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THERMOMECHANICAL BEHAVIOR OF 
FUNCTIONALLY GRADED MATERIALS 

RESEARCH OBJECTIVES 

The objective of the present research is aimed at developing mechanics formulations, math- 
ematical models and computational models for functionally graded materials. Specifically, 
the nonlinear coupled thermomechanical response of these materials under static, dynamic, 
and thermal loading environments are studied. The work includes parametric studies per- 
formed by varying volume fraction distributions and material combinations. Key issues such 
as effective yielding in brittle ductile mixtures are also addressed. As part of the research, a 
finite element program for solving fully coupled nonlinear transient thermoelastic and ther- 
moinelastic equations for functionally graded solids is developed. Specific studies include 
analysis of the transient thermomechanical response of structural elements such as bars and 
plates made of functionally graded materials. 
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Thermomechanical Behavior of Functionally Graded Materials 

Abstract 

This report begins with a detailed introduction to the concept of functionally graded materials, 
highlighting their technological importance. Section 1 contains a detailed review of literature in 
the area of functionally graded materials, while placing in perspective, the present research. The 
various applications of FGMs is outlined and the key issues relating to the present research on 
FGMs are discussed. Specific issues that were addressed in the present research and the problems 
solved during the course of the present work are explained. In section 2, the detailed analysis of the 
pseudo-dynamic thermoelastic response of functionally graded ceramic cylinders is described. In 
this section, we present the finite element formulation of the one dimensional, axisymmetric heat 
transfer equation and the thermoelastic radial boundary value problem. A two-step solution of 
the governing equations of thermoelasticity is presented. Thermoelastic coupling is considered by 
taking into effect the temperature dependence of the constitutive equations. Nonlinearities due to 
the temperature dependence of the material properties of the constituent ceramic and metal, are 
considered. A parametric study with respect to varying volume fraction of the metal, is conducted. 
Temperature and radial/hoop stress distributions arising due to rapid heating of the inner surface 
of the functionally gradient cylinder are presented. 

In section 3, the nonlinear transient thermoelastic analysis of functionally graded plates is 
presented. The response of functionally graded ceramic-metal plates is investigated using a finite 
element that accounts for the transverse shear strains, rotary inertia and large rotations in the von 
Kärmän sense. The static and dynamic response of the functionally graded material (fgm) plates 
are investigated by varying the volume fraction of the ceramic and metal using a simple power 
law distribution. Numerical results for the deflection and stresses are presented. The effect of the 
temperature field imposed on the fgm plate is discussed. It is demonstrated that the response of 
the plates with material properties between that of the ceramic and metal is not intermediate to 
that of the ceramic and metal plates. 

The important issue of yielding of brittle-ductile mixtures is addressed in the section 4. Ce- 
ramics and metals exhibit contrasting material behavior in that metals undergo yielding under 
sufficiently large loads, while ceramics are mostly brittle. In materials that are mixtures of ceram- 
ics and metals, the ceramic embrittles the mixture and the metal imparts ductility to the mixture. 
In the present work, we obtain the yield stresses of ceramic-metal mixtures with recourse to mixture 
theory. A comparison with a one-dimensional model is also shown. Yielding within the mixture 
is assumed to occur when the partial stresses in the metallic component satisfy the classical J2 
criterion. 

The research conducted as part of the present effort adds significantly to the body of literature 
present, in several key research areas in functionally graded materials. In particular, significant 
results are obtained in the areas of thermomechanical modeling including nonlinear and transient 
effects. Yield point estimates of the mixture materials help in understanding inelastic behavior 
of functionally graded media. The detailed studies have been performed to study the effects of 
including nonlinearities induced by thermomechanical coupling and temperature dependence of 
material properties, and their importance has been highlighted. 
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1    Functionally Graded Materials 

1.1    Introduction 

Functionally gradient materials (FGM) are a class of composites that have a gradual variation 
of material properties from one surface to another. These novel materials were proposed by 
the Japanese in 1984 [1, 2] and are projected as thermal barrier materials for applications 
in space planes, space structures and nuclear reactors, to name only a few. As conceived 
and manufactured today, these materials are isotropic and nonhomogeneous. In general, 
all the multi-phase materials, in which the material properties are varied gradually in a 
predetermined manner, fall into the category of functionally gradient materials [2]. In fact, 
the functionally gradient material characteristics are represented in sea shells, bones, etc, 
and perhaps a better understanding of the highly complex form of materials in nature will 
help us in synthesizing new materials (the science of so called "biomimetics" [3]). 

The gradation in properties of the material reduces thermal stresses, residual stresses, 
and stress concentration factors [4]. If two dissimilar materials are bonded together, there 
is a very high chance that debonding will occur at some extreme loading conditions, be it 
static, dynamic, or thermal loads. Cracks are likely to initiate at interfaces and grow into 
the weaker material section. Another problem is the presence of residual stresses due to the 
difference in coefficients of thermal expansion between the materials. These problems can be 
resolved by gradually varying the volume fraction of the constituents rather than abruptly 
changing them over an interface. The gradual variation results in a very efficient material 
tailored to suit our needs. Figure 1 illustrates the compositional variation from one surface 
to another. 

A metal-ceramic fgm 

High temperature side Ceramic rich Heat resistant 
Good anti-oxidant properties 
Low thermal conductivity 

Low temperature side Metal rich Mechanical toughness, strength 
High thermal conductivity 
High fracture toughness 

In between Ceramic + Metal Effective thermal stress 
relaxation throughout 

In what follows, we will present a brief review of literature and summarize the develop- 
ments. 

1.2    Review of Literature 

A large amount of published literature is in Japanese. However, the second international 
symposium on functionally gradient materials was held in San Francisco recently [5] and 
this symposium has thrown light on current trends in manufacturing, design, and analysis 



with functionally gradient materials. The review will be presented in the following order: 
applications of FGM, design and optimization, fabrication techniques, and mathematical 
modeling. 

1.2.1 Applications of FGM 

As mentioned earlier, the functionally graded materials are projected as thermal barrier ma- 
terials [2]. High-temperature applications such as space planes [6], space structures, nuclear 
reactors, insulations for cooling structures [7], and on a different length scale altogether, 
the VLSI chips [8], etc. are potential targets for the use of functionally gradient materials. 
However, on a broader spectrum, these materials are viewed as nanocomposites [9] with 
applications in such diverse fields as electronics, optics, biology, and so on. 

Interestingly, the graded material concept goes hand in hand with the science of biomimet- 
ics [3]. Most of nature's material forms are nonhomogeneous with functionally graded ma- 
terial structure. It would not be too much to hope for, in the near future, materials whose 
constitution can be sufficiently controlled to meet our functional requirements. Another 
application of the functionally gradient materials is the use in the interfaces between two 
dissimilar homogeneous materials so as to relieve stresses and reduce stress intensity factors 

[4]- 
The functionally graded materials have potential applications in piezoelectricity too. A 

class of piezoelectric composites have piezoelectrically active materials in the form of fibers 
or particles embedded in a medium that may or may not be piezoelectric. These compos- 
ites attract interest due to their enhanced electromechanical properties over the individual 
constituents [10]. Functionally grading the volume fraction of the constituents such that the 
thermoelectromechanical properties are enhanced will lead to a functionally graded piezo- 
electric material. 

In recent years, sonar and medical ultrasonic imaging devices have been enhanced by 
the use of piezoelectric composites [11, 12, 13]. One of the major problems associated with 
the homogeneous piezoelectric materials is the impedance matching for maximum energy 
transfer. By combining piezoelectric ceramics and polymers with passive phase materials, 
the efficiency of converting electrical energy to mechanical energy is improved beyond that of 
conventional piezoelectric materials. In addition, it has been demonstrated that an increase 
in bandwidth can be achieved by tailoring the volume fraction of variuos constituents [12,13]. 
Currently considered piezoelectric composites include multilayer piezoelectrics (alternating 
layers of piezoelectric ceramics and metal electrodes), combinations of piezoelectric ceramics 
and polymers based on different connectivity schemes [11]. While it does not appear that 
functionally graded materials have been either suggested or used for this purpose, it is likely 
that additional enhancements to bandwidth and electromechanical coupling can be made by 
using functionally gradient materials. 

1.2.2 Design and Optimization 

Usually, a designer is faced with the task of designing a system for optimal performance 
under certain given conditions and constraints, and at best he has the choice of the material 
to use. In fiber reinforced composite laminates, he has the additional flexibility of orienting 



the fibers in a lamina to suit his design requirements. With the advent of FGM, he can 
go a step further and use the so called "inverse design" concept. Basically, the material 
composition and the volume fraction gradation is determined from an analysis based on the 
reduction of thermal stresses, residual stresses etc. The material is then fabricated using the 
profile distribution obtained from the analysis. 

The profiles for the material property variation that have been studied so far have 
been represented by polynomials, exponential functions, or homogeneous layers. Jin and 
Noda [14] use an exponential profile variation and determine certain parameters associated 
with the exponential function by minimizing the thermal stress intensity factors. Fakui 
[15] considered the effects of volume fraction of the powder and the centrifugal force in 
centrifugal casting on the cubic polynomial function profile. Matsuzaki et al. [7] optimized 
numerically the thickness and compositional distribution of the FGM with respect to the 
heat transfer in cooling systems. Williamson et al. [16] and Drake et al. [17] discuss the 
optimum microstructural characteristics with respect to the residual stresses. 

1.2.3 Fabrication Techniques 

Several techniques for fabricating functionally gradient materials are available and the de- 
velopments are presented in reference [5]. Prominent techniques are centrifugal casting [15], 
successive coating using vapor deposition [18], physical vapor deposition (PVD) by sputter- 
ing [19] and chemical vapor deposition (CVD) [20], automatic powder spraying and stacking 
(APSS) [21], combustion synthesis [22], sintering [23] and many more (see reference [5]). 
Evaluation of fabricated materials for strength and toughness, and the characterization of 
the material properties has also been done. 

1.2.4 Mathematical Modeling 

In the study of FGM, the modeling involves the characterization of the constitution of the 
material, and the theoretical and computational analysis (for instance, thermomechanical 
analysis) of the functionally graded solids (solids made of functionally gradient materials). 

1.2.5 Constitutive Relations 

Generally speaking, there are two ways to model the material property gradation in solids: (i) 
assume a profile for volume fraction variation - this could be thought of as a "macroscopic" 
approach , and (ii) a micromechanics approach to study the nonhomogeneous media. 

In the section on design and optimization mention was made of the different composi- 
tional profiles that are currently being used. Polynomial representations include quadratic 
variations [24, 25] and cubic variations [16, 26, 27]. Exponential functions have been used in 
references [28, 29]. Piecewise homogeneous layer representations have been used in references 
[30, 31]. 

At the microstructural level, the functionally graded material is characterized by a 
transition from a dispersive phase to an alternative structure with a networking structure 
in between [32]. The micromechanics of a random inhomogeneous media has been a subject 
of some intensive study in the last decade [33]. However, such studies, until recently, have 
mainly concentrated on inclusions or inhomogeneities of different shapes in a homogeneous 



substrate ("statistical homogeneity" is assumed). In general, the micromechanics study of a 
nonhomogeneous media can be classified into three approaches: (i) the variational approach 
[34, 35] that provides an upper and lower bound for effective moduli of nonhomogeneous 
materials, (ii) the Eshelby-type inclusion theories [32, 36, 37] (mean-field theories, self- 
consistent schemes, and generalized self-consistent schemes), and (iii) percolation theory 
[38] and multiple scattering theory [39]. 

Among these references, Zhai et al. [32] and Nan et al. [39] directly address the 
constitutive relations of functionally graded materials. Pindera and Freed [40], Pindera et 
al. [41], and Aboudi et al. [42] use the unit-cell approach to analyze the functionally graded 
materials. Recently, a special issue on functionally gradient materials has been released 
by International Journal of Composites Engineering [43], wherein the papers are primarily 
based on micromechanics. 

1.2.6    Analytical Studies 

The focus of analytical studies on solids made of functionally graded materials has been 
mainly in three areas, viz., the study of interface cracks, the thermomechanical response, 
and the elasto-plastic analysis. 

Interface Cracks 

If the interface region between two dissimilar homogeneous materials is made of a func- 
tionally gradient material, the stress intensity factor reduces significantly [4]. Presence of 
cracks in a nonhomogeneous medium has been a subject of intensive study, for example see 
references [4, 14, 28, 29, 44, 45, 46, 47]. The studies involve solutions to mixed boundary 
value problems, wherein transform methods are utilized to reduce the problem to an integral 
equation form, which is then solved numerically. The material property gradation in the in- 
terface is usually represented by an exponential function as it leads to analytically tractable 
expressions. 

Erdogan and group [4, 28, 45, 46] have studied the problem of a plane crack in a 
nonhomogeneous medium. An interesting result of their study is that Poisson's ration has 
no significant effect on the stress intensity factor, and hence, it is usually held constant [28]. 
They have also observed that the crack tip stress and displacement oscillations in bonded 
dissimilar materials disappear if the interface is graded [45], and that square root singularity 
is maintained at the crack tip (crack in the interface zone made of functionally gradient 
material). 

Noda and group [14, 29, 47] have studied the steady-state and transient heat conduction 
problem of a functionally graded solid (solid made of functionally gradient material) with 
a crack. Their conclusions are that elastic modulus of ceramics should be greater than the 
modulus of metals, heat conductivity and thermal expansion coefficients in ceramic should 
be less than metals, and variation in thermal coefficient of expansion from ceramic to metal 
should be less dramatic than the variation of elastic modulus and heat conductivity. 

Thermomechanical Problems 

The principal applications of functionally graded materials are in high-temperature 
environments. Severe requirements are placed on these materials - maximum temperature 



of 2100K and and a temperature difference between the surfaces of around 1000K over a 
span of a centimeter. Quite naturally, the study of the material response under such intense 
high-temperature loadings is essential. 

Studies carried out so far have mainly concentrated on the uncoupled thermomechan- 
ical problem (with the exception of [49]). Jin and Noda [14] have used the minimization 
of thermal stress intensity factor for a crack in a metal/ceramic functionally gradient ma- 
terial as a criterion for optimizing material property variation. They have studied both the 
steady-state [29] and the transient [47] heat conduction problems, but have neglected the 
thermomechanical coupling. 

Numerous other people have studied the thermal response of a functionally graded 
solid [24, 27, 30, 29, 47, 48, 49]. It has generally been observed that grading the material 
properties reduces thermal stresses and residual stresses. Tanaka et al. [50, 51] have designed 
FGM property profiles using sensitivity and optimization methods based on the criterion of 
reduction of thermal stresses. Fuchiyama et al. [24] have shown that it is important to 
consider the temperature dependence on material properties. The crack initiates just after 
cooling on the high-temperature side (eg., ceramic), and the crack exhibits an accelerated 
growth into the material, followed by a deceleration before it stops. Zhang et al. [49] have 
compared the solutions of linear uncoupled, linear coupled, and nonlinear coupled equations 
and show that the effect of thermomechanical coupling is significant and it is necessary to 
consider the coupling to predict realistic stress distribution. It is interesting to note that they 
have studied the thermal shock problem and have stressed the importance of considering the 
thermomechanical coupling, while in reference [47] the coupling effect has been considered 
insignificant and ignored. 

Elasto-Plastic Analysis 

In a ceramic/metal composite, cracking develops in the ceramic and plastic deformations 
develop in the metal region. Williamson et al. [16, 17] have done elastic-plastic finite 
element analyses of a functionally graded N1-AI2O3 disk and rod specimens and observed that 
plasticity effects must be included to realistically model the stress reduction. An interesting 
result of their study is that including the effects of plasticity offers stress relaxation in 
non-graded specimens, but not as much in graded specimens. Teraki et al. [48] have done a 
theoretical and numerical elastic-plastic analysis of ceramic/metal FGM under cyclic thermal 
load. They have observed "thermal ratcheting", i.e., the plastic strains increase with every 
cycle. 

Analysis with Functionally Graded Piezoelectric Materials 

Tani and Liu [25] have studied the SH wave propagation in a functionally graded piezo- 
electric plate. Their analysis indicate that the displacement waves are confined to a small 
portion of the plate, and the rest of the plate carry negligible waves. This result shows a 
glimpse of the usefulness of functionally grading the piezoelectric materials. 

1.2.7    Computational Studies 

Williamson et al. [16, 17] have used ABAQUS to study the plastic response of axisymmetric 
functionally graded specimens under simulated cooling. Kawasaki and Watanabe [52] have 



used NASTRAN to study the thermal stress field in disk shaped functionally gradient ma- 
terials. Puchiyamo et al. [24] have used an 8-node quadrilateral axisymmetric element to 
study the transient thermal stresses and stress intensity factors. 

1.3    Summary of Developments 

As discussed in the section on review, the key issues related to the functionally gradient 
materials are: applications of FGM, design and optimization, fabrication techniques, ex- 
perimental evaluation and characterization, and mathematical modeling. This is illustrated 
pictorially in Figure 2. 

One of the issues of principal concern is the mathematical modeling of functionally 
gradient materials. This involves the study of the constitutive relations of the material and 
the analysis of solids made of FGM under various loading conditions. Box I summarizes 
the developments in the modeling of the constitutive behavior, and Box II summarizes the 
analytical studies done so far. 

Box I 
Constitutive Relations 

Assumed Variation of Material Properties 
• Polynomial profiles (e.g., E = a0 + a^z + a2z

2) 
• Exponential profiles (e.g., E = E0e^x) 
• Piecewise homogeneous layers (Ei, V{, pi, kf, i = layer number) 

Micromechanics Approach 
• Variational methods 

o Upper and lower bounds of effective elastic moduli 
• Eshelby-type inclusion theories 

o Mean-field schemes 
o Self-consistent schemes 
o Generalized self-consistent schemes 

• Percolation, multiple scattering theories 

1.4    Present Research 

The primary focus of the present research is in the area of mathematical modeling. While 
no research was done in the areas of fabrication, and experimental evaluation and character- 
ization, the results available in the literature on these areas were used extensively both for 
comparison and guidance. The present research falls into the following categories. 



Box II 
Analytical Studies 

1. Interface Cracks 
• Cracks in Graded Interface Region 

o Mixed boundary value problem 
• Thermal loading environments 
• Optimize material property variation 

o Criteria : reduction in thermal stresses, residual 

2. Thermomechanical Problems 
• Study of thermal stresses 
• Residual stresses, surface cracks 

during cooling 
• Uncoupled and coupled thermoelastic equations 
• Linear and nonlinear thermoelastic equation 
• Steady-state and transient responses 
• Loadings : Constant surface heating, thermal shocks 
• Effect of material property variation 

on thermal stresses, etc. 

3. Elastic-Plastic Analysis 
• Plastic deformation in the metal rich region 
• Thermomechanical fatigue 
• Finite element studies 



1.4.1 Modeling of the Constitutive Behavior 

Box I summarizes the developments in the modeling of the constitutive relations in the func- 
tionally graded materials. The more common approach consists of representing material 
property variations by continuously differentiable functions whose coefficients are optimized 
considering the reduction of thermal stresses, etc. In general, materials with these property 
variations have been proven to be manufacturable with either existing or new fabrication 
techniques. However, a generalized representation has been lacking. Deeming this type 
of representation of material properties as macroscopic can present a few problems. For 
instance, a few property variations are difficult to represent by these continuously differen- 
tiable function representations. This is illustrated through Figure 3, where the variations 
can be assumed to be that of the volume fraction of any one constituent of the functionally 
graded material. 

On the other hand, the piecewise homogeneous representation introduces artificial in- 
terfaces. Therefore, in order to model a large class of variations, either continuous but 
difficult (see Figure 3) or discontinuous at certain planes, it is necessary to adopt a layerwise 
polynomial representation. Conceptually and mathematically, this is similar to the layer- 
wise theories for composite laminates [53, 54], though simpler due to the isotropic nature 
of the functionally graded materials. The present approach can be naturally extendable to 
orthotropic situations. 

The varying properties of the medium are represented by a set of mathematical or 
numerical layers. The functionally graded material is discretized through the thickness into 
as many layers as required. For instance, Figure 4 shows the possible numerical layer divisions 
for the complex property variations shown in Figure 3. The variation within each layer can 
be represented by linear, quadratic, or higher-order polynomials, if necessary. This type of 
representation encompasses a large class of variations including discrete layer representations 
and piezoelectric layers. 

1.4.2 Thermomechanical Response 

The importance of studying the thermomechanical response of the functionally gradient 
material systems was mentioned earlier. However, we will briefly outline these reasons again: 

1. Applications in high-temperature environments 

2. Steep gradient of temperature through the thickness 

3. Very high thermal stresses and thermal stress intensity factors 

4. Onset of surface cracks with cooling 

5. Variation of properties such as thermal conductivity, coefficients of thermal expansion, 
etc. 

In order to obtain an accurate thermal response of the functionally graded material 
system, it is necessary to model the system using full, nonlinear, coupled thermoelastic 
equations. However, in literature, the main focus has been the linear, uncoupled equations. 
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Zhang et al. [49], and Amin and Sierakowski [55] discuss the importance of thermomechanical 
coupling, particularly in the presence of transient loading conditions such as thermal shocks 
etc. 

The present work contains a detailed study on the coupled nonlinear coupled thermoe- 
lastic response of the solids (rods, plates, and shells) made of functionally graded materials. 
While analytical solutions have been obtained for simple cases, the general problem is solved 
numerically. A general finite element model is developed to obtain the thermomechanical 
response. The steady-state and transient conditions were also considered. The thermal 
response is characterized for several loading conditions and material property variations. 

1.4.3 Inelastic Analysis 

The study of the inelastic response assumes importance since metals usually form an integral 
part of the functionally graded materials. It is necessary to understand the stress relaxation 
that occurs in the functionally gradient material in order to design the material property 
variation appropriately. The focus of the present research is on: 

1. Elastic-plastic analysis of FGM specimens 

2. The effect of thermomechanical coupling in the inelastic regime (for e.g., see Allen [56]). 

1.4.4 Inverse Design/Optimization 

All of the above objectives quite naturally lead us to the design aspect of the functionally 
graded materials. We have at our hand the ability to tailor the material properties according 
to our needs. The thermomechanical response of the system both in the elastic and inelastic 
regime will influence the material property variation in the solid. 

1.5    Summary of Present Research 

The present research aims at developing mechanics formulations, mathematical models and 
computational models for functionally graded materials. Specifically, the nonlinear coupled 
thermomechanical response of these materials under static, dynamic, and thermal loading 
environments are studied. The following is an outline of the various important issues in the 
present research. 

1. Mechanics formulations, mathematical models, and computational formulations 

2. A finite element program for solving fully coupled nonlinear thermoelastic and ther- 
moinelastic equations 

3. Design of FGM property variations using the thermomechanical response; parametric 
study for optimum profile variations; quantify the results for use by designers and manu- 
facturers 

4. Study the response of structural elements (rods, plates, and shells) made of functionally 
graded materials under static, dynamic, and thermal loading environments using the finite 
element program. 
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Figure 1: Variation of material composition betweeen surfaces. 
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Figure 3: Illustration of material property profiles. 
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Figure 4: Numerical layer divisions corresponding to complex property variations through 
the thickness. 
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2    Pseudo-dynamic Thermoelastic Analysis of a Func- 
tionally Graded Ceramic-Metal Cylinder 

2.1    Introduction 

The study of response of structures to rapid heating is of importance. Often, structural 
components are required to sustain high temperature gradients. These temperature gradients 
may occur over extremely short periods of time, and so the material is exposed to a state 
of thermal shock. Typical situations where thermal shock occurs are during rentry of space 
vehicles, where the temperature changes from -100 degrees F to about 2000 degrees F in a 
few minutes, the Advanced Gas turbine, wherein a severe temperature transient of a change 
in temperature of 1500 degrees C occurs over a time period of 15s. Plasma facing materials, 
propulsion system of planes, cutting tools, engine exhaust liners, aerospace skin structures, 
incinerator linings, thermal barrier coatings of turbine blades, thermal resistant tiles and, 
directional heat flux materials are all examples where materials have to operate in extremely 
high temperature transient environments. 

Functionally graded materials are a new class of materials which are constructed to 
operate in high temperature environments. Typically, functionally graded materials are 
made from a mixture of ceramic and a combination of different metals. These materials 
are microscopically heterogeneous. Material heterogeneity introduces property gradients. 
These property gradients have to be appropriately tailored in order to gain advantage of the 
properties of the individual components. The high temperature resistance is provided by the 
ceramic. Ceramics are hard, brittle, corrosion resistant and are made by firing clay or other 
minerals and consist of one or more metals in combination with one or more non-metals, 
usually including oxygen. The thermal conductivity of ceramics is very small compared 
to that of metals. This enables the ceramics to withstand higher temperature gradients, 
for a given heat flux, as compared to metals. Also, the coefficient of thermal expansion for 
ceramics is small. This results in smaller thermal strains, and hence smaller thermal stresses. 

Thermal shock results when there are sudden and large temperature changes, thus caus- 
ing an uneven stress distribution and an uneven expansion. This could result in fracture. 
Since ceramics are brittle, mixing the ceramic with ductile metals is advantageous in such 
situations. The joining of ceramics with metals may be done in two ways. The structural 
component may be constructed by introducing distinct metal layers into a ceramic struc- 
ture. This introduces interfaces and results in thermal mismatch. If the property mismatch 
across interfaces is large, then, this leads to large thermal stresses that are undesirable. 
Alternatively, a mixture of the ceramic with the metal and ceramic with a continuously 
varying volume fraction may be manufactured. This eliminates interface problems. The 
stress distributions are more smooth. 

The main application of functionally graded materials are in high temperature environ- 
ments. As a result, the study of material response to high temperature conditions is very 
essential. Noda [1] has presented an extensive review that covers a wide range of topics from 
thermoelastic to thermo-inelastic problems. In this paper, Noda also discusses the impor- 
tance of temperature dependent properties on thermoelastics problems. He further presented 
analytical methods to handle transient heat conduction problems and indicates the necessity 
of an optimization of FGM properties. 
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Most studies which have been performed so far have mainly concentrated on the uncou- 
pled thermomechanical problems, notable exceptions include Zhang [2] and Amin [3]. Zhang 
and his coworkers modeled an isotropic ceramic/metal laminated beam subjected to abrupt 
heating condition, and demonstrated the influence of thermomechanical coupling on the 
thermal shock response. Amin and Sierakowski [3] discussed the importance of thermome- 
chanical coupling when the materials are subjected to transient thermal loading conditions. 
In contrast, Jin and Noda [4] considered the coupling effect to be insignificant and ignored 
it in their study. 

In the area of thermoelastic formulations, Tanigawa [5] used a layerwise model to solve 
a transient heat conduction problem and optimized the material composition to reduce the 
thermal stress distribution. Tanigawa [6] also compiled a comprehensive review on the ther- 
moelastic analysis of functionally graded materials. In the review, he discussed closed form 
solutions for some simple geometries. These solutions, however, were restricted to steady- 
state conditions. Tanaka et al. [7,8] have formulated a method to design FGM property 
profiles using sensitivity and optimization methods based on the criterion of reduction of 
thermal stresses. 

Most of the studies on thermal shock have been on experimental aspects. Kumakawa 
and Niion [9] studied the thermal fatigue properties of functionally graded material specimens 
by estimating the variation of effective thermal conductivity with thermal cycles under high 
heat flux conditions. Experimentally, they confirmed that there is an optimum compositional 
distribution to reduce thermal fatigue and concluded that normalized effective thermal con- 
ductivity is a useful index for showing thermal fatigue characteristics. Takahashi [10] using 
laser irradiation and plasma-arc heating methods for the evaluation of thermomechanical be- 
havior of functionally graded materials. Specifically, the laser irradiation method was applied 
to examine the possible fracture process of thermal barrier coating system in advanced gas 
turbine environments. The results have shown that ZrCVbased FGM gives a higher thermal 
shock/fatigue resistance compared to a conventional ZrOi coating materials. Shindo [11] 
studied numerically the thermal shock fracture of composite materials with temperature de- 
pendent properties, and analyzed the thermoelastic behavior of a cracked layered composite 
and an edge cracked orthotropic strip. Kokini [12] studies the effect of a transient thermal 
load on an interface crack in a ceramic-to-metal bond and examines the effect of geometry, 
material properties, constraint conditions and heat conduction across the crack. 

The response of graded cylinders to rapid heating has not been considered before. Also, 
none of the analyses in literature, take into consideration, the dependence of all the material 
properties, on temperatures. In situations where the service temperatures are high, analy- 
ses which consider temperature independent properties may be in considerable error. This 
paper considers the problem of thermoelastic deformations of a cylinder subjected to rapid 
heating and also considers the effect of temperature variation of all the appropriate material 
properties. 

2.2    Thermoelastic Finite Element Model of Cylinder 

In this section, we present the equations, finite element model and preliminary results for 
the pseudo-dynamic response of the functionally graded ceramic cylinders under rapid radial 
heating.   The analysis is termed 'pseudo-dynamic' due to the fact that the inertia forces 
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appearing in the elasticity equations is neglected. The time dependence of the response of 
the cylinder is limited to the unsteady heat transfer equation alone. 

Cylindrical pipes carrying hot gases experience high thermal transients. It is important 
to study the stress distribution in such situations. The stresses in the cylinder are developed 
primarily due to rapid changes in temperature. Figure 1. shows the hollow cylinder and 
the boundary conditions. The shaded annular region is continuously graded in terms of the 
material properties. In the present problem, the inner surface of the cylinder is subjected 
to a rapid increase in temperature and the unsteady heat transfer equation is solved. A 
time marching scheme is adopted in order to solve the parabolic equation. Then, at each 
time step, the equilibrium equation is solved. Temperature dependence of the constitutive 
equations is considered. Thus, at each time step, the constitutive equation is updated, 
with the temperature at that time step, which is obtained by solving the energy equation. 
As a first approximation, thermomechanical coupling and inertia terms in the equilibrium 
equation are neglected. The property variation is modeled using simple polynomial fits upto 
cubic order. Effective properties of the metal-ceramic composite are computed using a simple 
rule of mixtures, that is a linear function of the volume fraction of the metal. The variation 
of volume fraction along the radius is expressed in terms of a power law function of the radial 
coordinate, and is shown in Figure 2. 

2.2.1    Heat Transfer in FGM Cylinder 

The equation for the axisymmetric heat transfer in a heterogeneous cylinder is obtained from 
the statement of the conservation of energy. The heat transfer equation in polar coordinates 
is given by 

1 fdTd(kr)     ,   d2T\       „ dT     n 

where the thermal conductivity k, density p and the specific heat Cv, are all functions of 
temperature and the radial coordinate, r. This equation is non-linear and is solved iteratively. 
The boundary conditions are such that the outer surface of the cylinder is insulated and the 
inner surface of the cylinder is subjected to a convection condition. It is assumed that hot 
gases flow through the cylinder and therefore a convection boundary condition is imposed 
at the inner surface. The cylinder is assumed to be at room temperature initially. The 
boundary conditions are written as 

dT 
2-nkr— + 2vrh (T - T«,) = 0   :   rinner 

f¥~P 
2-Kkr— = 0     :    Tauter (2) 

where h is the heat transfer coefficient at the inner radius of the cylinder, k is the thermal 
conductivity and T^ is the temperature of the hot gases flowing through the hollow cylinder. 
Next, a semi-discrete finite element model of the equations is developed following the three 
step procedure in Reddy [13]. We then substitute the time approximation from the alpha- 
family of approximations, to obtain the fully discretized finite element model of the equations. 
The discretized system of equations is non-linear and have to be solved iteratively using the 
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Picard scheme. The non-linearities appearing in the force term are assumed to be known 
from the previous time-step, and the non-linearities in the stiffness matrix are assumed 
to be known from the previous iteration, in the Picard scheme. The time-step chosen is 
evaluated using a simple eigenvalue analysis of the discretized equations. The alpha family of 
approximations for parabolic time dependent equations and the descretized set of equations 
in the Picard scheme are as follows: 

{T}s =   {T}s + At{f}s+a 

M.+a =   (l-a){t} +a{f]        forO<a<l 

a =   0.5 stable Crank — Nicolson scheme; 0 ((At)2)    (3) 

*<*&.)]" ms; = [ff];m.+{#}* s,«+l 

rn 
Kij   =    /    pCyripitjjjdr + aAt 

Jra 

frb 
K^    =     /    pCvrtpiipjdr — (1 — a) At 

•IT a 

+1   dr  dr 
dr + K y 

dr  dr 
dr + Hij 

rpo 
I3+l 

Ma{/i},+1 + (l-a) {/,},) 
T% c =$■ converged 

convergence 
T?£ - T;+1 »2 

II TJVY 
< 10" (4) 

[»in 
K\       is the stiffness matrix at time step s + 1 and at the n th iteration in the 

Picard scheme, and {T}"+1 is the n+1 th iterate to be solved at the same time step. The 
right hand side of the above equation is the modified force vector that is computed from the 
solution at the previous timestep and from the n th iterate in the Picard scheme. The term 
H^ is due to the convection boundary condition and is added to the first diagonal term of 
the stiffness matrix, corresponding to the first element. V» and ipj are the one-dimensional 
lagrange shape functions in the radial coordinate. In this study, quadratic shape functions 
are used. The temperature distribution along the radius of the cylinder is obtained by solving 
the discretized set of equations, using the Picard method. Once, the convergence criterion 
is met and the temperature is known at a particular time step, the equation corresponding 
to the conservation of linear momentum is solved, at the same time step. The equation of 
conservation of linear momentum and its finite element model is presented next. 

2.2.2    The Thermoelastic Boundary Value Problem 

The large change in temperature across the radius of the cylinder gives rise to radial and hoop 
stresses of large magnitude. Thus, the stress distribution is driven mainly by the temperature 
distribution. The stresses in the cylinder are calculated under plane strain conditions. The 
problem is pseudo-dynamic, i.e., the inertia term in the equilibrium equation is neglected, 
however, the constitutive equations are assumed to change with time. This is because of the 
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temperature dependence of the constitutive equation. The equation for the conservation of 
linear momentum along the radial direction is given by 

doyr     arr - age   _ 
dr r 

The constitutive equations for the radial stress arr, and the hoop stress age, are given by 

arr   =   Xskk + 2perr - 2>aK (T - T0) 

(Tee   =   \ekk + 2vege-3aK(T-T0) (5) 

where A and /i are the Lame coefficients, K is the bulk modulus, a is the coefficient of thermal 
expansion, and T0 is the thermal strain-free reference temperature, which in the present case 
is taken to be the room temperature. The radial and hoop strains are given in terms of the 
radial displacement, u, by 

_   du 
or 
l du     u .„. 

e°o   =   ~^ + ~ (6) r ov     r 

The finite element model of the equilibrium equation is obtained following the standard 
three step procedure as before. This yields the following set of equations: 

{K]{u}   =   {F} 

The element stiffness matrix and the force vector are given by 

_  fr» d(r^i) 

" = L    *   [(A + 2"» * + 7*J -L iT7* (* " r )dr        <7) 

F, = Pi+ f" ^^-3aK (T - T.) dr (8) 
Jra     or 

where Pi is the nodal contribution of the externally applied force, which in the present case 
is zero. On the outer surface of the cylinder, a stress free boundary condition is imposed. On 
the inner surface, the radial displacement is constrained to be zero. Once the displacement 
is obtained at the end of each time step, the radial and hoop stresses are calculated, at the 
time step of interest, using a simple post processing subroutine. This is done for various 
distributions of volume fraction. The volume fraction of the ceramic is taken to be one 
at the inner surface and zero at the outer surface. In the next section, the temperature 
dependence of the properties of some of the commonly used ceramics and metals are listed. 
These material properties are then used in the thermoelastic analysis of the FGM cylinder. 
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2.2.3    Material Properties 

Tables 1 and 2 list the material properties of Zirconia and Ti6AlV, as a function of tempera- 
ture. The material property functions have been obtained from literature. In the context of 
finite elements, these functions may be expressed in terms of the finite element basis func- 
tions, within each element. Since, most of the property variation is not limited to simple 
lower order polynomials, a higher order Gauss Quadrature rule must be used, in general. All 
material properties, c, are expressed in the following form 

c = c0 {^Y + 1 + ciT + c2T
2 + csT3) (9) 

where c0 is the constant appearing in the cubic fit of the material property with temperature. 
c_i,ci,c2 and, C3 are the coefficients of T~l,T,T2 and, T3, obtained after factoring out c0 

from the cubic curve fit of the property. The material properties were expressed in this 
way, so that the higher order effects of the temperature on the material properties would be 
readily discernible. For the analysis with constant properties, the material properties were 
all evaluated at 298.15 degrees K. The values of each of the coefficients appearing in the 
above equation, is listed for the metal and ceramic, from tables 1 and 2. Also, the material 
property, c, at any point along the radius of the compositionally graded cylinder is expressed 
as follows: 

C — Cmetal \UJmetal)   i   Cceramic \VJceramic) \^") 

The expressions for the volume fraction of the metal and ceramic are given in the next 
section. The material properties of the metal and ceramic bring in the explicit tempera- 
ture dependence, with the temperature depending on the radial position, and the volume 
fraction is itself a function of the radial coordinate. Note that this way of expressing the 
material properties makes the analysis nonlinear, because the properties are dependent on 
temperature which is one of the field variables that we will solve for. As is common with 
the procedure for solving nonlinear problems, the material properties will be assumed to be 
known in terms of the temperature obtained in the previous iteration. 

2.3    Results 

The pseudo-dynamic, axisymmetric thermoelastic boundary value problem is solved for a 
cylinder with an inner radius of 0.0127m and an outer radius of 0.0254m. The temperature 
of the hot gases flowing within the hollow cylinder was assumed to be 2000 degrees K, 
and the heat transfer coefficient was assumed to be 750 W/m2K. The initial condition was 
chosen to be uniform at the room temperature at 298.15 K. The radial displacement at 
the inner surface of the cylinder was constrained to be zero, while, at the outer surface, a 
stress free boundary condition was imposed. A simple eigenvalue calculation was made to 
select a timestep of 5.0 x 10~5s. The ceramic chosen was Zirconia, along with Ti-6A1-V as 
the metallic component of the FGM. The volume fraction distribution is chosen in terms 
of a simple power law, such that the inner radius has a ceramic volume fraction of unity, 
and the outer radius has a metallic volume fraction of unity. The value of the convection 
heat transfer coefficient and T^ was chosen so that the temperature at the inner surface 
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increases to about 900-1000 degrees centigrade, over a period of 15s. This was chosen, so as 
to compare with the start thermal transient of the pipes carrying hot gases, in the Advanced 
Gas Turbine. The AGT is a 100-hp engine, designed for automobiles upto 3000 lb. The 
turbine inlet temperature is about 2500 degrees F [14]. One of the most severe thermal 
shocks the engine suffers arises during the startup period. 

The analysis was conducted for volume fraction distribution chosen to be of simple 
power law type, i.e., a variation of the form (;rzjJ:) > where, n is the exponent. If we set 

r = n + f (r0 - rj) (11) 

then, the metal volume fraction distribution may be represented as 

vf = fn   (0 < f < 1) (12) 

The various values of n chosen were 0, 0.3, 0.5, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0 and 
20. The first of these cases corresponds to a fully metallic cylinder and the value of 20, 
corresponds to an FGM cylinder with a ceramic volume fraction of about 95%. The problem 
is solved in two steps, as explained earlier. The heat conduction problem is solved at each 
time step, followed by the elasticity problem. The constitutive equations are updated at 
each time step and the radial and hoop stresses are calculated. The analysis was conducted 
separately for the cases where the material properties were assumed to be constant, and for 
the case where the material property was assumed to vary with temperature. The density 
was assumed to be constant, for both the ceramic and the metal. The finite element code 
was run to simulate the thermoelastic response over a time period of Is. The domain was 
discretized using 50 quadratic elements. Results are presented after a convergence study 
was done. The following interesting observations were made regarding the temperature and 
stress distribution. 

The power law exponent of the volume fraction distribution is a measure of the amount 
of metal or ceramic in the cylinder. The average volume fraction of the metal and the ceramic 
may be calculated by a simple integration of the distribution over the domain. Table 3 lists 
the average volume fraction of the metal and ceramic for different values of the exponent in 
the power law variation. 

In all the cases, it was seen that the maximum temperature occured at the ceramic 
rich end, i.e., the inner surface of the cylinder that is in contact with hot gases. The 
maximum temperature attained at the inner surface was the lowest for the case of n = 0 
which corresponds to a fully metallic cylinder. This is because, in metallic cylinders, the 
largest magnitude of heat is conducted away into the cylinder. Figure 3 shows the variation 
of temperature in the radial direction, for power law exponent equal to 1, upto a time period 
of Is, and for material properties varying with temperature. No significant change in the 
maximum temperature was observed for the case where the average volume fraction of the 
ceramic was greater than 0.5. Therefore, FGMs with 50% volume content of ceramic are good 
enough to withstand high temperatures and there is not much to be gained by increasing the 
ceramic content, if the distribution follows the power law. Figure 4 shows the variation of the 
maximum temperature at the ceramic end, with the power law exponent. The temperature 
at the inner surface for the case of constant properties was always found to be greater than 
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that computed with temperature dependent properties. Thus, calculations and design based 
on temperature independent properties would yield conservative estimates. 

The radial stresses, shown in Figure 5, were found to attain a maximum tensile value at 
the inner surface. For the case of temperature independent properties, the maximum tensile 
stress at the inner surface is independent of average volume fraction of ceramic, below 50%. 
The stress reduces below the level corresponding to vceramiC = 0.5, as the ceramic content 
increases. 

For the case where the material properties are a function of temperature, the change in 
the ceramic content did not affect the magnitude of the maximum compressive stress. As the 
ceramic content increases, the maximum tensile stress at the inner surface reduces. Figure 6 
shows the variation of the maximum tensile stress at the ceramic end with variation in the 
power law exponent. In the case where the properties depend on temperature, the radial 
tensile stresses increase initially, and then reduce continuously for all values of the power law 
exponent, beyond that corresponding to an average ceramic volume fraction of 20%. Thus, 
increasing the average volume fraction reduces the tendency to crack in the tensile mode. 
For the case of constant material properties, the radial stress reduces only beyond a ceramic 
volume fraction of 50%. Moreover, the stress calculated is always higher than in the case of 
temperature dependent properties. 

The magnitude of the maximum compressive stress shown in Figure 7 was found to 
be independent of the average ceramic content, for the case where the material properties 
were assumed to vary with temperature. For the constant property case, the maximum 
compressive stress tends to decrease as the ceramic volume fraction increases. 

For the hoop stresses, in the case of constant material properties, the maximum ten- 
sile stress occurs at a short distance from the ceramic rich region and the point at which 
this occurs tends to move towards the ceramic rich region, as ceramic content increases. 
However, the magnitude of the maximum tensile hoop stresses remains invariant to the 
ceramic composition. Figure 8 shows the variation of hoop stresses in the cylinder, with 
material properties assumed to depend on temperature. Stresses for n = 0.3,1.0,3 cases 
were computed, however, results only for the linear volume fraction distribution are shown. 
The maximum compressive hoop stress always occurs at the inner surface, which is ceramic 
rich and decreases in magnitude as the ceramic content increases upto 50%, but remains a 
constant thereafter (Figure 9). The compressive stress at the inner surface suppresses any 
tendency for cracks to grow in the tensile mode. In the case of variable material properties, 
the maximum hoop stress remains almost constant, but the point at which this occurs moves 
towards the region of maximum compression as the ceramic content increases. 

Analysis was also conducted for a time period of 15s, at the end of which, the tem- 
perature and stress distributions are much smoother. The stresses increased only by one 
order of magnitude at the end of 15s, as compared to their magnitudes at the end of Is. 
This shows that the material has to sustain high stresses in a very short time after thermal 
loading commences. For the case of linear distribution of the components, the temperature 
at the insulated metal rich region reached about 75 degrees C, while the temperature at 
the ceramic rich region was as high as 900 degrees C. The variation of temperature, with 
and without temperature dependence of material properties, and the radial stress are shown 
in Figures 10,11, and 12. It is seen that the average temperature calculated with constant 
material properties is higher than that computed using temperature dependent properties. 
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2.4    Closure 

The above results give us a rough idea about the type of distribution one should choose in or- 
der to control the magnitude of the stresses. This analysis has been a simple one-dimensional 
analysis conducted in order to gain an understanding into the effects of combining metal and 
ceramics in various proportions. A fully dynamic analysis taking into consideration, the in- 
ertia terms and the thermoelastic coupling, will be investigated by considering an operator 
split methodology. The operator split method was proposed by Armero and Simo [15], in 
which the differential operator in the equations is additively split into two parts, one corre- 
sponding to an adiabatic elastodynamic phase, followed by a heat conduction phase at fixed 
configuration. One of the main conclusions, is that an asymptotic response is seen, with 
increasing values of the ceramic content. This type of response is reached at different values 
of the average ceramic content, for different field variables. In effect, the analysis provides 
information about the thermoelastic response of the cylinder for different proportions of the 
ceramic and metal. 
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Figure 1. Functionally graded cylinder (n = 0.0127m, r0 = 0.0254m. Zr02/Ti - 6Al - V). 
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Figure 2. Volume fraction distribution. vmetai — (7-rjJ:) , n is the volume fraction exponent 
with (0 < n <°20). 
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Figure 3. Distribution of temperature along the radius of a functionally gradient ZrÖ2/Ti — 
6.4J — V cylinder with metal volume fraction, vf = f0-30 (0 < f < 1), with temperature 
dependent material properties, for a time period of Is. 
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Figure 4. Distribution of temperature along the radius of a functionally gradient ZrÖ2/Ti — 
6AI — V cylinder with linear metal volume fraction, vf = f100 (0 < f < 1), with tempera- 
ture dependent material properties, for a time period of Is. 
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Figure 5. Distribution of temperature along the radius of a functionally gradient ZrO^/Ti — 
6AI—V cylinder with cubic metal volume fraction, vf = f300 (0 < f < 1), with temperature 
dependent material properties, for a time period of Is. 
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Figure 6. Comparison of the maximum temperature at the ceramic rich end, for a functionally 
gradient ZrOijTi — 6AI — V cylinder, with varying average volume fraction of ceramic, with 
temperature dependent material properties and constant properties, for a time period of Is. 
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Figure 13. Distribution of hoop stresses along the radius of a functionally gradient 
Zr02/Ti — 6Al — V cylinder with linear metal volume fraction, vf = f1,00 (0 < f < 1), 
with temperature dependent material properties, for a time period of Is. 
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Figure 14. Distribution of hoop stresses along the radius of a functionally gradient ZrOz/Ti— 
6AI—V cylinder with cubic metal volume fraction, vf = f300 (0 < f < 1), with temperature 
dependent material properties, for a time period of Is. 
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Figure 15. Comparison of the maximum compressive hoop stress for a functionally gradi- 
ent ZrOz/Ti — 6Al — V cylinder, with varying average volume fraction of ceramic, with 
temperature dependent material properties and constant properties, for a time period of Is. 
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Figure 16. Distribution of temperature along the radius of a functionally gradient ZrO-ijTi— 
6AI — V cylinder with linear metal volume fraction, vf = fL0° (0 < f < 1), with constant 
material properties (at 298.15 K), over a time period of 15s. 

35 



CO 

'(n 

O 
CD 
CD 

O) 

-o 
C 

CD 

CO 
i— 
CD 
Q. 
E 
CD 
H 

1000.0 

800.0  - 

600.0 

400.0 

200.0 

0.0 
0.010 0.015 0.020 0.025 

Radial Distance in meters 

Figure 17. Distribution of temperature along the radius of a functionally gradient ZrC^/Ti— 
6Al - V cylinder with linear metal volume fraction, vf = fL0° (0 < f < 1), with tempera- 
ture dependent material properties, over a time period of 15s. 
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Figure 18. Distribution of radial stresses along the radius of a functionally gradient 
Zr02/Ti - 6Al - V cylinder with linear metal volume fraction, vf = f100 (0 < f < 1), 
with temperature dependent material properties, over a time period of 15s. 
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Figure 19. Distribution of hoop stresses along the radius of a functionally gradient 
ZrOijTi - 6Al — V cylinder with linear metal volume fraction, vf = f1M (0 < f < 1), 
with temperature dependent material properties, over a time period of 15s. 

37 



Table 1: Density of Ceramics and Metals 

Material density p kg/m3 

Zirconia 5700 
Aluminum Oxide 3750 
Silicon Carbide 3200 
Silicon Nitride 2370 
Ti-6A1-4V 4429 
Stainless Steel 8166 
Titanium 4500 

Table 2: Thermal Conductivity in W/mK, {k = c0 (c^T'1 + 1 + c{T + c2T
2 + c3T

3)) 

Material Co C-l C\ C2 c3 

Zirconia 1.700 0 0.0001276 0.66485 10"5 0 
Aluminum Oxide -14.087 -1123.6 0.00044 0 0 
Silicon Carbide 323.1355 0 0.0001 0.025 10~5 0 
Silicon Nitride 13.72306 0 0.00103 .546525 10-6 -0.07876 10~9 

Ti-6A1-4V 1.20947 0 0.0139375 0 0 
Stainless Steel 15.378958 0 -0.001264 0.20923 10"5 -0.0722 10~8 

Titanium 18.861972 64.977 -0.0003 0.3134 10~6 0 
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Table 3: Coefficient of Thermal Expansion, a /K, (a = c0 (c^T'1 + 1 + c{T + c2T
2 + c3T

3)) 

Material Co c-i C\ C2 C3 

Zirconia 12.7657 10~6 0 -0.00149 0.110~5 -0.6775 10~u 

Aluminum Oxide 6.827 10~5 0 0.00018 0 0 
Silicon Carbide 5.0855 10~6 0 0.000116 0 0 
Silicon Nitride 5.8723 10-6 0 0.0009 0 0 
Ti-6A1-4V 7.57876 10-6 0 0.00065 0.31467 10~6 0 
Stainless Steel 12.33 10"6 0 0.00080 0 0 
Titanium" 6.2204 10~6 0 0.00073 0 0 
Titanium6 7.3064 10~6 0 0.00044 0 0 

°300X < T < 1155AT 

h\\hhK < T 

Table 4: Possion Ratio, (u = c0 {c^T'1 + 1 + cxT + c2T
2 + c3T

3)) 

Material c0 C-l C\ c-i c3 

Zirconia 0.2882 0 1.13345 10-4 0 0 
Aluminum Oxide 0.26 0 0 0 0 
Silicon Carbide 0.14 0 0 0 0 
Silicon Nitride 0.24 0 0 0 0 
Ti-6A1-4V 0.28838235 0 1.12136 10~4 0 0 
Stainless Steel 0.32622351 0 -2.001822 10-4 3.7973578 lO"7 0 
Titanium 0.36 0 0 0 0 
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Table 5: Specific Heat, J/kg K, (Cv = c0 (c^T'1 + 1 + cxT + c2T
2 + c3T

3)) 

Material Co C-l Cl c2 c3 

Zirconia 487.34279 0 3.04908 10-4 -6.037232 10~8 0 
Aluminum Oxide 1471.966 -138.8692 -2.24063 10~5 0 0 
Silicon Carbide 1493.5752 -155.1097 -1.030263 10~4 6.39324 10~8 0 
Silicon Nitride 555.11365 0 1.0155187 10-3 2.919726 10~7 -1.670176 10~10 

Ti-6A1-4V 625.29692 0 -4.2238757 10~4 7.1786536 10~7 0 
Stainless Steel 496.56409 0 -1.15099 10-3 1.63566 10-6 -5.863285 lO"10 

Titanium a 460.83869 0 4.53065 10~4 0 0 
Titanium b 376.803 0 5.55555 10-4 0 0 

afor300K <T< 1155K 

bforll55K < T 

Table 6: Modulus of Elasticity, Pa, (E = c0 {c-xT-1 + 1 + cxT + c2T
2 + c3T

3)) 

Material Co C-l Cl C2 c% 
Zirconia 244.26596 109 0 -1.3707 10-3 1.21393 10-6 -3.681378 10-10 

Aluminum Oxide 349.54865 109 0 -3.853206 10"4 4.026993 10-7 -1.67343 10-10 

Silicon Carbide 402.88748 109 0 -1.633110 nr4 9.91273097 10"8 -3.7755358 lO"11 

Silicon Nitride 348.4323 109 0 -3.0697386 10"4 2.160186 10-7 -8.946165 10-11 

Ti-6A1-4V 122.55676 109 0 -4.58635 10~4 0 0 
Stainless Steel 201.03547 109 0 3.079296 10-4 -6.533971 10-7 0 
Titanium 127.715 109 0 -4.933567 10~4 8.069026 10-9 0 
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Table 7: Average volume fraction of metal and ceramic 

exponent Vmetal ^ceramic 

0.0000 1.0000 0.0000 
0.3000 0.7690 0.2307 
0.5000 0.6666 0.3333 
0.8000 0.5555 0.4445 
0.9000 0.5263 0.4737 
1.0000 0.5000 0.5000 
1.5000 0.4000 0.6000 
2.0000 0.3333 0.6666 
2.5000 0.2857 0.7143 
3.0000 0.2500 0.7500 
4.0000 0.2000 0.8000 
20.000 0.0476 0.9524 

Table 8: Comparison of radial stresses for the cases of constant material properties (cmp) 
and temperature dependent properties (tdp) 

Vceramic _ «•" ^ceramic _ ".0 

\max)tdp — \   max)cmp 

\Pmax)tdp — \   max) cmp 

\Pmax)tdp — \max)cmp 

\°max)tdp — \   max)cmp 

(°max)cmp constant 
iPmax)tdv constant 
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3    Nonlinear Transient Thermomechanical Response of 
Functionally Graded Ceramic-Metal Plates 

3.1    Introduction 

Composites are materials with microstructures so tailored as to achieve desired response 
characteristics. In the case of laminated composite plates, tailoring is achieved commonly 
by varying the ply thickness, ply material and the stacking sequence. A new class of mate- 
rials known as "functionally graded materials" (FGMs) has emerged, in which the material 
properties are continuously graded but continuous. By grading properties in a continuous 
manner, the disadvantages of interfaces in composites can be mitigated. These materials are 
microscopically heterogeneous and are typically made from isotropic components, such as 
metals and ceramics. FGMs are primarily used in situations where large temperature gradi- 
ents are encountered. FGMs have also found applications in the semiconductor industry. 

Thin walled members, i.e., plates and shells, used in reactor vessels, turbines and other 
machine parts are susceptible to failure from buckling, large amplitude deflections, or ex- 
cessive stresses induced by thermal or combined thermomechanical loading. Investigations 
dealing with static and dynamic behavior of isotropic and anisotropic thermoelastic plates 
have been discussed in detail by Tauchert (1986,1987). In the present paper, attention is 
focussed on the thermomechanical response of thick plates, with a continuous variation of 
properties through the thickness. The temperature is assumed to vary only in the thickness 
direction. Thermal stresses in free plates under different one-dimensional temperature pro- 
files have been investigated by Schneider (1955). Tang (1968) considered the response of free 
plates with temperature dependent properties. Bending in plates is generally accompanied 
by a stretching of the mid-surface when the material properties vary with temperature, but, 
bending-stretching coupling is shown to disappear in free plates when the temperature varies 
through the thickness only (Tauchert (1991)). 

Das and Navaratna (1962) investigated the bending of rectangular plates, with two par- 
allel edges simply supported, and exposed to a temperature distribution that is symmetric 
about the middle surface. De Leon and Paris (1987) developed boundary integral formula- 
tions based on the decomposition of the field equations into a pair of harmonic equations. 
Results were presented for a simply supported square plate under a temperature distribution 
which varied linearly through the thickness. 

Thermoelastic analyses including transverse shear effects were performed by Das and 
Rath (1972) and Bapu Rao (1979). Das and Rath utilized Levy solutions to solve linear equa- 
tions for thick rectangular plates with two parallel edges simply supported, and subjected 
to a temperature distribution which is antisymmetric about the mid plane. 

Reddy and Hsu (1980) presented analytical closed-form solution for simply supported 
rectangular cross-ply laminated plates under sinusoidal mechanical loading. In this analysis, 
the temperature field was assumed to vary linearly through the thickness, consistent with the 
kinematics of the first order plate theory used. The governing equations solved in this paper 
were linear due to the assumption of small strains. Reddy and Chao (1981) studied the effects 
of reduced integration, mesh size, and element interpolation order on the accuracy of a finite 
element based on the first order shear deformation plate theory. They also developed exact 
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closed form solutions, in the linear case for the bending of cross-ply and antisymmetric angle- 
ply rectangular plates, that are simply-supported and subjected to sinusoidally distributed 
mechanical and thermal loads. Khdeir and Reddy (1991) presented exact analytical solutions 
for the Reddy third-order plate theory (1984,1987) for cross-ply rectangular plates. They 
used the state space approach in conjunction with the Levy method to solve the governing 
equations under various boundary conditions. Again, the temperature was assumed to vary 
linearly through the thickness. 

All the aforementioned analyses refer to the small strain models.   The von Kärmän 
theory for large transverse deflection (of the order of the thickness of the plate) makes use 
of the non-linear strain displacement relations, in which the quadratic terms in the slopes of 
the deflection are retained while all other non-linear terms are neglected [see Reddy (1997)]. 
Several analyses for laminated composite plates and for homogeneous isotropic plates have 
been reported. For a more detailed review, the reader is referred to the classical review by 
Tauchert (1991).  To the authors' knowledge, there exist no results for the dynamic ther- 
momechanical analysis of functionally graded plates, in the literature. Functionally graded 
plates are multiphase material plates, constructed so that the interface effects are mitigated 
by providing a continuous variation in the material properties through the thickness.  The 
property variations are so designed as to meet some functional requirement, typically, a 
lowering of the thermal stresses, the thermally induced deflections or vibration amplitudes. 

Thermally induced vibration of a rectangular plate with one edge fixed and the other 
three edges simply supported was investigated by Jadeja and Loo (1974). Solutions for the 
case of surface heating were obtained using the Galerkin procedure. In the case of non-linear 
dynamic analysis, the von Kärmän plate theory has been applied with the displacement 
field corresponding to the classical plate theory.   Again, no results exist for the case of 
through-thickness material property varying plates using the von Kärmän non-linearity in 
conjunction with the displacement field of the first order shear deformation plate theory. 
Most analyses corresponding to heterogeneous isotropic plates have been limited to plates 
with temperature sensitive material properties, and not spatially varying properties. 

Finot and Suresh (1996) analyzed the response of multi-layered plates and fgm plates 
subjected to small and large deformation during temperature excursions. They examined 
general bilayer and trilayer plates with comparable layer thicknesses, with and without 
graded interfaces, all within the context of classical Kirchhoff theory for thin plates. They 
obtained closed-form solutions for stress-curvature relationships for the trilayer and graded 
isotropic elastic plates. They also analyzed plastic flow within these plates, as the tempera- 
ture was varied. 

Geometrically nonlinear transient analysis of isotropic and composite laminates have 
been reported in literature. To the authors' knowledge there are no previously reported 
results for the nonlinear, dynamic analysis of plates made of functionally graded materials, 
under thermal and mechanical loading. In this paper, we make use of the shear deformable 
element developed by Reddy (1984 a) for the von Kärmän plate theory. Numerical results are 
presented to show the parametric effect of material properties, plate thickness, nonlinearity, 
boundary conditions, mechanical loading, and temperature fields on the transient analysis of 
fgm plates. These results are important from the point of view of the design of thermal barrier 
materials. Analyzing the transient response of graded materials will help in designing sensors 
and actuators to control vibrations. In the present paper, we examine the thermoelastostatic 

43 



and thermoelastodynamic response of plates subjected to pressure loading and thickness 
varying temperature fields. The thickness variation of the temperature field comes about 
due to the variation of the thermal properties. 

3.2    Equations of motion and finite element model 

The equations of motion used here are based on the combination of the first order plate 
theory and the von Kärmän strains [see Reddy (1997)]. This theory predicts the global 
behavior accurately. The theory assumes that the transverse normal stress is negligible 
when compared to the other stress components, and normals to the plate midsurface before 
deformation remain straight but not necessarily normal to the midsurface after deformation. 

The domain of the plate is such that the x and y coordinates are taken in the midplane 
of the plate and the displacements are assumed to be linear through the thickness - the 
z coordinate. Thus, the plate is modeled using an equivalent single layer theory. The 
displacement components are assumed to be of the following form [see Reddy (1994b,1997)] 

«i = w (x, y, t) + z<j)x (x, y, t) 

u2 = v(x,y,t) + z(f)y(x,y,t) 

w3   =   w(x,y,t) (13) 

where t denotes time, u\, u2 and u3 are the total displacements and (u, v, w) are the midplane 
displacements in the x, y and z directions respectively, and <f>x and 4>y are the rotations of 
the yz and xz planes due to bending. The von Kärmän plate theory accounts for moderately 
large deflections and small strains. The strains according to this theory are (using standard 
vector notation) 

£i   =   — + -Z I — I   + z~irL    = e? + ZA 

£2   =   — + 7; I — I   + z-p-    =4 + ze\ 

_     du       ÖV       dwdw ivy*       VVV\       _ p0   ,        1 

dw 
54     =     4, + ^j- 

£5   =   4* +-fa (14) 

wherein, the squares of the first partial derivatives of u, v, <j>x and (j)y are neglected. e° are 
the in-plane strains and e\ are the curvatures due to bending. The strain e3 does not enter 
the constitutive equations, due to the plane stress assumption. The transverse shear strains 
£4 and £5 are constant through the thickness of the plate. 
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The governing equations of motion are derived from Hamilton's principle. In the absence 
of body moments, surface shearing forces, and thermal loading, the equations are given by 

NXX,X   +   NXyfy — IQU^U   +   I\<j)x,tt 

NXy,x + Nmy = IQV,U + h<l>y,tt 

Qx,x + Qy,y = Iow,u + q(x, y,t) + N (w, N) 

MXXjX + Mxy,y -Qi = I2<f>x,tt + hu,tt 

MXy,X   +   Myyty   ~Q2 = h<f>Vjtt   +   h* ,U ^ 

where Io, I\ and I2 are the normal, coupled normal rotary, and rotary inertia coefficients, 
respectively, and a comma followed by a variable denotes differentiation with respect to that 
variable. Also, '<?' is the applied load on the plate top/bottom surface, and NXXiyyiXy and 
Mxx,yytXy are the force and moment resultants whose definitions are made precise later. ./V is 
a nonlinear force resultant that is dependent on the force resultants Nxx<yy>Xy. 

The fgm plate is considered to be a single layer plate of uniform thickness. The properties 
of the plate are assumed to vary through the thickness of the plate. The property variation 
is assumed to be in terms of a simple power law distribution given by 

P(z) = (Pc-Pj(^J + Pm (16) 

where Pc and Pm are the corresponding properties of the ceramic and metal, and n is the 
volume fraction exponent which takes values greater than or equal to zero. The value of n 
equal to 0 represents a fully ceramic plate. The above power law assumption reflects a simple 
rule of mixtures used to obtain the effective properties of the ceramic-metal plate. The rule 
of mixtures applies only to the thickness direction. The density of the plate varies according 
to the power law, and the power law exponent may be varied to obtain different distributions 
of the component materials through the thickness of the plate. With the power-law variation 
in properties, the various inertias may be calculated as follows: 

(/o,/i,/2)=/_*((^-pm)(H^y(i,Ä,^)+^(i,zy))cte (17) 

where quantities with superscripts, 'm? and 'c' correspond to the metal and ceramic respec- 
tively. The metal content in the plate increases as the value of n increases. The N,M s and 
Q s are the axial force, moment and shear force resultants, respectively. These are calculated 
from the following integral expressions: 

-| 
(Naß,Maß)   =    I    (l,z)aaß dz 

A 
(Qx,Qy)     =     \  h{<yxz,Vyz)dz (18) 

where a, ß stand for x, y and N (w, Nap) is the contribution due to the nonlinear terms, 
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N(w,Na0) = — 
dw (dNT 

dx 
+ dK xy + dw fdKxv     dK xy + 'OT (19) 

dy )     dy \ dx        dy J 

If one plane of elastic symmetry parallel to the plane of the plate exists, the constitutive 
equations of the plate can be written in the form (purely mechanical loading) 

{N} 
{M} 

[A] [B] 
[B] [D] 

{e°} 
{e1} 

(20) 

In the case of thermal loading, the equations contain the thermal force resultants, K%ß, 
and the thermal moment resultants, Mj^, and are defined elsewhere in the paper. The form 
of the equations will be given here, with the details of the finite element implementation in 
the appendix. 

{N + N7} 

{M + MT) 

Qy 
Qx 

[A] [B] 
[B] [D] 

Au    A-45 
A45   A55 

{e°} 

£4 

£5 

(21) 

(22) 

where [A], [B], [D] (i,j = 1,2,6), and Aij (i,j = 4,5) are the inplane, bending-stretching 
coupling, bending, and thickness-shear stiffnesses, respectively : 

(An, Bih Da) = J\ I (C% - Q%)    -^-     (l, z, z2) + Q% (l, z, z2)   dz       (23) 

-^■tl' jj —   1       KiKjic^ijdZ (24) 

ki are the shear correction coefficients and Qij are the material constants. For the plate in 
consideration, the bending-twisting coupling terms vanish and so the terms Aw, A26, Bi6, B2e, £>i6> 
and £>26 are identically zero. With the above stiffnesses vanishing, the non-linear force de- 
flection relationships are 

NT 

K yy 

K xy 

MT 

.    .*,„     1 (dwy\      „      dv     1 fdw\' 

.    , --     1 fdw\2\      A    (dv     1 fdw\' 

\dy     dx     dx dy J \ dy      dx , 

.du     1 fdw^ „    . dv     1 fdwY 

+Bll^ + BJ<k 

+ B 12 

dx 

d(j)x 

dx 
+ B 22 

dy 

dj)y_ 
dy 

+ Dl*±*+DJ*!L 
dx dy 

(25) 
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„    (du     1 (dw\ \      „    I dv     1 /dw\   \     „   d<bx     „   <?<£„ 

J4, = *.^4+^)+ö«i*+8M 

Qz     =    ^55 I <Ar +   « 

dy     cto     dx dy J \ dy      dx 

dw\ 

Qy     =     Au     <j)y + 

The finite element model of the above equations may be derived by substituting the 
element approximations of the generalized displacements (u, v, w, <f>x, 4>y) into the appropriate 
weak forms of the five governing equations of motion. The element equations of motion are 
[see Reddy (1992, 1997)] 

5   n(ß) 5   n(ß) 

E E <^i + E E Miftf = Ft
a (26) 

0=13=1 ß=l3=1 

The expressions for the individual finite element stiffness matrices are listed in the appendix. 

3.2.1    Thermal analysis 

The thermal analysis is conducted by imposing constant surface temperatures at the ce- 
ramic and metal rich surfaces. The variation of temperature is assumed to occur in the 
thickness direction only. The temperature is assumed to be constant in the plane of the 
plate. The thermal analysis is carried out by first solving a simple steady state heat trans- 
fer equation through the thickness of the plate. In this problem, all the quantities are 
non-dimensionalized, such that the non-dimensional temperature variable varied between 0 
and 1 across the nondimensional domain of unit length. The problem is reduced to one 
with Dirichlet boundary conditions, with two independent parameters, namely the ratio of 
the thermal conductivity of the two materials, pk, and the volume fraction index, n. The 
equation for the temperature through the thickness is as follows: 

where T = Tc at z = h/2 and T = Tm at z = -h/2. 
In the present analysis, in addition to the uniform loading, the plate is subjected to 

a temperature field where the ceramic rich top surface is held at deg 300 C and the metal 
rich bottom surface is held at deg 20 C. A stress free temperature T0 = degO C is assumed. 
The materials are assumed to be perfectly elastic throughout the deformation. The temper- 
ature field imposed on the fgm plate gives rise to additional terms due to the von Kärmän 
nonlinearity. To see this, consider the statement of virtual work in the absence of external 
mechanical loading. The material is assumed to be isotropic and therefore, the matrix rep- 
resentation of the thermal conductivity tensor is diagonal. In view of this, and the plane 
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stress assumption, the temperature terms corresponding to en and £22 are the only remain- 
ing terms. To include the temperature terms, we define the thermal resultants, Njx and Mjx 

(Note that the thermal resultants corresponding to the y direction are the same as those of 
x, because of isotropy and also, the resultant corresponding to the xy term is zero). 

f\ aCu (1 + v)(T- T0) (1, z) dz = (NT
, M

T
) (28) 

With the above definitions, we have the following contribution to the thermal source terms 
of the standard finite element system of equations : 

j^SevdV   =   fa N" 

+   Ml 

d5u     dw döw 
+ 

dx 

d5j)x 

dx 

dx dx 

+ M, 

dSv     dw d8w 
+ 

dy dy 
(29) 

!v^
dV=L{NT d8u     d8v     dw d5w     dw dSw + + + 

dx      dy      dx dx       dy dy 
+ M1 dSt/)x_     döipy 

dx dy 
dA 

(30) 
The temperature terms are included into the source terms of the element equations as 

follows: 

Su 

Sv 

5w 

S(/)x 

8(j)y 

I {
NT

) iBdxdy 
dipt 
dx 
dipi 
dy 

(31) 

IK) 
n     , 

IM 
IK) 

dxdy 

(dJHdj^i     dipt dipj' 
I dx dx       dy dy 

Wj dxdy 

djh 
dx 
dipi 
dy 

dxdy 

dxdy 

The thermal source term corresponding to the deflection is non-linear. This non-linearity 
is significant at high temperatures and coupled with the various thermal properties of the 
materials, can lead to response of the graded plates that is not intermediate to that of the 
metal and ceramic. There are two ways in which one can include the thermal source terms. 
In the first method, the nodal values Wj, i.e., the deflection, can be treated as unknowns and 
the resulting force term is transferred to the left hand side of the standard finite element 
equations. Note that ipi and ipj that appear in the above equations are the finite element basis 
functions. Thus the term is included into the direct stiffness matrix. This does not require 
a recomputation of the tangent stiffness matrix. Alternatively, the nodal values Wj can be 
retained on the right hand side and evaluated using those corresponding to the previous 
iteration. Thus, the thermal force term corresponding to the deflection is nonlinear. This 
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in turn requires a recomputation of the tangent stiffness matrix corresponding to the third 
equilibrium equation. The two options discussed above were implemented in solving the 
thermoelastic problem for the fgm plate. At convergence, the difference between the results 
is found to be negligible, though, we may regard the first option as being more accurate and 
simpler to implement. 

3.3    Numerical results 

3.3.1    Static analysis 

In the present study, the four noded rectangular isoparametric element was employed. The 
element has five degrees of freedom, three midplane displacements (u,v,w) and the two 
midplane rotations (4>x,4>y)- Because the element accounts for the transverse shear strains, 
reduced integration is employed to evaluate the shear terms numerically. In the dynamic 
analysis, zero initial conditions are assumed and damping is neglected. 

Figure 20 shows the geometry of the plate, the computational domain, and the boundary 
conditions used in the static problem. The static analysis was performed on a square plate 
of side, ('a') 0.2m and thickness ('h') 0.01m. A regular mesh of 8 by 8 linear elements was 
chosen after convergence studies. The boundary conditions corresponding to the quarter 
plate model are shown in figure 20. The value of the uniformly distributed loading chosen 
was equal to 0.01xl06N/ra2. The results were plotted after ten loadsteps. The analysis is 
performed for different values of the volume fraction exponent. The results are presented 
in terms of non-dimensionalized stress and deflection. The various non-dimensionalized 
parameters used are 

center deflection (static)   w 

load parameter   P 

axial stress   d~xx 

thickness coordinate   z 

w 
~h 

<7QQ
4 

EmW 
^xx^ 

I ?o I a? 
z 

h 

where q is the applied mechanical load, a is the length of the plate, h is the plate thickness. 
The static analysis was conducted for two combinations of ceramic and metal. The first 
set of materials chosen were Aluminum and Zirconia. The second combination of materi- 
als consisted of Aluminum and Alumina. The Young's modulus, Poisson's ratio, density, 
conductivity and coefficient of thermal expansion, are for Aluminum : 70 GPa, 0.3, 2707 
kg/m3, 204 W/mK, 23.0xl0~6/deg C, for Alumina : 380 GPa, 0.3, 3800 kg/m3, 10.4 W/mK, 
7.4xl0-6/deg C, for Zirconia : 151 GPa, 0.3, 3000 kg/m3, 2.09 W/mK, 10.0xl0-6/deg C, 
respectively. Note that the Poisson's ratio was chosen to be 0.3 for simplicity. The thermal 
conductivity ratio for the two different ceramic-metal pairs chosen is significantly different. 
The conductivity ratios are 19.6 and 97.6 respectively. Thus, the temperature variation 
across the thickness of the plates is vastly different for the two cases, even though the same 
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values of temperature were imposed on the top and bottom surfaces. The plate is assumed 
to be simply supported on all its edges, and the boundary conditions imposed on the edges 
are shown in figure 20. Note, that due to symmetry, only one quarter of the plate is used. 
There is no symmetry across the midplane, since the properties vary in a continuous manner 
through the thickness of the plate. In all cases, the lower surface of the plate is assumed 
to be metal rich and the top surface is assumed to be 100% ceramic. The ceramic surface 
is exposed to a temperature of deg300 C and the lower metallic surface is exposed to a 
temperature of deg 20 C. A mechanical pressure loading q is also applied on the top surface 
of the plate. 

Figure 21 shows the volume fraction of metallic phase, through the thickness. Note that 
the thickness coordinate has been non-dimensionalized. Figure 22 shows the variation of 
the temperature through the thickness of the Aluminum-Zirconia plates for various values 
of the volume fraction exponent, n. The temperature distribution was obtained by solving 
the one-dimensional heat conduction equation through the thickness, by assuming that the 
conductivity varies according to equation 4. The conduction equation was solved by imposing 
the temperature boundary conditions at the top and bottom surface of the plate. It is 
assumed that at any value of the thickness coordinate, the temperature is the same at all 
points in the plane. It is seen that the temperature in the plates with both ceramic and metal 
is always greater than that corresponding to a fully ceramic or fully metallic plate. Further, 
the temperature at any location through the thickness of the Alumina-Zirconia plates was 
found to be lesser than that in the Aluminum-Alumina plates. 

Figure 23 shows the variation of the non-dimensional center deflection with load for 
the Aluminum-Zirconia plates. Analysis was also performed for Aluminum-Alumina plates. 
We will present only the significant results or differences in the response of plates with the 
different material combinations. This difference is expected to be mainly due to the large 
thermal expansion ratios. The applied pressure load is increased in each load step, and 
the solution is obtained by an iterative procedure. At any load step, the assumed solution 
at the beginning of the nonlinear iteration is taken to be the converged solution at the 
previous load step. This reduces the number of iterations required and also increases the 
accuracy, as compared to an arbitrary guess solution at each load step. In each case, the 
non-dimensionalization is carried out using the properties of the metal. In this case, the 
non-dimensional center deflection increases with pressure load. For the magnitude of the 
load chosen, the behavior was found to be linear. The effect of nonlinearity will be shown 
later. For both material pairs, the deflection of the metallic plate was found to be of the 
largest magnitude and that of the ceramic plate, of the smallest magnitude. All the plates 
with intermediate properties undergo corresponding intermediate values of center deflection. 
This is expected because the metallic plate is the one with the lowest stiffness and the ceramic 
plate is the one with the highest stiffness. 

Figure 24 shows the variation of the center deflection with the mechanical load in the 
presence of the temperature field through the thickness of the Aluminum-Zirconia plate. 
Both the load and the center deflection are appropriately non-dimensionalized. It is impor- 
tant to observe that the through thickness temperature distribution for a fully ceramic plate 
coincides with that of a fully metal plate. This is because the plate for these two cases is 
fully homogeneous and the the solution to the equations for temperature do not depend on 
the thermal conductivity.  In both these cases, the distribution is linear.  Now, excursions 
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from this linear distribution are obtained by changing the volume fraction index. It is ex- 
pected that the distribution will reach a minimum in terms of the average behavior, at some 
volume fraction index, and then turn back to the linear behavior. Thus, for a given pair of 
materials, there is a particular volume fraction that will minimize the deflection, under the 
same mechanical load. The non-dimensional deflection tends toward the negative side as the 
mechanical load increases. For the chosen temperature difference, the temperature effects on 
deflection reduce with increasing pressure loads. Note that the center deflection is reduced 
to zero for load parameter between -3 and -5 for the plates with different values of volume 
fraction exponent. 

Note that the deflection of the plates under thermomechanical loading is positive. This 
is because, the thermal expansion at the top surface is higher due to the higher temperature, 
and this expansion results in an upward deflection of the plate. Note that the thermal 
strain in the ceramic rich portion may be comparable to that in the metal rich region (lower 
temperature) because of the ceramic has a lower coefficient of thermal expansion than the 
metal. The deflection therefore depends on the product of the temperature and the thermal 
expansion coefficient. Therefore, the response of the graded plates is not intermediate to 
the metal and ceramic plates. The purely mechanical load is applied downwards (negative). 
Also, note that the center deflection of both the metallic and the ceramic plates is higher in 
magnitude than the graded plates. The deflection of the fgm plate corresponding to n = 0.5 
seems to be a minimum. Note that the temperature profiles for the various plates are close 
to each other, and this probably is the reason why the deflections under temperature field 
for the various graded plates are also close to each other. 

Figures 25 and 26 show the comparison between the linear and non-linear analysis, under 
mechanical loading and under thermal loading. The linear analysis always overpredicts the 
deflection magnitude in the pressure loading case, and the difference increases as the plate 
becomes more and more metallic. The analysis was carried out at a load of —l05N/m2, 
with 5 load steps. Any applied load greater in magnitude than this load, will result in an 
increased deviation from the linear behavior. The effect of nonlinearity does not seem to be 
very much pronounced when the temperature field is applied. At zero mechanical load, the 
metallic plate undergoes upward deflection with the largest magnitude and this reduces as 
the pressure load is applied. 

Figures 27 and 28 represent the behavior of the non-dimensional center deflection 
with changing plate side to thickness ratio. The analysis was carried out with a load of 
-lxl06N/m2, with one loadstep. For all plates, the center deflection asymptotically reaches 
the same value for | = 150, when a purely mechanical loading is applied and this asymptotic 
behavior is reached for plates with | = 75, when the temperature field is also imposed. 

Figures 29 and 30 contain the plots of the axial stress through the thickness of the plate 
under uniform loading applied on the top surface. Under the application of the pressure 
loading, the stresses are compressive at the top surface and tensile at the bottom surface. 
For the different volume fraction exponents chosen, the plate corresponding to n = 2.0 yielded 
the maximum compressive stress at the top surface. This is the ceramic rich surface. Note 
that ceramics are weaker in tension than in compression. The stress profiles under thermal 
loading are shown in figure 30. In this case, the nature of the profile changes drastically for 
the metallic plate, and the magnitude of the compressive stress increases for the fgm plates. 
Again, except for the ceramic plates, the stress profiles are close to each other, for the graded 
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plates. Note that the stresses in the latter case are again compressive, but with a higher 
magnitude, and this is because of the elastic strain which is the difference between the total 
strain and the thermal strain. 

Figure 31 shows similar behavior to figure 29, except for the magnitudes. In both cases, 
the fgm plate corresponding to n = 2.0 experiences the maximum compressive stress at the 
top surface and the metallic and ceramic plates experience the maximum tensile stress at 
the bottom surface. For the case of Aluminum-Alumina (figure 32), the ratio of thermal 
conductivity is 19.6 and the temperatures are higher than in the case of Aluminum-Zirconia, 
and the compressive behavior in the whole domain is more pronounced as compared to Al-Z 
plates. The stress profiles are less clustered in Al-Z plates, even though the temperature 
profiles seem to be close to each other. The difference in stress patterns should be mainly 
due to the material properties. When no temperature field is applied, the plate with n = 2.0 
experiences the maximum top surface compressive stress, but when the temperature field is 
also applied, the maximum is attained by the plate corresponding to n = 0.2. Figure 33 
shows the non-dimensional axial stress in Aluminum-Alumina plate at higher value of the 
applied load (-10xl04A^/m2, 20 th loadstep) under imposed temperature field. In the case 
where only the mechanical load was applied, the nondimensional stress was almost the same 
as the one corresponding to figure 31. 

3.3.2    Dynamic Response : Simply supported boundary conditions 

Next, numerical experiments were performed to characterize the dynamic response of the 
fgm plate to suddenly applied uniform pressure loading and also the case of suddenly applied 
load under an imposed temperature field. As mentioned earlier, the time derivatives in the 
semi-discrete model were approximated by using the Newmark direct integration method. 

Since no estimate on the time step for the nonlinear analysis is available, the critical 
time step of a conditionally stable finite difference scheme was used as the starting time 
step, and a convergence study was conducted to select a time step that yielded a stable and 
accurate solution while keeping the computational time to a minimum. The estimate used 
in the present study is 

Ati<O.25(/o/i/£)*(Aa02 (32) 

Here D = 12n-u2)^ an<^ ^x *s ^ne mmimum distance between the element node points. 
This estimate is due to Leech (1965), and was derived for thin plates. The values of E and 
p used in the above estimates correspond to the smallest time step that could be obtained. 

First, in order to prove the validity of the present formulation and the code developed, 
the results were obtained for isotropic plates and compared with those existing in literature. 
For this, the problem solved in the papers by Akay (1980) (using a mixed finite element) 
and Reddy (1983) (using the present formulation) was solved. The geometry of the plate 
and the various dimensions, boundary conditions are the same as in figure 20. for the case 
of the simply supported plates. For validating the code, a side length of 2.438m, thickness 
0.00635m and a load of 4.882xl06iV/m2 were taken. The time steps used in the computations 
are indicated in the figure. For the analysis of the FGM plates, a side length of 0.2m, thickness 
of 0.01m and a load of —106N/m2 were considered. For all the cases, a timestep of 0.00001s 
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was used. The first set of values were used to verify the analysis due to Akay and Reddy. 
The second set of values were used to obtain the results presented in this paper. 

A 2 x 2 uniform mesh of quadratic elements is used in the quarter plate with five degrees 
of freedom per node. The same mesh was used in the analyses by Akay and Reddy. The 
figure shows the geometry of the plate, along with the boundary conditions and the material 
properties used in the analysis. The load was applied after the first time step and held 
constant thereafter. After convergence studies, with linear and quadratic elements, a mesh 
of 8 by 8 bilinear elements was chosen for the results presented herein. 

Figure 34 shows the response of the isotropic plate under suddenly applied uniform 
pressure loading. The results were generated during the present study in order to validate 
the code developed. Results of the present nonlinear analysis agree closely with the finite 
element results of Akay and those of Reddy. The plots of center deflection vs time for various 
loads are shown. The center deflection and time were nondimensionalized according to the 
following expressions : 

center deflection   W 

time   i 

wEmh 
q0a

2 

I Em 

a2Pm 

Figures 35 and 36 show the transient response of the Aluminum-Alumina plates, and 
figures 37 and 38 show the dynamic response of the Aluminum-Zirconia plates. The higher 
the bending rigidity, the lower the magnitude of deflection. The amplitude of vibration is 
the maximum for the metallic plate and a minimum for the ceramic plate. It is seen that 
the amplitude of vibration increases smoothly as the amount of metal in the plate increases. 
Also, it is clear that the frequency of vibration of the ceramic plates is much higher than that 
of the metallic plates. When the sudden load is applied under a temperature field through the 
thickness the deflection changes, from negative to positive. Since the analysis is nonlinear, 
we cannot define a single natural frequency. The frequency of vibration of the surface heated 
plates appears to be a superposition of multiple frequencies. In order to obtain the response 
of the fgm plates under an imposed temperature field, the initial conditions are obtained 
from static analysis. The temperature field causes an upward deflection of the plates, and 
the load causes a downward deflection. Thus, vibrations occur about an equilibrium position 
which is displaced in the positive direction. One of the main inferences from the analysis is 
that the response of fgm plates is not intermediate to that of the metal and ceramic plates. 
This is due to the difference in bending stiffnesses and the thermal strains experienced by 
the various plates. Also, note that the coefficient of thermal expansion increases as the 
metallic content increases, but the temperature for the graded plates is higher than that of 
the ceramic or the metal plate. 

3.3.3    Dynamic Response : Clamped boundary conditions 

The computational domain for the dynamic analysis with clamped boundary conditions is 
the same as that of figure 20, except for some additional boundary conditions. The additional 
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boundary conditions are as follows : on the top boundary, u = 0, <j)y = 0 and, on the right 
edge, v = 0, <f>x = 0. The analysis was performed for the same two material combinations. 
Since the effective stiffness of the clamped plates is higher than the simply supported plates, 
it is clearly seen that the deflections are much lower corresponding to the simply supported 
case. Also, the frequency of vibration is higher as compared to the simply supported plates. 
A timestep of 0.00001s was used in the computations. Figures 39 and 40 show the temporal 
response of the plates under suddenly applied mechanical loading of -1.0xl06A7ra2. 

3.4    Closure 

The static and dynamic thermoelastic response of functionally graded material plates is 
studied. Nonlinearity has been restricted to the von Kärmän type. The stress and deflection 
response of the plates have been analyzed under mechanical loading and thermal loading. 
The gradation of properties through the thickness is assumed to be of the power law type and 
comparisons have been made with homogeneous isotropic plates. Non-dimensional stresses 
and deflection are computed for plates with two different ceramic-metal mixtures. It is seen 
that the basic response of the plates that correspond to properties intermediate to that of the 
metal and the ceramic, does not necessarily lie in between that of the ceramic and metal. The 
non-dimensional deflection was found to reach a minimum at a volume fraction index that 
depends on the properties and the ratio of the properties of the constituents. In the absence 
of thermal loading, the dynamic response of the graded plates is intermediate to that of the 
metal and ceramic plates. This is not the case when both thermal and mechanical loads are 
applied. This behavior is found to be true irrespective of boundary conditions. Thus, the 
gradients in material properties play an important role in determining the response of the 
fgm plates. 
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Appendix : Finite element matrices 

The individual matrices appearing in the finite element model are as follows: 

*? = I &M''+fM«)dxdv+L Q^-dxd" 

where, we have 

&   =0       Qlj   =0       Q%   =AU^ 

dxdy 

Nh   =All% N>    = AU* *,= *!%% + %%<% (34) 

ATI 4     9^ A/2      - 4     **L N3   _A&idwdll>j       Awdwdlpj 

M1     _ R    Wi M2     _ R   ^ ^3   _ ^11 dw di)j       Bl2 dw tyj 

Ml      _  o    ^i M2      _ R    ^ M3   _ #66 Ötü 9^j        Ö66 9^ 9^,- M6,"   -^6^- M6j   -Bee^- M6j - -y^^ + -^^^ 

Q\.   =0       Q?,   =0 Q\,   =A55^ 
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Qii   =A55^   Q%   =0 Q5
2j   =A4Ail>j   Q%   =0 

In the expressions above, ipi and tpj are the finite element interpolation functions in the 
expansion 

n 

(u, v, w, 4>x, <f>y) = £ (uj (t), Vj (t), Wj (t), <f>Xj (t), 4>yj (t)) ipj (36) 
i=i 

Note that for the sake of simplicity, the same interpolation function has been used for each 
of the generalized midplane displacements. The finite element equations are nonlinear. To 
complete the discretization, the time derivatives appearing in the semidiscrete form are 
approximated by the use of the Newmark direct integration method, with a =0.5 and ß = 
0.25 (corresponding to the constant average acceleration method). The scheme, although 
unconditionally stable for linear problems, is not proven stable for all nonlinear problems. 
The nonlinear element equations are then solved using the Newton-Raphson method. This 
involves the derivation of the tangent stiffness matrix. For the sake of brevity, the elements 
of the tangent stiffness matrix have been omitted. 

The expressions for the plate stiffnesses are given below 

2(n + l)(n + 2)J 

D-   =   (QC
.-Q^)( (2 + rc + rc2)/*3       ),c™h3 

»v {^j     Vv) ^4(n + 1){n + 2)(n + 3))+ V«24 

The expression for the various inertias I0,Ii,l2, may be obtained by replacing the Q s in the 
above equations by the corresponding densities. 
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Figure 20: A simply supported square plate with a quadrant as the computational domain 
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Figure 21:   Variation of the volume fraction function ((22 + h)/2h)n through the non- 
dimensionalized thickness. 
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Figure 22: Temperature field through the thickness of the fgm plate (Aluminum-Zirconia). 
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Figure 24: Center deflection of simply supported fgm plate under uniform load and temper- 
ature field (Aluminum-Zirconia). 
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Figure 25: Non-dimensional center deflection with load parameter for fgm plate under uni- 
form loading - linear/nonlinear analysis (Aluminum-Zirconia). 
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Figure 27: Non-dimensional center deflection with side to thickness ratio for fgm plate under 
uniform loading (Aluminum-Zirconia). 
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Figure 28: Non-dimensional center deflection with side to thickness ratio for fgm plate under 
uniform loading and temperature field (Aluminum-Zirconia). 
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Figure 29:  Non-dimensional axial stresses in a simply supported square fgm plate under 
uniform loading of -lxl04iV/m2, 10 loadsteps (Aluminum-Zirconia). 
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Figure 30:  Non-dimensional axial stresses in a simply supported square fgm plate under 
uniform loading of -lxlO4iV/m2, 10 loadsteps and temperature field. (Aluminum-Zirconia). 
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Figure 31:  Non-dimensional axial stresses in a simply supported square fgm plate under 
uniform loading of -lxl04iV/m2, 10 loadsteps (Aluminum-Alumina). 
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Figure 32:  Non-dimensional axial stresses in a simply supported square fgm plate under 
uniform loading of -lxl04iV/m2, 10 loadsteps and temperature field (Aluminum-Alumina). 
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Figure 33:  Non-dimensional axial stresses in a simply supported square fgm plate under 
uniform loading of -10xl04iV/m2, 20 loadsteps and temperature field (Aluminum-Alumina). 
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Figure 34: Vibrations of simply supported isotropic plate under suddenly applied uniform 
loading - Results of analysis by Akay and Reddy. 
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suddenly applied uniform loading of -1.0xl06iV/ra2(Aluminum-Alumina). 
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Figure 36: Temporal evolution of center deflection of simply supported fgm plate under sud- 
denly applied uniform loading of -1.0xl06iV/m2 and temperature field (Aluminum-Alumina). 
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Figure 37:  Temporal evolution of center deflection of simply supported fgm plate under 
suddenly applied uniform loading of -1.0xl06iV/ra2 (Aluminum-Zirconia). 
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Figure 38: Temporal evolution of center deflection of simply supported fgm plate under sud- 
denly applied uniform loading of -l.OxlO6N/m? and temperature field (Aluminum-Zirconia). 
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Figure 39:  Temporal evolution of center deflection of clamped fgm plate under suddenly 
applied uniform loading of -1.0xl06iV/ra2 (Aluminum-Zirconia). 
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Figure 40:  Temporal evolution of center deflection of clamped fgm plate under suddenly 
applied uniform loading of -l.OxlO6N/m2 (Aluminum-Alumina). 
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4    Analysis of the Effective Yield Behavior of Brittle- 
Ductile Mixtures 

4.1 Introduction 

Most monolithic materials exhibit desirable properties in certain ranges of temperature and 
mechanical loading. This also depends on the microstructure of the material. Metals, for 
instance, are very good load bearing components and are used for reinforcements in structural 
applications like concrete and so on. They possess high ductility which enables them to be 
drawn into wires. Also, they undergo yielding and this relaxes the stresses and reduces 
stress concentration. Ceramics on the other hand, are mostly brittle. They are unforgiving 
in situations where the tensile loads are very high, and they fail by instantaneous cracking. 
However, they are very good in thermal shock resistance and in situations where we have 
large temperature gradients. Ceramic metal mixtures offer excellent resistance to heat and 
also, have very good load bearing capacity. Intermetallics and solid-solutions are materials 
with such properties. Another class of mixtures, namely the functionally graded materials, 
are now being manufactured by various techniques like CVD, PVD, etc, and are being used 
in environments with severe thermal gradients and high loads. The gradation in material 
properties is designed by optimizing the performance of these materials. 

In using mixtures of ceramics and metals, a central issue is one of effective properties. 
There are several models to compute effective properties of composites, including, the self- 
consistent models, micromechanical models, models based on energy equivalence and so on. 
In this work, we will look at the yielding behavior of ceramic-metal mixtures. Results based 
on mixture theory approach as well as discrete finite element approach will be compared. A 
one-dimensional model will also be presented. 

4.2 Problem Statement and Assumptions 

The aim of the present work is to compute the yield stress in ceramic - metal mixtures, 
as a function of the volume fraction of either component. The dependence of yield stress 
on the stiffness of either phase will be studied. In the analysis, we will make the following 
assumptions. Assumptions that are specific to models discussed below, will be explicity 
stated in the respective sections. The restrictions and assumptions common to the different 
models are: 

1. The analysis will be restricted to linearized isotropic elasticity. Linearized elasticity is not 
frame invariant, however, the error in the solutions is on the order of e2, where || e ||tr= 
e<l and is the standard trace norm of the linearized Green Lagrange strain tensor. 

2. Yielding will be considered as an event in the linearized elastic response of the mixture. 
In particuar, the mixture is assumed to have yielded, if the partial stress in the metallic 
component satisfies the classical Ji criterion. 
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4.3    One-dimensional Model 

4.3.1    Features 

• An idealized representation contiguous microstructure is assumed such that the material 
consists of three parallel ligaments, (see Figure 41) the first being metal, the second being 
ceramic, the third being a series connection between ceramic and metal. All ligaments 
heights being equal. 

• The relative volume fraction of the metal and ceramic within the monolithic ligaments 
is controlled by varying their cross-sectional area and within, the composite ligament, by 
varying their relative lengths. The cross sectional area of the third ligament is arbitrary, 
and will be chosen appropriately. 

• The yield load of the composite model is the load at which either metallic component 
yields. 

• The columns undergo the same extension. 

The computed expressions for the yield load, in terms of the volume fractions of the 
metal and ceramic are as follows: 

,i vi      , E2    v2 
Gy     =    °y\ —  + ——  + 1 + vt     E1l + v1      (i + ^i + aj^ 

x .    vi        E2    v2 v2 
av   =   °y\ TT7T + 1FTTZT + y\l + v2     Ell + v2     Vl(i + V2)(i + a|L) 

where, v\ and v2 are volume fractiosn of the metal and ceramic respectively. The cross- 
sectional area of the third column is arbitrary. In this analysis, this cross-sectional area was 
assumed to be equal to that of either column 1 or column 2 and the above two results were 
obtained for both these cases. The results so obtained are close to each other. The results 
of the analysis are compared to that obtained by mixture theory. The graphs show that the 
predictions of the one dimensional model are very close to that due to the mixture theory 
model. 

4.3.2    Mixture Theory Model 

A two-dimensional analysis was performed using the equations of linearized elasticity derived 
with recourse to mixture theory Rajagopal, 1996 applied to two elastic solids. The central 
assumptions are : 

• Every continuum point is co-occupied by the metallic and ceramic phases. 

• Each component of the mixture undergoes identical deformation. 
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• Each component is distributed uniformly within the mixture. Note that, we can analyse 
graded mixtures in a rather simple manner, by simply assuming a spatially varying volume 
fraction distribution. 

The equations as a result of the standard balance laws are well known and the reader is 
referred to the works by Chadwick, 1976 and by Rajagopal, 1996. In using the mixture 
theory we note that the effective density p and the Helmholtz free energy A is computed 
from 

P 
PA 

1 

PcVc + PmVm 

pcvcAc + pmvmAn 

The resulting expression for the Cauchy stress tensor is obtained as a = vcac + vmcrm 

The equations for which the finite element model is obtained, are listed as under : 
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Plane stress constitutive equations were used in the analysis. The finite element model may 
be derived from the weak form ( see Reddy, 1994) and the element stiffness matrices are as 
follows : 
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where the C s are the material stiffness coefficients (Reddy 1992). The integrals are evalu- 
ated using gauss quadrature, and also, note that the material coefficients are obtained using 
a rule of mixtures. The specimens are assumed to have a constant volume fraction and the 
yield analysis is performed on these specimens. The geometry of the computational domain 
corresponds to a bar. This bar is subjected to an axial load, P. Note that the yield con- 
dition is checked on the stress tensor am and not on vmam. The methodology consists in 
applying a load P, and checking the yield condition. If the material is still elastic, the load 
is incremented and the condition again checked. In the example probelm worked, we make 
use of the fact that J2 oc P2 and this may be used to compute the load corresponding to the 
critical value of J2. Note that, the stress state that is used to correct the load corresponds 
to the metallic point that is closest to yielding. The analysis is stopped when yielding is 
satisfied to within a numerical tolerance. Figure 42 shows the variation of effective yield 
stress of the mixture of Nickel and Alumina. Alumina is much stiffer than nickel and there- 
fore, the mixture has a higher yield stress than nickel, corresponding to all volume fractions 
of Alumina. If we mix nickel with a more compliant ceramic, the yield stress would have 
been lesser than that corresponding to the pure metal. The yield criterion for the mixture 
of brittle ceramic and ductile metal, as stated before, may be expressed as follows: 

"2 \Pmetal)     —    "2,critical 

where, the stresses in the above computation correspond to the partial stresses in the metallic 
component of the mixture. It is to be noted that the partial stresses are not the stresses 
multiplied by the volume fraction of the metal. 

In performing inelastic analysis on a graded material, the yield stress at any point in 
the material can be obtained by assuming that the material point is part of a continuum 
with a uniform volume fraction as that at the point in the graded specimen. The yield check 
can be performed using the classical J2 criterion, the critical value of which varied at each 
point. Since, yield check is often performed at the quadrature points or the Barlow points, 
the critical value of the second invariant of the stress deviator, has to be computed at these 
points. 

4.3.3    Effect of failure of the brittle phase 

In brittle-ductile mixtures where the brittle phase is stiffer, the stresses in the brittle phase 
are much higher than the stresses in the ductile phase. Brittle failure is assumed to occur 
in the ceramic when the stresses satisfy the maximum normal stress criterion. When brittle 
failure occurs, if we set the stiffness of the ceramic component to zero, as a first approxi- 
mation, then, the load is transferred to the metallic component, and therefore, the stress in 
the ductile phase increases and this brings the state of stress within that phase, closer to 
yielding. Thus, it is expected that the overall yield stress of such a specimen is much lower 
than that corresponding to a specimen where we ignore the failure of the brittle phase. The 
material is expected to show a piecewise linear behavior between the stress and strain, until 
yielding occurs within the metallic phase. The yield stress of the mixture increases as the 
volume fraction of the metal increases. It is noted however, that the yield stress with brittle 
failure is much lower than the yield stress without brittle failure in the ceramic. This can be 
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seen from Figure 43. Note that, higher the volume fraction of the brittle phase, greater the 
load transfer to the ductile phase due to failure by cracking in the brittle phase. Therefore, 
the yield stress corresponding to the high volume fraction of the brittle phase is very low, 
when brittle failure is considered. On the other hand, it is seen that, when the brittle phase 
is intact, the yield stress of the mixture is very high, at higher volume fractions of the stiffer, 
brittle ceramic phase. 

4.4 Closure 

• Predictions of the yield stress due to the one-dimensional model is fairly close to that 
obtained using the mixture theory. 

• When a ductile phase is combined with a stiffer brittle phase, the yield stress of the mixture 
increases. This is because, the stresses in the ductile phase is much lower as compared to 
the case of pure ductile phase. Consequently, a higher value of external load is required 
to induce yielding in the ductile phase. 

• When the brittle phase fails by cracking before the ductile phase yields, the effective yield 
stress is much lower than that corresponding to the pure metal. Mixture theory and the 
finite element model predict the same qualitative trends. 
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5    Conclusions 

The research work outlined in this report contains an indepth study into the mechanics 
formulations of functionally graded materials. A detailed literature survey was presented 
and the relevance of the present work in the light of the existing literature was highlighted. 
Important mechanics formulations were outlined and specific problems solved were discussed 
in detail in the present report and previous reports. Nonlinear finite element programs with 
Picard and Newton-Raphson procedures were developed, and also algorithms for transient 
analysis were implemented. Geometric, material and thermal coupling nonlinearities were 
both included. 

The response of functionally gradient ceramic-metal plates was investigated using a finite 
element that accounts for the transverse shear strains, rotary inertia and large rotations in the 
von Kärman sense. The static and dynamic response of the functionally gradient material 
(fgm) plates were investigated by varying the volume fraction of the ceramic and metal 
using a simple power law distribution. Numerical results for the deflection and stresses were 
presented. The effect of the temperature field imposed on the fgm plate has been discussed. 
It is demonstrated that the response of the plates with material properties between that of the 
ceramic and metal is not intermediate to that of the ceramic and metal plates. The effect 
of the thermal nonlinearity leading to non-intermediate response of the graded plates, as 
compared to that of the metal and ceramic plates was also discussed. Results were obtained 
for both static and dynamic analyses. Two different material combinations were chosen, 
to study the effect of the material properties and the structural response. Studies of the 
variation of the center deflection, with plate aspect ratios were also performed. The analysis 
of temporal response of thermally loaded plates with simply supported edges and clamped 
edges was conducted. In the above studies, the heat conduction equation and the equilibrium 
equations were not coupled. The heat conduction equation was solved separately and the 
temperature field was imposed as a thermal loading term in the equilibrium equations. Also, 
the material properties were taken to be independent of temperature. In the subsequent 
analysis, a three dimensional heat conduction equation was solved and the effect of the 
thermomechanical coupling was considered. 

The dynamic thermoelastic response of functionally gradient cylinders and plates was 
studied. Thermomechanical coupling is significant in these materials when they are used in 
high temperature applications, and hence, the coupling wass included in the formulation. 
The heat conduction and the thermoelastic equations were solved for a functionally graded 
axisymmetric cylinder subjected to thermal loading. In addition, a thermoelastic boundary 
value problem using first-order shear deformation plate theory (FSDT) that accounts for the 
transverse shear strains and the rotations, coupled with a three dimensional heat conduc- 
tion equation was formulated for a functionally graded plate. Both problems were studied by 
varying the volume fraction of a ceramic and a metal using a power law distribution. Nonlin- 
earities due to temperature and spatial dependence of material properties of the constituents 
were considered in the numerical studies. Parametric studies with respect to volume fraction 
of the ceramic and combinations of different constituents of the functionally gradient mate- 
rial were conducted using the finite element method. Issues related to optimization of the 
composition of functionally gradient cylinder were also discussed. More details are available 
in earlier reports. 
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Predictions of the yield stress of brittle-ductile mixtures were obtained from the one 
dimensional models and two dimensional mixture theory models. The effects of the relative 
elastic stiffness of the ductile and brittle phases have been discussed. The effects of brittle 
failure on the effective yielding behavior of the mixture was also addressed. The present 
research adds significantly to the vast body of knowledge in key issues involved in the area 
of functionally graded materials. 
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