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ABSTRACT 

Wind velocity can be obtained using a light detection and ranging (lidar) system 

by measuring the Doppler shift of the scattered return from aerosols and particulates in 

the atmosphere. Doppler lidar systems for wind velocity measurements can be classified 

into two categories, coherent detection and direct (or incoherent) detection. Under each 

category there are novel approaches to measuring the return signal frequency. Regardless 

of the measurement mode, the goal for both types is to measure the frequency difference 

between the transmitted laser pulse and the scattered signal. This frequency shift is 

proportional to the velocity of the scatterers. How accurately these systems can measure 

the frequency shift, and thus the velocity, is dependent upon the system characteristics. 

Existing Doppler lidar systems employ monostatic configurations which require scanning 

a volume to obtain wind velocity and direction. Range resolution in these systems is 

normally obtained by using a pulsed laser system. This places a fundamental limit on the 

range-velocity resolution product. 

The purpose of this research is to investigate the feasibility of utilizing a 

multistatic configuration for measuring 3-dimensional vector winds. In the multistatic 

configuration, horizontal and vertical resolution are determined by the telescope field-of- 

view, laser divergence, and baseline separation distance between the laser and the 

telescope. This enables the use of a continuous-wave (CW) or long pulse laser 

transmitter (narrow spectral width) and eliminates the dependence between range and 

velocity resolution. 



IV 

The results of this research show that a multistatic pulsed Doppler lidar system 

will provide estimates of wind velocity with errors less than 1 m/sec and spatial 

resolution between 10 and 100 cm3 within the atmospheric boundary layer. Detailed 

signal-to-noise ratio calculations indicate that small transmit and local oscillator beams 

actually improve system performance. Therefore, a compact transmitter and receiver 

design can be used. The spatial resolution achievable with this multistatic system is 

better than previous lidar systems, yielding fine scale measurements of velocity fields. 
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Chapter 1 

INTRODUCTION 

1.1 DopplerLidar 

One of the first applications of laser-Doppler velocimetry (LDV) was incorporated 

by a group from Marshall Space Flight Center (NASA) in the late 1960's. NASA used 

the technique for wind tunnel and jet-type flow studies [1]. Wind velocity can be 

estimated by measuring the Doppler frequency shift, relative to the carrier frequency, 

undergone by laser radiation scattered by particles suspended in the flow. This frequency 

shift can be measured using either a coherent (heterodyne) or an incoherent (direct) 

detection scheme. For a 1-dimensional coaxial system, the return signal is Doppler 

shifted by an amount proportional to the velocity of the aerosols along the line of sight of 

the transmitter. For sensing 3-dimensional vector winds, measurements from at least 

three different directions are required. Typically for the monostatic case, a technique 

called velocity azimuth display lidar or VAD is used to obtain the vector wind [2, 3]. 

This technique has to sacrifice spatial and temporal resolution in order to measure the 

horizontal velocity. In effect, the horizontal velocity is averaged over a cross sectional 

area on the order of 0.1 km2 for a 1 km altitude and a 20 degree cone angle. To obtain 



range resolution, most monostatic lidar systems use a pulsed laser. This imposes a 

fundamental limit for the range-velocity resolution product [3,4]. 

1.2 Objectives 

The spatial resolution, range resolution, and velocity resolution limitations can be 

addressed by implementing a bistatic configuration with a relatively long pulse or 

continuous-wave (CW) laser transmitter. In this configuration, the spectral width of the 

laser is narrow compared to a short pulse system, which results in improved velocity 

resolution without sacrificing range resolution. In a bistatic configuration the measured 

Doppler shift is proportional to the component of velocity along the bisector of the 

bistatic angle. The 3-dimensional velocity vector can be determined using a multistatic 

(multiple receivers) configuration. Knowledge of the 3-dimensional winds within a small 

volume can be useful in a number of research areas, such as aviation, weather prediction, 

meteorological modeling, and severe weather detection. 

The main thrust of this research is to provide a theoretical basis for the design and 

implementation of a multistatic Doppler lidar system for measurement of 3-dimesional 

vector winds within the atmospheric boundary layer. Wind profiling within the boundary 

layer can be used to obtain estimates of the vertical diffusivity as a function of height and 

time [5]. With a multistatic system, high spatial resolution can be obtained with 

relatively long pulses or CW lasers because the scattering volume is defined by the 

overlap of the transmitter and receiver fields of view. This fine scale resolution can be 
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used to locate shear layers and localized wind turbulence that may have been spatially 

averaged in previous systems. 

In this thesis, the general expressions for the predicted performance of a 

multistatic coherent Doppler lidar system are derived. A measurement model is presented 

that relates the Doppler shift of a scattered signal at each detector to the 3-dimensional 

velocity vector of the aerosols within the scattering volume. From this model, the 

velocity vector can be obtained by inverting the system of linear equations. The errors 

induced by this inversion are related to the specific geometry through a matrix that maps 

the 3-dimesional velocity to //-dimensional measured Doppler shifts, where N is the 

number of detectors. 

This thesis also presents predicted results for estimating the Doppler shift from 

the scattered signal. The lower bound on the estimation errors is presented for the 

statistical model of the return signal. This lower bound is related to the transmitted pulse 

temporal profile and the ratio of the expected value of the return signal power to the 

average noise power, or signal-to-noise ratio (SNR). Derivation of the general 

expressions for SNR, including refractive turbulence effects, is also accomplished. 

The general expressions are applied to three specific geometries and typical lidar 

system parameters. The three geometries examined are shown in Figure 1-1, Figure 1-2, 

and Figure 1-3. Case 1 is a multistatic system with a transmitter and three receivers. In 

this configuration, the receivers are located on a circle with radius equal to the baseline 

separation. The receivers and the transmitter can be scanned to probed a specific volume 

in space; however, the analysis for Case 1 assumes that the transmitter is always pointed 



Scattering Volume 

Figure 1-1: Case 1 configuration. A single transmitter (Tx) located in the center with 
three receivers (Rx). B is the baseline separation. 



Scattering Volume 

Figure 1-2: Case 2 configuration. Single transmitter (Tx) and single receiver (Rx) 
scanned along bisector of the baseline (B). 

Scattering Volume 

Figure 1-3: Case 3 configuration. Single transmitter (Tx) pointed at 45 degrees and a 
single receiver (Rx) scanned along the Tx beam. 



vertically. As can be seen from the figure, the scattering plane will be different for each 

transmitter/receiver pair. This implies that the polarization with respect to the scattering 

plane will be different for each pair. One way to remedy this problem is to transmit 

circular polarization so there is always a component of polarization parallel and 

perpendicular to the scattering plane. For this case it is assumed that the transmit beam is 

circularly polarized and the SNR is evaluated for each polarization state. 

Case 2 is a bistatic system that could be used to sense the vertical velocity along 

the bisector of the baseline separation. For this case, the scattering plane is fixed and 

either polarization can be used. For completeness, the SNR is evaluated for both 

polarization states. The geometry of Case 3 is included as a means of evaluating 

performance when the propagation directions are near horizontal, where effects of 

refractive turbulence are increased. 

Implementation of a multistatic system (lidar or radar) presents many additional 

challenges over the conventional monostatic systems. These complexities arise, for the 

most part, from the geometry [6]. Challenges include, but are not limited to, frequency 

and timing synchronization, alignment, and expense [7, 8]. Other issues of concern are 

calibration, and refractive turbulence effects, especially for coherent detection. 

The results of this research show that a multistatic pulsed Doppler lidar system 

will provide accurate estimates of particle velocity within the atmospheric boundary layer 

with high spatial resolution. Detailed signal-to-noise ratio calculations indicate that small 

transmit and local oscillator beams actually improve system performance. Therefore, a 

compact transmitter and receiver design can be used. The spatial resolution achievable 



with this multistatic system is better than previous lidar systems (on the order of 10-100 

cm3), yielding fine scale measurements of velocity fields. 

1.3 Thesis Organization 

In Chapter 2, a brief description of past work in the area of Doppler lidar is given. 

The first section gives an overview of past bistatic radar and lidar systems. The next 

section reviews coherent lidar systems, including continuous wave and pulsed systems. 

The last section in Chapter 2 discusses incoherent Doppler lidar systems. 

Chapter 3 gives the basic theory for the performance of a bistatic coherent lidar 

system. The first issue that is addressed in this chapter is the geometry. A measurement 

model is developed to describe the relationship between the Doppler shift measured at 

each detector and the actual wind velocity. Unless the velocity measurements are made 

along three orthogonal directions, there will be error amplification introduced in the 

inversion [9]. Once the measurement model for the relationship between the wind 

velocity and the measured Doppler shifts is determined, the estimation errors due to the 

randomness of the return signal are addressed. Regardless of how the return signal is 

detected, the Doppler shift needs to be estimated from the measured signal. The 

performance of the estimate is evaluated in terms of the Cramer-Rao lower bound. This 

is a bound on the minimum variance of the estimation error for an unbiased estimator. 

This error bound, together with the errors introduced by the geometry, will define the 
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lower performance bound of the velocity estimates. With the estimation errors taken into 

account, the next step is to calculate the signal-to-noise ratio. 

After the theoretical expressions are developed in Chapter 3, they are applied to 

specific problems in Chapter 4. Three specific geometries are considered. The SNR is 

calculated for each geometry under different system conditions. The SNR expression for 

the monostatic limit is compared to expressions derived in previous work for verification. 

The effects of refractive turbulence are also addressed in this chapter. Then the detection 

and estimation performance is characterized for each case. The thesis is summarized in 

Chapter 5 with some comments and conclusions as well as recommendations for future 

research. 



Chapter 2 

BACKGROUND 

In this chapter, a brief outline of past work in the area of Doppler lidar is 

presented. The first section highlights past bistatic radar and lidar systems. The next 

section reviews coherent lidar systems, including continuous wave and pulsed systems. 

The second section also gives an outline of the detection and estimation problem inherent 

in Doppler radar and lidar systems. The last section includes a brief discussion 

incoherent Doppler lidar system for completeness. Compared to incoherent detection, 

coherent detection lidar has the advantage of greater sensitivity at middle and infrared 

wavelengths [10]. The incoherent detection case for the multistatic system proposed is 

not addressed in this thesis. 

2.1 Bistatic Radar/Lidar 

Early radar systems in the United States and the United Kingdom were bistatic 

configurations, the earliest of which appears to be in 1937 by British Post Office 

engineers [7]. The use of Bistatic radar systems discontinued with the invention of the 

duplexer at the U.S. Naval Research Laboratory in 1936, providing a means for a shared 

transmit and receive antenna (monostatic) [11]. Since then, the majority of lidar systems 

have implemented monostatic configurations [12]. 
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A multistatic configuration using a laser and the Doppler effect for measuring 

flow velocity was reported by Huffaker in 1970 [13]. This system utilized forward scatter 

of the laser radiation to three detectors spaced evenly in a cone-like configuration. Other 

bistatic lidar systems to obtain physical characteristics of aerosols are reported by Reagan 

and Herman [14], Menzies etal. [15], Parameswaran etal. [16], Devara and Raj [17,18], 

and Stevens [12]. These systems were used for measuring aerosol scattering and 

concentration profiles. Bistatic imaging lidar systems are reported by Welsh and Gardner 

for profiling sodium densities at about 90 km [19] and Meki et al. for lower altitude 

aerosol properties [20]. A tristatic system using incoherent detection was investigated by 

Abreu et al. [5] but does not appear to have been implemented. This configuration 

utilized two transmitters and a single receiver to measure horizontal and vertical 

velocities. 

2.2 Coherent Lidar 

Coherent detection of Doppler lidar returns is the primary method of measuring 

the frequency offset incurred by the transmitted laser pulse due to the velocity of the 

scattering particles. Coherent Doppler lidar has several similarities to Doppler radar, 

particularly with regard to signal processing after down conversion. Most of the 

processing techniques used in Doppler lidar are adapted from those developed for 

Doppler radar. There is, however, one fundamental difference between Doppler lidar and 

Doppler radar signal processing. Radar systems measure the Doppler shift by observing 
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the phase of a signal over a sequence of pulses. Lidar systems measure Doppler shift 

from a single pulse [21]. For an excellent overview and history of coherent Doppler lidar 

systems, the reader is referred to a paper by Bilbro [22]. 

In heterodyne (or coherent) detection, the frequency shift of the return signal 

relative to the transmitted frequency is measured by mixing the return signal with a 

"single frequency" local oscillator (LO). The resulting signal will have a sinusoidal 

variation at the intermediate frequency, the frequency difference between the LO and the 

return signal. It is this frequency that is measured to get the velocity. Because a coherent 

receiver is sensitive to spatial phase distortions, a near diffraction limited receiver 

telescope is required. This fact will also limit the maximum size of the receiver telescope 

(due to atmospheric effects). 

There have been several techniques used to characterize the effects of refractive 

turbulence on wave propagation and coherent lidar performance. They include, but are 

not limited to: Rytov theory [23], the extended Huygens-Fresnel theory [24-28]; the 

phase-only approximation of the extended Huygens-Fresnel theory [29, 30]; and the 

phase cancellation limit of the extended Huygens-Fresnel theory, which considers the log- 

amplitude scintillation as the dominant mechanism [31]. These theories are only valid for 

weak path-integrated refractive turbulence and have not been shown to be valid for 

general refractive turbulence. 

Frehlich and Kavaya [32, 33] derive general expressions for the effects of 

refractive turbulence for a monostatic system using the path integral formulation (Fresnel 
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approximation) which is valid for any typical path integrated refractive turbulence. It is 

this path integral representation (applied to a multistatic system) that is used in this thesis. 

2.2.1 Continuous-wave 

The earliest Doppler lidar systems used to detect air motion from atmospheric 

backscatter were continuous-wave CW systems [1, 34]. In a monostatic CW lidar system 

range resolution is generally obtained by focusing. The range resolution achievable is 

roughly proportional to the inverse square of the beam diameter [21, 35]. Thus to 

improve spatial resolution at long ranges, a large telescope is required. In order to scan a 

focused CW system, the focal length of the optics must be varied, which increases the 

system complexity. A continuous-wave laser can be used in a bistatic configuration 

because the range resolution is obtained by the overlap between the transmitter 

divergence and the telescope field-of-view. This will inherently reduce the spectral 

content of the laser output and in turn, increase the velocity resolution. 

CW lidar systems using coherent detection and aerosol backscatter have been very 

important to remote sensing. Applications include measurements of radial or line-of- 

sight (LOS) wind velocity, true airspeed of aircraft, transverse wind velocity, and 

atmospheric backscatter coefficients [22]. Churnside and Yura [36] investigated a CW 

system which utilizes a detector array, coherent detection, and the spatiotemporal 

correlation function of the signal currents from the heterodyne detector pairs. They show 
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that the time derivative of this function at zero lag is directly proportional to the velocity 

component parallel to the spatial separation of the detector pair. 

2.2.2 Pulsed 

Pulsed coherent Doppler lidar systems were developed in the early 1970's [21]. 

As mentioned in the introduction, the majority of monostatic lidar systems use a pulsed 

laser to obtain range resolution. In a pulsed system the range resolution is obtained from 

the finite time duration of the pulse. The range resolution for a pulsed monostatic system 

is cxp/2, where c (msec-1) is the speed of light and xp (sec) is the pulse length or length 

of sampling interval. The pulse length can be shortened to increase the range resolution; 

however, the resulting increase in signal bandwidth will degrade the velocity resolution of 

the system [21]. This phenomena can be characterized by the following: the minimum 

range resolution is given by AR = cxp/2 (m), and the corresponding spectral resolution 

4/(Hz) is approximately 1 jxp . The velocity resolution for a monostatic system is 

related to the frequency resolution by Av = XAf/2 = X/2xp (m-sec-1). Therefore, the 

approximate range-velocity resolution product (m2-sec_1) is given as [3,4] 

AvAR = —. (2-D 
4 

This equation shows that there is a trade-off between velocity resolution and range 

resolution. Thus, in a pulsed Doppler system, care must be taken when selecting the 

pulse duration. It must be long enough to avoid spectral broadening of the signal and loss 
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of velocity resolution. However, it must be short enough to obtain the desired range 

resolution. It should be noted that this formulation of the range velocity resolution 

product is based on the assumption that the frequency resolution is the same as the 

frequency spread of the return signal. 

Because the particles within the scattering volume move with respect to each 

other, the bandwidth of the optical return signal is broadened. The shape of the 

backscattered signal power spectrum is proportional to the distribution of small scale 

radial wind speeds within the scattering volume. The coherence time of the return signal 

due to wind turbulence is approximated by 

t «— (2-2) 

where X (m) is the wavelength and ov (msec-1) is the standard deviation of the 

distribution of velocities within the scattering volume [21]. The overall power spectrum 

of the return signal is the convolution of the power spectrum resulting from the small 

scale velocities with the power spectrum of the laser transmit pulse. There may be other 

contributors to the spectral broadening of the return pulse which are also convoluted with 

the power spectra due to the effects mentioned above. If all broadening mechanisms are 

assumed to result in Gaussian power spectra (for simplicity), the resulting power 

spectrum is Gaussian with a variance equal to the sum of variances from each 

contributing factor. 
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2.2.3 Spectral Estimation 

An estimate of the mean frequency of the return signal can be obtained with one 

of several methods. Most signal processing methods used in Doppler lidar systems are 

based on algorithms designed for Doppler radar systems. Estimation algorithms can be 

classified into two categories, parametric and nonparametric. Nonparametric methods 

obtain estimates directly from the data, via the complex correlogram or the periodogram. 

Parametric methods fit a specified model to the data and estimate parameters from the 

model coefficients [37, 38]. Typical models are the autoregressive (AR), the moving 

average (MA), or the autoregressive moving average (ARMA). Incoherent addition (or 

accumulation) of the periodogram, correlogram, or model coefficients can improve 

parameter estimates [39,40]. This does not give the same results as averaging 

independent estimates from separate returns [39]. A summary of different estimation 

schemes is shown in Figure 2-1. 

An important parameter used to gauge the performance of an estimator is the 

Cramer-Rao lower bound (CRLB) [41,42]. The CRLB is the minimum variance of the 

estimation error for an ideal unbiased estimator. Maximum likelihood (ML) estimators 

are a class of estimators that achieve the minimum variance for a large number of 

samples. The ML estimates become quite complex if there is no apriori information 

about the statistics of the return signal and therefore may be impractical. 
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Figure 2-1: Flow chart showing methods for obtaining the discrete spectral peak 
estimates, divided into periodogram-based and correlogram-based techniques. 
Algorithms, together in some cases with their authors, are in italics. Shadowed boxes 
indicate where incoherent accumulation can take place. Notation: FT, Fourier transform; 
AR, autoregressive; PG, periodogram; ML, maximum likelihood; SM, signal matching; 
MV, minimum variance. Adapted from Rye and Hardesty [40]. 

Zrnic [43] gives the coherent Doppler mean frequency estimation approximate 

CRLB for high SNR as 

cl> 
1 \2(wTs)

4 
(2.3) 

'    Ts
2M[\-\2(wTs)

2]' 

and low SNR as 
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1 4^(wTs)
3 N2 (2.4) 

' " r/      M      s2' 

where 5 (W) is the signal power, N (W) is the average noise power per sample, a/ 

(m2sec-2) is the variance of the mean frequency estimate, w (Hz) is the spectral width of 

the return signal, M is the total number of samples in the range gate, and Ts (sec) is the 

sampling interval. Eqs. (2.3) and (2.4) are the asymptotic bounds for a/. 

It has been shown that the high SNR limit of the CRLB given by Eq. (2.3) is a 

poor estimate for the true CRLB [39, 44]. The exact CRLB derived by Frehlich [44] is 

given as 

(2.5) 
o>> 

M-\ M-\ 

-^2Tsii(l-k)2QkI{g_-X 
1=0   1=0 

where Qu are the elements of the covariance matrix Q, the covariance of s* + nk, and the 

signal model used is given by 

z* = *t ^p[j2nfkTs ]+nk, (2.6) 

where s* and n* are complex Gaussian random processes, and/(Hz) is the mean 

frequency. An example simulation of Doppler lidar signal and periodogram is shown in 

Figure 2-2. 

The top plot in this figure shows the pulse location as a function of time. The 

middle plot of Figure 2-2 shows the coherent lidar signal. The temporal scale of the 

signal envelope corresponds to the time it takes the pulse to travel a distance Ar, after 

which time, a new collection of independent atmospheric scatterers are illuminated by the 

pulse. The bottom plot in the figure show the periodogram of the lidar signal. Frequency 
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Figure 2-2: Simulation of Doppler lidar data for a 2-um lidar [45] with a Gaussian pulse, 
SNR = 10,/= 5 MHz, w = 0.2 MHz, Ts = 20 ns. The pulse is shown at 2 us and 6 us. Ar 
is the FWHM of the sensing volume and Ap is the distance the pulse moves in 4 (as. The 
correlation time of the lidar signal is about 2 us. Figure taken from Frehlich [44]. 
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domain estimation of the mean frequency involves extracting the location of the spectral 

feature of the random periodogram coefficients in the presence of noise. 

Typical numbers quoted in the literature for velocity accuracy (as compared to 

anemometers and balloon sondes) for coherent lidar systems are on the order of 1 msec-1. 

Mayor et al. [46] report good agreement between lidar measurements and anemometer 

measurements. Under high SNR conditions they quote an accuracy of approximately 

0.5 msec-1 and a correlation between anemometer data and lidar data of about 0.9. 

Kopp et al. [47] compare wind velocity measurements made using the velocity azimuth 

display (VAD) technique to anemometer and balloon sonde measurements. They report 

an accuracy on the order of 1.3 m-sec-1 with a correlation of approximately 0.8. They 

attribute the lower accuracy to the horizontal inhomogeneity in the wind field. Recall that 

the VAD technique averages the wind field over a large spatial volume. Single shot ML 

estimation performance within 30% of the ideal performance (based on simulation) is 

reported by Frehlich et al. [48]. They report standard deviations of 0.4-1.2 m-sec-1 for 

the velocity estimates. They also report systematic errors due to frequency drift of lasers, 

non-linear amplifiers, digitization errors, etc., of approximately 4 cm-sec-1. 

While the research in this thesis does not address the actual implementation of a 

specific mean frequency estimation algorithm, there has been a significant amount of 

research conducted in this area. Listed below are some of the references that are useful 

for the analysis of specific estimation algorithms. They are listed for convenience but 

have not been applied specifically to this research. Efficient estimators, such as those 

listed in Figure 2-1, include pulse pair (or single-lag autocovariance) [49-52], peak 
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frequency [53], spectral domain [39,40,49, 53-57], and maximum entropy [39,40, 58]. 

Implementation of ML estimators has also been investigated [39,40, 54, 55, 58-61]. 

2.3 Incoherent Doppler Lidar 

Incoherent Doppler lidar systems use some type of filtering scheme to measure the 

frequency shift relative to the transmitted laser. This filtering system is made up almost 

exclusively of multiple etalon Fabry-Perot interferometers. One variation on the 

traditional Fabry-Perot interferometer is called the edge technique [62]. A high resolution 

spectral filter with a steep slope is utilized. The frequency of the laser and the filter are 

chosen such that the frequency output of the laser is located on the steep slope of the 

filter. Because of the steep slope, the filter produces large changes in transmission for a 

small change in frequency. Both the laser output and the Doppler shifted return signal are 

passed through the filter and the frequency difference between the two signals is 

measured. By taking the difference, the frequency shift will be insensitive to both laser 

and filter frequency jitter and drift. The error in the line of sight velocity at a given point 

on the edge of the filter is given as 

8=*± (2.7) 
S 0' 

where S (W) is the average signal power, N (W) is the average noise power, and 

0 (m_1-sec) is the measurement sensitivity, given as 



21 

0 = 1^ (2.8) 

where v (m-sec-1) is the velocity, AIN (A) is the differential normalized signal, and IN (A) 

is the normalized signal. Because this technique is insensitive to the laser spectral width 

(if the slope of the filter cutoff is linear) the pulse width can be decreased to improve the 

range resolution. Simulated results show vertical resolution on the order of 10 meters, 

with velocity resolution on the order of 0.5 m/s up to a 5 kilometer range. 

Most other incoherent Doppler lidar systems use Fabry-Perot interferometers in a 

more conventional manner [63-65]. The Fabry-Perot interferometer, in its simplest form, 

consists of two plane, parallel, highly reflected surfaces separated by some distance. By 

taking advantage of the dependence of transmission characteristics on spacing, index of 

refraction, and angle of incidence, a very narrow bandpass filter can be designed [66]. 

The Doppler shift is determined by comparing the transmitted frequency to the Doppler 

shifted return frequency. A system reported by The Space Sciences Laboratory at the 

University of Michigan incorporates a high resolution etalon and a multi-ring anode 

detector to spatially scan the interference pattern generated [67-71]. 



Chapter 3 

THEORY 

In this chapter, the general expressions used in the analysis of a multistatic 

Doppler lidar system are derived. In the first section, the specific geometry and 

coordinate systems used throughout the thesis are defined. This section is important 

because the added complexity in a multistatic system is due primarily to the geometry. 

With coordinate systems established, a measurement model is derived for the relationship 

between the measured Doppler shift and the wind velocity vector. As shown in this 

section, the geometry can amplify the errors in estimating the Doppler shift. In Section 

3.3, the errors associated with estimating the Doppler shift from the measured signal are 

addressed. With this estimation error and the error multiplication from the geometry, the 

overall accuracy of the velocity estimation can be determined. It is shown that the 

estimation error is related to the signal-to-noise ratio, which is addressed in Section 3.4. 

General expressions for the SNR in the detector, receiver and target plane are given for a 

point scatterer as well as a distributed aerosol target. In the next section, the SNR is 

given for an infinite uniform detector. In Section 3.6, the effects of refractive turbulence 

are examined. 
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3.1 Geometry 

In this section the geometry used throughout the thesis is defined. The coordinate 

system used to locate the receiver, transmitter, and target is a fixed system centered at the 

transmitter. The z-axis of this coordinate system is in the vertical direction. The fixed 

coordinate system is also used to define pointing directions of the transmit and receive 

optics. The north referenced coordinate system [6, 7] is centered at the transmitter with 

its x-z plane in the scattering, or bistatic, plane. There will be a separate north referenced 

coordinate system associated with each transmitter/receiver pair. Transmitter and 

receiver referenced coordinate systems are also used. The orientation of the transmitter 

referenced coordinate system is determined by rotating the north referenced coordinate 

system so the z-axis is pointed at the target. The orientation of the receiver referenced 

coordinate system is determined by translating the north referenced coordinate system to 

the receiver and rotating the axes until the z-axis is pointed at the target. The target 

referenced coordinate system is the transmitter referenced coordinate system translated to 

the target and is used for performing target plane integrals. The coordinate systems used 

are summarized below. 

(x, y, z) => Fixed coordinate system centered at transmitter 

(x„, y„, zn) =* North referenced coordinate system 

(xt,yt,Zt) => Transmitter referenced coordinate system 

(*', y', z') => Fixed coordinate system centered at receiver 

(xr, yr, zr) => Receiver referenced coordinate system 

(xp, yp, zp) => Target referenced coordinate system. 
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Figure 3-1 shows the bistatic lidar geometry for an arbitrary receiver. The 

transmitter is located at the origin of the fixed coordinate system. Likewise, the receiver 

and target are located at the origins of their respective coordinate systems. The receiver 

and transmitter are separated by the baseline, B = Jb2
x +b* + b\ (m), where bx, by, and bz, 

are the coordinates of the receiver with respect to the fixed coordinate system. The center 

of the target is located at a point (px, py, pz) with respect to the fixed coordinate system. 

Using Figure 3-1, the relationships between north referenced coordinates and the other 

coordinate systems can be derived [see ref. 72, pg. 160]. 
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y - 0 = y, 
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(3.1) 

where 0„, and 0„r are, respectively, the transmitter and receiver look angles with respect to 

the north referenced coordinate system, which are positive when measured clockwise 

from zn, and 

sin0nr = 
R2

T-(B2 + R2
R) 

2BR„ 
sin0„, = 

(B2+%)-Rl 
2BRT 

(3.2) 
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Figure 3-1: Geometry for single detector case of a bistatic lidar system. 
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The angles <|>r>, and Qr>, are the standard spherical coordinate azimuth and elevation angles 

(t for the transmitter and r for the receiver). RT (m) is the Euclidean distance to the target 

measured from the transmitter and RR (m) is the Euclidean distance from the receiver to 

the target, 

R2R=yl(Px-K)2+(Py-by)
2+(pz-bzy 

(3-3) 

Using Eq. (3.1), the relationship between the receiver and target coordinate 

systems is found to be 

Xr cos0s 0   sine/ XP 
"o" 

yr = 0 1       0 yP 
+ 0 

Xr_ -sin0s 0   cos85 ZP_ kJ 
(3.4) 

where Qs = 0„, - 0„r is the bistatic angle. The relationships between the known 

observation point and the pointing directions of the laser and the i'h receiver are 

cos0'5 = sin©;. sin0, cos^, -#) + cos0'r cos0, 

Py tan(|), = — 
Px 

Pz cos0, = 

'~(ri+*+*r 
tan^=^ 

cos©' = P.-K 

{p>-K)2 + {py-K)2 + {Pz-K)2 
-11/2 

(3.5) 

and for the special cases: 
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px = 0 =><(>,= 0 and 0, -> undefined, 

px=b'x=> tyr = 0 and B'r ^ undefined. (3.6) 

3.2 Multistatic Doppler Lidar Measurement Model 

In this section, the defined geometry is used to derive the relationship between the 

measured Doppler shift at each detector and the 3-dimensional vector wind for a general 

multistatic system. The results of this section are used to determine the effects of receiver 

and target location on the noise multiplication induced by the mathematical inversion. 

An electromagnetic wave with radian frequency, co (rad-sec-1), and wavelength 

A, (m) propagating in a direction defined by the vector kL (rad-m-1) (|kt| = k = (ü/c 

= In/k) scattered by a moving particle with non-relativistic velocity \p (m-sec-1) into a 

direction ksc (rad-m-1) (|k J = k = In/l) will undergo a shift in frequency coD (rad-sec-1) 

given by 

ö>D=(kiC-kJ-V (3-7) 

Therefore, a measure of the particle velocity can be determined by measuring the Doppler 

shifted frequency of the scattered radiation. The vector ksc - kL is the Doppler sensitive 

direction determined by the bistatic geometry. This Doppler sensitive direction is along 

the bisector of the bistatic angle, 05. For example, in a monostatic system, ksc = -kL, and 

the Doppler shift is equal to -2k vr, where vr is the component of \p in the radial direction. 
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The signals scattered from these particles bear information on their movements 

due to the wind. In order to obtain all three components of the vector velocity vp, three 

measurements are required. Optimally, one would measure the velocity with three 

orthogonal Doppler sensitive directions. However, this is not possible with a purely 

ground based system. In a multistatic configuration with N detectors, each detector will 

realize a different Doppler shifted frequency as described in Eq. (3.7). In this case, the 

direction of ksc will be defined for each detector as the unit vector from the observation 

point to the detector of interest. 

Using the bistatic geometry described by Figure 3-2, the observation coordinates 

(with respect to the fixed coordinate system) are given as (/>,, py, Pz), and the coordinates 

of the detector as (bx, by, bz). With these definitions, the propagation vector of the 

scattered radiation for each detector can be written as 

2% 
ksc=V^-[(bx-px)x + {by-Py)y + {bz-pz)z\ (3.8) XRR 

or 

k„„ = ^r-^[(bx - RT cos<t>, sine,)* + [by - RT sin<(>, sine,)? 
XR R 

+ (bz-RTcosBl)z] (3.9) 

where x, y, and z, are unit vectors in the fixed coordinate system, RT is the Euclidean 

distance from the origin (the laser) to the observation point, and RR is the Euclidean 

distance from the detector to the observation point. 
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Figure 3-2: Geometry for derivation of measurement model. 

Recall that the transmitter, a laser in this case, is located at the origin of the fixed 

coordinate system. Now the propagation vector, kL, can be written as 

2TI , Z.71  r      ~ ,        ~ ,       -I 

Ä.Ä 
(3.10) 

Using Eqs. (3.7), (3.8), and (3.10), the Doppler shift at the detector can be written as 

2K 
0)D = 

(RTbx-Px(RT + RR))^ + (RTby - Py{RT + RR)) 

R, RB J 
( RTbz-Pz(RT + RR) 

^ 

R, 
(3.11) 
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With multiple detectors (/ = 1 -» N) and in matrix form, the Doppler shift at each detector 

becomes 

CO 

L^ö 

RX-PI{RT+K)    RTK - P\{RT+K) 
In RTRR RTRR 

X 
RTb?-p?{RT+RZ)   RTb» 

RTRR 

-P;{*T+RZ) 
RTRR 

RTb\ - pl(RT + RR) " 

RTRR 

RTb?-p»{RT + R»R) 

RTRR 

VP (3.12) 

where \p = vx
px + vy

py + vz
pz is the particle velocity. The result of Eq. (3.12) matches that 

given by Huffaker [13] (with some minor modifications) for the case of three detectors 

evenly spaced around a circle of some radius. 

Eq. (3.12) can be written in a more compact form as, 

<0z>=fcAvp 

or 

f° = xAv> (3.13) 

where 

A = 

b\ K K Rj. + RR 

K R\ R\ R. rRR 

b» t; b'r Rj + R»R 

RN
R *z RNn [Ri RR 

.]. (3.14) 
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fp (Hz) and üOD are column vectors whose elements are the measured Doppler shift at 

each of the N detectors, k is the wavenumber, and A (an N x 3 matrix) is a mapping from 

a 3-dimensional space, 9?3, to an iV-dimensional space, 9?N, where N is the number of 

detectors. As a check, Eq. (3.13) is evaluated for the monostatic case (bl
x = b\ = b\ = 0) 

and an observation point on the z-axis (px = p = 0). For this case A is 

A = [0   0   0]- — [0   0   RT] 

= [o o -2] (3.15) 

and fp is 

fD=|[0   0   -2] 

=~xv> (3.16) 

In other words, for this configuration, the system can only measure the line-of-site (LOS) 

velocity. This is in agreement with standard monostatic results. 

Eq. (3.13) can be inverted to find the velocity vector, vp, as a function of the 

measured Doppler shift, ©D, 

v^fA^-Vco,. (3.17) 

If the estimates of the Doppler shift ©o at each detector are maximum likelihood 

estimates, then, in the limit of infinite samples, the estimation errors are unbiased and 
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jointly Gaussian [41]. These errors can be described by the covariance matrix AE 

(rad2-sec-2), and the error in estimating the velocity vector, \p, is given by 

AVp = 7T(ArA)_1 Ar AEA(ArA)_1. (3.18) 
AC 

The diagonals of the matrix Ae are the measurement error variance at each 

detector, a2
a. This error variance will depend on the estimation scheme incorporated. In 

the next section, the performance bounds on G* are addressed in terms of the Cramer- 

Rao lower bound. 

3.3 Detection and Estimation 

In this section, the performance of estimating the mean frequency of the return 

signal is evaluated in terms of the Cramer-Rao lower bound (CRLB). Because of the 

unique geometry in this problem, the example signal model shown in Figure 2-2 does not 

apply. The signal model for this problem simplifies somewhat due to the fact that the 

observation time will typically be much less than the correlation time of the return signal. 

Under this condition, the problem becomes one of estimating the frequency of a signal 

that has a Rayleigh amplitude and uniform phase. This problem has been treated by 

van Trees [73] and is summarized here for convenience. First, the signal model is given 

for the system at hand. Using this signal model, the estimation of the mean frequency is 

addressed. 



33 

3.3.1 Signal Model 

Assume a signal of the form 

st(t) = V2 Re^Pj-CO exp[/cocf]}        -«, <;<«,, (3.19) 

where i = V-T, coc (rad-sec-1) is the carrier frequency, and PT(t) (W) is the transmitted 

power, which for a pulsed system includes the pulse shape. Now assume that there are K 

scatterers within some illuminated volume. The return signal, for zero Doppler shift, is 

thus given by 

sr (0 = V2 Rej VPr(/)X 8, exp[fo>c (r-x) + 6i]L (3.20) 

The attenuation factor g, includes the effects of transmit and receiver aperture sizes, two 

way path loss, and scattering cross section of each particle. The random phase angle 8, is 

included to account for the random position of the particles within the volume, as well as 

any phase effects in the scattering process. The time delay, x (sec), is the mean round trip 

propagation time over the scattering volume, and in our case is considered to be a known 

parameter given by 

RT + RR x = — -. (3.21) 
c 

Assume that the 9, are statistically independent and K is large. Under the central 

limit theorem [74], the return signal can then be written as 

sr(t) = 4l Re{jPT(t-x)b exp[/coc(t - x)]}, (3.22) 
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where b is a complex Gaussian random variable. The envelope of b is a Rayleigh 

random variable whose moments are 

EM = vfa*    and   E{|Sf} = 2aft\ (3.23) 

where E{ •} denotes the expected value. The phase of b is uniform. The value of G& 

includes system and path losses as well as the scattering cross section of the target. In 

practice, the number of scatterers does not have to be very large for the Gaussian 

approximation to be valid [73]. 

Including the effects of target velocity, the return signal is given by 

sr(/) = V2 Rc{^b f{t - T)exp[i(©c + (0D)t]}, (3.24) 

where coD is the Doppler shift, fit) (sec4*) is the complex envelop of the transmitted 

signal, and the transmitted power is written as the product of the transmitted energy, 

Et (J), and the squared magnitude of the complex envelope 

PTit) = Et\fit)f. (3.25) 

The complex envelope is normalized such that 

J|/(Ofd/ = l. (3.26) 

In Eq. (3.24), the phase term G)CT can be absorbed into the random phase of b because 

the phase of b is uniform. 

Gaussian noise n(f) that has a bandpass spectrum can be represented as 
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n(t) = V2 Re{« (0 exp[/cocf ]}, (3.27) 

where n(t) is the complex envelope of the noise. With the addition of noise, the return 

signal is 

r(t) = JlEt Re{£ f(t - x) exp[i(coc + C0D )t]} + V2 Re{n (r) exp[/cocr]},     (3.28) 

or in complex notation 

r(t) = V2 Re{r (0 exp[ifflcf ]}, (3.29) 

where 

r (0 = bJFj{t - x) exp[fcoDf ] + n(t) 

= s(t) exp[/civ] + n (t). (3.30) 

Assume that the additive noise is white bandpass Gaussian noise, w(t), with 

spectral height N0/2, and drop the subscript D from the frequency shift for simplicity. 

Then the complex envelope of the received signal is 

r(t)=by[E^f(t-x)cxp[mt] + w(t),        -oo<f<oo. (3.31) 

The average received signal energy is 

Er=E\]\sr(t)\2dt\ 

= 2a2
bEt, (3.32) 

and the complex white noise has covariance function 

K~(t,u) = N0b(t-u),        - 00 <t,u< 00. (333) 

The parameter (o is an unknown parameter whose value will be estimated. 
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Maximum likelihood estimation of co is obtained by adjusting the estimated value 

of co until the likelihood function A is maximized [41]. For the model described in 

Eq. (3.31), the logarithm of the likelihood function is [73] 

lnA1(x,0)) = -^-—^=r|L(T,co)|2, (3.34) 

where L(T,co) is the sufficient statistic and is given by 

L(T,co)= ]r(t)f\t-x)exp[-i(Ot]dt. (3.35) 

Recall that T is assumed to be known and does not need to be estimated from the return 

signal. 

Because the coefficient in Eq. (3.34) is not a function of x or CO, it will have no 

effect on the minimization, and thus can be dropped for determining the maximum 

likelihood estimator. However, the coefficient is important when calculating the bounds 

on the performance of the estimator, for example, when calculating the CRLB. Thus, the 

estimator is reduced to the maximization of the function 

lnA(t,co) = |l(T,co)f (3.36) 

with respect to co. The value of co that maximizes this function will be denoted com/, and 

because only maximum likelihood estimators are being considered here, the subscript ml 

will be dropped in subsequent expressions. 

Substituting Eq. (3.31) into Eq. (3.35), the log-likelihood ratio becomes [73] 
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A(T,<ö) = Et$f jf(t-x)f\t-T + x')eim'' 'dt 

+ 2Re 4Etb ]f\t-x)f(t-x + x')e-i(ä'' 'dt n*(x,(ü) 

|n(T,0))|2, (3.37) 

where 

n(x,(ü)= \w{t)f\t-x)e-imdt, (3.38) 

x' - x - ^, co' - co - coa, co and x are variables in the likelihood function, and coa and xa 

are the actual Doppler shift and time delay, respectively. Make the substitution 

z = t-x+J, (3.39) 

and designate the first term in Eq. (3.37) as 9(x/, co'), then 

e(x'.CD')- //[z-yj/^ + ^dz 

= |<Kx>')f, (3.40) 

where <^(x', co') is the time-frequency autocorrelation function of /(/), defined by 

tKx',Q>')=//(r-y]7-[r + 0w'dr. (3.41) 

The function 0(x/, co') is referred to as the ambiguity function. 

In the next section, the lower bound on the variance of the estimation errors is 

given in terms of the signal model presented. For this signal model, the parameters to be 

estimated are x and co. Once the general expression for estimation of these two 
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parameters is given, the estimation of x will be ignored because this parameter can be 

assumed to be known for a given geometry. 

3.3.2 Cramer-Rao Lower Bound fCRLB) 

The variance of any unbiased estimate is bounded by the diagonal elements of the 

Fisher information matrix J and is called the Cramer-Rao lower bound [41,42]. The 

elements of the Fisher information matrix are given by 

J,j=-E 
92lnA(A) 

(3.42) 

where A are the parameters to be estimated and A is the likelihood function. Let the 

estimated parameters be x and 0), A = [x, oa], even though x will not be estimated from the 

return signal. Then the elements of J are 

Ju = -E 

J <yy   """*       *~* 

32lnA1(x,(o) 

92lnA,(x,co) 

•M2 ~ Jl\~      ^ 

a©2 

92lnA1(x,co) 
9x9co 

(3.43) 

Substituting the log-likelihood function from Eq. (3.37) into Eq. (3.43) the matrix 

elements become 
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2Er 

%/n — 

0 

2Er 

Ei r \l    7        ^ffÄF-^ 
'12 

^22 — 

iV« VF-4 l^O+^r 
"F   /" 2£r 

iVn V^o IrM (3-44) 

where 

—     1 co = 2jc Jto2|F(;co)|2dco, 

fflfglm |H/(M) V /dii, 

'2 = J"2|7(")fd"- (3-45) 
—Oo 

The mean-square bandwidth [co2 -to2) is an approximate measure of the frequency 

spread of the signal. The mean-square duration, [t2 -12), is an approximate measure of 

the time spread of the signal. The quantity (co t - co t) is a measure of the frequency 

modulation of the complex envelope. 

The mean frequency of the envelope, co, is defined as the first moment of the 

energy spectrum of the complex envelope 

co = —Jco|F(./co)|2dco, (3.46) 

where F(y'co) is the Fourier transform of f(t), 
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FUG»=]f(t)e-Jwdt. (3.47) 

The mean time of the envelope, t, is defined as the first moment of the squared 

magnitude of the complex envelope, 

■SJf|/(0|V (3.48) 

Since the time origin is arbitrary, it can always be chosen so that t = 0. Likewise, since 

the carrier frequency is arbitrary, it may also be chosen so that (ö = 0. 

The Fisher information matrix can then be given as 

1 = 
IE w r 
Nn KN0 + E, 

co    cor 

m   t2 

and the variance on the estimation errors are given by 

Var[t -1] = G\ > 
Wf    ~F      V IE. 

Nn KN0 + ErJ (o2t2-(m) 

and 

Var[co-co] = a?)> 
IE. 

Nn 

Er 

KN0 + E, 
CO 

coV-(co?) 

(3.49) 

(3.50) 

(3.51) 

As can be seen from Eq. (3.45), a sufficient condition for the bounds on the estimation 

errors to be uncoupled is that the complex envelope be real. In this case 

<t* 
IE, ( 

Nn 

Er 

{N0+Er 

1 

CO 
(3.52) 

and 
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<** 
2Er 

Nn 

Er 

KN0 + Er 
(3.53) 

for all unbiased estimates with oof = 0. It should be noted that Eqs. (3.52) and (3.53) are 

bounds even when (at ± 0, but they are not as tight as Eqs. (3.50) and (3.51). 

It is interesting to note that if the return amplitude is modeled as a known 

parameter or an unknown nonrandom parameter, the coefficient in Eq. (3.49) is changed, 

i.e., 

IE v(    p     \ 

Nn 

Er 

N0 + Er) 

2^ 
(3.54) 

Therefore, the term in parenthesis in Eq. (3.54) is due to the random nature of the return 

amplitude, or the speckle contribution. 

The term Er/N0 is the energy to noise ratio. Because the lidar community 

typically works with a power signal to noise ratio, a relationship between the two 

quantities is needed. The expected value of the received energy can be written as 

Er = jSNR(t)Ndt, (3.55) 

where N is the noise power, 

N = N0BW, (3.56) 

and Bw (Hz) is the system bandwidth. Assume that the SNR has a form given by 

SNR(0 = SNRmaxg(f), (3.57) 

where g(t) is defined by 
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]g(t)dt = Tg, 

max[*(0] = l. (3.58) 

Then the energy to noise ratio becomes 

f^ = SNRmax7;ßw. (3.59) 

The parameter Tg (sec) is a measure of the time duration of the observation interval. For 

a CW system, the function g(t) represents the time weighting function, or time gate. For a 

pulsed system, g(t) is the pulse shape convolved with the profile of the scattering volume 

along the propagation direction. 

A more useful parameter than the SNR to describe the signal power for frequency 

estimation with coherent lidar systems is the effective number of photoelectrons 

coherently detected per observation interval, also called the number of "coherent 

photoelectrons" by Kavaya [54]. This parameter has been used by Menzies [75] and by 

Frehlich [54]. The number of coherent photoelectrons in the differential time interval dt 

is 

d<D-=SNR(f )£„(!*. (3.60) 

The total number of coherent photoelectrons over the entire observation time is 

®=\sNR(t)Bwdt 

= SNRimJgBw=j^. (3.61) 
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Therefore, the energy-to-noise ratio in Eq. (3.54) is equivalent to the number of coherent 

photoelectrons for a heterodyne detection system. Now the CRLB for the variance of the 

estimation error for co can be expressed in terms of O as 

<D + 1 1 
<^>- 2<D2^- (3-62) 

Now that the dependence of the estimation error on <£ has been determined, the 

next step is to determine <D by calculating the SNR. The next section gives general 

expressions for the signal-to-noise ratio. The number of coherent photoelectrons is 

system specific and will be determined in Chapter 4. 

3.4 Sienal-to-Noise Ratio; General 

are In this section, the generalized coherent lidar signal-to-noise (SNR) expressions 

given. The derivations closely follow the derivations of Frehlich and Kavaya [32] with 

the generalization for a bistatic geometry with baselines much greater than the aperture 

sizes used. The geometry for a bistatic coherent lidar system is shown in Figure 3-3. The 

transmitter lens is located in the plane defined by * = 0 and the position vector u (m), and 

the receiver lens is located in the plane defined zr = 0 and by position vector v (m). The 

position vector p (m) defines the transverse plane fe = RT) at the target location. The 

detector is located at transverse coordinate w (m) and distance L (m) from the receiver 

plane (a positive L implies a negative zr). The receiver and transmitter lenses 

described by dimensionless response functions WR (v) and WT(u) respectively. 

are 
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Transmitter 
Lens WT(u) 

Receiver 
\ Lens WR(v) 

Figure 3-3: Geometry for a bistatic coherent lidar system (drawn in the bistatic plane). 
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3.4.1 Detector Plane 

The optical scalar field, *Fr(u, zt, i) (W^-rrf1) of the transmitted laser pulse in a 

homogeneous medium is 

¥r(u,z„0 = ET(u,zt,t)cxv(ikz, -at), (3.63) 

where /is time (sec), i = V-l , k = 2K/X (rad-m-1) is the wave number, X (m) is the 

wavelength, co = 2rcv (rad-sec-1) is the angular frequency, v (Hz) is the optical frequency, 

and JEV(U, zt, t) (W^-m-1) is the scalar field amplitude. In the absence of extinction, 

DO OO 

\f¥T(u,z,t)\2d2u=j\ET(u,z,t)\2d2u = PT(t-z/c) (3.64) 
—OO — OO 

where | • | denotes absolute value, PT(t) (W) is the transmitted laser power as a function 

of time, c (msec-1) is the speed of light, and d 2u denotes a two-dimensional integration 

over the plane defined by zt. It is also assumed that the pulse profile varies slowly 

compared to the period 1/v. The scattered field T5 (v, zr, t) (WH-m-1) is collected by the 

receiver and mixed with a local oscillator (LO) field on the surface of the detector at 

transverse coordinate w. It is assumed that the scattered field and the LO field have 

identical polarization. If this is not the case (i.e. the scattered field is depolarized by the 

target), there will be a decrease in the SNR proportional to the degree of depolarization. 

The field incident on the detector ¥/> (w, L, t) is given by 
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*PD(w, L, t) = Es (w, L, t) exp[/(H, - co t + §s)] 

+ £L0(w, L, 0 exp[i(*L - (üLOt)\ (3.65) 

where Es (w, L, f) is the scattered field amplitude in the detector plane, EL0 (w, L, t) is the 

LO field amplitude in the detector plane, (üL0 is the angular frequency of the LO, and §s 

(rad) is the random phase of the scattered field with respect to the LO field. The signal 

current for an ideal square law detector (photomultiplier or photodiode, for example) is 

given by 

/(') =-^JD Vw)|¥D(w,L,0|2d2w, <3-66) 

where r|ß(w) (electrons/photon) is the detector quantum efficiency as a function of 

location on the detector, GD is the amplifier gain, e = 1.602 x 10~19 (C/electron) is the 

electronic charge, h = 6.626 x 10~19 (J-sec) is Planck's constant, and f • denotes 
JD 

integration over the detector surface. 

Substitution of Eq. (3.65) into Eq. (3.66) yields 

IW = -i^L^QW\ELo(v,L,t)\2d2w + 

^JDVw)|E5(w,L,0|2d2w + 

—^- RejDT)Q(w)Es(w,L,t)El0 (w,L,Oexp(/Ao)f + fys)d2w,      (3.67) 

where Re() denotes the real part. The first term in Eq. (3.67) is the direct current, Idc(i), 

caused by the LO, the second term is the direct detection signal current, Is (i), from the 

scattered field, and the last term is the intermediate-frequency (i.f.) signal current, is(t), at 

frequency A© = (OLO - Cö «CO. 
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The direct current caused by the LO can be simplified by noting that the effective 

LO power (W) is given by 

^OD(0 = JDVw)|£to(w,L,0|2d2w. <3-68) 

Likewise, the direct detection signal current can be simplified by noting that the effective 

direct detection power measured by the detector is given by 

Pfl« = JDnß(w)|£5(w,L,0|2d2
W. (3-69) 

The i.f. signal current, is(t), is obtained by bandpass filtering the total signal to remove the 

dc and direct detection portions as well as unnecessary noise. The i.f. signal current is 

then converted to power with a squaring circuit and a low-pass filter with bandwidth 

Bw (Hz). The average i.f. signal power is then given by [32] 

fe2«) = 2(^j JJoTlß(Wl)Tiß(W2)M5(Wl,w2,I,0 
GDe 
hv , 

xM;o(w1,w2,L)d2w1d
2w2        (3.70) 

where (•) denotes the ensemble average, or time average for an ergodic process, 

Ms(vf1,w2,L,t) = (Es(wi,L,t)El(w2,L,t)) (3.71) 

is the mutual coherence function (W-m~2) of the scattered field in the detector plane. 

MLo (WI, w2, L) is the mutual coherence function of the LO field, where it is assumed that 

the LO field is stationary, thus independent of time. It is also assumed that the LO field 

and the scattered field are statistically independent, and the random phase, §s, is 

uniformly distributed over (0,2%). 
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If the noise is dominated by the LO shot noise [76], the average noise power (A2) 

caused by the Poisson statistics of shot noise is given by 

(i2N) = 2GDeBw(ldc), (3.72) 

where IdC is the average dc signal current, which is also independent of time since the LO 

field is stationary. The signal-to-noise ratio (SNR) is then given as 

SNR(0 = ^f 
VAT/ 

= 7 \ jnJnV
wi)Vw2)Ms(wi>w2,L,0M;o(Wl>w2,L) hMPJ 

xd2w,d2w2, (3.73) 

where \PL0D) is the average effective LO power measured by the detector [Eq. (3.68)]. 

It is also useful to describe the performance of a coherent lidar using the 

heterodyne efficiency, r|w, which is a measure of the loss in coherent power when the 

received field and LO field are not perfectly matched [77,78]. For random fields, the 

heterodyne efficiency is given by [32] 

fe2(0) 

JDjDTlö(w1)riö(w2)M5(w1,w2,L,OM20(w1,w2,L)d2w1d
2w 

X]H(t)~2(ldc)(ls(t)) 

2     (3-74) 

The heterodyne efficiency has a maximum value of 1.0 when the scattered field is 

proportional to the LO field, Es(w,L,t) <* Ew{vi,L). This can be shown by using the 

Schwartz inequality [see ref. 79]. Using the equations for SNR and heterodyne efficiency 

[Eqs. (3.73) and (3.74)] the SNR can be expressed as 
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SNR(0 = -^^T1W(0. (3.75) 

This form shows that the SNR is dependent on two physical quantities: the average direct 

detection power {PD(t)) and the heterodyne efficiency r\H(t). 

3.4.2 Receiver Plane 

It is often convenient to perform the above calculations in a plane other than the 

detector plane. These calculations can be constructed using a technique first described by 

Siegman [80]. This technique involves the back-propagation of the local oscillator field 

to the plane where the calculations are to be performed. The back-propagated local 

oscillator (BPLO) calculations were formalized by Rye [81, 82]. 

The scattered field incident on the detector is related to the scattered field incident 

on the receiver by 

oo 

Es(w,L,t)= JEs(v,0,t)WR(y)Gf(w,v,L)d\ (3.76) 
—oo 

where 

~ik k 
G/(w;v,L) = —— exp 

2lliL 2I(w-v)2 
(3.77) 

is the Fresnel approximation form of the free space Green's function (m~2). 

Frehlich and Kavaya [32] show that the SNR in the receiver plane (defined by the 

plane zr = 0) is given by 
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SNR(0=-—4—-rJjM,(v1,v2)0,0MßPLO(v1,v2,0)d2v1d
2v2        (3.78) 

where 

k2 

EBPW(ym = WR(v)-r J^;o(w,0) Y (V"W)I exp £(v'-w") d2w   (3.79) 

is the field of the BPLO on the target side of the receiver aperture, which can also be 

regarded as the field of the reciprocal receiver [83], v  = v-v, w  = ww, 

Y(K)= jr|ß(w)exp(-iKw)d2w (3.80) 

is the 2-d Fourier transform (m ) of the detector quantum efficiency spatial response 

function X\Q (W), and K (rad • m_1) is the 2-d spatial wave vector. ELO (V, 0) is the LO field 

at the receiver plane (zr = 0), Ms (vi, V2,0, i) is the mutual coherence function [see Eq. 

(3.71)] of the scattered field Es (v, 0, t) incident on the receiver aperture, and 

MBPLO(VI, V2, 0) is the mutual coherence function of EBpw(y, 0). Eq. (3.78) is identical 

to Eq. (3.73) except that the calculations are performed in the receiver plane instead of the 

detector plane. While performing the calculations in the detector plane can provide 

useful insight, calculations in the receiver plane remove the complexity of propagating 

the random scattered field through the receiver optics. 
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3.4.3 Target Plane 

In a very similar manner to that described in Section 3.4.2, the target plane 

expression for the SNR can be found. The transmitted field incident on a target with 

transverse target coordinates p and range zt = RT is given as (ignoring extinction, for now) 

ET(p,RT,t)= \ EL(u,0,t- RT/c)WT(u)G(p;u,RT)d
2u, (3.81) 

where G(p; u, RT) is the Green's function for wave propagation in a turbulent medium 

and EL(n, zt, i) is the field of the laser. In the absence of refractive turbulence, the 

Green's function is the free-space Green's function, G(p; u, RT) = Gf(p; u, RT) [see Eq. 

(3.77)]. 

The scattered field at the target can be expressed as [84] 

Es(p,RT,t)= $ET(q,RT,t)V(q,p)d2q (3.82) 

-2 „_-ttx :, where V(q, p) (m  -sr   ) is the scattering coefficient of the target. The scattered field at 

the receiver becomes 

oo     oo 

£s(v,0,0= J jET(q,RT,t-RT/c)V(q,p)G(p;y,RR)d2qd2p (3.83) 
—oo —oo 

where the reciprocity theorem for the Green's function [85], G(v; p, R) = G(p; v, R), has 

been applied. Then the target plane SNR is expressed as 
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__    KT(RT)KJRR) } 7 7 f SNR(0= »i(L) M*»-*-»-»' 
x(ET(qvRT,t-RT/c)E'T(q2,RT,t-RT/c) 

x EBPW(p1,RR)EBPL0(p2,RR))d\ d2q2 d
2p, d2p2 (3.34) 

where 

*(qi.q2.ih.P2)=(y(qi.Pi)y*(«i2.P2)) (3-85) 

is the target scattering function (m^-sr-1) and 

K(Ä) = exp|-ja(z)dz (3.86) 

is the dimensionless irradiance extinction, and a(z) (m_1) is the linear extinction 

coefficient along the propagation paths. In writing Eq. (3.84) it is assumed that in each 

propagation path (transmit and BPLO) the Fresnel approximation is valid. 

3.4.3.1 Point Scatterer 

The scattering coefficient for a point scatterer (simple glint) at location p is given 

by [84] 

^(Pi.Qi) = W<*7exp(ie)8(q, -p)8(p, -p) (3.87) 

and the target scattering function is 

£(qi.q2>Pi>P2) = *.2<*58(Pi -P)8(P2 -P)8(q, -p)5(q2 -p) (3.88) 
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where 0 is the phase of the scattered field, os (m
2-sr _1) is the scattering cross section of 

the point scatterer, and 6(p) (m~2) is the 2-d vector delta function. Inserting Eq. (3.88) 

into Eq. (3.84), the target plane SNR becomes 

OXTIV    N    A,2a,K(/?r)K(RR)/ , , 
SNR(P'°=      LB/P    \      WP.*r.'~ RT/C) JBPLOiV, RR)) (3.89) 

where 

77.(p,/?r,0 = |£r(p,i?r,0|2   and   JBPL0(p,RR) = \EBPL0(p,RRf (3.90) 

are the irradiance profiles (W-m-2) of the transmitted and back-propagated LO fields in 

the absence of extinction. 

3.4.3.2 Distributed Aerosol 

For a distributed aerosol target, the phase of the scattered field for each particle is 

random and the mutual coherence function [Eq. (3.71)] of the total scattered field is the 

sum of the mutual coherence functions from each particle. The target scattering function 

for a single aerosol particle is the same as the scattering function for a point scatterer. 

The SNR for a distributed aerosol target is obtained by integrating Eq. (3.89) over all of 

the scattering aerosols, 

SNR(,)=^fc)llK!a')ß(p'z"es) 

x(jT(p,zt,t-zt/c)JBPL0(p,zr))d
2pdzp (3.91) 
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where K2(zp) represents the atmospheric extinction along each path (which is normally 

considered to be constant over the scattering volume), zp is range along the z-axis of the 

target coordinate system (zp = 0 implies zt = RT), zt and zr are functions of zp, as defined in 

Eqs. (3.1) and (3.4), 

ß(P.z,.es) = Jos(es)JV(os;p,z,)das (3.92) 
0 

is the total volume scattering coefficient (m_1-sr_1) at wavelength X, N(Gs; p, zp) (m~5-sr) 

is the number density of aerosols per unit volume per unit cs at location (p, zp), and Qs is 

the bistatic angle [see Figure 3-3]. For laser beams with relatively small transverse extent 

and typical atmospheric conditions, ß(p, zp, 6s) and N(as; p, zp) may be assumed to be 

functions of range only. In Equation(3.91) it should be noted that RT and RR are both 

functions of zp, the range measured with respect to the target coordinate system [see Eq. 

(3.1)]. 

In the next section, the general results given above are applied to the specific case 

of an infinite uniform detector. The infinite uniform detector case will be valid when the 

detector is large compared to the LO field. 

3.5 Signal-to-Noise Ratio; Infinite Uniform Detector 

From this section on, the coherent lidar performance will be expressed in terms of 

the normalized fields defined by 
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EL(u,z,t) = J{PL(t))eL(u,z,t) 

and 

Ew{y,z) = ^)ew{y,z) (3-93) 

where PL0 (W) is the LO total power and eL(u, z, t) (m_1) and ew(v, z) (m_1) are the 

normalized fields for the transmitter and the LO field respectively. This normalization is 

used because the coherent lidar performance can now be referenced to the average laser 

power, \PL(t)), instead of the average transmitted power, (PT(t)). It should be noted 

that the time dependence indicated in eL(u, z, t) is the spatial variation of the laser field as 

a function of time. Such a variation could be manifested by the interference of spatial 

modes. It is generally assumed that the spatial characteristics of the laser field do not 

vary with time, or change slowly with respect to the observation time. 

For a uniform detector (TJQ constant over surface) that collects all energy from the 

LO and the scattered field, the Fourier transform of the detector response is [see Eq. 

(3.80)] 

Y(K) = r|e8(K). (3.94) 

Substitution of Eq. (3.94) into Eq. (3.79) yields 

E
BPLO = 1ß£lo(v,0)WÄ(v) (3.95) 

and the average LO power detected [Eq. (3.68)] becomes 

{PLOD) = I\Q(PLO)' (3.96) 

At the exit of the transmitter and receiver, respectively, the normalized fields are defined 

as 
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eT (u,0,0 = eL (u,0, t) WT (u) 
and 

eBPLO(v,0) = elo(v,0)WR(v). (3.97) 

3.5.1 Point Scatterer 

Using the normalized fields defined above as well as Eq. (3.89), the target plane 

representation of the SNR for a point scatterer at (p, zp) can be written as 

SNR(p,Z„0 = ^^^^c(p,V0 0.98, 

where 

c(p, zp,t) = A2 (jT (p, z„t-z, /c)jBPL0 (p, zr )) (3.99) 

is the target plane representation of the coherent responsivity density (m~2) and 

jT(p,z„t) = \eT(p,zt,t)\ , and   jBpLo(P'Zr) = \eBPW(p,zrf (3.100) 

are the random irradiance profiles (m-2) of the normalized transmitter and BPLO fields at 

the target. Again, note that the zt and zr are functions of zp, repeated here for 

convenience: 

zt=zp+RT   and   zr=-xpsinQs+zpcosQs+RR. (3.101) 

The average fraction of the power transmitted through the transmit aperture defined by 

WL(U) is given by 

TT(t) = ](jT(u,0,t))d2u = /|^\. (3.102) 
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Likewise, for an infinite, uniform detector, the average fraction of LO power that would 

be transmitted through the reciprocal receiver defined by WR(\) is 

TR = ]{jBPW(v,0))d2v. (3.103) 
—oo 

Recall from Eq. (3.75) that the SNR can be expressed in terms of the average 

power collected by the detector and the heterodyne efficiency. The average direct 

detection power for a point scatterer [see Eq. (3.69)] is given by 

(PD(t)) = r\Q(PL(t-z,/c))K2(zp)atd(p,zp,t) (3.104) 

where 

d(p,zp,t) = 'k2(jT(p,zl,t-zl/c)jR(p,zr) (3.105) 

is the target plane representation of the direct responsivity density (m~2) and 

y*(P.z,) = jK(v)|2G(p;v,zr)G*(p;v,zr)d2v (3.106) 

is the random irradiance profile (m~2) of a normalized spatially incoherent source defined 

by the receiver aperture \wR(\)\ . The heterodyne efficiency [Eq. (3.74)] for a point 

scatterer is 

c(p,z ,t) 

or in words, the fraction of direct (incoherent) detection power converted to coherent 

(heterodyne) detection power. 

It should be noted that this representation of direct responsivity density (and 

therefore, heterodyne efficiency) will only be valid in the matched monostatic limit. The 
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direct responsivity density is a measure of the direct detection power. The total scattering 

volume in a matched monostatic system is defined by either the transmit beam profile or 

the imagined BPLO profile; therefore, the direct detection power can be found by 

integrating over the BPLO profile. In the bistatic configuration, the direct detection 

power is defined as the overlap of the scattering volume (in this case a column), with the 

target plane image of the detector surface. Thus, in order to compute the direct detection 

power for a bistatic system, the specific receiver design characteristics (detector size, 

focal length, etc.) must be known. For this reason, the heterodyne efficiency will only be 

computed for the monostatic for comparison with previous results. 

3.5.2 Infinite Uniform Aerosol 

For an infinite uniform aerosol target, the volume scattering coefficient will be a 

function of range only; over the transverse dimensions of the transmit beam, ß is 

considered to be uniform and ß(p, zP, 8S) = $(zP, 0S). The range dependence of ß(zp, 8S) is 

due to the dependence of aerosol properties, such as density, index of refraction, and size 

distribution, on altitude. Similar to the expression in Section 3.4.3.2, the SNR for an 

infinite uniform aerosol is the sum of the SNR for each individual aerosol particle (all 

point scatterers), 

SNR^ = l^!K2^piP^-^/cP(^s)C(zp,t)dzp (3.108) 
Ävß* -* 

where 
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C(zp,t) = X2 ]{jT{v,zt,t-ztlc)jBPW{\>,zr)yx> (3.109) 
—oo 

is the target plane representation of the dimensionless coherent responsivity (integrate 

c(p, zp, i) over p), and the explicit dependence of z, and zr on zp is again, omitted. 

The average direct detection power is 

{PD(t)) = T\QJK\zp){PL{t-zt/c))^zp)D(Zp,t)dzp (3.110) 
-*T 

where 

D(zp,t) = X2](jT{p,z„t-z,/c)jR{p,zr))d2p (3.111) 

is the target plane representation of the dimensionless direct responsivity (integrate 

d(p, zp, t) over p). The heterodyne efficiency is given as 

]K\zp){PL{t-z,/cp(zp)C(zp,t)dzp 

T1„(0 = ^ . (3.112) 
JK2(Zp)(PL(t-zt/cp(zp)D(Zp,t)dzp 

Again, for the bistatic case, the integral in the denominator must be evaluated over the 

extent of the target plane image of the detector and not the area defined by the BPLO. 

This fact makes the evaluation of the heterodyne efficiency a system specific problem, but 

does not change the analysis of coherent responsivity or SNR. 

In the next section, the effects of refractive turbulence are considered. The 

refractive turbulence effects are accounted for with the transverse field coherence length, 
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p0. The results presented in the next section have been published extensively are 

presented for completeness. 

3.6 Refractive Turbulence Effects 

The primary effect of refractive turbulence is a degradation of the spatial 

correlation of the transmitted and scattered waves. This spatial decorrelation of the 

waves results in an overall reduction in the coherent signal power, which has been 

experimentally demonstrated by Chan et. al. [86]. 

The refractive turbulence effects are accounted for by the fourth moment of the 

Green's function for propagation in inhomogeneous media, 

r4(p;u1,u2,v1,v2,z,,zr) = (G(p;u1,z,)G*(p;u2,z/)G(p;v1,zr)G*(p;v2,zr)).    (3.113) 

When the angular deviation of propagating waves due to refractive turbulence is small, 

the Green's function is given by a Feynman path integral [32, 87, 88]. If the temporal 

variations of the fields with propagation distance is slow, the Markov approximation is 

valid [89]. Under the Markov approximation, refractive turbulence behaves as an 

uncorrelated process in the propagation direction for the moment of interest. Under the 

above conditions, the fourth moment Green's function may be expressed as a series [87]. 

In the bistatic case, the fourth moment Green's function reduces to two second moment 

Green's function because of independent paths. With the above conditions the fourth 

moment of the Green's function is given by 
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with 

r4=(G(p;u1,z,)G*(p;u2,z/)>(G(p;v1,2r)G,(p;v2,zr)> (3.114) 

f * 
(G(p,;upÄ)G*(p2;u2,Ä)) = ^^exp|^[(p1-u1)

2-(p2-u2)
2_ 

xexp|-|jz)' (u, -U2)[l-^J + (P. -Pi)^.« dz , (3.115) 

where 

oo 

D'[x,z] = 4%k2 J[1-COS(KX)]0„(K,KZ = 0,z)d2K (3-116) 
—oo 

is the structure function density (m-1), 0„(ic, KZ, Z) (m3) is the local 3-dimensional 

spectrum of the refractive index fluctuations at range z, an K (rad-m-1) is the spatial wave 

vector. 

The atmospheric refractive index fluctuations can be modeled with the 

Kolmogorov spectrum [84] in which case [90] 

Jl)'[(u1-u2)(l-z//?),z]dz = |"l-«2| 

P.(*) 

lV/3 

(3.117) 

where 

P.(*) = 2.91438 Jfc2Jc2(z)(l-z/#)5/3dz 

■3/5 

(3.118) 

is the transverse field coherence length (m) of a point source located at a range R, and 

Cn (z) (m    ) is the refractive index structure constant at range z. Replacing the 5/3 

power with 2 in Eq. (3.117) is a useful approximation that produces little error [25]. This 
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square law structure function approximation is equivalent to assuming the refractive 

turbulence effects are characterized by random wedges that produce only wavefront tilt 

[91]. In the limit of small apertures, this approximation is very precise. 



Chapter 4 

RESULTS 

The signal-to-noise ratio (SNR) results presented in Chapter 3 are completely 

general for any multistatic or bistatic coherent lidar system. In this section the results of 

applying specific system parameters to the performance equations derived in Chapter 3 

are presented. In order to obtain closed form expressions, a lidar system with untruncated 

Gaussian fields and apertures is assumed. With the general expressions derived for a 

Gaussian lidar system, the scattering coefficient is calculated using Mie theory. Next, the 

refractive turbulence effects are presented. The general Gaussian lidar expressions are 

then applied to specific geometry configurations. The chapter concludes with a look at 

the estimation performance. 

4.1 Gaussian Lidar System 

To determine the performance of a coherent lidar system, analytic expressions for 

the SNR, as well as other parameters, are desired. This is best accomplished by 

describing the main components of the coherent lidar as untruncated complex Gaussian 

functions. This representation allows analytic solutions and contains all of the physics of 

the system. In the following calculations, we have also assumed that the transmitter and 

local oscillator (LO) fields are deterministic, the detector response is uniform 
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[T1Q(W) = TJQ], the detector collects all of the incident LO and scattered power (infinite 

detector), and the transmitted and scattered fields propagate along independent paths. It 

has been shown that the independent path assumption is valid when the baseline 

separation is larger than the aperture size [33], which is the case for a practical multistatic 

system. The results that follow are a generalization to those presented by Frehlich [32] to 

include large angle bistatic coherent lidar systems. 

The laser field at a plane defined by zt = 0 (just prior to the lens) is described as an 

untruncated Gaussian 

1 u       iku2 

(4.1) 

where u2 is uu, aL (m) is the Me intensity radius of the laser beam, and FL (m) is the 

phase curvature of the laser beam (FL > 0 if focused at positive distance z). The lie1 

intensity radius is given by 2-72 GL- The truncation effects by an aperture may be 

neglected if the physical aperture size is greater than 4V2 oL [92]. If the aperture size is 

equal to aL, 63% of the beam power is transmitted; if the aperture size is equal to 

1.5V2GL, 99% of the laser beam power is transmitted. 

The transmitter lens response for a scalar field is also described with an 

untruncated Gaussian function. This lens function is given by 

u2      iku 
WT(u) = exp 

2c*     2FT 
(4.2) 

where <JT (m) is the lie intensity radius of the transmitter lens and FT (m) is the phase 

curvature of the transmit lens (FT > 0 for focusing lens). While this representation is not 
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realistic for a circular aperture, it allows analytic solutions while preserving a size 

parameter for the lens. Using Eqs. (4.1) and (4.2), the normalized field at the exit of the 

lens can be written as [see Eq. (3.97)] 

er(u,0) = 
aLyfn 

exp 
iku 

2<5TE    2F, 'TE TE 
(4.3) 

with 

aTE     GL     ar 
(4.4) 

where CTE (m) is the l/e intensity radius of the transmitted field, and with 

J 1_   J_ 
TE FL    FT 

(4.5) 

where FTE (m) is the phase curvature of the transmitted beam. Inserting Eq. (4.3) into 

Eq. (3.100), the average irradiance of the normalized transmitter field (with respect to the 

transmitter referenced coordinate system) at the target plane becomes 

(Mxt>yt>Zt)) = 
'TE 

KGWBTU,) 
exp 4+i 

.CTar(z,). 
(4.6) 

where 

<*w(0 = <* 1- 
^TE ) 

2zf 
*OTE  kyo(Z,)- 

(4.7) 

In words, the average normalized irradiance of the transmitted field in the target 

plane has a Gaussian profile with a l/e radius of aBr(m). In deriving Eq. (4.6), a square 

law structure function is used, replacing 5/3 with 2 in Eq. (3.117). The derivation of Eq. 

(4.6) is included in Appendix A. 
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The receiver lens and LO fields are described in a manner very similar to that of 

the transmitter lens and transmitted field. The receiver lens response function for the 

scalar field is given by 

WR(\) = exp 
ikv2 

2ai    2FD 
(4.8) 

where GR (m) is the lie intensity radius of the receiver lens, and FR (m) is the focal length 

of the receiver lens or telescope. It is important to note that although actual lidar systems 

usually use a rectangular top hat receiver function (circular aperture), the Gaussian 

assumption allows analytically tractable results without ignoring the physical size 

parameters of the receiver. Gaussian profile truncation by the receiver is included unless 

we let CR -> °o, in which case there is no receiver truncation. The same comments apply 

to the transmitter lens function. 

The LO at the receiver plane (ZR = 0) is given by (untruncated Gaussian) 

eLO(y,0) = 
CL04K 

exp 
ikv2 

2a2, n    2F, 'LO LO 

(4.9) 

where GLO (m) is the lie intensity radius of the LO beam, and FL0 (m) is the phase 

curvature of the LO beam (FLo > 0 indicates a beam waist on the detector side of the 

receiver). The normalized field of the back-propagated local oscillator (BPLO) beam is 

[see Eq. (3.97)] 

eBPLO^y^) ~ 
1 
 7= exp 
Ct0V7t 

ikv2 

2CTL    IF 'RE RE 
(4.10) 

where 
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(4.11) 

and 

RE **Ä      *"w 
(4.12) 

Inserting Eq. (4.10) into Eq. (3.100), the ensemble average of the normalized BPLO 

irradiance (with respect to the receiver referenced coordinate system) in the target plane 

becomes 

{jBPLo(xr,yr,zr)) = 'RE 

™lo<S m(.Zr) 
exp x2

r+y2 

G2BR(Zr) 
(4.13) 

where 

o«(z>o: 1-- zr + ■ 
2z2

r 

PRE)      tVa     k'pKz,) 
(4.14) 

and GBR (m) is the lie intensity radius of the virtual BPLO in the target plane. The 

transmitter and reciprocal receiver truncation ratios are [see Eqs. (3.102) and (3.103)] 

lj —      2   > and   TR =   2 
RE (4.15) 

'LO 

In order to perform the target plane integration, the transmitter and receiver 

referenced coordinates must be transformed to the target plane coordinates. Inserting 

Eqs. (3.1) and (3.4) into Eqs. (4.6) and (4.13), the target plane representation of the 

normalized transmitter and BPLO irradiance profiles (with respect to the target referenced 

coordinate system) are 
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and 

and 

{Mxp,yp,zp,RT))=nG2J
T

z        exp 
G

2
BT(ZP>

R
T) 

(4.16) 

\JBPL0(Xp>yp>Zp>RR)) = 
™BR(

X
P>ZP>

R
R) 

xexp 
(^cose^+z^sine^) + y2

p 

^
2

BR(XP,ZP,RR) 
(4.17) 

where 

GBT(ZP>
R

T) 
=

 
C

TE F      I        k2a2 kW \ rTE      J K   U7"£ *   WoT 

~G TE 1- 
RT j        RT 2AJ. + 

V T£ . *Vr£    fc^W (4.18) 

°MK-^.äJ) = ^£   1 ~  
RE 

(-xpsin65+zpcoses+/?Ä) 
2—2 r<x Ä£ 

2(-xpsine5+zpcos65+^) 
K   VoR 

~a RE 1    F V       tREj 

RB V       »* /? 2/? 
*2a2

£    *2p2(l?Ä)' 
(4.19) 

and pofl and p0r are the transverse field coherence lengths as viewed by the receiver and 

transmitter, respectively. The approximate expressions in Eqs. (4.18) and (4.19) are the 

zero order terms in a Taylor series expansion about xp = yp = zP = 0. This approximation 
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is equivalent to assuming that the Me radii do not change significantly within the overlap 

of the transmit beam and imagined BPLO beam. This is valid for small scattering 

volumes, which is shown to be the case for this problem. 

Inserting Eqs. (4.15) - (4.17) into Eq. (3.109), and using the first order 

approximations in Eqs. (4.18) and (4.19), the coherent responsivity becomes 

X2TTTB C(z ,RT,RR)- T'Ä 

W[a^(/?r) + ^L(^)][<0(^) + aL(Är)C0S2e5] 

xexp -z. 
sin 6C 

(4.20) 

where GBTO and OBR0 indicate the zero order term in the Taylor series expansions [see Eqs. 

(4.18) and (4.19)]. For the monostatic case, (RT = RR = R and Qs = 0), Eq. (4.20) reduces 

to 

C(R) = ^ TTTK 

it[<y2
BT(R) + c2

BR(R)Y 

which is identical to the independent path calculation obtained by Frehlich and Kavaya 

[32]. 

The temporal pulse profile of the transmitted laser pulse is modeled as an 

untruncated Gaussian, 

(4.21) 

te(o)=- ̂ rexp (4.22) 
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where ip (sec) is the Me pulse width, and UL (J) is the laser pulse energy. Inserting Eqs. 

(4.20) and (4.22) into Eq. (3.108) with the assumptions that ß and K do not change 

significantly over the scattering volume i.e., 

K2(Zp) = K(RT)K(RR) and ß(V65) = ß(/?r,05), (4.23) 

the target plane SNR becomes 

c/,TißK2(/?r,/?fi)ß(/?r,ef)^rrrÄ 
SNR(RT,RR,t) = , K  "   *'J nhBwö

2
eff(RT,RR) 

xexp {t yc) [I-E(RT,RR)] 
% 

(4.24) 

where 

C2
eff(RT,RR) = {[u2

BR(RR) + 02
BT(RT)] 

x[x2
pc

2sm2Qs+a2
BR(RR) + <y2

BT(RT)cos2es]}m, (4.25) 

and 

r(R   7? ^ qL(^) + g2
fir(^)cos2e, 

( T'  R)
 " T

2
PC

2sin26, + a2
BR(RR) + a2

r(tfr)cos26, ' (426) 

For the case of a continuous wave (CW) laser transmitter (ip -» oo), the SNR simplifies to 

(pL)r|0K2(Är,/?„)ß(i?r,ejx2rrrÄ 
SNR(RT,RR)= 

X Ll  Q       .r    * K   r   '      r * , (4.27) 
AvB„ sin 65 TJ%[G

2
BR(RR ) + a*r(/?r)] 

where (PL) is the average output power of the CW laser transmitter. 

Now that the general expressions for the SNR have been applied to a Gaussian 

system, the scattering properties of the target (aerosol particles in this case) need to be 

determined. This is addressed in the next section using Mie scattering theory. 
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4.2 Volume Scattering Coefficient 

Before we can calculate the SNR, the functionality of the volume scattering 

coefficient, ß(zp, 65), must be determined. This is accomplished by assuming spherical 

scattering particles and using the well known Mie scattering formulas [93, 94]. While the 

spherical particle assumption may not be well founded, it serves as a good first order 

approximation for the scattering from aerosol particles. The effects of nonspherical 

particles on the scattering function is studied by Koepke and Hess [95] and they 

concluded that; "the scattering functions of the aerosol types continental and urban can be 

sufficiently calculated with Mie theory." The process of calculating the scattering 

properties of spherical particles using Mie theory is widely used and is summarized in 

this section. 

For a single spherical particle, the complex scattering amplitudes for the two 

orthogonal directions of incident polarization are 

2n + l 

„,,      \7   2/1 + 1   r 1 
2(li) = ^^K^+lr "x"(ii)+bnlinm*' (4-28) 

where an and bn are the complex valued Mie coefficients, nn and T„ are the angular 

eigenfunctions, and u is the cosine of the scattering angle (relative to the forward 

direction), 9. The subscript 1 corresponds to the component of polarization perpendicular 

to the scattering (or bistatic) plane (s-pol). The subscript 2 corresponds to the component 
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of polarization parallel to the scattering plane (p-pol). The size parameter, x, is the 

particles radius, r (m), times the wavenumber, x = kr. 

The Mie coefficients depend on the size parameter and the complex index of 

refraction, m = m^ - wiim, and are given by 

m\[/„ (mx)\\f'n (x) - \|/„ (x)y'n (mx) 

"     m^n(mx)^n(x)-^n(x)Yn(mx) ' 
a. = 

b _ ¥„ (mx)V'n (x) - m\|/n (x)y'n (mx) 
"      Mfn{mx%'n{x)-m^n{x)Yn{mx) ' 

where \|/„(p) and ^„(p) are the Riccati-Bessel functions, 

¥„(P) = R/„(P),        ^„(P) = pKl)(p), (4.30) 

;'„(p) is the spherical Bessel function of the first kind of order n, h™ (p) is the spherical 

Hankel function of the first kind of order n, and the prime indicates the first derivative 

with respect to the argument. The angular eigenfunctions are 

dP\li) ,       „v 
w=-^=^ao-(i-^2koo, (4.3i) 

where Pn
m is the associated Legendre function, which is related to the m01 derivative of 

the corresponding Legendre polynomial Pn, and the prime again indicates the derivative 

with respect to the argument. Care should be taken in evaluating Eq. (4.31) since 

definitions for the associated Legendre function and its relationship to the Legendre 

polynomial may vary. We have used the same relationship used by Bohren and Huffman 

[94, Eq. 4.25], van de Hülst [93, pg. 124], and Ishimaru [96, pg. 338], namely, 
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„ dmP (ii) 
p:W = (l-ll)m/2-^P-. (4.32) 

This relationship varies from that presented by Gradshteyn et al. [97, pg. 1025] and 

Abramowitz et al. [98, pg. 334]. 

The recursion relationships for the angular eigenfunctions are given by 

2n-l n 

\=n\nzn-(n + l)Kn_h (4.33) 

%n =^~r^nn-l ——;nn-2> 

starting with Jto = 0 and TCI = 1. The scattered intensities (per unit irradiance) are given by 

1,(11) = \s2([i)\\ (4.34) 

where 1 (perpendicular to scattering plane) corresponds to s-polarized and || (parallel to 

scattering plane) corresponds to p-polarized incident radiation. There are several 

algorithms of the above equations for calculating the intensities of Eq. (4.34). For this 

analysis, the vectorized FORTRAN code developed by Wiscombe [99, 100] is used. 

Figure 4-1 is an example plot of the scattering intensities calculated using Mie scattering. 

The complex index chosen in this example plot represents an approximate index for rural 

aerosol particles at 80% relative humidity and a wavelength of 1.06 urn [101]. 

If the number of dielectric spheres with refractive index m and radius in the 

interval (r, r + dr) is given as N(r) dr, then the volume scattering coefficients are [102] 

ßi,i(6s) = -A-|/1,,(e5)iV(r)dr. (4.35) 
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Figure 4-1: Example of scattering intensities calculated using Mie scattering. The size 
parameter is x = 3.0, and the complex index of refraction is m = 1.42 - i 0.00692. The 
solid line is the p-polarization; the dotted line is the s-polarization. 
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It is important to note that the scattered intensities have an implicit dependence on 

wavelength, size parameter, and index of refraction. Also important to note is the 

difference between the scattering angle, 6, which is measured with respect to the forward 

direction, and the bistatic angle, 65. From Figure 3-1 it can be seen that 9 + 65 = 180 

degrees [u = cos(9) = -cos(85)]. 

While this model for ß is not entirely accurate, it does provide a good 

approximation to the angular dependence of aerosol scattering. By using Eq. (4.35), as 

opposed to Eq. (3.92), we have assumed that the refractive index of all the contributing 

aerosols is an average effective index of all the scattering particles. A more detailed 

approach would be to calculate a scattering coefficient for several size distributions (and 

the respective complex index) and use Eq. (3.92). It is important to note that ß is the 

important engineering parameter for determination of the SNR. In an actual fielded 

system, an effective ß can be estimated from the return signal power. The operation of 

this system does not require knowledge of the actual aerosol density, scattering cross 

section, or size distribution. 

For most calculations in this thesis, we will use a rural aerosol model (henceforth 

referred to as model SF-1) described by Shettle and Fenn [101]. Other models considered 

include a tropospheric model described again by Shettle and Fenn (SF-2), as well as a 

tropospheric model used by Srivastava et al. (SR-1) [103]. Tropospheric aerosol 

densities can be represented by the sum of log-normal distributions 
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dN(r)_y N, 
dr      Tra,V27üln(10)eXp 

log r- log?; 

V2a, 
(4.36) 

where iV,- is the number density of aerosols with mode radius, r„ and standard deviation 

a,. The log-normal distribution is also expressed as [95, 103] 

dN(r)_y        Nt 

dr       Trln(G,.)V27üeXP 

log r-log?;. 

. V21og(ä,) 
(4.37) 

where a, = log(a,) is the geometric standard deviation. Table 4-1 lists the parameters 

for the three models discussed above (normalized to 1 particle per unit volume). 

Table 4-1: Parameters for the Different Aerosol Distribution Models Considered 
Aerosol Model Size Distribution 

RURAL (SF-1) 
Ni n (um) a, or a, 

0.999875 
0.000125 

0.03 
0.5 

a, = 0.35 
a, = 0.4 

TROPOSPHERIC (SF-2) 1.0 0.03 a, = 0.35 
TROPOSPHERIC(SR-l) 1.0 0.15 a,. = 1.5 

The distributions, normalized to 1 particle per cubic centimeter, are plotted in 

Figure 4-2. When calculating the volume scattering coefficient, the limit of integration 

over radius will be 0.02 urn to 16.87 urn, this corresponds to size parameters ranging 

from 0.1 to 100 for a 1.06 urn wavelength. 

The complex refractive index used to calculate the scattered intensities for each 

radius (m = 1.42 - / 0.00692) is taken from Shettle and Fenn [101, Table 4] for 80% 
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Figure 4-2: Aerosol distribution models used. Rural aerosol model SF-1 (solid); 
tropospheric aerosol model SF-2 (dashed); tropospheric model from SR-1 (dash-dot). 
Parameters are as defined in Table 4-1 and normalized to 1 particle per cm3. 
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relative humidity, large rural aerosols, and X = 1.06 um. The resulting volume scattering 

coefficients (for 1 particle per cubic meter) are shown in Figure 4-3. The actual volume 

scattering coefficient used in the SNR calculations will be the coefficient plotted in 

Figure 4-3 multiplied by the aerosol density. As can be seen from this figure, the major 

difference in scattering between the three models is approximately a constant scale factor, 

aside from the strong forward scattering exhibited by model SF-1. The SF-1 model will 

be used as the test case throughout the remainder of this thesis. 

The variation of aerosol density with altitude, in reality, will exhibit spatial and 

temporal variations, the modeling of which will not be included in this thesis. An 

average profile, represented by an exponential, will be used in this analysis. This profile 

is given by 

Nz(z) = N0exp (4.38) 

where Nz (cm ) is the particle concentration, N0 (cm ) is the concentration at ground 

level, z (m) is altitude, and h (m) is the characteristic scale height [104]. Typical values 

of h range from 1 km to 1.4 km [16]. An example plot of the aerosol concentration 

(h = 1.3 km) and the resulting volume backscatter coefficient (6 = 180°) is shown in 

Figure 4-4. 

The next step in applying the SNR expressions to specific configurations is to 

determine the refractive turbulence effects. A common way to do this is to compare the 

calculated SNR without refractive turbulence to that with refractive turbulence. In the 

next section, the analysis of p0 is given for a specific Cn
2 model. Because p0 depends on 
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Figure 4-3: Scattering functions for the aerosol distributions used. Rural aerosol model 
SF-1 (solid); tropospheric aerosol model SF-2 (dashed); tropospheric model SR-1 (dash- 
dot). Assumes spherical particles with complex refractive index 1.42 - i 0.00692. Both 
the p- and s-polarization components are shown for each model (p-pol shows a dip near 
100 degrees). 
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Figure 4-4: Volume backscatter coefficient (solid), and aerosol number density (dotted). 
Tropospheric size distribution model SF-1; exponential aerosol density profile with 
N0 = 5000 cm-3 and h = 1.3 km. 
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the actual propagation path, there will, in general, be different values of p0 for each 

receiver and transmitter. Once p0 is calculated, the reduction in SNR due to refractive 

turbulence is addressed. 

4.3 Refractive Turbulence Effects 

The general expressions for refractive turbulence effects are detailed in Section 

3.6, and are accounted for in the coherent responsivity and SNR with the transverse field 

coherence length, p0, given by 

P.(*) = 2.91438 Jfc2J C„2 (z)(l - z/fl)5/3dz 

-3/5 

(4.39) 

where Cn\z) is the variation of the refractive index structure constant along the path. 

Since Eq. (4.39) is a path dependent integral, the value of p0 will, in general, be different 

for the transmitter and the receiver paths. If we model the refractive index variations with 

altitude as 

C„2(z) = C„2(z = lm)z-4/3, (4.40) 

then the transverse field coherence length, as viewed from the transmitter is given by 

p0(RT) = [2.91438*2C2(z = lnojj^fe cos6w +5)'4n(l-zl/Rtfdzl 

-3/5 

(4.41) 

where the transmitter is arbitrarily placed 5 meters above the ground in order to evaluate 

the integral in Eq. (4.39). Similarly, for the receiver, 
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PÄ) 2.91438*2C„2(z = Im) f * (zr cos9nr +5y
4n{l-zr/Rrfdzr 

1-3/5 

,   (4.42) 

and again, the receiver is located 5 meters above the ground. This integral is evaluated 

numerically with example results shown in Figure 4-5 for a vertical path (8„t = 0) and 

different values of Cn
2(z = lm). Figure 4-6 shows the effects of propagating along a slant 

path defined by the angle Qnt. Typical values of C„2 range from 10~17 m_2/3 for weak 

refractive turbulence to 10-13 m_2/3 for strong refractive turbulence, with 10~15 m_2/3 often 

quoted as a "typical" value [105]. 

The overall effect of refractive turbulence is a reduction in the SNR. This effect is 

quantified by taking the ratio of the SNR with refractive turbulence effects included, 

designated SNRPo, to the SNR without refractive turbulence effects, designated 

SNR _^. The peak SNR, including refractive turbulence effects, can be written as 

SNR„ 
1 

where c2
eff (RT,RR) is defined in Eq. (4.25) (with the zero order approximations of c 2 

BR 

and a2
r) and includes the refractive turbulence effects. Define d2

BR(RR) and a^C^j.) 

as the Me intensity radii of the transmitted and virtual BPLO beams in the target plane 

neglecting the effects of refractive turbulence, i.e. 

o\R{RR) = (5 RE 1-- 
R, V 

ö2
BT(RT) = G 

K     FTE j 

+ Rl 
RE J 

V 

kW ' 

+ ■ 
RT 
2_2 ra (4.44) 

TE 
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Figure 4-6: Effects of slant path on the transverse field coherence length. Slant angle, Qnt, 
is measured from vertical and Cn

2(z = lm) = 1 x 10"13 m'm. 0„, = 0° (solid); Qnt = 60° 
(dotted); 0„f = 80° (dashed); Qnt = 89° (dash-dot); Qnt = 89.9° (dash-triple dot); Qnt = 90° 
(long dash). 
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Then the SNR reduction factor, F, is given by 

SNR, 
p    SNR 

Po 

(&BK+air) 

(°L+<)[^ 
TJC

2
 sin2 ef + c^+o^. cos2 6, 

T r sin20 +oL+a2 cos29 

1/2 

(4.45) 

for the pulsed case. For the CW case {xp -» ~), the SNR reduction can be expressed as 

(4.46) CW ~  I re2    j. «2 

\ 1/2 

The dependencies on RT and /?Ä have been omitted for simplicity. Now the SNR 

including the effects of refractive turbulence, SNRPo, can be expressed as 

SNRPo=FP,c„SNRPo_ (447) 

If the refractive turbulence effects are small, FP,CW « 1, and the refractive turbulence will 

have little effect on the SNR. 

Now that all of the specific parameters (other than geometry) have been 

addressed, the SNR expression can be applied to specific cases. In the next section, the 

results obtained above are applied to three specific cases as well as the monostatic case 

for comparison with past results. The only difference between the cases is the geometry. 

4.4 Specific Geometry Configurations 

The results derived above can be applied to any bistatic (independent path) 

Gaussian lidar system. In the next section these results are applied to specific geometry 
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configurations and system parameters. The SNR and the coherent responsivity are 

evaluated for four different alignments: transmit laser directed vertical and receiver 

scanned along the beam; transmitter and receiver scanned along a vertical line halfway 

between the transmitter and receiver; transmit laser directed at 45° from vertical (toward 

the receiver) and receiver scanned along the beam; and monostatic with transmitter 

directed vertically, for comparison with previous results. Table 4-2 gives a description of 

the test configurations used. Plots of the bistatic angle, 6s, and ß for the three cases, 

excluding the monostatic case, are shown in Figure 4-7 and Figure 4-8. 

Table 4-2: Description of Geometry for Test Cases. 
%t (degrees) Qnr(degrees) <)), (degrees) tyr (degrees) 

Case 1 0 -90 -> 0 scan 0 0 
Case 2 -6nr -90 -* 0 scan 0 0 
Case 3 45 -90 -> 45 scan 0 0 
Monostatic 0 0 0 0 

The system parameters used in the calculations are given in Table 4-3. For these 

calculations, it is assumed that the transmit lens and receiver lenses are identical, GR = Gj- 

For the lie laser and LO intensity radii, the optimum monostatic truncation values of 

0.707-Or and 0.707-GR are chosen for simplicity. These optimum values were determined 

using functional optimization techniques [32, 106]. In all of the test cases, the aerosol 

distribution model SF-1 is used. 
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Figure 4-7: Bistatic angle as a function of altitude for the three cases outlined in text. 
Case 1 (solid); Case 2 (dashed); Case 3 (dash-dot). 
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Figure 4-8: Volume scattering coefficient as a function of altitude for the three cases 
outlined in the text. The SF-1 aerosol distribution model is used to calculate ß. Case 1 
(solid); Case 2 (dashed); Case 3 (dash-dot). Both the s- and p-polarization are shown. 
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Table 4-3: System Parameters 
Parameter Symbol Value 

Baseline Separation B 100 m 
System Bandwidth Bw 100 MHz 
Wavelength X 1 um 
Quantum Efficiency iQ 0.5 
CW Average Laser Power PL 5W 
Me Pulse Width op 250 ns 
Pulse Laser Energy uL 1 J 
lie Laser Intensity Radius CfL 0.707 aT 

Me LO Intensity Radius GLO 0.707 cR 

Aerosol Density @ Ground N0 5000 cm-3 

Index Structure Constant Cn2(h=lm) 10-m- 
Transmitter Focus FTE CO 

Receiver Focus PRE oo 

4.4.1 Casel 

The first case examined is for the transmit beam pointed directly vertical and the 

receiver optics scanned along the beam. This configuration, in conjunction with two 

other receivers, could be used to sense the 3-dimensional velocity vector along the 

transmit beam. An example of this multistatic system is shown in Figure 4-9. In this 

configuration, each receiver senses a Doppler shift that is proportional to the velocity 

along the bisector of the respective bistatic angle. If these Doppler sensitive directions 

have components in all three directions, the velocity vector can be determined. 
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Figure 4-9: Case 1 multistatic geometry for sensing 3-dimensional vector winds along a 
vertical line from the transmitter. The box marks the location of the transmitter and the 
X's mark the locations of the receivers. The intersection of the lines is the center of the 
scattering volume. The baseline separation is 100 m. 
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Plots of the CW SNR for this geometry and a single transmitter/receiver pair are 

shown in Figure 4-10 and Figure 4-11. Plots of the pulsed SNR case are shown in 

Figure 4-12 and Figure 4-13. Note that the CW SNR is much lower than that of the 

pulsed SNR for typical CW average power. Also note that there is an optimum aperture 

size for each range. 

The optimum aperture size can be determined by differentiating the expression for 

SNR with respect to GR = aT. Inserting the parameters given in Table 4-3, the SNR can 

be expressed as 

/Srr2 

SNR 
2a£    3BZ      6Rj 

3  + k2al+k2al 

-1/2 

(4.48) 

and RR= Rj+B  for Case 1 geometry. Minimizing this function with respect to GR 

yields 

oopt = 
9{lR2 + B2) 

2k7 

1/4 

= 1.4565 
2R2 + B2 1/4 

(4.49) 

for the geometry of case 1. In the near field limit (RT -> 0), the optimum aperture size 

approaches 5.8 mm for B = 100 m and X = 1 urn. Optimizing the aperture size for the 

pulse case is accomplished by a closer examination of <52
eff . Rewrite Eq. (4.25) as 

clff=Tpcsmes[(<52
BR+G2

BT Xl + Af, (4.50) 
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Figure 4-10: Case 1 CW SNR (p-polarization) plots for various aperture sizes. 
Refractive turbulence effects are not included. aR - 100 mm (solid); GR = 50 mm 
(dotted); aR = 10 mm (dashed); oR = 5 mm (dash-dot); GR = 1 mm (dash-triple dot). 
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Figure 4-11: Case 1 CW SNR (s-polarization) plots for various aperture sizes. Refractive 
turbulence effects are not included. aR = 100 mm (solid); aR = 50 mm (dotted); aR = 10 
mm (dashed); aR = 5 mm (dash-dot); cR = 1 mm (dash-triple dot). 
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Figure 4-12: Case 1 pulsed SNR (p-polarization) plots for various aperture sizes. 
Refractive turbulence effects are not included. aR = 100 mm (solid); cR = 50 mm 
(dotted); aR = 10 mm (dashed); aR = 5 mm (dash-dot); aR = 1 mm (dash-triple dot). 
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Figure 4-13: Case 1 pulsed SNR (s-polarization) for various aperture sizes. Refractive 
turbulence effects are not included. aR = 100 mm (solid); cR = 50 mm (dotted); cR = 10 
mm (dashed); aR = 5 mm (dash-dot); GR = 1 mm (dash-triple dot). 
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where 

c2
BR(RR) + a2

BT(RT)cos2Qs 

xV sin2 9, • (4-M) 
P A 

The parameter A is plotted in Figure 4-14 for various apertures sizes. From this plot, it is 

evident that A is essentially zero, especially in the near field and 

2 . /    2 ,    \l/2 
<5eff «ipcsinQs{oBR + <JBT)   . (4.52) 

Because A « 0, the optimization of the pulsed SNR is identical to that of the CW SNR. 

The coherent responsivity shows the same trend in terms of the effects of aperture 

size. A plot of the coherent responsivity for Case 1 is shown in Figure 4-15. As can be 

seen, the coherent responsivity is optimized in the near field for an aperture size of about 

5 mm. 

This optimization indicates that the transmit and LO beam sizes can also be small. 

Recall that cLo = 0.707-O/? and <5L = 0.707 Or- Since small beam sizes can be used, the 

analysis can be simplified somewhat by assuming that the transmitter and receiver lenses 

are large compared to the beam sizes. At these beam sizes (~4 mm) the lenses only need 

to be about 25 mm before truncation effects can be ignored. In this case, the lens aperture 

sizes can be set to infinity and Eqs. (4.18) and (4.19) can be expressed as 

P2 9 J?2 

re1   (■,     p  \ — fr2   , T      . ^^T 
BT{Zp'   T)-°L    kWL    k

2p2
0(RT)' 

D2 9 J?2 

<4(*,,zp,RR) = *\o + T2Z2- + . 2.2A , • (4-53) 
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Figure 4-14: The parameter A from Eq. (4.51) for various apertures and Case 1 geometry 
oR = 100 mm (solid); aR = 50 mm (dotted); aR = 10 mm (dashed); aR = 5 mm (dash-dot); 
OR = 1 mm (dash-triple dot). 
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Figure 4-15: Case 1 coherent responsivity for various aperture sizes. cR = 100 mm 
(solid); oR = 50 mm (dotted); oR = 10 mm (dashed); OR = 5 mm (dash-dot); oR = 1 mm 
(dash-triple dot). 
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For infinite apertures, the transmitter and reciprocal receiver truncation ratios 

become unity. Assuming matched transmit and LO beams (oL = GLO), the SNR 

(assuming infinite apertures) can be maximized by noting that 

( 
SNRoc 

v ait'    <5\e j 
B 

-1/2 
(4.54) 

Performing this optimization yields 

of = 
1R\ + B2 

ir 

= 0.841 
2R2 + B2 

(4.55) 

In the near field limit (RT -> 0), the optimum beam size approaches 3.3 mm for 

B = 100 m and X = 1 urn, which in turn implies that the lens sizes need only be about 

20 mm before the truncation effects can be neglected. 

Plots of the CW SNR for this geometry and "infinite" aperture are shown in 

Figure 4-16 and Figure 4-17. The pulsed case is shown in Figure 4-18 and Figure 4-19. 

As can be seen in these plots, the SNR is improved. This is because there are no power 

truncation effects due to the lens apertures [see Eq. (4.15)]. The remainder of the 

calculations will be performed with the assumption that the aperture sizes are large 

compared to the transmit and LO beams. 

From Eq. (4.55), it is evident that the optimum beam size increases with range, 

RT. This trend can also be seen in the plots of SNR and especially coherent responsivity. 

Because the geometry in this type of system limits the accuracy of sensing horizontal 

winds at high altitudes, optimizing the "near field" SNR is desired. 
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Figure 4-16: Case 1 CW SNR (p-polarization) plots for various beam sizes ("infinite" 
apertures). Refractive turbulence effects are not included. <5L = 100 mm (solid); GL = 50 
mm (dotted); GL = 10 mm (dashed); GL = 5 mm (dash-dot); GL = 1 mm (dash-triple dot). 
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Figure 4-17: Case 1 CW SNR (s-polarization) plots for various beam sizes ("infinite" 
apertures). Refractive turbulence effects are not included. GL= 100 mm (solid); GL = 50 
mm (dotted); GL = 10 mm (dashed); GL = 5 mm (dash-dot); GL = 1 mm (dash-triple dot). 
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Figure 4-18: Case 1 pulsed SNR (p-polarization) plots for various beam sizes ("infinite" 
apertures). Refractive turbulence effects are not included. GL = 100 mm (solid); aL = 50 
mm (dotted); GL = 10 mm (dashed); oL = 5 mm (dash-dot); GL = 1 mm (dash-triple dot). 
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Figure 4-19: Case 1 pulsed SNR (s-polarization) plots for various beam sizes ("infinite" 
apertures). Refractive turbulence effects are not included. <5L = 100 mm (solid); GL = 50 
mm (dotted); GL = 10 mm (dashed); GL = 5 mm (dash-dot); GL - 1 mm (dash-triple dot). 
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An advantage of the small beam sizes, other than the obvious design advantages, 

is the spatial resolution achievable, at least in the near field. Recall that for this system, 

the spatial resolution, both in range and in the transverse direction, is determined by the 

overlap of the transmitted laser and the imagined BPLO. The approximate scattering 

volume is determined by finding the transverse scattering area (in the xp-yp plane) and 

multiplying by the extent in the zp-direction. The transverse area is set by the transmit 

beam and the zp extent is set by the BPLO beam at xp = yp = 0. The approximate volume 

is then given by 

LLlexp x2
p + y 
_2 

,2 

P 

xexp 
'  z2

psm2Qs~ 
_2 dj 

V^GBRGIT 

<My„dz p    Sp~"p 

sin0c 
(4.56) 

This integration is the same as the integration shown in Appendix A for the SNR. A plot 

of the scattering volume for various beam sizes is shown in Figure 4-20. From this plot it 

can be seen that for altitudes less than 1 km, the scattering volume is less than 100 cm3 

for the 5 mm beam. 

Another advantage of the small beam sizes is the reduced effect of refractive 

turbulence. The reduction in SNR due to refractive turbulence is quantified with the SNR 

reduction factor, F [see Eqs. (4.45) and (4.46)]. By the same argument given for deriving 

Eq. (4.52), we can argue that, in the near field, the SNR reduction will be the same for the 

CW and pulsed systems. Figure 4-21 and Figure 4-22 show the SNR reduction factor for 
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Figure 4-20: Case 1 scattering volume for various beam sizes. GL = 100 mm (solid); 
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Figure 4-22: Case 1 SNR reduction for a fixed beam size (GL = 5 mm) and various 
turbulence strengths. 
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Case 1 geometry and various aperture sizes and for GL = 5 mm with various index 

structure constants at ground level. From the figure it is evident that the refractive 

turbulence has minimal effect on the SNR for typical turbulence strengths. Adverse 

effects are not present until the turbulence strength at the ground approaches 10~10 (m2/3), 

which is considered to be very strong refractive turbulence. 

4.4.2 Case 2 

The second case examined is for a bistatic configuration with the transmitter and 

receiver scanned along a vertical line bisecting the baseline. Figure 4-23 shows a 

diagram of this geometry. This configuration could be used to sense the vertical velocity 

vector along the bisector of the baseline separation. 

Transmitter 

scanning direction 
A 

center of 
scattering 
volume 

> x 
Baseline Receiver 

Figure 4-23: Case 2 geometry for sensing vertical velocity. 
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For this geometry, the optimum beam size is expressed as 

(ß2+4R2)' °r = 4k' 

= 0.707 
B2+4R2 1/4 

(4.57) 

where R is the altitude. In the near field limit (R -» 0), the optimum beam size 

approaches 2.82 mm for B = 100 m and X = 1 urn. Plots of the SNR for this case and a 

beam size of 3.0 mm are shown in Figure 4-24. Also evident in SNR plots for Case 2 is 

the strong forward scattering at low altitudes, as expected. The enhancement in ß for 

near-forward scatter is also shown in Figure 4-7. 

The coherent responsivity for this geometry and a beam size of 3.0 mm is shown 

in Figure 4-25, and the scattering volume is shown in Figure 4-26. The coherent 

responsivity shows a slight increase at approximately 50 m. Looking at Eq. (4.20) we see 

that since all of the terms in the denominator are positive, the coherent responsivity peaks 

when 6s = 90°. For Case 2 geometry, when the center of the sensing volume is at an 

altitude of 50 m, 6S = 90°. 

The scattering volume for the 3 mm beam is less than 100 cm3 out to about 1 km 

and the minimum volume is at 50 m where Qs = 90°. The refractive turbulence effects are 

shown in Figure 4-27. Again, the effects are minimal for all regions of interest. 
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Figure 4-24: Case 2 SNR plots for GL = 3 mm. Refractive turbulence effects are not 
included. Both CW and pulsed cases are shown. Solid line is p-polarization and dashed 
line is s-polarization. 
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Figure 4-25: Case 2 coherent responsivity for GL = 3 mm. 
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Figure 4-27: Case 2 SNR reduction for aL = 3 mm and various turbulence strengths. 

4.4.3 Case 3 

The third case examined is for the transmit beam pointed at 45° and the receiver 

optics scanned along the beam. A diagram of the geometry is shown in Figure 4-28. 

This configuration is included to show the effects of increased horizontal propagation on 

performance. 

For this geometry, the optimum beam size is given by 

(B2-2BR + 4R2)' 
cT = 

1/4 

= 0.841 

ie 
{B-R)2+3R 

. -11/4 

(4.58) 



Transmitter 
Baseline 

^ scanning direction 

center of 
scattering 
volume 

► x 
Receiver 

Figure 4-28: Diagram of Case 3 geometry. 
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where R is the altitude. In the near field limit (7?r -> 0), the optimum beam size 

approaches 3.35 mm for B = 100 m and X = 1 urn. The plots of SNR, coherent 

responsivity, volume, and refractive turbulence effects for this geometry and aL = 3 mm 

are shown in Figure 4-29 through Figure 4-32 respectively. Evident in Figure 4-30 is the 

enhancement in coherent responsivity at an altitude of about 50 km, where the bistatic 

angle, 65 = 90°. The refractive turbulence effects are more detrimental in this case, as 

shown in Figure 4-32, due to the increased horizontal propagation. However, the effects 

are still small for the problem space of interest—low altitudes and small apertures. 
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Figure 4-29: Case 3 SNR plots for öL = 3 mm. Refractive turbulence effects are not 
included. Both CW and pulsed cases are shown. Solid line is p-polarization and dashed 
line is s-polarization. 
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Figure 4-30: Case 3 coherent responsivity for CL = 3 mm. 
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Figure 4-32: Case 3 SNR reduction for a/, = 3 mm and various turbulence strengths. 

4.4.4 Monostatic Configuration 

This configuration is added as a test case to verify the accuracy of the equations 

derived above. The SNR for this case is shown in Figure 4-33. Because the volume 

backscatter coefficient, ß, is different for our application, (Frehlich assumes a constant ß 

as a function of altitude [32]), the SNR does not compare directly. However, since the 

coherent responsivity does not depend on such system parameters, a direct comparison 

can be made. The coherent responsivity and the heterodyne efficiency for the monostatic 

case are shown in Figure 4-34 and Figure 4-35. These plots agree with the results of 

Frehlich for the 10 cm aperture, collimated case [32]. 
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Figure 4-34: Coherent responsivity for the monostatic case and various apertures. 
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Figure 4-35: Heterodyne efficiency for the monostatic case and various apertures. 
GR = 100 mm (solid); OR = 50 mm (dotted); OR - 10 mm (dashed); GR = 5 mm (dash-dot); 
GR = 1 mm (dash-triple dot). 
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It is interesting to compare the scattering volume for the monostatic configuration 

to that of the bistatic configuration. In the monostatic case, the zp extent is determined by 

the pulse length. In this case, the scattering volume is given as 

nc\TcAt 
V = ——  

= naUc%,Jiä2, (4.59) ^BT1- vpi 

where At = 2(ln 2)
V/2

-TP is the effective pulse length for the pulse profile given in Eq. 

(4.22). A plot of the scattering volume is shown in Figure 4-36. As can be seen, the 

monostatic scattering volumes for this pulse length are much larger than the scattering 

volumes in the multistatic case. 

As evident in all of the plots presented in this section, there is not a great deal of 

difference in performance between the three cases. All three cases exhibit the same 

characteristics in terms of an optimum aperture size and minimal effects of refractive 

turbulence. Aside from the strong forward scattering evident in Case 2, the only 

difference between the SNR of the three cases is (approximately) a scale factor. Also 

evident in these plots is the poor CW SNR performance (as compared to the pulsed SNR) 

for the system parameters used in this analysis. 

4.5 Detection and Estimation 

Now that the SNR has been determined, the CRLB for the estimation of the mean 

frequency can be addressed. Only the pulsed case is considered in this analysis because, 

as can be seen from the SNR plots, the pulsed case has much higher SNR. First, the 
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Figure 4-36: Effective scattering volume for the monostatic configuration and various 
apertures. The l/e pulse width is 250 ns. GR = 100 mm (solid); üR = 50 mm (dotted); 
GR = 10 mm (dashed); GR = 5 mm (dash-dot); GR = 1 mm (dash-triple dot). 
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number of coherent photoelectrons must be determined. From Eqs. (3.57) and (4.24), for 

a pulsed system we see that 

g(0 = exp 
(t-x)2 

(1-e) 

and 

SNR„„ = 
ULr\QK2(RT,RRMRrWTTTR 

nhByeff(RT,RR) 

where the functional dependence of e on RT and RR has been omitted for brevity. 

Inserting Eq. (4.60) into (3.58) the effective observation interval becomes 

r. = J exp 
(t-x)2 

(1-E) dr 

= x 
K 

p\l-e' 

Then the average number of coherent photoelectrons is given by 

ULT}QK2(RT,RR)$(RT,Qs)X%TRxp o = 
J%(\-e)ha2(RT,RR) 

Note that O is simply a scaled version of the maximum SNR, 

0 = SNRmaxßwx J^ ~44.3xSNRmax, 

(4.60) 

(4.61) 

(4.62) 

(4.63) 

(4.64) 

where the systems parameters from Table 4-3 have been inserted and e is assumed to be 

zero, which will be shown to be a valid assumption. The number of coherent 

photoelectrons for the pulsed system and all three geometries (s-polarization only) are 

shown in Figure 4-37. From this plot it can be seen that for Cases 2 and 3 the number of 
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photoelectrons (s-pol only) for pulsed system and C/. = 3 mm (solid). 
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coherent photoelectrons is very high in the near field. This is due to the forward 

scattering in these geometries. 

The next step in the determination of the CRLB is to calculate f(t) from the 

signal model of Eqs. (3.24) and (3.25) and the pulse profile of Eq. (4.22). From the 

expression for the SNR, we see that the effective pulse profile is given by g(t) which is 

proportional to \f(t)\ • Therefore, finding the complex envelope is accomplished by 

normalizing the function g(t), or 

7^\2     8(0 
\f(t)\   = 

rfW 1/2 

\mPj 

exp 
(t-xy 

■(l-e) 

and 

/(0 = 
l-e 

\m,j 

exp 
(t-xy 

2T„ 
(l-e) (4.65) 

which, as expected, is entirely real. Then from Eq. (3.45), the mean-square duration of 

the complex envelope is 

t2 = 
/\     V'2 

l-e 

\m,j 
w exp 

u 
-?d-e) dt 

2(1-e) 
(4.66) 

Inserting Eq. (4.66) into Eq.(3.62), the CRLB for estimating CO is 

<>| 
O + l A-e^ 

vSy 
(4.67) 

From this equation, it can be seen that the longer the pulse width, the lower the CRLB. 

This makes sense, since lengthening the pulse is equivalent to narrowing the transmitted 
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spectrum. This will be true to the extent that the effective observation interval Tg does 

not get longer than the correlation time due to the rearrangement of aerosol particles 

within the scattering volume. When this occurs, the Rayleigh target model of Eq. (3.24) 

is no longer valid because of the temporal speckle caused by the random motion of the 

aerosols [see Figure 2-2]. 

In Section 4.4.1 it was shown that the term A could be ignored because it was 

much less than 1 for the lower altitudes. The equation for e [Eq. (4.26)] can be written in 

terms of A as 

£=TTZ' <4-68> 

and since A is always greater than 1, e will always be less than A and it too can be 

ignored. A plot of E is shown in Figure 4-38. As can be seen in this plot and from Eqs. 

(4.26) and (4.68), e has a peak value of 1 for large ranges. The parameters e and A will be 

assumed zero for the remaining analysis. Under this assumption, the CRLB becomes 

2    ftf + 1 

S,J 
(4.69) 

Each receiver transmitter pair will detect a Doppler shift that is proportional to the 

component of velocity in the direction of the bisector of the bistatic angle. Designate this 

velocity as vp
b, where the b designates velocity along the bisector. Then the Doppler shift 

at a single detector can be written as 

(0 = kvb
p, (470) 
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Figure 4-38: The parameter e from Eq. (4.26) for various apertures and Case 1 geometry. 
ÜR = 100 mm (solid); GR = 50 mm (dotted); GR = 10 mm (dashed); GR = 5 mm (dash-dot); 
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and the lower bound on the estimation error variance of the velocity estimate is 

*2 >>     ~z 

<D + 1 j 1 ^ 

o 2 (4.71) 

where k is the wavenumber. This bound on the velocity estimation error is plotted in 

Figure 4-39. This plot indicates the CRLB on the standard deviation of the velocity 

estimate is less than 1 m/sec for a single shot at altitudes less than 1 km. For the 

optimum beam size, the CRLB is less than 10 cm/sec for altitudes less than 1 km. It 

should be noted that this is a lower bound on performance and is not necessarily the 

actual performance. It has, however, been shown that for this signal model, if O is 

greater than 10, the CRLB can be reached using ML estimation in as few as 10 shots [73, 

Chap. 10]. 

To include the effects of the inversion error on estimation [Eqs. (3.18)], a specific 

geometry must be assumed. Looking at the Case 1 geometry with three detectors, as 

illustrated in Figure 4-9, the SNR will be identical in all three detectors if the transmit 

beam is circularly polarized. This polarization state insures that there will always be 

energy in both the p- and s-polarization states. In this case the error in each measurement 

is independent and identically distributed (i.i.d.) and the estimation error covariance 

matrix can be written as 

AE = oil (4.72) 

where I is the identity matrix. Inserting Eq. (4.72) in to Eq. (3.18), the velocity error 

covariance matrix can be expressed as 
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A„ =^(ArA)- 

where aj (rad2-sec-2) is the variance of the frequency estimation error, 

A = 
TJRI+B

2 

0 -BO 
45 B/2     B/2   0 

r 45 B/I   B/2   0 

1 
RT + A/RT + B 

Rj -J RJ + B 
[O   0   RT] 

■yJRl+B2 

o      -B -[RT+.JRI+B
2
) 

43 B/2     B/2   -(RT+JRJ+¥) 

-45 B/2   B/2   -(RT + TJR*+B
2
) 

and 

{\
T
A)~

1
 = {R

2
T + B

2
) 

2/3B2 

0 

0 

2/352 

0 

0 

0 

0 i 
3 RT + <JRT + B 

(4.73) 

(4.74) 

(4.75) 

The square root of the diagonals of this matrix represent the error (standard deviation) 

multiplication introduced by inverting Eq. (3.13). The diagonals are plotted in Figure 4- 

40 for the system parameters of Table 4-3. As expected, the ability of the system to sense 

the transverse velocity at high altitudes is poor. 

Including the effects of geometry, the velocity error variances for each velocity 

component are given by 

2{R2
T+B2)cl    2      al 

c2 = 2    •_2 Q     > 3BZ       r     3 r sinz 6 (4.76) 
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2J^+B2)al_2      o2 

3B2       k2     3it2sinzec 

r2 

° •  = ~* U = lL2Bi„*l)    * (4-77) 

and 

a2 (*?+*') CT^ 
V'     3(RT+y[Rf^BT)2 e 

1 <* 
2/1 ,„,.    A ,• (4-78) 3Ä;2(H-cos2e5+2cos9s) 

The lower bound on the standard deviation of the estimation errors are plotted in Figure 

4-41 for the system parameters in Table 4-3 and Case 1 geometry. The x- and v- 

components of the single shot velocity estimation error bounds are less than 1 m/s for 

altitudes less than 1 km and the optimum beam size. As can be seen from the figure, the 

x- and v-component error bounds grow very rapidly with altitudes greater than about 1 

km. In this region, not only is the SNR decreasing, but the geometry limits the ability of 

the system to sense the transverse velocity components. For the z-components, the single 

shot estimation error bound is less than 10 cm/sec for the optimum beam size. In this 

case, the geometry helps the sensitivity to the z-direction because, even at the low 

altitude, the system can sense the vertical velocity [see Eq. (4.78)]. 

This same analysis can be completed for the Case 2 geometry when estimating the 

vertical velocity. In this case, A is a scalar given by 

e 
A = -2cos-^- (4.79) 
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Figure 4-40: Case 1 error multiplication for x- and y-components (solid) and z-component 
(dashed). 
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Figure 4-41: Case 1 (s-pol) standard deviation of velocity estimation errors for 
GL = 3 mm. Solid line is x- and y-components, dashed line is z-component. 
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The lower bound on the estimation variance of the vertical velocity is then given by 

G2 < (4.80) 

'    2*2cos2^- 
2 

The lower bound on the standard deviation of the vertical velocity estimation error for 

Case 2 is plotted in Figure 4-42. From this figure, the vertical velocity estimation error is 

less than 10 cm-sec-1 out to 1 km. Even though the noise multiplication for this case [see 

Eq. (4.79)] is large at low altitudes, the SNR is very high in this region due to forward 

scattering. This gives a lower bound of estimation error that is less than 1 cm-sec-1 at low 

altitudes. 

As stated at the beginning of the chapter, Case 3 was included to see the effects of 

increased horizontal propagation. Therefore, the velocity estimation bound is not 

evaluated for this case. The SNR expressions from this case would be used if a system 

such as that defined in Case 1 was used in a scanning configuration. 
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Figure 4-42: Case 2 (s-pol) standard deviation of vertical velocity estimation errors for 
OL = 3 mm. 



Chapter 5 

DISCUSSION AND CONCLUSIONS 

This research has developed the tools required to start the design of a multistatic 

Doppler lidar system. The expressions derived are valid for any multistatic system, 

pulsed or CW, with independent propagation paths. The application of these general 

expressions to specific configurations indicates favorable operation for a pulsed system. 

There is, however, a considerable amount of research required before a multistatic system 

should be fielded. Applications of a multistatic coherent Doppler lidar include 

operational systems at airport locations, scientific investigations, system test support, and 

model validations. 

The feasibility of a multistatic pulsed coherent Doppler lidar system for measuring 

winds within the boundary layer has been presented. This system will be capable of 

detecting high spatial resolution wind profiles for all three components of the wind 

velocity within the boundary layer. The multistatic configuration also decouples the 

vertical resolution and frequency estimation accuracy. It has also been shown that the 

transmitter and receiver optics are small for useful operation. In fact, the performance is 

improved with the use of smaller apertures. This enables the design of a compact system. 
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5.1 Discussion of SNR Performance 

As indicated in the figures of Chapter 4, the CW SNR is orders of magnitude less 

than that of the pulsed SNR for the system parameters used. For this reason, the CW case 

does not appear feasible for the observation times desired. The pulsed case, on the other 

hand, has adequate SNR for frequency estimation in a single shot. In fact, the SNR is 

high enough that the question of whether it is better to use a system that has high peak 

power and low pulse repetition frequency (PRF) or lower peak power and higher PRF. 

This question was posed by Rye and Hardesty [40] and addressed by Frehlich and 

Yadlowski [54]. It turns out that in the high SNR regime, it is better to transmit many 

low-energy pulses instead of one pulse with the same energy. This fact should be taken in 

to account when designing the system. 

The results also show that there is an optimum aperture size as a function of target 

range. The optimum aperture size for the cases evaluated is on the order of 5 mm, much 

smaller than might be expected. Because the apertures sizes, and thus the transmit and 

local oscillator beams, are small for this system, performance can be improved by making 

the lenses much larger than the beam sizes. If the lenses are designed to be 5 to 6 times 

larger than the beam sizes, the effects of truncation can be ignored and the lens sizes can 

be assumed infinite in extent. The effective aperture sizes are then set by the transmit and 

local oscillator beam sizes. The optimum beam sizes are on the order of 3 mm for all 

three cases. This translates to lenses that must be larger than 15 mm in order to ignore 

any truncation effects. The advantages of a smaller effective aperture are compact design, 

small scattering volume (in the near field), and minimal refractive turbulence effects. 
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In all of the cases examined, the effects of refractive turbulence on the SNR have 

been shown to be negligible for typical turbulence strengths. Only in very strong 

turbulence is the SNR degraded. The effects of refractive turbulence are minimized by 

the small effective apertures. This is because the transverse field coherence diameter of 

the scattered radiation due to refractive turbulence will typically be larger than the 

effective aperture diameter. This implies that the spatial coherence of the scattered fields 

will be maintained over the small effective aperture of the receiver. 

A big advantage of the multistatic configuration is the high spatial resolution. 

Typical Doppler lidar systems are scanned to obtain information about the wind direction. 

This is done at the sacrifice of spatial resolution. Even when detecting only the vertical 

wind profile with a monostatic system, the range resolution can only be improved by 

using shorter pulses. This is at the expense of estimation accuracy. In the multistatic 

configuration, the spatial resolution is determined by an overlap volume and not tied to 

the pulse length of the transmit laser. For the optimum apertures, the scattering volume is 

less than 100 cm3 out to an altitude of 1 km. Compare this to scattering volumes on the 

order of 105 cm3 for the pulse length used in this analysis (250 ns). The small effective 

aperture sizes that can be used also contribute to reducing the scattering volume in the 

near field. 

Comparison of theoretical SNR calculations to actual measured SNR is very 

difficult due to several factors: lack of well calibrated scattering targets; sensitivity to 

alignment of scattered and local oscillator fields; effects of speckle; and the losses due to 

transmission and aberrations in the receiver optics [107]. Typically the theoretical SNR 
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exceeds that of the measured SNR by 5-10 dB [107, 108]. Even if the pulsed SNR 

values from Chapter 4 are reduced by a factor of 3-10, the results are still promising (<1> 

will still be on the order of 20 coherent photoelectrons per shot). 

5.2 Discussion of Frequency Estimation 

The mean frequency estimation problem is greatly simplified for the multistatic 

configuration. In the pulsed multistatic configuration, the return signal is due to the pulse 

moving through the overlap volume. If the overlap volume is small enough, the 

atmosphere will effectively be "frozen" and the return signal can be modeled as a 

Rayleigh phasor. This also assumes that the spectral width of the heterodyne signal due 

to the moving pulse is greater than the Doppler spread induced by velocity turbulence. 

With this signal model, the first order frequency estimation problem is reduced to 

detecting an Af-ary signal sent over a Rayleigh channel, where M is the number of 

frequency bins. In this case, maximum likelihood estimation is simplified to minimizing 

the mean squared error between the return signal and the signal model. 

The Cram6r-Rao bound for this signal model is given in Chapter 3 and applied to 

the specific cases in Chapter 4. This analysis shows that, for the cases examined, the 

standard deviation of the velocity estimates is less than 1.0 m/s for all regions of interest. 

This bound on performance can be realized with as few as 10 shots at an energy-to-noise 

ratio (O) of about 10. 
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The reason this system is not feasible for higher altitudes becomes evident when 

the effects of geometry are included in the frequency estimation error. The error 

multiplication due to geometry becomes large for the transverse velocity at high altitudes. 

This is due to the fact that at high altitudes the receivers are not sensitive to the transverse 

velocity. In other words, at high altitudes, the multistatic configuration approaches the 

monostatic configuration. 

As stated in Section 2.2.3, single shot estimation errors are typically on the order 

of 1 msec-1 when compared to anemometers, and systematic errors are on the order of 

4 cm-sec-1. The single shot lower bound reported in this thesis is as low as 1 cm-sec-1 in 

some cases. Certainly the system proposed in this thesis will not be able to do better than 

the systematic errors inherent in a coherent Doppler lidar. The lower bound on the 

estimation errors presented assumes a perfect system with only additive white noise 

corrupting the measurements. When performance bounds of this proposed system are 

compared to typical numbers quoted in the literature (and summarized in Chapter 2), one 

can see that the strength of this system is not necessarily improved velocity estimation. 

The strength of this design is the improved spatial resolution and ability to measure 3- 

demensional velocities with a single measurement. 

5.3 Applications 

There are several applications for remote wind profiling with lidar. The high 

spatial and temporal resolution wind measurements are important in describing the 
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evolution of mesoscale circulations associated with various atmospheric phenomena. 

Such phenomena include, but are not limited to, convection, density currents, and gravity 

wave activity. The data acquired from such measurements could be used for model 

validation and numerical weather forecasting. Other applications of these measurements 

are detection of wind shear, microbursts, and turbulence, which pose severe safety 

hazards to aircraft. The high resolution of this system can also be used to map wind 

fields over selected regions within the boundary layer and greatly enhance the 

visualization of flow fields, most likely in real time. These wind field maps could also be 

used to validate fine mesh mesoscale models. 

The multistatic system could be implemented in a scanning configuration at an 

airport for detection of wind shear and microbursts during takeoff and landing. The same 

system could be used to determine the takeoff and landing intervals for large jets by 

sensing the wake turbulence. A bistatic configuration, set up as specified in Section 

4.4.2, could be used to profile vertical wind velocities. High resolution vertical wind 

measurements would permit studies of turbulent motion and the evolution of convective 

cells in the boundary layer. 

5.4 Future Research 

There is still a lot of research that needs to be conducted before the system 

outlined in this thesis should be implemented. A more detailed analysis of the detection 

and estimation needs to be addressed. Specific algorithm performance as well as the 
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effects of using longer pulses, in which case the spectral width of the return signal is no 

longer determined by only the transmitted pulse temporal profile. In either case, the 

signal model presented in Chapter 3 would no longer be valid. Under these conditions, 

an evaluation of the signal covariance should be conducted. This has been done for the 

monostatic case [109] and should be modified for the multistatic case. 

This thesis does not address the detailed design issues involved with building the 

system. Some issues that need to be addressed in this area are: getting the LO beam to 

the receivers; optical design of the transmitter and receiver; alignment; and numerical 

effort for real time estimates. The LO beam could be routed to the receiver via single 

mode optical fiber links, but frequency stability may be an issue for large baselines. The 

most difficult problem in the design stage may be the alignment and scanning, especially 

for coherent detection. The optimum location of the transmitter and receivers also needs 

to be addressed. Since this is an application specific optimization, it is not addressed in 

this research. 

Other future research topics include experimental verification of the SNR 

expressions, simulation of the overall performance, performance of a focused system, and 

a closer examination of the CW case. The detailed covariance function of the scattered 

signal may give insight into how the CW case can be improved. Also note, that in the 

CW case, the statistics of the return signal are determined by the statistics of the aerosol 

motions within the scattering volume, which is not addressed in this thesis. 
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Appendix A 

DERIVATION OF COHERENT RESPONSIVITY AND SIGNAL-TO-NOISE 
RATIO 

This appendix shows the detailed integration involved in deriving the expressions 

for coherent responsivity [Eq. (4.20)] and signal-to-noise ratio (SNR) [Eq. (4.24)]. The 

coherent responsivity density is given by [see Eq. (3.99)] 

c(p, z, ,zr) = 'k2 (jT (p, z, ))(jBPL0 (p, zr)), (A. 1) 

where we have assumed independent paths and no spatial variation with respect to time in 

er and espw- Transforming all coordinates to the target referenced coordinate system 

using 

xt =xp xr= XP cos®s + zp sin Qs 

y, = yP yr = yP 

zt=zp+ RT zr = -xp sin 05 + zp cos0s + RR, (A.2) 

Eq. (A. 1) becomes 

c(xp,yp,zp)=l
2(jT(xp,yp,zp+RT)) 

X
\JBPLO(

X
P
C

°SQS +zp sin es,yp,-jcp sine, +zpcosQs+RR)).     (A.3) 

From Eqs. (3.81), (3.93), and (3.100), with the assumptions of deterministic transmitter 

and LO fields and infinite uniform detector, the random irradiance profile of the 

normalized transmitter field at the target becomes 
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U(p,Är))= J Jer(u1,0)^(u2,0)(G(p;u1,Är)G*(p;u2,Är))d2u1d
2»2-     (A>4) 

Using the second moment of the Green's function given in Eqs. (3.115) and 

(3.117), the second moment Green's function in Eq. (A.4) can be written as 

(G(p;u1,/?r)G\p;u2,/?r)) = -^^exp|^-[(p-u1)
2-(p-u2)

2]| 

\2~ 
xexp 

U1~U2 

PO(RT). 
(A.5) 

where a square law structure function is assumed and p0 is defined in Eq. (3.118). Using 

the Gaussian field definitions of Chapter 4 and Eq. (A.5), Eq. (A.4) becomes 

(;r(P'Är)) = 
(2KRT)

2
KG

2
L 

DO     DO 

exp 

x    exp 

«? ikifi 

2oTE 2FTE_ 

M2. iku^ 

2<5TE 2FTE_ 

X 
ik 

exp^—[(p-Ul)
2-(p-u2)

2] 

x    exp 

2R 

2 
"l-"2 

PÄ). 
|2„ j2 d Ujd u2. 

Some algebra and a substitution to sum and difference coordinates, i.e. 

ui + u9 
l* = -4-2-        ß = u,-u2, 

(A.6) 

(A.7) 

gives 
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(JAP>RT)) = \2_„2 (2nRTynci 

( 

x   exp 

DO     OO 

w exp -\i +i 
'TE yRj, 

1 
4a££    2p2

0(RT)J AT 

TE j 

2 

ß p. dV 

dzß (A.8) 

Now, 

OO 

expf- ax2 + ib- x|d2x = — exp 
4a 

(A.9) 

which gives 

(■/r(P^r))=     *2g? 2   f exp 
2^.2    ( kza TE 1 1 \2 

\ RT    FTE J 

1 
• + ■ 

1 
4a'TE    2p'0(RT) 

}TE 

KG, 
'TE 

j_  RT 
+ ■ 

& 
+ ■ 

ß2-|"P-ßfd2ß 

2Rj 

FTE)     o^f     k'fUSr) 2~l( 

xexp 

'TE 1- 
AT 

+ ■ 
RT 2/VT 

re. a2
TEk

2    kV0{RT) 

(A.10) 

and Eq. (4.16) results. The expression for the normalized irradiance of the imagined 

BPLO field is obtained in a similar manner and is not included here. 

Again, transforming to target referenced coordinates yields 

JAxp>yP>Zp + RT)= eT(xp,yp,zp + RT) (A.11) 

and 
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where 

and 

\JBPLO(Xp C0Se5 + Zp Sin05. yp ~
X

P Sin65 + ZpCOsQs + RR)) 

KC>BR(XP>ZP>RR) 
exp 

(^cose^+zpsin9s) + y* 

oBT[zD + RT] = o 'BTi-^p TE 

(1   zp + RT)\(zp + RT) 
+■ 2^.2 ' 

TE k'a TE 

2 , D ,      2i,    -xpsmQs+zpcosQs+RR 
oBR(xp,zp,RR) = aRE\ 1 — 

Ä£ 

(-xpsine^+zpcose5+^) 
2^.2 ra ÄE 

and we have ignored the turbulence effects as they will not change the analytic 

expressions of this appendix. 

The coherent responsivity is obtained by integrating Eq. (A.3) over p, 

C(zp ,RR,RT)= jc(xp,yp,zp )dxpdvp 

(A.12) 

(A.13) 

(A. 14) 

(A.15) 

The limits of integration are extended to infinity because we are using untruncated 

Gaussian functions to describe the average normalized transmitter and imagined BPLO 

irradiances. Substituting Eqs. (A.l 1) - (A.13) into Eq. (A.15), and using the zero order 

approximation for üBT and OBR, the coherent responsivity becomes 
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X2TTTR 

L\ZP>KR>KT' ~  _2_2 \\ 
K  ^BTo^BRo -«-<» 

exp A + y\ 
'BTo 

xexp 
(xpcosQs+yp sin 9S) +y] 

'BRo 

K 1-pl ß 

71 GBTO®BRO 
2_2    _2      eXP 

To 

OO 

x J exp 

-z 2
 sin295 

'BRo 

OO 

J exp -yt 
■+■ 2^2 

\GßT0      ®BRoJ 

fcpfyp 

dy, 

f 
-*, 

1      cos2 9 c 
l<2zncos8cSin9r> 

_2 + ■ -Je. 
'B/fo 'BÄo 

d*P. 
(A.16) 

where the dependence of CBTO and OBä0 on RT and /fo, respectively, is understood. These 

integrals can be found in the integral tables [see ref. 97, page 355], repeated here for 

convenience 

J exp[- p2x2 ± qxpx = exp v Vrc 
(A. 17) 

Performing the integration yields 

C(zp,RR,Rr) = 

OO 

x I exp 

A. TjTß-yK 

2 /   2 2 
K aBToaBRo\GBRo+aBTo 

exp -z 
2 sin295 

P   «2 
'BRo 

(   1       cos29c^ 
■+  

2z_cos9cSin9c
> 

n4\P2BRo + c2BTo][a2BRo + Giro COs2 0S] 

xexp 
z2, cos2 9S sin2 95 

2        2 
CBToCBRo 

'BRO '
2

BRO+G
2

BTO
COS2Q

S 
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A   Iflii 

n{[ GßRo + ^BTo \\y BRo ][ak>+°Lcos2es] 

xexp -z, 
sin2 9« 

'BRo 

K lj-lß 

G2
BTo cos2 Qs sin2 Qs 

2 2 2 
BRo + ®BTo C0S G

2
BRO{G e5) 

^Vl0^""1"0^"]!1 
BTo\\yBRo + CTS7o C0S e5] 

xexp 
sin2 9, 

7Bro' Va5Äo + <JR7V,COS   9, 
(A.18) 

Inserting Eq. (A.18) into (3.108), and assuming a Gaussian temporal profile as in 

Eq. (4.22), the SNR becomes 

SNR(0 = 
ULT\QK2p(RT,Qs) A» •»7"'/f 

hvB^X 

DO 

J x      exp 
-RT 

G2BRo + G2
BTO][G

2
BRO + <*BTo C0^ ®s] 

exp -z, 

BTo 

2 sure 
{GBRO + GBTO

COS
 

Q
S) 

dzr 

ULy]QKzX%TR$(RT,Qs)exp (t-Rr/cf 

hvBwxpKyjn[a2
BRo + c2

BTo][a2
BRo + a2

BTo cos2 95 ] 
oo 

J x      exp 

x     exp 

sin29s 

V°BR0 + Cfkcos2e5    x
2

pc
2 j 

-p xjc 
f      RT t-— dzp, (A.19) 

where we have assumed that K and ß do not change over the scattering volume. If we 

assume that RT is large enough such that the extent of the scattering volume in the 
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Zp-direction is small compared to RT, we can extend the lower limit of Eq. (A. 19) to 

with very little error. Using Eq. (A. 17) the SNR becomes 

(t-RT/cf 
ULT)QK'\%T$(RT,Bs)exp 

SNR(0 = 
TthvBwxp^j[c2

BRo + O2
BTO][G

2
BRO + a2

BTo cos2 05] 

X 
sin26c 

2 

G2BRo + G2BTo C°S2 05      ^W 

xexp V 
t- 

R, 

sin2 6 c 

yG2BRo+G2BToC°S2Qs       ^ j 

ULT\QK2X2TTTR$(RT,QS) 

nhvB„,% 

xexp 

x 

J ®BRo + ®BTo h 2       ,  _2 2 
BRo "•" °BTo cos 05 ] 

(t-RT/c) 
2 ( 

1- gL0 + CTir0 
c°s2 es 

T
2
C

2
 sin2 0S + a2

BRo + a2
BTo cos2 65 , 

T2c2sin2ey+a2
j/;o+ a2,^ cos2 65 

2   2/2 2 2 t„c (a™,, + anTVlcos 

ULr\QK2X%TRV(RT>Qs) 

TihBw^[a2
BRo+a2

BTo\[x2
pc

2 c sin er+On^+an^cos BRo 'BTo{ %] 

xexp 
(t-RTlc)2 

1- 
a2j^+a2

ffi,cos295 

x2c2 sin2 0o + aL„ + cLv, cos2 6 BÄo 'BTo' >sj 
(A.20) 

and Eq. (4.24) results. 



Appendix B 

LIST OF SYMBOLS 

This appendix gives a list of the symbols used in the analysis portion of the thesis. 

In the case that a symbol is used for more than one parameter, the context in which it used 

will make the meaning obvious. 

Symbol 
(units, if applicable) 

A 

B(m) 

B(qu q2, pi, p2) (m^-sr l) 

Bn(r, s, z) 

Bw(Hz) 

BPLO 

C(R, t) 

Cn
2 (z) (m"273) 

CRLB 

D(R, t) 

D'(x,z)(m-1) 

EBPLO^LOJ.S.R 
(W^-nf1) 

ErAV 

FL,LO,R,R,KE,TE (m) 

F 

F(m 

Description 

mapping between Doppler shift and velocity; estimanda 

baseline separation = Jb] +b2
y +b* 

target scattering function 

correlation of refractive index fluctuations 

system bandwidth 

back propagated local oscillator 

coherent responsivity 

refractive index structure constant 

Cramer-Rao lower bound 

direct responsivity 

structure function density 

scalar field amplitude for BPLO, laser, local oscillator, 
transmitted backscattered and received field 

received and transmitted signal energy 

focal length of laser, local oscillator, receiver lens, 
transmitter lens, effective receiver, effective transmitter 

SNR reduction factor 

Fourier transform of complex envelope 
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GD 

G(p;u,/?)(m-2) 

G^(p;u,i?)(m-2) 

7(0 (A) 

Idc,s(A) 

I 

Jij 

JT.BPLOÜ, R) (W-nT1) 

K(R) 

L(m) 

L(t,co) 

LO 

M 

MBPLO,LO,S,7<Xl, X2, Z, t) 

(W-nf2) 

N(W) 

N(r) (m-3) 

N(as; p, R) (nf 5-sr) 

Nod) 

Nz(z) (m"3) 

PD,L,LO,LOD,T (W) 

coo 
^r,/? (m) 

/?(m) 

5(W) 

Si,2(n) 

SNR 

rÄ (sec) 

detector amplifier gain 

Green's function for propagation through random media 

Green's function for propagation through free space 

total detector current 

detector direct current and backscattered signal current 

Fisher information matrix 

elements of the Fisher information matrix 

target irradiance of transmitter and BPLO 

one-way irradiance extinction 

covariance function of white noise process 

distance from receiver aperture to detector 

sufficient statistic for estimation of % and co 

local oscillator 

samples in range gate 

mutual coherence function for BPLO, LO, backscattered and 
transmitted fields 

total noise power \nk\2 = Bw-N0; number of detectors (unitless) 

number density of aerosols per unit volume 

number density of aerosols per unit volume per unit as 

spectral noise level 

vertical profile of number density of aerosols per unit volume 

power of direct detection, laser, LO, LO on the detector, and 
transmitter 

associated Legendre function 

range from transmitter and receiver 

general range 

signal power ls*l2 

complex scattering amplitudes for s- and p-polarization 

signal-to-noise ratio S + N 

measure of the time duration of the observation interval 
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Ts (sec) 

TT,R 

ULQ) 

V(m2) 

V<puqi)(m24f*) 

WÄ7<x) 

y(K)(m2) 

an,bn 

(bx, by, bz) 

c (m-sec l) 

c(p,R,t)(m-2) 

d(p, R, i) (nT2) 
19 e= 1.602 xlO_,y(C) 

ßBPLox,Lo,7<x, R, t) (m-2) 

7(f) (sec"14) 

-34 

s(0 
Ä = 6.626 x 1QT" (J-sec) 

Ä«(1)(P) 

iMs(0 (A) 

7n(p) 

7BPLO^,7<X, R, t) (nf2) 

^ (rad-m-1) 

kUc (rad-m-1) 

m 

sampling interval 

power truncation of laser by transmitter aperture and of 
BPLO by receiver aperture 

pulse energy of laser 

effective scattering volume 

target scattering coefficient 

field transmittance for receiver and transmitter aperture 

Fourier transform of the detector quantum efficiency r^w) 

complex Mie coefficients 

complex amplitude of the return signal 

coordinates of receiver with respect to fixed coordinate 
system (centered at transmitter) 

speed of light 

coherent responsivity density 

direct responsivity density 

electronic charge 

normalized fields for BPLO, laser, LO, and transmitter fields 

complex envelope of transmitted signal 

time dependence of SNR 

Planck's constant 

spherical Hankel function 

noise and signal current fluctuations 

scattered intensities per unit irradiance for s- and p- 
polarization 

spherical Bessel function 

irradiance of normalized fields for BPLO, incoherent 
receiver, and transmitter 

wavenumber = 2iz/X 

laser and scattered wave propagation vector 

particle complex index of refraction 
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mBPLO,5,7<Xl,X2,Z, t)(m   ) 

nit) (W*) 

n(t) (W*) 

n(T,(ö) (J*) 

n(x, z) 

fe, py, Pz) (m) 

p, q (m) 

r(m) 

r(0 (W*) 

r(0 (W*) 

*<0 (W*) 

s(t) (W*4) 

t (sec) 

tc (sec) 

? (sec2) 

u(m) 

v(m) 

yp (m-sec-1) 

vx
p'
y,z (m-sec-1) 

w(Hz) 

vP(0 (W*4) 

w (m) 

x 

(x, y, z) (m) 

(*',/, z')(m) 

(xn,t,r,p> Jn.t.r.pi Zn,t,r,p) (m) 

mutual coherence function of normalized fields for the 
BPLO, backscattered field, and transmitter field 

noise signal 

complex amplitude of noise signal 

crosscorrelation of white noise and time shifted (by x) 
version of the transmitted signal complex envelope 

refractive index fluctuations 

coordinates of target with respect to fixed coordinate system 
(centered at transmitter) 

target transverse coordinates 

particle radius 

return signal with noise 

complex amplitude of return signal with noise 

return signal without noise 

complex amplitude of return signal without noise 

time 

coherence (correlation) time 

mean square duration of transmitted signal 

transmitter transverse coordinate 

receiver transverse coordinate 

velocity vector of particle = vx
px + vy

py + vpz 

x-, y-, and z-component of particle velocity 

spectral width of return signal 

complex amplitude of white noise signal 

detector transverse coordinate 

size parameter = k-r 

point in fixed coordinate system centered at transmitter 

point in fixed coordinate system centered at receiver 

point in north, transmitter, receiver, and target referenced 
coordinate system 
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x, y, z 

x(m) 

z(m) 

A 

AK(m) 

Av (m-sec-1) 

A(T, Co) 

o 
<D„(K, KZ) (m

3) 

a(z) (m-1) 

ß (nf'-sT1) 

8(f) 

8(p) (m-2) 

e 

T\QM 

8 n«, nr 

6(T, (D) 

KCm"1) 

v(Hz) 

^(p), \|/„(p) 

7I„(|l), T„(|i) 

unit vectors 

general transverse coordinate 

general propagation distance 

parameter used to determine difference between pulsed and 
CW versions of 6]ff 

range resolution 

velocity resolution 

likelihood function for x and CD 

covariance matrix of velocity estimate, estimation errors 

coherent photoelectrons 

spatial spectrum of the refractive index fluctuations 

total detector field, backscattered field, and transmitted field 

linear extinction coefficient 

aerosol scattering coefficient 

temporal delta function 

2-d vector delta function 

deviation of received temporal profile from transmitted 
temporal profile 

quantum and heterodyne efficiency 

transmitter and receiver elevation angle measured clockwise 
with respect to north referenced coordinate system 

transmitter and receiver spherical coordinate elevation angle 

bistatic angle = 9„, - Qnr 

squared magnitude of ambiguity function 

spatial wavenumber vector 

wavelength 

cosine of scattering angle 

frequency of the optical field 

Riccati-Bessel functions 

angular eigenfunctions 
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po(fl) (m) 
opt 

Ob 

(m) 

GBR,BT,LLO,R,RE,T,TE (m) 

GBRO.BTO (m) 

'BR.BT (m) 

<4 (m2) 
O/, a (Hz, rad-sec-1) 

as (m2) 

c2
X(a (sec2, rad2-sec-2) 

av (m-sec-1) 

a*     (m2-sec-2) 

x (sec) 

Xp (sec) 

x (sec) 

<l>r,r 

<t>(X, CO) 

co (rad-sec-1) 

®C,LO,D (rad-sec-1) 

co (rad-sec-1) 

co2 (rad2-sec-2) 

co (rad-sec-1) 

cat (rad) 

transverse field coherence length 

optimum aperture size 

standard deviation of b 

Gaussian width of the BPLO beam, transmitter beam, laser, 
LO, receiver lens, effective receiver, transmitter lens, 
effective transmitter 

zero order term in Gaussian width of BPLO beam and 
transmitter beam 

Gaussian width of the BPLO beam and transmitter beam 
without refractive turbulence effects 

effective transverse scattering area 

standard deviation of frequency estimate 

backscatter cross section for a point scatterer 

lower bound on error variance of x estimate and co estimate 

standard deviation of velocity distribution 

velocity error variance for the x-, y-, and z-components of 
particle velocity 

time delay 

pulse length 

maximum likelihood estimate of x 

transmitter and receiver spherical coordinate azimuth angles 

ambiguity function 

radian frequency 

radian frequency of carrier, LO, and Doppler shift 

mean frequency of transmitted complex envelope 

mean square bandwidth of transmitted signal 

maximum likelihood estimate of co 

measure of frequency modulation of transmitted complex 
envelope 
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