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A Study of Stability and Energy Conservation of a 3-D Electromagnetic PIC Code for Non- 
Orthogonal Meshes. 

Dmitri Kondrashov 
California Institute of Technology, Pasadena 

Joseph Wang, Paulett C. Liewer 
JPL/Califomia Institute of Technology, Pasadena 

Summary 

A 3-D electromagnetic particle-in-cell code (EMPIC) was developed for large-scale plasma 
simulation on parallel computers. To simulate plasma problems with complex geometries such as high- 
power microwave generation devices, curvilinear coordinates were used. A logically connected Cartesian 
grid consisted of hexahedral cells that could be deformed to body-fit complex shapes. A finite-volume 
method for a non-orthogonal grid was used to calculate the electromagnetic field. This method is based on 
Gedney-Lansing [1] and Madsen [2] algorithms, and is reduced to a standard FDTD algorithm for an 
orthogonal grid. Particle updates use current deposit formulation of Villasenor and Buneman [3] 
generalized to non-orthogonal meshes, preserving charge and current. 

The numerical stability of the electromagnetic algorithm was analyzed for a planar EM wave 
propagation in a distorted periodic box. The influence of face-to-edge transformation properties on the EM 
algorithm stability is analyzed. Energy conservation for a full PIC simulation of two-stream instability on 
non-orthogonal meshes is studied. 

Governing equations. 

The EM fields in the code are computed from time-dependent Maxwell's equations in an integral 

form: 

dt\Eds = c$Bdl + \jds 

dt\Bds = -c§Edl 

The particle trajectories are calculated from relativistic Newton's second law for a single charged 

particle in an electromagnetic field: 

dt ymV = q 

d.X=V 

f       V       \ 
E + -xB 

V       c       ) 

t 

The EM algorithm is based on explicit DSI (discrete surface integral) solution of Maxwell's 

equations, tailored to the case of hexahedral grid cells. Particle trajectories are calculated by a standard 

leap-frog algorithm described in Birdsall and Langdon [4]. The code reduces to a standard orthogonal 

EMPIC code on Cartesian grid, (Wang, Liewer and Decyk, [5]). 



Electromagnetic Algorithm Numerical Stability Study. 

The algorithm uses a staggered grid system. The primary cell B grid and dual cell E grid are 

defined. The fundamental code variables areBds (on each face of B grid cells), E-ds(on each face of E 

cells), B-dl (on edges of the E grid), and E-dl (on edges of the B grid), Fig.l. 

The integral Maxwell's equations are advanced using a 2nd order leap-frog scheme: 

/ \n+l/2 

(E ds)n+1 = (E-ds)n + At[c^B-dl + J-ds 
edges 

n+1/2 (\n+5ii        / \n+in 
Bds)      = (B-ds)     -Arc 

f \ 

j 

J^Edl 
\ edges J 

The algorithm is completely specified with transformation from face quantities (B-ds, E-ds) to edge 

quantities. For a uniform grid this transformation is trivial, so that 

B dl = B ds dl 

ds 
In this limit, a standard 2nd-order Yee algorithm is recovered. For a non-orthogonal grid, dl is not 

parallel to ds, so additional work has to be done (Fig. 2, for a 2-D case). There, 5 B-ds values are needed to 

compute one B-dl value. To obtain B-dl at a particular cell face, say face 1 on Fig. 2, one first needs to find 

four Bi, (z'=2,5) values at two vortices of the face 1 by solving linear system of equations: 

Bv-ds1=(B-ds\ 
,i=2-5. 

Budsl=(Bds)i 

where (B-ds), 0=1,5) are known fundamental variables, and Bn are unknown vectors. Next, a weighted 

average of Bn is dotted with the dual-edge vector dli to form B-dl. 

Here we can distinguish tree different methods of weighting scheme: 

Method A: Equal weights: Ö).   = 0.25 



Method B: Volume-based weights: COh; — 
Ids^ x ds; 

2X 
Method C: Here Bdl is a sum along two line segments dln and dl,2 from neighboring cell centers to cell 

face: 

(B-dl\ = (B-dl)n + (B-dl\2 

{B-dl)n = {Bncon+Bl3co13)dlu 

(B-dl)n={Bl4Q)l4 + Bl5col5)dll2 

dlx =dln+dln 

where weights are one-sided volume averaged. The purpose of Method C is to compute portions of edge 

values locally at each cell so that no interprocessor communication would be necessary. However, Method 

C has turned out to be the poorest one in terms of numerical stability. 

Numerical Stability of the EM Algorithm. 

The EM algorithm has been reported to have a weak numerical stability (Brandon and Rambo, 

[6]). Here the EM algorithm stability is analyzed on a test computation of a planar EM wave propagation 

through a distorted periodic box. Numerical parameters for a test case are as follows: 

the wave is propagating along the z-axis, 

number of grid points, A^ 17, Ny=ll, N~9; 

box dimensions, L^=\Q, L,=10, L^20; 

speed of light c= 1, 

wave transient time is 20. 

The grid is 2-D distorted in the x-y plane: 

z(ij,k) = khz 

x(i,j,k) = ihx + dsin(mxihx) sin(myjhy) 

y(i,j,k) = ihx + d sin(mjhx)sin(myjhy) 

where /i.„ /iv, /;: are mesh sizes for a uniform orthogonal grid, 



2/r In 
m= —,    mv = — x T     '       "-y 

and d is distortion parameter. Examples of the distorted grid for several values of d are shown on Fig. Note 

that in this geometry the non-zero value of the z-component of E-ds represents numerical error, which 

makes it useful for analytical purposes. Logarithmic plots of total energy and maximum value of (E-ds)- 

over the computational domain as a function of time are shown in Fig. 4. Three methods of weighting 

scheme A, B and C are compared for a test run with d=0.8. All three methods are numerically unstable; 

Method A has the smallest growth rate, while method C has the highest one. Method A takes 7500, and 

method C 50 wave transient times to become unstable. One can observe that numerical error in z 

components of EM field directly affects numerical stability. Once the numerical error becomes comparable 

with the non-zero EM field components of exact solution, the instability appears as an exponential growth 

of total energy. The growth rate increases with distortion size (Fig. 5). 

Langdon [7] suggested the importance of face-to-edge transformation properties for numerical 

stability. He considered a 2-D field in 2-D geometry and found that for the numerical stability, the face-to- 

edgc transformation must be symmetric. In the 2-D case shown on Fig 2, it means that contribution of 

(Bds)2 to (B-dl)i must be equal to the contribution of (B-ds)i to (B-dl)2. 

Here the analysis for a 3-D DSI algorithm is presented. The discretized Maxwell's equations in an 

integral form can be written as 

F    = S  ■ R 1^DF LJ£       ±JDE 

where matrices SE and SB are related as 

R    = S - F 

and E[)F, BPF, BDE, EPE are vectors of grid values of E-ds, Bds, Bdl and Edl, respectively. The face-to- 

edge transformation can be specified as 

"DE ~ *B ' &PF 

^PE       *E ' ^DF 

Using these definitions, we derive 



" T 
tLDF — ~ME t,DF ,      ME — oE 1B oE   1E 

BPF=-MBBPF,     MB = SE TESETB 

Thus, for computations to be stable numerically below Courant limit, matrices Me and Mb must be 

symmetric and positive definite. In this case, all eigenvalues of Me and Mb are positive. This requirement 

imposes restrictions on both Te and 7V In particular, if 

SE TB = TET SE   ' (D 

then Me and Mb are symmetric. Let us consider several special cases. 

1. Uniform Cartesian Mesh: 

TB — TE = A (diagonal matrix) 

Clearly, the condition (1) is satisfied and solution is stable, which is known from the properties of the Yee 

algorithm. 

2. Non-orthogonal uniformly skewed grid (Fig. 6): 

Here we have symmetric face-to-edge transformation: 

One can prove that condition (1) holds for such grid. Figure 7 shows that the solution is indeed numerically 

stable for a uniformly skewed grid. 

3. General non-orthogonal grid, such as on Fig. 3: 

Here condition (1) does not hold, so we can expect the solution to be numerically unstable. One can 

speculate that for different weighting schemes A, B and C, condition (1) holds to a different extent, which 

explains different results for numerical stability. 

4. Langdon 2-D Field Analysis: 

Langdon considered the case with 

TB=A 

Thus, matrix Mh becomes : MB = SE   TE SE ,  so for its  symmetry Te .  must be 

symmetric. However, this is a special case. But in general, condition (1) must be satisfied for numerical 

solution to be stable. Condition (1) imposes that for a 3-D field, even a symmetric transformation does not 

guarantee numerical stability. 



Test Case for a Full PIC Simulation on Non-Orthogonal Meshes. 

Let us consider a counter-streaming beam system: two equal electron beams are set to move at 

different directions with opposite velocities V^=0.4c. The electrons within each beam have Maxwellian 

distribution with thermal velocity v,/,=0.05c. The ions are considered to be a fixed background. This 

counter-streaming system generates the well-known two-stream instability. Calculation is again performed 

in a distorted periodic box as described earlier. In Fig. 8 electromagnetic energy, particle kinetic energy and 

total energy in the system are plotted as functions of time for distorted and undistorted grids. Figure 8 

shows that calculations correctly predict energy transfer between the particles and the fields which results 

from instability excitation and saturation. The total energy remains constant, as it should be. The error in 

total energy conservation does not exceed 2% even for a highly distorted grid (Fig. 9), and it decreases with 

increased number of particles (Fig. 10). The EM numerical instability plays no role in this computation as 

the characteristic time of the calculation is only several transient wave times. 

References 

[1] S. Gedney and F. Lansing, "A Generalized Yee-Algorithm for the Analysis of Microwave Circuit 
Devices", submitted to IEEE Trans. Microwave Theory and Techniques (1995). 
[2] N.K. Madsen, "Divergence Preserving Discrete Surface Integral Methods for Maxwell's Curl Equations 
Using Non-Orthogonal Unstructured Grid", J. Comp. Phys., 119: 34-35 (1995). 
[3] J. Villasenor and O. Buneman, "Rigorous Charge Conservation for Local Electromagnetic Field Solvers", 
Comp. Phys. Comm., 69: 306-316 (1992). 
[4] C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation. McGraw-Hill, New York, 
1985. 
[5] J. Wang, P. Liewer, V. Decyk, "3-D Electromagnetic Plasma Particle Simulations On a MIMD Parallel 
Computer", Comp. Phys. Comm., 87: 35-53 (1995). 
[6] S.T. Brandon and P.W. Rambo. "Stability of the DSI Electromagnetic Update Algorithm on a Chevron 
Grid." 22nd IEEE International Conference on Plasma Sciences, June 1995. 
[7] A.B.    Langdon,    "2-D   Electromagnetic   and   PIC    on    a   Quadrilateral   Mesh",    Memorandum 
No.UCB/ERLM95/96, College of Eng., Univ. California. Berkeley, Dec. 1995. 



3 
o 

bD 

<3 

<3 

Q 

bJQ 



ÖS) 

C 
o 
c o 

•i-H 
^—> 

s 

c 
Ui 

0) 
öD 

i 
O +-> 

i 
<D 
O 

ob 
•i-H 



oc 
o 
~0 

O 

T3 

W) 

<D 
+-> 
»-I o 

Q 
I 

CM 
CO 

toi) 

1                  1 

I 1 H         -F -f- O 

T3 



o 
c 
c 

o   ° 

o 
c 

ö 

c 

o 

3 

O     <+H 

H ^ 

ob 
•i-H 

A£J*TX3 



O 

U 
O 

o 
>f-H 

cd 
>. 

*J     "0    A3 

UH X) 
,0 cd <+H +-> 

C/D c/3 c T_H 

cd cd 
4-> •i-H 
4-> *-l 
C/3 <D 

o B 
£ 

T3 
c 
cd 

^—> 
C/3 
a-) 

PQ 

ob 
•*H 

HH 

 '   ■ 

o 

Afia*TZS 

H H 

Aßaeng 



a 

c 
9 
C 
0 
Ck 
a 
o 
o 

« 
o 

-H 
H 
>l 

0. 
I 
c 
0 

SS 

01 

>> T3 

in     n       H 

«1—1 

• 1—« 

C/3 £ 
O 

• i—i 

>> 

B s 
^ UH 

£ £ 
•f-H 

r^ c 
bb 3 

•»—1 ^H 

ÖH «s 

M 

's ^ 
a o 
Ö 

bb 
•i-H 



•   • 

o 

cd 

I 
O 

00 

PH 



O        ^ ^   o 
Ö   ^ •^   c • a b   o E* 

2 '5 
w  > 
o   9 
ÖD   O 

5   T3   ^ 

o 

e 
c 

fc 
o 

4-> 

*-l <D 
<D *-H 

13 
•1-H 

T3 c/3 
-<—> l-H C o o o ^^ ^M •1-H 

• a 
■H 

o 
c o 

^—> 

o 
^H 
*-H > 

• 1-H 

^3 
w UH 

ON C/3 

• *-H o 
[IH o 


