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A. Statement of the Problem Studied

The primary research objectives are (i) structural modeling of smart structures incorporating
both material and geometric nonlinearities, (ii) development of controllers using conventional and
neural network based algorithms, and (iii) distributed control techniques using spatially distributed
sensors and actuators. The design and implementation of controllers on smart structures requires
mathematical representations of the system. We have investigated modeling techniques for structures
that account for the material and geometric nonlinearities, continuity of tractions across
interlaminates, hysteric behavior of the PZTs, interaction between the PZTs and the substrate,
orthotropic nature of the PZTs, anisotropic properties of composite plates, and the inertia forces. The
design of active controllers plays a very important role in the overall development of smart structures
for a given application. The robust controllers were designed and implemented on smart structures
for vibration suppression and mode shape control. These methodologies will minimize the effects of
uncertainties on the closed-loop performance of the structural system. We have also investigated the
capabilities of artificial neural networks for mathematical modeling and robust control of smart
structural systems. The performance of smart structural systems is influenced by structural parameter
variations, operating conditions and modeling errors. The identification methods which incorporates
uncertainties were investigated. We have also developed distributed sensors for the measurement of

physical quantities of the structural systems. Accomplishments in these areas are summarized below.

B. Summary of the Most Important Results

(i) Modeling of Smart Structural Systems

The modeling effort is based on (i) using the three-dimensional linear elasticity theory to
analyze vibrations of a plate with PZT layers either bonded to its top and bottom surfaces or
embedded in it, (ii) developing form invariant polynomial constitutive relations for nonlinear
transversely isotropic and orthotropic piezoceramics, and (iii) developing a finite element code to
analyze three-dimensional materially and geometrically nonlinear transient problems involving PZTs

embedded in or bonded to the surfaces of a nonlinear elastic structure.

Shape Control of Plates Using Piezoceramic Elements

We have used the first-order shear deformation theory to study deformations of a rectangular plate
with piezoceramic elements (PZTs) bonded symmetrically to its top and bottom surfaces and
covering 19.8, 28.8, 38.4, 53 and 84% of the surface area of a 30 cm X 30 cm X 1.8 mm simply
supported graphite/epoxy plate subjected to 10 N/m® uniformly distributed load on the top surface. It




was found (cf. Figs. 1-4) that the electric field intensity required to suppress the plate deflections
decreased sharply as the surface area covered by the PZTs increased from 19.8 to 28.8% but the
decrease was small for further increase in the size of PZTs. We note that the voltage required varied
with the orientations of fibers in the lamina, and with its material. A feedback control algorithm was
implemented and was shown to control the vibrations of the centroid of a square aluminum plate

simply supported on two opposite sides and free on the other.

In contrast to the plate theory used above, we also employed the three-dimensional linear elasticity '
theory to analyze the vibrations of a laminated plate with the bottom and top layers consisting of
PZTs. Fora 40 cm X 30 cm X 1 mm graphite-epoxy plate with 0.1 mm thick PZT top and bottom
layers, and essentially equal values for the maximum elastic moduli for the graphite/epoxy lamina
and PZT-G1195, as should be clear from the results summarized in the following table, the

attachment of PZT layers changes noticeably the natural frequencies of the composite plate.

Values of resonant frequencies Q,, for the
graphite/epoxy plate as computed by the plate theory and the
present method and also by the present method for the plate
with PZTs bonded to the top and bottom surfaces®

n/m 1 2 3 Case

1 1.260 4.217 9.208 1
1.260 4.170 9.170 2
1.455 4.065 8.550 3

2 2.373 5.041 9.919 1
2.330 5.040 9.880 2
3.585 5.790 10.035 3

3 4.466 6.761 11.343 1
4.460 6.710 11.290 2
7.350 9.225 13.005 3

*Case 1, plate theory; case 2, present method,
plate without PZTs; case 3, present method,
plate with PZTs.

For the plate vibrating at a frequency close to one of its natural frequencies with the displacement
field given by ) = 0.3sin(mx, /40)sin(nsx, /30)e™ mm, uy =0, and a voltage +V,e™ applied to a
6 cm X 6 cm square region of the top and bottom PZTs with zero voltage applied to the rest of the
PZT surfaces, we determined the values of V, required to suppress the deflections of points on the
plate diagonal as a function of the location of the centroid of the 6 cm X 6 cm region. The most
effective locations, as shown in Figs. 5 and 6 of the centroid of the square PZT region are points
where the amplitude of initial vibrations of the plate is maximum. The distribution of the
nondimensional shear stress at the interface between the plate and the top PZT layer for the structure

vibrating at a frequency close to Q,; revealed high shear stress (e.g. see Fig. 7) at the edges of the




excited square region; similar results were obtained for other modes of vibration. The high value of

the shear stress at a point may result in delamination of the PZT layer there.

Free Vibrations of a Linear Thermopiezoelectric Body

We have used two perturbation methods to ascertain the changes in the frequencies caused by thermal
dissipation in a thermopiezoelectric body. In the first method, the solution is perturbed with respect
to heat conductivity and in the second with respect to the thermopiezoelectric constants. Both
methods give the relative frequency shift to be imaginary thus implying the decay of the amplitude
of vibrations. In the first method adiabatic material constants are used, and in the second isothermal
material constants are employed. For thickness stretch vibrations of a quartz plate, the two methods
give close results: the magnitude of the shift in the relative frequency which represents the effects of

thermal damping is of the order of 10™.

Nonlinear Elastroelastic Problems

Mixed variational principles in which stresses, electric field, displacements and electric potential are
considered as field variables are often employed in the finite element solution of problems involving
cracks or other discontinuities. We have developed various functionals and have shown that the
vanishing of their first variations is equivalent to the pertinent governing equations and side
conditions such as initial and boundary conditions. Thus the solution of an initial-boundary-value

problem entails finding a stationary value of one of these functionals.

A finite element code capable of analyzing dynamic finite deformations of a nonlinear elastic
structure with nonlinear piezoceramic elements has been developed and has been successfully
debugged. The problem formulation accounts for both material and geometric nonlinearities and the
applied load is an arbitrary function of time. The PZTs are assumed to be perfectly bonded to the
adjoining matrix material. The coupled set of ordinary differential equations, obtained by the
Galerkin approximation of the governing partial differential equations, are solved by the explicit
central-difference method. However, the nonlinear algebraic equations obtained by applying the
Galerkin approximation technique to the Maxwell equations with no inertia terms are solved by an
implicit method. Several test cases have been run, and techniques to make the code more

computationally efficient are being investigated.

(ii) Modeling and Control of Multivariable Smart Structural Systems Using Distributed Sensors

Obtaining minimal system realizations suitable for control system design can be particularly

challenging for multivariable smart structural systems. The large number of closely spaced lightly
damped modes hinder the modeling process making it time consuming and difficult. Parameter




variations, incorrect assumptions and inexact boundary conditions also increase the modeling
difficulty. We have developed a system identification technique for the derivation of minimal,
continuous time state variable models for multivariable smart structural systems. This structural
identification technique is based on the measurement of eigenvalues and eigenvectors of the
structural system. Unlike computational identification techniques, the availability of multiple sensors
,simplify the modeling effort and allows the implementation of full state feedback controllers with
simple analog hardware circuits. The amount of hardware required for the implementation of an
analog linear quadratic regulator is significantly reduced when compared with standard discrete
control implementation methods. The robustness characteristics of the controllers are also retained in
this method of implementation. We have developed a methodology for the generation of
polyvinylidene fluoride (PVDF) film sensor arrays which measure the parametric structural quantities

for system identification and feedback control (Figures 8-9).

For a general unknown distributed parameter system, the eigenvalues and eigenvectors can not
be measured directly. Eigenvalues are conspicuous in the frequency domain and the eigenvectors
exist at near steady state conditions. By utilizing a priori knowledge of the structural systems, we
developed a method for the direct measurement of these quantities using shaped and segmented
PVDF film sensors. The required shape functions are extremely simple even for complex
multimember distributed parameter systems. The shape functions developed are also insensitive to
parametric changes or uncertainty in the structure. Using the triangular and rectangular shaped
sensors, we can measure directly structural displacement, velocity, rotation , and angular velocity of
the structural parameters. Identification and control are successfully implemented on a multivariable

plate system and experimental results are quite satisfactory (Figures 10-12).

The performance of smart structural system is influenced by structural parameter variations,
operating conditions and modeling errors. A mathematical model of the smart structural system must
include not only the nominal plant, but also the uncertainties in the system. Often information related
to these uncertainties is available during the system identification process, however, most system
identification techniques do not address these issues. We developed a systematic identification
procedure for the incorporation of eigenvalue variations in the structural identification procedure. A
minimal amount of experimental data is required for the identification of uncertainties. measurement
accuracy and parameter variation information on the specific values being measured is translated
into the structured uncertainty model. With the structured uncertainty modeling in place, robust

control systems are designed and implemented on experimental lattice structure.




(iii) Design and Implementation of Robust Controllers

Design of Robust Controllers with Actuator Saturation

The design and implementation of robust controllers on smart structural systems is often
constrained by available control force of the actuators. The Lead Zirconite Titanate (PZT) actuators
which are used for the control of flexible structures have limited control authority. The performance
of the system is often limited by control effort constraint instead of the closed loop stability and
performance. Due to the limited availability of control effort, it is desirable to utilize all of the control
force in order to obtain the best performance. We developed a procedure by integrating robust
control design methodologies with constrained actuator techniques for designing controllers. In order
to implement the proposed controllers, two-dimensional distributed structure, called lattice structure,
is designed and fabricated. Actuation of the structure is provided by PZT actuators. Two shaped
PVDF film sensors were used to measure the displacement of the structure. A mathematical model of
the structure is determined using experimental test data. The model is validated using the finite
element modeling techniques. The robust controllers have been designed for the structure by
incorporating the structured and unstructured uncertainties in the design methodology  The
performance of the closed-loop system for natural frequency variations is determined
experimentally. The performance and robustness properties of the controllers are satisfactory
(Figures 13-14).

We have also developed methods for design of robust controllers for smart structures with
multiple objective functions. This method provides a tradeoff between closed-loop performance and
disturbance attenuation. We have also demonstrated the applicability of distributed sensors for the
implementation of full state feedback controllers. The lattice structure experimental test article was

utilized to demonstrate the uncertainty modeling and robust multiobjective control implementations.

Neural Network-Based Structural Identification and Control

The design and implementation of robust controllers on smart structural systems require a
mathematical representation of the system. The structural identification method called the
eigensystem realization algorithm (ERA) is used for system identification purposes. The ERA utilizes
strongly measured signals for the evaluation of models and hence minimizes the inaccuracies due to
measurement noise. A neural network-based procedure for determining the Markov parameters of
dynamical systems from experimentally determined input-output sequences has been developed A
mathematical model of the structural system is then determined from these Markov parameters using
ERA (Figures 15-16). The neural network architecture for system identification utilize the standard
backpropagation learning algorithm for training and are often large in size. Therefore, such networks

typically require very long training times. To enhance the rate at which such networks learn and




hence reduce the learning time, we have develbped an accelerated adaptive learning rate algorithm.
This algorithm adjusts the learning rate used in the standard backpropogation algorithm at every
epoch so as to minimize the output error at a faster rate and improve the error performance.

Feedforward and specialized feedback neural networks have found extensive application in the
area of dynamical system control. In earlier studies the analytical results of these methods were
verified using simulation studies only. The main limitation to real time implementation was the
available hardware and computational power. We have successfully designed and implemented a
neural network-based multiinput-multioutput linear quadratic Gaussian with loop transfer recovery
(LQG/LTR) controller was implemented on the three mass smart structural system using PC-based
data acquisition system (Figures 17-18). The next step toward implementation of neural network-
based controllers is the use of Intel’s electronically trainable analog neural network (ETANN) chip.
This study also demonstrated successful application of the ETANN chip for robust control of smart
structural systems. The cantilever plate smart structural system is used as the experimental test
structure to implement a ETANN-based LQG/LTR controller. A custom interface board with analog
hardware is designed and built to interface the sensor and actuator signals with the ETANN chip. The
analog delay line chip manufactured by Tanner Research Inc. is used with the ETANN chip to realize
the network architectures. A key feature of this study is that a single chip implementation of a robust
controller has been made possible by the use of the analog neural network chip. Initially a significant
difference was noticed in the behavior of a network in simulation and on the one implemented using
ETANN chip. This was due to the inherent properties of the analog domain and the limitations of the
chip such as weight read/write precision, non-ideal shape of the sigmoid activation function, etc. The
factors involved with the implementation of the controller were systematically identified. various
corrective methods were incorporated to either eliminate or minimize the anomalies in the
functioning of the ETANN chip and the associated analog hardware. Then the closed loop
performance of the ETANN-based single chip robust controller was in good agreement with the
simulation and experimental controller (Figures 19-20).

Smart structural systems are inherently nonlinear due to material and geometrical properties
and nonlinearities in sensors and actuators. These structures exhibit a linear operating region which
can be controlled using linear controllers. We have utilized the ability of neural networks to map
nonlinear dynamical systems to accommodate the structural nonlinearities. In addition, the
adaptability property of neural networks is utilized to modify the controller in response to changing
structural parameters and changes in actuators and sensors. Simulation studies of the performance of
a closed loop time varying linear and nonlinear systems have been studied with and without on-line

adaptation. The simulation results are very good (Figures 21-22).
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