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ABSTRACT 

This dissertation studied the Ti:sapphire laser as a pulsed ring laser gyroscope. 

Several new cavity designs were demonstrated, including a saturable absorber mode- 

locked laser gyroscope, a linear cavity laser, a Kerr-lens mode-locked femtosecond laser 

gyroscope, and a solid-state mutual Kerr-lens mode-locked ring gyroscope. 

A solid-state ring laser gyroscope using a dye-jet saturable absorber was studied 

for the first time. This laser produced the lowest beat frequencies recorded in a pulsed 

laser (10 Hz with a 10 Hz bandwidth) and also the narrowest beat note bandwidth at 0.85 

Hz. This low beat frequency bandwidth corresponds to a nonreciprocal change in optical 

path length of 7xl0"15 meters. A sensitive technique to measure the intensity dependent 

refractive index, n2, was developed using this laser. Null-bias dithering was 
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demonstrated for the first time using an electro-optic modulator. A new method of 

extracting the average beat frequency from a dithered laser was discovered and the 

experimental result was verified with an analytic solution. 

A novel linear cavity with two pulses in the cavity was used for the first time to 

measure electro-optic coefficients. This laser can be analyzed as an extremely elongated 

ring laser with the difference being that the pulses are indistinguishable which implies no 

bias beat frequency. 

Kerr-lens mode-locking was demonstrated for the first time in a ring laser 

gyroscope. This laser employed both passive negative and positive feedback in the same 

Kerr element. Both continuous wave operation and Q-switched mode-locked operation 

were demonstrated without lock-in. A novel method of stabilizing the crossing point 

ring laser was demonstrated by using mutual Kerr-lens mode-locking which resulted 

bidirectional, solid-state ring laser. Finally a bidirectional OPO ring gyroscope was 

designed. The OPO ring gyroscope solves many of the problems of a solid-state ring 

including, gain competition, lock-in and bias. 
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Chapter 1 

Introduction 

Laser gyroscopes are a billion dollar [3] industry because of the demand for an accurate 

rotation sensor in guided weapons, airplanes, submarines, automobiles, ships and satellites[4]. 

Other applications include the study of geophysical phenomena such as the wind, rain and 

tides that can alter the rotation rate of the earth[5]. Sensitive gyroscopes can also be used 

to detect earthquakes and other movements of the earth's surface[6, 7]. In addition to the 

applications above, pulsed laser gyros can study nonreciprocal optical effects [8]. Pulsed laser 

gyros are an area of research that has been largely unexplored. In the 60s the HeNe laser 

was mode-locked to reduce the lock-in band, but was not very successful[9]. In the 70s the 

Soviets studied the actively mode-locked Nd:YAG laser as a possible laser gyroscope[10, 11]. 

In the 90s the mode-locked ring dye laser [12, 13] and the diode laser[14] were studied 

for the first time as possible gyro candidates. More recently solid-state lasers such as 

Ti:sapphire, Cr:LiSAF and Cr:YAG have entered the arena with excellent stability, high 

power and extremely short pulses. 

The Tirsapphire laser is less noisy than a ring dye laser, it is easier to operate and is 

also capable of producing sub-10 femtosecond (fs) pulses. Ti:sapphire can be pumped by 

an Argon ion laser, which makes it simple and cheap to replace the gain medium in a CPM 

ring dye laser with a Ti:sapphire crystal. The lifetime of Ti:sapphire differs from dyes by 

about 3 orders of magnitude, and this difference has created many problems in building a 

bidirectional femtosecond Ti:sapphire laser. These problems have resulted in new cavity 

designs, several new methods of mode-locking and a new design of a pulsed gyro based on an 



Optical Parametric Oscillator (OPO). The OPO design is extremely exciting and has the 

potential to revolutionize the gyro industry. Because the OPO might be sensitive enough 

to be used for gravity wave detection, it could very well pave the road toward a Nobel Prize. 

.LiNbO 

SF-14 Prisms 

c Ti:Al20 
Dye Jet 

Figure 1.1: A) Linear cavity: no bias beat note. B) Saturable absorber mode-locked: low 
beat frequencies and low bandwidths. C) Kerr-lens mode-locked: femtosecond pulses. D) 
Mutual Kerr-lens mode-locked:   solid-state. 

The rest of Chapter 1 will fill in the background on ring lasers and short-pulsed lasers. 

Chapter 2 will present a novel laser design that I like to call "The Linear Gyro" (see Figure 

1.1A), and also some new experimental and analytic results on electro-optic dithering of a 

laser gyro(see Figure LIB). The world's first Kerr-lens mode-locked femtosecond bidirec- 

tional ring laser gyro (see Figure 1.1C) is presented in Chapter 3. Q-switched mode-locked 

operation is obtained by using a concentrated dye solution and a two-photon absorber. A 

novel method of mode-locking is introduced in Chapter 3 called mutual Kerr-lens mode- 

locking, which generates CW and CCW pulses without a saturable absorber and is com- 

pletely solid-state (see Figure LID).  The Bidirectional Optical Parametric Oscillator(OPO) 



Ring Gyro (or BORG) is an exciting design that is presented in Chapter 4. Numerous 

applications of sensitive gyros are outlined in Chapter 4 entitled "Future Work." Chapter 

4 also includes experiments that would make excellent follow-on projects for graduate-level 

research. Chapter 4 concludes with failed experiments and a brief explanation about why 

they did not work. This dissertation chronicles the advancement of pulsed ring laser gyros 

from the dye laser into an all solid-state system. 

1.1    Laser gyros 

When a bidirectional ring laser is rotated in the clockwise (CW) direction, the clockwise 

traveling wave will see a slightly longer cavity because the mirrors of the cavity are moving 

away from the propagation direction. Likewise the counter-clockwise (CCW) wave will see 

a slightly shorter cavity because the cavity mirrors are moving opposite to the propagation 

vector. The slight change in cavity length (P for perimeter) will result in a slight shift in the 

frequency (z/) of the laser. When the CW and CCW beams are combined on a detector, the 

frequency difference (called the beat frequency AO) is measured. It is a trivial derivation, 

but still worthwhile.   The frequency of a laser is defined to be: 

" = «£ (1-1) 

where q is the number of half-wavelengths that "fit" into the laser cavity. A small change 

in P results in a differential change in the frequency: 

(1.2) 

substituting in the definition of v. 

u 
(1.3) 

or: 

Ai/ = ^p 

Ai/ = -$*> 

Au AP 
V P 

(1.4) 

Thus a small change in cavity length results in a large change in frequency because the 

frequency difference is multiplied by the frequency of light.    A small change is defined as 



AP < — because a change of P greater than a quarter-wavelength would lead to ambiguous 

results for a mode-locked system because the change in frequency would be closer to the 

next longitudinal mode. The range AP could be extended to — if the ambiguity of sign 

were removed from the beat note. Another way to arrive at this same result is to consider 

that the repetition rate of the laser is -p, the Nyquist theorem states that the maximum 

frequency that can be resolved is -£p. A beat frequency of ^ would correspond to a AP 

of —.   Since a quarter-wavelength is much, much smaller than the cavity length, the use of 
/it 

differentials is well justified in the derivation above. The same derivation will also work for 

any other interaction that will lead to a difference in optical path length for the CW and 

CCW directions. 

1.1.1    Bias 

A bias beat note is a frequency difference that is caused by something other than a rotation. 

If it cannot be properly compensated, it will lead to a source of error. Unlike the mode- 

locked laser gyro that will be presented in the next section, there are few effects in the 

continuous wave laser gyro that will lead to a bias beat note. This is a result of the light 

being of low intensity and continuous and therefore lacking a large nonlinear drive. 

Presnel drag is one way to obtain an artificial bias beat note. This was originally 

discovered in the HeNe system because the electrical discharge imparts momentum to the 

atoms and the unexcited atoms diffuse toward the cathode [15]. The electrical discharge 

imparts a uniform distribution while the back-diffusion is parabolic, thus creating a net 

velocity difference in the center of the tube. Presnel drag is demonstrated in a laser gyro 

by simply using an air hose and blowing it along one of the arms of the laser. This effect is 

a result of the velocity addition in special relativity[15, 16, 17, 18]. The phase velocity of 

light in a moving medium is: 

V=-± Vmedium ( 1 ?  ) (1-5) n \       nl) 

where the ± depends on whether the light is moving with or against the velocity of the 



medium, VmediUm^ which leads to a frequency difference in a ring laser gyro of: 

Afi = 2(n2 - l)Vmedium— (1.6) 

where d is the length of the medium and P is the perimeter of the laser gyro. The change 

in frequency observed in our laser was on the order of a few hundred Hz. 

A Faraday rotator will also induce a difference in the optical path length. The setup 

consists of a Faraday rotator separated by two quarter wave plates. The Faraday material 

has a different refractive index for the left-hand circularly polarized light than for right- 

hand circularly polarized light. This leads to a difference in optical path length for the two 

beams. Since the two counter-propagating beams have different polarizations, they could be 

spatially separated by using polarizing beam splitters. In fact, this bias has been analyzed 

using spatially resolved eigenstates[19, 20]. 

1.1.2    Lock-in 

For a laser gyro to work properly, the frequencies of the CW and CCW modes must be 

independent of one another. Any coupling between the two will result in frequency pulling 

and a reduction in the measured rotation rate. This coupling is similar to injection locking 

where a small signal is injected into a free-running oscillator and causes the oscillator's 

frequency to tune. If the scattering is severe enough or the frequency difference between 

the CW and CCW modes is small enough, then the two modes can actually lock to one 

another resulting in no measured beat frequency. This disastrous frequency range is called 

the 'dead-band'. 

Next we will derive the lock-in equation (Adler's equation) and analyze the beat fre- 

quency as initially derived by Aronowitz[15], reworked by Dennis and Diels[21] and analyzed 

by Stedman[22, 3]. Consider the two fields E\ and E2 corresponding to the CW and CCW 

electric fields. A fraction of E2, r, is scattered into E\. Because of the phase difference 

between E\ and E2, the addition must be done vectorally (see Figure 1.2). Since Ex must 

meet the round-trip requirements of a laser, its phase must be adjusted by the amount a in 



rE2sin((/r) 

Figure 1.2: Vector change in Ei as a result of scattering from E2. 

order to be self-consistent.   Therefore the change in phase per round-trip is: 

dtp      . c 
—— = Aw = a— 
dt P 

(1.7) 

Where P is the perimeter of the laser and — is the round-trip time.   From Figure 1.2 we see 

that a — r-—sm(ip) for small values of a.   Including a rotation rate, Q, with scale factor, 

R yields: 

Au = ^ = m - r§ sin(V0 (1.8) 

A more complete derivation includes the phase of the scattered light, ß and the scattered 

waves from both directions[23, 15, 24] as shown below: 

dip 
dt 

= R£l - £liock sm(tp + ß) (1.9) 

(p       P \   c 
— + — ) — is the frequency the laser will lock, r is the field scattering 
Ei     E2J P 

of one mode into the other, £q and Ei are the electric field amplitudes,   0 is the rotation 

rate, R = —- is the scale factor and A is the area enclosed.   The solution to the nonlinear 
Al 

differential equation can be solved by integration: 

/* = / 

dip 
RQ - üiock sm{ip + ß) 

(1.10) 
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(1.11) 

tan (1>(t)+ß)* Viock + y/iew-autm (l^^-nLb) 
(1.12) 
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Figure 1.3 is a plot of the cosine of the phase ip (t) for four different rotation rates (A, B, 

C and D) as defined in Figure 1.5. Note the good qualitative correspondence between the 

theoretical plot in Figure 1.3 and the experimental results in Figure 1.4. Some experimental 

A ■ 

6        8       10      12      14      16      18      20 
Time (ms) 

Figure 1.3: Theoretical plot of the beat signal as a function of time. The plots A, B, C and 
D correspond to data points on the experimental lock-in curve plotted in Figure 1.5. 

results demonstrating lock-in are shown in Figure 1.5. The points labeled in Figure 1.5 

correspond to the beat signals plotted in Figure 1.4. Notice the non-sinusoidal behavior 

near lock-in. These data were taken using a Ti:sapphire laser mode-locked with an absorbing 

dye jet (see Figure 1.6). A bicycle reflector was used to scatter a small portion of the CCW 

beam into the CW and a LiNbC>3 modulator was used to simulate rotation.   The phase of 



A - 

B - 

C - 

D 

-T- 

10 
Time (ms) 

Figure 1.4: Time series of the beat signal at locations A,B, C and D along the lock-in curve. 

the scattering, ß, plays a critical role in the shape of the beat signal, as can be seen in Figure 

1.7. It appears that the bicycle reflector induces a phase change of ^ in reflection. Far 

from fliocki the solution is clearly periodic with frequency: 

2np = y/wW - Qfock ~ RSI (1.13) 

To avoid a plethera of omegas, we will make the substitutions, 2nf = RSI, 2n£ = fi/ocfc 

and 27rp = ^jR2Vl2 — Vtfock. Where / is the unpulled /requency, £ is the ^ock-in frequency 

and p is the pulled frequency. By taking the time derivative of the phase, we will find the 

instantaneous beat frequency.   Note that this can be solved by using equation 1.9 and 1.12 
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Figure 1.5: Average beat frequency of the laser versus the effective rotation rate. 

to yield the instantaneous frequency: 

fp2 _L^t   =    f (t) =  
2?r dt J0 KJ      f2 + £2 cos (2irpt) + +£p sin (2irpt) 

Mt)   = 

fo(t)   = 

hit) = 

p> 

f + £ If cos (2npt) + j sin (2npt)} 

 I  
f + £{cos (9) cos (2irpt) + sin (0) sin (2irpt)} 

r 
f + £cos{9- 2-npt)      f + £cos (2iry/f*=Pt - 9) 

where   cos (9)   =   — and sin (9) = —— = — 

(1.14) 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

From equation 1.17, you can see that the frequency is not constant, but drifts from / +£ to 

f—£. Near £ the beat frequency is less periodic and falls to zero at the lock-in frequency.  To 

calculate the mean frequency, we evaluate the first moment of the instantaneous frequency: 
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Figure 1.6: Experimental setup for the lock-in experiments.   A reflective tape was used to 
scatter part of the CW beam into the CCW beam. 
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dt' 

Let y = tan (|): 
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dy 
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Figure 1.7:  Plot of the beat signal as a function of time for 8 different values of ß, the 
scattering phase, in increments of 7r/4. 

Apply the trigonometric substitution:   cos 9 = 

^ 

f+t 
f-t 

y2+ 
f + t 

yields: 

</o>   = 
r 

*(f-t) f+t 
f-t 

de 

</o>   - 
r 

*(/-') 
lf + t 

arctanf 
tan(-) 

[T+t 
= Jp~Tp V 

f-t \lf-e 

Thus we see that the average frequency is less than the linear response, /. A detection 

system that records the number of fringes will measure p and not /. The average beat 

frequency, p, is plotted as a function of / in Figure 1.8.       In a similar manner, we can 
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Figure 1.8: The solid line is the mean frequency solution to the lock-in equation with Viiock = 
10 kHz.   The instantaneous frequency varies between the upper and lower bounds. 

calculate the second moment: 

</!> = 2T 
f2o{t)dt = fp 

The standard deviation can be calculated: 

°     =     }J(fZ) - </2> 

VJP- PA 

a   =   £ 

\ 
1 + P = e 

f     \ i + 

a   ~   £ 

\ 

1 

V2 

This is the linewidth of the instantaneous frequency and simply demonstrates that the in- 

stantaneous frequency varies from / + £ to f — £. This bandwidth does not effect the 

bandwidth of the interferogram (the beat signal), which can be seen below, because the beat 
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signal can be written as a geometric series of complex exponentials similar to the solution 

for a Fabry-Perot cavity. Regardless of the coupling the first term of the series will have a 

Fourier component that is a delta function in frequency at the pulled frequency, p. 

A Fourier series analysis of the instantaneous frequency yields Fourier coefficients that 

follow a geometric progression[22]. Since the instantaneous frequency is purely even, we only 

need to evaluate the cosine integral: 

i r p2cosK) 
71     "     7T.L/ +JcOB^r 

= v r cosK) 
fr Jo   l + }cos(tf) 

Equation 3.163 from Gradshteyn and Ryzhik is: 

I cos(nx)     , 7T       /\/l — a2 — 1 , v    '   -dx =         [a < 1, n > 0] 
0   1 + a cos (z) \/l - a2 V a 

Fn   =   ^(^jT-)    =2prn (1.19) 

i? 
_    =    rn 

Equation 1.19 shows that the harmonics of the beat frequency will follow a geometric series. 

A linear-log plot of the Fourier transform of the beat signal will follow a straight line, as can 

be seen in Figure 1.9, a plot of the FFT of plot C of Figure 1.4. From the ratio, r, we can 

determine the lock-in frequency, £ — j^s- In this example, r = .41 ± .046, which leads to 

a lock-in frequency of £ = 1740 ± 290 Hz. This technique will be used to establish an upper 

bound to the lock-in frequency in Chapters 2 and 3. 

1.1.3    Dithering 

One method to regain linear operation near O = 0 would be to simply apply a bias beat 

note to the CW or CCW directions, as was first proposed by Killpatrick[25] in 1967. This 

would avoid the AO = 0 region and would lead to a decoupled laser gyro. Although this 

is how the decoupling is often described, this is not the most practical method. A more 

practical method applies an equal, but opposite bias to each direction that periodically 
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Figure 1.9:  FFT of plot C in Figure 1.4.    The harmonics of the beat frequency follow a 
straight line in the log-linear plot because the amplitude of the harmonics are a geometric 
series. 

reverses direction. This leads to an 'average' bias beat note of zero which means the 

measured beat frequency is once again linear at O = 0. The beat note when null-bias 

dithering is applied is shown in Figure 1.10. Notice that the gyro will lock at the dithering 

frequency and higher multiples of the dithering frequency, as solved analytically by Bambini 

and Strenholm[26, 27, 28]. This dithering method can be very simply implemented. The 

laser is mounted via springs to a solid frame. The spring-mass system forms a simple 

harmonic oscillator which oscillates back and forth. This back and forth motion decouples 

the laser gyro and gives an average zero beat note [15, 24]. This is typically solved by adding 

a dithering term to equation 1.9: 

— = RO, - Qiock sin(^ + ß) + Ccos(£ldithert) 
at 

(1.20) 
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Figure 1.10: Frequency response of a dithered gyro.   Nearly linear response is restored near 
zero; however,  when flotation = mQdither, the laser will lock again. 

This equation describes a direct modulation of the phase of the fields.  With the substitution[28] 

C 
J ^dither 

into equation 1.20, the equation becomes: 

Sin (fldithert) (1.21) 

j f C1 

— = RQ- ttiock sin I y + — sin (Qdithert) 
at V i Idither 

(1.22) 

Now the equation describes a phase modulation of the scatterer. A similar dithering of the 

phase of the scatterer happens in the absorbing dye jet of a mode-locked ring dye laser and 

explains why such a laser does not lock. The difference is that, in the case of an absorber dye 

jet, the scattering is a random rather than harmonic modulation. With this substitution, 

all of the theoretical calculations for dithering can also be applied to the case of the dye jet 

which causes a random dithering of the phase of the scatterer. 

Honeywell Corporation, in a private communication, uses a mechanical random dither 

in their commercial laser gyros. The average value of the dither is designed to be zero, 

similar to the null-bias dithering, in order to prevent a bias beat note.   The randomness of 
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the dithering frequency restores linearity of the laser gyro at all frequencies. The design of a 

ring laser gyro that is mechanically driven by random amounts is extremely difficult because 

there will always be mechanical resonances. In addition, it is difficult to prevent a broad 

spectrum of mechanical motion from exciting resonator modes. The random dither [29] and 

quantum noise[30, 31] have both been solved analytically by the methods of the Cayley 

matrix formulation, the Langevin equation, and infinite matrices; respectively. 

A less reliable method to dither a ring laser gyro is to use the Faraday effect, also called 

the magnetic mirror [32]. This method is less reliable because it is difficult to accurately 

control the magnetic fields in the rotator. 

The lock-in beat frequency is independent of the scale factor. Therefore, for a large 

enough gyro, the rotation rate of the earth is in the 100 Hz range. If the internal scattering 

can be reduced to |r|2 < 10~16, the earth's rotation can unlock the gyro. Of course it 

is not possible to eliminate the gain medium, but the laser mirrors can be manufactured 

to have low scattering. Super-mirrors with \r\2 < 10~18 were used at the University of 

Canterbury in New Zealand in a large area (A~lm2) with excellent results[3]. Stedman 

et al.[6, 33, 22, 34, 7] have reduced the coupling to the point that the rotation rate of the 

earth is enough to decouple the CW and CCW modes. They have measured the earth's 

rotation rate to within a bandwidth of 100 nHz. They have also been able to measure the 

effect of tides on the earth's rotation rate and have measured earthquakes on the other side 

of the world [5]. 

1.1.4    Optimizing the modulation frequency in a dithered laser 

gyro 

Because HeNe laser gyros depend on a mechanical method of dithering, there are mechanical 

limitations to the modulation frequency. Because a pulsed laser gyro can be easily dithered 

using an electro-optic modulator, it is simple to explore a large bandwidth of dithering 

frequencies. In Chapter 2 the dithering of a pulsed laser gyro will be explored both experi- 

mentally and theoretically. The results of these experiments have lead to some interesting 

theoretical discoveries by using Fourier transforms.   These results will be discussed in more 
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detail in Chapter 2. 

1.1.5    Pulsed laser gyro 

Another method to eliminate the coupling between the CW and CCW modes is to make the 

system pulsed and then insure that the pulses cross in a medium with low scattering (i.e. 

air or vacuum). A 100 femtosecond pulse is only 30 /mi long, so the scattering from the 

CW mode into the CCW mode can only occur in a region of roughly 60 /an. The lock-in 

equation is modified for the pulsed laser [35]: 

(r'Y 
^ = i?ft-e-™ ülocksm(^ + ß) (1.23) 
at 

where r' is the time difference between the scatterer and the pulse crossing point and rp is 

the pulsewidth. It should then be trivial to design a laser cavity that has crossing points 

only in air. There is; however, a need for an amplitude coupling mechanism that defines 

the pulse crossing point; a point that has to be imaged onto a detector. This amplitude 

coupling should not introduce any phase coupling. Mutual saturation in an absorbing dye 

jet does provide the required amplitude coupling. Even though a scattering coefficient of 

r = 10-3 was measured for a pure ethylene glycol jet, the laser does not lock. The motion 

of the dye randomizes the phase of the scatterer, which unlocks the laser(see equation 1.22). 

When the laser is mode-locked using an absorbing glass, the CW and CCW pulses did lock; 

thus supporting the claim that it is the motion of the scatterers which decouples the CW and 

CCW modes. The four-wave mixing[36] in the jet might help to equilibrate the amplitudes 

of the CW and CCW pulses by phase-conjugate coupling[21].   Recall that in equation 1.9 
TP JP 

that Q,iock included a term of —- + -=r,   clearly if Ex = E2 the lock-in frequency will be 
h/2     ti\ 

reduced. 

Two-beam coupling Consider the possible four-wave mixing polarizations that can occur 

as a result of two beams with frequencies u\ and u2 counter-propagating in a medium with 

a non-resonant third-order susceptibility x^'- 
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P(Wl) = XW(3E1E*1+6E2E*2)E1 (1.24) 

P(W2) = x(3> (6^1^ + 3^^) ^2 (1-25) 

P(2a;1-a;2=a;1 + A) = 3x(3)^2* (L26) 

P(2a;2-a;1=a;2-A) = 3X
(3)^2

2^ (1-27) 

A = u>i — a>2 (1.28) 

P(3wi) = X(3)E? (1-29) 

P(3wi) = x(3)S? (1-30) 

Equations 1.29 and 1.30 are third-harmonic generation. Equations 1.24 and 1.25 are in- 

tensity dependent changes in the index of refraction. And equations 1.26 and 1.27 are the 

phase-conjugate scattering terms. Notice that the frequency is shifted and that the field is 

conjugated. It can be shown that the two beams only couple power into one another if x(3) 

is imaginary[37] and the only terms that contribute are 1.26 and 1.27. An imaginary x(3) is 

a result of a finite response time of the medium. The finite response time will cause a slight 

phase shift in the moving index grating with respect to the fields, Ex and E2. Equations 

1.24 and 1.25 will be used in Chapter 3 in the discussion of mutual Kerr-lens mode-locking. 

Although the pulsed laser gyro offers a unique solution to the lock-in problem, it also 

creates additional problems such as an arbitrary bias beat note. This arbitrary bias is a 

result of nonlinearities in the laser cavity. A simple example is to consider the cavity shown 

in Figure 1.11. Note that the CW pulse is incident in the saturable absorber with intensity 

al0 while the CCW pulse has intensity J0 at the saturable absorber. Since the saturable 

absorber is an intensity dependent element, there will be a nonreciprocal effect because of 

the different intensities. This is a simple example that could perhaps be corrected by a 

judicious use of output coupling to compensate the different intensities. Perhaps a more 

relevant example is the Kerr effect. Because of the Kerr effect, any difference in intensities 

between the CW and CCW pulses will result in a bias beat note because the intensity 

dependent index of refraction will result in a change in cavity length. 

Although the randomizing of the phase of the scattering in the dye jet prevents lock- 

in, the amplitude fluctuations in the laser is significantly worse than a solid-state laser.   The 
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Figure 1.11: Schematic of ring laser with nonreciprocal intensities at the saturable absorber. 

noise characteristics of a solid-state laser in comparison to an Argon ion-dye laser has been 

well documented[38, 39, 40, 41]. The reason the solid-state laser is less noisy is because the 

lifetime of the dye is about 1 ns and the lifetime of Ti:sapphire is 3 fj,s. The longer lifetime 

integrates any fluctuations of the pump, in addition a solid-state pump laser is less noisy 

than an Argon ion laser. 

Because our group is interested in studying nonlinear intracavity effects using pump/probe 

experiments, high output powers are required.   Typically a dye laser is capable of only a few 

milliwatts.   For these reasons, the Ti:sapphire laser is the next logical step in the evolution 

of the pulsed laser gyro.   Before going on to discuss the Ti:sapphire laser in more detail, we 

need to mention that there are at least two other solid-state laser gyros... 

1.1.6    Other solid-state laser gyros 

The competing technologies in the race for a practical solid-state ring laser gyro are diode 

lasers and fiber lasers. The diode laser had problems with noise from the power supply[14]. 

Because diode lasers use gain switching to actively mode-lock the device, they required a very 

good, fast power supply (see Figure 1.12). Christian and Rosker also report a nonreciprocal 

response in the device, which is to be expected because of the direct relationship between 

gain and index in semiconductors through the alpha parameter [42].   The smallest beat note 
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they were able to measure was 20 kHz. What was most disturbing about this ring laser 

gyro was that the scale factor varied with alignment. They report that the scale factor 

could vary from 20 kHz to 500 kHz depending on the alignment of the etalons. It would 

be impossible to use such a device for a ring laser gyro unless they were able to fix the scale 

factor. 

To 
Spectrum 

, i Analyzer 

To fast 
photodiode 

Delay Line Q 

Figure 1.12: Laser diode ring gyroscope. The diodes are actively modelocked by gain 
switching.   The R, S and P were used to induce coupling in the device. 

The fiber laser shown in Figure 1.13 is a continuous wave laser that is decoupled 

by frequency shifting the CW beam by 0.1 MHz to 12.5 MHz from the CCW beam[43]. 

What is remarkable about this ring laser gyro is the 100 Hz bandwidth. Their study was 

inconclusive about how much dither needs to be applied to prevent lock-in. Nor did they 

discuss the linearity of the device to rotation. 

1.2    Soliton-like pulse shaping 

In order to build a pulsed Ti:sapphire ring laser gyro, we also need to have a solid foundation 

in short pulsed lasers. The soliton model is a good place to start, although for sub-10 fs 

pulses its validity is currently in dispute[44, 45]. In the Ti:sapphire laser the most important 

parameter to consider when making a femtosecond laser is the group velocity dispersion 

(GVD).   However, if you wish to build a sub-10 fs laser then you must also consider the 
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Figure 1.13: The continuous wave fiber ring laser. The Faraday rotator in between the 
polarizers generates a bias beat note to prevent lock-in. 

third and fourth order dispersion (TOD and FOD). The explanation for this is found in 

the soliton model of a laser pulse. Because this model is paramount to understanding the 

Ti:sapphire laser, a brief discussion is included. 

1.2.1    Historical 

In 1834, Scott-Russell recorded the first soliton wave: 

"I was observing the motion of a boat which was rapidly drawn along a narrow 

channel by a pair of horses, when the boat suddenly stopped—not so the mass 

of water in the channel which it had put in motion; it accumulated round the 

prow of the vessel in a state of violent agitation, then suddenly leaving it behind, 

rolled forward with great velocity, assuming the form of a large solitary elevation, 

a rounded, smooth and well-defined heap of water, which continued its course 

along the channel apparently without change of form or diminution of speed. I 

followed it on horseback, and overtook it still rolling on at a rate of some eight 

or nine miles an hour, preserving its original figure some thirty feet long and a 

foot to a foot and a half in height. Its height gradually diminished, and after a 

chase of one or two miles I lost it in the windings of the channel. Such, in the 
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month of August 1834, was my first chance interview with that singular beautiful 

phenomenon... ." 

This colorful definition of a soliton is still accurate. A soliton is only loosely defined 

by its two properties 1) a localized wave that does not change in shape or velocity, and 2) 

the collision of two solitons will not change their shape or velocity [46]. Because the elements 

of GVD and SPM are separated in the Ti:sapphire laser, the pulse shape varies throughout 

the laser. Often the pulses in the Ti:sapphire laser are called 'soliton-like' because many of 

their properties are determined by the soliton model even though they are not true solitons. 

Optical fibers and ultra-short pulse lasers are two applications of soliton theory in 

the optics and laser community. It was not until 1980 that Mollenauer et al.[47] discovered 

solitons in optical fibers. Researchers are still designing the final components of the fiber 

optic soliton communication system which includes: soliton routing switches[48], and digital 

logic gates [49]. The application of the soliton model to ultra-short pulse Ti:sapphire lasers 

will be the focus of the remainder of this discussion. 

Several breakthroughs in the mid-1980s set the stage for ~10 femtosecond soliton 

pulses: 1) Dye lasers solidified the soliton theory and how self-phase modulation and group 

velocity dispersion must work together in the formation of ultra-short pulses [50, 51] 2) The 

discovery of Ti:sapphire as a laser material with a gain bandwidth of 100 THz [52] and 3) 

the discovery of negative group dispersion velocity in prism pairs [53]. By 1992 many groups 

around the world have been producing femtosecond laser pulses and 'solitons' are becoming 

a vernacular of the laser community[54, 55, 56, 57, 58, 59]. Today the Ti:sapphire laser is at 

the limit of the soliton model that includes only group velocity dispersion (GVD) and self- 

phase modulation (SPM). Higher order effects (i.e. third order dispersion (TOD) and fourth 

order dispersion (FOD)) are becoming the limiting factor for ultra-short pulses in most lasers 

[58, 60, 61, 62]. Although the current soliton model does not include these terms, it is my 

opinion that theories will be developed to include these higher order effects[63, 61, 62, 64]. 

Since GVD and SPM are so crucial to soliton formation, let's take a look at GVD and SPM 

before discussing the soliton model. 
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1.2.2    Theory: wave equation and group velocity dispersion 

The wave equation can be developed from Maxwell's equations: 

V^-I** = J-*? (1.31) 
c2 dt2      eQc

2 dt2 K      ' 

Then the Classical Electronic Oscillator (CEO) model can be used to find the material 

polarization (P). The polarization is related to material properties by: P = e0 (n
2(uj) - 1) E 

. The CEO model predicts Lorentzian-shaped absorption lines and roughly the derivative of 

a Lorentzian for the index of refraction n(u). Figure 1.14 is a plot of the index of refraction 

as a function of frequency near a resonance. 
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Figure 1.14:   Typical Lorentzian dispersion curve near a resonance.     Most glasses have 
positive GVD in the visible-infrared region because of an ultraviolet absorption edge. 

From the graph above we can see that dispersion is a function of frequency, which 

means that the velocity (because v = ^ ) in this material is a function of frequency. If 

a pulse of light is sent through a medium with negative dispersion, the lower frequency 

components will travel slower than the high frequency components; thus causing the pulse 

to spread. This effect is called Group Velocity Dispersion (GVD). Figure 1.15 demonstrates 

pulse spreading in a medium with GVD [65]. 

Let's define GVD mathematically. Milonni and Eberly define the wavevector as 'k' but 
LÜ2 

many publications (Siegman) also use '/?': k2 = n2(u)— = ß2.  At any single frequency, 'k' 
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z=0 Dispersive medium 

Figure 1.15: Broadening of a pulse in a dispersive medium. 

will determine how the field propagates. If we are considering a distribution of frequencies 

(a pulse by definition of the Fourier transform must contain many frequencies), then the 

propagation of the fields will be a complicated function of frequency. To simplify the analysis, 

we can Taylor expand the wavevector about the carrier frequency u0 : 

UlQ 

+   l^'UJ0)2^k{U) (1.32) 
UQ 

2;.// k(u) = k(u0) + (u- u)0)k' + -(w - w0) k (1.33) 

UP — fc(wo): 

iu=iuo 

w=wo 

1    dvg 
v*   dw 

W=WQ 

where phase velocity 

k' is related to the group velocity: k' = ^^ 

and k" is the group velocity dispersion k" = ^P 

In this simple CEO model, we can see that the GVD will be positive at frequencies 

below a resonance. Therefore we expect most glasses (which typically have resonances in the 

UV) to have a positive GVD in the visible spectrum. Positive GVD for glasses is verified by 

the literature [65]. The coefficients above are typically found experimentally. 

Clearly if dispersion exists inside a laser cavity, GVD will limit the pulse width. If 

we are designing a short pulse laser, we should limit the amount of dispersive material 

in the cavity. However a certain amount of dispersive material will exist in all lasers. In a 

Ti:sapphire laser the sapphire itself is dispersive. It would appear that short pulses and lasers 

are incompatible. But what if the frequency varied throughout the pulse? If the slower, low 

frequency components preceded the faster, higher frequency components (in a medium with 

negative GVD); we would see the trailing edge of the pulse "catch-up" with the leading edge 
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of the pulse resulting in pulse compression. This effect is dependent on the rate of change of 

the frequency (called chirp) and on the amount of dispersion. Figure 1.16 below illustrates 

a pulse with negative chirp (frequency decreases with time) propagating in a medium with 

positive GVD. Notice the pulse initially compresses, but then expands as it propagates 

through more dispersive material[65]. This effect has recently been used to incorrectly claim 

pulse compression in quasi-phased matched OPOs[66](true pulse compression compares only 

bandwidth limited pulses). The effect is the same if we propagate a positive chirped pulse 

through a medium of negative GVD. 

Dispersive medium z 

Figure 1.16: Negatively chirped pulse traveling through a medium of positive dispersion. 
The pulse initially compresses and then spreads. 

How do pulses become chirped in a laser? This question will be answered in the next 

section. 

1.2.3    Self-phase modulation (chirp) 

The classical electron oscillator model yields good results for linear interactions, but for 

soliton formation we need to perturb the harmonic potential and use the anharmonic os- 

cillator model. The anharmonic model includes nonlinear effects. This model predicts a 

term in the index of refraction that goes as \E\ and is called the third-order suscepti- 

bility (x3). This term is responsible for many of the nonlinear effects in optics includ- 

ing: self-phase modulation, self-focusing, bistability, four-wave mixing and third-harmonic 

generation. We can go back to the classical electron oscillator model and simply replace 

n =$■ n + n2 |i?|2. To understand what n-i will do to a pulse let's consider a Gaussian 

pulse, E(t)  = Eoe1Wot~at    — Ebe^*^, propagating a distance, L, through a nonlinear 
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medium.  After propagating a distance L (remember that: oj0t = 2im0j ) the phase will 

be: <f>(t) = uj0t - 2im2 \E(t)\2 f . The derivative of the phase shift is approximately: 

d 12 L+„-2at2 

-(f)(t) = wo - 87ran2 \EQ\" ^te~2aV = LO0 - Snan2 \E(t)\2 ±t . Near the peak (t = 0) 

of the pulse the frequency has a component that is changing approximately linear in time: 

w(i) = A(j)(t) = u0- 87ran2 |-Eo|2 jt this is called a chirped pulse. If n2 > 0, SPM causes a 

negative frequency shift in the leading half of the pulse and a positive frequency shift on the 

trailing edge. In illustration 1.17 we see an unchirped pulse propagate through a nonlinear 

medium and become chirped [65]. Notice that SPM does not change the pulse width. 

Nonlinear 
nondispersive 

medium 

Figure 1.17: Demonstration of Self-Phase Modulation (SPM) resulting in a chirped pulse. 

When a pulse becomes chirped as a result of its intensity distribution, this process 

is called Self-Phase Modulation (SPM). We have seen how SPM can chirp a pulse and we 

have seen how GVD can compress a chirped pulse, but can the two effects really interact 

synergistically to produce an ultra-short pulsed laser? 

1.2.4    Soliton solution 

To answer the question above we return to the wave equation and add the two effects we 

discussed above. This new equation is called the Nonlinear Schrödinger equation (NLSE)[65, 

67]. The derivation of the NLSE follows the outline given in Boyd[37]. Assume an electro- 

magnetic pulse traveling in the z-direction of the form: 

E{z,t) = A{z,t)e^koZ-Wot) (1.34) 

We propagate this pulse through a dispersive, nonlinear medium.   The pulse must obey the 

wave equation: 

d2E{z,t)      ld2D(z,t) 

dz2 dt2 = 0 (1.35) 
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Where D contains both the linear and nonlinear response of the medium.  Define the Fourier 

transforms of E(z,t) and D(z,t): 

1     f°°   ~ 
E{z,t) = 7=- E{z,w)e-lwtdw (1.36) 

27Ti-oo 

D{z,t) = -^-        D(z,w)e-lwtdw (1.37) 
27T J_00 

Remember that D and E are related by: 

D(z,w) = e(w)E{z,w) (1.38) 

Substitute equations 1.36, 1.37 and 1.38 into the wave equation: 

d2E(z,w) w2 ~ ,      , 
QZ2      + <w)-^E(z, w) = 0 (1.39) 

Since we are only concerned with the evolution of the envelope of the pulse, we need to take 

the Fourier transform of equation 1.34 and substitute the result into equation 1.39. 

/oo 

A{z,t)e^koZ-Wot)eiwtdt (1.40) 
■oo 

/oo 

A(z,t)eit{w-Wo)dt (1.41) 
-oo 

E(z, t) = eikoZÄ(z, w - w0) (1.42) 

where Ä(z, w) is the Fourier transform of A(z,t).  The wave equation in terms of A(z, w - w0) 

-jLe
ik°zÄ + e(w)^Äeik°z = 0 (1.43) 

dz1 cz 

2ik0e
ikoZÄ + eikoZ^-4 - k2

0Äeikoz + e(w)^Äeik°z = 0 (1.44) 
ozz CA 

Since Ä(z, w - w0) is a slowly varying envelope, we drop |^ • From electromagnetic theory, 

we can identify k2(w) = e(iu)^- and cancel common exponential terms. 

ikodA{Z,™z    
W0) + (k2 - k2) Ä(z,w-wo)=0 (1.45) 
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Because self-phase modulation and dispersion are considered small perturbations, we can 

make the approximation that k2 - k$ = 2k0(k - k0) . 

dÄ(z, w - w0) 
dz 

i(k — k0) A(z, w - WQ) = 0 (1.46) 

Next Taylor expand k(w) about wQ and include the nonlinear term: 

rwo k(w) = k0 + n2I— + k'(w - w0) + -k"(w - w0y ;i.47) 

Where, I, is the intensity I = %\A(z,t)\2.     Finally we make the change in variables 

A = (w - w0), substitute equation 1.47 into 1.46 and take the inverse Fourier transform, 

T~ Mif^l _ in2I^Ä(z, A) - ik'AÄ(z, A) - i^-A2Ä(z, A) = 0 
dz c £ 

(1.48) 

The inverse Fourier transforms are: 

T-1 

A(z,A) 

AÄ(z,A) 

A2Ä(z,A) 

=   %- 

A{z,t) 

.8A(z,t) 
dt 

d2A(z,t) 
dt2 

(1.49) 

(1.50) 

(1.51) 

Substitution of these inverse Fourier transforms yield: 

U"  P2 
^M _ in2I^A(z,t) + k'^AM+i^A^t) = 0 

Next we make a Galilean Boost transformation and recall that I = %% \A(z,t)\ 

(1.52) 

Boost 

T = t-j- 

ii   Q2 8A(Z,T)     .k" 8 .nn2wo 

dz    +iYöT2Ä{z>r) = i 2, 
\A(z,r)\2 A(z,r) (1.53) 

Equation 1.53 is known as the nonlinear Schrödinger equation. This form is typically 

found in the optics community, but it is not truly in the form of the nonlinear Schrödinger 

equation. If the change in variables is done slightly differently, we can obtain the NLSE with 

appropriately scaled wavefunctions: 
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r = 

z 

. V9 

TO 

£=|fc"L (L54) 
Tn 

Where r0 is the pulse width and ip(£,, r) is the wave function. 

.ÖV^r) + 1|^)T) + \^,r)\2^,r) = 0 (1.55) 

The NLSE was originally solved by Zakharov and Shabat[68] in 1972.   The solutions are 

solitons in terms of the field envelope: 

A--\ 
A(z,t) = Ao sech 

V9 

v T0 / 
k" 

—i KZ 

e   2ro (1.56) 

2        -2nk" 
The coefficients are defined as:   TQ = pulse width, |Ao|   = , = amplitude of 

envelope of electric field, vg = group velocity, and k" = group velocity dispersion.    Note 

for AQ to be real and positive, k" and n-i must be of opposite sign.   Since n2 is positive for 

Ti:sapphire, we require that k" be negative. The boost transformation simply puts us in the 

reference frame of the pulse. You can imagine yourself riding on top of the soliton wave like 

a surfer riding a tsunami.    Thus we see that when SPM and GVD act together and their 

coefficients obey n2 > 0 and k" < 0 ; there is a stable solution that does not spread in time 

or frequency. Notice that the measurable quantity, intensity, goes as sech2(). This function 

is often used in the literature to characterize ultra-short pulses. The coefficient n2 is positive 

for Ti:sapphire, but k" is also positive! How do we achieve a negative value for GVD? 

A revolutionary optical technique was developed by several groups [50, 53].   They 

proposed and verified that by sequencing two prisms with positive GVD a net negative GVD 

could be engineered, see Figure 1.18.    This basic method for obtaining negative GVD is 

used in almost all ultra-short pulse Ti:sapphire lasers.   The experimental setup shown in 
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Figure 1.18 was typical until the advent of doubly chirped mirrors[69, 70]. These mirrors 

have negative GVD designed into their layers and are able to eliminate the need for GVD 

compensating prisms.     Initially the laser needs some sort of 'kick' to generate a short 

Pump 
Ti:Al203 

Figure 1.18: Typical Kerr-lens modelocked Ti:sapphire laser. The radius of curvature of 
mirrors is 10 cm concave. The prism sequence has a net negative GVD to compensate for 
the GVD of the Ti:sapphire. Notice the 'red' ray travels through more glass which delays 
it with respect to the 'blue' ray. 

modulation. One of the most innovative techniques to initiate mode-locking is the use a 

solid-state saturable absorber[71, 72, 73]; in fact, this method has produced the shortest 

pulses in a Ti:sapphire laser. Once the pulse is in the picosecond range the soliton model 

takes over and the GVD/SPM effects compress the pulse to its limits, which is usually 

determined by third order dispersion. A second very important pulse width limiting process 

occurs because the nonlinear and dispersive effects are physically separated. The nonlinear 

Schrödinger equation is a differential equation. The infinitesimal approximation does not 

apply in the Ti:sapphire laser when the change/element is large. In this case a difference 

equation approach is more appropriate [74]. The pulse shape will be a strong function of 

its location in the laser and what components it has propagated through. Some researchers 

believe this is the most important limiting effect [57]. When you consider that the model was 

developed with the assumption that the nonlinear and dispersive effects were slowly varying 

and continuous; it is not surprising that the model might fail when the pulses become a 
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few tens of femtoseconds in width. There have been some interesting experiments done to 

demonstrate how the pulse changes as it propagates through the different components in 

the laser[59, 60]. To conclude; we have seen how group velocity dispersion can compress 

chirped pulses and how pulses can become chirped by a nonlinear medium. Finally we have 

combined the two effects, and discovered the nonlinear Schrödinger equation. The nonlinear 

Schrödinger equation was seen to have soliton solutions that do not decay or expand as they 

propagate. 

Kerr-lens mode-locking 

Soliton-like pulse-shaping stabilizes a short pulse in a laser cavity, but what causes the 

pulse-shortening? Typically a fast saturable absorber is needed for pulse shortening. In the 

sub-picosecond region the possibilities are: Kerr-Lens mode-locking(KLM), Semiconductor 

Saturable Absorber Mirror (SESAM [72]), Additive Pulse mode-locking (APM) and Colliding 

Pulse mode-locking(CPM). Of these only the first three can be used in Ti:sapphire. APM 

is not stable because it requires an interferometer. SESAM requires specially made semi- 

conductor materials that we are exploring, but as of yet these are unavailable. This leaves 

KLM, which is by far the cheapest way to mode-lock a laser because it requires no additional 

components. The Kerr-lens is the result of a nonlinear refractive index (x3) effect. It is 

the same physical mechanism that was used to generate SPM. KLM is a spatial effect that 

is a result of the intensity being a function of the beam radius; whereas SPM is a result 

of the pulse intensity being a function of time. To first order, the nonlinear index can be 

approximated with a thin lens of focal length, /„/. 

fnl = ^ (1-57) Jnl     8n2Pd y      ' 

Using the ABCD matrix method for the cavity, it is easy to determine locations in the 

cavity where the pulsed beam waist will be smaller than the continuous-wave beam waist. 

An aperture at this location will create a nonlinear loss that favors short-pulse operation. 

Often the Gaussian profile of the gain can be used as a 'soft aperture.' Apodized slits can 

also provide a smooth aperture. If razor slits are used, it is called a 'hard aperture.' The 

modeling of the cavity is discussed in more detail in Chapter 3.   The rest of this dissertation 
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deals with the daunting task of merging a ring laser and a short pulsed solid-state laser. 
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Chapter 2 

Saturable Absorber Mode-locked 

Ti: sapphire Laser 

Although the saturable absorber is used in the femtosecond dye laser, this is the first time, 

to our knowledge, where it is used to mode-lock a solid-state ring laser gyro. This chapter is 

divided into four sections: 1) intracavity measurements of electro-optic coefficients using a 

linear cavity, 2) an experimental study on null-bias dithering, 3) a derivation that supports 

the experimental results of null-bias dithering and 4) solid-state saturable absorber mode- 

locked laser. A novel double-pulsed laser using a linear cavity makes its debut in this chapter. 

The linear cavity has advantages over the ring laser gyro when it is used to measure electro- 

optic effects because the linear cavity can only measure changes in index that occur on every 

round-trip. 

A big advantage of a pulsed laser gyro is the ease in which the cavity can be dithered 

using electro-optic modulators. The frequency response to external modulation is explored 

for the first time, to our knowledge, in the second half of the chapter. This experiment 

would be almost impossible using a body-dithered continuous-wave HeNe laser. Also a new 

method of extracting the average beat note is demonstrated. This method doesn't require 

sophisticated counting electronics to keep track of the dithered phase. Finally some results 

using a solid-state saturable absorber are presented. 



2.1    Linear cavity 

Laser gyroscopes have been measuring rotational velocities since the advent of continuous 

wave ring lasers [75]. More recently, femtosecond mode-locked lasers have demonstrated a 

gyroscopic response for homogeneously broadened lasers, with no measurable deadband[12, 

13, 76]. It is not as well known that femtosecond laser gyroscopes can also make sensitive 

phase measurements on a stationary optical bench[76]. The phase difference per round-trip 

between the clockwise (CW) and counter-clockwise (CCW) pulses is measured by combining 

the CW and CCW pulses on a detector. The detector will measure a beat frequency, which 

includes the gyroscopic response. 

The phase difference can be the result of a rotation, a change in index, a mechanical 

vibration, or even a perturbation in a multilayer dielectric coating (for more examples of 

experiments see Chapter 4). Some applications of this method are measurements of the 

electro-optic effect [76, 77] and nonlinear spectroscopy[8]. We report the ability to make sen- 

sitive phase measurements in a linear cavity geometry, the limit of an extremely elongated 

ring cavity. It is possible to have two pulses circulating simultaneously in a linear cavity, 

which serve the same purpose as the CW and CCW pulses in a ring cavity. Without any 

rotation or modulation a mode-locked ring laser normally has a beat frequency bias of at 

least 100 Hz and as high as 100 kHz[12]. The bias frequency is a result of nonlinear effects 

combined with asymmetry between CW and CCW pulses. Because of the nonlinear intra- 

cavity elements, the order in which the pulse encounters the optical elements will affect the 

pulsewidth and pulse amplitude[57, 63, 74]. Any variation in pulse amplitude or pulsewidth 

will be translated into a phase-shift per round-trip in the various nonlinear intracavity el- 

ements, hence a beat signal. Since the pulses in a linear cavity travel through the same 

optical elements in the same order, the phase shift is the same for both pulses, and therefore 

no 'bias' beat note. Any of the typical T-violating asymmetries (such as the Faraday effect, 

rotation, and Fresnel drag) that are measured in a ring gyro cannot be measured in a linear 

cavity. Therefore one advantage of a linear cavity versus a ring geometry is the improvement 

in the frequency bias. 

There is; however, competition between the two pulses for the same gain, which can 
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result in a difference in amplitude between the two pulse trains, hence a different phase 

shift due to the Kerr effect resulting in a non-zero bias. This effect was not observed and 

was indistinguishable from the bandwidth of the beat note. This is not surprising because 

the four-wave mixing in the absorber dye jet[36] should help to equilibrate any differences in 

amplitude. A mirror vibration of 1 /an amplitude at a mechanical resonance frequency of 100 

Hz will result in random beat frequencies in the range of 0 — 275 Hz. We routinely observed 

a beat frequency bias of about 100 Hz which could be a result of these random fluctuations. 

The beat frequency lower limit of 100 Hz is more than likely a result of mechanical vibration 

of the optical components, especially since we are not actively stabilizing the laser cavity [78]. 

In general if the cavity length L (L = 210 cm in our case) is perturbed by the amount, AL, 

in intervals corresponding to the cavity round trip time, then the measured beat frequency, 

Av, will be given by: 

*L = ^ (2.1) 
v L 

where v is the optical frequency of the laser. In our case, we can measure a Av of 100 

Hz, which means a AL of only 1.1 xlO-13 meters or about 0.1 picometers! In the following 

experimental results, we changed the index of refraction, n, of a 0.5 mm sample of LiNb03. 

In this case AL ^ An x 0.5mm, which implies a minimum detectable change of index of 

io-9. 

2.1.1    Experimental setup 

The laser cavity is similar to the typical linear cavity mode-locked Ti:sapphire laser with a 

saturable absorber (a jet of HITCI or IR140 dye dissolved in ethylene glycol) placed in the 

center of the cavity, see Figure 2.1. The laser is not Kerr-lens mode-locked and the pulses 

are between 1.5 ps to 3.1 ps in width. There are two pulses in the cavity, because the dye 

jet is located in the center of the cavity. Mutual saturation of the absorber favors the pulses 

colliding in the dye jet. Double pulse operation can not be obtained when the laser is Kerr- 

lens mode-locked because of gain depletion coupled with the nonlinear loss associated with 

Kerr-lens mode-locking. The competition of one versus two intracavity pulses is analyzed in 

Chapter 3.   The dye jet can be accurately centered in the cavity through translation of one 
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Figure 2.1: Experimental setup: The dye jet is in the center of the cavity. The curved 
mirrors have a 5 cm focus. The output coupler (OC) is 1.3% transmitting, and the other 
flat mirror is a maximum reflector (R= 99.9%). The Ti:sapphire is 8 mm long. The SF-14 
prisms are separated by 37 cm. 

of the end mirrors. The distance that the end mirror can be translated while maintaining 

double pulses is about 2 cm. The 2 cm distance corresponds to a 120 ps delay which is close 

to the excited state lifetime of the dye. The dye concentration is not a critical parameter 

and can be varied over a broad range without affecting the performance of the laser. The 

output from one end of the laser goes through a variable delay and then is detected on a p-i-n 

photodiode. This signal is amplified by a bandwidth limited amplifier resulting in a 140 MHz 

sinusoidal output. The signal frequency is divided by two by converting the sinusoidal wave 

into ECL logic and then sending it through a flip-flop to cut the frequency in half. After the 

logic circuit the signal is amplified by a bandwidth limited circuit, which yields a 70 MHz 

sinusoidal signal. Finally the signal is amplified again and applied to the LiNb03 sample in 

parallel with a 50 ohm terminator. The flat mirrors consist of a 99.9% reflectivity back mirror 

and a 98.7% reflectivity output coupler. The mirrors in the cavity are not specially made 
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for short pulses and their dispersion and reflectivities were not measured. The pump laser is 

a Coherent Innova 200 Ar+ running at about 10 W all lines. The SF-14 prism pair are used 

for pulse compression, by giving the cavity a net negative GVD[53]. The small reflections off 

of one of the prisms are combined, after a variable delay, onto a slow photodiode (RC time 

constant integrates over many pulses) to observe the beat frequency. A typical example of 

the beat note as observed on a digital oscilloscope, without averaging, is displayed in Figure 

3.14. 

40 60 

Time (|is) 
100 

Figure 2.2: Beat note as detected on a digital oscilloscope without averaging or smoothing. 

2.1.2    Electro-optic measurements 

The first experiment consists in recording the beat note versus the delay of the signal applied 

to the LiNb03. The optimum timing occurs when each of the interwoven pulse trains sees 

equal and opposite voltage (±V0) at the sample. Figure 2.3 is a scatter plot of the beat 

frequency versus delay. The line plotted in Figure 2.3 is the function V0 |sin(|^r - 0O)|, 

where the fixed phase, </>0, has been fit to the data. Notice the excellent correlation between 

theory and experiment. With the delay set for the maximum signal, the voltage is varied 

in order to determine the electro-optic coefficients for LiNb03. Since the voltage is applied 
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Figure 2.3: Beat frequency versus optical delay (squares) and the plot of the voltage difference 
applied to the sample (curve). 

along the z-axis of the crystal, only two different coefficients (ri3 and r33) can be observed. 
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Where V refers to the plane of polarization of the optical field. Note that for light polarized 

in the x-y plane, the electro-optic coefficient is simply the rx3 component and for light 

polarized in the z plane, the r33 component. The electrodes are simply two thin strips of 

vapor deposited gold, see Figure 2.4. Since the electric field in the LiNb03 is a fringing 

field, it is difficult to extract exact results for the coefficients. However, we are able to 

accurately determine the ratio of the coefficients because the unknown quantities cancel in 
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Figure 2.4: LiNb03 modulator processed in-house.   The optical axis is coming up out of the 
page. 

the equations: 

An, n3
er33 Avz 3.2 (2.3) 

Anx-y nlr13 Avx_y 

Where ne and n0 are the extraordinary and ordinary refractive indexes and Au{ is the slope 

of the beat frequency versus applied voltage for light polarized in the ith direction. The beat 

frequency versus applied voltage for the two polarizations is plotted in Figure 2.5 along with 

a linear fit.  Notice that the curves fit a straight line which means there is no measurable 
T33 

lock-in or dead band. The slopes from the linear fits are used to arrive at the ratio — of 3.57 

± 0.1, which is close to the expected[79] value of 3.62 (the value of 3.62 is an interpolation 

between values measured at A =.63 \im and 1.06 /im). The calculation is not quite as simple 

as described in equation 2.3 because the LiNb03 is at Brewster's angle in the cavity, but 

the actual calculation differs by only a simple geometric relation when it is oriented in the 

z-axis. 

Ariz-measured = \] (COS (8b) Anzf + (sin (0Ö) Anxf 

When the LiNb03 is at Brewster's angle in the x-y plane, there isn't a problem because 

Anx = Any.   The error bars are a result of power fluctuations in the RF amplifier and the 
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Figure 2.5: Beat frequency versus applied voltage for two different polarizations. 

error in measuring the RF amplitude. It is not indicative of the ultimate resolution of the 

measurement technique. 

2.2    Ring gyro 

The picosecond ring gyro is very similar to the linear cavity without the prisms. Without the 

prisms, the net GVD of the cavity is at least 600 fs2. Because a stable soliton solution does 

not exist for positive GVD in the nonlinear Schrodinger equation, the concept of soliton-like 

pulse-shaping does not apply for this laser. Pulse durations are in the 20 ps range as can 

be seen by the autocorrelation in Figure 2.6. It is extremely difficult to obtain an autocor- 

relation of this length because the delay must be scanned over a range of 1.5 cm. We use a 

type-II, background-free autocorrelator (there is a schematic in Chapter 3). Because this 

autocorrelator uses a polarizing beam splitter/combiner, the retro-reflectors in the Michelson 

interferometer are simply silver mirrors.    It is very simple to translate mirrors and maintain 
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Figure 2.6: Background-free second-order intensity autocorrelation of a Ti:sapphire ring laser 
mode-locked with an absorbing dye jet without prisms for GVD compensation. Tpuise = 
17.3 ps. 
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alignment whereas a retro-reflecting corner cube typically misaligns after translating (unless 

great care is taken in its alignment). 

The peak powers in this geometry are reduced by a factor of ten, which should min- 

imize the nonlinear, nonreciprocal processes that generate the bias beat note. In fact, the 

lowest beat note was measured using a ring cavity without prisms. It is difficult to measure 

a low beat note because of various nonreciprocal effects in the laser like the motion of the 

dye jet, air currents (Presnel drag) and mechanical noise. The experimental schematic is 

shown in Figure 2.7.   Notice that there is an additional fused silica plate inserted near the 

Crossing Point 

Pump 

Ti:Al203 

Figure 2.7: Experimental arrangement for ring gyro. Fused silica plate is used to minimize 
the size of the beat note interferometer. 

crossing point. The plate is used to pick off beams for the beat note detection. It is very 

important that the beat note interferometer be kept as small as possible to minimize noise 

from vibrating mirrors and air currents. The beat signal with the narrowest bandwidth 

and its Fourier transform is shown in Figure 2.8. The bandwidth is limited by the time 

interval.  The log plot of Figure 2.8 is shown in Figure 2.9.  Notice the j noise and the spike 
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corresponding to the beat signal, obviously there is no background subtraction in this data. 

Recall from Chapter 1 that the lock-in frequency is given by: £ = nz^zy, where r is the ratio 

of the amplitude of the second-harmonic to the fundamental. Based on the amplitude of 

the second and third-harmonic, we estimate the upper bound of the lock-in frequency to be 

35 Hz for the data in Figure 2.9. Figure 2.10 is a longer trace (10 seconds) and the beat 

note is centered at 10 Hz, an amazingly low beat note. For this data, the harmonic analysis 

yields an upper bound of the lock-in frequency of 4.64 Hz. Figure 2.10 demonstrates the 

dynamic nature of the beat note. It appears that the beat note has good spectral quality 

for short time periods, but the frequency varies perhaps due to motion of the table, the dye 

jet or air currents. The beat note is typically lower after 7 PM when the local traffic has 

decreased, so perhaps the major factor contributing to the beat note is motion of the table. 

cö 
c 
O) 

CO 

to 

m 

0.60        0.62       0.64        0.66        0.68       0.70        0.72        0.74 
Tim e (s) 

220 230 240 
Frequency (Hz) 

250 260 

Figure 2.8: Smallest bandwidth ever recorded using a Ti:sapphire ring laser gyro.   The time 
series shows only a small portion of the data.   The data was taken for 0.74 seconds. 

The advantage of the linear cavity is that it cannot measure a beat note from air 

currents and table rotations. For the ring laser, these effects become interesting demonstra- 

tions.   By simply blowing air along one of the arms of the ring gyro, a beat note is detected. 
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400 600 
Frequency (Hz) 

Figure 2.9: Log plot of Figure 2.8. Notice the 1/f noise and the beat note spike that is 50 
db above the noise. 

This is a result of the vector addition of light in a moving medium. It is not a simple 

Doppler shift, but rather a result of special relativity. The Fresnel drag provides a simple 

way to remove the ambiguity on the sign of the beat note. The laser has a bias beat note 

of 100 Hz. When the air is blown in the CW direction, the beat note increased to 200 Hz. 

When the air is blown in the CCW direction, the beat note decreased to near zero. Clearly 

the frequency of the CCW pulse was lower than the frequency of the CW pulse. This bias 

is small enough to be the rotation rate of the earth, but there are many other contributions 

on the same order of magnitude. 

Another interesting experiment is to simply tap the cavity mirrors, not enough to 

disturb the lasing, but enough to hear the vibrations of the mirror. The beat note can be 

heard by simply amplifying it and sending it to a speaker. It is clear that the vibrations 

of some mirrors lasts significantly longer than others. The worst mirror was sitting on a 

'home-made' aluminum mount.   Perhaps it is worth the cost to purchase quality mounts for 
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Figure 2.10: Lowest beat note recorded using a Ti:sapphire laser. The data was taken for 
10 seconds, which implies a resolution of 0.1 Hz. Comparison with Figure 2.8 indicates that 
the broader bandwidth here is to be attributed to random frequency drifts on a time scale 
of seconds. 

a laser cavity. 

By inserting a nonlinear crystal, CdS, into the laser at a waist, we are able to detect 

the complex nonlinear refractive index of the crystal. Because CdS is also a two-photon 

absorber, the extraction of the nonlinearity is nontrivial. Current experiments are attempt- 

ing to measure the nonlinear index, n2, of fused silica. By translating the sample along 

the propagation direction, the amount of nonlinear refraction varies as a function of beam 

waist. The nonlinear refractive index is nonreciprocal because there is a 5% output coupler 

on one side of the crystal, so the powers are nonreciprocal by 5%. The derivation of the 

beat frequency resulting from a nonlinearity is derived in Chapter 3. A plot of the beat 

frequency versus location in the cavity is shown in Figure 2.11. 

Table vibrations could also be measured in a similar method. A small tap to the 

table generates a high pitched, chirping squeal from the speaker.   The minimum beat note 
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Figure 2.11: Plot of the beat frequency versus the location of CdS inside the cavity. 
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also depends on the time of day. Data taken after 7:00 PM has a significantly lower beat 

note.   The diurnal variations are likely due to local traffic patterns. 

2.2.1    Large ring 

It is important to demonstrate scalability of a laser gyro, if it is to be used to measure 

sensitive rotations like the earth's rotation rate. As the perimeter of laser gyros increases it 

will become increasingly more difficult for HeNe laser gyros to prevent mult-mode operation 

because the separation of the longitudinal modes becomes extremely small. The pump 

power must be carefully controlled in a HeNe laser gyro, such that only one mode reaches 

threshold[3j. In a mode-locked laser, it should be trivial to scale to longer perimeters as 

long as the round-trip time is much shorter than the excited-state lifetime. To demonstrate 

the scalability of the Ti:sapphire laser gyro, we constructed a laser with a perimeter of 10 m. 

This is 2.5 times the size of the most sensitive laser gyro constructed to this date[3]. For 

this to be an fair test of this laser, the air-floatation of the table was turned off. The beat 

signal is shown in Figure 2.12. The noise at 110 Hz is believed to be a result of the water 

pumps above the lab. Even with a perimeter of 10 meters, the laser is capable of producing 

a beat frequency of 40 Hz. The earth's rotation would cause a beat frequency of 120 Hz, if 

this laser had a square perimeter. 

2.3    Electro-optic dither (theory and experiment) 

2.3.1    Introduction 

Since 1967[25] it was recognized that one method to avoid the lock-in of counter-propagating 

beams was to add an artificial rotation rate. This artificial rotation avoids the dead-band 

region of a laser gyro and restores linear operation. In a continuous-wave HeNe laser this is 

accomplished by mounting the laser on springs and driving the spring-mass system with a 

piezo-electric transducer. Because the frequency of modulation is determined by the spring- 

mass system, it is not easy to explore the parameter space using a HeNe laser gyro. A big 

advantage in a pulsed laser gyro is that the modulation rate and amplitude can be changed 
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Figure 2.12: FFT of beat signal from 10 meter perimeter ring laser gyro. 
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very easily and quickly by the use of an electro-optic modulator. The E-0 modulator creates 

the same optical effect as if the gyro was first rotated in the CW direction and then rotated 

in the CCW direction. In this section, there are three frequencies that will be explored. The 

modulation frequency determines how often the artificial frequency is switched from CW to 

CCW. The other two frequencies are associated with the effective CW and CCW rotations. 

We will determine the optimum modulation frequency dependent on the maximum rotation 

rate.   The experimental results are supported with analytic calculations. 

2.3.2    Null-bias dithering:   experimental 

The experimental setup is shown in Figure 2.13. Notice the output of the function generator 

modulates the RF applied to the LiNbOs which changes the cavity length.    The quartz 

LiNbOs 

Pre- 
Amplifier 

Figure 2.13: Experimental setup for null-bias dithering. A small quartz plate is inserted 
near the crossing point at Brewster's angle to output couple two beams for the beat note 
detection. 

plate splits off two beams for beat note detection. It is located near the pulse crossing 

point to minimize the physical size of the interferometer used to detect the beat note. If 

the output coupled pulses are used for the beat note detection, the interferometer would 

have to be several meters long which would result in more noise. The output from the 

function generator is mixed with the RF before the final RF amplification.    The RF is at 

50 



100- 

50 

0 

-50 

100 

50 

-50 

-i—i—i—i—r—i—i—■—i—■—i—■—i—'—r- 

i I i I I I ' I ' I ' I ' ' I I 

0:l/"N 

-i—i—i—>—i—■—i—i—i—'—i—'—i—'—i—'—i 

0   2   4   6   8  10  12  14  16  18  20 

Time (ms) 

Figure 2.14: Upper plot is the square wave modulation that is applied to the RF signal via 
an RF mixer.   The lower plot is the corresponding beat signal. 

the cavity frequency and is used to create a frequency difference between the CW and CCW 

pulses. The modulation frequency is varied using the function generator. For square wave 

modulation, the laser will generate two beat frequencies of equal magnitude but opposite 

in sign. The oscilloscope trace shown in Figure 2.14 should help clarify the modulation 

and the corresponding beat note. When the modulation is in the low state, there is no 

RF applied to the E-0 modulator and therefore the beat signal is close to zero. When the 

modulation is in the high state, the RF power is at a maximum and the beat note is at a 

maximum. As the modulation frequency is increased, eventually the cavity will not respond 

to the modulation. If the cavity is not responding to the modulation, it should "average" 

out the modulation. Assuming a perfect square wave modulation, this means the beat note 

should eventually disappear because the average would be zero. If the modulation is not a 

perfect square wave (i.e. the beat notes are not equal, but are opposite in sign), then the 

beat note will roll off to a constant frequency at the average of the two beat frequencies. 

For example if the beat note for a positive modulation is u\ and the negative modulation is 

u2 then the beat note when the cavity is no longer responding will be . 

By putting the beat note into a spectrum analyzer, it is easy to monitor the amplitude 

of one of the beat frequencies, u>i, as a function of the modulation frequency.   The plot of 
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the amplitude at ux as a function of the modulation frequency is shown in Figure 2.15.  Note 

that it is roughly exponential, but there is a faint sinusoidal modulation. 
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Figure 2.15: Amplitude of Ui beat note as a function of the modulation frequency. The 
data is fit to an exponential decay. 

While varying the modulation frequency near the roll-off point, the beat note goes 

through some strange resonances. Eventually the beat note rolls-off to the average frequency. 

In between the roll-off and the slow modulation, the beat signal would appear to contain 

structure at the average frequency. Figure 2.16 is a time trace demonstrating the modulation 

of the beat note. The average frequency is just beginning to appear in this oscilloscope trace. 

Figure 2.17 shows the beat signal when the frequencies u\ and Oü2 have almost disappeared 

and all that is left is uave. Instead of monitoring the decay of the beat frequency uu we 

monitored the average frequency (uave = 2).    This produced the smoothly varying 

curve shown in Figure 2.18. Figure 2.18 illustrates the fit to an inverse sinc(x) function. 

This function is the sinc(x), but the argument is inverted (i.e. fmodPlsm(^); where PI 

and P2 are constants). If the amplitude was plotted versus the modulation period, T, the 

graph would have been immediately recognized as the sinc(x) function. 

By varying the beat frequencies, ui and cu2, the functional dependence of the width 

of the inverse sinc(x) constant P2 are determined. Not only was the amplitude of the beat 

notes varied, but also the sum and difference.    Only when the width is plotted versus the 
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Figure 2.16: Upper: Beat signal as seen on the oscilloscope. The low frequency modulation 
is highlighted by the curve.   Below:   FFT of the beat signal. 

difference in beat frequencies, did a linear dependence appear (see Figure 2.19). All other 

plots showed no correlation. 

2.3.3    Derivation of modulation spectrum 

Great care has to be taken when analyzing the phase difference of the modulated laser. 

When the modulation changes state, the slope of the phase is discontinuous while the phase 

must be continuous. By writing down the analytic description of the phase and taking the 

Fourier transform, we obtained an equation which fit the experimental data extremely well. 

It turns out that the continuity of phase was the crucial parameter. 

There is a very simple explanation of the averaging phenomena at work in this system. 

If you take 100 steps forward and then take 99 steps backward; you have moved forward one 

step.   If you take the steps fast enough, it will appear as if you are simply moving forward 
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Figure 2.17: Beat signal demonstrating the roll-off to u>c 

signals at uj\ and u)i are barely visible. 
Notice in this plot that the beat 
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Figure 2.18: Amplitude of average frequency as a function of modulation frequency. The 
model is fmod*Pl*sin(P2/fmod). 

one step at a time. Notice that it is the one step difference at the end of the iteration that 

makes all the difference in your forward progress. You might also be wondering why is it a 

sinc(x) function? Why does the forward progress periodically go to zero? This is also very 

easy to explain. If the 'step' that is left over is equal to n, then you are actually back where 

you started. You can think of it like this: if you are taking your steps on a circle, then the 

value of 7T puts you on the other side of the circle and if your ruler is measuring only the 

absolute distance in the x-direction, then you are back where you started. Remember that 

in the experimental setup, the measured beat note has an ambiguity of sign. 

The analytic solution is derived below in the following steps: 1) write out the phase 

as a function of time.  2)   Setup the Fourier transform and evaluate it at uave = . 

3) Ratio the Fourier transform by the maximum possible signal. 4) Take limit as time goes 

to infinity. 
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Figure 2.19: Plot of P2 fit parameter versus the beat frequency difference. The slope of the 
straight line is predicted by theory to be §. 

Step 1: Finding the phase as a function of time. 

This is not as easy as it sounds. The assumptions are that the phase is continuous, but 

discontinuous in slope at intervals of T. Figure 2.20 below should help visualize the time 

dependence of the phase. 

Starting from t = 0, the phase is: 

<j>x = uit for 0 < t < T 

02 = u2t +T (wi - w2) for T < t < 2T 

0! = uxt +T (u2 - wi) for 2T < t < 3T 

02 = u2t + 2T (wi - ui2) for 3T < t < 4T 

^(n,*) = (Jtt +(n- 1)T{LO2 - Wl) for 2 (n - 1)T < t < (2n - 1)T 

02 (n, t) = u2t + nT fa - u2) for (2n - 1) T < t < 2nT 
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Figure 2.20: Plot of the phase as a function of time. The phase is continuous, but dis- 
continuous in slope. The dotted line is the average phase. The modulation period is 
2T. 

m = ]T 
71=1 

<t>x{n, t)6(2 (n-l)T<t<{2n-l)T)  + 

(2.4) 

02(n, t)6 ({2n -l)T<t< 2nT) 

The last expression may look complicated, but it is setup for piecewise integration. 

The Kronecker-Delta function will form the limits of the piecewise integration. Notice that 

the phase term is always changing in order to maintain continuity of total phase, even when 

the slope changes from u\ to u>2. Figure 2.20 was plotted using the equation above to 

ensure that the total phase is continuous. Next the sin (0 (t)) was plotted to see if the beat 

note would look similar to the experimental data. Figure 2.21 and Figure 2.22 are two 

generated beat signals. Figure 2.22 is modulated ten times faster than Figure 2.21. Notice 

the transition to uave as the modulation frequency is increased.   Compare these plots with 
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Figure 2.22: Generated beat signal. The modulation frequency is 10, u\ is 5.2 and u>2 is 
-4.7. Here we see the rolloff towave is almost complete, there is only a small modulation at 
the original beat frequencies.   The time scale is different from the graph above. 

we take the limit as m —> oo. 

Denominator 

denom = /*,'( 
2 f(ui +U)2)f 

dt (2.5) 

denom = 2_. 
n=l 

2nT 

I 
2(n-l)T 

.   2 f(üJi+U2)t\ 
sm ——   dt (2.6) 

2nT 

denom = ^ <      /     - [cos(0) - cos ((ui + üJ2) t)\ dt 

2(n-l)T 

(2.7) 
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oo    1 

denom = Y^ - 
n=l 

T- 
sin((cji +a;2)i) 

(Ui + 0>2)        J 2(n-l)T 

2nT 

(2.8) 

denom =   lim < > 
m   V     sin (2 (n - *) (m + ^) r) - sin (2n (cu! +1^2) T)' 

,n=l 
2 (wi + UJ2) 

The finite sum to the arbitrary number m was accomplished on Mathematica. 

(2.9) 

/           sm(2m{ui+uj2}T) 
denom =   lim < ml —, r  

m->oo  [ 2 (Wi + 0Ü2) 
(2.10) 

Wi sine-integral 

uipart 

00 

/sin( ̂ t^sinfa (*))<** (2.11) 

Uipart = y j 

n=\ 

(2n-l)T 

/ sin( 
sm 1 ("i + "a)A sin (wi< + („ _ 1) T (W2 - Wl)) * 

2(n-l)T 

(2.12) 

1   00 

n=l 

(2n-l)T 

/ 
2(n-l)T 

/    cos((n-l)(o;2-a;1)T+^^j   - 

cos ((n - 1) (w2 - wi) T + (3"1+"2)t) di 

(2.13) 

uipart = J] 
71=1 

sin((n-l)(a;2-^i)r+("172)t) 

sin((n-l)(^2-u)1)T+(3'Jl+"2)t) 

3o;i+o;2 

(2n-l)T 

J 2(n-l)T 

(2.14) 
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E 
n=l 

sin(^i-^)T) + 

uipart = lim < 
m 

E[ 
ra=l 

sin(2(n-l)((x;i+a'2)r) 
(3wi+a;2) + 

E 
^   n=l 

sin(("1+^2)r-2rtT(o;1+a;2)) 

(3CJI+W2) 

(2.15) 

The finite sum to the arbitrary number m was accomplished on Mathematica. 

'   iin(Üiqp£) 
(CJ1-W2) 

m+ 

o;!part= lim <   H^i^^y^i))  + > 1-r —   ■-- (3^1+012) sin((aii+W2)T) 

sin(mT(u;i+a;2))sin[ ^-J ^ £—* *" - I 

(3wi+u»2) sm(T(wi+a>2)) 

(2.16) 

uipart 

msm(^-p)T) 
7^ TT     ^     sin(2m(wi +Lüo)T) 
(wi -W2) [mT V2(M1|u,2) 

+ 

= lim < 
denom     m->oo 

sin(m(a;i+ü;2)r)sin((a;i+4J2)r(^-l)) 

(3m+a,2) sin(K+a,2)r) [mf- -"^{^)T) 
+ 

2)T-2T(i^1+h;2)(m+l) 
sin(m7Vi+a;2))sin((u'1+3w: 

k     (3-1+C2) sin(T(u,1+W2)) [mT- ™^±^ 

1 

(2.17) 

divide top and bottom by m: 
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ujipart 
= lim < 

denom     m-»oo 

sin(m(o;i+^2)^n)sin((tJi+^2)T(m-l)) 

m(3o;i+a;2) sm((wi+w2)T) \T K
m2(~*+U£— 

+    > 

All terms but the first involve lim 
x—>oo       x 

only the first term survives: 

in(mr(u,1+a,2)) sin( ^ +^T~^ +"2>("+i) ) 

k     ™(3o>1+a,2) sin(T(Wl-^2)) [T~ ^^^1 

sin(x) 

(2.18) 

, which goes to zero in the limit.   Therefore 

sin (UI-LJ2)T 

uipart 
denom       T (u\ — u)2) 

(2.19) 

The u2 sine-integral yields the same result and is not included.   The cosine-integral 

for LU2 is included below: 

u2 cosine-integral 

Although the u2 cosine-integral is similar in structure to the u\ sine-integral there are enough 

differences that it is worthwhile to go completely through the derivation. Notice in particular 

that the phase term in the a>i integral is (n - l)T (LO2 - ^i) and in the u2 integral it is 

nT (ui — to2). 

L02part 

00 

/cos( ̂ l±^l) sin (Mt))dt (2.20) 

u2part = y. 
n=l 

2nT 

I   cos( cos 1 — — 1 sin (uj2t + nT (ui — tu2)) dt 

(2n-l)T 

2nT 

1    00 

u2part = - Y^ 
n=\ 

(2n-l)T 

f      sin(Vi^+nT(Wl-u,2))- 

sin (^p&-nT fa-u2)+) dt 

(2.21) 

(2.22) 
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iü2part = 2_] 
n=l 

COB((-'i--'2)«  _ nr^^)) 

(wi-o>2) 

2nT 

(2n-l)T 

(2.23) 

n=l n=l 

u>2part =  lim  < 

(Wl—W2) 

Ercos(2nT(tj1+tj2))l        V^ 

k   n=l n=l 

cos(2nT(uJl+^2)-
("1+^)T) 

(wi+3u;2) 

(2.24) 

The finite sum to the arbitrary number m was accomplished on Mathematica. 

m cos (     1~a'2'    ) 

(wi—W2) (W1-U2) 

uiovart =  lim  <   cos^C^i+^^cosC^i+^jrCm+i)) 
^ * (3WI+W2)COS((W1+CJ2)T) 

aT(ü>i+ü>2)) cos( (a)1+3ui2)T-2r(^1+U)2)(m+1)> 

(3u)i+ai2) cos(T(a;i+a;2)) 

(2.25) 

divide top and bottom by TOT: 

u)2part 

coB((a,l-"8)r) 

=  lim  < 
denom     m->oo 

(wi-w2)T T(wi-w2) 

cos(m(6t)i+a)2)J')cos((üJi+co'2)T(m+l)) 
mT(3wi+w2) cos((wi+w2)T) 

cos(mT(wi+w2)) cos((u,l+3"2 )r-2r(u)1+o'2)("'+i) 
) 

(2.26) 

mT(3wi+u2) COS(T(üJI+OJ2)) 

Once again, all terms but the first two involve lim £2?^ which goes to zero in the limit. 
X—»00      x 

Therefore only the first two terms survives: 

u2part 1 cos (CJI-U2)T 

denom      (ui — U2) T       T (ui — u2) 
(2.27) 
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To find the magnitude of the Fourier component, we add the squares of the real and imaginary 

parts: 

soln = 7Vi-w2) 

2 cos 
+ 

soln _ ^zsji*? (**?*) cos* (fca^E) + W (**?£) 

/sin2 (te^pE) (cos2 (fcjzpE) + sin2 (fca^E)) soln = 

soln = 

7Vi-o>2) 

4|sin((^-"8)T)|  ^_ _ sinc(^=p£)  = sinc(^) 

But wi and o>2 are not in units of Hertz.   To yield a result which will be useful in the 

lab, we define 2-jrfi = a;iand 27r/2 = o»2- 

soln = sine '7T(/l-/2)' 

4/, mod 
(2.28) 

7T 
where all frequencies are in Hertz.   The value of - ~ 0.79 is within the margin of error of 

the experimental result of 0.80 ± 0.01, which is extracted from the slope of Figure 2.19. 

2.4    Solid-state saturable absorber 

The solid-state saturable absorber is a simple extension of the picosecond ring laser gyro 

presented above. The dye jet is simply replaced with a solid-state saturable absorber such 

as Schott Glass RG-830.   The schematic of the system is shown in Figure 2.23. 

The choice of a solid-state saturable absorber is based on the characteristics of the 

ring dye laser discussed earlier in this chapter: the sample must absorb about 2% at the 

lasing wavelength and the sample must be saturable. Since most of the Schott glasses have 

lifetimes in the picosecond region[80, 81], they should be capable of producing picosecond 

pulses. A potential problem with this system is two photon absorption. Most of these glass 

filters are simply an amalgam of semiconductors. The Red Glass series, RG, is a mixture 

of CdTe, CdS and CdSe. Because the glass consists of small spheres (radius = 5.3 nm at 

a volume fraction of .0016 for RG-830) [82] of these semiconductors, the glasses will have 
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Ti:Al203 

Figure 2.23: Setup of solid-state absorber experiments. Several absorber were tried, includ- 
ing the RG-830 that is displayed. 

similar absorption features as the semiconductors. Most of these II-VI semiconductors have 

indirect gaps with parabolic bands and a long absorption tail, so the energy of 2 photons 

would be strongly absorbed by the solid-state glass. The long absorption tail should enable 

us to engineer a device with minimal absorption at the lasing wavelength. 

Sarakura etal[83] used a piece of HOYA IR 76 to initiate Kerr-lens mode-locking in 

a Ti:sapphire laser. They ground the glass down to 90 ßm to simulate the thickness and 

absorption of a dye. They were successful in the implementation, but discovered that 

thermal effects in the glass led to instabilities in the laser output. To verify that it was 

in fact a thermal problem, they noted that blowing dry nitrogen on the glass increased the 

output of the laser. Our setup is similar to Sarakura's but sans prisms because we are 

not particularly interested in short pulses in this preliminary demonstration. We initially 

chose a 1-mm thick piece of RG-780 because it gives an absorption of 3% at 800 nm. This 

glass did not result in mode-locked operation. After checking the wavelength of the laser, we 

discovered that the wavelength had simply shifted to longer wavelengths where the absorption 

of the glass was lower. Since we have no way of controlling the wavelength of the laser, we 

selected a 1-mm thick piece of RG-830. With the laser operating at about 850 nm, this 

setup produces bidirectional, mode-locked pulses. If both the CW and CCW pulses are 

about as long as the glass, the mutual saturation should be optimized while minimizing the 
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2-photon loss. However, the pulses were much longer than the thickness of the glass; greater 

than 20 ps. Unfortunately the CW and the CCW directions were locked to one another 

therefore the beat note was zero and would not respond to mild rotations of the table. This 

is actually not surprising considering the theoretical work by Wax, Chodorow, Buholz and 

Chesnoy[35, 84, 85, 9] on lock-in in pulsed laser gyros. 

Only when the table is rocked violently does the laser produce a beat note and then 

only for a short time before the laser locks once again. We also noticed the thermal problems 

that Sarakura mentioned.   Because of these disadvantages, this system was not pursued. 

2.4.1    Lock-in 

There has been a lot of discussion about why the femtosecond dye laser does not lock. The 

three theories with widest acceptance are Doppler shifting, randomizing the scattering centers 

and four-wave mixing. The Doppler shift theory claims that scattered light is frequency 

shifted because of the longitudinal motion of scattering objects in the dye. The four-wave 

mixing theory states that the light scattered by the nonlinear grating is 90° out of phase with 

the opposing pulse and therefore will not interact with the opposing pulse (although this is 

true, it doesn't prevent the linear scattering from locking the laser). The random-scattering 

theory states that the phase of the scatters is randomized by the motion of the dye, which 

is identical to random, null-bias dithering (see Chapter 1). 

Unfortunately in previous laser systems it has been impossible to separate the phe- 

nomena because they all occur in the dye jet. The solid-state system offers the unique 

ability to separate the phenomena because the Doppler shift can be set to zero by having 

a stationary sample. Also four-wave mixing occurs in an absorbing glass similar to the 

dye jet. In the preliminary experiments, the sample was stationary and the system locked. 

This indicates that it is the motion of the dye jet that causes the pulses to be independent. 

These results are preliminary and require a more systematic study to be conclusive. In an 

attempt to elucidate the problem, we mounted the glass on a moving audio speaker. This 

resulted in a beat note, which would seem to indicate that the CW and CCW pulses are 

decoupled; however, the motion of the speaker was not purely transverse to the optical path 

and contained a significant amount of wobble in the longitudinal direction.    As discussed 
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earlier, a longitudinal motion will result in a false beat note. Because the beat note was 

exceedingly erratic with a bandwidth equal to the beat note of about 25 kHz, no positive 

conclusions can be drawn. Perhaps in future experiments the glass can be moved using a 

smoother piezo driven system (see Chapter 4) and finally clear up the question about why a 

mode-locked dye laser gyro doesn't lock. 

2.5    Conclusion 

In conclusion, this chapter introduced the world's first solid-state ring laser (albeit with a 

dye-jet absorber) that is not locked and requires no bias. Also a novel linear cavity design 

was unveiled and its use as a tool to measure optical nonlinearities was demonstrated. A 

new method of measuring the average beat note in a null-bias system was derived analytically 

and demonstrated experimentally. The flexibility of dithering a pulsed ring laser gyro was 

demonstrated, opening the doors to a plethora of experiments concerning the dithering of 

ring laser gyros. Finally, an all solid-state laser gyro was attempted. Modelocked pulses 

were achieved in the all solid-state laser gyro, unfortunately the counter-propagating modes 

were locked. 

In the next chapter, Kerr-lens modelocking is explored as a method to achieve a pulsed 

laser gyro. The first setup also uses a saturable absorbing dye-jet, but in this case the dye- 

jet is used to initiate pulses and to define a crossing point. The mechanism that leads to 

femtosecond pulses is shown to be the Kerr-lens effect. 
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Chapter 3 

Kerr-lens Mode-locked Ti:sapphire 

Laser 

This chapter reports the first Kerr-lens mode-locked ring laser gyro. The chapter is divided 

into two different methods for defining the pulse crossing point: saturable absorber and 

mutual Kerr-lens. In the saturable absorber section, a novel method uses the Kerr-lens in 

the Ti:sapphire for both positive and negative feedback. In the second section, the use of 

mutual Kerr-lensing is demonstrated to define the pulse crossing point in a pulsed ring laser 

gyro. 

3.1    Introduction 

Since the advent of Ti:sapphire and Cr:LiSAF lasers there has been a move to eliminate 

the dye laser by replacing it with these new solid state materials. Perhaps the chief factor 

motivating this migration is the messiness of dealing with dye lasers, but there are other 

reasons including longer upper level lifetime and broader bandwidth, which result in higher 

power and shorter pulses. One motivation for this work is to demonstrate a solid-state 

femtosecond (fs) laser gyro, similar to the fs ring dye laser [13]. However, operation of a 

solid state ring laser with two uncoupled beams circulating in opposite directions is more 

challenging then it may appear, for the reasons outlined below. 



In a continuous wave ring laser, bidirectional operation is only possible with inho- 

mogeneously broadened gain media such as HeNe and C02. In most lasers that have ho- 

mogeneously broadened gain media such as dyes and solid-state lasers, the larger mutual 

gain saturation (as compared to self saturation) prevents bidirectional operation. Another 

problem with condensed matter lasers is that the "lock-in""or "dead band" problem plagu- 

ing most laser gyros tends to be exacerbated (larger scattering from condensed matter than 

from a gas). In most commercial laser gyros, operation within the dead band is prevented 

by giving the laser a constant motion (dithering). 

Throughout this chapter we will use the following terms, which are defined here for 

clarity. Feedback refers to a coupling between a parameter of the laser pulse and the cavity 

losses. "Positive feedback" is a mechanism that causes the peak intensity of the laser to 

increase. "Negative feedback" is a mechanism that causes the peak intensity of the laser to 

decrease. The word "passive" refers to a device that is not actively driven by an external 

source. "Kerr-lens mode-locking" is an example of positive feedback. The Kerr-lens is a 

result of intensity dependent index of refraction. The Kerr-lens is positive for most crystals, 

which results in a positive lens. If an aperture is placed at the maximum decrease in beam 

waist due to the Kerr-lens, a positive feedback mechanism will result. This is the typical 

situation for Kerr-lens mode-locked lasers (i.e. Ti:sapphire, Nd:YAG and CrrLiSaF). If an 

aperture is placed at the maximum increase in beam waist due to the Kerr-lens, a negative 

feedback mechanism will result. For the Ti:sapphire laser, the pulse energy remains roughly 

constant for different pulsewidths. Therefore a positive feedback mechanism that increases 

the peak pulse intensity will also decrease the pulsewidth. Likewise, for the Tksapphire laser, 

negative feedback will result in longer pulses. 

3.2    Preventing phase coupling between counter-propagating 

beams 

The problem of injection locking between the two counter-propagating beams has been solved 

in the case of the dye laser by replacing continuous wave operation by ultrashort pulse 
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operation. There is no scattering of the clockwise circulating pulse into the counter-clockwise, 

if these pulses do not meet near a scattering medium. The pulses collide in the absorbing 

jet and opposite the jet in air. The same solution applies to a mode-locked Tksapphire 

laser, provided the following conditions can be satisfied: (i) bidirectional operation with two 

counter propagating pulse trains of the same intensity, and (ii) amplitude coupling without 

phase coupling away from any scattering surface to accurately define the pulse crossing 

points. A saturable absorber, similar to dye lasers, provides the required coupling: the pulse 

trains originate from standing wave noise spikes saturating the dye. 

3.3    Preventing unidirectionality 

A first approach to passively mode-locking the Ti:sapphire ring laser is through the use of 

saturable absorbers. Stable bidirectional operation was obtained using the dye IR-140. The 

pulse duration was approximately 1 ps. This is nearly a direct extension of the dye laser 

technology, with two quantitative differences. First, the Ti:sapphire and the dye absorber 

saturate at intensities that differ by three orders of magnitude. Therefore, the gain medium 

stores more energy than the absorber can saturate (typical dyes have a saturation energy 

density: ws = — = 1 mJ/cm2, as opposed to 1.2 ± 0.15 J/cm2 for Ti:sapphire[86]). Second, 

the amplitude modulation resulting in mode-locking is only applied to the leading edge of 

the pulse. Saturable absorbers are often referred to as a slow nonlinearity (the recovery time 

of the bleached dye is longer than the pulse duration), as opposed to the fast nonlinearity 

introduced by Kerr-lens mode-locking. 

In the case of the dye laser, the dynamics of the gain and absorber in the mode-locked 

dye laser are carefully tuned such that the absorber eats away at the leading edge of the 

pulse and the gain eats away at the trailing edge by gain saturation. The lifetime of most 

dyes are on the order of nanoseconds (ns) while Ti:sapphire has a lifetime of 3.2 //s. The 

lifetime is crucial because it determines the recovery time of the gain medium. 

In the case of Kerr-lens mode-locking, the factor of 1000 ratio in lifetimes would 

appear to be an insurmountable problem since the system will want to operate such that 

the energy extracted is the greatest.     A more intense single pulse will have more Self- 
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Phase Modulation (SPM) inside the Ti:sapphire, which will result in shorter pulses when 

there is negative Group Velocity Dispersion (GVD) inside the cavity (a result of the prism 

pairs). With an aperture in the cavity promoting Kerr-lens mode-locking; a shorter and 

more intense single pulse will experience less loss and therefore dominate over bidirectional 

pulses. A solution to this problem is to limit the intensity of the pulse. In the following 

sections we describe two successful implementations of passive negative feedback: (i) optical 

limiting using negative feedback through Kerr-lensing in Ti:sapphire (resulting in continuous 

bidirectional pulse trains) and (ii) optical limiting using an intracavity two-photon absorber, 

resulting in Q-switched mode-locked bidirectional operation. 

3.4    Experimental setup 

Figure 3.1 is a sketch of the experimental arrangement. The flat mirrors are either 0.1% or 

Al 

Ti:Al,0 

SF-14 Prisms 

2^3 Dye Jet 

Figure 3.1: Experimental setup. Al and A2 are apertures. Curved mirrors have radii of 
10 cm. Flat mirrors have reflectivities 0.999 (left) and 0.987 (right). Brewster-cut 8 mm 
Ti:sapphire rod. 
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1.3% output coupling at 800 - 900 nm at zero degrees incidence. The curved mirrors have 

10 cm radius of curvature. An angle of incidence of 10.5 degrees is chosen at the mirrors 

surrounding the gain medium to compensate for the astigmatism of the Brewster angled 

Ti:sapphire crystal. Since no astigmatism compensation can be obtained for the 40 pm 

thick saturable absorber jet, the angle of incidence on the corresponding focusing mirrors is 

minimized. Four SF-14 prisms with 37 cm spacing between prism pairs are used to achieve 

an adjustable positive to negative GVD [87, 53]. The total perimeter of the ring is 253 cm 

resulting in pulses every 8.4 ns. The pump is a Coherent Innova 200 Ar+ running on all 

lines and pumping at about 10 Watts. The high pump power is used to overcome the loss 

through a two photon absorber (i.e. 2 mm of CdS). Apertures Al and A2 are vertical razor 

blades and are not used in all experiments. Al is used for Kerr-lens mode-locking and A2 is 

used for passive negative feedback. A small amount of IR-140 dye was dissolved in ethylene 

glycol for the saturable absorber. Other dyes (i.e. HITCI and NDI) have also been used and 

do not seem to affect the pulse duration in the case of Kerr-lens mode-locked operation. 

3.5    Unidirectional mode-locked pulses 

The procedure for attaining mode-locked pulses is very simple. First close down the Al 

aperture until it begins to affect the continuous wave output, and then realign for maximum 

power. Repeating this process will eventually lead to mode-locked pulses. This procedure 

was developed by theoretically analyzing the linear and nonlinear waists inside the cavity. 

The theoretical model is discussed later in this chapter. Using this procedure we are able 

to achieve between 125 - 140 fs pulses (autocorrelation width 220 fs). We did not optimize 

for the shortest pulses, since this is not a crucial aspect of this experiment. The outputs 

(CW and CCW) from the max-R reflector are detected on p-i-n photodiodes and are plotted 

in Figure 3.2. Based on the discussion above, it is not too surprising that the laser is 

unidirectional. What is surprising; however, is that the laser randomly switches direction. 

The characteristic switching time can be varied from hundreds of microseconds to seconds, 

depending on alignment, absorber dye concentration, and the number of bubbles in the dye 

jet. Notice that the CW and CCW beams are never on at the same time and therefore there 
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Figure 3.2: CCW (upper) and CW (lower) outputs of laser demonstrating switching of laser 
output. Note the laser is unidirectional at all times. Detectors are p-i-n photodiodes with 
a bandwidth of 1 GHz, although the digitizing oscilloscope's bandwidth is 1 MHz. 
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is never a standing wave saturation in the dye. The average output power is approximately 

the same in the CW and CCW directions at about 175 ± 10 mW. 

3.6    Q-switched mode-locked pulses 

Increasing the dye concentration results in an increase of the ratio of saturable to linear 

losses. Therefore, one might expect to achieve bidirectional operation by increasing the 

concentration of the absorber solution. Over an extremely large range, adding dye had no 

qualitative effect to the output of the laser, which has been reported previously[56, 88, 89]. 

Eventually the continuous wave power began to decrease and finally shut off completely when 

the losses exceeded the gain. At this level of dye concentration, the laser begins pulsating 

rather erratically. By adjusting aperture Al the output becomes more periodic, but the 

output on the photodiode was a factor of ten larger! In fact the output is Q-switched mode- 

locked as can be seen in Figure 3.3. The inset of Figure 3.3 shows the mode-locked pulse train 

underneath one of the Q-switched pulses. Notice that the Q-switched train is alternating 

in each direction (one train clockwise, followed by a counterclockwise train, etc.). The 

alternating output does not have a gyro response because the laser is unidirectional at any 

given period of time. The autocorrelation width is 3.3 ps, corresponding to a pulse duration 

of 2.3 ps (assuming Gaussian shaped pulses). The envelope of the Q-switched mode-locked 

trains is 0.6 fjs and they are separated by about 4 fis. Since the lifetime of Ti:sapphire is 3.2 

jits, the Q-switching is most likely a result of relaxation oscillations. Krausz[57] analyzed the 

typical Ti:sapphire laser and came to the conclusion that it should not Q-switch. Our cavity 

has increased linear and nonlinear losses which is significantly different than the theoretical 

cavity analyzed by Krausz. Xing[90] has reported Q-switched mode-locked operation in a 

Ti:sapphire laser that has a Q-switch period that is dependent on the translation of a curved 

focusing mirror. Xing believes that the translation of this mirror affects the losses in the 

cavity and therefore changes the cavity lifetime. 
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Figure 3.3: CCW (upper) and CW (lower) pulses demonstrating Q-switch pulses. The 
period of pulses varied from 4 to 7 /xs. The inset shows a subset of the mode-locked pulse 
train within the Q-switch envelope. 
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3.6.1    Passive negative feedback 

One standard technique to stretch the Q-switched mode-locked train, while compressing the 

individual pulses, is passive negative feedback [91]. As an alternative to the GaAs used as 

a two-photon absorber in the Nd:YAG laser [91] we placed a 2-mm thick sample of CdS in 

the cavity (see Figure 3.4) for an energy limiter. The 2-photon fluorescence of the CdS is 

CdS 

Ti:Al,0 

SF-14 Prisms 

Concentrated 
Dye-Jet 

Figure 3.4: Experimental arrangement for bidirectional Q-switched mode-locked pulses. 

clearly visible to the naked eye in a well lit room. With the highest dye concentration and 

the energy limiter (CdS), the two pulse trains from each direction are in phase, see Figure 

3.5. The photodiode measurement cannot resolve the crossing point of each pulse train. One 

method to determine if the pulses are crossing in the dye is to combine the CW and CCW 

outputs onto a detector and look for a beat signal. Initially a beat note of 2 kHz with a 2 

kHz bandwidth was observed; after a significant amount of work and a clean dye solution a 

beat note of 100 Hz was obtained, see Figure 3.6. This mode of operation has synchronized 

pulse trains in opposite directions, and a gyro response. It may be of interest in experiments 

requiring probing of samples with high intracavity peak powers. It is rather surprising that 

the laser is able to 'remember' the phase between the CW and CCW pulse trains in between 

Q-switched pulses. Recent theoretical results[92] predict that the laser is still mode-locked in 

between the Q-switched pulse, albeit at a very small amplitude. These mode-locked pulses 

in between the Q-switched pulses has also been confirmed experimentally[93]. Another 

mode of operation, with continuous mode-locked trains, is described in the next section. 
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Figure 3.5: CW and CCW outputs in Q-switched operation are temporally overlapped. 

3.7    Continuously mode-locked bidirectional operation 

3.7.1    Cavity analysis 

Kerr-lensing itself can be used to achieve negative as well as positive feedback. We use a 

simple ABCD method to model the laser and include the nonlinearity of the sapphire by 

inserting a lens matrix of the appropriate focal length [74]: 

1 noirwQ 
/, nl (3.1) 

a 8ri2Pd 

where w0 is the waist in the sapphire, n2 is the nonlinear index of refraction, P is the peak 

power, d is the length of the crystal and a is a constant on the order of 1 to 4. The constant, 

a, is a result of approximating the Gaussian beam profile to a parabolic lens equation. If a 

one-to-one correspondance is made in the Taylor series expansion, then the a-factor is 1. A 

recent empirical fit found the value of a to be 1.723 [1, 2]. Figure 3.7 is a plot of the waist 

in the 8 mm Ti:sapphire crystal. Clearly using the waist, w0, is not a good approximation 

over the length of the crystal. We want to keep the analysis as simple as possible for rapid 

calculations, so we would like to use only one thin lens to approximate the nonlinearity. 

Equation 3.1 is a good approximation for small nonlinearities (P < Pa- (critical power)) and 
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Figure 3.6: Beat note of Q-switched pulses. Coupling is DC because the signal is pulsed. 
Notice the contrast is 60%. There are more than 3000 pulses in this plot and only 2048 
data points.   This undersampling explains the aperiodic nature of Q-switched pulses. 

thin (d < z0 (Rayleigh range)) samples.   For an infinitesimal slab, dz, the nonlinear lens is 

given by: 

no7cwA (z) 1 
fnl     — 

1 
fnt n0irw4 (z) 

a8n2P   dz 
a8n2P    . 

dz 

(3.2) 

(3.3) 

The ABCD matrix method calculates the i beam parameter. From the beam parameter, 

we extract the radius of curvature of the beam, i?x, and the beam waist, wx. The rest of 

the beam characteristics can be calculated: 
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Figure 3.7: Plot of the beam waist in the Ti:sapphire crystal.   The length of the crystal is 
about 10 times longer than the confocal parameter. 

Integration over the length of the crystal, d, from z\ to z2 yields: 
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Where deff is the effective length of the crystal. It is instructive to plot deff as a function of 

crystal length. Figure 3.8 assumes w0 = .001 cm and z\ = 0, which means that the waist is 

at the left edge of the crystal. For lengths longer than the Rayleigh range, the nonlinearity 

approaches a constant. Typically the beam waist is near one edge of the crystal, such that 

small changes in the beam parameters can translate into large changes in the nonlinear lens. 

So far only the strength of the nonlinear lens has been discussed. As with any lens, 

the location of the lens will also play an important role in determining the beam waist. The 

location, f, of the nonlinear lens in the crystal is deteremined by calculating the centroid of 
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Figure 3.8: Plot of effective crystal length versus actual crystal length. Note for lengths 
longer than the Rayleigh range, the effective length is approximately a constant, a is an 
empirically determined constant [1, 2]. 

the nonlinear lens: 

z   = 
I w(zy 

■dz 

I 

/ 
Zl 

w{zy 
-dz 

1 + (i)' 
Z2 

I 
Zl 

dz 

-Az 

1 + (i): 

2 {zl + z\)     2 {zl + zl) 

So 
2 

zpzi (-¥B? + arctan (?) - -f^ arctan ( a 
*0 

-   s    2 {zl + zl)     2 {zl + zl) 

deff 

Figure 3.9 is a plot of (I - z), the location of the nonlinear lens with respect to the center 

of the crystal, as a function of the location of the crystal with respect to the beam waist. 
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Figure 3.9: Location of the nonlinear lens plotted as a function of the location of the crystal 
with respect to the beam waist. 

Notice that the location of the nonlinear lens is always within the crystal. 

Although the calculation can be accomplished by only using one set of beam param- 

eters, we feel that the calculation is easier with two sets, one at the entrance to the crystal 

(zi) and the other at the exit (z2). To within 1% of error in beam waist, the nonlinearity 

can be ignored when the waist, w(z), is calculated. An iterative approach can be used 

where the waist is first calculated ignoring the nonlinearity and then the waist in the cavity 

is recalculated using the new waist. This waist can then be recalculated until the desired 

precision is reached. There is; however, no reason to iterate more than once, as can be 

seen in Figure 3.10. Notice that the first iteration produces a correction of less than 0.5% 

from the waist calculated without the nonlinearity. After the first iteration, the change is 

less than the accuracy of the first order approximation used in equation 3.1. Figure 3.11 

is a plot of the waist inside the cavity starting and ending in the middle of the Ti:sapphire. 

The abscissa is the distance from the center of the Tksapphire rod as you walk around the 

perimeter of the laser in a CCW direction. The solid line is the calculation without the 

nonlinearity and the dashed line includes the nonlinear focus. The dimensions used in the 

numerical model are taken directly from the laser in the laboratory (within the margins of 
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Figure 3.10: Beam waist in the nonlinear crystals, Ti:sapphire and ZnS, as a function of the 
number of computer iterations. 

error). Notice that the numerical model correctly predicts the nonlinear waist to be smaller 

than the linear waist at the aperture Al, which is required for Kerr-lens mode-locking. This 

waist was verified experimentally by scanning a pinhole across the beam at several locations 

outside the cavity. The experimental value of 0.033 ± .005 cm is reasonably close to the 

computer model (larger by about 11 fxm), especially when you consider all of the approx- 

imations made in the model and the difficulty in accurately measuring the dimensions of 

the cavity and the circulating power. As you can see from Figure 3.11, a second aperture 

located virtually anywhere in the cavity can act as an optical limiter because the nonlinear 

waist is larger than the linear waist everywhere in the cavity except at Al. For example an 

aperture at A2 will induce larger losses for a more intense pulse because it will have a larger 

waist at A2. 

3.7.2    Experimental results 

Before we tried the aperture at A2, we replaced the dye with a new dilute solution of IR- 

140. Then we reestablished unidirectional mode-locking by closing the slit at Al and then 

aligning for maximum power.    Repeating this procedure eventually leads to mode-locked 
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Figure 3.11: Theoretical graph of linear and nonlinear cavity waists plotted versus distance 
in the cavity. The distance is measured from the center of the Ti:sapphire rod in the CCW 
direction. Al is the location of the Kerr-lens aperture. A2 is the location of the aperture 
for passive negative feedback.   The plot begins and ends in the Ti:sapphire crystal. 
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pulses. It should be pointed out that the location of Al is chosen very carefully, such that 

the continuous-wave waist and the mode-locked waist occur in the same location in the cavity. 

This procedure will only work for the setup specified in Figure 3.11. As the aperture at A2 

is closed the autocorrelation decreases in height and increases in width, just as predicted. 

Suddenly the autocorrelation will drop to fixed lower level and become more stable. The 

laser is now operating bidirectionally. The autocorrelation traces shown in Figure 3.12 were 

obtained immediately after one another with the only change in the experiment being the 

closing of aperture at A2 by about 0.05 cm, which results in bidirectional operation.   Notice 

c 
o 

CD 
k_ 

o 
Ü 
o 

4—» 

< 

7-,-r-Ti . | I 

8- - 

o     j 1 
u     I   t b- CD             1 L-            ft 

T3       1      | 
C       1       1 

Z>               1 
4- " 

• 

2- - 

/              • 1 

0- 
i ■ i ■ 1 i ■ i ■ 1 ■ ' ■ 1       |      1       1      1       1       |       ll 

I ' ' ' ' I ' ■ ' I 

Bidirectional 

-1.0 -0.5   0.0   0.5   1.0   -1.0 -0.5   0.0   0.5   1.0 
Delay (ps) 

Figure 3.12: Background free intensity autocorrelation. Traces obtained immediately after 
one another, only slit A2 was closed by 0.05 cm for bidirectional operation. The dashed 
lines are a Gaussian fit to the autocorrelation. The Gaussian pulsewidths are 220 fs for 
unidirectional and 420 fs for bidirectional. 

that the pulsewidth has increased a factor of 2 (measured to be 420 fs) and the pulse height 

has decreased by a factor of 9. The autocorrelator was a type-II KDP crystal configured 

for background free intensity autocorrelations. The output of the photodiodes is shown 

in Figure 3.13 in stark contrast to the unidirectional output in Figure 3.2. There are still 

about a dozen dropouts in 5 seconds, but this is acceptable for many applications. The 

dropouts are a result of the laser switching to unidirectional operation, which may be a 

result of intensity fluctuations.   Replacing the hard apertures (razor blades) with apodized 
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Figure 3.13: CCW (upper) and CW (lower) output demonstrating the lack of switching 
as compared with Figure 3.2. The detectors and time base are the same as Figure 3.2. 
The dropouts are a result of unidirectional operation, which explains why the spikes are 
negatively correlated. 

apertures may result in more stable operation. We also verified that A2 could be located 

at two other locations in the cavity: at 70 cm and at 120 cm (see Figure 3.11). 

Our application is to use the ring laser for sensitive intracavity phase measurements [94, 

76]. So we once again measured the beat note by combining the CW and CCW pulses on a 

slow detector. The beat note demonstrated good sinusoidal character (see Figure 3.14) for 

short periods of time (milliseconds); however, a 15 minute average collected on a frequency 

spectrum analyzer showed a bandwidth of 10 kHz. To our surprise the beat frequency was 

about 70.8 kHz in Figure 3.14 and could be varied from about 20 kHz to 150 kHz depending 

on alignment. The high beat note is surprising because we had earlier measured a beat note 

of 100 Hz in a Ti:sapphire linear cavity[94, 95] and 10 Hz in a Ti:sapphire ring dye laser (see 

Chapter 2). 

We again returned to the numerical model and assumed that the energy in each 

pulse increased by 10-20% as it passed through the gain medium. The figure of 10-20% is 

estimated by measuring the power reflected off of all Brewster surfaces inside the cavity and 
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Figure 3.14: Difference frequency of the combined CW and CCW pulses.    The Brewster 
reflections from two prisms are recombined after an appropriate delay onto a slow detector. 
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assuming 5-10% scattering loss from the mirrors, absorber jet, prisms and apertures. For 

Kerr-lens mode-locking, the waist has to be located asymmetrically within the gain medium 

to optimize the nonlinear lens. Because both the power and the waist vary as the pulse 

travels through the gain, the change in the index of refraction will be different for the CW 

and the CCW pulse.    Figure 3.15   will help clarify the difference in the nonlinear phase 

Wr 

P0+AP 

'max 

P0+AP 

Figure 3.15: Beam waist in Ti:sapphire crystal. The upper equations apply for the CW 
pulse, and the lower equations are for the CCW pulse. Because of the asymmetry, the peak 
intensity will be less for the CW pulse. 

shifts. The equations in Figure 3.15 that are above the beam waist are for the CW pulse 

and the equations below the waist are for the CCW pulse. Notice that the peak intensity 

is greater for the CCW pulse than for the CW pulse, which translates into a greater change 

in index for the CCW pulse. This slight difference in the index of refraction will result in a 

slight difference in the optical path length of the cavity, which shifts the longitudinal mode 

spacings. The beat frequency, Av, resulting from a change in the perimeter, AP, of a ring 

laser is given by: 

Av _ AP 
~v~~^P~ 

v 
Av = —n2AIvead 
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where v is the optical frequency and P is the perimeter of the ring cavity. The 

numerical model predicts a beat frequency of 50 - 150 kHz for the cavity described above, 

which agrees well with the beat note observed in the laboratory. The beat frequency in the 

numerical model was strongly dependent on the cavity parameters, as was the laser in the 

laboratory 

The fact that a first-order cross-correlation produces a beat note, implies that the 

pulses are crossing in the dye jet. The first-order cross-correlation does not give much 

information about the jitter in the crossing point. To determine the jitter in the crossing 

point we used a second-order non-interferometric cross-correlation. It is convenient to use 

the pulses from the first-order cross-correlator (the beat note detector) for the second-order 

auto and cross-correlations, see Figure 3.16 for the experimental arrangement. When the 

A/2 waveplate is in position A, the CW (CCW) autocorrelations can be recorded by blocking 

the CCW (CW) beam in the first-order autocorrelator. To record the second-order cross- 

correlation, the A/2 waveplate is moved to position B. The second-order cross-correlation 

is shown in Figure 3.17 as the solid line. Also plotted in Figure 3.17 are the CCW and CW 

autocorrelations. Although this graph doesn't resolve the differences in the pulsewidths, an 

average of many pulsewidths showed the CW pulse to be slightly shorter than the CCW 

pulse and the cross correlation was on average in between the CW and the CCW pulses. 

This implies that there is very little jitter in the crossing point of the CW and CCW pulses. 
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Figure 3.16: Setup for beat note detection, auto and cross correlations. The A/2 waveplate at 
locations A and B control the auto and cross correlations, respectively. The beam combiner 
for the beat note detection is a 50/50 beam splitter, while the beam splitter/combiner for 
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Figure 3.17: Auto and cross correlations of CW and CCW pulses. The cross correlation lies 
between the autocorrelations of the CW and CCW pulses, which implies no timing jitter 
between the pulses with a margin of error of 30 fs. 
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The maximum amount of jitter is 30 fs, which is a statistical error from the fluctuations in 

the individual pulsewidths. If we assume Gaussian pulses with durations rx and r2, the 

cross-correlation is given by: 

J — c 

-21—1      -2 [ -] -2 
e 

T*J e    V  r2  7 cfö = e   
ri+T2 

Notice that if ri = T2, we recover the autocorrelation and the y/2 factor in the pulsewidth. 

For our experiment, we define: 

CW Autocorrelation width    =    Vz rc 

CCW Autocorrelation width    =    v2 rc 

CU> 

Cross-correlation width   =     \JT\W + r CCW 

If TCW < TCCW then the order of correlation widths will be CW-autocorrelation < cross- 

correlation < CCW-autocorrelation. 

This concludes the study of the first Kerr-lens mode-locked femtosecond ring laser 

gyro. In the next section, we will remove the absorbing dye jet and replace it with a 

nonlinear crystal. This new method of establishing a crossing point in a Kerr-lens mode- 

locked ring laser is called the mutual Kerr-lens effect. 

3.8    Mutual Kerr-lens mode-locked 

3.8.1    Introduction 

The absorbing dye jets discussed in the previous chapters and sections have a few disadvan- 

tages compared to an all solid-state system. It is not practical to put a dye jet into a remote 

object (like a satellite) for rotation sensing because of the high maintenance of the dye. The 

dye jet is a thin (< 100 pm) ribbon that is free to move. A moving dye jet can result in 

increased noise in the beat note, and can limit the ultimate sensitivity of the device. 

Another disadvantage to the dye jet is called pulse dropout, which is a result of bubbles 

in the dye jet which cause the laser to shut off for a moment. Pulse dropouts will also limit 

the sensitivity of the device. The laser may turn off for /xs to ms.   When the laser reaches 
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threshold again, there is no memory of the phase of the previous beat note. Therefore, at 

every pulse dropout there will be an arbitrary phase jump in the beat note. These arbitrary 

phase jumps will limit the device's sensitivity by adding bandwidth to the beat note. 

For these reasons it would be advantageous to move to a solid-state laser system. 

Since all of the experiments in this dissertation involve an Ar+ laser, none of these systems 

are 'all solid-state.' However, most of the experiments presented here could be moved to 

an all solid-state system by replacing the Ar+ with a solid state system such as: a diode 

pumped, frequency doubled, continuous wave, Nd:YAG laser; a diode pumped, mode-locked, 

Nd:YAG laser; a diode pumped Cr:LiSAF laser; or perhaps simply a diode system. One solid- 

state system has already been presented in Chapter 2, the solid-state saturable absorber. 

Next we will discuss the solid-state system that uses and mutual Kerr-lens mode-locking to 

stabilize the pulse crossing point. The OPO is also an all solid-state design, but because no 

experimental data was recorded for the OPO during this dissertation work, the OPO design 

will be discussed in Chapter 4. 

3.8.2    Theory 

The formation of multiple pulses in the Ti:sapphire laser is well documented[96, 97] and was 

observed in our lab[97]. Multiple pulses are difficult to control experimentally, but seem to 

depend on having low output coupling, because the soliton model predicts a quantization of 

the soliton amplitude. The multiple pulses have previously been reported as higher order 

solitons[96], which also supports our experimental findings that multiple pulse operation 

requires low output coupling. Jeff Nicholson recently modeled some experimental work done 

by Ming Lai concerning multiple pulses inside the laser cavity [97]. His simulations showed 

that it is possible to have an enhanced Kerr-lens if the pulses collide in the Ti:sapphire. 

Another group has also verified this same theoretical result [98]. This is a surprising result 

because the mutual Kerr-lens should be much smaller than the self Kerr-lens. In air a 100 

fs pulse is 30 /xm long, which will be stretched to 53 /zm inside the sapphire. The colliding 

pulses will only have an interaction length of 100 fjm. When you compare this to the 8 

mm length of the crystal, the colliding term should only be approximately 2.5% of the single 
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pulse interaction. 

Ancoiiiding   ^ interaction length ^Intensity ^ 012 = 2 ^ 

tingle-pulse crystal length     Intensity        8 

The factor of 2 is a result of averaging the electric fields interfering in the crystal (the 

intensity periodically varies from 4xIntensity to zero). Since the Kerr-lens has only a small 

effect on the cavity parameters, it is hard to believe that an additional 2.5% would have any 

noticeable effect. 

A complete analysis will require the ABCD matrix calculation and a little more care 

than the estimation above. For bidirectional operation to be stable, we require bidirectional 

pulses to experience less loss than: 1) single-pulses, 2) continuous-wave operation, 3) double- 

pulses in the same direction. Because the lifetime of Ti:sapphire is much longer than the 

round-trip time, it is assumed that the total energy extracted from the cavity in one round- 

trip is constant regardless of the mode of operation. For a 'best-case' scenario, let us 

further assume that the pulsewidths are equal (from the previous work this is not such a good 

assumption). Together these assumptions require that the peak power in the bidirectional 

case be less than half the power in the single-pulse case. The nonlinear index is also modified 

by the colliding pulses: 

L^TICCU) = n<i ylccw ~T ^-icw) 

£±ncw = 7T-2 \J-cw   i   ^i-ocw) 

The factor of 2 in front of the counter-propagating beam is a result of the pulses being 

distinguishable[99, 100]. By assuming: 1) equal intensity in the counter-propagating fields, 

2) similar waists and 3) the pulsewidth is approximately the width of the crystal yields: 

Therefore there is ample room in the nonlinearity to distinguish between single-pulse opera- 

tion and bidirectional operation. For a laser gyro, we require that the pulses cross outside of 

the gain medium to prevent lock-in from scattering off a gain grating in the Ti:sapphire. To 

enhance the mutual Kerr-effect, we chose a high n2 crystal, ZnS, which has a nonlinear index 
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Figure 3.18: Beam waist as a function of position in the cavity. The calculation begins and 
ends in the Ti:sapphire crystal, TiS. Three different cases are plotted: continuous-wave, 
single-pulse and bidirectional pulses. 

about 50 times that of Tksapphire. We return to the ABCD matrix method to determine 

where the slits should be located for bidirectional operation. We expect the simulation to 

only yield qualitative results because of the numerous approximations. Figure 3.18 is a plot 

of the beam waist as a function of position in the cavity. Notice that a slit at position B will 

increase the losses for continuous-wave operation (positive feedback) and slits at position A 

will limit single-pulse operation (negative feedback). Judicious use of these two slits should 

yield bidirectional pulses. 

There are differences in the linear laser analyzed theoretically[98, 97] and a bidirec- 

tional laser. Often when the output coupling is low, pulse splitting can be observed in a 

Kerr-lens mode-locked laser. The satellite pulse separates from the main pulse because its 

effective group velocity is lower [97]. Eventually, the satellite pulse will meet the main pulse 

in the Ti:sapphire crystal. The mutual Kerr-lens effect will stabilize the satellite pulse, such 

that it collides with the main pulse in the Ti:sapphire crystal.  This situation is very different 
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from a bidirectional laser with the pulses colliding in the Kerr medium. We do not expect 

the system to evolve from a single pulse regime to a bidirectional regime. The bidirectional 

laser must be initiated in the bidirectional operation. For this reason, we tested the mutual 

Kerr-lens mode-locking in the linear cavity first. 

3.8.3    Experimental results 

In the linear cavity discussed in Chapter 2, we replace the dye jet with a 3 mm crystal 

of ZnS. From earlier experiments with Z-scan in optics lab, it was determined that ZnS 

has the highest nonlinearity with the lowest 2-photon absorption at A = 800 nm. The 

nonlinear loss is low because the bandgap is at 3.6 eV which is beyond the 2-photon energy 

of the Ti:sapphire pulses (3 eV). The close proximity of the two-photon energy to the 

bandgap enhances the effective %3, although the interaction remains parametric (no energy 

is transfered to the crystal) [101]. We expect the laser to mode-lock easily, since Radwiecz at 

Oklahoma State University[102] showed that ZnS is an excellent crystal to use for Kerr-lens 

mode-locking. Because the ZnS is used to mode-lock the laser, the Tksapphire crystal is 

allowed to be tuned independently for maximum power. Also the x3 nonlinearity in ZnS is 

roughly 50 times the nonlinearity for sapphire, which means the mode-locking threshold will 

be much lower. After establishing mode-locking, we search for double pulses by scanning 

the end mirror, which is mounted on a translation stage (see Figure 3.19). 

Double pulses were observed over a broad range of end cavity placements (up to 0.5 

cm). Although it is easier to achieve double pulses in this experimental setup (in comparison 

to the dye jet), they were less stable and the pulse train typically had approximately a 10%- 

20% ripple. With careful alignment and the use of slits to control the spectrum, a very quiet 

mode of operation is attained. Although the noise was not measured, it appears to be a 

result of the fluctuations of the Ar+ laser. Unfortunately this mode of operation is close to 

lock-in, so the observed beat note varies from zero (locked) to several kHz (strongly pulled) 

depending on alignment. Only when the table is violently rocked (creating a frequency 

difference of several kHz), does a beat note appear for a short period of time. There is 

a significant amount of blue second-harmonic generated by the ZnS, some of these beams 

were at odd angles to the ZnS. In particular, a blue beam emanates from the ZnS at normal 
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Figure 3.19: Experimental setup for mutual Kerr-lens mode-locking in ZnS. The ZnS crystal 
is 3 mm long and at Brewster's angle. The cavity fold mirrors all have a radius of curvature 
of 10 cm. 

incidence only when the pulses are colliding in the ZnS. This unexpected blue beam aids in 

the alignment for bidirectional operation. 

The bidirectional ring laser (see Figure 3.20) is more difficult to align and typically 

ZnS SFG RSSH 

Figure 3.20: Experimental arrangement for mutual Kerr-lens mode-locking. The bidirec- 
tional pulses meet in the ZnS crystal. 

requires a 'kick' to start the laser in the bidirectional mode, although self-starting operation 

was also observed. Operation with and without prisms was demonstrated in two different 

lasers.   The laser is aligned by maximizing the blue light normal to the ZnS crystal.   When 
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the laser is not mode-locked the blue beams are barely visible, but when it mode-locks bidi- 

rectionally, the blue beams can be see even with the room lights on. Once the bidirectional 

operation is achieved, slit A in Figure 3.18 is closed slightly to stabilize the bidirectional 

pulses. 

The beat note is difficult to locate and initially consisted of what sounded like 'white 

noise.' Further alignment and closing of slit B resulted in a more stable pulse train and 

a discernible beat note as shown in Figure 3.21. In Figure 3.22 the top plot is the CCW 

intensity and the bottom is the beat signal. Notice that the beat frequency appears in the 

CCW intensity. This modulation of the intensity is predicted in the lock-in equation when 

the beat frequency is close to the lock-in frequency. 
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Figure 3.21: Beat signal versus time demonstrates the evolution of the interferogram from 
locked to a frequency of about 8 kHz. 

Figure 3.23 is a plot of the normalized FFT of the beat signal shown in Figure 3.22. 

Even though the quality of the beat signal looks poor, the FWHM of the beat frequency is 

only 85 Hz. The second harmonic of the beat signal is easily identified, yielding a geometric 

ratio, 

Amplitude of 2nd Harmonic 
Amplitude of Fundamental 

= 0.032 
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Figure 3.22: CCW signal (top) and beat note (bottom).    Notice that the beat frequency 
appears as an amplitude modulation on the CCW pulse train. 

The lock-in frequency is calculated to be: 

2pr 
= 500 Hz 

(1 - r2) 

Recall from Chapter 1 that p is the pulled frequency. The calculated lock-in frequency 

appears too low, because the intensity is modulated (see Figure 3.22) at the beat frequency 

(8 kHz) which normally only occurs near the lock-in frequency. The modulation could be a 

result of nonlinear dynamics other than lock-in; perhaps a result of the large Kerr nonlinearity 

in the ZnS. Perhaps another explanation might be the large self-phase modulation, SPM, 

in the ZnS, which can generate new frequencies at both the upper and lower end of the 

pulse's spectrum. To check the stability of the pulse crossing point, auto/cross correlations 

were preformed on the laser. The geometry used for the correlations is the same as Figure 

3.16. The pulsewidths of the CCW and CW pulses trains are 18.6 and 22.6 ps ± 0.13 ps, 

respectively. These are, to the best of our knowledge, the longest Kerr-lens mode-locked 

pulses ever reported. Based on the autocorrelations, the minimum cross-correlation is 29 

ps, which is slightly larger than the actual cross-correlation of 28.1 ps ± 0.1 ps. Systematic 

errors on the order of 0.5 ps can explain why the cross-correlation is less than the minimum 

predicted by the autocorrelations.   A possible source of these errors is the fact that the laser 
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Figure 3.23: Normalized FFT of the beat signal in Figure 3.22. The second harmonic of 
the beat signal is easily identified and yields a geometric series ratio, r = .032. 

turned off and had to be restarted at least twice while the data was recorded. Because of the 

strange dynamics, we also recorded the spectra of the CW and CCW pulses, see Figure 3.27. 

The spectra are a little surprising because the average wavelengths differ by almost 2 nm. 

Because the beat note detection compares only the same longitudinal modes, the shift in the 

spectra will not prevent the device from measuring a gyro response. The wavelength offset is; 

in fact, rather serendipitous because it will allow us to determine the origin of the mysterious 

blue light. The frequency difference can only be the result of a nonreciprocal optical element 

in the laser. Since the ZnS is the only new element, the nonreciprocal frequency shift must 

originate in the ZnS crystal. Perhaps the four-wave mixing (discussed in Chapter 1), which 

is frequency shifted by the frequency difference is the culprit. If this laser is deemed a viable 

laser gyro, then the frequency shift will need to be investigated further. The widths of the 

spectra are: 2.65 and 2.5 nm ± .04 nm for the CCW and CW pulse trains; however, the 

resolution of the monochromator was only 0.4 nm. The deconvolution of the spectra with 

the monochromator resolution yields a frequency bandwidth of: 1.24 and 1.17 THz for the 

CCW and CW pulses. The time-bandwidth products are: 23.0 and 26.4 ± .2 for the CCW 

and CW pulses, these time-bandwidth products are an amazing 55 times the transform limit 

for Gaussian pulses. Again a possible explanation is the large amount of SPM in the ZnS 
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Figure 3.24: Autocorrelation of the CCW pulse train. The pulse width is calculated to be 
18.6 ± .08 ps. 

which would push the frequency away from line center. We are currently working on an 

experiment to mount the ZnS on a piezo-electric transducer, in order to randomize the phase 

of the scattering elements. This motion is perpendicular to the beam, similar to the motion 

of the dye jet. Theory [29] predicts that randomizing the phase of the scatters is identical 

to a random, null-bias dither (see Chapter 1). 

3.8.4    The mysterious blue light 

A total of 8 beams of blue light was seen by the naked eye to emanate from the ZnS. ZnS 

has cubic symmetry, so the index of refraction in the crystalline planes is nearly identical 

and therefore birefringent phase matching is not possible. We used two crystals for these 

experiments, the first is a 3 mm polycrystal and the second a 1 mm X-cut single crystal. 

For the picosecond laser without prisms, the 3 mm crystal works much better because of 

the greater nonlinearity. Figure 3.28 is a sketch of the geometry of the blue beams. The 

ZnS crystal is at Brewster's angle inside the Tksapphire cavity The beams labeled RSSH 

and TSSH correspond to reflected and transmitted surface second-harmonic [103]. Collinear, 

non-phased matched second-harmonic is beyond the critical angle for total internal reflection 

and is trapped inside the crystal.   The beams labeled SFG are much brighter (about a factor 
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Figure 3.25: Autocorrelation of the CW pulse train. The pulsewidth is calculated to be 
22.6 ± .13 ps. 

of 100) when lasing bidirectional compared to continuous-wave lasing. The SFG beams 

completely disappear when the laser is running unidirectional. The SFG beams provide 

a convenient means to monitor the bidirectionality of the laser. For the 3 mm crystal, 

there are actually two beams at the SFG that are separated by about 6.4°, the secondary 

beam is a result of a small wedge in the crystal. To within a few degrees, the SFG signal 

emanated normal to the surface of the ZnS. The SFG beams are a result of the mixing 

of the fundamental in one direction with the Brewster's reflection from the other direction. 

This explanation resolves all of the mysteries associated with the SFG beams: 1) they only 

appear when bidirectional, 2) they emanate normal to the crystal, 3) the SFG beams from 

the fs laser were significantly weaker than the picosecond laser (the pulses are not colliding 

at the surface). Figure 3.29 is a schematic of the beams generating the SFG beams. To 

confirm that the mechanism is sum frequency generation, we compared the spectra of the 

surface-second harmonic to the SFG. Figure 3.30 is a plot of the spectra of the SSHG from 

the CW and CCW beams and the spectrum of the SFG beam. Notice the SFG lies in 

between the SSHG signals. This plot verifies that the beams are indeed a result of SFG. 

As a precautionary measure, all possible four-wave mixing geometries were also considered. 

A total of 12 different possible (not probable) wavevectors were compared for energy and 
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Figure 3.26: Cross-correlation between the CW and CCW pulses. The minimum width 
predicted from the autocorrelations is 29 ps. 

momentum conservation. 

k 4 = k i+ k 2+ k 3 

The closest match had a wavevector mismatch of |^| ~ 0.2, which is a bit too large to be 

probable. 

3.9    Conclusions 

We demonstrated the first Kerr-lens, optically limited femtosecond ring laser, where the Kerr- 

lens is used both for Kerr-lens mode-locking and for optical limiting. A simple numerical 

model correctly predicts the proper location for the Kerr-lens aperture and the aperture for 

optical limiting. The model also correctly describes the observed beat frequency and the 

location of the third waist in the cavity. We also report the first beat note from a Q-switched 

mode-locked laser, which was attained by using a saturable absorbing dye jet in conjunction 

with a solid-state 2-photon absorber. We also note that the Q-switched operation may be 

an efficient way to obtain higher peak energies from a Ti:sapphire laser[104]. 

A novel method, called mutual Kerr-lens mode-locking, is demonstrated for the first 

time.   Mutual Kerr-lens mode-locking defines the crossing point of the counter-propagating 
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Figure 3.27: Spectra of CW and CCW pulse trains. The FWHMs are 2.5 and 2.65 ± .04 
nm for the CW and CCW pulses.   The resolution of monochromator is 0.4 nm. 

waves in a ring laser gyro without the use of a saturable absorber. We have also discovered 

that SFG can be used to monitor the bidirectionality of the mutual Kerr-lens mode-locked 

ring laser. 
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Figure 3.28: Schematic of blue beams eminating from ZnS crystal. The beams are identified 
as: reflected surface second-harmonic (RSSH), transmitted surface second-harmonic (TSSH) 
and sum-frequency generation (SFG). 
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Figure 3.29: Wave vectors involved in SFG (Sum Frequency Generation). The beams 
are mixed in the intracavity ZnS crystal. The larger beams are the strong, intracavity 
fundamental beams. The weaker solid beams are the surface reflection of the fundamental. 
The dotted lines are the SFG beams. 
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Figure 3.30: Spectra of CW and CCW surface second-harmonic and the spectrum of sum 
frequency generated normal to the ZnS crystal. 
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Chapter 4 

Future Work 

The previous chapters highlighted many of the difficulties in developing a solid-state laser 

gyro. Our efforts in building a pulsed solid-state laser gyro paved the way for modern 

solutions to some of the problems facing the solid-state laser gyro. The principle problems 

are interaction of the counter-propagating pulses in the gain medium and removal of the 

arbitrary bias. The gain problem is solved by an OPO, which has a lifetime equal to the 

pump pulse duration, and therefore no interaction between pulses. The bias problem is 

resolved by a novel method of removing the bias using a switchable figure-8 laser. This 

chapter also contains other experiments that could be explored with a pulsed ring laser gyro. 

Many would make excellent Master's Degree thesis and others could be (or are being) used 

for Ph.D. dissertations. Some, like the Ti:sapphire initiator and the Bidirectional OPO Ring 

Gyro (BORG), have been researched quite extensively and have been submitted for patents. 

Because the OPO has the potential to exceed the limits of the current HeNe lasers, most of 

this chapter is devoted to the design of the BORG. The chapter ends with a postmortem 

of experiments that didn't turn out like we had planned. 



4.1    OPO 

4.1.1    Introduction 

The seemingly insurmountable problem with bidirectional pulsed ring lasers is gain compe- 

tition. If the lifetime of the gain medium is greater than the cavity round-trip time, then 

there will be an interaction between the two pulses. The pulses will be competing for the 

same gain. Since most solid-state lasers have a long lifetime, it would seem that the phrase, 

bidirectional solid-state, must be an oxymoron. Only when extreme measures of control- 

ling the pulse energy are put in place (see Chapter 3), can there be any hope of achieving 

a bidirectional solid-state laser. Does a solid-state system exist that has a lifetime much 

shorter than the cavity round-trip time? Yes, Optical Parametric Oscillators (OPO) have 

the unique characteristic of almost no lifetime. The gain in an OPO is present only when 

the pump pulse is present. Although an OPO is technically not a laser, because the gain is 

not a result of stimulated emission, but rather a result of frequency down-conversion, it still 

behaves like a laser. The frequency of the signal and idler pulses in an OPO are determined 

by the phase matching condition AND by the cavity modes of the OPO. This is similar to a 

laser where the overall gain bandwidth is defined by the atomic or molecular transitions and 

the actual lasing frequency is matched to the cavity mode. OPOs have also demonstrated 

less noise than the Ti:sapphire laser pump[105], squeezed states[106] and simple stabilization 

schemes[107].   All of these could be beneficial to a sensitive gyroscope. 

There are several different ways to implement bidirectional pulses in an OPO. The 

simplest is to split the pump beam using a 50/50 beam splitter and pump the nonlinear 

crystal from both directions. One of the pump pulses can be delayed with respect to the 

other such that the pulses in the OPO meet ONLY in air. This is in sharp contrast to all 

other methods presented in this dissertation. The methods mentioned earlier all required 

that the pulses collide in either a saturable absorber or in a Kerr medium. Because there is 

no gain competition and crossing points only in air, the OPO system will work reliably with 

no coupling between the CW and CCW modes. 

Although any synch-pumped[108] OPO would work, there are some special consider- 

ations for short pulse operation.   We will concentrate our efforts on a noncritically phase- 
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matched[105] system because these are easier to align. Possible crystals include KTP[109] 

and its isomorphs (CTA[110] and RTA[111]), LiB305 [112, 113], KNb03 [114] and more 

recently PPLN[115, 116]. 

4.1.2 Spatial walk-off 

Spatial walk-off occurs when the Poynting vector is not parallel to the k-vector [117]. Perhaps 

a better way to say the same thing is that the energy of the pulse travels in a different 

direction than the phase front. Or there is a tilted phase front. All of these statements say 

the same thing. Spatial walk-off reduces the gain in an OPO because the spatial overlap 

between the three interacting waves becomes smaller as one or more of the pulses moves 

laterally away from the other pulses. Spatial walk-off is particularly detrimental when the 

beams are tightly focused. One way to completely avoid spatial walk-off is to use noncritical 

phase matching. Noncritical phase matching occurs when all of the polarizations line up on 

principal axes. For example in a negative uniaxial crystal the pump's polarization might 

be along the fast axis and travel as ne while the signal and the idler would be along the 

optical axis and travel as n0. Note that the pump is traveling as ne not as ne(6), because 

6 = 90° and the wave travels purely as an extraordinary ray. In a biaxial crystal, such as 

KTP, noncritical phase matching can occur by having the pump and signal's polarization 

along the ny principal axis and the idler along the nz principal axis. 

4.1.3 Temporal walk-off 

Temporal walk-off occurs in a short pulse OPO when the group velocities of the pump, signal 

and idler are different[118]. Because one pulse is traveling faster than the other two, the 

overlap integral of the pulses will diminish as the pulses propagate through the material. It 

is possible to delay or advance the resonant signal pulse such that its overlap with the pump 

will create pulse shortening. The effective length of the crystal is reduced by the temporal 

walk-off. To calculate the effective length of the interaction, simply calculate how far the 

pulses travel for the temporal separation to be equal to the pump pulse width. Note that 

this is an approximation and it tends to calculate an interaction length that is 30% too small. 
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One explanation is that the pulsewidth of the signal is often square shaped and significantly 

longer than the pump pulse.   A longer signal pulse would lead to a longer interaction length. 

Tpuise = pump pulse width 

Vgi = group velocity of the pump, signal or idler 

V12 = inverse group velocity difference between waves 1 and 2 

Vl2 = JL _ -i- 
Vgl vg2 

Leff ~ ~^- 

In the case of noncritically phased matched KTP: 

Leff = .051 cm between the pump and signal 

Leff = .055 cm between the pump and idler 

Leff = .035 cm between the idler and signal 

4.1.4 Spectral bandwidth 

A short pump pulse will have a wide spectrum. It is important to consider the phase 

matching bandwidth. A 100 fs Ti:sapphire pulse will have a bandwidth of about 10 nm. 

Since we are considering noncritical phase matching, spectral bandwidth is not a problem 

as can be seen in the tuning curve, Figure 4.1. 

4.1.5 Tuning 

The major disadvantage to noncritical phase matching is that the tuning is difficult and is 

typically accomplished by tuning the pump wavelength. Figure 4.1 is a plot of the signal 

wavelength as a function of the pump wavelength for noncritical phase matching. 

4.1.6 Alignment 

Alignment is easy for a noncritically phase matched OPO because the pump, signal, idler 

and non-phase matched second harmonic are all collinear. The non-phase matched second 

harmonic is visible to the naked eye and can be threaded through the OPO cavity. The 

difficult part is to match the cavity length of the OPO to the cavity length of the pump for 

synchronous operation.   This is accomplished by careful measurement of the cavity lengths 
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Figure 4.1: Tuning curve of signal wavelength as a function of pump wavelength for noncrit- 
ical phase matching in KTP 

and then translating one of the mirrors to achieve threshold. It is possible to see fringes in 

the generated blue second-harmonic when the cavity length of the OPO matches the cavity 

length of the Ti:sapphire laser, although this region is only as long as the pulsewidth. 

4.1.7 Double pulse operation 

For experiments that are measuring a change in the index of refraction of a medium, such 

as those discussed in Chapter 2, it is not necessary to have bidirectional operation. In fact 

there are some advantages to using a double pulsed cavity, see Chapter 2. For the OPO, 

double pulses are trivial to attain - simply make the OPO cavity twice as long as the pump 

cavity. This can be implemented in either a ring (see Figure 4.2) or in a linear cavity (see 

Figure 4.3). One disadvantage to the linear cavity is that the internal loss is twice the loss 

of the ring because the signal passes through the nonlinear crystal without the pump on the 

way back. Other pump schemes could be employed which could use a pump pulse to pump 

a nonlinear sample (see experiments below). 

4.1.8 Bidirectional operation 

The simplest way to obtain bidirectional operation is to split the pump beam using a 50/50 

beamsplitter and pump the nonlinear crystal from both directions (see Figure 4.4).   If the 
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Figure 4.2: The cavity perimeter is 4 times the length' of the pump cavity, which produces 
two OPO pulses in the OPO cavity. The ROC of the curved mirrors is 10 cm concave. 
The curved mirrors are max-R at the signal wavelength and high-T at the pump and idler 
wavelength. 

Beat 
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Figure 4.3: The OPO cavity is twice as long as the pump cavity, therefore there will be two 
pulses in the OPO cavity. ROC of curved mirrors is 10 cm concave. The curved mirrors 
are max-R for the signal and high-T for the pump and idler. 
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threshold of the OPO is higher than half the output power of the pump, then a modulator 

can be employed to use the full pump power in each direction (see Figure 4.5). 

Figure 4.4: A 50/50 beamsplitter divides the pump pulse into two beams. The split off beam 
is delayed such that the CW and CCW pulses meet only in air. The radius of curvature of 
the curved mirrors is 10 cm concave. The curved mirrors are max-R at the signal wavelength 
and high-T at the pump and idler wavelengths. 

4.2    OPO pump-probe experiments 

These are very similar to the experiments with the Ti:sapphire laser, with two exceptions. 

The ring gyro is now an OPO and the pump is the direct output of the Ti:sapphire laser. 

Using the amplitude modulator, we can select every other Ti:sapphire pulse to pump the 

OPO and then the sample. This has the huge advantage of being able to use all of the 

pump pulse instead of having to frequency double the output. Also the Ti:sapphire laser 

has less amplitude noise and two orders of magnitude more peak power available to pump 

experiments. Basically all experiments mentioned in this chapter that deal with a pump- 

probe laser gyro could be accomplished using an OPO with 100 times the peak power. The 

schematic for this general class of experiments is shown in Figure 4.6. 
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Figure 4.5: Similar to the double ring cavity in Figure 4.2. The second pulse is split off and 
pumps the KTP crystal from the opposite direction. The advantage is that the full pump 
pulse is used in each direction. The disadvantage is that the cavity perimeter must be 4 
times the cavity length of the pump. 

4.3    Stopping the earth 

The second problem with pulsed ring laser gyros is the arbitrary bias beat note. This bias 

beat note can vary and result in an unreliable measuring device. What is needed is a way 

to calibrate the gyro periodically to check if the beat note is a result of nonlinearities in the 

cavity or if it is a result of a rotation. Of course one way to do this is to periodically stop all 

rotations - including the earth, and measure the bias beat note. Although it is impossible 

to stop the rotations, it is possible to not measure the rotations. This is done by a clever 

switching between a figure-8 laser geometry which doesn't measure rotations and an oval 

laser geometry which does measure rotations. The difference in beat frequency between the 

two is a result of pure rotation. Since this method can be employed in any pulsed system, 

only a schematic of the layout is drawn in Figure 4.7. 

4.4    Bragg reflector vibrations 

Laser induced acoustics is a large field of study[119, 120]. In the typical experiment a bicell 

is used to detect the angular deflection caused by a physical deformation of the surface[121]. 
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Figure 4.6: Bidirectional ring with modulated pump pulse. Every other pump pulse is 
selected to pump sample.   The OPO pump is split by a 50/50 beam splitter. 

The deformation is generated by an acoustic wave that is launched in the material by a laser. 

The bump can be as large as 10-20 pm[122]. This amount of deflection should be barely 

detectable using the Ti:sapphire laser. One of the end mirrors in the Ti:sapphire laser is 

replaced with a AlAs/AlGaAs multilayer stack (or Bragg mirror). The output of the laser 

is frequency doubled and modulated as discussed earlier. Every other blue pulse excites 

an acoustic wave in the Bragg mirror[123]. See Figure 4.8 below. The deflection is then 

detected by the intracavity pulse. The bandgap of the semiconductor material is slightly 

higher in energy than the intracavity pulse, so linear absorption of the intracavity pulse is 

minimal while the absorption of the second-harmonic pulse is very strong. 

4.5    Differential optical path meter 

This experiment also uses the phase difference between two pulses inside a laser gyro to mea- 

sure a change in the difference in optical path length. Instead of measuring the longitudinal 

change in optical path, this experiment measures the spatial change in optical thickness of a 

sample.   The application is similar to the Twyman-Green interferometer and the Fizeau in- 

114 



Electro 
Optic 
Modulators' 

Polarizing 
Beam 
Splitter 

Measuring 
Rotations 

Measuring 
Bias 

Figure 4.7: The top schematic shows the layout of the modulators and polarizing beam 
splitter. The middle schematic shows the optical path when the device is measuring a 
rotation. The bottom schematic shows the optical figure-8 path when the device is measuring 
the bias beat note. 

terferometer used for testing optical elements and the thickness of films; except this method 

is capable of detecting surface changes on the order of A/800,000! The experiment is easy to 

set up - simply replace one of the prisms with a material that can be used for an electro-optic 

modulator. By applying a voltage at a frequency of c/2L, every other pulse will be deflected 

at the sample (see Figure 4.9). Every other pulse measures a differential change in optical 

path length. The sample is then scanned in the x-y plane to yield a 2-d image of the optical 

thickness of the sample. 

4.6    Metal detector 

The same laser gyro can also be configured to be a metal detector. This scheme is similar 

to an FM mode-locker. A phase modulator is placed in the cavity that shifts every other 

pulse a full re. Any phase difference other than exactly n, will be measured as a beat note. 

A tank circuit is commonly used to achieve such large phase changes. The tank circuit 

consists of a coil of wire and the nonlinear crystal (see Figure 4.10).   Any ferrous material 
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Figure 4.8: End mirror of typical Ti:sapphire cavity is replaced with a concave mirror which 
focuses the beam onto the semiconductor end mirror. The beams must be focused to achieve 
the maximum modulation. The LiI03 crystal generates the second-harmonic. The LiTa03 

is an electro-optic modulator. 

that enters the field pattern emitted by the coil, will change the Q of the tank circuit. It will 

also shift the resonance of the circuit, which can result in an even larger change in voltage 

applied to the nonlinear crystal. The change in voltage applied to the nonlinear crystal will 

result a change in the beat note. The static phase difference was chosen to be TV, but in 

principle any multiple of it will also work; every multiple of it multiplies the sensitivity of 

the device. Another method is called the emitter-detector method. In this scheme an RF 

wave is propagated into the ground and the reflected RF energy is detected. 

4.7    Decoupling of mutual Kerr-lens mode-locking 

The schematic of mutual Kerr-lens mode-locking was discussed in Chapter 3. This method 

produces mode-locked pulses, but the pulses are coupled to one another by scattering in the 

ZnS. If the Kerr medium is put in constant motion, then the phase of the scattered light 

will be randomized and prevent lock-in, as was discussed in Chapter 1.   Two piezos can be 
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Figure 4.9: Schematic for testing optical elements. Every other pulse is deflected at the 
sample, yielding a differential measurement of its thickness. 

connected such that a sine wave applied to one and a cosine wave to the other will produce 

circular motion, similar to a Lissajous pattern. This experiment is important not only for 

the possible applications, but also because it could answer the fundamental question of why 

the femtosecond ring dye laser does not lock. 

4.8 Saturable Bragg reflector 

Similar to the Schott glass idea discussed in Chapter 2, this method of mode-locking is 

reported to produce 20 fs pulses. For this reason, it would be interesting to build a ring 

laser gyro using a saturable Bragg reflector, or one of the other semiconductor mode-lockers 

developed by Professor Ursula Keller[61, 62, 72]. These devices will probably lock the 

CW and CCW pulses and therefore also require some method to unlock the two pulses like 

randomizing the phase of the scattered light. 

4.9 Ti:sapphire initiator 

Mode-locked lasers are a very important tool for a variety of applications; however, most 

suffer from a self-starting problem.     The Kerr-lens mode-locking employed by the laser 
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Figure 4.10: Schematic of a laser gyro metal detector. Any ferrous material that enters the 
field emitted by the coil will be detected as a change in beat note. 

requires a kick or a noise spike for the mode-locking to start. There are many methods to 

initiate mode-locking, but they all have disadvantages. Most require an extra element to 

be added to the cavity, or a physical knocker added to one of the mirrors. By sending an 

acoustic wave through the Ti:sapphire crystal at the repetition rate of the laser, the intensity 

of the light in the laser will be modulated and result in initiating Kerr-lens mode-locking. 

The method of using an acoustic optic modulator for mode-locking is not new and is called 

regenerative feedback. Because the acoustic modulator would be the gain medium, there 

are no additional parts required. 

4.10    Mapping the stability region of a Kerr-lens mode- 

locked ring laser 

Many excellent papers have been written on the stability curves for the linear Kerr-lens 

mode-locked Ti:sapphire laser. The linear cavity is easy to analyze because the curvature 

of the Gaussian beam must match the curvature of the end mirrors. There is no such 

requirement in the ring cavity. This is an extremely difficult system to model because there 

is an extra degree of freedom in the system, which of course implies an extra dimension in 
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the parameter space to explore. The linear cavity was solved with only 2 degrees of freedom 

by simply stepping through all possible values. A similar method for the ring laser would 

be very time consuming. A combination of mapping the global parameter space coupled 

with a routine to find minimums will yield an accurate mapping of the stability region for 

the Kerr-lens mode-locked Ti:sapphire laser. 

4.11    Postmortem examination of failed experiments 

Most experimental results are typically preceded by numerous failures. Just because an 

experiment does not produce reproducible data does not mean that it is a failure, often 

valuable lessons can be learned. 

4.11.1    Cross phase modulation in Tirsapphire 

The enhanced Kerr-effect due to colliding pulses was discussed in Chapter 3. Instead of col- 

liding pulses, this experiment uses orthogonally polarized, collinear pulses. This experiment 

involves taking the output of the Ti:sapphire laser, putting it through a quarter-wave plate, 

an electro-optic modulator and finally a polarizing beamsplitter (see Figure 4.11).    The 

Ar Pump 
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LiTa03      Quarter 
Modulator Wave 

Plate 

Figure 4.11: The polarizing beam splitter separates the s and p polarizations. The s 
polarization is injected back into the cavity. The modulator selects every other pulse to be 
injected back into the cavity by switching the pulses between s and p polarization. 
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s-polarization output from the beamsplitter is injected into the Tksapphire crystal. The 

experiment can also be accomplished using a ring cavity and a half-wave plate. The delay 

of this injected pulse can be varied while monitoring the beat note of the laser. The injected 

pulse should not couple to the cavity because its polarization is at 90° to the light that is 

resonating. The injected pulse will create a moving index in the sapphire. The intracavity 

pulse will 'surf on this index wave and result in a phase shift. 

This experiment was attempted using a polarizing beam splitter and a half-wave plate 

in a ring cavity. The injected pulse invariably locked the laser. The half-wave plate was of 

pretty good quality (manufacturer was Casix), so we do not believe that it was the source of 

the problem. The polarizing beam splitter was an air-gap calcite borrowed from a Nd:YAG 

laser. We believe the polarizer did not have a high enough of a rejection ratio and thus a 

small amount of the horizontal polarization is coupled back into the laser. 

4.11.2    Phase multiplier 

Many organic optical materials have a yellow tinge[124]. This means that the material 

is absorbing light in the blue part of the spectrum. The frequency doubled output of a 

Ti:sapphire laser at 400 nm would be an ideal pump of these materials. The experimental 

setup is shown below in Figure 4.12. The output of the Ti:sapphire is frequency doubled and 

amplitude modulated as described above. Every other pulse strikes the organic sample at 

the same time that an intracavity pulse is in the dove prism. The excitation of the organic 

material will change its refractive index. The change in refractive index at the location 

where the intracavity pulse is totally internally reflected will result in a large phase change. 

This phase change will then be detected by the beat frequency. 

This experiment was attempted with a ring cavity. There are several problems 

plaguing this experiment. First it requires the generation of the second-harmonic with 

high efficiencies. Because of the problems associated with short-pulse ring lasers mentioned 

in Chapters 2 and 3, we were not able to generate more than a few milliwatts of second- 

harmonic because the pulses in the stable geometry are typically in the picosecond region. 

The second problem was that the organic samples were optically thin, having only a few 

percent absorption.   Several samples were attempted including Iodine dyes, Coumarin 500 
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Ar Pump       J 

Ti:Al203 

Figure 4.12: The intracavity beam is incident on the dove prism such that it is always totally 
internally reflected. The modulator selects every other pulse out of the Tksapphire laser. 
The LiI03 crystal generates the second-harmonic. The LiTa03 crystal is an electro-optic 
modulator. 

and Re(CO)3(bpy)Br from New Mexico Highlands University. 

4.11.3    Pump/probe experiments with Schott glass 

These experiments were very similar to the organic experiments discussed above. Again 

this experiment required the generation of copious amounts of blue second-harmonic, which 

we were not able to produce because of the long pulsewidths. Another problem with 

this experiment is the thermal instabilities associated with the glass, which was reported in 

Chapter 2. The success of the experiment required that the glass be placed at a tightly 

focused beam waist in the cavity. Since glass is a poor conductor of heat, the smallest 

amount of absorption at the fundamental results in instabilities in the laser output. 

4.12    Conclusions 

This dissertation studied the Ti:sapphire laser as a pulsed ring laser gyroscope. Numerous 

new discoveries were made, which will be listed in the order that they appeared in this dis- 

sertation.     A novel linear cavity with two pulses in the cavity was used for the first time 
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. LiNbO 

Figure 4.13: A) Linear cavity: no bias beat frequency. B) Saturable aborber mode- 
locked ring gyro: measured low beat frequencies. C) Kerr-lens mode-locked ring gyro: 
femtosecond pulses.   D)  Mutual Kerr-lens mode-locked:   all solid-state. 
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to measure electro-optic coefficients (see Figure 4.13A). This laser can be analyzed in the 

same manner as a ring laser, with the difference being that the pulses are indistinguishable 

whereas in the ring the CW and CCW pulses are easily separable. Next a solid-state ring 

laser gyroscope using a dye-jet saturable absorber was studied(see Figure 4.13B). This laser 

produced the lowest beat frequencies recorded in a pulsed laser (10 Hz with a 10 Hz band- 

width) and also the narrowest beat note bandwidth at 0.85 Hz. Null-bias dithering was 

demonstrated for the first time using an electro-optic modulator. A new method of extract- 

ing the average beat frequency from a dithered laser was discovered and the experimental 

result was verified with an analytic solution. In Chapter 3, Kerr-lens mode-locking was used 

for the first time in a ring laser gyro(see Figure 4.13C). This laser employed both passive 

negative and positive feedback in the same Kerr element. A novel method of stabilizing the 

crossing point in ring laser was demonstrated by using mutual Kerr-lens mode-locking(see 

Figure 4.13D). Finally the design of a Bidirectional OPO Ring Gyro (BORG) was discussed 

in Chapter 4. The BORG has the potential to exceed the quantum limit of HeNe laser 

gyros because it solves the problem of gain competition. Also presented is a novel method 

of removing the bias in a laser gyro. These designs forecast an exciting future for research 

in pulsed laser gyroscopes. 
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