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C

The electromagnetlc spectrum is an mvaluable but limited natural resource for
wireless communications. Increasing demands of military, commercial, and private
users on the electromagnetic spectrum require an efficient spectrum channel sharing
- strategy. Static strategies, such as frequency-division multiple-accessing (FDMA) and

time-division multiple-accessing (TDMA), by which the multiple-access channel is ef-
‘fect1vely partitioned into independent single-user subchannels, tend to be wasteful in
applications where most users actively send information sporadically. Dynamic chan-
“nel sharing strategies, which allow the active users a larger share of the channel while
they are transmitting, fit into two categories: random-access communication and si-
multaneous transmission systems [1]. In random-access communication, it is assumed
‘that the receiver cannot demodulate more than one simultaneous transmission, and
so the problem is to design protocols to schedule channel access at non-overlapping
~ times, and if collisions between messages occur to ensure that those messages are even-
tually retransmitted successfully. Simultaneous transmission systems differ from static
strategies and random access protocols in that users are allowed to demodulate all (as
in the satellite communications) or a subset (as in multlpomt-to-multxpomt topologies)
of the transmitted messages.

A major multiple-access strategy us1ng the s1multaneous transmission phllosophy
is code-division multiple-accessing (CDMA) and it has become a main candidate for
the next generation of mobile land and satellite communication systems. In CDMA
communication systems, each transmitter generates a spread spectrum signal by mod-
ulating a data signal onto a pseudo-random signature waveform so that the resultant
signal has a bandwidth much larger than the data signal bandwidth. Unlike frequency-
division multiplexing (FDMA) or time-division multiplexing (TDMA), CDMA has -
multiple users simultaneously sharing the same wide-band channel. If a CDMA sys-
tem is viewed in either the frequency or time domain, the multiple-access s1gnals a.ppea.r
to co-exist.

The conventional CDMA receiver recovers the information of the desired user by
correlating the received signal with a replica of the signature waveform assigned to the
‘desired user, i.e., a signature matched filtering. As is well-known, when the received

“signal is corrupted by only additive white Gaussian noise (AWGN), the conventional
“matched filter receiver minimizes the error probability. This is not true in the con-
ventional CDMA receiver, whose decision variables for the signal of a particular user

* . are corrupted by multiple-access interference (MAI) in addition to AWGN. The MAI

originates from cross-correlations between the signature waveform of the desired sig-
nal and signals of other active users. When the received signal power of the desired
user is relatively weaker than those of the other users, the conventional receiver is un- -
able to reliably recover the information sent by the desired user, even if the signature
waveforms have very low cross-correlations. This is known as the near-far problem [2].
The current approach to dealing with the near-far problem is to use transmitter
power control [3]. Another alternative is to use some form of a multi-user detector.
Many different optimum/suboptimum structures of the multi-user detector have been
proposed in the literature [2,4-11]. Multi-user detectors are generally characterized
- by centralized detection that demodulates all the users’ signals at the output of a
matched filter bank. Substantial performance gains can be achieved in coherent multi-
user systems by using a multi-user detector that takes advantage of the structure of the
CDMA signals [2]. The multi-user detectors out perform the conventional receiver at
the expense of a significant increase in complexity. For example, the complexity of the
optimum multi-user detector in [2,4] grows exponentially in the number of users. Less
complex suboptimum multi-user detectors in [5,6] linearly increase in complexity with -
the number of users. In addition to complexity, multi-user detectors also require large
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amounts of side-information about the received signal, which includes the number of
users, the signature waveforms, associated time delays, and phase offsets of all active
CDMA signals. Often the received amplitude of each CDMA signal is also needed. The
complexity of such multi-user detectors may be unacceptably high for many practical
applications or communication security restrict the distribution of all users’ signature
waveforms to all the receivers, or both. Furthermore, some information of relatively

weak signals is likely to be more difficult to obtain due to the time-varying nature of
" the channel. C ’ ‘ ’ :

This research ‘inveétigated fully decentralized single-user detection, in which the

. receiver is constrained to demodulate the signal of only one user, but unlike the con-

ventional receiver, is optimized to take into account the structure of the CDMA signal.
The decentralized detection approach views the multi-user detection problem as an in-
terference suppression problem, where at a particular receiver one signal is considered
the desired signal and the other signals are considered the interference. One such

single-user receiver is the linear minimum mean-squared-error (MMSE) receiver pro-

posed in [12]. This MMSE receiver has been particularly attractive because it lends

. itself for adaptive implementation. L .
Several adaptive MMSE receivers have been proposed recently [12-14]. Although
- reducing the complexity and eliminating requirement of the information of the inter-

fering signals, most of the adaptive MMSE receivers require training sequences for
the implementation of the least-mean-square (LMS) algorithm both at the beginning
and during data transmission. That is, adaptive MMSE receivers need to switch back

~and forth between a training mode and a decision-directed mode during actual data
. transmission as a new strong user accesses the system. ' : j
Use of a blind scheme, i.e., one that does not rely on a training sequence for

adaptation, has been practically attractive for high-speed "data transmission over 3
communication channel [15]. If the receiver yields a bit-error-rate (BER) less than 101

- errors per bit, a decision-directed LMS algorithm may be an option for a blind receiver.

However when the system experiences the near-far problem, detection capability of

a non-optimum receiver is completely lost and the algorithm may suffer from the
convergence to a local minimum associated with a strong interfering signal, i.e., the"
‘receiver may adapt its parameters to detect the signal of a strong interfering user
- instead of the signal of the desired user. Honig, Madhow and Verdu in [16] and

Schodorf and Williams in [17] have proposed constrained output-power minimizing
(OPM) receivers. They implement algorithms for a blind adaptive receiver through
gradient projection (GP) algorithms. Algorithms in these receivers adjust the filter
tap weights by minimizing the output power while constraining the gradient of the

~ cost function to satisfy a prescribed constraint.
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1. Blind A&aptive CDMA Receivers

1.1." Abstract

© New blind adaptive interference suppression algorithms for DS/CDMA communication

systems are developed. A generalized projection algorithm is developed that updates a
multiple access interference (MALI) suppression filter in a static communication environ-

ment. The algorithm adaptively adjusts the filter coefficients by iterativel_y projecting

them onto constraint sets. The constraint sets consist of data sets and property sets,

which are obtained from the received signal and prior knowledge of the desired signal,

respectively. A space alternating generalized projection algorithm with approximate

EM mapping is also developed that suppresses MAI in a dynamic communication en-
- vironment.  This algorithm jointly estimates the filter and desired signal amplitude
- using a stochastic approximation of the EM algorithm. The performance results show

that the new algorithms significantly out perform the existing adaptive algorithms in
-steady state. ‘ ’ ,

| , 1.2.' Int'rdduction

This research addresses the problem of data detection at system initialization. In such
a case, the data estimates are not reliable during the initial adaptation process so that
a decision-directed LMS-type algorithm is not feasible. An adaptive algorithm which
does not rely on training data has been proposed in [18]. This algorithm implements a
statistical gradient projection (GP) algorithm based on the output power minimization
- (OPM) criterion. The algorithm is considered blind since it does not incorporate any

reference signal for the adaptation. However, it has been noted that the inclusion

~of the output power in the minimization process results in the signal cancellation
phenomenon [19]. This phenomenon occurs when the performance measure does not
* asymptotically approach to zero. It is observed that the steady state performance
- of the algorithm in [18] does not approach the optimum and the algorithm requires

~ switching from a blind mode to a decision-directed mode as soon as it converges, which

i8 not practical in a dynamic communication environment,.

For static communication, we develop a generalized pro jection algorithm that sup-

‘press the MAI This algorithm assumes that the amplitude of the desired signal is
known a priori. The algorithm minimizes a performance measure which does not in-
volve training data and utilizes the amplitude as a reference signal. - The algorithm
adaptively adjusts the filter coefficients by iteratively projecting them onto some con-
straint sets. The constraint sets consist of the data set and the property set. The
data set is used to specify that the response of the filter should be distortion-free
with respect to the information sent by the desired user. The property set is used
as a remedial measure which continually refines the filter coefficients in the direction
of global convergence. It is obtained from the ideal convergence objective and some
known property of the desired signal. ' - _ -

For dynamic communication, the amplitude of the desired signal may not be known
a priorior it may vary with time. Therefore we develop a space alternating generalized
projection algorithm with approximate EM mapping for the joint filter and amplitude
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Figure 1.1.: A brief DS/CDMA s'ystém description

estimation. The algorithm is implemented by the combined application of a stochastic

approximation of the EM algorithm [20] and the generalized projection algorithm. The

- algorithm decomposes the problem of estimating two unknown parameters into two

decoupled parameter estimation problems. For each received signal, it iterates between

* estimating the conditional performance measure using the current received signal and

the previous estimate of the parameters (E step), and minimizing the performance

measure with respect to the unknown parameters (M step). In the M step of the
~ algorithm, we minimize the conditional performance measure by 1terat1vely projecting
the parameters onto constraint sets.

1.3. 'System Description

’

The DS/CDMA system model considered is shown in Figure 1.1, where Py, b (¢), cx (t)
and 6, are the transmitted power, data signal, signature waveform and phase offset of
" ‘the kth user in the ith bit interval of duration T', respectively and w, is the common car-
rier frequency. The kth user’s data signal is given by by (t) = Ez__m bi. () o1 (t —4T),
where by, (i) € {+1,—1} is the ith data bit of the kth user and ¢r (t) denotes the bit
waveform with unity energy defined on [0, T]. Similarly, the kth user’s signature wave-
form can be written as ¢ (t) = En—o ek (n) o1, (t — nT) ,where ¢ (n) € {+1,-1} is
the nth spreading code bit of the kth user, which has periodicity N = T/T, for all
user k, and 7. (t) is the chip waveform with unity energy defined on [0, T,]. ‘

" Without loss of generality, we assume that the signal of the first user (k = 1) is the
desired signal and the receiver is synchronized to this signal,(i.e., 7 = 0 and 6; = 0).
The received signal at the ith bit interval can be descnbed as an N -dlmensmnal vector
, Which is glven by : Co

Albl(z c1+ZAk bk(z—-l)c,c +bk(z)ck]+n1 ‘ (1.1)
R ) S '

10
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Algorithm | . Adaptation rule 'ASSumptioh

NLMS Witl = W; — [t (W.Tr,-‘ —d,) ﬁ'lr—._ w“'é\ Ll El., is known ...
OPM-GP | Xi+1 ——ixi —ﬂ( [Srirr;] Sl) ,T,‘ ' - S1 is kn(;wn

Wit1 =81 +Xi41 .
_Wz,l = Tsz =W " H (Iszr'll - Al) ;:;_':

Al and S1 afe MOW

Propl . | ° .
Wit1 = Psw;; = [1_ - S{Wm] S1 +W;1
e T n (e ) |
| Prop 2 Wit1 = Psw;1 = [rl —sfw;1]s1 +wi; | s1is known

ri| - 4]

Ay = A=y [|w]
" Table 1.1.: Sumrh‘a.ry of adaptive algorﬁ;hiné
* where c£ and cF are the vectors related to the signature vector of the kt# user, ¢, -

as ¢ [lk] = cf + cf, ¢k [l] is the cyclically shifted vector of ¢; by lg, and n; is the
noise vector with covariance matrix of ¢2I. The related vectors are defined by

ri 2 [r(0),-, (N -1)7

ek & [e(0), e (N 1) » .
ef 2 fee (), ,e (N —1),0,--+,07 2
ck 2 [0,---,0,ck(0),---,ck(lk-—1)]T

‘m; 2 [0 (0), e ,mi (N = 1))

1.4. New Algorithm Development
In this research we develop two a.lgorit‘hms for determining the MAI rejection filter.

Generalized Projection Algorithm Utilize the received signé.l and some known prop-
erties of the desired signal to estimate the filter. Channel gam is assumed to be"
known.

_ Space Alternatmg Generalized Projection Algorithm with approximate EM Mappmg
' Jointly a.nd adaptlvely estimate the filter coefficients and the channel gain.

In Table 1.1, we summarize and compare four algorithms; the norma.hzed LMS
. (NLMS), the normalized OPM-based gradient projection (OPM-GP), the generalized
projection algorithm (Prop 1) and the space alternating generalized projection w1th

approximate EM mapping algorithm (Prop 2).
Table 1.2 shows the computational complexity of the algorithms. It is assumed that -

all algorithms are synchronized to the desired signal and the filter length equals N.
‘For fair comparison, we consider the normalized versions of the algorithms. It is seen
- that the added complexity in the implementation of the new algorithms is negligible.

1.5. " Performance Results

In this section we demonstrate the performance of the new algorithms in a near-far
. situation. Qur simulation results correspond to asynchronous communication systems
in which the multiple access signals are modulated by 31-length Gold sequences. The

11




L NLMS | OPM-GP | Prop 1 | Prop 2
Multiplication 3N +3 SN+1|5N+2|5N+3

Addition 3N+1 6N |[5N+2 | 5N +4
N . 0 0 1 1

Storage requlrement N+1 2N+1|2N+2| 2N +3

_Tablé 1.2.: Computational complexity of the algorifhms

,ensemble-averaged output s1gna1—to-1nterference ratio (SIR) at the ith 1terat10n is ob-

tained by . o, | |
| ‘ SIRi = 7 z"":;(wivmsl) 5 ‘ o : (13) .
. Zm=1 [(wi,myi,m) /Al,m]

- where W; m, and ¥ m = Tim — A1,mb1,m81 are the filter coefficients and the interference -

plus noise component of the received signal at the ith iteration in the mth realization,

. respectively. The number of realizations M = 500 is used to obtain the averaged output
SIR. For each realization, the amplitudes, phase delays and the signature sequences of
the signals are chosen randomly.

In Figure 1.2 and Figure 1.3, we simulate output SIR performances of the new
algorithms and compare to the existing adaptive algorithms. In this simulation, the
‘number of interferences is (K — 1) = 5, the bit energy to background noise ratio (SNR)
is 15 dB, and all interferences have amplitude 10 times greater than the amplitude of
the desired signal, which accounts for the extreme near-far situation. :

Figure 1.2 shows the output SIR curves of the generalized projection (Prop 1) algo—
rithm, the OPM-based gradient projection (OPM-GP) algorithm of [18] and the nor-
malized LMS (NLMS) algorithm in the training mode. The performance result shows
that the Prop 1 algorithm converges to the steady state performance level similar to
the NLMS algorithm in the training mode and improves about 5 dB in the steady state
performance compared to the OPM-GP algorithm. The performance achievement of
the Prop 1 algorithm is due to a performance criterion which asymptotically converges
to zero, whereas the performance loss of the OPM-GP algorithm in the steady state is
due to inclusion of the output power in the minimization process, which results in the
signal cancellation phenomenon [19]. The slower convergence of the Prop 1 algorithm
compared to the NLMS algorithm is explained by the fact that the former does not
use training data for the adaptation whereas the latter does.

Figure 1.3 compares the space alternating generalized projection with approximate
EM mapping (Prop 2) algorithm to the Prop 1 algorithm and the OPM-GP algorithm. :
For the Prop 2 algorithm, the forgetting factor in the amplitude estimation algorithm
is v = 0.01. It is shown that the steady state performance of the Prop 2 algorithm
approaches that of the Prop 1 algorithm but is substantially better than that of the
OPM-GP algorithm. The performance degradation of the Prop 2 algorithm over the |
Prop 1 algorithm is mainly caused by the amplitude estimation error, which can be
reduced at the expense of convergence speed.

- In Figure 1.4, we examine the steady state bit-error-rate (BER) performance of
~ the new a.lgorlthms versus the input bit-energy to background noise ratio (SNR) and
* compare it to the matched filter, the NLMS algorithm in the decision-directed mode
and the OPM-GP algorithm. In this simulation, simulation parameters are set equal
to those used in Figure 1.2 and Figure 1.3 excepts the input SNR. A total of 2000
bits are transmitted for each realization and the last 1000 bits for 100 realizations are
used to capture the steady state performance. The NLMS algorithm switches from

12
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the training mode to the decision-directed mode after the 900th bit. It is evident H
that the performance of the Prop 1 algorithm is similar to the NLMS algorithm and

" approaches the single-user bound. The performance similarity between the Prop 1

- algorithm and the NLMS algorithm in the high SNR range is due to the fact that both
-algorithms use performance criteria which converge close to zero. The performance of
the Prop 2 algorithm is similar to the Prop 1 algorithm when the SNR is low and is
slightly degraded over the Prop 2 algorithm as the SNR increases. These phenomena
occur because the amplitude estimation error in the Prop 2 algorithm dominates the
background noise in the high SNR range. It is also seen that the performance gains
of the Prop 1 and Prop 2 algorithms over the OPM-GP algorithm increase when the
SNR increases. In the OPM-GP algorithm the desired filter output and the background
noise causes filter misadjustment whereas in the new algorithms only the background
noise does. Interestingly, the performances of the Prop 1 and Prop 2 algorithms are
- slightly better than the NLMS algorithm when the SNR is lower than 6 dB. This shows
: that the decision-directed LMS algonthm is not feasible when the BER is h1gher than
The performance results demonstrate that ‘the new algorithms are robust to decision
errors and are nearly optimal without requiring training data. The performance results
show the new algorithms are applicable for MAI suppressmn and information recovery
in DS/CDMA commumcatlons ~

1.6. Summary :

We developed projection-based adaptive MAI suppression algorithms which require -
“neither training data nor any information about the interfering signals. The algorithms
are a generalized projection algorithm and a space alternating generalized projection
algorithm with approximate EM mapping. The algorithms minimize the performance
' measure monotonically via the method of generalized projections and a stochastic ap-
proximation of the EM algorithm. The algorithms provide computationally efficient,
robust, blind MAI suppression schemes when the near-far effect is predominant. Sim-
- ulation results show that the new algorithms significantly improve the steady state
performance over the OPM-GP based blind algorithm when the input SNR is higher
than 3 dB. The new algorithms perform better than the NLMS algorlthm when the
_.input SNR is lower than 6 dB. : .

13
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" 2. Decomposed Adaptive CDMA Receivers

' 21 Abstract B

We develop a single-user decomposed adaptive receiver (DAR) structure for interfer-
ence suppression in asynchronous direct-sequence code-division multiple-access (DS-
CDMA) communication systems. Mathematical analysis and computer simulations
show that the DAR has faster convergence than the conventional adaptive receivers
‘with large processing gams in multlple access channel with a,dd1t1ve white Gaussian

" noise.

2.2. Introduction
Among many sub-optimum interference suppression schemes for. DS-CDMA systems
the minimum mean squared error (MMSE) scheme has been an active research area due
to its desired near-far resistance and direct applicability to adaptive implementation
[21]. The MMSE adaptive receiver shows remarkable performance improvement over
the conventional matched filter receiver [22,23]. The main advantage of the adaptive
~ receiver is that it can effectively suppress multiple access interference (MAI) without -
either the knowledge of interference parameters or the desired user’s 51gnature sequence
" by using a training sequence.

The N-tap MMSE adaptive receiver successfully removes asynchronous MAI when
the number of users is much less than N/2, where N is the processing gain or the’
signature sequence length of the DS-CDMA system. In that case, however, the input
to the conventional N-tap receiver is ill-conditioned in that the eigenvalue spread
of input correlation matrix is very large. It is well known that the widely used least
~mean square (LMS) algorithm converges very slowly for ill-conditioned input data [24].
The slow convergence rate of LMS algorithm could be a serious limitation to system
capacity and a deterrent to use MMSE recelvers especially when the channel is varymg
rapidly. '

We develop a decomposed adaptlve receiver (DAR) structure for single-user detec- -
tion that has faster convergence characteristics than the conventional N-tap adaptive
receiver. For the DAR, the N-tap adaptive receiver is decomposed into D smaller
filters that are adapted individually. Coupling is used such that one ﬁlter s output is
used for another filter’s adaptation. .

2.3. DS-CDMA System Model

We consider binary phase shift keyed (BPSK) asynchronous DS-CDMA system with
signature sequence length N in an additive white Gaussian noise (AWGN) channel‘
w1th noise power spectral density N,/2. The recelved s1gnal is modeled as

r(t) = Z V2Pecy(t - Tk)bk(t ) cos(wot + 08 +nlt) @1

k=1

~ where K is the number of users, Py is the received power, ci (t) is the ba,seband bipolar
signature waveform, by(t) is the baseband bipolar waveform of data bit, 7, € [0,T)
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is the asynchronous timing offset, ) is the modulation phaSe offset of the k-th user
respectively, and n(t) the AWGN.

"~ We assume that the received signal is demodulated to baseband where it is pro-
cessed by a normalized chip matched filter. The data from the chip matched filter for
the i-th b1t interval of the desired user is arranged as a vector, :

r(@) = [ m(@) r6) - rv@) )7

 We assume, without loss of generality, that the first user is the desired user and

'the receiver is synchronized to the ﬁrst user, which yields [23]

r(z) —b<z)c‘ +Zb"’\/; cos(ek)lk(z)+n(z) o (2.2)

k=2

‘where bg) € {-1,1} is the i—th bit of k-th user, ¢; is the signature sequence vector of
the desired user, I;(%) is the interference vector from the asynchronous k-th user and

n(i) is the Gaussian noise vector with zero mean and covariance matrix %I, where
0? = N,N/2E}, and E, is the received energy per bit of the desired user.

2.4, Des’cription' of Decomposed Adapﬁve Receiver

Let w(i) = [ wi(d) wa(@) - wn(i) ] be the tab weight vector of the N-tap -

' adaptlve receiver and y(i) = w7’ (i)r(i) be the receiver output for i-th bit. Let N;, j =

., D(D < N), be positive integers such that 32 j=1Nj = N. Define w; (i) as the

-th subfilter of w(i) of length N; such that w(i) = [ w (z) wi@) --- wD(z) ]
Accordingly r() may be decomposed and represented as L ,

@) =[ 76 £6 - 56 7.

It readily follows that the receiver output is (i) = ZJ-D=1 w}" (A)r;@).

Fig. 2.1 shows the structure of the DAR, where the outputs from the previous "
subfilters W, (¢), n = 1,2,---,j — 1, are incorporated for the update of subfilter w(%).
The length of the subfilter W;(7) is the same as that of w;(¢). In this notation, W;(%) is
the value of the j-th subfilter using DAR adaptation and w;(%) is the value obtained by

‘conventional N-tap MMSE adaptation. The update equation for each subfilter W;(3)

is

Wi+ 1) = W50) + [sjb§i> = yj-1(8) — W7 (i)r; (z’)] r;(i) (2.3)
where kj = N;/N is the ratio of the length of w; (i) to that of w(i), s,I “_Zi;:i kn, pis
the step size, y;(i) = Y 4_; W¥ (i)re(s) and d;(i) = s;b} 3 -yt W{ (i)rx(i). We note

that d; () ~ b( ? when the accumulated outputs from the previous subfilters, y;—1(4), -

can successfully approximate sj— 1b( ) or wT(z)rn(z) kn b( ) forn = 1,2,---,5— 1.
Each subfilter w;(i) attempts to minimize the followmg mean squared error '

- Jj (W5) , L
2
= E l:{s b — ZwkT(z)rk(z) wT(z)rj (z)} jl
T |
= E [{d,—(i)f HOOY ] | (2.4)
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. Figure 2.1‘.: Decomposed adaptive receiver

By companson the conventional N-tap MMSE adaptive recelver tries to mmumze .
J(w)=E [{b§" —'wT(i)r(i)} ] S (2 5)
~ Using the'decomposit‘ion described above J (w) becomes o
(W) S
‘ r : \
, . D
= E {b§’> —Zw;-r(i)rj(i)} ‘
. i—1

2
= E {spb() ZWT(z)r_.,(z) wD(z)rD(z)}

Jj=1

= B[{a6)-wEGOROY] ey

-where dD(z) = sDb(’) Z]D_II w] (i)r;(i). Note that J(w) in (2. 6) is represented
in the same way as J; (W;) in (2. 4) for DAR, even though their minima may differ.
Therefore, by employing the DAR, the N-tap MMSE problem with desired output b( 2

is essentially transformed into an Np-tap MMSE problem with desued output dD (z)
This increases convergence performance since Np < N.

If we assume that the input r(i) is a stationary vector process, the correlatlon
matrix Rpp = E [rp(i)r}(é)] is submatrix of correlation matrix R = E [r(@)eT(5)].
Then from the Cauchy interlacing theorem [25] it is guaranteed that the eigenvalue -

spread of Rpp is less than or equal to the eigenvalue spread of R. Since the conver-
gence rate of the LMS algorithm depends on the eigenvalue spread of the input data
correlation’ matrlx, the DAR has a faster convergence rate than the N-tap adaptive
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receiver. ‘Even in the case that the eigenvalue spread of Rpp is the same as that of
R, we still expect that DAR. converges faster since the length of Wp (i) is shorter than
~ that of w(4) and the convergence rate is inversely proportional to the adaptive filter

length [24]. ' Co ' . ‘
- From (24), D normal equations are obtained for each subfilter w;(i) that are
combined into one matrix equation as follows. : o

Rn 'O e 0 Wo1 81P1 . |
S R
e S ,.

Rp:1 Rp2 - Rpp WoD L SDPD |

where Rjx = E [r;()r7(i)], p; = E [bgi)rj(i)], and W,; is the Wiener solution for

subfilter W; (i), j,k=1,2,---,D. It is interesting to compare (2.7) with the following
N-tap normal equation expressed in block decomposed form, - C

Ru Ry - Rw Wor | | P1 . ‘
N IR N -
- Rp_ip - : N
Rpi Rp2 -+ Rpp WoD Pp

- where w,; is the j-th subvector of the N. -tap optimum Wiener solution [24]. In (2.7)
the upper block triangular part of the original correlation matrix is removed and the
original cross-correlation vector is scaled block by block to compensate.

2.5. Performance Results

In our computer simulations 1000 bits are transmitted with Ey/N, = 10dB. The bsigna- |

ture sequences are Gold codes of length N = 127 and are assigned to 50 asynchronous
- users. We assume a near-far situation where P, /P = 10, in (2.2), for 10 of the 50
- users and Py/P; =1 for the remaining users. The step size of the LMS algorithm for
any filter is set to 0.5% of 2/Amas, where Apq. is the maximum eigenvalue of input
correlation matrix for that filter. We compare the MSE performance of DAR-2 and
DAR-4 with that of the N-tap conventional receiver, where DAR-n refers to DAR
obtained by decomposing the N-tap receiver into n sections. We simulate the cases

where DAR-n has n — 1 subfilters of length (N +1)/n taps followed by a subfilter of

length (N +1)/n — 1 taps.

Fig. 2.2 shows the MSE plots obtained by a{reraging 500 trials, which shows that

DAR-2 and DAR-4 converge faster than the N -tap receiver. Furthermore, DAR-4
converges faster than DAR-2, which confirms the mathematical reasoning given in
- Section 2.4. Fig. 2.3 presents the adaptive filter tap error norm (2-norm) with respect

~to the Wiener solution of the N-tap filter. The overall tap weight vectors of DAR-2 -

. and DAR-4 converge faster toward the Wiener solution, but also saturate earlier. It is
expected that the DAR has a larger steady state MSE than the N-tap adaptive receiver.
.~ There is a trade-off between the steady state MSE and the convergence rate of the DAR,
- controlled by parameter D, i.e., the number of subfilters. Under a rapidly changing
-channel condition, the DAR could reach the system state for reliable communication
* faster while incurring an increase in steady state error. Under such conditions, its
overall performance is better than that of the conventional N-tap adaptive receiver for

. moderate values of the parameter D. ‘ ~
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2.6. Summary

In this research we developed a decomposed adaptive receiver (DAR) for DS-CDMA
systems. Mathematical analysis of MMSE for the DAR was given to show the faster
convergence characteristics of DAR. In computer simulations the DAR scheme showed
improved convergence performance in both MSE and tap weight error norm.

Since the capacity of DS-CDMA systems and the convergence rate of an adaptive
receiver depend on the processing gain in a conflicting manner, it is advantageous
to have an adaptive receiver structure with a faster convergence rate. The DAR
structure developed in this research could increase the capacity of DS-CDMA systems
to a considerable extent by making adaptive receivers practical for systems with large
processing gains. E -
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7 3 lBIoC‘kIterative:CDMA Receiver

3.1, Abstract

An interference suppression scheme using a block iterative algorithm, row-action pro-
jection (RAP) algorithm for direct- sequence spread-spectrum (DS/SS) code-division
multiple-access (CDMA) systems is developed. The performance results for the near-
far problem and the interference increments due to increasing co-channel users using
RAP algorithm are compared with normalized least mean square (NLMS) algorithm.
It is concluded that RAP algorithm can improve the convergence rate of NLMS algo- -
rithm and is a practical alternative to the NLMS or LMS interference rejecter.

3.2. Introduction

The goal of using spread spectrum is to substantially increase the bandwidth of an
information-bearing signal beyond that needed for basic communications. The band- -
width increase, while not necessary for communication, can mitigate the harmful effects
of interference. Interference mitigation is a well-known property of all spread spectrum
systems [43]. However, the interfering signal is often so powerful so that the communi-
cation becomes effectively impossible. For example, the crosscorrelations between the
spreading sequences for different transmissions are nonzero, thus, increasing co-channel
users can disrupt the reception of desired signal. Another problem is that nearby in-
terferers raise the detection difficulty for highly attenuated desired signals, known as
near-far effect. Immunity to such interference can be improved signiﬁéantly by using
signal processing techniques [44]. Interference suppression schemes are typically based
on the minimum mean squared error (MMSE) criterion. Adaptive estimation schemes
are widely used in this problem, in which the standard algorithm is the least-mean-
square (LMS) algorithm [45]. The advantage of LMS algorithm as compared to other
algorithms is its low complexity in computation. The LMS algorithm produces an
approximation to the minimum mean square error estimate; the expected value of the -
output error square approaches zero. The major drawback of the LMS algorithm is
that its convergence rate is dependent upon the eigenvalue spread of the input data -
correlation matrix. Thus, the LMS algorithm may be excluded from high-speed, real-
. time signal processing applications. A block iterative algorithm, row-action projection
(RAP) algorithm [46] can offer the same low computation complexity as LMS algo-
rithm with an improved convergence rate. The RAP algorithm performs coefficient
updates by using the data matrix more than once. It offers O(N) complexity, easy
implementation, stable operation and improved convergence rate. In this research,
the RAP algorithm is applied to multiple-access interference suppression in CDMA
receiver. : :

3.3.  System Model and Problem Formulation

The received signal is the sum of K simultaneous CDMA transmissions plus additive
white Gaussian noise. The normalized baseband signal in a carrier-synchronous system
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due to the 'jth‘user is given by [12] |
R ‘N—l' | - : ) |
i)=Y by okl —iT —v; —kT) @y
’ t=—00 k=0 ’ R
for 1 <j < K , where T is the bit interval bi; € {1, ’ —1} is the it* bit of the jt* B
user, v; is the delay of the j** user, k-—O a;[kly(t — kT;) is the spreadmg waveform, -

o aj[k] € {1,—1} is the k** element of the spreading sequence for the j** user, N is

“the processing gain, and t(t) is the chip waveform with unit energy and duration
T. =T/N . It is assumed that the receiver is synchronized to the desired transmission
and the delay of the desired user is »; = 0. For 2 < j < K the relative delay
vj = (7'3 + 0;)T; where 7; is an integer normally distributed between 0 and N — 1
and 4; is normally distributed in the interval [0, 1) . It is assumed that the received
transm1ssmns are chip synchronized which gives é; = 0 The dlscrete-tlme equivalent '
model for the received signal is now [12]: ’

r=boi01 + Z \/ % (bo,jao,j + b-1,ja-1,5) +n L (32)

j=2

where a; = (a;[0],a;[1], -+, a;[N = 1T, [a0 ;] = a;[k —Tj] v [a—1,5]k = ajlk+ N —7;]
,for0<k<N-1land2<j< K, and ajm] =0 for m < 0. The white noise
vector n is Gaussian with mean zero and covariance matrix o2y ; where Iy denotes
the N x N identity matrix and 6% = Np/2 . The interference suppression problem is-
. now formulated as:

T o
di o Co,i e o
di—1 Ti-1 C1,i | €i-1 - . .
=] . A N 3.3)

di-L41 ¥l Lenoag €i-L41’

In compact notation, d = Xc¢ + e , where d represents the bit sequence that is trans- -
mitted, X is the state matrix of the received signal, ¢ is the unknown filter coefficient
vector and e is the residual error of the estimation process. The para.meter L denotes
the processmg block size.

3.4. Row-Action Projectibn (RAP) Algor_ithfn

In (3.3), each equation describes a hyperplane in the coefficient space. If the set of
equations is consistent, there will be only one solution vector that satisfies all the
hyperplanes. The optimal solution for noiseless data satisfies all the equations ex-
actly, implying that all the hyperplanes share a common point. The presence of noise
perturbs the hyperplanes from the common point. An optimal coefficient vector that
terminates at a point whose distance from each hyperplane is minimized under certain
criterion can be found. The point with minimum sum of squared distances (least-
squares) is a typical optimality criterion. The goal of the RAP algorithm is to attain
this optimal solution via a sequence of orthogonal projections toward the hyperplanes.
The projection of an arbitrary solution vector onto a hyperplane is accomplished by

(34)

. T
citr = ¢ + pld; — ¢l il =g
I3l
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Flgure 3.1.: The adaptlve filter used for interference reJectlon The reference signal is
delayed to center the impulse response of the adaptlve filter. The tapped-
delay line was loaded every N chlp interval.

where ¢; is the previous estimate and c;; is the updated estimate that,if u =1,

-exactly satisfies the jt* equation in (3.3). The iteration index related to the equation

index by j = i mod l. The basic operation of RAP algorithm [46] is to sequentially
apply (3.4) on the equations in (3.3) repeatedly. The first step is to store the data

vector along with desired output in the buffer. Once the data buffer is full, the second

step is to make multiple updates of the adaptive coefficients by sequentially using the
data and the update equation (3.4). After finishing the desired updates with current

‘data, the next step is to obtain new data vector from data buffer and repeat the

updating process.

3.5. Performance Results

This section presents the performance results obtained for the RAP algorithm apphed

.to an interference rejecter in a DS/SS CDMA system. The RAP algorithm is contrasted

to the NLMS algorithm to compare the convergence rate and the steady state output
SNR. The interference rejecter is implemented using a transversal filter structure, as
shown in Figure 3.1. The adaptive filter length is the same as the chip number of each
information bit. The chip number was 31 in the simulation. The step size used in

" the simulation for both RAP and NLMS algorithm is the same, which was 0.05. The

SNR of the received signal, which is fed into the chip-matched filter, is 10 dB per bit.
The channel characteristics and the interference characteristics are unchanged during

" each simulation run. The output SNR is defined as the ratio of the mean square to

the variance of the interference rejecter output [47]. There are 50 different ensembles
in each simulation. The output SNR converges throughout the process. In order to
measure the convergence rate and the steady state output SNR, the function, f @) ,is
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_ used to friodei the output SNR (dB) curve where the‘functi'on'is defined as:

ft)=-(A-B)e~" — B o (39)

where ¢ is the time (bits), 7 is the time constant, a measurement of convergence rate, '

and —B is the steady state output SNR (dB). A, B, and 7 are found in the least

square error sense. The performance of both RAP and NLMS algorithm for near-far

scenario is shown in Figure 3.2. The near-far scenario is quantified by the near-far

parameter NF, which indicates the number of users whose power level is ten times _

the power level of the desired user. In this part of simulation, the total number of
users is ten. For instance, for NF=3 there are three users whose power level is ten
times the desired users power level and seven users, including the desired user, whose
power level is the same as the desired users power level. The processing block size

is 4 bits. In the performance result shown in Figure 3.2, RAP algorithm provides

a better convergence rate while two or more iterations are performed. In the case
- where three iterations are performed, the convergence rate is 2.3 times faster than the
convergence rate provided by NLMS algorithm. Meanwhile, the performance result
. demonstrates that with proper iteration numbers, the output SNR of RAP algorithm
stays close to the level provided by NLMS algorithm. More iteration performed on
each data block will produce faster convergence but the output SNR will decrease.
For example, performing ten iterations on each data block yields a convergence rate
that is 4.3 times faster than NLMS algorithm on average and a output SNR that is
- degraded by 0.72 dB on average. Theoretically, there are N + 2 users allowed in 2

. CDMA system with the length N spreading code. Due to the non-zero property of the

cross correlation function of spreading code, increasing the user number will raise the
interference power and downgrade the system performance. The performance of RAP
- and NLMS algorithm for the interference increment problem due to additional users
was shown in Figure 3.3. In this part of simulation, every user was set at the same
power level as the desired users power level. With the proper iteration number, for
example, three iterations, the convergence rate is 1.6 times faster than the convergence
rate provided by NLMS algorithm on average. With the proper iteration number, the
output SNR by RAP algorithm kept at the same level as NLMS algorithm. In the
case of performing ten iterations, the convergence rate is 3.4 times faster on average
and the output SNR is degraded by 0.64 dB on average. ' '

" 3.6. Summary

In this research, an interference suppression scheme using the RAP algorithm for
DS/SS CDMA system is developed. The RAP algorithm achieves O(N) complexity
by iteratively operating on the rows of the data matrix individually to form updates
of the unknown adaptive coefficients. The RAP performs multiple update in the same
set of data. The convergence rate of RAP algorithm is better than NLMS algorithm,

~ especially at times that the near-far effect is severe, when the processing block size is -
" properly chosen. With proper iteration number, the RAP algorithm provides the same

output SNR level with NLMS algorithm while the convergence rate is well improved.
The computation and memory needs are increased due to data buffering and multiple
update. ‘In the performance result, a proper choice of iteration number and block
size, for instance, three iterations and 4 bits per processing block, will need triple the
- computation and four times the memory comparing to NLMS algorithm. In the system
that is able to afford the computation and memory increment, the RAP algorithm is
an alternative interference suppression scheme which provides better convergence rate
and the same output SNR level as the LMS algorithm. '
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4. Regularlzed Narrowband Interference Suppress:on in
CDMA Systems |

4.1. Abstra_ct’

~ A regularized LMS technique is presented that uses a modified optimality criterion
which enhances the detection capabilities of direct sequence spread spectrum systems.
The rejection filter is updated based upon an additional regularization input which
‘limits the self-noise of the filter, especially at moderate signal-to-interference power
ratios. The regularization is controlled by a single scalar parameter, that can be varied
to produce the optimal Wiener filter weights or the decision-feedback filter weights. An
advantage of the regularized filter is that the weight error surface is quadratic, leading
to well behaved convergence properties for adaptive implementations. performance

results are presented which compare the regularized filter to the optimal Wiener filter - .

and the decision-feedback filter. -

4.2, Introduction

Discrete-time adaptive linear rejection filtering of narrowband interfefence can improve
the performance of direct sequence spread spectrum (DS/SS) systems [26,27]. In these
- results, the discrete-time (coherently) received signal is modeled by ' ,

2(n) = Tpnypjcn) + §(n) +v(n) @y

where the information bit takes on the values I, = %1 with equa.l proba.blhty, c(n) is
- the chip sequence, j(n) is the jamming signal, v(n) is thermal (white) noise, L is the

~number of chips per bit, and |z] is the greatest integer less than or equal to z. The °
sampling period is T, seconds, or once per chip interval. It is possible to predict the
jammer using Wiener filtering because the dominant correlation in z(n) is due to j(n).
The jammer is removed by subtracting the prediction from the received signal

e(n) = z(n) — Ew, a(n ~1-K) ‘ o (4.2)

where e(n) is the error process which estimates the DS/SS 31gnal s(n) = Ijn/1 c(n)

z(n) is the prediction filter 1nput and K > 0 sets the minimum prediction delay.
The rejection filter coefficients w¥ = [wKwf ... w{f,]T are usually designed to satisfy
the minimum mean square error optimality criterion, and thus are the solution to the
Wiener-Hopf equations [28]

REwWK =pf, g (43)
where the input autocorrelation matrix is ‘ S
T
R 2E {x 1"} @y

and the elements of the cross-correlatlon vector are

(], 2 pax(i + K) 2 E{d(n)[ K= E{d(n):c(n-—z—-K)} @)
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For notation, let (4.4) define the autocorrelatron matrix for a.ny vector e.g.,a has
‘autocorrelation matrrx R... Likewise, the cross-correlation vector between a scalar a

and a vector b¥ is p& , as defined by (4.5). o
The filter weights obtained according to (4.3) will form an estlmate of the desrred‘ ‘
signal d(n) based upon the filter input vectors . T

[a:(n-—l—K)a:(n 2- K) .z(n — N K‘)]T‘

‘The optlmal desired signal for the prediction filter output is d(n) = j(n) + v(n),
- which yields e(n) = s(n). The optimal cross-correlation vector becomes :

Ph = Pjx =PJ . )

fassurrung":n(n) = z(n) and assuming mutually uncorrelated signa,l components The

desired signal typically used in (4.2) is the received signal, which produces the cross- -

correlation vector _
pdx = pjx + psx = pg,] + pss . . : S (4 7)
Tt is usua,lly assumed that the DS/SS signal is perfectly uncorrelated ie., pa,s =0, in _

which case (4.6) and (4.7) are identical. Thus, an estimate of the optimal ﬁlter can be
obtained from solvmg [29] R : .

[R,, + Rss + Ry wWF, =p%+p% i (4 s)

-where Rxx =Ry + Rg; + Ryv. The subscript on the filter tap-welght vector 31gmﬁes
‘the filter type for the remainder of the report.

It has been recognized that the presence of the DS/SS signal s(n) at the predlctlon
filter input induces distortion of the DS/SS signal, resulting in a reduced correlation
peak and reduced immunity to noise [26]. This is evident when (4.2) is decomposed
into it constituent parts o

e(n) = s(n)—Zw,Ks(n—l—K)] l(n) Zw, j(n—-l—K):| +v'(n) (4 9)
=1 =1

where v'(n) is the filtered thermal noise. The first term on the right-hand-side is the
“self-noise® of the rejection filter and is due to the filtering of the DS/SS signal. One
* ‘technique to reduce the filter self-noise is to remove the DS/SS signal from the filter
input by using decision-feedback filtering [26,30]. This corresponds to a filter input

zDF'(n) = z(n) — ILn/LJc(n) = (Il_n/LJ - I[n/LJ) e(n) + j(n) +'v(n) (4 10)

where I {n/L] i8 the estimated bit. Assuming perfect feedback I, /L | = I Ln/ L J, then
the prediction filter output is ,

eDF(n)—s(n)+[](n) Zwms(n l-K)]+v(n) . (4.‘11)
P .

~ where K > Lto ensure causality of the estlmates ILn JL|- Assummg that K L, the
filter welghts in (4.11) are given by :

Rg+Rnlwhr=pj (1)
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The result in (4 12) can be viewed as an augmentatlon of the optimal linear pred1ct1ve
filter ‘

_ [Rjj +Ras + R Wiip,,, =P5; = (4 13)
where the DS / SS signal autocorrelation matrix Res has been removed from the left-
hand-side of (4.13). One major difference between the two filters is that the DS/SS
signal does not pass through the decision-feedback filter. Another difference concerns
the adaptive implementation of the decision-feedback filter. The adaptive filter weights
for the Wiener filter converge monotonically to a unique local minimum of the weight
error surface. By comparison, the convergence of the adaptive decision-feedback filter
is problematic due to the multiple local minima introduced into the error surface by
the non-linear decision element.

The analysis of the adaptive performance of tra.nsversal rejection ﬁlters asin (4 2),
has been well documented [31-34]. Other interference rejection approaches are also

viable, such as lattice filters [35], transform domam filters [36], and nonlinear process-
~ing [37-39].

In this reseé.rch we consider transversal rejection filters and extend the concept of
autocorrelation matrix augmentation to include modlﬁcatlons of the form :

[ 3j + Rss+ Ryv — ,BRrr] Wﬁ = p” P i (414) |

~ which will be termed regularization. The regularization of the solution is controlled

‘-by the matrix R.r and scalar 3. We see that the decision feedback filter in (4 12) uses e :

the regularization matrix Res and the regularlzatlon parameter 8 = 1.

o 4.3. “Adaptive Regularized Interference Rejection

In the typical interference rejection techniques, the desired signal is a delayed version

* of the input, which is composed of the interference signal, DS/SS signal, and thermal
noise. Ideally, the desired signal should be independent of the DS/SS signal to negate

" any correlation canceling caused by the rejection filter. To approach this goal, we reg- -

ularize the standard LMS rejection filter update, incorporating information regarding -

the DS/SS signal correlation. Assuming a predictor form for the rejectlon ﬁlter, the

regularized LMS update is given by ' : -

Wnt1 = Wp + ot [2(n) — r(n) — w2l (%% — Br2)] [x9 +rl] -' (4.15) |

where r(n) is the regularization input and z(n) = s(n)+j(n)+wv(n) is the DS/SS signal
8(n), corrupted by the narrowband interference, j(n), and thermal noise v(n). The reg- -
ularization input is constructed such that it is uncorrelated with a:(n) The state vec-
torsarex? = [z(n — 1)z(n — 2)...2(n ~N)Tandr =[r(n - 1)r(n —2)...7(n -7
The regularization is controlled by the scalar parameter 3. Refer to Figure 4 1. Rear-
ranging (4.15) and taking expected values yields

E{wns1} =B {[T-p (x5 +13) (x5 - Br)"| wn} +uE{(w(n) — () (8 +12)}

| (4.16)
Usmg the standard independence assumptlons [41] and that :c(n) a.nd r(n) are uncor-
related, (4.16) becomes

E{Wnt1} = [I—pRxx — ﬂRrr)] E{wn}+p [ ?:xk_ Pgr] (417)

Let w) = E{wn}, then substituting into (4.17) and taking the limit as n — oo
yields [42] ' _ _ e S
Wg‘ = -nl}-)nolo Wgn =p [H (Rxx - ,BRrr)]_l [pgx - pgr] (418)
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Filtef Weights z(n) ~ j(n) —v(n) z(n) - j (n) = v(n) |

WO, o . Ijn/pc(n) ” Iin/p)e(n)
VW 0 ILn/LJc(")

wke ' 0.
_ Wg I[n/LJc(n) Il_n/LJcl(n) Itn/LJc(”)"”ﬂILn/LJcl(")

Table 4.1.: A summary of the predlctlon filter inputs and desired responses for the

ﬁlter ‘designs discussed in the text.

“where it is assumed that w, = 0. Convergeﬁce is guaranteed if p is chosen in the
range 0 < p < 1/max (A (Rxx) + B (Rer)), where A (Rxx) are the eigenvalues of Rxx

and ) (R.y) are the eigenvalues of Ryy [42). Thus, the steady-state weight vector is

the solutlon of

where regularization is provided by the matrix R, and the vector p%.. The scalar
B in (4.19) controls the regularization of weight vector solution. The regularization
.parameter is non-negatlve, 8 >0, w1th B8 =0 correspondmg to the Wiener filter
solutlon : :

* Expanding terms in (4.19) leads to a form similar to that in (4. 14)

[Rjj + R»ss + Ryv — Ry Wﬂ = pjj + pss - p'rr : (420)
Note that (4.20) is identical in form to (4.14) if p, = p%. This is achieved by

constructing the regularization input according to

) = azy(n) S e

where I ln/L) is 1ndependent of I| /1) and is statistically 1dentlcal to I, / r]- The chip
sequence ¢'(n) is statistically identical to the transmitted chip sequence c(n) The

cross-correlation between r(n) and s(n) is given by

mﬁﬁEVWM+W}E“mJM%mm@WM+W}(“34

The cross-correlation function prs(m) = 0 due to the zero mean bit sequences. A valid

choice for the regularization chip sequence is ¢/ (n) = ¢(n+no), where ng is an arbitrary

fixed time shift. The autocorrelation functlon of r(n) is identical to the autocorrelation
functlon of s(n)

Prr(m) =E {I ln/L jI n/L] } E{c(n)c'(n+m)} =E{], Ln/LJI Ln/L] } B {C(n)C(n + m)}

Using the equivalence prr(m) = pyg(m), (4.20) becomes »
Ry + (1= A Res +Rv]Wh=pf (4 24)

Table 4.1 summarizes the associated signals for each ﬁlter It is assumed that the

decision-feedback is errorless.
The regularization parameter is chosen to produce minimum SNR degradatlon from

the optimum linear filter in (4.13), which results in

_ 1«}-')'c | -1 | o ’
ﬂ_Mz( . )(2L03+M2) | (425) |
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where 7, is the SNR per chip, a] is the interference power, and M = log, (L -'|-.1) A
few limiting cases of (4.25) are of interest. For vamshlng mterference power, (4 25)

becomes v
. ,3 — 1+ Ye

(72—)0 7c

Note that as the SNR increases in (4.26), 8 approaches umty The value: ﬁ =1

effectively removes the excitation to the ﬁlter with respect to the mean of the filter
weights. For domma.nt interference power, a — 60, we obtain

'BN(%) (%%) | :_ N E '(_4.27): N

If the interference power is la.rge enough then 8 = 0. This va.lue for the regulanza.tlon_

" parameter produces the optimum Wiener filter, that is, Whoo = wW Funt”

4.4. Performance Results

The regulanzed mterference rejection ﬁlter is compared to the opt1mum Wlener filter
- with an ideal reference, wi, Fope Of (4.13), the decision-feedback filter with zero predic-

tive delay, w) 5 of (4.11) with K 0, the decision-feedback filter with predictive delay = |

equal to the processing gain, w5 of (4.11) with K = L, and the optimum Wiener

filter which uses the received signal as the reference, W, of (4.8). The difference in

the filters wiy, ; _ and Wiy p, is that the former uses exact knowledge of the DS/SS
- signal s(n), while the latter does not. Thus W, is a sub-optimum realizable filter
and wiy . is an optimum unrealizable filter. Similarly, w}, represents an unreal-
izable filter because it feeds back the signal s(n) before the entire chip sequence is
~ received and the bit can be estimated. The filter w,, will subsequently be termed

the symbol-feedback filter because no decision on the bit is involved in the operation

of the filter. The filter wk -, on the other hand, incurs a delay in the prediction equal -

to the processing gain L in order to feedback an estimate of the DS/SS signal s(n).
 In both cases of the feedback filters the exact DS/SS signal is used in the feedback
path to avoid error propagatmn A filter of length nine taps is used for all ﬁlters in

- the simulations.

The performances of the various filters are simulated by using the dlscrete time
received signal model z(n) = I|,/1)c(n) + j(n) + v(n). The narrowband interference,
which is uncorrelated with both the DS/SS signal and the random noise, has the form,

](n) AZcos([wo+%]n+0(,) (4.28)‘

k=0 -

where w; is the spread of the narrowband interference, wy is the frequency deviation
from the carrier, 6 is a random phase uniformly distributed over (0, 27], and A is ad-
justed to achieve the desired signal-to-interference (SIR) power ratio, which is defined
as SIR = E{s?(n)} /E{j%(n)}. The input SNR per bit is defined as [31]

L

717:':55,'3' )

-where o2 is the variance of the thermal noise. The processing gain used for the simula-
tions is L = 15. The SNR per bit at the output of the rejection filter will be calculated
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experimentally using [31] o o
‘ ‘ _ MU '
7bo‘ var wr (@) o (4.30)

where py = (1 /K) Zk_ Uy is the experimental average of the decision variable and

var(U) = (1/K) Zk,: U? — u¥ is the experimental variance of the decision variable.

The decision variable is defined as U, = 22::1 e(ln/L] + k)c(k) where e(n) is given

in (4.2). The number of bits used is K = 1,000. The variable wp is taken at ten

- uniformly spaced intervals over the signal bandwidth and the output SNR is computed

at each frequency. These SNR values are subsequently averaged over the ten frequency
locations. : :
Output SNR vs. mput SNR - o o

The SIR is set at -6dB with interference bandwidth w; = 0.17, and the output SNR

is measured as the input SNR is varied. The results are shown in Figure 4.2. The

- performance of all the filters is essentially the same below 10dB SNR, except for the

decision-feedback filter. It is apparent that there is a large penalty incurred by delaying k

the symbol feedback by an amount equal to the processing gain. The regularized filter
performance is slightly (1dB) better than the optimum Wiener ﬁlter using the ideal
reference for all input SNR. The regularized filter is 1.5dB better at 20dB SNR than
the optimum realizable Wiener filter that uses the received signal as a reference. As
expected, the symbol-feedback filter performs the best and is 1dB better than the
regularized filter at 20dB SNR. The separation of the filter performance curves as the

... SNR increases is a manifestation of the effects of the filter self-noise.

Output SNR vs. input SIR

For this simulation, the input SNR is fixed at 20dB with norma.hzed interference
bandwidth w; = 0.17 and the output SNR is measured as the SIR is varied. The results
are shown in Figure 4.3. As the interference power decreases, the regularized filter
SNR approaches the symbol-feedback filter SNR as can be expected. The regularized
~ filter SNR exceeds the optimum realizable Wiener filter SNR, by approximately 2dB,
. when the SIR exceeds 0dB. There is again a substantial penalty for delayed decision
feedback in the region of SIR below 0dB. However, the output SNR for this ﬁlter
improves dramatlcally when the SIR exceeds 0dB.

- 4.5. Summary

A regularized LMS interference rejection filter is developed, which is based upon re-
ducing the self-noise of the filter. The regularized LMS filter is obtained by using a
‘weighted sum of the received signal with a regularization signal as the input to the
normal adaptive LMS update algorithm. The regularization input shares the same
~autocorrelation function as the transmitted DS/SS signal, which allows a trade-off of

_interference rejection and filter self-noise reduction. performance results are presented
that show the performance improvement afforded by the regularized LMS filter. ‘The
regularized interference rejection filter was compared to the optimum Wiener filter
and the decision-feedback filter. The increase in output SNR compared to the Wiener
filter was 1.5dB for SIR=-6dB. The increase in output SNR for moderate to high
SIR was 2.5dB. The regularized filter also achieved the performance of the optimal
decision-feedback filter for SIR exceeding 0dB. The optimum Wiener filter is the one
obtained when using only the interference as the reference signal for the adaptive fil-
ter. The optimal decision-feedback filter subtracts the correct symbol from ‘the filter
‘input without delay. The practical decision-feedback filter is the one that subtracts
the correct symbol only after it is correctly estimated at the correlator output.
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x(n) = s(n) + j(n) + v(n)

L9 Prediction Filter

Copy wéights

v

Prediction Filter
Wa

s Regularized
LMS Update

r(n)

Figure 4.1.: The rejection filter update uses the LMS algorithm and is regulanzed by |
~ the mput r(n). The regularization is controlled by 5. -

----@--- Wiener filter, non-ideal reference
——— Regularized filter

~-{1--- Symbol-feedback filter

= & - Decision-feedback filter

" | — e~ - Wiener filter, ideal

OUTPUT SNR PER BIT dB

INPUT SNR PER BIT dB

Flgure 4.2.: Output SNR vs. input SNR. SIR=6 dB, processing gam—15, prediction
filter length—- 9, interference bandwidth wy = 0.1x.
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Figure 4.3.: Output SNR vs. input SIR. SNR=20dB, processing gam—15 predlctlonb |
ﬁlter length 9, interference bandw1dth wy = 0 11r '
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5. 15-95 CDMA S»ystém Modeling

A system .level simulation model for the IS-95 Code Division Multiple Access Spre'a.d'
‘Spectrum communication link is developed. The simulation is carried out in SIMULINK

a dynamic system simulation toolbox in MATLAB® , that provides a graphical frame-

‘work closely integrated with implementation tools. The building blocks used at the °
~ top-level consist of models of an information source, baseband processing, QPSK mod-

ulator, multipath fading channel, RAKE demodulator and decoder. Link metrics such
as bit error rate (BER) and signal-to-noise ratio (SNR) that are directly dependent on
transmitter and receiver implementations as well as radio channel cha.ractenstlcs and
provide an obJectlve measure of performance are evaluated.

5.1. Introduction

Prospective proliferation of mobile radio communication systems calls for increased

capacity, reduced cost, improved performance, and dual-mode operational require-

ments. The IS-95 Mobile-Station Base-Station Compatibility Standard For Dual-Mode

Wideband Spread Spectrum Cellular System is endorsed by the US Telecommunica-
tions Industry Association / Electronic Industry Association (TIA/EIA). It is based
on code division multiple access (CDMA) technique that conforms to these specifica-
tions [52). CDMA direct sequence spread spectrum technique (DSSS), incorporated
into this system, enables the accommodation of a large number of users in one radio
channel depending on the voice activity level [53], i.e., it is interference limited unlike
frequency and time domain multiple access based systems that are bandwidth lim-
ited. This feature also provides immunity to jamming signals and enables resolution
of multipath components in a time-dispersive radio propagation channel [51].
Accurate prediction of the performance of such systems has become increasingly

vimporta,nt. Simulation technology that can be integrated into implementation tools °

has provided researchers and designers an efficient solution to this problem. Moreovér,

" manufacturers greatly rely on communication system simulations to develop specific
" implementations before hardware development to reduce cost and to improve flexibil-

ity. Analytical techniques, by comparison, are intractable when representing complex
communication systems operating in time-varying radio channels.  Current genera- '
tion workstation based simulation software packages provide interactive, hierarchical
aphical framework for link-level and system wide simulations, e.g. BOSS

SPW and COSSAP® [48]. SIMULINK® is another dynamic system 51mulat10n -
software based on MATLABW that is widely available and provides a real-time sim-
ulation platform in addition to features listed above. Moreover, MATLAB® provides
the necessary implementation tools to download the simulated system models into
programmable digital signal processors

The communication system model is typically a block dlagram description of var-
ious interconnected subsystems comprising the overall system. Link-level simulations
focus on performance measures such as signal-to-noise ratio (SNR) and bit error rate
(BER) of a communication link. Such link metrics are affected by multipath fading
conditions within the channel and receiver implementations. Efficient simulation of the
signal processing operations modeling the system then becomes critical in the evalu-
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Figure 5.1.: Forward CDMA Channel Structure.
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Y

ation of its performance. Also, the entire system including the environment in which
it operates must be simulated. This can be done using analytical models, statistical
models based on experimental observations, experimentally measured channel impulse
responses or from the geometry of the environment. Since only the second and third
methods are feasible, channel impulse responses (also estimated as power delay profiles
from field trial measurements) were used to model the multipath fading environment.

5.2. ' System Description

.~ 'The IS-95 standard proposes a system consisting of forward (base station to mobile
- ‘station) and reverse (mobile station to base station) CDMA channel structures, which
are described in the following sections.

‘ Forward CDMA Channel Structure ’ A _
~ The forward CDMA channel consists of four code channels : the pilot channel
(always required), the sync channel, paging channels (1 to 7) and traffic channels (55
“to 63)(see Figure 5.1) [52]. Pilot channel, transmitted at all times, is an unmodulated
spread spectrum signal used for synchronization by a mobile station operating within
the coverage area, of the base station. The sync channel is a modulated spread spectrum
signal used by mobile stations to acquire initial time synchronization. The paging
channel is also a modulated spread spectrum signal used to transmit system overhead
information by the base station and specific messages by the mobile station. The
forward traffic channel is used for the transmission of user and s1gnahng 1nformat10n
to a specific mobile station during a call.

‘ Data rates at the input are : Pilot channel (all 0’s) at 19.2 kbps Sync channel at 1.2

kbps; Paging channel (fixed data rate) at 9.6, 4.8 or 2.4 kbps; Traffic channel (variable

data rate) at 9.6, 4.8, 2.4 or 1.2 kbps. The sync, paging and traffic channel data are
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~ Figure 5.2.: Reverse CDMA Channel Structure. f

then convolutionally encoded using rate 1/2, constraint length 9 code. A long;code (of
length 2%2-1) at the PN chip rate (1.2288 Mcps or million chips per second) spreads the

" encoded symbols. A long code mask that modulates the long code in traffic channels

is used for voice privacy.

" Each code channel transmitted on the forward CDMA channel is spread with a
Walsh function at a fixed chip rate of 1.2288 Mcps to provide orthogonal channelization
among all code channels. After orthogonal spreading, each of these code channels are
spread by a quadrature pair of maximal-length PN sequences (length 21°) at a fixed
chip rate of 1.2288 Mcps. PN sequence time offsets are used in code channels for
synchronization by a mobile station. The base station transmits the forward CDMA

channel signal at 870.030 MHz with a channel spacing of 30 kHz. The correspondmg
" dual-mode mobile station transmit channel is at 825.030 MHz.
Reverse CDMA Channel Structure

The reverse CDMA channel is composed of access channels and reverse traffic

" channels. The reverse channel is 64-ary orthogonal modulated at data rates of 9.6,

4.8, 2.4 or 1.2 kbps as shown in Figure 5.2 at point A. The rate of the spreading
PN sequence is fixed at 1.2288 Mcps. The reverse traffic channel is used for the
transmission of user and signaling information to the base station during a call. The
access channel is used by the mobile station to initiate commumcatlon w1th the base
station and to respond to C

paging channel messages. The mobile station transmits information on the reverse

traffic channel at variable data rates of 9.6, 4.8, 2.4 or 1.2 kbps and on the access

channel at a fixed data rate of 4.8 kbps. These are then convolutionally encoded by
rate 1/3, constraint length 9 codes. The code symbols are then modulated by a 64-ary
orthogonal modulator using 64 Walsh functions. The reverse traffic channel and the

~ access channel are then direct sequence spread by the long code Furthermore the
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‘waveform is spread by a pair of PN codes (1dent1ca1 to the ones used in the forward
traffic channel), common to all subscribers and to the access channel in an OQPSK
arrangement. The final waveform is then filtered to generate a spectrum with 1.2288
MHz double-sided 3 dB bandwidth. The mobile station transmits the reverse CDMA

“channel signal at 825.030 MHz with a channel spacing of 30 kHz. The correspondmg
dual-mode base station transmit channel is at 870.030 MHz. : ‘
Receiver ' : :

The mobile station demodulation process involves complementa.ry operatlons to”
the base station modulation process. The mobile station also performs tracking and
‘demodulation of multipath components of the forward CDMA channel in addition to
scanning and estimation of the signal strength at each pilot PN sequence offset. The -
standard specifies the use of a RAKE correlator in the recelver but its structure is not
specified.

5. 3 System Modelmg and Simulation

A commumcatlon system based on the IS-95 standard is developed from a software-
representable description or a block diagram of the system described in the previ- |
ous section. Each block represents a subsystem that can be described using signal-
processing operations. An explicit model vis-a-vis, the equations and algorithms or
‘methodologies followed in the implementation of each operatlon is presented here.
Random Data Generator _
~Forward and reverse traffic channel information bits are simulated as dlgltal s1gnals

containing embedded digital sequences represented as ' - :

0= 3 Auple = T, = D) e

k=—o00

where {Ak} is a d1g1tal sequence, T} is the bit perlod Disa random delay and p(t)

is a suitable pulse waveform.

v A general block to implement (5. 1) is developed using the random number generator
in SIMULINK [49]. The pulse waveform and delay are 1ncorporated into this block as

-shown in Figure 5.3.

The user interface to this subsystem has controls for specifying the time perlod or
the data rate, random delay and the seed for the random number generator. Different
~ seeds are used to distinguish between the code ¢hannels and 1n1t1al delays are set to
. zero for link-level simulations.

‘Convolutional Encoder

A linear binary shift register made up of unit delay blocks in SIMULINK is used
to implement convolutional encoders. The code characteristics are established by
feedback taps which are defined by generator functions.

The forward channel at the base station uses a convolutional code of rate 1/2 and
constraint length 9. ‘The generator functions of the code are 753 (octal) for g, and
561 (octal) for g;. Two code symbols are generated for each data bit. These code
symbols are output such that code symbol (c,) encoded with generator function g, is
output first and code symbol (c;) encoded with generator functlon g1 is output last °
(see Figure 5.4).

The modulo-2 adders are implemented using XOR gates and the outputs of g, and
g1 multiplexed to form the output sequence of code symbols at twice the input data
rate. : :
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Figure 5.3.: Random Data Generator.
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Figure 5.4.: Convolutional Encoder, K = 9, Rate = 1/2.
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The reverse channel uses a convolutional code of rate 1 /3 and constraint length 9

*with generator functions g, équal to 557(octal), g1 equal to 663(octal) and g2 equal to

711(octal). Three code symbols are generated for each data bit and are output such

that code symbol ¢, encoded with generator g, is output first, ¢; second and ¢, last.

This is implemented as described for the forward channel ' '

Walsh Code Generator ‘
Each code channel transmitted on either CDMA channel is spread with a Walsh

function to provide orthogonal channelization among all code channels. One of sixty-

four time-orthogonal Walsh functions is used for the purpose. The 64 x 64 matrix of

* ‘'Walsh functions is generated using the following recursive procedure:

o ~Jo o

Hy =0 H2=[0 1]

0000 | o
gooloror| Hy Hy R ;(5'.2_)\
710011 NE Hy  Hy o

0110 ‘

where N is a power of 2 and Hpy denotes the bmary complement of Hy.
The repeating sequence block in SIMULINK calls the MATLAB file that uses the

built-in function hadamard.m. A 64 x 64 Hadamard matrix is first generated using = )

the recursive procedure described above. The elements of the Walsh function are then
obtained by mapping the binary alphabet of {-1,1} of the Hadamard matrix into the
binary alphabet of {1,0} of the Walsh function matrix. Input to this block is the Walsh
function number and output is the correspondmg Walsh function.
Long Code Generator

Forward and reverse traffic channel data are d1rect sequence spread by a long code
of length 242 -1 chips. The long code satisfies the hnear recursion spec1ﬁed by the
characteristic polynomial given by .

p(e) = %2+ 2% 4238 4251 4227 4 226 4 2% 4 222 4 g2 4 219 4 o184

Co s+ +20+ 2" +af 4+ + 2P+ a1 63

. The code is generated by the moduloé inner product of a 42-bit mask and the 42-bit
* state vector of the sequence generator using AND gates. Mobile identification number
is incorporated into the 42-bit mask for voice privacy. A 42—b1t random repeatlng

sequence is used for simulation purposes.
PN Sequence Generators

Following orthogonal spreading, each code channel is spread in quadrature. The
spreading sequence is of length 2!°. The maximum length linear feedback shift register
sequences i(n) and q(n) are based on the polynomials of length 25 -1 given by

Pi(z) R g R (- )

Polz) =2 + 22 +2 + 20+ 28+ 2% +2* +2° +1 (5.5)
The I and Q pilot PN sequences are obtained by inserting a ‘0’ in i(n) and q(n) after
14 consecutive ‘0’ inputs (this occurs once in each period). This is achleved using a
repeating sequence block that inserts a zero appropnately :
QPSK Modulator
Baseband filters used for filtered QPSK modulation are derived from the filter coef-
ficients specified in the standard and are implemented using the Discrete Filter block in
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“Table 5.1.: I and Q Mapping

I Q Phase
0 0 w/4

1 0 3n/4

1 1 -3n/4

0 1 -m/4

SIMULINK. The filtered and quadrature spread I and Q channel sequences phase-shift
modulate in-phase and quadrature phase carriers in a pseudo-random fashion resulting
in direct sequence spread spectrum modulation. I and Q channel phase mappmg is
given in Table 5.1. The output signal can be expressed as

S(t) = 1) cos(2n ) — Q(¢) sin(@r ) L (56)

where I(t) and Q(t) are the filtered waveforms with embedded I a.nd Q channel dlgltal' |
sequences respectlvely represented as .

It) = i Ip(t — kT,) 3 | ‘ (57
Q) = Y Qu(t—KT).
' T k=—c0

f, is the transmit freduency (870.030 MHz) and T, is one chip period (813.802 ns).
For OQPSK modulation on reverse channel, the Q channel data is offset such that

QM) = Z Qp(t—kT n (5.8)

k==0o
Wheré T is half a chip period (409.901 ns). S(t) can also be expresse;d as‘
| . SO =Ref8O™ ) (9
where S(t) is the complex envelope or the low-péuss equivalent representation given By '
| 50) =@ +3Q)]. R A V)

RF carriers required for the modulation process are unplemented using the sine
blocks in SIMULINK with frequency f., phase 0 and 7/2 and unit amplitudes. Product
.. and difference operations are implemented using suitable blocks from the SIMULINK

‘ hbrary (see Flgure 5.5).

| 5.4, Muitipath Channel Model

Channel simulation requires accurate representation of the signal environment for the
desired frequency and geographic location. Experimentally measured channel impulse
responses, also known as power delay profiles, are used for channel modeling. Wireless
transmissions undergo multipath-induced fading as the radiated energy interacts with
- objects within the channel. Under these conditions, link-level simulations require the
simulation of small scale fading effects, impulsive noise and short term variations of
multipath channel impulse responses to determine realistic bit error patterns. The
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fading signal ha.s known to have three basic components contnbutmg to the varlatlons
in its signal strength described as follows. :
Propagation Path Loss

The free space propagation path loss is due to the frequency of transmission and
the distance of the mobile from the base station and can be described as,

Por _ 1']2_ 1]2 .
R*mea'{Mw» o B

where c is the speed of light, A is the wavelength, P; is the transmitted power and P,

is the received power in free space. Gain blocks of SIMULINK were used to 1ncorporate
this in the simulated multlpath channel model. : : '

Long-Term Fading

 Long-term fading or slow fadlng is caused by movement of the mobile over dlsta.nces
large enough to produce gross variations in the overall path between the transmitter
and receiver. This results in attenuation and fluctuations in the local-mean of the
fading signal. Measurements indicate that the mean path loss closely fits a log-normal
‘distribution with a standard deviation that depends on the frequency and environ-
ment [51]. Standard deviations of 8 dB and 6 dB were used for suburban and urban
_enwronment models. The lognormal pdf can be represented as -

exp [_(-'/;’".)3] 1 v; l- ‘}'(5;12). '

202

) ()_ 1
”‘m—ay

where the lognormal variable y, its mean m, and its standard deviation oy are in dB
scales [50]. Lognormal variations in the local mean of the signal were brought about
‘using the random number generator and the logarithm functlon blocks as in Figure
5.3.
Short-Term Fadmg o ‘
~ Short-term fading is caused by multipath reflections of a transmitted wave by local
~ scatterers such as buildings and forests surrounding a mobile unit. Many researchers -
“have shown that the envelope of the mobile radio signal is Rayleigh distributed. This
suggests that at any point, the received field is made up of a number of horizontally
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traveling plane waves with random amplitudes and angles of arrival for different loca-

tions. The phases of the waves are uniformly distributed from 0 to 27. The amplitudes

and phases are assumed to be statistically mdependent
The Rayleigh pdf is represented as

p(r) = exp( ;2) o ; l5513)

where o2 is the average power of the short-term fading signal.
Simulated Multipath Channel Model

Experimental evidences such as those described above gave rise to a three-stage
model to describe mobile radio propagation, an inverse n-th power law with range

from the transmitter to the receiver, lognormal variations of the local mean and su- -

perimposed fast fading which follows a Rayleigh distribution. Since Rayleigh fading is

caused by the combined effect of time delayed components of the radio signal reaching

the receiver, a discrete model based on the channel impulse response was developed
A typ1cal power delay profile is shown in Figure 5.6 a,nd is given by ‘

i

A measure of the W1dth of an average power delay profile that is relevant in assessing
the impact on a communications system performance is delay spread, s, defined as
the square root of the second central moment of a profile m and expressed as

[SK (7 — dn = 74)2Pn(m) |
Zk:l m(Tk)
where k ranges over the entire time duration of the measuring window, 7, is the time

delay of the kth sample and d,, is the average delay, the first moment of the proﬁle
with respect to the ﬁrst arrival delay 74, defined as

(5.‘1.5)

m_

m

EkK=1 P (Tk)

43

Pa(n) = & sz(m Lo (514)

dne TP g



|
|
|
:
|
1
!
1
n
|
|
|
]
I
1
{
|
o
|
!

Output

Lognormal Fading _R“y leigh Fading

Fig_ure 5.7.: Multipath Channel Model.

: 'The délay of the last significant component abbve -10 dB in the power delay prdﬁle

is called the average excess delay, E;. The energy of the signal outside the window
between 74 and Ej is negligible and is set to zero for computations of the tap gains
and tap delays in the RAKE receiver.

Measurements of power delay profiles from [1,2,7,9,11] are mcorporated into the
discrete model for the multipath channel (see Figure 5.7). This provided measurement

based channel models for performance evaluation of the communication system. Values

of parameters a,,, the attenuation along the path arriving after a time delay, 7, were
estimated from the power delay profiles and used in the gain and transport delay blocks'
of the simulated multlpath channel model. b 2

5.5. wReceiver Sttucture

The standard specifies a receiver that performs demodulation process comprising of

complementary operations to the transmitter modulation process. QPSK and OQPSK
demodulation are carried out using local carrier references. In the actual case, pilot
and sync channels are used for carrier recovery and symbol and frame synchronization
respectively. For simulation purposes, perfect carrier recovery and time synchroniza-

- tion are assumed. From the received signal r(t) = S(t)+n(t), (n(t) is additive white
*Gaussian noise, N(0,02)) the demodulated outputs L,(t) and Q,(t) are obtained as

| follows: |
L) = T fo r(t) cos(2rf.t + 0)dt ‘ ‘
T‘ fo [21(2) cos?(2m f.t + 6) — 2Q(¢) sin(2m fot + 6) cos(2x fet + 6)] dt
# T fo [I(t) {1+ cos[2(2n f,t + 6)]} — Q(t) sm[2(27r ft+0)]dt

I (t)
Q.(t) = £ 2 [T (t) sin(2r f.¢ + 6)dt
= T fo ¢ [~2I(t) cos(2n f.t + 6) sin(2 fot + 6) + 2Q(t) sin? (2 f,t + 6)] dt
= fo [—I(t)sin[2(27 fct +8)] + Q(t) {1 — cos[2(27 fot + e)]}] dt
Q1) .

T

| :(5.17)'
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-'The local reférences are implemented using the sine blocks in SIMULINK. The inte-

grator and sampler block performs integration of the input waveform over one chip

- period and outputs this value at the end of the chip period. The integrator is reset - -
. after every chip period, T, (=813.802 ns). This is unplemented using the 1ntegrator,

sample and hold blocks in SIMULINK
RAKE Correlator '

A RAKE correlator is used to overcome multipath fadmg effects of the diversity
communications system. It is a tapped delay line receiver that attempts to collect the
signal energy from all the received signal paths that fall within the span of the delay
line and carry the same information. Hence it is an optimum receiver for processing
wideband signals that suffer from multipath fading effects. - ‘

The structure of the RAKE correlator is not specified in the standard. Path loss
characteristics of measurements in [1,2,7,9,11] were used to estimate the number of

" taps and tap gains in the correlator shown in Figure 5.8. The RAKE receiver is then

implemented using the transport delay blocks for the delays and gam blocks for the
tap gains in SIMULINK.

The taps on the RAKE receiver are synchronized to the detected paths in the
received signal using the delay blocks. The decision variable is obtained from the
noncoherent combination of the matched filter (integrator and sampler) outputs. This |
is achieved by delaying these outputs and synchronizing them at a time equal to
(T + Aw) where T is the estimated time from the symbol synchronization and Aw is
the maximum delay of the radio channel. If the correlator outputs are represented as
&T - 7;),1=1,2..K where 7; is the ith time delay and K is the number of paths, the

- decision variable can be expressed as -

= zﬂ,e,(:r Yaw) (518)

i=1

where 3; is the normalized tap gain corresponding to the strength of the ith path. The v
decision block outputs a ‘1’ for ¢ < 0 and ‘0’ for ¢ > 0. Such a RAKE receiver is called
noncoherent or optimum combining RAKE receiver.
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5. 6 Performance Results

Slmulatlons for the complex communication system developed here rely on a quasi-
_static approach where the channel is static for a specific period of time when specific
conditional performance measures such as signal-to-noise ratio (SNR) and the accu-
mulated signal distortions in terms of the bit error rate (BER) are estimated. The
simulated data and code generators are tested for statistical and correlation proper-
ties to verify their functionality. The convolutional encoders are tested in terms of its
impulse response by observing its output for a single ‘1’ bit input. The orthogonality
property of the implemented Walsh codes or functions are tested.

BER Estimation

- Monte Carlo is the name for implementation of a sequence of Bernoulh tnals where
the number of ‘successes’ (errors) are divided by the number of trials. For link-level
simulations considered here, this technique lends itself well to performance evaluation
of RAKE correlators used to compensate for multipath fading effects. The source
output (known) is compared with a delayed version of the decision device output to
‘obtain an empirical basis for the error rate.
~Importance sampling is a form of Monte Carlo simulation in whxch the stat1st1ca1

. properties of the noise processes driving the system are altered such that many more
errors are produced per unit time. A known change is introduced and is corrected
for enabling a reduction in simulation run time Since the system under consideration
has various noise sources with varying distributions (lognormal, Rayleigh and Rician)
causing alteration and correction of their parameters to be computanonally mtenswe
.- this simulation methodology was not adopted.

SNR Estimation
' The standard measure of performance for a noisy s1gnal is the signal-to-noise ratio -

(SNR) Assuming that output of the decision block after the RAKE receiver is a s1gnal ‘
corrupted by add1t1ve noise, the SNR estimate j is given by

p=(st) /e R )

In the system under consideration, sq is a pulse waveform with amplitude, 4 = 1
and €2 is the time average of the square of difference in the source and output drgrtal
waveforms.
Receiver Characteristics
‘ The performance characteristics of the communication system in multipath cellular
environment is of interest here. Hence the 215 long PN sequence was QPSK modu-
lated with a carrier frequency of 870 MHz, passed through the multipath channel and
detected using a RAKE demodulator. The BER and SNR were estimated and the
- performance characteristics of the system determined. - ‘ ‘
A four-way RAKE receiver to demodulate the four strongest multipath compo-
_nents received on two diversity antennae was used during prototype validation. In
this configuration, the decision output from each of the active demodulators is fed to
an external microprocessor. The microprocessor combines the individual demodulator
decisions, weighing each one by the relative strength of the respective multipath com- -
- ponent and generates a single stream of soft-decision inputs to the Viterbi decoder. -
" But this type of diversity combining is sub-optimal since an independent decision on
the transmitted orthogonal symbol is being made by each individual demodulator.
Hence an optimum combining diversity receiver was developed where the number
_ of taps are equal to the number of paths in the power delay profile and the tap gains
were estimated from the strength of the signal component along the corresponding
path. The test setup is shown in Figure 5.9. :
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Table 5.2.: Observed Channel Characteristiés
Type of Number of Average Delay

Channel Paths, K Spread, s, (in ps)

Open Area K<4 05< 8, <09
Suburban 5< K <8 1<s, <5
Urban 8<K<15 Sm >3
Indoor K>5 sm <1

The noise threshold chosen to distinguish between a signal and noise component

. was -94 dBm [48). Profile 1 is the file containing power delay profile measurements

obtained from [53] for a suburban environment. The obtained performance character-

istics are shown in Figure 5.10. Optimum combining RAKE receiver shows a 2.5 dB
~ improvement in the required SNR for a BER of 1072 :

Multipath Channel Characteristics
Time-delayed echoes in multipath channels can overlap causmg errors in digital

* systems due to inter symbol interference. In this case, increasing the signal-to-noise

ratio will not cause a reduction in error rate and so the delay spread sets the lower
bound on error performance for a specified data rate. This limit is often termed as
the irreducible error rate. The performance of the system can however be improved
by the use of channel equalization and diversity (RAKE receiver) techniques.

Some of the observed characteristics in the power delay profiles of open area, sub-

~ urban, urban and indoor environments are tabulated in Table 5.2. A noise threshold
“of -94 dBm or 35 dB below the strongest component was used to distinguish between

signal and noise components and to estimate the number of paths and the average (or
rms) delay spreads from the power delay profile measurements.
“ Open area environments are characterized by very small average delay spread val-
ues with less than 4 paths. ‘The direct component is almost always present in them

~ and they do not require channel equalization. Suburban environments also provide

a good propagation medium when the direct component is present and the reflected
components are well above the noise floor. Hence diversity combining proves highly
efficient for such environments. Urban and indoor channels, however, have many re-
flected paths and can be differentiated by the fact that the latter have shorter paths
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‘a.nd hence considerably smaller average delay spread values.

5.7. Summary

A software simulation technique to implement an IS-95 standard based CDMA spread
spectrum communication system in SIMULINK is developed. Major subsystems (en--
coders, modulators, demodulators) required to estimate the performance of the system
in a mobile cellular environment are simulated and tested. A multipath channel model
consisting of lognormal and Rayleigh fading simulators and a path loss component
is implemented. The simulated system thus enables subjective quality evaluation of
mobile radio links. The performance of the system with regard to BER is determined
and compared for 4-way and optimum combining RAKE receivers.  The optimum
combining RAKE receiver provides 2.5 dB improvement in SNR for a BER of 1073,
Characteristics of multipath channels for open area, suburban, urban and indoor
environments with regard to average delay spread and number of discrete paths are

‘compared based on power delay profile measurements. The delay spreads by them-

selves do not provide very precise measures for system evaluation. It is therefore more
useful to provide statistics about the number of paths and their time delays. These re-

sults can then be used in designing hardware and software 51mu1ators such as diversity
combining receivers.

’
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