tests
algorithm development, the vehicle will be considered as Once the vehicle signature has been aligned with the templates,
completely described by the above statistical model. This six classification tests are used. These tests are essentially
approach to the statistical modelling of the RCS signatures of measures of the distance in a multi-dimensional space of the
vehicles in which the angular coverage of the vehicle is signature under test from each of the templates. The differences
decomposed into a number of angular windows will be referred between the tests reflect different weights associated with
to as the angular decomposition (AD) approach. amplitudes of pixels in the test and template signatures. The

To facilitate the classification, the algorithm utilises 3 statistical classification tests were appropriately normalised with respect
models - one for each class of vehicle. Each model was to the number of pixels measured, which varies with the vehicle
constructed from approximately 2000 radar 'snapshots' of a orientation. The number of pixels measured varies because the
typical vehicle as it rotated on a turntable. These 3 models mask used to extract the test data is a rectangular in shape and is
comprise 72 templates each, and each template represents the projected onto a discrete rectangular grid at a number of
mean of all snapshots (about 27) in a 50 rotation of a vehicle orientations. The six classification tests evaluated were:
typical of the class. Test 1: A negative log likelihood discriminant based on the

The above statistical analysis used to generate angular statistics of the AD model. The AD model assumes that the
decomposition model has recently been supported by a data resolution cells in each vehicle image have an exponential
driven approach to modelling the angular variation. In this distribution with mean values given by the corresponding
approach, the data was clustered using a k-means clustering [2] average templates. Within this model the statistical likelihood
into 72 classes. It has been found that with 72 classes data that an observed image, x, originated from the ith class is given
groups into approximately 50 windows, by:

2.3 Alignment of vehicle signature with class templates p(xli) = exp7- (1)
The position of the vehicle within the radar image has to be i=l Ri j , XiR)
determined in order to register it accurately with the templates.



G-3

where, (X - )
xj- amplitude of the jth resolution cell in the test image, d = 2 (7)
gj - amplitude of the jth resolution cell in the average template J=1 i-
of class i, 3. ALGORITEM PERFORMANCE
a - all pixels contained in vehicle region.

A series of experiments are described below which were
x is assigned to the class for which -ln(p•Ii), the negative log designed to investigate the performance of the algorithm when
likelihood, is a minimum. The negative log likelihood value is classifying vehicles into one of the three classes. The algorithm
given by: was presented with a complete rotation of each vehicle under

, X j test. For each image, each of the classifiers assigned the vehicle
-ln(p(xli))=1 -- ln(gi)d (2) to the class which gave the best match between the vehicle and

I (one of the templates.

Test 2: The gamma distribution was evaluated as an empirical Examples of three classes of vehicles were used to train the
attempt to reduce the effect of noise contained in erroneously classifiers by constructing the templates through angular
extracted vehicle regions on the classification result. Instead of averaging. These vehicle images were also used to test the
assuming an exponential distribution for the negative log classifiers. For test set 4, the training vehicle for test set 1 was
likelihood test, a 2nd order gamma distribution was assumed. A imaged at a different depression angle. For test set 5, the same
description of the reasons for using this distribution and its vehicle as test set 1 was imaged under the same conditions, but
impact is given later in this paper. The negative log likelihood with the engine running. The engine causes the vehicle to
equation for a gamma distribution of order 2 is given by: vibrate and hence changes the reflected Doppler frequency

which then potentially has an impact on the ISAR imagery. For
ap ( x. ( 2x", (t. "j'( test set 6 & 7, a vehicles of the same class as test set 1, but

j=-n, I-tpx l, 2log ) •. (3) physically different, were imaged. The vehicles used are
summarised in the following table.

Test 3: Correlation. When the vehicle signature and the
templates representing the three classes are correlated, the Test set Description
maximum correlation coefficient indicates the best match. The number
correlation coefficient, C, is given by: 1 Training - example of vehicle type 1

a 2 Training - example of vehicle type 2
,(xi - xXgij - 9) 3 Training- example of vehicle type 3

C = J=1 (4) 4 Test - same vehicle as test 1, but

Yx, X - -x) g-(i) imaged at a different depression
JJ_ _=_ angle

5 Test - same vehicle as test 1, but
Test 4: Nearest neighbour using the city block distance metric. 5 Te t ts e ehiceae ,
For nearest neighbour metrics, the smaller the distance, d, imaged with the engineon
between the vehicle image and the templates, the closer the 6 Test - a vehicle of the same class as
match between the two. The city block distance metric is given test 1, but physically different
by: 7 Test - a vehicle of the same class as

test 1, but physically different
d = ,1x1 - ,-j (5) Table 1; Test vehicle descriptions.

j=l

When the test vehicles and the templates are perfectly alignedTest 5: Nearest neighbour using the Euclidean distance metric. thmaiu peorncfrtetrnngdasoldb
Thismetic dstace tkesthe ormof-the maximum performance for the training data should be

obtained with all the distance metrics. The results obtained

d Y( - )2 (6) under these conditions are shown below in table 2.
d = = (x1 - ,i) (6)

Test set Distance metric

Test 6: Nearest neighbour using the Mahalanobis distance in number 1 2 3 4 5 6
which an exponential distribution of the vehicle pixel 1 99.7 100.0 99.9 100.0 99.9 100.0
amplitudes is assumed with means given by the corresponding 2 100.0 100.0 99.9 100.0 99.9 100.0
pixel amplitudes in the average templates. In addition, it is 3 100.0 100.0 99.8 99.9 99.2 100.0
assumed that there is no correlation between pixels with the 39.3 57.2 51.6 62.8 71.7 70.5
templates, which has been verified empirically. As an
exponential distribution is assumed the variance is equal to 5 98.4 100.0 99.7 100.0 99.9 100.0
mean and hence the Mahalanobis distance is given by: 6 71.0 84.5 66.9 95.0 89.9 88.7

7 33.4 55.8 55.4 75.1 76.8 75.1
Table 2; Classification rate when the test data and

templates are perfectly aligned.
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When the centre of the vehicles and templates are estimated The results show that very good performance can be achieved
using the techniques described earlier the results shown in table with the training vehicles. In addition, generalisation to
3 were obtained. different depression angles and different vehicles can be

achieved using some of the distance metrics.
Test set Distance metric On the training vehicles, there is little difference between the
number 1 2 3 4 5 6 performance of the different distance metrics. However, it

1 89.0 94.4 84.7 92.2 90.9 95.8 should be noted that the maximum likelihood classifier based

2 92.9 94.7 89.6 93.6 89.7 91.4 on the exponential statistics of the AD model has a lower

3 92.0 94.2 88.9 92.8 84.6 89.8 performance than all of the other distance metrics. This

4 71.3 84.3 63.6 83.5 83.6 89.0 reduction in performance can be understood by considering

5 76.0 87.4 72.0 87.9 88.5 92.7 equation 2. This shows that pixels with low values give small
contributions to the overall value of test 1, supporting a close

6 64.0 57.01 52.01 66.516 5.6 74.3 match between vehicle and template. This reflects the fact that
7 54.8 57.8 48.4 58.5 65.4 75.6 low values are very likely when the signal is exponentially

Table 3; Classification rate when the position of the distributed. However, where the test signature has not been
vehicles and templates are estimated, extracted accurately (due to poor estimation of the vehicle's

position) some of the pixels will contain low-level background,
When the centre of the vehicles and templates are estimated and which when equation 2 is applied will give small response
the alignment between them allowed to slip the results shown indicating a good vehicle/template match. This effect is
below in table 4 were obtained, believed to reduce the performance of the classifier by causing

misclassification when the test signature is not extracted
Test set Distance metric accurately.

number 1 2 3 4 5 6 To reduce the effect of background pixels biasing the negative
1 94.4 99.8 98.5 100.0 99.1 99.9 log likelihood classification, a more general 2nd order Gamma
2 98.6 99.9 99.5 100.0 99.5 100.0 distribution was assumed rather than the exponential
3 94.2 99.8 99.2 99.9 98.8 99.8 distribution. This assumption leads to the distance metric given
4 67.1 90.2 72.1 92.6 87.6 95.8 in equation 3. The difference between the exponential and

5 86.1 99.1 95.6 99.5 98.1 99.7 Gamma distributions can be seen below in figure 1.

6 48.3 51.0 46.1 62.0 71.3 67.3
7 42.5 44.3 38.3 43.0 56.2 67.9 1.0

Table 4; Classification rate when the position of the
vehicles and templates are estimated and the alignment 0.8 - E~po-nto,

--- 2nid order G-rm

is allowed to slip.
4. DISCUSSION 0.6

The results presented in section 3 show that ISAR imagery ,,
potentially contains enough signature information to allow the 0.4

effective classification of vehicles into three distinct groups. If
the vehicle position can be located exactly, allowing the precise
extraction of the vehicle from it's background, all the tests can 0.2

achieve very good performance on training vehicles. Even on
test vehicles, which are imaged at a different depression angle -o ..
or are physically different, good performance can be achieved 0 1 2 3 4 5

with some of the distance metrics.

Table 3 shows that when the position of the vehicle is Figure 1; Exponential and Gamma distributions with
estimated, the classification rate is still good for the training means of one.
vehicles. However, as expected there is a slight reduction in
performance compared to the perfect alignment case which will When the Gamma distribution is used, the biasing effect is
be due to inaccuracies in the position estimation causing an vastly reduced as pixels with low values have a reduced
incomplete vehicle to be extracted. This will lead to an area of contribution to the test. Therefore, low level pixels in
the mask used to extract the vehicle containing background. inaccurately extracted vehicle regions have less effect on the

test. The benefits of this change can be seen in improvement in
To overcome the inaccuracies in the position estimation, the performance between test 1 and 2 in table 4 for the training
alignment between the test data and templates was allowed to vehicles. Similarly, the performance of the Gamma based test is
slip by up to ±2 pixels in down-range and ±1 pixel in cross- better on the test vehicles.
range. This arrangement gave the results shown in table 4.
These results represent a more realistic assessment of the With the training vehicles it is difficult to separate the
performance as the vehicle position is estimated and slipping is performance of the different distance metrics. However, with
used to minimise the effects of errors in the position estimation, the test vehicles it is possible to make a limited assessment of
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the generalisation of the distance metrics. To make a more 5. CONCLUSIONS
detailed assessment it would be necessary to use more test A number of distance metrics were evaluated as classification
vehicles. With the available test data it can be seen that on tests. On training data there was little difference in performance
average the Mahalanobis distance metric (test 6) performs better between the distance metrics. However, it is evident that the
than any of the other distance metrics. In particular, it obtains maximum likelihood classifier based on exponential statistics of
an average performance on the test data of 83% which is the vehicle model, although having good performance in perfect
considerably better than the maximum likelihood classifier's conditions, does not perform as well as the other classifiers in a
(test 1) average performance of 61%. more realistic situation. In the more realistic situation where the

A key issue in the design of the classification algorithm is the position of the vehicle has to be estimated, the Mahalanobis
selection of the training data used to generate the templates. In distance metric offers better performance than any of the other
the analysis reported here, the test vehicles are completely new distance metrics. More ISAR measurements of different
to the algorithm, and therefore a very high level of performance vehicles of each class would be desirable, allowing the
might not be expected when the classifier is using the complete robustness of the algorithms to be tested more thoroughly.
radar signature. This is because the high spatial resolution radar The results presented in this paper have shown that the
imagery has a large amount of fine detail that may be masking classification is sensitive to errors in vehicle location and
the more global aspects of the signatures that are characteristics configuration, and techniques need to be developed to improve
of each of the classes. There are two approaches for future it's robustness. Currently, the templates used are defined rigidly
algorithm development; simply widen the data set used in the over 50 windows. Alternative templates derived directly from
training of the algorithm, or investigate in more detail the the combination of signatures from a wider range of aspects
principal characteristics of the radar signature of the vehicles may be integrated into a statistical mixture model that better
and their variation with vehicle configuration. describes the natural fluctuations in the vehicle signature. More

The first approach would include data in the training process advanced classification techniques can then be developed by
that covers a wider range of vehicle conditions. In practice, this using these mixture models in a Bayesian framework by
would be expected to reduce the classification levels for the comparing vehicles with all templates from all classes within
training vehicles, but increase the performance on test vehicles classification decision. This model could also be used to
as the average vehicle representation becomes more general. incorporate robustness to inaccuracies in the vehicle region

A second approach would be to review the generation of the position and the vehicle configuration.
templates. At present these are defined by the rigid 50 angular 6. REFERENCES
windows identified by the AD analysis. Although these Fukunaga, K., "Introduction to Statistical Pattern
windows are likely to be appropriate on average, it would be Recognition", Electrical Science Series, 1972.
sensible to devise the templates in a more data dependent
manner that would allow statistically similar signatures from a 2. Duda, R.O. and Hart, PE, "Pattern Classification and Scene
wider range of viewing angles to be combined into a single Analysis", John Wiley & Sons Inc., 1973.
template if appropriate. This may reduce the number of 3. Gonzalez, R.C. and Woods, R.E., "Digital Image
templates, and allow a more natural representation of the Processing", Addison-Wesley Inc., 1993.
fluctuations in the vehicle signature. Depending on the
sensitivity of the performance of the improved algorithm on the
vehicle configuration, this could then be followed by an © British Crown Copyright 1998 /DERA
investigation of the detailed vehicle signature to try and identify
principal characteristics that are invariant to the changing
conditions of the vehicle. Such analysis could comprise either a Published with the permission of the Controller of Her
data dimension reduction analysis or a wavelet analysis to Britannic Majesty's Stationary Office.
identify scales at which the vehicle signature is stable to
changing configuration. The results reported here show that the
basic information within vehicle signature can support effective
classification, and that the future problem is to identify the
'essential' vehicle representation that maintains the
classification performance, but adds the required robustness to
vehicle configuration and vehicle type.

In addition to changing the templates, it may be possible to
improve the performance by combining the information from
different distance metrics by another classifier such as a neural
network. This combined classifier could use information from
all the distance metrics and all the classes. This would include
both measures of similarity and dissimilarity in the decision
making process.
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SUMMARY

Traditional approaches to range-profile classification of 1. INTRODUCTION

ship targets have been feature-based, where the features
are chosen directly by the algorithm designer or The primary role of high-resolution airborne maritime

indirectly by the inherent bias of the mathematical radar is to detect small targets. However, a useful spin

algorithm; the correlation classifier being an example of off of this technology is that when a high-resolution

the second type of classifier. Feature-based classifiers radar illuminates a large maritime target like a ship, the

are naturally biased and often do not use all the data. resulting high-resolution range-profile can be used as a

Hence, not surprisingly, these classifiers have all had means to classify the target. The recognition of a target

mediocre performance. by its range-profile is currently performed manually, but
with the advent of powerful computational facilities the

Maximum likelihood classifiers are optimal under opportunity to classify targets automatically presents

certain assumptions, and now that the computational itself.

power is available to implement them, they are a better
place to start than feature-based classifiers. Maximum Much of the early work in the area of ship range-profile

likelihood classifiers are not biased and use all of the classification was performed with a view to solving the

data available. In addition, they naturally lend problem in a quick and simple fashion so that the

themselves to data fusion with the output of other capability could be put into military service as soon as

sensors and intelligence information. possible. In addition, the complexity of the early
algorithms was limited by the computational power

However, there are a number of difficulties with available at the time. Now that it has been realised that

implementing a maximum likelihood classifier on real the problem is much more difficult than originally

data, some of which are also common to other anticipated and with the huge increase in computational

classifiers. The most common problem is aligning or power becoming available, more complex algorithms
registering a template with the as yet unclassified target. can be investigated.
This problem may be partly overcome by brute
computational power, but more satisfactory solutions are From a study of simple algorithms, attention has been
required. Other problems related to target end detection, drawn to the possibility of optimal algorithms. As the
slight changes in aspect, range-cell independence, range-profile of a target varies from pulse to pulse, the
distribution selection and physically different targets are optimal method to discriminate between candidates for
also discussed, together with some suggested solutions. the target's true identity is to model the range-profiles

that these candidates would produce using probability
A maximum likelihood classifier has been constructed density functions and then invoke the maximum
using a number of the solutions to the problems likelihood criterion.
described and has given promising results on real data.
The limitations and advantages of the classifier are The maximum likelihood criterion states that, when
discussed together with possible solutions and there are several models that may lead to the observed
improvements. The improvement in classifier outcome, the model that has the highest likelihood of
performance with respect to its mis-classification rate is generating the observed outcome is the one that should
investigated when the minimum likelihood algorithm is be selected. This involves calculating the likelihood
implemented to overcome a set of the aforementioned function, L(_):
problems.

The importance of confidence in a classifier's prediction L(_) = f(x 1 , x2,..., (1)
is also explained together with the results of using
confidence levels in the maximum likelihood classifier For values of 0 within a given domain, where x1 ,
to further boost performance. X2,..., xn is the value of a random sample from a

Paper presented at the RTO SCI Symposium on "Non-Cooperative Air Target Identification Using Radar",
held in Mannheim, Germany, 22-24 April 1998, and published in RTO MP-6.
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multivariate population with the parameter vector 0 and localisation [5] and is vital for all types of classifiers that
f(xl, x2,..., X.) is the value of the joint probability do not use position-invariant feature-vectors.
density of the multivariate random variable The classifier used to generate the results presented in
X={x 1,x2,..., X.) [11. [21 gives an easy-to-follow this paper uses a sophisticated alignment algorithm. The
description of how a maximum likelihood classifier algorithm makes use of the cross-correlation coefficient
functions together with a worked example. to make an initial alignment and then uses a focusing

metric and a shift of phase in the Fourier domain to
For ship range-profile classification the joint probability achieve alignment to a fraction of a range-cell.
density is the multivariate probability density function
of the values occurring in the range-cells of the range- The second type of task is to find the probability density
profile. Once the likelihood has been calculated for each function that best matches the fluctuations, which
of the ship classes, the target is classified as the class nominally come from the same set of scatterers,
with the highest likelihood, observed in a range-cell. The optimum method of

determining the best fit distribution is to use the
The range-profile of a target varies with aspect-angle. maximum likelihood criterion again, both for the type of
Hence, the probability density functions that describe distribution [6] and for the distribution's parameters [1].
the range-cell fluctuations also vary with aspect-angle The calculation of the distribution's parameters can be
thus requiring different aspect-angles of the same target quite involved, often involving an iterative process [71.
to be considered as different classes at the classifier Thus, a more practicable approach is to use the method
training stage. Since there are a continuum of aspect- of moments [1] to determine the parameters of a finite
angles the domain of aspect-angle is divided up into list of candidate distribution types and then find the best
discrete aspect-angle bins. The aspect-angle range fit using the maximum likelihood method.
covered by each of these aspect-angle bins will be
determined by a trade-off between the rate of change The values that appear in each of the range-cells are
observed in the range-profile as the aspect-angle varies, assumed to be independent so that the multivariate
processing time, classification performance and the probability density function can be constructed as the
amount of training data available, product of a number of univariate probability density

functions. It has been shown that the gamma distribution
This paper is structured as follows. Section 2 describes provides a good fit to the range-cell fluctuations [6] and
the pre-processing schemes that must be performed. so it has been used here. The parameters of the gamma
Section 3 describes a mid-processing scheme that can be distribution that best describes the fluctuations of a
used to boost performance. Section 4 describes a post- range-cell are recorded for each range-cell, of each class
processing scheme that can be used to boost of ship, at the training stage of the classification process.
performance. Section 5 gives results of the classifier's They are then used to evaluate the likelihood that each
performance using different pre and post-processing class would have generated the value observed in the
schemes. Section 6 describes the planned direction of corresponding range-cell of the range-profile under test.
future work. Section 7 is the conclusion. The likelihoods generated for each range-cell are then

multiplied together to determine the overall likelihood

2. PRE-PROCESSING ALGORITHMS that a class would have generated the ship range-profile
under test. These overall likelihoods are then normalised

Three types of pre-processing tasks must be performed by their length in range-cells to provide a fair
to enable the classifier to perform its task. Further, the comparison between ship classes of different lengths.
accuracy with which these pre-processing tasks are
performed directly influences the performance of the When a previous attempt was made to use the maximum
classifier. The first of these three types of task is to align likelihood criterion for ship range-profile classification,
one range-profile with another. This type of task must the likelihood of a class generating the entire range-
first be performed on each set of training range-profiles profile was calculated. As can be seen in figure 1, some
during the training stage of classification. Thus all of the of the range-cells in the range-profile do not represent
range-profiles representing a target at a certain aspect- reflections from the target of interest but instead from
angle must be aligned with each other. This alignment the surrounding environment. The dominant
ensures that the returns in a range-cell, to which a contribution to the values of these off-target range-cells
probability density function is subsequently matched, all is from thermal noise within the receiver. Hence the data
come from the same set of scatterers [31, [4]. After the contained in these range-cells contain no information
classifier is trained, and during the classification stage, about the target and hence are of no value in attempting
this alignment process must be performed on the trained to classify the target. Further, it was found that the
template and the profile-undergoing-classification, so component of the overall likelihood generated from
that the test-profile range-cell value is compared to the these sea-surface range-cells dominated the overall
correct template probability density function. This likelihood calculation and hence resulted in poor
alignment during classification process is known as classification performance.
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Figure 1. Typical Range Profile be limited then the overall likelihood may remain
0.25Target relatively high and correct classification should result.

No T One method of limiting the influence of these changeda No Target No Target

N range-cells is to assign a minimum likelihood to any
range-cell. In this way, if the value in a range-cell is

0 near the value expected then a high likelihood results,
z the closer the value the higher the likelihood. But if it is

further than a specified amount then it is considered to
0 be from a physically different set of scatterers than those

0.o5 used to generate the probability density function for that

range-cell and it is assigned a pre-determined low
0 . 100 ... likelihood. There are two reasons behind using a

Range Cell minimum value. The first is to 'fine' the candidate-class

for having a different set of scatterers occupying the

The classifier, used to generate results for this report, range-cell no matter whether they are slightly different

uses only range-cells that contain scatterers located on or very different: it only matters that they have been

the target of interest. It does this by using a thresholding judged to be different. The second reason is to allow the

and correlation process to locate the ends of the target likelihood of the entire range-profile to remain relatively

and only using range-cells between the two ends. This high even if one range-cell is radically different to

end-determination task comprises the third and final pre- expectation. The use of this minimum likelihood

processing task. improves classification performance, but the
performance increase is a function of the value chosen.

3. MID-PROCESSING SCHEMES The setting of this minimum likelihood is investigated in
section 5.

This mid-processing scheme provides a useful
compromise between a rigorous theoretical approach 4. POST-PROCESSING SCHEMES

and a more practical application based approach.
Although it is not required to allow the main part of the One of the purposes of an automatic classifier is to

classifier to function correctly and by using this scheme perform the classification function currently performed

the overall classifier is no longer a true maximum by a radar operator, but faster and with greater accuracy.

likelihood classifier, there are good theoretical reasons Direct comparison of the capabilities of an automatic

for using the scheme and it has been shown to increase classifier with a radar operator is however, often

classifier performance significantly. overlooked. Most automatic classifiers calculate which
class stored within their database provides the best

It has been assumed that the target undergoing match to the test range-profile. However, this is quite

classification is physically identical to the target of the different to deciding if a range-profile has come from

class that was used to train the classifier. However, this one of the targets in the radar operator's memory, which

is clearly not the case for ship targets. Ships of is the process actually performed by radar operators.

nominally the same class are often built in batches, so There are two significant differences between these two

that ships within a batch are theoretically the same, but processes.

may be significantly different to other ships within the
same class but from a different batch. Furthermore, even Firstly, the radar operator may know through prior

different ships within the same batch have often information that a certain class of ship is not operating

undergone slightly different modifications during their in the vicinity and so will know that although the, say,
lifetime. This problem is further compounded by the 'A' class provides the best match to the test-profile the

different physical configurations that a target can take target cannot be from the 'A' class. This demonstrates

over a few hours: hangar doors can be open or closed, the use of prior knowledge in the classification decision.

helicopters may be present or absent, weapon systems Secondly, none of the targets stored in the database (or

may change orientation independent of the target as a memory) may provide a good fit to the observed test

whole etc. If there are physical differences between test profile. The radar operator would then classify the target

and training targets then the values returned in the test as 'unknown' or wait for more range-profiles to be

range-cells will not obey the probability density collected by the radar before a classification decision

functions recorded in the database, yielding a very low was made. However, most classifiers would classify the

likelihood and possible misclassification, target as the class that provided the least-bad fit.

However, most of these differences affect only a small Both of these differences may be directly incorporated

part of the target, and thus only a few range-cells. Hence into a maximum likelihood classifier. Prior knowledge

most of the range-cells behave as recorded in the may be incorporated into a maximum likelihood

database. If the influence of the changed range-cells can classifier, thus making the classifier a Bayes classifier.
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This is achieved by multiplying the likelihood generated likelihoods. This is because occasionally a range-profile
for each class of ship by the prior probability of will not be similar to the range-profiles of that class used
encountering a ship of that class and then using the to train the classifier and so yield a low likelihood from
maximum likelihood criterion on the new Bayes its true class, thus the maximum likelihood will be
likelihood values generated for each class. Thus if the distributed randomly among all the classes in the
prior probability of encountering a class of ship is zero database. This relationship between confidence
then so is the Bayes likelihood, hence this class cannot threshold and correct-classification to misclassification
have the maximum likelihood and so will not be ratio is investigated in section 5.
selected. The classifier's response to the previous range-
profile can be used to adjust the prior probability for the 5. RESULTS
current range-profile. Spatial prior information can also
be used when there are multiple targets, a fishing fleet The maximum likelihood classifier was trained on a set
for example, to affect the posterior classifications of the of 7 ships. The radar was cliff-mounted and each ship in
targets based on other classifications in the group. turn circled in front of the radar so that the ships'
However, care has to be taken not to set up a positive characteristic range-profiles could be recorded at all
feedback effect [8]. Equation 2 shows how to calculate aspect-angles. The circles were divided up into
the Bayes likelihood. approximately 20 bins, and then for each aspect-angle

bin the probability density functions that best described
Bayes Likelihood, =PPi x MLj (2) the fluctuations in each range-cell were recorded.

In equation 2, i denotes the ith class, PPi the prior Six of the targets performed a second circle. These
probability of encountering a target of class i and MLi is second circles were used to test the classifier. The
the maximum likelihood generated by class i [2]. classifier had a high correct classification rate when

tested on 6 test classes and 7 training classes using the
The second difference, the potential for declaring poor- pre-processing schemes described in section 2.
fit targets as unknown can be incorporated by
calculating a confidence value and assigning a The effect of using the minimum likelihood described in
confidence threshold. The confidence value is a measure section 3 was investigated for a variety of minimum
of how confident a radar operator would be in the likelihood values. The results of this investigation are
classification decision. If the confidence value is below shown in figure 2. The error rate per class is defined as
the threshold value then the range-profile is either put in the percentage of misclassifications per class. The mean
the 'unknown' class or merely left unclassified. The of these gives the overall absolute error rate. The
confidence value should be some function of the relative error rate is defined as the overall absolute error
maximum likelihood of all classes. Thus if the range- rate for a certain minimum likelihood expressed as a
profile is a poor match to all classes they will all yield percentage of the overall absolute error rate for the
low likelihoods resulting in a low maximum likelihood classifier when no minimum likelihood is used. Hence,
and hence a low confidence. The confidence threshold when the minimum likelihood is zero, which is
should be set according to the estimated costs and equivalent to having no minimum likelihood, the
benefits of misclassifying targets compared to leaving relative error rate is one hundred per cent.
them as unknown or unclassified. These costs and
benefits should also be used to weight the class Figure 2. Relative error rate vs minimum
likelihood before the maximum likelihood criterion is likelihood'
used. Equation 3 demonstrates how to calculate this
weighted likelihood. 120

100
Weighted likelihood, = (Bayes) L, x 74i x B, / T'i (3) 0

80

In equation 3, i denotes the ith class, L the maximum 60

likelihood generated by the class or the Bayes likelihood 4
if prior probabilities have been included, T1 the cost of
making a type 1 error, T2 the cost of making a type 2 20

error and B the benefit from a correct classification for 0
this class. A type I error occurs when a target of this 0 0.2 0.4 0.6 0.8 1 1.2

class is classified as something else. A type 2 error Minimum likelihood

occurs when a target from another class is classified as
belonging to this class. It can be seen that when the mid-processing scheme of a

The correct-classification to misclassification ratio will minimum likelihood is used the relative error rate
approximately halves. This means that the number of

alsoris asthe onfdene treshld ise asmisclassifications also halves. Hence the use of a
misclassifications tend to have low maximum minulikeiood asticallysimprove the

minimum likelihood drastically improves the
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performance of a ship range-profile, maximum- profiles classified increased then these kinks should
likelihood classifier. disappear.

It can also be seen that the setting of the value of the Note that if the confidence threshold is greater than or
minimum likelihood also affects performance. If set too equal to 8 no misclassifications occur, thus at this point
low it will have little or no effect. If set too high the all classifications made are correct, however, most
performance gain will be reduced. If set extremely high profiles are left unclassified.
performance will actually fall until classification is
essentially random. Note that the values of the y- The values of the y-ordinate as a function of the x-
ordinate as a function of the x-ordinate are specific to ordinate are particular to this data set. For other data sets
this data set. For other data sets the behaviour of the the same behaviour of the two curves is expected but it
curve will be similar but the minimum error rate may will occur at a different position along the x-ordinate.
occur at a radically different minimum likelihood. It can be seen that the use of a confidence threshold is a

powerful tool in that a classifier can increase its
The use of the confidence threshold described in section performance in terms of misclassifications, in exchange
4 was investigated on the maximum likelihood for allowing a number of range-profiles to go
classifier. The classifier was trained and tested as unclassified. If the results of the classifier were passed
described above for the minimum likelihood onto a further intelligence, whether human or artificial
investigation, but the minimum likelihood was fixed at the confidence should be passed on too. Then the human
the value 0.3. The maximum likelihood generated by or machine can decide how to use the classifier's
any of the training classes for a single test profile was decision based upon the classifier's confidence in that
compared to the confidence threshold. If the maximum decision and the costs and benefits of making the right
likelihood exceeded the confidence threshold then the or wrong decision based upon the classification. The
test range-profile was classified as the class that confidence can be used to fuse the classifier's decision
generated the maximum likelihood, as before. However, directly with that of other maximum likelihood
if the maximum likelihood was lower than the classifiers which have different sensory inputs, by
confidence threshold the test profile was left multiplying the confidences of each together.
unclassified. Unclassified profiles were considered
neither correctly-classified nor misclassified.

6. CONCLUSIONS
Figure 3. Relative Error Rate vs Confidence

120- Threshold It has been suggested that the maximum likelihood
.100 criterion should be used to classify ship targets using

2 a 80- radar range-profiles. There are a number of pre-
80 processing schemes that must be employed to enable a

classifier to work on real range-profiles; these pre-
processing schemes include range-profile alignment and

20 finding the best fit distribution to range-cell fluctuations.

0 AReal targets are not identical to others in their class and
0 2 4 8 10 12 this causes misclassifications to occur. A mid-

Confidence 'Threshold processing scheme using a minimum likelihood can be
used to reduce the number of m;sclassifications. Use of

Figure 3 shows the error rate relative to the percentage a minimum likelihood has been investigated and found
of misclassifications if no confidence threshold is used. to be highly effective.
Hence when the confidence threshold is zero, which is
equivalent to not using a confidence threshold, the Radar operators performing manual classification do not
relative error rate is one hundred per cent. Figure 3 also classify every range-profile. If a classifier is allowed to
shows the number of unclassified test profiles as a only classify those that it considers to be good matches
percentage of all the test profiles. to its database then its number of misclassifications

falls.
It can be seen that as the confidence threshold rises so
does the number of unclassified profiles and since these 7. ACKNOWLEDGEMENTS
low confidence profiles contain a higher percentage of
misclassifications, the relative error rate falls. There are The authors would like to acknowledge the assistance of
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