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ABSTRACT 

Complexity in modern product design is manifest through the interactions of 

large numbers of diverse parts and functions, and multiple design disciplines. The 

intricate web of synergistic relationships necessary to link components together 

makes it difficult for designers to assimilate or represent such complex designs in 

their totality. 

Since existing CAD software tools provide only limited support for managing 

complex designs, it is necessary to document and track complexity relationships 

independent of the actual CAD models. This reduces the level of detail that can 

be managed, while requiring more work from the design team and increasing the 

risk of inconsistencies and errors in the design. To better support management of 

complex designs, this research integrates multiple design representations and the 

relationships among them into a single organizational framework. Its goal is to 

provide flexibility for designers to manage and evolve design representations for a 

variety of design processes and applications. 

This research uses design data objects to represent the aggregation hierarchy and 

relationships between design representations. Aggregation objects are introduced to 

organize the design into a multileveled hierarchy by encapsulating multiple design 

components or representations into single objects. This organization serves to 

abstract design information and facilitate understanding. The design effects that 

result from the synergistic interaction between components are captured in rela- 

tionship objects. Relationship objects eliminate duplicate specification and ensure 

compatibility between components. Together, aggregation and relationship objects 

form well-defined boundaries between design entities to facilitate simultaneous 

design and reuse. Changes to aggregation and relationship objects are captured 

in version objects that record the history of a design as it evolves. 
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CHAPTER 1 

INTRODUCTION 

1.1    Overview 
Complexity in modern product design is manifest through large numbers of 

diverse parts, complicated geometry of individual parts, and multiple functions 

performed by a single part. As a design evolves, multiple representations of a 

component are created as additional details are added or different design disciplines 

are considered. The large number of parts, functionality, and design representations 

creates a significant management problem. This problem is magnified by the 

complex relationships between the different components and representations. These 

relationships, which might include the impact of manufacturing capabilities on 

geometry or the bearings and forces involved in the rotation of a wheel around 

an axle, provide additional insight into the overall product that is not available in 

the individual representations. 

Existing CAD systems improve the designer's ability to create large numbers of 

components and design representations by simplifying the creation and analysis of 

individual parts and components. These design representations, however, require 

multiple tools and design formats that must be managed through manual processes 

or data management tools that work with complete design documents at a high 

level of granularity. Unfortunately, this large scale granularity does not help with 

the management of the small granularity changes that typically occur as a design 

evolves. Instead, designers must manually track and control these changes - a pro- 

cess that consumes valuable design time and increases the potential for introducing 

errors. 

This research introduces an organizational framework for automating the man- 

agement of complex product designs. The objectives of this framework are to: 



• Integrate multiple design components, design functionality, and different de- 

sign disciplines into a single model. 

• Support independent manipulation of design components and relationships at 

multiple levels of granularity. 

• Provide flexibility for designers to manage and evolve design representations 

for a variety of design processes and applications. 

This research realizes its organizational framework through three types of data 

objects - aggregations, relationships, and versions. Aggregation objects encapsulate 

multiple design components or representations into a single object that can be 

independently manipulated by the designer. Aggregations may be nested within 

other aggregations to organize design information into a hierarchy with multiple 

levels of detail. Relationship objects specify the interaction between components 

and views at multiple levels of detail. Relationship objects include synergistic 

design information, such as additional functionality or fasteners, that results from 

the interaction of two components. In addition to the aggregation and relationship 

objects, this framework includes version objects to represent the history of a design 

as it evolves over time. Associated with the aggregation, relationship, and version 

objects are automated "software assistants" that facilitate the management and 

analysis of the design information represented by the framework. 

The framework presented in this research has many characteristics that help 

the user to manage complex designs. By organizing the design into aggregations, 

the designer works with a limited number of components at a time, making it 

easier to understand and control the design as it changes over time. By using a 

single object to capture the synergistic information associated with the interaction 

between components, compatibility of the interacting parts can be controlled and 

the information does not have to be duplicated in multiple parts. By isolating 

components with relationship objects and embedding them into aggregations, de- 

signers can control modifications to the components, yet still communicate changes 



to the remainder of the model. This isolation also facilitates simultaneous design 

and reuse. 

1.2    Background 
1.2.1    Design Complexity 

Complexity in modern design manifests itself in many different ways. Product 

design models contain a vast quantity of diverse information that is linked together 

in a variety of configurations. These products are developed over a period of time 

through an extensive design process. During this process, designers brings together 

information such as customer needs and scientific and engineering principles. They 

then form this information into a high-level design model and proceed to evolve this 

model into a working product design. The designer applies numerous techniques to 

minimize and manage the complexity of the design process and the product being 

designed. 

Product complexity results from a large number of parts in an assembly, complex 

geometry or multiple functions within an individual part, and the combination of 

many different design disciplines within a single assembly [53]. The individual 

components and functions are linked together in an intricate web of synergistic 

relationships through which the design becomes more powerful and complex than 

the sum of the individual pieces. 

To create and manage the design of complex products, designers proceed through 

a series of process phases. Evbuomwan et al. characterize these phases as di- 

vergence, transformation, and convergence [20]. The designer first extends the 

solution space by diverging from the well-known aspects of the design situation while 

identifying features of the problem that permit a valuable and feasible solution. 

Creativity, pattern-making, insight, and guesswork allow the designer to transform 

the results of the divergent search into patterns that may lead to a single design. 

Eventually, the designer must converge to the final design by removing uncertainties 

and design alternatives. 

Pahl and Beitz present a similar view of the design process in which the more 

familiar terms of conceptual design, embodiment design, and detailed design are 



used to describe the major phases [41]. The conceptual design phase determines 

the principle solution by abstracting the essential problems, functional structures, 

and working principles and combining them into a conceptual structure of the 

design. During the embodiment phase, the designer applies technical and economic 

knowledge to the development of an overall layout, preliminary component shapes 

and materials, and production processes. Finally, in the detailed design phase, the 

arrangement, forms, dimensions, surface properties, materials, and production pos- 

sibilities are specified, analyzed, and revised into an economical, manufacturable, 

working product design. 

In both of these design process views, designers apply their considerable domain 

knowledge and experience to the understanding and formation of a product de- 

sign. Designers must determine customer needs and must have the scientific and 

engineering knowledge to form these needs into a working product design. The 

information derived from this design knowledge is highly complex and contains 

many interdependencies. In addition, the applicable information frequently changes 

as the design evolves. 

Customer needs are characterized by functional and performance requirements 

that are constrained by the operational environment, budgetary limitations, and 

other restrictions. Often, customer needs are ambiguous and incomplete and change 

considerably over time. Designers need to transform these ambiguous requirements 

into a concrete design model while accommodating any changes. Unfortunately, 

these ambiguous, changing requirements are a frequent cause of cost overruns and 

delays in product development. 

Engineering design requires considerable knowledge of scientific and engineering 

principles. In addition, information about existing designs, standard components 

and materials, and manufacturing capabilities must be available to the designer. 

This diversity of information and knowledge often requires multiple designers, with 

expertise in different engineering disciplines, to cooperate in the design of a single 

product. 

The intricate relationships and large quantities of information in a complex 



design are very difficult for a design team to assimilate. The team must organize 

and abstract the design information in different ways to explore various design 

possibilities, to analyze cross-disciplinary design compatibilities, to organize design 

ideas into feasible design layouts and patterns, and to revise and restrict the design 

alternatives until a workable design is obtained. Designers have developed a number 

of techniques for abstracting design information and managing the complexity of 

product designs. 

One technique is to break the problem into a number of smaller subproblems, 

each of which is less complex than the original. If done properly, these smaller 

problems can be resolved simultaneously by separate design teams, then the so- 

lution can be integrated together to form the complete product design. In some 

cases, existing designs may be reused as solutions to design subproblems. In fact, 

standardized catalog parts and components are frequently reused in this manner. 

In the early stages of design, complexity is frequently reduced by deferring 

specification and modeling of many of the details, both geometric and functional. 

In these early stages, functional concepts are embodied in high-level components 

that interact in a specified manner. Multiple alternatives may be developed and 

analyzed before a particular design approach is selected. As the design problem 

becomes better understood, the alternatives are narrowed down, additional detail 

is added, and the design is more rigorously analyzed. This cycle continues until the 

design has evolved into its final form. 

As a design problem is decomposed into subproblems or as detail is added at 

different levels of abstraction, additional relationships are established between com- 

ponents of the design. These relationships evolve along with the design components. 

Understanding and ensuring compatibility with these relationships is critical to 

designing a successful product. This is often complicated, however, by the difficulty 

in capturing and defining these relationships. 

Ideally, one would dedicate sufficient resources to completely identify, specify, 

and analyze every aspect of a complex design. Since resources are usually limited, 

however, one can reduce the chance of product failure by concentrating resources 



6 

on those areas that pose the greatest risk. The relationships between design compo- 

nents have considerable impact on the overall design due to their synergistic effect. 

Consequently, these relationships provide a convenient focal point for minimizing 

design risk. 

1.2.2    Computer-Aided Design 

Computer-aided design (CAD) systems are essential for creating and maintaining 

complex product design information. Most CAD software tools emphasize detailed 

modeling of individual design components, but often fail to support the complex 

relationships between design components that are typical of most actual product 

designs. As a result, the design team must take additional steps to manage these 

relationships independent of the actual component models. 

Many different CAD software tools have been developed for supporting different 

phases of the design process or for representing different aspects of the design model. 

Since the high-level conceptual models, detailed design models, and analysis models 

are created with different domain tools, the model for a single design component 

is often maintained in multiple, incompatibly formatted files. The same is true for 

functional, geometric, manufacturing, and assembly models that are created with 

different tools. In addition to the different file formats, each tool operates in its 

own workspace with its own set of commands and procedures. 

For a software tool to use models that are created by a different tool, some 

sort of transformation is required, often involving translation of design formats, 

manual conversion of design information by the design team, or additional design 

steps. This frequently results in information lost during the translation, time lost 

to accomplish the translation, and additional complexity by having to keep track of 

the mapping between representations. Design data that are shared between tools 

must be organized in a fashion that is efficient for translation. This often means 

large pieces of the design model are grouped in a single file. Changes made by 

one tool are not available in other tools unless the designer takes explicit steps 

to transform the changes into the proper format. As a consequence, it is difficult 

to propagate incremental changes between tools.  Reuse of a design model is also 



made more difficult, since the designer must extract each representation from the 

different tool workspaces in which they are defined. 

In this independent workspace paradigm, links between different component 

models are difficult to specify. Components that are composed of other indepen- 

dently modeled components have no way of showing these connections except to 

make copies of the other components. If one of these components changes, a new 

copy must be inserted into the aggregate representation. If a component must 

interact with other components, this interaction can be specified independently 

within each component; however, there is no easy way to determine which other 

components are compatible with that specification. 

Product data management (PDM) tools can be used in conjunction with CAD 

tools to specify and manage structural relationships between design components. 

The relationships specified by these high-level tools, however, fail to capture com- 

plex design information such as functionality, strength of materials, or geometric 

constraints. While these tools help the designer determine which components 

are related, manual intervention is still required to keep the independent design 

representations consistent. PDM tools are also restricted to managing complete 

design files, thus limiting their utility for managing incremental changes. 

Associated with the various phases, levels of detail, and revisions of a design 

model are the rationale and decisions that describe how the model evolved to its 

current state. These informal, text based descriptions are often maintained in a 

loosely organized set of notes or in the minds of the designers. Although this 

information is often essential for design corrections or for acquiring knowledge about 

the design, the information is seldom incorporated into CAD models. 

Many components in a mechanical design, such as bolts, bearings, springs, and 

other connectors, are standardized and produced by independent manufacturers. 

Since these components are not new designs they are often inadequately represented 

in detailed design models. Where they are represented, the designer usually has 

to individually specify features to accommodate these components in each affected 

part. 



1.3    The Problem 
Whether for conceptual or detailed design, a major shortcoming of most CAD 

systems is the isolation of the individual design artifacts. Models for individual 

components, different disciplines, and other design characteristics are developed 

and maintained in separate files and formats from related representations in the 

overall product design. 

To manage the synergistic relationships that exist between design representa- 

tions, the designer must currently document and track these relationships indepen- 

dent of the actual component models. Product data management tools attempt 

to automate this process by providing structural and classification links between 

detailed design representations; however, existing tools are unable to depict the 

synergistic information that is essential to these relationships. 

The file-based organization of product data management tools and manual filing 

systems forces designers to manage design representations at a large granularity. 

A large number of design changes, however, require relatively small changes to a 

particular aspect of a design representation. Since data management tools can only 

deal with changes at a large granularity, the designers must intervene manually to 

ensure consistent changes are made in all related representations. This process is 

time consuming and increases the chances of introducing errors into the design. 

1.4    Managing Complexity 
The intricate relationships and large quantities of information in a complex 

design are very difficult for a designer to assimilate in their totality. To understand 

and manage this complexity, designers must be able to organize and constrain the 

design to limit the amount of detail or the number of possibilities to be analyzed at 

any given time. As the design evolves or requirements change, the designer must 

be able to reorganize and modify the design constraints so that useful solutions are 

not overlooked. 

To automate the management of complex design models, a CAD environment 

must provide representations and constraints for controlling and analyzing the be- 

havior of interacting design components. These representations must be organized 



into a single product model in which the designer can specify and track design 

models at multiple levels of detail, through multiple revisions and alternatives, and 

across different design perspectives. 

Modern production environments dictate additional capabilities that must be 

accommodated in the management of design complexity. Geographically separated 

design teams may work concurrently on different sections of a design or may 

collaborate by providing unique expertise to a single design. Existing electronic 

designs may be cataloged and stored in a standard format for reuse by anyone on a 

computer network. Independently developed tools are available for automatically 

checking and analyzing different design characteristics. A modern CAD environ- 

ment should enable these capabilities by seamlessly integrating the different tools 

and representations with the necessary data and process relationships. 

1.4.1    Terminology 

To facilitate understanding and analysis of design complexity, this research 

examines three organizing paradigms - aggregation, interaction, and variation - 

that are inherent in the creation of any complex product design. 

• Aggregation is the organization of related components into collections and the 

arrangement of these collections into a product hierarchy. Aggregation depicts 

the decomposition and abstraction of the design model at multiple levels of 

detail. 

• Interaction is the description of how two parts or subassemblies fit together 

and cooperate to provide new capabilities. 

• Variation is the evolution of a design as it changes over time. 

Although these organizing paradigms are common, the preceding definitions are 

particular to this work since no standard definitions exist. 



10 

1.4.2    Objectives 

To facilitate complexity management in a modern production environment, this 

research introduces an automated framework for organizing and controlling complex 

design models. This framework incorporates the aggregation, interaction, and vari- 

ation paradigms defined above into a single structure for specifying and organizing 

complex product designs. Specifically, this framework is intended to assist the 

designer by: 

• Integrating different design disciplines and related design components into a 

single product model. A single product model simplifies analysis by having 

information available in a single structure and a similar format. Design changes 

are more readily propagated through a single design model making it easier to 

analyze new designs or the impact of changes. 

• Supporting independent manipulation of different design representations and 

components along with the relationships between them. By independently 

manipulating relationships, designers can communicate between related com- 

ponents and control how components affect one another. Designers are not 

constrained to a particular level of detail or a particular representation when 

modifying design components; rather, changes can be made at any level and 

propagated to related representations. Independent manipulation of design 

representations also makes it easier for designers to simultaneously work on 

different parts of the product or to reuse existing product designs. 

• Providing flexibility to manage and evolve design representations for different 

design processes or applications. Designers can organize and evolve their 

designs according to the process that is most beneficial to their particular 

situation. Data structures implemented for a particular application such as 

force analysis or manufacturing process planning, can be readily extended to 

incorporate additional design disciplines or application areas. 
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1.4.3    Methodology 

The primary components of this framework are based on the organizational 

paradigms defined in Section 1.4.1. These components include aggregation objects 

for organizing related information into collections, relationship objects for describing 

the hierarchical and interaction relationships between components, and version 

objects for recording the evolution of a design as it changes over time. Each of the 

aggregation objects, relationship objects, and version objects contains automated 

"software assistants" that assist the designer in analyzing and managing the product 

model. 

An aggregation object is an organizational structure that encapsulates multiple 

design entities into a single design object. Aggregation objects can be nested within 

other aggregation objects to form a decomposition hierarchy with different levels 

of detail. An aggregation object creates a scope into which the designer may insert 

related geometric, functional, manufacturing, or other design information. The 

scope of the aggregation object restricts access to the encapsulated components 

from objects external to the aggregation. 

This framework contains two type of relationship objects - attachments that 

represent the hierarchical relationships between design components, and interface 

specification objects that represent the peer-to-peer interaction relationships be- 

tween components. Relationship objects contain design constraints and methods 

for analyzing and validating related components. Both types of relationship objects 

are distinct design objects that can be independently manipulated by the designer 

to analyze and control the related components. The attachment relationship links 

components that are part of the same higher-level aggregation. Interface speci- 

fication objects describe the detailed interactions between parts in an assembly 

aggregation. 

To complete the framework, this research creates version objects for recording 

and managing design modifications. When a designer modifies a design aggrega- 

tion, a new version object is automatically created that computes and records the 

differences in the design. Version objects can also be created to record alternative 
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solutions or views of the design. Version objects are derived from aggregation 

objects so that designers can control granularity by the number of components 

in an aggregation. Simple commands are associated with the version objects for 

interactively selecting or copying any existing version of a component model. 

1.4.4    Design Characteristics 

In an attempt to manage design complexity, designers employ a number of 

design techniques to decompose the problem into more manageable pieces and 

to control changes to the design as it evolves. For a CAD system to support 

the entire design process, it must accommodate these complexity management 

techniques along with the specification of geometry and functionality. A CAD 

system should also enable the designer to maximize utilization of the storage, 

communication, and processing power of modern computers systems and networks. 

This research considers the following design techniques and characteristics essential 

for representing and managing design complexity in modern CAD systems. 

Decomposition. A high level concept of the design is decomposed into smaller 

components that are more easily understood and implemented. 

Simultaneous Development. Different designers work on separate components of 

the design at the same time. 

Integration. Components designed separately from each other are composed into 

a higher level functional design. Independently designed components should 

be compatible with the high level specifications. 

Nongeometric Design Representation. To adequately analyze the feasibility and 

performance of a design model, the designer must be able to quantify in- 

formation concerning the functionality, ease of assembly, manufacturing pro- 

cesses, and other design disciplines. This may involve kinematic joints, force 

constraints, manufacturing or assembly features, fasteners and connectors, or 

other specialized design components. 
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Design Exploration. A designer often explores multiple alternatives before the 

design is completed. 

Concurrent Design. Designers with expertise in different design disciplines may 

need to concurrently develop and analyze the design model from multiple 

viewpoints. 

Design Recovery. Once a design has evolved, a designer may determine that 

another version is more accurate. This requires recovery of a previous version 

or alternative of the design. 

Design Reuse.  A design may be adapted and reused to satisfy a different set of 

requirements. 

Refinement. Once a design exists, this design may be refined to adapt to dif- 

ferent requirements or to improve the ability of the design to satisfy existing 

requirements. 

Change Management. A designer may need to propagate a change to interacting 

design components, alternate versions, or higher level design aggregations so 

that different representations of a model are kept consistent. A designer may 

also want to restrict how changes are made and propagated through the model. 

Before a change is made permanent, a designer may want to analyze the impact 

that the change has on the remainder of the model. 

Design History. The designer needs to keep track of design decisions and the 

history of the design to reduce rework and to allow different individuals to 

understand how the design has evolved. Design history also assists with 

corrections to a design by providing an understanding of why a particular 

design decision was made. 

Assisted Analysis. Some quantifiable elements of the design can be automatically 

analyzed. To better assist the designer, the design environment should support 

such automation. 
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Simulation.  The designer may want to simulate the movement and operation of 

an assembly to analyze interference or behavior. 

In addition to these design capabilities, it is important that any design system 

is easy to use and can be readily extended to support other design applications. 

Toward this goal, this research strives to support complexity management in a 

manner that allows the design team to increase its productivity while proceeding 

according to a process that is comfortable to its members. Designer productivity is 

enhanced by automating tedious tasks, supporting interactive editing and analysis, 

and minimizing user interface complexity. In addition, the relationship and aggre- 

gation objects are designed with considerable flexibility so that they can be easily 

extended to represent multiple design disciplines or applications. 

1.4.5    Alpha_l Design Environment 

The complexity management framework in this research is integrated into 

Alpha-1, an object-oriented testbed system supporting research into geometric mod- 

eling, high-quality graphics, curve and surface representations and algorithms, en- 

gineering design, analysis, visualization, process planning, and computer-integrated 

manufacturing [55]. Alpha-1 provides geometric primitives, surface and curve 

representations, and mechanical features that can be used with the aggregation, 

interaction, and variational mechanisms presented in this research to provide a 

powerful computer-aided design and manufacturing environment. 

Mechanical models in Alpha-1 are represented by a directed graph that identifies 

the prerequisite objects necessary to construct a particular object and the depen- 

dent objects that are based on the object. The model graph is used to propagate 

changes to dependent objects and to minimize processing by computing only the 

necessary prerequisite objects. 

The Alpha-1 object-oriented software development environment facilitates code 

generation for new modeling objects and provides a standard framework for building 

model object constructors to integrate model objects into graphical and textual user 

interfaces. The controlled interaction and aggregation mechanisms are implemented 
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as independent Alpha-1 model objects that can be manipulated and controlled like 

any other model object in the system. 

1.4.6    Limitations 

Although a powerful user interface is a vital component of any design system, this 

research does not specifically address user interface issues. Instead, the complexity 

management mechanisms are implemented as fundamental design objects that can 

be flexibly integrated into a number of customizable user interfaces in AlphaA. 

This research implements versioning mechanisms to support the evolution of a 

design model as it is decomposed and refined over time. Some fundamental ver- 

sioning capabilities, available in commercial object-oriented database management 

systems [30, 65], are implemented as a basis for the complexity management ca- 

pabilities introduced in this research. These fundamental capabilities are extended 

to support the management of alternative solutions and views, user-controlled 

granularity, and the use of versioning as an interactive design tool. 

1.5    Document Summary 
There are many aspects of automating the management of design complexity 

that have been previously explored by other researchers. This work is described 

and analyzed in Chapter 2. 

To provide a better understanding of the automated mechanisms and to demon- 

strate the capabilities of the automated framework that is introduced in this re- 

search, two case studies were undertaken with real manufacturing design examples. 

These case studies, along with design methodologies for simultaneous and incre- 

mental design, are outlined in Chapter 3. Examples from the two case studies are 

interspersed throughout the remainder of the document. 

Chapter's 4, 5, and 6 describe the fundamental mechanisms and strategies for 

the automated complexity management framework introduced by this research. 

Chapter 4 explores the roles and data structures associated with part, assembly, 

and other aggregations. Chapter 5 describes the complexity associated with the 

interaction between parts in an assembly along with the data structures used 
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for the specification of this interaction. Chapter 6 presents the data structures 

and capabilities of the versioning mechanism that is used to maintain revised and 

alternate variations of a design aggregation. 

In Chapter 7, the results of this research are measured against the capabilities 

and characteristics identified in Section 1.4.4. These capabilities are also used as 

a basis of comparison for other design data models. Chapter 8 concludes this 

document with a summary of the research and conclusions about the contributions 

of this research to the field of computer-aided design. This chapter also recommends 

future research directions. 



CHAPTER 2 

RELATED WORK 

Complex product design is characterized by a variety of interrelated process 

activities, design representations, and model components that evolve over time. 

As discussed in this chapter, however, most existing tools and research support 

only static representations or component models with minimal support for the 

relationships between these representations, the variations as the models evolve 

over time, or the design activities that are necessary to manage design complexity. 

Feature-based design is a common approach for embedding different functions 

and multiple design disciplines into a single part model. A feature is a standard, 

reusable design entity that encapsulates related functional, manufacturing, geomet- 

ric, or other engineering information into a single representational abstraction. A 

sampling of these feature-based design approaches is described in Section 2.1. 

Some researchers have developed data models for design that incorporate frag- 

ments of information associated with the relationships between design components 

in a complex design. These models, as summarized in Section 2.2, range from data 

structures that integrate structural and constraint relationships into the design 

model to mechanisms for simplifying the specification of some of the relationships 

that contribute to design complexity. 

As a design evolves over time, a number of model variations are created. These 

variations are supported with version management capabilities as discussed in 

Section 2.3. Unfortunately, version management capabilities are not well supported 

in CAD systems. 

Product data management (PDM) systems take a different approach to manag- 

ing complexity as described in Section 2.4. Instead of embedding complexity infor- 

mation in the original CAD models, PDM systems maintain a separate database 
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that links together the individual component models created by different CAD 

applications. 

2.1    Feature-Based Design 
A common technique for controlling design complexity is to hide some of the de- 

tails at different levels of abstraction. Feature-based design facilitates this approach 

by encapsulating geometry, functionality, design intent, tolerances, manufacturing 

processes, or other important design information into reusable, standardized fea- 

tures. Features help control complexity by enabling the designer to work with a 

single entity instead of many separate pieces of information. Specialized features 

may be developed for different design disciplines, enabling concurrent design by 

multiple designers working with different feature views. 

Shah and Mäntylä [49] characterize a feature as a physical constituent of a 

part that has engineering significance and predictable properties and is mappable 

to a generic shape. Recurring characteristics of products may be modeled as 

feature classes that can be reused to facilitate construction of a product design. 

Features provide a means for "chunking" information, making it easier for humans 

to understand. According to Shah and Mäntylä, "a major advantage of features is 

that they provide an additional level of information to CAD systems to make them 

more useful for design and to integrate a design with downstream applications. 

Because of the higher semantic level of features, they can provide a basis for 

recording a more complete product definition." 

Features are commonly used to represent manufacturing processes associated 

with a particular shape of a part (for example, the drilling or reaming processes 

required to machine a hole or a pocket) [7, 9, 10, 24, 54]. By embedding process 

information in the feature, a process plan to manufacture the part can be gener- 

ated automatically [10]. Tolerance and dimension information is also frequently 

encapsulated in features, providing a convenient mechanism for automatic analysis 

of associated costs and ease of manufacturing [26, 44, 60]. Many researchers discuss 

embedding functional requirements and specifications within features for design ver- 
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ification [2, 9, 22]. Implementation of functional feature modeling systems, however, 

has been limited to very small, research domains, probably because of the difficulty 

associated with unambiguously specifying functionality. Features have also been 

used to represent assembly relationships and constraints [16, 36, 49, 50, 59]. 

A feature-based design system must consider location of a feature on a part and 

relationships between features on a part or in an assembly. Feature validation and 

interactions between features on a part are also important issues. If multiple feature 

views exist that represent the same design component from multiple perspectives 

(for example, a functional view or a manufacturing view composed of the appro- 

priate functional or manufacturing features), one must be able to map between 

the different views. In addition, to represent information such as manufacturing 

processes, specific features must be defined to describe those processes. These 

feature-based design issues are dealt with in a variety of ways as discussed in the 

following paragraphs. 

Location of a feature on a part is usually determined relative to some geometric 

entity (for example, a face or an edge), to another feature, or to a user-defined 

reference. In the University of Utah's Alpha-1 system [10, 55], a designer defines 

an anchor to specify location and orientation. Each feature also has an anchor 

and the feature is placed in the model by aligning the feature anchor with the 

user-defined anchor. Process plans built from features in AlphaA have successfully 

produced a wide variety of machined parts; however, placement of features requires 

the designer to ensure that anchors are properly specified. Ranyak and Fridshal [44] 

resolve planar and cylindrical geometrical features into primitives (point, line, or 

plane) and locate the feature relative to another feature or a datum reference frame. 

Location tolerances are embedded in the feature to determine the type of location 

constraint to apply (for example, distance, concentricity, angle). Gossard et al. [26] 

use location dimensions to locate a feature relative to a particular face. Relative 

position operators for specifying the intersection angle of two faces or the distance 

between two parallel planes allow the designer to define and locate features with 

scalar values. 
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In an assembly, feature relationships may be used to constrain how parts fit 

together. Driskill [16] defines assembly features such as a peg in a hole that 

constrain the geometry and the relative location of the peg and the hole so that 

the two parts fit together. In her work, the peg and the hole are separate features 

that act together to form an assembly. Shah and Tadepalli [50] present another 

approach in which a new feature is created, in addition to the peg and the hole 

on each part, that does not fit on any part, but describes and constrains the 

relationship between the features on each of the two parts. This approach is 

used by Shah and Tadepalli to determine if two parts can be assembled. In both 

of these approaches, individual parts are designed independently and include one 

component compatible with an assembly feature. Once designed, these parts are 

selected and analyzed to determine if and how they can be assembled. If no valid 

assembly representation is possible, the parts must be independently modified and 

reanalyzed until a valid configuration is reached. Both approaches are also limited 

to static assemblies. Assembly features, as defined by Driskill or by Shah and 

Tadepalli, identify compatible geometry and mating constraints that are useful 

for determining whether two parts may be assembled, but are not intended for 

specifying or controlling the interaction of the parts once assembled. 

By properly specifying feature constraints, features become valuable tools for 

validating the geometry or other attributes of a model. For example, a through 

hole can be specified so that its entire diameter is on the part and its depth is 

equal to the thickness of the stock. Any time the model is changed, features can be 

revalidated to make sure all constraints are satisfied. Unfortunately, this problem 

is easily complicated by interactions among features. For instance, if one of two 

parallel slot features is widened such that it intersects with the other, the two 

separate features have changed into a single slot feature. 

Geelink et al. [24] group interacting features into a compound feature that can 

be decomposed into its primitive features for process planning. Unfortunately, 

intersection of two or more features may cause deletion of important portions of 

the geometry.   Geelink et al. define feature recognition algorithms that alleviate 
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this intersection problem by relaxing feature definitions. This solution has been 

implemented for a limited set of features, but it is not apparent that the solution 

is generally applicable to other features or to all feature configurations. When 

feature constraints are violated by a change, Dohmen [13] reconstructs the feature 

model from the geometric primitives. This requires that all features and constraints 

be programmatically defined with low-level geometry. Chen [8] matches feature 

vertices, edges, and faces to determine when a feature is no longer valid. He then 

rebuilds the feature model by deleting or modifying invalid features. Because of 

the ambiguity in determining how features should interact, Chen's approach often 

results in an approximation of the feature model. All of these methods require 

interaction with the low-level part geometry, degrading the higher-level abstraction 

provided by features. 

Feature modeling is frequently proposed as a method for concurrent design. 

Many different aspects of the design, such as functionality, manufacturing, and 

assembly, are considered concurrently to accelerate the design process. To ana- 

lyze each of these design aspects, different design views are needed. To analyze 

functional capabilities, the designer needs to look at functional relationships and 

constraints. A process plan for manufacturing must be generated and analyzed for 

efficiency and cost-effectiveness. By providing features to represent each of these 

views, and mapping between the feature views, designers and analysts with different 

expertise can analyze the model at the same time. Unfortunately, mapping between 

views and keeping them consistent is a considerably difficult task. 

Shah [49] identifies four theoretical approaches to feature mapping. Heuristic 

methods use prespecified transformation rules to map between two engineering 

application views. Another approach transforms features to an intermediate-level 

structure that is common to multiple applications. Cell-based mapping decomposes 

features into cells that can then be transformed into another feature view. In 

graph-based mapping, feature attributes and constraints are represented by a graph 

that is transformed, using graph grammars and algorithms, into another graph 

forming a different engineering perspective. 
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Falcidieno et al. [21] extract shape information from a feature by applying 

previously defined feature and shape rules. The shape information is stored as a 

hierarchical graph that can be converted to different views using predefined routines. 

All features and views, including feature interactions, must be explicitly denned 

by an application expert. It is not clear how robust or complicated this process 

is, but the examples have less than 20 shape features and are limited to planar 

and cylindrical faces. Brooks and Greenway [7] use object relationships to relate 

different feature views to the faces and topology of the geometric model. This work 

requires programmatic definition of features and is limited to planar and quadric 

surfaces. Cunningham and Dixon [11] provide a mechanism for denning heuristics 

to transform between a design feature and any alternate activity representation. 

A monitor routine restricts the combinations of design features to those that can 

be converted into activity features. All features and their mappings to alternate 

activities must be explicitly defined before the monitor routine will allow them to 

be used in the design. Intersections of more than two features are derived from 

adjoining two-way relationships. Wearring [61] identifies intermediate geometry 

features that can be reorganized, through detailed geometry manipulation by the 

designer, into whatever functional feature is desired. For a simple block with a 

hole in it, the relationships, dimensions and tolerances for three of the faces and 

the hole must be specified and maintained by the designer. In practice, each of 

these implementations has only been applied to a limited domain and to parts with 

limited complexity. The solution space and complexity for many parts or assemblies 

quickly become unmanageable. 

A significant drawback to any feature modeling system is the domain specific 

nature of features. To model a different manufacturing domain or a different view, a 

new set of features is required. Some researchers have tried to overcome this with in- 

teractive feature definition; however, due to the difficulty in specifying relationships 

and constraints, only limited analysis and validation is possible in these systems. 

The FROOM (Feature and Relation based Object Oriented Modeling) system [24], 

for example, supports only planar, cylindrical, and conical faces with adjacent, 
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perpendicular, parallel, and coaxial relations. Only features that can be completely 

defined with parameters are allowed. Other researchers [44, 47] have developed 

an object-oriented feature hierarchy, where new features inherit attributes and 

constraints from parent feature classes. Transformation and recognition of these 

features is based on the predefined, high-level parent class and may not consider 

the necessary detail contained in the feature object. Features that do not fall into 

a preexisting class still require new class definitions. 

Researchers attribute considerable representation and modeling power to the 

use of features. In practice, however, the only common use of features, other than 

for representing geometric attributes such as dimensioning, tolerancing, and shape, 

is for manufacturing process automation. Very little functional specification and 

analysis is supported by existing feature modeling systems. Features are also very 

application dependent and mapping between feature domains is complicated by 

the interactions between multiple features on a part. Representing and mapping 

between complex parts with multiple interacting features is difficult to do with 

existing systems. 

2.2    Data Models for Design 
Even though features facilitate representation of different functions and design 

disciplines in a design model, they are independent design objects and contribute 

little to the organization of the different features into manufacturable parts or 

assemblies. A number of more comprehensive models have been proposed for linking 

features and other design information together into complex parts and assemblies 

and embedding these relationships into a static product model. Some of these mod- 

els utilize structural and constraint relationships to integrate individual component 

models into complex aggregations whereas others simply facilitate specification of 

complex relationships. Some models focus on high-level concepts and functionality 

while others emphasize detailed manufacturing designs. 

Eastman and Fereshetian [19] present a set of criteria for evaluating and compar- 

ing product data models. These criteria include an object-oriented class hierarchy 
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with abstract data types, multiple specializations of classes, and composite objects. 

A data model must support relations within composite objects, relations between 

variables, and relations such as cardinality and dependency between object struc- 

tures. Included in these relations are constraints and aggregations. Both invariant 

and variant relations are required. Relations must support integrity management 

of the data to include partial integrity while the design is in an intermediate state. 

In addition, the product data model must provide for continuous object refinement 

and schema evolution. 

Eastman's Engineering Data Model (EDM) [17, 18] for architectural design is 

among the most comprehensive of the design models reviewed in this research. 

EDM is an architectural design model that strives to represent function and form 

at multiple levels of abstraction with explicit management of partial integrity. EDM 

provides aggregation, composition, and accumulation relationships that allow the 

designer to describe the aggregation hierarchy of the design along with constraint 

information between components. EDM is based on set theory and first order logic. 

Domains are sets of values corresponding to a simple type, aggregations are sets 

of named domains, and constraints are general relations stored as procedures. The 

primary object is a functional entity - an aggregation and its constraints along 

with other entities that it specializes. A composition is the set of relations linking 

an entity to its parts. These relations are defined as accumulations that include 

functional design rules and property relations between the parts. To support partial 

integrity, some relations are not satisfied immediately. Integrity between multiple 

views is maintained through maps that are specializations of constraints that can 

change the database variables and schema. Missing from EDM are operations, such 

as automated generation of relations, that simplify designer interaction and explicit 

version management of design revisions. A number of architectural design domains, 

including composite windows, core and panel walls, and basic building structures, 

have been modeled with EDM. Due to its architectural focus on static structures, 

however, it is not clear that the relationships in EDM can incorporate mechanical 

interaction information such as forces, connectors, and kinematics. Manufacturing 
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features and other mechanical design representations have not been demonstrated 

with EDM. 

Gui and Mäntylä's multigraph structure [27] focuses on the top-down evolution 

of an assembly design from high-level functional concepts. The multigraph sup- 

ports multiple levels of detail and provides links between functional, structural, 

and geometric information. A leaf node in the multigraph can be linked with 

a functional description, geometry, features, elements in a bond graph, or other 

design information. The multigraph also provides a connector for describing force 

transmission and motion constraints associated with the interaction between parts 

in an assembly. An example connector is a spring that imparts a force but also 

provides a physical geometric connection. A feature link relates design functionality 

or other feature representations to the geometry. Gui and Mäntylä use this multi- 

graph representation to share design objects between three system components 

- the DesignPlanner that describes functional relationships; the DesignSketcher 

supporting geometric modeling; and the DesignConsultant that resembles an expert 

system. Each system component links its design representation to the object 

multigraph. Once the designer has specified the functionality, tools for behavior 

and energy transformation analysis can be applied to the multigraph. The designer 

develops geometric representations and associates them with the proper functions. 

Gui and Mäntylä describe how the multigraph representation and associated design 

and analysis tools are used to model an electrical contactor used to open a circuit 

based on a control voltage. Designers are given considerable flexibility in represent- 

ing functionality; however, this flexibility limits the degree to which the analysis 

is automated. The multigraph emphasizes functionality and assembly modeling, 

but requires that the detailed manufacturing information be modeled separately. 

While linkages exist, the multigraph mechanisms are not applied directly to the 

specification and validation of individual, manufacturable parts. 

Representing design functionality is a common goal of many researchers. The 

feature-based approach discussed in Section 2.1 is intended to support functional 

representation, but has rarely been used in this fashion. Baxter et al. [2] propose an 
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enhanced entity-relation diagram for representing design functionality and analyz- 

ing how well a product satisfies the specified functionality. Functional relationships 

such as performed-by, inpuLof, outpuLof, and has.need-of are traversed and the 

functionality of the linked components is analyzed to determine if these relations are 

satisfied. Baxter et al. tested their model on a valve assembly with 22 components. 

The model contained 35 function instances and approximately 1000 nodes. It is not 

clear how much of the validation was automated; however, some human intervention 

appears necessary to resolve the ambiguity associated with integrating subfunctions 

and analyzing their combined ability to perform their parent function. 

Rosenman and Gero [45] assert that multiple views and representations are 

dependent on a functional context. Different views (for example, architectural, 

mechanical, and structural) are composed of a different set of functional primitives 

rather than a different look at the same standardized primitives. This requires 

a different model for each view with a view defined by a set of functions or a 

set of functional systems. Different disciplines may refer to the same element using 

different terminology. This is handled using explicit relationships between elements 

with identical properties, elements in an assembly, partial elements, and constrained 

elements. This data model is used to create architectural, mechanical, and struc- 

tural views of a building; however, change propagation and other relationships 

between the views are not demonstrated. 

Gorti and Sriram [25] present a framework for conceptual design that uses 

functional, composition, aggregation, and spatial relationships. The designer selects 

predefined components, establishes functional relationships between the compo- 

nents (supports, transmits load, or resists load), and specifies the spatial relation- 

ship (for example, connects, intersects, or abuts). These relationships are used to 

generate possible design concepts to use as a basis for more detailed design. A 

limited set of conceptual entities such as pier, slab, and bank, have been developed 

to demonstrate this approach for the design of a river bridge. 

The interaction between components in an assembly is inadequately represented 

in many data models. Models such as Eastman's EDM include hierarchical aggre- 
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gations and positioning constraints, but provide only limited support for describing 

how different aggregations or individual components interact. Other models such 

as Driskill's assembly features, incorporate interaction information into individ- 

ual parts which restricts analysis of the interaction relationship and complicates 

change propagation between the interacting parts. Some researchers, however, 

have realized this problem and have focused on the specification and analysis of 

the interaction relationships between parts in an assembly. 

Bordegoni and Cugini [5] specifically address the interaction between fixed com- 

ponents in a mechanical assembly. They propose an assembly feature for specifying 

the interaction relationship at various levels of detail. This is accomplished by 

having the designer fill in appropriate detail information in a cataloged template 

for each instance of an interaction relationship; however, if the template does not 

provide a slot for the information, the detail can be added only after modifying 

the template. Multidisciplinary analysis is facilitated by providing functional, 

positioning, and assembly information in a single relationship. Bordegoni and 

Cugini's implementation of assembly features, however, is rather limited, having 

only been demonstrated for fixed assemblies with no kinematic interaction. 

Lee et al. [34, 37, 38] developed mating features to represent four typical po- 

sitioning and kinematic configurations between planar and cylindrical surfaces of 

parts in an assembly model. The against mating feature specifies that the surface of 

one part must lie against a second part. This relationship has one rotational degree 

of freedom and two translational degrees of freedom. A fits mating feature specifies 

a cylinder in a hole. Here translational movement is allowed along the axis of the 

cylinder and rotational movement is allowed around the axis. A contact feature is 

an against feature with no movement and a tight fit feature is a fits feature with no 

movement. The designer associates mating features with individual part surfaces 

and, if a valid set of mating features is specified, the modeling system generates 

the necessary equations to infer the relative position of the parts. 

Beach and Anderson [3] extend the mating feature concept to include a total 

of twelve different attachments.   Their attachment hierarchy includes cylindrical, 
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planar, revolute, prismatic, spherical, and helical attachments that are specified as 

either rigid or a kinematic pair. They represent these attachments in a general 

graph showing the attachment relationships a part has with all other parts. This 

graph is supplemented with a hierarchical tree to show subassembly grouping. 

All attachments within a subassembly must be rigid. If a component is modified 

and does not violate any constraints, the parts are automatically reassembled. A 

simple wheel mount, with no subassemblies and with only planar and cylindrical 

attachments, is provided as an example. The subassembly hierarchy, although 

critical to reducing the model complexity and increasing designer understanding, 

is included by Beach and Anderson almost as an afterthought. The subassembly 

hierarchy is implemented in a separate data structure and there are no relationships 

between this hierarchy and the attachment graph. The two structures are integrated 

only through high-level software routines. Use of the subassembly structure is not 

illustrated in any examples. 

Wolter and Chandrasekaran [63] use geometric structures, called geomes, to 

represent "any arbitrary collection of geometric elements whose form may or may 

not be fully specified." Geomes can be used for relationships between objects 

as well as the objects themselves. Functional information can also be associated 

with a geome. For example, the designer can specify the behavior and a limited 

amount of geometry (such as the axis of rotation) for a kinematic constraint. 

The constraint can then be instantiated anywhere in the model by specifying the 

necessary parameters. Higher-level geomes can be used as design specifications with 

the implementation represented in lower-level geomes. Geomes can also be used to 

represent geometric entities that have no physical existence, such as the axis of a 

hole or the paper path of a copying machine. Wolter and Chandrasekaran provide 

a simple example of a device that uses two rack-and-pinion geomes to transform 

translational motion in one direction into translational motion in a perpendicular 

direction. While their approach is quite flexible, Wolter and Chandrasekaran point 

out that a product designed with this approach is certain to be more complex than 

a geometrical representation alone since a considerable amount of nongeometric 
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constraints may also be included in the geomes; however, by organizing the data 

hierarchically, the amount of information presented to the designer can be lim- 

ited, thereby facilitating understanding and manipulation of the design. Wolter 

and Chandrasekaran also discuss the difficulty of graphically representing this 

information and in unambiguously interpreting the constraints. Since much of 

the framework presented by Wolter and Chandrasekaran has not been completely 

implemented, the geome concept has only been demonstrated for hypothetical 

examples. It appears to be highly flexible, however, and one can easily envision 

geomes as an interface specification between two objects in an assembly, as relations 

between views, or as constraints imposed on an aggregation hierarchy or different 

design alternatives. 

Fasteners and connectors are often critical to the interaction between parts. 

Salomons et al. [46] propose a mechanism for incorporating connection information 

such as a weld or keyway into a relationship describing the interaction between 

parts. These relations do not appear to be used for any automated analysis or 

validation. Abrantes and Hill [1] incorporate fasteners into a relationship between 

assembly parts; however, their fasteners are used only as a means for reducing the 

number of possible assembly configurations. 

A key aspect of any design is the evolution of the design model over time as it 

proceeds through the design process. Some researchers have proposed representa- 

tions for recording the historical information associated with this evolution. These 

representations enable the designer to embed historical information directly in the 

design model. 

Kim and Szykman [33] use design decisions to describe the relationships between 

versions of a design model. The concept behind their approach is that any time 

a design change is made, it reflects a decision by the designer. Design decision 

relationships facilitate the representation and exploration of design alternatives. By 

forcing designers to document design decisions, versions are more easily associated 

with new functionality or abstractions rather than simply representing a snapshot 

of the design at a particular point in time. A conceptual example of a television re- 
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mote control is presented in which different battery configurations are interactively 

examined and analyzed. Considerable flexibility is provided for representing design 

knowledge with these relationships; however, these flexible representations limit the 

amount of analysis and constraint checking that can be automated. Design decision 

relationships are static objects and must be explicitly defined by the designer. 

Shah et al. [48] classify design history information into four conceptual elements: 

the design problem, domain knowledge, design processes, and the design solution 

or product data. Each of these elements must be captured in representational 

data structures to form a design history data model. Shah et al. develop a design 

language to represent the processes, organizational entities, design products, and 

relationships between the entities associated with a design project at any particular 

point in time. A number of issues for representing design history, however, remain 

unresolved. Among these issues are the extension of database technology to incor- 

porate modeling of processes, rationale, and design constraints and the development 

of a dynamic data definition language that can specify design history and represent 

the evolution of the design process. 

To assist with change propagation and constraint analysis, researchers have 

developed active relationship objects that execute preexisting procedures when trig- 

gered by another object or event. Active relationships localize constraint and change 

propagation, thereby reducing complexity and facilitating analysis and interaction. 

Sullivan [52] depicts active relationships with mediators that represent behavioral 

relationships between two objects. A behavioral relationship reflects the behavior 

one object should exhibit when another object completes an operation or changes an 

attribute. A behavioral type object raises an event when a particular action occurs 

in that object. The mediator recognizes this event and executes the appropriate 

action on related objects. 

Mediator objects can be inherited and decomposed just like other objects. Ag- 

gregation and interaction relations, transformation between representations, and 

evolutionary mapping between versions can all be implemented with mediators. 

Sullivan clarifies that behavioral relationships embedded in mediators must be 
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independent of each other; otherwise a specific ordering of mediator invocation 

is required. Also, the current implementation only handles binary relationships. 

While he advocates the use of mediators during the design process, Sullivan 

provides examples that are more appropriate for an operational environment. Me- 

diators were developed for use in software, and Sullivan uses them to communicate 

between application objects such as user interface windows. Sullivan proposes 

mediators for mapping between design views and versions, however no examples 

are provided. This mapping would be an appropriate use of mediators, but re- 

quires specification of the complex behavioral relationships involved in a design 

environment. 

Brett et al. [6] define a propagation as an object similar to a mediator, but limited 

to nonancestral relationships between design objects. A nonancestral relationship 

is one that "is not already in a parent-child relationship within an object-oriented 

hierarchy." A propagation "can be conceived as an independent, third-party object 

which causes mediating software to fire whenever changes to one object must trigger 

changes to other objects so as to maintain data consistency." The idea behind 

propagations is to encode constraints within the relationship object or provide 

methods for accessing a constraint database, then act on those constraints to 

propagate changes between related objects. 

One can imagine using propagations to constrain the interaction between parts 

or to ensure consistency between different alternatives or views. Brett et al. explain, 

however, that they have been able to implement only single view relationships be- 

tween features on a single part. Constraints are hard coded in the object definition 

and can only be used to represent geometric relationships. 

Heinrich and Juengst [28] take a completely different approach in analyzing the 

connection between components in a technical system. They base their work on 

"the principle that systems and components interact mainly through interfaces 

which can be thought of as resources and that the resources demanded and the 

resources supplied by components have to be balanced." An assembly of mechanical 

components can be modeled by representing the fasteners and mating features as 
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resources that are consumed by one part and produced by another. Describing the 

resources consumed and produced by the environment provides a system specifi- 

cation. Similarly, the problem can be decomposed by describing the resources for 

subassemblies or individual parts. Heinrich and Juengst have tested their approach 

with prototypes in a variety of electronic and mechanical applications. 

Although Heinrich and Juengst do not propose it, the interfaces through which 

resources are exchanged could be implemented as relationship objects between 

components. His resource management approach, however, is more applicable 

to a system of products in an environment rather than individual products. In 

fact, Heinrich and Juengst clarify that their approach fails if the function depends 

decisively on how the components are connected. 

As evidenced by many of the data models presented in this section, representing 

functionality is a significant problem in any modeling system. Predefined rela- 

tionships may adequately specify some functionality, but are generally unable to 

capture the complete functionality of a product. Complete functional specifications 

invariably involve some ambiguity that requires human interpretation. 

Relationships objects have been demonstrated as a useful mechanism for repre- 

senting the interaction between components of a design. Relationship objects can 

be used to represent a multitude of design information, but most implementations 

have been limited to single aspects of a design in a limited capacity. Combining 

relations for different design information would simplify the design interface while 

providing more capability for analysis. 

None of the data models presented in this section completely captures the 

manufacturing design process. Some are concerned only with functionality or 

assembly joints. Explicit support for version management is minimal or nonexistent. 

Data models only capture the static representation of the data and do not deal 

with automating designer manipulation of the data. Applying these design models 

to real-world manufacturing problems has found only limited success due to the 

representational complexity involved. 
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2.3    Version Management 
As a design evolves over time, many revisions, variants, or alternates of the 

design may be created. Version management tracks these differences and ensures 

that related versions of the design model are kept consistent. While version man- 

agement has been successfully utilized in some engineering disciplines, especially 

software engineering, there have been few mechanical design systems that support 

comprehensive version management of design models. 

Mechanical design models have certain characteristics that make version man- 

agement more difficult. Katz [31] identifies the following characteristics of design 

data that must be considered when developing a version management system: 

• Design data are organized hierarchically. 

• Design data evolve. Versions must be able to represent revised and alternative 

designs for an object. Configurations of versions representing complete design 

models also evolve. 

• There are multiple equivalent or corresponding representations of a design 

object. 

• Design object instances are derived from object classes and inherit attributes 

and behavior from the parent class. 

To support these characteristics, Katz proposes a conceptual versioning model 

in which the following data primitives are used to describe the relations between 

design objects: 

• Component hierarchies are indicated by IS-A-PART-OF relations that form a 

directed acyclic graph. Primitive objects form the leaves of the graph and all 

other nodes are composite objects. This kind of relation is also referred to as 

an aggregation. 

• Version history is depicted by IS-DERIVED-FROM relations that show how one 
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version is derived from another. Alternatives are shown by multiple parallel 

derivations of a single version. IS-A-KIND-OF relations describe instances of a 

class of objects. Version history and instance relations are depicted graphically 

as a tree. 

• When component hierarchy and history or instance relationships are combined, 

the result is a configuration. 

• Equivalent or corresponding objects with different representations are linked 

via IS-EQUIVALENT-TO relations or equivalences. 

Katz also identifies the following operations necessary for version management: 

• Currency operations designate and locate the current version of an object or 

configuration. The current version is the basis for subsequent derivations or 

equivalent representations. 

• Change propagation involves automatically incorporating new versions into 

configurations. Constraint propagation refers to the enforcement of equivalence 

constraints by procedurally regenerating new versions (generating equivalent 

views). If multiple design objects can have the same parent, propagating 

changes throughout the design hierarchy can generate an exponential number 

of propagation paths. Katz suggests that this ambiguity can be minimized by 

having the designer restrict the propagation paths or by specifying constraints 

that isolate the changes to a particular part of the design hierarchy. 

• Dynamic configurations, in which the components in the configuration are not 

resolved until the aggregation relations are actually traversed, imply meth- 

ods for describing valid versions to include in the configuration. Dynamic 

configurations are implemented with various version naming and organization 

techniques. 

• Workspaces support simultaneous access to design data. Managing the move- 
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ment of objects between these workspaces allows designers to make changes to 

an object without interfering with other designers. Workspaces are typically 

organized as a master workspace with verified design data and multiple indi- 

vidual workspaces for individual designers. Additional workspaces may also 

exist for integrating the changes of an entire group of designers. 

This framework provided by Katz encompasses much of the existing work in 

version management and data modeling for design. Katz presents a survey of ver- 

sion management research and describes how this research fits into his framework. 

Additional variations and implementations of this framework are described in the 

remainder of this section. 

For software configuration management, Zeller [66] presents the concept of ver- 

sion sets grouped according to feature logics. A feature is a name and a value 

associated with some element of a configuration item (an example [name, value] 

pair is [compiler, gcc]). Features may be assigned by the designer or may be 

derived from the context in which the component is used. By making the delta 

between two versions a feature, the latest complete version is derived from the 

unification of all the delta features for that component. Different views can be 

built from different features associated with the component. System configurations 

are created by taking the intersection of all relevant features of the components. 

In [67], Zeller also discusses four version management models for software that 

his version sets and feature logics support. The checkin/checkout repository model 

consists of revisions stored in a repository. Designers checkout a component, make 

changes, and check the component back into the repository. Revisions are repre- 

sented by delta features describing the differences between versions. The composi- 

tion model builds consistent configurations by selecting valid component versions 

based on features. In the long transaction model, a subset of the original configura- 

tion is copied to a private workspace. Changes made in the workspace are identified 

with a feature. When committed back to the original environment, the feature is 

modified appropriately.   The change set model allows a change to be integrated 
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into multiple related components based on selected features. Zeller focuses on 

building consistent product configurations as sets. While he presents techniques 

for composing systems and managing version histories, the set representation does 

not directly support hierarchical aggregation or variational derivation relationships. 

Plaice and Wadge [43] present another approach for organizing software versions 

to implement various configurations of a design. In their work, globally unique 

names and an ordered version derivation path identify the appropriate version of 

a component for a configuration. The proper version is identified by matching 

an extended name (similar to Zeller's features) or selecting the latest version on 

a similar derivation path. This approach also supports the merging of multiple 

configurations into one. Holsheimer [29] examines version ordering by decomposing 

complex logical programming objects into partially ordered sets based on type re- 

lations. This ordering facilitates mapping complex objects to a relational database. 

Each type relation becomes a database relation linking objects according to their 

object type hierarchy. Version ordering with this approach has been demonstrated 

for single inheritance and nonvariational object instances. 

Schema evolution is a concern of any data model for version management. 

Meyer [39] states that schema evolution occurs "if at least one class used by a 

retrieving system differs from its counterpart in the storing system." This causes 

object mismatches that occur when the schema (or class) for an object has been 

modified, but the data reflects a different schema. Object mismatches are detected 

by registering a unique version name or storing a class descriptor with each version. 

Correction for a removed attribute requires no action, but a new attribute requires 

some sort of initialization. 

Zhou et al. [68] present a far more comprehensive framework for schema evolution 

in a real-time machine tool control application. Zhou et al. identify schema change 

taxonomy, schema change invariants, schema change rules, and schema change 

semantics. The change taxonomy determines schema changes that are significant 

to the application being supported. Invariants identify those aspects of the schema 

that must remain unchanged to guarantee database consistency. Examples include 
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the class hierarchy and distinct object and variable names. Change rules outline 

heuristics to follow to eliminate ambiguity in resolving schema changes. Specific 

axioms for resolving the impact of changes on the remaining schema and the 

underlying data are defined in the change semantics. Zhou et al. have implemented 

objects for timing constraints and performance polymorphism (different implemen- 

tations carrying out the same task with different performance measures), but has 

not yet incorporated schema evolution into the real-time database. 

In many instances, the version management system must be able to handle data 

from different applications. Krishnamurthy and Law [35] implement meta-operators 

(insert, delete, and replace) that summarize all changes made to a version during an 

editing session. A compress operation determines the equivalent meta-operation for 

a sequence of design tool changes. The meta-operation is then applied to the active 

version to integrate the changes into the version database. The meta-operations are 

applicable to any data, regardless of the application or view that created the data. 

These methods are implemented with a commercial CAD system and demonstrated 

on a simple shaft assembly. Version representations with meta-operators have not 

been used with alternate views or applications. 

Much of the work in version management concentrates on software development. 

Although the problems are similar to that in mechanical design, most of the widely 

used version management systems are based on textual objects. Textual objects 

are compared word by word for differences between versions. This approach is not 

appropriate for mechanical design, since such textual comparisons would fail to 

capture the structure associated with design objects. 

In addition to the configuration, organization, schema evolution, and multiple 

application problems discussed above, there are a number of other issues that 

must be handled in a version management system. The granularity at which 

objects are versioned must be determined, either by default or through designer 

specification. Change propagation can diverge into multiple paths; this must be 

controlled algorithmically or through designer intervention. Solutions to these 

issues often require designer interaction, another issue that must be addressed. 
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Version management is a diverse area with many issues affecting design complexity 

and evolution. 

2.4    Product Data Management 
Product data management (PDM) systems "integrate and manage processes, 

applications, and information that define products across multiple systems and 

media." [42] PDM is a meta-tool, external to any particular CAD application or 

model, that manages all information used to define a product as well as the processes 

used to develop those products. Although many PDM products are available 

commercially, most literature in this area discusses theoretical concepts associated 

with PDM rather than actual PDM implementations. 

CIMdata, an international consulting firm focused on PDM and related computer 

integrated manufacturing (CIM) technologies, classifies PDM capabilities into five 

functional areas [40, 42]: 

1. Data vault and document management provide secure storage and retrieval 

of product definition information. Only authorized users may access data 

and changes are released only after completing a predefined approval process. 

Design data are managed as complete documents, images, or files [4] and are 

frequently stored in a relational database management system. 

2. Workflow and process management enables the PDM system to control and 

manage the flow of data between people and applications in accordance with 

an organization's predefined business processes. Newly completed or modified 

documents can be automatically routed and tracked throughout the organiza- 

tion for approval and release. 

3. Product structure management facilitates the creation and management of 

product configurations. Users can link product definition data such as draw- 

ings, documents, and process plans to parts and product structures. Unique 

views of product information can be configured for different design disciplines. 

As configurations change over time, the PDM system can track versions and 
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design variations. 

4. Classification functions provide efficient mechanisms for indexing and retriev- 

ing standard or similar components. These functions have been ignored by 

most PDM vendors. 

5. Project management provides work breakdown structures and allows resource 

scheduling and project tracking. Resources are combined with managed data 

to provide an additional level of planning and tracking. Project management 

capabilities are not well supported in current PDM systems; instead, these 

capabilities are typically provided by third-party project management tools in 

which a limited number of links are established to the PDM data. 

Bilgic and Rock expand the CIMdata capabilities to include impact analysis in 

which the PDM system detects the effects of a potential design change to the overall 

product design [4]. In addition to the functional capabilities, CIMdata also identifies 

utility functions that are provided by PDM systems for communicating between 

applications and personnel, for transporting data among distributed locations, for 

translating data between applications, for scanning and viewing images, and for 

configuring and monitoring the PDM system [42]. 

In his description of CIM Manager [62], Westfechtel provides a more detailed 

look at some of the issues associated with product and process management for 

engineering design applications. CIM Manager is conceptual PDM infrastructure 

for which Westfechtel has implemented a limited prototype. CIM Manager, as well 

as most other PDM systems, uses a course-grained management scheme in which 

complete documents are managed. In doing so, it is not possible to manage the 

individual components or parts that are embedded inside the documents. West- 

fechtel claims, however, that CIM Manager provides a framework for embedding 

domain specific tools that can operate on the fine-grained level. 

CIM Manager handles relationships between components in the same discipline 

such as between design representations of components in an assembly. It also 

handles relationships that cross disciplines such as those between geometric designs 
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and manufacturing plans. CIM Manager controls versions of individual products as 

well as versions of product configurations. To deal with these different relationships 

and versions, Westfechtel identifies three types of consistency control that can be 

tracked with CIM Manager: 

1. Internal consistency requires that a design document is consistent with the 

design language of the tool that created it. 

2. External consistency means a dependent component or version is consistent 

with respect to a master. An example of this dependency is a manufacturing 

plan that is based on a specific geometric representation. 

3. Configuration consistency requires that a version is consistent with respect to 

a configuration of components of which it is a member; thus, the version must 

be internally consistent and externally consistent with all related components 

in the configuration. 

CIM Manager uses a product-centered process management paradigm in which 

each component of a configuration corresponds to a process that is used to produce 

the component. Dependencies between components are mapped onto data flows 

between component processes. CIM Manager supports concurrent engineering by 

prereleasing intermediate results to dependent processes as soon as possible. 

Hamer and Lepoeter [58] describe a more general conceptual framework for man- 

aging design data. Their framework is characterized by five orthogonal dimensions. 

The version dimension represents new versions of a model that are modifications 

of other versions. The views dimension accommodates representations at differ- 

ent levels of detail. This may involve different levels of abstraction such as a 

conceptual view and a detailed view or it may involve different disciplines such 

as a manufacturing view or a functional view. The hierarchy dimension depicts 

the decomposition of a design model into smaller parts. The status dimension 

corresponds to organizational procedures used to maximize the likelihood that a 

design is satisfactory. A different status may require a different workspace. Finally, 
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the variants dimension handles different variations of the same basic product. 

Hamer and Lepoeter claim these dimensions are quite simple when considered 

independently, but, in reality, many dimensions must be handled simultaneously 

resulting in many different nontrivial solutions. This framework is flawed, however, 

in that it leaves out the interaction between components in an aggregate model. 

Zanella and Gubian [64] also describe a generalized model of a design manager 

that is "a set of functions which build, maintain, display, manage, and enforce 

relationships among the data and among the design tools which are involved in a 

project." The design manager controls the design software, supports the design 

methodology, coordinates large sets of data, maintains design integrity, and reacts 

to changes in the design environment. Zanella and Gubian break the functions 

required of a design manager into two groups. Static functions help in establishing 

and representing relationships among objects. Dynamic functions support design 

transformations that involve any kind of changes in the relationships among objects. 

Zanella and Gubian identify a number of design management relationships that are 

similar to those discussed by Katz (see Section 2.3) for aggregation, refinement, and 

equivalences. Zanella and Gubian emphasize the functions of a design manager, 

but provide only high-level conceptual requirements for the functions that should 

be performed. 

While PDM systems are useful for controlling data and performing high-level 

product management tasks, they have many limitations. Design information such as 

functionality or geometric constraints can not be associated with the relationships 

between components. This means another tool must be used to document this 

information and additional steps taken to integrate the results back into the PDM 

model. Bilgic and Rock point out that "PDM systems do not have a formal 

representation of the product that unambiguously describes its function. Most 

of the valuable information about the products stays in the "documents" the 

PDM system is managing." [4] This separation of the detailed information from 

the product structure adds complexity to the design model by requiring more links 

and it adds considerable overhead to the design process. 
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The document centered management approach of PDM systems restricts the 

designer's ability to implement and analyze incremental changes to small parts of 

a document. Instead, the designer must work with entire documents and manually 

ensure that related parts of other documents are kept consistent. Miller states 

that integration of PDM with other CAD applications continues to be a major 

challenge for PDM users [40]. As a consequence, some application models can 

not be completely incorporated into the meta-model, thus requiring additional 

steps to keep these separate representations consistent. Bilgic, and Rock identify 

other limitations of PDM systems including the inability to analyze the impact 

of proposed changes, the lack of capabilities to classify products by functionality, 

the inability to reuse design knowledge, and the inadequate support of resource, 

performance, and risk management [4]. 

Due to these limitations, PDM systems require considerable overhead to ef- 

fectively integrate complex product designs and applications. This reduces the 

utility of PDM systems for incremental design changes, rapid design development, 

or small production runs. These limitations are reflected in many organizational 

implementations of PDM systems in which only the data vault and document 

management capabilities are utilized [23, 32]. 

2.5    Summary and Analysis 
Considerable research has been performed to support the design and evolution 

of complex products. Feature-based design enables designers to manipulate stan- 

dardized, reusable design abstractions rather than the individual points, curves, 

and surfaces of an entity's geometry. Features can also encapsulate additional 

design information such as functionality or manufacturing processes, although this 

capability has not been effectively exploited. Features can support concurrent 

design by representing design disciplines as different views. Mapping between views, 

however, is a difficult problem and current approaches require manipulation of the 

low-level geometry, thus negating the benefits of the higher-level feature abstraction. 

A number of data models have been proposed for representing the hierarchical 
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aggregations and constraints of complex designs. Different models are proposed for 

functional or conceptual designs and for detailed, manufacturable designs. Because 

of the ambiguity associated with specifying functionality, the functional models 

are only able to capture a portion of the design functionality. The more detailed 

models have difficulty representing the detailed information associated with the 

interaction between parts in an assembly. Specialized relationships such as Lee's 

mating features facilitate specification of kinematic and positioning constraints [38], 

but provide no easy way to incorporate other functional or geometric information. 

Embedding complexity relationships in conceptual and detailed design models fa- 

cilitates analysis and change propagation; however, it is difficult to develop a widely 

applicable modeling representation. 

Version management systems have been implemented to track and control mod- 

ifications to design components and some of these versioning systems support 

alternative designs, multiple views, and different configurations of a product de- 

sign. Most version management systems, however, have only been implemented for 

the management of program text associated with software design. Since product 

structure is critical to manufacturing design, these systems are inadequate. 

Product data management systems provide a comprehensive framework for man- 

aging all documents, applications, and processes that contribute to a product 

definition. PDM takes such a high-level approach, however, that the details of 

the design are not visible. This reduces the effectiveness of PDM in analyzing the 

design or implementing incremental changes. As a consequence, PDM systems are 

largely used only as secure document repositories. 



CHAPTER 3 

CASE STUDIES IN COMPLEX DESIGN 

The design of complex products can be greatly facilitated by automating some 

design activities and assisting with other design tasks. Automation can enhance 

the management of product complexity by supporting the representation of product 

structure and functionality; by providing variable granularity, multiple views, and 

different abstractions of the product design; and by incorporating fasteners and 

connectors and design constraints into the product representation. Process activi- 

ties that can benefit from automation include, among others, design decomposition, 

multidisciplinary analysis, simultaneous design, design reuse, controlled evolution, 

change management, and change propagation. These capabilities and activities are 

described in greater detail in Section 1.4.4. 

This chapter presents case studies for the design of an automobile and a machin- 

ing center that demonstrate the activities and capabilities identified above. Portions 

of these case studies appear as examples in this document to illustrate and explain 

the capabilities of the automated framework introduced in this research. The case 

studies are also used to analyze this research and compare the capabilities of other 

design tools and research (see Chapter 7). 

3.1    Simultaneous Design of a Formula 
Automobile 

Modern automobiles provide a comprehensive example of complex product de- 

sign. A single automobile contains thousands of components allocated among 

many different subassemblies. Any particular car model may be available in many 

different configurations that are minor variations of the basic model. The industry 

is highly competitive so auto makers are pressured to develop innovative features 
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and new models in relatively short periods of time. There are many safety, envi- 

ronmental, and budgetary constraints that further limit the design options. 

Each year, as part of a national engineering competition sponsored by the Society 

of Automotive Engineers (SAE), an undergraduate design class at the University 

of Utah designs, builds, and races a prototype formula automobile (FormulaSAE). 

While not as complex as a modern road vehicle, the design process and issues for this 

automobile provide a microcosmic demonstration of the challenges for computer- 

aided design. 

This case study uses the models and processes developed for the formula auto- 

mobile design class [14, 15, 57], but modifies them slightly to emphasize desirable 

complexity management capabilities that are identified in this research and sup- 

ported by the resulting research tools. The general requirements and constraints 

of the formula automobile, as described in an overview of the project [57], are 

described below. 

For the purpose of the competition, the students are to assume that 
a manufacturing firm has engaged them to produce a prototype car for 
evaluation as a production item. The intended sales market is the non- 
professional weekend autocross racer. Therefore, the car must have very 
high performance in terms of its acceleration, braking, and handling 
qualities. The car must be low in cost, easy to maintain, and reliable. 
In addition, the car's marketability is enhanced by other factors such 
as aesthetics, comfort, and the use of common parts. The manufacturing 
firm is planning to produce 1000 cars per year at a cost under 8500 dollars. 
The challenge to the design team is to design and fabricate a prototype 
car that best meets these goals and [constraints]. 

The primary restrictions on the design are the safety requirements and 
the engine size and intake restrictor. There is a minimum wheelbase of 
1520 millimeters (60 inches) and the cars must have a working suspension 
with a minimum usable wheel travel of at least 50 millimeters (2 inches). 
The cars must also have four wheel brakes capable of locking all four 
wheels on dry asphalt at any speed. To ensure that the cars will not 
tip over during the performance events, the cars must not roll over when 
subjected to a tilt test with the car tipped to an angle of 57 degrees 
with the tallest driver in the car. Other safety requirements specify front 
and rear roll hoops, side impact protection, driver restraint systems, and 
driver safety equipment. 

The engine may be any four-cycle piston engine with a displacement 
of not more than 610 cubic centimeters. The fuels allowed are non-leaded 
premium gasoline, non-leaded 100 octane racing gasoline, and M85, a 85 
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per cent methanol, 15 percent gasoline mixture. To limit the power of the 
engine, a single 20 millimeter diameter restrictor must be placed between 
the throttle and the engine for gasoline-fueled cars. For M85-fueled cars, 
the restrictor is limited to an 18 millimeter diameter. Supercharging or 
turbocharging is permitted provided that the restrictor is upstream from 
the supercharger or turbocharger. Any type of transmission or drive train 
may be used. 

Due to the short time for development and the high complexity of the formula 

automobile, multiple design subteams work simultaneously on different portions of 

the overall design. With this approach, it is desirable that the design be decomposed 

into sections that are largely independent of each other. 

To improve understanding and to organize the project for simultaneous design, 

the design team decomposes the formula automobile into smaller sections. The 

team initially identifies three major functional subsystems: the body that makes 

the automobile more aerodynamic and improves the appearance; the chassis that 

provides support, rigidity, and other functionality; and the power train that provides 

the power to move the car. The chassis and the power train are too complex to 

allocate to a single subteam, so the design team decomposes these two subsystems 

into smaller subassemblies as shown in Figure 3.1. The design team allocates each 

of the subassemblies identified in this figure to a subteam for further design and 

analysis. To avoid duplication and to simplify presentation, this case study uses 

only the rear portion of the automobile that includes the rear suspension, rear 

wheels, rear brakes, and the power train. 

Each of the subsystems in Figure 3.1 has some sort of functional, geometric, 

or kinematic interaction with other subsystems in the automobile. For example, 

the rear suspension interacts with the brakes, the wheels, and the power train. To 

avoid difficulties when integrating the individually designed subsystems into the 

complete product design, the design subteams need to coordinate on these areas of 

interaction. 

A considerable amount of design information is associated with the interactions 

between subsystems. As these interactions are agreed upon by various subteams, it 

is often helpful to document the resulting descriptions to minimize later misunder- 
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Figure 3.1. High-level decomposition of formula automobile 

standings. If during the course of designing the independent components, a design 

subteam finds it impossible or too costly to conform to a previously agreed upon 

interaction description, the subteams must work together to modify the description. 

The individual subteams proceed by decomposing the subsystems for the rear 

section of the automobile as shown in Figure 3.2. These subassemblies and parts 

are explained in the following paragraphs. 

The wheel transfers power from the power train to the road to move the car for- 

ward. Wheel sizes are standardized to accommodate tires. The wheel is connected 

to the hub with a standardized arrangement of bolts. 

The rear suspension supports the weight of the car and provides stability to the 

ride. The rear suspension contains support members, springs, and shock absorbers 

that provide torsional stability and allow limited vertical motion to absorb road 
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Figure 3.2. Decomposition of rear section of chassis and power train 

bumps; a hub to which the wheel and the drive shaft are connected; and a bearing 

carrier to support the hub while allowing the hub to rotate. As shown in Figure 3.2, 

the decomposition of the rear suspension also creates additional areas of interaction, 

both within the rear suspension subassembly and between the components of the 

rear suspension and other subassemblies, that the designers must coordinate to 

ensure compatibility with other parts. The common areas of interaction with other 

subassemblies now include the transfer of power, through the hub, from the drive 

shaft to the wheel; the connection of the springs to the frame; and the support of 

the brake adaptor with a bolted connection to the bearing carrier. 

The brake subassembly brings the entire car to a stop by halting the rotational 

motion of the wheels. A significant concern of the braking subsystem is dealing 

with the considerable heat that is generated from the frictional forces. For the disk 



49 

brakes used in the formula automobile, the wheel is stopped with a caliper that 

squeezes a rotor until the friction stops the rotor from rotating. In addition to 

the rotor and the caliper, the brake subassembly contains a brake hat to which the 

rotor is connected and an adaptor that supports the caliper. The brake subassembly 

interacts with the rear suspension through a bolted connection between the brake 

hat and the hub, and through a bolted connection between the adaptor and the 

bearing carrier. 

The power train generates power and transforms it into torque that is applied to 

the drive shafts. The power train contains an engine, transmission, and drive shafts 

that are purchased from other manufacturers. Their dimensions, requirements, and 

performance specifications are integrated into the automobile design. The power 

train also includes the final drive that transforms the power from the engine and 

transmission into the desired torque to apply to the drive shafts. The drive shaft 

is supported through its interaction with the rear suspension hub. 

The design of each subsystem requires expertise in a number of different areas to 

include design functionality and ease of manufacture and assembly. By concurrently 

analyzing and designing for these different areas, design subteams can improve their 

efficiency. 

As shown in Figures 3.1 and 3.2, different subsystems can be decomposed at 

different levels of detail. Also, since each subteam proceeds at a different rate, the 

subteams must be able to simultaneously work at different levels of detail [12]. 

The University of Utah enters the design competition each year with a completely 

different set of students. Students are better able to reuse or adapt components 

from previous versions of the automobile if they are able to understand the rationale 

and history that led to the previous designs and if they can easily recover these old 

designs and modify them as necessary. 

3.2    Incremental Design of a Machining 
Center 

Because of the amount of rework that results from design changes made late in 

the design process, errors caught early in the design process are generally easier 
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and less costly to correct. An incremental design process, if properly implemented 

and supported, would increase the chance of early error detection by performing 

multidisciplinary analysis over small increments rather than after complete design 

phases as in traditional waterfall models. Small increments reduce the complexity 

of design analysis, yet they allow the designer to consider the entire model during 

this analysis to ensure compatibility and completeness. Trying different alternatives 

is less costly since the designer can control the level of detail in each alternative. 

Figure 3.3 presents a pseudo-algorithm for the incremental design process used in 

this case study. 

A machining center creates a manufactured part by cutting away excess material 

from a standardized piece of stock. Machining centers are highly complex with 

thousands of complex parts and precise operating constraints. Speed, accuracy, and 

cutting tool access are critical requirements of the milling operations. Although 

many machining centers already exist, this case study explores alternatives of a 

1. SPECIFY EXTERNAL INTERACTIONS AND CONSTRAINTS 

2. DECOMPOSE INTO SUBASSEMBLIES OR COMPONENTS 

3. SPECIFY INTERNAL INTERACTIONS AND CONSTRAINTS 

4. DESIGN SUBASSEMBLIES OR COMPONENTS 

5. ANALYZE 

6. IF SATISFIED, THEN QUIT 

7. OTHERWISE, REFINE IN ONE OF THE FOLLOWING WAYS: 

7.1. MODIFY AT SAME ABSTRACTION LEVEL 

7.1.1.MODIFY EXISTING SUBASSEMBLIES,  COMPONENTS, OR INTERAC- 

TION CONSTRAINTS 
7.1.2.GO TO 5 

7.2. ADD AT SAME ABSTRACTION LEVEL 

7.2.1A.DD ADDITIONAL SUBASSEMBLIES OR COMPONENTS 

7.2.2.GO TO 3 
7.3. DECOMPOSE AT LOWER LEVEL OF ABSTRACTION 

7.3.1.MAP INTERNAL INTERACTION CONSTRAINTS TO EXTERNAL INTER- 

ACTION C 
7.3.2.GO TO 2 

Figure 3.3. Incremental design process 
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particularly complex subassembly of the machining center, the spindle cartridge, 

for innovations that could increase performance. The design is real; however, the 

innovative design scenario is simulated to emphasize exploratory aspects of the 

design process that are well suited to incremental design. 

The design team initially divides the machining center into six subassemblies as 

shown in Figure 3.4: a spindle head for mounting and spinning the cutting tools, 

a drive for moving the spindle head in a vertical direction, a column for mounting 

the vertical drive, a table for mounting the work piece, an X-Y drive for moving 

the workpiece horizontally, and a bed upon which the column and the X-Y drive 

are mounted [56]. As shown in Figure 3.5, the spindle head is further decomposed 

into a spindle cartridge that holds and rotates the cutting tool, a spindle drive that 

provides the power to spin the spindle cartridge, and a head casting upon which 

the cartridge is mounted. In this case study, the incremental design process in 

Figure 3.3 is used to explore innovative designs for the spindle cartridge . 

As the first step in the incremental design process, the designer identifies the op- 

erating environment for the spindle cartridge and specifies the external constraints 

imposed on the cartridge. These constraints include the size of the tools, the 

required milling accuracy, and the desired cutting speed. Although not part of the 

spindle cartridge, the tool holder is a standardized part that further constrains 

the design of the spindle cartridge. The tool holder holds cutting tools that 

interact with the part being milled, thereby exerting forces on the spindle cartridge 

subassembly. These forces, along with the interaction of the spindle cartridge with 

the head casting and the spindle drive, must all be considered in the design of 

the spindle cartridge. To accommodate these external constraints, the design team 

specifies the interaction of the spindle cartridge with the tool holder, the head 

casting, and the spindle drive. 

After the external constraints are specified, the design team determines the 

major functions or concepts in the cartridge design and converts these concepts 

into the initial design components. The spindle cartridge is decomposed into three 

major functional components:   a spindle that rotates at a high rate of speed, a 
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Figure 3.4. Initial decomposition of machining center 
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Figure 3.5. Additional decomposition for spindle head 
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housing to provide a stable mounting for the spindle, and a draw bar for mounting 

the tool holder. As the design team decomposes the spindle cartridge they also 

identify interactions between the spindle, the housing, and the draw bar. 

The design team continues the incremental design process with the high-level 

design of the major components within the spindle cartridge subassembly. Because 

of the innovative nature of the design, the design team needs to create differ- 

ent variants of the design and analyze each variant with respect to functionality, 

manufacturability, and ease of assembly. Each variant is subject to the same 

interaction constraints as the original design. When the initial high-level design 

increment is completed, the designers need to analyze the design for conformance 

with constraints and to determine how to proceed with the next increment. 

The design team has a number of options for refining the design. If analysis 

reveals discrepancies in the design, the designers could correct these by modifying 

parameters or constraints. Alternatively, the design team could add additional 

components, at the same level of detail, to satisfy missing functionality. Once a 

satisfactory design is obtained at one level of detail, the design team could further 

decompose the design by adding additional detail and constraints. 

At any detail level, different design teams may need to simultaneously design 

independent design components or subassemblies. Design teams should modify and 

reuse existing design components where possible. 



CHAPTER 4 

AGGREGATION 

Given a human's relatively fixed capacity for designing, understanding, and 

interpreting large, complex scenarios, designers have developed methods of orga- 

nizing the vast amounts of information inherent to a complex product design. This 

organization usually results in a hierarchical structure with relations identifying 

entities that are part of a higher-level composite entity [31]. In common English 

usage, an aggregation is defined as "a group, body, or mass composed of many 

distinct parts; an assemblage," and the term aggregate is defined as "a mass or body 

of units or parts somewhat loosely associated with one another." For design usage, 

this research defines an aggregation to be a composite design entity along with its 

relations with other entities. Aggregations are necessary to organize complex design 

data into a comprehensible product structure. Design systems that strive to help 

designers manage complexity, not just represent it, then, must provide mechanisms 

to help designers create, store, query, and modify such structures and relations. 

Because of its importance in organizing complex design models, aggregation is 

supported to varying degrees in many existing CAD tools. In a typical implemen- 

tation, an aggregation is simply a notational convenience for accessing multiple 

existing objects. Recent research, however, has extended the aggregation concept 

to more comprehensive product models. Gui and Mäntylä's multigraph [27] provides 

a conceptual model of the design hierarchy that emphasizes the functionality of the 

design components. Product data management (PDM) systems [4, 40, 42] focus 

on the structure of the design model with hierarchical links between major design 

documents. In the multigraph and PDM representations, detailed manufacturing 

information is modeled separately and then linked into the hierarchical aggregation 
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structure. Other aggregation models [17, 38] embed detailed manufacturing infor- 

mation directly into the hierarchical model structure, but restrict the designer's 

ability to move among the levels to independently manipulate the different design 

abstractions. 

Recognizing the dynamic nature of design, this research views aggregation as a 

tool for representing and managing the evolution of a design. Aggregations are used 

both to capture the organizational structure of a design model and to integrate 

diverse, multidisciplinary design information into a single entity. Rather than 

limiting evolution to a top-down decomposition, this research uses aggregation to 

increase the flexibility for organizing design data into multiple levels of abstraction 

and at different levels of granularity in a form that is useful to a design team's 

process. Individual design components can be independently analyzed and refined 

while still belonging to a higher-level aggregation. 

This research presents several aggregation and relationship concepts, along with 

their implemented objects, that together make it easier for a designer to flexibly 

organize, analyze, and evolve a complex design. 

• The attachment describes the hierarchical relationships between design com- 

ponents. That is, "A is part of B". 

• The interface specification object specifies peer-to-peer relationships between 

components. It has all constraints, interdependencies, and other information 

that a component needs to interact with another component. 

• The neighborhood, part, and assembly aggregations each organizes multiple 

components into a single design object. 

Attachments and interface specifications each create a logical relationship be- 

tween two existing design components. Each is implemented as an independent 

design object having references to the related components. Additional information 

relevant to the relationship, such as relative positioning constraints between the 

two components, is incorporated into the relationships objects, rather than into 
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the individual components. This isolates the related components from each other 

so that each component may be designed independent of the other. 

The objects implemented to create neighborhood, part, and assembly aggregations 

each creates a scope that contains all lower-level components in the aggregation 

object. Access to the lower-level components is possible only by entering the 

aggregation scope in which they are defined. As their names suggest, these ele- 

ments represent three types of clustering. The neighborhood aggregation organizes 

components into a single entity, but requires no further relationships between the 

lower-level components. The part aggregation requires that components be linked 

with attachments indicating the components that are "part of" the aggregation. 

Similarly, the assembly aggregation requires that components be linked with inter- 

face specification objects that specify how the parts of the assembly interact. 

4.1    Role in Complexity Management 
A complex product design is comprised of many different components represent- 

ing different views of the design at multiple levels of detail. To form a working 

product design, low-level features and geometry objects are linked together to form 

manufacturable parts. These parts work together to form a functional assembly. 

Multiple assemblies may work together in a complete product. Aggregation is the 

mechanism for structuring these components into recognizable parts or assemblies. 

From a top-down perspective, designers initially lay out the design at a high level 

with a limited number of components. The high-level design could be a conceptual 

design with functional descriptions and no geometry or it could be an initial design 

layout with rough geometry such as cylinders and boxes. By analyzing simple 

conceptual models, designers can narrow down the set of possible design solutions 

without expending considerable resources. As additional detail is defined, designers 

decompose components from the high-level layout into multiple subcomponents. 

This research also uses aggregation as a mechanism for controlling changes to a 

design model. By implementing aggregations as independent design modules that 

encapsulate low-level design information, other design entities have a limited view of 
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the design data within the aggregation. The aggregation forms a boundary to give 

the designer control over how external changes affect the design entities within the 

aggregation and how internal changes to the aggregation are propagated to external 

design entities. This modularity facilitates change management by providing a well 

defined entity to control and an entity with which to associate design rationale and 

history. The designer can restrict changes to remain within the boundaries of the 

aggregation, thereby facilitating simultaneous development of different aggregations 

by different design teams and enabling reuse of these aggregations in other product 

designs. 

A representation for assembly aggregations, in particular, is important for ex- 

tending modeling capabilities beyond the specification of low-level geometry and 

manufacturing features. The assembly aggregation provides the necessary frame- 

work for laying out a design model at conceptual, functional, and detailed levels 

of abstraction. Because product functionality is realized by the interaction of 

different components rather than by individual components alone, Sodhi and Turner 

suggest that an assembly-modeling framework is the key for a design environment 

that can capture and maintain functional intent [51]. Shah and Mäntylä describe 

additional benefits of assembly modeling to include interference detection between 

parts, motion simulation, constraint satisfaction, assemblability evaluation, and 

assembly manufacturing planning [49]. 

4.2    Underlying Concepts and Terminology 
Some standard terminology is used repeatedly throughout this document to 

refer to particular implementation concepts or structures. Although minor in their 

support of the thesis explored in this research, these concepts are necessary for 

understanding some of the larger, more significant concepts and structures. 

4.2.1    Design Objects and Constructors 

A design object refers to any design modeling entity that can be created and ma- 

nipulated within the modeling environment. For example, design objects include, 

among others, curves, surfaces, and other geometric entities, features, mathematical 
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models or constraint entities, composite structures, or textual and numeric entities. 

The term "design object," however, does not imply a classification or inheritance 

structure as it does in object-oriented software design, although, if supported by 

the modeling environment, objects with inheritance and classification would also 

fit the definition for "design objects." 

The modeling command that creates a design object is called a constructor. 

The examples in this research use the text-based design specification language of 

AlphaA, however, menu and pointer commands from a graphical user interface are 

equally applicable as constructors if they result in the creation of a design object. 

4.2.2    Positioning Constraints 

Positioning of related design objects within a complex product design model 

is essential for visualizing and analyzing the design. In this research, positioning 

constraints are specified with user defined anchors that describe a local coordinate 

system in Alpha-1. Each object to be positioned must have a positioning anchor 

associated with it. Many design objects in Alpha-1 include positioning anchors in 

their definition. This research also allows other design objects to be associated with 

a positioning anchor by wrapping these objects within a design object that provides 

an anchor. To position an object, the designer specifies the desired position with 

another positioning anchor, and the object is aligned with this anchor using existing 

routines from AlphaA. 

This positioning mechanism is used to automatically align features, parts, and 

subassemblies when part or assembly aggregations are created. A change in one 

positioning constraint will be automatically propagated throughout the entire ag- 

gregation. For example, changing the positioning constraint for a hole feature will 

cause the hole to be relocated along with any component linked to the hole. If a 

shaft has been inserted into the hole, the shaft will be relocated, as will any other 

components linked to the shaft. 
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4.3    Aggregation Relationships 
Although design data is hierarchical, there are two types of relationships neces- 

sary to define an aggregation - hierarchical parent-child relationships and a peer- 

to-peer relationships that define how components at the same level interact with 

each other. These relationships are implemented in this research as attachments 

and interface specification objects, respectively. 

The hierarchical relationships in an aggregation are represented with attachment 

relations that link a child component to its parent (Figure 4.1). Since the primary 

representation of mechanical design data is geometric, the attachment relation 

includes location information for positioning the child component relative to its 

parent. 

Peer-to-peer relationships are defined at the assembly level between interacting 

parts or subassemblies. Designers specify peer-to-peer relationships in interface 

specification objects that link two parts and provide positioning and kinematic 

constraints along with other relevant design information as described in Chapter 5. 

In many design tools, information associated with the relationships between 

components is embedded into the linked components. In this research, however, 

the attachment and interface specification object are independent design objects 

that the designer can manipulate independent of the entities that are linked by 

these relationships. The designer can use the attachment and interface specification 

Figure 4.1. The parent-child relation depicted by an attachment 
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relationships to manipulate the model structure or configuration without modifying 

the actual design entities. With this independence, designers can reuse preexisting 

component designs and integrate them into a new design model without having to 

modify the original component. 

4.4    Aggregation Objects 

An aggregation object is a single entity, representing a portion of the hierarchical 

model graph, that encapsulates detailed information into a single module while 

separating this information from other parts of the model. This research defines 

three types of aggregation objects for grouping mechanical design information - 

neighborhoods, parts, and assemblies. 

Only a limited amount of information is required to be specified for each type 

of aggregation object. Thus, designers can create an aggregation initially with 

only a small amount of conceptual information. Designers can then add further 

detail to the aggregation as the design evolves. With this approach, designers 

have considerable flexibility on how they evolve a design, yet the aggregation 

objects ensure that the designers provide sufficient information to link related design 

components. 

Designers may modify and reconfigure an aggregation to contain different com- 

ponents for different levels of abstraction or for different views. For example, the 

functional abstraction of the formula automobile configures brake parts into a single 

aggregation, while a separate abstraction representing rigid subassemblies divides 

the brake parts into two separate aggregations. Designers can include an object in 

more than one aggregation by separately defining the object and inserting a copy 

into the appropriate aggregations. 

4.4.1    Neighborhood 

A neighborhood is a generic aggregation for isolating and modularizing any group 

of objects in the design model. No explicit relationship is required among members 

of a neighborhood - the designer simply needs to identify those design objects that 

should be in a particular neighborhood. 
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A neighborhood is useful for encapsulating low-level geometric entities or pa- 

rameters or as a temporary place holder during early stages of the design when the 

relationships between design entities are not yet well specified. A neighborhood is 

the least structured of the three aggregations and is generally applicable in all situ- 

ations where the more structured part or assembly aggregations are inappropriate 

or where insufficient information is available to describe the relationships required 

in the part and assembly aggregations. 

A neighborhood may be nested within another neighborhood to form a hierar- 

chical structure with increasingly more detail at the lower levels. When used in 

this fashion, however, there are no explicit links, such as attachments, to describe 

the relationships between the two levels. 

In the formula automobile, neighborhoods are used by the designers to represent 

the low-level parameters, points, lines, and circles, from which complex curves and 

surfaces are derived. Figure 4.2 shows the Alpha. 1 design specification language 

description of a neighborhood that encapsulates the geometry of the heat slots in 

the automobile's brake rotor. In this example, the neighborhood is identified with 

the seq constructor that incorporates all the design objects within the brackets into 

a single neighborhood. 

Once an object is identified as a member of a neighborhood, access to that 

design object, from outside of the neighborhood, is restricted. Reference to the 

neighborhood object itself provides access to the last object identified in the neigh- 

borhood or a collection of all objects in the neighborhood, as selected by the 

designer. In Figure 4.2, the actual heat slot surface, Slots, is the last object 

in the sequence and is directly accessible by referencing the neighborhood vari- 

able, HeatSlots. The complex surface for the heat slots is shown in Figure 4.3. 

By assigning neighborhood objects with the ":*" operator, designers can also 

make objects within the neighborhood accessible on an individual basis by indirect 

reference through the neighborhood object. For example, the object associated 

with SlotCirl is accessible from outside of the HeatSlot neighborhood through the 

constructor HeatSlots::SlotCirl.   This constructor creates a copy of the SlotCirl 
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HeatSlots : seq{ 

"Slots" ' 

CirDia : ( Rotor_Hat_Intfc::BoltCirDia + 

RotorParms::SlotCirOffset ); 

CtrPt : pt( 0.0, -RotorParms::SlotCtrRad ); 

CtrCir : circleCtrRad( CtrPt, RotorParms::SlotCtrRad ); 

ConstLinel : linePtAngle( CtrPt, 35.0 ); 

Point1 : ptlntersectCircleLineC CtrCir, ConstLinel, false ); 

Cirl :* circleCtrRad( origin, RotorParms::SlotWidth/2.0 ); 

Cir2 :* circleCtrRad( Pointl, RotorParms::SlotWidth/2.0 ); 

Cir3 :* circleRadTan2Circles( RotorParms::SlotCtrRad + 

RotorParms::SlotWidth/2.0, 

cirl, cir2, 
true, true, true ); 

Cir4 :* circleRadTan2Circles( RotorParms::SlotCtrRad - 
RotorParms::SlotWidth/2.0, 

cirl, cir2, 

false, false, true ); 

SlotCrv : outlineCrv( array( Cirl, Cir3, Cir2, 
CircCCw( Cir4 )), 

false ); 

Slot : profileSide( SlotCrv, "inside", 
RotorParms::Thick + 0.1, 0.0, 0.0, 0.0 ); 

Anchor1 : rotateAnchor( Prims::Anchorl, 0.0, 0.0, 
-RotorParms::SlotFrstAng ) ; 

SlotPatternl : RadialPattern( Anchor!, Slot, 
RotorParms::SlotNum, 

(RotorParms::SlotFrstAng+90.0)/ 

RotorParms::SlotNum, CirDia ); 

SlotPatternAnchor2 : rotateAnchor( Anchor1, 
0.0, 0.0, 90.0 ); 

SlotPattern2 : RadialPatternC Anchor2, 
Slot, 

RotorParms::SlotNum, 

(RotorParms::SlotFrstAng+90.0)/ 

RotorParms::SlotNum, 

CirDia ); 

Slots : entity( mergeShelK SlotPatternl, 

}; 
SlotPattern2 ) ); 

Figure 4.2. Specification of the heat slot surface 
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Figure 4.3. Heat slot surface 

object so that any modifications will not affect the design object embedded in the 

neighborhood. Objects within the neighborhood may not be modified from outside 

of the neighborhood. 

The neighborhood aggregation structure for the heat slot surfaces is shown in 

Figure 4.4. Although this structure shows a hierarchical relation among the design 

components, these relationships simply illustrate the dependencies of the object 

constructors. In an Alpha.l design model, any design object that uses another 

design object in its construction establishes a precedence relationship in which the 
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Figure 4.4. Structure of the heat slot neighborhood 
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new object becomes dependent on the previous object. No other information is 

associated with these relationships. The neighborhood structure could just as well 

be a group of objects with no dependencies between them. This is often the case 

when a neighborhood is used to encapsulate a set of numerical parameters. 

4.4.2    Part 

A part aggregation consolidates related design components that represent a single 

part. Part aggregations examine the attachment relationships between design ob- 

jects to determine the hierarchical structure of the part and to position and validate 

the components of the part in accordance with specified attachment relationships. 

An intent of the aggregation structure is to enable the designer to start out with 

a conceptual abstraction of a part and evolve this concept into a detailed part design 

by attaching additional features and geometry objects. Thus, in order to specify a 

part aggregation, one design object with a positioning anchor is designated as the 

base component. Then, additional components can be incorporated into the part 

aggregation with attachment relationships. 

The part aggregation is used in the formula automobile design model to represent 

all distinct parts. The brake rotor specified in Figure 4.5 is an example of one of 

these parts. Designers specify the part aggregation with the partSeq constructor 

that extends the neighborhood sequence to incorporate all design objects linked 

with partof attachments into a part object. The part object positions all attached 

components with respect to a selected base component and organizes the aligned 

components into a hierarchical structure. The part object is the accessible result 

of the partSeq constructor. The geometric representation of the brake rotor part 

object is shown in Figure 4.6. 

The brake rotor part in Figure 4.5 consists of manufacturing features that 

indicate sections of the machining stock that must be cut away to form the final 

part. The Stock entity is identified as the base object by its position as the first 

object designated as a parent in a partof attachment. The designer organizes the 

part model by nesting the manufacturing details into neighborhood aggregations 

for each of the major features, IDCut, OuterCut, CutOutPattern, and BoltHoles, 
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BrakeRotor : partSeq{ 

"Detailed design of the Rear Brake Rotor Model"; 

Prims seq{ 

} 
Stock seq{ 

} 
IDCut seq{ 

} 
atchl : partof( Stock, Prims::Anchor1, IDCut ); 

OuterCut seq{ 

} 
atch2 : partof( Stock, Prims::Anchor1, OuterCut ); 

HeatSlots : partSeq{ 

"Heat Slots"; 

SlotPatternl; 
atchl : partof( OuterCut, Prims::Anchor1, SlotPatternl ) 

SlotPattern2; 
atch2 : partof( OuterCut, Prims::Anchor2, SlotPattern2 ) 

SlotPattern3; 
atch3 : partof( OuterCut, Prims::Anchor3, SlotPattern3 ) 

SlotPattern4; 
atch4 : partof( OuterCut, Prims::Anchor4, SlotPattern4 ) 

} 

CutOutPattern seq{ 

} 
atch4 : partof( Stock, Prims::Anchor1, CutOutPattern ); 

}; 

BoltHoles   :  Rotor_Hat_Intfc.pos_entity; 
atch5   :  partof( stock,  Prims::Anchor5, BoltHoles ); 

Figure 4.5. Specification of the brake rotor part 
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Figure 4.6. Brake rotor part 

and attaching these features directly to the Stock. Since heat dissipation is a key 

functional characteristic of the brake rotor, the designer specifies the HeatSlots as 

a nested part aggregation that is further decomposed into four patterns that are 

attached to the HeatSlot to form an intermediate level of detail. This abstraction 

facilitates exploration of the heat dissipation capabilities of the brake rotor by 

allowing the designer to independently manipulate and analyze the heat slots. The 

structure of the brake rotor part is depicted in Figure 4.7. All objects that are 

attached to the Stock, either directly or through intermediate objects, are aligned 

and incorporated into the brake rotor part object. 

To specify constraints or design goals, designers can embed additional design 

objects into the part aggregation without direct links into the attachment hierar- 

chy. In the brake rotor part, the designer nests dimensional parameters, low-level 

geometric entities such as lines and circles, and other constraints in the Prims 

neighborhood aggregation. None of these objects is linked into the brake rotor part 

with an attachment relationship; however, by inclusion in the part specification, 

these entities become part of the part aggregation. The designers mark each key 

entity within the Prims aggregation for access by other components in the brake 

rotor part aggregation. 
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Figure 4.7. Structure of the brake rotor part aggregation 

4.4.3    Assembly 

An assembly aggregation organizes interacting parts or subassemblies into a 

single mechanical assembly. Assembly aggregation objects examine the interface 

specification relationships between parts to align the parts and to validate the parts 

in accordance with the interface constraints. In this research, the structure and 

methods provided by the assembly aggregation support high-level design layout, 

grouping and positioning of low-level parts, and multiple assembly configurations 

so that different types of analysis can be performed. 

A minimal assembly aggregation contains two parts or subassemblies and an 

interface specification between them. To incorporate additional parts or subassem- 

blies into the assembly aggregation, designers must create interface specification 

objects to link new components with another part in the assembly. 
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The formula automobile assembly is comprised of a number of subassemblies and 

parts as shown in Figure 4.8. As shown in this example, an assembly aggregation is 

specified with the constructor assemblySeq that extends the neighborhood sequence 

to incorporate design objects linked with interface specifications into an assembly 

object. An assembly object positions all interacting parts with respect to a selected 

base part and organizes the aligned parts into a list structure. The assembly object 

is the accessible result of the assemblySeq constructor. 

Designers can use software assistants with the assembly object to perform au- 

tomated analysis of the kinematics and forces associated with the interfaces in the 

assembly. For example, to analyze the forces acting on the formula automobile 

assembly, the designer invokes the command: 

validateForces( FormulaSAE ) 

which examines the forces attached to the assembly aggregation and validates these 

forces against the specified interface constraints. Positioning of assembly compo- 

nents is automatically validated by the constructor as the assembly is updated. The 

designer can manipulate component positions to perform kinematic analysis of the 

assembly. 

By not restricting the types of objects that can be linked into an assembly, 

designers can use generic entities with little design information at the conceptual 

level and detailed subassemblies or parts at more detailed levels. In the formula 

automobile example shown in Figure 4.8, the Hat, Rotor, Wheel, or other parts in 

any of the subassemblies can be specified independent of the assembly aggregation. 

These objects may represent a high-level conceptual decomposition as shown in 

Figure 4.9 or detailed information and geometry as depicted in Figure 4.10. If no 

existing definition of an object exists, the designer can choose to have a high-level 

placeholder object automatically created. 

Like a neighborhood aggregation, the designer can embed additional design 

objects, such as parameters or textual descriptions, into the assembly aggregation 

without directly linking these objects to the assembly structure.   These design 
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RearLayout : assemblySeq{ 

"Layout of rear section of formula automobile"; 

Chassis : assemblySeq{ 

"Rear section of chassis"; 

Frame; 

Wheel; 
RearSuspension : assemblySeq{ 

BearingCarrier; 

Hub; 
Carrier_Hub_Intfc; 

} 
Brake : assemblySeq{ 

Hat; 

Rotor; 

Caliper; 

Adaptor; 

Hat_Rotor_Intfc; 

Rotor_Caliper_Intfc; 

Caliper_Adaptor_Intfc; 

} 

} 

Frame_RearSuspension_Intfc; 

RearSuspension.Wheel_Intfc; 

Brake_RearSuspension_Intfc; 

PowerTrain : assemblySeq{ 

DriveShaft; 

FinalDrive; 

Transmission; 

Engine; 
DriveShaft_FinalDrive_Intfc; 

FinalDrive_Transmission_Intfc; 

Transmission_Engine_Intfc; 

} 

Chassis_PowerTrain_Intfc; 

}; 

Figure 4.8. Assembly specification for rear layout of formula automobile 
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Figure 4.9. Conceptual decomposition of rear layout 

Rotor 

Bearing Carrier- 
Final Drive 

Figure 4.10. Detailed representation of rear layout with Wheel omitted 

objects allow the designer to specify high-level constraints for the assembly com- 

ponents or to describe the purpose of the assembly as depicted in Figure 4.8. 

The rear layout specified in Figure 4.8 has two major subassemblies - the 

power train and the chassis. To represent different levels of detail or additional 

subassemblies, the designer can nest assembly aggregations, such as those for the 

frame, rear suspension, brake, and the wheel within another assembly aggregation. 

The designer links each part or subassembly within the rear layout assembly to 

other parts or subassemblies using interface specification objects. The assembly 

structure represented by the rear layout specification is shown in Figure 4.11. 

Observe that the entities and relationships in this diagram directly parallel the 

independent conceptual decomposition of the rear layout depicted in Figure 3.2. 

An assembly aggregation consolidates interacting parts or subassemblies into a 

complete product assembly model. Using the assembly aggregation, subassemblies 

can be further decomposed into additional subassemblies or parts. Designers can 

then create part aggregations that organize related features into a single part. Low- 
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Figure 4.11. Structure of the formula automobile assembly 

level geometry or parameters in a part can be grouped into a higher-level abstraction 

with a neighborhood aggregation. The hierarchy formed by the various aggregation 

objects organizes the model into abstractions that are easier to understand and 

manipulate. In addition, the attachments and interface specification objects in the 

part and assembly aggregations contain the information necessary for automatic 

positioning and validation of the design model. 



CHAPTER 5 

INTERACTION 

The interactions between components in an assembly represent considerable 

complexity and risk in a product design. According to Sodhi and Turner [51], the 

relationships associated with these interactions are essential for depicting product 

functionality, since functionality can not be completely implemented solely within 

individual parts. In this research, an interaction relationship is defined as the collec- 

tion of all significant information that specifies the cooperative behaviors between 

two components in an assembly. This information includes design functionality, 

force transmission, positioning and relative movement of parts, and fasteners and 

connectors. Previous research has tended to focus on individual aspects of the 

interaction relationship such as the orientation and relative motion of assembly 

components [16, 37, 49], the transmission of forces [27], or the inclusion of fasteners 

and connectors [1, 46]. 

It is through its interaction relationships that an assembly becomes more than 

the collection of its individual parts. The relative behaviors combine in synergistic 

ways, so it is insufficient to specify interaction information within the individual 

parts or even through hierarchy relationships of an assembly, as is done in many 

existing tools. Within a bolted joint, for example, the size of the fasteners and the 

thickness of the joint are key parameters in determining the load bearing capacity 

of the joint. Neither of these parameters, however, is unique to a single part. Since 

the joint thickness is derived from the interacting parts, it is dependent on a peer- 

to-peer relationship between the parts rather than the hierarchical relationships of 

the parts or assembly. As a means of allowing designers to more reliably specify 

and predict interaction relations, this research designs and implements the interface 
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specification object. 

The interface specification object is a peer-to-peer relationship between two 

parts, components, or subassemblies. The peer-to-peer relationship is formed as 

a direct link between the two interacting parts or as a link between two assembly 

features. The assembly features are then embedded in the aggregation hierarchy of 

the interacting parts to complete the relationship. 

The designer uses the interface specification object to specify and control be- 

haviors in an interaction relationship. Within the interface specification object, 

kinematic behavior is constrained by a joint that describes the relative motion 

between the interacting parts. Other behaviors are specified and controlled by 

incorporating connectors, fasteners, forces, and other design information into the 

interface specification object. 

Interface specification objects share the hierarchical attributes of part aggre- 

gation objects so that they can evolve along with the rest of the design. Thus, 

the interface specification object can form a hierarchy that collects all information 

relevant to the interaction between two parts or subassemblies. Since designers 

declare the content of these objects, they may leave out pertinent information, 

either because they are unaware of it, or because they deliberately choose not to 

control that aspect. 

5.1    Role in Complexity Management 
Specifying and controlling part interaction in interface specification objects sup- 

ports management of design complexity by: 

• Providing a means for representing design functionality. Functionality is gen- 

erally manifested in multiple interacting parts. It cannot be adequately rep- 

resented in individual parts since many of the functional parameters can not 

be attributed to any single part. 

• Making available the information necessary for interactive analysis and sim- 

ulation of moving parts.    This is accomplished by incorporating kinematic 
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information into the interaction specification. 

Facilitating assemblability analysis, analysis of forces, or other design analy- 

ses by providing focal points in which to specify the appropriate interaction 

constraints. 

• Encapsulating details, such as fasteners and connectors, thus eliminating the 

need for separate specification of these details in each independent part. 

• Controlling the evolution of the individual part or subassembly design and 

reducing design incompatibilities. This can be accomplished either by using 

constraints from within an interface specification object to partially define 

related parts, or by ensuring the independently designed parts do not violate 

the constraints specified in the interface specification. 

• Minimizing design complexity and the effect of changes. Behavior can be 

localized to one side of the interface specification, and change propagation can 

be controlled across the interface specification object, and hence across the 

interaction relationship that it embodies. 

• Modularizing the design to facilitate independent development of related com- 

ponents and to simplify integration of these components into the remainder of 

the model. When coupled with the restricted access of aggregation objects, the 

interface specification object isolates interacting components from the remain- 

der of the model. Thus, designers can independently develop a component in a 

local scope that does not affect the remainder of the model. If the component 

description adheres to the dictates of the interface specification objects, then 

it should be compatible when integrated with the remainder of the model. 

• Facilitating design reuse of individual parts or subassemblies. This is done by 

separating the interaction relationship constraints from the part specification. 

• Enabling the specification of cross-disciplinary information such as that in- 

volved in the interaction of electronic and mechanical subassemblies. This is 
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accomplished by incorporating the information into the aggregation hierarchy 

of the interface specification object. 

• Enhancing the representation of product structure by adding peer-to-peer links 

between interacting parts. With peer-to-peer links, the designer can more 

easily analyze the impact one component has on another. 

• Providing a common location in which distances between interacting parts can 

be specified. Such distances could include dimensional tolerances or parame- 

ters for building exploded views of an assembly. 

5.2    Underlying Concepts and Terminology 
The mechanisms presented in this chapter make use of specialized design ob- 

jects for representing particular types of design information. The concepts and 

terminology associated with these specialized objects are described here. 

5.2.1    Features 

A feature encapsulates application specific design information into a reusable, 

standardized component that is mappable to a generic shape. Different features 

may be used to represent the same portion of a design, with each set of features 

capturing the design information that is relevant to a particular design discipline. 

Similar to Shah and Mäntylä [49], this research uses the term feature to mean 

any design object with engineering significance. This may be a particular geo- 

metric shape, a previously defined feature in the design system, or an abstraction 

representing the combination of a number of different features or parts. 

The Alpha.l system already includes a significant number of mechanical fea- 

tures. These features, when used in parts and interface specifications in the design 

model, include manufacturing information from which numerical control code can 

be generated for machining the part. Using the Alpha-1 development environment, 

additional features may also be defined and incorporated into the complexity man- 

agement framework from this research. 
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5.2.2    Joints 

A key aspect of the interaction between parts in an assembly is the relative 

motion between these parts. This research utilizes joints to capture the degrees 

of freedom of motion and to enable the designer to interactively manipulate the 

motion of the two parts. As defined in this research, a joint is similar to the mating 

features used by other researchers (See Chapter 2); however, a joint extends the 

capabilities of mating features by allowing interactive manipulation. 

This research defines a generic joint for conceptually linking two parts or as- 

semblies before interaction details are described. In addition, revolute, prismatic, 

spherical, against, and rigid joint types are defined for constraining the allowable 

motion of interacting parts. A revolute joint allows rotation around a single axis 

and a prismatic joint allows translation in a single direction. A spherical joint allows 

three rotational degrees of freedom around a point, and an against joint allows two 

translational and one rotational degree of freedom on a surface. A rigid joint allows 

no motion between the two parts. AlphaA also supports user-defined joint types in 

which the designer specifies the appropriate degrees of freedom. 

The designer creates a joint by specifying the amount of rotational and transla- 

tional movement for a particular joint type along with the current relative position 

of the two linked parts. The parts may be moved interactively by modifying the 

relative position in the joint. The joint object contains software assistants, that 

are automatically invoked when a joint is created or updated, to ensure invalid 

movements and positions do not occur. 

5.2.3    Connectors 

Gui and Mäntylä [27] introduce connectors to represent standardized components 

such as springs and gears that transmit energy between components. Similarly, this 

research defines bearing and screw connectors to represent and analyze the transfer 

of forces between parts. Although the current implementation of connectors sup- 

ports only force transmission, this concept could be extended to other disciplines, 

such as heat or electricity transfer, with the development of additional connectors. 

The mechanical connectors presented here encapsulate fasteners such as bearings 
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and screws into a single design object. This design object also encapsulates appli- 

cation parameters, geometry, and force analysis routines. The bearing connector 

includes one or more bearings and spacers that are coaxially aligned immediately 

adjacent to each other. Bearing life and rotational speed are application dependent 

parameters that must be specified by the designer. Using the screw connector, the 

designer can describe patterns of one or more screws of the same size and type 

along with application parameters for joint thickness and thread length. 

Using software assistants embedded in the connectors, designers can automati- 

cally analyze simple point forces acting on an assembly. Similarly, the designer can 

invoke constructor commands to automatically generate manufacturing features 

such as a bearing bore or threaded hole that are compatible with the connector. 

In this research, electronic catalogs are defined to facilitate the creation of 

connectors containing standard bearings or screws. To select a standard com- 

ponent, the designer need only specify a catalog number. The electronic catalog 

then searches its database and retrieves the geometry, force capacity, and other 

information for the selected component. 

5.3    Interface Specification Object 
This research introduces the interface specification object with which the designer 

can capture all design information relevant to the interaction between parts. The 

interface specification object is composed of assembly features and positioning 

constraints for the two interacting components and a joint describing the relative 

motion between the assembly features. The designer can incorporate additional 

information or levels of detail into the interface through an aggregation hierarchy 

similar to that of the part object discussed in Section 4.4.2. The structure of the 

interface specification object is shown in Figure 5.1. 

Assembly features describe compatible features on each of the two interacting 

parts. Unlike other applications of assembly features, this research does not restrict 

assembly features to any particular design capability such as design for assembly or 

functional design. Instead, any functional, manufacturing, or form feature, or any 
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Figure 5.1. The interaction relation depicted in an interface specification object 

geometric object available in the design system can serve as an assembly feature. 

The designer can also represent assembly features as aggregations with multiple 

levels of detail. 

To ensure compatibility among interacting parts, the designer can incorporate 

assembly features from an interface specification object, that have been previously 

defined to be compatible, into a component model via the aggregation mechanisms 

of Chapter 4. When used in this way, any subsequent changes or additional detail 

added to the assembly features will cause the change propagation mechanisms of 

Alpha-1 to automatically regenerate the related parts to include the changes. If 

the designer attempts a change that would lead to an invalid design model, the 

automatic regeneration stops and the designer is notified. 

As additional detail is specified for a model, the designer adds this information 

to the interface specification by using partof relationships to link the details to the 

interface object aggregation hierarchy. While it is possible to incorporate any object 

in the design system into the aggregation hierarchy, some specialized aggregations 

are particularly applicable to the interaction between parts in an assembly. These 
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aggregations include: 

• Nested interface specifications that can be used to reflect the decomposition of 

an interface into additional levels of detail. 

• Connectors to support detailed force analysis across the interface and genera- 

tion of manufacturing features such as threaded bolt holes. 

• Applied forces or force constraints to provide the information necessary to 

carry out preliminary and detailed force analysis. 

• Additional constraints and analysis information including information for in- 

terpretation by other tools. 

The interface specification object provides the capability to describe many as- 

pects of the interaction between parts in an assembly. It also provides a convenient 

mechanism for organizing and representing information used by other computa- 

tional tools for analyzing the design model. The designer can maintain design 

compatibility by incorporating interface assembly features into the design of new- 

part models or, when used with predefined part models, the designer can use the 

interface specification object to verify that the parts are compatible. 

Interface specification objects may evolve along with the remainder of the design 

to represent functional concepts or detailed manufacturing information. Early in 

the design, the designer may only be interested in linking two components in a 

conceptual diagram. As the design evolves, the designer adds detailed information 

to the interface object to specify motion constraints, force analysis constraints, 

nested interfaces, fasteners and connectors, or other interaction information. Using 

the interface specification object and its associated aggregation relationships, the 

designer can interactively move parts in an assembly, analyze and modify common 

design parameters, and reconfigure assemblies to represent multiple levels of detail. 

The interface specification is an independent design object that the designer can 

manipulate to represent and control the complex relationships between interacting 

parts in an assembly. 
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5.4    Spindle Cartridge Subassembly 
To demonstrate the analysis and control capabilities supported through the 

interface specification object, this section presents a scenario for the incremental 

design of the spindle cartridge subassembly from the machining center case study 

described in Section 3.2. The interactions between parts are essential to the 

functionality of the spindle cartridge subassembly and, consequently, the designer 

derives the individual components directly from these interactions. The innovative 

nature of the spindle cartridge design, as depicted in this scenario, benefits from an 

incremental design process in which the designer can carefully control and analyze 

incremental changes to the design. 

The spindle cartridge holds and rotates cutting tools during the milling of a 

part. The spindle cartridge interacts with the spindle drive and the head casting to 

form the spindle head subassembly of the machining center as shown in Figure 3.5. 

The spindle drive provides power to spin the spindle cartridge and the head casting 

provides a base upon which the spindle cartridge is mounted. 

In the first step of the incremental design process the designer identifies the 

operating environment and the external constraints imposed on the design. The 

spindle cartridge design is constrained by the size of the tools, the required milling 

accuracy, and the desired cutting speed. Although not part of the spindle cartridge, 

the tool holder holds cutting tools that interact with the part being milled, thereby 

exerting forces on the spindle cartridge subassembly. These forces, along with the 

interaction of the spindle cartridge with the head casting and the spindle drive, 

must all be considered in the design of the spindle cartridge. 

To accommodate these external constraints, the designer uses the interface spec- 

ification object to describe the interaction between the spindle cartridge and the 

tool holder, head casting, and spindle drive. In this scenario, the designer initially 

wants to analyze only the relative motion and forces acting on the spindle cartridge, 

so these constraints are added to the interface specification objects along with 

assembly features identifying the high-level geometry and manufacturing features 

associated with the interaction. 
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As shown in Figure 5.2, which describes the interface between the tool holder 

and the spindle, the designer uses an intfcSeq constructor to define the inter- 

face specification object. The intfcSeq constructor is an extension of the partSeq 

constructor that creates an aggregation containing a joint specification and two 

assembly features in addition to the information available in the part aggregation. 

In the interface between the tool holder and the spindle the designer specifies a 

rigid joint and two assembly features, labeled toolholder and toolholderslot, to 

accommodate the tool holder part. Using the intfcpos and intfcneg constructors, 

the designer positions both the toolholder and toolholderslot features at the base 

of the interface specification. The designer links two externally applied forces, 

axialForce and radialForce, into the interface specification hierarchy by establishing 

partof relationships with the joint. 

toolholder_spindle_intfc  :   intfcSeq { 

"The interface between the toolholder and the spindle"; 

"Joint allows no movement between toolholder and spindle"; 

joint  :  rigidO; 

"Select geometry from standard tool holder"; 

toolholder  :  toolholderTaper40; 
toolholderslot  :  reverseObj( toolholderTaper40 ); 

"Identify and position positive and negative features"; 

pos   :  intfcpos( baseAnchor, toolholder ); 
neg  :   intfcneg( baseAnchor, toolholderslot ); 

"Attach forces acting on tool holder"; 

atchi   :  partof( joint,  baseAnchor,  axialForce ); 
atch2  :  partof( joint,  XAnchor,  radialForce ); 

}; 

Figure 5.2. Interface specification between tool holder and spindle 
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In the second step of the incremental design process, the designer decomposes 

the spindle cartridge into its major components: a spindle that rotates at a high 

rate of speed, a housing to provide a stable mounting for the spindle, and a 

drawbar for mounting the tool holder. The designer creates these components as 

conceptual entities by including them in the spindle cartridge assembly aggregation 

as shown in Figure 5.3. As the spindle cartridge is decomposed, the designer also 

identifies potential interactions between the spindle, the housing, and the draw bar. 

These interactions are represented initially by interface specification objects with 

generic joints (ijoint) linking the conceptual entities (spindle, housing, and drawbar 

identified in the assembly. The designer describes design goals, such as desired 

fatigue life and speed, by listing them as variables in the assembly aggregation. 

In this scenario, part interactions are critical to the functionality of the spindle 

cartridge subassembly, so the designer wants to ensure parts are compatible with the 

interface specification objects linking them. To facilitate the design of compatible 

spindleCartridge : assemblySeq { 

"Performance parameters and goals 3"; 

FatigueLife : * 10000; 

CuttingSpeed :* 4000; 

"Components in spindle cartridge subasse mbly"; 

spindle; 

housing; 

drawbar; 

"Interfaces between components in subass embly"; 

spindle_hous3 mg_Intfc : 

intfc( i; ointO, base Anchor, spindle , baseAnchor, housing ); 

spindle_drawbar_Intfc : 

intfc( i; oint(), baseAnchor, spindle , baseAnchor, drawbar ); 

}; 

Figure 5.3. Specification of spindle cartridge subassembly 
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parts, the designer intends to build the interface specification objects and then 

derive part models from these specifications. Since the spindle is a shaft that 

spins within the housing, the designer constructs an interface specification object 

containing a revolute joint with unlimited rotation, a through-hole feature, and a 

cylindrical shaft feature as depicted in Figure 5.4(a). The geometry of the spindle- 

housing interface, as shown in Figure 5.4(b), represents the compatible assembly 

features that are described in the interface specification object. 

To describe the interaction between the draw bar and the spindle, in which the 

draw bar shaft moves in and out of the spindle like a piston, the designer creates 

another interface specification object. The spindle-drawbar interface specification 

includes a prismatic joint with limited movement allowed along the axis, a hole 

feature, and a cylindrical shaft feature. 

The designer proceeds with the incremental design process by describing the 

high-level design of the major components within the spindle cartridge subassem- 

bly. To model the spindle, the designer creates a part aggregation, as shown in 

Figure 5.5, into which he inserts the negative feature of the tool holder-spindle 

interface (toolholderspindleJntfc.negEntity) and the hole feature of the spindle- 

drawbar interface (spindle-drawbarJntfc.negEntity). The designer attaches these 

two features with parfo/relations to the shaft feature of the spindle-housing interface 

(spindle-housingJntfepos Entity). The part aggregation constructor automatically 

aligns the attached parts and incorporates them into a part model for the spindle. 

The designer creates the housing and drawbar parts in a similar fashion. By deriving 

parts from the interface specifications as shown here, any changes the designer 

makes to the interface specification objects will be automatically reflected in the 

part model, thus maintaining compatibility between the interacting parts. 

As the designer adds additional detail to the interface specification objects 

and part aggregations, AlphaA automatically propagates these changes to the 

spindle cartridge subassembly specified in Figure 5.3. The constructor function 

for the assembly aggregation uses the spindle part as a base part and automatically 

aligns the remaining parts according to their positions in the interface specification 
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spindle_housing_intfc :* intfcseq { 

"Revolute joint with complete rotation"; 

joint : revolute( unlimited ); 

"Shaft is a cylindrical surface of revolution"; 

shaft :* surfrev( profile( pt( shaft.radius, 0, shaftjtieight ), 
pt( shaft_radius, 0, 0 ) ), 

true ); 

"Hole is a mechanical hole feature"; 

hole :* entity( hole( offsetanchor(baseAnchor, 0.02, 0.02, 0.02), 
shaft.radius * 2 + 0.3, 

shaft.height, 

0, 
TRUE ) ); 

"Shaft is positive side of interface and hole is negative side"; 

}; 

pos :* intfcpos( baseAnchor, shaft ); 

neg :* intfcnegC baseAnchor, hole ); 

(a) Interface specification 

hole shaft 

(b) Feature geometry 

Figure 5.4. Initial interface specification between spindle and housing parts 
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spindle : partseq { 

"The spindle is defined by the shaft side of the spindle-housing 

interface, the hole side of the spindle-drawbar interface, and 

the hole side of the toolholder-spindle interface."; 

"Extract features from the appropriate interfaces"; 

shaft : spindle_housing_intfc.posEntity; 

hole : spindle_drawbar_intfc.negEntity; 

tool : toolholder_spindle_intfc.negEntity; 

"The shaft feature is the main geometry of the spindle"; 

"The hole features are attached to the shaft"; 

atchl : partof( shaft, 
offsetAnchor( baseAnchor, 0, 0, 

-spindle_toolholder_offset ), 

tool, 
..... ). 

atch2 : partofC shaft, 
offsetAnchor( baseAnchor, 0, 0, 

spindle_drawbar_offset ), 

hole, "-" ); 

}; 

Figure 5.5. Spindle part specification 

objects. Figure 5.6 shows the resulting geometry of the initial spindle cartridge 

subassembly. 

Figure 5.7 shows the logical model structure for the assembly aggregation con- 

taining the spindle and housing parts linked with the spindle-housing interface 

specification object. This diagram depicts each component as an aggregation with 

attachments (atch) showing the hierarchical relationships. The hole and shaft fea- 

tures defined in the spindle-housing interface specification object are linked into the 

housing and spindle parts with attachment relationships to reflect the incorporation 

of these interface features into the actual design model of the individual parts. 

Now that the initial design increment of the spindle cartridge is complete, the 
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Figure 5.6. Initial spindle cartridge subassembly 
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Figure 5.7. Structure of spindle-housing assembly 
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designer analyzes the design model to validate assumptions and constraints, to 

evaluate the satisfaction of design goals, and to determine how to proceed with the 

next design increment. With just a rough description of the part geometry and the 

interfaces, the designer invokes automated software assistants, that focus on the 

aggregation and interaction relationships, to analyze the forces acting on the entire 

assembly. The designer accomplishes this with the command: 

validateForces( SpindleCartridge ) 

The assembly aggregation constructor automatically validates the position of in- 

terface joints when the assembly is updated. The designer can manipulate joint 

positions or key parameters upon which the joints are dependent to analyze the 

kinematic behavior of the subassembly. If problems are discovered, the designer 

can concentrate analysis on individual interface specification objects to isolate the 

problems. The designer refines constraints, parameters, and design components 

as necessary, and Alpha.! automatically regenerates component models, until all 

problems are resolved. 

When satisfied with the results of the first design increment, the designer re- 

fines the design by adding additional detail. The bearings between the spindle 

and the housing are key components in determining milling speed and fatigue 

life. Using the lookupbearing command, the designer provides an identification 

number to automatically retrieve parametric models of bearings with the proper 

dimension and estimated force capacity from an electronic catalog as shown in 

Figure 5.8(a). The bearingconn constructor in this figure allows the designer to 

create a bearing connector containing three bearings and a spacer along with 

parameters specifying desired fatigue life and rotational speed. To facilitate the 

modification of existing aggregations, this research provides the merge command. In 

Figure 5.8(a), the designer uses this command to incorporate the connector into the 

spindle-housing interface aggregation. Associated with the bearing connector are 

additional constructors, bearingConnStep and bearingConnBore, that the designer 

uses to generate manufacturing features, on both the shaft and the housing, to 
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accommodate the bearing connector. Figure 5.8(b) shows the new assembly features 

generated after adding the step feature to the shaft and the bore feature to the 

housing. After the designer merges the bearing details into the spindle-housing 

interface, Alpha.l automatically regenerates the housing and spindle parts with the 

appropriate bearing connection features and propagates all changes to the entire 

spindle cartridge subassembly. 

So that the bearings can be inserted during the assembly process and held in 

place during operation, the designer decomposes the housing part into another sub- 

assembly containing the main housing part and a detachable nose cap at the end of 

the housing as shown in Figure 5.9. This assembly requires a new interface between 

the nose cap and the housing. The designer determines that the nose cap is to be 

held in place with screws, so the designer invokes a command to retrieve the desired 

screw from an electronic catalog, then creates a screw connector using a constructor 

that arranges six identical screws in a radial pattern. The designer attaches the 

screw connector to the nosecap-housing interface using a partof relationship, and 

builds assembly feature aggregations that include the screw features. The designer 

constructs a new aggregation for the nosecap part in which he attaches the assembly 

features of the nosecap-housing and spindle-housing interfaces. The designer also 

attaches the nosecap-housing interface to the housing part, causing Alpha. 1 to 

automatically update the model of the housing part to include the threaded hole 

features for the screw connector. After the individual parts and interfaces are 

updated, Alpha-1 automatically regenerates the spindle cartridge subassembly with 

the nosecap-housing interface and the new parts added. The updated geometry is 

shown in Figure 5.10. 

With the completion of another design increment, the designer now needs to 

confirm that the proper bearings and screws were used. Each connector has char- 

acteristics, such as bearing life or screw grade, that determine the force limits that 

the connector can withstand. The designer invokes software assistants for force 

analysis that automatically calculate these limits and notify the designer if the 

applied forces exceed the capabilities of the connectors. 
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spindle_housing_intfc :* merge { 
"Retrieve bearing from electronic catalog; Insert 3 bearings and 

spacer into connector; specify fatigue life and speed goals in 

connector; and attach connector to interface joint"; 

bearing : lookupbearing( "L13", bearingCat ); 

spacer : bearingSpacer( bearing, 14 * mmtoinch ); 

bearingconn : bearingconnCarray(bearing, bearing, 
spacer, bearinglnvert(bearing)), 

SpindleCartridge::FatigueLife, 

SpindleCartridge::Speed); 

bearingAnch : offsetanchor( baseAnchor, 0, 0, bearing_offset ); 

atchl : partof( joint, bearingAnch, bearingconn, "+" ); 

"Generate step feature from bearing connector and attach step 

feature to interface shaft. Make this the positive feature."; 

shaft.part :* partSeq { 

shaft : shaft; 
shaftStep : bearingConnStep( bearingconn, step_length, 0 ); 

atchl : partof( shaft, bearingAnch, shaftStep, "-" ); 

} 
pos :* intfcpos( baseAnchor, shaft.part ); 

"Generate bore feature from bearing connector and attach bore 

feature to interface hole. Make this the negative feature."; 

hole_part :* partSeq { 

housinghole : hole; 
housingbore : bearingConnHole( bearingconn, bore.length, 0 ); 

atchl : partof( housinghole, bearingAnch, housingbore, "+" ); 

} 
neg :* intfcneg( baseAnchor, hole_part ); 

};   

hR|f       step feature. 

(a) Interface specification 

bore feature,     shaft 

bearing connector -^ 

(b) Feature geometry 

Figure 5.8. Details of the spindle-housing interface 
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housingAssy : assemblySeq { 

"Decompose the housing into an assembly"; 

}; 

housing; 

nosecap; 
nosecap_housing_intfc; 

Figure 5.9. Housing subassembly specification 

screw features 
housing on nQse cap and housing 
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Figure 5.10. Detailed spindle cartridge subassembly 

At this point in the design process, the designer has encapsulated descriptions of 

functionality and design rationale; design parameters, constraints, and goals; forces 

and kinematic information; manufacturing features; and geometry into the interface 

specification objects of the spindle cartridge subassembly. From this information 

the designer can invoke automated procedures, provided through this research or 

existing capabilities in Alpha.l, to analyze the forces and kinematic behavior of the 

subassembly, calculate geometric interference, or generate manufacturing process 

plans. The designer can generate different alternatives for the components or 

interfaces and Alpha.l automatically propagates these changes to the affected parts 

and subassemblies. The designer has also decomposed the machining center design 

problem into small subassemblies that are more easily understood and managed, 

and he has restricted the design of the spindle cartridge subassembly through 

external interface specifications that ensure its compatibility with the remainder 
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of the machining center. 

5.5    Formula Automobile Examples 
The formula automobile case study, with its focus on simultaneous design and 

higher-level subassemblies, demonstrates additional capabilities of the interface 

specification object. At higher levels, the automobile is decomposed into multiple 

subassemblies that are independently designed by separate subteams to satisfy 

predefined specifications. At lower levels, design subteams develop complex new 

designs or modify and reuse existing designs. Each independently designed sub- 

assembly is eventually integrated into a higher-level assembly until a completely 

integrated product design is achieved. 

5.5.1    Evolution of the Brake - Suspension Interface 

A considerable portion of the design of a part or subassembly is determined 

by its interaction with other components. The brake subassembly of the formula 

automobile, for example, is largely defined by its interactions with the rear suspen- 

sion subassembly. This is demonstrated in the specification and evolution of the 

interface between the brake and rear suspension subassemblies. 

When the interaction relationship between the brake and the rear suspension 

assemblies is first identified, the details are not well-defined. At this point, the 

design team defines an interface specification object to serve as a structural link 

between the two subassemblies. This link is generated with the constructor: 

intfc( ijointO, brakePosn, Brake,  suspPosn, RearSuspension ) 

that creates a link between the two subassemblies. This link contains a generic joint 

and allows the Brake and the RearSuspension to be positioned according to the 

brakePosn and suspPosn anchors. Geometry and position information associated 

with the interface at this point is useful for generating structural diagrams as shown 

in Figure 5.11. 

As the brake and rear suspension subassemblies are decomposed into their sep- 

arate components, the design subteams realize that the interface between the two 
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} Wheel |        | RearSuspension    { Brake { 

} PoweiTrain { 

Figure 5.11. Diagram of rear layout components 

subassemblies must also be decomposed. One part of the brake subassembly rotates 

with the hub and the wheel, while another part must be fixed to the rear suspension 

to stop the rotation. In accordance with the decomposition from Section 3.1, the 

designers create additional interfaces between the brake adaptor and the bearing 

carrier and between the brake hat and the hub. The designers incorporate these 

additional interfaces into the interface between the brake and the rear suspension 

using partof relations as shown in Figure 5.12. At the same time, the designers 

identify some common dimensions, labeled as CalMountOffset and BrakeEarOffset 

in Figure 5.12, that affect both of the subassemblies. 

The interfaces between the brake and the rear suspension continue to evolve 

as the designers add more detail to the interacting subassemblies. During this 

evolution, the designers first describe the interaction information in the interface 

specification object and they then incorporate this information into the interacting 

components. The interfaces between the brake and rear suspension subassemblies 

demonstrate useful capabilities for representing and controlling design evolution 

using the interface specification object. 

The interface between the brake adaptor and the bearing carrier consists pri- 

marily of a rigid, bolted connection as shown in Figure 5.13. What makes this 

interface specification so useful, however, is the location and dimension parameters 

that the designer includes in the interface specification object. The designer uses 

these parameters in the design of the brake adaptor and the bearing carrier to 

ensure the two parts are compatible. 

The brake hat and the wheel interact with the hub of the rear suspension 
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Brake_RearSuspension_Intfc : intfcSeq { 

"Include generic link information"; 

joint : ijointO; 

pos : intfcPos( baseAnchor, Brake ); 

neg : intfcPos( baseAnchor, RearSuspension ); 

"Identify common dimensions"; 

CalMountOffset :* ( 37.5 ); 

BrakeEarOffset :* ( 40.0 ); 

AdaptorAnchor : offsetAnchor( baseAnchor, 
CalMountOffset, 

BrakeEarOffset, 

o ); 

"Decompose into interfaces between Adaptor and Bearing Carrier 

and between Brake Hat and Hub"; 

Adaptor.BearingCarrier : intfc( ijointO, 
baseAnchor, 

Adaptor, 

baseAnchor, 

BearingCarrier ); 

atchl : partof( joint, AdaptorAnchor, Adaptor.BearingCarrier ); 

BrakeHat.Hub : intfc ( ijointO, 

baseAnchor, 

BrakeHat, 

baseAnchor, 
BearingCarrier ) ; 

atch2 : partof( joint, baseAnchor, BrakeHat_Hub ); 

}; 

Figure 5.12. Decomposition of interface between brake and rear suspension 
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Adaptor_Carrier_Intfc : intfcSeq { 

"Location and Dimensional Parameters"; 

CalBoltSep :* ( 80.0 ); 
CalBoltOffsetY :* ( BrakeEarOffset - CalBoltSep ); 

CalBoltOffsetX :* ( CalMountOffset + 30.0 ); 

Offsetl :* ( 7.25 ); 

0ffset2 :* ( 8.0 ); 

BrakeRotorThick :* ( 4.75 ); 

BrakePadThick :* ( 13.0 ); 
BrakePadAllow :* ( BrakePadThick + 0.5 ); 

BrakeCalFlangeRad :* ( 8.0 ); 

BrakeCalFlangeThk :* ( 8.0 ); 

BoltHoleDia :* ( 8.0 ); 
AdaptorThk :* ( 6.5 ); 

CarrierThk :* ( 10.0 ); 

"Interface joint and surfaces"; 

joint : rigidO; 

surf : capSurface( 
profile( pt( CalMountOffset   BrakeEarOffset ... ) ) ); 

"Retrieve screw from electronic catalog; build screw connector; 

and attach connector to interface joint"; 
screw : lookupScrew( "11F", screwThreadTable, 

"SOCKET", screwHeadTable, 

2, screwGradeTable, 
AdaptorThk + CarrierThk, AdaptorThk ); 

screws : screwrect( screw, AdaptorThk, 2, CalBoltSep, 1, 0 ); 

screwAnchor : offsetAnchor( baseAnchor, 0, 0, -AdaptorThk ); 

atchl : partof( joint, screwAnchor, screws, "+" ); 

"Generate screw features and attach to interface surfaces"; 

adaptorPart : partSeq { 

surf : entity( surf ); 
atchl : partof( surf, screwAnchor, screws, "+" ); 

} 
pos : intfcpos( baseAnchor, adaptorPart ); 

carrierPart : partSeq { 
surf : entity( reverse0bj( surf ) ); 
atchl : partof( surf, screwAnchor, screws, "+" ); 

} 
neg : intfcneg( baseAnchor, carrierPart ); 

}; 

Figure 5.13. Interface between brake adaptor and bearing carrier 
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subassembly through a rigid, bolted connection. Each of these three components 

interacts with the others in a manner that appears to require three separate inter- 

faces, yet a single bolted connection is used to join all three parts. The designers 

overcome this dilemma by deriving the interface between the brake hat and the hub 

from the previously defined interface between the wheel and the hub as shown in 

Figure 5.14. In this derivation, the designer creates a separate interface between 

the brake hat and the hub by copying the hub-wheel interface. The only thing the 

designer changes in the derived interface is the actual positioning of the interface 

bolt connector. Consistency among the derived interfaces is maintained through 

the change propagation mechanisms of AlphaA. 

5.5.2    Reuse of the Wheels 

In the formula automobile case study, the design team wants to reuse a previously 

designed model of the wheel assembly. In doing so, the design team must be able 

to ensure compatibility with the remainder of the design. The designer uses the 

interface specification object between the hub and the wheel to help achieve this 

compatibility.   If the wheel is compatible with the interface specification object, 

"Derive the brakehat-hub interface from the hub-wheel interface"; 

BrakeHat_Hub_Intfc  :* Hub_Wheel_Intfc; 

BrakeHat_Hub_Intfc  :* merge { 

"Offset the interface to account for the thickness of the 
brake hat"; 

BoltAnchor  :  offsetAnchor( baseAnchor,  0,  0,  -HubThk - 2 * Ext ); 
atchi  : partof( joint, 

BoltAnchor, 
HubBoltHolePattern, 
"+" ); 

}: 

Figure 5.14. Derivation of interface between brake hat and hub 
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then it should be compatible with the remainder of the model. 

The designers integrate the wheel into the design model by transforming the 

wheel model into the current design space, aligning it with the proper side of the 

interface, and invoking automated software assistants to check compatibility. In 

this example, the wheel is designed in inches and is offset from the origin. The 

local design space requires metric dimensions and orientation aligned with the Z 

axis and centered at the origin. The transformation to the local design space is 

accomplished with the command: 

Wheel   :   entity( objTransform( WheelOriginal, 
array( tz( WheelOffset ), 

sg( metricConv )   )  )  ); 

The designer aligns the wheel with the interface between the hub and the wheel by 

incorporating the wheel into a part that has the negative feature of the interface 

specification object attached through a partof relationship: 

WheelPart   :  part( Wheel, 
partof( Wheel,  Posn, 
Hub_Wheel_Intfc.NegEntity )   ); 

Finally, to calculate geometric compatibility, the designer invokes a command to 

check if there is any interference in the newly defined wheel part: 

checklnterferenceC WheelPart  ); 

Now the designer can control and manipulate the wheel part like any other com- 

ponent in the assembly. Any changes the designer makes to the original wheel will 

cause Alpha-1 to automatically reflect the changes in the new wheel part; however, 

after any change the designer will still need to recheck compatibility. 

5.5.3    Kinematics of the Drive Shaft Interfaces 

Although the assembly constructor automatically invokes kinematic analysis for 

any interface containing a kinematic joint, this analysis has been difficult to visualize 

on previous examples because they involved revolute surfaces and revolute joints. 

As a better visualization of kinematic analysis capabilities, this example analyzes 
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the rear layout assembly of the formula automobile with respect to the vertical 

travel of the wheel that might result from hitting a bump in the road. To simplify 

the analysis, the rear suspension support members and springs are not included. 

Instead, the designer focuses the analysis on the movement of the drive shaft that 

interacts with the final drive as shown in the simplified interface specification of 

Figure 5.15. In this interface the designer uses a spherical joint to allow limited 

rotation around the X, Y, and Z axes according to the first three parameters of the 

spherical constructor. The designer describes the rotational position about the X 

axis, the fourth parameter of the constructor, in terms of wheel travel (WheelPosn), 

which is an independent variable of the analysis. The positive and negative features 

are points used by the designer simply to connect the interacting parts. The 

designer specifies the interaction between the drive shaft and the hub in a similar 

way, and incorporates all of the subassemblies and interfaces of the rear layout 

assembly into an assembly aggregation as shown in Figure 5.16. Upon creation, 

the assembly constructor automatically analyzes the joint kinematics based on the 

rotational positions about each axis. In this example, rotation about the X axis is 

described in terms of wheel travel, while rotation about the Y and Z axes defaults to 

the center of the allowable range of rotation. By varying the wheel travel parameter, 

the designer can update the assembly, which causes the assembly constructor to 

FinalDrive_Shaft_Intfc :   intfcSeq 

"Spherical joint"; 

joint   :   sphericaK  15,  5,  2,  atand( WheelPosn,  ShaftLength )   ); 

"No surface details necessary for kinematic analysis"; 

pos   :  posIntfc( baseAnchor, pt( 0,  0,  0  )   ); 
neg  :  neglntfc( baseAnchor, pt( 0,  0,  0  )   ); 

Figure 5.15. Kinematic interface specification between drive shaft and final drive 
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rearLayout : assemblySeq { 

"Rear layout of formula SAE automobile"; 

"This layout groups all components connected 

through rigid interfaces into assemblies"; 

FinalDrive; 

DriveShaft; 

BearingCarrierAssy : assemblySeq { 

BearingCarrier; 

BrakeAdaptor; 

Adaptor_Carrier_Intfc; 

}; 

WheelAssy : assemblySeq { 

Rotor; 
BrakeHat; 

Hub; 
Wheel; 

Rotor_BrakeHat_Intfc; 

BrakeHat_Hub_Intfc; 

Hub_Wheel_Intfc; 

}; 

FinalDrive_Shaft_Intfc; 

Hub_Shaft_Intfc; 

Hub_Carrier_Intfc; 

}; 

Figure 5.16. Specification of rear layout assembly 
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reaccomplish the kinematic analysis. If the wheel travel will result in an invalid 

position for the spherical joints, the assembly is not reconstructed and the designer 

is notified. Figure 5.17 shows the resulting assembly at different wheel positions. 

(a) Wheel travel = 25mm (b) Wheel travel = 75mm 

Invalid X position 

(c) Wheel travel = 125mm (d) Wheel travel = 175mm 

Figure 5.17. Rear layout assembly at different wheel positions 



CHAPTER 6 

VARIATION 

Variation is an essential characteristic of any design process. As a design evolves 

from conceptual ideas to detailed features and geometry, designers create different 

variations of the design with increasing amounts of detail. If new requirements 

are imposed on the product, the design must be modified to accommodate these L 

requirements. Designers often generate alternate variations of a design when ex- 

ploring potential solutions to a design problem. 

Variation management, or as it is more commonly referred to, version manage- 

ment, is the process of controlling changes to a design component and tracking 

the differences between versions of the design component once changes have been 

made. When different views or alternatives are involved, version management also 

ensures that the alternatives are kept consistent when designers make changes. 

Most CAD environments provide little or no support for version management. 

Frequently, the designer can only view the current version of a design model with 

little information about the process and decisions through which the complete 

model came about. To manage multiple alternatives or old versions, the designer 

must save them under different names and track them independently from the actual 

design model. In systems that do provide support for managing design variations, 

the designer has little control over the level of granularity at which design models 

are tracked and controlled. Typically, it is convenient for a designer to manage only 

complete design models with these systems. 

This research designs and implements automated mechanisms for creating and 

managing versions of assembly, part, and neighborhood aggregations. To track 

designer modifications of an aggregation, this research creates automated software 

assistants that compute and record the differences in a new version of the aggre- 
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gation. This research also includes software assistants that automatically generate 

versions representing alternative solutions or views of the design, and it implements 

simple commands for selecting or copying existing versions of a component model. 

To simplify the process of changing a design model, this research introduces new 

editing mechanisms into the AlphaA design environment. The merge operation 

modifies existing components or adds new components to an aggregation. A long 

transaction sets the scope being edited to that of a designated aggregation. Within 

a long transaction, designers modify an aggregation locally without impacting the 

remainder of the product model. 

A goal of this research is to make version management an interactive design tool. 

To achieve this goal, this research creates versions based on the design aggregation 

objects described in Chapter 4. Through aggregation specifications, designers can 

control version granularity in a manner that is appropriate for their application or 

process. In addition, with the version selection operations of this research, designers 

can interactively access different versions of a design component for concurrent 

analysis, design exploration, or to manage design variants. 

6.1    Role in Complexity Management 
Any modification to a design object represents a new variation of that design 

object. Management of these variations, however, requires an acknowledgment of 

the intent of the modification. This research classifies variations into two categories, 

refinements and alternatives, based on the designers intent in creating the variation. 

This research uses a refinement to portray modifications to a particular aspect of 

a product design model that do not change the primary functionality or basic design 

approach. If slight changes are made to the product requirements, designers must 

refine the design to adapt to these changes. If there are problems or deficiencies 

with the current design, the designer creates refinements to perfect or improve the 

design. As a design evolves from a high-level concept to a manufacturable model, 

the product model is refined by adding more detail. In the framework introduced 

by this research, more refined levels of detail are represented as new configurations 
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of an aggregation that contain additional, more detailed design components. 

An alternative, as implemented in this research, describes an additional design 

solution for a particular aspect of a design problem or a separate view of a design 

solution to represent different design disciplines for analysis. Alternatives initially 

reflect a similar level of design detail; however, selected alternatives may evolve to 

include additional information. 

By managing design variations, designers have added control over product model 

evolution. By creating new versions of a design representation instead of overwriting 

an existing version, designers can recover previous versions. Version recovery may 

be necessary so the designer can correct errors that were introduced subsequent to 

that version or so that the designer can explore an alternate variation without the 

detailed information of the current version. The variational tools of this research can 

be used by the designer to manipulate and experiment with a versioned component 

in isolation from the remainder of the product model. In this way, the designer 

can perfect a single segment of the model before propagating the results to the 

remainder of the model. 

To explore the design space, a designer can use automated software assistants 

from this research to create alternative solutions to a particular design problem 

and to interactively select and analyze the alternatives to determine which is more 

appropriate in different scenarios. The designer can generate these alternatives 

from the same base component so that the alternatives share common constraints 

or features. 

Designers can use the aggregation mechanisms discussed in Chapter 4 to include 

design rationale and descriptions in design models. This information becomes part 

of the variation and can be recovered and used by a different designer to further 

evolve a design or to modify and reuse a particular design component. 

6.2    Underlying Concepts and Terminology 
Version management in AlphaA is dependent on two key data structures, scope 

and model object, that form the relationships necessary to depict the hierarchies 

and dependencies of a design model.   Although all design objects require these 
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structures to become part of a model, the scope and model object structures are 

largely hidden from the designer. 

6.2.1    Scope 

The neighborhood, part, and assembly aggregations from Chapter 4 form design 

hierarchies. Many related design objects can be nested into a single aggregation 

object. Each object in the aggregation becomes a member of a scope that is 

associated with the aggregation object. The scope limits the accessibility of the 

nested objects by objects external to the aggregation. 

6.2.2    Model Object 

The model object identifies key information such as the constructor function 

and the prerequisite pointers necessary to create a design object. The precedence 

relationships of a design model are depicted in the prerequisite pointers of model 

objects and the associated pointers to dependent objects that are based on an 

object. Hierarchical relationships are represented with pointers to nested scopes 

that are embedded in an aggregation design object. Each model object is a member 

of a scope that is referenced through the model object. 

6.3    Automated Mechanisms 
This research presents automated versioning mechanisms that help the designer 

to manage and to control variation at different levels of detail. The designer can use 

these mechanisms to track revisions, generate alternatives, and check consistency 

between related views. The versioning mechanisms created for this research include 

automated routines for generating baseline versions, delta versions, or alternative 

versions. In addition, simple commands have been implemented for interactively 

selecting versions. 

6.3.1    Baseline 

This research defines a baseline as a complete version of a design aggregation at 

a particular instance in time. A complete version contains all of the components 

within the nested scope of a neighborhood, part, or assembly aggregation and the 
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prerequisites necessary to reconstruct the aggregation object. To implement the 

automated versioning mechanisms in this research, the model object constructor 

routines of Alpha.l were manipulated to make a copy of the old scope before 

allowing any modifications. Additional routines were added to Alpha-1, so when a 

designer invokes a command to update an aggregation, the newly updated version is 

automatically appended to a version list for that aggregation. A baseline version is 

created automatically as the original version of an object. By invoking the baseline 

command, the designer can also explicitly create a baseline version, thus creating 

a checkpoint to facilitate design recovery. 

Figure 6.1(a) demonstrates the initial creation of a versioned aggregation object 

for the rear layout of the formula automobile. Version creation is completely 

automated - once the designer identifies an aggregation with the ": *" assignment 

operator, future updates to the aggregation cause a new version to be automatically 

created. In this example, the initial version includes all design objects defined 

within the brackets. 

6.3.2    Delta 

A delta version contains the differences between the current and previous ver- 

sions. By including only the differences instead of the complete version, a delta 

version saves computer storage space. A delta version is automatically created 

when a designer updates an existing version. 

This research provides three different mechanisms for a designer to revise aggre- 

gation objects: 

• Complete reconstruction. A new aggregation constructor specifies all un- 

changed objects from the original version along with all new or modified 

objects. A new version is automatically created upon successful execution 

of the new constructor. 

• Merge operation. A merge constructor specifies all new or modified design 

objects in the aggregation. The merge constructor creates a new version of 

the original aggregation that contains the new or modified objects. 
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• Long transaction. The local scope of the editor is changed to that of a desig- 

nated aggregation. The designer can then interactively edit the contents of the 

aggregation by modifying or adding design objects. Any changes the designer 

makes during the long transaction affect only the scope of the aggregation 

object for which the transaction was invoked. The long transaction termination 

command automatically creates a new version containing the objects that were 

added or modified during the transaction. At this point, AlphaA propagates 

the results of the long transaction to the rest of the model. 

The term long transaction is adapted from database theory [65] to describe 

an editing session that continues over an indefinite period of time. The 

designer controls when the long transaction begins and ends; however, in the 

current implementation, the designer must end a long transaction in the same 

editing session that it was started. The designer starts a long transaction 

with the BeginScopeEdit command that includes an argument identifying the 

aggregation to edit. For example, to edit the contents of the RearLayout 

assembly aggregation, the designer invokes the command: 

BeginScopeEdit( RearLayout ); 

The designer ends a long transaction with the EndScopeRevise or the End- 

Scope Alternate commands. These commands create a revised or alternative 

version of the aggregation, commit the changes, and propagate the changes to 

the rest of the model. The EndScope command affects the last scope for which 

a BeginScopeEdit command was issued. 

In Figure 6.1(b) the designer uses the merge constructor to create a new version of 

the RearLayout assembly aggregation created in Figure 6.1(a). These two versions 

demonstrate the utility of the variation mechanisms for representing various design 

abstractions. Each version represents a different level of detail for the same object, 

and the designer can access each version individually to view the model at either 

of the two levels of detail. 
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Re arLayout :* assemblySeq { 

"Layout of rear section of automobile"; 

RearSuspens ion; 

PowerTrain; 

Brake; 

Wheel; 
Suspension_PowerTrain_Intfc; 

Brake_Suspension_Intfc; 

Suspension.Wheel_Intfc; 

} 

(a) Initial version 

RearLayout : merge { 
"Add detailed subassemblies for the 

brake, rear suspension, and powertrain"; 

Brake : assemblySeq{ 

Hat; 

Rotor; 

Caliper; 

Adaptor; 
Hat_Rotor_Intfc; 

Rotor_Caliper_Intfc; 

Caliper_Adaptor_Intfc; 

} 
RearSuspension : assemblySeq{ 

B e ar ingC arr i er; 

Hub; 
Carrier_Hub_Intfc; 

} 
PowerTrain : assemblySeq{ 

DriveShaft; 
FinalDrive; 

Engine; 
DriveShaft_FinalDrive_Intfc; 

FinalDrive_Engine_Intfc; 

} 

(b) Revision with merge command 

Figure 6.1. Versions of rear layout assembly 
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The examples in Figure 6.1 also include design descriptions and rationale in the 

versioned aggregations. This information becomes part of the version history and 

can be used by a designer to understand why certain decisions were made and how 

the design evolved to its current state. 

6.3.3    Alternative 

An alternative version depicts an additional design solution or view of an object. 

This research implements an alternative as a complete version of an aggregation 

object that starts a parallel version path. Once an alternative has been created, it 

can be revised just like any other version. Revisions to alternative versions to not 

affect other alternatives of the same object. 

To create an alternative, designers have the same options - complete redefinition, 

merge, or long transaction - that are available to create a revision of an object. 

A designer distinguishes the construction of an alternative from a revision by the 

assignment operator ": <". 

The versioning mechanisms presented in this research implement alternative 

views of an aggregation object as alternative versions that include automated 

methods for checking consistency. The versioning system tracks consistency by 

checking whether the latest version of each alternative view is identified with the 

same baseline and revision number. 

A designer creates an alternative view with the assignment operator ":>" as 

shown in Figure 6.2. In this example, the designer is creating an alternate version 

of the rear layout assembly in which the components are configured such that 

all components attached via rigid interfaces are grouped into subassemblies. This 

configuration is useful for performing kinematic analysis since the designer can treat 

the rigid subassemblies as single components. The designer invokes consistency 

checking between the two views with the command: 

checkConsistency( rear_layout ); 

In many cases, alternative versions share common geometry, parameters, or 

constraints.  So that an object can be shared among multiple alternatives, a copy 
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rearLayout :> assemblySeq { 

"Rear layout of formula SAE automobile"; 

"This configuration groups all components 

connected through rigid interfaces into 

assemblies"; 

FinalDrive; 

DriveShaft; 

BearingCarrierAssy : assemblySeq { 

B e ar ingC arr i er; 

BrakeAdaptor; 

Adaptor_Carrier_Intfc; 

}; 

WheelAssy : assemblySeq { 

Rotor; 

BrakeHat; 

Hub; 

Wheel; 

Rotor_BrakeHat_Intfc; 

BrakeHat_Hub_Intfc; 

Hub_Wheel_Intfc; 

}; 

FinalDrive_Shaft_Intfc; 

Hub_Shaft_Intfc; 

Hub_Carrier_Intfc; 

}; 

Figure 6.2. Alternative view of rear layout assembly with rigid subassemblies 
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of the object must be inserted into each alternative in which it is needed. If created 

with a long transaction or merge command, this is done automatically; otherwise, 

the designer must include a copy in each alternative. Once an object is copied to 

different versions, AlphaA will automatically propagate any modifications of the 

original to each of its copies. 

6.3.4    Selection 

As new versions are created, the model object constructor assigns an identifier 

that specifies the alternative, the view, the baseline, and the revision. A new 

object is initialized as alternative one, view one, baseline one, and revision one 

(A1.V1.B1.R1). Creation of a new revision increments the number for the revision; 

a new baseline increments the number for the baseline and reinitializes the revision 

number; a new alternative increments the number for the alternative while reini- 

tializing the baseline and revision numbers; and a new view increments the number 

for the view while keeping all other identifier numbers the same. 

To track the current version of an object, a versioned design object contains a 

reference object that points to the current version of an object and the original 

version. Designers select different versions by identifying the aggregation name and 

version number. The selection command finds the appropriate version and changes 

the current version reference so that it points to this version. For example, the 

command 

selectVersion( RearLayout,  2,   i,   1,   1  ); 

sets the current version of the RearLayout subassembly to alternative two, view one, 

baseline one, and revision one. Using the propagation mechanisms of Alpha-1, all 

other design objects that are dependent on the versioned object are automatically 

updated to reflect the newly selected version. 

Using the getVersion command, designers can also select and copy a particular 

version of an aggregation to another object. The getVersion command does not 

change the original object and does not affect objects that are dependent on 

the original object.   Any subsequent changes made to the original object are not 
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propagated to the copied version. This selection mechanism allows the designer to 

use selected versions of an object without being concerned that subsequent changes 

to the original object will invalidate the new use of the object. Once a version has 

been copied with the getVersion command, the designer can revise it just like any 

other versioned object. 

Parameterized aggregations complicate change propagation and selection among 

versions. If the parameters are not contained in the aggregation, then the versioning 

mechanism has no control over them. Thus, if a designer copies a parameter- 

ized version, and then changes parameters upon which that version is dependent, 

Alpha-1 will propagate the changed parameters to both the copied version and the 

original version. If the designer includes the parameters within the aggregation, 

the parameters will be copied along with the other information in the aggregation 

and will not change when the original parameters are modified. 

Figure 6.3 demonstrates the effects of the getVersion command. The designer 

derives the BrakeHaLHubJntfc in Part (b) from version A1.V1.B1.R1 of the 

Hub-WheeLIntfc in Part (a). The designer then revises BrakeHat.HubJntfc to 

position the HubBoltHolePattern in a different location. These changes do not affect 

the Hub- WheeLIntfc. Similarly, any subsequent changes to the Hub- WheeLIntfc will 

not affect the BrakeHat-HubJntfc. This includes any changes to the parameters 

that are included in the interface aggregation. Two parameters, baseAnchor and 

Ext, however, have been declared elsewhere in the design model and used in the 

Hub. WheeLIntfc. Any changes the designer makes to either of these two parameters 

will affect both the Hub- WheeLIntfc and the BrakeHat-Hub-Intfc. 

6.3.5    Version Tree 

The version history of an object can be depicted as a version tree with alter- 

natives represented by branches in the tree as shown in Figure 6.4. The version 

reference at the beginning of the tree points to the base of the tree (the original 

version) and the current version. In this figure the left branch is the original branch, 

the middle branch is an alternative of the original branch, and the right branch is a 

different view of the middle branch. The skipped numbers in the right branch reflect 
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Hub_Wheel_Intfc :* intfcSeq{ 

"Specify the interface between the rear hub and the wheel"; 

StudLength :* ( 30.0 ); 

BoltNum :* ( 4 ); 

BoltCir :* ( 100.0 ); 

BoltDia : ( 10.0 ); 

BoltWall :* ( 1.0 * BoltDia ); 

0D :* ( 120.0 ); 

CtrDia :* ( 75.0 ) 

HatThk :* ( 4.75 ) 

HubThk :* ( 4.75 ) 

joint :* rigidO ; 
pos : intfcpos( baseAnchor, entityC ... ); 

neg : intfcneg( baseAnchor, entityC ... ); 

HubStud : lookupScrew( ... ); 
HubBoltHolePattern :* screwRadiaK ... ); 

atchl : partof( joint, 
offsetAnchor( baseAnchor, 0, 0, - 

HubThk - 2 * Ext ), 

HubBoltHolePattern ); 

}; 

(a) Hub - Wheel Interface 

BrakeHat. Hub.Intfc * getVersion( Hub_Wheel .Intfc, 1 1 , 1, 1 ); 

BrakeHat. Hub.Intfc * merge { 

"This interface is derived from version A1.B1.R0 of the 
Hub. Wheel.Intf :. The boltHolePattern Is offset e to 
account for the thickness of the brake hat"; 

atch: : partof( joint, 

offsetAnchor( baseAnchor, 0, 0, 

-HubThk - HatThk - 2 * Ext ), 

}! 

HubBoltHolePattern ) ; 

(b) BrakeHat - Hub Interface 

Figure 6.3. Use of getVersion command 
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inconsistencies between the views. If a number is missing, there is no consistent 

representation of the missing version. The dashed line between the last version in 

the middle and right branches represents a virtual consistency relationship that is 

not actually in the data structure, but is procedurally maintained with automated 

routines for checking consistency. 

Formulas AE 
Version Reference 

Base Current 

Original 
Functional View 

Version 1 

Original 
Functional View 

Version 2 

Alternative 
Functional View 

Version 1 

Alternative 
Functional View 

Version 2 

Alternative 
Functional View 

Version 3 

Alternative 
Rigid Assembly View 

Version 1 

Alternative 
Rigid Assembly View 

Version 3 

Figure 6.4. Version tree 



CHAPTER 7 

ANALYSIS OF COMPLEXITY 

MANAGEMENT 

CAPABILITIES 

Over the years, designers have developed a variety of techniques for managing 

design complexity. More recently, design automation systems have made it easier for 

designers to create and store design information. This, in turn, has made it possible 

for designers to create more complex design models for which the complexity can 

no longer be managed with manual techniques. To accommodate this increased 

complexity, this research introduces a framework for representing, analyzing, and 

managing complex design models, in which support for both new and existing 

design processes is integrated into computer design models. Section 1.4.4 presents 

a number of design activities and characteristics that are identified in this research 

as important for managing design complexity. In this chapter, these characteristics 

are used as a measure for analyzing the effectiveness of the complexity management 

framework introduced in this research and for comparing this framework to related 

design data models discussed in Chapter 2. 

Those capabilities that are emphasized in a particular research paper or tool 

are identified in Table 7.1. Sections 7.1 through 7.10 of this chapter describe the 

methods that each tool or researcher uses to satisfy these capabilities. In some 

cases, research tools support a capability such as hierarchical decomposition, but 

this capability is not marked in Table 7.1 because it is not a focus of the research 

effort and, consequently, is not described in the research paper. 
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Jacobs V V V V V V V V V V 
EDM V V V V V 

Multigraph V V V V 
Lee/Gossard V 

PDM V V V V V 
Geomes V V 

Bordegoni/Cugini V 
Baxter et al. V V 
Gorti/Sriram V 

Salomons et al. V 
Abrantes/Hill V 

Kim/Szykman V V 
Rosenman/Gero V 

Brett et al. V 

Table 7.1. Comparison of design tool capabilities 

7.1    Decomposition at Multiple 
Levels of Detail 

Using assembly aggregations and interface specifications, the framework devel- 

oped in this research supports decomposition of design problems into multiple 

subassemblies. In the formula automobile example, the designer began the de- 

composition with high-level functional systems such as the body, the chassis, and 

the power train, and evolved it into detailed assemblies of individual parts such as 

those in the brake subassembly. At the lowest level, the designer decomposed 

individual parts into combinations of features and geometry. Essential to the 

aggregation framework are the relationship objects between hierarchical levels of 

decomposition and between interacting components at the same level of detail that 
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assist the designer in capturing information such as functionality, kinematics, and 

relative position, yet support designer manipulation of individual design objects 

independently from the rest of the hierarchy. 

Using the aggregation and versioning mechanisms of this framework, the de- 

signer can modify or analyze a design model at the conceptual level, the detailed 

manufacturing level, or any level in between. This analysis can be accomplished at 

any time after the original definition of an object, regardless of how much additional 

detail has been added. Thus, the designer can always treat the rigid wheel assembly 

of the formula automobile, which includes the brake rotor, brake hat, the hub, and 

the wheel, as a single abstract object, even after the individual parts are added and 

refined with additional detail. 

Other design data models provide varying degrees of support for representing 

design decomposition. In Eastman's Engineering Data Model (EDM) for archi- 

tectural design [17], designers use compositions for representing objects that are 

composed from many parts. Accumulations form a parallel structure in which the 

designer can associate functional constraints with compositions at a similar level of 

detail. While this data model has considerable power for representing hierarchical 

decompositions, lower-level components tend to be tightly coupled to their parent 

composition, which restricts the designer's ability to independently manipulate and 

refine these low-level components. In addition, once low-level details have been 

incorporated into a composition, the designer can no longer access the higher-level 

abstraction by itself without the details. 

The multigraph data structure proposed by Gui and Mäntylä [27] supports the 

decomposition and evolution of design models from conceptual to detailed design 

with a hierarchical graph data structure. The multigraph also includes connectors 

for describing force transmission and motion constraints between interacting parts 

at the same level of detail. Like the framework presented in this research, the 

designer can use these peer-to-peer connector relations to manipulate subassemblies 

at a particular level in isolation from other levels. A drawback of the multigraph 

structure is that the designer must develop manufacturing details and functional 
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concepts in separate data structures. 

Lee and Gossard [38] present a hierarchical assembly structure in which the 

designer specifies the position and relative motion of components in an assembly 

with mating features that are associated with the hierarchical links between levels. 

This assembly structure is oriented toward the representation of complete, detailed 

assemblies rather than the evolution of an assembly design from conceptual to 

detailed design. 

Using product data management systems [4, 40, 42], designers can build struc- 

tural links between components and between different design representations for the 

same portion of a design model. Since little information can be associated with the 

links, however, they serve only to classify design information and to define product 

configuration structure. The designer has little control over the level of detail that 

can be manipulated with these systems since the data is managed at the document 

or file level rather than individual design objects. 

Wolter and Chandrasekaran [63] propose a geometric structure, or geome, as 

a mechanism for encapsulating low-level details into a single design object at a 

higher level of abstraction. Their work focus on feature level hierarchies with little 

discussion of complex assemblies. 

7.2    Simultaneous Development 
and Integration 

The interface specification objects introduced in this research are used to describe 

the interaction between parts and to constrain the design of interacting parts. If 

defined in advance of an individual part, the entire set of interface specification 

objects for a part create the design specification to which the part design must 

conform. By defining common geometry and constraints within interface specifi- 

cation objects, and by restricting change propagation to individual aggregations, 

independent design teams can simultaneously develop the design model for a part 

without impacting related parts. By conforming to design constraints and goals 

identified in interface specification objects, the independently designed components 

are more easily integrated into the final assembly. Using predefined specifications, 
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design teams with the appropriate expertise can develop, in parallel, major design 

subsystems such as the suspension and brake assemblies of the formula automobile. 

This can shorten the development period and enable the design to more accurately 

reflect the desired functionality. Unlike the interface specification object in this 

research, other design tools do not incorporate peer-to-peer constraints into their 

aggregation structures, and so are not as useful for simultaneous design and inte- 

gration of subassemblies. 

7.3    Representing Design Functionality 
This research presents the interface specification object as a mechanism for 

representing design functionality associated with the interaction between parts. 

Since design functionality is manifest in the relationships between parts rather than 

in individual parts [54], the interface specification object should be appropriate for 

representing most functional cases and styles of design. Kinematic functionality is 

represented through various joint types as demonstrated in the spindle cartridge and 

formula automobile examples. Representations for force constraints and connectors 

are embedded in the interface specification object and can be used to analyze force 

capacities. With additional features, automated procedures, or links to separate 

tools, the interface specification object can also include representations of other 

functional disciplines. 

Eastman's EDM [17] represents functional design rules and property relations 

between parts in an accumulation structure. The architectural examples discussed 

by Eastman emphasize classification properties such as the ability of a barrier to 

transmit light. It is not clear that EDM would support dynamic properties such as 

changing forces or moving parts. 

Gui and Mäntylä's multigraph [27] emphasizes the functional representation of 

a design model. A functional node in the multigraph includes a description of 

function or behavior or a specific representation for functional analysis such as 

elements in a bond graph. Functional nodes are linked with connectors that describe 

properties such as force transmission and relative motion. Although a multigraph 
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representation of the spindle cartridge or formula automobile might be useful for 

functional analysis, the designer must use a separate data structure for developing 

and maintaining geometry and manufacturing details. 

Bordegoni and Cugini [5] use an assembly feature for embedding functional in- 

formation in an assembly. Their approach is to define a template for the interaction 

between parts. Within the template is a functional classification, such as attach or 

avoid interference, and a list of possible solutions for achieving this functionality. 

The designer can also include a description of the interaction in the assembly 

feature. This feature-based approach is limited, however, in that an application 

expert must predefine all of the functional interaction possibilities that might be 

needed in a design. 

Baxter et al. [2] propose an enhanced entity-relationship diagram for representing 

functionality. In this representation, designers use functional relationships such 

as performed-by, input.of outpuLof, and has-need.of to link design entities. The 

functional entity-relationship diagram is primarily concerned with functional con- 

cepts, although the designer may link these concepts to separately defined geometric 

components. 

Gorti and Sriram [25] develop a conceptual design model from predefined ab- 

stract geometric components and the functional and spatial relationships between 

them. For example, a bridge is defined by three slabs that are connected with 

functions such as supports, transmits load, or resists load. While this approach 

is useful for visualizing high-level concepts, it can not easily be generalized to 

accommodate detailed geometry or features. At a conceptual level, this is similar 

to the high-level cylindrical shaft geometry associated with the spindle cartridge 

components as demonstrated in the examples in Chapter 5. 

Wolter and Chandrasekaran [63] state that designers can use geomes to map 

functions to geometry or to classify components by function. As an example, 

Wolter and Chandrasekaran describe a rack-and-pinion geome that transforms 

rotational motion into translational motion. For the spindle cartridge example, 

the appropriate kinematics, force transmission, and other functionality could be 
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embedded in a geome, along with the geometry, in a fashion similar to the interface 

specification object presented in this research; however, Wolter and Chandrasekaran 

have had limited success implementing geomes and support only two-dimensional 

models. 

7.4    Connectors and Fasteners 
This research uses connectors to encapsulate detailed geometry, manufactur- 

ing features, force constraints, and parameters for bearing and bolt applications. 

Connectors allow designers to query electronic catalogs to automatically retrieve 

standardized bearings and bolts, associate the bearings or bolts with application 

parameters such as fatigue life or joint thickness, and insert the encapsulated 

geometry and behavior of the connector into an interface specification object. 

Automated software assistants associated with the connector objects can be used 

to analyze force capacities of the connector and to generate features such as bearing 

bores or threaded bolt holes that are compatible with the connector. 

Gui and Mäntylä [27] use connectors to associate force transmission and kine- 

matic information with the relationship between functional components. The con- 

nector information is used to perform bond graph analysis of the energy flow in an 

assembly. To associate geometry with a connector, designers must create links to 

a geometrical representation in a separate data structure. 

Salomons et al. [46] and Abrantes and Hill [1] incorporate fasteners and connec- 

tors into the design model as geometric place holders. Neither of these implemen- 

tations, however, uses connectors for representing information that can be used for 

automated force analysis or assembly validation. 

7.5    Alternative Solutions 
This research represents alternative design solutions through the versioning ca- 

pabilities presented in Chapter 6. A designer can create multiple alternative ver- 

sions of an aggregation object, then select which alternative to use in the current 

model, or embed different alternatives into different versions of a design model. An 

alternative solution can evolve from an existing design model to maintain certain 
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constraints and to reuse common geometry and features. 

Figure 7.1 demonstrates the creation of an alternative version of the spindle- 

housing interface specification object used in the spindle cartridge design. In this 

solution, the only thing that changes is the number of bearings in the connector. 

This constrains the alternative to the same fundamental geometry and dimensions 

as the original version of the interface. Any changes in the original version will 

be automatically propagated to the alternative. The granularity of the changes 

is exactly that necessary to completely capture the additional bearing - no data 

objects other than the connector need to be included in the specification of the 

alternative version. 

In product data management systems [4, 40, 42, 62], designers create structural 

links to classify alternative versions of a design model. Alternatives are created 

as complete design models, either by copying and modifying an existing model, 

or by developing a completely new model. The alternative version of the spindle- 

housing interface object, as shown Figure 7.1, would likely require a complete copy 

of the spindle cartridge subassembly. Alternatives are linked at the document level, 

meaning subcomponents within a model can not be shared or linked to another 

model. This means the designer must manually propagate any changes to common 

subcomponents to all alternatives that contain these subcomponents. 

Kim and Szykman [33] link alternate solutions with design decision relation- 

ships in which the designer documents the rationale for creating a new version. 

spindle„housing. intfc :< merge { 

"This alternative only has two bearings"; 

bearingconn : bearingconn( array( bearing, 

spacer, 

bearinglnvertC bearing ) ), 

SpindleCartridge: :FatigueLife, 

}; 
SpindleCartridge: :Speed ); 

Figure 7.1. Alternative spindle-housing interface with two bearings 
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This mechanism allows the designer to derive different alternatives from common 

functional constraints, but requires the designer to explicitly define the decision 

relationship before creating a new version. 

Eastman's EDM [17] uses aggregation variables and solution domains to rep- 

resent alternative design models. A different alternative assigns different domain 

values to the variables. Although aggregation variables can represent design pa- 

rameters, it is not clear that they can represent complete design objects. If it is not 

possible to represent complete design objects, then alternatives are differentiated 

only by parameter values rather than by different configurations of features and 

constraints. 

7.6    Alternative Views for Concurrent 
Design 

In this research, an alternative view is represented as an alternative solution 

combined with procedural mechanisms for checking consistency between views. 

Consistency among views is automatically maintained only through the use of 

shared parameters, geometry, and constraints. To maintain consistency between 

view components that are not shared, automated software assistants identify which 

views are out of synchronization and the designer then updates the inconsistent 

components. In the formula automobile example, the designers created a primary 

view containing functional subassemblies and an alternative view with rigid sub- 

assemblies. If the designer changes the configuration of the primary view or any 

non-shared component within that view, then automated routines identify the rigid 

assembly view as inconsistent. The designer must then modify the rigid subassem- 

bly view to make it consistent with the modifications made to the functional view. 

In Eastman's EDM [17], accumulations are intended to be structures that de- 

signers use to associate different sets of constraints and rules with a particular 

composition. Designers might embed functional rules and constraints in one accu- 

mulation, dynamic analysis constraints in another accumulation, and manufactur- 

ing constraints in a third accumulation. Specialized relationships can be generated 

between two accumulations to ensure integrity. 



122 

Product data management systems [4, 62] can link the information associated 

with different views at the document level; however, the large granularity inherent 

in managing complete documents makes it difficult for PDM systems to also manage 

the fine grain task of maintaining consistency between views. 

Rosenman and Gero [45] describe architectural, mechanical, and structural views 

of a building design that contain explicit links to a set of functional primitives. 

Rather than using separate views to represent different types of information as- 

sociated with the same design object, Rosenman and Gero use views to form 

different configurations of the same primitive design objects. For example, both the 

architectural and structural views of a building include a wall, but the architect is 

interested in the wall as a space separator and the structural engineer is concerned 

about the structural support provided by the wall. To accommodate these two 

functions of a wall, designers generate a primitive object for the wall that includes 

separate functionality for a space separator and a structural support. The architect 

and structural engineer then incorporate the appropriate wall functionality into 

their view of the building design. By basing the views on the previously defined 

wall object, any changes in the wall object are propagated to the separate views. It 

is not clear how to apply this approach to the functional, manufacturing, dynamic 

analysis, or assembly views associated with a mechanical product such as the 

formula automobile. 

7.7    Design Recovery and Reuse 
By using the versioning mechanisms introduced in this research, a designer can 

recover a previous version of a design object and reuse it in a different design model. 

Unlike many design data models that embed information describing interaction and 

hierarchical relationships into the actual components, this research incorporates 

interaction and hierarchical information into independent relationship objects that 

link the components. By removing this relationship information from individual 

design components, and by encapsulating design information into aggregations, 

the framework presented in this research supports the reuse of design objects that 
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were designed for separate product models. In the formula automobile example, 

the designers incorporate a model of the wheel assembly, designed completely 

independent from the complexity management framework, into the automobile 

model by simply transforming it to the current design space and linking it into 

the automobile assembly with an interface specification object. 

Product data management systems [4, 40, 42, 62] allow the designer to reuse 

complete design documents by copying the document from one model structure to 

another. Since information describing the interaction between components is in the 

related components instead of the structural relationships, this information must be 

copied in addition to the design document being reused. This may involve manually 

copying portions of related design models other than the one being reused. 

7.8    Change Management and Analysis 
The complexity management framework introduced in this research provides 

support for controlling and propagating changes in a design model. A part or 

subassembly can be changed only in ways consistent with its interface specifications. 

When interfaces are used in the design of the part, as was done for the spindle 

cartridge, for example, many part modifications can be performed by changing 

only the interface. When components are developed independently, like the wheel 

of the formula automobile, interface specification objects can be used to verify that 

changes to the components are compatible with the remainder of the design model. 

By using the propagation mechanisms already in Alpha.l in conjunction with 

interface specification objects, the framework guarantees that changes to one com- 

ponent are automatically reflected in related components. In this fashion, changes 

to hierarchical or interface constraints are automatically propagated to all affected 

components in a part or assembly. 

To experiment with different design possibilities, a designer may want to modify 

and analyze a subassembly or part within a design model without affecting the 

remainder of the model. A designer can use the long transaction capabilities of this 

research to restrict changes to a particular aggregation object such as a subassembly 
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or part. Using these capabilities, the designer determines when to commit the 

changes and propagate them to the remainder of the model. 

The designer can make a change, propagate it to the remainder of the design 

model, and then analyze the impact of the change on the remainder of the model. If 

the change adversely impacts the design model, the designer can use the versioning 

mechanisms to revert to a previous version of the modified component. 

Product data management systems [4, 40, 42] provide limited change manage- 

ment capabilities. In particular, many such systems provide change control mech- 

anisms that restrict who can change a particular design document. Propagation of 

design modifications, constraints, or impact analysis is rarely supported in these 

tools. 

Eastman's EDM [17] provides a limited amount of change control through its 

use of variant and invariant constraints. Invariant constraints may be defined 

in advance to ensure conformance of related design objects. Variant constraints 

support controlled modification of a design through manipulation of the constraints. 

Brett et al. [6] define propagation mechanisms for specifying relationships be- 

tween two design objects such that changes in one object are automatically reflected 

in the related object. Use of this mechanism, however, has been limited to simple 

geometric relationships between features on a single part. 

7.9    Design History 

The different versions that result from the use of the versioning mechanisms 

in this research reflect the design history of an object. This history may be 

documented by incorporating textual descriptions of design rationale and decisions 

within the versioned aggregations. 

Kim and Szykman [33] enforce design history documentation by requiring the 

designer to describe design rational or decisions in the version relationships between 

two variants of a component. This ensures documented reasoning for each version 

of a design object. 
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7.10    Design Analysis and Simulation 
As demonstrated in both the spindle cartridge and the formula automobile 

examples, by incorporating kinematic and force constraints into the interface specifi- 

cation, the designer can use the automated framework from this research to analyze 

the design and simulate movement. For example, this research has created tools 

that automatically summarize and compare the forces acting on an interface and 

automatically check kinematic constraints of the joint. In addition, the interface 

specification object supports incorporation of a variety of information that can be 

used in different types of analyses and simulations. 

Limited support for analysis and simulation is available in other design data 

models. Gui and Mäntylä [27] use the information embedded in connectors to 

demonstrate bond graph analysis of the energy transmission between components 

in their multigraph data structure. Baxter et al. [2] analyze how well a concep- 

tual design satisfies the functionality specified in an enhanced entity-relationship 

diagram. 

7.11    Usability 
One of the goals of this research is to create mechanisms that a designer can 

integrate into new or existing design processes to manage design complexity auto- 

matically without a significant amount of additional effort. To achieve this goal, 

the aggregation and interaction mechanisms in this research are implemented as 

special types of fundamental Alpha-1 design objects that embody the relationships 

between design components. Because they are fundamental design objects, their 

constructor commands are invoked in the same way as those for curves, surfaces, 

and other design objects. Interaction and aggregation objects are accessible in the 

same fashion as any other design object in the Alpha-1 design system. Since they 

are integrated into the system, the designer can use these design objects together 

with other design objects in Alpha-1. 

Even though variation mechanisms are not accessible as independent design 

objects, little overhead is required of the designers to activate these mechanisms. 
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Designers create revised and alternative versions of an object with an assignment 

operator and they use simple commands to select and edit different versions of an 

object. 

In addition to being easy to invoke and manipulate, the complexity management 

mechanisms significantly improve the usability of the entire system. When applied 

to the machining center and the formula automobile examples, these complexity 

management mechanisms added significant organization and understanding to the 

design models while, at the same time, their application reduced the total amount 

of work required of the designer. 

To demonstrate compatibility and to illustrate the benefits of the complexity 

management mechanisms, the design model of the formula automobile example 

was modified to fit the interaction and aggregation structures of the framework 

presented in this research. In doing so, interface specification objects were used 

to incorporate bearings, bolts, and common parameters into the design. Along 

with the dependency mechanisms of AlphaA, this ensured consistency between the 

interacting parts and also reduced the design language specification of those parts 

by nearly 20%. Designers decomposed the design model into individual parts and 

decomposed those parts into separate features so that they could easily distinguish 

which geometric and manufacturing features were included in a particular compo- 

nent. 

In the spindle cartridge example, the designer constructed interface specifications 

before designing individual parts, and then embedded the interface information 

into the part models with aggregation mechanisms. Then, by making changes 

only in the interface specification, the designer could modify multiple interacting 

parts. The changes were then propagated by the system to all affected parts. 

By ensuring consistency among the parts, the designer did not need to manually 

maintain records of which parts were affected and also was relieved of making 

changes in multiple components. 

Being able to have variations in the complexity management framework is some- 

what limited by the lack of a shared database for design models. Without a shared 
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database, it is possible for designers to maintain different versions of a design model, 

in separate databases, with no mechanism for ensuring consistency or compatibility. 

Without a database management system, users of Alpha-1 are also restricted in their 

ability to access individual objects from a data file, and hence their ability to control 

the granularity of changes is limited. Despite the lack of a database, the system still 

supports the maintenance of consistent versions and controlled granularity while the 

designer is editing a model interactively. 

7.12    Extensibility 

With the large range of possibilities, it is difficult to develop automated mech- 

anisms to support every potential design scenario. Instead, this research is aimed 

at presenting a framework that can be easily extended to accommodate additional 

design disciplines and capabilities as well as a set of design specific tools. Incor- 

porating complexity information into relationships between design objects rather 

than requiring modifications to the actual design components accomplishes this 

goal. The interaction and aggregation relationships facilitate extensibility of this 

framework by allowing designers to independently manipulate information that 

contributes to design complexity. 

During the development of procedures for assisting the designer with analy- 

sis, the automated complexity management framework was used as an efficient 

means to extend analysis capabilities to different mechanical applications. Once 

the primary aggregation and interaction structures were in place, it was a simple, 

straightforward task to add new connectors, constraint analysis, and management 

information to the interaction and aggregation objects. For example, in adding 

the screw connector, the developer defined a design object with the necessary 

parameters. Basic attributes and methods for the design object were inherited 

through the object-oriented structure of the complexity management framework 

implementation. The Alpha-1 development environment then automatically gener- 

ated most of the code required to integrate with the rest of the system. The only 

code the developer needed to generate manually was to specify the screw geometry 
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and the force capacity calculations. 

Design of a product is performed across multiple design disciplines and, in 

practice, across multiple CAD tools. This research has created a framework with 

the intent that it can be incorporated into other CAD tools by implementing 

the interaction and aggregation mechanisms as independent design objects. The 

complexity management mechanisms were integrated into the Alpha-1 user interface 

tools by providing references to the constructors and methods implemented for 

the aggregation and interface objects. Similarly, other tools could integrate these 

mechanisms by developing a compatible object structure and linking the object 

constructors and methods into the tool interface. 

The benefits of embedding complexity information within relationships that are 

implemented as independent design objects becomes more apparent when compared 

to the versioning mechanisms developed in this research. The versioning capabilities 

are not implemented as relationships making it more difficult to modify these 

capabilities once they are embedded into a model. Since versioning representations 

are built into the model graph framework of Alpha-1 they are not easily separated 

and extended to other applications. The concepts, however, are equally applicable 

in other design environments. 



CHAPTER 8 

SUMMARY, CONCLUSIONS, AND 

FUTURE WORK 

8.1     Summary and Conclusions 
This research creates aggregation and relationship objects and combines these 

objects with version management capabilities to form an organizational framework 

for representing, analyzing, and controlling complex design models as they evolve 

from functional concepts to detailed manufacturable designs. The resulting software 

system overcomes many of the deficiencies associated with other CAD environments 

by bringing together the intricate relationships between design components, de- 

tailed constraints and design information associated with these relationships, and 

methods for propagating and controlling this information throughout the design 

model. 

In this framework, aggregation relationships and objects capture the decomposi- 

tion hierarchy of a model and organize the model into collections of features, parts, 

and subassemblies. An aggregation object establishes a scope that encapsulates 

multiple design components into a single design object. Aggregation objects fa- 

cilitate change control by restricting access to components within the aggregation 

scope. When editing an aggregation, designers can also limit the effect of changes 

to the aggregation scope. 

So that designers can adapt them for a variety of design processes and appli- 

cations, few restrictions are placed on the contents and size of an aggregation or 

on the relationships between aggregations. In a top-down design process, aggrega- 

tions represent the decomposition of the design problem into less complex, more 

easily managed subproblems. At high levels, design understanding is facilitated by 

abstracting away lower level aggregations and components and, at lower levels, un- 
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derstanding is simplified by focusing only on the objects within a single aggregation. 

Evolution of a design, from functional concepts to manufacturing details, is linked 

through multiple versions of aggregations. By reconfiguring aggregations, designers 

can also represent variations of a design or alternative views for multidisciplinary 

design analysis. 

To describe how interacting parts or subassemblies fit together and cooperate to 

form a functional product, this research introduces the interface specification object. 

Whereas previous research has focused in isolated aspects of the interaction between 

parts, the interface specification object relates two interacting components and 

provides a platform for specifying geometric, functional, and kinematic constraints 

between the components. Other information, such as fasteners, connectors, or 

force constraints, can be incorporated into the interface specification object with 

aggregation relationships. 

The interaction information contained in the interface specification objects for 

a component forms a design specification. If the component design satisfies the 

specification, then it is guaranteed to properly interact with other components 

as delineated in the interface specification objects. If specified in advance of 

interacting parts, the assembly features within interface specification objects can 

be incorporated into the actual design models of parts, thereby ensuring the parts 

adhere to the requirements in the specification. Furthermore, the work required 

of designers is reduced since the details are specified only once in the interface 

specification object rather than once in each part. If subsequent changes are 

made to the interface specification object, they are automatically propagated to 

the interacting parts, further consolidating the designers work. For a designer to 

ensure consistency when reusing existing component designs, automated software 

assistants are embedded in the interface specification object to check that the com- 

ponents satisfy the specification. By ensuring compatibility between components, 

the interface specification object decreases the possibility of errors and reduces the 

amount of redesign. 

The version management capabilities of this framework capture the history of 
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a design as it evolves from conceptual to detailed models. Versions also represent 

alternative design solutions and views of a design model to facilitate design explo- 

ration and concurrent analysis. By interactively selecting different revisions, views, 

or alternatives of a component, designers can build different configurations of ver- 

sioned aggregations, recover from adverse changes, or analyze multiple alternatives. 

Using the aggregation and relationship objects of this framework, designers can 

represent interacting components, conceptual and detailed design models, different 

design disciplines, design history, and functional constraints in a single model 

structure, yet each representation can be independently manipulated and analyzed. 

Well-defined aggregation boundaries are formed by restricting access to objects 

within an aggregation and by using interface specification objects to delineate in- 

teraction information shared by two parts. These boundaries facilitate independent 

development and modification of design components by making it easier to deter- 

mine those objects that are affected by changes. By enabling independent creation 

of design components, existing design models can be reused and integrated into the 

framework. This independence also facilitates the extension of the framework to 

other design applications. 

This research uses a machining center example to demonstrate many of the 

capabilities of the complexity management framework. The designer focused on 

the innovative design of a spindle cartridge, a particularly complex subassembly 

with strict requirements for accuracy and tool compatibility. Using interface spec- 

ification objects, the designer carefully defined the interacting features between 

parts. The designer then incorporated the interacting features from the interface 

specification object into the spindle cartridge parts to constrain their design. Since 

the designers could manipulate the model at any level of granularity, they added 

detail to the interface specification objects and incrementally evolved the geometry 

and functionality of the spindle cartridge. Since the changes were made through the 

interface specification object, the designer was guaranteed that the parts would be 

compatible. In addition, using automated software assistants associated with the 

interface specification objects, the designer incrementally analyzed the forces, kine- 
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matics, and geometry of the design model to identify deficiencies and to determine 

the best approach for proceeding with the design. 

The formula automobile design development illustrates additional capabilities 

of this framework. In this case, the designers built a conceptual model using 

an assembly aggregation to identify the major subsystems of the design. These 

subsystems were assigned to separate subteams for simultaneous development. 

The design subteams used the design information in the interface specification 

objects as a basis for creating and evolving their independent designs. Interface 

specification objects were also used to ensure that previously existing design models 

were compatible and could be integrated into higher level aggregations. Using 

aggregations and interface specification objects, designers organized the existing 

designs into specialized parts and features and consolidated design constraints, 

parameters, and features that had been duplicated in multiple parts. As a result, the 

part specifications were reduced by nearly twenty per cent over the previous models, 

and the resulting design models were more easily understood. This organization 

and the associated reduction in part specifications impacts the entire design life 

cycle since modifications and analyses are also simplified. 

As summarized below, the machining center and formula automobile examples 

demonstrate several advantages of using the organizational framework to represent 

complex product models. 

• A single data structure is used to represent a complete product model, but this 

structure still allows independent manipulation of individual parts, multiple 

levels of detail, and different views of the design model. 

• Aggregation and relationship objects combine to form well-defined aggregation 

boundaries that facilitate simultaneous design and reuse of existing designs, 

while simplifying change management by isolating the impact of changes. 

• The organizational framework is flexible so that designers can control the 

organization and granularity of model components in a manner that is most 

suitable for increasing understanding of their particular application or process. 
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• A single structure integrates geometric and non-geometric design information 

to make it easier to analyze and control this information. 

• The interface specification object eliminates the duplication of interaction in- 

formation in multiple parts as is common in many other CAD representations. 

• Alternative versions and version recovery mechanisms facilitate design explo- 

ration by reducing the cost to analyze different design possibilities. 

8.2    Future Work 
To demonstrate the capabilities of the complexity management framework and 

to represent key aspects of the machining center and formula automobile examples, 

this research implements a representative collection of manufacturing features, 

kinematic joints, and mechanical connectors. The framework can be used to repre- 

sent a wide variety of design information and does not require features, joints, or 

connectors; however, these abstract objects greatly simplify the analysis and man- 

agement of complex mechanical design information. Incorporating additional joint 

combinations and connectors, or additional manufacturing, assembly, or functional 

features into the framework would enable it to represent other design problems or 

application areas. 

In Alpha-1, persistent data are maintained in individual files with no common 

links between these files. The versioning and reuse capabilities of the complexity 

management framework, in particular, would be considerably more powerful if 

design objects were accessible through a common database. Since the automated 

mechanisms are implemented as independent software objects, the capabilities of 

this framework could be implemented on top of commercially available object- 

oriented database management systems. 

This framework improves a designer's ability to manage the many relationships, 

design objects, and aggregations that exist in a complex design; however, it is still 

difficult for a designer to visualize the hierarchical decomposition structures, related 

versions, or interacting components. A hierarchical browser, that traverses the com- 
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plexity management relationships available in this framework, would significantly 

enhance a designer's ability to visualize and navigate complex model structures and 

design histories. 

While the relationships in this framework provide a focal point for representing 

any type of design information, no single tool is likely to provide all of the analysis 

and design capabilities required in a complex design. Instead, some of the data will 

need to be transformed into different formats for compatibility with other tools. 

While this framework facilitates the extraction of information, the framework would 

be more useful if it could be shared among multiple tools. This would also enable 

separate design teams using different design tools to share their design data. This 

is a likely scenario where different companies develop individual subassemblies of 

a design. To accommodate data sharing, a standardized data representation must 

be developed for the aggregation, interaction, and variation structures. 

A significant motivation for this research was the possibility that the complexity 

management framework could be adapted for use in other design areas such as 

software design. Many of the capabilities and activities are similar including, among 

others, hierarchical decomposition, simultaneous design, evolution from conceptual 

to detailed design, and reuse of existing components.   Although versioning and 

aggregation mechanisms are already available in software design tools, interaction 

information is typically embedded within the actual components and exported via 

a public interface such as that for a C++ class.  Changing the interface generally 

requires a change to the associated object or class.    If the interfaces between 

software objects were specified in independent relationships similar to the interface 

specification objects in this research, designers would have increased flexibility for 

ensuring object compatibility and for reusing existing objects. This would improve 

the development of software building block objects that could be incorporated into 

other designs to reduce the need for reprogramming these objects each time similar 

functionality is needed. 
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