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CHAPTER 1 
Introduction 

One of the many interesting problems related to missile guidance and control, 

which has applications in other areas as well, is the technique known as gain schedul- 

ing. Frequently theoretical results are far ahead of applications, the so called "theory- 

practice gap". The practice of gain scheduling seems to reverse this idea as the prac- 

tice is ahead the theory. The current state of the theory and application of gain 

scheduling is summarized in the review papers by Rugh  [1] and by Shamma  [2]. 

Gain scheduling arose naturally in practice by engineers who were versed in the 

classical textbook control system designs and were faced with the problem of designing 

a controller for a system which was not really a linear time invariant system. The 

method converts a non-linear possibly time varying system to a linear system by 

first linearizing about a present operating point. For example, an autopilot would be 

designed for given flight conditions of say, 10,000 feet altitude, flying at Mach 1.8 and 

an angle of attack of 10 degrees. A controller is designed for a number of operating 

points across the flight envelope. The actual controller would then be a function of 

the usual feedback variables for the constant operating condition (linearized) design 

and the operating conditions. 

For example, to control a non-linear system 

we design a controller for the linearized plant 

d(Sx) _ df(x0,u0,6) df(xo,uo,0)5u 

dt dx du 



in the form 

8u(t) — k(x0, uQ, 6)6X. 

Then we attempt to control the non-linear plant with the (non-linear) controller 

u{t) = u0 + k(x0, u0, 9)(X - x0). 

The nominal values, u0, 9, x0 are taken as constant or time varying by updating at 

discrete sampling times. 

As specified, the controller is designed as if the linearization parameters, x0, uQ, 

and 9 are constants, so called "frozen coefficients". In order for this procedure to 

stabilize the system, practitioners of gain scheduling have developed two "rules-of- 

thumb" in the design of gain scheduled controllers. 

1. The scheduling variables should capture the plant's nonlinearities; and 

2. the scheduling variables should be slowly varying. 

To illustrate the problem with the "frozen coefficient" approach consider the time 

varying linear system 

dx(t) 
dt 

= A{t)x(t). 

If A(t) were constant, asymptotic stability requires the eigenvalues of A to have 

negative real parts. However, a time varying system may be unstable even if A(t) has 

eigenvalues with negative real parts. Stability may be assured if ||^4(t)|| is sufficiently 

small, a requirement which may not hold in applications. Another weaker sufficient 

condition is that the symmetric part of A(t), %(A(t) + AT(t)), has eigenvalues with 

negative real parts for all t. This concept is useful in extending gain scheduling to 

systems which are not slowly varying and is discussed later in this report. 



If the usual "frozen coefficient" approach is taken, one of the difficulties in appli- 

cations is the test to determine if the perturbations in the parameters are sufficiently 

small and the time variation is sufficiently slow. In spite of the lack of theoretical ba- 

sis, gain scheduling is more or less a standard technique for the control of non-linear 

systems. 

Recently, Shamma and Athans [2, 3] have begun to provide the theoretical foun- 

dation for gain scheduling and to quantify these "rules-of-thumb." They have used 

Linear Parameter-Varying (LPV) systems as an underlying framework for nonlinear 

gain scheduled systems. An LPV system is a finite dimensional linear system whose 

dynamics depend continuously on a time-varying exogenous parameter vector 9(t). 

The value of 9(t) is not known a priori but can be measured on-line. The only a priori 

knowledge on 9{t) is typically a knowledge of its range and an upper bound on its time 

rate of change. This type of system can be used to describe systems ranging from 

missiles whose exogenous parameters include velocity, altitude and angle-of-attack to 

chemical processes whose exogenous parameters might include temperature and pres- 

sure. Several other researchers have considered the control of LPV systems. Shahruz 

and Behtash [4] studied LPV systems with arbitrarily fast parameters. Their work 

presented a method for stabilizing a time-varying linear system by gain scheduling 

without the slowly varying constraint. They suggested selection of the gain matrix 

K(9), which is a function of the parameter 9 such that the left hand side of 

A{9) - B(9)K(9) + (A(9) - B(9)K(9))T = -Q{9) (1.1) 

is negative definite. Based on this equation, they present an algorithm for computing 

the gain matrix K{9) and provide a necessary and sufficient condition (i.e. A22 < 0 

where -Ä22 is defined in [4]) to show when it is possible to compute a controller K{9) 

for a fixed 9. This condition must be satisfied in order to use their method to gain 

schedule. 



Rugh [5] has commented that Shahruz and Behtash's algorithm is too restrictive. 

The algorithm, stated in Theorem 3.8 of [4], gives necessary and sufficient conditions 

not for stability in general but for stability with V(x, t) = x(t)Tx(t) as a Lyapunov 

function for the system. 

For quadratic stability of a linear parameter-varying system, a more general single 

quadratic Lyapunov function V(x,t) = x(t)TPx(t) with P > 0 can be introduced 

with corresponding changes to (1.1). Note that P is constant for all 6. The reason 

quadratic stability is desirable is that it gives a strong form of robust stability with 

respect to time varying parameters [6]. 

In this report we extend Shahruz and Behtash's work to include the more gen- 

eral condition of quadratic stability. A new necessary and sufficient condition for 

quadratic stability of LPV systems will be derived. This condition based only on the 

open loop system parameters and P will be expressed as a Linear Matrix Inequal- 

ity (LMI) which allows for efficient computation when checking this condition. This 

condition allows the computation of the closed loop quadratic Lyapunov function 

without knowledge of the controller. A couple of examples are provided to demon- 

strate this new theory and the problem of conventional gain scheduling via "frozen 

coefficient" controllers. A geometric interpretation of this new condition will be pro- 

vided and for second order systems a method for graphically representing the set 

of all valid quadratic Lyapunov functions for the closed loop system will be given. 

From the P that is computed, a stabilizing controller will be derived. This stabilizing 

controller and the resulting scheduling law is easy to implement, requiring only a 

few matrices to be stored in memory. We then discuss how our general condition 

for quadratic stabilizability relates to previous and concurrent work. Barmish [7] 

derived an equivalent Ä22 condition for uncertain linear systems with time-varying 

uncertainties, but the resulting controller was nonlinear and only for SISO systems. 



The works of Khargonekar, Zhou, Bernussou and others are briefly discussed. Con- 

current work by Becker and Packard is briefly discussed as well. In our discussion, 

we show how our solution to the ^22 condition provides a solution to their theorem 

of quadratically stabilizing an LPV plant via output feedback for which they did not 

provide a solution. 

After discussing quadratic stability we then extend our results to the even more 

general case of General Lyapunov Stability. Quadratic stability requires that a single 

Lyapunov function be valid over the entire parameter space. This requirement may 

be too restrictive if it is known a priori that the parameters will not vary infinetly 

fast. If the parameter variations are bounded and their rates of change are known 

then their may exist a time-varying Lyapunov function which is valid over the entire 

parameter space. We derive necessary and sufficient conditions for General Lyapunov 

Stability. We discuss how to compute this time-varying Lyapunov function. In fact 

it is just a natural extension of quadratic stability. There is an extra term in the 

derivation that is a function of P. 

Also we extend our results of Quadratic Stability to include £2 performance. We 

show, for strictly proper systems, how to determine if a controller can be constructed 

such that the closed-loop system has an induced £2 norm less than a specified value. 

A missile autopilot example is provided. 

In Chapter 3, we review the work by Apkarian and Gahinet [8]. Their work 

provides an #00 based gain scheduled controller for LPV systems. The parameters are 

treated as uncertainties and are pulled out into one large uncertainty block. Collecting 

the parameters in this manner allows the powerful methods of üT«, theory to be used. 

The controller is assumed to have an LFT dependence on the parameters. The Small 

Gain Theorem and the Scale Bounded Real Lemma axe used to solve this problem. 

Scaling is introduced to reduce the conservatism of the Small Gain Theorem but 

the fact that parameters are real is not exploited. This method provides a nice way 
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to design a controller that satisfies an C2 performance criteria. During our review 

we provide a corrected proof of their main theorem. This corrected proof is due 

to Spillman [9] and Apkarian and Gahinet [10]. In addition, we provide a clear 

explanation on how to construct a controller. A discussion of numerical issues related 

to solving for a controller is given as well. 

Pulling out the parameters into one large "uncertainty block" requires that the 

plant has a linear fractional dependence on the uncertainty, i.e. the plant is a rational 

function of the parameters. It is important that this linear fractional dependence be 

realized in an efficient manner otherwise the size of the matrices get large resulting in 

computational problems. This type of realization is directly related to the problem 

of N-D realization theory. In Chapter 4 we review the status of N-D realization 

theory. In fact N-D realization theory has not progressed very far due the lack of a 

minimality test. We review some general methods for obtaining a realization but these 

do not provide the minimal realization. The method by Beicastro [11] does provide 

a small realization. The others provide ways of further reducing the realization that 

is derived. 

Kung et.al. [12, 13] do provide a minimality test for 2-D systems by computing 

greatest common divisors. The problem that Kung et.al. faced was that when the 

Greatest Common Divisor (GCD) is removed the system no longer was in "state- 

space" form and they did not know how to return the system back to "state-space" 

form. In this chapter, we extend the work of Rosenbrock [14] on system equivalence 

to N-D systems and use it to return a 2-D system back into "state-space" form. We 

provide a GCD Based algorithm for taking a nonminimal 2-D realization, extracting 

the GCD and then returning it back into "state-space" form such that the resulting 

realization is minimal/near minimal. A second 2-D method, the System Equivalent 

Based Algorithm, does not require a realization but begins with the plant description 
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P. System equivalent operations are used to transform the realization to a mini- 

mal/near minimal "state-space" form. This second method could easily be extended 

to N-D systems. 



CHAPTER 2 
Lyapunov Based Gain Scheduling 

In this chapter, we investigate gain scheduling based on guaranteeing that the 

resulting gain scheduled system satisfies a Lyapunov function. From the Lyapunov 

function both stability and performance can be guaranteed over the entire parameter 

space. In Section 2.1, we investigate gain scheduling from the standpoint of guaran- 

teeing quadratic stability. A geometric interpretation is then given. A discussion is 

also provided on the connection of this result with previous work in other related ar- 

eas. Examples are provided which show the practical implementation of this method 

of gain scheduling. The next section (Section 2.2) extends the quadratic stability re- 

sult to general Lyapunov stability. Methods for checking this condition and designing 

a controller are discussed. The final section discusses how to add £2-performance to 

this new gain scheduled controller design method. A missile autopilot design example 

is provided. 

For the purposes of this chapter, the following LPV system is considered. 

(2.1) 
x(t) A(0(t))   B(9(t))     x(t) 

y(t)\ [C(9(t)) D(0(t))\ [«(*)_ 

where for all t > 0, x(t) 6 "Kn, u{t) e ft"», y(t) € W*, and the real matrices 

A{6) e Knxn, B(9) e nnxnu, C{9) e Kn*xn, D{9) € Kn*xnu are all functions of the 

parameter vector 9(t). Let this LPV system be denoted as Q{6, A, B, C, D) or more 

concisely Qg if the particular state-space matrices are clear from the context. 

9(t) = (91(t),...,9n(t))ERn» (2.2) 

12 
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The parameter variations are not known a priori but are known to belong to some 

set. 

oft) e n (2.3) 

In addition the system matrices A(9(t)), B(B(t)), C(9(t)) and D(9(t)) must be bounded 

for all 9{t) € Vt. With these definitions for the LPV system and its parameters, we 

can now investigate quadratic stabilization. 

2.1    Quadratic Stabilization 

Quadratic stability can be formally defined as follows. 

Definition 2.1 (Quadratic Stability). The LPV system given in (2.1) is quadrat- 

ically stable over the parameter space if there exist a P G Kn*n, P = PT > 0 such 

that for all 9 eü 

PA{9) + AT{9)P<0 (2.4)    . 

This means that there exists a single quadratic Lyapunov function, V(x, t) =xT(t)Px(t), 

such that its derivative is negative definite over the entire parameter space. If we could 

design a gain scheduled controller such that a single quadratic Lyapunov function ex- 

ists for the closed-loop system then scheduling on slowly varying parameters would 

no longer be a restriction. In fact the parameters could vary infinitely fast and the 

system would remain stable. 

To do this, we must first determine if quadratic stability is possible and then design 

a controller that will achieve it. Shahruz and Behtash in [4] were close in designing 

such a controller but they only considered the Lyapunov function represented by 

P = I. Restricting a priori to this Lyapunov function is conservative in the sense 

that for P = I the derivative of the Lyapunov function may not remain negative 
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definite over the entire parameter space but there may exist another P// which 

basV(x,t) <0. 

The following theorem, which is a generalization of the result in [4] gives necessary 

and sufficient conditions for determining quadratic stabilizability for an LPV system. 

As part of the result, a gain scheduled controller is provided. 

Theorem 2.2 (LPV Quadratic Stabilizability). The LPV system defined in (2.1) 

is quadratically stable if and only if 

i22(0) = uJ(9)(A(9)W + WAT(9))U2(9) < 0   V0 e ft (2.5) 

where W e Tlnxn < 0 and the range ofU2 is the null space of B(9). 

Proof. (=*►) Suppose the system is stabilizable then there exists a state feedback 

K{9) such that the closed-loop system 

x(t) = (A(6) - B(9)K(9))x(t) + B(9)r(t) (2.6) 

is stable. The Lyapunov function corresponding to (2.6) would be 

V{x,t)=x(t)TPx(t) (2.7) 

V(x,9,t) = -xT(t)Q{t)x(t) 

= xT(t) (PA(9) - PB{9)K{9) + AT(9)P - KT(9)BT(9)P) x(t).     (2.8) 

Therefore 

P(A{9) - B(9)K(9)) + (A(9) - B{9)K(9))TP = -Q(9) (2.9) 

is negative definite. An approach is taken similar to Shahruz's approach but makes 

no restriction on P other than it has to be positive definite... Even though the closed- 

loop Lyapunov function is a function of the controller K(9), we will transform this 

Lyapunov function in two parts. In one part the controller K(9) has complete control 

over and the other part the controller has absolutely no control over.   It is this 
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second part that is of interest. If there exists a matrix P > 0 that will make this 

uncontrollable part negative definite, then the system is quadratically stabilizable 

and if not then it is not possible to make the system quadratically stable with an 

LPV feedback control. 

Proceeding with the proof, we begin by expanding (2.9). Note that we will drop 

the notation which shows functional dependence on 9 to make the equations easier 

to read. 

PA - PBK + ATP - KTBTP = -Q. (2.10) 

Next take the singular value decomposition of B = UEVT and substitute this back 

in for B yielding 

PA - PirZVTK + ATP - KTVY,TUTP = -Q. (2.11) 

Recall that U is orthogonal and P is positive definite, therefore {PU)~1= UTP~l 

exists. It will be convenient to introduce the following substitution 

W = P"1. (2-12) 

which makes (PU)'1 = UTW. Multiplying (2.11) on the left by iFW yields 

UTA - Y,VTK + UTWATP - UTWKTVY?UTP = -UTWQ. (2.13) 

Multiplying on the right by WU yields 

IFAWU - YVTKWU + UTWATU - UTWKTVY? = -UTWQWU.      (2.14) 
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Let 

Ä = UT{AW + WAT)U 

L = VTKWU 

Q = UTWQWU. 

(2.15) 

(2.16) 

(2.17) 

Then rewriting (2.14) yields 

A - EL - L1 EJ =-Q (2.18) 

Now partition U and E as 

U = [£/i U2] ,  E 
Si 

0 
(2.19) 

where Ux E Knxn», U2 e ft»* (»-»«) and E1 = diag[<7n,... , anuUJ e KnM. This 

will partition A as follows 

i4 = 
^11    Ai2 

il2     ^22 

(2.20) 

where 

An 

An 

An 

Uf(AW + WA^Ui = A\x € KnM 

Iff (AW + WAT)U2 e ft»«x(»-»«> 

f^(ylW + WAT)t/2 = A\ E TZin-nuMn-n») 

(2.21) 

In addition, partition L as 

L(0) = [Lu(0) Ll2(9)}. (2.22) 
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Substituting Ä(9), E and L from (2.20), (2.19) and (2.22) into (2.18),then we obtain 

= -Q(9).   (2.23) 
Än(6) - (SxCöJLnCi?) + Z&(0)£i(0))   i12(ö) - Ei(ö)L12(ö) 

i?2(0)-J&(0)£i(0) i22(ö) 

Since £/(0) and W are nonsingular, the matrix -Q(0) = -[/T(0)WQ(0)W£/(0) is 

negative definite if and only if -Q(9) is negative definite which is our original assump- 

tion. Multiplying (2.23) from the left and right by [0 xT) and [0 xT]T, respectively, 

where x is any vector in nn~nu, we conclude that i22(0) is negative definite. 

(4=) Suppose there exists a W > 0 such that An{9) in (2.23) is negative definite. 

From (2.16), we have free choice of L. Therefore looking at (2.23), if you choose the 

elements of Ln(0) = [kjiß)} G ft»«*»« as 

= Oij-Ojjlji        = yQur choice i = 1}._nu-iij = i + i)mm.nu       (2.24) 
on 

/« = ^^,i = l,...nB (2-25) 

where c^ > 0 are arbitrary real numbers for alii = 1,... nu and ä»j are the elements 

of A and, in addition, choose the matrix Lu{9) e ft»«*»-"- to be 

Ll2(9) = ^\0)U?(9)(A(9)W + WAT(9))U2(9), (2.26) 

then we obtain from (2.23) that -Q(9) = diag[-du, ..., -dnuTlu,  A22{9)} which is 

negative definite. E 

Lemma 2.3. // there exists a W > 0 such that Ä22(9) < 0, then a stabilizing con- 

troller, K(9), can be chosen as 

K(9) = V(9)L(9)UT(9)P (2.27) 
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where P = W~l and L(0) = [Ln{9)Ln(9)} with the elements of Ln(0) = [1^(9)} e 

<gnuxnu   are 

Hj = < 

i<3, 

2ff« ' _ J 
(2.28) 

i > j 

I.. = °tf     aiila^   {.. = your choice i = 1,.. .nK - 1, j = i + 1,.. .nu       (2.29) 

'it —       n '  ? — 1, • • • i% (2.30) 

where da > 0 are arbitrary real numbers for all i = l,...nu and ay are the 

elements of Ä. The matrix Lu(9) G nnu><n~nu is 

L12(0) = ^l(9)Uf(9)(A(9)W + WAT(9))U2(9). (2.31) 

Proof. Assuming that W > 0 exists such that Ä22(9) < 0, then from the proof of 

Theorem 2.2 we see that the particular choice of L(9) Ln{0)   L12(9) from (2.28) 

and (2.31) will make the system stabilizable. Recall (2.16) 

L{9) "= VT(9)K(9)WU(9). 

Solving for K(9) yields 

K(9) = V(9)L(6)UT(9)P 

which is our stated controller. D 

The controller K(9) places the controllable poles of Q(t) which indirectly places 

the poles of Q(t).   Performance can be introduced by proper choice of Q(t).  This 
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will be discussed further in Section 2.3. The Ä22 condition is an LMI. LMFs are 

convex and allow for convex optimization techniques to be used to solve them. Since 

(2.5) is a continuous function of time and must be satisfied at all times, this problem 

represents a convex feasibility problem with an infinite number of constraints. For 

practical reasons the control engineer will have to resort to gridding the parameter 

space and solve approximations to the actual condition (2.5). The disadvantage is 

that as the number of parameters increase the number of constraints corresponding 

to each grid point will increase exponentially. The limit on the number of parameters 

will be determined by the computational capability that is available to the control 

engineer and the time frame allowed for the controller design. Fortunately once the 

Ä22 condition has been solved, the scheduling law is simple to implement and does 

not require storing a controller for each operating condition (i.e. grid point) and then 

having to interpolate between controllers as the system moves around the parameter 

space. The controller given in (2.27) only requires storage of a few matrices and 

knowledge of the current operating conditions in order to be implemented. 

Two examples are now presented that illustrate a problem that can be encoun- 

tered when gain scheduling with frozen point controllers but can be overcome by the 

Lyapunov based gain scheduling method. 

Example 2.4.  Given the open loop LPV plant 

x 

V 

0 1 

-(1 + .50)   -.2 
x + u 

1   0 X 

-1<0<1, (2.32) 
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and a state feedback matrix K = k\   &2 with 

kx = -9 + 0.02 
2 

k2 = .1, (2.33) 

the closed-loop poles will be in left half-plane for all values of 9 as shown in Figure 

2.1. Even though the poles are in the left half-plane the response of the system with 

Figure 2.1: The closed-loop pole locations for -1 < 9 < 1 using the frozen point 
controller. 

initial condition x0 = [}x] and with 9 = cos(2t) is unstable as shown in Figure 2.2. 

a 30 

Figure 2.2: The response of the system with x0 = [1 - 1]T and 9 = cos(2t) using the 
frozen point gain scheduled controller. 
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Now to design a Lyapunov based controller. First determine a Lyapunov P that 

satisfies the Ä22 condition by solving (2.5) with an LMI solver. For this example the 

system was gridded over 20 evenly spaced points over the parameter space. SDPSOL 

[15] was used and the following P was obtained. 

1.1250   0.3750 

0.3750   1.1250 
(2.34) 

The controller is designed from Lemma 2.3 

K(9) = V(9)L(9)UT{6)P. (2.35) 

Using (2.28) and (2.31) to compute L and with dn = 10, the matrix L can be com- 

puted. Figure 2.3 shows the closed-loop response using the Lyapunov based controller 

(2.27) with inititial condition x0 = [_\] and with 6 = cos(2t). The Lyapunov based 

controller drives the states to zero and does not go unstable since the controller was 

designed such that the closed-loop system, always satisfies the Lyapunov Stability Con- 

dition under any parameter trajectory. 

 1 1 1 V   ' 

  xi 
0.8 — "2 ■ 

0.6 ■ 

OA ■ 

02 ■ 

-02 
V / / • 

-0.4 

-0.6 i • 

-0.8 . 
■ 

10 15 
Time 

25 30 

Figure 2.3:  The response of the system using the Lyapunov based gain scheduled 
controller with inititial condition x0 = [1 - 1]T and with 9 = cos(2i). 

D 
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Example 2.5. In this example consider the open-loop plant 

x 
-1 + 1.5 cos2(i)   1 - 1.5 sin(i) cos(i) 

1 -1 
x + u, (2.36) 

where t is our parameter.   We need only consider 0 < t < 2n when designing con- 

trollers. For the frozen point controller let 

K = 2 + 1.5sin(t)   -sin2(t) (2.37) 

With this controller the resulting closed-loop system A matrix is 

Ad 

-1 + 1.5 cos2(t)       1 - 1.5 sm(t) cos(t) 

-l-1.5sin(*)cos(t)      -l + 1.5sin2(i) 
(2.38) 

which has closed-loop poles located at —0.25 ± j'0.66144 for all time. This closed- 

loop matrix is Vidyasagar's example of a time-varying plant which has constant left 

half-plane poles and yet is unstable. Figure 2.4 demonstrates this instability in the 

response of the system with inititial condition XQ = [\\- 

Figure 2.4: The esponse of the system using the frozen point controller with inititial 
condition x0 = [1 l]r . 
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Now to design a Lyapunov based gain scheduled controller (2.27). First determine 

a Lyapunov P that satisfies the Ä22 condition. One such P is 

P = 
9.0046   8.4899 

8.4899   9.0046 

The controller is designed from Lemma 2.3 

(2.39) 

K(9) = V(9)L(9)UT(0)P. (2.40) 

Using (2.28) and (2.31) to compute L and with dn = 10, the matrix L can be com- 

puted. The response of the resulting closed-loop system using the Lyapunov based 

controller with inititial condition x0 = [\] is shown in Figure 2.5. Under the same 

parameter trajectory, the Lyapunov based gain scheduled design is stable where as the 

frozen point design is not. 

Figure 2.5: The response of the system using the Lyapunov based controller with 
inititial condition x0 = [1 1]T. 

D 

To gain a better understanding of this new gain scheduling law, a geometric 

interpretation of the A22 condition is given in the next section. 
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2.1.1    Geometrie Interpretation 

The submatrix Ä22 represents the part of the closed-loop Lyapunov function for 

which the controller has no control. Therefore, if it is not negative definite, the deriva- 

tive of the Lyapunov function will not be negative definite and quadratic stability can 

not be attained. In this section, as we investigate the meaning of Ä22 < 0, we will be 

able to derive the set of all positive definite W's that satisfy Ä22 < 0. This in turn 

also specifies the set of all positive definite P's which satisfy the Lyapunov equation 

(2.9) because P = W~l. We will be able to specify this set without specification of 

K(6). Note that A22 is only a function of the open loop system matrices A(9) and 

Biß). 

The A22 condition (2.5) is 

U^AW + WAT)U2 < 0. (2.41) 

And since a quadratic constraint depends only on the symmetric part of the matrix, 

this is equivalent to 

zT(U^AWU2)z<0   Vz. (2.42) 

Let v = U2z, i.e. v is a vector in the range of U2. Substituting this in gives 

vTAWv < 0   V« = U2z. (2.43) 

Hence the quadratic condition in (2.42) can be replaced by another quadratic condi- 

tion in a larger space subject to a linear side condition. In order to get a geometric 

interpretation, define v = ATv and substitute this back into our equation. Therefore 

vTWv < 0   Vv = U2z. (2.44) 

Prom (2.44), we can determine its geometrical interpretation for the second order 

case.   Equation (2.44) is the dot product of two vectors:   v and Wv.   Wv is the 
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Figure 2.6:  An example of what Wv and v might look like plotted on the ellipse 
described by W. 

vector, located at the point (vl, v2), that is perpendicular to the ellipse drawn by W 

and passing through the point (vl, v2). This is illustrated in Figure 2.6. The vector 

v = ATv.is the derivative of v at (vl, v2). If the dot product, vTWv, is negative then 

the angle between v and Wv is greater than 90°. This means that v points inside the 

ellipse at the location (ul,u2). 

To summarize the meaning of (2.5) for the second order case, we have that if you 

can draw an ellipse described by W such that at the point of intersection between the 

ellipse and the line described by v = U^z the resulting v at this intersection points 

inside the ellipse, then you can say that the system is stabilizable. In other words, 

the positive definite matrix W which describes this ellipse satisfies (2.5) and therefore 

it also satisfies the Lyapunov equation (2.9) for some K. Figure 2.7 gives an example 

picture of a valid ellipse for a given second order system. Remember that the ellipses 

are drawn in the phase plane plot of AT and not A. (This is why the variable was 

labelled v instead of x the state). 
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Figure 2.7: An example of a valid ellipse for a given second order system. 

For the nth order system this means that if the velocity vector calculated from 

v = ATv points inside an ellipsoid W on the intersection with v — U^z (i.e. the range 

of £/2), then the system is stabilizable. 

It is instructive to consider the set of all positive definite matrices which satisfy 

the Ä-n condition for a fixed 0. For the second order case we can take Wu = 1 

without loss of generality. The condition W > 0 implies Wu > 0, W22 > 0 and 

W11W22 - W?2 > 0. Therefore, we have 

■y/wä<Wi2 < y/w&. (2.45) 

By manipulation, the A22 condition in this case reduces to 

o^12 < bW22 + c (2.46) 
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Figure 2.8: An example of the set of all W > 0 which satisfy the Ä22 condition for a 
given second order system. 

where 

a 

b 

c 

(u^Au + u2lü22(A12 + A2l) + uj2A22) 

(Anu2lu22 + A2lu\2) 

(^21«2! + A22u2lu22) 

(2.47) 

The shaded region in Figure 2.8 represents a typical plot of the set of W's which 

satisfy the A22 condition for a second order LTI plant. This region is bounded on 

the left by the dashed line corresponding to the positive definite condition on W as 

given in (2.45) and on the right by the solid straight line corresponding to the Ä22 

condition as given in (2.46). 

While Figure 2.8 represents an LTI system, Figure 2.9 represents an LPV sys- 

tem. In particular, it is the phase plane plot of the LPV plant given in (2.38) with 

COS(* + 7T/18) 
B = .   One hundred grid points were taken.   Each straight line 

- sin(t + 7T/18) 

represents a frozen coefficient plant at the associated grid point. Looking closely at 
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Figure 2.9: The set of all W > 0 which satisfy the Ä22 condition for Vidyasagar's 
example. 

the inequalities that are associated with each straight line to determine the valid 

Lyapunov region and then taking the intersection of all these regions results in the 

intersection being the clear oval shape in the middle of the plot. Therefore, this 

oval shape represents the set of all valid Lyapunov functions for this LPV plant. By 

choosing a W inside this region, the control designer can stabilize this plant. 

2.1.2    Relation to Previous Work 

Quadratic Stabilizability of Uncertain Systems 

When the Ä22 condition was first derived, we did not realize that the stability that 

we were guaranteeing was quadratic stability. This fact did not become evident until 

we discovered the concurrent work of Becker et al. [6] and Packard et al. [16] which 

investigated quadratic stabilization of LPV systems. These and related works will be 

discussed later. A literature survey was then conducted on.quadratic stabilization of 

linear systems. As it turns out, the condition A22 < 0 is fundamental in determining 

quadratic stabilization of linear systems. Our A22 condition is an extension to LPV 
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systems of the work conducted by Barmish [7] on uncertain linear systems with time- 

varying uncertainties. In particular, he considered the system 

x = A{r(t))x + B(s(t))u (2.48) 

9(t) €KP, (2.49) 
r(t) 

_s(t)_ 

where r(t) £ Kp represents the model parameter uncertainty and s(t) 6 Tlps represents 

the input connection parameter uncertainty. The only difference between this and 

our LPV definition is that Barmish does not make the assumption that the parame- 

ters can be measured on-line. Before Barmish's work much of the work on satisfying 

quadratic stabilization centered around the solution of so called matching conditions 

[17, 18]. Barmish enlarged considerably on these conditions and provided necessary 

and sufficient conditions for quadratic stabilizability. In fact his conditions are iden- 

tical to Ä22 < O.for systems with time-varying uncertainties just stated in a different 

manner. The problem is that the resulting controller is a nonlinear function of the 

states and is only valid for single input systems. 

Upon Barmish's discovery of these necessary and sufficient conditions for quadratic 

stabilizability, many researchers focused their efforts on determining the conditions 

needed to allow for quadratic stabilization of uncertain systems via linear control. 

This type of stabilization was referred to as linear quadratic stabilization. 

Zhou and Khargonekar [19] pursuing the goal of linear quadratic stabilization 

focused their attention on systems with norm bounded time-varying uncertainties 

entering both the state matrix, A, and the input matrix, B. They described their 

system as follows. 

x=[A + AA}x +[B + AB]u (2.50) 
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[AA AB] = DF(t)E (2.51) 

where A, B, D, E are known constant matrices and F(t) G F C Wxq is the modeling 

or parameter uncertainty. The set F is assumed to be Lebesgue measurable and is 

defined as 

F := {F(t) | FT(t)F(t) < I}. (2.52) 

They showed that linear quadratic stabilization for this class of uncertain systems is 

equivalent to the existence of a positive definite matrix solution to a Riccati equation. 

An LTI controller is given in terms of the solution to this Riccati equation. 

Khargonekar and Rotea in [20] show that quadratic stabilizability is equivalent 

to linear quadratic stabilizability for systems with norm bounded uncertainties. In 

particular, they consider the system 

x(t) = Ax(t) + Bu(t) + Dw(t) (2.53) 

e(t) = ElX{t) + E2u(t) .(2.54) 

w(t) - A(*)e(*) (2.55) 

where w(t) e Tlk, e(t) e Up and the real matrices A, B, D, Ex and E2 are known 

and of appropriate dimensions. The matrix valued function A(t) is assumed to be 

Lebesgue measurable and is defined as 

A(t) EU:={Ue Kkxl I \\U\\ < 1}. (2.56) 

They show that quadratic stabilization of this system is equivalent to the solution of 

a Riccati equation. From this solution a stabilizing LTI controller can be constructed. 
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It is interesting to note that by adding the assumption that uncertainties (or 

parameters) can be measured on-line then our Ä22 condition is necessary and suf- 

ficient to guarantee linear quadratic stabilization. In fact, for this case, quadratic 

stabilization and linear quadratic stabilization are equivalent. 

Bernussou et al. in [21] made different assumptions on the uncertainty in order to 

guarantee linear quadratic stabilization. He considered the uncertain linear system 

x = Ax + Bu (2.57) 

where A and B are matrices belonging to uncertainty domains VA and VB defined 

by 

N N 

VA := {A I A = J2 A^> Xi > °> Z) Xi = !> (2-58) 
i=i t=i 

N N 

VB := {B\B = $>,■£,-,/*; > 0,^3 = !>■ (2-59) 

This corresponds to the case of linear systems where the coefficients are known up to a 

certain precision defined by bounding them from above and below. This is commonly 

known as interval plants. In this case the uncertainties are not time-varying. The 

necessary and sufficient condition derived is a form of A22 < 0 for interval plants. 

At W + WAJ - BjR - RT Bj <0Vi Vj (2.60) 

These conditions are LMI's and therefore can be efficiently checked. These conditions 

not only are for determining the feasibility of a constant Lyapunov function (i.e. 

quadratic stability) but also for a constant controller. By requiring a fixed controller, 

the conditions require additional variables (i.e. R) that have to be determined. Now 

the condition given in (2.60) can be used to determine if a constant controller could 
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be used to quadratically stabilize an LPV system.   If this condition were satisfied 

then gain scheduling would not be needed. 

Becker and Packard in [22] and summarized in [23] extend Bernussou's work to 

a different class of uncertainties. They provide necessary and sufficient conditions 

for quadratically stabilizing uncertain systems via LTI state-feedback where the un- 

certainty in the A and B matrices can depend on both a correlated uncertainty and 

an uncorrelated uncertainty. The uncorrelated uncertainty is a special form of lin- 

ear fractional uncertainty on real parameters. The correlated uncertainties lie within 

a prescribed convex polytope while the uncorrelated uncertainty lie within the unit 

cube having dimension equal to the number of uncorrelated uncertainties. The nec- 

essary and sufficient conditions are essentially (2.60) checked at all of the vertices of 

the uncertainty space. 

Concurrent Work in LPV Gain Scheduling 

Research in the area of LPV gain scheduling has become a topic of very intense 

interest as it is applicable to so many areas especially to the area of missile autopilot 

design. In particular, contemporary with this research, has been the work conducted 

by Becker, Packard and others who have collaborated with them in their research. 

Several important papers in this area for which Becker and Packard were primary 

authors are [6,16, 24, 22, 23] along with Becker's dissertation [25] which is a summary 

for most of this work. . 

In the first part of [6], Becker et al. provide necessary and sufficient conditions 

for quadratic LPV stabilization via output feedback with a dynamic controller. The 

LPV plant under consideration is 

x(t) 

vit) 

A{9)   B(9) 

C(9)      0 

x(t) 

u(t) 
(2.61) 
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The authors state that this plant is quadratically stabilizable via output feedback if 

and only if the following two conditions hold: 

1. there exists a PK 6 Tlnxn,PK = P£ > 0, and a continuous, bounded function 

F : Kk ->■ KnuXn such that for all 8(t) within our parameter set, 

[A(0) - B(8)F(8)]TPK + PK[A{9) - B(9)K(6)] < 0, (2.62) 

2. there exists & PL e lZnXn,PL = Pj > 0, and a continuous, bounded function 

L : llk -> Knxnv such that for all 9{t) within our parameter set, 

[A(9) - L(9)C(9)]TPL + PL[A(9) - L(9)C{9)\ < 0. (2.63) 

If the functions F(8) and L(9) exist as in the above conditions then 

K{9) (2.64) 
A{8) + B(8)F(9) - L(8)C{8)   -L{8) 

F(8) 0 

is the quadratically stabilizing parameter dependent output-feedback controller ex- 

pressed in compact matrix form. Further more they proceed to parameterize all 

stabilizing output-feedback controllers. What Becker et al. do not show in this paper 

or in Becker's dissertation [25] is how to determine if F(8) and L(8) exist and if they 

do exist then how to compute them. Our Theorem 2.2 provides the answer to both 

the existence and computation of the functions. 

In the second part of [6], the authors add £2 performance to the quadratic stabi- 

lization problem. The LPV plant considered is as follows. 

Qi(t) 

?2(t) 

' A(9) BM 0 B2(8) 

did) 0 0 0 

0 0 0 / 

_ CM 0 / 0 

x(t) 

Mt) 

Mt) 
u(t) 

(2.65) 
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where 9 is the vector of parameters as defined in (2.2), x(t) e Kn, [wf(t), w$(t)]T 

E Tlnw is the disturbance input, [q[(t), ql^Y G Kn* is the performance output, 

u(t) e Knu and y(t) e Kny for alU > 0. Some assumptions were made in order to 

get this form of an LPV plant that are restrictive. In Becker's dissertation [25] these 

assumptions are relaxed. 

Becker et al. state that the open-loop system given in (2.65) is quadratically 

stabilizable and satisfies an £2 performance criteria if and only if there exist matrices 

Xn > 0 e 1lnxn and Yn > 0 G 7lnxn such that for all 6 in the parameter space 

A{9)Yn + YnA
T{e)-B2{6)Bl{0)   YnCf(6) B1(9) 

Cx{B)Yn -I 0 

Bl{9) 0 -/ 

Är(9)Xu+X11A(9)-CU0)C2(9)   XllB1(9) Cj{9) 

Bf(9)Xn                           -I 0 

.     Ci(0) ■■■ 0     ■ -I 

<0 

<0 
(2.66) 

X 11      *n 

Yn 
>0. 

Given that these conditions are feasible, the authors then provide formulas to con- 

struct an LPV controller. The formulas given are quite involved and are rather 

.awkward. In the second part of [16], Packard et al. improve upon these controller 

formulas. In this reference, Packard et al. apply the controller formulas from [26] 

to this LPV problem and obtain controller formulas which are much easier to use. 

We did discover some typographical errors when comparing the formulas presented 

in [16] with those of [26]. The solution of the LMFs given in (2.66) require gridding 

the parameter space and solving an approximation to (2.66). As long as the number 
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of parameters is not too large then this gridding of the space should not be too bur- 

densome computationally but as the number of parameters grow the number of grid 

points grow exponentially. 

In Becker's dissertation he pulls together the works from [6],[24] and [16]. In addi- 

tion to this he provides necessary and sufficient conditions for quadratic stabilizability 

for an LPV system which are given in the following Lemma. 

Lemma 2.6. [25] The open-loop system given in (2.1) is quadratically stabilizable 

over the parameter space if there exists a W > 0 and a continuous, bounded function 

R : Kn* x K ->• TlnuXn such that 

A(6)W + WAT(9) + B2(9)R(9) + RT{9)B2{9) < 0 (2.67) 

for all 9 in the parameter space. 

Unfortunately Becker does not indicate how to compute the function R(9). One 

method would be to grid the space and have a different variable Ri at each grid point. 

This would not be practical though due to the extremely large number of variables 

that would have to be determined. Fortunately the Ä22 condition that we developed 

determines stabilizability without having to compute a stabilizing controller. It uses 

not only a reduced number of variables but an LMI that is of reduced dimensions. 

. -2.2 General Lyapunov Stability 

Quadratic stability may be too conservative in that it requires a single quadratic 

Lyapunov function to be satisfied over the entire parameter space. The implication of 

this single quadratic Lyapunov function is that the stability of the LPV system is not 

dependent on the time rate of change of the parameters. In fact the parameters can 

change infinitely fast and the system will remain stable as long as we have knowledge 

of the current values of the parameters. A less conservative form of stability would be 

General Lyapunov Stability. General Lyapunov Stability does not hold the Lyapunov 
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Function constant as the system changes but allows it to vary with the system. In 

this case, however, knowledge of the maximum time rate of change of the parameters 

will be necessary to insure stability. 

\0i\<eimax,     1 < t < «p. (2.68) 

The following theorem gives necessary and sufficient conditions for general Lyapunov 

stability. 

Theorem 2.7 (General Lyapunov Stability). The LPV system defined in (2.1) 

is stable (in the sense of General Lyapunov Stability) if and only if there exists a 

differentiate matrix function P(t) > 0 with W[t) = P~l{t) such that for all 6{t) 

Ä22(e,t) = uZ(o)(A(e)w(t) + w(t)AT(e)+  wi^ )u2(9)<o       (2.69) 
new term 

where the range of t/2(0) is the null space of BT{9). 

Proof. (=>)Given our LPV system as described in (2.1) with parameters defined by 

(2.2) and having bounds on there time rate of change given by (2.68), for necessity 

we assume there exists a controller K{9) such that the closed-loop system 

x(t) = {A{9) - B(9)K(9))x{t) + B(9)r(t) ' (2.70) 

is. stable. The general Lyapunov function corresponding to (2.70) would be 

V(x,t)   =   x(t)TP(t)x(t) (2.71) 

V(x,9,t)   =   -xT(t)Q(t)x(t) 

=   xT{t)(P(t)A(9) - P(t)B(9)K(9) + AT(9)P(t) - 

KT(9)BT(9)P(t)+     P(t)    )x(t). (2.72) 

new term 
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Therefore 

P{t)A{6) - P(t)B(6)K(9) + AT(9)P(t) - KT(9)BT(9)P(t) + P(t) = -Q(t)   (2.73) 

is negative definite. 

Proceeding with the proof in the same manner as for the proof of Theorem 2.2 

but, in addition, carry along the "new term", results in (2.73) becoming 

A{9) - Y,{9)L{9) - LT(9)ET(9) = -Q(t). (2.74) 

where 

(■ ) 
A{9) = UT{9)    A(9)W(t) + W(t)AT(9) +    ^       U{9) 

\ new term/ 

L(9) = VT(9)K{9)W(t)U(9) 

Q(t) = UT(9)W(t)Q(t)W(t)U(9). 

(2.75) 

(2.76) 

(2.77) 

Now partition U(9) and £(0); as 

U(9) = [Uiiß) U2(9)},    E(0) = 
£i(0) 

0 

Ä(9) 
Äu(9)   Ä12(9) 

ÄT
l2{9)   Ä22(9) 

(2.78) 

where Ux{9) e Kn*n\ U2(9) € nn^n^\ ^(9) = diag[au(0),... ,anuTlu(9)} e 

U"»xn«. This will partition Ä(9) as follows 

(2.79) 
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where 

Än(9)   :=   U?(6)(A(9)W(t) + W(t)Är(6)+    jj^     J Utf) = Ä^{B) € K"**"* 
V new term/ 

Ä12(6)   :=   1^(9)1 A(9)W{t) + W(t)AT(6)+      W^    \ U2(9) e Kn^n~n^ 
V new term/ 

i22(0)   :=   C/2
T(Ö) (y4(ö)^(i) + ^(t)^T(ö)+     Jj^    jt/2W 

\ new term/ 

(2.80) 

Partition L{9) as 

L(0) = [Ln(0) L12(9)}, (2.81) 

Substituting i(0), £(0) and L(9) from (2.79), (2.78) and (2.81) into (2.74), we obtain 

= -Q(t).  (2.82) Äu(ß) - (M0)Ln(9) + LT
n{9)M0))   &uiß\ - E.i(*)M*). 

Since U{9) and W(t) are nonsingular, Q(t) < 0 if and only if Q(t) < 0 which is our 

assumption. Multiplying (2.82) from the left and on the right by [0 xT] and [0 xT]T, 

respectively where x is any vector in UnXTlnu, we conclude that Ä22 is negative definite. 

(<==) Now suppose that there exists a differentiable function W(t) > 0 such that 

Ä22(9) < 0, from (2.76), we have free choice of L(9). Therefore looking at (2.82), if 

you choose the elements of Ln{9) = [1^(9)} G nnuXn* as 

= aijW-VjjjßMO)^   /..(#) = your choice i = l,...nu-l,j = i + l,...nu 

(2.83) 

W) = ^^p.* = 1—W«       ' (2-84) 
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where dii > 0 are arbitrary real numbers for alH = 1,... n„, and a^ are the elements 

of Ä and, in addition, choose the matrix L12{9) e nn^n~n^ to be 

L12(9) = E^(9)Uf(A(9)W(t) + W(t)A(9)T +    ^   )U2(9), (2.85) 
new term 

then we obtain -Q(t) = diag[-dn,... - dnunu, Ä22 {&)] which is negative definite.   D 

Lemma 2.8. If there exists a differentiable matrix W(t) > 0 with P(t) = W"1^) 

such that Ä22(9,t) < 0, then a stabilizing controller, K{8), can be chosen as 

K{9) = V(9)L(9)]U(9)TP(t) (2.86) 

where L{9) = [Ln(9)L12(9)} with the elements of Ln{9) = [1^(9)} e Kn^n* are 

äii(9)-(Tii(6)      ■        ■ 

urn = { äum+dide)     . _ • (2.87) 
2<Tii{B) 

i> j 

where dii > 0 are arbitrary real numbers for alli = l,...nu and CHJ are the elements 

of A. The matrix L12{9) e -Rn^n~n^ is 

L12(6) = ^1(9)Ul(A(9)W(t) + W(t)A(9f +    ^   )U2{9). (2.88) 
new term 

Proof. Assuming that a differentiable W(t) > 0 exists such that Ä22(9,t)  < 0, 

then from the proof of Theorem 2.7 we see that the particular choice of L(9) = 

LU(B)   Ll2{9) 

(2.76) 

from (2.87) and (2.88) will make the system stabilizable.   Recall 

L(0) = VT(9)K(9)W(t)U(9). 
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Solving for K(9) yields 

K(8) = V(6)L(6)UT(0)P(t) 

which is our stated controller. D 

With the addition of the "new term", (2.69) becomes rather difficult to solve since it 

is a function of both W and W. In order to solve (2.69) we will again have to result to 

solving an approximation by girding the parameter space and solving for several single 

quadratic Lyapunov functions such that each Lyapunov function covers a region of the 

parameter space. The intention is to solve for as few Lyapunov functions as possible. 

The most desirable situation would be to find a single quadratic Lyapunov function 

that is valid over the entire parameter space. If this is the case then (2.69) reduces 

to the single quadratic Lyapunov case (2.5). The controller K(9) given in (2.86) also 

reduces to the single quadratic Lyapunov controller of (2.27). For the case where a 

single quadratic Lyapunov function does not exist, we will divide the parameter space 

into several regions with a single quadratic Lyapunov function for each region. The 

controller will then be constructed as before except that the Lyapunov function used 

to construct the controller will change depending on the location of the LPV plant 

in the parameter space. There is a paradigm shift here. This is analogous to the 

classical gain scheduled method of solving for frozen coefficient controllers and then 

interpolating the controllers as the parameters change, instead, now we will solve for 

frozen region Lyapunov functions and interpolate these Lyapunov functions to get the 

current Lyapunov function which will then be used to compute the controller gains 

as given in (2.86). The following is an algorithm to solve (2.69). 

Algorithm 2.9. 
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1. Determine the feasibility of (2.69) with a single quadratic Lyapunov function 

(i.e. assume W = 0). If feasible then implement the controller as given by 

(2.86) with a fixed W. 

2. If infeasible, divide the parameter space into two regions. Then determine the 

feasibility of (2.69) with two W's. For example, determine the feasibility of 

U2
T(9)(A(9)W1 + W1A

T(9) + A)U2(e) <0   VÖG Region 1 

UZ(0)(A(9)W2 + W2A
T(9) + A)U2(9) <0   VÖ6 Region 2 

with Wi,W2 > 0 where A is a positive definite matrix that allows forW^O. 

If feasible, proceed to the next step. Otherwise, continue dividing the parameter 

space, thereby adding more frozen region Lyapunov functions, until there is a 

solution. 

3. Upon finding a solution, it becomes necessary to check (2.69). This check re- 

quires knowledge of W. The value of W can. be approximated as follows, 

TJy    Wcurrent       Vrprevious tc\ OQ\ 

where Wcurrent is the current interpolated value of W(t) and WpTevious is the 

previous value ofW(t). Unfortunately, Wprevious may posses many different 

values. However, from the knowledge of the bounds on 9 as given in (2.68), 

we can determine the regions in the parameter space that can reach our current 

location in one At. From these regions we can compute the various values of 

W, allowing us to check (2.69) at each grid point. If (2.69) is satisfied at each 

grid point then the controller (2.86) can be implemented with the interpolated 

values of W(t). 
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Figure 2.10: An example on how to interpolate the Lyapunov Functions. 

An advantage of Algorithm 2.9 is that it initially tries to find a single quadratic 

Lyapunov function and then if this is not possible it naturally converts to the General 

Lyapunov case. 

One method of interpolating the W's is to consider the distance from the current 

location in the parameter space to the center of each region that can be reached from 

this location in one At It is assumed that the center of each region will have as 

its Lyapunov function the W that is associated with that region. As an example, 

consider the two parameter space as depicted in Figure 2.10. The current W can be 

interpolated as 

1        \ ...      /        1        \ ...      /        1 
W = 

i + t + i 
Wi + 

! + t + t. 
W2 + 

1 + <h + !h W, (2.90) 

with di, d2 and d3 as shown in Figure 2.10. To insure that this W is a valid Lyapunov 

function we need to check 

Ul{9)(A(9)W + WAT(9) + A)U2(9) < 0 (2.91) 
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where A is the same as the one used when computing the frozen Lyapunov regions. 

If it is not satisfied then solve the following LMI's 

UZ(9){A(9)(W + AW) + {W + AW)AT(9) + A)U2(9) < 0 

W+AW>0 

with objective function 

fobj = trace(AW) (2.93) 

The objective function is used to keep the new W as close to the original interpolated 

W as possible. Thereafter, 

Wnew = W + AW. (2.94) 

If Step 3 of Algorithm 2.9 fails, then before coming to the conclusion that the 

system is uncontrollable the control engineer can try the following. Recall that when 

we solved for the current regional Wi that we used a fixed A for the.entire parameter 

space. Try solving (2.91) with a new A for the offending locations. This may mean 

setting up a new region inside an existing region. If a larger A is possible, it will 

allow for a larger W. 

The concept now is not to grid the space with frozen point controllers but, instead, 

to grid the space with frozen point Lyapunov functions. These Lyapunov functions 

can be stored in tables as previously the controllers were stored and then interpolated 

as the plant changes with the parameters. The controller scheduling law is given by 

(2.86). This method of scheduling will guarantee general Lyapunov stability. 

So far only stability has been investigated, now the addition of performance will 

be investigated. 
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2.3 Performance 

In this section the concept of guaranteeing performance via state-feedback subject 

to quadratic stabilization is discussed. Several methods will be explored including 

minimizing a cost function, minimizing the output energy and finally guaranteeing 

£2-performance for a strictly proper system. A missile autopilot design example will 

be given to demonstrate guaranteeing £2 

2.3.1    Minimizing a Cost Function 

One method of introducing performance into the design of LPV systems is to 

design a controller such that the resulting closed-loop system minimizes a given cost 

function. The cost function that we will use is the standard cost function used in 

control system design 

00 

J =  f(xTQ(9)x + uTR(9)u)dt (2.95) 

0 

where Q = LTL > 0 and R(0) > 0 for all 9 in the parameter space. By allowing the 

cost function to change with the parameters, allows the control designer to set differ- 

ent performance objectives depending on where in the parameter space the system 

is located. For example, a missile autopilot designer for a ballistic missile will want 

to reduce performance at apogee when the dynamic pressure is low and will want 

increased performance during the end-game when the dynamic pressure has come 

back up. Thereom 2.10 describes how to design such a controller. 

Theorem 2.10. Given the LPV system as described by (2.1) with the magnitude of 

the parameters being bounded and initial condition x0, there exists a controller 

K = R-1BT(9)P (2.96) 

that minimizes the cost function J = f™(xTQ{9)x + uTR(9)u)dt subject to quadratic 

stabilization if and only if there exists a W = P~l > 0 such that the following LMI 
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problem is solvable for all 6 in the parameter space. 

maximize   XQ(W)X0 

subject to 

A{9)W + WAT{9) - B(9)R-1(9)BT(6)   WLT{9) 

L{6)W -I 

W>0 

<0 
(2.97) 

Proof. The idea is to bound the cost function with a Lyapunov function.  Suppose 

there exists a quadratic Lyapunov function V(t) - xT{t)Px(t) such that 

P > 0,    -j-y(*(*)) < ~{xTQx + uTRu) 
at 

(2.98) 

then integrating both sides from t = 0 to t = T yields 

T 

V(x(T)) -V(x0) < - f(xTQx + uTRu)dt. 

o 

Since V(x(T)) > 0, we have 

T 

V(x0)> f(xTQx + uTRu)dt. 

(2.99) 

(2.100) 

This equation shows that the cost function can be bounded from above by XQPX0. 

Prom (2.98), we can derive an equivalent condition that will be used to prove the 

theorem. Expanding out ftV(x) with u = -Kx, (2.98) becomes 

xT{A - BKfPx + xTP(A - BK)x < -(xTQx + xTKTRKx) 

Then collecting terms it becomes 

xT((A - BK)TP + P(A -BK) + Q + KTRK)x < 0. (2.101) 
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Therefore, if there exists a P such that 

P > 0,    {A- BK)TP + P(A- BK) + Q + KTRK < 0, (2.102) 

then an upper bound on the cost function is x%Px0. Equivalently, if W = P"1, then 

(2.102) becomes 

W>0,    W{A - BK)T + (A - BK)W + WQW + WKTRKW < 0       (2.103) 

and the corresponding upper bound on the cost function is X%W~
1
XQ. 

The existance of a controller, K, subject to quadratic stabilization that minimizes 

the given cost function is equivalent to (2.103) having a solution such that x%Wx0 is 

maximized. Letting Y = KW, the QMI in (2.103) becomes 

WAT + AW- YTBT -BY + WQW + YTRY < 0 (2.104) 

(Letting R = SPS and by completing the square) 

WAT + AW + WQW - BR-lBT + (SY - (är)-1E(r)T(SY - (ST)-1BT) < 0 

(2.105) 

=$■ (Since Y = KW = R~lBT, the completed square term = 0) 

WAT + AW + WQW - BR7lBT < 0 (2.106) 

=> (Via Schur Complements) 

AW + WAT-BR-1BT   WLT 

< 0 (2.107) 
LW -I 

which completes the proof. O 

As an example to demonstrate Theorem 2.10, a controller will be designed for the 

open-loop system from Example 2.5 such that a given cost function is minimized. 
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Example 2.11. Recall the open-loop LPV plant from Example 2.5 

x = 
-1 + 1.5 cos2(t)   1 - 1.5 sin(t) cos(t) 

1 -1 
x + us (2.108) 

with initial condition x0 = [}].   We desire to design a controller that minimizes the 

cost function 

oo 

0 

1   0 

0   1 
x + uT(.l)u)dt. (2.109) 

Gridding the parameter space as before into 20 points and solving (2.97) for W = 

P~x yields 

9.59073   1.94165 

1.94165   0.78845 
(2.110) 

Figure 2.11 shows the response of the system to the initial conditions. This controller 

quickly drives the states to zero yielding a cost of 

J = 4.28 

As a point of comparison if we applied this same cost function to the closed-loop 

system constructed using the Lyapunov based controller from Example 2.5, the cost 

would be 

J = 11.89 

Therefore, as expected the cost is lower for our controller designed with performance 

taken into account. 

D 

Another method of interest in integrating performance into the Lyapunov based 

gain scheduling is to minimize the output energy. The next section covers this method. 
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Figure 2.11:   The response of the system using the Performance based Lyapunov 
controller with inititial condition x0 = [1 1]T. 

2.3.2    Minimizing the Output Energy 

In this section we are interested in bounding the output energy of a system. To 

do this we extend the results taken from Boyd et al. [27] for LTI systems, where 

DyvPy — 0) to the LPV systems with no constraints on D^uCy. 

Given a certain initial state, x0, consider bounding the output energy of the 

closed-loop system 

where the output energy is 

x = Aci(6)x 

y = Cdy(9)x 

Eoutput = / yT(t)y(t)dt. 

(2.111) 

(2.112) 

Suppose there exists a quadratic Lyapunov function V(t) = xT(t)Px(t) such that 

P > 0,    fv(x(t)) < -yT(t)y(t) (2.113) 
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then integrating both sides from t = 0 to t = T yields 

T 

V(x(T)) - V(x0) <- j yT(t)y(t)dt. (2.114) 

o 

Since V(x(T)) > 0, we have 

T 

V(x0)> JyT(t)y(t)dt. (2.115) 
o 

This equation shows that the output energy can be bounded from above by x%Px0. 

Prom (2.113), we can derive an equivalent condition that will be used to solve the LPV 

output energy minimization problem.  Expanding out -^V(x) and inserting (2.111) 

into (2.113) yields 

TnT x1 AdPx + x1 PAdx < -x1 CiCdyx (2.116) 

Then collecting terms 

xT(AT
dP + PAd + C%Ccly)x<0. (2.117) 

Therefore, if there exists a P such that 

P>0,    AlP + PAd + O^C^KO, (2.118) 

then an upper bound on the output energy is x%Px0. Equivalently, if W = P \ then 

(2.118) becomes 

W > 0,    WAT
d + AdW + WClyCdyW < 0. (2.119) 

Condition (2.119) is equivalent via Schur complements to 

W>0, 
AdW + WAT   wcr 

cdyw -I 
<0 (2.120) 
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Therefore, if W satisfies (2.120) then an upper bound on the output energy is 

xlW~lx0. 

Now take this analysis result and apply it to designing an LPV controller, K(6), 

for the LPV system 

x = A(9)x + Bu(9)u 

y = Cy(9)x + Dyu{9)u (2.121) 

with u = K(9)x such that we minimize the output energy of the resulting closed-loop 

system 

x = (A(9) + Bu(9)K(9))x 

y = (Cy(9) + Dyu(9)K(9))x 

The following theorem describes how to do this. 

Theorem 2.12. Given an initial condition x0 for the LPV system in (2.121) and that 

(A(9), B{9)\Cy{9)) is minimal; D^u(9)Dyu(9) is invertible for all 9 in the parameter 

space and (I -^„(D^D^)-1^) = EFE, there exists a controller 

K{9) = -{DT
yuDyu)-\BT

uW-1 + DT
yuCy) (2.123) 

that minimizes the output energy J*0°° yTydt subject to Quadratic stabilization if and 

only if there exists a W > 0 such that the following Quadratic Matrix Inequality 
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(QMI) problem is solvable for all 9 in the parameter space 

maximize    x0 WXQ 

subject to 

'AW + WAT - Bu{D^uDyur
lBl 

-WC^Dyu{DT
yuDyu)^Bl      WCfEt 

-Bu{D^uDyur
lD^uCyW 

rrrpT 

ECyW 

<0 
(2.124) 

W>0 

Proof. The existance of a controller, K,for the given system that minimizes the output 

energy subject to quadratic stabilization is equivalent to (2.120) having a solution 

such that X^WXQ is maximized. Substituting Ad,Bd,Cd from (2.122) into (2.120) 

and letting Y = KW the matrix constraint becomes 

AW + WAT + BuY + YTBl   (CyW + DyuY)T 

(CyW + DyuY) -I 

(Via Schur complements) 

<0, (2.125) 

AW + WAT + BUY + YTBl + (CyW + DyuY)T(CyW + DyuY) < 0       (2.126) 

(Multiplying out and collecting terms) 

AW + WAT + WCT
yCyW + YTD?uDyuY 

+ {WCT
yDyu + BU)Y + YT{BT

U + DT
yuCyW) < 0   (2.127) 

=^ (By completing the square) 

AW + WAT + WCT
yCyW - [ßl + DT

yuCyW)T{DT
yuDyu)-\B

T
u + DT

yuCyW) 

+ (DyuY + Dyu{DT
yuDyu)-\Bl + DT

yuCyW))T 

(DyuY + Dyu{DT
yuDyu)-\BT

u + DT
yuCyW)) < 0   (2.128) 
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<=► (Since Y = KW = -K{0) = 

square term = 0) 

-{D?uDyu)-\Bl + DTuCyW)), the completed 

AW + WAT + WCTCyW - {Bl + DT
yuCyW)T{DluDyuy\Bl + DyuCyW) 

(2.129) 

<=> (Expanding and collecting terms) 

AW + WAT - Bu{DT
yuDyu)-lBT

u - WC%Dyu{DT
yuDyu)-'BT

u 

- Bu{DT
yuDyu)-

lDT
yuCyW + WCT

y{l -D^D^D^D^C.W < 0   (2.130) 

=> (Via Schur Complements and letting (I -Dyu{DluDyuY
lD^u) = ETE since it is 

always positive semidefinite.) 

AW + WAT - BuiD^DyuY^l 

-WCT
yDyu{DT

yuDyuY'Bl 

- Bu{DT
vuDyu)-lDT

vuCyW 

ECyW 

WC^EF 

-I 

<0 (2.131) 

D which completes the proof. 

Finally we will look at adding £2 performance in the next section. 

2.3.3   Guaranteeing /^-Performance 

£2-Performance criteria have become a very popular way to specify performance. 

As we begin to investigate designing Lyapunov based gain scheduled controllers uti- 

lizing £2-performance criteria it is necessary to define the induced £2-norm and £2- 

performance for LPV systems. The following definition and £2-performance Lemma 

are taken from [25]. 

Definition 2.13 (Induced £2-Norm for an LPV System [25]). Given a quadrat- 

ically stable LPV system Q6 with input u and output y, for zero initial conditions, 
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define 

II&IU2 :=      sup sup     Ä (2.132) 
parameter II"||2 

e    space       ||u|| ^ 0 

to 6e tfie induced C,2-norm. 

Therefore, the induced £2-norm for an LPV system is the largest input to output 

induced £2-norm over the set of all causal linear operators described by the LPV 

system. Now £2-performance can be quantified as follows. 

Lemma 2.14 (£2-Performance Lemma [25]). Consider the strictly proper LPV 

system Q{6, Ad, Bd, Cd, 0). // there exists a P > 0 e Tlnxn, such that for all 6 in 

the parameter space, 

AT
d(9)P + PAd(6) + -2C

T
d{6)Cd{e) + PBd{0)BT

d(9)P < 0, (2.133) 

then 

1. The function Ad{6) is quadratically stable over the parameter space. 

2. There exists a ß < 7 such that ||öe||ind,2 < ß 

Proof See [25]. E 

Lemma 2.14 is an analysis tool. That is given an LPV system and that (2.133) 

is satisfied, we can say that the system is quadratically stable and has a certain £2- 

performance associated with it. As control designers, we wish to design controllers 

for LPV systems such that we can guarantee £2-performance over the parameter 

space. To guarantee £2-performance for a strictly proper system we have the following 

theorem. 
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Theorem 2.15. Consider the open-loop LPV system Q(9,A,B,C,0). There exists 

a state-feedback controller K{8), such that the resulting closed-loop system Qd{9, Ad, 

Bd, Cd,0) is quadratically stable and has an induced C,2-norm 

\\Qecl\\ind,2 < 7 (2.134) 

if there exists a W > 0 such that 

U?(0){A(B)W + WAT(9)M(d)   ±U?(6)WCT(6) 

±C(9)WU2(9) -I 

where the range ofÜ2{9) is the null space of B(9). 

<0, (2.135) 

Proof. Assume that there exists W > 0 such that (2.135) holds. The strictly proper 

open-loop system under consideration is given by 

x   =   A{6)x + B(6)u 

y   =   C(6)x (2.136) 

The state-feedback control law u = r - K(9)x results in the following closed-loop 

system. 

x   =   (A(9)-B(9)K(9))x + B(6)r 

Act 

(2.137) y   =   C(9)x. 

cct 

Then to insure £2-performance and quadratic stability of the closed-loop system as 

stated in Lemma 2.14 we need to find a P > 0 and K(9) such that 

1 
(A - BK)TP + P(A - BK) + ^C1 C + PBB1 P<0 

V 
(2.138) 

Note that for simplicity the specific dependence on 9 has been dropped from the 

notation. As was done previously, substitute in for B its singular value decomposition, 
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UY,VT, and pre- and post-multiply (2.138) by UTW and WU where W = P~l. This 

will yield 

A — TiL — L   £    + Qdesired < 0 (2.139) 

where 

Ä = UT(AW + WAT)U 

L = VTKWU 

Qdesired = \uTWCTCWU + ££T. r 

(2.140) 

(2.141) 

(2.142) 

Partition L = [Lu,  L12], U = [Ux    U2], E 
Ei 

0 
, where Ux € Knxnu, U2 € 

nnx(n-nu) and Sj _ diag^n,... , anu7lu] e ft"«*"«. This will partition A as follows 

A^ 
An   A12 

A\   A22 

(2.143) 

where 

A li 

Au 

A22 

Then (2.139) becomes 

=   Uf{AW + WAT)UX = AT
n 6 ftn" xn» 

U?(AW + WAT)U2 = A\ e ft(»-»«)* ("-"«). 

(2.144) 

in-CSiLn+L^Ef) 

+ ^UfWCTCWUi + EiEf 
i^-E^ + ^WC^CW^ 

if2 - Lr2Si + At/Jw^cwx       i22 + -frufwcrcwfy 

<0. 

(2.145) 
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Prom (2.141),we have free choice of L.   Therefore if you choose the elements of 

Lu(6) = [lij(9)} eKn"xn« tobe 

O'ij       Gjyji   <   Qdesiredij 
Hj '■>   Iji = y°ur choice i = 1,... nu — 1, j = i + 1,... nu 

(2.146) 

.      ^ii   i   Qdesiredij ~*~    H     ■   -i 
Hi = n '  * — 1, . . . Tlu (2.147) 

where da > 0 are arbitrary real numbers for alii = 1,... nu, A = [äjj],and Q desired = 

[Qdesiredij (0)]- In addition, choose the matrix Li2(9) £ %n*-xn-nu to ^e 

L12(9) = El1(9){Uf(9)(A(9)W + WAT(9))U2(9) + Qdesired(l: nu,nu + l: n)} 

(2.148) 

then equation (2.145) becomes 

-du 

l22 

Tly, 71 ii 

U?(AW + WAT)U2 + ^UjWC^CWU^ 

<0 

which is negative definite if and only if 

Hi {AW + WAT)U2 + ^UlWCFCWUi < 0. 

From the Schur complement this matrix is negative definite if and only if 

Ul(AW + WAT)U2
T   HJlWC1 

±CWU2 -I 
<0. (2.149) 
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Since we originally assumed that there existed a W > 0 such that this matrix was 

negative definite and recalling that P = W"1, Lemma 2.14 is satisfied thereby guar- 

anteeing that the closed-loop system will be quadratically stable and have an induced 

£2-norm less than 7. D 

Lemma 2.16. // there exists a W > 0 with P = W~l such that (2.135) is satisfied, 

then a stabilizing controller, K{9), that yields a closed-loop system with an induced 

L^-norm 

II&JU.2 < 7, (2-150) 

can be chosen as 

K{6) = V(9)L(9)UT(9)P (2.151) 

where L{9) = [Lii(9)Li2(9)] with the elements of elements of Lu(9) = [kj(0)] E 

j^nuxnu are 

0,ij       0~jjlji -T Qdesiredn       , ,    . .       1 n      .        .   ,   n 
lij = — -±-± L,   Iji — your choice % — 1,... nu — 1, j — 1 + 1,... nu 

C'u 

(2.152) 

la = - ,i = l,...nu (2.153) 
ton 

and where da > 0 are arbitrary real numbers for all i = l,...nu, A = [äij],and 

Qdesired = [qdesireckj(#)]• The matrix Lu(9) e TlnuXn~nu is defined as 

Lu(9) = ^1(9){Uf(9)(A(9)W + WAT(9))U2(9)+QdeSired(l: nu,nu + 1: n)}. 

(2.154) 

Proof. Assuming that W > 0 exists such that (2.135)is satisfied, then from the proof 

of Theorem 2.15 we see that the particular choice of L(9) = Ln(9)   L12(9) from 
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(2.152), (2.153) and (2.154) will result in a quadratically stable closed-loop system 

having an induced £2-norm< 7. Recall (2.141) 

L(9) = VT{9)K{9)WU{9). 

Solving for K(9) yields 

K{9) = V(9)L(9)UT(9)P 

which is our stated controller. D 

As an example of designing a controller to guarantee £2-performance we have the 

following autopilot example. 

Example 2.17. Consider the autopilot example taken from [28] which we have mod- 

ified. The modifications to this example are that we allow the speed and altitude to 

vary instead of being held constant. The nonlinear missile dynamics are as follows 

. . fgcos(z)Z 
ä = Jlvw-+ « (2155) 

q = & (2.156) 
1yy 

where 

d   = reference diameter, .75 ft 
/   = radian-to-degrees conversion, ™ 

ft g    = acceleration of gravity, 32.2 ^ 
Iyy = pitch moment of Inertia, 182.5 slug-ft2 

iTT' = CmQSd = pitch moment, ft-lb 
Q   = dynamic pressure £^- 
p   = -2.0777E-18 alt3 + 6.3675E-13 alt2 - 6.6022E-08 alt + 2.3465 E-03 

a polynomial aproximation for air density 

q    = pitch rate, —& 
S   = reference area, .44 ft2 

alt = altitude, 10,000 - 30,000ft 
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V  = velocity, 2,000 - 4,000^ 
Wt= weight, 450 lb 
Z   = CZQS = normal force, lb 
a   = angle-of-attack, ±20 deg 
r\z  — normal acceleration in g 

The normal force and pitch moment aerodynamic coefficients are approximated by 

Cz = (j)zaa + bzS (2.157) 

Cm = (t>maa + bm5 (2.158) 

where 

b,    = -0.034 Jz 
bm   =-0.206 Jm 

8      —fin deflection, deg 
<j)za = .000103a2 - .00945|a| - .170 
<j)ma = .000215a2 - .00195|a| - .051 

The actuators are modeled as a second order system with transfer function 

s2 + lAujas + UJI 

where 

6C    = commanded fin deflection, deg 
oja    = actuator bandwidth, 150 ^ 

The autopilot is required to control normal acceleration. 

The acceleration is typically expressed in g 's which is the reason for dividing the 

normal force by the missile's weight and not mass. Now normal acceleration is not one 

of the states of the system but is a function of the fin deflection, 5, and angle-of-attack, 
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a. In order to design a state feedback Lyapunov based controller that has performance 

goals of controlling acceleration, we need to have acceleration or something directly 

related to it as one of the states. To accomplish this we augment an integrator to 

the acceleration error which can then be fed back to control the fin deflection. This 

augmentation is shown in the block diagram for the missile dynamic equations in 

Figure 2.12 as state r]ZeTTOrinteg- The state-space plant description for the autopilot is 

x 

0 

Cxbz 

QSBZ 
Wt 

1 0 

-1.4a;        0 

0 d<f>. 

0 

0 

0 0 

0 0 

za       1 0 

0 0 C2<f>r, 

<t>zaQS      n     n 
Wt U     U. 

0    0 

0   ul 

x + 0    0 

0    0 

1    0_ 

u (2.161) 

y = 
0      0      0      0   1 

QSBz      p|      <t>zaQS      n     p) 
wt .     .     wt.    u   u 

X (2.162) 

To begin the design of a Lyapunov based gain scheduled controller with an £2 

performance objective, we solve (2.135) with C(9) — (0 0 0 0 30) and 7 = 1 forW , 

yielding 

3.1923.E+00   -2.9917^+02        5.4020.E-02     2.9604£+00 -1.1890^-02 

-2.9917E+02      1.4702J5+05    -4.2091J9+00     1.7026.E+02 -1.9795E-01 

W=         5.4020^4)2   -4,20915+00       2.6663£-02   -2.4629^-01 -6.2319£-03 

2.9604£+00      1.7026Ä+02     -2.4629E-01     1.28725+01 -2.4599E-02 

-1.1890E-02     -1.9795£-01     -6.2319S-03   -2.4599E-02 3.9060Ä-03 

which can then be used to solve for the controller 

(2.163) 

K(6) = V(9)L(6)UT(9)P (2.164) 

Using (2.152), (2.153) and (2.154) and the free choice elements of Ln to be 1, the 

matrix L can be computed. A unit step response for the nominal closed-loop system 



Figure 2.12: Autopilot block diagram. 

ft 
is given in Figure 2.13.   Nominal in the since that V = 3000^ and alt = 20000 

ft during the step response.   Figure 2.14 shows the response of the autopilot at the 

extremes of the parameter variations.  The performance varies between the extremes 

because we held the Lyapunov function P to be constant which forces the Lyapunov 

Q to vary and performance is related to this Q.  Our optimization on the inequality 

(2.135), pushes the worst case system to satisfy the £2 performance criteria almost 

exactly while the other systems do much better, as opposed to all systems satisfying 

the criteria exactly. 

Figure 2.15 shows the unit step response of the same autopilot with both V and 

alt varying wildly. 

alt = 20000 + 10000 cos(6i) 

V = 3000 + 1000 cos(12t) 

(2.165) 

(2.166) 
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Figure 2.13: Unit step response of the autopilot with the nominal system. 

The autopilot remains stable even under these unrealistic parameter variations. Even 

though the output acceleration rjz varies quite a bit during this four second interval, 

its mean value is 1.0093. 

D 

Another method of LPV gain scheduling is presented in the next Chapter. This 

method is Hoc based. 
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Figure 2.14: Unit step responses of the autopilot at various points in the parameter 
envelope. 

S    1 

Figure 2.15: Unit step response of the autopilot with the missile dynamics varying 
rapidly. 



CHAPTER 3 
ifoo Based Gain Scheduling 

An alternative to the single quadratic Lyapunov approach for designing gain sched- 

uled controllers for LPV plants which also has a firm theoretical basis has been pro- 

posed by Packard and Becker [16], Packard [29], and Apkarian and Gahinet [8]. There 

are two central ideas behind all three of these papers. The first is to treat the time- 

varying parameters as uncertainties by pulling them out into one large "uncertainty" 

block. The resulting LTI portion of the plant has a linear fractional dependence on 

this uncertainty block. By collecting the time-varying portion into an uncertainty 

block, the powerful methods of H^ control theory can be used to design a controller. 

The second central idea in these papers is in the assumption that the controller also 

has a linear fractional dependence on the parameters. This controller structure allows 

the controller to have knowledge of the parameters. In [16] and [29], the discrete ver- 

sion of the LPV system is discussed and sufficient conditions for designing an #<» gain 

scheduled controller are given. Apkarian and Gahinet in [8] discuss both the discrete 

case and the continuous case under the framework of the scaled bounded real lemma 

and provide sufficient conditions for designing an H^ gain scheduled controller. The 

conditions are only sufficient due to the fact that the small gain theorem is used which 

does not take into account the realness of the parameters as did the single quadratic 

Lyapunov approach. In the sequel, only the continuous time case will be presented. 

The material in this chapter is found primarily in [8] and is included as background 

for the present application. 

64 
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3.1 ffpo Gain Scheduling Problem 

We begin by specifically defining the LPV plant and the parameters. Let 9 = 

(0i, ••• , 6ne) e TZne be the measured parameters. The fact that the parameters 

vary with time is assumed but is dropped from the notation. The plant is assumed 

to have a linear fractional dependence on the parameters. Therefore, the plant can 

be represented by the upper LFT 

= Fu(P(s),e) (3.1) 

where 

G = blockdiag (0i/rl, • • • , 6neIre), (3.2) 

w e W1 is the disturbance input, q e W1 is the controlled output, u e lZm2 is 

the controlled input, and y e W2 is the measured output. If the plant can not be 

represented as an LFT, approximation methods may be used to fit the parameter 

dependence to the LFT model. Equation (3.2) describes the structure of the set of 

parameters. In other words, it tells how many times each parameter or parameter 

block is repeated. Realizing a general LPV plant that has rational dependence on the 

parameters may require using multiple copies of each parameter. Various methods by 

which to accomplish this using as few copies as possible will be discussed in Chapter 

4. The upper LFT of the plant with the parameters is depicted in Figure 3.1. Writing 

the feedback equations for the diagram in Figure 3.1 yields 

P(s) 

Qe(s) Pee(s)   Pei(s)   Pg2(s) w9(s) 

Q(s) = Pw(s)   Pn(s)   P12(s) w.(s) 

y(s)_ PTB{8)   P2I(S)   P22(S) 
.u^. 

(3.3) 
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e 

99 

P(s) 

w6 

Figure 3.1: A diagram of the LPV plant with an upper linear fractional depend 
on the parameters. 

ence 

w6 = Qqe (3.4) 

The controller is assumed to have a linear fractional dependence on 0. 

u = Fl(K(s),G)y (3.5) 

This form for the controller is not the most general one but allows the gain scheduled 

problem to be converted into a standard H^ problem. Connecting the gain scheduled 

controller in (3.5) with the LPV plant in (3.1) as depicted in Figure 3.2 yields 

T(P, K, 6) = Ft(Fu(P, 6), Fi(K, 9)) (3.6) 

With the plant, parameters and controller defined, it is now necessary to define the 

problem. The precise problem definition is influenced by the method used in solving 

it. In the problem at hand, it is desired to design an #«, gain scheduled controller, 

and in ifTO theory the small gain theorem plays a prominent role. A particular form 

of the small gain theorem can be stated as follows 

Theorem 3.1 (Small Gain Theorem). Let M(s) represent the transfer function 

of a linear time invariant system and A(t) be a stable time-varying perturbation. 
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e - 
Qe we 

«  

ja- P(s) 
*  

y u 
—» 

K(s) 

Qe we 

 » e - 

Figure 3.2: A diagram of the interconnection of the LPV plant with the gain scheduled 
controller. 

The closed-loop system shown in Figure 3.3 is C2-stable for all A with ||A|| < - if 

||M(S)||<7. 

Proof. See pg 45 [30]. D 

Essentially, what this means is that a feedback loop constructed of stable oper- 

ators will remain stable if the product of the operators is less than unity. In terms 

of Nyquist, it means that the magnitude of the Nyquist plot is never larger than 

unity, thereby making an encirclement of the -1 point impossible. This approach is 

somewhat conservative because it assumes arbitrary bounded parameter variations. 

Taking into account parameter variations having a certain structure by use of simi- 

larity scalings reduces the conservatism, however, constraining the parameters to be 

real will not be taken into account. 

Taking the small gain theorem into consideration, our problem definition becomes 

Find a control structure K(s) such that the LPV controller Fi(K(s), 0) satisfies 

i) the closed loop system T(P, K, O) is internally stable for all bounded pa- 

rameter trajectories 9(t) such that 720T6 < 1; 
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Figure 3.3: Typical plant interconnection for use with the small gain theorem. 

ii) the induced £2-norm of the operator T(P, K, 0) satisfies 

max i||T(P,iTie)||00<7. 
lie||oo<^ 

(3.7) 

The first condition i) can be assumed without loss of generality. It is just a matter of 

redefining the parameters to satisfy this condition. The condition ii) is directly from 

the small gain theorem. We want to find a controller structure K(s) such that the 

feedback loop gain is less than unity. Redefining the parameters to satisfy i) allows for 

clear interpretation of knowing what the desired 7 should be. In order for the system 

to remain stable over the entire parameter space, we must have \\T(P,K,Q)\\oo < 1, 

in other words, we must find a K(s) that results in 7 < 1. 

. Hoo theory is set up to find a controller K(s) that will stabilize the plant depicted 

in Figure 3.1 and not to find a controller of the form Fi(K(s),Q). Therefore, we 

must find a way to put our problem into that form. Collecting the parameters into 

one repeated "uncertainty" block, 
e 0 

0 e 
, and redrawing Figure 3.2 as Figure 3.4 

results in the standard H^ form.  This block repeated structure, 
e 0 

0 e 
, will be 
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Figure 3.4: A diagram of the interconnection of the LPV plant with the gain scheduled 
controller. 

denoted 0 © 6. Figure 3.4 is represented mathematically as 

T(P,K,e) = Fu\Fl(Pa,K), 
6   0 

o e 

where Pa is the augmented plant and is defined in the following equation. 

Qe Pa w6 

qe 0 0 IT we 

q = 0 P(s) 0 w 

y Jr 0 0 u 

y ü 

(3.8) 

(3.9) 

In order to reduce the conservatism as mentioned earlier, similarity scaling will 

be introduced. The similarity scalings reduce the conservatism due to the fact that 

the Hoo norm is not invariant under similarity scalings. Therefore, in general, there 

exists anL^J such that the Hoc norm in (3.12) is minimized. Specifically consider 
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the set of positive definite similarity scalings associated with the structure O in (3.2) 

Le = {L > 0: LB = 0L, V0} C KTXT (3.10) 

with 

Positive definiteness of the scalings is assumed without loss of generality due to 

the polar decomposition theorem (see for example [31]) and the fact that the if«, 

norm is invariant with respect to unitary matrices. Positive definiteness insures the 

invertibility of the scaling L with the use of a convex constraint. For the repeated 

block structure, 0 © 0, the scaling set becomes 

'©ee 
L2   Lz 

> 0: LULZ E Leand L20 = 0L2)V0 } . (3.11) 

Suppose there is a scaling matrix L such that (3.11) holds. .Without loss of 

generality we can insert blocks as shown in Figure 3.5(a). Using (3.11), the top two 

L and L~l blocks can be dropped so that the diagram can now be drawn as shown in 

Figure 3.5(b) which must be optimized over all controllers K(s) and scaling matrices 

L such that (3.10) holds. 

The following theorem, by the use of the small gain theorem, formally states a 

sufficient condition for solvability of the H^ gain scheduled control problem. 

Theorem 3.2 ([8]). Consider the open loop system Pa(s) with uncertainty structure 

0 © 0 along with its associated similarity scalings LQ®Q. If there exist a scaling 

matrix L € LQ®Q and an LTI controller K(s) such that the nominal closed-loop 
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Figure 3.5: Insertion of scaling matrices into the plant. 

system Fi(Pa(s), K(s)) is internally stable, and satisfies 

Li   0 

0    I 
<7 

then Fi(K(s),&) is a j-suboptimal gain scheduled Hoo controller. 

L-2   0 

0     / 
(3.12) 

Proof. The proof is a straightforward application of the small gain theorem. D 

Equation (3.12) is the scaled small gain condition. Pictorially (3.12) can be repre- 

sented as shown in Figure 3.6. The square roots are introduced here and at this point 

are unnecessary. There necessity comes about from the Scaled Bounded Real Lemma 

which will be used to solve (3.12) 

Theorem 3.2 is a particular case of the general scaled Hoo problem, which will be 

discussed in the next section, but before proceeding it is necessary that state-space 

realizations for the plant and the controller be defined. The purpose for this is that 
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Figure 3.6: A diagram of the scaled small gain condition. 

very efficient state-space based LMI algorithms will be developed to solve for the 

controller structure K(s). Therefore consider some state-space realization (ideally 

minimal in terms of the states and the parameters) of the LTI plant P(s). 

P(s) = 

Dgg    Dgi    DQ2 C9 

DIB   Dn   D12 
+ Ci 

D-29     D2\     D22 ?\ 
{sI-A)-\BeBxB2) (3.13) 

where the partitioning is conformable to (3.3). The problem dimensions are given by 

A e nnxn,   D0B e Tlrxr,   Du e K
PlXpi,   D22 e K

P2Xm2. (3.14) 

The following assumptions are made concerning the realization of the plant P(s). 

Al) (A, B2, C2) is stabilizable and detectable; 

A2) D22 = 0. 

The first assumption is a standard assumption and is necessary and sufficient to 

allow stabilization of the plant by dynamic output feedback. The second assumption 

is made without loss of generality but greatly simplifies the calculations. It should 

be noted that both the parameter set 6 and the plant transfer function from the 

disturbance w to the controlled output q have been considered to be square. If this 

is not the case then by augmenting the plant with rows and/or columns of zeros the 
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plant transfer function can be made square. This assumption on the parameters and 

plant transfer functions simplifies the notation and the manipulations of the scaling 

matrices. 

A state-space realization for the plant Pa(s) can be derived from (3.13) by aug- 

menting it with the parameters due to the controller. 

Pa(s) 

0 0       0 0 Ir 

0 D66 Dei DB2 0 

0 Dl6 Ai D12 0 

0 D29 D21 D22 0 

L 0       0 0 0 

+ 

0 

C9 

Cx 

C2 

0 

{sI-Ä)-1{üBeBlB2ti)        (3.15) 

The state-space realization for the controller K(s) is 

K(s) 
DKU   Dxie 

DK9\    DKöB 

+ 
CKB 

(SI-AK)-\BKIBKB), (3.16) 

with 

AKeW kxk 

Note that the order k of K(s) is arbitrary at this point. 

3.2   General Scaled H^ Problem 

In the last section, the H^ gain scheduled problem was set up to be a particular 

case of the general scaled if^ problem. By use of the scaled bounded real lemma, 

the Hoo constraints can be turned into LMI constraints which can now be efficiently 

solved [15, 32]. 

Lemma 3.3 (Scaled Bounded Real Lemma [8]).  Consider a parameter struc- 

ture 0, the associated scaling set Le defined in (3.10), and a square continuous-time 
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transfer function T(s) with realization T(s) = Dd + Cci (si -Ad)  1Bcl. The following 

statements are equivalent. 

i) Ad is stable and there exists L e LQ such that 

||L» (Dd + Cd{sl - Aay'B^L-^Woo < j. (3.17) 

ii) There exist positive definite solutions X and L € LQ to the matrix inequality 

AT
dX + XAd XBd cl ' 
BlX -7L Dl 

cd Dd -7L-1 

<0 (3.18) 

Proof. See [33] and references therein. D 

The scaled bounded real lemma is used here to design an H^ gain scheduled 

controller as the Lyapunov equation was used to design a gain scheduled controller in 

Chapter 2. The scaled bounded real lemma is an analysis tool. Given a state-space 

realization of a system, one can check whether or not the system is stable and satisfies 

a certain H^ constraint. For our purposes the state-space system, T(s) will be the 

state-space realization for the closed-loop system. As was done previously, necessary 

and sufficient conditions can be derived in terms of only the open-loop system and 

X. Let the open-loop system be denoted G(s) and have a state-space realization 

G(s) 
Dn D12 + 

Ci 

D21 D22 c2 

(sI-AYl{BlB2) (3.19) 

In (3.19) the matrix A refers to the open-loop system where Ad in (3.17) refers to 

the complete closed-loop system including the controller. 

Theorem 3.4 (Theorem 4.1 in [8]).  With G(s), 6 and LQ defined as above, Let 

K.R andJCs denote the bases of the null spaces of(B% Df2 Om2xpi) and (C2 D2i 0P2Xpi), 
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respectively. With this notation, the suboptimal scaled Hoo problem is solvable if and 

only if there exist pairs of symmetric matrices (R, S) G Knxn and (L, J) G TZrxr such 

that 

AR + RAT RCf? Bx 

&R CXR -7J Du 

B? Dfi -7L 

ATS + SA SBx Cf 

K,s BfS —7L DT 

Ci Dn -7J 

/CÄ<0 

JCs<0 

(3.20) 

(3.21) 

R   I 

I   S 
>0 (3.22) 

LeL@,J e L@,LJ = I. (3.23) 

Moreover, there exists suboptimal controllers of order k if and only if (S.20)-(3.23) 

hold for some quadruple (R, S, L, J) where R, S further satisfy the rank constraint 

rank(I - RS) < k. 

Proof. See Apkarian and Gahinet [8]. 

(3.24) 

D 

In Theorem 3.4 the two matrices R and S have replaced the X matrix as follows 

X = 
S    N 

iVT   E 
X -1 

R    M 

M7   F 
(3.25) 

with (N,M) e nnxk, (E,F) G Tlkxk and (S,R) G KnXn. Due to this substitution 

and the introduction of the nullspaces KR and Ks, the LMI (3.18) reduces to the two 
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LMFs (3.20) and (3.21). Note that the LMI (3.18) contains the controller parame- 

ters through the Ad but the new LMFs (3.20) and (3.21) involve the open-loop A 

matrix. The relationships given in (3.25) are used to find X and hence the controller 

parameters. 

The three LMI constraints (3.20)-(3.22) are all convex. The structure constraints 

L, J e LQ are also convex, but the constraint, LJ = I, is strongly non-convex. 

Developing methods and algorithms to solve (3.20)-(3.23) with the non-convex LJ = I 

constraint remains an important and open area of research. 

Theorem 3.4 is considered to be the general scaled H^ problem since it reduces 

to the standard Hoo problem when © becomes an arbitrary unstructured uncertainty 

block (i.e. 6 E CrXr). In this case the scaling set becomes LQ = {I * Ir: I € 11,I > 

0} and L, J can be set to the identity without loss of generality. This will then 

immediately satisfy the LJ = I constraint leaving the other convex constraints which 

can efficiently be solved via various LMI solver utilities such as SDPSOL [15] or LMI- 

LAB [32]. This alternative method of solving the classical H^ problem avoids the 

problem with imaginary axis zeros and the rank deficiencies in D12 and D21. For a 

detailed discussion see [33]. 

3.3   Solution of the H^ Gain Scheduled Problem 

Fortunately, the particular structure of Pa(s), which provides the controller knowl- 

edge of the parameters, replaces the strongly non-convex constraint LJ =. I with a 

convex constraint. The following theorem states the necessary and sufficient condi- 

tions for solvability of the H^ gain scheduled problem. 

Theorem 3.5 (Theorem 5.1 in [8] and corrected in [10]). Consider an LPV plant 

given by the LFT interconnection (3.1) where P(s) is a proper continuous-time LTI 

plant with minimal realization (3.13), and 6 is the parameter set given by (3.2). 

The corresponding scaling set for Q is denoted LQ and defined by (3.10).   Finally, 
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assume Al)-A2) and let MR and MS denote the arbitrary bases of the null spaces of 

(B$, Dj2, Dj2, 0m2x(r+Pl)) and (C2, D2e, D2i, 0P2X(r+Pl)), respectively. In addition, 

let 

Bx = (Be Bi),  Ci 
C6 

Ci 
,  Ai = 

Dee   Dei 

Die   Du 
(3.26) 

With this notation and assumptions the gain scheduled Hoo problem is solvable if 

there exist pairs of symmetric matrices (R, S) € Hnxn and (L3, J3) G TZTXr such that 

Ml 

AR + RAT R&[ Bi 

CiR 

J3   0 

0   / 

-7 
J3   0 

0    / 
D 11 

Bf 
Jz   0 

0    / 
DTu    -7 

h 0 

0 / 
■ 

Jz 0 

0 / 

J3 0 

0 / 

MR < 0 (3.27) 

A/T 

ATS + SA SB! 

BfS 

Li   0 

0    / 

-7 

Ci 

U  0 

0    / 

L3   0 

0    / 

cf 

Dli 

Dn    -7 

U 0 

0 / 

L3 0 

0 / 

U 0 

0 / 

jVs<0 (3.28) 

R   I 

I   S 
>o, (3.29) 
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L3, Jz € L&, 
L3    I 

I    Jz 
>0 (3.30) 

Proof. The proof as well as the original statement of this theorem as given in [8] 

are not correct and are incomplete, but after personal communication with Capt. 

M.S. Spillman, [9], the following proof is given. The proof begins by substituting 

our particular plant structure into the necessary and sufficient conditions given in 

Theorem 3.4. These new conditions will be shown to be equivalent to the conditions 

(3.27)-(3.30). Therefore, the following substitutions are made. Note X -> Y reads 

replace the matrix X in the state-space realization of G(s) with Y. 

cw 
0 

Ce C2~* 
c2 

0 
,    Bi -> (0 B9 Bx),    B2 -* (B2 0) (3.31) 

Dn-> 

0 0 0 

0 Dee Dei 

0 Dl9 Du 

£>2i-> 
0   D26   D21 

10      0 

A2-> 

D22-+ 

0 Ir 

D62 0 

DX2 0 

D22 0 

0 0 

(3.32) 

(3.33) 

The A matrix remains unchanged and the nullspaces J\fR and jV5 become (B^, Dj2, 

Dl2, 0) and (C2, D2e, D2i, 0), respectively. Upon making these substitutions, (3.20) 
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becomes 

Ml 

AR + RAT   R 

0 

0 

B\ 

R -7 

0   CJ   Cf 

Ji   J2   o 

0 0/ 

0     0 0 

0   Dl Dje 

0   Dl Dl 

0   Be   #! 

0     0       0 

0   D9e   Dei 

0   D10   Du 

Li   L2   0 

-7 Z£   L3   0 

0     0/ 

MR<0 (3.34) 

where MR = 

Pl 0 

0 0 

p2 0 

p3 0 

/ 0 0 

0 0 I 0 

0 0 / 

LetP = 

Pi 

P2 
and A — 

is a basis of the null space of 
El   0   DJ2   D\2   0 

0    Ir     0       0     0 

AR + RAT   RCJ   RCff 

C6R        -7^3      0 

dR 0 -7/ 

Now multiplying (3.34) out 

and deleting the block row and block column corresponding to the block zero row of 

MR yields 

PTÄP pT 

0 B6 Bx 

0 Dee Dei 

0   Die   Dn 

0      0 0 

BJ   DJ9 Die P -7 

BTi    Dl Dk 

Li L2 0 

L\ Lz 0 

0 0 / 

<0 (3.35) 
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Taking the Schur complement of (3.35) yields 

PTÄP + -PT 

7 

0 Be Bi 

0 Dee Dei 

0 Die Du 

Ji   J2   o 

Jl  h  o 

0     0/ 

0 0 0 

BJ Die Die 

BJ Dl Dk 

P < 0       (3.36) 

which is equivalent to 

PTÄP + -PT 

7 

Equation (3.37) is equivalent to 

PTÄP + -PT 

7 

Be     B\ 
Ja   0 

Dee   Dei 
0    / 

Die   Dn 
L               J 

Be    D68   Die 

B{   Dl   DT
n 

P<0 (3.37) 

Be 

Dee Dei. 
^3 0 

Die Dll_ 

j3   oj  x p,   ol rBy   oj   Djj p    0        (3i38) 

which is the Schur complement of (3.27). 

The constraint given in (3.21) can be shown to be equivalent to (3.28) in exactly 

the same manner. The third constraint given in (3.22) is already exactly (3.29). 

The last constraint LJ = I can be converted to an LMI constraint by use of matrix 

dilation. Note that LI, L2, Jl and 32 no longer appear in (3.27)-(3.29). This 

fact makes them arbitrary. This arbitrariness coupled with matrix dilation converts 

LJ = 1 into 

Lz    I 

I    h 
>0 

which is the last constraint given in (3.30). Therefore, under the particular structure 

of the ifoo gain scheduled problem the four constraints given in (3.20)-(3.23) have 

been shown to be equivalent to (3.27)-(3.30) which are all convex. □ 
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These LMI constraints provide only solvability conditions for an Hoo gain sched- 

uled controller. The next step is to take the quadruple (R, S, L3, J3) and build the 

controller K(s). 

3.4 Computation of the Controller 

The idea in constructing a controller is to first construct an X from R and S and 

an L, which in turn also specifies J, from L3 and J3. Once these are constructed, 

the scaled bounded real lemma can be used to solve for the controller, which is now 

an LMI in terms of the controller. Apkarian and Gahinet [8] showed that all of the 

controller parameters can be gathered into one matrix, Q defined in (3.41), and the 

scaled bounded real lemma could be rewritten as 

# + 
X   0 

0    / 
VTÜQ+QTÜTV 

X   0 

0   / 
<0 

where Vt, V, fi and Q are given by 

*:= 

A^X + XA0   XB0   C0
r 

BlX -jC   V\x 

Co Vn    7J 

V := (BT, 0, 2>£). 

(3.39) 

(3.40) 

ft := 

A-K BK1 BK9 

CKI DKü BK\6 

CK9    DpCOl    BK66 

en(k+m2+rMk+p2+r)^      Q ;=(C, V2l,0). (3.41) 
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and where 

B 

Vn = 

A     0 

o  okxk 

0   B2     0 

h       0       Ofcxr 

(W       0 0 

0     D66   Dei 

0     Die   Du 

0 h 

c2 0 

0 OrxA; 

c = L    0 

0   /Pi 

Bo 
0     Be   ßi 

Ofcxr      0       0 

Co 

0 Orxfc 

cfl 0 

Ci 0 

2?12 = 

2>21 = 

J = cry. 

Orxifc 0 7r 

0 Dö2 0 

0 Du 0 

0*xr 0          0 

0 D26 D21 

Ir 0       0 

-l (3.42) 

In (3.39) the unknowns are tt and certain elements of X, C and J, the following 

algorithm shows how (3.39) may be used to construct a controller. 

First we consider finding a solution X from (3.25) given S and R. From (3.25) 

MNT = I-RS. 

Using the singular value decomposition of / — RS, 

I-RS = JJ^^V^=MNT. 
M        NT 

By identification of terms, we have matrices M and N7 and 

(3.43) 

(3.44) 

k = vmk(I-RS). (3.45) 
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Again from (3.25) since M is full rank, we have 

E = -RNTM(MTM)~1 (3.46) 

which completely determines X. 

We also need L which may be found from L3 and J3 in a similar manner. Prom 

(3.11) 

It follows that 

u u 
L:= 

L2 L3 

h h 
J := 

J? h 

(3.47) 

-l 

I — L^Jz — Li-} J2 (3.48) 

and J2 and Li may be found from the singular value decomposition of I — J$Lz. Note 

that in general J3 is a block diagonal matrix where the number and size of blocks 

is determined by the number of parameters and how many times each parameter is 

copied. Therefore, compute the singular value decomposition of each diagonal block 

and then take these decompositions and build L2 and J2. For example, let UiEiVT 

be the singular value decomposition of (/ —L3i J3J which corresponds to the ith block 

of (I — L3J3), then L2i and J2i can be computed as 

[^E?S?V;T = svd(/-L3iJ3i). 

Ll •^ 

Therefore L2 = diag(L2l,..., L2n$) and J2 = diag(J2l,..., J2ne). Then since 

L\J2 = — L2 J3, 

L\ = —L2J3J2 (</2</2 ) 
(3.49) 
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which completes the determination of L. 

The controller parameters Q are the only remaining unknowns in (3.39) so that 

(3.39) may be solved as an LMI for fi. 

There are various other explicit methods of determining the controllers. These 

methods are described in [34, 33, 35]. In particular in [35], efficient and numerically 

reliable formulas are presented for both the full-order and reduced-order cases. These 

controllers are simple extensions to the standard H^ central controllers. The advan- 

tage of these controllers are in their efficiency and numerical reliability. If there are no 

other constraints on the controller or the closed-loop properties of the system, then 

these explicit formulas can be used. If on the other hand further constraints that 

can be expressed as LMI's are placed on the controller, then the above method to 

compute the controller should be used. Computing the controller as the solution to 

an LMI, offers the flexibility of adding more constraints to the controller. The disad- 

vantage is that it is much more computationally intensive and tends to be numerically 

ill-conditioned. Section 3.6 addresses methods of reducing the numerical problems 

related to the above method for solving for the controller. There is an assumption 

that the LFT realization of the controller always exists but in fact it may not. Both 

Apkarian and Gahinet [8] and Packard [36] discuss this situation and provide work 

arounds to this problem. 

3.5 Comparison of Hm and LFV Controllers 

It is important to also know whether or not an H^ gain scheduled controller 

provides better performance than a single LTI robust controller. If it does not, then 

there is no reason to go to all the extra trouble to gain schedule. It is not clear that the 

Hoo gain scheduled controller will take into account the knowledge of the parameters, 

since H^ theory is predicated on reducing the affects of system uncertainty and the 

system parameters are treated as uncertainties. 



85 

To see how the Hoo gain scheduling problem does in fact provide better perfor- 

mance, first consider the LTI robust control problem. Given the plant realization 

P(s) in (3.13), find a parameter independent LTI controller K(s) such that 

max, \\Fu(Fl(P(s),K(s)),e)\\00<^ (3.50) 

By applying the small gain theorem, a sufficient condition for solvability is the exis- 

tence of a scaling matrix L E LQ and of an LTI controller K(s) such that 

L~2   0 

0    I 
fiOPOO.jfOO) 

L~2   0 

0     / 
<7 (3.51) 

Recall that Theorem 3.4 addressed this problem and provides the following solvability 

conditions. 

Theorem 3.6. Assuming Al)-A2), problem (3.51) is solvable if and only if there 

exists a quadruple (R, S, Lz, J$) satisfying (3.27)-(3.30) together with 

LzJz — IT (3.52) 

Proof. Same as the proof of Theorem 3.4 except replace the scalings L and J with 

0 

0    L PI 

h    0 

0    L Pi 

respectively. D 

Comparing Theorems 3.5 and 3.6, the only difference is in the condition placed on 

L3 and J3. Theorem 3.5 states that L3 and J3 must satisfy (3.30) which is equivalent 

to 

L3 > 0,      J3 > 0,      XminiLzJz) > 1. (3.53) 
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The interpretation of this is that the set of admissible scaling matrices is any positive 

scalings L3, J3 such that 

\i(L3J*)>l,i = l,---,r, (3.54) 

while the set of admissible scaling matrices for robust LTI controller synthesis is any 

positive scaling L3, J3 such that 

Ai(L3J3) = l,i = l, ■••,»■. (3-55) 

Clearly, the robust LTI set described by (3.55) is smaller than the set described by 

(3.54). In fact, (3.55) is the boundary set of the set (3.54). Since the set of scalings 

used for #<*> gain scheduling is larger than that for robust LTI control, it will typically 

provide controllers with better performance. 

3.6 Numerical Issues of Controller Computation 

A discussion on some of the numerical issues related to solving for an ifTO gain 

scheduled controller would be helpful, since one of the.major objectives is to provide 

control engineers with practical methods on designing gain scheduled controllers. As 

mentioned earlier powerful toolboxes have been developed to solve LMI equations. 

Two packages, in particular, are compatible with MATLAB. One is LMI-LAB [32], 

which is a MATLAB toolbox. The other is SDP Solver [15] developed by Professor 

S. Boyd at Stanford. This package is extremely easy to use! SDP Solver accepts 

as input and writes as output .mat files. Therefore, it can easily be used inside 

MATLAB m-files. 

Although there are very powerful and efficient LMI solver packages available, 

our particular problem tends to be ill-conditioned and care must be taken to avoid 

numerical problems. Even though one of the advantages of the LMI formulation of 

the Hoo problem is that it relaxes the constraint that D12 and D2i must be full column 

and row rank respectively, for practical controller solutions, these matrices must be 
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full rank with reasonable values. Otherwise, controllers with large poles will result 

since it does not believe there is any measurement noise. The observer portion of the 

controller acts as a differentiator, there by resulting in an extremely fast controller 

which is not practically implementable. 

As one iterates solving the necessary and sufficient conditions stated in Theorem 

3.5 to find 7 that is close to optimal, the quadruple (R, S, J3, L3) tends to have large 

condition numbers. In fact, solving Theorem 3.5 for large values of 7 will result in an 

ill-conditioned quadruple (R, S, J3, L3) if precautions are not taken. The reason is 

because the LMI solver stops as soon as all of the LMI conditions are satisfied. This 

will occur right on the boundary for at least one of the matrices in the quadruple. 

For example, say that 

R   I 

I   S 
>0 

is the active constraint. Implied by this LMI constraint are two more LMI constraints: 

R > 0 and S > 0. Again assume that R > 0 is the active constraint, then the LMI 

solver will stop as soon as it has found an R > 0. This R will be near singular since 

it will be extremely close to the boundary. This near singular R will result in an X 

that is even more ill-conditioned due to the use of matrix dilation to compute it. This 

ill-conditioned X may result in the control designer not being able to solve for Q, in 

(3.39) due to numerical problems. 

To mitigate this problem the LMI solver needs to search for a quadruple that is 

not ill-conditioned and yet satisfies all of the constraints. This will require more than 

just adding a lower bound to (3.29) and (3.30) because the condition number of a 

matrix is computed as the ratio of the maximum singular value over the minimum 

singular value. Adding a lower bound will not necessarily effect this ratio since the 

maximum singular value is not also constrained. The method by which to constrain 
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the maximum singular value is to use the objective function or, in terms of Linear 

Quadratic control, the cost function. If the objective function is 

Fobj(R,S,J3,L3) = Trace 

R 

S 

h 
(3.56) 

then the LMI solver will solve for a quadruple that minimizes this trace. Since the 

trace of a matrix is the sum of the eigenvalues of that matrix, this will minimize the 

maximum eigenvalue which for positive definite matrices also minimizes the maximum 

singular value. 

Another problem that arises when solving these LMI constraints is that the solver 

package will return an error indicating that the unknown variables are linearly depen- 

dent. One method to eliminate this problem is to begin with a large guess for 7 and 

then continue reducing 7 until it has reached its optimum value with in a tolerance or 

until 7 < 1 assuming that the parameters were scaled to have norm bound less than 

1. On the first iteration with the large 7 the initial guess for Q is not crucial but on 

successive iterations use the previous Q, for the initial guess. In addition, one or more 

elements of Q, may have to be constrained. This can be accomplished by imposing 

equality constraints on several elements of Q,. The idea is to constrain as few elements 

äs possible in order to find a quadruple. As 7 is significantly reduced and good initial 

guesses for Q, are obtained, the number of elements of fi that are constrained can 

generally be reduced. When constraining elements of Q, constrain them to have the 

value of the corresponding elements of Q, from the previous successful iteration. Since 

it is desired to have all of the elements of Q to be free and not to be constrained, it 

is necessary to vary which elements are constrained. This has the affect of allowing 

all of the variables to vary over several iterations but in any one particular iteration 

several elements may be constrained. 



CHAPTER 4 
N-D Realization 

The problem of realizing a linear parameter-varying (LPV) system, whose state 

space model is a rational function of the elements, as an LFT is directly connected to 

N-D system realization. N-D system realization has proven to be a difficult area of 

research especially with respect to finding the minimal realization. In this chapter, 

we begin by illustrating how realization theory may be used to derive a representation 

for a LPV system. 

The LPV plant description in terms of state variables is given (see chapter 2) as 

x(t) 

y(t) 

A(9)   B(9) 

C(9)     0 

x(t) 

u(t) 
(4.1) 

In the following we will consider u(t) as a general input which includes the dis- 

turbance inputs (w in chapter 2). We will also consider that y(t) includes the usual 

y(t) outputs and the controlled or performance outputs q(t). 

Assuming 9 is constant, we may derive a transfer function representation from (1) 

as 

Y(s) = C(9)(sl - A{9)YiB{9)U{s) (4.2) 

where the transfer function 

C{9){sI-A{9))-lB{9) (4.3) 

89 
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is a rational function of s. Extending this idea to the functional dependence of the 

matrices A(9), B(9), and C(9) on 9 we consider the relation 

q = F(9)p (4.4) 

and ask when we can write 

F{9) = CpiO-1 - AF)-lBF + DF (4.5) 

where now we take 6 as a matrix whose elements are linear functions of the param- 

eters 9. By a slight abuse of notation, henceforth 9 (without the boldface) will be 

used to refer to the matrix (previously 6 ) of parameters. If F(9) can be written as 

(4.5) exactly or approximately, then (4.4) can be rewritten as 

q = CF{9~1 - AF^BFP + DFp (4.6) 

Define 

r   =   (9-1 - AF)-lBFp (4.7) 

which may be written as 

9~lr   =   AFr + BFp (4.8) 

Further define w by the relation r — 9w which leads to the set of equations 

q   =   CFr + DFp (4.9) 

w   =   AFr + BFp (4.10) 

r   =   9w (4.11) 

Hence (4.9), (4.10), and (4.11), which are linear in 9, may be used to replace (4.4) 

with the assumption that F{9) is a rational function of 9. 
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Applying this idea to the matrices in (4.1) is simplified by the definition 

F(9) 
A(9)   B{9) 

C{9)      0 
(4.12) 

Then 

x{t) 

y(t) 
=   F(6) 

x(t) 

u(t) 
(4.13) 

becomes 

x(t) 

y(t) 

w   = 

CFT + DF 

AFr + BF 

9w 

x(t) 

u(t) 

x(t) 

y(t) 

(4.14) 

(4.15) 

(4.16) 

In general the matrix 6 may be a linear function of many parameters. Therefore, 

assuming (4.5) holds, we seek matrices (Ap,BF,Cp, Dp) given the matrix function 

F(6). Comparison of (4.5) with the usual formula for a transfer function of a L.T.I 

system with matrices (A,B,C,D) 

C{sI-A)-lB + D 

reveals that si has been replaced by 0_1. There are two problems to consider here. 

The first is to extend realizations to the case where 9~l is not a constant times the 

identity. The second is to consider the selection of "small" matrices which work, i. e. a 

minimal realization, primarily due to the large increase in computational requirements 

with the dimension of 9. In the following sections this chapter discusses non-minimal 

realizations and then turns to minimal-realizations. 
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4.1    Non-Minimal Realizations 

One possible realization of (4.4) is to realize each element of the matrix F{6) 

separately. To illustrate the idea, we begin with a few simple examples. 

To realize the scalar function 

F(a, b,c) =ab + a? + c 

by inspection we construct the following linear equations: 

w   =   ap 

q   =   bw + aw + cp 

(4.17) 

(4.18) 

(4.19) 

Then the input p and output q in (4.18) and (4.19) realize the relationship in (4.17). 

For a more involved example, suppose we wish to realize the multinomial matrix 

P 

q 

ab + a? + c   ac + b 

ab + c       b2 + a 

x 

y 
(4.20) 

The problem of finding a minimal realization here is equivalent to computing p 

and q from x and y with the minimum number of multiplications. As a start, we 

might search for a common factor in the rows and then search for a common factor 

in the columns. We note there are none. However, we can search for common factors 

in groupings of terms. The term 

(ab + c)x 
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appears in computing p and q so it needs to be computed only once. Furthermore, 

the term ax appears twice. Hence terms in the first column may be computed with 

a   =   ax x (4.21) 

q.first   =   ax b + ex x (4.22) 

p-first   =   q + ax a (4.23) 

where the temporary variable a has been introduced. This representation has four 

multiplications in place of the nine multiplications which would result with the origi- 

nal equations. The second column terms may be found and added to the other terms 

by 

ß = bxy (4.24) 

7 = a x y (4.25) 

p = p-first + cx-y + ß (4.26) 

q = q.first + bx /? + 7 . (4.27) 

with the new temporary variables ß and 7. Viewed in this light, the reduction 

of calculations involved in the non-minimal realizations is related to a problem in 

optimizing compilers. An optimizing compiler attempts to find a minimal sequence 

of operations to evaluate a given expression by recognizing and exploiting common 

terms and by the clever introduction of temporary variables. It might prove fruitful 

to see if the techniques used by optimizing compilers could lead to algorithms for 

minimal realizations. 

It is clear to see how we can realize any F(9) which is a multinomial in 9. If F(9) 

is a scalar rational function of 9, 
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where n(6) is a multinomial in 9 and d(6) is of the form 1 - D{9) where D(6) is a 

multinomial in 9, then a simple technique works. 

We may realize n(9) and D{9) = 1 - d(9) as before and then construct F(9) by 

the feedback formula as follows: 

q   =   e (4.29) 

e   =   n(9)p-D(9)q (4.30) 

Currently minimal realizations exist for the following special cases: a) 2-D transfer 

functions with separable numerator [37], [13]; b) 2-D transfer functions with separable 

denominator [38], [13]; c) 2-D all-pole and all-zero [39], d) 2-D, 3-D, and N-D systems 

that can be expanded into a continued fraction expansion (CFE) [40], [41], [42], [43], 

[44], [45]. It should be noted that all of these special case methods apply to the single- 

input single-output case (SISO) systems. For a missile autopilot design and for many 

other practical systems a multi-input multi-output (MIMO) method is required. 

In [46] Koonar and Sohal present a more general method for 2-D realization us- 

ing Markov parameters and a moments of impulse response matrix. In [47] Eydgahi 

provides a counter example to Koonar and Sohal's method. After searching the liter- 

ature, no response has been discovered to this counter example. Another limitation to 

Koonar and Sohal's method is that it requires that the total degree of the numerator 

polynomial should at most be equal to that of the denominator polynomial. This is 

a drawback for our case since, in many instances, linear multi-parameter-systems are 

curve fitted with N-D polynomials. This results in LPV systems whose elements are 

multivariate polynomials in the parameters, for which Koonar and Sohal's method 

would not be valid. Recently, general nonminimal realization methods have been 

developed for both SISO and MIMO N-D systems. 
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4.2 General Nonminimal Realization Methods 

Lambrecht's paper [48] presents a general method by which to compute an LFT 

system description of a linear system with parametric uncertainties. The entries of the 

state-space matrices are bounded and can be given as real-rational N-D polynomials 

in the parameters. His method begins by modeling the most basic element as an 

LFT, i.e. an individual term of an N-D polynomial. Once the most basic element is 

modeled they then exploit the fact that parallel combinations of LFTs, cascading of 

LFTs, and inverses of LFTs, all result in LFTs. From these properties, they develop 

one LFT for the entire system. This LFT will be quite large since this method does not 

take into account any redundancy. They then reduce this large LFT by treating the 

parameters individually as states and then extracting out the locally "uncontrollable" 

and "unobservable" parameters. This will reduce the LFT substantially but it is not 

clear how close the resulting LFT will be to minimal. 

Cheng and DeMoor [49], [50] provide an algorithm to systematically solve the N- 

P realization problem. They do not provide a minimal realization but a systematic 

method to obtain a realization. The authors do suggest how to reduce the order of 

the realization which requires the solution of a set of matrix equations such that the 

solution matrix has minimal rank. Unfortunately, it is still an open question on how 

to find the minimal rank solution to this set of equations. 

Cheng and DeMoor consider the following N-D realization problem. Given a 

multivariate rational matrix F(9) e TZnxm, find an LFT with block structure bs = 

[ri,r2,.. .,rq] with r, being an integer and a coefficient matrix L e TZ(n+r)x(m+r); 

r = X)i=i ri> partitioned as 

L = 
I'll     Li2 

L21   L22 

(4.31) 
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F(9) = L22 + L219{I - 6Lny
lLl2 (4.32) 

Cheng and DeMoor assumed the structure for 9 was diagonal 

0 = diag(01/ri...0,lr8) (4.33) 

The elements of F(9) are further assumed to be of the following form 

with cij being constant and fa (9) rational multinomials of the form 

kW -, k(0) = 1(0) = 0. 

(4.34) 

(4.35) 
1 + 1(9) 

and k(9) and 1(9) are multinomials in the elements of 9. Given the form (4.34), F(9) 

can be written as 

F(9) = F0 + Y/fi(9)Fi (4.36) 
i=i 

where F0 is a constant matrix with entries c^-. The functions fc(9), i = 1,.. .m are 

formed from the elements fa (9) of F(9) such that for each pair i,j there is a A; such 

that fk(9) = fa(9). Finally Fi is the constant coefficient matrix that tells how /,(<?) 

enters F(9). 

The algorithm for constructing a realization starts by first realizing (4.36) which 

is a linear function of the /i(ö)'s. That is we find a coefficient matrix La so 

F(9) = La22 + La2lA(f)(I - LanAC/))-.1!, 012 (4.37) 
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where 

Ln 

L>an     Lai2 

■^021     -"022 

; "sa — iTai > ra2) • • • ) raq J (4.38) 

A(/)=diag(/1(ff)/r.l.../,(«)/rH) (4.39) 

Safanov and Athans' Internal Feedback Loop ([51]) parameter representation is 

used to find La. A realization with Lan = 0 can be easily found by first factoring 

each of the F; matrices in (4.36) as 

Ft = U&iV? 

by singular value decomposition with Ej a rai x rai positive definite diagonal matrix. 

Then if 

F(9)   =   F0 + UA{f)VT (4.40) 

Comparison with (4.37) gives 

^022 

y021 

Lln.ii        — Ja\2 

Lin..    — ■'an 

Fo 

U 

VT 

0 (4.41) 

The next step involves finding a realization for A(/) as 

A(/) = Lb22 + Lb2lA(W ~ £6uA(0)r%12 



98 

Assume that each (scalar) rational function fi(6) has a realization Lft. Then the 

realization L& above can be obtained by combining these realizations. The bookkeep- 

ing for this procedure is a bit tedious but possible. By the assumption /;(0) = 0, 

A(/)e=o = 0 so that Lb22 = 0. The final answer becomes 

L 
Lbn       Lb12 Lai2 

^0,21 -"621 *-'a.22 

It is clear that this realization is by no means minimal, however Cheng and De- 

Moor give some suggestions for reducing the complexity. 

In a recent paper, Beicastro et. al. [11] present an overview of a matrix-based 

method for low-order realization of a plant that has a multivariate rational functional 

dependence on uncertain parameters. The full details of this method are given in Bel- 

castro's dissertation [52]. The claim of the authors is that this method is efficient and 

produces a lower order realization than other methods that use reduction techniques 

such as removing unobservable and uncontrollable modes. 

Beicastro, et. al., used the same assumptions and problem formulation presented 

earlier with the exception that the F{9) matrix was given by 

F(0) = 
A{9)   B{9) 

C{9)   D{B)_ 

and the parameter vector 9 was defined in terms of a nominal parameter value 90 as 

9 = Bo + 5 

Although Beicastro, et.al. do not propose to find a minimal solution, they attempt 

to find a realization with a small dimension. Expanding the assumed form for F(6) 

in terms of the nominal parameters 90 and a perturbation 6 yields the following LFT 
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formulation for F(9). 

F(9) = P22 + P2l(I - 9Pny
1AP12 = F(90) + FA(S) (4.42) 

where 

FA(S) = L21(I - AOSJLn^AOOLxa (4.43) 

If the state matrices A(9), B(9), C(9) and D{9) are multinomial functions of 9. 

straightforward algebra can be used to determine the matrices in FA(5). Prom (4.42) 

we have 

F{9)   = 
A{9)   B{9) 

C{9)   D{9) 
(4.44) 

(4.45) 
A(90 + S)   B(90 + S) 

C{90 + 5)   D(90 + 5) 

which may be expanded to separate the nominal and perturbed parts of the system. 

In order to equate (4.43) with the perturbed part of F{9) from (4.45), FA(5) must 

be a multinomial function of 9 which implies that the expension of FA (5) terminates 

or A(5)Ln is nilpotent with index of nilpotency r, 

r+l _ (A(5)Ln)r+1 = 0 

and 

(/ - ALu)-1 = 1 + (ALn) + (ALU)2 + ... (ALU)' (4.46) 

However if the state matrices are rational multinomial functions the expansion 

becomes more difficult. In her dissertation [52], Beicastro proposed first representing 

the system in a matrix fraction description MFD and presents a scheme for the 

factorization of a rational S& (5) as a matrix fraction. 
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SA(6) = SNA(6)SDA(6)-
1
 = SDM^SSM, (4.47) 

where SNA(8), SDA($) SDA(S) and S^A(S) are all multinomial matrices. 

By substituting (4.46) into (4.43), and then comparing the result with the SA (S) 

computed from the MFD and then broken out such that like terms can be com- 

puted, results in a set of equations that can then be used to solve for Ln, L12 and 

L21. If a solution does not exist then the order of the offending 8i is increased by 

1 until a solution is found. By increasing the order of A only when it is necessary 

to obtain a solution, ensures that a low-order realization is found. It is not clear, 

however, whether or not the solution takes into account any redundancy or possible 

cancellations between S^A and SDA. 

4.3 Minimal/Near Minimal 2-D Realization 

Currently two methods of realization show promise in providing minimal/near 

minimal 2-D realization. Realization methods for 1-D systems have, as an underly- 

ing principle, the fact that a minimal realization is both observable and controllable. 

Therefore one can take a nominal 1-D system, test for controllability and observabil- 

ity and then obtain a minimal realization by throwing away the uncontrollable and 

unobservable states. Kung et.al. [13] showed that the notions of controllability and 

observability, although extending to 2-D systems, do not provide a test for minimal- 

ity. In fact Kung et.al. provide an example of a controllable and observable system 

that is not minimal. In their paper, they investigate several ideas on determining if 

a system is minimal. In the end they extend Rosenbrock's minimality test to 2-D 

systems which will also hold for N-D systems as well. This result states that a plant 

P   =   CQ[I-A&llB 

=   C[<d-l-A]~lB, (4.48) 
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where O is as defined previously, is minimal if and only if [6_1 — A], B are left 

coprime and C, [6_1 - A] are right co-prime. 

There are two difficulties with this definition of minimality. One is that it allows 

the A, B and C matrices to have complex gains and the other is that Youla and 

Gnavi [53] state that certain decomposition techniques, which have proven basic for 

1-D and 2-D systems, are no longer applicable for 3-D and larger systems. Therefore 

finding techniques to compute greatest common divisors (GCD) for 3-D and larger 

systems will be difficult. For 2-D systems though Morf et. al. [12] have developed 

methods to compute greatest common right (left) divisors (GCRD/GCLD). We have 

implemented Morf et.al's GCD extraction method in MAPLE©. The difficulty that 

Kung et.al. had in implementing the extraction of GCDs to reduce non-minimal state 

descriptions to minimal ones, was that after the GCD had been extracted the plant 

description was no longer in "state space" form (i.e. parameters only on the diagonal) 

and they did not know how to return it to "state space" form. 

We discovered that Rosenbrock in [14] introduced the concepts of the system 

matrix and system equivalence for 1-D systems. Rosenbrock defined for 1-D systems 

a system matrix by writing the Laplace transformed state equations in the following 

form. 

T(s)     U(s) 

-V(s)   W(s) 

-x(s) 

u(s) 

0 

y(s) 
(4.49) 

where S is defined as the system matrix. Note that the dimension of T(s) isnxn 

Two system matrices are system equivalent if and only if they give rise to the same 

transfer function matrix. The relation of system equivalence is generated by the 

following operations on system matrices. 

(i) Multiply any one of the first n rows(columns) by a rational function not iden- 

tically zero. 
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(ii) Add a multiple, by a rational function, of any one of the first n rows (columns) 

to any other row (column). 

(iii) Interchange any two among the first n rows (columns). 

(iv) Add a row and a column to S to form 
1   0 

0   S 

System equivalent operations can be used to return the system matrix back into state- 

space form after the GCD has been extracted. These concepts and operations extend 

readily to N-D systems by replacing s with 0_1. The purpose for replacing s with 

0-1 has to do with the nature of LFTs. For a linear system, the integrators (s_1) 

enter in a linear fractional manner and for our LPV system, 0 and not 0_1 enters 

in a linear fractional manner. Therefore s and 0_1 are similar. Compare (4.48) with 

C[sI-A]'lB. 

4.3.1   GCD Based Algorithm 

By performing system equivalent operations, one can put the system matrix back 

into state-space form. Below is an algorithm to obtain a 2-D minimal/near minimal 

realization. 

Algorithm 4.1 (GCD Based). . 

1. Obtain a nonminimal description of the system. 

2. Using [12] 2-D GCD extraction method, extract the GCLD of [0"1 - A], B. 

If these are already co-prime then extract the GCRD of C, [0-1 — A]. After 

extraction the system matrix is no longer in "state space" form. Its new general 

T     U 
form is notated as S = 

-V   W 
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3. Use system equivalent operations to return the T matrix back into "state space" 

form (i.e.   parameters only on the diagonal).   This mil yield a new system 

-Vi   Wi 

4- Solve VsT{lUs — V\T{lU\ — W\ = 0 for Vs and Us such that they contain only 

real gains. Note that T± is already in "state space" form while U\, V\ and W\ 

are most likely not. 

5. If no real gain solution exists then introduce another parameter and expand the 

T\ matrix up one dimension. 

6. Repeat steps 4 and 5 until a real gain solution is obtained. The real gain solution 

will be the minimal/near minimal solution that is desired. 

A difficulty is that the GCD extraction process, in general, reduces the system 

too far since it allows for complex gains. For example, there are 2-D systems that are 

real gain minimal but, when Rosenbrock's minimality test is applied, are not found 

to be minimal. The reason is that there exist a complex gained system that is of 

smaller order than the real gain system. This is a serious problem in the search for 

minimal realization algorithms for N-D systems. The above algorithm manages this 

problem in step 5 by expanding up another dimension. The key here is on intelligently 

expanding so that you can get step 4 to solve with a real gain solution with as few 

of parameters as possible. Work is currently being conducted on how to best expand 

the system. 
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4.3.2    System Equivalent Based Algorithm 

The second method, which shows promise for the general case, is to begin with 

the plant P in the lower right corner of Rosenbrock's system description matrix 

I   0 

0   P 

The idea is to move P over to the left using system equivalent operations. 

/     / 

-P   0 

Prom here we can multiply the column corresponding to the last column of P by 

the least common multiple of the denominators of P and then expand it up until all 

parameters are only on the diagonal of T. 

T     U 

-V   W 

Once T only has parameters on the diagonal it is time to begin eliminating the 

parameters out of U and V. At this point we can use step 4 of the GCD based 

algorithm to see if there exists a real gain solution. If there is not then we continue 

expanding until a real gain solution exists. The following is an algorithm for 2-D 

systems that implements this method. 

Algorithm 4.2 (System Equivalent Based). . 

1. LetH(z,w) = where z and w are the parameters. H(z, w) 
A(z,w)   B(z,w) 

C(z, w)   D(z, w) 

must have a constant term in its collective denominator if it does not then create 

one by a change of variable. 

2. Substitute z = — and w = — into H(z,w). 
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3. Place H(zi,Wi) into the W position of Rosenbrocks system matrix. 

4- By use of system equivalent operations move H(zi,Wi) over one position to the 

left. 

5. Clear the fraction of the last column of H(zi, Wi) by multiplying the correspond- 

ing column by d(zi,Wi) which is the least common multiple of denominators of 

H(zi, wi). Now the T matrix contains the least common multiple of the denom- 

inators. 

6. Expand the T matrix up until it is in "state space" form. This can be done by 

moving d(zi, Wi) over to the left one space and at the same time depositing a Z{ 

in its place on diagonal. Then by column multiplication eliminate all of the Z{ 's 

from the d{zi,Wi). This will place a new di(zi,Wi) with the order of Zi reduced 

by one on the diagonal above. Continue depositing Zi's until they are completely 

eliminated and then by the same process place Wi's on the diagonal until they 

are eliminated. 

7. Solve VsT~lUs - VT~lU -W = 0 forVs and Us such that they contain only 

real gains. Note that T is already in "state space" form while U, V and W are 

most likely not. 

8. If no real gain solution exists then introduce another parameter and expand the 

T\ matrix up one dimension. 

9. Repeat steps 7 and 8 until a real gain solution is obtained. The real gain solution 

will be the minimal/near minimal solution that is desired. 

Due to the special structure that this algorithm creates by placing l's on the 

super-diagonal, it is not completely general for finding the minimal realization but 

can find near minimal realizations for all systems. 
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The idea of starting with matrix in the lower right of the 
c(e-x) ^(e-1) 

system matrix and then expanding up can easily be extended to N-D systems. The 

above algorithm will always put T in "state space" form for 2-D systems but for N-D 

systems, in general, it will not. 

Both of these methods work on both MIMO and SISO systems.   The second 

method shows promise on obtaining near minimal realization for general N-D systems. 



CHAPTER 5 
Conclusion 

In this report, we focused on the problem of gain scheduling LPV systems. In par- 

ticular we developed necessary and sufficient conditions for determining the Quadratic 

stabilizability of LPV systems and provide a stabilizing LPV controller if one exists. 

Our necessary and sufficient conditions are realistically computable with reduced di- 

mension and with only the elements of the Lyapunov P as the unknown variables 

where as the one given by Becker in [25] is of full dimension and requires an addi- 

tional set of variables the size of the controller for each grid point. Examples were 

given that demonstrated problems that can be encountered with "frozen coefficient" 

gain scheduling which can be overcome by our method. We investigated the geomet- 

ric interpretation of the A22 condition and, for the second order case, developed a 

method by which to graphically display the set of all stabilizing Lyapunov functions 

for an LPV system. Furthermore our solution to the A22 condition is usefull in solving 

Becker and Packards [6] output stabilization problem for which they set up but did 

not provide a solution. 

We extended our results on Quadratic stability to the more general case of General 

Lyapunov stability. The derivation was the same as for Quadratic stability, except 

there was an additional term that was a function of P. We developed a method by 

which to solve these new conditons. In fact, when Quadratic stabilizability fails, we 

showed that it was necessary to split the parameter space into regions of frozen Lya- 

punov functions. After determining all of the necessary frozen Lyapunov functions, 

these functions are then "stitched" together such that General Lyapunov stability 

holds. This requires knowledge of the rate of change of the parameter variations. 

In order to properly stitch these Lyapunov functions together, P cannot change so 

107 
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fast that the necessary and sufficient conditions for General Lyapunov stability no 

longer hold. This fact is taken into account when first determining the frozen regions. 

Now, instead of the clasical frozen point controllers, we have frozen region Lyapunov 

functions. Prom these Lyapunov functions we showed how to construct a stabilizing 

controller. 

In addition, we add performance to our Quadratic stability results for strictly 

proper systems by guaranteeing that the closed loop system has an induced £2 norm 

less than a specified value if a modified Ä22 condition holds. A missile autopilot 

example was provided. 

Another method of gain scheduling LPV systems is via i/«, based gains scheduling 

as developed by Apkarian and Gahinet [8]. We reviewed their work and discussed 

how to construct a controller and how to mitigate the inherent numerical problems 

associated in solving the LMI's. This method of LPV stabilization does not require 

gridding the parameter space but also does not take into account the realness of the 

parameters as does our Lyapunov based method of gain scheduling. It also requires 

that a realization of the plant with a linear fractional dependence on the parameters 

be provided. 

In the final chapter we discussed methods of finding linear fractional realizations. 

These realizations are related to N-D realizations for which minimal realizations are 

very difficult to find. We developed two methods for finding minimal/near minimal 

realizations for 2-D systems based on the work of Kung et.al. [12, 13] and Rosenbrock 

[14]. The first method required extracting any greatest common divisors out of a 

nonminimal realization and then returning the realization back to "state-space" form. 

This method does not extend to N-D systems since the techniques used to compute 

the GCD for 2-D sytems does not extend to N-D systems [53]. However the second 

method, the System Equivalent Based method, can be extended to N-D systems. This 

method begins with the LPV system description being converted to Rosenbrock's 
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system matrix form. Then the system matrix form is systematically manipulated 

until it is in "state-space" form. 

This report provides the control engineer with a design method of gain scheduling 

LPV systems that relaxes the requirement of scheduling on slowly varying parame- 

ters. Missile systems have been approximated as LPV systems in [54] [55] and [28] 

to list a few examples. We demonstrated in Section 2.3 that this work can now be 

applied to the missile autopilot problem. In addition, there are many other succes- 

ful applications of classical gain scheduling such as aircraft control systems, turbojet 

engines, ship steering, pH control, combustion control and fuel-air control in an au- 

tomobile engine (see for example, [56, 57, 58]) for which our method of Lyapunov 

based gains scheduling could be applied. 
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