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This is annual report covers the period June 16, 1997 - June 15, 1998 for ARO contract 
DAAG55-97-1-0328, "Distributed Processing for Rapid Reconstruction of Terrain Models . 

The project goals are to develop high-performance computing techniques for rapid mapping of 
terrain and cultural sites to support a diverse set of capabilities for battlefield awareness. With 
the recent increase in the variety and resolution of image sources, there is an increasing need to 
rapidly generate specialized map products. To meet these demanding requirements we will 
develop parallel and distributive techniques. 

The first year research effort focused on mechanisms and strategies for using distributed parallel 
processing across a heterogeneous set of processors, and parallel processing techniques for 
processing of very large data sets. We conducted two studies. The first (Appendix A) 
"Exploring PVM for a computer vision application" authored by Mr. Frank Stolle, a Ph.D. 
candidate In our research group, successfully demonstrated strategies for distributing computer 
vision applications across a network of heterogeneous computer architectures. The second 
"Processing Large Data Sets" describes a project to create large image manipulation routines and 
a bench mark to measure the performance of these routines. 

The expanded scope of the research involved parallel processing techniques for handling very 

large data sets. 

Processing large geospatial models. 

Advances in the size, variety and speed of imaging sensors has resulted in an explosion of 
applications that utilize large geospatial databases. Generating, managing and visualizing these 
databases present unique computational problems that are not adequately addressed with current 
hardware and software systems. Increasingly, many of these issues are discussed in the scientific 
literature Recently, several researchers have concluded that operating system virtual memory 
and paging algorithms are inadequate for interactive manipulation and visualization of large 
geometrically orientated databases. 

We have also found this to be the case. For example, our current terrain modeling system 
(Terrest) which has been shown to be very robust and efficient, becomes impractical when the 
image size exceed 4,000 x 4,000 pixels Our investigations have shown that at runtime the 
internal intermediate representations requires about 100 times as much memory as is required to 
store a single image. Thus, if the input images are 16 Mbytes, approximately 2 Gbytes of 
physical memory might be required to generate the terrain model. Clearly, this scaling problem 
must be addressed if the terrain reconstruction techniques are to be extended to large image 
format, which are expected to exceed 30,000 x 30,000. 

We have started a joint research program with Professors Chip Weems, Kathryn McKinley and 
Eliot Moss of the UMass Computer Science Department to develop software tools to manage 
memory hierarchies when geospatial data exceeds the limits of primary memory. These tools 
incorporate out-of-core disk-to-memory processing schemes optimized  for single and 



multiprocessor architectures and RAID systems (redundant array of independent disks). These 
procedures will be incorporated into our existing terrain modeling software. Our goal is to create 
a terrain modeling system capable of efficiently handling virtually any size input. 
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Appendix A 

Exploring PVM for a Computer Vision Application 

Frank Stolle 
University of Massachusetts 

Department of Computer Science 
Amherst, MA 01003 

May 26, 1998 

1    Introduction 
It is very common today for organizational units to have a number of networked workstations. 
Most of the time these machines are used locally and not to their fullest potential. A number of 
typical computer vision applications require significant processing power. Often powerful single 
mo es or or symmetric multiprocessor systems are used for these applications. The goal of this 
study is to investigate how practical it is to take advantage of distributed computing in a network 
of workstations to solve a computer vision problem. Two support libraries for distributed parallel 

computing are considered and a test application is implemented. 

1.1 Parallel programming models and supporting libraries 

The two main programming models for distributed processing are shared memory and message 
passing The former exploits mechanisms to share memory between individual processors, the 
fatter one makes use of explicit messages between different processing units. Mixed forms like 
distributed shared memory are being used to keep local copies of the memory in each machine, and 

use message passing to keep the individual copies consistent. 
iTthis project, the message passing paradigm for parallel programming was chosen because of 

its gLter simplicity. There are libraries available that take the burden of writing the message 

passing routines away from the application designer. 

1.2 Libraries for message passing: PVM and MPI 

PVM (Parallel Virtual Machine) [18, 19] is a software tool to support distributed computing based 
on a message-passing paradigm. It allows the user to join machines of different architecture in- 
LrconnSd by various possible networks into a single virtual parallel machine. The hardware 

pported ranges from PCs to massive parallel machines [22]. su 



PVM supports operations for adding and deleting physical machines into and from the virtual 
machine, synchronization operations, and message encoding for exchange between different archi- 
tectures.' PVM supports the programming languages C and FORTRAN. Several visualization tools 
exist for studying the process behavior and the network traffic. 

MPI (Message Passing Interface) [20] was developed in the early 90s in an effort to combine 
features of previously existing message passing systems. It has been influenced by work at the 
IBM T. J. Watson Research Center [14, 15], Intel Corporation and PVM [16, 17]. The MPI stan- 
dardization effort involved approximately forty organizations from the United States and Europe. 
MPI offers support for point-to-point communication, collective communication, process groups, 
management of process environments and process topologies, and provides an easy-to-use C and 
FORTRAN library interface. One of the goals of MPI is to provide MPP vendors with a clearly 
defined base set of routines that they can implement efficiently. 

The experiments described throughout this paper made use of the PVM library. PVM was 
chosen since it focuses more on the concept of a virtual machine, was widely available and provided 

the necessary functionality. 

2    Hardware 

The UMass computer vision lab has a set of different machines that allows interesting experiments 
with a system such as PVM. Experiments were carried out with a set of SUNs and SGIs, connected 

by standard thinwire ethernet. 
Table 1 shows information regarding each type of machines used in the experiments. 

Machines 

Description Escher Periscope Helios Colossus Jenni 

Number of Processors 2 4 1 1 1 

Processor Type MIPS R4400 MIPS R2000/R3000 SuperSPARC SuperSPARC MicroSPARC 

Speed (MHz) 200 33 50 50 50 

Cache Size (Kbytes) 16 64 16 16 4 

Secondary cache (kbytes) 4000 256 1000 1000 na 

Main memory (Mbytes) 64 128 64 96 32 

Table 1: This table shows the characteristics of the machines used in this project. 

2.1    The application 

The University of Massachusetts computer Vision Group has been developing a system for model 
reconstruction from aerial imagery [1,6]. It exploits various techniques of perceptual grouping [9] to 
obtain higher-level information. A similar approach is taken in several other image understanding 

systems, e.g. [7]. 
The initial scheme of the system involved finding building rooftops using graph algorithms. The idea 
is to recognize closed rectilinear cycles, most of which correspond to rooftops with high probability. 
A feature-relation graph is constructed from lines extracted from the image. Line intersections yield 
vertices in the graph, and vertices are connected by an edge in the graph when there is enough line 
coverage in the image between the two vertex coordinates. This data is processed in subsequent 

steps to find closed polygons. 



Input for the algorithm is a set of line segments generated by a line finder algorithm. 
The line input from the line finder is used to generate corner features. Lines of a certain 

minimal length and a certain minimum and maximum distance are checked for intersection. For 
the intersection check lines are extended in length along the original direction in order to find 
intersections when lines are very close together, but do not actually intersect. The generated 
corners carry a weight and two orientation parameters (the orientations of the lines they were 

generated from) 
More corner features are hypothesized from lines exceeding a certain length. These corners only 

carry a weight, but have no defined orientations. 
Redundant corners from both corner generation steps are then merged to reduce the number of 

corner features. The weight of a resulting corner will be a weighted average of the weights of the 
corners it was generated from. Its orientations will either be defined, if the original corners had 
the same orientations within a certain range, or they will be not defined. Dihedral corners in the 
image will have defined orientation parameters, corners with more legs will not. 

The edge generation step checks for line support in between any two corners which have a 

certain image dependent, minimum and maximum distance. 
Corners with defined orientation parameters can only be linked with other corners if the line 

connecting the two lays within a certain range of angular deviation from the direction vectors 
specifying the orientations of the legs of the corner. Corners without orientation constraints can 
be linked with any other corner given the other conditions are met. 

2.2    Master-slave paradigm 

The first key decision on this algorithm was to choose the master-slave paradigm. A master process 
schedules the work for a number of slave processes. The slaves send results back to the master which 
does all processing that should be centralized and then sends out work requests to the slaves. There 
are two operations a slave can carry out: compute corners from line segments and check for line 
segment support between corners. Every machine has a file with the initial line segments on a 
local disk When the program starts, slaves read the data and the master sends range information 
to each slave specifying the data range the slave should compute corners from. When the slave is 
done it sends back the corner information (the location and weight of each corner) to the master. 
The master continues to send requests until every possible combination of line segments has been 
checked After all corners have been detected, the master generates a new list that contains fewer 
corners by deleting corners that are close in proximity and replacing them with a single corner. The 
list of corners after that operation is sent to every slave. The master again sends range information 
to each slave specifying the range each slave will have to compute edge support for. After a slave is 
done it sends computed edges between corners back to the master. The master joins the individual 
lists and writes the graph out to file. This file is used in a later stage by a graph matching algorithm 

to generate polygons. 

3    Experiments 

Three different sets of experiments were carried out and will be described below. The first one used 
PVM in transparent mode (PVM does the task scheduling) with one task per slave and varying 
numbers of slaves. The second set used a fixed number of slaves while the tasks were sub-partitioned 
into smaller parts to be able to use more than one sub-task per slave. The third and last set used 
explicit task scheduling (an explicit number of slaves are started on each machine) with a fixed 
number of slaves and a varying number of sub-partitions per task. 



3.1    Experiments with different configurations of the virtual machine 

The first set of experiments used the same input data but different configurations of the virtual 
laLine and different task partitioning. The input data was the output of Boldt's algorithm on 
The image of a building on Kirtland Air force Base.  It contained 1488 line segments.  Individual 

experiments were carried out five times to minimize random errors. 
The following important numbers are reported in a table for each experiment: 

. Master total time - the total time between start of the master and finishing to compute the 

result 

. Master work time :- the time the master spends on computation 

. Master overhead time - the time the master spends on communication (including packing and 

unpacking of data) and waiting 

. Average slave work time - the average time a slave spends on computation 

. Average slave overhead time - the average time a slave spends on communication (including 

packing and unpacking) and waiting 

Table 2 illustrates the different configurations used. 

Configuration 

VI 
V2 
V3 
V4 
V5 
V6 
V7 
V8 
V9 

Iris 
X 

X 

X 

Helios 

X_ 
X 

Jenni 

X_ 
X 

Colossus 

X 

X 

Escher 

X 

Periscope 

X 
X 

Table 2: Configurations of the virtual machines for the experiments 

It should be noted that configurations VI - V5 used a single machine only. These configurations 
were mainly used for comparison against multi-machine configurations and to explore the behave 

of multi-processor systems (V4 and V5) with PVM. 
As mentioned above, three sets of experiments were earned out. The first one used PVM m 

transparent mode (PVM does the task scheduling) with one task per slave and varying numbers of 
aves In these experiments the task was split into equal size sub-tasks and each slave was assigned 

aTub-task to work on. For example, with four slaves each of them checked one quarter of the line 
segments against the full amount of line segments for overlap. After corner merging by the master 
eac'slave was assigned an equally sized range of corners to check for edges in between that range 
andItheTull corner range. This scheduling mechanism was not optimal as the results show. The 

issue was addressed in the other sets of experiments. 
The second set used a fixed number of slaves. The tasks were sub-partitioned into smaller parts 

to be able to use more than one sub-task per slave. 



The third and last set used an explicit scheduling mechanism (an explicit number of slaves on 
each machine) with a fixed number of slaves and a varying number of sub-partitions per task. 

Figures are included to visualize results. 

3.2    Experiments with a transparent mode, one task per slave 
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Figure 1: Time versus number of processes for configuration VI 

The results of the runs on configuration VI showed a slight improvement of the average slave 
work time as the number of slaves increased up to 4 slaves. Concurrently time slave overhead 
increased steadily. With more slaves each individual slave has to do less operations. Increasing the 
number of slaves in this configuration should not improve the speed since there is only one CPU to 
do the work and the slaves processes have to share it. This should in fact lead to a increase in total 
slave time when scheduling multiple slaves on the same system. The initial slight improvement in 
slave work time we actually see may be due to process management issues in the operating system 

or caching! , , 
Configuration V4 utilized a two-processor SGI. As the results show, the speedup when using 

both processors on this machine with a single slave was at a rate of about 1.75. The best possible 
speedup could be achieved with 4 slaves on each processor. While the slave overhead time steadily 
increased the average slave work time has a minimum at that point. As mentioned above, this may 
be caused by operating system process scheduling and caching strategies on the single machine. 

As expected the results show a small fraction of time of the master process devoted to compu- 
tation while the majority is overhead. Most of the master overhead is spent waiting for the results 
from slaves   The slaves in turn spend most of their time computing and have a small overhead. 

The different physical machines need different amounts of time to finish the program with one 

slave using the same data. 
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Figure 2: Time versus number of processes for configuration V4 

The performance for the systems with more than one processor improved as more processors are 
used. V4 showed a speedup of about 1.75 when two instead of one slaves are used. V5 performed 
about 3.45 times as fast when all four instead of only one processors were used. 
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Figure 3: Time versus number of processes for configuration V7 

Configuration V7 utilized two SUN Sparc stations. The average slave work time decreased 
between 1 and 4 slaves per machine and went up as the number of slaves- was increased further. 

The slave overhead time increased steadily as more slaves were used. 
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Figure 4: Time versus number of processes for configuration V8 

Configuration V8 utilized all four SUNs. The average processing time per slave was about 
the same as for configuration V7, but the average slave overhead has gone up to about the same 
aIne^TsZ caused by waiting for the slowest machine to finish tasks The optimum for tins 

configuration was 2 slaves per machine. The lowered overhead time outweighed the increased work 
L per slave. In this configuration it would be beneficial to break up the tasks into smaller pieces 
a" not to assign each slave an equal size problem. Later experiments described below address this 
issue   Due to the bad scheduling V8 has a lower performance than V7 in this mode. 

Configuration V9 showed a speedup between 6 and 24 slaves used. This was mainly due to the 
speedup on the slowest physical machine that could use all of its four processors with a total of 24 
slaves in this configuration. It should be noted that without explicit scheduling or sub-partitionmg 
tlrtlsks V9 Tad a lower performance than V7 despite the fact that it contained all the physical 

machines included in V7. 

3.3    Experiments with different task granularity / message sizes 

Another issue to be investigated was dependency of the effect of changing granularity of task 
petitioning. Finer granularity allows for more flexibility in task scheduling since it can allow stower 
Z1Les to do les, work and faster machines to do more. A finer granularity usually results in 
more messages of smaller size, coarser granularity yields less but larger messages. Smaller messages 
can be delivered faster but there will be more messages and more overhead to transmit them. 

Dividing the task into smaller pieces showed the expected effect on the single machine, single 
processor configuration VI. Both slave work time and slave overhead time increased as the number 
oTsub-tasks increased. With only one processor dividing the work into smaller sub-tasks should 
not improve speed. All slaves had roughly the same performance since scheduling was done by the 

°PeCon?euratio™' V4 did not show a benefit from smaller task partitioning with one slave running 
on each processor. Since both processors had the same characteristics they needed about the same 

10 
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Figure 5: Time versus number of processes for configuration V9 
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Figure 6: Time versus number of sub-tasks for configuration VI with 2 slaves 

amount of time for the same task.   Therefore no excessive overhead times for waiting occurred. 
There was no gain in smaller partitions and the increased overhead caused a slowdown with smaller 

sub-tasks. 
Configuration V7 consisted of two SUN Sparc stations as used in VI. When the number of 

sub-tasks increased an initial decrease in total time could be .noticed. This was mostly due to a 
decrease in slave overhead time. Since individual slaves did not have to wait as long for other slaves 
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Figure 7: Time versus number of sub-tasks for configuration V4 with 2 slaves 
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Figure 8: Time versus number of sub-tasks for configuration V7 with 2 slaves 

to finish with smaller sub-tasks overhead time could be reduced. With more than 8 slaves the slave 
overhead time increased again due to more communication. ,,.,,, 

V8 consist ed of four SUN machines. Its best performance could be achieved with 8 sub-tasks, 
that is two per processor. Figure 9 shows a larger increase in total time between 8 and 16 sub- 
tasks than one could expect from the increase in average slave work time. The reason was mainly 
increased master overhead time due to increased communication. 
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Figure 9: Time versus number of sub-tasks for configuration V8 with 4 slaves 

Figure 10: Time versus number of sub-tasks for configuration V9 with 6 slaves 

Configuration V9 used all available machines. With 6 slaves its best overall time could be 
achieved between 160 and 320 sub-tasks. Figure 10 shows that increased scheduling flexibility with 
more sub-tasks initially improved both average slave work time and slave overhead time After a 
maximum speedup had been reached further increase in the number of sub-tasks yielded a worse 
result when the communication overhead became dominant.    - 

Figure 11 shows the different behavior of a multi-processor SGI with 2 processors (V4) versus 

13 
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Figure 11: Time versus number of sub-tasks for configurations V4 and V7 

a virtual machine with two SUN Sparc processors (V7). On V4 an increase in the number of 
sub-tasks increased the total time needed. On V7 an increase in the number of sub-tasks from 2 
to 8 slightly decreased the total time needed since task scheduling could be done more efficiently. 
Since the two SUNs were running individual operating systems with individual process schedulers 
this had a larger impact than on V4 that ran a single operating system and had tightly coupled 
processors. The scheduling outweighs the increase in overhead for V7 up to 8 sub-tasks. 

3.4    Experiments involving explicit task scheduling 

The third set of experiments carried out was to investigate what effect manual task scheduling would 
have on the performance. The previously described experiments were all carried out m transparent 
mode In this mode PVM itself can choose on which physical machines to start individual slaves. 
It usually tries to assign an equal number of tasks to each physical machine. If machines have 
different performances then this behavior will often not yield the best performance. As seen in the 
previous set of experiments one can use finer task partitioning. This way faster machmes will be 
able to do more work. However, for a virtual machine containing physical machines with different 
numbers of processors scheduling should be adjusted. Each machine should run at least one slave 
per processor that is available for this application. PVM provides a mechanism for starting tasks 
on specific physical machines. For the experiment in this section, one slave process was run per 
processor in each machine in the full configuration. Thus a total of 10 slave processes were used m 

CaC Configuration V9 with explicit scheduling and sub-partitioning yielded the best overall perfor- 
mance Without sub-partitioning the slave overhead time determined the total time needed since 
physical machines of different characteristics were used. As the task granularity became finer the 
performance increased until an optimum was reached with 320 sub-tasks total The slave work 
time decreased quickly between 10 and 80 sub-tasks. With more than 320 sub-tasks (that is about 
32 per slave) it increased again. Slave overhead time showed about the same behavior but changed 

14 
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Figure 12: Time versus number of sub-task for configuration V9 with 10 slaves and explicit task 

scheduling 

more rapidly.  The decrease in slave work time was mostly due to faster machines getting more 
workload and therefore a better overall slave performance. 

4    Conclusions 

The general conclusions after this set of experiments are the following: 

1 It is very important to have an intelligent load scheduling mechanism if the virtual machine 
' consists of individual machines with different characteristics. If the same workload is send to 

each machine regardless of its specifications the overall speed is determined by the slowest 
machine If machine performance is known beforehand the program can divide the workload 
accordingly If machine performance varies due to other tasks or is not known a priori dynamic 
load scheduling should be used. Support for dynamic load scheduling could be included into 

PVM to make it more effective. 

2 For the case where a machine in the virtual machine has more than one processor the trans- 
parent mode is not really adequate because PVM does not recognize this fact. The only way 
to by pass this in the transparent mode is to divide the overall job into a number of tasks 
which is a multiple of the number of processors in the parallel machine. 

3. PVM performs well in the transparent mode if the machines involved in the virtual machine 

are all single process machines with similar speed. 

4 Careful consideration has to be given which machine to run the master process on. A dedicated 
machine might be necessary in case of heavy workload for the master. In turn, if the master 
processes does not require much computational power, it-could be run on the machine with 

the lowest performance to free up resources for slaves. 

15 



5 The message size had no direct significant influence in the overall performance of the machines 
for the application used in this experiment, but the number of messages in the network had 

a large influence in the system performance. 

6. There is an optimal number of processes running on a single machine. Increasing the number 
' of slaves on a single processor to be larger than one may increase the performance. An even 

larger number of slave processes on a single processor will decrease it again. This effect may 
be caused by the operating system limiting the amount of CPU time a single process can use. 

7. It is very important to partition the tasks such that the master process doesn't have to wait 
for one or more slower slaves while all the faster slaves are idle. 

8. It could be shown that the perceptual grouping application used is well suited for parallel 

speedup in a master-slave paradigm. 
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Appendix B 

Processing Large Data Sets 

The large image benchmark is designed to compare the performance of computer system 
architectures when used to process large images. A large image is one that cannot fit 
comfortably in the real memory of a computer. Current image processing needs require the 
ability to process images with upwards of 8k by 8k (67,108,864) pixels. The predominant aspect 
of the benchmark is the transfer of image "chunks" into and out of real memory. The benchmark 
measures elapsed time and data transfers on simple tasks such as a ID Gaussian and an image 
transpose (i.e., NxM => MxN). 

The benchmark consists of two parts. The ALGORITHM part is a set of image processing tasks 
that access image files through a defined application interface. The ACCESS part consists of an 
image access and buffering system that implements the application interface. The application 
interface is designed so that knowledge about the order in which pixels will be accessed can be 
communicated from the ALGORITHM part to the ACCESS part. This way, the ACCESS part 
may be modified to utilize this information while still maintaining the basic image processing 
algorithms in the top part. 

We currently have three variations on the ACCESS part. Two of these variations have been built 
and tested. Result timings have been obtained. The third variation is under construction. Users 
of the benchmark can supply their own variation as long as the application interface is not 
modified. Both the ALGORITHM part and the ACCESS part are supplied in source as part of 
the benchmark. The source consists of C code that is ANSI C and POSIX 1003 compliant. 

The first variation (SYNCHRONOUS) on the ALGORITHM layer implements synchronous file 
data transfers. It does not benefit in any way from knowing in advance the order in which the 
pixels will be accessed. The second variation (THREADED) uses POSDC pthreads to implement 
overlapped synchronous file data transfers. It relies upon multi-tasking with light-weight threads 
and semaphores. The third variation (ASYNCHRONOUS) uses the new POSIX asynchronous 
10 protocol. 

The THREADED version uses one thread to process the image, one thread to read the image, 
and one thread to write the result. The SYNCHRONOUS version uses a single thread to do all 
three operations. The amount of computation per pixel of an image is relatively small even for 
the ID Gaussian. 

We have compared the SYNCHRONOUS and THREADED versions of the large image 
benchmark on a four-processor, 250 MHz DEC Alpha running OSF. 

The benchmark consists of the following steps: 

Step Task 

Convert a 7761x7753 raw byte image to a 7761x7761 LLVS byte image- 
Perform a ID Gaussian on the byte image producing a float image. 

Input 
[MB] 

60 
60 

Output 
[MB] 

60 
240 
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Transpose the float image 
Perform a ID Gaussian on the float image producing a float image. 
Convert the float image to a byte image. 
Transpose the byte image.  

240 
240 
240 

60 

240 
240 

60 
60 

_4_ 
_5_ 
6      . —    , ■   
(LLVS is a low level image format developed at UMass) 

It is evident from the results that the disk system on the DEC Alpha pre-fetches disk blocks (8k) 
and buffers at least 60 MB of data. This is evident from the IO counts from one step of the 
benchmark to the next. 
The most significant factor effecting the elapsed time of the benchmark is the residency of the 
files  Placing the input file on a separate disk from the output file nearly halves the elapsed time. 
We believe that this is due to disk-head positioning as the data bandwidth to disk does not appear 
to be high enough to saturate the disk channel. 
The elapsed time for the THREADED version is sometimes slightly lower than the elapsed time 
for the SYNCHRONOUS version regardless of file residency. 

The CPU time for the THREADED version is always larger than the CPU time for the 
SYNCHRONOUS version. The difference is a function of the number of reads and writes and is 
inversely proportional to the block size read or written. The difference is due to the overhead of 
using pthreads, mutexes, and semaphores in order to implement asynchronous IO using pthreads. 

In particular, the transpose operation is significantly more efficient using the SYNCHRONOUS 
version of the benchmark because the block size used for this operation is so small (597 bytes) 
(The transpose is accomplished by transposing sub-images. These sub-images are square and 
thus their dimension must be evenly divisible into both dimensions of the original image. Using 
a small sub-image reduces paging.) The block size for all other operations is a single row of the 

image. 
Under these conditions, using the THREADED version of the benchmark is not productive. The 
disk system pre-fetch negates the benefit of the asynchronous IO and the overhead of using the 
POSK pthreads significantly increases the CPU usage. Attached is the result from four sample 
runs on the Large Image benchmark. There are four sets of times: 

1: THREADED   - input & output to same disk 
2: THREADED   - input & output to different disks 
3: SYNCHRONOUS - input & output to same disk 
4: SYNCHRONOUS - input & output to different disks 

Note that both the THREADED and the SYNCHRONOUS versions use the identical object 
modules for performing the various image processing operations. The only difference is in the 
ACCESS layer that is between these modules and the file system. This layer provides buffering. 
And, in the case of the THREADED version, allows overlapped IO with other processing 
(asynchronous IO). 
The CPU times are in seconds. The elapsed times are in minutes. The Efficiency is the CPU 
time (user + system) divided by the elapsed time. 
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The Input & Output Ops. is the count of the number of 8k blocks transferred between the disk 
and RAM. (Note that 7350x8192 is 60,211,200 and 29460x8192 is 241,336,320.) The 
differences in counts and page faults is due to other activities being performed by the system for 
other users. Note that the input count for step two is either 0 or 1 in all four cases. We assume 
that this is due to the entire 60 MB image output from step one residing in either a operating 
system RAM buffer or a disk RAM buffer. The other counts show a similar pattern. 

THREADED- - same disk 
Step Task 

Convert to square 
ID Gaussian 
2D Transpose 
ID Gaussian 
Convert to byte 
2D Transpose 
Total 

User 
Sec. 
12.90 
64.99 
60.47 
66.17 
22.63 
52.06 

279.22 

System 
Sec. 
10.40 
18.82 
49.05 
22.16 
17.04 
40.07 

157.54 

Elapsed 
Min. 

0:15 
1:02 
5:00 
2:21 
0:30 
1:07 

10:15 

Eff 

146% 
135% 
36% 
62% 

128% 
136% 

Input 
_2E§_ 

7351 
1 

25260 
13920 
15676 

62210 

Output 
Ops 

7380 
29462 
29498 
29463 

7371 
7116 

110290 

Page 
Faults 

0 
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THREADED- -different disk 

Step Task User 
Sec. 

System 
Sec. 

Elapsed 
Min. 

Eff Input 
Ops 

Output 
Ops 

Page 
Faults 

1 Convert to square 12.86 10.37 0:12 188% 7409 7371 8 

?, ID Gaussian 64.73 19.16 1:02 135% 0 29468 0 

3 2D Transpose 53.68 48.19 3:40 46% 23817 29493 1 

4 ID Gaussian 66.38 24.00 1:24 107% 13825 29450 19 

5 Convert to byte 22.58 17.36 0:22 175% 15882 7367 0 

6 2D Transpose 41.95 38.18 1:00 131% 2 7120 1 

Total 262.18 157.26 7:40 60935 110269 

SYNCHRONOUS- -samedisk 
Step Task 

Convert to square 
ID Gaussian 
2D Transpose 
ID Gaussian 
Convert to byte 
2D Transpose 
Total 

User 
Sec. 

3.78 
57.72 
18.06 
54.74 
7.50 

12.10 
153.90 

System 
Sec. 

3.46 
7.96 

32.50 
12.20 
6.70 

15.42 
78.24 

Elapsed 
Min. 

0:15 
1:06 
4:42 
2:50 
0:28 
0:43 

10:04 

Eff 

47% 
99% 
17% 
39% 
49% 
62% 

Input 
Ops 

7346 
0 

24063 
12602 
15103 

0 
59114 

Output 
Ops 

7373 
29465 
29514 
29468 

7367 
7117 

110304 

Page 
Faults 

0 
0 

0 

Step Task User   1 System I Elapsed 1    Eff   1   Input    | • Output  1    Page 
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2_ 
_3_ 
_4_ 
_5_ 
6 

Convert to square 
ID Gaussian 
2D Transpose 
ID Gaussian 
Convert to byte 
2D Transpose 
Total 

Sec. 
3.27 

57.42 
18.13 
54.33 

7.43 
11.88 

152.46 

Sec. 
3.21 
7.19 

31.77 
11.92 
6.86 

15.90 
76.85 

Min. 
0:12 
1:04 
3:22 
1:32 
0:21 
0:35 
7:06 

52% 
99% 
24% 
71% 
65% 
79% 

OP* 
7346 

20962 
14499 
15410 

0 
58218 

Ops 
7371 

29469 
29488 
29468 
7365 
7123 

110284 

Faults 
_0 
_0 
_2 
J_ 

0_ 
0 

Future Directions 

1. Complete the ASYNCHRONOUS version of the ACCESS part "and obtain timings for it. 

2 Run the benchmark on other machines. It is doubtful if this will show anything interesting 
concerning the SYNCHRONOUS versus THREADED versions. Some systems may have lower 
mutex costs than the Alpha. Other systems may not do as much buffering. But the first won t 
change the main result and the second just shows that the vendor did not do a good job. 

3 Use multi-tasking for the image processing kernels. In this effort it would be better to 
change the interface to the buffering layer as the pre-reading does not seem to be beneficial and 
to set up for pre-reading has some cost. Even so, these kernels are obviously IO bound so it 
seems unlikely that significant improvement in elapsed time will occur from multi-tasking. 

4 Package up the benchmark. We should discus if there is any valid reason to leave in the 
Dossibility of doing pre-reading. Some vendors may have some special capabilities that could 
use it. Certainly, the image processing kernels will be easier to understand if this capability is 
removed from the buffering interface. 
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