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Abstract 

In this report a fast optimal nonlinear filter is developed. This fast filter is based on 

two techniques: (i) splitting of the convection and diffusion operators and (ii) tracking of 

the "important" domains (windows) with iterative reduction of the window size - a domain 

pursuit technique. As a result, the domain of interest is determined adaptively. 
The developed nonlinear filtering algorithm is then applied to a real problem of tracking 

ballistic targets in six dimensions. Simulation results for this problem demonstrate the fairly 

high statistical accuracy, efficiency, and real-time performance of the proposed algorithm. 

These results also show that the developed method is much more accurate compared to the 

traditional extended Kaiman filter. 

1    Introduction 

In applications the target tracking problem can be naturally formulated as a filtering problem for 

hidden Markov models: given an unobserved (hidden) state (or signal or system) process, which 

is usually assumed Markovian, and an observation (or measurement) process, which provides 

noisy information about the state process, one needs to estimate the state or a function of the 

state at a given time moment by using all the observational information available up to that time 

moment. 

Ideally, the involved stochastic dynamics are linear and Gaussian and in this case the filtering 

problem is solved by the Kaiman and Kalman-Bucy filters. For linear and Gaussian models the 

Kaiman filter is optimal in the mean-square sense and had a big success in a wide variety of 

applications. However, many real-world problems do not fit well with linear dynamic models. 

Sometimes one can explicitly describe the distribution of the state given measurements (pos- 

terior distribution) but, outside the realm of the linear theory, only a very few examples have 

explicitly described posterior distributions. Since most real problems are nonlinear, this creates 

a fundamental problem. Successive linearization in short time intervals, the Extended Kaiman 

Filtering procedure, may be applied but its serious disadvantage is that it often gives erroneous 

answers and refining of computational effort can increase them. 

Theoretical study of the general nonlinear filtering problem has also gone through more than 

three decades of efforts of mathematicians, statisticians, and engineers and has now become more 

or less mature as a research field. See the books by Stratonovich [28], Jazwinski [11], Liptser and 

Shiryayev [16], Kallianpur [13], Rozovskii [26], Pardoux [22], Bensoussan [2], Tanizaki [29], Elliott, 
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Aggoun, and Moore [4]. In contrast to the linear case where there exists a finite dimensional 

statistic, a general nonlinear problem is infinite-dimensional in nature. This was the main reason 

why optimal nonlinear filters have not been widely used in real applications. 

Approximations to the optimal nonlinear filter must be adopted. The simplest and most widely 

used approximation is the extended Kaiman filter (EKF), which is basically the Kalman-Bucy 

filter applied to a dynamically linearized system. The EKF has been modified for different 

purposes and has many versions such as the second order approximation [21] and the iterative 

extended Kaiman filter [1, 11, 12]. 

In addition to the EKF and its modifications, there are two major approaches to nonlinear filter 

approximation. One approach assumes that the filtering densities belong to a certain class of 

functions such as Gaussian or exponential or some combinations. Actually EKF is an example of 

an assumed-density filter and is perhaps the simplest. Other examples are the Gaussian mixture 

filter (see [27]) and more recently the projection filter (see [3]). 

The other approach is to use a direct (analytical or numerical) approximation to the optimal non- 

linear filter. One recent advance in this direction is the Wiener chaos decomposition or spectral 

separation scheme (S3) for nonlinear filtering in continuous time [17, 18] and similar (related) 

algorithms that also use the "off-line/on-line separation" idea [19, 20]. A direct numerical ap- 

proximation to the optimal nonlinear filter is based on computing the convolution integral in 

the discrete filtering model [15, 29], on using fast solvers for the Fokker-Planck equation in the 

continuous-discrete filtering model [14, 19, 24], or on solving the Zakai equation in the case of 

continuous time [6, 8, 9, 10]. 

Both approaches encounter computational difficulties in practical applications. The problem with 

EKF and its modifications or, in general, with the assumed density filters, is that they do not 

work well if the posterior distribution differs from the assumed form. For example, if one assumes 

a Gaussian distribution and uses EKF while in reality it is multi-peak (far from Gaussian), then 

the filter completely fails. Assumed density filters (including EKF) fail, for example, in many 

important situations such as angle-only target-tracking due to divergence, instability, inaccuracy, 

etc. The reason is that the prespecified density class is too restrictive in the general nonlinear 

case. Direct approximation is much better in this class of situations but has another important 

limitation - the "curse of dimensionality". If, for instance, we have a six-dimensional model, 

which is typical for radar applications, and 100 points are used in each component of the state 

(in many cases 100 points could even be too few for a satisfactory estimate of the state), then 

the total number of spatial points is N = 1012. If one uses a fast solver with FFT which has 

complexity CdN(\og2N)d~1 for dimension d, then one needs to perform 1020C6 flops at each 
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time step, which is simply unacceptable. Even if the Fokker-Planck solver has optimal (linear) 

complexity (like ADI), we still need to perform 1012C6 flops each step. Note that the constant 

Cd increases with dimension d and C\ > 8. 

What do we do then? From the one hand to avoid the difficulties that EKF faces, it is desirable to 

use a direct approximation (rather than an assumed density approach) to the optimal estimate. 

From the other hand in order to implement direct approximations to high-dimensional real 

problems, we need (1) to develop fast Fokker-Planck equation solvers with linear complexity, 

and (2) to reduce the number N of spatial points substantially without reducing the accuracy. 

The former can be achieved by the so-called operator-splitting method. The latter goal is achieved 

by reducing adaptively at each time step the size of the spatial domain in which the equation is 

solved (the domain should be reduced in each direction). This idea leads to the adaptive domain 

pursuit technique (DPT) that is developed below. 

It is worth mentioning that the proposed domain pursuit approach has some similarity with 

the EKF. In fact, at each time step the DPT tracks a domain (window)1 in which the target 

is located and then proceeds the nonlinear filtering in this moving window (or multi-windows), 

whereas the EKF tracks only two parameters at each time step (the mean and variance of the 

target state) and then linearizes the nonlinear dynamics around the estimated mean. 

The remainder of the report is organized as follows. In Section 2 we outline the basic facts 

from the theory of optimal nonlinear stochastic filtering for continuous-discrete time model. 

Section 3 is devoted to the development of the fast algorithm which is based on the convection- 

diffusion splitting and the domain pursuit technique. In Section 4 we apply the developed 

general algorithm to a practically important radar target tracking problem in six dimensions. 

The numerical results obtained in computational experiments are given in Section 4.2. These 

results demonstrate fairly high accuracy and efficiency of the method and show that it is much 

more accurate compared to the EKF. 

2    Continuous-Discrete Filtering 

2.1    Statement of the problem 

We are interested in the continuous-discrete filtering model, since this is perhaps the most ap- 

propriate model in real target tracking problems. Specifically, the dynamics of target trajectories 
1This domain may be multiply connected - multi-windows. 
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is naturally continuous while the observations are usually taken at discrete time moments. 

Consider the dynamic system described by the stochastic differential equation 

dXt = b(Xt)dt + a(Xt)dWt,   t>0, 

Xo ~ 7T0 . 

The discrete-time noisy observations are given by 

Yk = hk(Xtk) + Rk(Xtk)Vk,   A: = 0,1,..., (2) 

where b : JRd —>■ JRd is a vector-valued function, a : Md —>■ ]Rdxd is a matrix with function entries, 

{Wt}i>0 is a standard rf-dimensional Brownian motion (Wiener process), tk = kr (r > 0), 7r0 is a 

(prior) distribution of the initial condition, hk, Rk are given functions, and Vk are i.i.d. random 

variables. Without loss of generality, X0, {Wt} and {Vk} are assumed to be independent, and 

the following regularity conditions on the parameters of the model are also assumed: (1) the 

functions bk, hk, Qk, Rk, and 7r0 have bounded derivatives up to an appropriate order, and (2) all 

the derivatives of ir0 decay at infinity faster than any power of \x\. 

For simplicity, we only consider the case where the functions b and a are time-independent. But 

the discussions that follow can be easily generalized to cover the time-dependent case. In fact, 

only the coefficients in the Fokker-Planck equation (3) below and the associated semigroup will 

need to be accordingly modified. 

2.2    Fokker-Planck equation 

The theory of stochastic differential equations tells us (see [5, 7, 25]) that under certain conditions 

on b and a, there exists a unique solution Xt of (1) (in the sense of Ito) and that the probability 

density u(t, x) of this diffusion process Xt satisfies the Fokker-Planck equation (also known as 

the Kolmogorov forward equation) 

^ = 5 E^M'W«.*)) - ££(M.Mt..)) (3) 

where aßV(x) is the /x-th row and z^-th column entry of the product matrix a(x)a(x)*, and bv{x) 

is the z>--th component of the vector b(x). 

Let T(t) denote the semigroup associated with the above Fokker-Planck equation. Then its 

solution u(t, x) with the initial value w(0, x) = g(x) is [T(t)g](x). 
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We now note that since there is no observation available between tk-i and tk, the (prior) transition 

density is the only available information on (tk-i,tk) and so one has 

p(Xtk = x | Y*"1) = [TirMX^ = ■ | Y*-1)] (x). 

2.3    Unnormalized filtering densities 

By using the Bayes formula and the Fokker-Planck equation, one can obtain the conditional 

densities recursively as follows 

p(Xtk =x\Yk) = ^<*k(x) [TirMX^ = • | Y*-1)] (*),   k > 1 

p(X0 = x | Y°) = -T~-a0{x)^o{x) 

where c(k) is the normalizing constant to make the integral of p(Xtk = x \ Yk) to be one, and 

the "correction term" ak(x) related to the observation is given by 

ak(x) = exp{-i(yfc - ^(a:))*(it:fc(a;)i?fc(a;)*)-1(n -hk(x))} ■ (4) 

The calculations are simplified if in place of the usual (normalized) filtering density one uses the 

unnormalized filtering densities (UFD). We define the UFD by2 

pk(x) = ak(x)[T(T)pk-i](x),   k>l _ 

p0(x) = a0(x)ir0(x). 

It is a standard fact that for any function g such that E\g{Xt)\ < oo, the conditional expectation 

of g(Xtk) given Yk = a(Y0,Yu---,Yk) can be obtained by 

/   g(x)pk(x)dx 
E(g(Xtk) | Yk) = i*- . (6) 

JMdPk(x)da ix 

This conditional expectation is the best mean-square estimate of g(Xtk) if E\g(Xtk)\2 < oo. 

(This is the case if g satisfies \g(x)\ < K(l + \x\x), Vz 6 Bd, for some A and K > 0; see [16].) 

2When Rk does not depend on x, our definition here is slightly different from the usually defined UFD. The 

difference is in ctk(x), where we keep the term -Yk*(RieR*k)~
1Yk/2. This is done to avoid computational instability: 

from (4)-(5) we have |bk||oo < ||r(r)pfc_i||oo)V/!. In fact, the Fokker-Planck equation for this UFD can also be 

modified for the purpose of stability. See Section 2.4.3 and Section 2.5.2 of [23] for details. 
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3    Adaptive Domain Pursuit Method 

In this section, we present a windowing technique which is based on the framework of splitting 

the convection (drift) and diffusion (noise) operators. 

3.1    Splitting of convection and diffusion processes 

To compute the unnormalized filtering density, a fast Fokker-Planck solver is needed. Our method 

is based on the operator-splitting technique. 

Assuming that in the noise term of (1) the covariance matrix a is constant and diagonal, the 

Fokker-Planck equation (3) becomes 

^-5tfiM«.*))-t^(w.)«(.,.)). 

To proceed the splitting of convection and diffusion terms, denote by Tc(i) and Td(t) the solution 

operators of the equations 

^ = -££(M*M«.*)). dt zr[ dxw 

and 
dw(t,x)      1  "   d2 , N 

dt 2 ;~ dxv 

respectively. Then it can be proved that the following approximation formulae hold (see [23]): 

T(nr)^ = (Td(r)rc(r))> + 0(r), (7) 

= {Tc(
T-)Td(r)Tc^))\ + 0(r2). (8) 

Therefore, instead of solving the original Fokker-Planck equation, we only need to solve two 

simpler equations, for which methods with linear computational complexity exist. 

We remark that a big part of computation in solving the two simpler equations can be performed 

before the observations become available. This pre-calculation substantially speeds up the on-line 

part of the algorithm. 
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3.2    Domain pursuit tracker 

Even though we have developed optimal solvers for the Fokker-Planck equation, the nonlinear 

filtering problem can still hardly be solved in real time (especially for large state dimensions). 

The following natural step is to narrow down the size of the domain in which the Fokker-Planck 

equation is solved. This can be achieved by a windowing technique based on the convection- 

diffusion splitting framework. 

A numerical approximation to the optimal filter can be expressed in the following form 

pi = a0(xi(0))TT0(x
i(0)), 

where {ß]f} is a (possibly indirect) approximation to the fundamental solution T{T) at step ft. 

Note that we use the notation a;* (ft) instead of xk for the spatial points because these are vectors 

in Md and ajj,(ft) will denote the i^-th component. 

We remark that in real implementation, the approximate solution Shck-\ (or ßkpk-i) of the 

Fokker-Planck equation is not necessarily computed directly from the above summation. For 

example, if an implicit scheme is used, then Sh contains an inverse matrix which is not inversed 

directly. Roughly, if the final Sh is sparse, then the summation can be used directly; otherwise 

the summation will take 0(N2) FLOPS per time step and so some indirect technique such as 

ADI should be used. 

Assume we are given an initial set 

D0 = {x1{0),~',x»°{0)} 

of "important" points. This set is chosen according to the initial filtering density. For example, 

these points can be related to the largest values ofp0(x) (or with the most important information 

on po{x))- Below we describe how to efficiently compute the "important" points in all the 

subsequent time steps and also the corresponding values of the unnormalized filtering densities 

at those points. 

If the number N0 is too large, it can be reduced in the first several filtering steps. Let K > 0 be 

a small integer and {Nk, ft > 1} be a decreasing sequence of integers with Nk = NK for ft > K, 

i.e. N0 < Ni < ■ • ■ < NK = NK+1 = • • • Let L be a positive integer. We will first construct an 

enlarged set of LNk-i candidates for the important points at each step and then choose from 

them the "best" Nk points according to the correction term ak. 
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For simplicity, we assume again that the covariance matrix a is constant and diagonal.   Our 

algorithm can be described as follows. 

The DPT Algorithm 

• Initialization: start with time k = 0, domain D0 of size N0, and p\ = p0(x
l(0)), l<i<N0. 

• Iteration: for k < K, run algorithm DPT(k) (see below) with reduction of domain size Nk. 

• For k > K, run algorithm DPT(k) with moving domain Dk of fixed size Nk - Nk-i. 

The algorithm DPT(k) proceeds as follows 

(1) for i = 1, • • •, Nk-i, solve the stochastic differential/integral equation 

Xt = xHk - 1) + f b(Xs)ds + / adWs,   t e (0, At], 
Jo Jo 

with L different sample paths of the Wiener process Wt, including the trivial case Wt = 0, 

and denote the solution XT at time t - r with the j-th sample path of Wt by flJ', j - 

(2) determine the set Dk of Nk important points x1(k),---, xNk (k) as those £lJ' with the largest 

values of ak(^'j) for all i and j, or, for each i, xl(k) has the largest value of afc(f
l,J') for 

(3) for i = 1, • • •, Nk, compute 

p{ = ak(x
i(k))j:ß?pj

k-i, 

where ß]f is computed according to one of the following two formulae which follow from 

the operator-splitting schemes discussed in the previous section: 

«_,J        «(Xj(k)-Xi(k-1)-K(xi(k-1))T)2\ ßk - v\h ^ r 
or 

MJ f    ^ (4(k) - 4(k - l))2     m   ^fxW+xUk-l) 
ßk   = exp 

j     «   (xj(k) - xj(k - l))2 /: 

and J| = {j : 1 < j < iVA;_1,min(/öfc'-?,]4_1) > r}, r being a thresholding tolerance. 
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We stress that in general the domains Dk may be multiply connected, i.e. may contain multiple 

windows (pieces). The block diagram of the domain pursuit tracker is shown in Figure 1. 

Generate   Dk+l from    Dk   by using state 
equation and by splitting drift and noise 

1 
Determine   DM CDM     according to 

correction term    ocM(Dk+1) 

i r 

Solve FPE on££ UZ^j with f^ solver 
(ADI or by splitting convection and dif.) 

fc=*+l i 

Compute   P^KHii) and estimate X(tM) ii 

Figure 1: Domain pursuit tracker 

The remarkable feature of the proposed filtering algorithm is that the domain of interest adap- 

tively changes and, as a result, the number of spatial points in the domain is usually reduced to 

a relatively small number. Hence the computational complexity is reduced tremendously when 

compared with the case where a fixed size domain is used for the whole computation. In general, 

the number N of spatial points is exponential in d, i.e., N ~ nd, but we are reducing this number 

for each n of the d dimensions. Therefore, the computational cost is exponentially reduced in 

our algorithms in high dimensions. 

4    Application to the Problem of Ballistic Target Tracking 

4.1    The tracking problem 

To illustrate the performance of the proposed algorithm, let us consider a real RADAR tracking 

problem, which is well-known to be difficult despite it does not contain perturbations in dynamics. 

(In principle we can also handle a similar problem with infra-red or other kinds of angle-only 

measurements and the model that would include dynamics noise.) 
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There is a radar with geodetic latitude 6, longitude A, and height h, observing a ballistic missile 

and generating radar range R, azimuth A, and elevation E every r seconds (see Figure 2). 

Figure 2: Radar geometry 

The missile is assumed to be in unpowered ballistic flight whose six dimensional dynamic equa- 

tions of motion are 

where \x = 3.986012 x 1014, X(t) = (X^t),X2{t),X3(t)) and V(t) = (V^t),V2{t),V3(t)) are the 

position and velocity of the missile at time moment t, and X(0) and V(0) are Gaussian random 

vectors with known mean 

E{X(0)) = [0,0,7.45005724 x 106]T(m), 

^(^(0)) = [-3.96745 x 103, -2.37208 x 103,2.15685 x 103]T(m/sec), 

and covariance 

Cov(X(0), V{0)) = diag[4 x 106,4 x 106,4 x 106,104/3,104/3,104/3]. 

The computation of the radar measured range, azimuth, and elevation from the missile's true 
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inertial position at time tk = kr proceeds as follows: 

R(k) = \\XL(tk)\\+eMk), 

m=tan_1 iztjt)+ £2V2(k)' 
^)=Sin_1™+^3(fc)' 

(10) 

where ex = 16, e2 = ez = ^3.04617 x lO"6,  and 

X^t) = TLOC,ECEF • PECEF,ECI(*) • X(t) — Xs] ■ 

Here LOC, ECEF, and ECI stand for the three relevant coordinate systems: ECI for Earth 

Centered Inertial True-of-Date, ECEF for Earth Centered Earth Fixed, and LOC for Local 

East-North-Up. The coordinate transformation matrices TLOC,ECEF and TECEF,ECI(£) and the 

radar site location Xs are given by 

tLOC.ECEF 

TT ECEF.ECI 

— sin A   — sin 9 cos A   cos 9 cos A 

cos A     — sin 9 sin A   cos 9 sin A 

0 cos 9 sin 9 

cos(u)et)     sinket)   0 

(t) =     — sin(o;et)   cos(a;e£)   0 

0 0 1 

X, 

(a + h) cos 9 cos A 

(a + h) cos 9 sin A 

(ß + h)sm9 

ae a 
Vl - e2 sin2 9 

,   ß 
o.(l ~ e2) 

A/1 - e2 sin2 9 ' 

where 9 = 1.12032684685 (rad), A = -2.60246044764 (rad),^ = 7.2722052162296xl0-5(rad/sec), 

ae = 6.37815 x 106 (m), e2 = 6.69342162296 x 10"3, h = 0 (m). 

4.2    Monte Carlo simulations 

Below we present the results of computational experiments. (L = 1 was taken for Algorithm 1.) 

Assume the observations are available at every r = 1 second. Since there is no noise in the state 

dynamics (9), we do not need the diffusion smoothing as described for the general model in the 

algorithm. If the noise is added in the dynamics, then the general algorithm should be applied. 

In our simulation, we ran our filter 200 times with random initial conditions and random obser- 

vations. We used two different values of N, the number of spatial points in the moving domain 
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Table 1: Computational complexity of the algorithm 

Simulation N flops cpul cpu2 

Simulation 1 

Simulation 2 

729 

15,625 

72,182 

1,546,886 

0.14 

0.64 

0.04 

0.48 

(window). Specifically, N = 36 = 729 and N = 56 = 15,625. The average computational cost 

for the two experiments in terms of CPU seconds and FLOPS per time step are given in Table 1, 

where cpul and cpu2 are the CPU time for one step of calculations with and without graphics, 

respectively. The computation was performed with Matlab on a Sun Ultra Enterprise 4000 at 

the University of Southern California. From this table, it is clear that real-time performance has 

been achieved even for tracking 10 to 20 targets. 

For both values of N, we tested three different situations. In the first case we assume that the 

true initial location of the target and its velocity are exactly on the grid; in the second case it 

is assumed only that the initial velocity is exactly on the grid; and in the third case both the 

initial location and velocity are not on the grid (the most realistic case). Of course, in either 

case, the filter does not know the true initial location of the target. In the first case performance 

is perfect: with N = 729, the average errors for both X(t) and V(t) became close to zero after 

t = 140 seconds. The average errors, defined as 

200 1     200 

\y(v)(ft-Y(.n)(ti\    and     V*™ .M = 
200, 

-,     200 I     200 

XenAt) = ^-0E\Xln)(t)-X^(t)\    and   Verrat) = ^ £ \V^(t) - V^(t)\ 
n=l n=l 

(u = 1,2,3) are shown in Figure 4 (for the two simulations). Note that because the initial error 

in X(0) is too large, it is not shown in the picture. See Figure 3 for the average errors (including 

the initial errors) according to the state dynamics without any observed information. 

In the second and third cases, when the initial variance (for the true initial state) is relatively 

small, we also obtained good results. For example, in the second case, with the initial variance 

Cov(X(0), V(0)) = diag[104,104,104,10,10,10], 

the average errors in V go to zero and the average errors in X begin to decrease after t = 90 

seconds. These errors are shown in Figure 5. Again the initial error in X(0) is not shown in the 

picture. In the third case, with the initial variance 

Cov(X(0), V{0)) = diag[104,104,104,1,1,1], 

the average errors behave similarly except that they decrease at a slower rate. 
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The real initial errors used in experiments are listed in Table 2. Typical errors at t = 100 seconds 

(with the original large error) are shown in Table 3. This table contains data for DPT and EKF. 

It may be seen that the proposed method is much more accurate. 

Table 2: Real initial errors 

Variance -Xerr,i(0) -Xerr,2(0) ^err,3(0) Verr,i(0) Verr,2(0) Verr,3(0) 

Initial Errors 1509.2912 1565.5626 1608.2539 43.0280 50.5172 43.7596 

Table 3: Comparison with EKF 

Method ||*err(100)|| ||Verr(100)|| 

EKF 

DPT 

100 (m) 

<15 (m) 

0.5 (m/sec) 

0.1 (m/sec) 

Ratio 6.7 5.0 

M.C. Errors in X M.C. Errors in V 
15000 

100 200 
Time t (sec) 

300 

300 

300 100 200 
Time t (sec) 

300 

300 

300 

Figure 3: Errors without observations 



16 CAMS Report 98.9.2:  Domain Pursuit Method for Tracking Ballistic Targets 

M.C. Errors in X M.C. Errors in V 
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40 60 
Time t (sec) 

M.C. Errors in V 

40 60 
Time t (sec) 

100 

100 

100 

40 60 
Time t (sec) 

100 

Figure 4: Errors in Case 1. Left - simulation 1 (N = 36); Right - simulation 2 (JV = 56) 
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M.C. Errors in X 

0 100       200       300       400       500 
Time t (sec) 

3 
M.C. Errors in V 

' ' 

f t2 

> 
c 

*1 
. 

UJ 

0         100 200       300 400 500 

■ ■ ^, 
■IP 
£  . •—V 

CM > 
c 

fc1 
UJ 

0          100 200       300 400 500 

o " ^^ 
JP 
P  . ^2 
co > 
c 

hi 

0 
( )         100 200       300 400 500 

Time t (sec) 

Figure 5: Errors in Case 2, N = 36 

5    Conclusion 

1. In this report we described the developed nonlinear filtering algorithm that is based on the 

"domain pursuit method". This method is directed towards obtaining robust nonlinear tracking 

algorithms with manageable complexity and high statistical performance (close to the optimal 

level). 

2. The algorithm is applied to a realistic problem that is typical for tracking ballistic missiles by 

radar. The considered scenario includes targets with "hard" trajectories that should be localized 

in 100-150 seconds. The results of simulation show that the developed algorithm substantially 

outperforms the conventional EKF tracker it terms of mean-squared tracking error and at the 

same time has satisfactory computational complexity (may be applied in real time). 
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