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1 Problems Studied

The primary focus of this project was on the analysis and development of new parallel algorithms
for the solution of linear and nonlinear initial/boundary value problems (IBVPs) in two space
variables. Parabolic, second order hyperbolic, biharmonic, and Schrédinger-type problems were
considered. The new algorithms, which are alternating direction implicit (ADI) orthogonal spline
collocation (OSC) methods employing C! piecewise polynomial spaces of arbitrary order, have
been implemented and their efficacy was demonstrated on test problems taken from the literature.
Rigorous stability and convergence analyses of the methods were also carried out.

2 Summary of Results

2.1 Parabolic IBVPs

In [3], an ADI Crank-Nicolson scheme is considered for the solution of the linear parabolic initial-
boundary value problem

0 _
5+ (Dt Lu=f@y.0, (@t €or,

u(x,y,O) = gl(zay)v (xay) € Q)

u(a:,y,t) = 92(x’ya t), (:c,y,t) € aQT,
where, here and in what follows,
Q=(0,1)x(0,1), Qr=0x(0,T], 80 =200x(0,T],

and the linear differential operators L; and Lo are given by
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0 0
+b1(.’L' Y, ) - +c(:z:,y,t)u, Lyu = —a'2(‘7"7y: )a ) +b2(.’L' Y, )8Z

0“u
(1) Iy = 1,3, 1) 55 =

972
In comparison to the scheme outlined in the original proposal, the new ADI scheme uses Ln+1/ %

place of L} and L""’1 Using a new approach, we show that the scheme is second-order accurate in
time and of optlma,l third-order accuracy in space in the H' norm. For simplicity, the analysis in [3]
is presented for the case of a spatial discretization based on piecewise Hermite bicubics, but is easily
extended to OSC discretization with piecewise polynomials of higher degree. We also give a new
efficient implementation of the scheme and test it on a sample problem for accuracy and convergence
rates in various norms. Earlier implementations of ADI OSC schemes were based on determining,
at each time level, a two-dimensional approximation defined on . In the new implementation, at
each time level, we determine one-dimensional approximations along horizontal and vertical lines
passing through Gauss points and obtain the two-dimensional approximation on £ at the final
time level corresponding to ¢ = T. It should be noted that with respect to the implementation of
0OSC schemes the non-divergence forms of L; and Ly in (1) are more natural than the divergence
forms of L; and Ls which are typically used in finite element (FE) spatial discretization. In fact,
ADI FE Galerkin methods for solving variable coefficient parabolic problems in the divergence
form were considered in [7]. However, our two-level, parameter free ADI OSC scheme does not
have a FE Galerkin counterpart. The method of 7] of comparable accuracy is the three level ADI
Laplace-modified scheme requiring the selection of a stability parameter. Our ADI OSC scheme



with piecewise polynomials of degree > 3 is more accurate than the standard ADI finite difference
scheme which is only second-order accurate in both time and space.

In [4], we consider a nonlinear parabolic initial-boundary value problem on a rectangular poly-
gon with the solution satisfying variable coefficient Robin’s boundary conditions. An approximation
to the solution at a desired time value is obtained using an alternating-direction implicit extrapo-
lated Crank-Nicolson scheme in which orthogonal spline collocation with piecewise polynomials of
an arbitrary degree > 3 is used for spatial discretization. For rectangular and L shaped regions we
describe an efficient B-spline implementation of the scheme and present numerical results demon-
strating the accuracy and convergence rates in various norms. For problems with homogeneous
Dirichlet boundary conditions, we observe a superconvergence phenomenon when the initial con-
dition is approximated using the Gauss interpolant rather than the quasi-interpolant suggested in
[8] for parabolic equations in a single space variable.

In the special case in which the region is a square and Dirichlet boundary conditions are pre-
scribed, the problem considered in [4] is of the form

du 0%u %u

= al(a":y?t’ua VU)W - a2($ay7tvuavu)5y—2'

at = f(x’ y) t’ u’ vu)? (w7 y? t) e QT’

u(:z:,y, O) = 91(17,9), (x’y) € Qa

u(z,y,t) = g2(z,9,t), (z,y,t) € 0.

We have carried out convergence analysis for the case in which the right hand side f depends on u
and Vu but the coefficients a; and as are independent of these quantities. We expect to extend our
analysis to the case in which a; and as depend on u using new results obtained by our graduate
student Abdulrakhim Aitbayev who in his Ph.D. dissertation [1] obtained new convergence results
for the OSC solution of the nonlinear elliptic boundary value problem

d%u o%u %u

al(z':y:ua vu)a ) + a,12(l‘ Y, u, VU) axay + ag(iL‘ Y, U, Vu)a 2 c(:z:,y,u, VU’) = f(xay)a (.’II, y)

u(z,y) =0, (z,y)€ Q.

2.2 Hyperbolic IBVPs

In [14], two schemes are formulated and analyzed for the approximate solution of the linear second
order hyperbolic problem
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8t2 + Lu= f(za'.‘ht): (:L‘,y: t) € QT:

0
U(wa%O) = 90(1',9), 51%('7"7'!/, O) = gl(xay), (xiy) € Qa

u(:z:,y, t) = 92(:57% t)v (xay7t) € aQT,
where the linear differential operator L is given by

0 ou 0 Ou . Ou ou
Lu= oz (al(wvyvt)a_x) - % <a2(zay1 t)a_y> +b1(-7"7y7t)53; + b2(xay7t)'35 + C(:L‘,y, t)u'

€,



OSC with piecewise Hermite bicubics is used for the spatial discretization. The resulting system of
ordinary differential equations in the time variable is discretized using perturbations of standard
finite difference approximation procedures to produce Laplace-modified (LM) and ADI schemes.
It is shown that the OSC LM and ADI schemes are unconditionally stable and of optimal order
accuracy in the H! and discrete maximum norms for the space and time variables, respectively,
provided a stability parameter, which appears in all LM type methods, is chosen appropriately.
In the convergence analysis, a bicubic interpolant of the solution u of (2) is used as a comparison
function. The algebraic problems to which these schemes lead are also described and numerical
results are presented for an implementation of the OSC ADI scheme to demonstrate the accuracy

and rate of convergence of the method.
In [5], we consider the approximate solution of the linear second order hyperbolic problem

0%u
W"‘(LI +L2)u =f($7y1t), (x,y,t) € Qr,

0
U(.’L‘,y,O) = go(x,y), 5’%(3),:’;,0) = gl(xvy)7 (x,y) € Q1

U’(x’:% t) = g2(w1y7t)7 ((E,y,t) € aQT,

where the linear differential operators L; and Ly are given by (1). With G the set of Gauss points
in Q, 7 = T/M, and t, = nr, the new OSC ADI scheme consists in finding piecewise Hermite
bicubics uf, n =2,..., M, such that forn=1,...,M -1,

(I +0.572L1)aR(€) = f(& tn) + 277 2uR(€), € €6,

(3)
(I +0.572L%)(upt! +up~1)(€) = T?ap(€), €e€g,

where ug,u}l, ullaq, n =2,..., M, are assumed to be given, and where L}, L} are the differential
operators of (1) with ¢ = ¢,. In the first equation of (3), for each Gauss point &Y in the y-direction,
ap(-,&¥), n=1,...,M — 1, is a piecewise Hermite cubic in the z-direction satisfying

af (e, &) = 772(I + 0.572 L) (uf ™ + uf ) (e, &¥), a=0,L.

We show in [5] that the scheme (3) is second order accurate in time and of third-order accuracy in
space in the H! norm. An efficient implementation of the scheme is similar to that for the scheme
of [3] and it involves representing u} in terms of basis functions with respect to y alone while 4}
is represented in terms of basis functions with respect to z only. It is interesting to note that for
variable coefficient hyperbolic problems our parameter free ADI OSC scheme (3) does not have a
finite element Galerkin counterpart.

2.3 Biharmonic Problems

Our graduate student, Lou Zhuoming, completed his Ph.D. dissertation and graduated in May 1996.
His research was concerned with the derivation of existence, uniqueness and convergence results
for OSC methods and the implementation of these methods for the solution of three biharmonic
problems, based on the splitting principle [15]. The first problem comprises the biharmonic equation
in Q with 4 = ¢g; and Au = g9 on 9. This problem becomes one of solving two nonhomogeneous
Dirichlet problems for Poisson’s equation. The resulting linear systems can be solved effectively
with cost O(N? log, N) using the matrix decomposition algorithm of [6]. In this case, optimal order




H*-norm error estimates, k=0,1,2, are derived. In the second problem, the boundary condition
on the horizontal sides of 8¢, Au = g, is replaced by the condition du/0n = g3 Optimal H L and
H2-porm error estimates are derived and a single series 0OSC Fourier method is formulated for the
solution of the algebraic problem. This algorithm has cost O(N?logy N ). The third problem is the

biharmonic Dirichlet problem

AZU‘ = f(xvy)v (x,y) € Q,

ou
u=gl($,y), % :QZ(xay)a (iL‘,y) € aQ)

and again optimal H- and H?-norm error estimates are derived. The OSC linear system is solved
by a direct method which is based on the capacitance matrix technique with the second biharmonic
problem as the auxiliary problem. The total cost of this capacitance matrix algorithm is O(N 3.
Results of some numerical experiments were presented which, in particular, verify the fourth order
accuracy of the approximations and the superconvergence of the derivative approximations at the
mesh points. The paper [16] is based on this work but uses different tools to simplify the error
analyses and, in addition, answers some outstanding existence and uniqueness questions.

David Knudson completed his Ph.D. dissertation [9] and graduated in December 1997. His
research was concerned with the piecewise Hermite bicubic, Ciarlet-Raviart mixed finite element
Galerkin method for the solution of the biharmonic Dirichlet problem with homogeneous boundary
conditions. The aim of this work was to compare the Galerkin approach with the 0OSC approach
considered by Lou [15] and provide insight into the development of more efficient OSC methods
for this problem and also certain Schrodinger systems. In [9], first existence and uniqueness of the
Galerkin solution were proved. Then a Schur complement approach was used to reduce the Galerkin
problem to a Schur complement system involving the approximation to Aw on the two vertical sides
of 6 and to an auxiliary Galerkin problem for a related biharmonic problem with Au instead of
_du/On specified on the two vertical sides of 9Q. The Schur complement system with a symmetric
and positive definite matrix was solved using the preconditioned conjugate gradient method. A
preconditioner was obtained from the Galerkin problem for a related biharmonic problem with Au
instead of du/dn specified on the two horizontal sides of 0€}. It is conjectured that the precondi-
tioner was spectrally equivalent t0 the Schur complement matrix. On an N x N partition the cost
of solving the preconditioned system and the cost of multiplying the Schur complement matrix by
a vector are O(N?) each. With the number of iterations proportional to logs N, the cost of solving
the Schur complement system is O(N?%logy N). The solution to the auxiliary Galerkin problem is
obtained using separation of variables and fast Fourier transforms at a cost of O(N? logy N). Hence
the total computational cost of solving the Galerkin problem is O(NV 2)og, N). Numerical results
indicate that the L? and H 1 porm errors in the approximations to and Au are of optimal fourth
and third orders respectively. Convergence at the nodes is fourth order for the approximations to u
and Au and third order for the approximations to the first order derivatives of u and Au. A paper
based on this research is being prepared for publication.

In [16], the linear system corresponding to the piecewise Hermite bicubic OSC solution of the
biharmonic Dirichlet problem was solved using a capacitance matrix algorithm whose cost is O(N3).
Recently, in [2], a new algorithm of cost O(N?logy N) was developed for solving this linear system.
As in [9], the algorithm of [2] involves fast Fourier transforms and solving a Schur complement
linear system using the preconditioned conjugate gradient method.



2.4 Schrodinger Systems

In [11], Crank-Nicolson and ADI OSC schemes are formulated and analyzed for the approximate
solution of the linear Schrédinger problem

96:%{ - ZAQ[) + 1:0'(.’1), y7t)¢ = f(x’y’t)’ (il),y,t) € QT’

(4) 1/’(%% t) = 07 (:L‘,y,t) (S aQT,

¥(z,y,0) =¢°z,y), (2,9) €%,

where i2 = —1, A is the Laplacian and ¢ is a prescribed, real function, while 1, 9? and f are
complex-valued. This type of problem arises in many disciplines, such as quantum mechanics,
underwater acoustics, plasma physics and seismology. Usually f = 0 in quantum mechanics. We
write 1, f and ¥° as t; + 4Pz, f1 +if2 and ¢? +i9d, respectively. Taking real and imaginary parts
of (4) then yields

o S(-Dtolmyu=Fyt, @y e,
(5) u(z,y,t) =0, (z,y,t) € 0Qr,
u(z,y,0) = u’(z,y), (z,9) €,

where 0
_ [ _( A nd 0= [ ¥
”‘(w)’ F"(fz) e («p%)

are real-valued vector functions, and S is the 2 x 2 skew-symmetric matrix

s=17 5|

Hence, (5), and thus (4), is not parabolic but a Schrédinger-type system of partial differential
equations. In thispaper, OSC with C! piecewise polynomials of arbitrary degree r > 3 in each space
variable is used for the spatial discretization of (5). The resulting system of ordinary differential
equations in the time variable is discretized using the trapezoidal rule to produce the Crank-
Nicolson OSC scheme, which is then perturbed to obtain the ADI OSC scheme. The stability of
these schemes is examined and optimal order a priori error estimates in both the H'-norm and
the L2-norm at each time step derived. The approach employed in the convergence analysis of
the schemes is based on using, as a comparison function, a projection of the exact solution into a
space of C! piecewise polynomials of degree r in each space variable. This is a key element in the
derivation of the optimal order L2-error estimates.

In [12, 13], OSC methods are considered for the solution of problems governed by the equation

2

) Zw + w2 4 Algle,9)A) = f(z,0,9), (,9,0) € O,
where v is a nonnegative constant related to viscous damping coefficient (v = 0 if external viscous
damping is ignored), and ¢(z,y) is a variable density function such that

0 < gmin < q(:c,y) < @max < 00, (1'9'9) €y



see [10]. This equation commonly arises in plate vibration and seismological problems. The initial
conditions are

0
u(m,y, 0) = gO(xvy)v _a%(xvyvo) = gl(mvy)’ (.’E,y) € Q,

while the boundary conditions (BCs) are of one of the following three types:
BC1: “clamped” BCs:

’U,(Z, Y, t) = 07 g%(%y,t) = 0’ (fE,y,t) € 6QT;

BC2: “hinged” BCs:
u(z,y,t) =0, Au(z,y,t) =0, (2,y,t) € 8Qr;
BC3: BCs in which the vertical sides are hinged and the horizontal sides are clamped:

U($,y, t) = 07 (:v,y,t) € 3QT7
Au(m,y, t) = 07 (xayv t) € an X (Oa T]a

2 ) =0, (a,,1) €0 x (0,T),

where
o0 ={(o,y):@=0,1, 0<y <1}, N ={(z,0):0<2<1, a=0,1}.

We reformulate each problem by introducing the functions
up = e’ —, ug = ge”tAu.
For example, setting
_|lwm _| & _| &

in the problem with BC1, we obtain the Schrodinger system

Bc')—(i - S,AU +vRU =F, (z,y,t) € Qr,
U(z,y,0) = G(z,y), (z,y) €,
u1($1 Y, t) =0, %(m,y,t) = 0, (zyg,t) € aQTv

where

0 -1 10
selo o) o 4]

Note that it is necessary to carry out an additional calculation to obtain an approximation to u
from that to ui.

To determine an approximation to U, we used OSC with C* piecewise polynomials of arbitrary
degree r > 3 in each space variable for the spatial discretization. The resulting systems of ordinary
differential equations in the time variable were then discretized using standard Crank-Nicolson or
ADI techniques involving only two time levels (cf. [11]). Specifically, we formulated and analyzed

6




Crank-Nicolson OSC schemes for all three choices of BCs, and also formulate ADI OSC methods
for BC2 and BC3 and analyzed these methods for the special case in which ¢ is a constant and
v = 0. Based on our experience with 0OSC methods for the biharmonic Dirichlet problem [16], we
believe that it is not possible to formulate a standard ADI method for BC1. For this problem,
we employed the capacitance matrix method (cf. [15, 16]) to solve the Crank-Nicolson scheme
efficiently for the the special case of constant ¢ and C 1 piecewise bicubic polynomials on a uniform
partition of €. We examined the existence, uniqueness and stability of each scheme and show that,
for each, the H™-norm, m = 1,2, of the error at each time step is of optimal order r +1—m in
space and second order in time. Implementational issues were also addressed and pumerical results

obtained which confirm the theoretical analyses.
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