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ABSTRACT 

A COMPREHENSIVE APROACH TO SENSOR MANAGEMENT AND SCHEDULING 

Gregory A. Mclntyre, Ph.D. 

George Mason University, August 1998 

Dissertation Director: Dr. Kenneth J. Hintz 

Heterogeneous multisensor systems have been widely used in a variety of military and 

civilian applications. While the majority of research in multisensor systems is dedicated to 

military applications, other applications include robot navigation, autonomous vehicles and 

paramilitary operations. In general, single sensor systems only provide partial information on 

the state of the environment while multisensor systems rely on data fusion techniques to combine 

related data from multiple similar and/or dissimilar sensors. The goal of a multisensor system is 

to provide a synergistic effect that enhances the quality and availability of information about the 

state of the world over that which would be acquired solely from one sensor. 

Sensor management can be described as a system or process that provides automatic or semi- 

automatic control of a suite of sensors or measurement devices. Previous approaches to sensor 

management all appear to suffer from the mixing of sensor physical requirements with 

information needs. The result has been ad hoc point solutions that treat the problem as a single 



optimization task with a performance measure as a weighted sum of diverse, noncommensurate 

measures. This dissertation presents a new mathematical representation of the multisensor 

system to capture the sensor management process. Based on this representation, an original 

hierarchical sensor management model is developed that partitions the system into its constituent 

processes. These include the sensors themselves, the targets, the Fusion Space, and the 

Information Space. The Information Space is further partitioned into the Mission Manager, the 

Information Instantiator, and the Sensor Scheduler. 

Additionally, this dissertation describes a new approach which uses partially ordered sets to 

construct a goal-lattice that converts qualitative mission goals to quantitative values for different 

sensor actions. This approach superimposes value apportionment on the lattice in order to 

provide a mathematically quantitative and traceable measure of importance (weights) that a 

sensor manager can use to optimize trade-offs among competing management functions to meet 

the mission goals. Another advantage is that these weights can vary as a function of time or 

phase of a mission thus providing a mathematically based methodology to modify the 

preferences in real-time based on changes in information produced by data fusion, a human 

operator, or both. 



Chapter 1 

Introduction 

1.1   Motivation and Problem Definition 

Heterogeneous, multisensor systems (referred to hereafter simply as multisensor systems) 

have been widely used in a variety of military and civilian applications. While the majority of 

research in multisensor systems is dedicated to military applications, other applications include 

robot navigation [1], [2], [3], autonomous vehicles [4], [5], [6], and paramilitary operations (e.g. 

drug interdiction [7]). In general, single sensor systems only provide partial information on the 

state of the environment while multisensor systems rely on data fusion techniques to combine 

related data from multiple similar and/or dissimilar sensors. The goal a multisensor system is to 

provide a synergistic effect that enhances the quality and availability of information about the 

state of the world over that which would be acquired solely from one sensor. 

Until recently, sensors were fewer in number and less capable than they are today. An 

operator could easily decide which sensor to use, when to use it, point and control it, and even 

how to interpret the data. Even the environment in which these systems were used was simpler 

with fewer and less diverse threats. However, the performance characteristics of modern sensor 

systems have improved dramatically resulting in more able and diverse systems [8]. These 

improved performance characteristics include [9]: 



-All weather 

-Jam resistant 

-Large search areas 

-Emission control 

-Improved accuracy 

-Aperture agility 

These technological advances and the use of multisensor systems have also led to a 

tremendous increase in the amount of data requiring processing. The number, types, and agility 

of sensors along with the increased quality and timeliness of data have far outstripped the ability 

of a human to control them. With all of the different types of sensor and noncommensurate data, 

it is often difficult to compare how much information can be gained through a given sensor 

scheduling scheme. This has resulted in a need for an automated sensor management system that 

optimally schedules the selection and use of individual sensors from among the several available 

in the system. 

Sensor management can be described as a system or process that provides automatic or semi- 

automatic control of a suite of sensors or measurement devices in a dynamic, uncertain 

environment. In general, it is the sensor manager that must determine [10]: 

-Which service? 

-What sensor? 

-Where to aim? 

-When to start? 



while monitoring sensor performance. At its simplest level, a sensor management system is a 

control process that must deal with [11] 

-Insufficient sensor resources 

-Highly dynamic environment 

-Varied sensor capabilities 

-Varied sensor performances 

-Randomly occurring sensor failures and 

-Enemy interference and spoofing 

Thus, a sensor manager is expected to [8]: 

-Reduce the operator workload by automating sensor allocation 

-Prioritize measurement requests to meet both integrated flight management and weapons 

control requirements 

-Aid data fusion by coordinating information requests with sensor observations 

-Support sensor reconfiguration and degradation due to partial or total loss of a sensor 

However, sensor management is only one part of the overall process. One paradigm used to 

explain the use of sensors and sensor management is shown in Figure 1-1. The key component 

of this paradigm is information -- specifically how to optimally obtain information about the 

state of the environment through the application of sensors. Van Creveld [12] states that "The 

history of command in war consists essentially of an endless quest for certainty about the state 

and intentions of enemy forces ...". It is in the data fusion portion of the command and control 

system that sensor measurements of the environment are processed in order to reduce the 
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Figure 1-1: Command and Control Paradigm 

commanders' uncertainty about the environment. More specifically, "...data fusion is a process 

dealing with the association, correlation, and combination of data and information from multiple 

sensors and sources to achieve refined position and identity estimation and complete timely 

assessments of situations and threat, and their significance [13]." 

A conceptual depiction of the overall process flow is shown in Figure 1-2. The environment 

is comprised of a set of targets and their states. These target states can be divided into two 

subsets - those targets that have not been detected and those that have been detected and are, or 

will soon be, in track. Those targets that are in track can be further subdivided into two subsets - 

targets that have been identified and those that have not been identified. Sensors under the 

control of the sensor manager make measurements of the physical phenomenon exhibited by the 

targets and combine these into observations. These observations are then processed in order to 
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provide target state estimates. These estimates are then combined with other sensory data and 

external inputs and inferences to obtain information. The sensor manager then uses this 

information along with some, not necessarily time-invariant, performance measure to control the 

next measurements made by the sensors. What these two paradigms show is that sensor 

management is a control process and data fusion is an estimation process. It also highlights the 

fact that both processes are interrelated. 

1.2  Sensor Management Applications 

The impetus for this research is based on what is called the "in harm's way" mission of a 

surveillance aircraft. The aircraft is capable of carrying several different types of sensors (e.g. 

infrared, radar imaging systems, and electronic surveillance measures). The aircraft is sent out 



on a surveillance mission with or without any a priori information about the target environment 

that it is to operate in. The information sought here is state information about any potential 

threats (targets). The goal of the mission is to detect, track, and identify as many targets as 

possible. Several other well defined military applications are presented by Musick and Malhotra 

[9] and Malhotra [14]. Essentially, the Sensor Manager's task is to provide the most effective 

transfer of information from the real world to our internal mathematical model of the world. 

That is, subject to operational constraints, it is desired to minimize the mean-squared error 

between the actual and estimated target state (both kinematic and nonkinematic) through the 

allocation of sensing resources. 

While most of the research in sensor management has been directed towards tactical military 

applications, sensor management is not limited to this application. Two other examples include 

the search and rescue of individuals in hazardous situations and the management of several low 

earth orbit satellites to maintain space object ephemeris. There also appears to be applications of 

this approach to data mining in large databases. The search and rescue example is part of 

NASA's effort to develop and apply aerospace technologies capable of locating aircraft, ships, 

spacecraft, or individuals in potential or actual distress and then provide immediate aid to extract 

victims to safety. While this NASA effort spans a wide range of disciplines, sensor management 

can also be applied to remote sensing. Specifically, sensor management is required to manage 

the wide variety of sensor (foliage penetrating synthetic aperture radar, laser systems and multi- 

and hyper-spectral optical scanners) to detect and identify small targets and optimize tactics for 

search using remotely sensed data. The satellite example is part of an ongoing project for space 

object surveillance involving approximately 30 low earth orbit satellites with severely 



constrained viewing geometry. There are currently about 8000 objects (satellites, space junk, 

etc.) in orbit with a projected 15,000 objects shortly after the turn of the century. The constraints 

placed on the sensor aboard each satellite include: 

-Extremely limited field of view due to the requirement to image the object against deep 

space 

-Can't image against bright background (e.g. sun, moon, earth) 

-Can't imaging in the Earth's shadow 

-Track time duration is approximately 25 seconds (varies with target) 

Additionally, the viewing opportunities also vary in quality and are dependent on 

-Viewing angle (better of larger angle) 

-Distance from sensor to target (quality decrease with increase in distance) 

-Sun angle and object reflectivity (effects object brightness) 

-Target and satellite movement during view 

1.3  Major Contributions 

A variety of partial (open-loop) sensor management approaches have been proposed (and 

will be reviewed in Chapter 2), all of which appear to suffer from the mixing of sensor physical 

requirements with information needs. This commingling of inappropriate, noncommensurate 

measures leads to ad hoc methods of sensor management and no comprehensive framework in 

which to develop the separable components of a complete system. The ad hoc nature of these 

solutions, essentially "point solutions," does not allow for direct comparison, evaluation, or 

evolutionary improvement. 



The research presented in this dissertation proposes a new approach to sensor management 

based on information theoretic measures and lattices of partially ordered sets (POSET) along 

with a new, comprehensive hierarchical sensor management model. Expected information gain, 

as measured by the expected change in entropy, has been shown to be a valid approach to sensor 

management for determining the trade-offs between search, track, and identify. While using this 

measure of information gained is a necessary condition, it is not a sufficient condition for 

complete sensor management. That is, if one uses only information gained as a means to 

perform sensor management trade-offs, it does not take into account the multiplicity of 

competing mission goals. 

The approach developed and presented in this research to overcome this limitation is the use 

of inclusion relationships among goals and partially ordered sets of these goals. This facilitates 

the construction of a hierarchy of goals and a mathematical means to weight the multiple, 

competing goals. The result is, regardless of the type of scenario - military or civilian, a method 

that results in a new, quantitative, and traceable measure of importance that a sensor manager 

can use to perform and optimize trade-off among search, track, and identify information needs. 

This hierarchical, reductionist sensor system introduced here maintains its own 

representation of the world or environment at different levels of abstraction in different levels of 

the hierarchy. The highest level in the hierarchy incorporates mission requirements and human 

inputs to determine the values or relative preferences among search, track, and identification as 

quantified by a weighted, non-stationary, lattice of goals. The next level contains the function of 

information management in the form of an information-to-observation mapper referred to as an 



Information Instantiator (II) which converts an information need into an observation function 

(described in greater detail in Section 2.4). The actual allocation of this observation function to a 

specific sensor or set of sensors which make the measurements is optimized in the next level by a 

separate sensor scheduler. The optimization criteria of the sensor scheduler are based on sensor 

related concerns as well as priorities assigned to observation tasks by the Mission Manager 

(MM) and passed to it by the Information Instantiator. 

A fundamental task of the information space, at least the sensor manager portion of it, is to 

provide the most effective transfer of information from the world to our internal mathematical 

model of the world subject to operational constraints and in consonance with a time-varying set 

of ordered goals. One component ofthat process is the conversion of information needs required 

to search for new targets, maintain targets in track, and identify targets in track. A second 

component is the manner in which the mission manager dispatches requests to the Information 

Instantiator. The details of the quantification of goals and the determination of the relative value 

of search, track, and ID is covered in Section 2.5. 

Since the terminology is not generally agreed upon, for the purposes of this dissertation, the 

following definitions will be used and are consistent with the definitions in the Oxford English 

Dictionary [15]. Information is a change in uncertainty about something. An observation is the 

estimation of a property of a target through the mathematical combination of one or more 

measurements, possibly combined with other data. A measurement is the fundamental 

acquisition of data about a target through the use of some physical property of the target (e.g., 

reflected energy) or environmental property caused to change by the target (e.g., wake). 



10 

The information space can be thought of as operating as the integration of two different 

concepts. The first is a touch it once approach. Touch it once implies that when an event occurs, 

the mission manager decides what to do, dispatches the task, remembers that it has done so by 

putting the task on a queue, and waits for another event (which may be an internal need as well 

as an externally driven event). The second concept is that of a discrete event simulation (DES) 

in which a queue of events to be performed at a later time is maintained. The events referred to 

here are the tasks which have been passed to the II but are also put on MM's queue indicating 

measurements scheduled to be executed in the future. Entries in this queue contain such data as 

which contact number, what kind of information is needed, when is the information needed, how 

much information is needed, and why this event was scheduled. 

Going back to the "in harm's way" example, assume that the mission manager has no a 

priori information about its target world. Of the three choices, neither tracking nor ID is 

appropriate, so search is the only alternative. The search task is dispatched to the sensor 

manager which searches utilizing all the sensors until a target is detected. This detection 

generates an event with which the MM must now deal. Since it is the result of a search, the MM 

can now choose to either identify or track based on the relative value of the two options as 

determined by the non-stationary goal lattice. The Mission Manager then responds to the event 

by dispatching to the II portion of the sensor manager a request for ID or track data from the 

target. This request includes the goal-derived value of the observation from the lattice as well as 

the required accuracy and temporal constraints and places it in its own queue of dispatched 

requests. This is essentially a request for information without indicating how it is to be satisfied. 

The MM is no longer concerned with the queued task unless or until the II and/or the Sensor 



Scheduler reply to the request with either the result of the observation or an unable-to-observe 

acknowledgment. It is important to note that an unable-to-observe response may be caused by 

too restrictive a requirement on the information, i.e., a request for the information too soon or at 

too low of a priority to preempt other executing or scheduled sensor manager tasks. 

1.4  Dissertation Overview 

Chapter 2 provides a comprehensive description and literature review of the state-of-the-art 

sensor management including a discussion of a newly proposed, mathematically rigorous sensor 

management model of a multisensor system. Also discussed is the formulation of a new and 

original comprehensive model which is used to develop an information theoretic approach to 

sensor management combined with the use of partially ordered sets to compute weights or values 

of different sensor functions in order to facilitate the trade-offs between them. 

The goal of the research presented in this dissertation is to apply measures of information to 

managing multiple sensors in order to obtain a near optimal real-time sensor utilization within 

the constraints of the mission requirements and sensor limitations. Chapter 3 briefly reviews the 

use of information theory within the context of sensor management including a description of the 

measures that will be used for calculating the expected information gain for search, track, and 

identification. It further discusses why information is chosen as the measure to maximize. 

Kinematic state estimation is an important aspect used within a sensor management system. 

As such, a review of maneuvering target tracking is presented in Chapter 4 along with a 

comparison of several Kaiman filter models used in the target kinematic state estimators. 
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The simulation of the proposed sensor management model is presented in Chapter 5 and the 

results are presented in Chapter 6. Finally, Chapter 7 provides a summary of the work presented 

here and concludes by discussing the strengths and limitations of this proposed sensor 

management model along with possible future research. 



Chapter 2 

Sensor Management and Sensor Scheduling 

2.1  The Sensor Management Role 

As discussed in Chapter 1, technological advances and the use of multisensor systems have 

led to a tremendous increase in the amount of data being processed that has far outstripped the 

ability of a human to control it. The data provided by different sensors is of different units, 

dimensions, and types (detections, position, or target class or subclass). With all of the different 

types of sensors and this noncommensurate data, it is often difficult to compare how much 

information can be gained through a given sensor scheduling scheme. This has resulted in the 

need for automated sensor management systems that optimally schedules sensor measurements. 

Often the terms sensor management and sensor scheduling are used interchangeably but they 

are not the same. Sensor management can be defined as "...the process which seeks to manage 

or coordinate the use of sensing resources in a manner that improves the process of data fusion 

and ultimately that of perception, synergistically [16]." This reduces to an almost trivial 

situation if there is only one sensor or no contention for sensor resources. Sensor scheduling 

refers to the actual allocation of measurement tasks to specific sensors. Figure 2-1 depicts the 

evolution in sensor management research and development (R&D) as characterized by Denton, 

et al.[\0] As sensor systems and the associated computers and signal processing techniques 

13 
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Figure 2-1: R&D in Sensor Management Systems [10] 

improved, the levels of data processing also evolved. Sensors of the 1960's era were simple 

enough that the pilot performed both the sensor management and data fusion functions himself. 

Present-day sensors are more agile and more numerous resulting in an increase in the amount of 

data being processed. "As data quantities increase and control choices multiply, workload 

increases exponentially and eventually even the most able pilots begin to miss important 

opportunities or fail to recognize critical situations [9]." This has resulted in the need for 

integrated automatic or semi-automatic sensor management systems. 

Popoli [17] describes sensor management as a feedback control system. The system 

attempts to obtain the most information from the available sensors by continually monitoring the 

sensors' performance. This is done by comparing performance relative to a specified criterion 

(see Rothman and Bier [18] for a comprehensive list of performance measures). This generates 

feedback control to the sensors. 
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Sensor management is important in terms of the benefits it provides over non-coordinated 

sensor operation. By automating the process, it reduces the operator workload. The operator 

defines the sensor tasking criteria instead of controlling multiple sensors individually by 

specifying each operation to be performed by each sensor. In an automated, semi-autonomous 

sensor management system, the operator concentrates on the overall objective while the system 

works on the details of the sensor operations. This allows for multisensor fusion by taking 

advantage of the strengths of each sensor. Additionally, the feedback within the sensor 

management system allows for faster adaptation to the changing environment. Thus the sensor 

management system effectively uses the limited resources available [17]. 

The representation of the sensor management function and its relationship to data fusion 

developed and used in this research is shown in Figure 2-2. Sensors are tasked to make 

measurements of the environment. These measurements are then processed to obtain 

observations and then combined to obtain information. This information is used by the Mission 

Manager (along with internally or externally generated performance measurements) to generate 

information requests to be processed by the Sensor Manager. The Sensor Manager is partitioned 

into two orthogonal functions, one concerned with the information to observation request 

mapping (Information Instantiator) and the other concerned with mapping these observation 

requests to sensors measurement requests or tasks (Sensor Scheduler). It is important to 

distinguish between the functions performed by the Information Instantiator and the Sensor 

Scheduler. 
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Figure 2-2: A Sensor Management System Showing the Relationship Between Data Fusion 
and Sensor Management 
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While the Mission Manager is concerned with metasensor issues such as: 

-How accurately to measure? 

-Which service to perform (e.g., search, track, fire control, etc.)? 

-From what physical location of the environment to obtain a measurement? 

-When is the earliest usable time to begin the measurement? 

-What is the latest usable completion time for the measurement? 

the problem for the Information Instantiator is to determine how to maximize the effectiveness of 

individual sensors or a collection of sensors while simultaneously optimizing such conflicting 

objectives or goals as 

-Detection 

-Tracking 

-Identification/Classification 

-Emission control (EMCON) 

In contrast, sensor scheduling deals with intrasensor which include: 

-Which sensor or combination of sensors can best perform the measurements required of a 

observation task? 

-How do sensor interact (e.g. radar interfering with ECM)? 

-Which sensor mode? 

-What scan volumes, beam scheduling and/or dwell-time? 

In order to determine how to accomplish a list of tasks based on sensor availability and 

capabilities, Zhang and Hintz [19] developed an on-line, dynamic, preemptive sensor scheduling 



algorithm called the On-line, Greedy, Urgency-driven Pre-emptive Scheduling Algorithm 

(OGUPSA). Mclntyre and Hintz enhanced [20] the OGUPSA algorithm and demonstrated its use 

in a sensor management simulation [21]. 

2.2  Requirements, Functions, Principles, and Problems 

The goal of sensor management is to perform the right task at the right time on the right 

object based on external performance measures or criteria. This is a complex task considering 

that the sensors must work within a highly dynamic, nonstationary environment and with finite 

sensor capabilities and availabilities. It is important to note that the sensor manager is trying to 

optimize the utilization of a finite set of sensors with a finite computational capability in this 

dynamic, non-stationary environment to maximize the flow of information about the 

environment so that a mission (goal) can be successfully completed (achieved). As a result, the 

sensor manager must [8] 

-Permit maximum flexibility for sensor resource allocation 

-Maintain mission effectiveness in a degrading hardware environment 

-Possess maximum self monitoring capability 

-Exhibit minimum response time while servicing many near-simultaneous requests 

while the primary functions of sensor management are: 

-How accurately to measure? 

-Which service to perform (e.g., search, track, fire control, etc.)? 

-From what physical location of the environment to obtain a measurement? 

-When is the earliest usable time to begin the measurement? 

-What is the latest usable completion time for the measurement? 
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The general principles involved in a sensor management system to effectively accomplish 

the above functions include [9]: 

-Plan to use all sensors (offensive & defensive) 

-Value long-term goals of survival and success, not just accuracy and identity 

-Dynamic environment dictates adaptive methods 

-Choose a modeling technique that is mathematically sound, comprehensive, and tractable 

-Account for dissimilarities in sensor ability 

-Eliminate redundant sensor allocations and take advantage of sensor synergies 

-Provide for emission controls (passive and low probability of intercept modes) 

-Achieve iteration rates in planning that keep pace with all environment changes 

-Shed load gracefully when sensor burden hits limits 

-Consider adaptive-length planning horizons. 

The problems that must be dealt with by a sensor management systems include [11]: 

-Insufficient sensor resources 

-Highly dynamic environment 

-Varied sensor capabilities 

-Varied sensor performances 

-Randomly occurring sensor failures and 

-Enemy interference and spoofing. 

2.3  Sensor Management Techniques 

A variety of techniques have been proposed or applied to the area of sensor management. 

Buede and Waltz [22] discuss several issues that have been proposed. They include heuristic or 
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ision rule based systems with greedy search algorithms; optimization techniques that include dec 

theory or utility theory, linear programming, and fuzzy set theory, and team theory. Musick and 

Malhotra? review recent applications which include artificial neural networks, decision 

theoretics, information theory, and mathematical programming techniques including Linear, 

Nonlinear, and Dynamic Programming. Several other authors [17], [23], [24], [25], [26], [27], 

[28] address the use of Knowledge-based systems or expert systems. 

One of the first articles to apply optimization techniques to sensor management is by Nash 

[29] in which he uses linear programming to determine sensor-to-target assignment for targets 

being tracked. Nash uses the trace of the Kaiman filter error covariance matrices as the costs 

coefficients in the objective functions. Also, he uses the concept of pseudo-sensors to handle 

slack sensor assignments for the case when there are fewer targets then sensor tracking 

capability. Fung, Horvitz, and Rothman [30] develop a decision theoretic sensor management 

architecture based on Bayesian probability theory and influence diagrams. Manyika and 

Durrani-Whyte [31] use a decision theoretic approach to sensor management in decentralized 

data fusion while Gaskell and Probert [32] develop a sensor management framework for mobile 

robots also based on a decision theoretic approach. Malhotra [14] discusses the temporal nature 

of sensor management and describes the sequential decision process as a general Markov 

decision process. Dynamic Programming is a method for solving a Markov process except that 

it is a recursive algorithm that determines minimum costs based on the final state and works 

backwards. Due to this requirement to know, a priori, the optimal cost at each stage and the 

possible combinatorial explosion in enumerating each possible actions in a Dynamic Program, 

Malhotra proposes using Reinforcement Learning as an approximate approach to Dynamic 
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Programming while Washburn, et al [33] present a sensor management approach based on 

Dynamic Programming to predict the effects of future sensor management decisions. 

Two optimization approximation approaches applied to sensor management in the literature 

include the use of fuzzy reasoning and artificial neural networks. Molina Lopez, et al [34] 

present a sensor management scheme that accomplishes sensor tasking using knowledge-based 

reasoning and fuzzy decision theory. Zhongliang, Hong, and Xueqin [35] use a back propagation 

neural network to track maneuvering targets over a wide range of conditions. Their target 

tracking scheme utilizes parallel Kaiman filters and uses the neural network to improve position, 

velocity and acceleration tracking precision. Brownell [36] applies neural networks for sensor 

management and diagnostics in a production plant to increase energy efficiency while reducing 

waste and pollution. 

Several recent papers have been investigating the application of Information Theory in order 

to develop a metric that a sensor management system can use to perform sensor-to-task trade- 

offs. Information Theory, in the form of changes in entropy, has been used in a variety of 

applications. The most widely used measure of uncertainty is entropy but others include 

maximum entropy probability estimation, discrimination information functions, and mutual 

information functions. Hintz and McVey [37] first proposed the use of an information theoretic 

measures in scheduling a single sensor to track multiple targets. They describe situations where 

there is either insufficient computation power to utilize all of the available data or where there 

are fewer sensors than processes to measure. Their approach is to treat the sensors as 

constrained communications channels and compare them to Shannon's [38] measure of 
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information capacity in a bandlimited channel. The basis of their approach assumes that the 

channel is already being used to its maximum capacity in a coding sense, and that more 

information about the states of multiple processes can still be obtained by choosing that process 

to measure which will yield the greatest decrease in its uncertainty. Using this analogy, they use 

the expected change in entropy (as measured by a norm of the error covariance matrix) as a 

measure of expected information gained for determining which target state estimates to update. 

This measure is used to maximize the amount of information at each sample interval. Hintz [39] 

then expands the use of this measure to the cueing of automatic target recognition systems. The 

result of these two papers is that they place search, track, and identification measure of 

information into a commensurate space. Mclntyre and Hintz [40] use this entropy based 

information theoretic metric to perform search versus track trade-offs in a simulation program. 

Another Information Theoretic approach presented in the literature uses discrimination gain 

which is based on the Kullback-Leibler discrimination information function [41]. Schmaedeke 

[42] uses discrimination gain as the cost of sensor allocation in Nash's Linear Program objective 

function to determine the sensor-to-target tasking. While he shows how this optimally schedules 

sensors at each time increment, the Linear Program does not run fast enough for real-time 

applications. Kastella [43], [44] and Schmaedeke and Kastella [45] apply discrimination gain to 

determine the resolution level of a sensor for measurement to track association. Lastly, 

discrimination gain is used by Kastella [46], [47] and Kastella and Musick [48] to determine 

where to search for, and then track, targets based on discrete detection cells representing the 

probability of a target being present in a cell first for static targets and later for moving targets. 
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Table 2-1: General Sensor Management References 

Focus of Article 
Discusses performance criteria 
Defines sensor manager requirements and functions 
Defines sensor management, its need, how to accomplish it, and 

benefits from its use 
Describes sensor management role in sensor fusion 
Discusses sensor management issues 
Research at British Aerospace 
JDL fusion model including sensor management as Level IV 
Drug interdiction 
Compares several management techniques to detect and classify 

targets 
General discussion of sensor management 
Drug Interdiction/Theater Surveillance 

Tactical Aircraft 
Manufacturing Robot 

Author 
Rothmanand Bier [18] 
Denton, et al. [10] 
Popoli[17] 

Waltz and Llinas [49] 
McBryan, et al. [22] 
Upton and Wallace [50] 
White, et al. [51] 
Chong and Liggins [7] 
Kastella and Musick [48] 

Musick and Malhotra [9] 
Liggins and Bramson 
[52] 
Marsh, et al [53], [54] 
Lynch and De Paso [55] 

A good summary of data fusion (1) and sensor management (2) and the fundamental issues 

that they must address is provided by Manyika and Durrant-Whyte [16]. The authors state what 

the issues are and I quote 

1. How can the diverse and sometimes conflicting information provided by 

sensors in a multi-sensor system, be combined in a consistent and coherent 

manner and the requisite states or perceptual information inferred? 

2. How can such systems be optimally configured, utilised and coordinated in 

order to provide, in the best possible manner, the required information in often 

dynamic environments? 

The techniques used in sensor management along with their applications are categorized and 

presented in two tables. Table 2-1 lists several general discussion references with a descripti 

of the main focus of the article while Table 2-2 presents a list of techniques and applications 

tion 
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Table 2-2: Summary of Sensor Management Techniques and Applications 

TECHNIQUE APPLICATION 
Heuristic Tactical aircraft [56], [57] 

Tactical aircraft [58] 
Rohde and Jamerson [59] 

Expert System 

Multiple Experts Architecture 

Tactical aircraft [17], [23], [24] 
Surveillance networks [25] 
Tactical navigation [26] 
ESA Radar control [27] 
Air defense [28] 

Utility Theory Tactical aircraft [8] 
ESA Radar scheduling [60] 

Automatic Control Theory Tactical aircraft [61] 
Fuzzy Logic/Theory 
Fuzzy Decision Trees 
Fuzzy Reasoning 

Tactical aircraft [17] 
Tactical aircraft [34] 

Cognition Command, Control, Communications [62] 
Decision Theoretic 

Bayesian Belief Networks 

Tactical aircraft [30] 
Mobile robot [31] 
Mobile robot [32] 

Probability Theory 
Bayesian Approximation 
Dempster-Shafer Evidence Theory 

Robotic sensor estimation [63] 
Mobile robot [64] 

Stochastic Dynamic Programming 
Reinforcement Learning 

Tactical aircraft [33] 
Tactical aircraft [14], [65] 

Linear Programming Sensor to target assignment optimization [29], [42] 
Neural Networks Production plant control [36] 

Tracking maneuvering targets [35] 
Genetic Algorithms Scheduling for sensor management [66] 
Information Theoretic 
Shannon entropy 

Shannon entropy 
Shannon entropy 
Shannon entropy 
Shannon entropy 
Shannon entropy 

Kullback-Leibler/Discrimination 
Gain 
Kullback-Leibler/Discrimination 
Gain 
Kullback-Leibler/Discrimination 
Gain 
Kullback-Leibler/Discrimination 
Gain 

Military communications, Multiprocess Control, 
Human supervisory control [37] 
Sensor cueing [39] 
Drug interdiction/Theater surveillance [67] 
Mobile robot [16], [68] 
Search versus Track trade-offs [21], [40] 
Sensor management in a decentralized sensing 
network [69], [70] 
Sensor to target assignment optimization^ 

Tactical aircraft [71] 

Target detection and classification [46], [47], [48] 

Multitarget tracking [45] 
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presented in the literature . The major drawback to most of the references in this survey is that 

they tend to be point solutions with no mathematical framework for describing, predicting, and 

comparing performance among various alternatives. This leads to the proposal of a new 

mathematical model in the next section. 

2.4  Mathematical Model 

Given any multisensor system, sensors make measurements of the environment. These 

measurements are combined into observations, and possibly combined with other data to form 

estimates. These estimates are then combined to produce information. It is this information that 

is used along with performance measures to control sensor tasking. While this description 

captures the control and estimation process and provides a satisfactory explanation of the 

interaction between sensor management and data fusion, there are other issues and components 

in this process that must be considered. The overriding issue is the consideration of the temporal 

relationships involved in the process. The other components include search, track, and 

identification techniques. This leads to the need for a mathematically well-formed, 

computationally efficient, and near-optimal comprehensive sensor management system. 

The formulation of the comprehensive sensor system model presented here is inspired by 

Malhotra's general analytical model [14] but is mathematical representation that is directly 

applicable to sensor management. The model is shown in Figure 2-3 complete with all of the 

processes - search, track, identification, the fusion space, and the information space (which 

contains sensor management). The term "space" used in fusion and information space is based 

on the definition of a space as defined by James and James [72] as "Any set or accumulation of 
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Figure 2-3: Mathematical Model of Target World and Sensor Manager 
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things, the members being called elements or points and usually assumed to satisfy a set of 

postulates of some kind." More specifically, they are metric spaces which is defined by James 

and James as "A set 7 such that to each pairxj> of its points there is associated a nonnegative 

real number called their distance, which satisfies the conditions: 

1) p(x,>0 = 0,iffx = v 

2) p(x,y) = p(y,x) 

3) p(x,y) + p(y,z) = p(x,z) 

The function p(jc,;y) is said to be a metric of T." 

The postulates of the detection space are not covered here but the postulates of the information 

space include 

1) Entropy being a measure of uncertainty 

2) Change in entropy is equivalent to change in information 

3) Total information available at a given time is measurable 

4) Total information available if all processes were to be observed at a given time is 

measurable and provides an upper bound, and 

5) Expected information gain for a given scheduled sensor task is measurable. 

These postulates will be discussed in further detail in the subsequent chapters. The fusion space, 

which contains the data fusion process, is shown in more detail in Figure 2-4. An expanded 

description of the information space comprised of the mission manager and sensor manager is 

shown in Figure 2-5. 

The target models shown in Figure 2-3, both detected and undetected, are represented with the 

identical discrete event model. For the undetected target case, the true model is not known to 



28 

4 

4 

Detector 
Device 

*? or {<t>} 

State 
Estimator 

Classifier 
Device 

A. 

xk 

Sensor taskings 
(from sensor manager) 

 y  
-► Undetected 
->• Target pdf 
->       Update 

Undetected Target 

pdf \p' (*,>')) 

tf 
*k 

-^ Data        I 
g       Fusion      | 

Estimate 
Extrapolation 

Data 

Ä- 
pu(*,y) 

tf 

*>.* + ! 

Database queries 

Base       H ► 

FUSION SPACE 
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the sensor manager but the estimator target model does influence target detection during the 

search process. Once a target has been detected (but not yet identified) and is in track the same 

model which has been used in the search process is used in the tracking portion of Figure 2-3. In 

the case of target tracking, one can decide between decentralized or centralized estimation and 

fusion. Also a variety of tracking methods such as innovations-based adaptive filtering, multiple 

model approach, and image-based direct maneuver estimation can be used [73]. 

As can be seen in Figure 2-5, the Mission Manager and the Sensor Manager work within the 

Information Space. It is through the use of information measures and evaluations of goals that 
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the Mission Manager computes information requests and the Sensor Manager converts these 

information request to actual sensor measurements through the intermediate step of observations 

requests to the information instantiator. Of particular interest is the role of the sensor manager in 

that it subsumes two, essentially orthogonal tasks, information acquisition management and 

sensor scheduling. 

Previous approaches have treated the sensor management problem as a single optimization 

task with a performance measure as a weighted sum of diverse measures. Since the goals of the 
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information-to-observation instantiation are fundamentally those of mapping the observation 

functions to individual sensors or pseudo-sensors, the two processes can be partitioned into two 

distinct processes. These two processes can be individually locally optimized (possibly globally 

suboptimal) based on separate performance measures predicated on appropriate, yet necessarily 

imperfect, models of the other processes which they subsume. That is, the information manager 

instantiates requests for information into the specific type of observation which will satisfy that 

requirement without regard to the particular sensor which will be used to perform the 

observation. In this manner, it can maximize the flow of information from the world into the 

information space representation of the world without investigating all options. That is, it makes 

an optimal decision based on an imperfect and incomplete model of the actual sensors, but in 

doing so, it reduces the optimization to one which is manageable and calculable in real time. 

The sensor scheduler, on the other hand, does not need to know how the measurements are 

going to satisfy some higher requirement for information. It only needs to concern itself with the 

optimal packing of these measurements into the time allotted as well as distributing the 

measurement tasks among the available sensors while simultaneously keeping the load balanced 

and assuring that all sensors are utilized to their maximum capability. 

For example, the Information Instantiator does not care whether an ESM, FLIR, or RADAR 

is used to obtain a bearing that it needs to improve the estimate of a target's state. It is only 

concerned with the fact that it needs an observation of a particular type and accuracy level with 

which to compute the information to satisfy a higher level request. That is, the Information 

Instantiator only needs to have some bound on the information rate which can be achieved with 
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the sensor suite, without regard for the specific sensors. In the ideal case, there is some feedback 

from the sensor scheduler to the Information Instantiator reflecting its real-time capabilities as 

they degrade or additional sensors come on-line. Likewise, the sensor scheduler is not concerned 

with the reason for the observations, but is only concerned with the resources that it has available 

to fulfill the observation requests. 

Another way to look at this is that the information manager does not perform micro- 

management, but assumes that within some bounds, the sensor scheduler can satisfy most of its 

measurement needs. Those that it can't satisfy are returned to be reprioritized or discarded. It 

further assumes that the information manager has approximate models of the sensors from which 

it can obtain measurements, but has no particular interest in which specific sensor the sensor 

scheduler uses. 

2.5 Applying Partially Ordered Sets to Sensor Management 

Difficulty arises when trying to prioritize or determine the weight for each management 

function in order to perform the requisite trade-offs. The use of POSETs and lattices allows one 

to superimpose a method of apportioning weights to the mission goals that a sensor management 

system supports. This method is unique to this research and represents a quantum step forward 

for the integration of "soft" goals with hard limitations. 

2.5.1  Partially Ordered Sets and Lattices Theory 

The theory of orderings or ordering relations plays an important role throughout mathematics 

[74] and it is this method that will be effectively applied to the development of a comprehensive 
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sensor management system. As a preliminary, several definitions are useful. When talking of 

ordering relations, it's convenient to read the symbol "<" as "is included in" rather than the more 

usual "is numerically less than". A partially ordered set or POSET is defined as "...a set which 

has a relation x < y, or 'x precedes y\ defined for some members or x and y satisfying the 

conditions: (1) If x < y then y < x is false and x and y are not the same element. (2) If x < y 

and y < z, the x < z [72]." More specifically, a POSET is based on an ordered pair (^,<), 

where X is a set and < is an operation or dyadic inclusion relation over A' that must satisfy the 

three requirements of reflexivity, asymmetry, and transitivity [74], [75], [76]. These properties 

are defined as: 

- For all xeX, x<x (Reflexive) 

- For all x,y e X, if x < y andy < x, then x = y (Asymmetric) 

- For all x,y,z e X, if x < y and y < z, then x < z (Transitive) 

If all of the orderings are not specified, then the ordering relationship is called a partial ordering. 

If the POSET is further restricted such that for any two elements in the POSET have both a 

greatest lower bound (gib) and a least upper bound (lub), then the elements form a lattice. 

Usually a lattice represents the relationship among the elements of a set. A common example of 

this is the Hasse diagram. 

Two examples are presented here to provide an intuitive understanding of POSETs and 

lattices for those unfamiliar with the concept. While POSETs occur throughout mathematics and 

are used extensively for machine minimization in Sequential Machine Theory, most examples 

are based on algebras or sets. Two examples shown below use a convenient illustration of a 

POSET called the order diagram or Hasse diagram. The first example is an algebraic one 
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Table 2-3: Integer Inclusion 
Ordering Relations 

100 

Element of X "integer divisors of 

100 100,50,25,20, 10, 

5, 4, 2, 1 

50 50,25, 10,5,2, 1 

25 25, 5, 1 

20 20, 10,5,4,2, 1 

10 10,5,2, 1 

5 5,1 

4 4,2,1 

2 2,1 

1 1 Figure 2-6 Lattice For Integer Division Ordering 
Relation 

based on the inclusion relationship "is an integer divisor of." The relationship is defined as 

R:x<y with < defined as integer divisor and the set ^={1,2, 4, 5, 10,20,25,50, 100}. The 

resulting inclusion relationship for X is shown in Table 2-3 and the accompanying Hasse diagram 

(or lattice) of the POSET is shown in Figure 2-6. The second example is based on the 

relationship R:x < y where < is defined as "is a subset of and the set is^={ {abcdef}, 

{{ab},{ef}}, {{ad},{beef}}, {ab}, {ef}, {a,b,c,d,e,f} }. The lattice for this POSET based on the 

subset ordering relation is shown in Figure 2-7. 

2.5.2  Computing Weights Using POSETs 

As discussed earlier, expected information gained has turned out to be a necessary but not 

sufficient condition to perform the necessary task trade-offs required for complete sensor 
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Figure 2-7: Lattice of Subset Ordering Relation 

management. That is, if one uses only information gained as a measure with which to perform 

sensor management trade-offs, it does not take into account the multiplicity of competing 

mission goals which must also be considered. By defining an ordering relation among the 

mission goals, the theory of order relations, or more specifically partially ordered sets, can be 

used to construct a set of goals into a lattice and superimpose on this a method of apportioning 

relative values among the goals. The values can be determined by starting with the top node of a 

POSET having a weight of 1. In the absence of any overriding preferences such as changing 

mission requirements, the value of a goal is uniformly distributed among the arcs leaving that 

node. The value for each node is then computed by summing the values of all the incoming arcs. 

An example of a lattice with uniformly apportioned values and 13 nodes is shown in Figure 2-8a. 

The bottom two nodes, which represent actions which can be performed, represent the lowest 
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"soft" goals 

0.28       0.28-4» 

real, measurable goals 

a) Uniformly apportioned values b) User preference apportioned values 

Figure 2-8: Lattice with Values Apportioned Uniformly Versus User Preference 

level goals and their values are 0.39 and 0.61, respectively. These values can then be used for 

deciding how frequently to perform which actions or what the relative priorities of the individual 

actions should be. 

In the case of changing user preferences, the values can be distributed among the outgoing 

arcs according to these preferences rather than the previous uniform distribution. The 

calculations of the revised values of the lower nodes then is straightforward as described above. 

For example, if the weights of the three nodes in the second layer are changed to 0.7, 0.2 and 0.1, 

respectively, the weight of the bottom two nodes change to 0.53 and 0.47, respectively, as shown 

in Figure 2-8b. 
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2.5.3  Two Real-World Goal-Lattices 

While most sensor management research has been oriented toward military applications, the 

use of POSETs and lattices can easily be applied to both civilian and military situations to 

perform and optimize trade-offs among sensor management tasks. The first step in using 

POSETs is to identify the goals of any given mission. The second step is to define the ordering 

relation which allows one to build the POSET and associated lattice. The last step is to assign 

and compute the values for the goals that the sensor manager must trade-off. 

A useful civilian example where POSETs and lattices can be applied to is the National 

Aeronautics and Space Administration (NASA) mission. The NASA's Strategic Plan (dated 

May 1994) identifies three major mission areas ~ scientific research, space exploration, and 

technology development and transfer. More specifically, NASA [77] lists them as: 

- "To explore, use and enable the development of space for human enterprise" 

- "Advance and communicate scientific knowledge and understanding of the Earth, the 

solar system, and the universe, and use the environment of space for research" 

- "Research, develop, verify, and transfer advanced aeronautics, space, and related 

technologies" 

Several sub-goals, both from NASA and added by the author, have been identified along with 

how they relate to the above three mission areas. A complete list of these NASA goals is 

included in Appendix 1. 

An example of a military application is the multiple United States Air Force's (USAF) 

missions. Several mission areas are defined in the Joint Chief of Staff Publications (JCS Pub 1 
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and Pub 3) and Air Force doctrinal manuals -- AFM1 -1, Basic Aerospace Doctrine of the United 

States Air Force and AFM 1-10, Combat Support Doctrine (currently being rewritten as Air 

Force Doctrine Documents) -- that define and explain Air Force doctrine. These publications 

and manuals outline six separate mission areas which include Offensive Counterair (OCA), 

Defensive Counterair (DCA), Air Interdiction (AI), Battlefield Air Interdiction (BAI), Close Air 

Support (CAS), and Suppression of Enemy Air Defenses (SEAD). Specific goals within each 

mission area are further described in USAF's Air Command and Staff College course material 

[78]. These goals are presented in Appendix 2. 

2.5.4  Ordering the Goals 

Once the goals have been identified (the set, G), as in these 2 examples, the next step is to 

define an ordering relation (<) on them which allows one to build a POSET (G, <). The ordering 

relation used in this research is a precedence ordering that simply states that a subordinate goal 

"is required to accomplish" in order for a goal to be satisfied. Using this ordering relation, a 

lattice of the POSET based on the NASA mission statement and goals is shown in Figure 2-9 

(Note: not all of the subgoals could be identified so the lattice is incomplete leading to the 

unusual structure of the lattice). The lower portion of the diagram comprises goals for an 

assumed, but likely, fully autonomous, unmanned Mars explorer with significantly more 

capabilities than the recently used Sojourner Mars rover. The unordered subgoals of Space 

Exploration, Scientific Research, and Technology and Transfer are equally weighted with a value 

of 1/3. The bottom four goals which are real, measurable actions in Figure 2-9 represent the 

contributing value of the goals of the Mars explorer to the NASA mission. These goals and their 

weights are: 
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Figure 2-9: NASA Mission Lattice. Details of individual goals are in Appendix 1. 
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- to analyze the atmosphere, 0.05 

- to analyze sample, 0.05 

- to search for obstacles, 0.17 

- to track obstacles, 0.22 

From this, one can see that tracking obstacles contributes more to the NASA mission than 

analyzing the atmosphere. Therefore, if a decision must be made on whether to do one or the 

other, tracking should be done first with greater frequency or with a higher rate of occurrence. 

Also, if there are multiple opportunities then tracking should be done in the ratio of 022/0.5. 

The lattice for the POSET based on the USAF goals is shown in Figure 2-10. The six 

mission areas and their associated weights are annotated in the figure. The bottom three goals 

and their weights are 

- to track detected targets, 0.21 

- to id detected targets, 0.22 

- to search for targets, 0.57 

As previously stated, one of the major advantages of using POSETs with the superimposed 

value apportionment is that it is a new method that results in a quantitative, and traceable 

measure of importance that a sensor manager can use to perform and optimize trade-off among 

search, track, and identify tasks. Another advantage is that the weights can vary as a function of 

time or state. During any given mission, different goals are preferred over others and these 

preferences can change during different phases of a particular mission in response to a 

nonstationary environment. These preference can be set a priori and/or in real-time. 
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Figure 2-10: USAF Mission Lattice. Details of individual goals are listed in Appendix 2. 
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Preplanning can establish weights for specific phases of a mission. In the real-time case, a 

supervisor - either human, automated (i.e. the Mission Manager presented earlier), or both - can 

change the preferences during a mission based on changes in information produced by data 

fusion. The use of information theory and ordering relations are demonstrated in a simulation 

model with the results of the simulation runs presented and discussed in Chapter 6. 

In summary, the sensor manager is concerned with the detailed scheduling of measurements 

by the various heterogeneous sensors. It does not concern itself with the particular reason for the 

measurement, but only with the fact that it has had a request to obtain a measurement of a target. 

The II determines what functions are required based on the type of request passed to it from the 

mission manager and the temporal and accuracy constraints ofthat request. These functions are 

then converted into tasks and passed along with task deadlines and priorities to the sensor 

scheduler. The sensor scheduler then optimizes the scheduling of tasks to specific sensors. The 

Sensor Scheduler (OGUPSA) is discussed in more detailed in Chapter 5. Lastly, the terminology 

used in this research is that the Mission Manager issues information requests, the Information 

Instantiator issues observation functions, and the sensor scheduler issues sensor actions. 

2.5.5  Goal Lattice Properties 

While an initial impression of the goal lattice is that it is nothing more than a graphical belief 

model, this perception is incorrect. Even though both methods share several similarities, the 

major difference is in what the methods represent. Graphical belief modeling represents 

uncertainty by providing a method to build and manipulate risk assessment models [79]. This 

uncertainty is represented with either probabilities (Bayesian approach) or belief functions 
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Figure 2-11: Generalized Form of a Goal Lattice 

(Dempster-Shafer theory of evidence). The goal lattice was developed as a mathematical 

method to build and represent user preferences and manipulate them both a priori, and more 

importantly, and in real-time during a mission. The user preferences change during a mission as 

a function of time (the phase of a mission) or operator input. 

A lattice, or Hasse diagram, is used to capture the structure of the sensor management 

problem. Specifically it uses a mathematical formalization to specify which goals are directly 

related. While it provides an intuitive description of the problem, it also demonstrates or 

provides information on how the goal values are influenced when other goal values change. The 
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goal lattice can be used to translate a complex problem into an easily understood representation 

and establishes a mechanism for eliciting and documenting an expert's or user's preferences. 

As stated in a Section 2.5.2, the value for each node (goal) is computed by summing the 

values of all the incoming arcs. Using a generalized form of a goal lattice as shown in Figure 2- 

11, a lattice can be described as having / levels with level 0 being the top level, l-l middle levels, 

and level / being the bottom level (the level containing the goals whose weights we are 

attempting to compute). A system of equations can be defined to compute the weights of a 

particular node at level i +1. It is the sum of the products of the incoming arc weight multiplied 

by the value of the node at level i for all nodes that are a parent node. This process continues 

until the bottom nodes, level / nodes, have been defined. For example, the value of the first node 

at level 2, C2 i, is 

C2,l =gl,l,1*C,,, +£,,2,1*^,2 + - + gi,R,i*c,,R (2-1) 

where the subscripts of c are the level and node within the level (with R nodes in that level). The 

variable g is the user defined arc weights and the subscripts are the level number of the parent 

node, the node number within that level and the node number in the next level. The sum of all 

the weights coming from a single node is equal to the value of the node from which they came. 

* (2-2 ) ci.r = £ gj,rj    where is k the number of arcs leaving cir 
j 

These weights need not be uniformly distributed. Once all of the equations have been defined, 

the weights of the bottom nodes can be recursively solved such that the weights can be expressed 

as the sum of value for all of the possible paths from the top node to the bottom node. 
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The process of solving the system of equations can be extremely tedious and a simpler 

method is needed. Fortunately, the computation of the goal lattice lends itself to a Linear 

Algebraic interpretation, [80] and [81], and is easier to visualize. Each layer / can be thought of 

as a R/-dimension vector being linear transformed into a R/+]-dimension vector. A matrix, T/, 

that contains the user specified weights for the arcs leaving the nodes at level /' is used to 

compute the values of the nodes at level ;'+l. T/ can be considered a transformation matrix that 

transforms the R/-dimension vector C/ to R/+i-dimension vector C/+j [80]. In matrix form this 

becomes 

C,.=r,.C,+1 (2-3) 

where 

c#=[c/,i    c/,2    "*•   C;,R,1       a vector of Rj node values for level/ 

£#,u        Si,2,i        '"   £/.Rj,i 

r   _    Si,],2 Si,2,2 "*     £/.Ri,2 
; ; ; ■ ; 

_£/,l,Ri + 1       Si,2,Ri+]       "'     £/,R;,Ri+| 

= the transition matrix from level / to level /' +1 consisting of the 

arc coefficients. The subscripts of g are 

1) from level number i, 

2) node number from within level i, and 

3) node number within next level 

C;+i=[C;+i.i    C/+12    •••   C/+I>R.   1     the vector of Ri+I nodes for level z' + l 

The sum of the columns of T/ is the sum of the arcs leaving a node at level / and by the 

definition of c in ( 2-2 ) must sum to 1. If there are a total of R/ nodes in level i and R/+j nodes 

in the level i+l, then T/ will be a R/ +] by R/ matrix. A transformation matrix can be defined for 

all of the levels from 1 to /. Once this has been accomplished, each equation of the form in ( 2-3 

) can be recursively expanded such as from C\ and C3 
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c2=r,c/ 

= r2c2 

= r2r,c, 

(2-4) 

c3 - r2c2 

The result is thatr2r, is the product of two linear transformation matrices which transforms the 

vector Cj into C3. This new matrix T = r2*r, is itself a linear transformation matrix, [81] and 

retains the desirable property that the sum of the columns equal 1. Continuing the process from 

C] to C/ result in the value vector at level / being 

c/=rM*r/_2*-*r,c1 (2-5) 

-/,i 

"1.2 

"/,R/ 

1 /-1   i 1-2 11 

'i,i 

'1,2 

'1,RJ 

which is the linear transformation from C\ to C/. 

A numerical example based on Figure 2-12 is presented to demonstrate the above process. 

First, the systems of equations are developed and they are 

c,, = 0.55 

c12 =0.15 

c, 3 = 0.2 

c, 4 = 0.06 

c, 5 = 0.04 

'2,1 0.5c,, + 0.6c, -, + 0.7c 'i,i 1,2 '1,4 

C2,2 = 0-4c, 2 + 1C, 3 + 0.3C 1,4 
c2,3 = 0-5c,j + lcu 

'3,1 0.75c,. + 0.38c, '2,1 

c3 2 = 0.25c2, + 0.62c2 2 + \c2 3 
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Figure 2-12: Goal Lattice Properties Example 

Then solving for CT, \ and CT, 2 yields 

c3, = 0.75 (0.5c,, + 0.6c, 2 + 0.7c, 4) + 0.38 (0.4c, 2 + lc, 3 + 0.3c, 4) 

= 0.75 (0.5) c,, + 0.75 (0.6) c, 2 + 0.75 (0.7) c, 4 + 0.38 (0.4) c, 2 

+ 0.38 (1) c, 3+0.38 (0.3) c, 4 

= 0.2062 + 0.0675 + 0.0315 + 0.0228 + 0.076 + 0.0068 

= 0.4109 

c3 2 = 0.25 (0.5c,, + 0.6c, 2 + 0.7c, 4) + 0.62 (0.4c, 2 + lc, 3 + 0.3c, 4) 

+ l(0.5cu + lc,5) 

= 0.25 (0.5) c,, + 0.25 (0.6) c, 2 + 0.25 (0.7) c, 4 + 0.62 (0.4) c, 2 

+ 0.62 (1) c, 3 + 0.62 (0.3) c, 4 +1 (0.5) c,, + 1 (l) c, 5 

0.0688 + 0.0225 + 0.0105 + 0.03 72 + 0.124 + 0.0112 + 0.275 + 0.04 

0.5891 
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Thus there are 6 paths from the top node to the bottom node C31 and are listed below along with 

their associated path value 

C0-><?U ->C2,1 ->c3 

c0->ci)2->C2,i -*3 

co->ci)4->c2)i ->C3 
c0->ci,2^Q,2->C3 
c0-^ci;3^-c2,2->C3 
C0->C];4^.C2)2-»C3 

(0.2062). 

(0.0675), 

(0.0315), 

,1 (0.0228), 

(0.0076), and 

,1 (0.0068) 

From the top node to the other bottom node, C32 there are 8 paths. The paths along with their 

associated weight are 

c0 -> <M,1 -> C2,l ->C352 (0.0688), 
c0 -> ci,2 -> C2,l ->C3,2 (0.0225> 
c0 -> ci,4 -> C2,i ->c3,2 (0.0105), 

CO -> ci,2 -> C2,2 ->C3,2 (0.0372), 
c0 -> ci93 -> c2,2 ->c3;2 (0.124), 

co -> c]54 -> c2;2 ^C352 (0.0112), 

c0 -> ci,l -> c2,3 -*3,2 (0.275), and 

CO -> ci,5 -> c2,3 ->c3j2 (0.04), 

The computational complexity of determining the weights of the bottoms nodes can be seen to be 

polynomial since they are just the sum of the product of the segment weights for each path. 

Using the linear transformation representation described above, the level 1 vector is 

C-i -[ci,i    C|2    c13    c14    c15J 

= [0.05   0.15   0.2    0.06   0.04]7 

and the 2 transformation matrices from level 1 to level 2 (T\) and level 2 to level 3 (T2) are 

(2-6) 
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0.5   0.6   0 0.7   0 

r,= 0     0.4    1 0.3    0 

0.5   0      0 0      1 

T 
"0.75   0.38 0" 

*2  - 025   0.62 1 

The transformation matrices from level 1 to level 3 (Y\ * Y2) is given by 

r = r2*r, 
0.375   0.602   0.38   0.639   0 

0.625   0.398   0.62   0.361    1 

Now using ( 2-6 ) and ( 2-8 ), C3 can be computed as follows 

c3=r*c, 

0.375   0.602   0.38   0.639   0 

0.625   0.398   0.62   0.361    1 

0.4109 

0.5891 

0.55 

0.15 

0.2 

0.06 

0.04 

(2-7) 

(2-8) 

(2-9) 

As discussed previously, the sum of the columns for Y\ sum to 1 as does Y. It is interesting 

to note that the elements of Y take on special significance. Looking at the 1st column of Y, this 

is the proportion of the value of node CJI that goes to support the bottom goals C3 ] and C3 2 ~ 

0.375 and 0.625 respectively. Column 2 is the proportion of the value of node c\ 2 that supports 

the bottom goals and so on for the rest of the columns. The elements of each row of Y also have 

significance - namely that they are the portion of the level 1 nodes that support the bottom node 

associated with that row. 
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2.5.5.1   Goal Lattice Sensitivity 

Lattices can be described based on their visual appearance - that is whether or not they are 

symmetrical. This symmetry or asymmetry can then be used to study the sensitivity of the 

weights of the goal nodes (the bottom nodes in a goal lattice) to changes in user value 

preferences of the arcs leaving higher level nodes. This sensitivity can be divided into two 

categories - value sensitivity and structural sensitivity. Value sensitivity deals with how 

sensitive the goal nodes are to changes in user arc value preferences while structural sensitivity 

is concerned with how sensitive the goal nodes are to the asymmetry of the goal lattice. 

2.5.5.1.1  Value Sensitivity 

In order to demonstrate value sensitivity, a 3 layer symmetric lattice with two bottom nodes 

is used. The top most goal is divided equally among n nodes in the middle level - each arc has 

weight \ln. One of the arc weights to the n nodes is "perturbed" by the differential value 8 while 

the other n-\ arcs are uniformly decreased by 5 / (n-\). The goal lattice is symmetrical in 

structure by mirroring it about the vertical axis. The measure of asymmetry is " p ", the number 

of goals from the middle layer which contribute to each of the 2 bottom most goals (A and B). 

This goal lattice is depicted in Figure 2-13. 

Now using the matrix notation described above, the vector of the values for the nodes in 

level 1 is a column vector of size n and is given by 
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Figure 2-13: Goal Lattice for Sensitivity Example 

- + 5 
n 

1       S 

n    n-\ 

n    n-\ 

and the value of the lowest nodes, A and B, can be computed as 

c2=rc, 
-_> _> _+ 

1       * —+s 
A 1 (p-m x 1) 0.5(mx 1) 0(n-p X 1) n 
B -> 

0 (/;-/> x 1) 0.5(»/x i) 
-> 

1 (p-m x 1) 
1       £ 

L«   «-I. »-1 x 1 . 

(2-10) 

(2-11) 

where 



51 

n is the number of nodes at the middle level 

p is the number of nodes from the middle level which contribute to each 

of the bottom nodes 

m is the number of nodes at the middle level shared by each of the bottom 

nodes 

Expanding into separate equations for A and B yields 

\n    n-\ 

B = 0.5ml- ?—\+(p-m) 

Then A - B is 

n    n-V ' \n    n-\ 

V«    n-\J '\n    n- 

n      J    \n    n-\ 

8 = S + 

nö 
n-\ 

Taking the partial of A - B with respect to 8 yields 

n-1 

Taking the partial with respect to n yields 

(2-12) 

<?(A - B) _ d f n8 \ (2-13) 

as      as\n-\) 

a(A - B) _ d ( n8 \ (2-14) 
3i an\n-\) 
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(«-02 

The sensitivity of the value of the bottom nodes to changes or "perturbations" of the values 

at the top of the lattice can be described by noticing that as 8 -> 0, A-B = 0 and as n -> oo , A - 

B = 8. This simply shows that the smaller the "perturbation" the smaller the effect on the bottom 

goals. Also the more nodes at the middle level, the smaller the effect of the "perturbation". 

2.5.5.1.2  Structural Sensitivity 

This process can be repeated for an asymmetric goal lattice in order to examine the 

sensitivity of the values of the bottom nodes to changes in the structural asymmetry of the goal 

lattice. The same goal lattice in Figure 2-13 can be used except there is no perturbation and/? 

arcs contribute to bottom node A and q arcs contribute to bottom node B with/? * q and m arcs in 

common. The value of A and B can be computed as 

(2-15) c2 re, 
"A" 1 (p-mx 1) 0.5(mx 1) 0{n-px 1) V 
B -> 

0(n-qx 1) 0.5(wx 1) 
-> 

1 (q-mx 1) 
n nx 1 

Expanding separately for A and B yields 

1 
A = (p - m) — + 0.5/w — 

n n 

= (/>-0.5m)- 

B = 05m- + (q-m)- 
n n 

= (q-0.5m)- 



53 

Then solving for A - B is 

A.B = (p-05m)--(q-05m)- (2"16) 

n n 

Taking the partial with respect top-q yields 

d{k - B)     1 (2-17 ) 

d{p-q)     n 

Taking the partial with respect to n yields 

<?(A-B)_   ,        v_l_ (2-18) 

V A      =-^-^-2 

The sensitivity of the value of the bottom nodes to the amount of asymmetry, as measured by 

p - q, can be described as (p - q) -> 0, A - B = 0 and as n -» oo , A - B = 0. This shows that the 

more symmetric the lattice, as measured by p - q, the smaller the effect on the bottom goals. 

Also the more nodes at the middle level, the smaller the effect of the asymmetry. 

While specific examples were used here to examine goal lattice sensitivity, this can be 

expanded to more general cases. That is, in general, one can measure sensitivity by examining 

the Jacobian of the transformation matrix. 



Chapter 3 

Information Theory 

3.1  Background 

The concept of entropy was first introduced by R. Clausius in 1865 when he was studying 

heat cycles in phenomenological thermodynamics. Since then the term "entropy" has been 

appropriated by many fields including statistical mechanics (L. Boltzmann in 1872) 

communications theory (C. L. Shannon in 1948), probability theory, logic linguistics, abstract 

analysis and number theory [82]. It is Shannon's measure of information that is of practical 

interest to sensor management and sensor scheduling. As Skagerstam [82] states, Shannon 

introduced the concept of information theoretic entropy and information based on the concept of 

a discrete information source as a discrete random process. Shannon [38] defined the entropy 

information measure as 

//=-*£/?,. log/>, (3"1} 

;=1 

where K is any positive constant and/?/ as the probability of the A" outcome of the random 

event. It is the quantities of the form in ( 3-1 ) that Shannon states "...play a central role in 

information theory as measures of information, choice, and uncertainty. The form of//will be 

recognized as that of entropy as defined in certain formulations of statistical mechanics... ." 

54 



55 

Then using the information entropy defined in ( 3-1 ), Shannon defined the information, /, as the 

difference of the entropy for two given probability distributions for the random event. 

In a C->I context, the use of sensors is to decrease our uncertainty about the states of the 

multiplicity of targets which populate our world. Stated another way, sensors are used to reduce 

the uncertainty about targets — such as the location, identification, or intent of all targets in a 

given area of responsibility, essentially our "world." However, the process of sensing the 

environment is constrained in that sensors cannot observe all parts of the operating environment 

simultaneously and still have sufficient gain and selectivity to measure individual targets 

effectively. A trade-off must be made in searching one area at the expense of others. Sensors 

have a limited field of view, and by the time a sensor revisits a previously observed area a new 

target may have appeared or a previously detected target may have maneuvered into a different 

location. The latter will require the sensor to expend limited resources in order to search a larger 

area in an attempt to reacquire the target. This is all at the expense of increasing the uncertainty 

of other search areas, possibly losing track of previously detected targets, or identifying 

previously detected targets. This spatial-temporal mutual exclusivity of sensors can be 

considered as a constrained communications channel [61]. 

A basic assumption is that without sensing the world, its entropy or uncertainty about the 

world is continually increasing. If allowed to continue without sensing, the world becomes a 

uniformly distributed space of targets. Because different targets have different dynamics and 

noise driven processes, there is a differential uncertainty increase among them. It is the purpose 
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of the sensor management system to discover that differential uncertainty and exploit it to 

minimize our global uncertainty about the world. 

From an information-theoretic viewpoint, the purpose of a sensor is to interact with the 

operating environment in order to reduce the uncertainty about it. By detecting, localizing, and 

identifying a target or determining that a target is not present results in an information gain (as 

measured by a reduction in uncertainty). Information is also gained when a sensor is used to 

increase the accuracy of the kinematic state of a target that is already being tracked. These 

information gains or reduction in uncertainty can be broken into 3 components. They are [61]: 

- uncertainty of the location of undetected targets, pu {x,y\ 

- uncertainty with the estimate of a target's kinematic state vector, xk 

- uncertainty about target identity (from identifying a target as friend or foe to determining 

target classification to identify a specific target tail or hull number), jcf 

Despite the apparent applicability of this information theoretic approach, very few references 

pertaining to the use of Information Theory for the managing and scheduling of sensors can be 

found in the literature. They can be categorized into the following areas: 

- Kaiman filtering 

- Target detection / recognition 

- Data fusion 

- Sensor management 
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3.2  Information Theory Applied to Kaiman Filtering 

Several papers apply Information-Theoretic (IT) concepts to general estimation problems. In 

their paper, Kalata and Priemer [83] derive a minimal-error entropy estimator for linear systems. 

They base their derivations on mutual information between a random process JC resolved by the 

observations z. The authors show that minimizing the error entropy is equivalent to minimizing 

the mutual information between the prediction error and the observation. By using the entropy 

error, the authors derive the optimal discrete linear predictor, filter, and smoother involving 

additive Gaussian noise disturbances. The result is that the optimal entropy error filtering 

solution is identical to the optimal means square error (discrete Kaiman filter) filtering solution 

shown in Gelb [84]. Additionally, they show that for non-Gaussian cases, the Kaiman filter is a 

minimax entropy error linear filter. 

Tomita, et al [85], apply information theory to only filtering problems. Both discrete time 

and continuous time filters are presented unlike the previous paper that only looked at discrete 

time Kaiman filters. Specifically, the authors state that"... the necessary and sufficient 

condition for maximizing the mutual information between a state and the estimate is to minimize 

the entropy of the estimation error." The authors then proceed to construct the discrete and 

continuous time Kaiman filters using the relationship between maximum mutual information and 

minimum entropy error. Tomita, et al. [86], then extend their information theory approach to 

derive the optimal filter for a continuous time nonlinear system. The conclusion the authors 

make is that "... mutual information plays the central role for the estimation problems as well as 

the coding problems discussed by Shannon [6]." 
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3.3  Information Theory Applied to Target Detection / Recognition 

Hoballah and Varshney [87] look at the detection problem using an entropy based cost 

function in determining the optimum detection. They show that statistical detection can be 

viewed as maximizing the amount of information transferred through a channel. The authors 

also show the relationship of mutual information and receiver operating characteristics (Prj and 

PpA)- They also extend the derivation of the optimum threshold and fusion rules based on 

mutual information for distributed detection situations. 

Clark, et al. [88], [89], [90], develop and apply an information theoretic measure to evaluate 

the performance of forward-looking infrared (FLIR) sensors used for target detection in 

automatic target recognition (ATR) systems. The FLIR systems under investigation by the 

authors are used to detect and recognize military vehicles against a low clutter background. 

With a FLIR, one generally receives a signal return that is expressed in terms of the pixel 

intensities. The pixel intensities are then used to determine the probability density functions 

(pdf) of the pixels within a target region and in a background region. The authors use these pdfs 

in developing their "Information Theory Image Measures" (IT IM) based on the relative entropy 

of the two distributions (see Soofi [91] for a discussion of relative entropy). In contrast to this 

approach, the current evaluation process is based on human perception. The IT IM was 

compared to other measure such as target to background contrast and target versus background 

entropy based on gray levels of pixel images. The authors conclude that the "... Information 

Theoretic image measure was found more powerful than Contrast and Entropy for separability of 

different image regions, resulting in much lower false alarm probability." 
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Hintz [39] also applies an information measure to automatic target recognition (ATR) - 

specifically when the ATR is used to aid a trained observer to perform target recognition. The 

type of system being considered is called a euer ~ measurements of one sensor are used to refine 

and aim another sensor. The approach used by the author is to measure information in terms of 

subimages that have meaning to the observer and not the entire scene as was used by Clark, et al. 

Hintz interprets entropy as a measure of uncertainty and thus measures information as the change 

in entropy with the sign determining if information was gained or lost. The form he uses is: 

~*     before observation — ^after observation v ' 

where he defines Has entropy {-p In/?). The author goes on to define several different types of 

euer information and presents several numerical examples to demonstrate the quantities of 

information available for each type. 

A final paper by Turner and Bridgewater [92] discusses the use of an information theoretic 

approach to surveillance of large areas and the detection of targets. There goal is to maximize 

the amount of information from each interrogation of the search space by a space-based 

electronically agile radar. By using information theory, they modify the classical binomial 

sequential detection. Their process is used to adapt the detection threshold in order to extract the 

maximum amount of information at each step in the detection process. By dividing the search 

area into cells and establishing a criteria of maximizing the information gain or uncertainty 

reduction with each dwell of the radar, they determine which cell to visit next. 
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3.4  Information Theory Applied to Data Fusion 

Either a Bayesian or Dempster-Shafer probabilistic models can be used to address data 

fusion and data management. Using a Bayesian approach, Manyika and Durrant-Whyte [68] 

compute the expected utility of taking an action. They demonstrate the use of Fisher information 

and entropy as a measure of information and use this information metric as the expected utility 

of data fusion. 

Greenway, et al. [93] investigate communications management within a decentralized 

multisensor system where a number of distributed nodes each make local decisions on whether 

to track or identify a target or to communicate target information to other nodes. The authors 

compare two communications management algorithms constrained by a maximum transmission 

bandwidth and available bandwidth. The two algorithms are a round robin approach and an 

information theoretic approach based on entropy considerations. 

Oxenham, et al. [94], address measures of information for multi-level data fusion. The 

authors state that the purpose of data fusion is to increase the information content by fusing 

multiple sources of uncertain information and that a reduction in uncertainty equates to 

information measured by Hartley information and Shannon entropy. They use a fuzzy set or 

fuzzy theory approach to categorize uncertainty into ambiguity and vagueness and then further 

refine and define several types of uncertainty. They then diverge and discuss a measure of 

information with respect to Dempster-Shafer theory of evidential reasoning and to fuzzy 

reasoning. While they define several types of uncertainty and provide examples of how to 

measure them, it is not clear how it is applied to data fusion. 



3.5  Information Theory Applied to Sensor Management and Scheduling 

Barker [95] investigated the application of information to search theory. He presents and 

proves a theorem that states that "...subject to a constraint on total search effort, the allocation of 

search effort that the maximizes the probability of detection also maximizes the entropy of the 

posterior search distribution." 

Hintz and McVey [37] provide the first article on applying a measure of information to 

sensor management. Their assumption is that a communication channel is running at its capacity 

and is unable to handle all of the information that is available ~ it is running at its Shannon limit. 

Extending this concept further, they describe a measurement constrained channel ~ that is, 

several targets are being tracked with the use of a separate Kaiman filter for each target. 

Insufficient sensor resources are available and the available sensors must be scheduled to 

maintain a specified level of track accuracy. Based on this description , they develop a measure 

of information using the change of entropy in order to determine how to schedule sensors and 

process the data. Entropy at a given time is defined as the square root of the norm of the 

conformal error covariance matrix maintained by the Kaiman filter. By computing the change in 

entropy at each measurement opportunity, they develop a method to sequence measurement 

through a "constrained" channel. By using entropy as a measure of information, they are able to 

use this method to maximize the amount of information flow at each available sample interval. 

Based on the previous work of Hintz and McVey, Schmaedeke [42] uses information gain as 

the cost function of a Linear Program to optimize the allocation of multiple sensor to track 

multiple targets at the next time step. As with Hintz and McVey's approach, Schmaedeke uses 
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the expected information gain based on extrapolating the Kaiman filter error covariance and then 

calculating the updated covariance matrix after a update. 

Kastella [46],[47] proposes another information theoretic measure which he terms as 

"discrimination gain" which is also know as Kullback-Leibler information. He uses the expected 

discrimination gain to determine the optimal order for searching a set of discrete detection cells 

in order to detect and track multiple targets. 

3.6  Proposed Information Measures 

As stated earlier in this chapter, every opportunity a sensor has to observe the environment 

equates to a certain amount of information which can be obtained about the state of the 

environment. A fundamental question is how to use this potential information to manage a suite 

of sensors while maximizing ones net knowledge about the state of the environment. The 

search/track/identify decision problem is whether to continue to track or identify a previously 

detected target and with which sensor to use or whether to search for an, as yet, undetected 

target. 

The approach used in this research to computing the amount of information gained is based 

on entropy considerations. Using Shannon's entropy, ( 3-1 ), as a measure of uncertainty, the 

change in entropy over time measures the decrease in uncertainty or, synonymously, information 

gained. In the search versus track versus identify trade-off issue, the amount of information 

gained from a sensor measurement of the environment versus updating either the kinematic or 

nonkinematic state estimate for a target can be computed and used to determine which option 
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provides more information - search, track, or identify. The rationale behind using entropy as an 

amount of information is that it yields a commensurate measure that affords this comparison. 

The approach to computing the information gain is based on mutual information - the change 

in entropy of the pdf before a measurement is taken and after it is taken as in ( 3-2 ) where 

entropy, H, is computed based on Shannon's entropy formula. Specifically, entropy is defined as 

Hx = -IP(*i) log p{xj)      for the discrete case (3-3 ) 
i 

-~\ P\x) '°g P{x) for the continuous case 

wherep(xj) is the probability density (mass) function for the continuous (discrete) distribution. 

The following sections describe how information gain is computed for target detection (search), 

tracking, and identification. 

3.6.1  Target Search Information 

Target locations are maintained probabilistically - that is by maintaining a probability 

density functions (pdf). The first pdf is used to represent the probable location of an undetected 

target and is used to determine where to search next. The assumption is that since the number of 

undetected targets is unknown, once a target has been detected, there is always another target to 

be detected. Upon detecting a target, its location is maintained separately by the kinematic state 

estimation process and not as part of the undetected/?^ 

Typically, sensor performance characteristics are specified by a particular signal to noise 

ratio (S/N). The approach used here is to model the sensors in terms of their probability of 

detection (PQ), probability of false alarm (PFAX 
and beamwidth. The assumption is that a 
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Figure 3-1: Uniform Distributionof Probable Undetected Target Location 

particular Pp or Pp^ can be translated into an equivalent S/N for each sensor and then the S/N 

can be translated to a particular sensor design. By using this paradigm, it allows any type of 

sensor to be modeled thus providing the ability to study the effects of different sensors and 

sensor scheduling schemes. 

Given this representation of sensors, the assumptions of the undetected pdf include: 

-The search area is represented in Cartesian space (x, y) quantized into m by n cells for a 

total of m*n cells. 

-The initial density function is a function of a priori information. In the case of the "in 

harm's way" situation with no a priori information, the initial density function is assumed 

to be uniform as shown in Figure 3-1. For the uniform case, the location of the undetected 
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target(s) is unknown so the probability of target being in a cell is p(tgt in cell xy) = 1 / m*n 

with the distribution function f(x,, v,) = V   . 

m    n 
- f(x,y) is a pdfand therefore £ I/(*,,>\) = 1 • 

i=l y=l 

-When a sensor performs a measurement, its spatial detection distribution (under the beam) 

based on beamwidth, Pj), and PfA 's converted to an appropriate pdf in Cartesian space 

and use to update the undetected target pdf 

Using the above representation, two random variables are hypothesized, A and B. B maps 

the location of targets in the search area to the integer cells before a measurement is taken. A 

maps these same locations after a measurement is taken. The amount of mutual information 

between the two random variables can be calculated by the difference in entropy between the A 

and B using the discrete case of ( 3-3 ). 

It is assumed that the MM has access to a two dimension probability density function (pdf) 

of the operational area which is maintained in real-time by the fusion space. When 

measurements are made by a sensor, whether they detect a target or not, they influence the pdf of 

where an undetected target is most likely to be. A priori order of battle information can be used 

to initially skew this pdf to reflect expected target deployment. A target which is detected 

indicates an area which should not be searched again, although it may be observed in order to 

convert the target from detection to track and maintain track. A measurement without a 

detection decreases (to 1-Pß) the probability of a target being in that area. After a number of 

measurements, the probability surface of possible locations of undetected targets becomes quite 
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convoluted yet does indicate by its peaks the areas which have the highest probability of an 

undetected target being detected. There is also an ongoing temporal low-pass filtering of the pdf 

which acts to slowly return the undetected target pdf to a uniform distribution because of the fact 

that targets could have moved from one unsearched area into an area which has already been 

searched. Essentially this reflects an increase in world target model entropy as the time since the 

last measurement increases. 

Since the MM has access to this pdf, it uses the goal-lattice derived values to determine 

when to search as opposed to tracking or identifying. In deciding to request a search, it must 

pass additional information to the II in order to enable the II to decide what type of observation 

function to perform. The additional parameters which must be passed include where to search, 

to what level of certainty to perform the search as measured by (1 - Prj), and a time by which the 

search must be completed. Note that by only specifying the level of certainty rather than the 

sensor to use, the II still retains the greatest degree of freedom in determining what type(s) of 

observation function(s) to request from the sensor manager. Type of function here refers to 

high- or low- resolution bearing, high- or low- resolution range, Doppler, or some combination 

thereof. That is, the II takes the general requirements as passed to it from the MM and refines 

them by determining which of the functions which are available to this sensor suite are capable 

of supplying the requested information. This approach leaves the actual observation-function-to- 

sensor-task mapping to OGUPSA. 

What can be seen from this first model is a layered approach to optimization in which the 

MM has an imperfect, coarse model of the target and sensor world with no regard for the actual 
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manner in which its requirements are going to be satisfied. From this model, search, track, or ID 

(with the appropriate accuracy and temporal constraints), the MM makes a request which will 

satisfy its optimization goals which are derived from, or at least quantitatively expressed by, the 

weighted goal-lattice. It does not bother itself with the implementation details but assumes that 

there is some mechanism which can be used by the sensor scheduler to meet its needs. 

There is, of course, the possibility that the II may not be able to meet the information needs 

of the MM and hence must reject the request. The MM treats this as another event and, taking 

into account the rejection along with a reason for the rejection, may chose to make another 

request with a less stringent information requirement or temporal constraints, or decide that some 

other information need is more important. This approach leads to a series of parallel local 

optimization routines which are globally more effective, if not as accurate , as a single, sensor 

system optimization approach because of the reduced combinatorics of information needs to 

sensor availability and capability mappings. It is also conceptually more convenient to partition 

the space of possible alternatives along these lines and possibly apply different optimization 

criteria to the different layers. 

3.6.2  Target Tracking Information 

One can also compute the amount of information gain attributed to updating the kinematic 

state estimate of a target in track. Tracking of a target is probably the simplest and purest 

information transferring processes. As the target moves, this information degrades between 

observations and must be updated periodically. At periodic intervals, measurements of the 

target's position are made and an associated position error covariance is calculated. Assuming 
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that the errors are Normally distributed and that as time passes since the previous state estimate 

update, the density flattens (variance increases) but remains Normal. Accordingly, the variance 

of the position probability density is increasing in the absence of measurements. Said another 

way, in the interval between measurements, the target's motion increases uncertainty (decreases 

the amount of information) in its position while the measurement process increases the amount 

of information about its position. 

Track information can be divided into two similar but distinct functions. The first is the 

transition from detection as a result of a search to tracking a target. The second is the 

maintenance of a target which is already in track. In the transition-to-track phase, consideration 

must be made as to how long to wait before taking the next measurement. In the case of a non- 

Doppler sensor, enough time must elapse between the initial detection and a second 

measurement in order to get a good estimate of velocity while still maintaining a high probability 

of detecting the target a second time. If the original detection measurement contains both 

position and velocity information, then the consideration is one of how soon to make a 

measurement in order to reduce the error covariance of the state estimate to a level requested by 

the MM. 

Search information has only one temporal constraint, but track information has implied as 

well as specified temporal constraints associated with the willingness of the MM to tolerate the 

possibility of a temporary or permanent loss of track. That is, the MM must specify not only the 

time by which a measurement must be made, but also the maximum error covariance matrix, P, 

which it is willing to accept. The II can use these values which are contained in the request and 
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combine them with an extrapolation of the error covariance and state obtained from the fusion 

space to determine how long it can wait for the sensor scheduler to make its measurements and 

still provide the fusion space with measurements which can be converted into a observation of 

the accuracy requested by the MM. 

Fortunately, the extrapolation of the error covariance can be computed recursively 

backwards from the requested error covariance matrix (Preq ) to the P+ of the previous 

measurement. The net result of this computation is the number of time intervals (or the total 

elapsed time) between when the previous measurement was made and the time by which the next 

measurement must be made in order to keep the error covariance below the requested maximum. 

This requested error covariance may be specified in terms of Preq itself, or some norm defined 

on the Preq- 

What this process requires is an appropriate target model that incorporates the maneuver 

characteristics of the target and a tracking filter state estimator that provides state estimates as 

well as error measures. One of the most widely used algorithms for such a process is the Kaiman 

filter. As part of the Kaiman filter process, and error covariance matrix, P, is maintained and 

propagated. It is this matrix that captures the amount of uncertainty associated with the target's 

state estimate. With each observation, the error covariance matrix is extrapolated based on the 

target's motion and then updated resulting in a decrease in uncertainty yielding in a gain in 

information. The extrapolated covariance matrix, P -, captures the decrease in information due 

to the target's maneuvers while the updated covariance matrix, P +, captures the increase in 
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information due to a sensor's measurement. Based on the statistical assumptions of the Kaiman 

filter, P - and P + can be computed before a measurement is actually made. 

Since P is a matrix, one must define a norm in order to calculate the entropy such as the 

determinant of the matrix. Using ( 3-3 ) for the «-variate case and assuming a normal 

distribution, the entropy of P becomes [96] 

Hx=%\og(2ne) + ±\og(\P\) (3-4) 

where |P| denotes the determinate of the covariance matrix. Defining the information gain 

between the a priori and a posteriori entropies as in ( 3-2 ), the information gain for the n-variate 

normal distribution results in 

/ = § log(27ie) +1 log(|P61) - (f Iog(27te) + \ log(|Pfl |)) (3-5 ) 

= 4 log 
W 

where P^ and Pa are the covariance matrix of the errors before and after a measurement, 

respectively. This results in the amount of information gained due to the change in the 

uncertainty about the state of the target. 

This measure can be extended to the case of multiple targets and multiple sensors. Since 

there is no measured entropy change for a target which is not observed, the information gained is 

due only to the observed target. Since each target in track has its own error covariance matrix, 

the optimal choice of which target to measure is the one that yields the most information. The 

assumption is that the global information gain can be maximized by choosing the greatest 

information gain at each opportunity without regard to future measurements. Each sensor has 
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different characteristics that include measurement noise. This is accounted for in the 

propagation of P. 

There are at least two ways to determine the maximum time between track updates such that 

an information criterion from the MM is met. The first is to specify a maximum level of 

uncertainty or uncertainty threshold (as measured by entropy) which is not to be exceeded. The 

mission manager specifies the uncertainty threshold and the II computes the time when that 

entropy threshold will be exceeded based on an approximation to the extrapolation of the current 

error covariance matrix P . Using the error covariance extrapolation equation, an information 

rate (or information rate propagation function if extrapolation of P*~ is not linear), or an 

approximation of this process, can be used to compute the time at which the error covariance 

matrix will exceed the desired uncertainty. 

Given the threshold specified by the mission manager and the error covariance matrix is 

extrapolated using ( 3-7 ), with the entropy computed to determine an information rate using 

Info threshold = Info rate * n ( 3-6 ) 

Info threshold 
n = 

Info rate 

A second approach is also based on the desired level of uncertainty specified by the mission 

manager, but assumes a constant update (measurement) interval and calculates the actual number 

of update intervals, n, to skip before taking the next measurement. The net effect is the same as 

the entropy-based approach, however this is an exact approach which may have a closed form 

solution, and once again shows that this is an II problem which can be solved in different ways 



72 

and not a mission manager problem. It is assumed that the MM passes to the II the maximum 

error covariance that it is willing to accept and which will allow the MM to meet its goals. What 

is desired is the time at which to make an observation of the target in track in order to produce a 

P^ which does not exceed this constraint. The problem is how to compute or approximate n , 

the number of uniform update intervals which are to be skipped while allowing the P^~ to 

propagate and grow. The following shows the development of the equation which must be 

solved for n. 

Given the error covariance extrapolation equation [84] 

^^^k-^k-i^kV + Qk-x 

and the error covariance update equation 

p;= [I-K,H,]P; 

where 

K* -P* H^ H* pk H* +R* 

(3-7) 

(3-8) 

(3-9) 

if no observation is made at time k, then the observation matrix H^= 0. Substituting into ( 3-9 ) 

yields 

(3-10) 
K,=P;O 

= 0 

OP;O+R, 

Then 

p;= [I-O]P; (3-11) 

= p; 

Going back one time step 



PA-1 -pA-l 

and substituting ( 3-12 ) into ( 3-7 ) yields 

PA" =<&*-! P^IGA-I+Q*-! 

But 

PA"-I=<*VI 
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(3-12) 

(3-13) 

(3-14) 

(3-15) 

Now substituting ( 3-14 ) into ( 3-13 ) yields the recursive equation 

<*>A-2 PA+-2 ^A-27" + QA-2 ]  ^A-/ + QA-1 

= **-! ^A-2 PA+-2 <*>k-2T ^k-J +®k-l QA-2 **-/ + QA-1 

Continuing backwards to time step k-n produces 

PA
_
 = <*>A-1 • • • «V* PA+-n <*>k-n ■ ■ ■ <*>k-l + <*>*-! • • • «Wl QA-„ ^k-n-l ''' **-! +   ( 3"16 > 

Ot_, -O^^ Q*_„_, <bk_n_2 -(D^, + - + QA_„ 

'„ ^ 
V/=l 

PA-/J n^>A-w-7+i + 

I "n^A-m J QA-W+7-1 11 ^A-«+ ;'+m-l + Q A-l 

If it is assumed that the process is stationary and the transition matrix does not change with 

time, then <bk = O*., and Q* = Qk_l then ( 3-16 ) can be simplified to 

\n      n-\ 
P; = O" P;_„ ( <X>r )" + I (V Q ( Or )' J + Q 

(3-17) 

allowing P^ to be expressed in terms of«, Yk_n, and Q. 

Pk can be expressed in terms of P^, H^, and R* [84] where 

PA       =PA       +HA RA   HA 
(3-18) 
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p* -{ pk     -H* Rk  UkJ 

Given that the desired P^ is known, the requisite P^ can be computed from ( 3-18 ). Using this 

maximum allowed P^~ and the last updated error covariance matrix, Pk_n, n can be computed 

from (3-17). 

3.6.3  Target Identification Information 

There are two aspects to identification information, the first being the obvious reduction in 

uncertainty about the class of target, the type of target, or the specific (hull-number, side- 

number) of the target. This is a number which is easily computed from the enumeration of the 

possible types. A second aspect of identification information is the interaction between ID and 

target state estimator performance. Most target state estimators are designed based on an 

assumed target model, the parameters of which change depending on whether the {e.g., airborne) 

target is a transport, attack aircraft, fighter, or missile. Another confounding aspect of target 

tracking is the non-stationary statistical behavior of targets, particularly when they are manned 

and maneuvering. While the model may be the same for these targets with diverse 

maneuverabilities and non-stationary maneuvering, the ability of the state estimator to maintain 

track of a target is dependent on the proper choice of filter parameters. In some cases, multiple 

state estimators with different model parameters are implemented and updated simultaneously 

and the innovations process is monitored to determine when a maneuver is initiated, indicating 

that a different state estimator than the current one may be computing the minimum error 

covariance state estimate. 
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From the II point of view, it does not care whether the ID is requested to improve tracking 

performance or to resolve ambiguities about the specific type, class, or hull-number (side- 

number) of the target. The MM does need to include in its ID request the track number to ID, the 

time after which the ID would no longer be of value to it, as well as the degree of identification 

which it needs. 

There are a number of goal-oriented reasons for which the MM requests identification 

information about a target ranging from targeting (Which is the most important target to shoot 

at?) to improved performance of the target state estimator by providing it with the relative 

maneuvering class of the target (transport, attack, fighter, missile, etc.) so that the target state 

estimators' assumptions can be improved. Inferential identification, that made from the target 

track data itself, is done in the data fusion space and requests of this type are the result of 

specific search or observation requests made by the MM. Direct identification, in which the 

sensors are asked to reduce the uncertainty about a specific, non-kinematic characteristic of a 

detection or target in track, do not require the type of calculations previously discussed, but are 

processed in the II as being mappings from ID information requests to sensor scheduler requests 

where specific, non-kinematic measurements are scheduled. The II performs a table look-up that 

determines which type of observations will yield the desired identification. For example, if the 

MM wants to determine the type of target one could passively use electronic support measures 

(ESM) to observe the signals emanating from the platform and by consulting the electronic order 

of battle (EOB) in the fusion space, determine what type of aircraft it is. If a more detailed hull- 

to-emitter correlation were desired, then some particular ESM characteristics might be used 

which require a longer observation time. The techniques for identification are numerous and 
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need not be discussed here other than to indicate that the identification methods, their 

applicability, and operational constraints can be listed in a table, sometimes with a one-to-many 

mapping, and these observation options downselected and passed to the sensor scheduler. 



Chapter 4 

Maneuvering Target Tracking 

4.1   Background 

Tracking a maneuvering target involves filtering and prediction in order to track the target. 

"Filtering refers to estimating the state vector at the current time, based upon all past 

measurements. Prediction refers to estimating the state at a future time; we shall see that 

prediction and filtering are closely related [84]." One of the most commonly used technique for 

target tracking is the discrete Kaiman filter developed by Rudolf Kaiman. The Kaiman filter is 

the optimal linear, unbiased state estimator given its assumptions and is used to filter past 

measurements and predict where a target will be in the future. This target location prediction is 

then used to point a sensor in order to track the target. An error covariance matrix is maintained 

as part of the normal computation process of the Kaiman filter. This error covariance matrix can 

be considered as a measure of uncertainty of the kinematic state (called the state estimate) of the 

target. 

The tracking of maneuvering targets may be complicated by the fact that acceleration may 

not be directly observable or measurable. Additionally, apparent acceleration can be induced by 

a variety of sources including human input, autonomous guidance, or atmospheric disturbances. 

Several approaches to tracking maneuvering targets have been proposed in the literature and can 
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be divided into two categories both of which assume that the maneuver input command is 

unknown. One approach is to model the maneuver as a random process. The other approach 

assumes that the maneuver is not random and that it is either detected or estimated in real time. 

Both assume a rectilinear model of target track. The random process models generally assume 

one of two statistical properties, either white noise or an autocorrelated noise. The multiple- 

model approach is generally used with the white noise model while a zero-mean, exponentially 

correlated acceleration approach is used with the autocorrelated noise model. The nonrandom 

approach uses maneuver detection to correct the state estimate or a variable dimension filter to 

augment the state estimate with an extra state component during a detected maneuver [97]. 

Another issue to be considered when tracking a maneuvering target is whether to perform the 

Kaiman filter in polar or Cartesian (x, y) coordinates. In general, a sensor's measurements are 

reported in range and bearing (or bearing only in the cases of passive sensors) to the target. If 

Cartesian coordinate are used, then the range (r) and bearing (9) measurements must be 

converted through the transformation equations: 

x = rcos6 (4-1) 
y = rsin0 

which results in cross-correlated measurement noise. The resulting covariance matrix can be 

represented as 

R*y ~ 
°\ 41 
4 °r\ 

(4-2) 

by using a first order expansion [98], [99], [100] where 
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o\ = u; cos2 0 + r2al sin2 0 (4-3 ) 

cr2 = cr2 sin2 0 + r2<rl cos2 # 

o-2,, =J-sin(9(o-2-r2o-2) 

cr2 = range measurement variance 

<72
e = bearing measurement variance 

In using Cartesian coordinates, the state equation is linear while the corresponding 

measurement equation is nonlinear. Using polar coordinates, the state equation is nonlinear but 

the measurement equation is linear [101]. This means that tracking in Cartesian coordinates has 

the advantage that it allows the use of linear target dynamic models for extrapolation while polar 

coordinates may lead to more complicated extrapolation. By examining ( 4-1 ) and ( 4-2 ), using 

Cartesian coordinates for tracking leads to two major disadvantages. The first is that the 

measured (or estimated) range must be available while the second is that measurement errors are 

coupled. 

The exponentially correlated acceleration model approach is one of the approaches most 

widely used to track maneuvering targets. This chapter examines and compare several 

exponentially correlated acceleration approaches in both polar and Cartesian coordinates for 

accuracy and computational complexity. They include the Singer model in both polar and 

Cartesian coordinates, the Sklansky model (not an exponentially correlated acceleration), 

Helferty's third-order rational approximation of the Singer model, and Bar-Shalom and 

Fortmann's model. 
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Figure 4-1: Target maneuver probability density function [103] 

4.2  Singer Model Using Polar Coordinates 

Singer [102], [103], [104] developed a model that incorporates the maneuver capability of a 

target that is both simple and suitably represents the maneuver characteristics. The Singer model 

for manned maneuvering targets assumes that a target usually moves at constant velocity and 

that turns, evasive maneuvers, and accelerations due to atmospheric disturbances can be viewed 

as perturbations of the constant velocity trajectory. These accelerations are termed target 

maneuvers and are correlated in time with the previous time or the next time increment. That is 

to say that if a target is maneuvering at time /, it is likely to be maneuvering at time /+x 

assuming that x is sufficiently small. Singer [102] states that a lazy turn will give correlated 

inputs for up to one minute, evasive maneuvers due to radar detection, terrain features, or 

preprogrammed maneuvers will provide correlated inputs for 10 to 30 seconds, and atmospheric 

turbulence for only 1 to 2 seconds. Due to this time dependence, the maneuvers are neither 

additive nor Gaussian. Singer's probability density function for a target's maneuvers are shown 

in Figure 4-1. A target can [102]: 

Accelerate (maneuver) at its maximum rate, + Amax with a probability of Pmax 

No maneuver with a probability of PQ, or 
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Maneuver between - Amax and + Amax according to the uniform distribution 

shown in Figure 4-1. 

In order to use this model in a optimal filter such as a Kaiman filter, the maneuver noise 

needs to be whitened. Singer [103] uses a procedure analogous to the whitening procedure 

developed by Wiener and Kolmogorov. The whitening processes is done by augmenting the 

state vector to include the maneuver variables and expressing them recursively in terms of white 

noise. 

The target maneuver model is in polar coordinates and given by the state equation 

x*+, = Oxk+Gwk (4-4) 

where 

*r,k    6*    6*    ue,k 

0> = 

x* = [rk    rk    ur 

W*=[W1,A      w2,*] 

"1 T 0   0 0 0 

0 1 10 0 0 

0 0 p   0 0 0 

0 0 0    1 T 0 

0 0 0   0 1 1 

0 0 0   0 0 p 

T- sampling period 

p = correlation coefficient of maneuver 

= eaT or =\-OLT  if <xT is small 

"0   0" 

0   0 

G = 
1    0 

0   0 

0   0 

0   1 

Qk=£ wkwk 
<n,,(i-p) 

0 

0 

<(l-p) 

a2M=4^^+4p^_p^ 
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A2   T2 

CT
A/,   = 

3R 
— 0 + 4Pmax-Po) 

R= target range 

The measurement equation is given by 

zk=Hxk+yk (4-5) 

where 

H = 
1 0   0 0   0 0 

0   0   0 1    0   0 

~    2 0 
c 

0 „2 a0M_ 

The standard filter equations for state estimation extrapolation, error covariance 

extrapolation, Kaiman gain matrix computation, state estimate update, and error covariance 

updates are then applied. The filter is initialized based on the first two observations with the 

state estimate given by 

x2=[z2(l)   ±(z2(l)-Zl(l))   0   z2(2)   ±(z2(2)-z,(2))   Of (4_6) 

and the nonzero elements of the updated error covariance matrix, P2
+, defined as 

Pu=°2r 

P22 = °M, + 

^33=<n,, 

r44 - ue 
(4-7) 

f2°* 
{T'J 

2oe 

V i    J 

P    - P    -    r 

^23 = ^32 = P° M, 

^55 =<**/,(!) + 

^66=^M,(D 

P    - P    -Z± 

P56 = P(>S-P0M1(\) 

with a M calculated in ( 4-4 ) and 
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„2 
„2   ,n_  °A/, 

(4-8) 

*?(1) 

4.3  Singer Model using Cartesian Coordinates 

A version of the Singer model can be developed for Cartesian coordinates using a constant 

velocity model with exponentially correlated acceleration. The state equation and measurement 

model is 

where 

i(0 = F(/)x(/) + G(/)w,(/) 

z(0 = H(Ox(/) + v(/) 

i(o=[*(/> *(o AO mf 

(4-9) 

F(0 = 

G(0 = 

H(0 = 

0 1 1 0 

0 0 0 0 

0 0 0 1 

0 0 0 0 

"0 0" 

1 0 

0 0 

0 1 

"1 0 0 0 

0 0 1 0 

where the process noise is exponentially correlated, assumed to be equally distributed in the x 

and v directions, and used to model the target acceleration. The measurement noise is normally 

distributed with zero mean and covariance R as in ( 4-2 ). The process noise can be whitened by 

augmenting the state vector by appending the necessary state vector components of a linear 

shaping filter. This results in a linear model driven by white noise. This whitening process is 
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described in Grewal and Andrews [105] and repeated below. Modeling the correlated noise, 

wi(/), in ( 4-9 ) with a shaping filter yields 

*SF(>) = Ftf-f/) xSF(t) + GSF(t) w2(0 

w2(t) = HSF(t)xSF(t) 

(4-10) 

where SF denotes the shaping filter and W2(/) is a zero mean white Gaussian noise. Using the 

system model given in (4-9 ) an augmented state vector is formed and given by 

X(/) = [x(0   xSF(t)]i 

Combining (4-9 ) and ( 4-10 ) yields the following augmented system: 

(4-11) 

x(0 F(/)   G(t)USF(t) " x(/) " 0 

*SF(0_ [ 0          FSF(t) .X5F(0_ ßsr(t\ 

X(0 = Fr(/)X(0 + Gr(/)w2(0 

z(/) = [H(0   0] 
' x(/) " 

.X5F(')_ 
+ v(0 

HT(t)X« ) + v(r) 

w2(0 
(4-12) 

Using Singer's model, the acceleration is uniformly distributed between -Amax and Amax 

and the mean number of acceleration changes, a, in a unit time is distributed according to a 

Poisson process. This results in a first-order Markov process with variance a2 and time constant 

1/or. The power spectral density corresponding to this exponential process is 

(4-13) 
Via) 

2o2a 

co2 +a2 

and the system transfer function for the shaping filter is 

H{s) = —  
(4-14) 

s  +a 

The system model for this shaping filter is 



*SF(0-- 
-a oV2a 
-a 

x5f(0 + 
av2a 

w2(0 

W2(0 = [1]X5F(0 

The augmented system then becomes 

0 1 0 

0 0 1 

0 0 -a 

0 0 0 

0 0 0 

0 0 0 

*(/)]_ [1    0   0   0   0   0 

y(t)       0   0   0   1   0   0 

~m' 
m 
i,(0 

m 
m 

Ui(oJ 

0   0 0 " "*(/)" 

0   0 0 m 
0   0 

0    1 

0 

0 
*i(0 + 

0   0 1 m 
0   0 -a M*)- 

0 

0 

CTV2OC 

0 

0 

0 

0 

0 

0 

0 

0 

a-v/Za 

w2(0 

x(t) 

m 

m 
+ v(0 

with W2(t) and v(t) ~ ^(0,1). 
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( 4-15 ) 

(4-16) 

4.4  Sklansky Model 

The Sklansky model is a Cartesian coordinate, constant velocity tracking algorithm that does 

not model acceleration to generate position and velocity estimates of maneuvering targets [106]. 

The target motion is described by 

(4-17) *»+i =xH+TxH + 2Tx„ + 

Xn+\   ~ Xn + *-Xn 

where 
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x„ = target position 

xtl = target velocity 

T = time interval between observations 

x„ = target acceleration 

The state space representation of the Sklansky model is given by 

where 

kA = I 
0

A
X

* +GAa, (4-18) 

*k =H*A=I +\k 

o,= 

1 T 0 0" 

0 1 0 1 

0 0 1 T 

0 0 0 1 

£* = [* x y y] 

= \x position   x velocity   y position   y velocity] 

G = 

H = 

T2/2       0 
T 0 

0 T2/2 
0 T 

10 0   0^ 

0   0 10 

= random acceleration in the x and y coordinate respectively 
vk = scalar random measurement noise with Q ~ N(0,l) 

4.5  Helferty Model 

Helferty [107] develops a turn-rate model that extends the work of Singer by using a 

maneuvering target model that combines a constant velocity and a probability distribution on the 
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target's turn-rate. Helferty assumes that the acceleration is independent in both the x and y 

coordinates and a uniform distribution on the target's turn rate with the acceleration maneuvers 

exponentially correlated. This turn-rate model leads to a linear system that is represented with a 

third-order Markov process instead of the first-order process. 

The Helferty model assumes a process noise of constant velocity and the turn-rate uniformly 

distributed [-rmax, rmax] with the turn-rate changing a times in a unit interval. The heading 

angle of the target is also uniformly distributed but on the interval [-n, n]. The autocorrelation 

function of the target acceleration in the x axis is 

£[ax(t)ax(t+ T)] = £[vt vj/(/)sini|/(0v, \j/(/ + x)sinij/(/ +x)] (4-19 ) 

= \2 E vj/2siniy(/)siniy(/ + T)]e~a'T' 

vj/2 sinv|/(?)sin(v(/(0 + H/T)|e_a'T' 

ij/2 siny(/)(sini|/(/)cosvj/T. + sin\J/TCOSY|/(/)V| e~a'T' 

V2 sin2 ij/(OcosH/T + vj/2sinM/(/)sinvj/Tcos\j/(0]e 

= v2£ 

= v2£ 

= v2£ 

= v2£ V|/    COSV|/T E\sin2\\)(t) 

14> \\l    COS\|/T 

The autocorrelation function for the target acceleration in the y axis is 

^(t)a^(t+ x)] = £[vt vj/(/)cos\)/(/) vt vj/(? + x)cosy(t + T)] (4-20) 

= v2£ vj/2 cos\|/(0cosij/(/ + T) 

= v2£ ij/   cosij/x E COS    l|/(f) 

= ±E 
2 

\j/2 COSlj/T e -a|t| 

and the cross correlation between the x and y axis can be shown to be zero'07. 



The power spectral density of the autocorrelation function of ( 4-19 ) and ( 4-20 ) is 

nonlinear so Helferty computes and presents a rational approximation for the linear shaping filter 

for the turn-rate distribution. It is given as 

H(s)-^s2+b>S + b> 
(4-21) 

s3 +als
2 +o25 + a3 

The state equation and measurement model used by Helferty is the same as in ( 4-9 ) with 

x(o=[*(o *(o y(o m)T 

"0 1 1 0] 

0 0 0 0 

0 0 0 1 

0 0 0 0 

F(/) = 

G(/) = 

H(0 

0    10   0 

0   0   0    1 

10   0   0" 

0   0    10 

-I T 

Applying the whitening process described in Section 4.3, the model for the third-order linear 

shaping filter given in (4-21 ) for one coordinate is 

*SF(0 = 

0 1 

0        0 

- a-,    -a 

w,(/) = [A3    b2    bi] 

This results in the augmented state and measurement equation 

0 

1 

2     "«I. 

x3(0" 
*4(0 
xs(t) 

p3(0" 0" 
x4(t) + 0 

L*s(0. 1 
w2(0 

(4-22) 



X(o = 

z(0 = 

0 1 0 0 0 0 0 0 0 0 
0 0 h h *1 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 
0 0 -a3 -a2 -ax 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 h b2 *1 
0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 -a3 -a2 -a 

"1 

0 

0 

0 

0   0 

0   0 

0   0 

0    1 

0   0 

0   0 

0 

0 

0" 

0 
X(/) + v(0 

where 

"0   0" 

0   0 

0   0 

0   0 

x(o + 
1    0 

0   0 

0   0 

0   0 

0   0 

0    1 

(4-23) 

w2(0 

X(0 = [*(0   m   x3(t)   x4(t)   x5(t)   y(t)   y{t)   y3(t)   yA(t)   y5(t)] 

and the process noise is normally distributed with zero mean and unit variance. 

4.6  Bar-Shalom and Fortmann Model 

Another exponentially correlated acceleration model based on the Singer Model is presented 

by Bar-Shalom and Fortmann [97]. They use a linear shaping filter to augment the Kaiman 

filter. The continuous-time state equation and measurement model is 

i(r) = 

z(/) = 

0 1 0     0 0 

0 0 1     0 0 

0 0 -a   0 0 

0 0 0     0 1 

0 0 0     0 0 

0 0 0     0 0 

1 0 0   0   0 0 

0 0 0    1    0 0 

0 

0 

0 

0 

1 
-a 

x(0 + w(/) 

x(/) + v(0 

1(0 = [*(0    m    m    y{t)    y{t)    y(t)]1 

(4-24) 
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The discrete-time state equation corresponding to ( 4-24 ) with sample interval T is 

x(* + l) = Fx(Jt) + w(*) 

where 

1 T (aT-\ + e~aT)/a2 0 0 0 

0 1 (\ + e~aT)/a2 0 0 0 

\T = 0 0 e~aT 0 0 0 

0 0 0 ] T (aT-\ + e~aT)/a2 

0 0 0 0 1 0 + e~aT)/a2 

F = e 

0    0 0 0   0 ,-ar 

The discrete-time process noise covariance matrix Q is given by 

T5/20 r4/8 r3/6 
r4/8 r3/6 T

2
/2 

,   T3/6 T2/2      T 
Q = local 

"     0 0 0 
0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

r5/20 r4/8 r3/6 
r4/8 r3/6 r2/2 

r3/6 r2/2 r 

(4-25) 

(4-26) 

4.7  Model Comparisons 

The five models described above where tested using Monte-Carlo simulations with 50 

replications in order to compare the state estimation performance of each model. Two different 

target paths [107] were used in the simulations. The first was a target performing an S turn 

lasting 40 seconds and the second is also a S turn maneuver but with an straight segment 

between turns and lasts for 80 seconds. The target paths are shown in Figure 4-2 while Table 4-1 

provides a summary of the maneuver parameters used in the simulations. Figure 4-2a is the 

simulated target path for the S turn without the straight segment and Figure 4-2b is the simulated 

target path for the S turn with the straight segment. The "x" denotes the starting position. 
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a) S turn without straight segment b) S turn with straight segment 

Figure 4-2: Simulated Target Paths 

Table 4-1: Kaiman Filter Simulation Parameter Summary 

Initial JC, y position 
Initial polar position 

Initial heading 
Duration 
Turn rate 

Sample rate 

Range measurement 
variance 
Bearing measurement 
variance 
Maximum acceleration 

Forward velocity 

Maximum turn rate 

Mean number of changes 

Scenario 
S turn without straight segment 
(1500 m,0m) 

r = 1500 m, 5 = 0° 
90c 

40 sec 
10 m/s for 20 sec 

-10 m/s for 20 sec 

T = 0.5 s -l 

ar = 10m' 

<rs = 0.0001 rad' 

^max =1.745 m/s2 

v, = 10 m / s 

''max = 0-1 745 rad / S 

a = 0.05556 s -l 

S turn with straight segment 
(200 m, 1500 m) 

r = 1513 m, 5 = 82.4° 
0° 
80 sec 

10 m/s for 20 sec 
0 m/s for 40 sec 

-10 m/s for 20 sec 

T=0.5s" 

ar = 10nV 

a9 -0.0001 rad' 

Anax = 1-745 mis1 

v, = 10 m / s 
rmax =0.1745 rad/s 

a = 0.05556 s" 
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The remaining model specific parameters and initial error covariance matrices needed to 

perform the filter simulations are as follows: 

•   Singer (Polar) 

•    P     =01 max      "■* 

•    P0=0.4 

• Q as defined in ( 4-4 ) 

• P initialized according to ( 4-7 ) 

•   Singer (Cartesian) 

Q = 
1   o 
0    1 

•   P initialized with [100000 1000 1000 100000 1000 1000] along the main diagonal 

Sklansky 

Q = 
l   o 

0    1 

• P initialized with [ 100000 1000 100000 1000] along the main diagonal 

Helferty 

• a, =0.1667,   a2= 0.0249,   a3= 0.0010,   bx = 02335,   b2 =02132,   b3 = 0.0019 

according to Helferty's formulas [107] 

Q = 
1   o 

0    1 

•   P initialized with [100000 1000 1000 1000 1000 100000 1000 1000 1000 1000] along 

the main diagonal 

Bar-Shalom and Fortmann 
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'     crm=A
max/6 

•   P initialized with [100000 1000 1000 100000 1000 1000] along the main diagonal 

All of the models performed exceedingly well with extremely small average position and 

velocity errors and RMS position and velocity errors regardless of target path used. 

Figure 4-3 and 

Figure 4-4 show the average range and bearing errors, respectively, for both target paths. The 

average range errors are less than ±4 meters for either target path while the average bearing error 

is between ±0.3°. The average range and bearing rate errors are show in Figure 4-5 and Figure 

4-6 while the RMS range and bearing errors are shown in Figure 4-7 and the RMS range and 

bearing rate errors are shown in Figure 4-8. The average range rate error is between ±5 m/s and 

the average bearing rate is between ±0.4 deg/s. The RMS errors are 2-4 meters for range, 0.3-0.6 

m/s for range rate, 0.5-2° for bearing and 0.05 deg/s for bearing rate. 

The four Cartesian models and the Singer Polar model state estimate converted to Cartesian 

coordinates are compared next. Since the S turn path is along the 0° radial, the x position error is 

smaller (±5 m) then the y position (±20 m) for all the models. The opposite is true for the S turn 

with the straight segment since it is along the 90° radial. The x position error is between ±25 m 

and the y position error is between ±5 m. This can be seen in Figure 4-9 and Figure 4-10. With 

few exceptions, the average velocity error, either x or y, are between ±5 m/s. The Singer Polar 

model with the state estimate converted to Cartesian coordinates and the Sklansky model 

produce the largest velocity errors but the never exceed ±15 m/s. The average velocity errors are 

shown in Figure 4-11 and Figure 4-12. 
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a) S turn without straight segment b) S turn with straight segment 

Figure 4-3: Singer Model (Polar) Average Range Error 

?    00 

a) S turn without straight segment b) S turn with straight segment 

Figure 4-4: Singer Model (Polar) Average Bearing Error 

a) S turn without straight segment b) S turn with straight segment 

Figure 4-5: Singer Model (Polar) Average Range Rate Error 
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a) S turn without straight segment b) S turn with straight segment 

Figure 4-6: Singer Model (Polar) Average Bearing Rate Error 

a) S turn without straight segment b) S turn with straight segment 

Figure 4-7: Singer Model (Polar) RMS Range and Bearing Error 
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Figure 4-8: Singer Model (Polar) RMS Range Rate and Bearing Rate Error 
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Figure 4-16: Cartesian Models RMS Y Velocity Errors 

The RMS errors for both position and velocity are almost indistinguishable. The RMS 

position errors are shown in Figure 4-13 and Figure 4-14, respectively. The RMS x and v 

velocity errors are shown in Figure 4-15 and Figure 4-16. As expected, the Sklansky model 

performs the worst since it is a constant velocity model that does not include acceleration, e.g. 

acceleration treated as added noise. 
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Table 4-2: Maneuvering Target Model Complexity 

Model 
Singer (Polar) 2270 
Singer (Cartesian) 2274 
Helferty 8390 
Sklansky 896 
Bar-Shalom and Fortmann 2946 

4.8  Summary 

The exponentially correlated acceleration models appear to be valid and accurate models of 

target maneuvers as demonstrated above. All of the model, whether in polar, Cartesian, or polar 

converted to Cartesian provide very accurate position estimates. The only significant difference 

is when velocity estimates are considered due to the nonlinear conversion of the Singer Polar 

estimates to Cartesian estimates and the constant velocity assumption of the Sklanksy model. 

Besides state estimate accuracy, another consideration in choosing a maneuvering target tracking 

model is the computational complexity of the model. One such measure is the number of 

floating point operations (flops). 

error Table 4-2 shows the number of flops for one iteration of state estimate extrapolation, 

covariance extrapolation, Kaiman gain matrix computation, state estimate update and error 

covariance update for each model. The conversion of the measurement noise covariance matrix 

from polar to Cartesian coordinates only add an additional 32 flops. As can be seen, the two 

Singer models and the Bar-Shalom and Fortmann models, each a six state estimate model, 

require approximately the same number of flops. The Bar-Shalom and Fortmann model requires 

more flops due to the size of the Q and G matrices. The Sklansky model is a four state estimator 

and requires about 2/3 of the number of flops of the Singer model while the Helferty model is a 



100 

10 State estimate model requiring over three times as man flops as the Singer model. The flops 

were computed for comparable runs of each model averaged over 80 iterations of the update 

process using MATLAB. 

For the purpose of the simulation performed as part of this research, either the Singer model 

in Cartesian coordinates or polar coordinates with position and velocity converted to Cartesian 

coordinates will be sufficiently accurate. If increased accuracy is required, several other options 

are available. The simplest approach is to apply the debiasing methodology by Lerro and Bar- 

Shalom [108]. They describe a methodology for computing the measurement error covariance 

matrix in ( 4-2 ) differently that they sate insures the true measurement error statistics are used 

when performing the Polar to Cartesian conversion. Another possible alternative is to use the 

multiple model approach where multiple models are maintained simultaneously and determine 

which state estimate to use based upon detecting and estimating the target's maneuvering. Since 

the performance of the Singer model can degrade during nonmaneuvering portions of a targets 

trajectory, one could use two different Singer-based model filters with different values of the 

maneuver variance, am
2, and time correlation, a, and use hypothesis testing to determine when 

to switch between the two models [109]. When a target is not maneuvering, the Singer model is 

used to track the target with a->oo and am
2 = 0. Once a maneuver is detected the a Singer 

model with a finite a and am
2 * 0 is used. A similar approach is to use filters of different 

dimensions and switch between them based on maneuver detection. One such approach is the 

variable dimension filter of Bar-Shalom and Birmiwal [110] in which they use a four state 

(x,x,y,y) constant velocity model when a target is not maneuvering. Based on a maneuver 

detection scheme, new state components are added and a constant acceleration model with six 
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states, (x,x,x,y,y,y), is used. One the maneuver is complete, the four state model is used 

again. 

Two other possible approaches which can be used to increase accuracy are the interacting 

multiple model (IMM) algorithm and innovations-based approach. The IMM approach consists 

of a set of several filters which interact through state estimate mixing to track a maneuvering 

target. Efe and Atherton [111] present on such example of an IMM utilizing adaptive turn rate 

models while Blair, et al. [112], use IMM filtering based on exponentially correlated 

acceleration models. Blair, et al, use four models in their IMM filter. They include a constant 

velocity model, a constant acceleration model, an exponentially correlated model with increasing 

accelerations and an exponentially correlated model with decreasing accelerations. 



Chapter 5 

Simulation Study 

5.1   Model Description 

In order to demonstrate and evaluate the proposed Information Theoretic sensor manager, a 

two-dimensional multiple target, multiple sensor detection, tracking, and identification 

simulation model has been developed based on the mathematical model shown in Figure 2-3. 

The sensor manager functions have been partitioned into the Sensor Scheduler and the 

Information Instantiator as presented in Figure 2-2. The model has been designed to support any 

reasonable number of targets and sensors. The position observed by each of the sensors can be 

controlled independently of the other sensors or cooperatively to form a pseudo sensor. Each 

target is assumed to maneuver independently with target tracking accomplished by using 

independent Kaiman filters based on the Singer model (in Cartesian coordinates) for manned 

maneuvering targets described in Chapter 4. The simulation architecture is shown in Figure 5-1. 

The simulation model was developed with the underlying assumption that surveillance 

platforms capable of carrying several different types of sensors (radar, IR, ESM, etc.) are sent 

out to surveil the environment. Each sensor's capabilities and performance are modeled through 

a Kaiman filter observation matrix (one for each sensor) and noise variance of their 

measurements. As discussed earlier, the simulation model captures sensor characteristics in 
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terms of their Pj), Pfj, and fundamental parameter measurement accuracies such as beamwidth, 

range, range rate, and bearing. 

The amount of maneuverability of a target has a direct correlation to the amount of 

uncertainty about the target's future position. One can either increase the measurement rate of a 

sensor or combine independent measurements from multiple sensors in order to decrease 

information or conversely, gain information. In the case of increasing the measurement rate, the 

amount of information gained is limited by the measurement noise (sensor's accuracy) and the 

process noise (rate of increase in uncertainty of the target's state due to maneuvers). In the 

extreme limit, a fixed target yields no new information with each measurement after the first 

except that gained by averaging repeated noisy measurements. If you are currently tracking a 

slow maneuvering target that is acting in a predictable manner, it then becomes possible for the 

sensor manager in general and the Information Instantiator in particular to trade off tracking for 

search or identification. That is, reducing the frequency of observations of the target while not 

losing track would not result in any significant reduction in the accuracy of the state estimates. 

5.2  Search Area 

In order to apply information theoretic measures, the search area is represented 

probabilistically. That is, a search area is divided into m*n cells with each cell containing a 

probability of an undetected target being in that cell. Collectively, the cells can be considered as 

a discrete probability density function (pdf). When a search is performed, the return signal based 

upon a target location results in an measurement vector and then a detection is determined in the 

fusion space. After each sensor observation, the pdf is updated thus the pdf is a global estimate 
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of target location uncertainties and can be used to determine the most likely location of an as yet 

undetected target and hence where a sensor should search next. 

By representing the search area as an undetected target location pdf, the information gained 

by observing the environment can be computed based on mutual information - the expected 

change in entropy of the pdf before an observation is taken and after it is taken. This is defined 

as 

I = H(before) - H(after) ( 5-1 ) 

where H is computed by using the discrete Shannon entropy formula 

-I/>(*,-) log/**,; (5-2) 

Since the pdf is based on sensor observations, the pdf is only an estimate of where targets are (or 

are not) and not their actual location. Actual locations of detected target are maintained 

separately for comparison in order to evaluate the effectiveness of the various sensor scheduling 

schemes. 

While this method of dividing the search area into grids provides many benefits, it does 

come at a significant cost most notably the computational overhead associated with maintaining 

the undetected pdf. After each sensor observation is completed, the new probability in each grid 

must be computed and each element of the array representing the undetected target pdf must be 

updated. The larger the search area the more pdf computations must be done and the more time 

it takes to run the simulation. For example, if the search area is 100 cells by 100 cells then the 

number of computation required after a sensor observation is 104. A 1000 by 1000 cell pdf 

would require 10" updates after each sensor observation. 
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5.3  Sensors 

Several types of sensors at multiple locations and the use of pseudo-sensors are available in 

the simulation model. The types of sensors represented include sensors that provide range and 

bearing (with or without Doppler capability), bearings only sensors, electronic support measure 

(ESM) sensors, and pseudo-sensors. As stated earlier, a pseudo-sensor is one in which two or 

more sensors work cooperatively to perform a measurement that neither of them is capable of 

making by itself. For example, two non-collocated bearings-only sensors can be used to measure 

the position in 2D space even though each can only observe its line-of-bearing. Thus, pseudo- 

sensors are used to model the cooperative use of multiple bearings-only sensors located on 

different platforms to provide range and bearing estimates. 

One method of simulating the capabilities of various sensors is to explicitly define such 

characteristics as 

- bandwidth 

- wavelength 

- duration of waveform 

- signal power per pulse 

- receiver noise strength 

- diameter of radar aperture 

However, for the purpose of this simulation a more convenient and simpler method is employed. 

Regardless of the sensor, the sensor's performance can be captured by its PQ, PfA> and 

beamwidth. The S/N is determined by the environment that the sensor is operating in (e.g. level 
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of clutter and electronic jamming). Then using this S/N and setting a desired PQ (PFAX the 

sensor's operating characteristics determines the PpA (PD) [113]. Thus, these three sensor 

parameters fully specify the sensor's capabilities. 

5.4 Targets 

Any number and type of targets can be represented in the model. Target movements are 

driven by random maneuvers of specified variances based on the Singer target maneuver 

probability function. Different types of targets can be represented by setting the appropriate 

maximum acceleration, maneuver correlation coefficient, probability of maximum maneuver 

(positive and negative acceleration) and probability of no maneuver. Additionally, each target 

can be initialized with any starting range and bearing. There is no interaction of targets - that is, 

each operates independently of each other. The actual locations of each target are maintained for 

ground truth purposes (e.g. to determine if the target is inside the sensor's beam and to determine 

the probability of detection). 

5.5 Target State Estimator 

An individual Kaiman filter is maintained for each target that is detected. Based on the 

review and testing of maneuvering target models from the previous chapter, a Singer-based 

Cartesian coordinate model has been selected for use in the simulation model. The reason for 

this is to keep the target state estimates in the same coordinate system as the undetected target 

pdf. A multiple model approach with a bank of three filters using different acceleration and 

probability of maneuvers has been implemented in the simulation model. If the difference 

between the measured versus filtered position (the innovations process) reaches a specified 
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threshold then a different filter can be selected. Identification of a target can also result in 

selecting a different filter to be used. 

As discussed in Chapter 3, the error covariance matrix (P), maintained as part of the Kaiman 

filter computation, captures the amount of uncertainty associated with a target's state. This 

covariance matrix is updated after each observation resulting in a decrease in uncertainty or gain 

in information. The information gained due to the change in uncertainty about the target's state 

is calculated using the determinant of the error covariance matrix before (P^,) and after (Pfl) the 

update. Using the continuous version of Shannon's entropy formula and assuming a Normal 

distribution as discussed in Section 3.6.2, the amount of information gained is based on the 

norms of P# and Pa as given by ( 3-5 ). 

5.6  Sensor Scheduler 

An enhanced version of the dynamic sensor scheduling algorithm called the On-line, Greedy, 

Urgency-driven Pre-emptive Scheduling Algorithm (OGUPSA) [19], [20] has been incorporated 

into the model. OGUPSA was developed using the three main scheduling policies of Most- 

Urgent-First to pick a task, Earliest-Completed-First to select a sensor, and Least-Versatile-First 

to resolve ties. One of the key components of OGUPSA is the information in the applicable 

sensor table. This table is the mechanism that is used to assign requested tasks to specific 

sensors. 

Significant improvements and modifications to OGUPSA have been made in order to 

implement the algorithm for use in this simulation. Of particular interest is the expansion and 
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development of the OGUPSA applicable sensor table to more realistic tasks than in the original 

OGUPSA paper [19]. The original work focused on a unit execution time task scheduling 

problem without any task preemption. Logic has also been added to insure that a task requiring 

more than a unit execution time is not interrupted during the performance of a task. Another 

improvement restricts the scheduling and initiation of a task by using a "commence no sooner 

than" time. This can be used to schedule future tracking or identification tasks at specific times. 

The final enhancement involves the use of pseudo-sensors. Two types of pseudo-sensors have 

been incorporated into OGUPSA. The first is a sensor that operates in several modes. An 

example of this is a Doppler radar operating using either Doppler or not using it. The other type 

of pseudo-sensor is the cooperative use of 2 bearings-only sensors at different locations in order 

to obtain range and bearing measurements of a target. An updated version of the OGUPSA 

scheduler architecture is shown in Figure 5-2. 

5.7 Information Instantiator 

The sensor manager is concerned with searching, tracking, and identifying. These manager 

functions need to be mapped to sensor scheduling tasks. It is the Information Instantiator that 

determines what observation functions are required based on computed expected information for 

each request from the mission manager. As discussed in previous chapters, information requests 

which are passed from the MM to the II are of three types, search, track, and identification. 

Along with each of these requests is an indicator of the type or amount of information required 

by the mission manager as well as temporal constraints before which or after which the fulfilling 

of the request would be of decreased value to the MM. An applicable function table maps the 

sensor management functions to the tasks used in OGUPSA's applicable sensor table has been 
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Figure 5-2: Enhanced OGUPSA Scheduler Architecture 

developed and implemented. The applicable function table provides the mechanism for the 

sensor manager to request sensor independent tasks to meet specific mission goals and it 

becomes the responsibility of the sensor scheduler to assign those tasks to specific sensors. An 

example of an applicable function table is shown in Table 5-1. 
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Table 5-1: Applicable Function Table Mapping Management Functions to Scheduling 

Tasks 

Functions Sensor Scheduling Tasks 
Task 1 2 3 4 5 6 7 8 9 10 11 
Accuracy Low 

X 

High 
X 

Low 

y 

High 

y 

Low 
x,y 

High 
x,y 

Low x,y 
High x 

High x,y 
Low x 

Low x,y 
(x detect) 

Low x,y 
(y detect) 

High 
feature 

Search X X X X 
Transition 
to Track 

X X X X 

Track 
High 
accuracy 

X X X X 

Low 
accuracy 

X X X X 

Reacquire X X 
Identify X 

5.8  Programming Language 

The simulation model was developed on a Sun SPARC workstation and a DEC Alpha 

workstation. However, the model can also be run on IBM compatible personal computers as 

well as most computer workstations. For ease of programming, the model was developed using 

the matrix-based MATLAB programming language. The main drawback of this language is that 

it is an interpreter so execution can be slow. The major advantage of using MATLAB is its 

build-in graphics capability and the inherent programming structure that can later be converted 

to the C-language or a simulation language for compilation and faster execution as well as its 

portability. 



Chapter 6 

Simulation Results 

6.1  Search Area 

The search area used in the following example is assumed to be a 10 km2 area. The pdf for 

this search area is divided into 106 cells with each cell representing a 10 m2 area. The center of 

the search area is assumed to be at a significantly large enough range so that the small angle 

approximation can be used. That is 

s = rdQ (6-1) 

where is s is the arc length, r is the range, and dO'is the angle in radians. Sensors with 

beamwidths of 0.006° (100 ^rad), 0.1° (1750 urad), and 1° (17500 urad) at 100 km would 

correspond to a beamwidth of 1, 17 and 175 cells respectively assuming linear beamwidths. 

6.2  Sensor Description 

Five sensors with different Prj, ?^A and measurement noise were used to detected, track, 

and identify targets. Four types of sensor were modeled and include Radar (1 with Doppler 

capability), forward looking infrared (FUR), infrared (IR) scanner, and an electronic support 

measure (ESM) sensor. The sensors are located either along the X or Y axis of the search area so 

the two locations will be orthogonal to each other. Regardless of which axis the sensor is located 

on, the sensors are assumed to be 100 km from the center of the search area. The types of 
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Figure 6-1: Sensor Locations and Search Area Diagram 

. 
Table 6-1: Sensor Description 

Sensor A Sensor B Sensor C Sensor D Sensor E 

Nominal type Doppler Radar Radar FLIR IR scanner ESM 

Characteristics Ranee 
90m ±10% 

Range 
30m ±10% 

(0.9 cell) (0.3 cell) Bearings-only Bearings-only Bearines-only 
Bearing Bearine 0.1° = 6a 100nrad = 6a 1° = 6a (29 cells) 
l° = 6cr 0.1° = 6o (2.8 cells) (1 cell) 

(29 cells) (2.8 cells) 
Ranee rate 

± 10% 
Location X axis Y axis X axis Y axis X axis 

PD 0.95 0.95 0.99 0.99 0.5 

PFA 0.001 0.001 0.001 0.001 0.01 
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Figure 6-2: Ground Truth of the Targets 

sensors and their locations relative to the search area are shown in Figure 6-1 while a descriptive 

summary of the sensors characteristics is provided in Table 6-1. 

6.3 Targets 

Three classes of targets classes were modeled and include fighter, bomber, and transport 

targets. A total of five targets ~ 3 fighters, 1 bomber, and 1 transport« were used. As stated in 

the previous chapter, each target operates independently of each other so there are no interactions 
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Table 6-2: "In Harm's Way" Goals 

Goal Number Goal Included Goals 
1 to obtain and maintain air superiority 2, 3, 4, 5 
2 to minimize losses 6,7,8 
3 to minimize personnel losses 6,7,8 
4 to minimize weapons expenditure 6,8 
5 to seize the element of surprise 8 
6 to avoid own detection 9, 10 
7 to minimize fuel usage 10, 11 
8 to minimize the uncertainty about the environment 12,13 
9 to navigate 15,16 

10 to avoid threats 15, 16 
11 to route plan 15, 17 
12 to maintain currency of the enemy order of battle 14, 16 
13 to assess state of the enemy's readiness 14 
14 to collect intelligence 15,16, 17 
15 to track all detected targets 
16 to identify targets 
17 to search for enemy targets 

between targets. Figure 6-2 shows the paths of each target's ground truth with the position of the 

targets at the beginning of the simulation runs denoted with an "X." 

6.4  Lattice of Goals for Determining Weights Used by the Mission Manager 

Since an "in harm's way" scenario assumption is being used, a subset of applicable Air 

Force goals from Figure 2-10 were identified and used to produce a lattice of goals. Seventeen 

of the 90 Air Force goals that apply to the "in harm's way" assumption were used to produce 

lattice that can be described as a simpler, pruned version of the entire Air Force lattice. The 

goals that were used are listed in Table 6-2 with the resulting lattice and associated weights for 

each goal shown in Figure 6-3. The bottom three goals (observation functions) are track, 

identify, and search with weights of 0.36, 0.46, and 0.18 respectively. These weights were then 
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used to establish the priority associated with the observation tasks sent to OGUPSA (the sensor 

scheduler). 

6.5 Sensor Management Comparisons 

As discussed in Chapter 2, previous sensor managers have been based on ad hoc 

methodologies. This is the first mathematically rigorous sensor management model and as such, 

there are no other sensor management schemes to compare it with. In an attempt to perform a 

comparison, the simulation was run using a purely random sensor management scheme and the 

sensor management methodology (including the Mission Manager and Information Instantiator) 

presented in this dissertation. In both cases the OGUPSA sensor scheduling algorithm was used 

to schedule tasks to sensors. In the random case, the weights for the three functions (search, 

track, id) were all equal and the search aimpoints were chosen randomly along with the time 

between track updates. 

For the information theory based sensor manager, the weights from the lattice in Figure 6-3 

was used to set the priorities for the three functions. For search tasks, the pdf cell with the 

highest probability of an undetected target was chosen as the aimpoint for the sensor. In the case 

of tracking tasks, an information threshold was defined and the target error covariance matrix 

was extrapolated to estimate the information rate in order to determine when to perform a track 

update. Lastly, an identification tasks was requested once a target track had been established. 

The simulation was run for 100 time intervals with each time increment equal to 0.1 seconds. 

As expected the random case did not perform well. Without using weights and randomly 
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0.15 0.27 

Figure 6-3: "In Harm's Way" Lattice 

choosing where to search, targets took longer to detect and establish track due to the rejection of 

transition to track and track requests by OGUPSA. This demonstrates the need for a method, 

such as the use of POSETs and lattices, to establish weights that can be used to establish 

priorities between the search, track, and identify functions. 

Generally, the information based sensor manager detected and established track on all 5 

targets sooner that the random approach. But looking at the change in entropy of the search area 

as shown in Figure 6-4, there is no significant difference between the two cases. The reason for 

this is that the number of sensor operations for each sensor in both runs were approximately 

equal ~ the information theory based simulation was just more efficient in detecting and 

establishing tracks of detected targets than the random simulation. 
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Figure 6-4: Change in Search Area Entropy 
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Once tracks were established for a target, the state estimation process performed equally well 

for both management schemes. As stated previously, the Cartesian coordinate version of the 

Singer model was used to provide the kinematic state estimates for the targets. The updated state 

estimate, x£, for targets 1 (fighter) and 2 (bomber) are presented in Figure 6-5. As can be seen, 

the Singer-based model Kaiman filter performed extremely well. 

As discussed earlier, the update rate of a target in track is dependent on the change in 

uncertainty, captured by entropy, reaching a specified threshold. Once a track has been 

established for a target, an initial error covariance matrix, P, is established. P continues to grow 

until an update of the target's state estimate is made via a sensor observation. The observation is 
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a) Target 
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Figure 6-6: Change in Target State Estimate Uncertainty as Measured by the Entropy, H, 
of the Error Covariance Matrix, P 

converted to a measurement and the target's state estimate is updated. This update process 

reduces the error associated with the target's state estimate - the P matrix is reduced. This can 

easily be seen in Figure 6-6 where entropy of the P matrix is plotted for targets 1 and 2. The 

peaks are the extrapolated P matrix prior to a sensor measurement, P^~, and the point directly 

below is the updated P matrix, P^, after the sensor measurement. The difference between P^ 

and P^ is the amount of information gained by the sensor measurement. 
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As previously discussed in this section, it is virtually impossible to compare different sensor 

management schemes due to their ad hoc nature. As such, two sensor management schemes - 

Goal Lattice (information based sensor management system) and Non-Prioritized (with random 

search and random time between track) - were run in order to demonstrate the use of goal 

lattices. A summary highlighting the differences between the proposed information based sensor 

management and the non-prioritized, random sensor manager is shown in Table 6-3, Table 6-4, 

Table 6-5, and Table 6-6. Regardless of the measure of effectiveness, the new Goal Lattice 

system performed superior to the non-prioritized one. The Goal Lattice system initialized track 

on average half as fast as the non-prioritized system and transitioned detection of targets to track 

nearly an order of magnitude sooner (Table 6-3). While the non-prioritized system always had 

failures of when transitioning a detection to track (Table 6-4) and occasionally had reacquiring 

track failures after a track update was missed (Table 6-5), the goal lattice system never did. 

Additionally, as shown in Table 6-6, the goal lattice system always had all of the targets in track 

at the end of the simulation. 

6.6  Summary 

The simulation model has demonstrated the use a new sensor management methodology that 

utilizes POSETs to weight mission goals used by the mission manager to prioritize sensor 

tasking coupled with an information theoretic based sensor manager. POSETs provide a 

mathematically traceable methodology to establishing priorities that can be used by the sensor 

scheduler (OGUPSA) to schedule a suite of sensors to meet the goals of a mission. Additionally, 

the use of Information Theory provides a mathematical foundation used by the Information 
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Table 6-3: Summary of the Track initialization Results of Non Prioritized and Goal 
Lattice Sensor Management 

Average Interval Between 
Average Track Initialization Detection and Track Initialization 

Target Non Prioritized     Goal Lattice Non Prioritized      Goal Lattice 

1 28.0                      6.8 13.6                      2.0 

2 23.9                     18.1 17.1                      2.7 

3 32.9                    32.5 17.5                     4.3 

4 46.8                     18.4 32.9                     2.7 

5 25.3                     11.9 19.1                      4.0 

Average 31.4                    17.5 20.3                     3.1 

Table 6-4: Transition to Track Failure Results of Non Prioritized and Goal Lattice 
Sensor Management 

Transition to Track Failures 

Minimum 

Maximum 

Average 

Non Prioritized 

2 

19 

8.2 

Goal Lattice 

0 

0 

0 

Table 6-5: Reacquire Track Failure Results of Non Prioritized and Goal Lattice 
Sensor Management 

Reacquire Track Failures 

Minimum 

Maximum 

Average 

Non Prioritized 

0 

2 

0.6 

Goal Lattice 

0 

0 

0 

Table 6-6: Targets in Track at End of Simulation Result of Non Prioritized and 
Goal Lattice Sensor Management 

Targets in Track at End of Simulation Non Prioritized            Goal Lattice 

Minimum 

Maximum 

Average 

2                             5 

5                              5 

4.3                           5.0 
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Instantiator to determine when to request an update to a target's state estimate. Difficulty in 

completely evaluating this new approach arises from sensor management approaches that are not 

well defined. The lack of mathematically based sensor management architectures prevent 

comparisons and evaluation of the performance of the methodology described in this 

dissertation. However, a framework now exists for evaluating alternative methods for sensor 

scheduling, information instantiation, mission management, and sensor fusion. 



Chapter 7 

Summary and Conclusions 

While several sensor management approaches have been proposed in the literature, all 

appear to suffer from the mixing of sensor physical requirements with information needs. What 

has resulted is a comingling of not only noncommensurate but inappropriate measures leading to 

ad hoc methods of sensor management. The dissertation presents a new, original hierarchical 

sensor management model predicated on information theoretic measures and partially ordered 

sets (POSET). Using the expected change in entropy, expected information gain has been shown 

to be a valid approach to sensor management in order to trade-off such functions as search, track, 

and identify. 

While using information gain is a necessary condition, it is not a sufficient condition for 

complete sensor management. Information gain can be used to perform sensor management 

trade-offs but it does not take into account the multiplicity of competing mission goals. The 

approach developed here and demonstrated through a simulation model which overcomes this 

limitation, is based on the use of inclusion relationships among the goals and partially ordered 

sets of these goals. This facilitated the construction of a hierarchy of goals using a mathematical 

means to weight the multiple, competing goals thus establishing a means to prioritize the sensor 

management functions and sensor actions. This methodology can be applied to both military and 
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civilian situations resulting in a new, quantitative, and traceable measure of importance that a 

sensor manager can use to perform and optimize trade-off among the sensor management 

functions. 

Chapter 1 described the motivation for this research along with the problem definition. Also, 

applications of sensor management were described including the "in harm's way" scenario, the 

search and rescue endeavor of NASA, the management of several low earth orbit satellites to 

maintain space object ephemeris, and data mining of large databases. 

In order to better understand and define the role of sensor management, a comprehensive 

review of current literature was presented in Chapter 2. Basically, sensor management is a 

process that performed properly can improve the data fusion process and ultimately our 

perceptions through the management and coordination of sensor resources. As a result of this 

literature review, a new comprehensive, mathematically rigorous sensor system model was 

developed to capture the sensor management process. 

Based on this model, an original sensor management system was developed where a Mission 

Manager (MM) and a Sensor Manager interact within the Information Space. The MM relies on 

the weights developed from the lattice of mission goals and inputs from human operators to 

compute information requests and passes them to the Sensor Manager. The Sensor Manager 

maps the information requests to observation requests and then ultimately schedules tasks to 

specific sensors. The Sensor Manager subsumes two separate, distinct, and essentially 

orthogonal tasks allowing the sensor manager to be partitioned into the Information Instantiator 
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(II) and the Sensor Scheduler. The II converts the information requests from the mission 

manager into observation requests and passes the observation requests to the Sensor Scheduler 

where sensor measurements are optimally scheduled. 

In developing and simulating the sensor management model, techniques from several 

disciplines where used. An extension of POSETs and lattices from abstract algebra, called goal- 

lattices, provides the methodology to order and weight the mission goals and were described in 

Chapter 2. Chapter 3 provided a background on the uses of information theory as applied to 

Kaiman filtering, data fusion, and sensor management and scheduling. At the conclusion of the 

chapter the proposed information measures were developed. The use of Kaiman filtering and 

the comparison of several exponentially correlated acceleration models were presented in 

Chapter 4. 

Finally, a simulation model was developed to demonstrate this new sensor management 

model and described in detail in Chapter 5. The results of the simulation model were then 

presented in Chapter 6. 

7.1   Contributions 

Previous approaches to sensor management have treated the problem as a single optimization 

task with a performance measure as a weighted sum of diverse, noncommensurate measures. 

The approach developed in this dissertation uses POSETs with superimposed value 

apportionment in order to provide a quantitative and traceable measure of importance (weights) 

that a sensor manager can use to perform and optimize trade-off among competing management 
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functions -- e.g. search, track, and identify. Another advantage is that these weights can vary as 

a function of time or phase of a mission. Different goals are preferred over others and these 

change during different phases of a mission in response to changes in the environment. A linear 

transformation approach was used to map the w-dimensional vector of top level goals to a n- 

dimensional vector of goal values for the competing management functions. Properties of the 

goal lattice were also presented including value and structural sensitivity. This new sensor 

management system provides a mathematically based methodology to change the preferences in 

real-time during a mission based on changes in information produced by data fusion, a human 

operator, or both. 

Past sensor management approaches have been ad hoc which makes it difficult to compare 

different sensor management schemes. This dissertations has developed a hierarchical, 

mathematical sensor manager and demonstrated its use in a simulation. The results from the 

simulation suggest that this new model is valid but it was only tested against a random sensor 

management scheme. However, it did successfully demonstrate the hierarchical approach to 

sensor management using a mission manager based on weighting of goals coupled with 

partitioning the sensor management problem into orthogonal tasks (the information instantiator 

and the sensor scheduler). The simulation based on this new model also highlights the 

interaction between the sensors, data fusion, mission management, and sensor management. 

This new sensor management model along with the simulation model provides a basis to 

compare future management approaches. 
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7.2  Future Research 

There are several interesting directions one might pursue in extending both the sensor 

management model and the simulation model itself. The first is the way that the maximum time 

between track updates is computed. The maximum level of uncertainty (a threshold) which is 

not to be exceed was used in the simulation. While this provides an estimate of the interval 

between track updates, the closed form method described in Chapter 3 should be investigated. 

Another follow-on to this research would be the development of a closed loop transfer function 

of the sensor management system that would allow one to investigate global stability. Further 

investigation of the goal lattice sensitivity needs to be done. One possibility is to develop a 

method to identify classes of goal lattices by converting them to a "behaviorally equivalent" 

lattice using techniques from Sequential Machine Theory. 

Additional work needs to be done on the simulation model also. Different data fusion 

methodologies from the literature need to be reviewed for possible inclusion in the model. This 

would allow different data fusion approaches (e.g. Bayesian versus Dempster-Shafer or 

centralized versus decentralized) to be studied in concert with different sensor management 

models. 

Another model improvement would remove the limitation on sensor locations. The model 

could be enhanced to handle sensors at any location and not limit them to being located on 

orthogonal axes. Lastly, a better method of representing the undetected target pdf would 

significantly improve the simulation run time. Continually updating 1()6 is computationally 

expensive. An analog representation, e.g. a phosphor screen, of the search area (undetected 
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target pdf) could be used in a real-time system. As a sensor observes a portion of the search 

area, the intensity of the corresponding location on the screen increases while areas not searched 

would decrease in intensity. This screen intensity could then be processed to determine future 

search locations and entropy calculations to measure the increase of information due to sensor 

observations. 
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6,1 ',8, 9 
10, 11 
12, 13 

14, 15 ,16 
17, 18 

Appendix 1 

Below are a list of goals used in developing the NASA POSET and lattice. The goals are 

based on a combination of NASA goals documented in their strategic plan and goals added by 

the author. The first column is the node number assigned to the goal (numbered left to right and 

top to bottom) stated in column 2. The third column is a list of goals included in the goal. 

Goal Number Goal Included 
Goals 

1 to explore, use, and enable the development of space for human 4,5 
enterprise 

2 to use the environment of space for research 
3 to enable technology development and transfer 
4 to conduct human and robotic missions to planets and other 

bodies in our solar system to enable human expansion 
5 to provide safe and affordable human access to space 
6 to share knowledge of the Earth system and mysteries of the 

universe 
7 to create an international capability to forecast and assess the      19 

health of the Earth system 
8 to create a virtual presence throughout our solar system 20 
9 to support research endeavors in space and on Earth 20,21 
10 To develop cutting-edge aeronautics and space systems 22, 23 

technologies 
11 To support the maturation of aerospace industries 24,25,26 
12 to conduct human missions of exploration of other bodies in the 43 

solar system 
13 to enable future exploration beyond Earth's orbit 43 
14 to enable the full commercial potential of space 27 
15 to establish a human presence in space 43 
16 to share the human experience of being in space 
17 to aid in achieving the science, math and technology goals of the43 

U.S. 
18 to disseminate information about the Earth system 
19 to advance the scientific knowledge and understanding of the     28 

Earth, solar system, and the universe 
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Goal Number Goal Included 

Goals 
20 
21 

22 

23 

24 

25 

26 

27 
28 

29 

30 

31 
32 

33 
34 

35 
36 
37 
38 

39 

40 

41 
42 
43 
44 

45 
46 

47 

48 

49 

50 

51 
52 

53 

to use the environment of space to expand scientific knowledge 
to expand science knowledge through the use of human 
capabilities in the space environment 
to enable U.S. leadership in global civil aviation through safer, 
cleaner, quieter, and more affordable air travel 
to revolutionize air travel and the way in which aircraft are 
designed, built and operated 
to enable or provide aerospace R&D services, facilities and 
expertise 
to promote the commercial development of space 
to enable the productive use of science and technology in the 
public and private sectors 
to reduce the cost of access to space 
to preserve the environment by studying the Earth as a planet 
and as a system 
to search for life beyond Earth 
to explore the universe to enrich human life 
to discover planets around other stars 
to solve mysteries of the universe 
to preserve our freedoms for future generations 
to share knowledge and technologies to enhance the quality of 
life on Earth 
to conduct aeronautic and space research 
to apply new aeronautic and space system technologies 
to enable the expansion of space research and explorations 
to increase our understanding of the effect of natural and 
human-induced activities on Earth 
to develop predictive environmental, climate, and natural 
disaster models 
to chart the evolution of the universe and understand its 
galaxies, stars, planets and life 
to transfer innovative space technologies 
to test space technology 
to increase knowledge of Mars 
to determine if humans can live on Mars 
to determine if life on Mars exists 
to find suitable site for settlement 
to explore Mars 
to analyze samples of mars 
to measure as much of surface as possible 
to navigate 
to maximize duration of mission 
to assess mineral content 
to plan path 

29, 30, 31, 32 
29, 30, 31, 32 

33 

34, 35, 36 

37 

43 
38,39 

43 
43 

40 

41 

42 

43 

43 
43 
44,45 
46 
47,48 
47 
49,50 
50 
51,52 
53,54 
55 
56 
57 
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Goal Number  Goal Included 
Goals 
57,58 
59,60,61,62 
59,60,61 
61,62 
62 

54 to avoid obstacles 
55 to conserve on-board resources 
56 to verify data taken by other means 
57 to avoid stationary obstacles 
58 to avoid moving obstacles 
59 to analyze the atmosphere of Mars 
60 to analyze sample 
61 to search for objects 
62 to track objects 
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Appendix 2 

Below are a list of goals used in developing the USAF POSET and lattice. The goals are 

based on several USAF and Joint Chief of Staff doctrine manuals and course material from the 

USAF's Air Command and Staff College material. The first column is the node number 

assigned to the goal (numbered left to right and top to bottom) stated in column 2. The third 

column is a list of goals included in the goal. 

Goal Number Goal 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

to compel adversary to due our will 
to achieve control of the air 
to deny enemy freedom to carry out offensive operations 
to obtain and maintain air superiority 
to allow friendly forces to perform their mission 
to control tempo of battle operations 
to defend lines of communication 
to protect bases 
to protect forces 
to minimize losses 
to minimize personnel losses 
to minimize weapons expenditure 
to seize the initiative with concentration of forces 
to protect friendly aircraft enroute to their target(s) 
to neutralize units not yet engaged by land forces 
to support surface forces in the surface battle 
to reduce ability of enemy to plan & control units & tempo 
to destroy aircraft trying to penetrate airspace 
to destroy enemy a/c trying to attack friendly forces 
to avoid own detection 
to minimize fuel usage 
to minimize uncertainty about environment 
to destroy the enemy's will to wage an effective air war 

Included 
Goals 
1 
2,: 1,4,5 
6,7,8 
9,1 0, 11, 2 
13 
14, 15,16 
17, 18 
17, 18 
17, 18 
19, 29,21 
21 
21 
22, 23, 24, 25 
39, 40 
26, 27,28 
29 
30, 31,32, 33 
34 
34 
35, 36,37 
36, 37 
48, 49 
50 
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Goal Number  Goal Included 
Goals 

23 to neutralize enemy's will to wage an effective air war 50 
24 to disrupt enemy's will to wage an effective air war 50 
25 to negate surface based enemy air defenses 38,39 
26 to delay units not yet engaged by land forces 57 
27 to disrupt units not yet engaged by land forces 57 
28 to destroy units not yet engaged by land forces 57 
29 to create opportunities for maneuver or advance of friendly 40,41, 42 

forces 
30 to divert combat and logistic assets to defend routes 43, 44, 45, 46 
31 to delay buildup of combat strength 43, 44, 45, 46 
32 to degrade efficiency with which assets can be used 43, 44, 45, 46 
33 to deny enemy mobility 43,44,45,46 
34 to destroy threatening enemy aircraft 47 
35 to navigate 90 
36 to avoid threats 84,85,88,90 
37 to route plan 48 
38 to negate enemy SAM air defense 51,52,53 
39 to negate enemy AAA air defense 54,55,56 
40 to protect the flank of friendly forces 57 
41 to blunt enemy offensive maneuvers 57 
42 to protect the rear of surface forces during retrograde maneuvers 57 
43 to destroy enemy potential before it can effectively be used 58, 59, 60, 61 

against friendly forces 
44 to disrupt enemy potential before it can effectively be used 62, 63, 64, 65 

against friendly forces 
45 to divert enemy potential before it can effectively be used 66, 67, 68, 69 

against friendly forces 
46 to delay enemy potential before it can effectively be used 70, 71, 72, 73 

against friendly forces 
47 to intercept threatening enemy aircraft 75 
48 to maintain currency of enemy's order of battle 74 
49 to assess state of enemy readiness 74 
50 to neutralize/destroy enemy aerospace forces 75 
51 to neutralize SAM air defense 76 
52 to degrade SAM air defense 76 
53 to destroy SAM air defense 76 
54 to neutralize AAA air defense 77 
55 to degrade AAA air defense 77 
56 to destroy AAA air defense 77 
57 to target particular enemy equipment 75 
58 to destroy enemy surface forces 80 
59 to destroy enemy movement networks 80 
60 to destroy enemy C3 networks 80 
61 to destroy enemy combat supplies 80 
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Goal Number Goal Included 
Goals 

62 to disrupt enemy surface forces 81 
63 to disrupt enemy movement networks 81 
64 to disrupt enemy C3 networks 81 
65 to disrupt enemy combat supplies 81 
66 to delay enemy surface forces 82 
67 to delay enemy movement networks 82 
68 to delay enemy C3 networks 82 
69 to delay enemy combat supplies 82 
70 to divert enemy surface forces 83 
71 to divert enemy movement networks 83 
72 to divert enemy C3 networks 83 
73 to divert enemy combat supplies 83 
74 to collect intelligence 75 
75 to engage enemy targets 78,79,88 
76 to physically attack SAM air defense 79 
77 to electronically attack AAA air defense 79 
78 to id all detected targets 84,85,86 
79 to detect threats 90 
81 to target a particular enemy surface force 87 
81 to target a particular enemy movement network 87 
82 to target a particular enemy C3 network 87 
83 to target particular enemy combat supplies 87 
84 to id enemy targets 89 
85 to id neutral targets 89 
86 to id friendly targets 89 
87 to detect a enemy ground target 90 
88 to track all detected targets 
89 to id targets 
90 to search for enemy targets 
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