
REPORT DOCUMENTATION PAGE
Form Approved

OMB NO. 0704-0188

i^^^^^flisMli^
7~AGENCY USE ONLY (Leave blank)

2. REPORT DATE
Oct. 6, 1998

rapwiTiwm»"———— •

3 REPORT TYPE AND DAI fcS uuVERED

' Final 6/16/97 - 6/15/98

-rTiTLEANDSUBTllLfc
Distributed Processing for Rapid Reconstruction of
Terrain Models

6. AUTHOR(S)

Howard J. Schultz and Edward M. Riseman

^PERFORMING ORGANIZATION NAMhS(S; AND ADDRESS^

5. FUNDING NUMBERS

DAAG55-97-1-0328

8 PERFORMING ORGANIZATION
' REPORT NUMBER

University of Massachusetts
Computer Science Department
Lederle Graduate Research Center
Am^^ MA m 003-4610

Reproduced From
Best Available Copy

^-^^^ä^^^^^^^
US Army Research Office

g£i££&äe Park,, NC 27709-2211

10 SPONSORING/MONITORING
' AGENCY REPORT NUMBER

A/to ^m.'^-^'

11. SUPPLEMENTARY NOTES ^ author(s) and should not be.construed as

12a DISTRIBUTION /AVAILABILITY STATEMfcN I

DHC QTJALJTY rNSPECTED 3

Approved for public release; distribution unlimited. 19981222 023
 . : ._„ J.VPIOD high-performance computing

13. ABSTRACT (MaximumZOO worüs) The pro j ect. goals are to ü*y?x;iLes
B
t0 support a diverse set of

techniques for rapid mapping of terrain ^«i^^Lcreaae In the variety and
capabilities for battlefield awareness. With the rec ^ ial_
resolution of image sources, there is « J^""^ university of Massachusetts is

ized map products. »^^JJ'^SS'tSiS«... The first year research
developing parallel and distributed processing 4distributed processing tech-
effort focused on mechanisms and *"ate8"!* architectures, and parallel processing
niques across a heterogeneous set of 2?aTets ^Tl studies were conducted using
techniques for processing ^J.^«J^" 8^ort? We successfully applied the tech-
the PVM (parallel virtual machine) l1*"^ "^"^ in site model reconstruction,
nique to a complex perceptual f ouPin?nf 8°^core algorithms that advantage multi-
?n addition, we began work on developing out of core g g greater than
processor servers to ««^^ntly

ft?™"^r3r^int the highly inefficient operating
?0,000 x 30,000 pixels) These ^"J^""^! bench match studies have shown
system virtual memory ancpaging_gf^J^ is independent of the image size
that the efficiency of these out

14. SUBJECT TERMS

distributed processing, parallel processing, site modeling,

battlefield awareness

17. SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18 SECURITY CLASSIFICATION
' OF THIS PAGE

UNCLASSIFIED

19 SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15 NUMBER IF PAGES

21
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Enclosure 1

Standard Form 2981 (Rev. 2-89)
described by ANSI Std. 239-18
298-102

Distributed Processing for Rapid Reconstruction of Terrain Models

June 16, 1997 -June 15, 1998

Howard J. Schultz. (PI)
Edward M. Riseman (Co-PI)

May 11, 1998

University of Massachusetts, Amherst

Contract Number DAAG55-97-1-0328

Approved for Public Release;
Distribution Unlimited

The views, opinions, and/or findings contained in this report are those of the author(s) and
should not be construed as an official Department of the Army position, policy, or decision,
unless so designated by other documentation.

This is annual report covers the period June 16, 1997 - June 15, 1998 for ARO contract
DAAG55-97-1-0328, "Distributed Processing for Rapid Reconstruction of Terrain Models .

The project goals are to develop high-performance computing techniques for rapid mapping of
terrain and cultural sites to support a diverse set of capabilities for battlefield awareness. With
the recent increase in the variety and resolution of image sources, there is an increasing need to
rapidly generate specialized map products. To meet these demanding requirements we will
develop parallel and distributive techniques.

The first year research effort focused on mechanisms and strategies for using distributed parallel
processing across a heterogeneous set of processors, and parallel processing techniques for
processing of very large data sets. We conducted two studies. The first (Appendix A)
"Exploring PVM for a computer vision application" authored by Mr. Frank Stolle, a Ph.D.
candidate In our research group, successfully demonstrated strategies for distributing computer
vision applications across a network of heterogeneous computer architectures. The second
"Processing Large Data Sets" describes a project to create large image manipulation routines and
a bench mark to measure the performance of these routines.

The expanded scope of the research involved parallel processing techniques for handling very

large data sets.

Processing large geospatial models.

Advances in the size, variety and speed of imaging sensors has resulted in an explosion of
applications that utilize large geospatial databases. Generating, managing and visualizing these
databases present unique computational problems that are not adequately addressed with current
hardware and software systems. Increasingly, many of these issues are discussed in the scientific
literature Recently, several researchers have concluded that operating system virtual memory
and paging algorithms are inadequate for interactive manipulation and visualization of large
geometrically orientated databases.

We have also found this to be the case. For example, our current terrain modeling system
(Terrest) which has been shown to be very robust and efficient, becomes impractical when the
image size exceed 4,000 x 4,000 pixels Our investigations have shown that at runtime the
internal intermediate representations requires about 100 times as much memory as is required to
store a single image. Thus, if the input images are 16 Mbytes, approximately 2 Gbytes of
physical memory might be required to generate the terrain model. Clearly, this scaling problem
must be addressed if the terrain reconstruction techniques are to be extended to large image
format, which are expected to exceed 30,000 x 30,000.

We have started a joint research program with Professors Chip Weems, Kathryn McKinley and
Eliot Moss of the UMass Computer Science Department to develop software tools to manage
memory hierarchies when geospatial data exceeds the limits of primary memory. These tools
incorporate out-of-core disk-to-memory processing schemes optimized for single and

multiprocessor architectures and RAID systems (redundant array of independent disks). These
procedures will be incorporated into our existing terrain modeling software. Our goal is to create
a terrain modeling system capable of efficiently handling virtually any size input.

Publications:

Schultz H Jaynes, C, Marengoni, M., Schwickerath, A., Stolle, F., Wang, X., Hanson, A.,
Riseman E!, "3D Reconstruction of Topographic Objects at the University of Massachusetts",
Joint ISPRS Workshop on 3D Recognition and Modeling of Topographic Objects, Stuttgart,
Germany, September 17-19,1997.

Schultz H., Schwickerath, A., Stolle, F., Hanson, A., Riseman, E., "Incremental Digital
Elevation Map Generation From Stereo Images", ISPRS Workshop on Theoretical and Practical
Aspects of Surface Reconstruction and 3D Object Extraction, Haifa, Israel, September 9-11,

1997.

Schultz H Stolle, F., Wang, X., Riseman, E., and Hanson, A., "Recent Advances in 3D
Reconstruction Techniques from Aerial Images", Proc. DARPA Image Understanding
Workshop, New Orleans, LA, May 1997, Vol. II, pp. 977-982.

Appendix A

Exploring PVM for a Computer Vision Application

Frank Stolle
University of Massachusetts

Department of Computer Science
Amherst, MA 01003

May 26, 1998

1 Introduction
It is very common today for organizational units to have a number of networked workstations.
Most of the time these machines are used locally and not to their fullest potential. A number of
typical computer vision applications require significant processing power. Often powerful single
mo es or or symmetric multiprocessor systems are used for these applications. The goal of this
study is to investigate how practical it is to take advantage of distributed computing in a network
of workstations to solve a computer vision problem. Two support libraries for distributed parallel

computing are considered and a test application is implemented.

1.1 Parallel programming models and supporting libraries

The two main programming models for distributed processing are shared memory and message
passing The former exploits mechanisms to share memory between individual processors, the
fatter one makes use of explicit messages between different processing units. Mixed forms like
distributed shared memory are being used to keep local copies of the memory in each machine, and

use message passing to keep the individual copies consistent.
iTthis project, the message passing paradigm for parallel programming was chosen because of

its gLter simplicity. There are libraries available that take the burden of writing the message

passing routines away from the application designer.

1.2 Libraries for message passing: PVM and MPI

PVM (Parallel Virtual Machine) [18, 19] is a software tool to support distributed computing based
on a message-passing paradigm. It allows the user to join machines of different architecture in-
LrconnSd by various possible networks into a single virtual parallel machine. The hardware

pported ranges from PCs to massive parallel machines [22]. su

PVM supports operations for adding and deleting physical machines into and from the virtual
machine, synchronization operations, and message encoding for exchange between different archi-
tectures.' PVM supports the programming languages C and FORTRAN. Several visualization tools
exist for studying the process behavior and the network traffic.

MPI (Message Passing Interface) [20] was developed in the early 90s in an effort to combine
features of previously existing message passing systems. It has been influenced by work at the
IBM T. J. Watson Research Center [14, 15], Intel Corporation and PVM [16, 17]. The MPI stan-
dardization effort involved approximately forty organizations from the United States and Europe.
MPI offers support for point-to-point communication, collective communication, process groups,
management of process environments and process topologies, and provides an easy-to-use C and
FORTRAN library interface. One of the goals of MPI is to provide MPP vendors with a clearly
defined base set of routines that they can implement efficiently.

The experiments described throughout this paper made use of the PVM library. PVM was
chosen since it focuses more on the concept of a virtual machine, was widely available and provided

the necessary functionality.

2 Hardware

The UMass computer vision lab has a set of different machines that allows interesting experiments
with a system such as PVM. Experiments were carried out with a set of SUNs and SGIs, connected

by standard thinwire ethernet.
Table 1 shows information regarding each type of machines used in the experiments.

Machines

Description Escher Periscope Helios Colossus Jenni

Number of Processors 2 4 1 1 1

Processor Type MIPS R4400 MIPS R2000/R3000 SuperSPARC SuperSPARC MicroSPARC

Speed (MHz) 200 33 50 50 50

Cache Size (Kbytes) 16 64 16 16 4

Secondary cache (kbytes) 4000 256 1000 1000 na

Main memory (Mbytes) 64 128 64 96 32

Table 1: This table shows the characteristics of the machines used in this project.

2.1 The application

The University of Massachusetts computer Vision Group has been developing a system for model
reconstruction from aerial imagery [1,6]. It exploits various techniques of perceptual grouping [9] to
obtain higher-level information. A similar approach is taken in several other image understanding

systems, e.g. [7].
The initial scheme of the system involved finding building rooftops using graph algorithms. The idea
is to recognize closed rectilinear cycles, most of which correspond to rooftops with high probability.
A feature-relation graph is constructed from lines extracted from the image. Line intersections yield
vertices in the graph, and vertices are connected by an edge in the graph when there is enough line
coverage in the image between the two vertex coordinates. This data is processed in subsequent

steps to find closed polygons.

Input for the algorithm is a set of line segments generated by a line finder algorithm.
The line input from the line finder is used to generate corner features. Lines of a certain

minimal length and a certain minimum and maximum distance are checked for intersection. For
the intersection check lines are extended in length along the original direction in order to find
intersections when lines are very close together, but do not actually intersect. The generated
corners carry a weight and two orientation parameters (the orientations of the lines they were

generated from)
More corner features are hypothesized from lines exceeding a certain length. These corners only

carry a weight, but have no defined orientations.
Redundant corners from both corner generation steps are then merged to reduce the number of

corner features. The weight of a resulting corner will be a weighted average of the weights of the
corners it was generated from. Its orientations will either be defined, if the original corners had
the same orientations within a certain range, or they will be not defined. Dihedral corners in the
image will have defined orientation parameters, corners with more legs will not.

The edge generation step checks for line support in between any two corners which have a

certain image dependent, minimum and maximum distance.
Corners with defined orientation parameters can only be linked with other corners if the line

connecting the two lays within a certain range of angular deviation from the direction vectors
specifying the orientations of the legs of the corner. Corners without orientation constraints can
be linked with any other corner given the other conditions are met.

2.2 Master-slave paradigm

The first key decision on this algorithm was to choose the master-slave paradigm. A master process
schedules the work for a number of slave processes. The slaves send results back to the master which
does all processing that should be centralized and then sends out work requests to the slaves. There
are two operations a slave can carry out: compute corners from line segments and check for line
segment support between corners. Every machine has a file with the initial line segments on a
local disk When the program starts, slaves read the data and the master sends range information
to each slave specifying the data range the slave should compute corners from. When the slave is
done it sends back the corner information (the location and weight of each corner) to the master.
The master continues to send requests until every possible combination of line segments has been
checked After all corners have been detected, the master generates a new list that contains fewer
corners by deleting corners that are close in proximity and replacing them with a single corner. The
list of corners after that operation is sent to every slave. The master again sends range information
to each slave specifying the range each slave will have to compute edge support for. After a slave is
done it sends computed edges between corners back to the master. The master joins the individual
lists and writes the graph out to file. This file is used in a later stage by a graph matching algorithm

to generate polygons.

3 Experiments

Three different sets of experiments were carried out and will be described below. The first one used
PVM in transparent mode (PVM does the task scheduling) with one task per slave and varying
numbers of slaves. The second set used a fixed number of slaves while the tasks were sub-partitioned
into smaller parts to be able to use more than one sub-task per slave. The third and last set used
explicit task scheduling (an explicit number of slaves are started on each machine) with a fixed
number of slaves and a varying number of sub-partitions per task.

3.1 Experiments with different configurations of the virtual machine

The first set of experiments used the same input data but different configurations of the virtual
laLine and different task partitioning. The input data was the output of Boldt's algorithm on
The image of a building on Kirtland Air force Base. It contained 1488 line segments. Individual

experiments were carried out five times to minimize random errors.
The following important numbers are reported in a table for each experiment:

. Master total time - the total time between start of the master and finishing to compute the

result

. Master work time :- the time the master spends on computation

. Master overhead time - the time the master spends on communication (including packing and

unpacking of data) and waiting

. Average slave work time - the average time a slave spends on computation

. Average slave overhead time - the average time a slave spends on communication (including

packing and unpacking) and waiting

Table 2 illustrates the different configurations used.

Configuration

VI
V2
V3
V4
V5
V6
V7
V8
V9

Iris
X

X

X

Helios

X_
X

Jenni

X_
X

Colossus

X

X

Escher

X

Periscope

X
X

Table 2: Configurations of the virtual machines for the experiments

It should be noted that configurations VI - V5 used a single machine only. These configurations
were mainly used for comparison against multi-machine configurations and to explore the behave

of multi-processor systems (V4 and V5) with PVM.
As mentioned above, three sets of experiments were earned out. The first one used PVM m

transparent mode (PVM does the task scheduling) with one task per slave and varying numbers of
aves In these experiments the task was split into equal size sub-tasks and each slave was assigned

aTub-task to work on. For example, with four slaves each of them checked one quarter of the line
segments against the full amount of line segments for overlap. After corner merging by the master
eac'slave was assigned an equally sized range of corners to check for edges in between that range
andItheTull corner range. This scheduling mechanism was not optimal as the results show. The

issue was addressed in the other sets of experiments.
The second set used a fixed number of slaves. The tasks were sub-partitioned into smaller parts

to be able to use more than one sub-task per slave.

The third and last set used an explicit scheduling mechanism (an explicit number of slaves on
each machine) with a fixed number of slaves and a varying number of sub-partitions per task.

Figures are included to visualize results.

3.2 Experiments with a transparent mode, one task per slave

250 ■

t

* «

200 ■ *

■g 150
o
Ü
M
C

i 100 -
t-

50 -

o y *
0 9—

2 3 5 9

No. ot processes

| • Master total time x Master work time x Master overhead lime A Average slave work lime a Average slave overhead lime 1

Figure 1: Time versus number of processes for configuration VI

The results of the runs on configuration VI showed a slight improvement of the average slave
work time as the number of slaves increased up to 4 slaves. Concurrently time slave overhead
increased steadily. With more slaves each individual slave has to do less operations. Increasing the
number of slaves in this configuration should not improve the speed since there is only one CPU to
do the work and the slaves processes have to share it. This should in fact lead to a increase in total
slave time when scheduling multiple slaves on the same system. The initial slight improvement in
slave work time we actually see may be due to process management issues in the operating system

or caching! , ,
Configuration V4 utilized a two-processor SGI. As the results show, the speedup when using

both processors on this machine with a single slave was at a rate of about 1.75. The best possible
speedup could be achieved with 4 slaves on each processor. While the slave overhead time steadily
increased the average slave work time has a minimum at that point. As mentioned above, this may
be caused by operating system process scheduling and caching strategies on the single machine.

As expected the results show a small fraction of time of the master process devoted to compu-
tation while the majority is overhead. Most of the master overhead is spent waiting for the results
from slaves The slaves in turn spend most of their time computing and have a small overhead.

The different physical machines need different amounts of time to finish the program with one

slave using the same data.

700 -

t 1

600

■
500 -

400 ■

a ■ c
a

300 ■

200 ■

100 •

.„ft _*
0 0 »

No. of processes

| . Master total time » Masler work lime » Master overhead lime a Average slaved* lime * Average slave overhead lime |

Figure 2: Time versus number of processes for configuration V4

The performance for the systems with more than one processor improved as more processors are
used. V4 showed a speedup of about 1.75 when two instead of one slaves are used. V5 performed
about 3.45 times as fast when all four instead of only one processors were used.

160 ■
I

140 ■

120-

*

100 •

80-

60-

40

20-

i 5
O X

No. of processes

> Master total time x Master work time * Master overhead time » Average slave work time o Average slave overhead time |

Figure 3: Time versus number of processes for configuration V7

Configuration V7 utilized two SUN Sparc stations. The average slave work time decreased
between 1 and 4 slaves per machine and went up as the number of slaves- was increased further.

The slave overhead time increased steadily as more slaves were used.

300 •

t

250 !
1

200 •
w
c
o u
» 150-
c

E
P »

A

100

50

 —¥
0 17

No. of processes

> Masler loial lime « Master work time
, Master nvnmead lime » Average slave work time a Average slave overhead time |

Figure 4: Time versus number of processes for configuration V8

Configuration V8 utilized all four SUNs. The average processing time per slave was about
the same as for configuration V7, but the average slave overhead has gone up to about the same
aIne^TsZ caused by waiting for the slowest machine to finish tasks The optimum for tins

configuration was 2 slaves per machine. The lowered overhead time outweighed the increased work
L per slave. In this configuration it would be beneficial to break up the tasks into smaller pieces
a" not to assign each slave an equal size problem. Later experiments described below address this
issue Due to the bad scheduling V8 has a lower performance than V7 in this mode.

Configuration V9 showed a speedup between 6 and 24 slaves used. This was mainly due to the
speedup on the slowest physical machine that could use all of its four processors with a total of 24
slaves in this configuration. It should be noted that without explicit scheduling or sub-partitionmg
tlrtlsks V9 Tad a lower performance than V7 despite the fact that it contained all the physical

machines included in V7.

3.3 Experiments with different task granularity / message sizes

Another issue to be investigated was dependency of the effect of changing granularity of task
petitioning. Finer granularity allows for more flexibility in task scheduling since it can allow stower
Z1Les to do les, work and faster machines to do more. A finer granularity usually results in
more messages of smaller size, coarser granularity yields less but larger messages. Smaller messages
can be delivered faster but there will be more messages and more overhead to transmit them.

Dividing the task into smaller pieces showed the expected effect on the single machine, single
processor configuration VI. Both slave work time and slave overhead time increased as the number
oTsub-tasks increased. With only one processor dividing the work into smaller sub-tasks should
not improve speed. All slaves had roughly the same performance since scheduling was done by the

°PeCon?euratio™' V4 did not show a benefit from smaller task partitioning with one slave running
on each processor. Since both processors had the same characteristics they needed about the same

10

t
900 -

800 -

700 "

M

.
"g 600 ■
o o
«1 *

T
im

e
in

 s

8

 g

A ■

200]
4

D
100 ■

1

No

13 25

of-processes

Master total time x Master work time x Master overhead time A Average slave work time a Average slave overhead time |

Figure 5: Time versus number of processes for configuration V9

200

| 150 +
o
Ü
m
c
«
.§ 100 ••

oo
2

Number o(sub-tasks

I « Maslef total lime x Masler work lime» Masler overhead lime A Average slave worfc lime o Average slave ovemead lime [

Figure 6: Time versus number of sub-tasks for configuration VI with 2 slaves

amount of time for the same task. Therefore no excessive overhead times for waiting occurred.
There was no gain in smaller partitions and the increased overhead caused a slowdown with smaller

sub-tasks.
Configuration V7 consisted of two SUN Sparc stations as used in VI. When the number of

sub-tasks increased an initial decrease in total time could be .noticed. This was mostly due to a
decrease in slave overhead time. Since individual slaves did not have to wait as long for other slaves

11

400 •-
•S ^ ° o
Ü
• 300

200 ••

Number of sub-tasks

I . M«Mr imai lime n Average slave work lime * Average slave ovemead lime I

Figure 7: Time versus number of sub-tasks for configuration V4 with 2 slaves

140 ■

120
*

i

4

100 ■

80 -

60-

40-

20

! o ö ?
0

8 16

Number of sub-tasks

• Masler total time »Masler ̂ oTklmT"»"iüalieTo^meYa time » Average slave work lime o Average slave overhead lime |

Figure 8: Time versus number of sub-tasks for configuration V7 with 2 slaves

to finish with smaller sub-tasks overhead time could be reduced. With more than 8 slaves the slave
overhead time increased again due to more communication. ,,.,,,

V8 consist ed of four SUN machines. Its best performance could be achieved with 8 sub-tasks,
that is two per processor. Figure 9 shows a larger increase in total time between 8 and 16 sub-
tasks than one could expect from the increase in average slave work time. The reason was mainly
increased master overhead time due to increased communication.

12

300 ■

250 !

200 ■
M

■D
C
O
U t

c

E t

100 ■

*

50 -

a D

 *
0

| o Master t

(.

Dtal lime x Master work time

8 16

Number of sub-tasks

x Master overhead time • Average slave work lime o Average slave overhead time |

Figure 9: Time versus number of sub-tasks for configuration V8 with 4 slaves

Figure 10: Time versus number of sub-tasks for configuration V9 with 6 slaves

Configuration V9 used all available machines. With 6 slaves its best overall time could be
achieved between 160 and 320 sub-tasks. Figure 10 shows that increased scheduling flexibility with
more sub-tasks initially improved both average slave work time and slave overhead time After a
maximum speedup had been reached further increase in the number of sub-tasks yielded a worse
result when the communication overhead became dominant. -

Figure 11 shows the different behavior of a multi-processor SGI with 2 processors (V4) versus

13

100 ■■■■

£
1=

Number of sub-tasks

.Masler total l,meV4. 2 slaves o Average slave wort t™ V4 ^Average slave overhead time V4

* Master total lime V7,2 slaves A Average slave work lime V7 o Average slave overhead Urne V7|

Figure 11: Time versus number of sub-tasks for configurations V4 and V7

a virtual machine with two SUN Sparc processors (V7). On V4 an increase in the number of
sub-tasks increased the total time needed. On V7 an increase in the number of sub-tasks from 2
to 8 slightly decreased the total time needed since task scheduling could be done more efficiently.
Since the two SUNs were running individual operating systems with individual process schedulers
this had a larger impact than on V4 that ran a single operating system and had tightly coupled
processors. The scheduling outweighs the increase in overhead for V7 up to 8 sub-tasks.

3.4 Experiments involving explicit task scheduling

The third set of experiments carried out was to investigate what effect manual task scheduling would
have on the performance. The previously described experiments were all carried out m transparent
mode In this mode PVM itself can choose on which physical machines to start individual slaves.
It usually tries to assign an equal number of tasks to each physical machine. If machines have
different performances then this behavior will often not yield the best performance. As seen in the
previous set of experiments one can use finer task partitioning. This way faster machmes will be
able to do more work. However, for a virtual machine containing physical machines with different
numbers of processors scheduling should be adjusted. Each machine should run at least one slave
per processor that is available for this application. PVM provides a mechanism for starting tasks
on specific physical machines. For the experiment in this section, one slave process was run per
processor in each machine in the full configuration. Thus a total of 10 slave processes were used m

CaC Configuration V9 with explicit scheduling and sub-partitioning yielded the best overall perfor-
mance Without sub-partitioning the slave overhead time determined the total time needed since
physical machines of different characteristics were used. As the task granularity became finer the
performance increased until an optimum was reached with 320 sub-tasks total The slave work
time decreased quickly between 10 and 80 sub-tasks. With more than 320 sub-tasks (that is about
32 per slave) it increased again. Slave overhead time showed about the same behavior but changed

14

600 j

_» * *—
40 80 160

Number of sub-tasks

640

[7^i7r total lime »Master wort, time x Master overhead time 4 Average slave wort« lim» c Average slave overhead time |

Figure 12: Time versus number of sub-task for configuration V9 with 10 slaves and explicit task

scheduling

more rapidly. The decrease in slave work time was mostly due to faster machines getting more
workload and therefore a better overall slave performance.

4 Conclusions

The general conclusions after this set of experiments are the following:

1 It is very important to have an intelligent load scheduling mechanism if the virtual machine
' consists of individual machines with different characteristics. If the same workload is send to

each machine regardless of its specifications the overall speed is determined by the slowest
machine If machine performance is known beforehand the program can divide the workload
accordingly If machine performance varies due to other tasks or is not known a priori dynamic
load scheduling should be used. Support for dynamic load scheduling could be included into

PVM to make it more effective.

2 For the case where a machine in the virtual machine has more than one processor the trans-
parent mode is not really adequate because PVM does not recognize this fact. The only way
to by pass this in the transparent mode is to divide the overall job into a number of tasks
which is a multiple of the number of processors in the parallel machine.

3. PVM performs well in the transparent mode if the machines involved in the virtual machine

are all single process machines with similar speed.

4 Careful consideration has to be given which machine to run the master process on. A dedicated
machine might be necessary in case of heavy workload for the master. In turn, if the master
processes does not require much computational power, it-could be run on the machine with

the lowest performance to free up resources for slaves.

15

5 The message size had no direct significant influence in the overall performance of the machines
for the application used in this experiment, but the number of messages in the network had

a large influence in the system performance.

6. There is an optimal number of processes running on a single machine. Increasing the number
' of slaves on a single processor to be larger than one may increase the performance. An even

larger number of slave processes on a single processor will decrease it again. This effect may
be caused by the operating system limiting the amount of CPU time a single process can use.

7. It is very important to partition the tasks such that the master process doesn't have to wait
for one or more slower slaves while all the faster slaves are idle.

8. It could be shown that the perceptual grouping application used is well suited for parallel

speedup in a master-slave paradigm.

References

[1] R Collins. Y-Q. Cheng, C. Jaynes, F. Stolle, X. Wang, A. Hanson, R. Riseman. "Site model
acquisition and Extension from Aerial Images", Fifth International Conference on Computer

Vision, pp. 888-893, 1995

[2] T. Cormen, C. Leiserson, R. Rivest. "Introduction to Algorithms", The MIT Press, pp. 600-

604, 1992

[3] Wolfgang Förstner, "A Framework for Low Level Feature Extraction", European Conference

on Computer Vision, 1994, pp 383-394

[4] Michael R. Garey, David S. Johnson, "Computers and Intractability, A Guide to the Theory
of NP-Completeness", W. H. Freeman and Company, 1979

[5] M. Grötschel, L. Lovaz, A. Schrijver, "Geometric Algorithms and Combinatorial Optimiza-

tion", second edition, Springer-Verlag, 1994

[6] C Jaynes, F. Stolle, R. Collins. "Task Driven Perceptual Organization for Extraction of
Rooftop Polygons", IEEE Workshop on Applications of Computer Vision, 1994

[7] Claudia Fuchs, Wolfgang Förstner, "Polymorphic Grouping for Image Segmentation", Inter-

national Conference on Computer Vision, 1995,-pp. 175-182

[8] D. Kozem "The Design and Implementation of Algorithms", Springer-Verlag, pp. 101-110,

1992.

[9] D. Lowe, "Perceptual Organization and Visual Recognition", Kluwer Academic Publishers,

1985

[10] C. Papadimitriou. "Computational Complexity", Addis on-Wesley Publishing Company pp.

188-190, 1994.

[11] C. Papadimitriou. "Computational Complexity", Addis on-Wesley Publishing Company pp.

307-309, 1994.

[12] C. Papadimitriou, K. Steiglitz. "Combinatorial Optimization: algorithms and complexity"

Prentice Hall, pp. 454-481, 19S2.

16

[13] Dana Richards, Arthur Liestman, "Finding cycles of a given length" Annals of Discrete Math-
ematics, Elsevier Science Publishers B. V pp. 249-256, 1985.

[14] V. Bala and S. Kipnis, "Process groups: a mechanism for the coordination of and communica-
tion among processes in the Venus collective communication library", Technical report, IBM

T. J. Watson Research Center, October 1992.

[15] V. Bala, S. Kipnis, L. Rudolph, and Marc Snir, "Designing efficient, scalable, and portable
collective communication libraries" Technical report, IBM T. J. Watson Research Center,

October 1992.

[16] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam, "Visualization and de-
bugging in a heterogeneous environment", IEEE Computer, 26(6):88-95, June 1993

[17] J. Dongarra, A. Geist, R. Manchek, and V. Sunderam, "Integrated PVM framework supports
heterogeneous network computing", Computers in Physics, 7(2):166-75, April 1993.

[18] Adam Beguelin, J. Dongarra, Al Geist, Robert Manchek, Keith Moore, and Vaidy Sunderam.
Tools for Heterogeneous Network Computing, pp 854-861, Proceedings of the Sixth SIAM
Conference on Parallel Processing for Scientific Computing, Ed. R. Sincovec et al. 1993, SIAM

Publications, Philadelphia.

[19] V. Sunderam, J. Dongarra, A. Geist, and R Manchek, The PVM Concurrent Computing
System: Evolution, Experiences, and Trends, Parallel Computing, Vol. 20, No. 4, April 1994,

pp 531-547.

[20] The Message Passing Interface, International Journal of Supercomputing Applications Volume
8 Number 3/4, Fall/Winter 1994 (updated 5/95).

[21] J. Dongarra and Peter Newton, Overview of VPE: A Visual Environment for Message-Passing
Parallel Programming, Heterogeneous Computing Workshop '95, Proceedings of the 4th Het-
erogeneous Computing Workshop, Santa Barbara, CA, April 25, 1995.

[22] Henri Casanova, Jack Dongarra, and Weicheng Jiang, The Performance of PVM on MPP
Systems, University of Tennessee Technical Report CS-95-301, August 1995.

[23] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra, MPI: The
Complete Reference, MIT Press, 1995.

[24] Robert L Pennington, "Distributed and Heterogeneous Computing", Cluster Computing Lec-
ture Series by Robert Pennington, Pittsburgh Supercomputing Center at Southampton Uni-

versity, 1995.

17

Appendix B

Processing Large Data Sets

The large image benchmark is designed to compare the performance of computer system
architectures when used to process large images. A large image is one that cannot fit
comfortably in the real memory of a computer. Current image processing needs require the
ability to process images with upwards of 8k by 8k (67,108,864) pixels. The predominant aspect
of the benchmark is the transfer of image "chunks" into and out of real memory. The benchmark
measures elapsed time and data transfers on simple tasks such as a ID Gaussian and an image
transpose (i.e., NxM => MxN).

The benchmark consists of two parts. The ALGORITHM part is a set of image processing tasks
that access image files through a defined application interface. The ACCESS part consists of an
image access and buffering system that implements the application interface. The application
interface is designed so that knowledge about the order in which pixels will be accessed can be
communicated from the ALGORITHM part to the ACCESS part. This way, the ACCESS part
may be modified to utilize this information while still maintaining the basic image processing
algorithms in the top part.

We currently have three variations on the ACCESS part. Two of these variations have been built
and tested. Result timings have been obtained. The third variation is under construction. Users
of the benchmark can supply their own variation as long as the application interface is not
modified. Both the ALGORITHM part and the ACCESS part are supplied in source as part of
the benchmark. The source consists of C code that is ANSI C and POSIX 1003 compliant.

The first variation (SYNCHRONOUS) on the ALGORITHM layer implements synchronous file
data transfers. It does not benefit in any way from knowing in advance the order in which the
pixels will be accessed. The second variation (THREADED) uses POSDC pthreads to implement
overlapped synchronous file data transfers. It relies upon multi-tasking with light-weight threads
and semaphores. The third variation (ASYNCHRONOUS) uses the new POSIX asynchronous
10 protocol.

The THREADED version uses one thread to process the image, one thread to read the image,
and one thread to write the result. The SYNCHRONOUS version uses a single thread to do all
three operations. The amount of computation per pixel of an image is relatively small even for
the ID Gaussian.

We have compared the SYNCHRONOUS and THREADED versions of the large image
benchmark on a four-processor, 250 MHz DEC Alpha running OSF.

The benchmark consists of the following steps:

Step Task

Convert a 7761x7753 raw byte image to a 7761x7761 LLVS byte image-
Perform a ID Gaussian on the byte image producing a float image.

Input
[MB]

60
60

Output
[MB]

60
240

18

Transpose the float image
Perform a ID Gaussian on the float image producing a float image.
Convert the float image to a byte image.
Transpose the byte image.

240
240
240

60

240
240

60
60

4
5
6 . — , ■
(LLVS is a low level image format developed at UMass)

It is evident from the results that the disk system on the DEC Alpha pre-fetches disk blocks (8k)
and buffers at least 60 MB of data. This is evident from the IO counts from one step of the
benchmark to the next.
The most significant factor effecting the elapsed time of the benchmark is the residency of the
files Placing the input file on a separate disk from the output file nearly halves the elapsed time.
We believe that this is due to disk-head positioning as the data bandwidth to disk does not appear
to be high enough to saturate the disk channel.
The elapsed time for the THREADED version is sometimes slightly lower than the elapsed time
for the SYNCHRONOUS version regardless of file residency.

The CPU time for the THREADED version is always larger than the CPU time for the
SYNCHRONOUS version. The difference is a function of the number of reads and writes and is
inversely proportional to the block size read or written. The difference is due to the overhead of
using pthreads, mutexes, and semaphores in order to implement asynchronous IO using pthreads.

In particular, the transpose operation is significantly more efficient using the SYNCHRONOUS
version of the benchmark because the block size used for this operation is so small (597 bytes)
(The transpose is accomplished by transposing sub-images. These sub-images are square and
thus their dimension must be evenly divisible into both dimensions of the original image. Using
a small sub-image reduces paging.) The block size for all other operations is a single row of the

image.
Under these conditions, using the THREADED version of the benchmark is not productive. The
disk system pre-fetch negates the benefit of the asynchronous IO and the overhead of using the
POSK pthreads significantly increases the CPU usage. Attached is the result from four sample
runs on the Large Image benchmark. There are four sets of times:

1: THREADED - input & output to same disk
2: THREADED - input & output to different disks
3: SYNCHRONOUS - input & output to same disk
4: SYNCHRONOUS - input & output to different disks

Note that both the THREADED and the SYNCHRONOUS versions use the identical object
modules for performing the various image processing operations. The only difference is in the
ACCESS layer that is between these modules and the file system. This layer provides buffering.
And, in the case of the THREADED version, allows overlapped IO with other processing
(asynchronous IO).
The CPU times are in seconds. The elapsed times are in minutes. The Efficiency is the CPU
time (user + system) divided by the elapsed time.

19

The Input & Output Ops. is the count of the number of 8k blocks transferred between the disk
and RAM. (Note that 7350x8192 is 60,211,200 and 29460x8192 is 241,336,320.) The
differences in counts and page faults is due to other activities being performed by the system for
other users. Note that the input count for step two is either 0 or 1 in all four cases. We assume
that this is due to the entire 60 MB image output from step one residing in either a operating
system RAM buffer or a disk RAM buffer. The other counts show a similar pattern.

THREADED- - same disk
Step Task

Convert to square
ID Gaussian
2D Transpose
ID Gaussian
Convert to byte
2D Transpose
Total

User
Sec.
12.90
64.99
60.47
66.17
22.63
52.06

279.22

System
Sec.
10.40
18.82
49.05
22.16
17.04
40.07

157.54

Elapsed
Min.

0:15
1:02
5:00
2:21
0:30
1:07

10:15

Eff

146%
135%
36%
62%

128%
136%

Input
2E§

7351
1

25260
13920
15676

62210

Output
Ops

7380
29462
29498
29463

7371
7116

110290

Page
Faults

0

18

THREADED- -different disk

Step Task User
Sec.

System
Sec.

Elapsed
Min.

Eff Input
Ops

Output
Ops

Page
Faults

1 Convert to square 12.86 10.37 0:12 188% 7409 7371 8

?, ID Gaussian 64.73 19.16 1:02 135% 0 29468 0

3 2D Transpose 53.68 48.19 3:40 46% 23817 29493 1

4 ID Gaussian 66.38 24.00 1:24 107% 13825 29450 19

5 Convert to byte 22.58 17.36 0:22 175% 15882 7367 0

6 2D Transpose 41.95 38.18 1:00 131% 2 7120 1

Total 262.18 157.26 7:40 60935 110269

SYNCHRONOUS- -samedisk
Step Task

Convert to square
ID Gaussian
2D Transpose
ID Gaussian
Convert to byte
2D Transpose
Total

User
Sec.

3.78
57.72
18.06
54.74
7.50

12.10
153.90

System
Sec.

3.46
7.96

32.50
12.20
6.70

15.42
78.24

Elapsed
Min.

0:15
1:06
4:42
2:50
0:28
0:43

10:04

Eff

47%
99%
17%
39%
49%
62%

Input
Ops

7346
0

24063
12602
15103

0
59114

Output
Ops

7373
29465
29514
29468

7367
7117

110304

Page
Faults

0
0

0

Step Task User 1 System I Elapsed 1 Eff 1 Input | • Output 1 Page

20

2_
3
4
5
6

Convert to square
ID Gaussian
2D Transpose
ID Gaussian
Convert to byte
2D Transpose
Total

Sec.
3.27

57.42
18.13
54.33

7.43
11.88

152.46

Sec.
3.21
7.19

31.77
11.92
6.86

15.90
76.85

Min.
0:12
1:04
3:22
1:32
0:21
0:35
7:06

52%
99%
24%
71%
65%
79%

OP*
7346

20962
14499
15410

0
58218

Ops
7371

29469
29488
29468
7365
7123

110284

Faults
_0
_0
_2
J_

0_
0

Future Directions

1. Complete the ASYNCHRONOUS version of the ACCESS part "and obtain timings for it.

2 Run the benchmark on other machines. It is doubtful if this will show anything interesting
concerning the SYNCHRONOUS versus THREADED versions. Some systems may have lower
mutex costs than the Alpha. Other systems may not do as much buffering. But the first won t
change the main result and the second just shows that the vendor did not do a good job.

3 Use multi-tasking for the image processing kernels. In this effort it would be better to
change the interface to the buffering layer as the pre-reading does not seem to be beneficial and
to set up for pre-reading has some cost. Even so, these kernels are obviously IO bound so it
seems unlikely that significant improvement in elapsed time will occur from multi-tasking.

4 Package up the benchmark. We should discus if there is any valid reason to leave in the
Dossibility of doing pre-reading. Some vendors may have some special capabilities that could
use it. Certainly, the image processing kernels will be easier to understand if this capability is
removed from the buffering interface.

21

