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ABSTRACT 

The purpose of this document is to assess the state of the art of performance 
modeling and estimation for synthetic aperture radar (SAR) automatic target 
recognition (ATR) algorithms. The study underlying this report is part of the 
Lincoln Laboratory effort under the OSD ATR Program. The intent is not to 
produce an exhaustive, detailed, voluminous report describing all ongoing efforts, 
but rather to capture in a succinct yet essentially complete way the approaches 
currently in use for modeling the performance of SAR ATR algorithms. 

To provide context for this document's assessment and recommendations, a 
brief discussion of the breadth of ATR problems and some of the resulting technical 
challenges will be conducted. This discussion will generally be couched in terms 
of the SAR ground surveillance problem of detecting and recognizing various 
military vehicles, though many of the statements are easily extended to other 
sensors and other applications. Basic performance metrics will be defined, and a 
discussion will ensue of the kinds of questions it would be useful to have addressed 
by a performance model. 

The principal approaches to modeling the performance of SAR ATR algorithms 
and estimating performance characteristics under a variety of conditions will then 
be outlined and assessed. The document concludes by recommending certain 
actions to encourage progress in the development of SAR ATR performance 
modeling and evaluation tools and methodologies. 
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EXECUTIVE SUMMARY 

The purpose of this document is to assess the state of the art of performance modeling and 
estimation for synthetic aperture radar (SAR) automatic target recognition (ATR) algorithms. 
The study underlying this report is part of the Lincoln Laboratory effort under the OSD ATR 
Program. 

There is no single "ATR problem." Even in the smaller domain of SAR ATR, there is a 
spectrum of problems, from straightforward to challenging. Performance modeling and estima- 
tion tools and methodologies can support the development of future military ATR systems by 
permitting systems designers and analysts to understand the trade-offs among sensor capabilities, 
computational burden, and performance. Currently such understanding is derived from empirical 
studies; sensors are built, data is collected and analyzed, and ATR algorithms are developed and 
tested in the laboratory. This is an expensive and time-consuming process. 

The degree of difficulty of SAR target detection and recognition problems is generally 
determined by the amount of variability that the SAR signatures of the targets, backgrounds, and 
other objects can exhibit. An ATR algorithm must represent and be able to "reason" about these 
sources of variability to be effective. This is one of the principal challenges facing ATR 
algorithm developers today. One way to constrain the combinatorics of this variability is through 
context, prior information, or data from other sensors or sources. The effective use of context 
is another principal challenge for ATR developers. 

ATR performance is generally measured in terms of a probability of detection, a false alarm 
rate, and a "confusion matrix," which represents the fraction of time that one target type is 
mistaken for another. Other metrics for specific applications can of course be useful, and they 
are usually built upon the foundation of these three. Performance can then be modeled by 
developing tightly bounded estimates of these metrics as a function of various parameters of the 
problem (e.g., variability of target signatures, number of target types, complexity of the back- 
ground, density of other man-made objects, etc.). 

To highlight some trade-offs that a performance model should help quantify, some typical 
system design questions are posed and their importance discussed. The essence of these ques- 
tions asks how much information is available from the sensor data and other sources and how 
much of it can be exploited by an ATR algorithm. 

Currently there are two principal approaches to the problem of SAR ATR performance 
modeling, Bayesian probability analysis and information theory, but they should not be regarded 
as competing with each other. In many ways, they are related. Both stand on the solid mathematical 
foundation of probability theory, which they use to represent and manipulate uncertainty in their 
calculations. 

In the Bayesian approach, probability distributions are used to represent the variability in 
target and background signatures. Conditional probability densities play a central role, as does 
Bayes' Law for relating them. Although the theory is well understood, it has limitations when 



applied to the problem of performance modeling. To apply the theory, assumptions are generally 
made (such as the use of Gaussian distributions and independence of information sources) to 
ensure mathematical tractability, but these assumptions are not always good enough to represent 
the problem with the desired accuracy. 

If the complexity needed to make accurate performance estimates leads to intractable analy- 
ses, then one is confronted with turning to Monte Carlo simulation. Given the decreasing cost 
of computation, this may be a more productive approach as time goes on. However, it is easy 
to devolve from a Monte Carlo simulation of a performance model to simply running ATR 
algorithms over large data sets to evaluate performance. The problem with the latter is that it 
may not lend insight into how an ATR will perform in a situation not represented in the test data. 

The information theory approach casts the recognition problem as a communication process. 
The information about a target's identity is there in the real world, but to get to it, one must 
observe it through a sensor and its associated processing, just as one must receive a message 
through a communications channel that may be noisy and lossy. Information theory brings in 
the concept of entropy and measures of relative information to try to quantify how information 
and thus performance is lost along the processing chain. As with the Bayesian approach, 
information theory relies on estimating or assuming various probability distributions to represent 
uncertainty, and it can suffer from the same pitfalls when assumptions do not match reality 
closely enough. 

In spite of the common foundation based on probability theory, SAR ATR performance 
modeling approaches exhibit considerable diversity. This diversity stems from choices made in 
modeling the target signatures, the background signatures, and the confuser signatures. 

Based on this assessment of SAR ATR performance modeling and estimation, we make the 
following recommendations: 

• Develop a standard set of performance modeling questions to be addressed by a 
performance model. 

• Develop a standard nested set of ATR problems of increasing complexity to drive 
development of performance models. 

• Continue to collect representative SAR data and analyze it in the context of 
performance model development. 

• Improve the characterization of background and confuser objects. 

• Codify, characterize, and assess the utility of contextual information. 

Develop performance models that address the utility of multi-sensor and multi-look 
integration of information. 

Sponsor and organize an annual meeting on performance modeling and estimation 
and develop the Virtual Distributed Laboratory (VDL) site into an electronic 
exchange for ATR ideas and findings. 
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1. INTRODUCTION 

The purpose of this document is to assess the state of the art of performance 
modeling and estimation for synthetic aperture radar (SAR) automatic target recognition 
(ATR) algorithms. The study underlying this report is part of the Lincoln Laboratory 
effort under the OSD ATR Program. The intent is not to produce an exhaustive, detailed, 
voluminous report describing all ongoing efforts, but rather to capture in a succinct yet 
essentially complete way the approaches currently in use for modeling the performance 
of SAR ATR algorithms. 

To provide context for this document's assessment and recommendations, a brief 
discussion of the breadth of ATR problems and some of the resulting technical challenges 
will be conducted. This discussion will generally be couched in terms of the SAR ground 
surveillance problem of detecting and recognizing various military vehicles, though many 
of the statements are easily extended to other sensors and other applications. Basic 
performance metrics will be defined, and a discussion will ensue of the kinds of questions 
it would be useful to have addressed by a performance model. 

The principal approaches to modeling the performance of SAR ATR algorithms and 
estimating performance characteristics under a variety of conditions will then be outlined 
and assessed. The document concludes by recommending certain actions to encourage 
progress in the development of SAR ATR performance modeling and evaluation tools and 
methodologies. 

1.1 A SPECTRUM OF ATR PROBLEMS 

People sometimes speak of the ATR problem, as if it were a single problem, for 
example, by asking, "When will the ATR problem be solved?" There is of course not a 
single ATR problem, but a spectrum of military and civilian problems to which 
recognition technology can be applied. Some of these problems are being solved with 
today's technology, but many others are difficult, challenging, and beyond the scope of 
our current algorithmic capabilities. 

In general, there are two basic problems that arise in target recognition, and they are 
usually analyzed separately. The first is the detection problem: determining if the 
signature of any target of interest is present in the sensor data. The second is the 
classification problem: can a target signature be reliably distinguished from the signatures 
of other targets? In practice, this latter problem also encompasses distinguishing target 
signatures from those resulting from the background or other non-target objects. 



A brief word about terminology: Often in the ATR literature, distinctions are made 
among the definitions of classification, recognition, and identification. Typically, 
classification is meant to imply distinguishing between broad classes of targets (e.g., 
wheeled vs. tracked vehicles, or tanks vs. trucks), recognition is meant to imply 
distinguishing between target types (e.g., Ml Al vs. T-72 vs. Ml 09), and identification is 
meant to imply distinguishing individual vehicles (e.g., T-72 serial number A08 vs. T-72 
serial number A12). Sometimes the term "discrimination" is used to mean separating 
target signatures from those that arise from background or other non-target objects. These 
definitions are not universal, however. In this document, these terms will be used more or 
less interchangeably to mean recognition unless it is important to make a finer distinction. 

Generally, problems in which the targets to be detected have known signatures and 
are embedded in a background that is reasonably modeled as a stationary random process 
can be solved. The quality of the solution also depends on the sensor characteristics; 
there must be adequate contrast between the target signature and the background, and 
there must be enough sensor resolution so that a certain minimum number (usually on the 
order of 50-100) of pixels subtend the target signature. For such problems, the template 
correlation approach (which is akin to matched filtering) can give good results. 

In addition to the problem of detecting targets, one often wants to recognize targets 
by type. In SAR ground surveillance, the problem is usually stated in terms of detecting 
military vehicles (e.g., tanks, trucks, self-propelled artillery, etc.) and recognizing them by 
type (e.g., M1A1, T-72, M109, M35, HMMWV, SCUD, etc.). The ability to do this 
depends on knowing the various target signatures, there being significant differences in 
those signatures, and having a sensor with enough sensitivity and resolution to be able to 
sense those differences. 

ATR algorithms perform less well when confronted with targets in situations where 
they can exhibit significant variability in their signatures or are embedded in backgrounds 
that are not spatially homogeneous and contain many other objects of human manufacture 
(sometimes referred to as "confusers"). Target signature variability in the SAR ground 
surveillance application can result from a number of things. The signature will vary as the 
target presents different aspects to the sensor. Since one does not generally know target 
location and orientation (often called target "pose") in advance, one must be prepared to 
detect and recognize targets at all reasonable poses. Targets such as tanks, self-propelled 
artillery, and missile transporter-erector-launchers (TELs), have large parts that can 
articulate, altering their shapes and radar signatures. Most military vehicles have smaller 
parts, such as hatches, doors, and vents, which can be opened. Many can also have items 
such as toolboxes, fuel drums, cables, shovels, and wheel chocks that can be attached or 
not. Military trucks may be empty or loaded, and may or may not be covered with a 
canvas roof. Finally, stationary targets may be partially or completely occluded, 
camouflaged, or parked close together or close to other objects such as buildings, and 
some vehicles may be in motion at the moment of observation.  All of these changes in 



configuration or situation, target "state" if you will, result in variations in the target 
signature. Measuring, storing, and modeling all these variations in combination is an 
onerous task indeed. 

The space of variation for the background is even larger and more difficult to model. 
The background may include vehicles and other objects that are not targets of interest and 
for which the ATR algorithm has no template or model. It would be useful algorithmically 
to be able to ignore background variation, but it does influence target detectability and to 
some extent interacts with the targets' SAR signatures. Ignoring background variation 
could lead to reduced performance. 

The spectrum of ATR problems can range from finding a known target signature in a 
well-characterized background to detecting and recognizing a set of highly variable and 
possibly occluded target signatures in a complex background littered with many man- 
made objects. 

1.2   THE NEED FOR PERFORMANCE MODELING 

The term "performance modeling" as used in this document means the ability to 
predict or estimate the bounds or limits of various performance metrics of ATR 
algorithms in a given situation. It has also sometimes been called "ATR theory." The goal 
is not necessarily to predict how a particular algorithm will perform on a particular data 
set, but rather to understand what, if any, fundamental limits there are to performance in 
various situations. 

As a grossly oversimplified example, consider two targets which are not 
distinguishable in the data taken by a sensor with given characteristics. It would be 
fruitless to invest time and money trying to develop an advanced algorithm to separate 
the two targets given only that sensor data. A measure of the separability of the two 
targets would help to determine this before making an unwise investment. If it were 
operationally important to be able to separate the two targets, then this case argues for 
the development of a new sensor whose data will exhibit some degree of separability. 

A good performance modeling methodology would be useful in addressing a variety 
of questions about ATR performance limits. Answers to such questions would be 
extremely useful to designers and analysts of future ATR systems, allowing them to 
understand and make informed decisions about system trade-offs. 

In the sections below, we shall first review the principal challenges facing SAR ATR 
algorithms. Then we shall review some basic performance metrics that form the 
foundation for analyzing the performance of SAR ATR algorithms. After that, some 
typical ATR system design questions will be discussed to motivate researchers who hope 
to develop useful performance modeling and estimation tools. Following that, we review 



some current approaches to performance modeling and give our assessment. We then 
conclude with a set of recommendations. 
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2. THE CHALLENGES OF AUTOMATIC TARGET RECOGNITION 

The principal challenge of automatic target recognition is coping with the variability 
of the signatures of targets, confusers, and backgrounds. This issue is briefly outlined in 
the paragraphs below as part of the background for the following discussion on 
performance modeling issues. Not only does signature variability represent a serious 
challenge to developers of robust ATR algorithms and systems, it also represents a 
challenge to developers of ATR performance modeling and estimation tools that must be 
sophisticated enough to capture the complexity of the problem and its attempted 
solutions. 

2.1   TARGET, BACKGROUND, AND CONFUSER REPRESENTATION 

The generic ATR problem consists of distmgmshing among target types, 
background, and confusing objects. How each of these classes is represented in the digital 
world of computation determines in part how successful an ATR algorithm can be. A 
representation must capture what is known about each class and yet be flexible enough to 
encompass the signature variability observed in the real world. 

2.1.1 Target Signature Variability 

In SAR imagery, there are two principal contributors to target signature variability. 
The first is due to geometry and is easily understood; the second is due to the coherent 
nature of the radiation being used to illuminate and image the scene. 

SAR imaging represents a projection from the 3-D world to a 2-D image. 
Consequently, as a target or its major parts change their orientation with respect to the 
sensor line of sight, the shape they project into the imaging plane (often called the slant 
plane in SAR parlance) will change. (Though the projection is different, this is similar in 
concept to ordinary optical imaging, where the 2-D shape that an object exhibits in the 
image depends on its 3-D orientation with respect to the imager's line of sight.) 

An ATR algorithm must be capable of representing this geometric variation. 
Typically in template-based algorithms, this is done by having a set of templates 
spanning the target orientations and major articulations. In model-based algorithms, 3-D 
target models with moving parts are used to drive predictions of 2-D signatures based on 
orientation and articulation hypotheses. Other algorithmic approaches might use other 
means to capture this geometric variability. 

Another cause of signature variation results from the use of coherent radiation (radio 
waves in this case) to illuminate and image the scene. Reflecting surfaces that fall in the 
same resolution cell of the SAR image will interfere with one another, causing a grainy 



appearance known as speckle noise. The pattern of constructive and destructive 
interference (which looks like a pattern of small bright and dark spots overlaying the 
image) is remarkably sensitive to the angle of incidence of the incoming radar beam. 
Changes in this angle of a few degrees, which will not alter the geometry much, will 
nonetheless cause significant changes in the speckle pattern. A simple algorithm that tries 
to match a measured target signature to a representation that does not incorporate the 
variability of the speckle pattern will be susceptible to speckle-induced mismatches. 
Generally ATR algorithms represent speckle variability by a random process and account 
for it statistically. 

In addition to these two principal causes of target signature variability, there is often 
variability due to configuration differences, some intentionally implemented by an enemy 
to alter his signature. Examples include the presence or absence of equipment attached to 
the body of a T-72 tank, such as rear fuel drums, towing cables, toolboxes, and shovels. 
Radar scattering camouflage netting is one way of intentionally changing the SAR 
signature of a target. 

2.1.2 Background Signature Variability 

The SAR signature of the background can vary dramatically simply because the 
background itself can vary dramatically. In many ATR algorithms, the background is 
represented as a random process to capture the effects of this variability. This works 
reasonably well when the background is stationary, that is, of a consistent quality that 
doesn't vary statistically from place to place locally around a suspected target. However, 
for complex backgrounds with many man-made artifacts, such stochastic representations 
are generally inadequate. 

2.1.3 Confusing Objects 

Objects that are easily confused with targets of interest, sometimes called 
"confusers" for short, may need to be represented in an ATR algorithm to help 
distinguish them from targets. Representing a confuser can be problematic because one 
may not know enough about a confuser to create an adequate model, and one may not 
have enough signature samples from the confuser to create an adequate database. 

2.1.4 Sensor Effects 

SAR sensors themselves can introduce some variability into what might otherwise 
be a reproducible signature (say from a calibrated test target). Receiver noise and other 
sources of noise enter the radar signal processing and image formation chain to introduce 
uncertainties in the resulting SAR images. Generally though, these uncertainties are well 
modeled probabilistically and are small relative to those introduced by target geometrical 
variability and speckle. 



The calibration (or lack thereof) of the synthetic aperture radar can contribute to 
signature variability. Ideally, the radar would be calibrated to sense the absolute radar 
cross-section (i.e., the radar reflectivity) of objects in its field of view. The SAR image is 
then a map of radar cross-section as a function of azimuth and depression angles. In 
practice, the radar may not be calibrated or its calibration may drift during a mission. In 
this case, the SAR image represents the relative reflectivity of objects in its field of view. 
Measured target signatures may then differ by an unknown gain factor from database 
signatures or modeled signatures. An ATR algorithm must be aware if the radar is not 
calibrated so that it can appropriately compare signatures with disparate gains. 

2.2   USE OF CONTEXT 

Another challenge for automatic target recognition is to exploit information from 
sources other than the sensor data. This information is generally referred to as "context," 
and it may take many forms. Currently most ATR algorithms use the sensor data and 
some form of target signature database (either sets of signature templates or models for 
predicting signatures) as their sole sources of information. More advanced algorithms 
attempt to make use of information such as terrain maps, road locations, or even 
descriptions derived from previous surveillance missions. 

2.2.1 Information from Other Sources 

Terrain maps and other maps can provide useful contextual information for an ATR 
algorithm, particularly in the case of challenging backgrounds. To be able to use map 
information effectively, however, the algorithm must be able to register the map 
information with the measured sensor data accurately. Map information can take many 
forms, including images previously collected by the same or other sensors. Maps allow 
the ATR algorithm to form a "preconceived notion" of what to expect so that it can 
detect deviations from that expectation. 

Operational information, such as "SCUDs like to hide near tree lines" or "SAM sites 
consist of a radar, a command vehicle, and two or more missile batteries," may influence 
the strategies that ATR algorithms use to find targets. Prior information that a particular 
target or set of targets was found earlier in a certain area could be used to focus a search. 
Knowledge that certain types of vehicles are incapable of traversing certain kinds of 
terrain may also help reduce the set of hypotheses that need to be considered in 
recognizing a possible target. 

There can be many such sources of contextual information that an ATR algorithm, as 
part of a future intelligence, surveillance, and reconnaissance system, could and should 
exploit to improve recognition performance. 



2.2.2 Integration of Information 

The availability of contextual information, including information from other sensors, 
will not help solve the recognition problem if it cannot be integrated properly to provide 
consistent, robust, and correct recognition decisions. The challenge of how to integrate 
information from disparate sources is an active research area, since the information can 
potentially be combined at multiple levels, the sensor data level, the feature level, the 
target level, the situational level, and perhaps others. In some cases, it is straightforward 
to see how to combine information, especially in the case where two sources are 
generating a similar type of information, like map data. In other cases, it may not be so 
obvious. 



3. SOME BASIC PERFORMANCE METRICS 

In this section, we summarize some basic performance metrics in widespread use in 
the ATR R&D community. This summary is not intended to be a complete list. Other 
metrics may also be useful for particular ATR applications, but the metrics discussed 
below generally comprise a common foundation for performance analysis. 

3.1 DETECTION AND FALSE ALARM 

To recognize a target of interest, an ATR algorithm must first detect the presence of 
the target signature in the sensor data. Of course, detection is not always perfect; some 
targets may not be detected (missed targets) and other objects or parts of the background 
may mislead the detector, causing it to signal the presence of a target when in fact a target 
is not there (false alarms). The performance of the detector is generally measured by the 
probability of detection (Pd) and the probability of false alarm (Pfa) or related metrics. 

The classical probability of detection is straightforward to define. Given that a target 
signature is present in the sensor data, the probability of detection is the probability that 
the detection algorithm will report a detection. Generally, this probability is derived 
empirically, running data through the algorithm and reporting the fraction of target 
signatures detected. Sometimes the probability of miss, that is, the probability that given 
the presence of a target the detector will not report a detection, which is equal to \-Pd, 
will be used to characterize the performance of the detector. 

The probability of false alarm is defined as the probability the detector will report a 
detection given that no target is present. In practice, this probability is often derived 
empirically by processing data with no target signatures through the detector and counting 
how many detections are erroneously reported. There is one problem with this definition: 
it is often difficult to quantify how many discrete opportunities there are to signal a 
detection erroneously in a given data set, making it difficult to normalize the actual 
number of false alarms to obtain a ratio that resembles a probability. This problem is 
often circumvented by quoting a false alarm rate (FAR), e.g., the number of false alarms 
per unit time or per unit area or per other unit that measures the extent of the data set, 
rather than a probability of false alarm. 

3.2 THE ROC CURVE 

ATR detection performance is often summarized as a ROC curve. Here ROC stands 
for "receiver operating characteristic" (Van Trees, 1968), a term dating back to the early 
days of radar detection theory. It is a parametric plot of the probability of detection 
(along the vertical axis) and probability of false alarm or false alarm rate (along the 



horizontal axis). In its classical form, the ROC curve is swept  out by varying the 
detection threshold, which trades detectability for false alarm rejection capability. 

The shape of the curve depends on the signal-to-noise ratio (SNR). In the classic 
detection problem, the SNR is a measure of the separability between the target-present 
probability density function and,the no-target-present case. Each ROC curve is 
comprised of operating points with the same SNR. 

In some ATR applications, the plotting of a ROC curve can be problematic for two 
reasons. First, there may be a number of parameters analogous in some sense to a 
threshold that is varied to sweep the ROC curve. Usually all parameters are fixed except 
for one, and it is used to sweep the curve, or a combined, single parameter is used. 
Second, it may be difficult to define a parameter analogous to the SNR, because the 
background against which the target is to be detected is too complex to be characterized 
simply by a noise power estimate. When ROC curves are produced empirically, one 
would ideally use a data set with background imagery that is consistent in its 
characterization. This may be difficult to do in practice, because it may be difficult to 
characterize the background simply or because of limited available data. 

3.3   RECOGNITION AND THE CONFUSION MATRIX 

Once the ATR algorithm thinks a target has been detected, it then proceeds to 
attempt to recognize the target signature. Generally, an ATR algorithm has a database of 
some sort to remember characteristics of the target signatures for the set of targets it is 
intended to recognize. Depending on the specific algorithm, this database may take the 
form of a set of models, a set of templates, or a set of parameters (such as the weights in a 
neural network). In most real situations, in addition to target signatures the ATR 
algorithm will be confronted with the signatures of other objects not characterized in its 
database. 

The fundamental measure of recognition performance is a conditional probability. It 
is the probability that the algorithm will recognize a target of being of type / given that 
the signature actually comes from a target of type J, Prob(7|J). If I=J, then the algorithm 
has made a correct recognition decision. If not, the algorithm has made an error. 

These conditional probabilities can be assembled into a matrix, often called a 
confusion matrix because it shows the likelihood of confusing one target with another. If 
there were N targets whose signatures are characterized in the algorithm database, then the 
confusion matrix would have size NxN. (There is no convention on how the conditional 
probabilities for a given target are organized, by row or by column. Usually confusion 
matrices are labeled to avoid any ambiguity.) 

10 



Often confusion matrices are augmented to make other derived metrics more explicit. 
For example, it is common to have a "none of the above" or an "unknown" target type. 
The existence of such a non-target type allows the recognition stage of the ATR algorithm 
to reject false alarms that may have leaked through the detection stage. However, it is also 
possible that the recognition stage will fail to recognize one of the target signatures in its 
database and declare the target to be unknown erroneously. This possibility is indicated in 
the confusion matrix as a set of conditional probabilities: Prob(unknown|J). 

The off-diagonal terms of the confusion matrix can be summed by row or column to 
give a measure of how often a given target is misclassified or how often other targets are 
misclassified as the given target. The on-diagonal terms can also be averaged (usually in a 
weighted manner) to give an overall probability of correct recognition. 

In practice, the confusion matrix is often derived empirically. If this is done, it is 
useful to record the conditional probabilities as ratios (e.g., so many instances of deciding 
target/given the total number of targets of type J) so that it is apparent how much data 
went into the estimation of each conditional probability. 

11 



4. SOME IMPORTANT SYSTEM DESIGN QUESTIONS 

ATR system performance and the numerical values of the metrics designed to assess 
it vary with the quality of the sensor data, the difficulty of the environment being sensed, 
and the separability of target signatures in some feature space, both from each other as 
well as from those of potentially confounding objects. In addition, it depends on the 
potency of the ATR algorithm being used to extract information from the data. Because 
of the cost, both in time and money, of building sensors and collecting data and ground 
truth on targets and backgrounds, ATR system designers need tools that can help them 
make design trade-offs before the systems are built. Here is where a good performance 
modeling methodology can help. 

Below are some questions that an ATR systems designer might ask and that a 
performance model might address. This list is not intended to be exhaustive; the reason 
for its inclusion in this report is to stimulate the imaginations of developers of 
performance modeling techniques. A useful performance model would be able to address 
questions such as these. 

Are We Getting All the Information Out of the Data? Given the characteristics of a 
certain sensor and the target signatures it is capable of measuring, one would like to know 
the best possible detection and recognition performance that can be expected. This is 
indeed a difficult question to address, because the answer depends on so many things 
relating to the characteristics of the sensor, the targets, and the background. The answer is 
valuable because it permits one to assess how close to optimum performance any 
particular algorithm's performance is. If the best existing algorithm falls well short of 
optimum performance, then an investment in further algorithm development, particular 
different approaches, is probably warranted. If, on the other hand, the best algorithm is 
achieving close to optimum performance but that performance is not good enough 
operationally, then one could argue that an investment needs to be made in better sensor 
designs. 

How Much Would it Help if We Could Estimate Orientation Better? Targets 
generally have some set of variables associated with them that can be considered as 
representing their state. Orientation with respect to the sensor is one of the more obvious 
ones, but there may be others, such as turret orientation with respect to the body, gun 
elevation, hatches and doors opened or closed, and the presence or absence of other 
features that depend on the target type. In some cases the effect on the target signature of 
a change in one of these variables may be rniniscule and may be intentionally ignored, 
relying on the robustness of the ATR algorithm to recognize the target. In other cases, 
such as target orientation or turret orientation, the effect on the signature is so profound 
that it is best to estimate the value of the variable as part of the recognition process. This 
leads to questions such as: How much performance improvement would result if we could 
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estimate orientation better? Should I try to estimate the value of a variable or try for 
robustness with respect to its effects? 

What's the Added Value of a More Advanced Sensor? Given that the modeled 
optimum performance is not good enough for a particular application or mission, how 
would various sensor improvements raise the ceiling on performance? For example, would 
an increase in sensor resolution by a factor of two permit the probability of detection to 
reach 0.9? In a suburban environment? How much improvement in target separability, 
say, between a T-72 tank and an Ml tank, could one expect if a polarimetric SAR sensor 
were used? Such analyses could be invaluable in driving the design of future sensors. 

What's the Added Value of Multiple Sensors? Of Multiple Looks? In a future 
battlespace with a number of tactical surveillance sensors of different types, it may be 
fruitful to coordinate data collection on areas of interest. A system designer could ask 
how much potential improvement would there be in ATR performance if data from 
multiple sensors could be processed before making decisions. A related question is: How 
much potential improvement would there be if the same sensor looked at the area more 
than once, presumably from different vantage points? 

What's the Added Value of Context or Additional Information from Other 
Sources? In the past, ATR algorithm developers have concentrated primarily on detecting 
and recognizing targets primarily based on the presence of a target signature in the sensor 
data in comparison with the algorithm's data base of signatures. For reasons mentioned 
earlier, this is a difficult problem. In practice, other sources of information may also be 
brought to bear on the recognition problem. For example, when trained image analysts 
process imagery, they generally know something about the location, the terrain, perhaps 
the weather, perhaps the recent history of the site, whether targets of interest were 
detected there previously, and so on. Using such contextual information may help to 
increase the likelihood that certain types of targets will be found there and reduce the 
likelihood of others. 

Incorporating context into an ATR algorithm is not a solved problem. It would be 
iUuminating to understand how much potential ATR performance improvement would 
result if context were to be incorporated. Then the payoff of investing effort into 
designing an ATR system that could obtain and use certain types of contextual 
information could be quantified. 
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5. CURRENT APPROACHES TO SAR ATR 
PERFORMANCE MODELING 

There are two principal approaches to the problem of SAR ATR performance 
modeling in use today, Bayesian probability analysis and information theory, but they 
should not be regarded as competing with each other. In many ways, they are related. In 
the subsections below, these approaches are described and their contributions and 
limitations are discussed. 

5.1   THE BAYESIAN APPROACH 

The Bayesian approach is based on using probability to model uncertainty in the 
knowledge of target signatures, background conditions, confuser object signatures, and 
parameters. This approach has one dominant advantage: the concepts of probability and 
probabilistic reasoning have a strong mathematical foundation, are generally well 
understood, and lead to results that are intuitively satisfying. As with most mathematical 
analyses of real world situations, the Bayesian approach makes some fundamental 
assumptions, and resulting derivations make other assumptions and approximations along 
the way. In cases where the analysis fails to mimic reality, it is not the mathematical 
reasoning per se that is incorrect; it is usually the breakdown of an assumption. 

A complete review of the Bayesian theory is well beyond the scope of this report, 
and there are many texts that could be consulted for a detailed review (e.g., Van Trees, 
1968). For the sake of context, the fundamental ideas are briefly mentioned below. 

5.1.1 Classical Detection Theory 

In classical detection theory, the space of target signatures is represented by a 
probability density function. Often the probability density function is one-dimensional 
and the independent variable represents some feature of the target signature, such as 
energy. Similarly, there is a probability density function to represent the signature of the 
background. Ideally, the feature of the target signature is chosen so that the two 
probability density functions have minimal overlap. Classically, if the feature value 
computed for some portion of the sensor data exceeds some threshold, then a target is 
declared. If the threshold is not exceeded, then no declaration is made. Given this 
paradigm, it is conceptually straightforward to compute the probability of detection and 
probability of false alarm (and consequently the ROC curve) as a function of the two 
probability densities and the threshold. 

The situation becomes computationally more complex when the probability 
densities for the signatures of the targets and the background are functions of several 
variables. Now, instead of a simple threshold, a surface in multidimensional space must be 
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specified. It may simply be a hyperplane, set of hyperplane segments, or even a more 
complicated surface used to separate the two probability density functions as much as 
possible. Given this separating surface, it is still conceptually straightforward to integrate 
the two probability density functions to obtain the probability of detection and the 
probability of false alarm, but it can be computationally difficult. 

Clearly, classical detection theory depends on being able to obtain, from 
measurements or first principles, the necessary probability density functions. Often these 
are assumed for mathematical convenience to be Gaussian densities. If the real world of 
target and background signatures from a given sensor (or sensors) is not adequately 
modeled by such a density, then the predictions from classical detection theory can be 
misleading. For example, real world densities often have heavier tails than the Gaussian 
density, which drops off very quickly as its argument grows. This can cause one to 
underestimate the false alarm rate. 

5.1.2 Classical Maximum a posteriori Estimation 

Maximum a posteriori estimation is often used to try to distinguish among different 
target types. If one cares to regard "background" as a target type, then maximum a 
posteriori estimation can be used as a detector. 

In classical maximum a posteriori estimation, one computes the conditional 
probability that a certain target type is present given the sensor data. To do this one uses 
Bayes' Rule to combine certain other probabilities, including the probability of observing 
the sensor data given that the target was indeed present. In texts this is often written as 

p(x | =) _ P(s I x)p(x) =   p(s 1 x)p(x) 
P(s) I>(s I x)p(x) 

X 

where x represents the target type and s represents the sensor data. Such equations can be 
written for each target type. To recognize a target type, the equations are used to generate 
the probability of each possible target type given the sensor data, and the target type 
yielding the highest value is chosen. Since the denominator on the right side of each 
equation is the same, it is often ignored when comparing them. 

Often a threshold is also used to ensure that the winning target type has a certain 
minimum probability. It is also possible to use more sophisticated decision logic, for 
example, insisting that the winning target type enjoy a comfortable margin of victory over 
the second-place finisher. This is one way to try to reject false alarms or confusers that 
have been erroneously detected. 

There is a well-developed literature (Devroye, 1996) that analyzes pattern 
recognition from the probabilistic viewpoint, developing, for example, bounds on the 
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Bayes' error of a two-class classifier given various distance or divergence metrics between 
posterior densities. In addition, the theory of multiple hypothesis testing is well 
developed, and methods for probabilistic reasoning as new data become available to refute 
or support a hypothesis have been developed (Pearl, 1988). However, in many cases it is 
analytically intractable to find solutions and construct the appropriate metrics, such as 
the confusion matrix. One is usually forced into numerical analyses and Monte Carlo 
simulation. 

5.1.3 Examples of the Approach 

In addition to texts (such as Van Trees, 1968) on classical detection and estimation 
theory, Fukunaga's book on statistical pattern recognition (Fukunaga, 1972) and its 
subsequent revision (Fukunaga, 1990) develop much of the foundation for today's 
research in ATR performance modeling. Most derivations attempt to derive formulas for 
the Bayes' error under various assumptions, such as assuming Gaussian conditional 
densities. For example, Fukunaga and Krile published a method to calculate the Bayes' 
error for two multivariate Gaussian distributions (Fukunaga, 1969). A correspondence 
item on the probability of error bounds for the M-class problem was also published 
around this time (Lainiotis, 1971). Research in this vein has continued over the last thirty 
years, including for example a paper by Garber and Djouadi on the bounds of the Bayes' 
error for the multiple hypothesis problem (Garber, 1988). Williams and Clark (Williams, 
1996) advocated the use of multivariate statistical tools, such as intrinsic dimensionality 
of data, to help estimate Bayes' error. They used Xpatch synthetic SAR imagery to 
demonstrate their hypotheses. (Devroye, 1996) sums up much of the theoretical work in 
this area. 

As the general theory of statistical pattern recognition was developing, there were 
attempts to apply its results to problems in radar signal processing. Clearly, much of the 
early work on detection and estimation was motivated by radar processing, typically with 
ground-based radars attempting to detect and track aircraft. As measurements from real 
radar systems became available, researchers realized that Gaussian models were not 
adequate for analyzing many of the recognition tasks. For example, a Bayes classifier may 
be optimal for the case where target and clutter distributions are known and the radar is 
calibrated, but a sub-optimal linear classifier is more robust to errors in the assumed 
distributions and does not require the radar to be calibrated (Novak, 1984). 

A comparative study specifically for ATR performance evaluation (Williams, 1997) 
found that nonparametric error estimation techniques are superior to those which use the 
Gaussian form of the Bhattacharyya metric to select features and to estimate upper 
bounds on ATR performance. To demonstrate this conclusion, Williams used ADTS data 
(33 GHz, 1-foot resolution) from a Lincoln Laboratory airborne sensor to analyze the 
distinguishability of grassy and treed areas in SAR imagery. 
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Currently, researchers are attempting to develop and analyze more faithful models of 
real SAR measurements and real ATR algorithms. For example, as part of the MSTAR 
program, Irving and Washburn analyzed the performance of a Bayesian classifier with 
orientation uncertainty (Irving, 1996A), using a Gaussian mixture model for the 
underlying statistics. They found that their results were more accurate when they 
modeled a sum of lognormal random variables as another lognormal density, rather than 
invoking the Central Limit Theorem to justify a Gaussian assumption. They validated 
this result with Monte Carlo simulation. Their analysis resulted in loose performance 
bounds (as indicated by a ROC curve) when compared to the Lincoln Laboratory ATR 
algorithm (see The Lincoln Laboratory Journal, 1993) driven by real SAR imagery 
(Advanced Detection Technology Sensor (ADTS), 33 GHz, 1-foot resolution, HH- 
polarization, 56 square kilometers of Stockbridge, NY). Their conclusion was that their 
random process background model "failed to capture the hostile characteristics of actual, 
heterogeneous clutter (populated with treelines, shadow regions, and man-made discrete 
objects...)." 

Irving, Washburn, and Grimson (Irving 1996B) developed a technique for bounding 
the ROC performance of a detector that uses patterns of peaks in SAR imagery to detect 
and discriminate targets from clutter. The analysis assumed sophisticated models for the 
peak locations based on 2-D Poisson random processes and used a generalized likelihood 
ratio test to discriminate between targets and clutter. They were able to produce 
parameterized ROC curves showing the relative merits of using an increased number of 
predictable peaks per target and reducing the uncertainty in peak location. They 
concluded that it would not be possible to reach their particular goal of Pd = 0.9 at a false 
alarm rate of 0.001 per square kilometer using only peak location information. 

Monte Carlo estimation techniques were used by Horowitz (Horowitz, 1997) to 
analyze the classification error between two targets at known orientations and locations 
and to assess ATR performance as a function of SAR resolution. He used a Rayleigh fade 
model to generate an ensemble of target signature examples from laboratory-made target 
signatures using a laser (äs a scaled radar) and scaled target physical models. Differences 
between two targets were characterized by a scatterer-to-background power ratio (SBPR), 
which is simply related to the pixel-by-pixel contrast between the two target images. The 
relative utility to performance of corresponding pixels with differing contrast was also 
analyzed, as was the potential payoff of interferometric SAR data. 

Earlier, the potential advantages of an enhanced sensor were also examined by 
DeGraaf (DeGraaf, 1988) for the case of polarization. He analyzed the performance of a 
variety of polarimetric detectors, including the likelihood ratio test, the polarimetric 
matched filter, and a polarimetric span detector, using simple statistical clutter and target 
models. He found that "Based on these theoretical predictions, we conclude that fully 
polarimetric SAR systems are substantially more capable of detecting man-made targets 
in clutter than comparable scalar systems." 
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The work of Shapiro and his students attempts to improve theoretical results (in the 
sense of making them better reflect reality) for SAR and other sensors. They advocate a 
first-principles approach to incorporate the physics of the sensor and its interaction with 
the target. Recently they reported a target detection theory for stripmap SAR (Yeang 
1998) that is used to compare a multiresolution detection processor to a whitening-filter 
SAR processor. The comparison is based on deriving the signal-to-noise-and-clutter ratio 
(SNCR) from models for the radar signal, background scattering, and receiver noise and 
uses complex Gaussian distributions at the signal level. Using a Neyman-Pearson 
formulation, the probability of detection for a fixed false alarm rate is a function of the 
derived SNCR. They found that the whitening-filter processor was superior, but it is 
interesting to note that the relative performance of these two detectors depends on the 
clutter-to-noise ratio. In the clutter-dominant case, the multiresolution processor is far 
from optimum and the whitening-filter processor has an even bigger advantage. 

Grenander and Srivastava (Grenander, 1997) and other colleagues at Johns Hopkins 
University and Washington University (St. Louis) (Miller, 1997) are attempting to 
formulate a general approach to ATR and performance estimation based on Bayesian 
principles that can easily incorporate multi-target and multi-sensor situations. They use 
"CAD models of targets with attached texture, reflectivity, surface material descriptions. 
The variability in targets is modeled by group actions (rotation and translation) on rigid 
templates and, hence, target inference reduces to optimization over these groups." Their 
analysis includes the use of Hilbert-Schmidt (minimum mean square error) bounds for the 
target recognition error. 

As part of DARPA's MSTAR project on model-driven SAR ATR technology, 
predicted target signatures are generated for comparison to features extracted from SAR 
imagery. Because of potential uncertainties in target location, orientation, and 
configuration, the predicted signatures (in some cases) include a probability density 
function for the amplitude of each pixel (Keydel, 1998). This information is available to 
the matching algorithm within MSTAR that assesses how well a prediction based on a 
target hypothesis matches the reality of the SAR image. Although this is not performance 
estimation per se, it nonetheless requires an accurate analysis of the causes of uncertainty 
in the signature modeling process. As computational capability and modeling capability 
grow, we may see a trend develop in which ATR algorithms attempt to model their 
performance in the operational environment and adjust their parameters accordingly. 

In fact, it is worth noting that research by David Doria at Hughes (Doria, 1997) has 
been progressing in this direction for a FLIR-based ATR algorithm. The user specifies a 
required false alarm rate, and the algorithm adjusts its parameters, thresholds, and density 
of extracted features to try to realize that false alarm rate given the current data. This 
requires the algorithm to have some model of its own false alarm performance. 
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The literature of Bayesian analysis and statistical pattern recognition in general, as 
well as its application to SAR and other ATR problems, is extensive. The examples cited 
above give an interesting but far from complete snapshot of the field today. Occasionally 
a journal will devote a special issue to ATR (e.g., Lincoln Laboratory Journal, 1993, IEEE 
Transactions on Image Processing, 1997), and for the last several years there has been an 
annual conference on Algorithms for Synthetic Aperture Radar, including sessions on 
performance estimation, as part of the SPIE AeroSense Meeting in Orlando every April. 
Proceedings from these meetings are also useful for assessing current SAR ATR research 
activities. 

5.1.4 Limitations of the Bayesian Approach 

The Bayesian approach requires a complete model of all the uncertainties associated 
with every variable upon which the final conditional probability density depends. This is 
both the strength of the approach as well as the source of its weaknesses. Because it is a 
complete probabilistic model, one can be sure that the answers obtained by using the 
Bayesian approach are mathematically correct. However, because the approach requires a 
complete model, it means that assumptions must often be made in the absence of 
information. The classical example of this is the assumption that a variable is equally 
distributed over all its possible values when there is complete ignorance of the value or 
the probability density of the variable. 

For example, if we have no knowledge of the orientation of the gun barrel of a tank 
with respect to its body, we generally assume a priori that it is equally likely to be found 
at any angle. In reality, there maybe several preferred angles (e.g., straight ahead, straight 
behind, 10 degrees from straight ahead to permit access to the driver's hatch, within 45 
degrees of straight ahead in most tactical formations, etc.). However, if we have reason to 
hypothesize a non-uniform prior probability density for the orientation of the gun barrel, 
this information is easily incorporated into the Bayesian formality. 

In the paragraphs below, we mention some typical places where the probabilistic 
model used by the Bayesian approach must be completed by intelligent guessing. 

Conditional Probability Density Estimation. Clearly, the use of maximum a 
posteriori estimation to determine the likelihood of the presence of one target over 
another depends on the accuracy of the conditional probability densities involved in 
Bayes' formula. The variable s representing the target signature is a vector of values, 
potentially a large number of values if the sensor has a resolution high enough to resolve 
individual features on the target. (This is sometimes called "putting a lot of pixels on 
target") Even if s is taken to be a smaller set of feature values, rather than the pixel values 
themselves, its dimensionality can be high, especially if one wants to reliably distinguish 
targets from one another. 
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The non-parametric estimation of high-dimensional probability densities from 
training samples is extremely difficult. Some researchers have claimed "that attempting to 
estimate [probability density functions] nonparametrically above 5 dimensions is difficult 
and above 20 dimensions is futile" (Baggenstoss, 1997, after Scott, 1992). Generally, 
some sort of kernel is used in estimating the density nonparametrically. In a high- 
dimensional space, this kernel either causes the collapse of the estimate to small regions in 
the neighborhood of the training samples, or it smoothes all the training samples together 
so that the details of the underlying density are lost. 

Parametric estimation may be possible if there is an understanding of the form of the 
underlying conditional probability density function, but in general, the accurate estimation 
of such densities is difficult. One usually compromises the accuracy of such estimates for 
mathematical tractability so that one can get an answer at all. 

Another issue with the estimation of the conditional probability density p(%\x) for 
the target signature given the target type is that it may also be a function of other 
variables that either need to be made explicit or need to be integrated out. For example, a 
target signature will depend on the type of target as well as the target's orientation with 
respect to the sensor. Now the conditional density becomes p(s|x,9). It must be 
multiplied by the prior density p(x,Q), which represents the fraction of the time we'd 
expect to see target type x at orientation 6. When used in Bayes' formula, these densities 
yield the conditional posterior density p(x, 9|s). This may be more information than we 
really want. If we just want to estimate the target type and don't care about its 
orientation, then we can integrate over orientation to obtainp(x\s). 

Some variables may be better modeled as parameters with unknown values to be 
estimated rather than random variables for which a probability density must be assigned. 
This approach leads one to the topic of maximum-likelihood estimation and its set of 
related techniques (Van Trees, 1968). 

The Problem of Priors. The other term in the numerator of Bayes' formula is the a 
priori probability p(x) of the unknown target type x. This term can bias the computation 
of jp(x|s) SO that target types that appear more often are more likely to be chosen. Because 
for most problems there is no legitimate reason for expecting one target type to be present 
more often than another, p(x) is often assumed to be UN, where N is the number of target 
types for the problem. For certain ground surveillance problems, it may be possible to 
estimate this prior probability better, because one may have an idea of the proportion of 
military vehicle types in a given situation from doctrine or other contextual knowledge. 
Generally though, the problem of priors is that they are unknowable, so one must guess 
at a reasonable expression for p(x) and hope (or analyze) that the resulting answer is 
somewhat insensitive to the exact guess used. 

21 



For example, consider again the case mentioned above where a target may be of 
different types and have an arbitrary orientation. To get to our final estimate, we need to 
make estimates of/?(s|x,0) and/?(x,0). We may be willing to assume that target type and 
orientation are independent, so that p(x,Q)=p(x)p(Q), and we may be willing to assume 
that the prior density for orientation is uniform, but the point is that we have to make 
some definitive assumption to be able to apply the Bayesian approach. 

The Assumption of Independence. To make expressions mathematically tractable, 
one often assumes that various random variables contributing to the posterior density are 
independent of one another. This allows the joint density for those variables to be written 
as a product of their individual densities. The assumption of independence is often 
justified, but in some cases, it is not, and it may lead to inaccurate estimates of 
performance. Generally, independence between two random variables can be used as the 
limiting case where the value of one variable has no correlation with and conveys no 
information about the value of the other. 

Bayes Error Estimation. Even in the simple case of a two-class recognition problem, 
estimation of the optimal performance can be challenging. The Bayes error is the 
probability of making a mistake when using the optimum Bayes decision rule. It depends 
strongly on the conditional probability densities, as one might guess, and it can be 
interpreted as the degree of difficulty of the discrimination problem at hand. 

It is straightforward to compute the Bayes error given the conditional and prior 
probability density functions. Generally, one usually has available not these densities but 
a set of training data from which the densities must be estimated and the optimum 
decision rule chosen. In this case, it can be shown theoretically that it is impossible to 
estimate the Bayes error universally well (Devroye, 1996; Irving, 1996A). For any fixed, 
finite set of training data, there exists a probability density for the data that is sufficiently 
complex to make estimating the Bayes error from that training set "hopelessly 
inadequate" (Irving, 1996). A related result shows that for a finite set of training data, the 
only estimator of the Bayes error guaranteed to bound it from below is the trivial 
estimator zero. 

In spite of these difficulties, it is often possible to estimate an upper bound for the 
Bayes error. The work of Vapnik and Chervonenkis showed that it is possible to estimate 
the Bayes error for cases where the decision rule is constrained, for example, to be a linear 
discriminant (Devroye, 1996; Irving, 1996A). 
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5.1.5 Alternatives and Extensions 

Because the Bayesian approach requires a complete model, which rarely exists in the 
real world except as an approximation, there have been other approaches that attempt to 
mitigate the completeness requirement. Generally these have been developed in the 
context of reasoning systems for "intelligent" algorithms, but some of these ideas may 
have use in the estimation of ATR performance as well. Here we briefly mention a few of 
these approaches. 

The concept of maximum entropy has been used with success in the field of 
spectrum estimation and related areas of statistical inference. The basic idea is to assume 
that any unknown variable is as random as it can be, consistent with the known 
constraints of the problem. This can be considered as a justification for assuming that an 
unknown prior density is uniform over the possible values of the underlying variable. 

The Dempster-Shafer theory of evidence (Shafer, 1976; Pearl, 1988) is an attempt to 
introduce the concepts of belief and plausibility into a reasoning system. Belief can be 
interpreted as the degree to which a particular logical inference can be believed or 
"proven;" plausibility represents the degree to which the inference is consistent with the 
know facts. Together they can be considered as a range of probabilities. For example, the 
hypothesis that a target is a tank may be plausible if one observes a strong scatterer in a 
SAR image. The belief that the target is a tank may still be low, because one scatterer is 
not much evidence to support the tank hypothesis. The plausibility of many other 
hypotheses may be high also. 

The Dempster-Shafer theory also includes the concept of unresolved belief. A 
compound event (such as Ml Al or 1-12) can be given a measure of belief in addition to 
the belief given to the individual elements of the event (Ml Al and T-72 in this case). 

Probabilistic logic (Nilsson, 1986; Pearl, 1988) can be used in principle to develop 
constraints on the probabilities of hypotheses whose priors are unknown. Logical 
relations are used to bound the probabilities so as to not violate either the logic or the 
rules of probability theory. 

Fuzzy set theory has an extensive literature by Zadeh and others (Yager, 1987). Its 
fundamental concept is different from the ideas underlying basic probability theory. In 
probability theory, one has the notion of events that occur or not with some uncertainty, 
measured by probability. The notion of a fuzzy set is one in which membership may 
have degrees, represented by a continuous variable, rather than a binary variable (an object 
is either a member or not). One of the concepts that derives from this body of study is 
the notion of possibility theory (Zadeh, 1978) which tries to measure consistency 
between a hypothesis and the underlying data. 
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5.2   INFORMATION THEORY APPROACH 

Some researchers have attempted to apply the results of information theory to 
recognition problems. The use of information theoretic ideas is not inconsistent with the 
Bayesian approach to recognition discussed above. Quite the contrary—information 
theory depends heavily on probability theory and Bayesian analysis, but adds to it other 
interpretations and other analysis tools. In the subsections below, the fundamental ideas 
are outlined and their application to automatic target recognition is discussed. 

5.2.1 Recognition as a Communication Process 

Several researchers including (Briles, 1993) have posed the recognition problem as a 
communication problem. Instead of a target sitting in a background that is imaged by a 
sensor to produce sensor data, one imagines a message (the ideal target signature), which 
is to be distinguished from other messages (other ideal target signatures and perhaps that 
of the background as well). All of the messages are subjected to an imperfect channel, 
which is characterized by a capacity. The channel conveys the now corrupted messages 
to a receiver, where decisions must be made about the content of the original message. 

5.2.2 Fundamental Ideas 

The basic ideas of information theory and their elaboration are contained in several 
excellent texts on the subject, including (Cover, 1991). The notion of information is 
quantified by defining it in terms of the negative logarithm of the probability of 
occurrence of a symbol. (Symbols are used to construct the messages to be 
communicated.) The logarithm is conventionally taken to have base two, so that 
information is measured in bits. (The term "bit" was originally coined as shorthand for 
binary digit; in this context, a bit can be thought of as representing a binary decision.) 

The entropy, or randomness, of a source is defined as the average information 
conveyed by the symbols emanating from that source. It is generally symbolized by H 
and given by the equation 

H = -^p(x)-\og2p(x) 
X 

where x is a discrete random variable and p(x) is its probability mass function. The 
entropy can also be interpreted as the expected value of -log p(x). A source has its 
maximum entropy if all its symbols are equally likely. 

The concepts of conditional entropy (the entropy of a random variable whose 
probability mass function is conditioned upon some event) and joint entropy (the 
entropy of several random variables with a joint probability mass function) are defined in 
an analogous fashion. 
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The relative entropy is defined as the Kullback-Leibler distance between two 
probability mass functions (see Cover, 1991). It can be written as 

D(p,q)=^p(xyiog^ 

where p and q represent the two probability mass functions. Note that D(p,q) is not a 
true distance function in the mathematical sense since it is not symmetric, but it does 
represent in a single number the extent of the difference between the two probability mass 
functions. 

The concept of mutual information can now be defined. It is the reduction in 
entropy that occurs when one is presented with additional information. Formally, it can 
be written as the entropy of a probability mass function minus the conditional entropy of 
the probability mass function. If the conditioning information (e.g., the value of a related 
random variable) is significant, then the conditional probability mass function will be 
significantly "narrower" (i.e., more restrictive) than the unconditional, and the reduction 
in entropy will likewise be significant. The mutual information between the original 
random variable and the conditioning random variable will be large in this case. It turns out 
that the mutual information can also be written as the Kullback-Leibler distance between 
the joint distribution of the two random variables and the product of the two marginal 
distributions. 

One of the seminal events of information theory was the discovery by Shannon that 
an imperfect channel could still carry information losslessly (in the limit) as long as its 
channel capacity was not exceeded. Channel capacity is measured in terms of an 
information rate in bits per second. If one wishes to transmit more information over the 
channel, then one must accept that there will be distortions or errors in the data being 
transmitted. (Compression of data is one way to reduce the number of bits to be 
transmitted, but that doesn't reduce the information rate, just the redundancy in the data.) 
The trade-off between transmission rate and the distortion suffered by the data being 
transmitted can be formalized in a rate distortion theory (Cover, 1991). 

5.2.3 Relation to Bayesian Approach 

It is apparent that the fundamental ideas of information theory depend heavily on 
probability. It is no surprise therefore that many of these ideas and the analysis tools 
derived from them can be related to Bayesian concepts. Mutual information plays a 
central role in many of the information-theoretic analyses. For example, there should be a 
large degree of mutual information between ideal target signatures and the target 
recognition decisions at the output of an ATR. If there isn't, one can ask where the 
information is being lost. Was it not there in the first place (target signatures too similar)? 
Was it lost in the channel (the sensing process)? Was it lost in the receiver (the ATR 
algorithm)? 
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The so-called theory of types (Cover, 1991) is sometimes used in information 
theory. In this context, a type is defined as an empirical probability distribution 
representing the relative proportion of occurrence of each value of a random variable in a 
given data set. One theorem dictates that the number of types is polynomial in n, where n 
is the length of the sequences in the data set. Since the number of possible sequences is 
exponential in n, then at least one type has exponentially many sequences. Results from 
the theory of types can be applied to the problem of the estimation of the Bayes error in 
a hypothesis-testing situation. 

5.2.4 Examples of the Application of Information Theory to ATR 

By making the analogy between a target recognition problem and a communication 
problem, a Bayesian rate distortion function (Briles, 1993) can be defined as the minimum 
of the mutual information between the source (target type prior probabilities) and the 
channel output (target type probabilities conditioned on the sensor data) under conditions 
where the Bayes risk (average probability of error) is bounded from above. A theorem 
relates this Bayes rate distortion function and the conventional rate distortion function. 
A further theorem relates mutual information to the probability of making a recognition 
error. Briles states that "knowledge of the source-observation mutual information can be 
used to determine how well a correlation identifier will perform." Briles tests his 
approach by using Monte Carlo integration to evaluate an integral needed to plot the 
Bayes rate-distortion function. He compares this to a plot of information rate vs. 
probability of recognition error obtained from 15 ultra-wideband radar range profiles (3 
targets at 5 positions each) with added Gaussian white noise at 13 varying strengths. Each 
range profile consists of approximately 400 uncorrelated samples. The numbers for the 
measured data plus added noise He above the derived Bayes rate-distortion curve, 
indicating that the derivation somewhat underestimates the information rate for a given 
distortion for these data. 

In a series of papers, Garber and Zelnio attempted to make some simple estimates 
of ATR performance using radar range profiles (Garber, 1997). In the context of a real- 
aperture radar producing range profiles of airborne targets, they developed the concept of 
sensor capacity, analogous to the information theoretic channel capacity, to describe a 
sensor's ability to keep different target signatures distinct. Using target constraints and 
the sensor capacity, they estimate the intrinsic separability of target signatures, which in 
turn drives the probability of recognition error. In essence they regard the targets as 
providing a potentially rich source of information, but to utilize this information to make 
recognition decisions, one must have a sensor with enough capacity to convey the 
information to a processing algorithm. To test their estimates of recognition error, Garber 
and Zelnio compared them to probabilities of classification error computed using a data 
set of 1512 radar returns for three target aircraft. They found that their error estimates 
were "quite optimistic" when compared with results from the measured data. 
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Mutual information can be regarded as a similarity measure between two random 
variables, and thus it can be used in place of other common metrics to measure degrees of 
difference. For example, Viola has used the mutual information to register images with 
one another, including disparate types of images such as a 3-D model with an intensity 
image (Viola, 1995). For Gaussian probability densities, it is possible to show that 
maximizing information, minimizing entropy, and minimizing variance are equivalent. For 
non-Gaussian densities of course, they are somewhat different. The suggestion is that the 
operation of maximizing mutual information may lead to better performance for non- 
Gaussian densities than maximizing a likelihood ratio. For establishing performance 
bounds, mutual information provides another metric with which to measure the difference 
between two probability density functions. 

5.2.5   Limitations of the Information Theory Approach 

Because information theory depends so heavily on probability and statistics, it 
suffers from many of the same limitations as the Bayesian approach. Prior probabilities 
must be assumed, conditional probabilities must be estimated. If one assumes a particular 
form for a probability density function so that one may estimate its parameters from 
measured data, then there is the possibility that the assumed form may not be correct. If 
one wishes to estimate a density nonparametrically from data, then one will need enough 
data to estimate any subtleties in the density. 
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5.3   SUMMARY OF REPRESENTATIVE APPROACHES 

In an attempt to summarize the foregoing discussion of the various approaches, a table 
is included below. Not all references mentioned in the text appear in the table. The entries 
go through the Bayesian approaches in chronological order and end with the two 
information theory approaches. 

Reference Estimates Approach Data Comments 
Fukunaga 1969 Bayes error Assumes 2 

multivariate 
Gaussian dist. 

Garber 1988 Bayes error Assumes M 
multivariate 
Gaussian 
distributions 

Reduces M-class 
problem to 
pairwise errors 

Devroye 1996 Bayes error Nonparametric 
estimation of 
distribution 

Assumes 
training set 

Detailed 
discussion of 
nonparametric 
theory 

Irving 1996B ROC bounds 2-D Poisson 
distribution of 
peaks 

ADTSSAR 
images of 
Stockbridge 

Clutter model 
too optimistic 

Williams 1997 Bayes error Nonparametric 
estimation of 
distribution 

ADTSSAR 
images of trees 
and grass 

Nonparametric 
more robust 
than Gaussian 

Doria 1997 False alarm rate Bayesian from 
first principles 

FOR Models false 
alarm rate to 
make ATR 
adaptive 

Grenander 1997 Hilbert-Schmidt 
bounds 

Bayesian Generated from 
CAD models 

General 
theoretical 
approach for 
multi-target 
multi-sensor 

Horowitz 1997 Recognition 
error, contrast, 
SBPR 

Bayesian, 
Monte Carlo 
evaluation 

From scaled 
models, plus 
Rayleigh fades 

Assumes known 
pose 

Yeang 1998 Bayes error, 
SNCR 

Bayesian from 
first principles 

Whitening filter 
superior to 
multiresolution 
processor 

Briles 1993 Bayes rate- 
distortion 
function, mutual 
information 

Information 
theory, Monte 
Carlo 
integration 

15 ultra- 
wideband radar 
range profiles (3 
objects x 5 
positions) plus 
added white 
Gaussian noise 

Defines a Bayes 
rate-distortion 
function 
between target 
and signature 
spaces 

Garber 1997 Recognition 
error 

Information 
theory 

1512 radar 
range profiles of 
3 aircraft 

Optimistic 
performance 
estimates 
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6. ASSESSMENT 

The problem of detecting and recognizing military vehicles using airborne synthetic 
aperture radar is difficult. The primary source of this difficulty is the degree to which the 
signatures of the targets, other confusing objects, and the background can vary. 

There are several types of activities that go on in the SAR ATR research 
community, although the lines among them are often indistinct. Much of the work and 
much of the interest of researchers involves the development of new SAR ATR 
algorithms in an attempt to extend the domain of application of ATR technology to 
increasingly more difficult and realistic problems. Other activities support this work, such 
as SAR data collection, SAR data analysis, synthetic data generation, formal algorithm 
evaluation methodology and tools, and of course performance estimation and modeling. 

To date, most SAR ATR algorithm development research has concentrated on 
recognizing target signatures using only information derived from the SAR imagery. In 
concert, performance estimation for SAR ATR has been focused on characterizing the 
uncertainty and unknowns in target signatures. Little regard has been paid to the problem 
of characterizing the background, other than by modeling it as a random process with a 
particular probability density function. Almost no analysis has been made of how much 
performance could be boosted by the proper use of contextual information. 

In spite of a common foundation based on probability theory, SAR ATR 
performance modeling approaches exhibit considerable diversity. This diversity stems 
from choices made in modeling the target signatures, the background signatures, and the 
confuser signatures. For example, one may attempt to model the statistics of the target 
pixel values, the statistics of the locations of the principal peaks in the SAR image of a 
target, or the statistics of some other feature or set of features thought to be useful in 
separating targets from each other and from clutter. In Section 2, the representation of 
target, background, and confuser signatures was discussed; these representations drive the 
statistical models used to characterize their variability, and the statistical models in turn 
drive the details of the performance modeling approach. 

If the complexity needed to make accurate performance estimates leads to intractable 
analyses, then one is confronted with turning to Monte Carlo simulation. Given the 
decreasing cost of computation, this may be a more productive approach as time goes on. 
However, it is easy to devolve from Monte Carlo simulation of a performance model to 
simply running ATR algorithms over large data sets to evaluate performance. The 
problem with the latter is that it may not lend insight into how an ATR will perform in a 
situation not represented in the test data. 
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7. RECOMMENDATIONS FOR FUTURE RESEARCH 

In this section, we articulate a set of actions that we feel will further the 
development of SAR ATR systems that perform well enough to be considered for 
integration into future military intelligence, reconnaissance, and surveillance systems. We 
welcome discussion of these points in the hopes that a consensus of action will be 
reached between DoD funding authorities and the R&D community. 

Given the interest among researchers in developing algorithms, it takes some 
discipline to address performance modeling and evaluation without lapsing into writing 
recognition code, especially if numerical techniques are necessary to analyze performance. 
It would be helpful if the community could develop a more or less standard set of 
performance modeling questions to be addressed by a performance model. The questions 
raised in Section 4 could be taken as a starting point. An important component of this 
action is to involve those who understand real military needs and who can extrapolate 
them into the future. Operational organizations understand their current capabilities and 
shortcomings in light of their assigned missions, but they may not fully appreciate the 
possibilities that the emerging ATR technology is opening. 

To complement the set of performance questions discussed above, a standard set of 
SAR ATR problem domains would be useful, for both developing more accurate 
performance estimates as well as evaluating ATR algorithms. The motivation here is that 
there exists a wide spectrum of recognition problems, from stable target signatures in a 
well-characterized background to realistically variable signatures in a complex urban 
background. Just as ATR algorithms of increasing complexity will be required to handle 
the more difficult end of the spectrum, we expect that performance models of increasing 
complexity will be needed to estimate performance in the more difficult cases. A nested 
set of problems of increasing difficulty would be a useful gauge for developing and 
understanding the limitations of performance models. 

One of the keys to better performance models is a thorough understanding of SAR 
data. This implies, of course, that significant amounts of representative data be taken so 
that one can analyze the data and understand its variability. We recognize that data 
collection is an ongoing activity, and we certainly support its continuation. However, 
collection must be followed by analysis with an eye toward improved performance 
models. It would be ideal if adequate data were available not only to DoD contractors and 
labs, but also to universities and other research institutes. 

In most current performance models, the background is characterized as a random 
process. Various studies have suggested various distributions with estimates of the 
appropriate parameters. This is adequate for targets placed on a homogeneous 
background such as a grassy field. It becomes less than adequate for complicated natural 
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backgrounds (mixes of fields, forest, rocks, varying vegetation, and lakes) and possibly 
hopeless for highly structured, man-made backgrounds. Characterizing the background is 
more difficult than characterizing known targets, because backgrounds can exhibit wider 
variability. We recommend that the problem of background characterization be addressed 
more thoroughly, making use of the data and analyses mentioned above, to enable 
performance modeling of more realistic situations. A similar argument may be made for 
the modeling of confuser objects as well, which of course contribute to the complexity of 
some backgrounds. 

If one looks down the road to an operational system using recognition technology, 
the ATR algorithm will be operating in some context, supporting a military mission, 
perhaps confirming the locations of suspected targets or searching new areas for evidence 
of military activity. Contextual information has the potential to improve the performance 
of the ATR algorithm, for example, by eliminating some hypotheses, reducing the 
possibility of others, and generally constraining the recognition decisions to be sensible. 
However, to be able to use such contextual information effectively, it must be represented 
in a form amenable to supporting the required computations. The term "context" is 
probably too broad to be useful in helping to design ATR algorithms; it must be broken 
down into well-defined pieces of information potentially available to the algorithm. When 
that is done, algorithm designers can begin to understand how (and how much) such 
contextual information can be used to improve target recognition. We recommend that 
potentially useful contextual information be codified, and that research into its 
characterization and utility for recognition algorithms be supported. 

One can'look forward to the day when a battlefield commander routinely has at his 
disposal surveillance information from several types of platforms. Recognition algorithms 
must be developed to integrate this information into sensible recognition hypotheses. A 
system designer must be able to address the question of how much impact on detection 
and recognition performance is to be expected from the availability of data from a second 
(or third or fourth...) sensor. One could similarly ask about the potential utility of 
multiple looks at a suspected target from the same sensor taken at various time intervals. 
We recommend that performance models be developed that are capable of estimating the 
amount of new information available in second or third looks at a suspected target from 
the same or different sensors so that increments in detection and recognition performance 
can be accurately assessed. 

Finally, the problem of automatic target recognition and developing practical ATR 
systems, as mentioned earlier, is actually a spectrum of problems, involving different 
tactics for different applications and situations. Despite progress to date, many of these 
problems remain to be addressed and solved. Given this state, it is imperative that 
researchers have access to each other's findings and can interact to establish fruitful lines 
of inquiry. Over the past several years, the SPIE AeroSense Conference on Algorithms 
for Synthetic Aperture Radar and the ATRWG (Automatic Target Recognition Working 
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Group) Conference have emerged as forums for these interactions. In addition, various 
IEEE conferences have sessions on recognition technology for various applications. Such 
meetings are of course useful for exchanging ideas and results; however, we feel it would 
also be useful to have a series of meetings focused on ATR performance modeling and 
estimation. Therefore we recommend that OSD sponsor and organize an annual meeting 
on this topic, perhaps in conjunction with ATRWG, and perhaps six months after the 
annual SPIE meeting. In addition, the VDL (Virtual Distributed Laboratory) ATR site at 
the Air Force Research Laboratory should also be used as a communications nexus for 
electronic discussions of developments in recognition technology and a repository for 
papers on ATR and performance estimation. 

In summary, our recommendations are to: 

• Develop a standard set of performance modeling questions to be addressed by a 
performance model. 

• Develop a standard nested set of ATR problems of increasing complexity to drive 
development of performance models. 

• Continue to collect representative SAR data and analyze it in the context of 
performance model development. 

• Improve the characterization of background and confuser objects. 
• Codify, characterize, and assess the utility of contextual information. 
• Develop performance models that address the utility of multi-sensor and multi- 

look integration of information. 
• Sponsor and organize an annual meeting on performance modeling and estimation 

and develop the VDL site into an electronic exchange for ATR ideas and findings. 
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