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Abstract 

It has been suggested that once silicon carbide (SiC) tech- 
nology overcomes some crystal growth obstacles, supe- 
rior SiC semiconductor devices will supplant silicon in 
many high-power applications. However, a positive tem- 
perature coefficient of breakdown voltage, a feature cru- 
cial to realizing excellent power device reliability, has not 
been observed in 4H-SiC, which is presently the best-suited 
SiC polytype for power device implementation. This pa- 
per reports the first experimental measurements of stable 
positive temperature coefficient behavior observed in 4H- 
SiC pn junction rectifiers. This research indicates that 
robust 4H-SiC power devices with high breakdown reli- 
ability should be achievable after SiC foundries reduce ma- 
terial defects such as micropipes, dislocations, and deep- 
level impurities. 

Introduction 

Theoretical appraisals of SiC power devices have suggested 
that once silicon carbide technology matures sufficiently 
to overcome some developmental obstacles, SiC may sup- 
plant silicon in many high-power electronic applications 
[1-3]. A property crucial to power device reliability is the 
type of breakdown that occurs in high-quality silicon power 
devices. Stable first breakdown in silicon exhibits a posi- 
tive temperature coefficient of breakdown voltage that is 
due to the decrease of the mean free path of an electron 
when a crystal lattice is heated. If no other transport mecha- 
nism competes to destabilize a silicon junction during a 
constant voltage pulse (one that biases the diode into re- 
verse breakdown), the breakdown current will decrease 
with the increase in breakdown voltage that occurs as the 
junction heats up. This property is crucial in preventing 
the formation of damaging hotspots and high-current fila- 
ments during first breakdown. Devices exhibiting nega- 
tive temperature coefficient behavior could be destroyed 
by a transient glitch that temporarily biases a diode into 
the avalanche regime. This is because negative tempera- 
ture coefficient behavior focuses and intensifies breakdown 
current at localized junction hotspots, forming high-current 
filaments that physically damage the device [4, 5]. 

Until now, previous pn junction rectifiers that are process 
compatible with commercial 6H- and 4H-SiC wafers (in 

which the current flows vertically through the wafer 
roughly parallel to the crystallographic c-axis) have ex- 
hibited a negative temperature coefficient of breakdown 
voltage [6-10]. Furthermore, it has been experimentally 
demonstrated that some 6H- and 4H-SiC rectifiers could 
not even reach their steady-state breakdown voltage when 
subjected to a single 0.2-ps pulse [11,12]. It is doubtful 
that SiC devices with unstable breakdown properties could 
be reliably incorporated into many kinds of power sys- 
tems without cost penalties (additional overvoltage pro- 
tection circuitry) and/or performance penalties (excessive 
reverse voltage derating). 

Earlier measurements of SiC junctions with negative tem- 
perature coefficient breakdown may have reflected the pres- 
ence of micropipes, dislocations, and deep-level impurity 
defects, all of which can be reduced or eliminated by im- 
provements to SiC crystal growth. Given the importance 
of stable breakdown properties to the reliability of power 
devices, it is crucial to ascertain whether unstable break- 
down is a fundamental property of SiC that would not be 
avoided by crystal growth improvements. In this work, we 
sought to fabricate and study SiC devices with minimum 
crystal imperfections in order to understand the true na- 
ture of breakdown in higher quality SiC junctions. Since 
crystal dislocation densities of SiC epilayers on commer- 
cial 6H- and 4H-SiC wafers are known to be on the order 
of 104 cm-2, devices with areas less than 5 x 10"5 cm2 

were the primary focus of this work, so that around half 
should be free of micropipes and dislocations [13]. Fur- 
thermore, we employed a high-quality epitaxial SiC growth 
to minimize the presence of deep-level impurities [14]. 

Experiment 

The SiC homoepilayer structure shown in figure 1 was 
grown by NASA Lewis on substrates cut from commer- 
cially available [15] n+ 4H silicon-face SiC substrates pol- 
ished 3° to 4° off the (0001) SiC basal plane. P+n diodes 
with rc-type dopings varying between 2.5 x 1017 and 1.5 x 
1018cm-3 (as measured by 1 -MHz capacitance-voltage pro- 
filing) were produced by atmospheric-pressure chemical 
vapor deposition; these diodes were produced with Si/C 
atomic ratios of 0.16 in the nitrogen-doped and 0.09 in the 
aluminum-doped layers [14,16,17]. A 2000- to 3000-Ä- 
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Figure 1.4H-SiC pn junction diode cross section. 

thick aluminum etch mask, which defined circular and 
square diode mesas ranging in area from 7 x 10"6 cm2 to 4 
x lO^4 cm2, was applied and patterned by metal liftoff. 
Diode mesas were defined by etching to a depth of ap- 
proximately 2 to 3 um: reactive ion etching was used with 
90% CHF3: 10% 02 at 400 W rf, and a chamber pressure 
of 150 mTorr. The etch mask was employed as the topside 
device contact, while blanket-deposited aluminum served 
as a backside contact. 

All measurements were carried out in the dark at room 
temperature on a probing station. Figure 2 shows a typical 
dc /- V (current-voltage) characteristic obtained from a di- 
ode with n-layer doping of 4.3 x 1017 cm-3. Any diode that 
showed leakage current before breakdown or an unsharp 
nonvertical breakdown knee was excluded from further 
testing. The dc breakdown voltages observed in this work 
were consistent with 4H-SiC pn junction dc breakdown 
voltages reported in the literature [18]. 

Because self-heating can cause rectifier junction tempera- 
tures to deviate significantly from ambient temperatures, 
we did not rely on curve-tracer measurements recorded as 
a function of ambient temperature to ascertain the tem- 
perature variation of breakdown voltage. Instead, we re- 
corded the time evolution of device current and voltage 
during the breakdown process. As the device self-heated 
during the application of a breakdown bias pulse, the sign 
of the breakdown voltage temperature coefficient was de- 
termined from the voltage and current transient waveforms 
[4,5]. A positive temperature coefficient was observed 
when the diode voltage increased with the decrease in di- 
ode current as the device was heated by the bias pulse. 
Negative temperature coefficient behavior was observed 
when diode voltage decreased as diode current increased 
during the pulse. 

The calibrated charge-line circuit used to conduct pulsed 
measurements is described elsewhere [11]. This circuit 
reverse biased the diodes by generating rectangular-shaped 
pulses of 200-ns width (with ~1 ns risetime/falltime). The 

Figure 2. Curve-tracer measured I-V characteristics of 4.42 x 10 5 

cm2 circular 4H SiCpn junction rectifier recorded at room tempera- 
ture ambient. 

pulses were manually triggered in a single-shot mode. The 
transient device voltage (VD(t)) and current (ID(t)) wave- 
forms were simultaneously recorded and stored for each 
applied pulse on a dual-channel digitizing oscilloscope. 
The devices under test were checked between pulses for 
any changes in dc /-^characteristics. 

Figure 3 shows a series of device voltage and current wave- 
forms as the input pulse amplitude was increased. All tran- 
sient data in figure 3 were taken from the same 4H-SiC 
diode whose dc characteristics are displayed in figure 2. 
No measurable current (aside from displacement current 
spikes at the rising and falling edges of the pulse) was 
observed for any input pulse amplitudes below the dc meas- 
ured breakdown voltage. At input pulse amplitudes larger 
than the dc measured breakdown voltage, significant con- 
duction current flow is observed, while VD(t) becomes no- 
ticeably smaller than the input pulse amplitude because of 
clamping. The sign of the breakdown voltage temperature 
coefficient could not be ascertained from the relatively flat- 
topped voltage and current data shown in figure 3(a), since 
the combination of self-heating and/or temperature coef- 
ficient was too small to be observed. However, data taken 
at larger pulse amplitudes (fig. 3(b) and 3(c)) clearly ex- 
hibit the classically stable and reliable silicon-like behav- 
ior of positive temperature coefficient of breakdown volt- 
age. As the device heated up during the 200-ns pulse 
duration, the breakdown current through the device ID(t) 
decreased, while the voltage across the device VD(t) in- 
creased. Approximately 2.5 A of peak conduction current 
is observed in figure 3(c), which corresponds to a current 
density of more than 50,000 A/cm2. Despite severe physi- 
cal damage to the contact metallization that prevented tran- 
sient testing at even larger pulse amplitudes, the dc meas- 
ured reverse I-V characteristics of the diode remained 
unchanged from the initial characteristics shown in figure 2. 
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Figure 3. Room-temperature ambient VD(t) and ID(f) data collected 
on 4H-SiC rectifier (same device as fig. 2) subjected to breakdown 
bias pulses from a charge-line circuit, showing positive temperature 
coefficient of breakdown voltage: as device heats up over 200-ns pulse, 
breakdown current flow ID(t) through device decreases, while volt- 
age VD(f) across device increases in (b) and (c). Current spikes at 
rising and falling edges of pulse are due to displacement current, 
while peak conduction current of -2.5 A corresponds to a current 
density >50,000 A/cm2. 

As of this initial report, 10 small-area diodes (out of 13 
that demonstrated dc /- V characteristics of sufficient qual- 
ity to warrant pulse testing) exhibited positive tempera- 
ture coefficient breakdown. In most positive temperature 
coefficient devices, contact failures prevented pulse test- 
ing from reaching sufficient pulse amplitudes for junction 
failure to be observed. Six 4H-SiC diodes larger than 1 x 
10-4 cm2 were pulse tested, and all exhibited negative tem- 
perature coefficient breakdown behavior leading to junc- 
tion failure. Junction failures (as opposed to contact fail- 
ures) were observed on all negative temperature coefficient 
devices tested, regardless of device size. 

Summary 

By studying diodes with junction areas small enough to 
avoid dislocations and micropipes, we have observed a 
positive temperature coefficient of breakdown voltage in 
4H-SiC rectifiers. The experimental results described above 
are consistent with the hypothesis that defects can nega- 
tively affect the breakdown properties of SiC /?n junctions. 
The impact of deep-level impurities and dopant carrier 
freezeout, which have also been suggested as possible con- 
tributing factors to unstable SiC breakdown behavior 
[6,11,12], remains an open question for investigation. Nev- 
ertheless, these results show that/?« junction rectifiers with 
reliably stable breakdown properties can be obtained in 
4H-SiC. This study indicates that robust 4H-SiC power 
devices with the same high reliability as modern silicon 
power devices should be achievable after SiC technology 
matures enough to greatly reduce defects such as micro- 
pipes, dislocations, and deep-level impurities in commer- 
cial SiC wafers and epilayers. 
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