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1 Problems Studied 

The primary focus of this project was on the analysis and development of new parallel algorithms 
for the solution of linear and nonlinear initial/boundary value problems (IBVPs) in two space 
variables. Parabolic, second order hyperbolic, biharmonic, and Schrödinger-type problems were 
considered. The new algorithms, which are alternating direction implicit (ADI) orthogonal spline 
collocation (OSC) methods employing C1 piecewise polynomial spaces of arbitrary order, have 
been implemented and their efficacy was demonstrated on test problems taken from the literature. 
Rigorous stability and convergence analyses of the methods were also carried out. 

2 Summary of Results 

2.1    Parabolic IBVPs 

In [3], an ADI Crank-Nicolson scheme is considered for the solution of the linear parabolic initial- 
boundary value problem 

(711 
-X7 + {L1 + L2)u = f(x,y,t),      (x,y,t)ettT, 

u(x,y,0)=gi{x,y),      {x,y)en, 

u(x,y,t) = g2{x,y,t),      (x,y,t) E düT, 

where, here and in what follows, 

ft = (0,l)x(0,l),     ßr = fix(0,T],     dClT = dSl x {0,T\, 

and the linear differential operators L\ and L2 are given by 

(1) Liu = -ai(x,y,t)~ + bi(x,y,t)-^ + c(x,y,t)u,      L2u = -a2(x,y,t)-^ + b2(x,y,t) — . 

In comparison to the scheme outlined in the original proposal, the new ADI scheme uses L^ in 
place of L% and L^+1. Using a new approach, we show that the scheme is second-order accurate in 
time and of optimal third-order accuracy in space in the Hl norm. For simplicity, the analysis in [3] 
is presented for the case of a spatial discretization based on piecewise Hermite bicubics, but is easily 
extended to OSC discretization with piecewise polynomials of higher degree. We also give a new 
efficient implementation of the scheme and test it on a sample problem for accuracy and convergence 
rates in various norms. Earlier implementations of ADI OSC schemes were based on determining, 
at each time level, a two-dimensional approximation defined on ti. In the new implementation, at 
each time level, we determine one-dimensional approximations along horizontal and vertical lines 
passing through Gauss points and obtain the two-dimensional approximation on Q at the final 
time level corresponding to t = T. It should be noted that with respect to the implementation of 
OSC schemes the non-divergence forms of L\ and L2 in (1) are more natural than the divergence 
forms of L\ and L2 which are typically used in finite element (FE) spatial discretization. In fact, 
ADI FE Galerkin methods for solving variable coefficient parabolic problems in the divergence 
form were considered in [7]. However, our two-level, parameter free ADI OSC scheme does not 
have a FE Galerkin counterpart. The method of [7] of comparable accuracy is the three level ADI 
Laplace-modified scheme requiring the selection of a stability parameter.  Our ADI OSC scheme 



with piecewise polynomials of degree > 3 is more accurate than the standard ADI finite difference 
scheme which is only second-order accurate in both time and space. 

In [4], we consider a nonlinear parabolic initial-boundary value problem on a rectangular poly- 
gon with the solution satisfying variable coefficient Robin's boundary conditions. An approximation 
to the solution at a desired time value is obtained using an alternating-direction implicit extrapo- 
lated Crank-Nicolson scheme in which orthogonal spline collocation with piecewise polynomials of 
an arbitrary degree > 3 is used for spatial discretization. For rectangular and L shaped regions we 
describe an efficient B-spline implementation of the scheme and present numerical results demon- 
strating the accuracy and convergence rates in various norms. For problems with homogeneous 
Dirichlet boundary conditions, we observe a superconvergence phenomenon when the initial con- 
dition is approximated using the Gauss interpolant rather than the quasi-interpolant suggested in 
[8] for parabolic equations in a single space variable. 

In the special case in which the region is a square and Dirichlet boundary conditions are pre- 
scribed, the problem considered in [4] is of the form 

— -ai{x,y,t,u, Vu)Q^2 ~a2fa>V>*>«.Vu)QZ -aifoi/.t.u.Vu);^ -a2(x,y,t,u,Vu)-^^ = f(x,y,t,u,Wu),      (x,y,t) G 0T, 

u(x,y,Q) =gi(x,y),      (x,y)ett, 

u{x,y,t) = g2(x,y,t),      (x,y,t)edClT. 

We have carried out convergence analysis for the case in which the right hand side / depends on u 
and Vu but the coefficients a\ and a2 are independent of these quantities. We expect to extend our 
analysis to the case in which a\ and a2 depend on u using new results obtained by our graduate 
student Abdulrakhim Aitbayev who in his Ph.D. dissertation [1] obtained new convergence results 
for the OSC solution of the nonlinear elliptic boundary value problem 

du du du 
ai(s,y,u, Vu)^-2 + a12(x,y,u,Vu)-^-^- + a2{x,y,u,Vu)-^ + c{x,y,u,Vu) = f{x,y),      (x,y) E tt, 

u(x,y) = 0,      (x,y)edQ.. 

2.2    Hyperbolic IBVPs 

In [14], two schemes are formulated and analyzed for the approximate solution of the linear second 
order hyperbolic problem 

d2u 
-jjjZ+Lu = f(x,y,t),      (x,y,t)€fir, 

(2) du 
u(x,y,0) =go(x,y),     —{x,y,0) = gi(x,y),     (i,y)6fl, 

u(x,y,t)=g2(x,y,t),      (x,y,t)edüT, 

where the linear differential operator L is given by 

d  (   ,       ,^du\      d (    .       ,sdu\     . ,       ,sdu     , ,        .du       .        . 
Lu = ~!h{ai(x'y' )lte)~~dy~\a2('X,y' )~dy~)+  l(x'y' )d^+ 2(*'y't)dy~ + C(X>y't)u' 



OSC with piecewise Hermite bicubics is used for the spatial discretization. The resulting system of 
ordinary differential equations in the time variable is discretized using perturbations of standard 
finite difference approximation procedures to produce Laplace-modified (LM) and ADI schemes. 
It is shown that the OSC LM and ADI schemes are unconditionally stable and of optimal order 
accuracy in the Hl and discrete maximum norms for the space and time variables, respectively, 
provided a stability parameter, which appears in all LM type methods, is chosen appropriately. 
In the convergence analysis, a bicubic interpolant of the solution u of (2) is used as a comparison 
function. The algebraic problems to which these schemes lead are also described and numerical 
results are presented for an implementation of the OSC ADI scheme to demonstrate the accuracy 
and rate of convergence of the method. 

In [5], we consider the approximate solution of the linear second order hyperbolic problem 

d2u 
-^ + (Li+L2)u = f{x,y,t),      (x, y, t) E fir, 

u(x,y,0) = g0{x,y),      — (x,y,0) = gi(x,y),      (x,y)EÜ, 

u{x,y,t) = g2(x,y,t),      (x,y,t) E düT, 

where the linear differential operators L\ and L2 are given by (1). With Q the set of Gauss points 
in fi, r = TIM, and tn = nr, the new OSC ADI scheme consists in finding piecewise Hermite 
bicubics u£, n = 2,..., M, such that for n = 1,..., M - 1, 

(I + 0.5r2L?K(£) = f(£,tn) +2T-
2
UM),     ( E <?, 

(3) 
(I + 0.5r2L2)«+1 + un

h-
l)(0 = r2^(£),      £ € G, 

where u°,u\, U^QQ, n = 2,..., M, are assumed to be given, and where L", LV^ are the differential 
operators of (1) with t = tn. In the first equation of (3), for each Gauss point £y in the y-direction, 
■"/£(•> £*0) n — 1, • ■ ■, M — 1, is a piecewise Hermite cubic in the rc-direction satisfying 

ü£(a, ?) = T~2{I + 0.5r2L2)«+1 + un
h-
l){a, ?),     a = 0,1. 

We show in [5] that the scheme (3) is second order accurate in time and of third-order accuracy in 
space in the Hl norm. An efficient implementation of the scheme is similar to that for the scheme 
of [3] and it involves representing u\ in terms of basis functions with respect to y alone while v% 
is represented in terms of basis functions with respect to x only. It is interesting to note that for 
variable coefficient hyperbolic problems our parameter free ADI OSC scheme (3) does not have a 
finite element Galerkin counterpart. 

2.3    Biharmonic Problems 

Our graduate student, Lou Zhuoming, completed his Ph.D. dissertation and graduated in May 1996. 
His research was concerned with the derivation of existence, uniqueness and convergence results 
for OSC methods and the implementation of these methods for the solution of three biharmonic 
problems, based on the splitting principle [15]. The first problem comprises the biharmonic equation 
in Cl with u = g\ and Au = g2 on dfi. This problem becomes one of solving two nonhomogeneous 
Dirichlet problems for Poisson's equation. The resulting linear systems can be solved effectively 
with cost 0(N2 log2 N) using the matrix decomposition algorithm of [6]. In this case, optimal order 



■     ♦      ,     n 1 2  are derived. In the second problem, the boundary condition 

biharmonic Dirichlet problem 

A2«   =   /(*,»).     (*.w)ei)> 

, = „(,»), £=»<*•»>■     (l'S)eafi' 
and again op,,. *- an, H'-norm error ^^^Ä^^SÄ 
by a direct method which is based on the <*paonee -—Jce „^ algorilhm is O(^). 
oroblem as the auxiliary problem. The total cost m inn.    v , ifcr the fourth order 

Cults of some numerical ^^^^^^^^^ ™L™^ * *" 
accuracy °^T^ uses different tools to simplify the error 
mesh points.  The paper [16] is based on ™ existence and uniqueness questions, 
analyses and, in addition answers ^°^^^Z graduated in December 1997. His 

David Knudson completed his Ph.D. <^»*™ ^? ^let-Raviart mixed finite element 
research was concerned with the piecewise ^^^^^^^hoa.og^^^n^ 
Galerkin method for the solution of ^^^^f^X^o^ with the OSC approach 
conditions. The aim of this work was to ^T^^^^ more efficient OSC methods 
considered by Lou [15] and provide msight into the de^elopment ^ rf ^ 

for this problem and also ^^^^^^Zs used to reduce the Galerkin 
Galerkin solution were proved. Then a Schur compie ^ ^ vertical gides 

problem to a Schur complement system involving the ^°~°n c problem with A. instead of 
l du and to an auxiliary Galerkin problem for ^^^^ystera with a symmetric 
du/dn specified on the two vertical sides of oil. The Schur compie y ^  A 

J positive definite matrix was ^^^ÄTooLp^^Au 
preconditioner was obtained from the Gal^lan Paweln »r a • ctured that the precondi- 
Ltead of du/dn specified on the two horizontal sides o XLH "o^x iV partition the cost 
tioner was spectrally equivalent to the Schur ^7".^""^ Schur complement matrix by 
of solving the preconditioned system and the cost f^^^^Vth« cost of solving 
a vector are O(N') each. With t* :number £™SÄL£y Galerkin problem is 

0^d^^ ss 

and An and third order for the approximations to the first order denva 
based on this research is being prepared for Ration n rf thß 

In [16], the linear system corresponding to the pie^^^Sta whose cost is O^). 

hiharmonicDi«^^ r^1;^ r—a sch-compiement 
linear system using the preconditioned conjugate gradient method. 



2.4    Schrödinger Systems 

In [11], Crank-Nicolson and ADI OSC schemes are formulated and analyzed for the approximate 
solution of the linear Schrödinger problem 

-j^ - iAtp + ia{x, y, t)ip = f(x, y, t),     (x, y, t) G fir, 

(4) 1>(x,y,t)=0, (x,y,t)edüT, 

i>{x,y,0)=i>°(x,y),        {x,y)eSl, 

where i2 = -1, A is the Laplacian and a is a prescribed, real function, while V, ip° and / are 
complex-valued. This type of problem arises in many disciplines, such as quantum mechanics, 
underwater acoustics, plasma physics and seismology. Usually / = 0 in quantum mechanics. We 
write ip, f and ip° as Vi + #2, /i + %h and i$>\ + i^, respectively. Taking real and imaginary parts 
of (4) then yields 

— + S(-A + a{x, y, t))u = F{x, y, t),      (x, y, t) G fir, 

(5) u{x,y,t)=0, (x,y,t)£dOr, 

u{x,y,0)=u°{x,y), (x.y)efi, 

where 

-(X)-'"(S) -■'-(3) 
are real-valued vector functions, and S is the 2 x 2 skew-symmetric matrix 

0 -1 
1 0 

Hence, (5), and thus (4), is not parabolic but a Schrödinger-type system of partial differential 
equations. In this paper, OSC with C1 piecewise polynomials of arbitrary degree r > 3 in each space 
variable is used for the spatial discretization of (5). The resulting system of ordinary differential 
equations in the time variable is discretized using the trapezoidal rule to produce the Crank- 
Nicolson OSC scheme, which is then perturbed to obtain the ADI OSC scheme. The stability of 
these schemes is examined and optimal order a priori error estimates in both the iJ1-norm and 
the L2-norm at each time step derived. The approach employed in the convergence analysis of 
the schemes is based on using, as a comparison function, a projection of the exact solution into a 
space of C1 piecewise polynomials of degree r in each space variable. This is a key element in the 
derivation of the optimal order L2-error estimates. 

In [12, 13], OSC methods are considered for the solution of problems governed by the equation 

du özi 
(6) ■^ + 2u— + A(q(x,y)Au)=f(x,y,t),   (x,y,t)eQT, 

where v is a nonnegative constant related to viscous damping coefficient (u = 0 if external viscous 
damping is ignored), and q(x, y) is a variable density function such that 

0 < 9min < q(x, y) < gmax < CO,        (x, y) G fi; 



see [10]. This equation commonly arises in plate vibration and seismological problems. The initial 
conditions are 

u(x,y,0) = go(x,y),      — {x,y,0) = gi(x,y),      (z,y)Gfi, 

while the boundary conditions (BCs) are of one of the following three types: 
BC1: "clamped" BCs: 

u{x,y,t) = 0, 
du 
dn 

(x,y,t) = 0,      {x,y,t) edüT; 

BC2: "hinged" BCs: 

u(x,y,t) = 0,      Au{x,y,t) = 0,      {x,y,t) 6 dQ.T\ 

BC3: BCs in which the vertical sides are hinged and the horizontal sides are clamped: 

u(x,y,t) = 0,      (x,y,t) G dttT, 

Au{x, y, t) = 0,      (x, y, t) G d£li x (0, T], 

(x,y,t)=0,     (x,y,t) G 3Q2 x (0,T], 
dn 

where 
dCtl = {(a,y) :a = 0,l, 0 < y < 1},      d£l2 = {{x,a) : 0 < x < 1, a = 0,1}. 

We reformulate each problem by introducing the functions 

. du 
Ul j>tK 

dt' 
ui = qe   Au. 

For example, setting 

U 
Ul 

. U2. 
,    F = 0 ,    G = 9i 

?Ay0 _ 

in the problem with BC1, we obtain the Schrödinger system 

f ^ - SqAU + I/ACT = F,     (x, y, t) G fir, 

!7(x,y,0) = G(z,y),      (a:,y)efi, 

ui(x,y,t) = 0, -jr±(x,y,t)=0,      {x,y,t) e düT, 

where 

0   -1 
q     0 

R = 
1     0 
0   -1 

Note that it is necessary to carry out an additional calculation to obtain an approximation to u 
from that to u\. 

To determine an approximation to U, we used OSC with C1 piecewise polynomials of arbitrary 
degree r > 3 in each space variable for the spatial discretization. The resulting systems of ordinary 
differential equations in the time variable were then discretized using standard Crank-Nicolson or 
ADI techniques involving only two time levels (cf. [11]). Specifically, we formulated and analyzed 



Crank-Nicolson OSC schen.es for a.l three choices of BCs -1 also fmmulat. ^I OSC-aafhods 

I BC2 and BC3 and analysed tfieae^ethod,jfa£ £^££ DWch<t ptoblem [16, „e 
„ = 0. Based on our experience with OSG memoes i problem, 
behave «hat it is not possible to formulae a standard AD method fa ^^.^ scheme 

„e employed the capacitance matrix method (ct ^f,     1) iynomials on a uniform 
efficiently for the the special case of constant , and C P*«»' ^ ^ show that, 

partition of a We «^^^TS^X * of optimal order r + 1 - m in 

"d^rr-in"^1:Lamentation, issnes were also addressed and numerica, resnlts 

obtained which confirm the theoretical analyses. 
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