
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0)'88

Public reporting burden for this collection of information is estimated to average 1 hour par responss, including tfia tima for raviawing initructiom, saarching «listing data tourcai, gathering and maintaining tha data needed, and conflating and
reviewing tin collection of information. Sand comment] regarding this burden eitimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for
Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY /Leaveblank/ 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

DISSERTATION
4. TITLE AND SUBTITLE

AN AUTOMATED FRAMEWORK FOR MANAGING DESIGN COMPEXITY

6. AUTHOR(S)

MAJ JACOBS TIMOTHY M

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

UNIVERSITY OF UTAH
L PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

THE DEPARTMENT OF THE ATR FORCE
AFTT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

FY99-18

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Unlimited distribution
In Accordance With AFI 35-205/AFIT Sup 1

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words/

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

140
16. PRICE CODE

20. LIMITATION OF1 ABSTRACT

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 238.18
Designed using Perform Pro, WHS/0I0R, Oct 94

AN AUTOMATED FRAMEWORK FOR MANAGING

DESIGN COMPLEXITY

by

Timothy M. Jacobs

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

rv>
Department of Computer Science

The University of Utah l>0

December 1998

Copyright © Timothy M. Jacobs 1998

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Timothy M. Jacobs

This dissertation has been read by each member of the following supervisory committee
and by majority vote has been found to be satisfactory.

Chair: Elaine Cohen

Samuel Drake

Robert R. Kessler

Richard F. Riesenfeld

Keith A. Shomper

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of Timothy M. Jacobs in its final form
and have found that (1) its format, citations, and bibliographic style are consistent and
acceptable; (2) its illustrative materials including figures, tables, and charts are in place;
and (3) the final manuscript is satisfactory to the Supervisory Committee and is ready
for submission to The Graduate School.

Date Elaine Cohen
Chair, Supervisory Committee

Approved for the Major Department

Robert R. Kessler
Chair/Dean

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

Complexity in modern product design is manifest through the interactions of

large numbers of diverse parts and functions, and multiple design disciplines. The

intricate web of synergistic relationships necessary to link components together

makes it difficult for designers to assimilate or represent such complex designs in

their totality.

Since existing CAD software tools provide only limited support for managing

complex designs, it is necessary to document and track complexity relationships

independent of the actual CAD models. This reduces the level of detail that can

be managed, while requiring more work from the design team and increasing the

risk of inconsistencies and errors in the design. To better support management of

complex designs, this research integrates multiple design representations and the

relationships among them into a single organizational framework. Its goal is to

provide flexibility for designers to manage and evolve design representations for a

variety of design processes and applications.

This research uses design data objects to represent the aggregation hierarchy and

relationships between design representations. Aggregation objects are introduced to

organize the design into a multileveled hierarchy by encapsulating multiple design

components or representations into single objects. This organization serves to

abstract design information and facilitate understanding. The design effects that

result from the synergistic interaction between components are captured in rela-

tionship objects. Relationship objects eliminate duplicate specification and ensure

compatibility between components. Together, aggregation and relationship objects

form well-defined boundaries between design entities to facilitate simultaneous

design and reuse. Changes to aggregation and relationship objects are captured

in version objects that record the history of a design as it evolves.

To Mary Beth, Timmy, and Danny

You guys are the greatest!

CONTENTS

ABSTRACT iv

LIST OF FIGURES ix

ACKNOWLEDGEMENTS xi

CHAPTERS

1. INTRODUCTION 1

1.1 Overview 1
1.2 Background 3

1.2.1 Design Complexity 3
1.2.2 Computer-Aided Design 6

1.3 The Problem 8
1.4 Managing Complexity 8

1.4.1 Terminology 9
1.4.2 Objectives 10
1.4.3 Methodology H
1.4.4 Design Characteristics 12
1.4.5 Alpha.l Design Environment 14
1.4.6 Limitations 15

1.5 Document Summary 15

2. RELATED WORK 17

2.1 Feature-Based Design 18
2.2 Data Models for Design 23
2.3 Version Management 33
2.4 Product Data Management 38
2.5 Summary and Analysis 42

3. CASE STUDIES IN COMPLEX DESIGN 44

3.1 Simultaneous Design of a Formula Automobile 44
3.2 Incremental Design of a Machining Center 49

4. AGGREGATION 54

4.1 Role in Complexity Management 56
4.2 Underlying Concepts and Terminology 57

4.2.1 Design Objects and Constructors 57
4.2.2 Positioning Constraints 58

4.3 Aggregation Relationships 59
4.4 Aggregation Objects 60

4.4.1 Neighborhood 60
4.4.2 Part 64
4.4.3 Assembly 67

5. INTERACTION 72

5.1 Role in Complexity Management 73
5.2 Underlying Concepts and Terminology 75

5.2.1 Features 75
5.2.2 Joints 76
5.2.3 Connectors 76

5.3 Interface Specification Object 77
5.4 Spindle Cartridge Subassembly 80
5.5 Formula Automobile Examples 91

5.5.1 Evolution of the Brake - Suspension Interface 91
5.5.2 Reuse of the Wheels 95
5.5.3 Kinematics of the Drive Shaft Interfaces 96

6. VARIATION 100

6.1 Role in Complexity Management 101
6.2 Underlying Concepts and Terminology 102

6.2.1 Scope 103
6.2.2 Model Object 103

6.3 Automated Mechanisms 103
6.3.1 Baseline 103
6.3.2 Delta 104
6.3.3 Alternative 107
6.3.4 Selection 109
6.3.5 Version Tree 110

7. ANALYSIS OF COMPLEXITY MANAGEMENT
CAPABILITIES 113

7.1 Decomposition at Multiple Levels of Detail 114
7.2 Simultaneous Development and Integration 116
7.3 Representing Design Functionality 117
7.4 Connectors and Fasteners 119
7.5 Alternative Solutions 119
7.6 Alternative Views for Concurrent Design 121
7.7 Design Recovery and Reuse 122
7.8 Change Management and Analysis 123
7.9 Design History '. . 124
7.10 Design Analysis and Simulation 125
7.11 Usability 125
7.12 Extensibility 127

vii

8. SUMMARY, CONCLUSIONS, AND FUTURE WORK 129

8.1 Summary and Conclusions 129
8.2 Future Work 133

REFERENCES 135

vni

LIST OF FIGURES

3.1 High-level decomposition of formula automobile 47

3.2 Decomposition of rear section of chassis and power train 48

3.3 Incremental design process 50

3.4 Initial decomposition of machining center 52

3.5 Additional decomposition for spindle head 52

4.1 The parent-child relation depicted by an attachment 59

4.2 Specification of the heat slot surface 62

4.3 Heat slot surface 63

4.4 Structure of the heat slot neighborhood 63

4.5 Specification of the brake rotor part 65

4.6 Brake rotor part 66

4.7 Structure of the brake rotor part aggregation 67

4.8 Assembly specification for rear layout of formula automobile 69

4.9 Conceptual decomposition of rear layout 70

4.10 Detailed representation of rear layout with Wheel omitted 70

4.11 Structure of the formula automobile assembly 71

5.1 The interaction relation depicted in an interface specification object. . 78

5.2 Interface specification between tool holder and spindle 81

5.3 Specification of spindle cartridge subassembly 82

5.4 Initial interface specification between spindle and housing parts 84

5.5 Spindle part specification 85

5.6 Initial spindle cartridge subassembly 86

5.7 Structure of spindle-housing assembly 86

5.8 Details of the spindle-housing interface 89

5.9 Housing subassembly specification 90

5.10 Detailed spindle cartridge subassembly 90

5.11 Diagram of rear layout components 92

5.12 Decomposition of interface between brake and rear suspension 93

5.13 Interface between brake adaptor and bearing carrier 94

5.14 Derivation of interface between brake hat and hub 95

5.15 Kinematic interface specification between drive shaft and final drive . . 97

5.16 Specification of rear layout assembly 98

5.17 Rear layout assembly at different wheel positions 99

6.1 Versions of rear layout assembly 106

6.2 Alternative view of rear layout assembly with rigid subassemblies 108

6.3 Use of getVersion command Ill

6.4 Version tree 112

7.1 Alternative spindle-housing interface with two bearings 120

ACKNOWLEDGEMENTS

My sincerest appreciation and thanks goes to each of the members of my com-

mittee for their time and advice. Each of you has helped to shape and improve this

research. I especially thank my advisor, Elaine Cohen, for her encouragement and

advice, and for helping me finish in the allotted time.

I would like to thank the Air Force, and especially the people at the Air Force

Institute of Technology who were critical to my selection, for their wisdom in giving

me a chance to earn this degree. This educational program has truly been the

opportunity of a life time.

My thanks and encouragement also extend to the students and staff of the

Alpha-1 research group, whose assistance was essential to understanding the in-

tricacies of Alpha-1 and forming solutions which are useful to the Alpha-1 design

environment. I expect the relationships established here to last for a long time.

I thank my parents, brothers, and sisters for helping me develop the proper

attitude and work ethic for completing such a difficult task. Extra special thanks

go to my wife, Mary Beth, for her love and support and for taking up the slack

whenever things got a little bit hectic. I also thank my sons, Timmy and Danny, for

just being so wonderful and providing me the necessary distractions to appreciate

the really important things in life.

A lot of other people have also contributed to my success in getting here and

completing this degree. I sincerely thank each of you.

This work has been supported in part by the NSF Science and Technology Center

for Computer Graphics and Scientific Visualization (ASC-89-20219), and DARPA

(F33615-96-C-5621). All opinions, findings, conclusions, or recommendations ex-

pressed in this document are those of the author and do not necessarily reflect the

views of the sponsoring agencies.

CHAPTER 1

INTRODUCTION

1.1 Overview
Complexity in modern product design is manifest through large numbers of

diverse parts, complicated geometry of individual parts, and multiple functions

performed by a single part. As a design evolves, multiple representations of a

component are created as additional details are added or different design disciplines

are considered. The large number of parts, functionality, and design representations

creates a significant management problem. This problem is magnified by the

complex relationships between the different components and representations. These

relationships, which might include the impact of manufacturing capabilities on

geometry or the bearings and forces involved in the rotation of a wheel around

an axle, provide additional insight into the overall product that is not available in

the individual representations.

Existing CAD systems improve the designer's ability to create large numbers of

components and design representations by simplifying the creation and analysis of

individual parts and components. These design representations, however, require

multiple tools and design formats that must be managed through manual processes

or data management tools that work with complete design documents at a high

level of granularity. Unfortunately, this large scale granularity does not help with

the management of the small granularity changes that typically occur as a design

evolves. Instead, designers must manually track and control these changes - a pro-

cess that consumes valuable design time and increases the potential for introducing

errors.

This research introduces an organizational framework for automating the man-

agement of complex product designs. The objectives of this framework are to:

• Integrate multiple design components, design functionality, and different de-

sign disciplines into a single model.

• Support independent manipulation of design components and relationships at

multiple levels of granularity.

• Provide flexibility for designers to manage and evolve design representations

for a variety of design processes and applications.

This research realizes its organizational framework through three types of data

objects - aggregations, relationships, and versions. Aggregation objects encapsulate

multiple design components or representations into a single object that can be

independently manipulated by the designer. Aggregations may be nested within

other aggregations to organize design information into a hierarchy with multiple

levels of detail. Relationship objects specify the interaction between components

and views at multiple levels of detail. Relationship objects include synergistic

design information, such as additional functionality or fasteners, that results from

the interaction of two components. In addition to the aggregation and relationship

objects, this framework includes version objects to represent the history of a design

as it evolves over time. Associated with the aggregation, relationship, and version

objects are automated "software assistants" that facilitate the management and

analysis of the design information represented by the framework.

The framework presented in this research has many characteristics that help

the user to manage complex designs. By organizing the design into aggregations,

the designer works with a limited number of components at a time, making it

easier to understand and control the design as it changes over time. By using a

single object to capture the synergistic information associated with the interaction

between components, compatibility of the interacting parts can be controlled and

the information does not have to be duplicated in multiple parts. By isolating

components with relationship objects and embedding them into aggregations, de-

signers can control modifications to the components, yet still communicate changes

to the remainder of the model. This isolation also facilitates simultaneous design

and reuse.

1.2 Background
1.2.1 Design Complexity

Complexity in modern design manifests itself in many different ways. Product

design models contain a vast quantity of diverse information that is linked together

in a variety of configurations. These products are developed over a period of time

through an extensive design process. During this process, designers brings together

information such as customer needs and scientific and engineering principles. They

then form this information into a high-level design model and proceed to evolve this

model into a working product design. The designer applies numerous techniques to

minimize and manage the complexity of the design process and the product being

designed.

Product complexity results from a large number of parts in an assembly, complex

geometry or multiple functions within an individual part, and the combination of

many different design disciplines within a single assembly [53]. The individual

components and functions are linked together in an intricate web of synergistic

relationships through which the design becomes more powerful and complex than

the sum of the individual pieces.

To create and manage the design of complex products, designers proceed through

a series of process phases. Evbuomwan et al. characterize these phases as di-

vergence, transformation, and convergence [20]. The designer first extends the

solution space by diverging from the well-known aspects of the design situation while

identifying features of the problem that permit a valuable and feasible solution.

Creativity, pattern-making, insight, and guesswork allow the designer to transform

the results of the divergent search into patterns that may lead to a single design.

Eventually, the designer must converge to the final design by removing uncertainties

and design alternatives.

Pahl and Beitz present a similar view of the design process in which the more

familiar terms of conceptual design, embodiment design, and detailed design are

used to describe the major phases [41]. The conceptual design phase determines

the principle solution by abstracting the essential problems, functional structures,

and working principles and combining them into a conceptual structure of the

design. During the embodiment phase, the designer applies technical and economic

knowledge to the development of an overall layout, preliminary component shapes

and materials, and production processes. Finally, in the detailed design phase, the

arrangement, forms, dimensions, surface properties, materials, and production pos-

sibilities are specified, analyzed, and revised into an economical, manufacturable,

working product design.

In both of these design process views, designers apply their considerable domain

knowledge and experience to the understanding and formation of a product de-

sign. Designers must determine customer needs and must have the scientific and

engineering knowledge to form these needs into a working product design. The

information derived from this design knowledge is highly complex and contains

many interdependencies. In addition, the applicable information frequently changes

as the design evolves.

Customer needs are characterized by functional and performance requirements

that are constrained by the operational environment, budgetary limitations, and

other restrictions. Often, customer needs are ambiguous and incomplete and change

considerably over time. Designers need to transform these ambiguous requirements

into a concrete design model while accommodating any changes. Unfortunately,

these ambiguous, changing requirements are a frequent cause of cost overruns and

delays in product development.

Engineering design requires considerable knowledge of scientific and engineering

principles. In addition, information about existing designs, standard components

and materials, and manufacturing capabilities must be available to the designer.

This diversity of information and knowledge often requires multiple designers, with

expertise in different engineering disciplines, to cooperate in the design of a single

product.

The intricate relationships and large quantities of information in a complex

design are very difficult for a design team to assimilate. The team must organize

and abstract the design information in different ways to explore various design

possibilities, to analyze cross-disciplinary design compatibilities, to organize design

ideas into feasible design layouts and patterns, and to revise and restrict the design

alternatives until a workable design is obtained. Designers have developed a number

of techniques for abstracting design information and managing the complexity of

product designs.

One technique is to break the problem into a number of smaller subproblems,

each of which is less complex than the original. If done properly, these smaller

problems can be resolved simultaneously by separate design teams, then the so-

lution can be integrated together to form the complete product design. In some

cases, existing designs may be reused as solutions to design subproblems. In fact,

standardized catalog parts and components are frequently reused in this manner.

In the early stages of design, complexity is frequently reduced by deferring

specification and modeling of many of the details, both geometric and functional.

In these early stages, functional concepts are embodied in high-level components

that interact in a specified manner. Multiple alternatives may be developed and

analyzed before a particular design approach is selected. As the design problem

becomes better understood, the alternatives are narrowed down, additional detail

is added, and the design is more rigorously analyzed. This cycle continues until the

design has evolved into its final form.

As a design problem is decomposed into subproblems or as detail is added at

different levels of abstraction, additional relationships are established between com-

ponents of the design. These relationships evolve along with the design components.

Understanding and ensuring compatibility with these relationships is critical to

designing a successful product. This is often complicated, however, by the difficulty

in capturing and defining these relationships.

Ideally, one would dedicate sufficient resources to completely identify, specify,

and analyze every aspect of a complex design. Since resources are usually limited,

however, one can reduce the chance of product failure by concentrating resources

6

on those areas that pose the greatest risk. The relationships between design compo-

nents have considerable impact on the overall design due to their synergistic effect.

Consequently, these relationships provide a convenient focal point for minimizing

design risk.

1.2.2 Computer-Aided Design

Computer-aided design (CAD) systems are essential for creating and maintaining

complex product design information. Most CAD software tools emphasize detailed

modeling of individual design components, but often fail to support the complex

relationships between design components that are typical of most actual product

designs. As a result, the design team must take additional steps to manage these

relationships independent of the actual component models.

Many different CAD software tools have been developed for supporting different

phases of the design process or for representing different aspects of the design model.

Since the high-level conceptual models, detailed design models, and analysis models

are created with different domain tools, the model for a single design component

is often maintained in multiple, incompatibly formatted files. The same is true for

functional, geometric, manufacturing, and assembly models that are created with

different tools. In addition to the different file formats, each tool operates in its

own workspace with its own set of commands and procedures.

For a software tool to use models that are created by a different tool, some

sort of transformation is required, often involving translation of design formats,

manual conversion of design information by the design team, or additional design

steps. This frequently results in information lost during the translation, time lost

to accomplish the translation, and additional complexity by having to keep track of

the mapping between representations. Design data that are shared between tools

must be organized in a fashion that is efficient for translation. This often means

large pieces of the design model are grouped in a single file. Changes made by

one tool are not available in other tools unless the designer takes explicit steps

to transform the changes into the proper format. As a consequence, it is difficult

to propagate incremental changes between tools. Reuse of a design model is also

made more difficult, since the designer must extract each representation from the

different tool workspaces in which they are defined.

In this independent workspace paradigm, links between different component

models are difficult to specify. Components that are composed of other indepen-

dently modeled components have no way of showing these connections except to

make copies of the other components. If one of these components changes, a new

copy must be inserted into the aggregate representation. If a component must

interact with other components, this interaction can be specified independently

within each component; however, there is no easy way to determine which other

components are compatible with that specification.

Product data management (PDM) tools can be used in conjunction with CAD

tools to specify and manage structural relationships between design components.

The relationships specified by these high-level tools, however, fail to capture com-

plex design information such as functionality, strength of materials, or geometric

constraints. While these tools help the designer determine which components

are related, manual intervention is still required to keep the independent design

representations consistent. PDM tools are also restricted to managing complete

design files, thus limiting their utility for managing incremental changes.

Associated with the various phases, levels of detail, and revisions of a design

model are the rationale and decisions that describe how the model evolved to its

current state. These informal, text based descriptions are often maintained in a

loosely organized set of notes or in the minds of the designers. Although this

information is often essential for design corrections or for acquiring knowledge about

the design, the information is seldom incorporated into CAD models.

Many components in a mechanical design, such as bolts, bearings, springs, and

other connectors, are standardized and produced by independent manufacturers.

Since these components are not new designs they are often inadequately represented

in detailed design models. Where they are represented, the designer usually has

to individually specify features to accommodate these components in each affected

part.

1.3 The Problem
Whether for conceptual or detailed design, a major shortcoming of most CAD

systems is the isolation of the individual design artifacts. Models for individual

components, different disciplines, and other design characteristics are developed

and maintained in separate files and formats from related representations in the

overall product design.

To manage the synergistic relationships that exist between design representa-

tions, the designer must currently document and track these relationships indepen-

dent of the actual component models. Product data management tools attempt

to automate this process by providing structural and classification links between

detailed design representations; however, existing tools are unable to depict the

synergistic information that is essential to these relationships.

The file-based organization of product data management tools and manual filing

systems forces designers to manage design representations at a large granularity.

A large number of design changes, however, require relatively small changes to a

particular aspect of a design representation. Since data management tools can only

deal with changes at a large granularity, the designers must intervene manually to

ensure consistent changes are made in all related representations. This process is

time consuming and increases the chances of introducing errors into the design.

1.4 Managing Complexity
The intricate relationships and large quantities of information in a complex

design are very difficult for a designer to assimilate in their totality. To understand

and manage this complexity, designers must be able to organize and constrain the

design to limit the amount of detail or the number of possibilities to be analyzed at

any given time. As the design evolves or requirements change, the designer must

be able to reorganize and modify the design constraints so that useful solutions are

not overlooked.

To automate the management of complex design models, a CAD environment

must provide representations and constraints for controlling and analyzing the be-

havior of interacting design components. These representations must be organized

into a single product model in which the designer can specify and track design

models at multiple levels of detail, through multiple revisions and alternatives, and

across different design perspectives.

Modern production environments dictate additional capabilities that must be

accommodated in the management of design complexity. Geographically separated

design teams may work concurrently on different sections of a design or may

collaborate by providing unique expertise to a single design. Existing electronic

designs may be cataloged and stored in a standard format for reuse by anyone on a

computer network. Independently developed tools are available for automatically

checking and analyzing different design characteristics. A modern CAD environ-

ment should enable these capabilities by seamlessly integrating the different tools

and representations with the necessary data and process relationships.

1.4.1 Terminology

To facilitate understanding and analysis of design complexity, this research

examines three organizing paradigms - aggregation, interaction, and variation -

that are inherent in the creation of any complex product design.

• Aggregation is the organization of related components into collections and the

arrangement of these collections into a product hierarchy. Aggregation depicts

the decomposition and abstraction of the design model at multiple levels of

detail.

• Interaction is the description of how two parts or subassemblies fit together

and cooperate to provide new capabilities.

• Variation is the evolution of a design as it changes over time.

Although these organizing paradigms are common, the preceding definitions are

particular to this work since no standard definitions exist.

10

1.4.2 Objectives

To facilitate complexity management in a modern production environment, this

research introduces an automated framework for organizing and controlling complex

design models. This framework incorporates the aggregation, interaction, and vari-

ation paradigms defined above into a single structure for specifying and organizing

complex product designs. Specifically, this framework is intended to assist the

designer by:

• Integrating different design disciplines and related design components into a

single product model. A single product model simplifies analysis by having

information available in a single structure and a similar format. Design changes

are more readily propagated through a single design model making it easier to

analyze new designs or the impact of changes.

• Supporting independent manipulation of different design representations and

components along with the relationships between them. By independently

manipulating relationships, designers can communicate between related com-

ponents and control how components affect one another. Designers are not

constrained to a particular level of detail or a particular representation when

modifying design components; rather, changes can be made at any level and

propagated to related representations. Independent manipulation of design

representations also makes it easier for designers to simultaneously work on

different parts of the product or to reuse existing product designs.

• Providing flexibility to manage and evolve design representations for different

design processes or applications. Designers can organize and evolve their

designs according to the process that is most beneficial to their particular

situation. Data structures implemented for a particular application such as

force analysis or manufacturing process planning, can be readily extended to

incorporate additional design disciplines or application areas.

11

1.4.3 Methodology

The primary components of this framework are based on the organizational

paradigms defined in Section 1.4.1. These components include aggregation objects

for organizing related information into collections, relationship objects for describing

the hierarchical and interaction relationships between components, and version

objects for recording the evolution of a design as it changes over time. Each of the

aggregation objects, relationship objects, and version objects contains automated

"software assistants" that assist the designer in analyzing and managing the product

model.

An aggregation object is an organizational structure that encapsulates multiple

design entities into a single design object. Aggregation objects can be nested within

other aggregation objects to form a decomposition hierarchy with different levels

of detail. An aggregation object creates a scope into which the designer may insert

related geometric, functional, manufacturing, or other design information. The

scope of the aggregation object restricts access to the encapsulated components

from objects external to the aggregation.

This framework contains two type of relationship objects - attachments that

represent the hierarchical relationships between design components, and interface

specification objects that represent the peer-to-peer interaction relationships be-

tween components. Relationship objects contain design constraints and methods

for analyzing and validating related components. Both types of relationship objects

are distinct design objects that can be independently manipulated by the designer

to analyze and control the related components. The attachment relationship links

components that are part of the same higher-level aggregation. Interface speci-

fication objects describe the detailed interactions between parts in an assembly

aggregation.

To complete the framework, this research creates version objects for recording

and managing design modifications. When a designer modifies a design aggrega-

tion, a new version object is automatically created that computes and records the

differences in the design. Version objects can also be created to record alternative

12

solutions or views of the design. Version objects are derived from aggregation

objects so that designers can control granularity by the number of components

in an aggregation. Simple commands are associated with the version objects for

interactively selecting or copying any existing version of a component model.

1.4.4 Design Characteristics

In an attempt to manage design complexity, designers employ a number of

design techniques to decompose the problem into more manageable pieces and

to control changes to the design as it evolves. For a CAD system to support

the entire design process, it must accommodate these complexity management

techniques along with the specification of geometry and functionality. A CAD

system should also enable the designer to maximize utilization of the storage,

communication, and processing power of modern computers systems and networks.

This research considers the following design techniques and characteristics essential

for representing and managing design complexity in modern CAD systems.

Decomposition. A high level concept of the design is decomposed into smaller

components that are more easily understood and implemented.

Simultaneous Development. Different designers work on separate components of

the design at the same time.

Integration. Components designed separately from each other are composed into

a higher level functional design. Independently designed components should

be compatible with the high level specifications.

Nongeometric Design Representation. To adequately analyze the feasibility and

performance of a design model, the designer must be able to quantify in-

formation concerning the functionality, ease of assembly, manufacturing pro-

cesses, and other design disciplines. This may involve kinematic joints, force

constraints, manufacturing or assembly features, fasteners and connectors, or

other specialized design components.

13

Design Exploration. A designer often explores multiple alternatives before the

design is completed.

Concurrent Design. Designers with expertise in different design disciplines may

need to concurrently develop and analyze the design model from multiple

viewpoints.

Design Recovery. Once a design has evolved, a designer may determine that

another version is more accurate. This requires recovery of a previous version

or alternative of the design.

Design Reuse. A design may be adapted and reused to satisfy a different set of

requirements.

Refinement. Once a design exists, this design may be refined to adapt to dif-

ferent requirements or to improve the ability of the design to satisfy existing

requirements.

Change Management. A designer may need to propagate a change to interacting

design components, alternate versions, or higher level design aggregations so

that different representations of a model are kept consistent. A designer may

also want to restrict how changes are made and propagated through the model.

Before a change is made permanent, a designer may want to analyze the impact

that the change has on the remainder of the model.

Design History. The designer needs to keep track of design decisions and the

history of the design to reduce rework and to allow different individuals to

understand how the design has evolved. Design history also assists with

corrections to a design by providing an understanding of why a particular

design decision was made.

Assisted Analysis. Some quantifiable elements of the design can be automatically

analyzed. To better assist the designer, the design environment should support

such automation.

14

Simulation. The designer may want to simulate the movement and operation of

an assembly to analyze interference or behavior.

In addition to these design capabilities, it is important that any design system

is easy to use and can be readily extended to support other design applications.

Toward this goal, this research strives to support complexity management in a

manner that allows the design team to increase its productivity while proceeding

according to a process that is comfortable to its members. Designer productivity is

enhanced by automating tedious tasks, supporting interactive editing and analysis,

and minimizing user interface complexity. In addition, the relationship and aggre-

gation objects are designed with considerable flexibility so that they can be easily

extended to represent multiple design disciplines or applications.

1.4.5 Alpha_l Design Environment

The complexity management framework in this research is integrated into

Alpha-1, an object-oriented testbed system supporting research into geometric mod-

eling, high-quality graphics, curve and surface representations and algorithms, en-

gineering design, analysis, visualization, process planning, and computer-integrated

manufacturing [55]. Alpha-1 provides geometric primitives, surface and curve

representations, and mechanical features that can be used with the aggregation,

interaction, and variational mechanisms presented in this research to provide a

powerful computer-aided design and manufacturing environment.

Mechanical models in Alpha-1 are represented by a directed graph that identifies

the prerequisite objects necessary to construct a particular object and the depen-

dent objects that are based on the object. The model graph is used to propagate

changes to dependent objects and to minimize processing by computing only the

necessary prerequisite objects.

The Alpha-1 object-oriented software development environment facilitates code

generation for new modeling objects and provides a standard framework for building

model object constructors to integrate model objects into graphical and textual user

interfaces. The controlled interaction and aggregation mechanisms are implemented

15

as independent Alpha-1 model objects that can be manipulated and controlled like

any other model object in the system.

1.4.6 Limitations

Although a powerful user interface is a vital component of any design system, this

research does not specifically address user interface issues. Instead, the complexity

management mechanisms are implemented as fundamental design objects that can

be flexibly integrated into a number of customizable user interfaces in AlphaA.

This research implements versioning mechanisms to support the evolution of a

design model as it is decomposed and refined over time. Some fundamental ver-

sioning capabilities, available in commercial object-oriented database management

systems [30, 65], are implemented as a basis for the complexity management ca-

pabilities introduced in this research. These fundamental capabilities are extended

to support the management of alternative solutions and views, user-controlled

granularity, and the use of versioning as an interactive design tool.

1.5 Document Summary
There are many aspects of automating the management of design complexity

that have been previously explored by other researchers. This work is described

and analyzed in Chapter 2.

To provide a better understanding of the automated mechanisms and to demon-

strate the capabilities of the automated framework that is introduced in this re-

search, two case studies were undertaken with real manufacturing design examples.

These case studies, along with design methodologies for simultaneous and incre-

mental design, are outlined in Chapter 3. Examples from the two case studies are

interspersed throughout the remainder of the document.

Chapter's 4, 5, and 6 describe the fundamental mechanisms and strategies for

the automated complexity management framework introduced by this research.

Chapter 4 explores the roles and data structures associated with part, assembly,

and other aggregations. Chapter 5 describes the complexity associated with the

interaction between parts in an assembly along with the data structures used

16

for the specification of this interaction. Chapter 6 presents the data structures

and capabilities of the versioning mechanism that is used to maintain revised and

alternate variations of a design aggregation.

In Chapter 7, the results of this research are measured against the capabilities

and characteristics identified in Section 1.4.4. These capabilities are also used as

a basis of comparison for other design data models. Chapter 8 concludes this

document with a summary of the research and conclusions about the contributions

of this research to the field of computer-aided design. This chapter also recommends

future research directions.

CHAPTER 2

RELATED WORK

Complex product design is characterized by a variety of interrelated process

activities, design representations, and model components that evolve over time.

As discussed in this chapter, however, most existing tools and research support

only static representations or component models with minimal support for the

relationships between these representations, the variations as the models evolve

over time, or the design activities that are necessary to manage design complexity.

Feature-based design is a common approach for embedding different functions

and multiple design disciplines into a single part model. A feature is a standard,

reusable design entity that encapsulates related functional, manufacturing, geomet-

ric, or other engineering information into a single representational abstraction. A

sampling of these feature-based design approaches is described in Section 2.1.

Some researchers have developed data models for design that incorporate frag-

ments of information associated with the relationships between design components

in a complex design. These models, as summarized in Section 2.2, range from data

structures that integrate structural and constraint relationships into the design

model to mechanisms for simplifying the specification of some of the relationships

that contribute to design complexity.

As a design evolves over time, a number of model variations are created. These

variations are supported with version management capabilities as discussed in

Section 2.3. Unfortunately, version management capabilities are not well supported

in CAD systems.

Product data management (PDM) systems take a different approach to manag-

ing complexity as described in Section 2.4. Instead of embedding complexity infor-

mation in the original CAD models, PDM systems maintain a separate database

18

that links together the individual component models created by different CAD

applications.

2.1 Feature-Based Design
A common technique for controlling design complexity is to hide some of the de-

tails at different levels of abstraction. Feature-based design facilitates this approach

by encapsulating geometry, functionality, design intent, tolerances, manufacturing

processes, or other important design information into reusable, standardized fea-

tures. Features help control complexity by enabling the designer to work with a

single entity instead of many separate pieces of information. Specialized features

may be developed for different design disciplines, enabling concurrent design by

multiple designers working with different feature views.

Shah and Mäntylä [49] characterize a feature as a physical constituent of a

part that has engineering significance and predictable properties and is mappable

to a generic shape. Recurring characteristics of products may be modeled as

feature classes that can be reused to facilitate construction of a product design.

Features provide a means for "chunking" information, making it easier for humans

to understand. According to Shah and Mäntylä, "a major advantage of features is

that they provide an additional level of information to CAD systems to make them

more useful for design and to integrate a design with downstream applications.

Because of the higher semantic level of features, they can provide a basis for

recording a more complete product definition."

Features are commonly used to represent manufacturing processes associated

with a particular shape of a part (for example, the drilling or reaming processes

required to machine a hole or a pocket) [7, 9, 10, 24, 54]. By embedding process

information in the feature, a process plan to manufacture the part can be gener-

ated automatically [10]. Tolerance and dimension information is also frequently

encapsulated in features, providing a convenient mechanism for automatic analysis

of associated costs and ease of manufacturing [26, 44, 60]. Many researchers discuss

embedding functional requirements and specifications within features for design ver-

19

ification [2, 9, 22]. Implementation of functional feature modeling systems, however,

has been limited to very small, research domains, probably because of the difficulty

associated with unambiguously specifying functionality. Features have also been

used to represent assembly relationships and constraints [16, 36, 49, 50, 59].

A feature-based design system must consider location of a feature on a part and

relationships between features on a part or in an assembly. Feature validation and

interactions between features on a part are also important issues. If multiple feature

views exist that represent the same design component from multiple perspectives

(for example, a functional view or a manufacturing view composed of the appro-

priate functional or manufacturing features), one must be able to map between

the different views. In addition, to represent information such as manufacturing

processes, specific features must be defined to describe those processes. These

feature-based design issues are dealt with in a variety of ways as discussed in the

following paragraphs.

Location of a feature on a part is usually determined relative to some geometric

entity (for example, a face or an edge), to another feature, or to a user-defined

reference. In the University of Utah's Alpha-1 system [10, 55], a designer defines

an anchor to specify location and orientation. Each feature also has an anchor

and the feature is placed in the model by aligning the feature anchor with the

user-defined anchor. Process plans built from features in AlphaA have successfully

produced a wide variety of machined parts; however, placement of features requires

the designer to ensure that anchors are properly specified. Ranyak and Fridshal [44]

resolve planar and cylindrical geometrical features into primitives (point, line, or

plane) and locate the feature relative to another feature or a datum reference frame.

Location tolerances are embedded in the feature to determine the type of location

constraint to apply (for example, distance, concentricity, angle). Gossard et al. [26]

use location dimensions to locate a feature relative to a particular face. Relative

position operators for specifying the intersection angle of two faces or the distance

between two parallel planes allow the designer to define and locate features with

scalar values.

20

In an assembly, feature relationships may be used to constrain how parts fit

together. Driskill [16] defines assembly features such as a peg in a hole that

constrain the geometry and the relative location of the peg and the hole so that

the two parts fit together. In her work, the peg and the hole are separate features

that act together to form an assembly. Shah and Tadepalli [50] present another

approach in which a new feature is created, in addition to the peg and the hole

on each part, that does not fit on any part, but describes and constrains the

relationship between the features on each of the two parts. This approach is

used by Shah and Tadepalli to determine if two parts can be assembled. In both

of these approaches, individual parts are designed independently and include one

component compatible with an assembly feature. Once designed, these parts are

selected and analyzed to determine if and how they can be assembled. If no valid

assembly representation is possible, the parts must be independently modified and

reanalyzed until a valid configuration is reached. Both approaches are also limited

to static assemblies. Assembly features, as defined by Driskill or by Shah and

Tadepalli, identify compatible geometry and mating constraints that are useful

for determining whether two parts may be assembled, but are not intended for

specifying or controlling the interaction of the parts once assembled.

By properly specifying feature constraints, features become valuable tools for

validating the geometry or other attributes of a model. For example, a through

hole can be specified so that its entire diameter is on the part and its depth is

equal to the thickness of the stock. Any time the model is changed, features can be

revalidated to make sure all constraints are satisfied. Unfortunately, this problem

is easily complicated by interactions among features. For instance, if one of two

parallel slot features is widened such that it intersects with the other, the two

separate features have changed into a single slot feature.

Geelink et al. [24] group interacting features into a compound feature that can

be decomposed into its primitive features for process planning. Unfortunately,

intersection of two or more features may cause deletion of important portions of

the geometry. Geelink et al. define feature recognition algorithms that alleviate

21

this intersection problem by relaxing feature definitions. This solution has been

implemented for a limited set of features, but it is not apparent that the solution

is generally applicable to other features or to all feature configurations. When

feature constraints are violated by a change, Dohmen [13] reconstructs the feature

model from the geometric primitives. This requires that all features and constraints

be programmatically defined with low-level geometry. Chen [8] matches feature

vertices, edges, and faces to determine when a feature is no longer valid. He then

rebuilds the feature model by deleting or modifying invalid features. Because of

the ambiguity in determining how features should interact, Chen's approach often

results in an approximation of the feature model. All of these methods require

interaction with the low-level part geometry, degrading the higher-level abstraction

provided by features.

Feature modeling is frequently proposed as a method for concurrent design.

Many different aspects of the design, such as functionality, manufacturing, and

assembly, are considered concurrently to accelerate the design process. To ana-

lyze each of these design aspects, different design views are needed. To analyze

functional capabilities, the designer needs to look at functional relationships and

constraints. A process plan for manufacturing must be generated and analyzed for

efficiency and cost-effectiveness. By providing features to represent each of these

views, and mapping between the feature views, designers and analysts with different

expertise can analyze the model at the same time. Unfortunately, mapping between

views and keeping them consistent is a considerably difficult task.

Shah [49] identifies four theoretical approaches to feature mapping. Heuristic

methods use prespecified transformation rules to map between two engineering

application views. Another approach transforms features to an intermediate-level

structure that is common to multiple applications. Cell-based mapping decomposes

features into cells that can then be transformed into another feature view. In

graph-based mapping, feature attributes and constraints are represented by a graph

that is transformed, using graph grammars and algorithms, into another graph

forming a different engineering perspective.

22

Falcidieno et al. [21] extract shape information from a feature by applying

previously defined feature and shape rules. The shape information is stored as a

hierarchical graph that can be converted to different views using predefined routines.

All features and views, including feature interactions, must be explicitly denned

by an application expert. It is not clear how robust or complicated this process

is, but the examples have less than 20 shape features and are limited to planar

and cylindrical faces. Brooks and Greenway [7] use object relationships to relate

different feature views to the faces and topology of the geometric model. This work

requires programmatic definition of features and is limited to planar and quadric

surfaces. Cunningham and Dixon [11] provide a mechanism for denning heuristics

to transform between a design feature and any alternate activity representation.

A monitor routine restricts the combinations of design features to those that can

be converted into activity features. All features and their mappings to alternate

activities must be explicitly defined before the monitor routine will allow them to

be used in the design. Intersections of more than two features are derived from

adjoining two-way relationships. Wearring [61] identifies intermediate geometry

features that can be reorganized, through detailed geometry manipulation by the

designer, into whatever functional feature is desired. For a simple block with a

hole in it, the relationships, dimensions and tolerances for three of the faces and

the hole must be specified and maintained by the designer. In practice, each of

these implementations has only been applied to a limited domain and to parts with

limited complexity. The solution space and complexity for many parts or assemblies

quickly become unmanageable.

A significant drawback to any feature modeling system is the domain specific

nature of features. To model a different manufacturing domain or a different view, a

new set of features is required. Some researchers have tried to overcome this with in-

teractive feature definition; however, due to the difficulty in specifying relationships

and constraints, only limited analysis and validation is possible in these systems.

The FROOM (Feature and Relation based Object Oriented Modeling) system [24],

for example, supports only planar, cylindrical, and conical faces with adjacent,

23

perpendicular, parallel, and coaxial relations. Only features that can be completely

defined with parameters are allowed. Other researchers [44, 47] have developed

an object-oriented feature hierarchy, where new features inherit attributes and

constraints from parent feature classes. Transformation and recognition of these

features is based on the predefined, high-level parent class and may not consider

the necessary detail contained in the feature object. Features that do not fall into

a preexisting class still require new class definitions.

Researchers attribute considerable representation and modeling power to the

use of features. In practice, however, the only common use of features, other than

for representing geometric attributes such as dimensioning, tolerancing, and shape,

is for manufacturing process automation. Very little functional specification and

analysis is supported by existing feature modeling systems. Features are also very

application dependent and mapping between feature domains is complicated by

the interactions between multiple features on a part. Representing and mapping

between complex parts with multiple interacting features is difficult to do with

existing systems.

2.2 Data Models for Design
Even though features facilitate representation of different functions and design

disciplines in a design model, they are independent design objects and contribute

little to the organization of the different features into manufacturable parts or

assemblies. A number of more comprehensive models have been proposed for linking

features and other design information together into complex parts and assemblies

and embedding these relationships into a static product model. Some of these mod-

els utilize structural and constraint relationships to integrate individual component

models into complex aggregations whereas others simply facilitate specification of

complex relationships. Some models focus on high-level concepts and functionality

while others emphasize detailed manufacturing designs.

Eastman and Fereshetian [19] present a set of criteria for evaluating and compar-

ing product data models. These criteria include an object-oriented class hierarchy

24

with abstract data types, multiple specializations of classes, and composite objects.

A data model must support relations within composite objects, relations between

variables, and relations such as cardinality and dependency between object struc-

tures. Included in these relations are constraints and aggregations. Both invariant

and variant relations are required. Relations must support integrity management

of the data to include partial integrity while the design is in an intermediate state.

In addition, the product data model must provide for continuous object refinement

and schema evolution.

Eastman's Engineering Data Model (EDM) [17, 18] for architectural design is

among the most comprehensive of the design models reviewed in this research.

EDM is an architectural design model that strives to represent function and form

at multiple levels of abstraction with explicit management of partial integrity. EDM

provides aggregation, composition, and accumulation relationships that allow the

designer to describe the aggregation hierarchy of the design along with constraint

information between components. EDM is based on set theory and first order logic.

Domains are sets of values corresponding to a simple type, aggregations are sets

of named domains, and constraints are general relations stored as procedures. The

primary object is a functional entity - an aggregation and its constraints along

with other entities that it specializes. A composition is the set of relations linking

an entity to its parts. These relations are defined as accumulations that include

functional design rules and property relations between the parts. To support partial

integrity, some relations are not satisfied immediately. Integrity between multiple

views is maintained through maps that are specializations of constraints that can

change the database variables and schema. Missing from EDM are operations, such

as automated generation of relations, that simplify designer interaction and explicit

version management of design revisions. A number of architectural design domains,

including composite windows, core and panel walls, and basic building structures,

have been modeled with EDM. Due to its architectural focus on static structures,

however, it is not clear that the relationships in EDM can incorporate mechanical

interaction information such as forces, connectors, and kinematics. Manufacturing

25

features and other mechanical design representations have not been demonstrated

with EDM.

Gui and Mäntylä's multigraph structure [27] focuses on the top-down evolution

of an assembly design from high-level functional concepts. The multigraph sup-

ports multiple levels of detail and provides links between functional, structural,

and geometric information. A leaf node in the multigraph can be linked with

a functional description, geometry, features, elements in a bond graph, or other

design information. The multigraph also provides a connector for describing force

transmission and motion constraints associated with the interaction between parts

in an assembly. An example connector is a spring that imparts a force but also

provides a physical geometric connection. A feature link relates design functionality

or other feature representations to the geometry. Gui and Mäntylä use this multi-

graph representation to share design objects between three system components

- the DesignPlanner that describes functional relationships; the DesignSketcher

supporting geometric modeling; and the DesignConsultant that resembles an expert

system. Each system component links its design representation to the object

multigraph. Once the designer has specified the functionality, tools for behavior

and energy transformation analysis can be applied to the multigraph. The designer

develops geometric representations and associates them with the proper functions.

Gui and Mäntylä describe how the multigraph representation and associated design

and analysis tools are used to model an electrical contactor used to open a circuit

based on a control voltage. Designers are given considerable flexibility in represent-

ing functionality; however, this flexibility limits the degree to which the analysis

is automated. The multigraph emphasizes functionality and assembly modeling,

but requires that the detailed manufacturing information be modeled separately.

While linkages exist, the multigraph mechanisms are not applied directly to the

specification and validation of individual, manufacturable parts.

Representing design functionality is a common goal of many researchers. The

feature-based approach discussed in Section 2.1 is intended to support functional

representation, but has rarely been used in this fashion. Baxter et al. [2] propose an

26

enhanced entity-relation diagram for representing design functionality and analyz-

ing how well a product satisfies the specified functionality. Functional relationships

such as performed-by, inpuLof, outpuLof, and has.need-of are traversed and the

functionality of the linked components is analyzed to determine if these relations are

satisfied. Baxter et al. tested their model on a valve assembly with 22 components.

The model contained 35 function instances and approximately 1000 nodes. It is not

clear how much of the validation was automated; however, some human intervention

appears necessary to resolve the ambiguity associated with integrating subfunctions

and analyzing their combined ability to perform their parent function.

Rosenman and Gero [45] assert that multiple views and representations are

dependent on a functional context. Different views (for example, architectural,

mechanical, and structural) are composed of a different set of functional primitives

rather than a different look at the same standardized primitives. This requires

a different model for each view with a view defined by a set of functions or a

set of functional systems. Different disciplines may refer to the same element using

different terminology. This is handled using explicit relationships between elements

with identical properties, elements in an assembly, partial elements, and constrained

elements. This data model is used to create architectural, mechanical, and struc-

tural views of a building; however, change propagation and other relationships

between the views are not demonstrated.

Gorti and Sriram [25] present a framework for conceptual design that uses

functional, composition, aggregation, and spatial relationships. The designer selects

predefined components, establishes functional relationships between the compo-

nents (supports, transmits load, or resists load), and specifies the spatial relation-

ship (for example, connects, intersects, or abuts). These relationships are used to

generate possible design concepts to use as a basis for more detailed design. A

limited set of conceptual entities such as pier, slab, and bank, have been developed

to demonstrate this approach for the design of a river bridge.

The interaction between components in an assembly is inadequately represented

in many data models. Models such as Eastman's EDM include hierarchical aggre-

27

gations and positioning constraints, but provide only limited support for describing

how different aggregations or individual components interact. Other models such

as Driskill's assembly features, incorporate interaction information into individ-

ual parts which restricts analysis of the interaction relationship and complicates

change propagation between the interacting parts. Some researchers, however,

have realized this problem and have focused on the specification and analysis of

the interaction relationships between parts in an assembly.

Bordegoni and Cugini [5] specifically address the interaction between fixed com-

ponents in a mechanical assembly. They propose an assembly feature for specifying

the interaction relationship at various levels of detail. This is accomplished by

having the designer fill in appropriate detail information in a cataloged template

for each instance of an interaction relationship; however, if the template does not

provide a slot for the information, the detail can be added only after modifying

the template. Multidisciplinary analysis is facilitated by providing functional,

positioning, and assembly information in a single relationship. Bordegoni and

Cugini's implementation of assembly features, however, is rather limited, having

only been demonstrated for fixed assemblies with no kinematic interaction.

Lee et al. [34, 37, 38] developed mating features to represent four typical po-

sitioning and kinematic configurations between planar and cylindrical surfaces of

parts in an assembly model. The against mating feature specifies that the surface of

one part must lie against a second part. This relationship has one rotational degree

of freedom and two translational degrees of freedom. A fits mating feature specifies

a cylinder in a hole. Here translational movement is allowed along the axis of the

cylinder and rotational movement is allowed around the axis. A contact feature is

an against feature with no movement and a tight fit feature is a fits feature with no

movement. The designer associates mating features with individual part surfaces

and, if a valid set of mating features is specified, the modeling system generates

the necessary equations to infer the relative position of the parts.

Beach and Anderson [3] extend the mating feature concept to include a total

of twelve different attachments. Their attachment hierarchy includes cylindrical,

28

planar, revolute, prismatic, spherical, and helical attachments that are specified as

either rigid or a kinematic pair. They represent these attachments in a general

graph showing the attachment relationships a part has with all other parts. This

graph is supplemented with a hierarchical tree to show subassembly grouping.

All attachments within a subassembly must be rigid. If a component is modified

and does not violate any constraints, the parts are automatically reassembled. A

simple wheel mount, with no subassemblies and with only planar and cylindrical

attachments, is provided as an example. The subassembly hierarchy, although

critical to reducing the model complexity and increasing designer understanding,

is included by Beach and Anderson almost as an afterthought. The subassembly

hierarchy is implemented in a separate data structure and there are no relationships

between this hierarchy and the attachment graph. The two structures are integrated

only through high-level software routines. Use of the subassembly structure is not

illustrated in any examples.

Wolter and Chandrasekaran [63] use geometric structures, called geomes, to

represent "any arbitrary collection of geometric elements whose form may or may

not be fully specified." Geomes can be used for relationships between objects

as well as the objects themselves. Functional information can also be associated

with a geome. For example, the designer can specify the behavior and a limited

amount of geometry (such as the axis of rotation) for a kinematic constraint.

The constraint can then be instantiated anywhere in the model by specifying the

necessary parameters. Higher-level geomes can be used as design specifications with

the implementation represented in lower-level geomes. Geomes can also be used to

represent geometric entities that have no physical existence, such as the axis of a

hole or the paper path of a copying machine. Wolter and Chandrasekaran provide

a simple example of a device that uses two rack-and-pinion geomes to transform

translational motion in one direction into translational motion in a perpendicular

direction. While their approach is quite flexible, Wolter and Chandrasekaran point

out that a product designed with this approach is certain to be more complex than

a geometrical representation alone since a considerable amount of nongeometric

29

constraints may also be included in the geomes; however, by organizing the data

hierarchically, the amount of information presented to the designer can be lim-

ited, thereby facilitating understanding and manipulation of the design. Wolter

and Chandrasekaran also discuss the difficulty of graphically representing this

information and in unambiguously interpreting the constraints. Since much of

the framework presented by Wolter and Chandrasekaran has not been completely

implemented, the geome concept has only been demonstrated for hypothetical

examples. It appears to be highly flexible, however, and one can easily envision

geomes as an interface specification between two objects in an assembly, as relations

between views, or as constraints imposed on an aggregation hierarchy or different

design alternatives.

Fasteners and connectors are often critical to the interaction between parts.

Salomons et al. [46] propose a mechanism for incorporating connection information

such as a weld or keyway into a relationship describing the interaction between

parts. These relations do not appear to be used for any automated analysis or

validation. Abrantes and Hill [1] incorporate fasteners into a relationship between

assembly parts; however, their fasteners are used only as a means for reducing the

number of possible assembly configurations.

A key aspect of any design is the evolution of the design model over time as it

proceeds through the design process. Some researchers have proposed representa-

tions for recording the historical information associated with this evolution. These

representations enable the designer to embed historical information directly in the

design model.

Kim and Szykman [33] use design decisions to describe the relationships between

versions of a design model. The concept behind their approach is that any time

a design change is made, it reflects a decision by the designer. Design decision

relationships facilitate the representation and exploration of design alternatives. By

forcing designers to document design decisions, versions are more easily associated

with new functionality or abstractions rather than simply representing a snapshot

of the design at a particular point in time. A conceptual example of a television re-

30

mote control is presented in which different battery configurations are interactively

examined and analyzed. Considerable flexibility is provided for representing design

knowledge with these relationships; however, these flexible representations limit the

amount of analysis and constraint checking that can be automated. Design decision

relationships are static objects and must be explicitly defined by the designer.

Shah et al. [48] classify design history information into four conceptual elements:

the design problem, domain knowledge, design processes, and the design solution

or product data. Each of these elements must be captured in representational

data structures to form a design history data model. Shah et al. develop a design

language to represent the processes, organizational entities, design products, and

relationships between the entities associated with a design project at any particular

point in time. A number of issues for representing design history, however, remain

unresolved. Among these issues are the extension of database technology to incor-

porate modeling of processes, rationale, and design constraints and the development

of a dynamic data definition language that can specify design history and represent

the evolution of the design process.

To assist with change propagation and constraint analysis, researchers have

developed active relationship objects that execute preexisting procedures when trig-

gered by another object or event. Active relationships localize constraint and change

propagation, thereby reducing complexity and facilitating analysis and interaction.

Sullivan [52] depicts active relationships with mediators that represent behavioral

relationships between two objects. A behavioral relationship reflects the behavior

one object should exhibit when another object completes an operation or changes an

attribute. A behavioral type object raises an event when a particular action occurs

in that object. The mediator recognizes this event and executes the appropriate

action on related objects.

Mediator objects can be inherited and decomposed just like other objects. Ag-

gregation and interaction relations, transformation between representations, and

evolutionary mapping between versions can all be implemented with mediators.

Sullivan clarifies that behavioral relationships embedded in mediators must be

31

independent of each other; otherwise a specific ordering of mediator invocation

is required. Also, the current implementation only handles binary relationships.

While he advocates the use of mediators during the design process, Sullivan

provides examples that are more appropriate for an operational environment. Me-

diators were developed for use in software, and Sullivan uses them to communicate

between application objects such as user interface windows. Sullivan proposes

mediators for mapping between design views and versions, however no examples

are provided. This mapping would be an appropriate use of mediators, but re-

quires specification of the complex behavioral relationships involved in a design

environment.

Brett et al. [6] define a propagation as an object similar to a mediator, but limited

to nonancestral relationships between design objects. A nonancestral relationship

is one that "is not already in a parent-child relationship within an object-oriented

hierarchy." A propagation "can be conceived as an independent, third-party object

which causes mediating software to fire whenever changes to one object must trigger

changes to other objects so as to maintain data consistency." The idea behind

propagations is to encode constraints within the relationship object or provide

methods for accessing a constraint database, then act on those constraints to

propagate changes between related objects.

One can imagine using propagations to constrain the interaction between parts

or to ensure consistency between different alternatives or views. Brett et al. explain,

however, that they have been able to implement only single view relationships be-

tween features on a single part. Constraints are hard coded in the object definition

and can only be used to represent geometric relationships.

Heinrich and Juengst [28] take a completely different approach in analyzing the

connection between components in a technical system. They base their work on

"the principle that systems and components interact mainly through interfaces

which can be thought of as resources and that the resources demanded and the

resources supplied by components have to be balanced." An assembly of mechanical

components can be modeled by representing the fasteners and mating features as

32

resources that are consumed by one part and produced by another. Describing the

resources consumed and produced by the environment provides a system specifi-

cation. Similarly, the problem can be decomposed by describing the resources for

subassemblies or individual parts. Heinrich and Juengst have tested their approach

with prototypes in a variety of electronic and mechanical applications.

Although Heinrich and Juengst do not propose it, the interfaces through which

resources are exchanged could be implemented as relationship objects between

components. His resource management approach, however, is more applicable

to a system of products in an environment rather than individual products. In

fact, Heinrich and Juengst clarify that their approach fails if the function depends

decisively on how the components are connected.

As evidenced by many of the data models presented in this section, representing

functionality is a significant problem in any modeling system. Predefined rela-

tionships may adequately specify some functionality, but are generally unable to

capture the complete functionality of a product. Complete functional specifications

invariably involve some ambiguity that requires human interpretation.

Relationships objects have been demonstrated as a useful mechanism for repre-

senting the interaction between components of a design. Relationship objects can

be used to represent a multitude of design information, but most implementations

have been limited to single aspects of a design in a limited capacity. Combining

relations for different design information would simplify the design interface while

providing more capability for analysis.

None of the data models presented in this section completely captures the

manufacturing design process. Some are concerned only with functionality or

assembly joints. Explicit support for version management is minimal or nonexistent.

Data models only capture the static representation of the data and do not deal

with automating designer manipulation of the data. Applying these design models

to real-world manufacturing problems has found only limited success due to the

representational complexity involved.

33

2.3 Version Management
As a design evolves over time, many revisions, variants, or alternates of the

design may be created. Version management tracks these differences and ensures

that related versions of the design model are kept consistent. While version man-

agement has been successfully utilized in some engineering disciplines, especially

software engineering, there have been few mechanical design systems that support

comprehensive version management of design models.

Mechanical design models have certain characteristics that make version man-

agement more difficult. Katz [31] identifies the following characteristics of design

data that must be considered when developing a version management system:

• Design data are organized hierarchically.

• Design data evolve. Versions must be able to represent revised and alternative

designs for an object. Configurations of versions representing complete design

models also evolve.

• There are multiple equivalent or corresponding representations of a design

object.

• Design object instances are derived from object classes and inherit attributes

and behavior from the parent class.

To support these characteristics, Katz proposes a conceptual versioning model

in which the following data primitives are used to describe the relations between

design objects:

• Component hierarchies are indicated by IS-A-PART-OF relations that form a

directed acyclic graph. Primitive objects form the leaves of the graph and all

other nodes are composite objects. This kind of relation is also referred to as

an aggregation.

• Version history is depicted by IS-DERIVED-FROM relations that show how one

34

version is derived from another. Alternatives are shown by multiple parallel

derivations of a single version. IS-A-KIND-OF relations describe instances of a

class of objects. Version history and instance relations are depicted graphically

as a tree.

• When component hierarchy and history or instance relationships are combined,

the result is a configuration.

• Equivalent or corresponding objects with different representations are linked

via IS-EQUIVALENT-TO relations or equivalences.

Katz also identifies the following operations necessary for version management:

• Currency operations designate and locate the current version of an object or

configuration. The current version is the basis for subsequent derivations or

equivalent representations.

• Change propagation involves automatically incorporating new versions into

configurations. Constraint propagation refers to the enforcement of equivalence

constraints by procedurally regenerating new versions (generating equivalent

views). If multiple design objects can have the same parent, propagating

changes throughout the design hierarchy can generate an exponential number

of propagation paths. Katz suggests that this ambiguity can be minimized by

having the designer restrict the propagation paths or by specifying constraints

that isolate the changes to a particular part of the design hierarchy.

• Dynamic configurations, in which the components in the configuration are not

resolved until the aggregation relations are actually traversed, imply meth-

ods for describing valid versions to include in the configuration. Dynamic

configurations are implemented with various version naming and organization

techniques.

• Workspaces support simultaneous access to design data. Managing the move-

35

ment of objects between these workspaces allows designers to make changes to

an object without interfering with other designers. Workspaces are typically

organized as a master workspace with verified design data and multiple indi-

vidual workspaces for individual designers. Additional workspaces may also

exist for integrating the changes of an entire group of designers.

This framework provided by Katz encompasses much of the existing work in

version management and data modeling for design. Katz presents a survey of ver-

sion management research and describes how this research fits into his framework.

Additional variations and implementations of this framework are described in the

remainder of this section.

For software configuration management, Zeller [66] presents the concept of ver-

sion sets grouped according to feature logics. A feature is a name and a value

associated with some element of a configuration item (an example [name, value]

pair is [compiler, gcc]). Features may be assigned by the designer or may be

derived from the context in which the component is used. By making the delta

between two versions a feature, the latest complete version is derived from the

unification of all the delta features for that component. Different views can be

built from different features associated with the component. System configurations

are created by taking the intersection of all relevant features of the components.

In [67], Zeller also discusses four version management models for software that

his version sets and feature logics support. The checkin/checkout repository model

consists of revisions stored in a repository. Designers checkout a component, make

changes, and check the component back into the repository. Revisions are repre-

sented by delta features describing the differences between versions. The composi-

tion model builds consistent configurations by selecting valid component versions

based on features. In the long transaction model, a subset of the original configura-

tion is copied to a private workspace. Changes made in the workspace are identified

with a feature. When committed back to the original environment, the feature is

modified appropriately. The change set model allows a change to be integrated

36

into multiple related components based on selected features. Zeller focuses on

building consistent product configurations as sets. While he presents techniques

for composing systems and managing version histories, the set representation does

not directly support hierarchical aggregation or variational derivation relationships.

Plaice and Wadge [43] present another approach for organizing software versions

to implement various configurations of a design. In their work, globally unique

names and an ordered version derivation path identify the appropriate version of

a component for a configuration. The proper version is identified by matching

an extended name (similar to Zeller's features) or selecting the latest version on

a similar derivation path. This approach also supports the merging of multiple

configurations into one. Holsheimer [29] examines version ordering by decomposing

complex logical programming objects into partially ordered sets based on type re-

lations. This ordering facilitates mapping complex objects to a relational database.

Each type relation becomes a database relation linking objects according to their

object type hierarchy. Version ordering with this approach has been demonstrated

for single inheritance and nonvariational object instances.

Schema evolution is a concern of any data model for version management.

Meyer [39] states that schema evolution occurs "if at least one class used by a

retrieving system differs from its counterpart in the storing system." This causes

object mismatches that occur when the schema (or class) for an object has been

modified, but the data reflects a different schema. Object mismatches are detected

by registering a unique version name or storing a class descriptor with each version.

Correction for a removed attribute requires no action, but a new attribute requires

some sort of initialization.

Zhou et al. [68] present a far more comprehensive framework for schema evolution

in a real-time machine tool control application. Zhou et al. identify schema change

taxonomy, schema change invariants, schema change rules, and schema change

semantics. The change taxonomy determines schema changes that are significant

to the application being supported. Invariants identify those aspects of the schema

that must remain unchanged to guarantee database consistency. Examples include

37

the class hierarchy and distinct object and variable names. Change rules outline

heuristics to follow to eliminate ambiguity in resolving schema changes. Specific

axioms for resolving the impact of changes on the remaining schema and the

underlying data are defined in the change semantics. Zhou et al. have implemented

objects for timing constraints and performance polymorphism (different implemen-

tations carrying out the same task with different performance measures), but has

not yet incorporated schema evolution into the real-time database.

In many instances, the version management system must be able to handle data

from different applications. Krishnamurthy and Law [35] implement meta-operators

(insert, delete, and replace) that summarize all changes made to a version during an

editing session. A compress operation determines the equivalent meta-operation for

a sequence of design tool changes. The meta-operation is then applied to the active

version to integrate the changes into the version database. The meta-operations are

applicable to any data, regardless of the application or view that created the data.

These methods are implemented with a commercial CAD system and demonstrated

on a simple shaft assembly. Version representations with meta-operators have not

been used with alternate views or applications.

Much of the work in version management concentrates on software development.

Although the problems are similar to that in mechanical design, most of the widely

used version management systems are based on textual objects. Textual objects

are compared word by word for differences between versions. This approach is not

appropriate for mechanical design, since such textual comparisons would fail to

capture the structure associated with design objects.

In addition to the configuration, organization, schema evolution, and multiple

application problems discussed above, there are a number of other issues that

must be handled in a version management system. The granularity at which

objects are versioned must be determined, either by default or through designer

specification. Change propagation can diverge into multiple paths; this must be

controlled algorithmically or through designer intervention. Solutions to these

issues often require designer interaction, another issue that must be addressed.

38

Version management is a diverse area with many issues affecting design complexity

and evolution.

2.4 Product Data Management
Product data management (PDM) systems "integrate and manage processes,

applications, and information that define products across multiple systems and

media." [42] PDM is a meta-tool, external to any particular CAD application or

model, that manages all information used to define a product as well as the processes

used to develop those products. Although many PDM products are available

commercially, most literature in this area discusses theoretical concepts associated

with PDM rather than actual PDM implementations.

CIMdata, an international consulting firm focused on PDM and related computer

integrated manufacturing (CIM) technologies, classifies PDM capabilities into five

functional areas [40, 42]:

1. Data vault and document management provide secure storage and retrieval

of product definition information. Only authorized users may access data

and changes are released only after completing a predefined approval process.

Design data are managed as complete documents, images, or files [4] and are

frequently stored in a relational database management system.

2. Workflow and process management enables the PDM system to control and

manage the flow of data between people and applications in accordance with

an organization's predefined business processes. Newly completed or modified

documents can be automatically routed and tracked throughout the organiza-

tion for approval and release.

3. Product structure management facilitates the creation and management of

product configurations. Users can link product definition data such as draw-

ings, documents, and process plans to parts and product structures. Unique

views of product information can be configured for different design disciplines.

As configurations change over time, the PDM system can track versions and

39

design variations.

4. Classification functions provide efficient mechanisms for indexing and retriev-

ing standard or similar components. These functions have been ignored by

most PDM vendors.

5. Project management provides work breakdown structures and allows resource

scheduling and project tracking. Resources are combined with managed data

to provide an additional level of planning and tracking. Project management

capabilities are not well supported in current PDM systems; instead, these

capabilities are typically provided by third-party project management tools in

which a limited number of links are established to the PDM data.

Bilgic and Rock expand the CIMdata capabilities to include impact analysis in

which the PDM system detects the effects of a potential design change to the overall

product design [4]. In addition to the functional capabilities, CIMdata also identifies

utility functions that are provided by PDM systems for communicating between

applications and personnel, for transporting data among distributed locations, for

translating data between applications, for scanning and viewing images, and for

configuring and monitoring the PDM system [42].

In his description of CIM Manager [62], Westfechtel provides a more detailed

look at some of the issues associated with product and process management for

engineering design applications. CIM Manager is conceptual PDM infrastructure

for which Westfechtel has implemented a limited prototype. CIM Manager, as well

as most other PDM systems, uses a course-grained management scheme in which

complete documents are managed. In doing so, it is not possible to manage the

individual components or parts that are embedded inside the documents. West-

fechtel claims, however, that CIM Manager provides a framework for embedding

domain specific tools that can operate on the fine-grained level.

CIM Manager handles relationships between components in the same discipline

such as between design representations of components in an assembly. It also

handles relationships that cross disciplines such as those between geometric designs

40

and manufacturing plans. CIM Manager controls versions of individual products as

well as versions of product configurations. To deal with these different relationships

and versions, Westfechtel identifies three types of consistency control that can be

tracked with CIM Manager:

1. Internal consistency requires that a design document is consistent with the

design language of the tool that created it.

2. External consistency means a dependent component or version is consistent

with respect to a master. An example of this dependency is a manufacturing

plan that is based on a specific geometric representation.

3. Configuration consistency requires that a version is consistent with respect to

a configuration of components of which it is a member; thus, the version must

be internally consistent and externally consistent with all related components

in the configuration.

CIM Manager uses a product-centered process management paradigm in which

each component of a configuration corresponds to a process that is used to produce

the component. Dependencies between components are mapped onto data flows

between component processes. CIM Manager supports concurrent engineering by

prereleasing intermediate results to dependent processes as soon as possible.

Hamer and Lepoeter [58] describe a more general conceptual framework for man-

aging design data. Their framework is characterized by five orthogonal dimensions.

The version dimension represents new versions of a model that are modifications

of other versions. The views dimension accommodates representations at differ-

ent levels of detail. This may involve different levels of abstraction such as a

conceptual view and a detailed view or it may involve different disciplines such

as a manufacturing view or a functional view. The hierarchy dimension depicts

the decomposition of a design model into smaller parts. The status dimension

corresponds to organizational procedures used to maximize the likelihood that a

design is satisfactory. A different status may require a different workspace. Finally,

41

the variants dimension handles different variations of the same basic product.

Hamer and Lepoeter claim these dimensions are quite simple when considered

independently, but, in reality, many dimensions must be handled simultaneously

resulting in many different nontrivial solutions. This framework is flawed, however,

in that it leaves out the interaction between components in an aggregate model.

Zanella and Gubian [64] also describe a generalized model of a design manager

that is "a set of functions which build, maintain, display, manage, and enforce

relationships among the data and among the design tools which are involved in a

project." The design manager controls the design software, supports the design

methodology, coordinates large sets of data, maintains design integrity, and reacts

to changes in the design environment. Zanella and Gubian break the functions

required of a design manager into two groups. Static functions help in establishing

and representing relationships among objects. Dynamic functions support design

transformations that involve any kind of changes in the relationships among objects.

Zanella and Gubian identify a number of design management relationships that are

similar to those discussed by Katz (see Section 2.3) for aggregation, refinement, and

equivalences. Zanella and Gubian emphasize the functions of a design manager,

but provide only high-level conceptual requirements for the functions that should

be performed.

While PDM systems are useful for controlling data and performing high-level

product management tasks, they have many limitations. Design information such as

functionality or geometric constraints can not be associated with the relationships

between components. This means another tool must be used to document this

information and additional steps taken to integrate the results back into the PDM

model. Bilgic and Rock point out that "PDM systems do not have a formal

representation of the product that unambiguously describes its function. Most

of the valuable information about the products stays in the "documents" the

PDM system is managing." [4] This separation of the detailed information from

the product structure adds complexity to the design model by requiring more links

and it adds considerable overhead to the design process.

42

The document centered management approach of PDM systems restricts the

designer's ability to implement and analyze incremental changes to small parts of

a document. Instead, the designer must work with entire documents and manually

ensure that related parts of other documents are kept consistent. Miller states

that integration of PDM with other CAD applications continues to be a major

challenge for PDM users [40]. As a consequence, some application models can

not be completely incorporated into the meta-model, thus requiring additional

steps to keep these separate representations consistent. Bilgic, and Rock identify

other limitations of PDM systems including the inability to analyze the impact

of proposed changes, the lack of capabilities to classify products by functionality,

the inability to reuse design knowledge, and the inadequate support of resource,

performance, and risk management [4].

Due to these limitations, PDM systems require considerable overhead to ef-

fectively integrate complex product designs and applications. This reduces the

utility of PDM systems for incremental design changes, rapid design development,

or small production runs. These limitations are reflected in many organizational

implementations of PDM systems in which only the data vault and document

management capabilities are utilized [23, 32].

2.5 Summary and Analysis
Considerable research has been performed to support the design and evolution

of complex products. Feature-based design enables designers to manipulate stan-

dardized, reusable design abstractions rather than the individual points, curves,

and surfaces of an entity's geometry. Features can also encapsulate additional

design information such as functionality or manufacturing processes, although this

capability has not been effectively exploited. Features can support concurrent

design by representing design disciplines as different views. Mapping between views,

however, is a difficult problem and current approaches require manipulation of the

low-level geometry, thus negating the benefits of the higher-level feature abstraction.

A number of data models have been proposed for representing the hierarchical

43

aggregations and constraints of complex designs. Different models are proposed for

functional or conceptual designs and for detailed, manufacturable designs. Because

of the ambiguity associated with specifying functionality, the functional models

are only able to capture a portion of the design functionality. The more detailed

models have difficulty representing the detailed information associated with the

interaction between parts in an assembly. Specialized relationships such as Lee's

mating features facilitate specification of kinematic and positioning constraints [38],

but provide no easy way to incorporate other functional or geometric information.

Embedding complexity relationships in conceptual and detailed design models fa-

cilitates analysis and change propagation; however, it is difficult to develop a widely

applicable modeling representation.

Version management systems have been implemented to track and control mod-

ifications to design components and some of these versioning systems support

alternative designs, multiple views, and different configurations of a product de-

sign. Most version management systems, however, have only been implemented for

the management of program text associated with software design. Since product

structure is critical to manufacturing design, these systems are inadequate.

Product data management systems provide a comprehensive framework for man-

aging all documents, applications, and processes that contribute to a product

definition. PDM takes such a high-level approach, however, that the details of

the design are not visible. This reduces the effectiveness of PDM in analyzing the

design or implementing incremental changes. As a consequence, PDM systems are

largely used only as secure document repositories.

CHAPTER 3

CASE STUDIES IN COMPLEX DESIGN

The design of complex products can be greatly facilitated by automating some

design activities and assisting with other design tasks. Automation can enhance

the management of product complexity by supporting the representation of product

structure and functionality; by providing variable granularity, multiple views, and

different abstractions of the product design; and by incorporating fasteners and

connectors and design constraints into the product representation. Process activi-

ties that can benefit from automation include, among others, design decomposition,

multidisciplinary analysis, simultaneous design, design reuse, controlled evolution,

change management, and change propagation. These capabilities and activities are

described in greater detail in Section 1.4.4.

This chapter presents case studies for the design of an automobile and a machin-

ing center that demonstrate the activities and capabilities identified above. Portions

of these case studies appear as examples in this document to illustrate and explain

the capabilities of the automated framework introduced in this research. The case

studies are also used to analyze this research and compare the capabilities of other

design tools and research (see Chapter 7).

3.1 Simultaneous Design of a Formula
Automobile

Modern automobiles provide a comprehensive example of complex product de-

sign. A single automobile contains thousands of components allocated among

many different subassemblies. Any particular car model may be available in many

different configurations that are minor variations of the basic model. The industry

is highly competitive so auto makers are pressured to develop innovative features

45

and new models in relatively short periods of time. There are many safety, envi-

ronmental, and budgetary constraints that further limit the design options.

Each year, as part of a national engineering competition sponsored by the Society

of Automotive Engineers (SAE), an undergraduate design class at the University

of Utah designs, builds, and races a prototype formula automobile (FormulaSAE).

While not as complex as a modern road vehicle, the design process and issues for this

automobile provide a microcosmic demonstration of the challenges for computer-

aided design.

This case study uses the models and processes developed for the formula auto-

mobile design class [14, 15, 57], but modifies them slightly to emphasize desirable

complexity management capabilities that are identified in this research and sup-

ported by the resulting research tools. The general requirements and constraints

of the formula automobile, as described in an overview of the project [57], are

described below.

For the purpose of the competition, the students are to assume that
a manufacturing firm has engaged them to produce a prototype car for
evaluation as a production item. The intended sales market is the non-
professional weekend autocross racer. Therefore, the car must have very
high performance in terms of its acceleration, braking, and handling
qualities. The car must be low in cost, easy to maintain, and reliable.
In addition, the car's marketability is enhanced by other factors such
as aesthetics, comfort, and the use of common parts. The manufacturing
firm is planning to produce 1000 cars per year at a cost under 8500 dollars.
The challenge to the design team is to design and fabricate a prototype
car that best meets these goals and [constraints].

The primary restrictions on the design are the safety requirements and
the engine size and intake restrictor. There is a minimum wheelbase of
1520 millimeters (60 inches) and the cars must have a working suspension
with a minimum usable wheel travel of at least 50 millimeters (2 inches).
The cars must also have four wheel brakes capable of locking all four
wheels on dry asphalt at any speed. To ensure that the cars will not
tip over during the performance events, the cars must not roll over when
subjected to a tilt test with the car tipped to an angle of 57 degrees
with the tallest driver in the car. Other safety requirements specify front
and rear roll hoops, side impact protection, driver restraint systems, and
driver safety equipment.

The engine may be any four-cycle piston engine with a displacement
of not more than 610 cubic centimeters. The fuels allowed are non-leaded
premium gasoline, non-leaded 100 octane racing gasoline, and M85, a 85

46

per cent methanol, 15 percent gasoline mixture. To limit the power of the
engine, a single 20 millimeter diameter restrictor must be placed between
the throttle and the engine for gasoline-fueled cars. For M85-fueled cars,
the restrictor is limited to an 18 millimeter diameter. Supercharging or
turbocharging is permitted provided that the restrictor is upstream from
the supercharger or turbocharger. Any type of transmission or drive train
may be used.

Due to the short time for development and the high complexity of the formula

automobile, multiple design subteams work simultaneously on different portions of

the overall design. With this approach, it is desirable that the design be decomposed

into sections that are largely independent of each other.

To improve understanding and to organize the project for simultaneous design,

the design team decomposes the formula automobile into smaller sections. The

team initially identifies three major functional subsystems: the body that makes

the automobile more aerodynamic and improves the appearance; the chassis that

provides support, rigidity, and other functionality; and the power train that provides

the power to move the car. The chassis and the power train are too complex to

allocate to a single subteam, so the design team decomposes these two subsystems

into smaller subassemblies as shown in Figure 3.1. The design team allocates each

of the subassemblies identified in this figure to a subteam for further design and

analysis. To avoid duplication and to simplify presentation, this case study uses

only the rear portion of the automobile that includes the rear suspension, rear

wheels, rear brakes, and the power train.

Each of the subsystems in Figure 3.1 has some sort of functional, geometric,

or kinematic interaction with other subsystems in the automobile. For example,

the rear suspension interacts with the brakes, the wheels, and the power train. To

avoid difficulties when integrating the individually designed subsystems into the

complete product design, the design subteams need to coordinate on these areas of

interaction.

A considerable amount of design information is associated with the interactions

between subsystems. As these interactions are agreed upon by various subteams, it

is often helpful to document the resulting descriptions to minimize later misunder-

47

FORMULA AUTOMOBILE

Body

Chassis

Frame

Front
Suspension

Rear
Suspension

Steering Brakes Wheels Wheels Brakes

Power Train

Engine Transmission

Drive Shafts Final Drive

Figure 3.1. High-level decomposition of formula automobile

standings. If during the course of designing the independent components, a design

subteam finds it impossible or too costly to conform to a previously agreed upon

interaction description, the subteams must work together to modify the description.

The individual subteams proceed by decomposing the subsystems for the rear

section of the automobile as shown in Figure 3.2. These subassemblies and parts

are explained in the following paragraphs.

The wheel transfers power from the power train to the road to move the car for-

ward. Wheel sizes are standardized to accommodate tires. The wheel is connected

to the hub with a standardized arrangement of bolts.

The rear suspension supports the weight of the car and provides stability to the

ride. The rear suspension contains support members, springs, and shock absorbers

that provide torsional stability and allow limited vertical motion to absorb road

48

CHASSIS

Frame

Wheel

Rear Suspension

Support
Members

Springs

Bearing
Carrier

Hub

Brake

Adaptor — Caliper

Hat Rotor

POWER TRAIN

Final
Drive

Drive
Shaft

Transmission Engine

Figure 3.2. Decomposition of rear section of chassis and power train

bumps; a hub to which the wheel and the drive shaft are connected; and a bearing

carrier to support the hub while allowing the hub to rotate. As shown in Figure 3.2,

the decomposition of the rear suspension also creates additional areas of interaction,

both within the rear suspension subassembly and between the components of the

rear suspension and other subassemblies, that the designers must coordinate to

ensure compatibility with other parts. The common areas of interaction with other

subassemblies now include the transfer of power, through the hub, from the drive

shaft to the wheel; the connection of the springs to the frame; and the support of

the brake adaptor with a bolted connection to the bearing carrier.

The brake subassembly brings the entire car to a stop by halting the rotational

motion of the wheels. A significant concern of the braking subsystem is dealing

with the considerable heat that is generated from the frictional forces. For the disk

49

brakes used in the formula automobile, the wheel is stopped with a caliper that

squeezes a rotor until the friction stops the rotor from rotating. In addition to

the rotor and the caliper, the brake subassembly contains a brake hat to which the

rotor is connected and an adaptor that supports the caliper. The brake subassembly

interacts with the rear suspension through a bolted connection between the brake

hat and the hub, and through a bolted connection between the adaptor and the

bearing carrier.

The power train generates power and transforms it into torque that is applied to

the drive shafts. The power train contains an engine, transmission, and drive shafts

that are purchased from other manufacturers. Their dimensions, requirements, and

performance specifications are integrated into the automobile design. The power

train also includes the final drive that transforms the power from the engine and

transmission into the desired torque to apply to the drive shafts. The drive shaft

is supported through its interaction with the rear suspension hub.

The design of each subsystem requires expertise in a number of different areas to

include design functionality and ease of manufacture and assembly. By concurrently

analyzing and designing for these different areas, design subteams can improve their

efficiency.

As shown in Figures 3.1 and 3.2, different subsystems can be decomposed at

different levels of detail. Also, since each subteam proceeds at a different rate, the

subteams must be able to simultaneously work at different levels of detail [12].

The University of Utah enters the design competition each year with a completely

different set of students. Students are better able to reuse or adapt components

from previous versions of the automobile if they are able to understand the rationale

and history that led to the previous designs and if they can easily recover these old

designs and modify them as necessary.

3.2 Incremental Design of a Machining
Center

Because of the amount of rework that results from design changes made late in

the design process, errors caught early in the design process are generally easier

50

and less costly to correct. An incremental design process, if properly implemented

and supported, would increase the chance of early error detection by performing

multidisciplinary analysis over small increments rather than after complete design

phases as in traditional waterfall models. Small increments reduce the complexity

of design analysis, yet they allow the designer to consider the entire model during

this analysis to ensure compatibility and completeness. Trying different alternatives

is less costly since the designer can control the level of detail in each alternative.

Figure 3.3 presents a pseudo-algorithm for the incremental design process used in

this case study.

A machining center creates a manufactured part by cutting away excess material

from a standardized piece of stock. Machining centers are highly complex with

thousands of complex parts and precise operating constraints. Speed, accuracy, and

cutting tool access are critical requirements of the milling operations. Although

many machining centers already exist, this case study explores alternatives of a

1. SPECIFY EXTERNAL INTERACTIONS AND CONSTRAINTS

2. DECOMPOSE INTO SUBASSEMBLIES OR COMPONENTS

3. SPECIFY INTERNAL INTERACTIONS AND CONSTRAINTS

4. DESIGN SUBASSEMBLIES OR COMPONENTS

5. ANALYZE

6. IF SATISFIED, THEN QUIT

7. OTHERWISE, REFINE IN ONE OF THE FOLLOWING WAYS:

7.1. MODIFY AT SAME ABSTRACTION LEVEL

7.1.1.MODIFY EXISTING SUBASSEMBLIES, COMPONENTS, OR INTERAC-

TION CONSTRAINTS
7.1.2.GO TO 5

7.2. ADD AT SAME ABSTRACTION LEVEL

7.2.1A.DD ADDITIONAL SUBASSEMBLIES OR COMPONENTS

7.2.2.GO TO 3
7.3. DECOMPOSE AT LOWER LEVEL OF ABSTRACTION

7.3.1.MAP INTERNAL INTERACTION CONSTRAINTS TO EXTERNAL INTER-

ACTION C
7.3.2.GO TO 2

Figure 3.3. Incremental design process

51

particularly complex subassembly of the machining center, the spindle cartridge,

for innovations that could increase performance. The design is real; however, the

innovative design scenario is simulated to emphasize exploratory aspects of the

design process that are well suited to incremental design.

The design team initially divides the machining center into six subassemblies as

shown in Figure 3.4: a spindle head for mounting and spinning the cutting tools,

a drive for moving the spindle head in a vertical direction, a column for mounting

the vertical drive, a table for mounting the work piece, an X-Y drive for moving

the workpiece horizontally, and a bed upon which the column and the X-Y drive

are mounted [56]. As shown in Figure 3.5, the spindle head is further decomposed

into a spindle cartridge that holds and rotates the cutting tool, a spindle drive that

provides the power to spin the spindle cartridge, and a head casting upon which

the cartridge is mounted. In this case study, the incremental design process in

Figure 3.3 is used to explore innovative designs for the spindle cartridge .

As the first step in the incremental design process, the designer identifies the op-

erating environment for the spindle cartridge and specifies the external constraints

imposed on the cartridge. These constraints include the size of the tools, the

required milling accuracy, and the desired cutting speed. Although not part of the

spindle cartridge, the tool holder is a standardized part that further constrains

the design of the spindle cartridge. The tool holder holds cutting tools that

interact with the part being milled, thereby exerting forces on the spindle cartridge

subassembly. These forces, along with the interaction of the spindle cartridge with

the head casting and the spindle drive, must all be considered in the design of

the spindle cartridge. To accommodate these external constraints, the design team

specifies the interaction of the spindle cartridge with the tool holder, the head

casting, and the spindle drive.

After the external constraints are specified, the design team determines the

major functions or concepts in the cartridge design and converts these concepts

into the initial design components. The spindle cartridge is decomposed into three

major functional components: a spindle that rotates at a high rate of speed, a

52

MILLING MACHINE

Column

Vertical
Drive

Spindle
Head

Table

X/Y
Drive

Bed

Figure 3.4. Initial decomposition of machining center

Spindle Head

Spindle
Drive

Head
Casting

Spindle
Cartridge

Figure 3.5. Additional decomposition for spindle head

53

housing to provide a stable mounting for the spindle, and a draw bar for mounting

the tool holder. As the design team decomposes the spindle cartridge they also

identify interactions between the spindle, the housing, and the draw bar.

The design team continues the incremental design process with the high-level

design of the major components within the spindle cartridge subassembly. Because

of the innovative nature of the design, the design team needs to create differ-

ent variants of the design and analyze each variant with respect to functionality,

manufacturability, and ease of assembly. Each variant is subject to the same

interaction constraints as the original design. When the initial high-level design

increment is completed, the designers need to analyze the design for conformance

with constraints and to determine how to proceed with the next increment.

The design team has a number of options for refining the design. If analysis

reveals discrepancies in the design, the designers could correct these by modifying

parameters or constraints. Alternatively, the design team could add additional

components, at the same level of detail, to satisfy missing functionality. Once a

satisfactory design is obtained at one level of detail, the design team could further

decompose the design by adding additional detail and constraints.

At any detail level, different design teams may need to simultaneously design

independent design components or subassemblies. Design teams should modify and

reuse existing design components where possible.

CHAPTER 4

AGGREGATION

Given a human's relatively fixed capacity for designing, understanding, and

interpreting large, complex scenarios, designers have developed methods of orga-

nizing the vast amounts of information inherent to a complex product design. This

organization usually results in a hierarchical structure with relations identifying

entities that are part of a higher-level composite entity [31]. In common English

usage, an aggregation is defined as "a group, body, or mass composed of many

distinct parts; an assemblage," and the term aggregate is defined as "a mass or body

of units or parts somewhat loosely associated with one another." For design usage,

this research defines an aggregation to be a composite design entity along with its

relations with other entities. Aggregations are necessary to organize complex design

data into a comprehensible product structure. Design systems that strive to help

designers manage complexity, not just represent it, then, must provide mechanisms

to help designers create, store, query, and modify such structures and relations.

Because of its importance in organizing complex design models, aggregation is

supported to varying degrees in many existing CAD tools. In a typical implemen-

tation, an aggregation is simply a notational convenience for accessing multiple

existing objects. Recent research, however, has extended the aggregation concept

to more comprehensive product models. Gui and Mäntylä's multigraph [27] provides

a conceptual model of the design hierarchy that emphasizes the functionality of the

design components. Product data management (PDM) systems [4, 40, 42] focus

on the structure of the design model with hierarchical links between major design

documents. In the multigraph and PDM representations, detailed manufacturing

information is modeled separately and then linked into the hierarchical aggregation

55

structure. Other aggregation models [17, 38] embed detailed manufacturing infor-

mation directly into the hierarchical model structure, but restrict the designer's

ability to move among the levels to independently manipulate the different design

abstractions.

Recognizing the dynamic nature of design, this research views aggregation as a

tool for representing and managing the evolution of a design. Aggregations are used

both to capture the organizational structure of a design model and to integrate

diverse, multidisciplinary design information into a single entity. Rather than

limiting evolution to a top-down decomposition, this research uses aggregation to

increase the flexibility for organizing design data into multiple levels of abstraction

and at different levels of granularity in a form that is useful to a design team's

process. Individual design components can be independently analyzed and refined

while still belonging to a higher-level aggregation.

This research presents several aggregation and relationship concepts, along with

their implemented objects, that together make it easier for a designer to flexibly

organize, analyze, and evolve a complex design.

• The attachment describes the hierarchical relationships between design com-

ponents. That is, "A is part of B".

• The interface specification object specifies peer-to-peer relationships between

components. It has all constraints, interdependencies, and other information

that a component needs to interact with another component.

• The neighborhood, part, and assembly aggregations each organizes multiple

components into a single design object.

Attachments and interface specifications each create a logical relationship be-

tween two existing design components. Each is implemented as an independent

design object having references to the related components. Additional information

relevant to the relationship, such as relative positioning constraints between the

two components, is incorporated into the relationships objects, rather than into

56

the individual components. This isolates the related components from each other

so that each component may be designed independent of the other.

The objects implemented to create neighborhood, part, and assembly aggregations

each creates a scope that contains all lower-level components in the aggregation

object. Access to the lower-level components is possible only by entering the

aggregation scope in which they are defined. As their names suggest, these ele-

ments represent three types of clustering. The neighborhood aggregation organizes

components into a single entity, but requires no further relationships between the

lower-level components. The part aggregation requires that components be linked

with attachments indicating the components that are "part of" the aggregation.

Similarly, the assembly aggregation requires that components be linked with inter-

face specification objects that specify how the parts of the assembly interact.

4.1 Role in Complexity Management
A complex product design is comprised of many different components represent-

ing different views of the design at multiple levels of detail. To form a working

product design, low-level features and geometry objects are linked together to form

manufacturable parts. These parts work together to form a functional assembly.

Multiple assemblies may work together in a complete product. Aggregation is the

mechanism for structuring these components into recognizable parts or assemblies.

From a top-down perspective, designers initially lay out the design at a high level

with a limited number of components. The high-level design could be a conceptual

design with functional descriptions and no geometry or it could be an initial design

layout with rough geometry such as cylinders and boxes. By analyzing simple

conceptual models, designers can narrow down the set of possible design solutions

without expending considerable resources. As additional detail is defined, designers

decompose components from the high-level layout into multiple subcomponents.

This research also uses aggregation as a mechanism for controlling changes to a

design model. By implementing aggregations as independent design modules that

encapsulate low-level design information, other design entities have a limited view of

57

the design data within the aggregation. The aggregation forms a boundary to give

the designer control over how external changes affect the design entities within the

aggregation and how internal changes to the aggregation are propagated to external

design entities. This modularity facilitates change management by providing a well

defined entity to control and an entity with which to associate design rationale and

history. The designer can restrict changes to remain within the boundaries of the

aggregation, thereby facilitating simultaneous development of different aggregations

by different design teams and enabling reuse of these aggregations in other product

designs.

A representation for assembly aggregations, in particular, is important for ex-

tending modeling capabilities beyond the specification of low-level geometry and

manufacturing features. The assembly aggregation provides the necessary frame-

work for laying out a design model at conceptual, functional, and detailed levels

of abstraction. Because product functionality is realized by the interaction of

different components rather than by individual components alone, Sodhi and Turner

suggest that an assembly-modeling framework is the key for a design environment

that can capture and maintain functional intent [51]. Shah and Mäntylä describe

additional benefits of assembly modeling to include interference detection between

parts, motion simulation, constraint satisfaction, assemblability evaluation, and

assembly manufacturing planning [49].

4.2 Underlying Concepts and Terminology
Some standard terminology is used repeatedly throughout this document to

refer to particular implementation concepts or structures. Although minor in their

support of the thesis explored in this research, these concepts are necessary for

understanding some of the larger, more significant concepts and structures.

4.2.1 Design Objects and Constructors

A design object refers to any design modeling entity that can be created and ma-

nipulated within the modeling environment. For example, design objects include,

among others, curves, surfaces, and other geometric entities, features, mathematical

58

models or constraint entities, composite structures, or textual and numeric entities.

The term "design object," however, does not imply a classification or inheritance

structure as it does in object-oriented software design, although, if supported by

the modeling environment, objects with inheritance and classification would also

fit the definition for "design objects."

The modeling command that creates a design object is called a constructor.

The examples in this research use the text-based design specification language of

AlphaA, however, menu and pointer commands from a graphical user interface are

equally applicable as constructors if they result in the creation of a design object.

4.2.2 Positioning Constraints

Positioning of related design objects within a complex product design model

is essential for visualizing and analyzing the design. In this research, positioning

constraints are specified with user defined anchors that describe a local coordinate

system in Alpha-1. Each object to be positioned must have a positioning anchor

associated with it. Many design objects in Alpha-1 include positioning anchors in

their definition. This research also allows other design objects to be associated with

a positioning anchor by wrapping these objects within a design object that provides

an anchor. To position an object, the designer specifies the desired position with

another positioning anchor, and the object is aligned with this anchor using existing

routines from AlphaA.

This positioning mechanism is used to automatically align features, parts, and

subassemblies when part or assembly aggregations are created. A change in one

positioning constraint will be automatically propagated throughout the entire ag-

gregation. For example, changing the positioning constraint for a hole feature will

cause the hole to be relocated along with any component linked to the hole. If a

shaft has been inserted into the hole, the shaft will be relocated, as will any other

components linked to the shaft.

59

4.3 Aggregation Relationships
Although design data is hierarchical, there are two types of relationships neces-

sary to define an aggregation - hierarchical parent-child relationships and a peer-

to-peer relationships that define how components at the same level interact with

each other. These relationships are implemented in this research as attachments

and interface specification objects, respectively.

The hierarchical relationships in an aggregation are represented with attachment

relations that link a child component to its parent (Figure 4.1). Since the primary

representation of mechanical design data is geometric, the attachment relation

includes location information for positioning the child component relative to its

parent.

Peer-to-peer relationships are defined at the assembly level between interacting

parts or subassemblies. Designers specify peer-to-peer relationships in interface

specification objects that link two parts and provide positioning and kinematic

constraints along with other relevant design information as described in Chapter 5.

In many design tools, information associated with the relationships between

components is embedded into the linked components. In this research, however,

the attachment and interface specification object are independent design objects

that the designer can manipulate independent of the entities that are linked by

these relationships. The designer can use the attachment and interface specification

Figure 4.1. The parent-child relation depicted by an attachment

60

relationships to manipulate the model structure or configuration without modifying

the actual design entities. With this independence, designers can reuse preexisting

component designs and integrate them into a new design model without having to

modify the original component.

4.4 Aggregation Objects

An aggregation object is a single entity, representing a portion of the hierarchical

model graph, that encapsulates detailed information into a single module while

separating this information from other parts of the model. This research defines

three types of aggregation objects for grouping mechanical design information -

neighborhoods, parts, and assemblies.

Only a limited amount of information is required to be specified for each type

of aggregation object. Thus, designers can create an aggregation initially with

only a small amount of conceptual information. Designers can then add further

detail to the aggregation as the design evolves. With this approach, designers

have considerable flexibility on how they evolve a design, yet the aggregation

objects ensure that the designers provide sufficient information to link related design

components.

Designers may modify and reconfigure an aggregation to contain different com-

ponents for different levels of abstraction or for different views. For example, the

functional abstraction of the formula automobile configures brake parts into a single

aggregation, while a separate abstraction representing rigid subassemblies divides

the brake parts into two separate aggregations. Designers can include an object in

more than one aggregation by separately defining the object and inserting a copy

into the appropriate aggregations.

4.4.1 Neighborhood

A neighborhood is a generic aggregation for isolating and modularizing any group

of objects in the design model. No explicit relationship is required among members

of a neighborhood - the designer simply needs to identify those design objects that

should be in a particular neighborhood.

61

A neighborhood is useful for encapsulating low-level geometric entities or pa-

rameters or as a temporary place holder during early stages of the design when the

relationships between design entities are not yet well specified. A neighborhood is

the least structured of the three aggregations and is generally applicable in all situ-

ations where the more structured part or assembly aggregations are inappropriate

or where insufficient information is available to describe the relationships required

in the part and assembly aggregations.

A neighborhood may be nested within another neighborhood to form a hierar-

chical structure with increasingly more detail at the lower levels. When used in

this fashion, however, there are no explicit links, such as attachments, to describe

the relationships between the two levels.

In the formula automobile, neighborhoods are used by the designers to represent

the low-level parameters, points, lines, and circles, from which complex curves and

surfaces are derived. Figure 4.2 shows the Alpha. 1 design specification language

description of a neighborhood that encapsulates the geometry of the heat slots in

the automobile's brake rotor. In this example, the neighborhood is identified with

the seq constructor that incorporates all the design objects within the brackets into

a single neighborhood.

Once an object is identified as a member of a neighborhood, access to that

design object, from outside of the neighborhood, is restricted. Reference to the

neighborhood object itself provides access to the last object identified in the neigh-

borhood or a collection of all objects in the neighborhood, as selected by the

designer. In Figure 4.2, the actual heat slot surface, Slots, is the last object

in the sequence and is directly accessible by referencing the neighborhood vari-

able, HeatSlots. The complex surface for the heat slots is shown in Figure 4.3.

By assigning neighborhood objects with the ":*" operator, designers can also

make objects within the neighborhood accessible on an individual basis by indirect

reference through the neighborhood object. For example, the object associated

with SlotCirl is accessible from outside of the HeatSlot neighborhood through the

constructor HeatSlots::SlotCirl. This constructor creates a copy of the SlotCirl

62

HeatSlots : seq{

"Slots" '

CirDia : (Rotor_Hat_Intfc::BoltCirDia +

RotorParms::SlotCirOffset);

CtrPt : pt(0.0, -RotorParms::SlotCtrRad);

CtrCir : circleCtrRad(CtrPt, RotorParms::SlotCtrRad);

ConstLinel : linePtAngle(CtrPt, 35.0);

Point1 : ptlntersectCircleLineC CtrCir, ConstLinel, false);

Cirl :* circleCtrRad(origin, RotorParms::SlotWidth/2.0);

Cir2 :* circleCtrRad(Pointl, RotorParms::SlotWidth/2.0);

Cir3 :* circleRadTan2Circles(RotorParms::SlotCtrRad +

RotorParms::SlotWidth/2.0,

cirl, cir2,
true, true, true);

Cir4 :* circleRadTan2Circles(RotorParms::SlotCtrRad -
RotorParms::SlotWidth/2.0,

cirl, cir2,

false, false, true);

SlotCrv : outlineCrv(array(Cirl, Cir3, Cir2,
CircCCw(Cir4)),

false);

Slot : profileSide(SlotCrv, "inside",
RotorParms::Thick + 0.1, 0.0, 0.0, 0.0);

Anchor1 : rotateAnchor(Prims::Anchorl, 0.0, 0.0,
-RotorParms::SlotFrstAng) ;

SlotPatternl : RadialPattern(Anchor!, Slot,
RotorParms::SlotNum,

(RotorParms::SlotFrstAng+90.0)/

RotorParms::SlotNum, CirDia);

SlotPatternAnchor2 : rotateAnchor(Anchor1,
0.0, 0.0, 90.0);

SlotPattern2 : RadialPatternC Anchor2,
Slot,

RotorParms::SlotNum,

(RotorParms::SlotFrstAng+90.0)/

RotorParms::SlotNum,

CirDia);

Slots : entity(mergeShelK SlotPatternl,

};
SlotPattern2));

Figure 4.2. Specification of the heat slot surface

63

<C^>

a^^t,

Figure 4.3. Heat slot surface

object so that any modifications will not affect the design object embedded in the

neighborhood. Objects within the neighborhood may not be modified from outside

of the neighborhood.

The neighborhood aggregation structure for the heat slot surfaces is shown in

Figure 4.4. Although this structure shows a hierarchical relation among the design

components, these relationships simply illustrate the dependencies of the object

constructors. In an Alpha.l design model, any design object that uses another

design object in its construction establishes a precedence relationship in which the

Heat Slots

Anchor 1 Slot
Circle3 \ \ Slot

Circle2
Slot

Pattern 1 \

\

Slot
Curve

Slot Slots

Slot
Circlel

Slot
Pattern2

/

/
Slot

Circle4

/
/

Anchor2

Figure 4.4. Structure of the heat slot neighborhood

64

new object becomes dependent on the previous object. No other information is

associated with these relationships. The neighborhood structure could just as well

be a group of objects with no dependencies between them. This is often the case

when a neighborhood is used to encapsulate a set of numerical parameters.

4.4.2 Part

A part aggregation consolidates related design components that represent a single

part. Part aggregations examine the attachment relationships between design ob-

jects to determine the hierarchical structure of the part and to position and validate

the components of the part in accordance with specified attachment relationships.

An intent of the aggregation structure is to enable the designer to start out with

a conceptual abstraction of a part and evolve this concept into a detailed part design

by attaching additional features and geometry objects. Thus, in order to specify a

part aggregation, one design object with a positioning anchor is designated as the

base component. Then, additional components can be incorporated into the part

aggregation with attachment relationships.

The part aggregation is used in the formula automobile design model to represent

all distinct parts. The brake rotor specified in Figure 4.5 is an example of one of

these parts. Designers specify the part aggregation with the partSeq constructor

that extends the neighborhood sequence to incorporate all design objects linked

with partof attachments into a part object. The part object positions all attached

components with respect to a selected base component and organizes the aligned

components into a hierarchical structure. The part object is the accessible result

of the partSeq constructor. The geometric representation of the brake rotor part

object is shown in Figure 4.6.

The brake rotor part in Figure 4.5 consists of manufacturing features that

indicate sections of the machining stock that must be cut away to form the final

part. The Stock entity is identified as the base object by its position as the first

object designated as a parent in a partof attachment. The designer organizes the

part model by nesting the manufacturing details into neighborhood aggregations

for each of the major features, IDCut, OuterCut, CutOutPattern, and BoltHoles,

65

BrakeRotor : partSeq{

"Detailed design of the Rear Brake Rotor Model";

Prims seq{

}
Stock seq{

}
IDCut seq{

}
atchl : partof(Stock, Prims::Anchor1, IDCut);

OuterCut seq{

}
atch2 : partof(Stock, Prims::Anchor1, OuterCut);

HeatSlots : partSeq{

"Heat Slots";

SlotPatternl;
atchl : partof(OuterCut, Prims::Anchor1, SlotPatternl)

SlotPattern2;
atch2 : partof(OuterCut, Prims::Anchor2, SlotPattern2)

SlotPattern3;
atch3 : partof(OuterCut, Prims::Anchor3, SlotPattern3)

SlotPattern4;
atch4 : partof(OuterCut, Prims::Anchor4, SlotPattern4)

}

CutOutPattern seq{

}
atch4 : partof(Stock, Prims::Anchor1, CutOutPattern);

};

BoltHoles : Rotor_Hat_Intfc.pos_entity;
atch5 : partof(stock, Prims::Anchor5, BoltHoles);

Figure 4.5. Specification of the brake rotor part

66

Figure 4.6. Brake rotor part

and attaching these features directly to the Stock. Since heat dissipation is a key

functional characteristic of the brake rotor, the designer specifies the HeatSlots as

a nested part aggregation that is further decomposed into four patterns that are

attached to the HeatSlot to form an intermediate level of detail. This abstraction

facilitates exploration of the heat dissipation capabilities of the brake rotor by

allowing the designer to independently manipulate and analyze the heat slots. The

structure of the brake rotor part is depicted in Figure 4.7. All objects that are

attached to the Stock, either directly or through intermediate objects, are aligned

and incorporated into the brake rotor part object.

To specify constraints or design goals, designers can embed additional design

objects into the part aggregation without direct links into the attachment hierar-

chy. In the brake rotor part, the designer nests dimensional parameters, low-level

geometric entities such as lines and circles, and other constraints in the Prims

neighborhood aggregation. None of these objects is linked into the brake rotor part

with an attachment relationship; however, by inclusion in the part specification,

these entities become part of the part aggregation. The designers mark each key

entity within the Prims aggregation for access by other components in the brake

rotor part aggregation.

67

Brake Rotor

Stock

Bolt
Holes

Slot
Pattern 1

Slot
Pattern 2

Slot
Pattern 3

Slot
Pattern 4

Figure 4.7. Structure of the brake rotor part aggregation

4.4.3 Assembly

An assembly aggregation organizes interacting parts or subassemblies into a

single mechanical assembly. Assembly aggregation objects examine the interface

specification relationships between parts to align the parts and to validate the parts

in accordance with the interface constraints. In this research, the structure and

methods provided by the assembly aggregation support high-level design layout,

grouping and positioning of low-level parts, and multiple assembly configurations

so that different types of analysis can be performed.

A minimal assembly aggregation contains two parts or subassemblies and an

interface specification between them. To incorporate additional parts or subassem-

blies into the assembly aggregation, designers must create interface specification

objects to link new components with another part in the assembly.

68

The formula automobile assembly is comprised of a number of subassemblies and

parts as shown in Figure 4.8. As shown in this example, an assembly aggregation is

specified with the constructor assemblySeq that extends the neighborhood sequence

to incorporate design objects linked with interface specifications into an assembly

object. An assembly object positions all interacting parts with respect to a selected

base part and organizes the aligned parts into a list structure. The assembly object

is the accessible result of the assemblySeq constructor.

Designers can use software assistants with the assembly object to perform au-

tomated analysis of the kinematics and forces associated with the interfaces in the

assembly. For example, to analyze the forces acting on the formula automobile

assembly, the designer invokes the command:

validateForces(FormulaSAE)

which examines the forces attached to the assembly aggregation and validates these

forces against the specified interface constraints. Positioning of assembly compo-

nents is automatically validated by the constructor as the assembly is updated. The

designer can manipulate component positions to perform kinematic analysis of the

assembly.

By not restricting the types of objects that can be linked into an assembly,

designers can use generic entities with little design information at the conceptual

level and detailed subassemblies or parts at more detailed levels. In the formula

automobile example shown in Figure 4.8, the Hat, Rotor, Wheel, or other parts in

any of the subassemblies can be specified independent of the assembly aggregation.

These objects may represent a high-level conceptual decomposition as shown in

Figure 4.9 or detailed information and geometry as depicted in Figure 4.10. If no

existing definition of an object exists, the designer can choose to have a high-level

placeholder object automatically created.

Like a neighborhood aggregation, the designer can embed additional design

objects, such as parameters or textual descriptions, into the assembly aggregation

without directly linking these objects to the assembly structure. These design

69

RearLayout : assemblySeq{

"Layout of rear section of formula automobile";

Chassis : assemblySeq{

"Rear section of chassis";

Frame;

Wheel;
RearSuspension : assemblySeq{

BearingCarrier;

Hub;
Carrier_Hub_Intfc;

}
Brake : assemblySeq{

Hat;

Rotor;

Caliper;

Adaptor;

Hat_Rotor_Intfc;

Rotor_Caliper_Intfc;

Caliper_Adaptor_Intfc;

}

}

Frame_RearSuspension_Intfc;

RearSuspension.Wheel_Intfc;

Brake_RearSuspension_Intfc;

PowerTrain : assemblySeq{

DriveShaft;

FinalDrive;

Transmission;

Engine;
DriveShaft_FinalDrive_Intfc;

FinalDrive_Transmission_Intfc;

Transmission_Engine_Intfc;

}

Chassis_PowerTrain_Intfc;

};

Figure 4.8. Assembly specification for rear layout of formula automobile

70

} Wheel | I RearSuspension ~| |~Brake \

\ PowerTrain {

Figure 4.9. Conceptual decomposition of rear layout

Rotor

Bearing Carrier-
Final Drive

Figure 4.10. Detailed representation of rear layout with Wheel omitted

objects allow the designer to specify high-level constraints for the assembly com-

ponents or to describe the purpose of the assembly as depicted in Figure 4.8.

The rear layout specified in Figure 4.8 has two major subassemblies - the

power train and the chassis. To represent different levels of detail or additional

subassemblies, the designer can nest assembly aggregations, such as those for the

frame, rear suspension, brake, and the wheel within another assembly aggregation.

The designer links each part or subassembly within the rear layout assembly to

other parts or subassemblies using interface specification objects. The assembly

structure represented by the rear layout specification is shown in Figure 4.11.

Observe that the entities and relationships in this diagram directly parallel the

independent conceptual decomposition of the rear layout depicted in Figure 3.2.

An assembly aggregation consolidates interacting parts or subassemblies into a

complete product assembly model. Using the assembly aggregation, subassemblies

can be further decomposed into additional subassemblies or parts. Designers can

then create part aggregations that organize related features into a single part. Low-

71

CHASSIS

Wheel
Intfc;

Rear
Suspension

Bearing
Carrier

Hub .Intfc.

Brake

Adaptor Jntfc. Caliper

Hat «. Intfc, Rotor

POWER TRAIN

*nal Klntfc;
Drive

Drive
Shaft

Trans-
mission

Jntfc, Engine

Figure 4.11. Structure of the formula automobile assembly

level geometry or parameters in a part can be grouped into a higher-level abstraction

with a neighborhood aggregation. The hierarchy formed by the various aggregation

objects organizes the model into abstractions that are easier to understand and

manipulate. In addition, the attachments and interface specification objects in the

part and assembly aggregations contain the information necessary for automatic

positioning and validation of the design model.

CHAPTER 5

INTERACTION

The interactions between components in an assembly represent considerable

complexity and risk in a product design. According to Sodhi and Turner [51], the

relationships associated with these interactions are essential for depicting product

functionality, since functionality can not be completely implemented solely within

individual parts. In this research, an interaction relationship is defined as the collec-

tion of all significant information that specifies the cooperative behaviors between

two components in an assembly. This information includes design functionality,

force transmission, positioning and relative movement of parts, and fasteners and

connectors. Previous research has tended to focus on individual aspects of the

interaction relationship such as the orientation and relative motion of assembly

components [16, 37, 49], the transmission of forces [27], or the inclusion of fasteners

and connectors [1, 46].

It is through its interaction relationships that an assembly becomes more than

the collection of its individual parts. The relative behaviors combine in synergistic

ways, so it is insufficient to specify interaction information within the individual

parts or even through hierarchy relationships of an assembly, as is done in many

existing tools. Within a bolted joint, for example, the size of the fasteners and the

thickness of the joint are key parameters in determining the load bearing capacity

of the joint. Neither of these parameters, however, is unique to a single part. Since

the joint thickness is derived from the interacting parts, it is dependent on a peer-

to-peer relationship between the parts rather than the hierarchical relationships of

the parts or assembly. As a means of allowing designers to more reliably specify

and predict interaction relations, this research designs and implements the interface

73

specification object.

The interface specification object is a peer-to-peer relationship between two

parts, components, or subassemblies. The peer-to-peer relationship is formed as

a direct link between the two interacting parts or as a link between two assembly

features. The assembly features are then embedded in the aggregation hierarchy of

the interacting parts to complete the relationship.

The designer uses the interface specification object to specify and control be-

haviors in an interaction relationship. Within the interface specification object,

kinematic behavior is constrained by a joint that describes the relative motion

between the interacting parts. Other behaviors are specified and controlled by

incorporating connectors, fasteners, forces, and other design information into the

interface specification object.

Interface specification objects share the hierarchical attributes of part aggre-

gation objects so that they can evolve along with the rest of the design. Thus,

the interface specification object can form a hierarchy that collects all information

relevant to the interaction between two parts or subassemblies. Since designers

declare the content of these objects, they may leave out pertinent information,

either because they are unaware of it, or because they deliberately choose not to

control that aspect.

5.1 Role in Complexity Management
Specifying and controlling part interaction in interface specification objects sup-

ports management of design complexity by:

• Providing a means for representing design functionality. Functionality is gen-

erally manifested in multiple interacting parts. It cannot be adequately rep-

resented in individual parts since many of the functional parameters can not

be attributed to any single part.

• Making available the information necessary for interactive analysis and sim-

ulation of moving parts. This is accomplished by incorporating kinematic

•

74

information into the interaction specification.

Facilitating assemblability analysis, analysis of forces, or other design analy-

ses by providing focal points in which to specify the appropriate interaction

constraints.

• Encapsulating details, such as fasteners and connectors, thus eliminating the

need for separate specification of these details in each independent part.

• Controlling the evolution of the individual part or subassembly design and

reducing design incompatibilities. This can be accomplished either by using

constraints from within an interface specification object to partially define

related parts, or by ensuring the independently designed parts do not violate

the constraints specified in the interface specification.

• Minimizing design complexity and the effect of changes. Behavior can be

localized to one side of the interface specification, and change propagation can

be controlled across the interface specification object, and hence across the

interaction relationship that it embodies.

• Modularizing the design to facilitate independent development of related com-

ponents and to simplify integration of these components into the remainder of

the model. When coupled with the restricted access of aggregation objects, the

interface specification object isolates interacting components from the remain-

der of the model. Thus, designers can independently develop a component in a

local scope that does not affect the remainder of the model. If the component

description adheres to the dictates of the interface specification objects, then

it should be compatible when integrated with the remainder of the model.

• Facilitating design reuse of individual parts or subassemblies. This is done by

separating the interaction relationship constraints from the part specification.

• Enabling the specification of cross-disciplinary information such as that in-

volved in the interaction of electronic and mechanical subassemblies. This is

75

accomplished by incorporating the information into the aggregation hierarchy

of the interface specification object.

• Enhancing the representation of product structure by adding peer-to-peer links

between interacting parts. With peer-to-peer links, the designer can more

easily analyze the impact one component has on another.

• Providing a common location in which distances between interacting parts can

be specified. Such distances could include dimensional tolerances or parame-

ters for building exploded views of an assembly.

5.2 Underlying Concepts and Terminology
The mechanisms presented in this chapter make use of specialized design ob-

jects for representing particular types of design information. The concepts and

terminology associated with these specialized objects are described here.

5.2.1 Features

A feature encapsulates application specific design information into a reusable,

standardized component that is mappable to a generic shape. Different features

may be used to represent the same portion of a design, with each set of features

capturing the design information that is relevant to a particular design discipline.

Similar to Shah and Mäntylä [49], this research uses the term feature to mean

any design object with engineering significance. This may be a particular geo-

metric shape, a previously defined feature in the design system, or an abstraction

representing the combination of a number of different features or parts.

The Alpha.l system already includes a significant number of mechanical fea-

tures. These features, when used in parts and interface specifications in the design

model, include manufacturing information from which numerical control code can

be generated for machining the part. Using the Alpha-1 development environment,

additional features may also be defined and incorporated into the complexity man-

agement framework from this research.

76

5.2.2 Joints

A key aspect of the interaction between parts in an assembly is the relative

motion between these parts. This research utilizes joints to capture the degrees

of freedom of motion and to enable the designer to interactively manipulate the

motion of the two parts. As defined in this research, a joint is similar to the mating

features used by other researchers (See Chapter 2); however, a joint extends the

capabilities of mating features by allowing interactive manipulation.

This research defines a generic joint for conceptually linking two parts or as-

semblies before interaction details are described. In addition, revolute, prismatic,

spherical, against, and rigid joint types are defined for constraining the allowable

motion of interacting parts. A revolute joint allows rotation around a single axis

and a prismatic joint allows translation in a single direction. A spherical joint allows

three rotational degrees of freedom around a point, and an against joint allows two

translational and one rotational degree of freedom on a surface. A rigid joint allows

no motion between the two parts. AlphaA also supports user-defined joint types in

which the designer specifies the appropriate degrees of freedom.

The designer creates a joint by specifying the amount of rotational and transla-

tional movement for a particular joint type along with the current relative position

of the two linked parts. The parts may be moved interactively by modifying the

relative position in the joint. The joint object contains software assistants, that

are automatically invoked when a joint is created or updated, to ensure invalid

movements and positions do not occur.

5.2.3 Connectors

Gui and Mäntylä [27] introduce connectors to represent standardized components

such as springs and gears that transmit energy between components. Similarly, this

research defines bearing and screw connectors to represent and analyze the transfer

of forces between parts. Although the current implementation of connectors sup-

ports only force transmission, this concept could be extended to other disciplines,

such as heat or electricity transfer, with the development of additional connectors.

The mechanical connectors presented here encapsulate fasteners such as bearings

77

and screws into a single design object. This design object also encapsulates appli-

cation parameters, geometry, and force analysis routines. The bearing connector

includes one or more bearings and spacers that are coaxially aligned immediately

adjacent to each other. Bearing life and rotational speed are application dependent

parameters that must be specified by the designer. Using the screw connector, the

designer can describe patterns of one or more screws of the same size and type

along with application parameters for joint thickness and thread length.

Using software assistants embedded in the connectors, designers can automati-

cally analyze simple point forces acting on an assembly. Similarly, the designer can

invoke constructor commands to automatically generate manufacturing features

such as a bearing bore or threaded hole that are compatible with the connector.

In this research, electronic catalogs are defined to facilitate the creation of

connectors containing standard bearings or screws. To select a standard com-

ponent, the designer need only specify a catalog number. The electronic catalog

then searches its database and retrieves the geometry, force capacity, and other

information for the selected component.

5.3 Interface Specification Object
This research introduces the interface specification object with which the designer

can capture all design information relevant to the interaction between parts. The

interface specification object is composed of assembly features and positioning

constraints for the two interacting components and a joint describing the relative

motion between the assembly features. The designer can incorporate additional

information or levels of detail into the interface through an aggregation hierarchy

similar to that of the part object discussed in Section 4.4.2. The structure of the

interface specification object is shown in Figure 5.1.

Assembly features describe compatible features on each of the two interacting

parts. Unlike other applications of assembly features, this research does not restrict

assembly features to any particular design capability such as design for assembly or

functional design. Instead, any functional, manufacturing, or form feature, or any

78

Assembly
Feature Joint

location

Assembly
Feature

(location j

Other
Interface

Information

Figure 5.1. The interaction relation depicted in an interface specification object

geometric object available in the design system can serve as an assembly feature.

The designer can also represent assembly features as aggregations with multiple

levels of detail.

To ensure compatibility among interacting parts, the designer can incorporate

assembly features from an interface specification object, that have been previously

defined to be compatible, into a component model via the aggregation mechanisms

of Chapter 4. When used in this way, any subsequent changes or additional detail

added to the assembly features will cause the change propagation mechanisms of

Alpha-1 to automatically regenerate the related parts to include the changes. If

the designer attempts a change that would lead to an invalid design model, the

automatic regeneration stops and the designer is notified.

As additional detail is specified for a model, the designer adds this information

to the interface specification by using partof relationships to link the details to the

interface object aggregation hierarchy. While it is possible to incorporate any object

in the design system into the aggregation hierarchy, some specialized aggregations

are particularly applicable to the interaction between parts in an assembly. These

79

aggregations include:

• Nested interface specifications that can be used to reflect the decomposition of

an interface into additional levels of detail.

• Connectors to support detailed force analysis across the interface and genera-

tion of manufacturing features such as threaded bolt holes.

• Applied forces or force constraints to provide the information necessary to

carry out preliminary and detailed force analysis.

• Additional constraints and analysis information including information for in-

terpretation by other tools.

The interface specification object provides the capability to describe many as-

pects of the interaction between parts in an assembly. It also provides a convenient

mechanism for organizing and representing information used by other computa-

tional tools for analyzing the design model. The designer can maintain design

compatibility by incorporating interface assembly features into the design of new-

part models or, when used with predefined part models, the designer can use the

interface specification object to verify that the parts are compatible.

Interface specification objects may evolve along with the remainder of the design

to represent functional concepts or detailed manufacturing information. Early in

the design, the designer may only be interested in linking two components in a

conceptual diagram. As the design evolves, the designer adds detailed information

to the interface object to specify motion constraints, force analysis constraints,

nested interfaces, fasteners and connectors, or other interaction information. Using

the interface specification object and its associated aggregation relationships, the

designer can interactively move parts in an assembly, analyze and modify common

design parameters, and reconfigure assemblies to represent multiple levels of detail.

The interface specification is an independent design object that the designer can

manipulate to represent and control the complex relationships between interacting

parts in an assembly.

80

5.4 Spindle Cartridge Subassembly
To demonstrate the analysis and control capabilities supported through the

interface specification object, this section presents a scenario for the incremental

design of the spindle cartridge subassembly from the machining center case study

described in Section 3.2. The interactions between parts are essential to the

functionality of the spindle cartridge subassembly and, consequently, the designer

derives the individual components directly from these interactions. The innovative

nature of the spindle cartridge design, as depicted in this scenario, benefits from an

incremental design process in which the designer can carefully control and analyze

incremental changes to the design.

The spindle cartridge holds and rotates cutting tools during the milling of a

part. The spindle cartridge interacts with the spindle drive and the head casting to

form the spindle head subassembly of the machining center as shown in Figure 3.5.

The spindle drive provides power to spin the spindle cartridge and the head casting

provides a base upon which the spindle cartridge is mounted.

In the first step of the incremental design process the designer identifies the

operating environment and the external constraints imposed on the design. The

spindle cartridge design is constrained by the size of the tools, the required milling

accuracy, and the desired cutting speed. Although not part of the spindle cartridge,

the tool holder holds cutting tools that interact with the part being milled, thereby

exerting forces on the spindle cartridge subassembly. These forces, along with the

interaction of the spindle cartridge with the head casting and the spindle drive,

must all be considered in the design of the spindle cartridge.

To accommodate these external constraints, the designer uses the interface spec-

ification object to describe the interaction between the spindle cartridge and the

tool holder, head casting, and spindle drive. In this scenario, the designer initially

wants to analyze only the relative motion and forces acting on the spindle cartridge,

so these constraints are added to the interface specification objects along with

assembly features identifying the high-level geometry and manufacturing features

associated with the interaction.

81

As shown in Figure 5.2, which describes the interface between the tool holder

and the spindle, the designer uses an intfcSeq constructor to define the inter-

face specification object. The intfcSeq constructor is an extension of the partSeq

constructor that creates an aggregation containing a joint specification and two

assembly features in addition to the information available in the part aggregation.

In the interface between the tool holder and the spindle the designer specifies a

rigid joint and two assembly features, labeled toolholder and toolholderslot, to

accommodate the tool holder part. Using the intfcpos and intfcneg constructors,

the designer positions both the toolholder and toolholderslot features at the base

of the interface specification. The designer links two externally applied forces,

axialForce and radialForce, into the interface specification hierarchy by establishing

partof relationships with the joint.

toolholder_spindle_intfc : intfcSeq {

"The interface between the toolholder and the spindle";

"Joint allows no movement between toolholder and spindle";

joint : rigidO;

"Select geometry from standard tool holder";

toolholder : toolholderTaper40;
toolholderslot : reverseObj(toolholderTaper40);

"Identify and position positive and negative features";

pos : intfcpos(baseAnchor, toolholder);
neg : intfcneg(baseAnchor, toolholderslot);

"Attach forces acting on tool holder";

atchi : partof(joint, baseAnchor, axialForce);
atch2 : partof(joint, XAnchor, radialForce);

};

Figure 5.2. Interface specification between tool holder and spindle

82

In the second step of the incremental design process, the designer decomposes

the spindle cartridge into its major components: a spindle that rotates at a high

rate of speed, a housing to provide a stable mounting for the spindle, and a

drawbar for mounting the tool holder. The designer creates these components as

conceptual entities by including them in the spindle cartridge assembly aggregation

as shown in Figure 5.3. As the spindle cartridge is decomposed, the designer also

identifies potential interactions between the spindle, the housing, and the draw bar.

These interactions are represented initially by interface specification objects with

generic joints (ijoint) linking the conceptual entities (spindle, housing, and drawbar

identified in the assembly. The designer describes design goals, such as desired

fatigue life and speed, by listing them as variables in the assembly aggregation.

In this scenario, part interactions are critical to the functionality of the spindle

cartridge subassembly, so the designer wants to ensure parts are compatible with the

interface specification objects linking them. To facilitate the design of compatible

spindleCartridge : assemblySeq {

"Performance parameters and goals 3";

FatigueLife : * 10000;

CuttingSpeed :* 4000;

"Components in spindle cartridge subasse mbly";

spindle;

housing;

drawbar;

"Interfaces between components in subass embly";

spindle_hous3 mg_Intfc :

intfc(i; ointO, base Anchor, spindle , baseAnchor, housing);

spindle_drawbar_Intfc :

intfc(i; oint(), baseAnchor, spindle , baseAnchor, drawbar);

};

Figure 5.3. Specification of spindle cartridge subassembly

83

parts, the designer intends to build the interface specification objects and then

derive part models from these specifications. Since the spindle is a shaft that

spins within the housing, the designer constructs an interface specification object

containing a revolute joint with unlimited rotation, a through-hole feature, and a

cylindrical shaft feature as depicted in Figure 5.4(a). The geometry of the spindle-

housing interface, as shown in Figure 5.4(b), represents the compatible assembly

features that are described in the interface specification object.

To describe the interaction between the draw bar and the spindle, in which the

draw bar shaft moves in and out of the spindle like a piston, the designer creates

another interface specification object. The spindle-drawbar interface specification

includes a prismatic joint with limited movement allowed along the axis, a hole

feature, and a cylindrical shaft feature.

The designer proceeds with the incremental design process by describing the

high-level design of the major components within the spindle cartridge subassem-

bly. To model the spindle, the designer creates a part aggregation, as shown in

Figure 5.5, into which he inserts the negative feature of the tool holder-spindle

interface (toolholderspindleJntfc.negEntity) and the hole feature of the spindle-

drawbar interface (spindle-drawbarJntfc.negEntity). The designer attaches these

two features with parfo/relations to the shaft feature of the spindle-housing interface

(spindle-housingJntfepos Entity). The part aggregation constructor automatically

aligns the attached parts and incorporates them into a part model for the spindle.

The designer creates the housing and drawbar parts in a similar fashion. By deriving

parts from the interface specifications as shown here, any changes the designer

makes to the interface specification objects will be automatically reflected in the

part model, thus maintaining compatibility between the interacting parts.

As the designer adds additional detail to the interface specification objects

and part aggregations, AlphaA automatically propagates these changes to the

spindle cartridge subassembly specified in Figure 5.3. The constructor function

for the assembly aggregation uses the spindle part as a base part and automatically

aligns the remaining parts according to their positions in the interface specification

84

spindle_housing_intfc :* intfcseq {

"Revolute joint with complete rotation";

joint : revolute(unlimited);

"Shaft is a cylindrical surface of revolution";

shaft :* surfrev(profile(pt(shaft.radius, 0, shaftjtieight),
pt(shaft_radius, 0, 0)),

true);

"Hole is a mechanical hole feature";

hole :* entity(hole(offsetanchor(baseAnchor, 0.02, 0.02, 0.02),
shaft.radius * 2 + 0.3,

shaft.height,

0,
TRUE));

"Shaft is positive side of interface and hole is negative side";

};

pos :* intfcpos(baseAnchor, shaft);

neg :* intfcnegC baseAnchor, hole);

(a) Interface specification

hole shaft

(b) Feature geometry

Figure 5.4. Initial interface specification between spindle and housing parts

85

spindle : partseq {

"The spindle is defined by the shaft side of the spindle-housing

interface, the hole side of the spindle-drawbar interface, and

the hole side of the toolholder-spindle interface.";

"Extract features from the appropriate interfaces";

shaft : spindle_housing_intfc.posEntity;

hole : spindle_drawbar_intfc.negEntity;

tool : toolholder_spindle_intfc.negEntity;

"The shaft feature is the main geometry of the spindle";

"The hole features are attached to the shaft";

atchl : partof(shaft,
offsetAnchor(baseAnchor, 0, 0,

-spindle_toolholder_offset),

tool,
.....).

atch2 : partofC shaft,
offsetAnchor(baseAnchor, 0, 0,

spindle_drawbar_offset),

hole, "-");

};

Figure 5.5. Spindle part specification

objects. Figure 5.6 shows the resulting geometry of the initial spindle cartridge

subassembly.

Figure 5.7 shows the logical model structure for the assembly aggregation con-

taining the spindle and housing parts linked with the spindle-housing interface

specification object. This diagram depicts each component as an aggregation with

attachments (atch) showing the hierarchical relationships. The hole and shaft fea-

tures defined in the spindle-housing interface specification object are linked into the

housing and spindle parts with attachment relationships to reflect the incorporation

of these interface features into the actual design model of the individual parts.

Now that the initial design increment of the spindle cartridge is complete, the

86

housing

spindle
draw bar \

Figure 5.6. Initial spindle cartridge subassembly

SPINDLE CARTRIDGE ASSEMBLY

Spindle Part

Shaft

Drawbar
Hole

Holder
Hole

Spindle-Housing Interface

Revolute
Joint

Bearing
Connector

Housing
Part

Housing
Shaft

Hole

Figure 5.7. Structure of spindle-housing assembly

87

designer analyzes the design model to validate assumptions and constraints, to

evaluate the satisfaction of design goals, and to determine how to proceed with the

next design increment. With just a rough description of the part geometry and the

interfaces, the designer invokes automated software assistants, that focus on the

aggregation and interaction relationships, to analyze the forces acting on the entire

assembly. The designer accomplishes this with the command:

validateForces(SpindleCartridge)

The assembly aggregation constructor automatically validates the position of in-

terface joints when the assembly is updated. The designer can manipulate joint

positions or key parameters upon which the joints are dependent to analyze the

kinematic behavior of the subassembly. If problems are discovered, the designer

can concentrate analysis on individual interface specification objects to isolate the

problems. The designer refines constraints, parameters, and design components

as necessary, and Alpha.! automatically regenerates component models, until all

problems are resolved.

When satisfied with the results of the first design increment, the designer re-

fines the design by adding additional detail. The bearings between the spindle

and the housing are key components in determining milling speed and fatigue

life. Using the lookupbearing command, the designer provides an identification

number to automatically retrieve parametric models of bearings with the proper

dimension and estimated force capacity from an electronic catalog as shown in

Figure 5.8(a). The bearingconn constructor in this figure allows the designer to

create a bearing connector containing three bearings and a spacer along with

parameters specifying desired fatigue life and rotational speed. To facilitate the

modification of existing aggregations, this research provides the merge command. In

Figure 5.8(a), the designer uses this command to incorporate the connector into the

spindle-housing interface aggregation. Associated with the bearing connector are

additional constructors, bearingConnStep and bearingConnBore, that the designer

uses to generate manufacturing features, on both the shaft and the housing, to

88

accommodate the bearing connector. Figure 5.8(b) shows the new assembly features

generated after adding the step feature to the shaft and the bore feature to the

housing. After the designer merges the bearing details into the spindle-housing

interface, Alpha.l automatically regenerates the housing and spindle parts with the

appropriate bearing connection features and propagates all changes to the entire

spindle cartridge subassembly.

So that the bearings can be inserted during the assembly process and held in

place during operation, the designer decomposes the housing part into another sub-

assembly containing the main housing part and a detachable nose cap at the end of

the housing as shown in Figure 5.9. This assembly requires a new interface between

the nose cap and the housing. The designer determines that the nose cap is to be

held in place with screws, so the designer invokes a command to retrieve the desired

screw from an electronic catalog, then creates a screw connector using a constructor

that arranges six identical screws in a radial pattern. The designer attaches the

screw connector to the nosecap-housing interface using a partof relationship, and

builds assembly feature aggregations that include the screw features. The designer

constructs a new aggregation for the nosecap part in which he attaches the assembly

features of the nosecap-housing and spindle-housing interfaces. The designer also

attaches the nosecap-housing interface to the housing part, causing Alpha. 1 to

automatically update the model of the housing part to include the threaded hole

features for the screw connector. After the individual parts and interfaces are

updated, Alpha-1 automatically regenerates the spindle cartridge subassembly with

the nosecap-housing interface and the new parts added. The updated geometry is

shown in Figure 5.10.

With the completion of another design increment, the designer now needs to

confirm that the proper bearings and screws were used. Each connector has char-

acteristics, such as bearing life or screw grade, that determine the force limits that

the connector can withstand. The designer invokes software assistants for force

analysis that automatically calculate these limits and notify the designer if the

applied forces exceed the capabilities of the connectors.

89

spindle_housing_intfc :* merge {
"Retrieve bearing from electronic catalog; Insert 3 bearings and

spacer into connector; specify fatigue life and speed goals in

connector; and attach connector to interface joint";

bearing : lookupbearing("L13", bearingCat);

spacer : bearingSpacer(bearing, 14 * mmtoinch);

bearingconn : bearingconnCarray(bearing, bearing,
spacer, bearinglnvert(bearing)),

SpindleCartridge::FatigueLife,

SpindleCartridge::Speed);

bearingAnch : offsetanchor(baseAnchor, 0, 0, bearing_offset);

atchl : partof(joint, bearingAnch, bearingconn, "+");

"Generate step feature from bearing connector and attach step

feature to interface shaft. Make this the positive feature.";

shaft.part :* partSeq {

shaft : shaft;
shaftStep : bearingConnStep(bearingconn, step_length, 0);

atchl : partof(shaft, bearingAnch, shaftStep, "-");

}
pos :* intfcpos(baseAnchor, shaft.part);

"Generate bore feature from bearing connector and attach bore

feature to interface hole. Make this the negative feature.";

hole_part :* partSeq {

housinghole : hole;
housingbore : bearingConnHole(bearingconn, bore.length, 0);

atchl : partof(housinghole, bearingAnch, housingbore, "+");

}
neg :* intfcneg(baseAnchor, hole_part);

};

hR|f step feature.

(a) Interface specification

bore feature, shaft

bearing connector -^

(b) Feature geometry

Figure 5.8. Details of the spindle-housing interface

90

housingAssy : assemblySeq {

"Decompose the housing into an assembly";

};

housing;

nosecap;
nosecap_housing_intfc;

Figure 5.9. Housing subassembly specification

screw features
housing on nQse cap and housing

draw bar

bearing features
on spindle and housing

nose cap

Figure 5.10. Detailed spindle cartridge subassembly

At this point in the design process, the designer has encapsulated descriptions of

functionality and design rationale; design parameters, constraints, and goals; forces

and kinematic information; manufacturing features; and geometry into the interface

specification objects of the spindle cartridge subassembly. From this information

the designer can invoke automated procedures, provided through this research or

existing capabilities in Alpha.l, to analyze the forces and kinematic behavior of the

subassembly, calculate geometric interference, or generate manufacturing process

plans. The designer can generate different alternatives for the components or

interfaces and Alpha.l automatically propagates these changes to the affected parts

and subassemblies. The designer has also decomposed the machining center design

problem into small subassemblies that are more easily understood and managed,

and he has restricted the design of the spindle cartridge subassembly through

external interface specifications that ensure its compatibility with the remainder

91

of the machining center.

5.5 Formula Automobile Examples
The formula automobile case study, with its focus on simultaneous design and

higher-level subassemblies, demonstrates additional capabilities of the interface

specification object. At higher levels, the automobile is decomposed into multiple

subassemblies that are independently designed by separate subteams to satisfy

predefined specifications. At lower levels, design subteams develop complex new

designs or modify and reuse existing designs. Each independently designed sub-

assembly is eventually integrated into a higher-level assembly until a completely

integrated product design is achieved.

5.5.1 Evolution of the Brake - Suspension Interface

A considerable portion of the design of a part or subassembly is determined

by its interaction with other components. The brake subassembly of the formula

automobile, for example, is largely defined by its interactions with the rear suspen-

sion subassembly. This is demonstrated in the specification and evolution of the

interface between the brake and rear suspension subassemblies.

When the interaction relationship between the brake and the rear suspension

assemblies is first identified, the details are not well-defined. At this point, the

design team defines an interface specification object to serve as a structural link

between the two subassemblies. This link is generated with the constructor:

intfc(ijointO, brakePosn, Brake, suspPosn, RearSuspension)

that creates a link between the two subassemblies. This link contains a generic joint

and allows the Brake and the RearSuspension to be positioned according to the

brakePosn and suspPosn anchors. Geometry and position information associated

with the interface at this point is useful for generating structural diagrams as shown

in Figure 5.11.

As the brake and rear suspension subassemblies are decomposed into their sep-

arate components, the design subteams realize that the interface between the two

92

} Wheel | | RearSuspension { Brake {

} PoweiTrain {

Figure 5.11. Diagram of rear layout components

subassemblies must also be decomposed. One part of the brake subassembly rotates

with the hub and the wheel, while another part must be fixed to the rear suspension

to stop the rotation. In accordance with the decomposition from Section 3.1, the

designers create additional interfaces between the brake adaptor and the bearing

carrier and between the brake hat and the hub. The designers incorporate these

additional interfaces into the interface between the brake and the rear suspension

using partof relations as shown in Figure 5.12. At the same time, the designers

identify some common dimensions, labeled as CalMountOffset and BrakeEarOffset

in Figure 5.12, that affect both of the subassemblies.

The interfaces between the brake and the rear suspension continue to evolve

as the designers add more detail to the interacting subassemblies. During this

evolution, the designers first describe the interaction information in the interface

specification object and they then incorporate this information into the interacting

components. The interfaces between the brake and rear suspension subassemblies

demonstrate useful capabilities for representing and controlling design evolution

using the interface specification object.

The interface between the brake adaptor and the bearing carrier consists pri-

marily of a rigid, bolted connection as shown in Figure 5.13. What makes this

interface specification so useful, however, is the location and dimension parameters

that the designer includes in the interface specification object. The designer uses

these parameters in the design of the brake adaptor and the bearing carrier to

ensure the two parts are compatible.

The brake hat and the wheel interact with the hub of the rear suspension

93

Brake_RearSuspension_Intfc : intfcSeq {

"Include generic link information";

joint : ijointO;

pos : intfcPos(baseAnchor, Brake);

neg : intfcPos(baseAnchor, RearSuspension);

"Identify common dimensions";

CalMountOffset :* (37.5);

BrakeEarOffset :* (40.0);

AdaptorAnchor : offsetAnchor(baseAnchor,
CalMountOffset,

BrakeEarOffset,

o);

"Decompose into interfaces between Adaptor and Bearing Carrier

and between Brake Hat and Hub";

Adaptor.BearingCarrier : intfc(ijointO,
baseAnchor,

Adaptor,

baseAnchor,

BearingCarrier);

atchl : partof(joint, AdaptorAnchor, Adaptor.BearingCarrier);

BrakeHat.Hub : intfc (ijointO,

baseAnchor,

BrakeHat,

baseAnchor,
BearingCarrier) ;

atch2 : partof(joint, baseAnchor, BrakeHat_Hub);

};

Figure 5.12. Decomposition of interface between brake and rear suspension

94

Adaptor_Carrier_Intfc : intfcSeq {

"Location and Dimensional Parameters";

CalBoltSep :* (80.0);
CalBoltOffsetY :* (BrakeEarOffset - CalBoltSep);

CalBoltOffsetX :* (CalMountOffset + 30.0);

Offsetl :* (7.25);

0ffset2 :* (8.0);

BrakeRotorThick :* (4.75);

BrakePadThick :* (13.0);
BrakePadAllow :* (BrakePadThick + 0.5);

BrakeCalFlangeRad :* (8.0);

BrakeCalFlangeThk :* (8.0);

BoltHoleDia :* (8.0);
AdaptorThk :* (6.5);

CarrierThk :* (10.0);

"Interface joint and surfaces";

joint : rigidO;

surf : capSurface(
profile(pt(CalMountOffset BrakeEarOffset ...)));

"Retrieve screw from electronic catalog; build screw connector;

and attach connector to interface joint";
screw : lookupScrew("11F", screwThreadTable,

"SOCKET", screwHeadTable,

2, screwGradeTable,
AdaptorThk + CarrierThk, AdaptorThk);

screws : screwrect(screw, AdaptorThk, 2, CalBoltSep, 1, 0);

screwAnchor : offsetAnchor(baseAnchor, 0, 0, -AdaptorThk);

atchl : partof(joint, screwAnchor, screws, "+");

"Generate screw features and attach to interface surfaces";

adaptorPart : partSeq {

surf : entity(surf);
atchl : partof(surf, screwAnchor, screws, "+");

}
pos : intfcpos(baseAnchor, adaptorPart);

carrierPart : partSeq {
surf : entity(reverse0bj(surf));
atchl : partof(surf, screwAnchor, screws, "+");

}
neg : intfcneg(baseAnchor, carrierPart);

};

Figure 5.13. Interface between brake adaptor and bearing carrier

95

subassembly through a rigid, bolted connection. Each of these three components

interacts with the others in a manner that appears to require three separate inter-

faces, yet a single bolted connection is used to join all three parts. The designers

overcome this dilemma by deriving the interface between the brake hat and the hub

from the previously defined interface between the wheel and the hub as shown in

Figure 5.14. In this derivation, the designer creates a separate interface between

the brake hat and the hub by copying the hub-wheel interface. The only thing the

designer changes in the derived interface is the actual positioning of the interface

bolt connector. Consistency among the derived interfaces is maintained through

the change propagation mechanisms of AlphaA.

5.5.2 Reuse of the Wheels

In the formula automobile case study, the design team wants to reuse a previously

designed model of the wheel assembly. In doing so, the design team must be able

to ensure compatibility with the remainder of the design. The designer uses the

interface specification object between the hub and the wheel to help achieve this

compatibility. If the wheel is compatible with the interface specification object,

"Derive the brakehat-hub interface from the hub-wheel interface";

BrakeHat_Hub_Intfc :* Hub_Wheel_Intfc;

BrakeHat_Hub_Intfc :* merge {

"Offset the interface to account for the thickness of the
brake hat";

BoltAnchor : offsetAnchor(baseAnchor, 0, 0, -HubThk - 2 * Ext);
atchi : partof(joint,

BoltAnchor,
HubBoltHolePattern,
"+");

}:

Figure 5.14. Derivation of interface between brake hat and hub

96

then it should be compatible with the remainder of the model.

The designers integrate the wheel into the design model by transforming the

wheel model into the current design space, aligning it with the proper side of the

interface, and invoking automated software assistants to check compatibility. In

this example, the wheel is designed in inches and is offset from the origin. The

local design space requires metric dimensions and orientation aligned with the Z

axis and centered at the origin. The transformation to the local design space is

accomplished with the command:

Wheel : entity(objTransform(WheelOriginal,
array(tz(WheelOffset),

sg(metricConv))));

The designer aligns the wheel with the interface between the hub and the wheel by

incorporating the wheel into a part that has the negative feature of the interface

specification object attached through a partof relationship:

WheelPart : part(Wheel,
partof(Wheel, Posn,
Hub_Wheel_Intfc.NegEntity));

Finally, to calculate geometric compatibility, the designer invokes a command to

check if there is any interference in the newly defined wheel part:

checklnterferenceC WheelPart);

Now the designer can control and manipulate the wheel part like any other com-

ponent in the assembly. Any changes the designer makes to the original wheel will

cause Alpha-1 to automatically reflect the changes in the new wheel part; however,

after any change the designer will still need to recheck compatibility.

5.5.3 Kinematics of the Drive Shaft Interfaces

Although the assembly constructor automatically invokes kinematic analysis for

any interface containing a kinematic joint, this analysis has been difficult to visualize

on previous examples because they involved revolute surfaces and revolute joints.

As a better visualization of kinematic analysis capabilities, this example analyzes

97

the rear layout assembly of the formula automobile with respect to the vertical

travel of the wheel that might result from hitting a bump in the road. To simplify

the analysis, the rear suspension support members and springs are not included.

Instead, the designer focuses the analysis on the movement of the drive shaft that

interacts with the final drive as shown in the simplified interface specification of

Figure 5.15. In this interface the designer uses a spherical joint to allow limited

rotation around the X, Y, and Z axes according to the first three parameters of the

spherical constructor. The designer describes the rotational position about the X

axis, the fourth parameter of the constructor, in terms of wheel travel (WheelPosn),

which is an independent variable of the analysis. The positive and negative features

are points used by the designer simply to connect the interacting parts. The

designer specifies the interaction between the drive shaft and the hub in a similar

way, and incorporates all of the subassemblies and interfaces of the rear layout

assembly into an assembly aggregation as shown in Figure 5.16. Upon creation,

the assembly constructor automatically analyzes the joint kinematics based on the

rotational positions about each axis. In this example, rotation about the X axis is

described in terms of wheel travel, while rotation about the Y and Z axes defaults to

the center of the allowable range of rotation. By varying the wheel travel parameter,

the designer can update the assembly, which causes the assembly constructor to

FinalDrive_Shaft_Intfc : intfcSeq

"Spherical joint";

joint : sphericaK 15, 5, 2, atand(WheelPosn, ShaftLength));

"No surface details necessary for kinematic analysis";

pos : posIntfc(baseAnchor, pt(0, 0, 0));
neg : neglntfc(baseAnchor, pt(0, 0, 0));

Figure 5.15. Kinematic interface specification between drive shaft and final drive

98

rearLayout : assemblySeq {

"Rear layout of formula SAE automobile";

"This layout groups all components connected

through rigid interfaces into assemblies";

FinalDrive;

DriveShaft;

BearingCarrierAssy : assemblySeq {

BearingCarrier;

BrakeAdaptor;

Adaptor_Carrier_Intfc;

};

WheelAssy : assemblySeq {

Rotor;
BrakeHat;

Hub;
Wheel;

Rotor_BrakeHat_Intfc;

BrakeHat_Hub_Intfc;

Hub_Wheel_Intfc;

};

FinalDrive_Shaft_Intfc;

Hub_Shaft_Intfc;

Hub_Carrier_Intfc;

};

Figure 5.16. Specification of rear layout assembly

99

reaccomplish the kinematic analysis. If the wheel travel will result in an invalid

position for the spherical joints, the assembly is not reconstructed and the designer

is notified. Figure 5.17 shows the resulting assembly at different wheel positions.

(a) Wheel travel = 25mm (b) Wheel travel = 75mm

Invalid X position

(c) Wheel travel = 125mm (d) Wheel travel = 175mm

Figure 5.17. Rear layout assembly at different wheel positions

CHAPTER 6

VARIATION

Variation is an essential characteristic of any design process. As a design evolves

from conceptual ideas to detailed features and geometry, designers create different

variations of the design with increasing amounts of detail. If new requirements

are imposed on the product, the design must be modified to accommodate these L

requirements. Designers often generate alternate variations of a design when ex-

ploring potential solutions to a design problem.

Variation management, or as it is more commonly referred to, version manage-

ment, is the process of controlling changes to a design component and tracking

the differences between versions of the design component once changes have been

made. When different views or alternatives are involved, version management also

ensures that the alternatives are kept consistent when designers make changes.

Most CAD environments provide little or no support for version management.

Frequently, the designer can only view the current version of a design model with

little information about the process and decisions through which the complete

model came about. To manage multiple alternatives or old versions, the designer

must save them under different names and track them independently from the actual

design model. In systems that do provide support for managing design variations,

the designer has little control over the level of granularity at which design models

are tracked and controlled. Typically, it is convenient for a designer to manage only

complete design models with these systems.

This research designs and implements automated mechanisms for creating and

managing versions of assembly, part, and neighborhood aggregations. To track

designer modifications of an aggregation, this research creates automated software

assistants that compute and record the differences in a new version of the aggre-

101

gation. This research also includes software assistants that automatically generate

versions representing alternative solutions or views of the design, and it implements

simple commands for selecting or copying existing versions of a component model.

To simplify the process of changing a design model, this research introduces new

editing mechanisms into the AlphaA design environment. The merge operation

modifies existing components or adds new components to an aggregation. A long

transaction sets the scope being edited to that of a designated aggregation. Within

a long transaction, designers modify an aggregation locally without impacting the

remainder of the product model.

A goal of this research is to make version management an interactive design tool.

To achieve this goal, this research creates versions based on the design aggregation

objects described in Chapter 4. Through aggregation specifications, designers can

control version granularity in a manner that is appropriate for their application or

process. In addition, with the version selection operations of this research, designers

can interactively access different versions of a design component for concurrent

analysis, design exploration, or to manage design variants.

6.1 Role in Complexity Management
Any modification to a design object represents a new variation of that design

object. Management of these variations, however, requires an acknowledgment of

the intent of the modification. This research classifies variations into two categories,

refinements and alternatives, based on the designers intent in creating the variation.

This research uses a refinement to portray modifications to a particular aspect of

a product design model that do not change the primary functionality or basic design

approach. If slight changes are made to the product requirements, designers must

refine the design to adapt to these changes. If there are problems or deficiencies

with the current design, the designer creates refinements to perfect or improve the

design. As a design evolves from a high-level concept to a manufacturable model,

the product model is refined by adding more detail. In the framework introduced

by this research, more refined levels of detail are represented as new configurations

102

of an aggregation that contain additional, more detailed design components.

An alternative, as implemented in this research, describes an additional design

solution for a particular aspect of a design problem or a separate view of a design

solution to represent different design disciplines for analysis. Alternatives initially

reflect a similar level of design detail; however, selected alternatives may evolve to

include additional information.

By managing design variations, designers have added control over product model

evolution. By creating new versions of a design representation instead of overwriting

an existing version, designers can recover previous versions. Version recovery may

be necessary so the designer can correct errors that were introduced subsequent to

that version or so that the designer can explore an alternate variation without the

detailed information of the current version. The variational tools of this research can

be used by the designer to manipulate and experiment with a versioned component

in isolation from the remainder of the product model. In this way, the designer

can perfect a single segment of the model before propagating the results to the

remainder of the model.

To explore the design space, a designer can use automated software assistants

from this research to create alternative solutions to a particular design problem

and to interactively select and analyze the alternatives to determine which is more

appropriate in different scenarios. The designer can generate these alternatives

from the same base component so that the alternatives share common constraints

or features.

Designers can use the aggregation mechanisms discussed in Chapter 4 to include

design rationale and descriptions in design models. This information becomes part

of the variation and can be recovered and used by a different designer to further

evolve a design or to modify and reuse a particular design component.

6.2 Underlying Concepts and Terminology
Version management in AlphaA is dependent on two key data structures, scope

and model object, that form the relationships necessary to depict the hierarchies

and dependencies of a design model. Although all design objects require these

103

structures to become part of a model, the scope and model object structures are

largely hidden from the designer.

6.2.1 Scope

The neighborhood, part, and assembly aggregations from Chapter 4 form design

hierarchies. Many related design objects can be nested into a single aggregation

object. Each object in the aggregation becomes a member of a scope that is

associated with the aggregation object. The scope limits the accessibility of the

nested objects by objects external to the aggregation.

6.2.2 Model Object

The model object identifies key information such as the constructor function

and the prerequisite pointers necessary to create a design object. The precedence

relationships of a design model are depicted in the prerequisite pointers of model

objects and the associated pointers to dependent objects that are based on an

object. Hierarchical relationships are represented with pointers to nested scopes

that are embedded in an aggregation design object. Each model object is a member

of a scope that is referenced through the model object.

6.3 Automated Mechanisms
This research presents automated versioning mechanisms that help the designer

to manage and to control variation at different levels of detail. The designer can use

these mechanisms to track revisions, generate alternatives, and check consistency

between related views. The versioning mechanisms created for this research include

automated routines for generating baseline versions, delta versions, or alternative

versions. In addition, simple commands have been implemented for interactively

selecting versions.

6.3.1 Baseline

This research defines a baseline as a complete version of a design aggregation at

a particular instance in time. A complete version contains all of the components

within the nested scope of a neighborhood, part, or assembly aggregation and the

104

prerequisites necessary to reconstruct the aggregation object. To implement the

automated versioning mechanisms in this research, the model object constructor

routines of Alpha.l were manipulated to make a copy of the old scope before

allowing any modifications. Additional routines were added to Alpha-1, so when a

designer invokes a command to update an aggregation, the newly updated version is

automatically appended to a version list for that aggregation. A baseline version is

created automatically as the original version of an object. By invoking the baseline

command, the designer can also explicitly create a baseline version, thus creating

a checkpoint to facilitate design recovery.

Figure 6.1(a) demonstrates the initial creation of a versioned aggregation object

for the rear layout of the formula automobile. Version creation is completely

automated - once the designer identifies an aggregation with the ": *" assignment

operator, future updates to the aggregation cause a new version to be automatically

created. In this example, the initial version includes all design objects defined

within the brackets.

6.3.2 Delta

A delta version contains the differences between the current and previous ver-

sions. By including only the differences instead of the complete version, a delta

version saves computer storage space. A delta version is automatically created

when a designer updates an existing version.

This research provides three different mechanisms for a designer to revise aggre-

gation objects:

• Complete reconstruction. A new aggregation constructor specifies all un-

changed objects from the original version along with all new or modified

objects. A new version is automatically created upon successful execution

of the new constructor.

• Merge operation. A merge constructor specifies all new or modified design

objects in the aggregation. The merge constructor creates a new version of

the original aggregation that contains the new or modified objects.

105

• Long transaction. The local scope of the editor is changed to that of a desig-

nated aggregation. The designer can then interactively edit the contents of the

aggregation by modifying or adding design objects. Any changes the designer

makes during the long transaction affect only the scope of the aggregation

object for which the transaction was invoked. The long transaction termination

command automatically creates a new version containing the objects that were

added or modified during the transaction. At this point, AlphaA propagates

the results of the long transaction to the rest of the model.

The term long transaction is adapted from database theory [65] to describe

an editing session that continues over an indefinite period of time. The

designer controls when the long transaction begins and ends; however, in the

current implementation, the designer must end a long transaction in the same

editing session that it was started. The designer starts a long transaction

with the BeginScopeEdit command that includes an argument identifying the

aggregation to edit. For example, to edit the contents of the RearLayout

assembly aggregation, the designer invokes the command:

BeginScopeEdit(RearLayout);

The designer ends a long transaction with the EndScopeRevise or the End-

Scope Alternate commands. These commands create a revised or alternative

version of the aggregation, commit the changes, and propagate the changes to

the rest of the model. The EndScope command affects the last scope for which

a BeginScopeEdit command was issued.

In Figure 6.1(b) the designer uses the merge constructor to create a new version of

the RearLayout assembly aggregation created in Figure 6.1(a). These two versions

demonstrate the utility of the variation mechanisms for representing various design

abstractions. Each version represents a different level of detail for the same object,

and the designer can access each version individually to view the model at either

of the two levels of detail.

106

Re arLayout :* assemblySeq {

"Layout of rear section of automobile";

RearSuspens ion;

PowerTrain;

Brake;

Wheel;
Suspension_PowerTrain_Intfc;

Brake_Suspension_Intfc;

Suspension.Wheel_Intfc;

}

(a) Initial version

RearLayout : merge {
"Add detailed subassemblies for the

brake, rear suspension, and powertrain";

Brake : assemblySeq{

Hat;

Rotor;

Caliper;

Adaptor;
Hat_Rotor_Intfc;

Rotor_Caliper_Intfc;

Caliper_Adaptor_Intfc;

}
RearSuspension : assemblySeq{

B e ar ingC arr i er;

Hub;
Carrier_Hub_Intfc;

}
PowerTrain : assemblySeq{

DriveShaft;
FinalDrive;

Engine;
DriveShaft_FinalDrive_Intfc;

FinalDrive_Engine_Intfc;

}

(b) Revision with merge command

Figure 6.1. Versions of rear layout assembly

107

The examples in Figure 6.1 also include design descriptions and rationale in the

versioned aggregations. This information becomes part of the version history and

can be used by a designer to understand why certain decisions were made and how

the design evolved to its current state.

6.3.3 Alternative

An alternative version depicts an additional design solution or view of an object.

This research implements an alternative as a complete version of an aggregation

object that starts a parallel version path. Once an alternative has been created, it

can be revised just like any other version. Revisions to alternative versions to not

affect other alternatives of the same object.

To create an alternative, designers have the same options - complete redefinition,

merge, or long transaction - that are available to create a revision of an object.

A designer distinguishes the construction of an alternative from a revision by the

assignment operator ": <".

The versioning mechanisms presented in this research implement alternative

views of an aggregation object as alternative versions that include automated

methods for checking consistency. The versioning system tracks consistency by

checking whether the latest version of each alternative view is identified with the

same baseline and revision number.

A designer creates an alternative view with the assignment operator ":>" as

shown in Figure 6.2. In this example, the designer is creating an alternate version

of the rear layout assembly in which the components are configured such that

all components attached via rigid interfaces are grouped into subassemblies. This

configuration is useful for performing kinematic analysis since the designer can treat

the rigid subassemblies as single components. The designer invokes consistency

checking between the two views with the command:

checkConsistency(rear_layout);

In many cases, alternative versions share common geometry, parameters, or

constraints. So that an object can be shared among multiple alternatives, a copy

108

rearLayout :> assemblySeq {

"Rear layout of formula SAE automobile";

"This configuration groups all components

connected through rigid interfaces into

assemblies";

FinalDrive;

DriveShaft;

BearingCarrierAssy : assemblySeq {

B e ar ingC arr i er;

BrakeAdaptor;

Adaptor_Carrier_Intfc;

};

WheelAssy : assemblySeq {

Rotor;

BrakeHat;

Hub;

Wheel;

Rotor_BrakeHat_Intfc;

BrakeHat_Hub_Intfc;

Hub_Wheel_Intfc;

};

FinalDrive_Shaft_Intfc;

Hub_Shaft_Intfc;

Hub_Carrier_Intfc;

};

Figure 6.2. Alternative view of rear layout assembly with rigid subassemblies

109

of the object must be inserted into each alternative in which it is needed. If created

with a long transaction or merge command, this is done automatically; otherwise,

the designer must include a copy in each alternative. Once an object is copied to

different versions, AlphaA will automatically propagate any modifications of the

original to each of its copies.

6.3.4 Selection

As new versions are created, the model object constructor assigns an identifier

that specifies the alternative, the view, the baseline, and the revision. A new

object is initialized as alternative one, view one, baseline one, and revision one

(A1.V1.B1.R1). Creation of a new revision increments the number for the revision;

a new baseline increments the number for the baseline and reinitializes the revision

number; a new alternative increments the number for the alternative while reini-

tializing the baseline and revision numbers; and a new view increments the number

for the view while keeping all other identifier numbers the same.

To track the current version of an object, a versioned design object contains a

reference object that points to the current version of an object and the original

version. Designers select different versions by identifying the aggregation name and

version number. The selection command finds the appropriate version and changes

the current version reference so that it points to this version. For example, the

command

selectVersion(RearLayout, 2, i, 1, 1);

sets the current version of the RearLayout subassembly to alternative two, view one,

baseline one, and revision one. Using the propagation mechanisms of Alpha-1, all

other design objects that are dependent on the versioned object are automatically

updated to reflect the newly selected version.

Using the getVersion command, designers can also select and copy a particular

version of an aggregation to another object. The getVersion command does not

change the original object and does not affect objects that are dependent on

the original object. Any subsequent changes made to the original object are not

110

propagated to the copied version. This selection mechanism allows the designer to

use selected versions of an object without being concerned that subsequent changes

to the original object will invalidate the new use of the object. Once a version has

been copied with the getVersion command, the designer can revise it just like any

other versioned object.

Parameterized aggregations complicate change propagation and selection among

versions. If the parameters are not contained in the aggregation, then the versioning

mechanism has no control over them. Thus, if a designer copies a parameter-

ized version, and then changes parameters upon which that version is dependent,

Alpha-1 will propagate the changed parameters to both the copied version and the

original version. If the designer includes the parameters within the aggregation,

the parameters will be copied along with the other information in the aggregation

and will not change when the original parameters are modified.

Figure 6.3 demonstrates the effects of the getVersion command. The designer

derives the BrakeHaLHubJntfc in Part (b) from version A1.V1.B1.R1 of the

Hub-WheeLIntfc in Part (a). The designer then revises BrakeHat.HubJntfc to

position the HubBoltHolePattern in a different location. These changes do not affect

the Hub- WheeLIntfc. Similarly, any subsequent changes to the Hub- WheeLIntfc will

not affect the BrakeHat-HubJntfc. This includes any changes to the parameters

that are included in the interface aggregation. Two parameters, baseAnchor and

Ext, however, have been declared elsewhere in the design model and used in the

Hub. WheeLIntfc. Any changes the designer makes to either of these two parameters

will affect both the Hub- WheeLIntfc and the BrakeHat-Hub-Intfc.

6.3.5 Version Tree

The version history of an object can be depicted as a version tree with alter-

natives represented by branches in the tree as shown in Figure 6.4. The version

reference at the beginning of the tree points to the base of the tree (the original

version) and the current version. In this figure the left branch is the original branch,

the middle branch is an alternative of the original branch, and the right branch is a

different view of the middle branch. The skipped numbers in the right branch reflect

Ill

Hub_Wheel_Intfc :* intfcSeq{

"Specify the interface between the rear hub and the wheel";

StudLength :* (30.0);

BoltNum :* (4);

BoltCir :* (100.0);

BoltDia : (10.0);

BoltWall :* (1.0 * BoltDia);

0D :* (120.0);

CtrDia :* (75.0)

HatThk :* (4.75)

HubThk :* (4.75)

joint :* rigidO ;
pos : intfcpos(baseAnchor, entityC ...);

neg : intfcneg(baseAnchor, entityC ...);

HubStud : lookupScrew(...);
HubBoltHolePattern :* screwRadiaK ...);

atchl : partof(joint,
offsetAnchor(baseAnchor, 0, 0, -

HubThk - 2 * Ext),

HubBoltHolePattern);

};

(a) Hub - Wheel Interface

BrakeHat. Hub.Intfc * getVersion(Hub_Wheel .Intfc, 1 1 , 1, 1);

BrakeHat. Hub.Intfc * merge {

"This interface is derived from version A1.B1.R0 of the
Hub. Wheel.Intf :. The boltHolePattern Is offset e to
account for the thickness of the brake hat";

atch: : partof(joint,

offsetAnchor(baseAnchor, 0, 0,

-HubThk - HatThk - 2 * Ext),

}!

HubBoltHolePattern) ;

(b) BrakeHat - Hub Interface

Figure 6.3. Use of getVersion command

112

inconsistencies between the views. If a number is missing, there is no consistent

representation of the missing version. The dashed line between the last version in

the middle and right branches represents a virtual consistency relationship that is

not actually in the data structure, but is procedurally maintained with automated

routines for checking consistency.

Formulas AE
Version Reference

Base Current

Original
Functional View

Version 1

Original
Functional View

Version 2

Alternative
Functional View

Version 1

Alternative
Functional View

Version 2

Alternative
Functional View

Version 3

Alternative
Rigid Assembly View

Version 1

Alternative
Rigid Assembly View

Version 3

Figure 6.4. Version tree

CHAPTER 7

ANALYSIS OF COMPLEXITY

MANAGEMENT

CAPABILITIES

Over the years, designers have developed a variety of techniques for managing

design complexity. More recently, design automation systems have made it easier for

designers to create and store design information. This, in turn, has made it possible

for designers to create more complex design models for which the complexity can

no longer be managed with manual techniques. To accommodate this increased

complexity, this research introduces a framework for representing, analyzing, and

managing complex design models, in which support for both new and existing

design processes is integrated into computer design models. Section 1.4.4 presents

a number of design activities and characteristics that are identified in this research

as important for managing design complexity. In this chapter, these characteristics

are used as a measure for analyzing the effectiveness of the complexity management

framework introduced in this research and for comparing this framework to related

design data models discussed in Chapter 2.

Those capabilities that are emphasized in a particular research paper or tool

are identified in Table 7.1. Sections 7.1 through 7.10 of this chapter describe the

methods that each tool or researcher uses to satisfy these capabilities. In some

cases, research tools support a capability such as hierarchical decomposition, but

this capability is not marked in Table 7.1 because it is not a focus of the research

effort and, consequently, is not described in the research paper.

114

.2

.1—t
CO
O
ft
a
o o
0)
p

N-'

Ö

co

Q
CO

d
o

1
c/3
cN

• 1—1

13
d
o

• I—1 +^
o
d

d
bß

• ^H
CO
0)
P
co

CO

0)
(=1
0)

4-»
CO

r^

s
co
f-H

O
+^
o
0)
d
d o
ü

co

ti
d
0) -^

i-H

<!

d
bO

• HH
co
0)

p
'S
CP
f-H
S-H

d u
d
o
U

0)
• i—1

>

0>
co
d

d

f-H
0)

o u
0)

d

a
cf
d

CD
bO

rd
U
00

>>
t-H
o
co

■ I-H

w
d
bO

.1—1
co
CD

p
°?

d
o

• i-H
+^>

a
• i-H

d
cö

co
'co

13
d
<
O
i-H

Jacobs V V V V V V V V V V
EDM V V V V V

Multigraph V V V V
Lee/Gossard V

PDM V V V V V
Geomes V V

Bordegoni/Cugini V
Baxter et al. V V
Gorti/Sriram V

Salomons et al. V
Abrantes/Hill V

Kim/Szykman V V
Rosenman/Gero V

Brett et al. V

Table 7.1. Comparison of design tool capabilities

7.1 Decomposition at Multiple
Levels of Detail

Using assembly aggregations and interface specifications, the framework devel-

oped in this research supports decomposition of design problems into multiple

subassemblies. In the formula automobile example, the designer began the de-

composition with high-level functional systems such as the body, the chassis, and

the power train, and evolved it into detailed assemblies of individual parts such as

those in the brake subassembly. At the lowest level, the designer decomposed

individual parts into combinations of features and geometry. Essential to the

aggregation framework are the relationship objects between hierarchical levels of

decomposition and between interacting components at the same level of detail that

115

assist the designer in capturing information such as functionality, kinematics, and

relative position, yet support designer manipulation of individual design objects

independently from the rest of the hierarchy.

Using the aggregation and versioning mechanisms of this framework, the de-

signer can modify or analyze a design model at the conceptual level, the detailed

manufacturing level, or any level in between. This analysis can be accomplished at

any time after the original definition of an object, regardless of how much additional

detail has been added. Thus, the designer can always treat the rigid wheel assembly

of the formula automobile, which includes the brake rotor, brake hat, the hub, and

the wheel, as a single abstract object, even after the individual parts are added and

refined with additional detail.

Other design data models provide varying degrees of support for representing

design decomposition. In Eastman's Engineering Data Model (EDM) for archi-

tectural design [17], designers use compositions for representing objects that are

composed from many parts. Accumulations form a parallel structure in which the

designer can associate functional constraints with compositions at a similar level of

detail. While this data model has considerable power for representing hierarchical

decompositions, lower-level components tend to be tightly coupled to their parent

composition, which restricts the designer's ability to independently manipulate and

refine these low-level components. In addition, once low-level details have been

incorporated into a composition, the designer can no longer access the higher-level

abstraction by itself without the details.

The multigraph data structure proposed by Gui and Mäntylä [27] supports the

decomposition and evolution of design models from conceptual to detailed design

with a hierarchical graph data structure. The multigraph also includes connectors

for describing force transmission and motion constraints between interacting parts

at the same level of detail. Like the framework presented in this research, the

designer can use these peer-to-peer connector relations to manipulate subassemblies

at a particular level in isolation from other levels. A drawback of the multigraph

structure is that the designer must develop manufacturing details and functional

116

concepts in separate data structures.

Lee and Gossard [38] present a hierarchical assembly structure in which the

designer specifies the position and relative motion of components in an assembly

with mating features that are associated with the hierarchical links between levels.

This assembly structure is oriented toward the representation of complete, detailed

assemblies rather than the evolution of an assembly design from conceptual to

detailed design.

Using product data management systems [4, 40, 42], designers can build struc-

tural links between components and between different design representations for the

same portion of a design model. Since little information can be associated with the

links, however, they serve only to classify design information and to define product

configuration structure. The designer has little control over the level of detail that

can be manipulated with these systems since the data is managed at the document

or file level rather than individual design objects.

Wolter and Chandrasekaran [63] propose a geometric structure, or geome, as

a mechanism for encapsulating low-level details into a single design object at a

higher level of abstraction. Their work focus on feature level hierarchies with little

discussion of complex assemblies.

7.2 Simultaneous Development
and Integration

The interface specification objects introduced in this research are used to describe

the interaction between parts and to constrain the design of interacting parts. If

defined in advance of an individual part, the entire set of interface specification

objects for a part create the design specification to which the part design must

conform. By defining common geometry and constraints within interface specifi-

cation objects, and by restricting change propagation to individual aggregations,

independent design teams can simultaneously develop the design model for a part

without impacting related parts. By conforming to design constraints and goals

identified in interface specification objects, the independently designed components

are more easily integrated into the final assembly. Using predefined specifications,

117

design teams with the appropriate expertise can develop, in parallel, major design

subsystems such as the suspension and brake assemblies of the formula automobile.

This can shorten the development period and enable the design to more accurately

reflect the desired functionality. Unlike the interface specification object in this

research, other design tools do not incorporate peer-to-peer constraints into their

aggregation structures, and so are not as useful for simultaneous design and inte-

gration of subassemblies.

7.3 Representing Design Functionality
This research presents the interface specification object as a mechanism for

representing design functionality associated with the interaction between parts.

Since design functionality is manifest in the relationships between parts rather than

in individual parts [54], the interface specification object should be appropriate for

representing most functional cases and styles of design. Kinematic functionality is

represented through various joint types as demonstrated in the spindle cartridge and

formula automobile examples. Representations for force constraints and connectors

are embedded in the interface specification object and can be used to analyze force

capacities. With additional features, automated procedures, or links to separate

tools, the interface specification object can also include representations of other

functional disciplines.

Eastman's EDM [17] represents functional design rules and property relations

between parts in an accumulation structure. The architectural examples discussed

by Eastman emphasize classification properties such as the ability of a barrier to

transmit light. It is not clear that EDM would support dynamic properties such as

changing forces or moving parts.

Gui and Mäntylä's multigraph [27] emphasizes the functional representation of

a design model. A functional node in the multigraph includes a description of

function or behavior or a specific representation for functional analysis such as

elements in a bond graph. Functional nodes are linked with connectors that describe

properties such as force transmission and relative motion. Although a multigraph

118

representation of the spindle cartridge or formula automobile might be useful for

functional analysis, the designer must use a separate data structure for developing

and maintaining geometry and manufacturing details.

Bordegoni and Cugini [5] use an assembly feature for embedding functional in-

formation in an assembly. Their approach is to define a template for the interaction

between parts. Within the template is a functional classification, such as attach or

avoid interference, and a list of possible solutions for achieving this functionality.

The designer can also include a description of the interaction in the assembly

feature. This feature-based approach is limited, however, in that an application

expert must predefine all of the functional interaction possibilities that might be

needed in a design.

Baxter et al. [2] propose an enhanced entity-relationship diagram for representing

functionality. In this representation, designers use functional relationships such

as performed-by, input.of outpuLof, and has-need.of to link design entities. The

functional entity-relationship diagram is primarily concerned with functional con-

cepts, although the designer may link these concepts to separately defined geometric

components.

Gorti and Sriram [25] develop a conceptual design model from predefined ab-

stract geometric components and the functional and spatial relationships between

them. For example, a bridge is defined by three slabs that are connected with

functions such as supports, transmits load, or resists load. While this approach

is useful for visualizing high-level concepts, it can not easily be generalized to

accommodate detailed geometry or features. At a conceptual level, this is similar

to the high-level cylindrical shaft geometry associated with the spindle cartridge

components as demonstrated in the examples in Chapter 5.

Wolter and Chandrasekaran [63] state that designers can use geomes to map

functions to geometry or to classify components by function. As an example,

Wolter and Chandrasekaran describe a rack-and-pinion geome that transforms

rotational motion into translational motion. For the spindle cartridge example,

the appropriate kinematics, force transmission, and other functionality could be

119

embedded in a geome, along with the geometry, in a fashion similar to the interface

specification object presented in this research; however, Wolter and Chandrasekaran

have had limited success implementing geomes and support only two-dimensional

models.

7.4 Connectors and Fasteners
This research uses connectors to encapsulate detailed geometry, manufactur-

ing features, force constraints, and parameters for bearing and bolt applications.

Connectors allow designers to query electronic catalogs to automatically retrieve

standardized bearings and bolts, associate the bearings or bolts with application

parameters such as fatigue life or joint thickness, and insert the encapsulated

geometry and behavior of the connector into an interface specification object.

Automated software assistants associated with the connector objects can be used

to analyze force capacities of the connector and to generate features such as bearing

bores or threaded bolt holes that are compatible with the connector.

Gui and Mäntylä [27] use connectors to associate force transmission and kine-

matic information with the relationship between functional components. The con-

nector information is used to perform bond graph analysis of the energy flow in an

assembly. To associate geometry with a connector, designers must create links to

a geometrical representation in a separate data structure.

Salomons et al. [46] and Abrantes and Hill [1] incorporate fasteners and connec-

tors into the design model as geometric place holders. Neither of these implemen-

tations, however, uses connectors for representing information that can be used for

automated force analysis or assembly validation.

7.5 Alternative Solutions
This research represents alternative design solutions through the versioning ca-

pabilities presented in Chapter 6. A designer can create multiple alternative ver-

sions of an aggregation object, then select which alternative to use in the current

model, or embed different alternatives into different versions of a design model. An

alternative solution can evolve from an existing design model to maintain certain

120

constraints and to reuse common geometry and features.

Figure 7.1 demonstrates the creation of an alternative version of the spindle-

housing interface specification object used in the spindle cartridge design. In this

solution, the only thing that changes is the number of bearings in the connector.

This constrains the alternative to the same fundamental geometry and dimensions

as the original version of the interface. Any changes in the original version will

be automatically propagated to the alternative. The granularity of the changes

is exactly that necessary to completely capture the additional bearing - no data

objects other than the connector need to be included in the specification of the

alternative version.

In product data management systems [4, 40, 42, 62], designers create structural

links to classify alternative versions of a design model. Alternatives are created

as complete design models, either by copying and modifying an existing model,

or by developing a completely new model. The alternative version of the spindle-

housing interface object, as shown Figure 7.1, would likely require a complete copy

of the spindle cartridge subassembly. Alternatives are linked at the document level,

meaning subcomponents within a model can not be shared or linked to another

model. This means the designer must manually propagate any changes to common

subcomponents to all alternatives that contain these subcomponents.

Kim and Szykman [33] link alternate solutions with design decision relation-

ships in which the designer documents the rationale for creating a new version.

spindle„housing. intfc :< merge {

"This alternative only has two bearings";

bearingconn : bearingconn(array(bearing,

spacer,

bearinglnvertC bearing)),

SpindleCartridge: :FatigueLife,

};
SpindleCartridge: :Speed);

Figure 7.1. Alternative spindle-housing interface with two bearings

121

This mechanism allows the designer to derive different alternatives from common

functional constraints, but requires the designer to explicitly define the decision

relationship before creating a new version.

Eastman's EDM [17] uses aggregation variables and solution domains to rep-

resent alternative design models. A different alternative assigns different domain

values to the variables. Although aggregation variables can represent design pa-

rameters, it is not clear that they can represent complete design objects. If it is not

possible to represent complete design objects, then alternatives are differentiated

only by parameter values rather than by different configurations of features and

constraints.

7.6 Alternative Views for Concurrent
Design

In this research, an alternative view is represented as an alternative solution

combined with procedural mechanisms for checking consistency between views.

Consistency among views is automatically maintained only through the use of

shared parameters, geometry, and constraints. To maintain consistency between

view components that are not shared, automated software assistants identify which

views are out of synchronization and the designer then updates the inconsistent

components. In the formula automobile example, the designers created a primary

view containing functional subassemblies and an alternative view with rigid sub-

assemblies. If the designer changes the configuration of the primary view or any

non-shared component within that view, then automated routines identify the rigid

assembly view as inconsistent. The designer must then modify the rigid subassem-

bly view to make it consistent with the modifications made to the functional view.

In Eastman's EDM [17], accumulations are intended to be structures that de-

signers use to associate different sets of constraints and rules with a particular

composition. Designers might embed functional rules and constraints in one accu-

mulation, dynamic analysis constraints in another accumulation, and manufactur-

ing constraints in a third accumulation. Specialized relationships can be generated

between two accumulations to ensure integrity.

122

Product data management systems [4, 62] can link the information associated

with different views at the document level; however, the large granularity inherent

in managing complete documents makes it difficult for PDM systems to also manage

the fine grain task of maintaining consistency between views.

Rosenman and Gero [45] describe architectural, mechanical, and structural views

of a building design that contain explicit links to a set of functional primitives.

Rather than using separate views to represent different types of information as-

sociated with the same design object, Rosenman and Gero use views to form

different configurations of the same primitive design objects. For example, both the

architectural and structural views of a building include a wall, but the architect is

interested in the wall as a space separator and the structural engineer is concerned

about the structural support provided by the wall. To accommodate these two

functions of a wall, designers generate a primitive object for the wall that includes

separate functionality for a space separator and a structural support. The architect

and structural engineer then incorporate the appropriate wall functionality into

their view of the building design. By basing the views on the previously defined

wall object, any changes in the wall object are propagated to the separate views. It

is not clear how to apply this approach to the functional, manufacturing, dynamic

analysis, or assembly views associated with a mechanical product such as the

formula automobile.

7.7 Design Recovery and Reuse
By using the versioning mechanisms introduced in this research, a designer can

recover a previous version of a design object and reuse it in a different design model.

Unlike many design data models that embed information describing interaction and

hierarchical relationships into the actual components, this research incorporates

interaction and hierarchical information into independent relationship objects that

link the components. By removing this relationship information from individual

design components, and by encapsulating design information into aggregations,

the framework presented in this research supports the reuse of design objects that

123

were designed for separate product models. In the formula automobile example,

the designers incorporate a model of the wheel assembly, designed completely

independent from the complexity management framework, into the automobile

model by simply transforming it to the current design space and linking it into

the automobile assembly with an interface specification object.

Product data management systems [4, 40, 42, 62] allow the designer to reuse

complete design documents by copying the document from one model structure to

another. Since information describing the interaction between components is in the

related components instead of the structural relationships, this information must be

copied in addition to the design document being reused. This may involve manually

copying portions of related design models other than the one being reused.

7.8 Change Management and Analysis
The complexity management framework introduced in this research provides

support for controlling and propagating changes in a design model. A part or

subassembly can be changed only in ways consistent with its interface specifications.

When interfaces are used in the design of the part, as was done for the spindle

cartridge, for example, many part modifications can be performed by changing

only the interface. When components are developed independently, like the wheel

of the formula automobile, interface specification objects can be used to verify that

changes to the components are compatible with the remainder of the design model.

By using the propagation mechanisms already in Alpha.l in conjunction with

interface specification objects, the framework guarantees that changes to one com-

ponent are automatically reflected in related components. In this fashion, changes

to hierarchical or interface constraints are automatically propagated to all affected

components in a part or assembly.

To experiment with different design possibilities, a designer may want to modify

and analyze a subassembly or part within a design model without affecting the

remainder of the model. A designer can use the long transaction capabilities of this

research to restrict changes to a particular aggregation object such as a subassembly

124

or part. Using these capabilities, the designer determines when to commit the

changes and propagate them to the remainder of the model.

The designer can make a change, propagate it to the remainder of the design

model, and then analyze the impact of the change on the remainder of the model. If

the change adversely impacts the design model, the designer can use the versioning

mechanisms to revert to a previous version of the modified component.

Product data management systems [4, 40, 42] provide limited change manage-

ment capabilities. In particular, many such systems provide change control mech-

anisms that restrict who can change a particular design document. Propagation of

design modifications, constraints, or impact analysis is rarely supported in these

tools.

Eastman's EDM [17] provides a limited amount of change control through its

use of variant and invariant constraints. Invariant constraints may be defined

in advance to ensure conformance of related design objects. Variant constraints

support controlled modification of a design through manipulation of the constraints.

Brett et al. [6] define propagation mechanisms for specifying relationships be-

tween two design objects such that changes in one object are automatically reflected

in the related object. Use of this mechanism, however, has been limited to simple

geometric relationships between features on a single part.

7.9 Design History

The different versions that result from the use of the versioning mechanisms

in this research reflect the design history of an object. This history may be

documented by incorporating textual descriptions of design rationale and decisions

within the versioned aggregations.

Kim and Szykman [33] enforce design history documentation by requiring the

designer to describe design rational or decisions in the version relationships between

two variants of a component. This ensures documented reasoning for each version

of a design object.

125

7.10 Design Analysis and Simulation
As demonstrated in both the spindle cartridge and the formula automobile

examples, by incorporating kinematic and force constraints into the interface specifi-

cation, the designer can use the automated framework from this research to analyze

the design and simulate movement. For example, this research has created tools

that automatically summarize and compare the forces acting on an interface and

automatically check kinematic constraints of the joint. In addition, the interface

specification object supports incorporation of a variety of information that can be

used in different types of analyses and simulations.

Limited support for analysis and simulation is available in other design data

models. Gui and Mäntylä [27] use the information embedded in connectors to

demonstrate bond graph analysis of the energy transmission between components

in their multigraph data structure. Baxter et al. [2] analyze how well a concep-

tual design satisfies the functionality specified in an enhanced entity-relationship

diagram.

7.11 Usability
One of the goals of this research is to create mechanisms that a designer can

integrate into new or existing design processes to manage design complexity auto-

matically without a significant amount of additional effort. To achieve this goal,

the aggregation and interaction mechanisms in this research are implemented as

special types of fundamental Alpha-1 design objects that embody the relationships

between design components. Because they are fundamental design objects, their

constructor commands are invoked in the same way as those for curves, surfaces,

and other design objects. Interaction and aggregation objects are accessible in the

same fashion as any other design object in the Alpha-1 design system. Since they

are integrated into the system, the designer can use these design objects together

with other design objects in Alpha-1.

Even though variation mechanisms are not accessible as independent design

objects, little overhead is required of the designers to activate these mechanisms.

126

Designers create revised and alternative versions of an object with an assignment

operator and they use simple commands to select and edit different versions of an

object.

In addition to being easy to invoke and manipulate, the complexity management

mechanisms significantly improve the usability of the entire system. When applied

to the machining center and the formula automobile examples, these complexity

management mechanisms added significant organization and understanding to the

design models while, at the same time, their application reduced the total amount

of work required of the designer.

To demonstrate compatibility and to illustrate the benefits of the complexity

management mechanisms, the design model of the formula automobile example

was modified to fit the interaction and aggregation structures of the framework

presented in this research. In doing so, interface specification objects were used

to incorporate bearings, bolts, and common parameters into the design. Along

with the dependency mechanisms of AlphaA, this ensured consistency between the

interacting parts and also reduced the design language specification of those parts

by nearly 20%. Designers decomposed the design model into individual parts and

decomposed those parts into separate features so that they could easily distinguish

which geometric and manufacturing features were included in a particular compo-

nent.

In the spindle cartridge example, the designer constructed interface specifications

before designing individual parts, and then embedded the interface information

into the part models with aggregation mechanisms. Then, by making changes

only in the interface specification, the designer could modify multiple interacting

parts. The changes were then propagated by the system to all affected parts.

By ensuring consistency among the parts, the designer did not need to manually

maintain records of which parts were affected and also was relieved of making

changes in multiple components.

Being able to have variations in the complexity management framework is some-

what limited by the lack of a shared database for design models. Without a shared

127

database, it is possible for designers to maintain different versions of a design model,

in separate databases, with no mechanism for ensuring consistency or compatibility.

Without a database management system, users of Alpha-1 are also restricted in their

ability to access individual objects from a data file, and hence their ability to control

the granularity of changes is limited. Despite the lack of a database, the system still

supports the maintenance of consistent versions and controlled granularity while the

designer is editing a model interactively.

7.12 Extensibility

With the large range of possibilities, it is difficult to develop automated mech-

anisms to support every potential design scenario. Instead, this research is aimed

at presenting a framework that can be easily extended to accommodate additional

design disciplines and capabilities as well as a set of design specific tools. Incor-

porating complexity information into relationships between design objects rather

than requiring modifications to the actual design components accomplishes this

goal. The interaction and aggregation relationships facilitate extensibility of this

framework by allowing designers to independently manipulate information that

contributes to design complexity.

During the development of procedures for assisting the designer with analy-

sis, the automated complexity management framework was used as an efficient

means to extend analysis capabilities to different mechanical applications. Once

the primary aggregation and interaction structures were in place, it was a simple,

straightforward task to add new connectors, constraint analysis, and management

information to the interaction and aggregation objects. For example, in adding

the screw connector, the developer defined a design object with the necessary

parameters. Basic attributes and methods for the design object were inherited

through the object-oriented structure of the complexity management framework

implementation. The Alpha-1 development environment then automatically gener-

ated most of the code required to integrate with the rest of the system. The only

code the developer needed to generate manually was to specify the screw geometry

128

and the force capacity calculations.

Design of a product is performed across multiple design disciplines and, in

practice, across multiple CAD tools. This research has created a framework with

the intent that it can be incorporated into other CAD tools by implementing

the interaction and aggregation mechanisms as independent design objects. The

complexity management mechanisms were integrated into the Alpha-1 user interface

tools by providing references to the constructors and methods implemented for

the aggregation and interface objects. Similarly, other tools could integrate these

mechanisms by developing a compatible object structure and linking the object

constructors and methods into the tool interface.

The benefits of embedding complexity information within relationships that are

implemented as independent design objects becomes more apparent when compared

to the versioning mechanisms developed in this research. The versioning capabilities

are not implemented as relationships making it more difficult to modify these

capabilities once they are embedded into a model. Since versioning representations

are built into the model graph framework of Alpha-1 they are not easily separated

and extended to other applications. The concepts, however, are equally applicable

in other design environments.

CHAPTER 8

SUMMARY, CONCLUSIONS, AND

FUTURE WORK

8.1 Summary and Conclusions
This research creates aggregation and relationship objects and combines these

objects with version management capabilities to form an organizational framework

for representing, analyzing, and controlling complex design models as they evolve

from functional concepts to detailed manufacturable designs. The resulting software

system overcomes many of the deficiencies associated with other CAD environments

by bringing together the intricate relationships between design components, de-

tailed constraints and design information associated with these relationships, and

methods for propagating and controlling this information throughout the design

model.

In this framework, aggregation relationships and objects capture the decomposi-

tion hierarchy of a model and organize the model into collections of features, parts,

and subassemblies. An aggregation object establishes a scope that encapsulates

multiple design components into a single design object. Aggregation objects fa-

cilitate change control by restricting access to components within the aggregation

scope. When editing an aggregation, designers can also limit the effect of changes

to the aggregation scope.

So that designers can adapt them for a variety of design processes and appli-

cations, few restrictions are placed on the contents and size of an aggregation or

on the relationships between aggregations. In a top-down design process, aggrega-

tions represent the decomposition of the design problem into less complex, more

easily managed subproblems. At high levels, design understanding is facilitated by

abstracting away lower level aggregations and components and, at lower levels, un-

130

derstanding is simplified by focusing only on the objects within a single aggregation.

Evolution of a design, from functional concepts to manufacturing details, is linked

through multiple versions of aggregations. By reconfiguring aggregations, designers

can also represent variations of a design or alternative views for multidisciplinary

design analysis.

To describe how interacting parts or subassemblies fit together and cooperate to

form a functional product, this research introduces the interface specification object.

Whereas previous research has focused in isolated aspects of the interaction between

parts, the interface specification object relates two interacting components and

provides a platform for specifying geometric, functional, and kinematic constraints

between the components. Other information, such as fasteners, connectors, or

force constraints, can be incorporated into the interface specification object with

aggregation relationships.

The interaction information contained in the interface specification objects for

a component forms a design specification. If the component design satisfies the

specification, then it is guaranteed to properly interact with other components

as delineated in the interface specification objects. If specified in advance of

interacting parts, the assembly features within interface specification objects can

be incorporated into the actual design models of parts, thereby ensuring the parts

adhere to the requirements in the specification. Furthermore, the work required

of designers is reduced since the details are specified only once in the interface

specification object rather than once in each part. If subsequent changes are

made to the interface specification object, they are automatically propagated to

the interacting parts, further consolidating the designers work. For a designer to

ensure consistency when reusing existing component designs, automated software

assistants are embedded in the interface specification object to check that the com-

ponents satisfy the specification. By ensuring compatibility between components,

the interface specification object decreases the possibility of errors and reduces the

amount of redesign.

The version management capabilities of this framework capture the history of

131

a design as it evolves from conceptual to detailed models. Versions also represent

alternative design solutions and views of a design model to facilitate design explo-

ration and concurrent analysis. By interactively selecting different revisions, views,

or alternatives of a component, designers can build different configurations of ver-

sioned aggregations, recover from adverse changes, or analyze multiple alternatives.

Using the aggregation and relationship objects of this framework, designers can

represent interacting components, conceptual and detailed design models, different

design disciplines, design history, and functional constraints in a single model

structure, yet each representation can be independently manipulated and analyzed.

Well-defined aggregation boundaries are formed by restricting access to objects

within an aggregation and by using interface specification objects to delineate in-

teraction information shared by two parts. These boundaries facilitate independent

development and modification of design components by making it easier to deter-

mine those objects that are affected by changes. By enabling independent creation

of design components, existing design models can be reused and integrated into the

framework. This independence also facilitates the extension of the framework to

other design applications.

This research uses a machining center example to demonstrate many of the

capabilities of the complexity management framework. The designer focused on

the innovative design of a spindle cartridge, a particularly complex subassembly

with strict requirements for accuracy and tool compatibility. Using interface spec-

ification objects, the designer carefully defined the interacting features between

parts. The designer then incorporated the interacting features from the interface

specification object into the spindle cartridge parts to constrain their design. Since

the designers could manipulate the model at any level of granularity, they added

detail to the interface specification objects and incrementally evolved the geometry

and functionality of the spindle cartridge. Since the changes were made through the

interface specification object, the designer was guaranteed that the parts would be

compatible. In addition, using automated software assistants associated with the

interface specification objects, the designer incrementally analyzed the forces, kine-

132

matics, and geometry of the design model to identify deficiencies and to determine

the best approach for proceeding with the design.

The formula automobile design development illustrates additional capabilities

of this framework. In this case, the designers built a conceptual model using

an assembly aggregation to identify the major subsystems of the design. These

subsystems were assigned to separate subteams for simultaneous development.

The design subteams used the design information in the interface specification

objects as a basis for creating and evolving their independent designs. Interface

specification objects were also used to ensure that previously existing design models

were compatible and could be integrated into higher level aggregations. Using

aggregations and interface specification objects, designers organized the existing

designs into specialized parts and features and consolidated design constraints,

parameters, and features that had been duplicated in multiple parts. As a result, the

part specifications were reduced by nearly twenty per cent over the previous models,

and the resulting design models were more easily understood. This organization

and the associated reduction in part specifications impacts the entire design life

cycle since modifications and analyses are also simplified.

As summarized below, the machining center and formula automobile examples

demonstrate several advantages of using the organizational framework to represent

complex product models.

• A single data structure is used to represent a complete product model, but this

structure still allows independent manipulation of individual parts, multiple

levels of detail, and different views of the design model.

• Aggregation and relationship objects combine to form well-defined aggregation

boundaries that facilitate simultaneous design and reuse of existing designs,

while simplifying change management by isolating the impact of changes.

• The organizational framework is flexible so that designers can control the

organization and granularity of model components in a manner that is most

suitable for increasing understanding of their particular application or process.

133

• A single structure integrates geometric and non-geometric design information

to make it easier to analyze and control this information.

• The interface specification object eliminates the duplication of interaction in-

formation in multiple parts as is common in many other CAD representations.

• Alternative versions and version recovery mechanisms facilitate design explo-

ration by reducing the cost to analyze different design possibilities.

8.2 Future Work
To demonstrate the capabilities of the complexity management framework and

to represent key aspects of the machining center and formula automobile examples,

this research implements a representative collection of manufacturing features,

kinematic joints, and mechanical connectors. The framework can be used to repre-

sent a wide variety of design information and does not require features, joints, or

connectors; however, these abstract objects greatly simplify the analysis and man-

agement of complex mechanical design information. Incorporating additional joint

combinations and connectors, or additional manufacturing, assembly, or functional

features into the framework would enable it to represent other design problems or

application areas.

In Alpha-1, persistent data are maintained in individual files with no common

links between these files. The versioning and reuse capabilities of the complexity

management framework, in particular, would be considerably more powerful if

design objects were accessible through a common database. Since the automated

mechanisms are implemented as independent software objects, the capabilities of

this framework could be implemented on top of commercially available object-

oriented database management systems.

This framework improves a designer's ability to manage the many relationships,

design objects, and aggregations that exist in a complex design; however, it is still

difficult for a designer to visualize the hierarchical decomposition structures, related

versions, or interacting components. A hierarchical browser, that traverses the com-

134

plexity management relationships available in this framework, would significantly

enhance a designer's ability to visualize and navigate complex model structures and

design histories.

While the relationships in this framework provide a focal point for representing

any type of design information, no single tool is likely to provide all of the analysis

and design capabilities required in a complex design. Instead, some of the data will

need to be transformed into different formats for compatibility with other tools.

While this framework facilitates the extraction of information, the framework would

be more useful if it could be shared among multiple tools. This would also enable

separate design teams using different design tools to share their design data. This

is a likely scenario where different companies develop individual subassemblies of

a design. To accommodate data sharing, a standardized data representation must

be developed for the aggregation, interaction, and variation structures.

A significant motivation for this research was the possibility that the complexity

management framework could be adapted for use in other design areas such as

software design. Many of the capabilities and activities are similar including, among

others, hierarchical decomposition, simultaneous design, evolution from conceptual

to detailed design, and reuse of existing components. Although versioning and

aggregation mechanisms are already available in software design tools, interaction

information is typically embedded within the actual components and exported via

a public interface such as that for a C++ class. Changing the interface generally

requires a change to the associated object or class. If the interfaces between

software objects were specified in independent relationships similar to the interface

specification objects in this research, designers would have increased flexibility for

ensuring object compatibility and for reusing existing objects. This would improve

the development of software building block objects that could be incorporated into

other designs to reduce the need for reprogramming these objects each time similar

functionality is needed.

REFERENCES

[1] ABRANTES, M. J., AND HILL, S. D. Computer-aided planning of mechanical
assembly sequences. Tech. Rep. 95-7, Monash University, Clayton, Australia,
Feb 1996.

[2] BAXTER, J. E., JüSTER, N. P., AND DE PENNINGTON, A. A functional data
model for assemblies used to verify product design specifications. Proceedings
of the Institution of Mechanical Engineers 208, B4 (1994), 235-244.

[3] BEACH, D., AND ANDERSON, D. A computer environment for realistic
assembly design. In Proceedings of the 1996 ASME Design Engineering
Technical Conferences (1996), American Society of Mechanical Engineers.
96-DETC/CIE-1336.

[4] BlLGlC, T., AND ROCK, D. Product data management systems: State-of-
the-art and the future. In Proceedings of the 1997 ASME Design Engineering
Technical Conferences (1997), American Society of Mechanical Engineers.
DETC97/EIM-3720.

[5] BORDEGONI, M., AND CUGINI, U. Feature-based assembly design: Concepts
and design environment. In Proceedings of the 1997 ASME Design Engineering
Technical Conferences (1997), American Society of Mechanical Engineers.
DETC97/CIE-4266.

[6] BRETT, B. D., DEMURJIAN, S. A., PETERS, T. J., AND NEEDHAM,

D. M. Relations between features - prototyping object-oriented language
extensions on an industrial example. In Proceedings of the 1996 ASME Design
Engineering Technical Conferences (1996), American Society of Mechanical
Engineers. 96-DETC/CIE-1335.

[7] BROOKS, S. L., AND R.BRYAN GREENWAY, J. Using STEP to integrate
design features with manufacturing features. In Proceedings of the Computers
in Engineering Conference and the Engineering Database Symposium (1995),
American Society of Mechanical Engineers, pp. 579-586.

[8] CHEN, X., AND HOFFMANN, C. M. On editability of feature-based design.
Computer Aided Design 27, 12 (Dec 1995), 905-914.

[9] CHERNG, J. G., YU SHAO, X., GEN Li, P., AND SFERRO, P. R. Integrated
part feature modeling and process planning for concurrent engineering. In
Proceedings of the 1996 ASME Design Engineering Technical Conferences
(1996), American Society of Mechanical Engineers. 96-DETC/CIE-1334.

136

[10] COHEN, E., DRAKE, S., FISH, R., AND RIESENFELD, R. F. Feature-based
process planning for CNC machining. Draft of paper prepared for the 1995
IEEE International Symposium on Assembly and Task Planning, 1995.

[11] CUNNINGHAM, J., AND DiXON, J. Designing with features: The origin of
features. In Proceedings of the 1988 ASME International Computers in En-
gineering Conference and Exhibition (1988), American Society of Mechanical
Engineers, pp. 237-243.

[12] CUTKOSKY, M. R., ET AL. PACT: An experiment in integrating concurrent
engineering systems. Computer 26, 1 (January 1993), 28-37.

[13] DOHMEN, M., DE KRAKER, K. J., AND BRONSVOORT, W. F. Feature
validation in a multiple-view modeling system. In Proceedings of the 1996
ASME Design Engineering Technical Conferences (1996), American Society of
Mechanical Engineers. 96-DETC/CIE-1321.

[14] DRAKE, S. Faculty sponsor, FormulaSAE design contest. Multiple informal
conversations, 1996-1997.

[15] DRAKE, S. FormulaSAE design models. Alpha.l SCL Files, 1997.

[16] DRISKILL, E. E. Towards the Design, Analysis, and Illustration of Assemblies.
PhD thesis, University of Utah, 1996.

[17] EASTMAN, CM. A data model for design knowledge. Automation in
Construction 3 (1994), 135-147.

[18] EASTMAN, C. M., ASSAL, H., AND JENG, T. Structure of a product
database supporting model evolution. Proceedings of CIB Workshop on Com-
puters and Information in Construction: Modeling of Buildings through their
Life-cycle (1995). Stanford, California.

[19] EASTMAN, C. M., AND FERESHETIAN, N. Information models for use in
product design: a comparison. Computer Aided Design 26, 7 (Jul 1994), 551-
572.

[20] EVBUOMWAN, N., SlVALOGANATHAN, S., AND JEBB, A. A survey of
design philosophies, models, methods and systems. Journal of Engineering
Manufacture, Proceedings of the Institution of Mechanical Engineers, Part B
210, B4 (1996), 301-320.

[21] FALCIDIENO, B., GIANNINI, F., PORZIA, C, AND SPAGNUOLO, M. A
uniform approach to represent features in different application contexts. Com-
puters in Industry 19 (1992), 175-184.

[22] FENG, C.-X., HUANG, C.-C, KUSIAK, A., AND LI, P.-G. Representation
of functions and features in detail design. Computer-Aided Design 28, 12
(1996), 961-971.

137

[23] FOLEY, D. Hands-on product data management: One step at a time.
Computer-Aided Engineering 14, 2 (February 1995), 43-47.

[24] GEELINK, R., SALOMONS, O. W., VAN SLOOTEN, F., VAN HOUTEN, F. J.,
AND KALS, H. J. Unified feature definition for feature based design and
feature based manufacturing. In Proceedings of the Computers in Engineer-
ing Conference and the Engineering Database Symposium (1995), American
Society of Mechanical Engineers.

[25] GORTI, S. R., AND SRIRAM, R. D. From symbol to form: a framework for
conceptual design. Computer-Aided Design 28, 11 (1996), 853-870.

[26] GOSSARD, D. C., ZUFFANTE, R. P., AND SAKURAI, H. Representing
dimensions, tolerances, and features in MCAE systems. IEEE Computer
Graphics and Applications 8, 2 (Mar 1988), 51-59.

[27] GUI, J.-K., AND MÄNTYLÄ, M. Functional understanding of assembly
modelling. Computer Aided Design 26, 6 (Jun 1994), 435-451.

[28] HEINRICH, M., AND JUENGST, W. E. Catalogue design of technical systems
based on a resource exchange paradigm. In Proceedings of the 1996 ASME
Design Engineering Technical Conferences (1996), American Society of Me-
chanical Engineers. 96-DETC/DTM-1535.

[29] HOLSHEIMER, M., DE BY, R. A., AND AlT-KACI, H. A database interface
for complex objects. Tech. Rep. 27, Paris Research Laboratory of Digital
Equipment Centre Technique Europe, Mar 1993.

[30] JACOBS, T. M. An object-oriented database implementation of the MAGIC
VLSI layout design system. Master's thesis, Air Force Institute of Technology,
Dec 1991.

[31] KATZ, R. H. Towards a unified framework for version modeling. Tech. Rep.
UCB/CSD-88-484, University of California, Berkeley, 1988.

[32] KEMPFER, L. Hands-on product data management: Tracking document
traffic. Computer-Aided Engineering 14, 2 (February 1995), 47-48.

[33] KlM, G. J., AND SZYKMAN, S. Combining interactive exploration and
optimization for assembly design. In Proceedings of the 1996 ASME Design
Engineering Technical Conferences (1996), American Society of Mechanical
Engineers. 96-DETC/DAC-1482.

[34] KlM, S., AND LEE, K. An assembly modelling system for dynamic and
kinematic analysis. Computer Aided Design 21, 1 (Jan/Feb 1989), 2-12.

[35] KRISHNAMURTHY, K. Version management in a CAD paradigm. In Proceed-
ings of the Computers in Engineering Conference and the Engineering Database
Symposium (1995), American Society of Mechanical Engineers, pp. 1133-1144.

138

[36] LAAKKO, T., AND MANTYLÄ, M. Feature-based modeling of product fami-
lies. In Proceedings of the 1994 ASME International Computers in Engineering
Conference and Exhibition (1994), vol. 1, American Society of Mechanical
Engineers, pp. 45-54.

[37;

[38;

[39

[40|

[41

[42;

[43;

[44;

[45;

[46;

[47;

[48;

[49

LEE, K., AND ANDREWS, G. Inference of the positions of components in an
assembly: part 2. Computer Aided Design 17, 1 (Jan/Feb 1985), 20-24.

LEE, K., AND GOSSARD, D. C. A hierarchical data structure for representing
assemblies: part 1. Computer Aided Design 17,1 (Jan/Feb 1985), 15-19.

MEYER, B. Schema evolution: Concepts, terminology, and solutions. Com-
puter 29, 10 (Oct 1996), 119-121.

MILLER, E. PDM today. Computer-Aided Engineering 14, 2 (February 1995),
32-40.

PAHL, G., AND BEITZ, W. Engineering Design: A Systematic Approach.
Springer-Verlag, London, 1996.

PHILPOTTS, M. An introduction to the concepts, benefits and terminology
of product data management. Industrial Management & Data Systems 96, 4
(1996), 11-17.

PLAICE, J., AND WADGE, W. W. A new approach to version control. IEEE
Transactions on Soßware Engineering 19, 3 (Mar 1993), 268-276.

RANYAK, P., AND FRIDSHAL, R. Features for tolerancing a solid model.
In Proceedings of the 1988 ASME International Computers in Engineering
Conference and Exhibition (1988), American Society of Mechanical Engineers,
pp. 275-280.

ROSENMAN, M., AND GERO, J. Modelling multiple views of design objects
in a collaborative CAD environment. Computer-Aided Design 28, 3 (1996),
193-205.

SALOMONS, O., KAPPERT, J., VAN SLOOTEN, F., VAN HOUTEN, F., AND

KALS, H. Computer support in the (re)design of mechanical products, a
new approach in feature based design, focusing on the link with CAPP.
IFIP Transactions on Knowledge Based Hybrid Systems B-ll (1993), 91-103.
Electronic version from author's repository.

SHAH, J. J. Feature transformations between application-specific feature
spaces. Computer-Aided Engineering Journal 5, 6 (Dec 1988), 247-255.

SHAH, J. J., JEON, D. K., URBAN, S. D., BLIZNAKOV, P., AND ROGERS,

M. Database infrastructure for supporting engineering design histories.
Computer-Aided Design 28, 5 (1996), 347-360.

SHAH, J. J., AND MANTYLÄ, M. Parametric and Feature-Based CAD/CAM

139

Concepts, Techniques, and Applications. John Wiley k Sons, Inc., New York,
NY, 1995.

[50] SHAH, J. J., AND TADEPALLI, R. Feature based assembly modeling.
In Proceedings of the 1992 ASME International Computers in Engineering
Conference and Exhibition (1992), vol. 1, American Society of Mechanical
Engineers, pp. 253-260.

[51] SODHI, R., AND TURNER, J. U. Towards modelling of assemblies for product
design. Computer-Aided Design 26, 2 (1994), 85-97.

[52] SULLIVAN, K. J. Mediators: Easing the Design and Evolution of Integrated
Systems. PhD thesis, University of Washington, 1994.

[53] TEGEL, O. Support for handling complexity during product development.
In Proceedings of the 1997 ASME Design Engineering Technical Conferences
(1997), American Society of Mechanical Engineers. DETC/EIM-3717.

[54] TURNER, J. Relative positioning of parts in assemblies using mathematical
programming. Computer Aided Design 22, 7 (Sep 1990), 394-400.

[55] UNIVERSITY OF UTAH. AlphaA User's Manual, Version 95.06. Department
of Computer Science, 1995. Online HTML Document.

[56] UNIVERSITY OF UTAH. AlphaA Spindle Project. Department of Computer
Science, 1997. Online HTML Document.

[57] UNIVERSITY OF UTAH. FormulaSAE. Department of Computer Science, 1997.
Online HTML Document.

[58] VAN DEN HAMER, P., AND LEPOETER, K. Managing design data: The five
dimensions of CAD frameworks, configuration management, and product data
management. Proceedings of the IEEE 84, 1 (January 1996), 42-56.

[59] VAN HOLLAND, W., BRONSVOORT, W. F., AND JANSEN, F. W. Feature
modelling for assembly. Tech. Rep. 93-103, Delft University of Technology,
Delft, The Netherlands, 1993.

[60] WANG, N., AND OZSOY, T. M. A scheme to represent features, dimensions,
and tolerances in geometric modeling. Journal of Manufacturing Systems 10,
3 (1991), 233-240.

[61] WEARRING, C. The functional feature model: Bridging the CAD/CAM gap.
In Proceedings of the 1996 ASME Design Engineering Technical Conferences
(1996), American Society of Mechanical Engineers. 96-DETC/CIE-1653.

[62] WESTFECHTEL, B. Integrated product and process management for engineer-
ing design applications. Integrated Computer-Aided Engineering 3, 1 (1996),
20-35.

140

[63] WOLTER, J., AND CHANüRASEKARAN, P. A concept for a constraint-based
representation of functional and geometric design knowledge. In ACM Sym-
posium on Solid Modeling Foundations and CAD/CAM Applications (Austin,
Texas, Jun 1991), pp. 409-418.

[64] ZANELLA, M., AND GUBIAN, P. A conceptual model for design management.
Computer-Aided Design 28, 1 (1996), 33-49.

[65] ZDONIK, S. B., AND MAIER, D. Readings in Object-Oriented Database
Systems. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.

[66] ZELLER, A. Configuration management with feature logics. Tech. Rep. 94-01,
Technische Universität Braunschweig, Mar 1994.

[67] ZELLER, A. A unified version model for configuration management. Software
Engineering Notes 20, 4 (Oct 1995), 151-160.

[68] ZHOU, L., RUNDENSTEINER, E. A., AND SHIN, K. G. Schema evolution of
an object-oriented real-time database system for manufacturing automation.
Draft paper from the University of Michigan - to be submitted to IEEE
Transactions on Knowledge and Data Engineering, Sep 1996.

