
REPORT DOCUMENTATION PAGE 
Form Approved 
OMB NO. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for ™^$J™^*°«^^Lnä^Ä.d£e^'5S' 

SSrHtoM^ 
"adsHShway Suto1204ArlingtonVA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.  

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

Nov98 
3. REPORT TYPE AND DATES COVERED 

Final    1 July 1996 - 30 June 1998 
4. TITLE AND SUBTITLE 

Intelligent Agents for the Digital Battlefield 

6. AUTHOR(S) 

V.S. Subrahmanian and J. Hendler 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 

University of Maryland 
College Park, MD 20742 

9.    SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

U.S. Army Research Office 
P.O. Box 12211 
Research Triangle Park, NC 27709-2211 

5. FUNDING NUMBERS 

DAAH04-96-1-0297 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

ARO 36161.1-MA 

11. SUPPLEMENTARY NOTES 

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as 
an official Department of the Army position, policy or decision, unless so designated by other documentation. 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12 b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

In this report we describe some of the theoretical and practical underpinnings 
of a joint University of Maryland/Army Research Laboratory Project to develop a 
scalable architecture for supporting intelligent-agent applications. The main focus 
of our long term research is threefold: 

• to develop the theoretical foundations of intelligent agent systems, 

• to concurrently build prototype implementations of such agent based systems, 
and 

*•■ to concurrently develop applications in the area of situation awareness and 
assessment using the proposed agent architecture and implementation. 

Continued On Reverse Side 

14. SUBJECT TERMS 

17. SECURITY CLASSIFICATION 
OR REPORT 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

15. NUMBER IF PAGES 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

NSN 7540-01-280-5500 
Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 
298-102 



A specific outcome of our long term research will be the development of a. collaborative 
agent technology system , CATS, that will provide the underlying software infras- 
tructure needed to build large, heterogeneous, distributed agent applications. CATS 
will provide a software environment through which multiple intelligent agents may 
interact with other agents - both human and computational. In addition, CATS 
will contain a number of intelligent agent components that will be useful for a wide 
variety of applications. 



Final Report 
Contract Number DAAH04-96-0297 

Army Research Office 

Principal Investigators: V. S. Subrahmanian & J. Hendler 
Institute for Advanced Computer Studies 

University of Maryland 
College Park, MD 20742-3275 

Phone: 301-405-6722    Fax: 301-314-9658 
Email: [vs, hendler]@cs.umd.edu 

l>0 

I^O 



1    Technical Summary 

Abstract 
In this report we describe some of the theoretical and practical underpinnings 

of a joint University of Maryland/Army Research Laboratory Project to develop a 
scalable architecture for supporting intelhgent-agent applications.   The main focus 
of our long term research is threefold: 

• to develop the theoretical foundations of intelligent agent systems, 

• to concurrently build prototype implementations of such agent based systems, 
and 

• to concurrently develop applications in the area of situation awareness and 
assessment using the proposed agent architecture and implementation. 

A specific outcome of our long term research will be the development of a collaborative 
agent technology system , CATS, that will provide the underlying software infras- 
tructure needed to build large, heterogeneous, distributed agent applications. CATS 
will provide a software environment through which multiple intelligent agents may 
interact with other agents - both human and computational. In addition, CATS 
will contain a number of intelligent agent components that will be useful for a wide 
variety of applications. 

Introduction 

The term Intelligent Agent has been used extensively in recent years to describe a variety of 
software programs that exhibit certain (unfortunately usually ill-defined) characteristics. 
Examples of programs that are called agents in the literature include news agents that 
scan one or more sources of news data and extract articles of interest to a user (based on 
some profile of the user's interests), stock agents that monitor fluctuations in certain stocks 
designated by a user and alert him when certain trends (defined by the user) are observed, 
agents that monitor movie and theatre listings with a view to sending regular updates of 
interesting events to the user, as well as agents that can send email to other humans or 
agents and schedule meetings and the like. As another example, in the very near future, 
individuals will probably be able to configure agents that "get" their bills (phones, utilities, 
water, newpaper, credit cards) by accessing appropriate authorized agents (of the phone, 
water, etc. company), and automatically instructing the bank to transfer money to these 
agents if certain exception conditions do not occur. Different users may program different 
conditions (e.g John may say "pay all bills under 25 dollars and email me that they've 
been paid, but if the bills are over 25 dollars, send the bill to me and pay it only after my 
approval51; conversely, Lisa may use a very different condition and may want to examine 
all bills that exhibit a fluctuation of over 20% vis a vis her previous bill). 

In the US military, agent technology may be used in situation assessment for monitor- 
ing, say, the weather over Bosnia. A pilot may rely on a weather agent as well as a situation 



agent to tell him/her about expected weather and enemy deployments in a region. In the 
case of a pilot, the agents may include detailed information about windspeed, barometric 
pressure, external temperature and precipitation, and suggested flight paths and fuel levels 
needed to avoid hostile fire as well as inclement weather patterns. A general using the same 
agents, on the other hand, may expect detailed analyses of enemy troop movements, and 
how weather conditions may affect his mission. In both cases, certain changes must be 
communicated to the user (e.g. the pilot or the general), yet the nature of data commu- 
nicated will differ. For instance, the general may not be interested in windspeed changes 
unless these changes mean that he and/or the enemy will not be able to deploy certain 
resources. On the other hand, the pilot must be informed rapidly of all windspeed changes 
above a certain threshold. 

One aim of our work is to define what it means for an arbitrary software program P 
to be considered an intelligent agent. We argue that for a program P to be considered an 
agent, it must have some properties. It must have awareness of its own properties (what 
can I compute ? how fast can I compute it? how accurate are these computations? which 
other agents can I communicate with? etc.). Second, it must have the ability to collaborate 
with at least some other agents - in other words, it uses a sufficiently rich vocabulary that 
it can communicate with other agents (e.g. request services, respond to requests, etc.), 
and negotiate with such agents (e.g. modify its request if the other agent cannot satisfy 
them). Last, but not least, the agent must be personalizable, i.e. it must come equipped 
with a very simple, but expressive language, that allows a novice computer user to express 
complex commands of the form "Monitor property p. If p changes in a specified way c/i, 
then take action a." We are developing different types of abstractions that characterize 
these notions of awareness, collaboration, and personalizability and develop techniques to 
efficiently represent them and manipulate them computationally. 

The agent desktop 

The Agent Desktop is the most important part of CATS system. Each Agent Desktop will 
contain a variety of information about different types of agents, and may be personalized 
to the needs of one single user. For example, an Army commander, planning a route 
for a tank column, can have his copy of the Agent Desktop specifically configured for his 
needs. This configured version would then differ from the personalized versions of the 
Agent Desktop used by members of other echelons, staffs, forces, etc. 

To achieve such functionality, the Agent Desktop manipulates three kinds of abstrac- 
tions. As shown in Figure 1. each actual software agent will have consist of its underlying 
implementation (program code), plus instances of each of these three abstractions. 

1. Agent Property Abstraction (APA): Each agent has certain intrinsic properties. 
These properties include: 

• the node address where the agent resides, 



Wrapped 
Agent 

A 5A    AC A PA A 

( > 
Agent 1 

V J 

agents are distributed across network 

Figure 1: Architecture of Agent Desktop 

• the method hy which the agent can be invoked (e.g. by passing a certain control 
string to the server at the above location) 

• the reliability of the agent. 

• other locations where an identical agent resides (in case the preferred location 
is "down"), 

• the format in which the agent expects input, and the format in which it returns 
output, 

• the semantics of the agent's output (e.g. the units - centimeters vs. inches - in 
which different output values are returned), 

• other agents that have the capability to process this agent's output. 

• information on whether the agent is an active agent (i.e. one that is always 
"on" and that may activate other agents) as opposed to a passive agent (e.g. 
one that is usually "off"). 

• Information on whether the agent is mobile or not (i.e. can the agent "migrate" 
to other sites and execute commands, and if so, under what conditions is this 
feasible). 

Agent Collaboration Abstraction (ACA): Each agent has certain properties 
that are relevant to collaboration. For example, we have already noted that agents 
will communicate with each other. However, the (human) user must to configure the 
way in which the agents "assimilated"' within his desktop interact with others. If he 
chooses not to do so, we will define default parameters. 



For this purpose, we have developed a simple rule-based framework that specifies the 
conditions under which one agent may invoke another one, together with the formal 
mechanism used in such an invocation. In its simplest form, a rule of this form may 
look like: 

can_invoke(Agent 1, Agent2, Intype, Outtype)   <—   Condit ion. 

Of course, such rules will be expressed using a graphical user interface (so that a user 
will not have to be burdened with the responsibility of writing rules). When the Army 
commanders Desktop includes such a rule, it means that Agent 1 may call Agent2 
with a string having the format of Intype and the output returned by Agent2 will 
have the format specificed in Outtype . Thus, for example, a specification of the 
form 

can_invoke(RPl,RP2,"[x/int,y/int] : 1 mile", "{[x/int,y/int] : 0.1 mile})" 
*— Condition. 

says that when the Condition is satisfied, route planner RP1 may invoke route plan- 
ner RP2. The parameter [x/integer, y/integer] : 1 mile may say that the inputs 
to RP2 which are provided by RP1 assume that each pixel represents a 1 mile by 1 
mile region, while the route provided as output by RP2 must generate a route at a 
finer granularity of 0.1 mile by 0.1 mile. 

Personalized Agent Abstraction (PAA): It is entirely possible that there are 
certain tasks that a user performs often. For example, an Army commander planning 
a troop movement into Bosnia, may want to set up a personalized agent that does 
the following tasks every hour: 

(a) It invokes a weather monitoring agent to see if there are any major climactic 
changes expected along the route the the troop movements are planner. 

(b) It invokes a satellite image intelligence agent to determine if any substantial 
enemy troop movements have occurred in the region of operations, and if so, it 
checks to see if any of these opposing forces poses a threat to friendly forces by 
invoking a Threat Assessment agent. 

(c) If the threat posed above is substantial, it alerts one or more relevant officers 
(e.g. the commander, and selected staff) by emailing them or faxing them, an 
alert. This alert may well include also, a number of alternative courses of action 
(COAs) proposed by a Planning Agent. 

To set up such a personalized agent, the user needs to specify the logical sequences 
of actions described above. This is done by expressing the above interaction as rules 
of the form: 



do(< action >,T)   <—   Condition. 

This rule specifies that the action named action should be executed at all times 
T when the condition is satisfied. The content of the action itself is specified as a 
Hierarchical Task Network (HTN). The formal definition of such HTNs is beyond the 
realm of this short report - see [1] for a detailed discussion of the formalism of this 
kind of planning system. 

Scalable-Backend Support for CATS 

To support the needs of CATS and its users, the system must be implemented such 
that the agent architecture is supported computationally by a memory system capable of 
supporting the knowledge-based needs of intelligent agents, while still allowing the per- 
formance, security, distributed processing and scaling characteristics of current database 
systems. To date, knowledge-based systems have failed to allow these scaling and other ca- 
pabilities, while agent systems based on databases have been very limited in their semantic 
and representational power. 

CATS will require support for the reasoning needed by such an intelligent informa- 
tion system, will need to outperform current data-base systems, and will need the scaling 
and backend capabilities that will allow it to run on a wide variety of platforms - sin- 
gle processor, distributed network, and parallel supercomputers. To achieve this, we are 
focusing on providing scalable backend capabilities in a form usable by a wide variety of 
client agents using various emerging standards of agent protocols (KQML, GCCS, JTF 
Ref Architecture, etc.). 

CATS is being supported using knowledge-based, rather than data-based, technology 
to provide the inferencing capabilities and semantic functions needed by intelligent agent 
systems. We have been developing both an implementation and underlying computational 
science of the development of very large knowledge bases. In particular, computationally, 
the networks represented in such knowledge bases are DAGs, with the links representing 
paths which are used to inherit information. The search on such an inheritance network can 
be very computationally intensive but we have proven them to be efficiently parallelizable. 
In our work, search engines have been implemented for AI knowledge bases [8, 9] and we 
have also shown that the parallelization techniques developed for these problems can be 
applied to searches on large information networks such as the world wide web, the military 
web, message repositories, and the like. 

We are exploiting these techniques in a knowledge-representation backend system, 
known as Parka. Parka is implemented in C and has been run on a large variety of 
computing platforms ranging from small personal computers to the largest parallel super- 
computers.   For example, Parka supports case-based planning systems being developed 

6 



for the Arpa Rome Laboratories Planning Initiative[4]. In experiments, we have shown 
that for a knowledge base containing over 2 million assertions , complex queries could be 
processed with times ranging from about about 200 milliseconds for a simple query (about 
5 conjuncts and two restrictions) to about 4 seconds for one with 14 variables and 11 
restrictions on a single processor Sparc 20. On an IBM SP/2 with 16 processors, times 
ranged from 29 milliseconds to about .5 seconds for the worst case. 

We've also tested the system on the knowledge ontology of CYC[3] (about 50,000 frames 
in our systems) and the ISI Penman dictionary (about 80,000 frames) [7]. On those KBs 
we seem to be even faster, although we don't have a good enough test corpus to really test 
against. 

The significant performance increases in the PARKA knowledge representation system, 
have made heavy use of database concepts in our implementations. We have recently per- 
fected a mechanism by which we can actually implement our inheritance algorithms within 
a DB - that is, we modify the DB code to add our algorithms, and we build some extra 
tables that encode the KB relations. In addition, we can directly call remote databases 
(using SQL or other standard DB languages) for data. We can then do inheritance, recog- 
nition, and structure matching directly in the DB system. The two advantages of this is 
are (i) we no longer need to import a DB into a different format to add KB capabilities, 
and (ii) we get access control, secondary memory management, security, etc. "for free" (i.e. 
using the DB). Essentially, this means we are no longer limited to specialized machines, 
and that the size of the KBs we can manipulate are limited only by the secondary storage 
capabilities of the system 

To support the needs of CATS, a number of extensions will be needed for the current 
Parka system. It must be made to work with a more complex (commercial quality) database 
implementation, a distributed processor version must be realized and tested, and query 
optimization techniques must be developed to allow the system to perform real-time query 
processing for the specialized needs of these distributed agent systems. 

Conclusions 

This report outlines the current status of a large ongoing effort to provide both a formal 
basis and a scalable platform for the development of large-scale intelligent agent appli- 
cations. The goal of this report was to describe some of the areas, both theoretical and 
tool-based, which we feel are critical to the development of such agents. We believe these 
tools are now in place and ready for development, and this is the focus of our follow-on 
work now being supported by the Army Research Laboratory. 

References 

[1] K. Erol, J. Hendler, and D. Nau, Complexity Results for Hierarchical Task-Network 



Planning, Annals of Mathematics and Artificial Intelligence,, 1997 (in press). 

2] A. Brink, S. Marcus and V.S. Subrahmanian. Heterogeneous Multimedia Reasoning. 
IEEE COMPUTER, 28, 9, pps 33-39, Sep. 1995. 

3] Lenat, D.B. and Guha, R.V., "Building Large Knowledge-Based Systems", Addison 
Wesley, Reading, Mass., 1990. 

4] J. Hendler, K. Stoffel and A. Mulvehill, High Performance Support for Case-Based 
Planning Applications, in A. Täte (ed) Advanced Planning Technology, MIT/AAAI 
Press, Menlo Park, CA., USA, May 1996 

5] J. Lu, A. Nerode and V.S. Subrahmanian. Hybrid Knowledge Bases, accepted for 
publication in: IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. 

6] S. Marcus and V.S. Subrahmanian. Foundations of Multimedia Database Systems, 
JOURNAL OF THE ACM, Vol. 43, 3, pps 474-523, 1996. 

7] K. Knight and S. Luk, "Building a Large Knowledge Base for Machine Translation,"' 
AAAI Twelfth National Conference on Artificial Intelligence, 1994. 

8] K. Stoffel, J. Hendler and J. Saltz, High Performance Support for Very Large Knowl- 
edge Bases, Proc. Frontiers of Massively Parallel Computing, Feb. 1995. 

9] K. Stoffel, J. Hendler, J. Saltz and W. Andersen, Parka on MIMD supercomputers, in 
J. Geller (ed) Parallel Processing in AI: II, (in press). 

[10] V.S. Subrahmanian. Amalgamating Knowledge Bases, ACM TRANSACTIONS ON 
DATABASE SYSTEMS, 19, 2, pp. 291-331, 1994. 

2    Publications and Lectures 

I. INVITED CONFERENCE ADDRESSES. 

1. Invited Talk, 1997 Intl. Workshop on Logic Programming and Non-Monotonic Rea- 
soning, Dagstuhl, Germany. (V.S. Subrahmanian). 

2. Keynote Address: 1998 Intl. Workshop on Query Processing and Multimedia Issues 
in Distributed Systems, August 26-27, Vienna, Austria. (V.S. Subrahmanian). 

3. Invited Lectures on Logic-Based Heterogeneous Information Integration, GULP Sum- 
mer School in Logic Programming, Acquafredda di Maratea. Italy, Sep. 7-12. 1998. 
(V.S. Subrahmanian). 



4. Invited Lectures on Intelligent Agents, GULP Summer School in Logic Programming, 
Acquafredda di Maratea, Italy, Sep. 7-12, 1998. (S. Kraus). 

5. Invited Lecture on Heterogeneous Agent Systems, 1999 Intl. Symposium on Method- 
ologies for Intelligent Systems (ISMIS-99), Warsaw, Poland, June 8-11, 1999. (V.S. 
Subrahmanian). 

6. AI for the Internet, Invited Talk, Second International and Interdisciplinary Work- 
shop on Intelligent Information Integration, Brighton, UK, Aug. 1998. (J. Hendler). 

7. IDA Special briefings, Warfighter Information Systems, to Gen. Welch, Pres., IDA 
12/97; To AF Chief Scientist Dan Hastings, IDA 2/98. (J. Hendler). 

8. Developing Intelligent Agents - The future of AI planning systems, Invited Talk, 3 
Simposio Basiliero de Automacao Inteligente (3rd Brazilian Symposium on Intelligent 
Automation), Vitoria, Brazil, Sept., 1997. Knowledge Representation for the World 
Wide Web, NASA Ames research Center, California, Feb. 1998.  (J. Hendler). 

9. Invited lecture on Strategic Negotiation and Cooperation Among Autonomous Agents, 
Sixth Scandinavian Conference on Artificial Intelligence, Helsinki, August, 1997 (S. 

Kraus). 

10. Invited lecture on IMPACT: The Interactive Maryland Platform for Agents Collabo- 
rating Together, Israeli seminar on Artificial Intelligence, March 27, 1998, Israel. (S. 
Kraus). 

II. JOURNAL PAPERS/SUBMISSIONS. 

1. K. Arisha, S. Kraus, F. Ozean, R. Ross and V.S.Subrahmanian. IMPACT: The 
Interactive Maryland Platform for Agents Collaborating Together. Submitted for 
publication, Nov. 1997. 

2. Dix. Jürgen and V.S.Subrahmanian, Meta^Agent Programs, Submitted for publica- 
tion. 

3. S. Luke and J. Hendler, Web Agents that Work. IEEE Multimedia , 4(3), 1997. 

4. J. Hendler. Intelligent Agents — Where AI meets Information Technology, (i) IEEE 
Expert , December, 1996. ii. Reprinted in Proceedings, 3rd Brazilian Symposium on 
Intelligent Automation, Victoria, Brazil, Sept, 1997. 

5. T. Eiter, V.S. Subrahmanian and G. Pick. Heterogeneous Active Agents. Submitted 
to Artificial Intelligence journal, March 1998. 



6. A. Dekhtyar and V.S. Subrahmanian. Hybrid Probabilistic Programs. Submitted to 
Journal of Logic Programming, Jan. 1998. Under revision as per referee comments, 
July 1998. 

7. S. Kraus, Y. Sagiv and V.S. Subrahmanian. Representing and Integrating Multiple 
Calendars. Submitted for journal publication. 

8. V.S. Subrahmanian. Nonmonotonic Logic Programming, accepted for publication in 
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. 

9. A. Brogi, V.S.Subrahmanian and C. Zaniolo. MODELING SEQUENTIAL AND PAR- 
ALLEL PLANS: A DEDUCTIVE DATABASE APPROACH, submitted for journal pub- 
lication. 0. Shehory and S. Kraus. Methods for Task Allocation via Agent Coalition 
Formation. ARTIFICIAL INTELLIGENCE JOURNAL, 101(l-2):165-200, 1998. 

10. S. Kraus, K. Sycara and A. Evenchik. Reaching agreements through argumenta- 
tion: a logical model and implementation, ARTIFICIAL INTELLIGENCE JOURNAL, 
(to appear.) 

11. 0. Shehory and S. Kraus. Feasible Formation of Stable Coalitions among Au- 
tonomous Agents in Non-super-additive Environments, COMPUTATIONAL INTEL- 
LIGENCE, (to appear.) 

12. 0. Shehory, S. Kraus and 0. Yadgar. Goal Satisfaction in large scale agent-systems: 
A transportation example, in A. Rao, M. Singh and M. Wooldridge editors, Intelli- 
gent Agents V (to appear). (Won the ATAL98 best paper award) 

13. K.S. Candan, B. Prabhakaran and V.S. Subrahmanian. Collaborative Multimedia 
Documents: Authoring and Presentation accepted for publication in Intl. J. of In- 
telligent Systems. 

14. K.S. Candan, B. Prabhakaran and V.S. Subrahmanian. Retrieval Schedules Based 
on Resource Availability and Flexible Presentation Specifications. ACM Multimedia 
Systems Journal, Vol. 6, Nr. 4, pps 232-250. 

15. K.S. Candan, E. Hwang and V.S. Subrahmanian. An Event-Based Model for Contin- 
uous Media Data on Heterogeneous Disk Servers. ACM Multimedia Systems Journal, 
Vol. 6, Nr. 4, pps 251-270. 

16. L. Golubchik, S. Marcus and V.S. Subrahmanian. Sync Classes: A Framework for 
Optimal Scheduling of Requests in Multimedia Storage Servers, Accepted for publi- 
cation in IEEE Transactions on Knowledge and Data Engineering. 

17. 0. Seeliger and J. Hendler, Supervenient Hierarchies of Behaviors in Robotics. Jour- 
nal of Experimental and Theoretical AI , 9(2/3), 1997 

10 



III. CONFERENCE PAPERS/SUBMISSIONS. 

1. K. Stoffel, M. Taylor and J. Hendler, "Efficient Management of Very Large Ontolo- 
gies," Proc. AAAI-97, Providence, RI, 1997. 

2. L. Nunes de Barros, R. Benjamins, and J. Hendler, "Par-kap: A knowledge Acquisi- 
tion Tool for Building Practical Planning Systems," Proc. IJCAI-97, Nagoya, Japan, 
1997. ii. reprinted in Proc. The Ninth Dutch conference on Artificial Intelligence 
(NAIC-97) K. van Marcke, W. Daelemans (eds), University of Antwerp, Belgium, 
November, 1997. 

3. S. Luke, L. Spector, J. Hendler and D. Rager, "Ontology-Based Web Agents", Proc. 
Agents 1997, San Mateo, CA. 1997. 

4. Sean Luke, Charles Hohn, Jonathan Farris, Gary Jackson, and James Hendler, Co- 
evolving Soccer Softbot Team Coordination with Genetic Programming, Proceedings 
of the First International Workshop on RoboCup, Nagoya, Japan, 1997. 

5. V. Manikonda, P. S. Krishnaprasad, and J. Hendler, "Languages, Behaviors, Hybrid 
Architectures and Motion Control" (1997)," Essays in Mathematical Control Theory 
(in honor of the 60th birthday of Roger Brockett), (eds. John Baillieul and Jan C. 
Willems), Springer-Verlag. 

6. D. Rager, J. Hendler and A. Mulvehill, ForMAT and Parka: A technology inte- 
gration experiment and beyond," Proc. Intl Conference on Case-Based Reasoning 
,Providence. RI, 1997. 

7. B. Kettler , J. Hendler and K. Sanders, "The Case for Graph-Structured Represen- 
tations," Proc. Intl Conference on Case-Based Reasoning , Providence, RI, 1997. 

8. S. Luke, L. Spector, J. Hendler and D. Rager, "Ontology-Based Web Agents", Proc. 
Agents 1997. San Mateo, CA. 1997. 

9. Sean Luke and Lee Spector, A Comparison of Crossover and Mutation in Genetic 
Programming, Proc. Genetic Programming (GP97), Stanford, 1997. 

10. P. Emmerman, J. Hendler and V.S. Subrahmanian. CATS: An architecture for scal- 
able intelligent agent applications, Proc. 1997 Bar-Uan Symposium on Foundations 
of Artificial Intelligence, Israel, June 1997. 

11. P. Bonatti, S. Kraus, J. Salinas, V.S. Subrahmanian. Data-Security in Heterogeneous 
Agent Systems, in M. Klusch editor, Cooperative Information Agents, Springer- 
Verlag, Springer-Verlag, 1998, pp. 290-305. 

11 



12. K. S. Candan, E. Lemar, V.S. Subrahmanian. Management and Rendering of Multi- 
media Views, Proc. 1998 Intl. Workshop on Multimedia Information Systems, Sep. 
1998 (to appear), Springer Verlag Lecture Notes in Computer Science. 

13. J. Schäfer, T. J. Rogers, J.A. Marin. Networked Visualization of Heterogeneous US 
Army War Reserve Readiness Data, Proc. 1998 Intl. Workshop on Multimedia Infor- 
mation Systems, Sep. 1998 (to appear), Springer Verlag Lecture Notes in Computer 
Science. 

14. E. Bertino, S. Jajodia, P. Samarati and V.S. Subrahmanian. (1997) A Unified Frame- 
work for Enforcing Multiple Access Control Policies, Proc. 1997 ACM SIGMOD 
Conf. on Management of Data, Tucson, Arizona, May 1997. 

15. S. Jajodia, P. Samarati and V.S. Subrahmanian. (1997) A Logical Language for 
Expressing Authorizations, Proc. 1997 Oakland Conf. Computer Society. 

16. A. Dekhtyar and V.S. Subrahmanian. (1997) Hybrid Probabilistic Programs, Proc. 
1997 Intl. Conf. on Logic Programming, Leuven, Belgium, July 8-12, 1997/ 

17. T. Eiter, J. Lu and V.S. Subrahmanian. (1997). Computing Non-Ground represen- 
tations of Stable Models, Proc. 1997 Intl. Conference on Logic Programming and 
Non-monotonic Reasoning, Dagstuhl, Germany, July 1997. Springer Verlag. 

18. E. Hwang, P. Prabhakaran, and V.S. Subrahmanian. Distributed Video Presenta- 
tions, in Proc. 1998 IEEE Intl. Conf. on Data Engineering. 

19. S. Adali, P. Bonatti, M.L. Sapino and V.S. Subrahmanian. A Multi-Similarity Al- 
gebra, Proc. 1998 ACM SIGMOD Conference on Management of Data, June 1998, 
Seattle, WA. 

12 


