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Part I. 

Statement of Problem Studied 



The electromagnetic spectrum is an invaluable but limited natural resource for 
wireless communications. Increasing demands of military, commercial, and private 
users on the electromagnetic spectrum require an efficient spectrum channel sharing 
strategy. Static strategies, such as frequency-division multiple-accessing (FDMA) and 
time-division multiple-accessing (TDMA), by which the multiple-access channel is ef- 
fectively partitioned into independent single-user subchannels, tend to be wasteful in 
applications where most users actively send information sporadically. Dynamic chan- 
nel sharing strategies, which allow the active users a larger share of the channel while 
they are transmitting, fit into two categories: random-access communication and si- 
multaneous transmission systems [1]. In random-access communication, it is assumed 
that the receiver cannot demodulate more than one simultaneous transmission, and 
so the problem is to design protocols to schedule channel access at non-overlapping 
times, and if collisions between messages occur to ensure that those messages are even- 
tually retransmitted successfully. Simultaneous transmission systems differ from static 
strategies and random access protocols in that users are allowed to demodulate all (as 
in the satellite communications) or a subset (as in multipoint-to-multipoint topologies) 
of the transmitted messages. 

A major multiple-access strategy using the simultaneous transmission philosophy 
is code-division multiple-accessing (CDMA) and it has become a main candidate for 
the next generation of mobile land and satellite communication systems. In CDMA 
communication systems, each transmitter generates a spread spectrum signal by mod- 
ulating a data signal onto a pseudo-random signature waveform so that the resultant 
signal has a bandwidth much larger than the data signal bandwidth. Unlike frequency- 
division multiplexing (FDMA) or time-division multiplexing (TDMA), CDMA has 
multiple users simultaneously sharing the same wide-band channel. If a CDMA sys- 
tem is viewed in either the frequency or time domain, the multiple-access signals appear 
to co-exist. 

The conventional CDMA receiver recovers the information of the desired user by 
correlating the received signal with a replica of the signature waveform assigned to the 
desired user, i.e., a signature matched filtering. As is well-known, when the received 
signal is corrupted by only additive white Gaussian noise (AWGN), the conventional 
matched filter receiver minimizes the error probability. This is not true in the con- 
ventional CDMA receiver, whose decision variables for the signal of a particular user 
are corrupted by multiple-access interference (MAI) in addition to AWGN. The MAI 
originates from cross-correlations between the signature waveform of the desired sig- 
nal and signals of other active users. When the received signal power of the desired 
user is relatively weaker than those of the other users, the conventional receiver is un- 
able to reliably recover the information sent by the desired user, even if the signature 
waveforms have very low cross-correlations. This is known as the near-far problem [2]. 

The current approach to dealing with the near-far problem is to use transmitter 
power control [3]. Another alternative is to use some form of a multi-user detector. 
Many different optimum/suboptimum structures of the multi-user detector have been 
proposed in the literature [2,4-11]. Multi-user detectors are generally characterized 
by centralized detection that demodulates all the users' signals at the output of a 
matched filter bank. Substantial performance gains can be achieved in coherent multi- 
user systems by using a multi-user detector that takes advantage of the structure of the 
CDMA signals [2]. The multi-user detectors out perform the conventional receiver at 
the expense of a significant increase in complexity. For example, the complexity of the 
optimum multi-user detector in [2,4] grows exponentially in the number of users. Less 
complex suboptimum multi-user detectors in [5,6] linearly increase in complexity with 
the number of users. In addition to complexity, multi-user detectors also require large 



—-■*> 

amounts of side-information about the received signal, which includes the number of 
users, the signature waveforms, associated time delays, and phase offsets of all active 
CDMA signals. Often the received amplitude of each CDMA signal is also needed. The 
complexity of such multi-user detectors may be unacceptably high for many practical 
applications or communication security restrict the distribution of all users' signature 
waveforms to all the receivers, or both. Furthermore, some information of relatively 
weak signals is likely to be more difficult to obtain due to the time-varying nature of 
the channel. 

This research investigated fully decentralized single-user detection, in which the 
receiver is constrained to demodulate the signal of only one user, but unlike the con- 
ventional receiver, is optimized to take into account the structure of the CDMA signal. 
The decentralized detection approach views the multi-user detection problem äs an in- 
terference suppression problem, where at a particular receiver one signal is considered 
the desired signal and the other signals are considered the interference. One such 
single-user receiver is the linear minimum mean-squared-error (MMSE) receiver pro- 
posed in [12]. This MMSE receiver has been particularly attractive because it lends 
itself for adaptive implementation. 

Several adaptive MMSE receivers have been proposed recently [12-14]. Although 
reducing the complexity and eliminating requirement of the information of the inter- 
fering signals, most of the adaptive MMSE receivers require training sequences for 
the implementation of the least-mean-square (LMS) algorithm both at the beginning 
and during data transmission. That is, adaptive MMSE receivers need to switch back 
and forth between a training mode and a decision-directed mode during actual data 
transmission as a new strong user accesses the system. 

Use of a blind scheme, i.e., one that does not rely on a training sequence for 
adaptation, has been practically attractive for high-speed data transmission over a 
communication channel [15]. If the receiver yields a bit-error-rate (BER) less than KT1 

errors per bit, a decision-directed LMS algorithm may be an option for a blind receiver. 
However when the system experiences the near-fax problem, detection capability of 
a non-optimum receiver is completely lost and the algorithm may suffer from the 
convergence to a local minimum associated with a strong interfering signal, i.e., the 
receiver may adapt its parameters to detect the signal of a strong interfering'user 
instead of the signal of the desired user.   Honig, Madhow and Verdu in [16] and 
Schodorf and Williams in [17] have proposed constrained output-power minimizing 
(OPM) receivers. They implement algorithms for a blind adaptive receiver through 
gradient projection (GP) algorithms.  Algorithms in these receivers adjust the filter 
tap weights by minimizing the output power while constraining the gradient of the 
cost function to satisfy a prescribed constraint. 
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1. Blind Adaptive CDMA Receivers 

1.1.    Abstract 

New blind adaptive interference suppression algorithms for DS/CDMA communication 
systems are developed. A generalized projection algorithm is developed that updates a 

^Tr "If™™ (MAI) -PPressionfilterinastaticcommLcationLvSn 
ment. The algorithm adaptively adjusts the filter coefficients by iteratively projecting 
them onto constraint sets. The constraint sets consist of data sets and property sets 
which are obtained from the received signal and prior knowledge of the desired lZ 

EMmlnn n V*, 1™^ *"*"*** ^"^ ****** with ^oximate 
v^onTr VI! ? de:tl0pedth,at SUppresses MAI I» a Sarnie communication en- 
vironment. This algorithm jointly estimates the filter and desired signal amplitude 
usmg a stochastic approximation of the EM algorithm. The performance results show 
steady state slS*ificantly out perform the existing adaptive algorithms in 

1.2.    Introduction 

This research addresses the problem of data detection at system initialization. In such 
a case, the data estimates are not reliable during the initial adaptation process so that 
a decision-directed LMS-type algorithm is not feasible. An adaptive algorithm wS 

statLtlclrt3!? ^^ ?*^i!T Pr°P0Sed * [18]- ThiS ^°tithm dements a 
?WM)t^t?f?3TWnlGP) ^^ baSed °n the °Utput P°wer minimization 
SL T, 1 STthm 1S considered blind since it does not incorporate any 
reference signal for the adaptation.   However, it has been noted that the inclusion 

t^^lT^ T mhlimization process resul*s in the signal cancellation 
S™Tn,v    ]' phenomenon oc^rs when the performance measure does not 
asymptotically approach to zero. It is observed that the steady state performance 
of the algorithm m [18] does not approach the optimum and the algorithm requires 
switching from a blind mode to a decision-directed mode as soon as it Lve^es S 
is not practical m a dynamic communication environment 
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0m^Unif tiOIV We deVel°P a S^eralized projection algorithm that sup- 
press the MAI. This algorithm assumes that the amplitude of the desired signal is 
known a pnon The algorithm minimizes a performance measure which does not in- 
volve training data and utilizes the amplitude as a reference signal.  The algorithm 

strSV2 T the ?ltei COeffidentS by iterativeIy pr°JectinS *«- °nt° some cot stramt sets.  The constraint sets consist of the data set and the property set   The 
data set is used to specify that the response of the filter should be distortion-free 
with respect to the information sent by the desired user.  The property set is used 
as a remedial measure which continually refines the filter coefficients in L direction 
of global convergence. It is obtained from the ideal convergence objective and some 
known property of the desired signal. 

For dynamic communication, the amplitude of the desired signal may not be known 
a pnon or it may vary with time. Therefore we develop a space alternating generalized 
projects algorithm with approximate EM mapping for the joint filter and S" 
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Figure 1.1.: A brief DS/CDMA system description 

estimation. The algorithm is implemented by the combined application of a stochastic 
approximation of the EM algorithm [20] and the generalized projection algorithm. The 
algorithm decomposes the problem of estimating two unknown parameters into two 
decoupled parameter estimation problems. For each received signal, it iterates between 
estimating the conditional performance measure using the current received signal and 
the previous estimate of the parameters (E step), and minimizing the performance 
measure with respect to the unknown parameters (M step). In the M step of the 
algorithm, we minimize the conditional performance measure by iteratively projecting 
the parameters onto constraint sets. 

1.3.    System Description 

The DS/CDMA system model considered is shown in Figure 1.1, where Pk, bk (*), c* (t) 
and 9k are the transmitted power, data signal, signature waveform and phase offset of 
the fcth user in the ith bit interval of duration T, respectively and uc is the common car- 
rier frequency. The fcth user's data signal is given by bk(t) = 5Z^_oo h (i) <PT (t ~iT}, 
where bk (i) 6 {+1,-1} is the ith data bit of the fcth user and (pT (t) denotes the bit 
waveform with unity energy defined on [0, T]. Similarly, the fcth user's signature wave- 
form can be written as ck (i) = Y!,n=o c* (n) VTC (* - nTc) , where ck (n) € {+1, -1} is 
the nth spreading code bit of the fcth user, which has periodicity N = T/Tc for all 
user fc, and <prc (t) is the chip waveform with unity energy defined on [0,TC]. 

Without loss of generality, we assume that the signal of the first user (fc = 1) is the 
desired signal and the receiver is synchronized to this signal,(i.e., T\ = 0 and B\ =0). 
The received signal at the ith bit interval can be described as an iV-dimensional vector 
, which is given by 

K 

Ti = Aibi (») Cl + J2 M [bk (i ~ 1) 4 + bk (») cf ] + nt (1.1) 
A=2 

10 
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Algorithm Adaptation rule Assumption 
NLMS Wj+l = Wj - /X (w/ Tj - dj) -$£-     ^^   ._,,. di is known - 

OPM-GP 
Xj+i ==Ki-fjL (rj - [sf r<] si) ^r^- 

Wi+l =S! +Xj+i 
si is known 

Propl 
Wj+l = PsWi;l = [l - sf Wj,i] Si + Wj,i 

Ai and si are known 

Prop 2 
Wi,i = TflWi = wi-ß (\vrfri\ - Ai) ^ 

Wj+l = P5Wj,i = Df ~ Sf Wifl] Si + Wj,i 
Aj+i = A4 - 7 flwf Fj | - At] 

si is known 

Table 1.1.: Summary of adaptive algorithms 

where cf1 and c^ are the vectors related to the signature vector of the kth user, c*, 
as c* \}k\ = c£ + cf, Cfc L'feJ is ^e cyclically shifted vector of c* by /*, and n* is the 
noise vector with covariance matrix of a21. The related vectors are defined by 

Ti"±   [r<(0),-,r<(tf-l)]T 

ck = [ck(0),---,ck(N-l)]T 

4 = Mf*),-v,c4(tf-i),o, — ,o]a 

cf ^ [0,---,0,c*(0),---,Cjfe^-l)]T 

m -4 K(0),---,ni(iV-l)]r. 

(1-2) 

1.4. New Algorithm Development 

In this research we develop two algorithms for determining the MAI rejection filter. 

Generalized Projection Algorithm Utilize the received signal and some known prop- 
,   erties of the desired signal to estimate the filter. Channel gain is assumed to be 

known. 

Space Alternating Generalized Projection Algorithm with approximate EM Mapping 
Jointly and adaptively estimate the filter coefficients and the channel gain. 

In Table 1.1, we summarize and compare four algorithms; the normalized LMS 
(NLMS), the normalized OPM-based gradient projection (OPM-GP), the generalized 
projection algorithm (Prop 1) and the space alternating generalized projection with 
approximate EM mapping algorithm (Prop 2). 

Table 1.2 shows the computational complexity of the algorithms. It is assumed that 
all algorithms are synchronized to the desired signal and the filter length equals N. 
For fair comparison, we consider the normalized versions of the algorithms. It is seen 
that the added complexity in the implementation of the new algorithms is negligible. 

1.5. Performance Results 

In this section we demonstrate the performance of the new algorithms in a near-far 
situation. Our simulation results correspond to asynchronous communication systems 
in which the multiple access signals are modulated by 31-length Gold sequences. The 

11 



NLMS OPM-GP Propl Prop 2 
Multiplication 3JV + 3 5N + 1 52V + 2 5N + Z 
Addition 3N + 1 6N 5N + 2 5N + 4 

H 0 0 1 1 
Storage requirement N + l 2N + 1 2JV + 2 2iV + 3 

Table 1.2.: Computational complexity of the algorithms 

ensemble-averaged output signal-to-interference ratio (SIR) at the ith iteration is ob- 
tained by 

SIRi Em=l (™lmSlY 

1^ [Kmy«.»)/*.«]' 
(1.3) 

where wi]m and yj,m = rj)TO—Ai,mbi,m8i are the filter coefficients and the interference 
plus noise component of the received signal at the ith iteration in the mth realization, 
respectively. The number of realizations M = 500 is used to obtain the averaged output 
SIR. For each realization, the amplitudes, phase delays and the signature sequences of 
the signals are chosen randomly. 

In Figure 1.2 and Figure 1.3, we simulate output SIR performances of the new 
algorithms and compare to the existing adaptive algorithms. In this simulation, the 
number of interferences is (K - 1) = 5, the bit energy to background noise ratio (SNR) 
is 15 dB, and all interferences have amplitude 10 times greater than the amplitude of 
the desired signal, which accounts for the extreme near-far situation. 

Figure 1.2 shows the output SIR curves of the generalized projection (Prop 1) algo- 
rithm, the OPM-based gradient projection (OPM-GP) algorithm of [18] and the nor- 
malized LMS (NLMS) algorithm in the training mode. The performance result shows 
that the Prop 1 algorithm converges to the steady state performance level similar to 
the NLMS algorithm in the training mode and improves about 5 dB in the steady state 
performance compared to the OPM-GP algorithm. The performance achievement of 
the Prop 1 algorithm is due to a performance criterion which asymptotically converges 
to zero, whereas the performance loss of the OPM-GP algorithm in the steady state is 
due to inclusion of the output power in the minimization process, which results in the 
signal cancellation phenomenon [19]. The slower convergence of the Prop 1 algorithm 
compared to the NLMS algorithm is explained by the fact that the former does not 
use training data for the adaptation whereas the latter does. 

Figure 1.3 compares the space alternating generalized projection with approximate 
EM mapping (Prop 2) algorithm to the Prop 1 algorithm and the OPM-GP algorithm. 
For the Prop 2 algorithm, the forgetting factor in the amplitude estimation algorithm 
is 7 = 0.01. It is shown that the steady state performance of the Prop 2 algorithm 
approaches that of the Prop 1 algorithm but is substantially better than that of the 
OPM-GP algorithm. The performance degradation of the Prop 2 algorithm over the 
Prop 1 algorithm is mainly caused by the amplitude estimation error, which can be 
reduced at the expense of convergence speed. 

In Figure 1.4, we examine the steady state bit-error-rate (BER) performance of 
the new algorithms versus the input bit-energy to background noise ratio (SNR) and 
compare it to the matched filter, the NLMS algorithm in the decision-directed mode 
and the OPM-GP algorithm. In this simulation, simulation parameters are set equal 
to those used in Figure 1.2 and Figure 1.3 excepts the input SNR. A total of 2000 
bits are transmitted for each realization and the last 1000 bits for 100 realizations are 
used to capture the steady state performance.  The NLMS algorithm switches from 
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the training mode to the decision-directed mode after the 900th bit. It is evident 
that the performance of the Prop 1 algorithm is similar to the NLMS algorithm and 
approaches the single-user bound. The performance similarity between the Prop 1 
algorithm and the NLMS algorithm in the high SNR range is due to the fact that both 
algorithms use performance criteria which converge close to zero. The performance of 
the Prop 2 algorithm is similar to the Prop 1 algorithm when the SNR is low and is 
slightly degraded over the Prop 2 algorithm as the SNR increases. These phenomena 
occur because the amplitude estimation error in the Prop 2 algorithm dominates the 
background noise in the high SNR range. It is also seen that the performance gains 
of the Prop 1 and Prop 2 algorithms over the OPM-GP algorithm increase when the 
SNR increases. In the OPM-GP algorithm the desired filter output and the background 
noise causes filter misadjustment whereas in the new algorithms only the background 
noise does. Interestingly, the performances of the Prop 1 and Prop 2 algorithms are 
slightly better than the NLMS algorithm when the SNR is lower than 6 dB. This shows 
that the decision-directed LMS algorithm is not feasible when the BER is higher than 
10-1. 

The performance results demonstrate that the new algorithms are robust to decision 
errors and are nearly optimal without requiring training data. The performance results 
show the new algorithms are applicable for MAI suppression and information recovery 
in DS/CDMA communications. 

1.6.    Summary 

We developed projection-based adaptive MAI suppression algorithms which require 
neither training data nor any information about the interfering signals. The algorithms 
are a generalized projection algorithm and a space alternating generalized projection 
algorithm with approximate EM mapping. The algorithms minimize the performance 
measure monotonically via the method of generalized projections and a stochastic ap- 
proximation of the EM algorithm. The algorithms provide computationally efficient, 
robust, blind MAI suppression schemes when the near-far effect is predominant. Sim- 
ulation results show that the new algorithms significantly improve the steady state 
performance over the OPM-GP based blind algorithm when the input SNR is higher 
than 3 dB. The new algorithms perform better than the NLMS algorithm when the 
input SNR is lower than 6 dB. 

13 
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Figure 1.2.: Output SIR curves :   SNR = 15 dB, K = 6, A = 0.2, Ak = 10Au 
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Figure 1.3.: Output SIR curves : SNR = 15 dB, K = 6, A = 0.2,7 = 0.01, Ak = 10AU 
k = 2,---,K. 
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2. Decomposed Adaptive CDMA Receivers 

2.1. Abstract 

We develop a single-user decomposed adaptive receiver (DAR) structure for interfer- 
ence suppression in asynchronous direct-sequence code-division multiple-access (DS- 
CDMA) communication systems. Mathematical analysis and computer simulations 
show that the DAR has faster convergence than the conventional adaptive receivers 
with large processing gains in multiple access channel with additive white Gaussian 
noise. 

2.2. Introduction 

Among many sub-optimum interference suppression schemes for DS-CDMA systems 
the minimum mean squared error (MMSE) scheme has been an active research area due 
to its desired near-far resistance and direct applicability to adaptive implementation 
[21]. The MMSE adaptive receiver shows remarkable performance improvement over 
the conventional matched filter receiver [22,23]. The main advantage of the adaptive 
receiver is that it can effectively suppress multiple access interference (MAI) without 
either the knowledge of interference parameters or the desired user's signature sequence 
by using a training sequence. 

The JV-tap MMSE adaptive receiver successfully removes asynchronous MAI when 
the number of users is much less than N/2, where N is the processing gain or the 
signature sequence length of the DS-GDMA system. In that case, however, the input 
to the conventional iV-tap receiver is ill-conditioned in that the eigenvalue spread 
of input correlation matrix is very large. It is well known that the widely used least 
mean square (LMS) algorithm converges very slowly for ill-conditioned input data [24]. 
The slow convergence rate of LMS algorithm could be a serious limitation to system 
capacity and a deterrent to use MMSE receivers, especially when the channel is varying 
rapidly. 

We develop a decomposed adaptive receiver (DAR) structure for single-user detec- 
tion that has faster convergence characteristics than the conventional AT-tap adaptive 
receiver. For the DAR, the iV-tap adaptive receiver is decomposed into D smaller 
filters that are adapted individually. Coupling is used such that one filter's output is 
used for another filter's adaptation. 

2.3. DS-CDMA System Model 

We consider binary phase shift keyed (BPSK) asynchronous DS-CDMA system with 
signature sequence length N in an additive white Gaussian noise (AWGN) channel 
with noise power spectral density N0/2. The received signal is modeled as 

.. K        ■_ 

rit) = £ Vmck(t - Tk)bk(t - Tfc) cos(w0* + 6k) + n(t) (2.1) 

where K is the number of users, Pk is the received power, ck(t) is the baseband bipolar 
signature waveform, bk(t) is the baseband bipolar waveform of data bit, rk € [0,T) 
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is the asynchronous timing offset, Ok is the modulation phase offset of the A;-th user 
respectively, and n(t) the AWGN. 

We assume that the received signal is demodulated to baseband, where it is pro- 
cessed by a normalized chip matched filter. The data from the chip matched filter for 
the i-th bit interval of the desired user is arranged as a vector, 

r(z') = [ ri(i)   r2(i)    •••   rN(i) ] 

We assume, without loss of generality, that the first user is the desired user and 
the receiver is synchronized to the first user, which yields [23] 

K 

r(i) = &<V + 5>! 
*=2 

cos(0jfe)l*(i) + n(i) (2-2) 

where V£ G {—1,1} is the i-th bit of fc-th user, ci is the signature sequence vector of 
the desired user, Ik(i) is the interference vector from the asynchronous k-th user and 
n(z) is the Gaussian noise vector with zero mean and covariance matrix a2!, where 
a2 = N0N/2Et, and Et is the received energy per bit of the desired user. 

2.4.    Description Of Decomposed Adaptive Receiver 

Let w(i) = [ wi(i) W2{i) •■■ WN(i) ] be the tap weight vector of the iV-tap 
adaptive receiver and y(i) = wT(z')r(z) be the receiver output for i-th. bit. Let Nj, j = 
1,2, • • •, D(D < N), be positive integers such that X),=1 Nj = N.' Define Wj(i) as the 

j-th subfilter of w(i) of length Nj such that w(i) = [ wf (i)   w^(i) 
Accordingly r(z) may be decomposed and represented as 

w5(0"']T- 

r(i) = [ 4(i rl(i) ]' 

It readily follows that the receiver output is y(i) = J^f=i wJ(Ori(J)- 
Fig. 2.1 shows the structure of the DAR, where the outputs from the previous 

subfilters wn(z), n = 1,2, ■■-,j — 1, are incorporated for the update of subfilter w,:(i). 
The length of the subfilter Wj{i) is the same as that of Wj(i). In this notation, Wj(i) is 
the value of the j'-th subfilter using DAR adaptation and Wj(i) is the value obtained by 
conventional AT-tap MMSE adaptation. The update equation for each subfilter ivj(i) 

Wj (i + 1) = wj(i) + n \sjbf - yj-! (i) - wJ(i)Tj (i)j Tj(i) (2.3) 

where kj = Nj/N is the ratio of the length of Wj(i) to that of w(z'), Sj = X^=1 ^n, A* is 

the step size, ^(z) = J2i=i ™T(*)r*(i) and dj(i) = Sjb)' -£*=i ™T(Or*W- We note 

that dj(i) fa kjbi' when the accumulated outputs from the previous subfilters, yj-i(i), 
can successfully approximate Sj-ib\ ' or w£(i)rn(i) RJ knb[ ' for n = 1,2, • • • ,j — 1. 

Each subfilter Wj (i) attempts to minimize the following mean squared error 

Jj(Wj) 

=   E 

=   E 

j-i 21 

W-E^W'fcW-wJ'WrKO 
*=1 

{djiiy-^j (i^d)}' (2.4) 
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Figure 2.1.: Decomposed adaptive receiver 

By comparison, the conventional iV-tap MMSE adaptive receiver tries to minimize 

J(w) = E {&« - wT(i)r(i)y (2.5) 

Using the decomposition described above J (w) becomes 

7(w) 

=   E 

=   E -wf,(»)r£>(i) 

=   '£[{dD(*)-w£(*)rij(i)}a] (2-6) 

where d/>(») = sDbY' - Ejii wj^r^i). Note that J(w) in (2.6) is represented 
in the same way as JJ(WJ) in (2.4) for DAR, even though their minima may differ. 
Therefore, by employing the DAR, the JV-tap MMSE problem with desired output Vf' 
is essentially transformed into an iVo-tap MMSE problem with desired output doii)- 
This increases convergence performance since ND < N. 

If we assume that the input r(i) is a stationary vector process, the correlation 
matrix R^JD = E [ro(i)r£(*)] is submatrix of correlation matrbc R = E [r(z)rT(i)]. 
Then from the Cauchy interlacing theorem [25] it is guaranteed that the eigenvalue 
spread of KDD is less than or equal to the eigenvalue spread of R. Since the conver- 
gence rate of the LMS algorithm depends on the eigenvalue spread of the input data 
correlation matrix, the DAR has a faster convergence rate than the iV-tap adaptive 
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receiver. Even in the case that the eigenvalue spread of RDD is the same as that of 
R, we still expect that DAR converges faster since the length of wD(i) is shorter than 
that of w(i) and the convergence rate is inversely proportional to the adaptive filter 
length [24]. 

Prom (2.4), D normal equations are obtained for each subfilter w,-(*) that are 
combined into one matrix equation as follows. 

RH     o 

R21   R22 

Rm      Rß2 
0 

Rß£) 

" w0i «lPl 
Wo2 

= 
S2P2 

.  *oß  . . SDPD . 

(2.7) 

where Rjfl = E [rjföif (t)], Pj = E [^(t)], and woj is the Wiener solution for 
subfilter Wj(i), j, k = 1,2, • • •, D. It is interesting to compare (2.7) with the following 
iV-tap normal equation expressed in block decomposed form, 

R11 

R21 

R12 

R22 

R 

Rßl     Rj92 

■ID 

RJD-IZ) 

Rö£» 

" w0i '   Pi 
wo2 

= 
P2 

. woD  _ - PD . 

(2.8) 

where woi is the j-th subvector of the AT-tap optimum Wiener solution [24]. In (2.7) 
the upper block triangular part of the original correlation matrix is removed and the 
original cross-correlation vector is scaled block by block to compensate. 

2.5.    Performance Results 

In our computer simulations 1000 bits are transmitted with Eb/N0 = lQdB. The signa- 
ture sequences are Gold codes of length N = 127 and are assigned to 50 asynchronous 
users. We assume a near-far situation where PhjPx = 10, in (2.2), for 10 of the 50 
users and Pk/Px = 1 for the remaining users. The step size of the LMS algorithm for 
any filter is set to 0.5% of 2/Xmax, where Xmax is the maximum eigenvalue of input 
correlation matrix for that filter. We compare the MSE performance of DAR-2 and 
DAR-4 with that of the iV-tap conventional receiver, where DAR-n refers to DAR 
obtained by decomposing the iV-tap receiver into n sections. We simulate the cases 
where DAR-n has n - 1 subfilters of length (N + l)/n taps followed by a subfilter of 
length (N + l)/n - 1 taps. 

Fig. 2.2 shows the MSE plots obtained by averaging 500 trials, which shows that 
DAR-2 and DAR-4 converge faster than the iV-tap receiver. Furthermore, DAR-4 
converges faster than DAR-2, which confirms the mathematical reasoning given in 
Section 2.4. Fig. 2.3 presents the adaptive filter tap error norm (2-norm) with respect 
to the Wiener solution of the TV-tap filter. The overall tap weight vectors of DAR-2 
and DAR-4 converge faster toward the Wiener solution, but also saturate earlier. It is 
expected that the DAR has a larger steady state MSE than the AT-tap adaptive receiver. 
There is a trade-off between the steady state MSE and the convergence rate of the DAR 
controlled by parameter D, i.e., the number of subfilters. Under a rapidly changing 
channel condition, the DAR could reach the system state for reliable communication 
faster while incurring an increase in steady state error. Under such conditions, its 
overall performance is better than that of the conventional iV-tap adaptive receiver for 
moderate values of the parameter D. 
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Figure 2.2.: MSE of LMS algorithm, N=127, K=50 with 10 strönger(lOdß) interferes 

2.6.    Summary 

In this research we developed a decomposed adaptive receiver (DAR) for DS-CDMA 
systems. Mathematical analysis of MMSE for the DAR was given to show the faster 
convergence characteristics of DAR. In computer simulations the DAR scheme showed 
improved convergence performance in both MSE and tap weight error norm. 

Since the capacity of DS-CDMA systems and the convergence rate of an adaptive 
receiver depend on the processing gain in a conflicting manner, it is advantageous 
to have an adaptive receiver structure with a faster convergence rate. The DAR 
structure developed in this research could increase the capacity of DS-CDMA systems 
to a considerable extent by making adaptive receivers practical for systems with large 
processing gains. 
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3. Block Iterative CDMA Receiver 

3.1. Abstract 

An interference suppression scheme using a block iterative algorithm, row-action pro- 
jection (RAP) algorithm for direct- sequence spread-spectrum (DS/SS) code-division 
multiple-access (CDMA) systems is developed. The performance results for the near- 
far problem and the interference increments due to increasing co-channel users using 
RAP algorithm are compared with normalized least mean square (NLMS) algorithm. 
It is concluded that RAP algorithm can improve the convergence rate of NLMS algo- 
rithm and is a practical alternative to the NLMS or LMS interference rejecter. 

3.2. Introduction 

The goal of using spread spectrum is to substantially increase the bandwidth of an 
information-bearing signal beyond that needed for basic communications. The band- 
width increase, while not necessary for communication, can mitigate the harmful effects 
of interference. Interference mitigation is a well-known property of all spread spectrum 
systems [43]. However, the interfering signal is often so powerful so that the communi- 
cation becomes effectively impossible. For example, the crosscorrelations between the 
spreading sequences for different transmissions are nonzero, thus, increasing co-channel 
users can disrupt the reception of desired signal. Another problem is that nearby in- 
terferers raise the detection difficulty for highly attenuated desired signals, known as 
near-far effect. Immunity to such interference can be improved significantly by using 
signal processing techniques [44]. Interference suppression schemes are typically based 
on the minimum mean squared error (MMSE) criterion. Adaptive estimation schemes 
are widely used in this problem, in which the standard algorithm is the least-mean- 
square (LMS) algorithm [45]. The advantage of LMS algorithm as compared to other 
algorithms is its low complexity in computation. The LMS algorithm produces an 
approximation to the minimum mean square error estimate; the expected value of the 
output error square approaches zero. The major drawback of the LMS algorithm is 
that its convergence rate is dependent upon the eigenvalue spread of the input data 
correlation matrix. Thus, the LMS algorithm may be excluded from high-speed, real- 
time signal processing applications. A block iterative algorithm, row-action projection 
(RAP) algorithm [46] can offer the same low computation complexity as LMS algo- 
rithm with an improved convergence rate. The RAP algorithm performs coefficient 
updates by using the data matrix more than once. It offers O(N) complexity, easy 
implementation, stable operation and improved convergence rate. In this research, 
the RAP algorithm is applied to multiple-access interference suppression in CDMA 
receiver. 

3.3. System Modeland Problem Formulation 

The received signal is the sum of K simultaneous CDMA transmissions plus additive 
White Gaussian noise. The normalized baseband signal in a carrier-synchronous system 
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due to the jth user is given by [12] 

oo N-l 

rj(t) =  Yl b*>i E °iP#(* " iT ~ vi ~ kT^ (3.1) 
t=-00 *=0 

for 1 < j < K , where T is the bit interval, biti 6 {1,-1} is the Ith bit of the j ith 

,N-1 user, Vj is the delay of the jth user, J2k=o aj[*#(* _ kTc) is the spreading waveform, 
aj[k] £ {1,-1} is the kth element of the spreading sequence for the jth user, JV is 
the processing gain, and ip(t) is the chip waveform with unit energy and duration 
Tc = T/N . It is assumed that the receiver is synchronized to the desired transmission 
and the delay of the desired user is v\ = 0 . For 2 < j < K the relative delay 
Vj = (TJ + Sj)Tc where Tj is an integer normally distributed between 0 and N — 1 
and 5j is normally distributed in the interval [0,1) . It is assumed that the received 
transmissions are chip synchronized which gives 6j 
model for the received signal is now [12]: 

0 . The discrete-time equivalent 

K 

i=2 

(3-2) 

wheieaj = (aj[0],aj[l],---,aj[N-l])T , [a0J]k =aj[k-Tj] , [a-lyj]k = aj[k + N-Tj] 
, for 0 < k < N - 1 and 2 < j < K , and a,j[m] = 0 for m < 0 . The white noise 
vector n is Gaussian with mean zero and covariance matrix a2 IM , where IN denotes 
the N x N identity matrix and a2 = NQ/2 . The interference suppression problem is 
now formulated as: 

(3.3) 

In compact notation, d = Xc + e , where d represents the bit sequence that is trans- 
mitted, X is the state matrix of the received signal, c is the unknown filter coefficient 
vector and e is the residual error of the estimation process. The parameter L denotes 
the processing block size. 

di 
di-x 

= 

f    rf    1 
rj-x 

"    Co,j   ■" 

Cx,i 
+ 

■    ei    " 

-di-L+i- iri-L+l J ■CN-l,i- -Ci-L+l- 

3.4.    Row-Action Projection (RAP) Algorithm 

In (3.3), each equation describes a hyperplane in the coefficient space. If the set of 
equations is consistent, there will be only one solution vector that satisfies all the 
hyperplanes. The optimal solution for noiseless data satisfies all the equations ex- 
actly, implying that all the hyperplanes share a common point. The presence of noise 
perturbs the hyperplanes from the common point. An optimal coefficient vector that 
terminates at a point whose distance from each hyperplane is minimized under certain 
criterion can be found. The point with minimum sum of squared distances (least- 
squares) is a typical optimality criterion. The goal of the RAP algorithm is to attain 
this optimal solution via a sequence of orthogonal projections toward the hyperplanes. 
The projection of an arbitrary solution vector onto a hyperplane is accomplished by 

ci+1 =a + ß[dj - cfrj]—^ 
INI 

(3.4) 
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Figure 3.1.: The adaptive filter used for interference rejection. The reference signal is 
delayed to center the impulse response of the adaptive filter. The tapped- 
delay line was loaded every N chip interval. 

where a is the previous estimate and Cj+i is the updated estimate that, if ß = 1 , 
exactly satisfies the jth equation in (3.3). The iteration index related to the equation 
index by j = i mod I. The basic operation of RAP algorithm [46] is to sequentially 
apply (3.4) on the equations in (3.3) repeatedly. The first step is to store the data 
vector along with desired output in the buffer. Once the data buffer is full, the second 
step is to make multiple updates of the adaptive coefficients by sequentially using the 
data and the update equation (3.4). After finishing the desired updates with current 
data, the next step is to obtain new data vector from data buffer and repeat the 
updating process. 

3.5.    Performance Results 

This section presents the performance results obtained for the RAP algorithm applied 
to an interference rejecter in a DS/SS CDMA system. The RAP algorithm is contrasted 
to the NLMS algorithm to compare the convergence rate and the steady state output 
SNR. The interference rejecter is implemented using a transversal filter structure, as 
shown in Figure 3.1. The adaptive filter length is the same as the chip number of each 
information bit. The chip number was 31 in the simulation. The step size used in 
the simulation for both RAP and NLMS algorithm is the same, which was 0.05. The 
SNR of the received signal, which is fed into the chip-matched filter, is 10 dB per bit. 
The channel characteristics and the interference characteristics are unchanged during 
each simulation run. The output SNR is defined as the ratio of the mean square to 
the variance of the interference rejecter output [47]. There are 50 different ensembles 
in each simulation. The output SNR converges throughout the process. In order to 
measure the convergence rate and the steady state output SNR, the function, /(£) , is 
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used to model the output SNR (dB) curve where the function is denned as: 

f(t) = -(A-B)e(-t^-B (3.5) 

where * is the time (bits), r is the time constant, a measurement of convergence rate 
and -B is the steady state output SNR (dB). A , B , and r are found in the least 
square error sense. The performance of both RAP and NLMS algorithm for near-far 
scenario is shown in Figure 3.2.  The near-far scenario is quantified by the near-far 
parameter NF, which indicates the number of users whose power level is ten times 
the power level of the desired user.  In this part of simulation, the total number of 
users is ten.  For instance, for NF=3 there are three users whose power level is ten 
times the desired users power level and seven users/including the desired user whose 
power level is the same as the desired users power level.  The processing block size 
is 4 bits.   In the performance result shown in Figure 3.2, RAP algorithm provides 
a better convergence rate while two or more iterations are performed.   In the case 
where three iterations are performed, the convergence rate is 2.3 times faster than the 
convergence rate provided by NLMS algorithm.  Meanwhile, the performance result 
demonstrates that with proper iteration numbers, the output SNR of RAP algorithm 
stays close to the level provided by NLMS algorithm.  More iteration performed on 
each data block will produce faster convergence but the Output SNR will decrease 
For example, performing ten iterations on each data block yields a convergence rate 
that is 4.3 times faster than NLMS algorithm on average and a output SNR that is 
degraded by 0.72 dB on average.  Theoretically, there are JV + 2 users allowed in a 
CDMA system with the length N spreading code. Due to the non-zero property of the 
cross correlation function of spreading code, increasing the user number will raise the 
interference power and downgrade the system performance. The performance of RAP 
and NLMS algorithm for the interference increment problem due to additional users 
was shown in Figure 3.3. In this part of simulation, every user was set at the same 
power level as the desired users power level. With the proper iteration number for 
example, three iterations, the convergence rate is 1.6 times faster than the convergence 
rate provided by NLMS algorithm on average. With the proper iteration number, the 
output SNR by RAP algorithm kept at the same level as NLMS algorithm   In the 
case of performing ten iterations, the convergence rate is 3.4 times faster on average 
and the output SNR is degraded by 0.64 dB on average. 

3.6.    Summary 

?o/cc ^earCh' ** interference suppression scheme using the RAP algorithm for 
Db/SS CDMA system is developed. The RAP algorithm achieves 0{N) complexity 
by iteratively operating on the rows of the data matrix individually to form updates 
of the unknown adaptive coefficients. The RAP performs multiple update in the same 
set of data. The convergence rate of RAP algorithm is better than NLMS algorithm 
especially at times that the near-far effect is severe, when the processing block size is 
properly chosen. With proper iteration number, the RAP algorithm provides the same 
output SNR level with NLMS algorithm while the convergence rate is well improved 
The computation and memory needs are increased due to data buffering and multiple 
update.   In the performance result, a proper choice of iteration number and block 
size, for instance, three iterations and 4 bits per processing block, will need triple the 
computation and four times the memory comparing to NLMS algorithm. In the system 
that is able to afford the computation and memory increment, the RAP algorithm is 
an alternative interference suppression scheme which provides better convergence rate 
and the same output SNR level as the LMS algorithm. 
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Figure 3.2.: The performance of RAP algorithm for near-far problem in contrast with 
NLMS algorithm. K is the iteration number. 
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Figure 3.3.: The performance of RAP for the interference due to the increasing co- 
channel users. K is the iteration number. , 
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4. Regularized Narrowband Interference Suppression in 
CDMA Systems 

4.1. Abstract 

A regularized LMS technique is presented that uses a modified optimality criterion 
which enhances the detection capabilities of direct sequence spread spectrum systems. 
The rejection filter is updated based upon an additional regularization input which 
limits the self-noise of the filter, especially at moderate signal-to-interference power 
ratios. The regularization is controlled by a single scalar parameter, that can be varied 
to produce the optimal Wiener filter weights or the decision-feedback filter weights. An 
advantage of the regularized filter is that the weight error surface is quadratic, leading 
to well behaved convergence properties for adaptive implementations, performance 
results are presented which compare the regularized filter to the optimal Wiener filter 
and the decision-feedback filter. 

4.2. Introduction 

Discrete-time adaptive linear rejection filtering of narrowband interference can improve 
the performance of direct sequence spread spectrum (DS/SS) systems [26,27]. In these 
results, the discrete-time (coherently) received signal is modeled by 

zin) = Iyn/Lic{n)+j{n)+v{n) (4.1) 

where the information bit takes on the values In = ±1 with equal probability, c(n) is 
the chip sequence, j(ri) is the jamming signal, v(ri) is thermal (white) noise, L is the 
number of chips per bit, and [x\ is the greatest integer less than or equal to x. The 
sampling period is Tc seconds, or once per chip interval. It is possible to predict the 
jammer using Wiener filtering because the dominant correlation in z(n) is due to j(n). 
The jammer is removed by subtracting the prediction from the received signal 

N 

e{n) = z{n)-Ylw^x{n-l-K) (4.2) 
' '=i 

where e(n) is the error process which estimates the DS/SS signal s(n) = I\n/L\c{n)i 
x(n) is the prediction filter input, and K > 0 sets the minimum prediction delay. 
The rejection filter coefficients wK = [wf- w% ■ ■ ■ wj§] are usually designed to satisfy 
the minimum mean square error optimality criterion, and thus are the solution to the 
Wiener-Hopf equations [28] 

H*w* = p£ (4.3) 

where the input autocorrelation matrix is 

RXX^E{X*[X*]
T

} (4.4) 

and the elements of the cross-correlation vector are 

[P&L = Pd*(i + K) ± E{d(n) [**].} = E{d(n)x(n -i- K)} (4.5) 
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For notation, let (4.4) define the autocorrelation matrix for any vector, e.g., a has 
autocorrelation matrix Raa. Likewise, the cross-correlation vector between a scalar o 
and a vector b^ is p^,, as defined by (4.5). 

The filter weights obtained according to (4.3) will form an estimate of the desired 
signal d(n) based upon the filter input vectors 

x* = [x(n - 1 - K)x(n - 2 - K)... x{n - N - K)f. 

The optimal desired signal for the prediction filter output is d(n) = j(n) + v(n), 
which yields e(n) = s(n). The optimal cross-correlation vector becomes 

P*x = P& = pJj (4.6) 

assuming x(n) = z(ri) and assuming mutually uncorrelated signal components. The 
desired signal typically used in (4.2) is the received signal, which produces the cross- 
correlation vector 

p£ = p£+p£ = pjj+p£ (4-7) 

It is usually assumed that the DS/SS signal is perfectly uncorrelated, i.e., p* = 0, in 
which case (4.6) and (4.7) are identical. Thus, an estimate of the optimal filter can be 
obtained from solving [29] 

[Rjj + Rss + Rvv] w^F, = p£ + p! 'ss (4.8) 

where RxX = Ry + Rss + RVv The subscript on the filter tap-weight vector signifies 
the filter type for the remainder of the report. 

It has been recognized that the presence of the DS/SS signal s(n) at the prediction 
filter input induces distortion of the DS/SS signal, resulting in a reduced correlation 
peak and reduced immunity to noise [26]. This is evident when (4.2) is decomposed 
into it constituent parts 

e(n) 
N 

s{n) - 53 tu* *(n -l-K) 
i=i 

+ 
N 

j{n)-Y,™?J{n-l-K) 
i=i 

+ v'(n)   (4.9) 

where v'(n) is the filtered thermal noise. The first term on the right-hand-side is the 
"self-noise" of the rejection filter and is due to the filtering of the DS/SS signal. One 
technique to reduce the filter self-noise is to remove the DS/SS signal from the filter 
input by using decision-feedback filtering [26,30]. This corresponds to a filter input 

xDF{n) = z(n) - I[n/Lic(n) = (l[n/L\ - hn/n) c(n) + j(n)+v(n) (4.10) 

where I[n/L\ is the estimated bit. Assuming perfect feedback, I\n/L\ = I[n/L\, then 
the prediction filter output is 

eDF(n) = s(n) + 
N 

j(n) ~ ^2WDF,s(n -l-K) 
1=1 

+ v'(n) (4.11) 

where K > L to ensure causality of the estimates I\n/L\ ■ Assuming that K = L, the 
filter weights in (4.11) are given by 

[Rjj + Rw] W£)F — Pjj (4.12) 
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The result in (4.12) can be viewed as an augmentation of the optimal linear predictive 
filter 

..tBdj + R» + Rw]w^Foirt=p§ ; (4.13) 

where the DS/SS signal autocorrelation matrix RsS has been removed from the left- 
hand-side of (4.13). One major difference between the two filters is that the DS/SS 
signal does not pass through the decision-feedback filter. Another difference concerns 
the adaptive implementation of the decision-feedback filter. The adaptive filter weights 
for the Wiener filter converge monotonically to a unique local minimum of the weight 
error surface. By comparison, the convergence of the adaptive decision-feedback filter 
is problematic due to the multiple local minima introduced into the error surface by 
the non-linear decision element. 

The analysis of the adaptive performance of transversal rejection filters, as in (4.2), 
has been well documented [31-34]. Other interference rejection approaches are also 
viable, such as lattice filters [35], transform domain filters [36], and nonlinear process- 
ing [37-39]. 

In this research, we consider transversal rejection filters and extend the concept of 
autocorrelation matrix augmentation to include modifications of the form 

[Rjj + Rss + Rvv-ySRrrJwf = p£ (4-14) 

which will be termed regularization. The regularization of the solution is controlled 
by the matrix Rrr and scalar ß. We see that the decision feedback filter in (4.12) uses 
the regularization matrix RsS and the regularization parameter ß = 1. 

4.3.    Adaptive Regularized Interference Rejection 

In the typical interference rejection techniques, the desired signal is a delayed version 
of the input, which is composed of the interference signal, DS/SS signal, and thermal 
noise. Ideally, the desired signal should be independent of the DS/SS signal to negate 
any correlation canceling caused by the rejection filter. To approach this goal, we reg- 
ularize the standard LMS rejection filter update, incorporating information regarding 
the DS/SS signal correlation. Assuming a predictor form for the rejection filter, the 
regularized LMS update is given by 

wn+1 = w„ + ß [x(n) - r(n) - w£ (x° - /?r°)] [x°„ + r°„] (4.15) 

where r(n) is the regularization input and x(n) = s(n)+j(n)+v(ri) is the DS/SS signal 
s(n), corrupted by the narrowband interference, j(n), and thermal noise v(n). The reg- 
ularization input is constructed such that it is uncorrelated with x(n). The state vec- 
tors are x° = [x(n - \)x{n - 2)... x(n - N)f and r° = [r(n - l)r(n - 2)... r(n -N)]T. 
The regularization is controlled by the scalar parameter ß. Refer to Figure 4.1. Rear- 
ranging (4.15) and taking expected values yields 

E {wn+1} = E { [i -p (x°„ + r°n) (x» - ßv°nf] w„} + ME {(x(n) " r(n)) (x°„ + r»)} 
(4.16) 

Using the standard independence assumptions [41] and that x(n) and r(n) are uncor- 
related, (4.16) becomes 

E{wn+1} = [I-Ai(Rxx-^Rrr)]E{w„} + /i[p2x-p°r] (4-17) 

Let w$n = E{wn}, then substituting into (4.17) and taking the limit as n -> oo 
yields [42] 

w£ ^ lim w°ßn =ß[ß (Rxx - /JRrr)]-1 [p°xx - p%] (4.18) 
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Filter Weights        z(ri) - j(n) - v(n) x(n) -j(n) - v(n) 
W

°WF' hn/L\c{n) Iln/L]c(n) 
0 JLn/Ljc(n) WWFopt 

w£P 0 0 DF 
°ß /Ln/LJc(n)-/[n/LJc'(n)    Iin/Lic(n) + ßr[n/Licf(n) w° 

Table 4.1.: A summary of the prediction filter inputs and desired responses for the 
filter designs discussed in the text. 

where it is assumed that w^o = 0. Convergence is guaranteed if fj, is chosen in the 
range 0 < fi < 1/ max (A (Rxx) + ß\ (Rrr)), where A (Rxx) are the eigenvalues of Rxx 

and A(Rrr) are the eigenvalues of Rrr [42]. Thus, the steady-state weight vector is 
the solution of 

[Rxx-ßRrr]w0
ß = p0

xx-p°rr (4.19) 

where regularization is provided by the matrix Rrr and the vector p£r. The scalar 
ß in (4.19) controls the regularization of weight vector solution. The regularization 
parameter is non-negative, ß > 0, with ß = 0 corresponding to the Wiener filter 
solution. 

Expanding terms in (4.19) leads to a form similar to that in (4.14) 

[Rjj + R» + Rw - ßR„] w£ = p^j + p°sa - pOr (4.20) 

Note that (4.20) is identical in form to (4.14) if p°s = p°r. This is achieved by 
constructing the regularization input according to 

r(n) = l[n/Lic'(n) (4.21) 

where I, ,L, is independent of I\n/L\ and is statistically identical to I\n/L\• The chip 
sequence c'(n) is statistically identical to the transmitted chip sequence c(ri). The 
cross-correlation between r(n) and s(n) is given by 

Prs(m) = E {r(n)s(n + m)} = E {l[n/L\ } E {Iyn/L\} E {c'(n)c(n + rn)}       (4.22) 

The cross-correlation function pTS{m) = 0 due to the zero mean bit sequences. A valid 
choice for the regularization chip sequence is d(n) = c(n+no), where no is an arbitrary 
fixed time shift. The autocorrelation function of r(n) is identical to the autocorrelation 
function of s(n) 

Prr(m) = E {I'ln/L^'in/Li} E {c'(n)c'(n + m)} = E {lin/nI[n/L\} E {c(n)c(n + rn)} 
(4.23) 

Using the equivalence prr(m) =/jgg(m), (4.20) becomes 

[Rij + a-^R^s + Rvvlw^p^ (4.24) 

Table 4.1 summarizes the associated signals for each filter. It is assumed that the 
decision-feedback is errorless. 

The regularization parameter is chosen to produce minimum SNR degradation from 
the optimum linear filter in (4.13), which results in 

\   7c   )\2L<T1 + . ^^l~lUr,2,,M2 (4-25) 
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where 7C is the SNR per chip, <r| is the interference power, and M = log2(L + 1). A 
few limiting cases of (4.25) are of interest. For vanishing interference power, (4.25) 
becomes 

lim 7?=i±^ (4.26) 

Note that as the SNR increases in (4.26), ß approaches unity. The value ß = 1 
effectively removes the excitation to the filter with respect to the mean of the filter 
weights. For dominant interference power, CT|-> co, we obtain 

(4.27) 

If the interference power is large enough, then ß RJ 0. This value for the regularization 
parameter produces the optimum Wiener filter, that is, wjj_0 = w^VFa 

4.4.    Performance Results 

The regularized interference rejection filter is compared to the optimum Wiener filter 
with an ideal reference, "VfwFopt °f (4-13), the decision-feedback filter With zero predic- 
tive delay, ~vr%F of (4.11) with K = 0, the decision-feedback filter with predictive delay 
equal to the processing gain, w£F of (4.11) with K = L, and the optimum Wiener 
filter which uses the received signal as the reference, yf%rF, of (4.8). The difference in 
the filters w^Fo t and w^, is that the former uses exact knowledge of the DS/SS 
signal s(n), while the latter does not. Thus w^F, is a sub-optimum realizable filter 
and WwF0 , is an optimum unrealizable filter. Similarly, w^^ represents an unreal- 
izable filter because it feeds back the signal s(n) before the entire chip sequence is 
received and the bit can be estimated. The filter WpF will subsequently be termed 
the symbol-feedback filter because no decision on the bit is involved in the operation 
of the filter. The filter wf>F, on the other hand, incurs a delay in the prediction equal 
to the processing gain L in order to feedback an estimate of the DS/SS signal s(n). 
In both cases of the feedback filters the exact DS/SS signal is used in the feedback 
path to avoid error propagation. A filter of length nine taps is used for all filters in 
the simulations. 

The performances of the various filters are simulated by using the discrete time 
received signal model x(n) = Iyn/L^c{n) +j(n) +v(n). The narrowband interference, 
which is uncorrelated with both the DS/SS signal and the random noise, has the form, 

i(n) = A^cos( 
Jb=0 ^ 

" 'T (*-50K 
^0 + 

100 
n + Öfc (4.28) 

where OJI is the spread of the narrowband interference, uo is the frequency deviation 
from the carrier, 9k is a random phase uniformly distributed over (0,27r], and A is ad- 
justed to achieve the desired signal-to-interference (SIR) power ratio, which is defined 
as SIR = E {s2 (n)} / E {f (n)}. The input SNR per bit is defined as [31] 

7, = ^ (4.29) 

where a\ is the variance of the thermal noise. The processing gain used for the simula- 
tions is L = 15. The SNR per bit at the output of the rejection filter will be calculated 
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experimentally using [31] 

-»• = d|ö <4-30> 
where ptj = 0-/K) Ylk=i ^ 1S tne experimental average of the decision variable and 
var(?7) = (l/K) Y,k=i ^1 - Vu 1S tne experimental variance of the decision variable. 
The decision variable is defined as Un = Y%=i e(ln/Ll + k)c{k) where e(n) is given 
in (4.2). The number of bits used is K = 1,000. The variable u0 is taken at ten 
uniformly spaced intervals over the signal bandwidth and the output SNR is computed 
at each frequency. These SNR values are subsequently averaged over the ten frequency 
locations. 
Output SNR vs. input SNR 

The SIR is set at -6dB with interference bandwidth ui = O.lir, and the output SNR 
is measured as the input SNR is varied. The results are shown in Figure 4.2. The 
performance of all the filters is essentially the same below lOdB SNR, except for the 
decision-feedback filter. It is apparent that there is a large penalty incurred by delaying 
the symbol feedback by an amount equal to the processing gain. The regularized filter 
performance is slightly (ldB) better than the optimum Wiener filter using the ideal 
reference for all input SNR. The regularized filter is 1.5dB better at 20dB SNR than 
the optimum realizable Wiener filter that uses the received signal as a reference. As 
expected, the symbol-feedback filter performs the best and is ldB better than the 
regularized filter at 20dB SNR. The separation of the filter performance curves as the 
SNR increases is a manifestation of the effects of the filter self-noise. 
Output SNR vs. input SIR 

For this simulation, the input SNR is fixed at 20dB with normalized interference 
bandwidth u>i = 0.17T and the output SNR is measured as the SIR is varied. The results 
are shown in Figure 4.3. As the interference power decreases, the regularized filter 
SNR approaches the symbol-feedback filter SNR as can be expected. The regularized 
filter SNR exceeds the optimum realizable Wiener filter SNR by approximately 2dB, 
when the SIR exceeds OdB. There is again a substantial penalty for delayed decision 
feedback in the region of SIR below OdB. However, the output SNR for this filter 
improves dramatically when the SIR exceeds OdB. 

4.5.    Summary 

A regularized LMS interference rejection filter is developed, which is based upon re- 
ducing the self-noise of the filter. The regularized LMS filter is obtained by using a 
weighted sum of the received signal with a regularization signal as the input to the 
normal adaptive LMS update algorithm. The regularization input shares the same 
autocorrelation function as the transmitted DS/SS signal, which allows a trade-off of 
interference rejection and filter self-noise reduction, performance results are presented 
that show the performance improvement afforded by the regularized LMS filter. The 
regularized interference rejection filter was compared to the optimum Wiener filter 
and the decision-feedback filter. The increase in output SNR compared to the Wiener 
filter was 1.5dB for SIR=-6dB. The increase in output SNR for moderate to high 
SIR was 2.5dB. The regularized filter also achieved the performance of the optimal 
decision-feedback filter for SIR exceeding OdB. The optimum Wiener filter is the one 
obtained when using only the interference as the reference signal for the adaptive fil- 
ter. The optimal decision-feedback filter subtracts the correct symbol from the filter 
input without delay. The practical decision-feedback filter is the one that subtracts 
the correct symbol only after it is correctly estimated at the correlator output. 
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x(n) = s(n)+j(n) + v(n) t- s(n) 

Prediction Filter 

Copy weights 

Prediction Filter 
w„ 

Regularized 
LMS Update 

i 
Figure 4.1.: The rejection filter update uses the LMS algorithm and is regularized by 

the input r(n). The regularization is controlled by ß. 
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--A-- Decision-feedback filter 
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Figure 4.2.: Output SNR vs. input SNR. SIR=6 dB, processing gain=15, prediction 
filter length= 9, interference bandwidth wi = 0.17T. 
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5. IS-95 CDMA System Modeling 

A system level simulation model for the IS-95 Code Division Multiple Access Spread 
Spectrum communication link is developed. The simulation is carried out in SIMULINK®, 
a dynamic system simulation toolbox in MATLAB®, that provides a graphical frame- 
work closely integrated with implementation tools. The building blocks used at the 
top-level consist of models of an information source, baseband processing, QPSK mod- 
ulator, multipath fading channel, RAKE demodulator and decoder. Link metrics such 
as bit error rate (BER) and signal-to-noise ratio (SNR) that are directly dependent on 
transmitter and receiver implementations as well as radio channel characteristics and 
provide an objective measure of performance are evaluated. 

5.1.    Introduction 

Prospective proliferation of mobile radio communication systems calls for increased 
capacity, reduced cost, improved performance, and dual-mode operational require- 
ments. The IS-95 Mobile-Station Base-Station Compatibility Standard For Dual-Mode 
Wideband Spread Spectrum Cellular System is endorsed by the US Telecommunica- 
tions Industry Association / Electronic Industry Association (TIA/EIA). It is based 
on code division multiple access (CDMA) technique that conforms to these specifica- 
tions [52]. CDMA direct sequence spread spectrum technique (DSSS), incorporated 
into this system, enables the accommodation of a large number of users in one radio 
channel depending on the voice activity level [53], i.e., it is interference limited unlike 
frequency and time domain multiple access based systems that are bandwidth lim- 
ited. This feature also provides immunity to jamming signals and enables resolution 
of multipath components in a time-dispersive radio propagation channel [51]. 

Accurate prediction of the performance of such systems has become increasingly 
important. Simulation technology that can be integrated into implementation tools 
has provided researchers and designers an efficient solution to this problem. Moreover, 
manufacturers greatly rely on communication system simulations to develop specific 
implementations before hardware development to reduce cost and to improve flexibil- 
ity. Analytical techniques, by comparison, are intractable when representing complex 
communication systems operating in time-varying radio channels. Current genera- 
tion workstation based simulation software packages provide interactive, hierarchical 
and graphical framework for link-level and system wide simulations, e.g. BOSS®, 
SPW® and COSSAP® [481. SIMULINK® is another dynamic system simulation 
software based on MATLAB® that is widely available and provides a real-time sim- 
ulation platform in addition to features listed above. Moreover, MATLAB® provides 
the necessary implementation tools to download the simulated system models into 
programmable digital signal processors 

The communication system model is typically a block diagram description of var- 
ious interconnected subsystems comprising the overall system. Link-level simulations 
focus on performance measures such as signal-to-noise ratio (SNR) and bit error rate 
(BER) of a communication link. Such link metrics are affected by multipath fading 
conditions within the channel and receiver implementations. Efficient simulation of the 
signal processing operations modeling the system then becomes critical in the evalu- 

35 



wo 

Pilot Channel (AU O's) 

Sync Channel 
Data    — 

1200 bps 

Paging Channel 
Data     — 

1200bps 

Convolutiona] 
Encoder and 
Repetition 

Block 
Interieaver 

Convolutional 
Encoder and 
Repetition 

Block 
Interieaver -MB- 

Paging Channel p 
Long Code Mask 

Long Code 
Generator 

Forward Traffic 
Channel Data_ 

9600bps 
4800bps 
2400bps 
1200bps Usern 

1.2288 
Mcps 

1.2288  I 
Mcps  ¥ 

W32 
288  I 
cps f 

*►©—♦ 
Wp 

!288 , 

MB-*Tos 

To Quadrature 
Spreading 

1.2288 
Mcps 

To Quadrature 
Spreading 

1.2288 
Mcps 

Convolutional 
Encoderand 
Repetition 

Block 
Interieaver 

19.2 

n, 

Power 
Control 

Bit   "* 

Long Code Mask 

[-Channel PN Sequence 

Long Code 
Generator 

Quadrature 
Spreading ~ 

ice   * 

lMksps 

15288 
Mcps 

3 
Mcps 

I Baseband 
Filter 

cos(2pifct)l 

Q-Channel PN Sequence nee A 

Baseband 
Filter 

sin(2pifct) 

Quadrature 
Spreading 

To Quadrature 
Spreading 

s(t) 

Figure 5.1.: Forward CDMA Channel Structure. 

ation of its performance. Also, the entire system including the environment in which 
it operates must be simulated. This can be done using analytical models, statistical 
models based on experimental observations, experimentally measured channel impulse 
responses or from the geometry of the environment. Since only the second and third 
methods are feasible, channel impulse responses (also estimated as power delay profiles 
from field trial measurements) were used to model the multipath fading environment. 

5.2.    System Description 

The IS-95 standard proposes a system consisting of forward (base station to mobile 
station) and reverse (mobile station to base station) CDMA channel structures, which 
are described in the following sections. 
Forward CDMA Channel Structure 

The forward CDMA channel consists of four code channels : the pilot channel 
(always required), the sync channel, paging channels (1 to 7) and traffic channels (55 
to 63)(see Figure 5.1) [52]. Pilot channel, transmitted at all times, is an unmodulated 
spread spectrum signal used for synchronization by a mobile station operating within 
the coverage area of the base station. The sync channel is a modulated spread spectrum 
signal used by mobile stations to acquire initial time synchronization. The paging 
channel is also a modulated spread spectrum signal used to transmit system overhead 
information by the base station and specific messages by the mobile station. The 
forward traffic channel is used for the transmission of user and signaling information 
to a specific mobile station during a call. 

Data rates at the input are: Pilot channel (all 0's) at 19.2 kbps; Sync channel at 1.2 
kbps; Paging channel (fixed data rate) at 9.6, 4.8 or 2.4 kbps; Traffic channel (variable 
data rate) at 9.6, 4.8, 2.4 or 1.2 kbps. The sync, paging and traffic channel data are 
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Figure 5.2.: Reverse CDMA Channel Structure. 

then convolutionally encoded using rate 1/2, constraint length 9 code. A long-code (of 
length 242-l) at the PN chip rate (1.2288 Mcps or million chips per second) spreads the 
encoded symbols. A long code mask that modulates the long code in traffic channels 
is used for voice privacy. 

Each code channel transmitted on the forward CDMA channel is spread with a 
Walsh function at a fixed chip rate of 1.2288 Mcps to provide orthogonal channelization 
among all code channels. After orthogonal spreading, each of these code channels are 
spread by a quadrature pair of maximal-length PN sequences (length 215) at a fixed 
chip rate of 1.2288 Mcps. PN sequence time offsets are used in code channels for 
synchronization by a mobile station. The base station transmits the forward CDMA 
channel signal at 870.030 MHz with a channel spacing of 30 kHz. The corresponding 
dual-mode mobile station transmit channel is at 825.030 MHz. 
Reverse CDMA Channel Structure 

The reverse CDMA channel is composed of access channels and reverse traffic 
channels. The reverse channel is 64-ary orthogonal modulated at data rates of 9.6, 
4.8, 2.4 or 1.2 kbps as shown in Figure 5.2 at point A. The rate of the spreading 
PN sequence is fixed at 1.2288 Mcps. The reverse traffic channel is used for the 
transmission of user and signaling information to the base station during a call. The 
access channel is used by the mobile station to initiate communication with the base 
station and to respond to 

paging channel messages. The mobile station transmits information on the reverse 
traffic channel at variable data rates of 9.6, 4.8, 2.4 or 1.2 kbps and on the access 
channel at a fixed data rate of 4.8 kbps. These are then convolutionally encoded by 
rate 1/3, constraint length 9 codes. The code symbols are then modulated by a 64-ary 
orthogonal modulator using 64 Walsh functions. The reverse traffic channel and the 
access channel are then direct sequence spread by the long code.  Furthermore, the 
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waveform is spread by a pair of PN codes (identical to the ones used in the forward 
traffic channel), common to all subscribers and to the access channel in an OQPSK 
arrangement. The final waveform is then filtered to generate a spectrum with 1.2288 
MHz double-sided 3 dB bandwidth. The mobile station transmits the reverse CDMA 
channel signal at 825.030 MHz with a channel spacing of 30 kHz. The corresponding 
dual-mode base station transmit channel is at 870.030 MHz. 
Receiver 

The mobile station demodulation process involves complementary operations to 
the base station modulation process. The mobile station also performs tracking and 
demodulation of multipath components of the forward CDMA channel in addition to 
scanning and estimation of the signal strength at each pilot PN sequence offset. The 
standard specifies the use of a RAKE correlator in the receiver but its structure is not 
specified. 

5.3.    System Modeling and Simulation 

A communication system based on the IS-95 standard is developed from a software- 
representable description or a block diagram of the system described in the previ- 
ous section. Each block represents a subsystem that can be described using signal- 
processing operations. An explicit model vis-a-vis, the equations and algorithms or 
methodologies followed in the implementation of each operation is presented here. 
Random Data Generator 

Forward and reverse traffic channel information bits are simulated as digital signals 
containing embedded digital sequences represented as 

oo 

■*(*) =   £  AkP(t-kTb^D) (5.1) 
fc=—oo 

where {A*.} is a digital sequence, Tf, is the bit period, D is a random delay and p(t) 
is a suitable pulse waveform. 

A general block to implement (5.1) is developed using the random number generator 
in SIMULINK [49]. The pulse waveform and delay are incorporated into this block as 
shown in Figure 5.3. 

The user interface to this subsystem has controls for specifying the time period or 
the data rate, random delay and the seed for the random number generator. Different 
seeds are used to distinguish between the code channels and initial delays are set to 
zero for link-level simulations. 
Convolutional Encoder 

A linear binary shift register made up of unit delay blocks in SIMULINK is used 
to implement convolutional encoders. The code characteristics are established by 
feedback taps which are defined by generator functions. 

The forward channel at the base station uses a convolutional code of rate 1/2 and 
constraint length 9. -The generator functions of the code are 753 (octal) for g0 and 
561 (octal) for gi. Two code symbols are generated for each data bit. These code 
symbols are output such that code symbol (c0) encoded with generator function g0 is 
output first and code symbol (ci) encoded with generator function gi is output last 
(see Figure 5.4). 

The modulo-2 adders are implemented using XOR gates and the outputs of g0 and 
g! multiplexed to form the output sequence of code symbols at twice the input data 
rate. 
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The reverse channel uses a convolutional code of rate 1/3 and constraint length 9 
with generator functions g0 equal to 557(octal), gi equal to 663(octal) and g2 equal to 
711 (octal). Three code symbols are generated for each data bit and are output such 
that code symbol c0 encoded with generator g0 is output first, Ci second and c2 last. 
This is implemented as described for the forward channel. 
Walsh Code Generator 

Each code channel transmitted on either CDMA channel is spread with a Walsh 
function to provide orthogonal channelization among all code channels. One of sixty- 
four time-orthogonal Walsh functions is used for the purpose. The 64 x 64 matrix of 
Walsh functions is generated using the following recursive procedure: 

#1=0 

#4 = 

0 0 0 0 1 
0 1 0 1 
0 0 1 1 
0 1 1 0 

H2 = 

H2N = 

0 
0 

0 
1 

HN HN 

HN HN 

(5-2) 

where N is a power of 2 and HN denotes the binary complement of HN- 
The repeating sequence block in SIMULINK calls the MATLAB file that uses the 

built-in function hadamard.m. A 64 x 64 Hadamard matrix is first generated using 
the recursive procedure described above. The elements of the Walsh function are then 
obtained by mapping the binary alphabet of {-1,1} of the Hadamard matrix into the 
binary alphabet of {1,0} of the Walsh function matrix. Input to this block is the Walsh 
function number and output is the corresponding Walsh function. 
Long Code Generator 

Forward and reverse traffic channel data are direct sequence spread by a long code 
of length 242 -1 chips. The long code satisfies the linear recursion specified by the 
characteristic polynomial given by 

p(x) . =   x42 + x35 + x33 + x31 + x27 + x26 + x25 + x22 + x21 + x19 + x18+ 
x17 + x16 + x10 + x7 + x6+x5+x3 + x2+x + i (5.3) 

The code is generated by the modulo-2 inner product of a 42-bit mask and the 42-bit 
state vector of the sequence generator using AND gates. Mobile identification number 
is incorporated into the 42-bit mask for voice privacy.   A 42-bit random repeating 
sequence is used for simulation purposes. 
PN Sequence Generators 

Following orthogonal spreading, each code channel is spread in quadrature. The 
spreading sequence is of length 215. The maximum length linear feedback shift register 
sequences i(n) and q(n) are based on the polynomials of length 215 -1 given by 

P^x) = x15 + x13 + x9 + x8 + x7 + x5 + 1 (5.4) 

PQ(x) = x15 + x12 + x11 + xw + x6+x5+xi+x3 + l (5.5) 

The I and Q pilot PN sequences are obtained by inserting a '0' in i(n) and q(n) after 
14 consecutive '0' inputs (this occurs once in each period). This is achieved using a 
repeating sequence block that inserts a zero appropriately. 
QPSK Modulator 

Baseband filters used for filtered QPSK modulation are derived from the filter coef- 
ficients specified in the standard and are implemented using the Discrete Filter block in 
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Table 5.1.: I and Q Mapping 
I Q Phase 
0 0 TT/4 

1 0 3TT/4 

1 1 -3TT/4 

0 1 .-TT/4 

SIMULINK. The filtered and quadrature spread I and Q channel sequences phase-shift 
modulate in-phase and quadrature phase carriers in a pseudo-random fashion resulting 
in direct sequence spread spectrum modulation. I and Q channel phase mapping is 
given in Table 5.1. The output signal can be expressed as 

S(t) = I(t)cos(2itfct)-Q(t)sm(2nfct) (5.6) 

where I(t) and Q(t) are the filtered waveforms with embedded I and Q channel digital 
sequences respectively represented as 

oo 

~~ (5-7) I(t) = -.     £  Ip(t-kTc) 
*= —00 

Q(t)   = 

oo 

=     J2 Qp(t-kTc). 

fc is the transmit frequency (870.030 MHz) and Tc is one chip period (813.802 ns). 
For OQPSK modulation on reverse channel, the Q channel data is offset such that 

oo 

Q(t)=   ]T  Qp(t-kTc-T) (5.8) 
k=—oo 

where T is half a chip period (409.901 ns). S(t) can also be expressed as 

S(t) = Re{S(t)ej27rf*t} (5.9) 

where S(t) is the complex envelope or the low-pass equivalent representation given by 

S(t) =■[/(*)+ jQ(t)}. (5.10) 

RF carriers required for the modulation process are implemented using the sine 
blocks in SIMULINK with frequency fc, phase 0 and 7r/2 and unit amplitudes. Product 
and difference operations are implemented using suitable blocks from the SIMULINK 
library (see Figure 5.5). 

5.4.    Multipath Channel Model 

Channel simulation requires accurate representation of the signal environment for the 
desired frequency and geographic location. Experimentally measured channel impulse 
responses, also known as power delay profiles, are used for channel modeling. Wireless 
transmissions undergo multipath-induced fading as the radiated energy interacts with 
objects within the channel. Under these conditions, link-level simulations require the 
simulation of small scale fading effects, impulsive noise and short term variations of 
multipath channel impulse responses to determine realistic bit error patterns.  The 
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Figure 5.5.: Forward CDMA Channel QPSK Modulator. 

fading signal has known to have three basic components contributing to the variations 
in its signal strength described as follows. 
Propagation Path Loss 

The free space propagation path loss is due to the frequency of transmission and 
the distance of the mobile from the base station and can be described as, 

(5.11) 

where c is the speed of light, A is the wavelength, Pt is the transmitted power and Por 

is the received power in free space. Gain blocks of SIMULINK were used to incorporate 
this in the simulated multipath channel model. 
Long-Term Fading 

Long-term fading or slow fading is caused by movement of the mobile over distances 
large enough to produce gross variations in the overall path between the transmitter 
and receiver. This results in attenuation and fluctuations in the local-mean of the 
fading signal. Measurements indicate that the mean path loss closely fits a log-normal 
distribution with a standard deviation that depends on the frequency and environ- 
ment [51]. Standard deviations of 8 dB and 6 dB were used for suburban and urban 
environment models. The lognormal pdf can be represented as 

p(y) = 
yjlvoy 

exp 
(y-m)2 

2*2 
(5.12) 

where the lognormal variable y, its mean m, and its standard deviation ay are in dB 
scales [50]. Lognormal variations in the local mean of the signal were brought about 
using the random number generator and the logarithm function blocks as in Figure 

'■5.3. ::■■;-';. ..    . 
Short-Term Fading 

Short-term fading is caused by multipath reflections of a transmitted wave by local 
scatterers such as buildings and forests surrounding a mobile unit. Many researchers 
have shown that the envelope of the mobile radio signal is Rayleigh distributed. This 
suggests that at any point, the received field is made up of a number of horizontally 
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Figure 5.6.: Sample Power Delay Profile. 

traveling plane waves with random amplitudes and angles of arrival for different loca- 
tions. The phases of the waves are uniformly distributed from 0 to 2it. The amplitudes 
and phases are assumed to be statistically independent. 

The Rayleigh pdf is represented as 

P(r) •exp 
2ff2y 

(5.13) 

where a2 is the average power of the short-term fading signal. 
Simulated Multipath Channel Model 

Experimental evidences such as those described above gave rise to a three-stage 
model to describe mobile radio propagation, an inverse n-th power law with range 
from the transmitter to the receiver, lognormal variations of the local mean and su- 
perimposed fast fading which follows a Rayleigh distribution. Since Rayleigh fading is 
caused by the combined effect of time delayed components of the radio signal reaching 
the receiver, a discrete model based on the channel impulse response was developed. 

A typical power delay profile is shown in Figure 5.6 and is given by 

^m(rfe) = — ^Tftfa). (5.14) 
j=l 

A measure of the width of an average power delay profile that is relevant in assessing 
the impact on a communications system performance is delay spread, sm, defined as 
the square root of the second central moment of a profile m and expressed as 

Er=lfa-dm-TA)2Pm(Tfc) 
1/2 

(5.15) 

where A; ranges over the entire time duration of the measuring window, r* is the time 
delay of the fcth sample and dm is the average delay, the first moment of the profile 
with respect to the first arrival delay TA, defined as 

°m —     -r^K      r,    /     -v TA- £*=l-Pm(Tfc) 
(5.16) 
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The delay of the last significant component above -10 dB in the power delay profile 
is called the average excess delay, Ed- The energy of the signal outside the window 
between TA and Ed is negligible and is set to zero for computations of the tap gains 
and tap delays in the RAKE receiver. 

Measurements of power delay profiles from [1,2,7,9,11] are incorporated into the 
discrete model for the multipath channel (see Figure 5.7). This provided measurement 
based channel models for performance evaluation of the communication system. Values 
of parameters an, the attenuation along the path arriving after a time delay, Tn were 
estimated from the power delay profiles and used in the gain and transport delay blocks 
of the simulated multipath channel model. 

5.5.    Receiver Structure 

The standard specifies a receiver that performs demodulation process comprising of 
complementary operations to the transmitter modulation process. QPSK and OQPSK 
demodulation are carried out using local carrier references. In the actual case, pilot 
and sync channels are used for carrier recovery and symbol and frame synchronization 
respectively. For simulation purposes, perfect carrier recovery and time synchroniza- 
tion are assumed. From the received signal r(t) = S(t)+n(t), (n(t) is additive white 
Gaussian noise, N(0,cr2)) the demodulated outputs I0(t) and Q0(t) are obtained as 
follows: 

h{t)        = 

Qo(t)   = 

^-J^r(t)cos(2Trfct + e)dt 
jr /0

Tc [2I(t) COS
2
(2TT/C< + 9) - 2Q(t) sin(2?r/ct + 9) COS(2TTfct + 9)] dt 

i- Jo' t7(*) {1 + cos[2(27r/ci + 9)}} -Q(t) sin[2(27r/ci + 9)]] dt 
lit) 
£f*cr(t)sm(2nfct + 9)dt 
jr /0

Tc [-21{t) COS(2TTfct + 9) sin(27r/ci + 9) + 2Q(t) sin2(27r/c* + 9)] dt 
f J^ [-I(t) sin[2(27rfct + 9)] + Q(t) {1 - cos[2(27r/ct + 9)]}] dt 

Q(t) 
(5-17) 
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Figure 5.8.: RAKE Receiver Structure. 

The local references axe implemented using the sine blocks in SIMULINK. The inte- 
grator and sampler block performs integration of the input waveform over one chip 
period and outputs this value at the end of the chip period. The integrator is reset 
after every chip period, Tc (=813.802 ns). This is implemented using the integrator, 
sample and hold blocks in SIMULINK. 
RAKE Correlator 

A RAKE correlator is used to overcome multipath fading effects of the diversity 
communications system. It is a tapped delay line receiver that attempts to collect the 
signal energy from all the received signal paths that fall within the span of the delay 
line and carry the same information. Hence it is an optimum receiver for processing 
wideband signals that suffer from multipath fading effects. 

The structure of the RAKE correlator is not specified in the standard. Path loss 
characteristics of measurements in [1,2,7,9,11] were used to estimate the number of 
taps and tap gains in the correlator shown in Figure 5.8. The RAKE receiver is then 
implemented using the transport delay blocks for the delays and gain blocks for the 
tap gains in SIMULINK. 

The taps on the RAKE receiver are synchronized to the detected paths in the 
received signal using the delay blocks. The decision variable is obtained from the 
noncoherent combination of the matched filter (integrator and sampler) outputs. This 
is achieved by delaying these outputs and synchronizing them at a time equal to 
(T + Aw) where T is the estimated time from the symbol synchronization and Aw is 
the maximum delay of the radio channel. If the correlator outputs are represented as 
£(T - Tj), i = 1,2..K where n is the fth time delay and K is the number of paths, the 
decision variable can be expressed as 

K 

? = $>6(T + A«;) (5.18) 
t=i 

where ß% is the normalized tap gain corresponding to the strength of the fth path. The 
decision block outputs a '1' for q < 0 and '0' for c > 0. Such a RAKE receiver is called 
noncoherent or optimum combining RAKE receiver. 
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5.6.    Performance Results 

Simulations for the complex communication system developed here rely on a quasi- 
static approach where the channel is static for a specific period of time when specific 
conditional performance measures such as signal-to-noise ratio (SNR) and the accu- 
mulated signal distortions in terms of the bit error rate (BER) are estimated. The 
simulated data and code generators are tested for statistical and correlation proper- 
ties to verify their functionality. The convolutional encoders are tested in terms of its 
impulse response by observing its output for a single '1' bit input. The orthogonality 
property of the implemented Walsh codes or functions are tested. 
BER Estimation 

Monte Carlo is the name for implementation of a sequence of Bernoulli trials where 
the number of 'successes' (errors) are divided by the number of trials. For link-level 
simulations considered here, this technique lends itself well to performance evaluation 
of RAKE correlators used to compensate for multipath fading effects. The source 
output (known) is compared with a delayed version of the decision device output to 
obtain ah empirical basis for the error rate. 

Importance sampling is a form of Monte Carlo simulation in which the statistical 
properties of the noise processes driving the system are altered such that many more 
errors are produced per unit time. A known change is introduced and is corrected 
for enabling a reduction in simulation run time Since the system under consideration 
has various noise sources with varying distributions (lognormal, Rayleigh and Rician) 
causing alteration and correction of their parameters to be computationally intensive, 
this simulation methodology was not adopted. 
SNR Estimation 

The standard measure of performance for a noisy signal is the signal-to-noise ratio 
(SNR). Assuming that output of the decision block after the RAKE receiver is a signal 
corrupted by additive noise, the SNR estimate p is given by 

P = (s2o)/e2 (5.19) 

In the system under consideration, SQ is a pulse waveform with amplitude, A = 1 
and e2 is the time average of the square of difference in the source and output digital 
waveforms. 
Receiver Characteristics 

The performance characteristics of the communication system in multipath cellular 
environment is of interest here. Hence the 215 long PN sequence was QPSK modu- 
lated with a carrier frequency of 870 MHz, passed through the multipath channel and 
detected using a RAKE demodulator. The BER and SNR were estimated and the 
performance characteristics of the system determined. 

A four-way RAKE receiver to demodulate the four strongest multipath compo- 
nents received on two diversity antennae was used during prototype validation. In 
this configuration, the decision output from each of the active demodulators is fed to 
an external microprocessor. The microprocessor combines the individual demodulator 
decisions, weighing each one by the relative strength of the respective multipath com- 
ponent and generates a single stream of soft-decision inputs to the Viterbi decoder. 
But this type of diversity combining is sub-optimal since an independent decision on 
the transmitted orthogonal symbol is being made by each individual demodulator. 

Hence an optimum combining diversity receiver was developed where the number 
of taps are equal to the number of paths in the power delay profile and the tap gains 
were estimated from the strength of the signal component along the corresponding 
path. The test setup is shown in Figure 5.9. 
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Figure 5.9.: Performance Test Setup. 

Table 5.2.: Observed Channel Characteristics 
Type of       Number of        Average Delay 
Channel        Paths, K      Spread, sm (in ps) 

0.5 < -m < 0.9 
1 < sm < 5 

Open Area        K < 4 
Suburban 5 < K < 8 

Urban 8 < K < 15 
Indoor K > 5 

s. 'm >3 
sm < 1 

The noise threshold chosen to distinguish between a signal and noise component 
was -94 dBm [48]. Profile 1 is the file containing power delay profile measurements 
obtained from [53] for a suburban environment. The obtained performance character- 
istics are shown in Figure 5.10. Optimum combining RAKE receiver shows a 2.5 dB 
improvement in the required SNR for a BER of 10-3. 
Multipath Channel Characteristics 

Time-delayed echoes in multipath channels can overlap causing errors in digital 
systems due to inter symbol interference. In this case, increasing the signal-to-noise 
ratio will not cause a reduction in error rate and so the delay spread sets the lower 
bound on error performance for a specified data rate. This limit is often termed as 
the irreducible error rate. The performance of the system can however be improved 
by the use of channel equalization and diversity (RAKE receiver) techniques. 

Some of the observed characteristics in the power delay profiles of open area, sub- 
urban, urban and indoor environments are tabulated in Table 5.2. A noise threshold 
of -94 dBm or 35 dB below the strongest component was used to distinguish between 
signal and noise components and to estimate the number of paths and the average (or 
rms) delay spreads from the power delay profile measurements. 

Open area environments are characterized by very small average delay spread val- 
ues with less than 4 paths. The direct component is almost always present in them 
and they do not require channel equalization. Suburban environments also provide 
a good propagation medium when the direct component is present and the reflected 
components are well above the noise floor. Hence diversity combining proves highly 
efficient for such environments. Urban and indoor channels, however, have many re- 
flected paths and can be differentiated by the fact that the latter have shorter paths 
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and hence considerably smaller average delay spread values. 

5.7.    Summary 

A software simulation technique to implement an IS-95 standard based CDMA spread 
spectrum communication system in SIMULINK is developed. Major subsystems (en- 
coders, modulators, demodulators) required to estimate the performance of the system 
in a mobile cellular environment are simulated and tested. A multipath channel model 
consisting of lognormal and Rayleigh fading simulators and a path loss component 
is implemented. The simulated system thus enables subjective quality evaluation of 
mobile radio links. The performance of the system with regard to BER is determined 
and compared for 4-way and optimum combining RAKE receivers. The optimum 
combining RAKE receiver provides 2.5 dB improvement in SNR for a BER of 10~3. 

Characteristics of multipath channels for open area, suburban, urban and indoor 
environments with regard to average delay spread and number of discrete paths are 
compared based on power delay profile measurements. The delay spreads by them- 
selves do not provide very precise measures for system evaluation. It is therefore more 
useful to provide statistics about the number of paths and their time delays. These re- 
sults can then be used in designing hardware and software simulators such as diversity 
combining receivers. 
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