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Abstract 

In previous work, we presented Typed Assembly Language (TAL). TAL is sufficiently expressive to 
serve as a target language for compilers of high-level languages such as ML. That work assumed 
such a compiler would perform a continuation-passing style transform and eliminate the control 
stack by heap-allocating activation records. However, most compilers are based on stack allocation. 
This paper presents STAL, an extension of TAL with stack constructs and stack types to support 
the stack allocation style. We show that STAL is sufficiently expressive to support languages such 
as Java, Pascal, and ML; constructs such as exceptions and displays; and optimizations such as tail 
call elimination and callee-saves registers. This paper also formalizes the typing connection between 
CPS-based compilation and stack-based compilation and illustrates how STAL can formally model 
calling conventions by specifying them as formal translations of source function types to STAL 
types. 

This material is based on work supported in part by the AFOSR grant F49620-97-1-0013, ARPA/RADC grant 
F30602-96-1-0317, ARPA/AF grant F30602-95-1-0047, AASERT grant N00014-95-1-0985, and ARPA grant F19628- 
95-C-0050. Any opinions, findings, and conclusions or recommendations expressed in this pubucation are those of 
the authors and do not reflect the views of these agencies. 
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1    Introduction and Motivation 

Statically typed source languages have efficiency and software engineering advantages over their 
dynamically typed counterparts. Modern type-directed compilers [18, 25, 7, 32, 19, 29, 11] exploit 
the properties of typed languages more extensively than their predecessors by preserving type 
information computed in the front end through a series of typed intermediate languages. These 
compilers use types to direct sophisticated transformations such as closure conversion [17, 31, 16, 
4, 20], region inference [8], subsumption elimination [9, 10], and unboxing [18, 22, 28]. In many 
cases, without types, these transformations are less effective or simply impossible. Furthermore, 
the type translation partially specifies the corresponding term translation and often captures the 
critical concerns in an elegant and succinct fashion. Strong type systems not only describe but 
also enforce many important invariants. Consequently, developers of type-based compilers may 
invoke a typechecker after each code transformation, and if the output fails to type-check, the 
developer knows that the compiler contains an internal error. Although typecheckers for decidable 
type systems cannot catch all compiler errors, they have proven themselves valuable debugging 
tools in practice [21]. 

Despite the numerous advantages of compiling with types, until recently, no compiler propagated 
type information through the final stages of code generation. The TIL/ML compiler, for instance, 
preserves types through approximately 80% of compilation but leaves the remaining 20% untyped. 
Many of the complex tasks of code generation including register allocation and instruction schedul- 
ing are left unchecked and types cannot be used to specify or explain these low-level code transfor- 
mations. 

These observations motivated our exploration of very low-level type systems and corresponding 
compiler technology. In Morrisett et al. [23], we presented a typed assembly language (TAL) and 
proved that its type system was sound with respect to an operational semantics. We demonstrated 
the expressiveness of this type system by sketching a type-preserving compiler from an ML-like 
language to TAL. The compiler ensured that well-typed source programs were always mapped to 
well-typed assembly language programs and that they preserved source level abstractions such as 
user-defined abstract data types and closures. Furthermore, we claimed that the type system of TAL 
did not interfere with many traditional compiler optimizations including inlining, loop-unrolling, 
register allocation, instruction selection, and instruction scheduling. 

However, the compiler we presented was critically based on a continuation-passing style (CPS) 
transform, which eliminated the need for a control stack. In particular, activation records were 
represented by heap-allocated closures as in the SML of New Jersey compiler (SML/NJ) [5, 3]. For 
example, Figure 2 shows the TAL code our heap-based compiler would produce for the recursive 
factorial computation. Each function takes an additional argument which represents the control 
stack as a continuation closure. Instead of "returning" to the caller, a function invokes its continu- 
ation closure by jumping directly to the code of the closure, passing the environment of the closure 
and the result in registers. 

Allocating continuation closures on the heap has many advantages over a conventional stack-based 
implementation. First, it is straightforward to implement control primitives such as exceptions, 
first-class continuations, or user-level lightweight coroutine threads when continuations are heap 
allocated [3, 31, 34]. Second, Appel and Shao [2] have shown that heap allocation of closures can 
have better space properties, primarily because it is easier to share environments.   Third, there 



is a unified memory management mechanism (namely the garbage collector) for allocating and 
collecting all kinds of objects, including stack frames. Finally, Appel and Shao [2] have argued 
that, at least for SML/NJ, the locality lost by heap-allocating stack frames is negligible. 

Nevertheless, there are also compelling reasons for providing support for stacks. First, Appel 
and Shao's work did not consider imperative languages, such as Java, where the ability to share 
environments is greatly reduced nor did it consider languages that do not require garbage collection. 
Second, Tarditi and Diwan [13, 12] have shown that with some cache architectures, heap allocation 
of continuations (as in SML/NJ) can have substantial overhead due to a loss of locality. Third, 
stack-based activation records can have a smaller memory footprint than heap-based activation 
records. Finally, many machine architectures have hardware mechanisms that expect programs 
to behave in a stack-like fashion. For example, the Pentium Pro processor has an internal stack 
that it uses to predict return addresses for procedures so that instruction pre-fetching will not be 
stalled [15]. The internal stack is guided by the use of call/return primitives which use the standard 
control stack. 

Clearly, compiler writers must weigh a complex set of factors before choosing stack allocation, 
heap allocation, or both. The target language should not constrain those design decisions. In this 
paper, we explore the addition of a stack to our typed assembly language in order to give compiler 
writers the flexibility they need. Our stack typing discipline is remarkably simple, but powerful 
enough to compile languages such as Pascal, Java, or ML without adding high-level primitives 
to the assembly language. More specifically, the typing discipline supports stack allocation of 
temporary variables and values that do not escape, stack allocation of procedure activation frames, 
exception handlers, and displays, as well as optimizations such as callee-saves registers. Unlike 
the JVM architecture [19], our system does not constrain the stack to have the same size at each 
control-flow point, nor does it require new high-level primitives for procedure call/return. Instead, 
our assembly language continues to have low-level RISC-like primitives such as loads, stores, and 
jumps. However, source-level stack allocation, general source-level stack pointers, general pointers 
into either the stack or heap, and some advanced optimizations cannot be typed. 

A key contribution of the type structure is that it provides a unifying declarative framework for 
specifying procedure calling conventions regardless of the allocation strategy. In addition, the 
framework further elucidates the connection- between a heap-based continuation-passing style com- 
piler, and a conventional stack-based compiler. In particular, this type structure makes explicit the 
notion that the only differences between the two styles are that, instead of passing the continuation 
as a boxed, heap-allocated tuple, a stack-based compiler passes the continuation unboxed in reg- 
isters and the environments for continuations are allocated on the stack. The general framework 
makes it easy to transfer transformations developed for one style to the other. For instance, we 
can easily explain the callee-saves registers of SML/NJ [5, 3, 1] and the callee-saves registers of a 
stack-based compiler as instances of a more general CPS transformation that is independent of the 
continuation representation. 

2    Overview of TAL and CPS-Based Compilation 

We begin with an overview of our original typed assembly language in the absence of stacks, 
and sketch how a polymorphic functional language, such as ML, can be compiled to TAL in a 
continuation-passing style where continuations are heap-allocated. 



types T 

initialization flags <P 
label assignments * 
type assignments A 
register assignments r 

registers r 
tword values w 
small values V 

heap values h 
heaps H 
register files R 

instructions i 

arithmetic ops aop 
branch ops bop 
instruction sequences I 
programs P 

:= a | int | V[A]T | (rf ,...,<"> | 3a.T 
:= 0 | 1 
:= {£i:Ti,...,£n:Tn} 
:= • | a, A 
:= {ri:ri,...,rn:rn} 

:= rl | r2 | • • • 
:= I | i | IT \ W[T] | pack [r, w] as r' 
:= r | w | V[T] I pacfc [r, ü] as r' 
:= (tüi,...,w„) | code[A]r.7 
:= {^^/ii,...,4h->/in} 
:= {ri i->-U7i,...,rn^u;n} 

:= aop rd,rs,v\ bop r, v | Id rd,rs(«) | malloc r[f] 
mov r<i, v | st rj,(i), rs | unpack [a, rj, v \ 

= add | sub | mul 
= beq | bneq | bgt | bit | bgte | bite 
= i\I | jmp v | halt[r] 
= (H,R,I) 

Figure 1: Syntax of TAL 

Figure 1 gives the syntax for TAL. A TAL program (P) is a triple consisting of a heap, a register 
file, and an instruction sequence. A register file is a mapping of registers to word-sized values. A 
heap is a mapping of labels to heap values (values larger than a word), which are tuples and code 
sequences. 

The instruction set consists mostly of conventional RISC-style assembly operations, including arith- 
metic, branches, loads, and stores. One exception, the unpack [a, r], v instruction, unpacks a value 
v having existential type, binding a to its hidden type in the instructions that follow, and placing 
the underlying value in register r. On an untyped machine, where the moving of types is immate- 
rial, this can be implemented by a simple move instruction. The other non-standard instruction is 
malloc, which allocates memory in the heap. On a conventional machine, this instruction would be 
replaced by the appropriate code to allocate memory. Evaluation of TAL programs is specified as 
a deterministic small-step operational semantics that maps programs to programs (details appear 
in Morrisett et al. [23]). 

The unusual types in TAL are for tuples and code blocks. Tuple types contain initialization flags 
(either 0 or 1) that indicate whether or not components have been initialized. For example, if 
register r has type (int0, int1), then it contains a label bound in the heap to a pair that can contain 
integers, where the first component may not have been initialized, but the second component has. 
In this context, the type system allows the second component to be loaded, but not the first. If an 
integer value is stored into r(0) then afterwards r has the type (int1, int1), reflecting the fact that 
the first component is now initialized. The instruction malloc r[ri,...,Tn] heap-allocates a new 
tuple with uninitialized fields and places its label in register r. 



Code types (V[«i,.. .,an].T) describe code blocks (codefctj,.. .,an]r.I), which are made from in- 
struction sequences / that expect a register file of type T. In other words, T serves as a register 
file pre-condition that must hold before control may be transferred to the code block. Code blocks 
have no post-condition because control is either terminated via a halt instruction or transferred 
to another code block. The type variables ct\,..., an are bound (and abstract) in T and /, and are 
instantiated at the call site to the function. As usual, we consider alpha-equivalent expressions to 
be identical; however, register names are not bound variables and do not alpha-vary. We also con- 
sider label assignments, register assignments, heaps, and register files equivalent when they differ 
only in the orderings of their fields. When A is empty, we often abbreviate V[A].r as simply T. 

The type variables that are abstracted in a code block provide a means to write polymorphic code 
sequences. For example, the polymorphic code block 

code[ö]{rl:a, r2:V[].{rl:(a\ a1)}}, 
malloc   r3[a, a] 
st r3(0),rl 
st r3(l),rl 
mov rl,r3 
jmp r2 

roughly corresponds to a CPS version of the ML function f n (x:cv) => (x, x). The block expects upon 
entry that register rl contains a value of the abstract type a, and r2 contains a return address (or 
continuation label) of type V^.-Jrl^o1, a1)}. In other words, the return address requires register rl 
to contain an initialized pair of values of type a before control can be returned to this address. The 
instructions of the code block allocate a tuple, store into the tuple two copies of the value in rl, 
move the pointer to the tuple into rl and then jump to the return address in order to "return" the 
tuple to the caller. If the code block is bound to a label £, then it may be invoked by simultaneously 
instantiating the type variable and jumping to the label (e.g., jmp £[int]). 

Source languages like ML have nested higher-order functions that might contain free variables and 
thus require closures to represent functions. At the TAL level, we represent closures as a pair 
consisting of a code block label and a pointer to an environment data structure. The type of the 
environment must be held abstract in order to avoid typing difficulties [20], and thus we pack the 
type of the environment and the pair to form an existential type. 

All functions, including continuation functions introduced during CPS conversion, are thus repre- 
sented as existentials. For example, once CPS converted, a source function of type int —)• () has 
type (int, (() -4- void)) —>■ void.1 Then, after closures are introduced, the code has type: 

3a1.((öi, int,3a2-{(a2, ()) -¥ void, 02)) -> void,oti) 

Finally, at the TAL level the function will be represented by a value with the type: 

3a1.(V[].{rl:cv1,r2:m/,r3:3a2.(V[].{rl:ö2,r2:()}1,^)}1
)al) 

Here, a\ is the abstracted type of the closure's environment. The code for the closure requires that 
the environment be passed in register rl, the integer argument in r2, and the continuation in r3. 
The continuation is itself a closure where a2 is the abstracted type of its environment. The code 

The void return types are intended to suggest the non-returning aspect of CPS functions. 



for the continuation closure requires that the environment be passed in rl and the unit result of 
the computation in r2. 

To apply a closure at the TAL level, we first use the unpack operation to open the existential 
package. Then the code and the environment of the closure pair are loaded into appropriate 
registers, along with the argument to the function. Finally, we use a jump instruction to transfer 
control to the closure's code. 

Figure 2 gives the CPS-based TAL code for the following ML expression which computes the 
factorial of 6: 

let fun fact n = 
if n = 0 then 1 
else 

n * fact  (n-1) 
in 

fact 6 
end 

3    Stacks 

In this section, we show how to extend TAL to obtain a Stack-Based Typed Assembly Language 
(STAL). Figure 3 defines the new syntactic constructs for the language. In what follows, we 
informally discuss the dynamic and static semantics for the modified language, leaving formal 
treatment to Appendix A. 

3.1    Basic Developments 

Operationally we model stacks (5) as lists of word-sized values. There are four new instructions 
that manipulate the stack: The salloc n instruction enlarges the stack by n words. The new 
stack slots are uninitialized, which we formalize by filling them with nonsense words (ns). On a 
conventional machine, assuming stacks grow toward lower addresses, an salloc operation would 
correspond to subtracting n from the stack pointer. The sf ree n instruction removes the top n 
words from the stack, and corresponds to adding n to the stack pointer. The sldr, sp(i) instruction 
loads the ith word (from zero) of the stack into register r, whereas the sst sp(i),r stores register 
r into the ith word. 

A program becomes stuck if it attempts to execute: 

• sf ree n and the stack does not contain at least n words, or 

• sld r, sp(i) or sst sp(i), r and the stack does not contain at least i + 1 words. 

As usual, a type safety theorem (Theorem A.l) dictates that no well-formed program can become 
stuck. 



(H,{},J) where 
H = ljfact: 

code[]{rl:(),r2:in£,r3:rfc}. 
bneq r2,lJionzero 
unpack [Q,r3],r3 
Id r4,r3(0) 
Id rl,r3(l) 
mov r2,l 
jmp r4 

l_nonzero: 
code[]{rl:(),r2:ini,r3:r/;}. 

sub r4,r2,l 
malloc rS[int, 7>] 
st r5(0),r2 
st r5(l),r3 
malloc r3 \i[].{v\:(intl,TI),T2; 

mov r2,l_cont 
st r3(0),r2 
st r3(l),r5 
mov r2,r4 
mov r3,pack [{int1, T£),T3] as T^ 

jmp l_fact 
l_cont: 

code[]{rl:(inf1,r;J),r2:inf}. 
Id r3,rl(0) 
Id r4,rl(l) 
mul r2,r3,r2 
unpack [a,r4],r4 
Id r3,r4(0) 
Id rl,r4(i) 
jmp r3 

l_halt: 
code[]{rl:(),r2:m£}. 

mov rl,r2 
halt[int] 

and / =        malloc rl[] 
malloc r2[] 
malloc r3[V[].{rl:(),r2:inf}, ()] 
mov r4,lJialt 
st r3(0),r4 
st r3(l),r2 
mov r2,6 
mov r3,pack [(),r3] as T^ 

jmp l_fact 

and Tk = 3a.(V[].{rl:a,r2:m<}1,a1) 

'/, zero branch: call k (in r3) with 1 
% project k code 
V. project k environment 

'/, jump to k 

*/. n - 1 
*/, create environment for cont in r5 
'/, store n into environment 
'/, store k into environment 

int}, (int1, T£)]    '/, create cont closure in r3 

'/, store cont code 
y, store environment (n, k) 
'/, arg := n — 1 
y. abstract the type of the environment 
y, recursive call 

'/. r2 contains (n — 1)! 
'/, retrieve n 
'/. retrieve k 
'/. nx{n- 1)! 
'/, unpack k 
'/, project k code 
y, project k environment 
y, jump to k 

'/, halt with result in rl 

•/, create empty environment (()) 
'/, create another empty environment 
'/, create halt closure in r3 

y, store cont code 
y, store environment () 
y. load argument (6) 
y, abstract the type of the environment 
y, begin fact with 
'/. {rl = (), r2 = 6, r3 = haltcont} 

Figure 2: Typed Assembly Code for Factorial 



types T    : .— • • • | ns 
stack types a    : := p | nil | T::G 

type assignments A   : := •••|p,A 
register assignments r   : := {ri:r1,...,r„:rn,sp:cr} 
word values w    : := • • • | w[a] | ns 
small values v     : := • •• | v[o] 
register files R    : := {ri \->wu...,rn\-> w„, sp H^ S} 
stacks S    : := nil | w::S 
instructions i      : := ••• | salloc n\ sfree n | sld r^,sp(f | sst sp(i),ra 

Figure 3: Additions to TAL for Simple Stacks 

Stacks are classified by stack types (a), which include nil and TWO. The former describes the empty 
stack and the latter describes a stack of the form w::S where w has type r and S has type a. 
Stack types also include stack type variables (/>), which may be used to abstract the tail of a stack 
type. The ability to abstract stack types is critical for supporting procedure calls and is discussed 
in detail later. 

As before, the register file for the abstract machine is described by a register file type (r) mapping 
registers to types. However, T also maps the distinguished register sp to a stack type a. Finally, 
code blocks and code types support polymorphic abstraction over both types and stack types. In 
the interest of clarity, from time to time we will give registers names (such as ra or re) instead of 
numbers. 

One of the uses of the stack is to save temporary values during a computation. The general 
problem is to save on the stack n registers, say ri through rn, of types T\ through rn, perform some 
computation e, and then restore the temporary values to their respective registers. This would be 
accomplished by the following instruction sequence where the comments (delimited by '/,) show the 
stack's type at each step of the computation. 

salloc   n 
sst sp(0),ri 

la 
*/, nsv.nsv. 

'/, Ti\:ns\: 

::ns::a 
:ns::a 

sst sp(n - 1), rn   '/. r1::r2:: 
code for e '/, ri::r2" 
sld ri,sp(0) '/. ri::r2::' 

v.Tnv.a 

■::Tn::a 

::Tn::a 

sld rn,sp(n-l)    '/, ri::r2: 
sfree     n */, a 

:a 

If, upon entry, r; has type r,- and the stack is described by a, and if the code for e leaves the state 
of the stack unchanged, then this code sequence is well-typed. Furthermore, the typing discipline 
does not place constraints on the order in which the stores or loads are performed. 

It is straightforward to model higher-level primitives, such as push and pop. The former can be 
seen as simply salloc 1 followed by a store to sp(0), whereas the latter is a load from sp(0) followed 



by sfree 1. Also, a "jump-and-link" or "call" instruction which automatically moves the return 
address into a register or onto the stack can be synthesized from our primitives. To simplify the 
presentation, we did not include these instructions in STAL; a practical implementation, however, 
would need a full set of instructions appropriate to the architecture. 

3.2    Stack Polymorphism 

The stack is commonly used to save the current return address, and temporary values across 
procedure calls. Which registers to save and in what order is usually specified by a compiler- 
specific calling convention. Here we consider a simple calling convention where it is assumed that 
there is one integer argument and one unit result, both of which are passed in register rl, and 
that the return address is passed in the register ra. When invoked, a procedure may choose to 
place temporaries on the stack as shown above, but when it jumps to the return address, the stack 
should be in the same state as it was upon entry. Naively, we might expect the code for a function 
obeying this calling convention to have the following STAL type: 

{rl'.int, sp:<7, ra:{rl:(), sp:cr}} 

Notice that the type of the return address is constrained so that the stack must have the same 
shape upon return as it had upon entry. Hence, if the procedure pushes any arguments onto the 
stack, it must pop them off. 

However, this typing is unsatisfactory for two important reasons: 

• Nothing prevents the function from popping off values from the stack and then pushing new 
values (of the appropriate type) onto the stack. In other words, the caller's stack frame is not 
protected from the function's code. 

• Such a function can only be invoked from states where the entire stack is described exactly 
by a. This effectively limits invocation of the procedure to a single, pre-determined point in 
the execution of the program. For example, there is no way for a procedure to push its return 
address onto the stack and to jump to itself (i.e., to recurse). 

The solution to both problems is to abstract the type of the stack using a stack type variable: 

\/[p].{Tl:int, sp:/>, ra:{rl:mf, sp:/>}} 

To invoke a function having this type, the caller must instantiate the bound stack type variable p 
with the current type of the stack. As before, the function can only jump to the return address 
when the stack is in the same state as it was upon entry. 

This mechanism addresses the first problem because the type checker treats p as an abstract stack 
type while checking the body of the code. Hence, the code cannot perform an sfree, sld, or sst 
on the stack. It must first allocate its own space on the stack, only this space may be accessed by 
the function, and the space must be freed before returning to the caller.2 

Some intuition on this topic may be obtained from Reynolds's theorem on parametric polymorphism [27] but a 
formal proof is difficult. 



(H, {sp i-> nil}, I) where 

H =  ljfact: 
code[/>]{rl : (),r2 : mi, sp : p, ra : r^}. 

bneq r2,l_nonzero[/j] */, if n = 0 continue 
mov ri.l '/, result is 1 
jmp ra '/, return 

1 .nonzero: 
code[/o]{rl : (), r2 : int, sp : p, ra : TP} . 

sub r3,r2,l 
salloc 2 

sst sp(0),r2 

sst sp(l),ra 

mov r2,r3 

mov ra,l_cont[p] 
jmp l-fa.ct[int::rp::p] 

l_cont: 
code[/j]{ri : int, sp : int::Tp::p]. 

sld r2,sp(0) 
sld ra,sp(l) 
sfree 2 
mul rl,r2,rl 
jmp ra 

lJialt: 
code[]{rl : int,sip : nil}. 

h.alt[int] 

and / =       malloc rl[] 
mov r2,6 
mov ra.lJialt 
jmp l_fact[m7] 

and TP = V[].{rl: int, sp : p} 

'/. n - 1 
'/. allocate stack space for n and the return address 
'/, save n 
'/, save return address 

'/, recursive call to fact with n — 1, 
'/, abstracting saved data atop the stack 

'/, restore n 
*/, restore return address 

'/, n x (n 
'/, return 

1)! 

'/, create empty environment 
'/, argument 
*/. return address for initial call 

Figure 4: STAL Factorial Example 

The second problem is also solved because the stack type variable may be instantiated in multiple 
different ways. Hence multiple call sites with different stack states, including recursive calls, may 
now invoke the function. In fact, a recursive call will usually instantiate the stack variable with 
a different type than the original call because, unless it is a tail-call, it will need to store its own 
return address on the stack. 

Figure 4 gives stack-based code for the factorial program. The function is invoked by moving its 
environment (an empty tuple, since factorial has no free variables) into rl, the argument into r2, 
and the return address label into ra and jumping to the label 1 Jact. Notice that the nonzero 
branch must save the argument and current return address on the stack before jumping to the 
fact label in a recursive call. In so doing, the code must use stack polymorphism to account for 
its additions to the stack. 



3.3    Calling Conventions 

It is Interesting to note that the stack-based code is quite similar to the heap-based code of Figure 2. 
In a sense, the stack-based code remains in a continuation-passing style, but instead of passing the 
continuation as a heap-allocated tuple, the environment of the continuation is passed in the stack 
pointer and the code of the continuation is passed in the return address register. To more fully 
appreciate the correspondence, consider the type of the TAL version of 1 jfact from Figure 2: 

{rl:(), r2:int, ra:3a.({rl:a, r2:int}1, a1)} 

We could have used an alternative approach where the continuation closure is passed unboxed in 
separate registers. To do so, the function's type must perform the duty of abstracting a, since the 
continuation's code and environment must each still refer to the same a: 

V[ct].{rl:(), i2:int, ra:{rl:ct, r2:m/}, ra':a} 

Now recall the type of the corresponding STAL code: 

V[/>].{rl:(), r2:int, ra:{sp:p, rl:m/}, sp:p} 

These types are essentially the same! Indeed, the only difference between continuation-passing ex- 
ecution and stack-based execution is that in stack-based execution continuations are unboxed and 
their environments are allocated on the stack. This connection is among the folklore of continuation- 
passing compilers, but the similarity of the two types in STAL summarizes the connection partic- 
ularly succinctly. 

The STAL types discussed above each serve the purpose of formally specifying a procedure calling 
convention, specifying the usage of the registers and stack on entry to and return from a procedure. 
In each of the above calling conventions, the environment, argument, and result are passed in 
registers. We also can specify that the environment, argument, return address, and the result are 
all passed on the stack. In this calling convention, the factorial function has type (remember that 
the convention for the result is given by the type of the return address): 

V[/f)].{sp : Q::int::{s-p:int::p}::p} 

These types do not constrain optimizations that respect the given calling conventions. For instance, 
tail-calls can be eliminated in CPS (the first two conventions) simply by forwarding the continuation 
to the next function. In a stack-based system (the second two), the type system similarly allows 
us (if necessary) to pop the current activation frame off the stack and to push arguments before 
performing the tail-call. Furthermore, the type system is expressive enough to type this resetting 
and adjusting for any kind of tail-call, not just a tail-call to self. 

Types may express more complex conventions as well. For example, callee-saves registers (registers 
whose values must be preserved across function calls) can be handled in the same fashion as the 
stack pointer: A function's type abstracts the type of the callee-saves register and provides that 
the register have the same type upon return. For instance, if we wish to preserve register r3 across 
a call to factorial, we would use the type: 

V[p, a].{rl:(), r2:int, r3:a, ra:{sp:p, rl:int, r3:a}, sp:/)} 
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Alternatively, with boxed, heap-allocated closures, we would use the type: 

V[ce].{rl:(),r2 : int, x3:a, ra:3/?.({rl:/3, z2:int, rZ:a}l,ß1)} 

This is the type that corresponds to the callee-saves protocol of Appel and Shao [1]. Again the 
close correspondence holds between the stack- and heap-oriented types. Indeed, either one can be 
obtained mechanically from the other. Thus this correspondence allows transformations developed 
for heap-based compilers to be used in traditional stack-based compilers and vice versa. 

4    Exceptions 

We now consider how to implement exceptions in STAL. We will find that a calling convention 
for function calls in the presence of exceptions may be derived from the heap-based CPS calling 
convention, just as was the case without exceptions. However, implementing this calling convention 
will require that the type system be made more expressive by adding compound stack types. This 
additional expressiveness will turn out to have uses beyond exceptions, allowing a variety of sorts 
of pointers into the midst of the stack. 

4.1    Exception Calling Conventions 

In a heap-based CPS framework, exceptions are implemented by passing two continuations: the 
usual continuation and an exception continuation. Code raises an exception by jumping to the 
latter. For an integer to unit function, this calling convention is expressed as the following TAL 
type (ignoring the outer closure and environment): 

{rl-.int, ra:3ai.({ri:a:i, r2:()}1, a\), re:3a2.({rl:a2, r2:era}1, ot\)} 

As before, the caller could unbox the continuations: 

V[«i, a2].{rl:int, ra:{ri:ai, r2:()}, ra':ai, re:{rl:a2, r2:exn}, re':a2} 

Then the caller might (erroneously) attempt to place the continuation environments on stacks, as 
before: 

V[/>i, p2].{rl:int, ra:{sp:/>i, ri:()}, sj>:p1, re:{sp:/>2, Tl:exn}, sp':p2} 

Unfortunately, this calling convention uses two stack pointers, and there is only one stack. Observe, 
though, that the exception continuation's stack is necessarily a tail of the ordinary continuation's 
stack. This observation leads to the following calling convention for exceptions with stacks: 

V|>i, />2].{sp:pi o p2, rl-.int, ra:{sp:pi o p2, rl:()}, 
re:{sp:/92, rl-.exn], res:ptr(p2)} 

This type uses the notion of a compound stack: When o\ and a2 are stack types, the compound 
stack type <Ti O a2 is the result of appending the two types. Thus, in the above type, the function is 
presented with a stack with type p\o p2, all of which is expected by the regular continuation, but 
only a tail of which (p2) is expected by the exception continuation. Since px and p2 are quantified, 
the function may still be used for any stack so long as the exception continuation accepts some tail 
of that stack. 
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types T 
stack types a 
word values w 
instructions i 

• • • | ptr(cr) 
• ■ ■ | o\ o a2 

■■■ \ptr(i) 
• • • | mov rd, sp | mov sp, rs | sld rd, rs(i) | sst rd(i),rs 

Figure 5: Additions to TAL for Compound Stacks 

To raise an exception, the exception is placed in rl and control is transferred to the exception 
continuation. This requires cutting the actual stack down to just that expected by the exception 
continuation. Since the length of p\ is unknown, this can not be done by sfree. Instead, a pointer 
to the desired position in the stack is supplied in res, and is moved into sp. The type ptr(a) is the 
type of pointers into the stack at a position where the stack has type a. Such pointers are obtained 
simply by moving sp into a register. 

4.2    Compound Stacks 

The additional syntax to support compound stacks is summarized in Figure 5. The type constructs 
o~\oo2 and ptr(a) were discussed above. The word value ptr(i) is used by the operational semantics 
to represent pointers into the stack; the element pointed to is i words from the bottom of the stack. 
Of course, on a real machine, such a value would be implemented by an actual pointer. The 
instructions mov r</, sp and mov sp, rs save and restore the stack pointer, and the instructions 
sld rd,rs(i) and sst r<;(i),rs allow for loading from and storing to pointers. 

The introduction of pointers into the stack raises a delicate issue for the type system. When the 
stack pointer is copied into a register, changes to the stack are not reflected in the type of the copy 
and can invalidate a pointer. Consider the following incorrect code: 

'/, begin with sp : r::a, sp i-> w::S (r ^ ns) 
mov rl,sp       '/, rl : ptr{r::a) 
sfree 1 '/, sp : b, sp H-> S 
salloc 1 '/, sp : nsr.o, sp i-> ns::S 
sld r2, rl(0) */, r2 : r but r2 i-> ns 

When execution reaches the final line, rl still has type ptr(r::a), but this type is no longer consistent 
with the state of the stack; the pointer in rl points to ns. 

To prevent erroneous loads of this sort, the type system requires that the pointer rs be valid when 
used in the instructions sld rj, rs(i), sst rd(i), rs, and mov sp, rs. An invariant of the type system 
is that the type of sp always describes the current stack, so using a pointer into the stack will be 
sound if that pointer's type is consistent with sp's type. Suppose sp has type 0\ and r has type 
ptr(o2), then r is valid if 02 is a tail of o\ (formally, if there exists some a' such that a\ = a' o <T2). 

If a pointer is invalid, it may be neither loaded from nor moved into the stack pointer. In the above 
example the load is rejected because rl's type TWO is not a tail of sp's type, ns::o. 
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4.3    Using Compound Stacks 

Recall the type for integer to unit functions in the presence of exceptions: 

V[>i, p2]-{sp:pi o P2, xl:int, ra:{sp:/>i o p2, rl:()}, 
re:{sp:/>2, Tl:exn}, res:ptr{p2)} 

An exception may be raised within the body of such a function by restoring the handler's stack 
from re' and jumping to the handler. A new exception handler may be installed by copying the 
stack pointer to re' and making subsequent function calls with the stack type variables instantiated 
to nil and px o p2. Calls that do not install new exception handlers would attach their frames to p\ 
and pass on p2 unchanged. 

Since exceptions are probably raised infrequently, an implementation could save a register by storing 
the exception continuation's code pointer on the stack, instead of in its own register. If this 
convention were used, functions would expect stacks with the type px o (rhandier"/^) and exception 
pointers with the type pir(rhandier::/92) where handler = V[].{sp:/92, rliexnj. 

This last convention illustrates a use for compound stacks that goes beyond implementing excep- 
tions. We have a general tool for locating data of type r amidst the stack by using the calling 
convention: 

V|>i, P2]-{sp:/öi o (r::/>2), rl:p*r(r::/»2), • • •} 

One application of this tool would be for implementing Pascal with displays. The primary limitation 
of this tool is that if more than one piece of data is stored amidst the stack, although quantification 
may be used to avoid specifying the precise locations of that data, function calling conventions 
would have to specify in what order data appears on the stack. It appears that this limitation 
could be removed by introducing a limited form of intersection type, to allow a different view of 
the stack for each datum located on the stack, but we have not explored the ramifications of this 
enhancement. 

5    Compiling to STAL 

We make the discussion of the preceding chapters concrete by presenting a formal translation that 
compiles a high-level programming language with integer exceptions into STAL. The syntax of 
the source language appears in Figure 6. The static semantics of the source language is given two 
judgments, a type formation judgment A h r type and a term formation judgment A; T \- e : r. 
The rules for the former are completely standard and are omitted; the rules for the latter can be 
obtained by dropping the translation portion (-^ C) from the translating rules that follow. Closure 
conversion [20, 23] presents no interesting issues particular to this translation, so in the interest 
of simplicity, we assume it has already been performed. Consequently, well-typed function terms 
{fixx(xim.T\,.. .,xn-.Tn):r.e) must be closed. 

In order to illustrate use of the stack, the translation uses a simple stack-oriented strategy. No 
register allocation is performed; all arguments and most temporaries are stored on the stack. Also, 
no particular effort is made to be efficient. 

The translation of source types to STAL types is given below; the interest case is the calling 
convention for functions. The calling convention abstracts a set of type variables (A), and abstracts 
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types T 

terms e 

primitives P 
type contexts A 
value contexts T 

=   a | int | V[A].(ri,..., rn) -> r | (TU ..., rn) 
=   a; | i \ fix X(XX:TI, ..., xn:Tn):T.e \ exe2 | e[r] | 

(ei,...,e„) | 7Ti(e) \expe2\ if0(ei,e2,e3) 
raise [T] e \ try e\ handle x =$> e2 

=   + I - I * 
=   an,...,an 

=      X\'.T\ , . . ., Xn'.Tn 

Figure 6: Source Syntax 

stack type variables representing the front (pi) and back (p2) of the caller's stack. The front of 
the stack consists of all of the caller's stack up to the enclosing exception handler, and the back 
consists of everything behind the enclosing exception handler. On entry to a function, the stack 
is to contain the function's arguments on top of the caller's stack. The exception register, re, 
and the exception stack register, res, contain pointers to the enclosing exception handler and its 
stack, respectively. Finally, the return address register, ra, contains a return pointer that expects 
the result value in ri, the same stack except the arguments removed, and the exception registers 
unchanged.3 

|a|    =   a 
\int\   =    int 

l<ri T-B>|   =    (Iril1,...,!^1) 
|V[A].(r1,...,rn)^r|   =   V[A,Pl,p2]. 

{sp: (|Tn|::---::|ri|::/>iop2), 
ra : {rl:|r|, sy.pi o p2, re:{rl:m«, sp:/>2}, res:ptr(p2)}, 
re : {rliint, sj>:p2}, 
res : ptr(p2)} 

The translation of source terms is given as a type-directed translation governed by the judgment 
A; T h e : r -N-+ C. The judgment is read as follows; in type context A and values context T, 
the term e has type r and translates to a STAL code sequence C. Without the translation ~+ C, 
this judgment specifies the static semantics of the source language. Therefore it is clear that any 
well-typed source term is compiled by this translation. 

In order.to simplify the translation's presentation, we use code sequences that are permitted to 
contain address labels after jmp and halt instructions: 

code sequences      C   ::—   ■ | t;C | jmp v; ^:code[A]r.C | halt[r]; ^:code[A]r.C 

These code sequences are appended together to form a conglomerate code block of the form 
I;£i:hi;.. .;£n:hn. Such a block is converted to an official STAL program by heap allocating all but 
the first segment of instructions. Also in the interest of simplicity, we assume that all labels used 
in the translation are fresh, and we use push and pop instructions as shorthand for the appropriate 
allocate/store and load/free sequences. 

3Note that this type does not protect the caller from modification of the exception register. The calling convention 
could be rewritten to provide this protection, but we have not done so as it would significantly complicate the 
presentation. 
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Code sequences produced by the translation assume the following preconditions: If A; T \- e : r ~> 
C, then C has free type variables contained in A, has free stack type variables pi, p2 and p3, and 
expects a register file with type: 

{sp : p3 o \T\ o Pl o p2, 
fp:ptr(\T\oPlop2), 
re: {rl: int, sp:p2}, 
res : ptr(p2)} 

As discussed above, the stack contains the value variables (|r|) in front of the the caller's stack 
[p\ ° 92)- The stack type |T| specifying the argument portion of the stack is defined by: 

\x\\Ti,...,xn:Tn\     =     |rn|::---::|rx|::m7 

Upon entry to C, the stack also contains an unknown series of temporaries specified by p3. The 
variable p3 is free in C, so appropriate substitutions for p3 allow C to be used in a variety of different 
environments. Since the number of temporaries is unknown, C also expects a frame pointer, f p, to 
point past them to the variables. As usual, the exception registers point to the enclosing exception 
handler and its stack. At the end of C, the register file has the same type, with the addition that 
rl contains the term's result value of type |r|. 

With these preliminaries established, we are ready to present the translation's rules. The code for a 
variable reference simply finds the value at an appropriate offset from the frame pointer and places 
it in rl: 

-r~7 \T 71—< *  /-\ (0 <i < n) A; (Xn-i'.Tn-!, . . ., X0:T0) h X{ l T, ~» sld rl, fp(«) 

A simple example of an operation that stores temporary information on the stack is arithmetic. The 
translation of ex pe2 computes the value of e\ (placing it in rl), then pushes it onto the stack and 
computes the value of e2. During the second computation, there is an additional temporary word 
(on top of those specified by p3), so in that second computation p3 is instantiated with int::p3; this 
indicates that the number of temporaries is still unknown, but is one word more than externally. 
After computing the value of e2, the code retrieves the first value from the stack and performs the 
arithmetic operation. 

'arith+ = adcO 
arith_ = sub 

1 arithx = mul, 

A; T h ex : int ^ C\    A; T h e2 : int ^ C2 

A; T h e\ p e2 : int ~> Ci 
push rl 
C2[int::p3/p3] 
pop r2 
arithp rl,r2, rl 

Function calls are compiled (Figure 7) by evaluating the function and each of the arguments, placing 
their values on the stack. Then the function pointer is retrieved, the frame pointer is stored on 
the stack (above the arguments), a return address is loaded into ra, and the call is made. In the 
call, the front of the stack (pi) is instantiated according to the current stack, which then contains 
the current caller's frame pointer, temporaries, and arguments, in addition to the previous caller's 
stack. The exception handler is unchanged so the back of the stack (p2) is as well. 

The code for a function (Figure 8), before executing the code for the body, must establish the body's 
preconditions. It does so by pushing on the stack the recursion pointer (the one value variable that 
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A; r h e : (ri,..., rn) -» r -v* C    A; T h et- : r,- ~v C; 

A;rhe(e1,...,e„) : r-^ 
;; sp rpsoiriopiO^ 
C 
push rl 
Ci[rfun::p3/p3] 
push rl 

Cn[kn-l|" • • • "|Tl|"7*fun"P3/P3] 
push rl 
;; sp : |r„|::- • • |ri|::rfun::p3 o |r| o/>j o p2 

sld rl,sp(n)        ;; recover call address 
sst sp(n),fp        ;; save frame pointer 
;; sp : |r„|:: • • • |n|::pfr(|r| o Pl o p2)::p3 o |r| o px o p2 

mov ra,£return[A,/9i,/!)2] 
jmp rl[ptr(\r\op1op2)::p3o\r\op1,p2] 

^return = COde[A,/>i, p2]{rl = |r|, 
sp :ptr(\T\op! op2)::p3o\T\opi op2, 
re : {rliint, sp:/>2}, 
res : ptr(p2)}. 

pop f p        ;; recover frame pointer 
(where rfun   =    |(n,..., rn) -> T\ 

=   V[pi,p2]-{sp: (|rn|::---::|ri|::/Biop2), 
ra : {rl:|r|, sp:pi o p2, re:{rl:mi, sp:/>2}, res:p£r(p2)}, 
re : {rl:m/, sj>:p2}, 
res :ptr(p2)}) 

Figure 7: Function Call Compilation 
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a\- Tj type    a;(xi:Ti,...,xn:Tn,x:\f[a\(Ti,...,Tn) -)r)he:r^C 

A; T h fix X[Q\{XI:TU.. .,xn:rn):T.e : V[a](ri,..., r„) ->■ r ~> 
jmp 4kip[A,/>i,/)2] 

4m : codefä^^Ksp: |r„|::- • • |ri|::/)i op2, 
ra: Treturn, 
re : {rliint, sp:p2}, 
res: jo£r(/>2)}. 

mov rl,4m 
push rl ;; add recursion address to context 
mov fp, sp ;; create frame pointer 
push ra ;; save return address 
) ) SP '■ "^return- |V[ö?|(ri, ..,rn)->r|::|r„|::---:: lri| ■ ■Pi °P2 
;;fp:      ptr(\1[c!\(TU ..,rn)->r|::|r„|::---:: \n\ "Pi op2) 
C[Treturn::nil / ps] 
pop ra 
sfree n + 1. 
jmp ra 

4kiP : code[A,pi,/92]{sp p3o|r| op1op2, 

fp ptr{\T\oPlop2), 

re {rl:m£,sp:/>2}, 
res • Ptr(p2)}- 

mov ri,4un 

(where rreturn = {rl. |r|,sp:/>i o p2,re:{rl:int, sp:p2} ,res:ptr(p2)}) 

Figure 8: Function Compilation 

is not an argument), saving the return address, and creating a frame pointer. After executing the 
body, it retrieves the return address, frees the variables (in accordance with the calling convention), 
and jumps to the return address. 

The remaining non-exception constructs are dealt-with in a straightforward manner, and are shown 
in Figure 9. To raise an exception is also straightforward. After computing the exception packet 
(always an integer in this language), the entire front of the stack is discarded by moving the 
exception stack register res into sp, and then the exception handler is called. Any code following 
the raise is dead; the postconditions (including a "result" value of type |r|) are established by 
inserting a label that is never called: 

 A I- T type    A; T \- e : int ^ C   

A; T h raise [r] e : r ~»     C 
mov sp,res 
jmp re 

^deadcode : code[A, pu p2]{rl : |r|, 
sp : p3o \T\ op±o p2, 

fp :ptr{\T\oplop2), 
re : {xl:int, sp:/>2}, 
res : ptr(p2)}. 
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A; T h i : int -^ mov rl, i 

Ahr' type    A;The: V[g, A].(n,..., r») -» r ^ C 

A;rhe[r']:V[A]((r1,...,rn)^r)[r7a]-C 
mov rl,rl[|r'|] 

 AjThe,- : Tj^Cj  

A;Th (ci,...,c„> : (n,..., r„) ~~> Ci 
push rl 

C„[|rn_i|::---::|ri|::p3//[>3] 
push rl 
;; sp : |rn|::- • • |7i|::p3 o |r| o^ o p2 

malloc X-1[|T"I|, ..., |-r„|] 
pop r2 
st rl(n - l),r2 

pop r2 
st rl(0),r2 

A;ri-e:<r1,...,rn)^C 
  (1 < i < n) 

A;ri-7r,-(e) : r,; ~> C 
Id rl,rl(t- 1) 

A; T h et : wf ^ Ci    A; T h e2 : r ^ C2    A; T I- e3 : r -^ C3 

A;n-työ(ei,c2,c3):T~f     Ci 
bneq rl,4ionzero[A,/9i,p2] 
C2 

jmp 4kip[A,/91,p2] 
^nonzero = COde[A, p1: p2]{sp : /93 O |T| O /9j O /92, 

fp:ptr(\T\oPlop2), 
re : {rl:mf, sp:p2}, 
res : ptr(p2)}. 

C3 

jmp 4kiP[A,/Oi,/o2] 
4kiP : code[A,p!,p2]{rl : |r|, 

sp:/93o|r|opl0/r)2, 
lTp:ptr(\T\op1op2), 
re : {rl:mi, sp:p2}, 
res : ptr(p2)}. 

Figure 9: Integer literal, Instantiation, Tuple, and Branching Compilation 
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The code for exception handling (Figure 10) is long, but not complicated. First the old exception 
registers and frame pointer are saved on the stack, and the new exception handler is installed. The 
precondition for translated terms requires that the variables be in front of the handler's stack so 
they must be copied to the top of the stack and a new frame pointer must be created.4 The body 
is then executed, with the stack type variables instantiated so that the temporaries and front are 
empty, and the back consists of everything except the copied variables. Either the body is finished 
successfully or control is transferred to the exception handler. In either case the original state is 
restored, and if an exception was raised, the handler executes before proceeding. 

The remaining rule is the sole rule for the judgment h e program ~» P. This judgment states that e 
is a valid program in the source language, and that P is a STAL program that computes the value 
of e. The rule establishes the translation's precondition by installing a default exception handler 
and creating a frame pointer, and bundles up the resulting code as a STAL program: 

 0; 0 h e : int ^ C  

he programs mov re,4ncaught 
mov res, sp 
mov fp, sp 
C[nil, nil, nil/p3, pi,p2] 
ha.lt[int] 

Amcaught : code[]{sp:m7, rl:int}. 
halt[int] 

where \I; i^.hi;...; £n:hn\ = 
({4 H^ hx,...,£n h-» /i„},{sph-> nil},!) 

Proposition 5.1 (Type Correctness) //he program ~> P then h P. 

6    Related and Future Work 

Our work is partially inspired by Reynolds [26], which uses functor categories to "replace contin- 
uations by instruction sequences and store shapes by descriptions of the structure of the run-time 
stack." However, Reynolds was primarily concerned with using functors to express an intermediate 
language of a semantics-based compiler for Algol, whereas we are primarily concerned with type 
structure for general-purpose target languages. 

Stata and Abadi [30] formalize the Java bytecode verifier's treatment of subroutines by giving a 
type system for a subset of the Java Virtual Machine language [19]. In particular, their type system 
ensures that for any program control point, the Java stack is of the same size each time that control 
point is reached during execution. Consequently, procedure call must be a primitive construct 
(which it is in the Java Virtual Machine). In contrast, our treatment supports polymorphic stack 
recursion, and hence procedure calls can be encoded using existing assembly-language primitives. 

More recently, O'Callahan [24] has used the mechanisms in this paper to devise an alternative, 
simpler type system for Java bytecodes that differs from the Java bytecode verifier's discipline [19]. 

This is an example of when it is inconvenient that stack types specify the order in which data appear on the 
stack. In fact, this inefficiency can be removed using a more complicated precondition, but in the interest of clarity 
we have not done so. 
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A;rhe:r^C    A; T,x:int h e' : r ~> C 

A; T h try e handle x => e' : r ~» 
push res        ;; save old handler and frame pointer 
push re 
push f p 

; ; Sp : ^handler 
;; install new handler 
mov res, sp ;; res : ptr(aha.nd\eT) 
mov re, 4andle[A, pi,p2]      ;; re : {rV.int, sp:<7handler} 
;; to fit convention, copy arguments below the new handler's stack 
sld rl,fp(n- 1) 
push rl 

sld rl,fp(0) 
push rl 
; ; Sp : |T| O ^handler 

mov f p, sp ;; create new frame pointer 

;; fp : j»*r(|r|o<Thandler) 
C[nil, nil, <7handler/P3, Pi, P2] 

sf ree n ;; free copied arguments 
pop f p ;; restore old handler and frame pointer 
pop re 
pop res 
jmp 4kiP[A,/9i,/92] 

4andle ■ code[A, pu p2]{rl : int, sp : handler} 
pop f p ;; restore old handler and frame pointer 
pop re 
pop res '■ 
;; s^:pzo\T\oPlop2 

C 
jmp 4kiP[A,pi,/92] 

4kiP : code[A,/Oi,/o2]{rl : |r|, 
B^:pzo\T\opxop2, 
*p:p^(|r|o/>1op2), 
re : {rl: int, sp:p2}, 
res : ptr(p2)}. 

(where handler   =    ptr(\T\op1op2)::{Tl:int,STp:p2}::ptr(p2)::p3o\r\op1op2 
n   =    sizeof(T)) 

Figure 10: Exception Handler Compilation 
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By permitting polymorphic typing of subroutines, O'Callahan's type system accepts strictly more 
programs while preserving safety. This type system sheds light on which of the verifier's restrictions 
are essential and which are not. 

Tofte and others [8, 33] have developed an allocation strategy using "regions." Regions are lexically 
scoped containers that have a LIFO ordering on their lifetimes, much like the values on a stack. As 
in our approach, polymorphic recursion on abstracted region variables plays a critical role. However, 
unlike the objects in our stacks, regions are variable-sized, and objects need not be allocated into 
the region which was most recently created. Furthermore, there is only one allocation mechanism 
in Tofte's system (the stack of regions) and no need for a garbage collector. In contrast, STAL only 
allows allocation at the top of the stack and assumes a garbage collector for heap-allocated values. 
However, the type system for STAL is considerably simpler than the type system of Tofte et al, as 
it requires no effect information in types. 

Bailey and Davidson [6] also describe a specification language for modeling procedure calling con- 
ventions and checking that implementations respect these conventions. They are able to specify 
features such as a variable number of arguments that our formalism does not address. However, 
their model is explicitly tied to a stack-based calling convention and does not address features such 
as exception handlers. Furthermore, their approach does not integrate the specification of calling 
conventions with a general-purpose type system. 

Although our type system is sufficiently expressive for compilation of a number of source languages, 
it has several limitations. First, it cannot support general pointers into the stack because of the 
ordering requirements; nor can stack and heap pointers be unified so that a function taking a tuple 
argument can be passed either a heap-allocated or a stack-allocated tuple. Second, threads and 
advanced mechanisms for implementing first-class continuations such as the work by Hieb et al. [14] 
cannot be modeled in this system without adding new primitives. 

Nevertheless, we claim that the framework presented here is a practical approach to compilation. 
To substantiate this claim, we are constructing a compiler called TALC that compiles ML to a 
variant of STAL described here, suitably adapted for the 32-bit Intel architecture. We have found 
it straightforward to enrich the target language type system to include support for other type 
constructors, such as references, higher-order constructors, and recursive types. The compiler uses 
an unboxed stack allocation style of continuation passing, as discussed in this paper. 

Although we have discussed mechanisms for typing stacks at the assembly language level, our 
techniques generalize to other languages. The same mechanisms, including polymorphic recursion 
to abstract the tail of a stack, can be used to introduce explicit stacks in higher level calculi. An 
intermediate language with explicit stacks would allow control over allocation at a point where 
more information is available to guide allocation decisions. 

7    Summary 

We have given a type system for a typed assembly language with both a heap and a stack. Our 
language is flexible enough to support the following compilation techniques: CPS using either 
heap or stack allocation, a variety of procedure calling conventions, displays, exceptions, tail call 
elimination, and callee-saves registers. 
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A key contribution of the type system is that it makes procedure calling conventions explicit and 
provides a means of specifying and checking calling conventions that is grounded in language theory. 
The type system also makes clear the relationship between heap allocation and stack allocation of 
continuation closures, capturing both allocation strategies in one calculus. 
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A    Formal STAL Semantics 

This appendix contains a complete technical description of our calculus, STAL. The STAL abstract 
machine is very similar to the TAL abstract machine (described in detail in Morrisett et al. [23]). 
The syntax appears in Figure 11. The operational semantics is given as a deterministic rewriting 
system in Figure 12. The notation a[b/c] denotes capture avoiding substitution of b for c in a. The 
notation' a{b >-$■ c}, where a is a mapping, represents map update. 

To make the presentation simpler for the branching rules, some extra notation is used for expressing 
sequences of type and stack type instantiations. We use a new syntactic class (ip) of type sequences: 

i\) ::= • | r, tj) \ a, ij) 

The notation w[ip] stands for the natural iteration of instantiations, and the substitution notation 
I[ij}/A] is defined to mean: 

I[r,i>/a,A]   =   I[T/a][t/>/A] 

IM/P,A]   =   I[<r/p][tl>/A] 
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The static semantics is similar to TAL's but requires extra judgments for definitional equal- 
ity of various forms of type. Definitional equality is needed because two stack types (such as 
(int::nil) o (inty.nil) and int::int::nil) may be syntactically different but represent the same type. 
The judgments are summarized in Figure 13, the rules for type judgments appear in Figure 14, and 
the rules for term judgments appear in Figures 15 and 16. 

The principal theorem regarding the semantics is type safety: 

Theorem A.l (Type Safety) If \- P and P i—►* P' then P' is not stuck. 

The theorem is proved using the usual Subject Reduction and Progress lemmas, each of which are 
proved by induction on typing derivations. 

Lemma A.2 (Subject Reduction)  If \-P and P \—y P' then h P'. 

Lemma A.3 (Progress) If \- P then either P has the form (H,R{rl H» u?},halt[r]) or there 
exists P' such that P i—} P'. 
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types T 

stack types a 
initialization flags ¥> 
label assignments tf 
type assignments A 
register assignments r 

registers r 
word values w 
small values V 

heap values h 
heaps H 
register files R 
stacks S 

instructions i 

arithmetic ops aop 
branch ops bop 
instruction sequences I 
programs P 

a | int | ns | V[A]T | (rf1,..., r*») \ 3a.T | ptr(a) 
p | nil | TWO | 0i o <72 
0 | 1 
{^i:ri,...,4:rn} 
■\a,A\p,A 

{rr.n,...,rn:Tn,sp:a} 

rl | r2 | • • • 
1 | i | ns | ?r | W[T] \ w[o] \ pack [r, w] as T' \ ptr(i) 
r \ w \ V[T] I v[a] | pack [r, v] as T' 

(WI,...,wn) | code[A]rj 
{£i i->- hu...,ln h-> hn} 
{n ^ wi,..., rn i-> w„, sp i->- 5} 
ra7 | w::5 

aop rd,rs,v \ bop r, v | Id rd,rs(i) | malloc r[f*\ \ 
mov r^, v | mov sp, r„ | mov rd, sp | salloc n \ 
sfree n | sld rd, sp(«) | sld rd,rs(i) \ 
sst sp(«),rs | sst rrf(«),rs | st rd(i),rs \ 
unpack [a, rd],v 
add | sub | mul 
beq | bneq | bgt | bit | bgte | bite 
L;I I jmp v | halt[r] 
(H,R,I) 

Figure 11: Syntax of STAL 
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(H, R,I)i—> P where 
if J = then P = 
add rd,rs,v;I' (H,R{rd^R(rs) + R(v)},I') 

and similarly for mul and sub 
beq r,v;P 

when R(r) / 0 and similarly for bneq, bit, etc. 
beq r,v;I' 

when R(r) = 0 
(H,R,I"[4,/A]) 
where R(v) = £[ip] and H{£) = code[A]r.J" 
and similarly for bneq, bit, etc. 

jmp v (H,R,I'&/A]) 
where R(v) = £[4>] and H(£) = code[A]r./' 

Id rd,rs(i);I' 
where R{rs) = £ and H(£) = (w0,..., wn_i) and 0 < i < n 

malloc rrf[ri,...,r„];/' (H{l^(!T1,...,?Tn)},R{rd^e},r) 
where £ g H 

mov rd, v; /' (H,R{rd^R(v)},I') 
mov rd, sp; J' (H,R{rd^ptr(\S\)}:f) 
mov sp, rs;P (H, P{sp !->■ Wj" • • • ::u>i::m7}, /') 

where P(sp) = wn:: • ■ • ::wi::nil 
and R(rs) = ptr(j) with 0 < j < n 

salloc n; /' (H, P{sp .-> ns:: ■ ■ ■ ::ns ::fi(sp)}, /') 
n 

sf ree n; I' (iy,P{sp^5},/') 
where P(sp) = W\:: • • • ::wn::S 

sld rj, sp(i);/' {H,R{n^Wi},I') 
where i?(sp) = WQ:\- • ■ ::wn-i::nil and 0 < i < n 

sld rd,rs(i);I' (H,R{rdi->Wj-i},r) 
where R(rs) = ptr(j) and P(sp) = wn:: ■ ■ •::wiv.nil 
and 0 < i < j < n 

sst sp(i), rs;/' {H, P{sp H-> w0:: ■ ■ ■ ::w,-_i::Ä(r,)::S}, /') 
where P(sp) = wo'-- • • • ::wi'.:S and 0 < i 

sst rd(i),rs;I' (H,R{sj> i-> wn:: • • ■::wj-i+\::R(rs)::Wj-i-\:: ■ ■ •::wi::nil}, I') 
where R(rd) = ptr(j) and i?(sp) = wn::■ ■ ■ ::wi::nil 
and 0 < i < j < n 

st.rd(i),rs;I' (H{£ H-> (w0,..., Wi-i, R(rs), wi+i,..., w„_i)}, R, I') 
where R(rd) = £ and H(£) = (w0,..., w„_i) and 0 < i < n 

unpack [a, rd],v;/' (H,R{rd^w},I'[T/a]) 
where R(v) = pack [r, w] as T' 

Where R(v) 

R(r) when v = r 
u; when u = tu 
R(V')[T] when u = u'[r] 
pack [T, R(V')] as T' when v = pacfc [r, v'] as T' 

Figure 12: Operational Semantics of STAL 
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Judgement 
Ahr 
A\-a 
h* 

Ahr 
A h T\ = T2 

A h CTi = (T2 

A h Tj = r2 

A h rj < r2 

A h ri < r2 

hfl-:* 
$h5:a 
*hi?:r 
* h /i : T hval 
\P; A h w : r wval 
*;A h u; : r^ 

*;A;TI-u :r 
$;A;rht^ A';r' 

*;A;Th/ 
hP 

Meaning 
r is a valid type 
a is a valid stack type 
\P is a valid heap type 
(no context is used because heap types must be closed) 
T is a valid register file type 
ri and r2 are equal types 
o\ and (T2 are equal stack types 
Ti and T2 are equal register file types 
T\ is a subtype of r2 

Ti is a register file subtype of T2 

the heap H has type * 
the stack S has type a 
the register file Ä has type T 
the heap value h has type r 
the word value w has type r 
the word value w has flagged type rv 

(i.e., w has type r or w is ?r and <p is 0) 
the small value v has type r 
instruction i requires a context of type \I>; A;T 
and produces a context of type #; A'; V 
I is a valid sequence of instructions 
P is a valid program 

Figure 13: Static Semantics of STAL (judgments) 
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Ahr    Aha     h$    AhT 

A h r = r 
Ahr 

Aha •hr, Ahr 
Aha h {£l •->T1,...,4.l->Tn} Ahr 

A h ri = r2    A h ax = a2    A h Ti = T2 

A h r2 = Tx A h ri = r2    A h r2 = r3 

A h TI = r2 

A h a2 = 0\ 
A h (Tj  = Ü2 

Ahft = « 

A',Ahr! = r2 

A h n = r3 

A h o\ = a2    A h a2 = a3 

A h <7i = a3 

(a € A) 
A h int — int 

A h n = r' 

AhV[A'].r1=V[A'].r2       Al-(rl" C) = (C...,^») 
et, A h ri = r2 A h at = a2 

A h BQ.TI = 3a.r2        A h ns = ns        Ah pir(ai) = pir(cr2) 

Ah/9 = /> 

A h Tj = r2    A h (Ti = a2 

A h ri"(Ti = T2::CT2 

Aha 

A h nil — nil 

A h CTi = <rj    A h <r2 = 
A h ax o a2 = aj O a2 

Aha 
A h m'l o a = a        A h a o nil = a 

Ahr    Ahax    A h a2 

A h (r::<Ti) o a2 = r::(ai o a2) 

Aha!    A h a2    A h a3 

A h (ai o a2) o a3 = ai o (a2 o a3) 

A h a = a'    A h T,- = r/ 
Ah{sp:a,r! 4r1,...,rri4rn} = {sp:a', r^',..., r„:r^} 

A h n < r2    A h Ti < T2 

A h n = r2        A h ri < r2    A h r2 < r3 

A h n < r2 A h n < r3 

Ahr,- 
A   |_   /rVl _W-1        1       V.+ l Vn\   <   /    VI Y>.-1       0   -Vi + 1 rVn\ 

A h a = a'    A h r,- = r/    (for 1 < i < n)    A h r,-    (for n < i < m) 

Ah {sp:a, ri:r!,...,rm:rm} < {sp:a', r^rf,..., r„:<} 
(m > n) 

Figure 14: Static Semantics of STAL, Judgments for Types 
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hP    \-H:V    V\-S:a    V\-R:T 

\-H-.-$   VhR-.r   V;-,T\-I 
\-(H,R,I) 

h #    Vhh;: n hval 
(* = {^:r1,...,4:r„}) \-{£i ^hu...,£n^ hn} :* 

        t;-htc:r wval    $h5:g 
$ h m7 : m7 * h w::S : r::a 

 ij>\- S :a   tyi-hwj-.Tj wval    (for 1 < i < n)  

#h {sp^S,^ \->wu.:.,rm i-> wm} : {sp:a, n:ri,..., ?vrn} ^m ~ ^ 

#h/*:rhval    *; A h w : r wval    $;Ahw:r*'    vp;A;rhu:r 

*; • h ^ : rf Ahr    *;A;rh/ 
* I- (wi,..., wn) : (rf1 ,..., T%") hval       * h code[A]r./ : V[A]T hval 

Ahri^T2       Mm = T1)         
$;AH:r2 wval v   w       u        *; A h » : mi wval 

Ahr    V;A\-w: V[g, A']T wval        Aha    fr; A h w : V[p, A^T wval 

tf; A h W[T] : V[A'].r[r/a] wval $; A h w[a] : V[A'].r[a/p] wval 

A h T    fjAhit: T'[T/O>] wval 

$;Ah jsacA; [r, w] as 3a. r' : 3a.r' wval        f;Ahns:ns wval 

Aha „_,      ,, Ahr 
(M = i) f;Ah?r:r° $;Ah pir(i) : ptr(a) wval 

ff; A h w : T wval         $;Ahic:r wval 
>P;AN:T» $;A;rhr:r(  W_r) $; A; T h w : r 

Ahr    #;A;rht;:V[tt,A'].r        Aha    $; A; T h t; : V[/>, A7].!"1' 
tf; A; r h V[T] : V[A'].r'[r/a] *; A; T h u[a] : V[A'].I>//>] 

Ah r    tf; A; T h u : r'[r/a] 

*;A;rh J 

\P; A; T h pack [r, V] as 3a.r' : 3a.r' 

h n = r2    ff h ft : r2 hval        A h n = r2    $;Ahf:T2 wval 
* h h : TI hval f;Ahtn:Ti wval 

Ahri = r2    ty;A;r\-v.T2 

f;A;rht) : TX 

^; A; T I-t =» A;; r;    $;A';r'h/    A h Ti < T2    $; A;Ti h ü : V[].r2 

*;A;rhi;/ ^;A;ri(-jmp t; 

Ahr    ^;A;Thrl:r 
*;A;rhhalt[r] 

Figure 15: STAL Static Semantics, Term Constructs except Instructions 
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#;A;rhi^ A';r 
V;A;r\-rs:int    W;A;T\-v:int 

*; A; T h aop rd, rs, v =$> A; T{rd:int} 

ff; A; Ti I-r : mf    $; A;Ti \- v : V[].r2    A h rt < T2 

*; A;Ti I- 60/) r, u =4> A;Ti 

*;A;n-r.:<r0
Vo
l...,CrI> 

*; A; T h Id rd, r,(i) =» A; r{rd:r;} 

Ahr, 

(^ = 1 A 0 < i < n) 

*; A; T h malloc r[n,..., rn] =» A; rirrfa0,..., r°)} 

 $;A;Tht;:r  
$; A; T H mov rd, v => A; r{rrf:r} 

*; A; T h mov rd, sp =*• A; r{rrf:p/r(a)} (   (Sp) ~ °' 

•$>;A;T\-rs:ptr(a2)    A\- a1 = a3oa2      .   .    . _     . 
*;A;rhmov sp,rs=^ A;r{sp:a2}        l  (spj — crjj 

*; A; T h salloc n => A; T{sp: rcs::-•-::ns::<7}      ^ ~ ^^ 
n 

A h ffi = r0::---::rn_i::<T2 

\P; A; T h sf ree n =*> A; r{sp:<x2} 

A \- o\ = r0::---::r,::a2 

(r(sp) = ax) 

*; A; r 1- sld rd, sp(t') => A; r{rd:r,-} 
(r(sp) = ax A o < ») 

\P; A; T h rs : pir(<73)        A 1- <Ti = a2 o <r3 

A h CT3 = r0::- • •::r!::CT4 
(r(sp) = en A o < i) 

*; A; T h sld rrf, r,(t) =» A; r{rd:r;} 

Ah crx = ro::---::rt::(T2    $; A; T h rs : r 
(r(sp) = <7j A 0 < t) 

f;A;TI- sst sp(i),rs => A;r{sp:r0:: • • •::Ti-i::T::a2} 

V;A;T\-rd:ptr{a3)        $;A;rhrs:r 
A\- (7i = a2oa3       Ah(T3 = r0:: • • • ::r8::<r4 

A h cr5 = r0" • • • ::r,-_i::r::<T4 
 -i ^ —-Y (r(sp) = m A 0 < t) 
$; A; Th sst rd(z),rs=^ A; T{sp:cr2 0^5, rd:p<r(a-5)} 

^;A;rhrd:(C...,CV)    $;A;rhrs:r, 

 *;A;rht;:3q.T  
$; A; T h unpack [a, rd], v => a, A; T{rd:r} 

Figure 16: STAL Static Semantics, Instructions 
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