
COMPUTER VISION LABORATORY 

C 
>„ N 

CENTER FOR AUTOMATION RESEARCH 

UNIVERSITY OF MARYLAND 
COLLEGE PARK, MARYLAND 

20742-3275 

BBS ^ÄnjHPECTBD 4 DISTRIBUTION STATEMENT  A: 
Approved for Public Release - 

Distribution Unlimited 



CAR-TR-901 N00014-96-1-0587 
CS-TR-3963 December 1998 

Geometry of Eye Design: Biology and Technology 

Cornelia Fermüller and Yiannis Aloimonos 
Computer Vision Laboratory 

Center for Automation Research 
University of Maryland, College Park, MD 20742-3275 

Abstract 

Natural or artificial vision systems process the images that they collect with their eyes or cam- 
eras in order to derive information for performing tasks related to navigation and recognition. 
Since the way images are acquired determines how difficult it is to perform a visual task, and 
since systems have to cope with limited resources, the eyes used by a specific system should 
be designed to optimize subsequent image processing as it relates to particular tasks. Differ- 
ent ways of sampling light, i.e., different eyes, may be less or more powerful with respect to 
particular competences. This seems intuitively evident in view of the variety of eye designs in 
the biological world. It is shown here that a spherical eye (an eye or system of eyes providing 
panoramic vision) is superior to a camera-type eye (an eye with restricted field of view) as 
regards the competence of three-dimensional motion estimation. This result is derived from 
a statistical analysis of all the possible computational models that can be used for estimating 
3D motion from an image sequence. The findings explain biological design in a mathematical 
manner, by showing that systems that fly and thus need good estimates of 3D motion gain 
advantages from panoramic vision. Also, insights obtained from this study point to new ways 
of constructing powerful imaging devices that suit particular tasks in robotics, visualization 
and virtual reality better than conventional cameras, thus leading to a new camera technology. 

Special thanks to Sara Larson for her editorial and graphics assistance. The support of the Office of Naval 
Research under Grant N00014-96-1-0587 is gratefully acknowledged. 



When classifying eye designs in biological systems, one can differentiate between the different 
ways of gathering light at the retina, whether single or multiple lenses are used, the spatial 
distribution of the photoreceptors, the shapes of the imaging surfaces, and what geometrical and 
physical properties of light are measured (frequency, polarization). A landscape of eye evolution 
is provided by Michael Land in [3]. Considering evolution as a mountain, with the lower hills 
representing earlier steps in the evolutionary ladder, and the highest peaks representing later 
stages of evolution, the situation is pictured in Figure 1. At the higher levels of evolution one 
finds the compound eyes of insects and crustaceans and the camera-type eyes such as the corneal 
eyes of land vertebrates and fish. These two categories constitute two fundamentally different 
designs. Fundamental differences also arise from the positions in the head where camera-type 
eyes are placed, for example, close to each other as in humans and primates, or on opposite 
sides of the head as in birds and fish, providing panoramic vision. It appears that the eyes of 
an organism evolve in a way that best serves that organism in carrying out its tasks. Thus, 
the success of an eye design should not be judged in an anthropicanic manner, i.e., by how 
accurately it forms an image of the outside world; rather, it should be judged in a purposive 
sense. A successful eye design is one that makes the performance of the visual tasks a system is 
confronted with as easy as possible (fast and robust) [18]. The discovery of principles relating 
eye design to system behavior will shed light on the problem of evolution in general, and on 
the structure and function of the brain in particular. At the same time, it will contribute to 
the development of alternative camera technologies; cameras replace eyes in artificial systems 
and different camera designs will be more or less appropriate for different tasks. Cameras used 
in alarm systems, inspection processes, virtual reality systems and human augmentation tasks 
need not be the same; they should be designed to facilitate the tasks at hand. This paper 
represents a first effort to introduce structure into the landscape of eyes as it relates to tasks 
that systems perform. 

COMPOUND EYES CAMERA-TYPE EYES 

Comeal eyes of landvertebrates 

Superposition eyes 

Neural 
superposition/~&PP°sition        Spiders /Fish eyeä 

.Tapetum ridge 

Mere Photoreceptors 

Figure 1: Michael Land's landscape of eye evolution (from [3]). 

Although the space of tasks or behaviors performed by vision systems is difficult to formalize, 
there exist a few tasks that are performed by the whole spectrum of vision systems. All systems 
with vision move in their environments. As they move, they need to continuously make sense 
of the moving images they receive on their retinae and they need to solve problems related to 



navigation; in particular, they need to know how they themselves are moving [1, 4, 20]. Inertial 
sensors can help in this task, but it is vision that can provide accurate answers. Regardless 
of the way in which a system moves (walks, crawls, flies, etc.), its eyes move rigidly. This 
rigid motion can be described by a translation and a rotation; knowing how a system moves 
amounts to knowing the parameters describing its instantaneous velocity. This is not to say, of 
course, that a vision system has an explicit representation of the parameters of the rigid motion 
that its eyes undergo. This knowledge could be implicit in the circuits that perform specific 
tasks, such as stabilization, landing, pursuit, etc. [9, 14, 26, 28], but successful completion of 
navigation-related tasks presupposes some knowledge of the egomotion parameters or subsets 
of them. Thus, a comparison of eyes with regard to egomotion estimation should lead to a 
better understanding of one of the most basic visual competences. 

Two fundamentally different eye designs are compared here, a spherical eye and a planar, 
camera-type eye (Figure 2). Spherical eyes model the compound eyes of insects, while planar 
eyes model the cornea! eyes of land vertebrates as well as fish. In addition, the panoramic 
vision of some organisms, achieved by placing camera-type eyes on opposite sides of the head, is 
approximated well by a spherical eye. The essential difference between a spherical and a planar 
eye lies in the field of view, 360 degrees in the spherical case and a restricted field in the planar 
case. The comparison performed here demonstrates that spherical eyes are superior to planar 
eyes for 3D motion estimation. "Superior" here means that the ambiguities inherent in deriving 
3D motion from planar image sequences are not present in the spherical case. Specifically, a 
geometrical/statistical analysis is conducted to investigate the functions that can be used to 
estimate 3D motion, relating 2D image measurements to the 3D scene. These functions are 
expressed in terms of errors in the 3D motion parameters and they can be understood as multi- 
dimensional surfaces in those parameters. 3D motion estimation amounts to a minimization 
problem; thus, our approach is to study the relationships among the parameters of the errors 
in the estimated 3D motion at the minima of the surfaces, because these locations provide 
insight into the behaviors of the estimation procedures. It is shown that, at the locations of 
the minima, the errors in the estimates of both the translation and rotation are non-zero in 
the planar case, while in the spherical case either the translational or rotational error becomes 
zero. Intuitively, with a camera-type eye there is an unavoidable confusion between translation 
and rotation, as well as between translational errors and the actual translation. This confusion 
does not occur with a spherical eye. The implication is that visual navigation tasks involving 
3D motion parameter estimation are easier to solve with spherical eyes than with planar eyes. 

The basic geometry of image motion is well understood. As a system moves in its envi- 
ronment, every point of the environment has a velocity vector relative to the system. The 
projections of these 3D velocity vectors on the retina of the system's eye constitutes the motion 
field. For an eye moving with translation t and rotation a; in a stationary environment, each 
scene point R = (X,Y,Z) measured with respect to a coordinate system OXYZ fixed to the 
nodal point of the eye has velocity R = -t - w x R. Projecting R onto a retina of a given 
shape gives the image motion field. If the image is formed on a plane (Figure 2a) orthogonal to 
the Z axis at distance / (focal length) from the nodal point, then an image point r=(x,y,f) 
and its corresponding scene point R are related by r = g^R, where z0 is a unit vector in the 
direction of the Z axis. The motion field becomes 

= "(RT^)
(Z

° 
x (* x r)) + Jzo x (r x (a; x r)) = I utr(t) + urot(o>), (1) 

with Z = R-z0 representing the depth. If the image is formed on a sphere of radius / (Figure 2b) 
having the center of projection as its origin, the image r of any point R is r = M, with R 

|R|' 



Figure 2: Image formation on the sphere (a) and on the plane (b). The system moves with a 
rigid motion with translational velocity t and rotational velocity a;. Scene points R project 
onto image points r and the 3D velocity R of a scene point is observed in the image as image 
velocity r. - 

being the norm of R (the range), and the image motion is 

1 1 
' = ]Rf7 ((* ' r)r ~ *) _ W X r = ^ M*) + «rot(w). (2) 

The motion field is the sum of two components, one, Utr, due to translation and the other, 
urot, due to rotation. The depth Z or range R of a scene point is inversely proportional to the 
translational flow, while the rotational flow is independent of the scene in view. As can be seen 
from (1) and (2), the effects of translation and scene depth cannot be separated, so only the 
direction of translation, t/|t|, can be computed. We can thus choose the length oft; throughout 
the following analysis / is set to 1, and the length of t is assumed to be 1 on the sphere and 
the Z-component of t to be 1 on the plane. The problem of egomotion then amounts to finding 
the scaled vector t and the vector u> from a representation of the motion field. 

To set up mathematical formulations for 3D motion estimation, the following questions 
should be answered. The first question to be addressed is, what description containing in- 
formation about 3D motion does a system use to represent the image sequence? One might 
envision a sophisticated system that could attempt to estimate the motion field, termed the 
optic flow field [15]. On the other hand, it is also easy to envision a system that does not have 
the capacity to estimate the motion field, but only to obtain a partial description of it. An 
example of a description containing minimal information about image motion is the normal 
motion field. This amounts to the projection of the motion field onto the direction of the image 
gradient at each point, and represents the movement of each local edge element in the direction 
perpendicular to itself. Normal flow can be estimated from local spatiotemporal information in 
the image [22-24, 27]. If n is a unit vector at an image point denoting the orientation of the 
gradient at that point, the normal flow vn satisfies 

vn = r • n. (3) 



Unlike normal flow, the estimation of optic flow is a difficult problem because information 
from different image neighborhoods must be compared and used in a smoothing scheme to 
account for discontinuities [10, 12]. Although it is not yet known exactly what kinds of image 
representations different visual systems recover, it is clear that such descriptions should lie 
somewhere between normal flow fields and optic flow fields. Thus, when comparing eye designs 
with regard to 3D motion estimation, one must consider both kinds of flow fields. 

The second question to be addressed is, through what geometric laws or constraints is 3D 
motion coded into image motion? The constraints are easily observed from (1-3). Equations (1) 
and (2) show how the motions of image points are related to 3D rigid motion and to scene depth. 
By eliminating depth from these equations, one obtains the well known epipolar constraint [19]; 
for both planar and spherical eyes it is 

(t x r) • (r + a; x r) = 0. (4) 

Equating image motion with optic flow, this constraint allows for the derivation of 3D rigid 
motion on the basis of optic flow measurements. One is interested in the estimates of translation 
t and rotation ü which best satisfy the epipolar constraint at every point r according to some 
criterion of deviation. The Euclidean norm is usually used, leading to the minimization [11, 21] 
of the function1 

Mep = Jf [(txr)-(r + u>xr)]2dr. (5) 
image 

On the other hand, if normal flow is given, the vector equations (1) and (2) cannot be used 
directly. The only constraint is scalar equation (3), along with the inequality Z > 0 which states 
that since the surface in view is in front of the eye its depth must be positive. Substituting (1) 
or (2) into (3) and solving for the estimated depth Z or range R, we obtain for a given estimate 
t,u> at each point r: 

*(«*)-,. u"(i;;°  . (6) 
(r - urot(u>)) • n v ; 

If the numerator and denominator of (6) have opposite signs, negative depth is computed. 
Thus, to utilize the positivity constraint one must search for the motion t,u> that produces 
a minimum number of negative depth estimates. Formally, if r is an image point, define the 
indicator function 

j   (T)=f1 f°r (Utr(*)' n) (* ~ "«*(*)) < ° 
| 0 for (utr(t) • n) (f - urot(ü>)) > 0 

Then estimation of 3D motion from normal flow amounts to minimizing [4, 5, 13] the function 

Mnd = Jj Ind(r)dr. (7) 
image 

Expressing f in terms of the real motion from (1) and (2), functions (5) and (7) can be 
expressed in terms of the actual and estimated motion parameters t, w, t and Ü? (or, equivalently, 
the actual motion parameters t,w and the errors t£ = t - t, o>£ = w - ü>) and the depth Z 
(or range J?) of the viewed scene. To conduct any analysis, a model for the scene is needed. 
We are interested in the statistically expected values of the motion estimates resulting from 

because txr introduces the sine of the angle between t and r, the minimization prefers vectors t close to 
the center of gravity of the points r. This bias has been recognized [25] and alternatives have been proposed 
that reduce this bias, but without eliminating the confusion between rotation and translation. 



all possible scenes. Thus, as our probabilistic model we assume that the depth values of the 
scene are uniformly distributed between two arbitrary values Z-B^OT Rm-m) and Zmax(or Ämax) 
(0 < Zmin < Zmax). For the minimization of negative depth values, we further assume that the 
directions in which flow measurements are made are uniformly distributed in every direction 
for every depth. Parameterizing n by ij), the angle between n and the x axis, we thus obtain 
the following two functions: 

Zma.% T        ^max 

Eep =    J    MepdZ, (8) End= J     J    MnddZdi), (9) 
Z=Zmill TM> z=zn 

measuring deviation from the epipolar constraint and the amount of negative depth, respec- 
tively. Functions (8) and (9) are five-dimensional surfaces in t£,u>£, the errors in the motion 
parameters. 

We are interested in the topographic structure of these surfaces, in particular, in the rela- 
tionships among the errors and the relationships of the errors to the actual motion parameters 
at the minima of the functions. The idea behind this is that in practical situations any estima- 
tion procedure is hampered by errors and usually local minima of the functions to be minimized 
are found as solutions. 

Independent of the particular algorithm, procedures for estimating 3D motion can be clas- 
sified into those estimating either the translation or rotation as a first step and the remaining 
component (that is, the rotation or translation) as a second step, and those estimating all 
components simultaneously. Procedures of the former kind result when systems utilize inertial 
sensors which provide them with estimates of one of the components, or when two-step motion 
estimation algorithms are used. 

Thus, three cases need to be studied: the case were no prior information about 3D motion 
is available and the cases where an estimate of translation or rotation is available with some 
error. Imagine that somehow the rotation has been estimated, with an error u>£. Then our 
functions become two-dimensional in the variables t£ and represent the space of translational 
error parameters corresponding to a fixed rotational error. Similarly, given a translational 
error t£, the functions become three-dimensional in the variables u>£ and represent the space 
of rotational errors corresponding to a fixed translational error. To study the general case, 
one needs to consider the lowest valleys of the functions in 2D subspaces which pass through 
0. In the image processing literature, such local minima are often referred to as ravine lines 
or courses.2 Each of the three cases is studied for four optimizations: epipolar minimization 
for the sphere and the plane and minimization of negative depth for the sphere and the plane. 
Thus, there are twelve (four times three) cases, but since the effects of rotation on the image are 
independent of depth, it makes no sense to perform minimization of negative depth assuming an 
estimate of translation is available. Thus, we are left with ten different cases which are studied 
below. These ten cases represent all the possible, meaningful motion estimation procedures on 
the plane and sphere. 

2 One may wish to study the problem in the presence of noise in the flow measurements and derive instead the 
expected values of the local and global minima. It has been shown, however, that noise which is of no particular 
bias does not alter the local minima, and the global minima fall within the valleys of the function without noise. 
In particular, we considered in [7] noise N of the form N = e-g- + 8, with e, S 2D, independent, stochastic error 
vectors. As such noise does not alter the function's overall structure, it won't be considered here; the interested 
reader is referred to [7]. 



Epipolar Minimization on the Plane Denote estimated quantities by letters with hat 
signs, actual quantities by unmarked letters, and the differences between actual and estimated 
quantities (the errors) by the subscript "e." Furthermore, let t = (x0,yo, 1) and w = (a,ß,j). 
Since the field of view is small, the quadratic terms in the image coordinates are very small 
relative to the linear and constant terms, and are therefore ignored. 

Considering a circular aperture of radius e, setting the focal length / = 1, W = 1 and 
W = 1, the function in (8) becomes 

Eep=  I  I I {r((±-^1-^ + ^y + x)(y-yo) 
"   " =0 0=0 

■ + ac -fcx + yj (x- x0)j    >drd<j>dZ 

Z=Zmin r=0 0=0 

'y-yo 

where (r,<j>) are polar coordinates {x = rcos<ß,y = rsin^). Performing the integration, one 
obtains 

Eep   =   Tre2 ((Zmax - Z^n) Q7
2e4 + i (7

2 (z2 + y2) + 6Te (£0ae + j/0&) + *\ + ßfj e2 + 

(x0ae + y0ße)
2J + (In (Zmax) - In (Z^)) Q(37e(zo£2/o - Votx0) + x0Je - y0cat)e2 + 

2 (x0eyo - yocx0) (xQa<, + y0ße) J + 

(i" i) (i (^+x°<)e2+{xo<yo ~ ^*o)2)) (10) 

(a) Assume that the translation has been estimated with a certain error t£ = (x0€,y0e,Q). 
Then the relationship among the errors in 3D motion at the minima of (10) is obtained from 
the first-order conditions ^f = ^ = ^ = 0, which yield 

_yoe(ln(Zmax)-ln(Zmill))    a _ -x0i (In (Zmax) - In (Z^)) 
"« — 7^7. P* ~ 7 7       7c = U (11) 

^max       ^min ^max — ^min 

It follows that ae/ße = -x0Jyoc,jc = 0, which means that there is no error in 7 and the 
projection of the translational error on the image is perpendicular to the projection of the 
rotational error. This constraint is called the "orthogonality constraint." 

(b) Assuming that rotation has been estimated with an error (a£,/?e,7£), the relationship 
among the errors is obtained from §§** = |§E = 0. In this case, the relationship is very 
elaborate and the translational error depends on all the other parameters—that is, the rotational 
error, the actual translation, the image size and the depth interval. 

(c) In the general case, we need to study the subspaces in which Eep changes least at its 
absolute minimum; that is, we are interested in the direction of the smallest second derivative 
at 0, the point where the motion errors are zero. To find this direction, we compute the Hessian 
at 0, that is the matrix of the second derivatives of Eep with respect to the five motion error 
parameters, and compute the eigenvector corresponding to the smallest eigenvalue. The scaled 



components of this vector amount to 

x0c = zo       VOc = 2/0       ßt = -aej*       7e = 0 
ae =   2y0ZminZiaa.x (In (Zma.x) - In (Zmin)) / 

(  i^max ~~ •"minj V^max^min — J-J 

+ ( (4ax - ^min)2 (^nax^min - l)2 + 4^axZ^n (In (Zmax) - In (Z^))2 )1/2) 

As can be seen, for points denned by this direction, the translational and rotational errors 
are characterized by the orthogonality constraint a£/ße = —xoc/yoe and by the constraint 
xo/yo — xo/yo', that is, the projection of the actual translation and the projection of the 
estimated translation He on a line passing through the image center. We refer to this second 
constraint as the "line constraint." These results are in accordance with previous studies 
[2, 21], which found that the translational components along the x and y axes are confused 
with rotation around the y and x axes, respectively, and the "line constraint" under a set of 
restrictive assumptions. 

Epipolar Minimization on the Sphere The function representing deviation from the 
epipolar constraint on the sphere takes the simple form 

E" m I II {(^t^ - (a" X r)) • ({ X r)} dAdR 
Rmin sphere 

where A refers to a surface element. Due to the sphere's symmetry, for each point r on 
the sphere, there exists a point with coordinates —r. Since utr(r) = utr(—r) and urot(r) = 
—urot(—r), when the integrand is expanded the product terms integrated over the sphere van- 
ish. Thus 

Rrr 

Eep = TIII^P^H^'H^Y- 
Rmin sphere 

dAdR 

(a) Assuming that translation t has been estimated, the o?£ that minimizes Eep is u?£ = 0, 
since the resulting function is non-negative quadratic in u>£ (minimum at zero). The difference 
between sphere and plane is already clear. In the spherical case, as shown here, if an error in 
the translation is made we do not need to compensate for it by making an error in the rotation 
(u>£ = 0), while in the planar case we need to compensate to ensure that the orthogonality 
constraint is satisfied! 

(b) Assuming that rotation has been estimated with an error o;e, what is the translation t 
that minimizes Eep1 Since R is uniformly distributed, integrating over R does not alter the 
form of the error in the optimization. Thus, Eep consists of the sum of two terms: 

K = KX f l ((t x t) • r)2 dA   and   L = Lxl f ((we x r) • (t x r))2 dA, 

sphere sphere 

where K\,L\ are multiplicative factors depending only on Ämin and -Rmax- For angles between 
t, t and t, u>£ in the range of 0 to 7r/2, K and L are monotonic functions. K attains its minimum 



when t = t and L when t J_ «£. Consider a certain distance between t and t leading to a certain 
value K, and change the position of t. L takes its minimum when (t x t) • we = 0, as follows 
from the cosine theorem. Thus Eep achieves its minimum when t lies on the great circle passing 
through t and u>£, with the exact position depending on |u>£| and the scene in view. 

(c) For the general case where no information about rotation or translation is available, we 
study the subspaces where Eep changes the least at its absolute minimum, i.e., we are again 
interested in the direction of the smallest second derivative at 0. For points defined by this 
direction we calculate t = t and u>£ _L t. 

To study the negative depth values described by function (9) a more geometric interpretation 
is needed. Substituting into (6) the value of r from (1) or (2) gives 

Z(ovR) = "tr(*),n    , 
(WTR) - urotK)J • n 

This equation shows that for every n and r a range of values for Z (or R) is obtained which 
result in negative estimates of Z (or R). Thus for each direction n, considering all image points 
r, we obtain a volume in space corresponding to negative depth estimates. The sum of all these 
volumes for-all directions is termed the "negative depth" volume, and calculating 3D motion in 
this case amounts to minimizing this volume. Minimization of this volume provides conditions 
for the errors in the motion parameters. 

Minimizing Negative Depth Volume on the Plane This analysis is given in [6]. The 
findings are summarized here: 

(a) Assume that rotation has been estimated with an error (ae,ßt,je). Then the error 
(xoe,Voc) that minimizes the negative depth volume satisfies the orthogonality constraint 
xoJyoe = -ße/at. 

(b) In the absence of any prior information about the 3D motion, the solution obtained by 
minimizing the negative depth volume has errors that satisfy the orthogonality constraint 
xoJyo€ = -ßc/ae, the line constraint xQ/y0 = x0/y0 and 7£ = 0 

Minimizing Negative Depth Volume on the Sphere 

(a) Assuming that the rotation has been estimated with an error u>£, what is the optimal 
translation t that minimizes the negative depth volume? 

Since the motion field along different orientations n is considered, a parameterization is 
needed to express all possible orientations on the sphere. This is achieved by selecting an 
arbitrary vector s; then, at each point r of the sphere, jß^ defines a direction in the tangent 

plane. As s moves along half a circle, jß^ takes on every possible orientation (with the 
exception of the points r lying on the great circle of s). Let us pick u>£ perpendicular to s 
(s-u>£ = 0). 

We are interested in the points in space with estimated negative range values R. Since 
n = flfifip s • "e = 0, the estimated range R amounts to R = #(txs).rSf<£,r)(s,r). R < 0 if 

sgn[(t x s) • r] = -sgn[(t x s) • r - R(ue ■ r)(s • r)], where sgn(a;) provides the sign of x. This 

8 



area location constraint on R 

I sgn(t x s) • r = sgn(t x s) • r = sgn(r • u>£)(r • s) R-     (t X S)' F 

(r-oj£)(r-s) 
II —sgn(t x s) • r = sgn(t x s) • r = sgn(r • u>£)(r • s) all |R| 

III sgn(t x s) ■ r = -sgn(t x s) • r = sgn(r • u?£)(r • s) R -    (* X S)' r 

(r-w£)(r-s) 
IV sgn(t x s) • r = sgn(t x s) • r = -sgn(r • w£)(r • s) none 

Figure 3: Classification of image points according to constraints on R. The four areas are 
marked by different colors. The textured parts (parallel lines) in areas I and III denote the 
image points for which negative depth values exist if the scene is bounded. The two hemispheres 
correspond to the front of the sphere and the back of the sphere, both as seen from the front 
of the sphere. 

constraint divides the surface of the sphere into four areas, I to IV, whose locations are defined 
by the signs of the functions (t x s) • r, (t x s) • r and (u>£ • r)(s • r), as shown in Figure 3. 

For any direction n a volume of negative range values is obtained consisting of the volumes 
above areas I, II and III. Areas II and III cover the same amount of area between the great 
circles (t x s) • r = 0 and (t x s) • r = 0, and area I covers a hemisphere minus the area between 
(t x s) ■ r = 0 and (t x s) • r = 0. If the scene in view is unbounded, that is, R € [0,+oo], 
there is for every r a range of values above areas I and III which result in negative depth 
estimates; in area I the volume at each point r is bounded from below by R = /^ ^Vfe^' 

and in area III it is bounded from above by R — ft^^fe]- If there exist lower and upper 
bounds .Rmin and Amax in the scene, we obtain two additional curves Cm™ and Cmax with 
Cmin = (t x s) • r - Ämin(w£ • r)(s • r) = 0 and Cmax = (t x s) ■ r - .Rmax(w£ • r)(s • r) = 0, and 
we obtain negative depth values in area I only between Cmax and (t x s) • r = 0 and in area III 
only between Cmin and (we X r)(s x r) = 0. We are given u>£ and t, and we are interested in 
the t which minimizes the negative range volume. For any s the corresponding negative range 
volume becomes smallest if t is on the great circle through t and s, that is, (t x s) • t = 0, as 
will be shown next. 

Let us consider a t such that (txs)-t^O and let us change t so that (t x s) • t = 0. As 
t changes, the area of type II becomes an area of type FV and the area of type III becomes an 
area of type I. The negative depth volume is changed as follows: It is decreased by the spaces 
above area II and area III, and it is increased by the space above area I (which changed from 



type III to type I). Clearly, the decrease is larger than the increase, which implies that the 
smallest volume is obtained for s,t,t lying on a great circle. Since this is true for any s, the 
minimum negative depth volume is attained for t = t.3 

(b) Next, assume that no prior knowledge about the 3D motion is available. We want to 
know for which configurations of t and u>£ the negative depth values change the least in the 
neighborhood of the absolute minimum, that is, at t£ = u>£ = 0. From the analysis above, it is 
known that for any o>£ ^ 0, t = t. Next, we show that u>£ is indeed different from zero: Take 
t ^ t on the great circle of s and let w£, as before, be perpendicular to s. 

Since (txs)xw£ = 0, the curves Cmax and C^ can be expressed as Cmax(mill) = (we • 

r)(|ajS
£|Äma

t
x(min) ~ (s *r)) = °' where sin Z(*'s) denotes the angle between vectors t and s. These 

curves consist of the great circle u>£ • r = 0 and the circle ,  sin Z(t,s) ,  _   v _ Q     raUel t 
lu'«l"max(min) v ' e 

the great circle (s • r) = 0 (see Figure 4). If \jfJ-W N > 1, this circle disappears. 

Figure 4: Configuration for t and t on the great circle of s and u>£ perpendicular to s. The 
textured part of area I denotes image points for which negative depth values exist if the scene 
is bounded. 

Consider next two flow directions defined by vectors sj and s2 with (si x t) = -(s2 x t) 
and si between t and t. 

For every point rx in area III defined by si there exists a point r2 in area I defined by s2 such 
that the negative estimated ranges above rx and r2 add up to £max - Rm-m. Thus the volume of 
negative range obtained from si and s2 amounts to the area of the sphere times (.Rmax - Rm-m) 
(area II of si contributes a hemisphere; area III of sx and area I of s2 together contribute a 
hemisphere). The total negative range volume can be decomposed into three components: a 
component Vi originating from the set of s between t and t, a component V2 originating from 
the set of s symmetric in t to the set in Vi, and a component V3 corresponding to the remaining 
s, which consists of range values above areas of type I only. If for all s in V%   tn^\t,s\ > 1  V> 

3 A word of caution about the parameterization used for directions n = 1^]f is needed. It does not treat all 
orientations equally (as s varies along a great circle with constant speed, s x r accelerates and decelerates). Thus 
to obtain a uniform distribution, normalization is necessary. The normalization factors, however, do not affect 
the previous proof, due to symmetry. 
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becomes zero. Thus for all |a>£| with |u>£| < 
S1^ {*■>*■) ^ the negative range volume is equally large 

and amounts to the area on the sphere times (-Rmax - Rmin) *^mes ^(*> v« Unless i?max = oo, 
|u5£| takes on values different from zero. 

This shows that for any t£ ^ 0, there exist vectors w£ ^ 0 which give rise to the same 
negative depth volume as u>£ = 0. However, for any such u>£ ^ 0 this volume is larger than the 
volume obtained by setting t£ = 0. It follows that t = t. From Figure 3, it can furthermore be 
deduced that for a given u>£ the negative depth volume, which for t = t only lies above areas 
of type I, decreases as t moves along a great circle away from u>£, as the areas between Cmin 

and Cmax and between Cmin and (t x s) • r = 0 decrease. This proves that in addition to t = t, 
t JL u>e. 

The preceding results demonstrate the advantages of spherical eyes for the process of 3D 
motion estimation. Table 1 lists the eight out of ten cases which lead to clearly defined error 
configurations. It shows that 3D motion can be estimated more accurately with spherical eyes. 
Depending on the estimation procedure used—and systems might use different procedures for 
different tasks—either the translation or the rotation can be estimated very accurately. For 
planar eyes, this is not the case, as for all possible procedures there exists confusion between 
the translation and rotation. The error configurations also allow systems with inertia! sensors 
to use more efficient estimation procedures. If a system utilizes a gyrosensor which provides an 
approximate estimate of its rotation, it can employ a simple algorithm based on the negative 
depth constraint for only translational motion fields to derive its translation and obtain a very 
accurate estimate. Such algorithms are much easier to implement than algorithms designed for 
completely unknown rigid motions, as they amount to searches in 2D as opposed to 5D spaces 
[4]. Similarly, there exist computational advantages for systems with translational inertial 
sensors in estimating the remaining unknown rotation. 

In nature, systems that walk and perform sophisticated manipulation have camera-type 
eyes, and systems that fly usually have panoramic vision, either through compound eyes or a 
combination of camera-type eyes. The obvious explanation for this difference is the need for 
a larger field of view in flying species, and the need for very accurate segmentation and shape 
estimation, and thus high resolution in a limited field of view, for land-walking species. As 
shown in this paper, the geometry of the sphere also provides a computational advantage; it 
allows for more efficient and accurate egomotion estimation (even at the expense of trading 
off resolution in some systems, for example, in insects), and this is much more necessary for 
systems flying and thus moving with all six degrees of freedom than for systems moving with 
usually limited rigid motion on surfaces. 

The above results also point to ways of constructing new, powerful eyes by taking advantage 
of both the panoramic vision of flying systems and the high-resolution vision of primates. An 
eye like the one in Figure 5, assembled from a few video cameras arranged on the surface of 
a sphere,4 can easily estimate 3D motion since, while it is moving, it is sampling a spherical 
motion field! Even more important for today's applications is the reconstruction of the shape 
of an object or scene in a very accurate manner. Accurate shape models are needed in many 
applications dealing with visualization, as in video editing/manipulation or in virtual reality 
settings [16, 17]. To obtain accurate shape reconstruction, both the 3D transformation relating 
two views and the 2D transformation relating two images are needed with good precision. 
Given accurate 3D motion (t,u>) and image motion (r), equations (1-3) can be used in a 
straightforward manner to estimate depth (Z) or range (R) and thus object shape. An eye 
like the one in Figure 5 not only has panoramic properties, eliminating the rotation/translation 

4 Like a compound eye with video cameras replacing ommatidia 
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Table 1: Summary of results 

I II 

Epipolar     minimization, 
given optic flow 

Spherical Eye 

Minimization of negative 
depth volume, given 
normal flow 

(a) Given a translational er- 
ror t£, the rotational er- 
ror u>£ = 0 

(b) Without any prior infor- 
mation, t£ = 0 and u>£ _L 
t 

Camera-type Eye 

(a) Given a rotational error 
u>£, the translational er- 
ror t£ = 0 

(b) Without any prior infor- 
mation, t£ = 0 and u>£ _L 

(a) For a fixed translational 
error («oe,ifo«), the ro- 
tational error (a£, /J£, fe) 
is of the form 7£ = 0, 

(b) Without any a pri- 
ori information about 
the motion, the er- 
rors satisfy 7£ = 0, 
ajße = -xojyot, 
XQIVQ = xoJyo€ 

(a) Given a rotational error, 
the translational error is 
of the form —XoJy0e = 

(b) Without any error 
information, the er- 
rors   satisfy   7£    =    0, 

<*t/ße     =      -xojyoc 
xo/yo = xojyoc 

confusion, but it has the unexpected benefit of making it easy to estimate image motion with 
high accuracy. Any two cameras with overlapping fields of view also provide high-resolution 
stereo vision, and this collection of stereo systems makes it possible to locate a large number 
of depth discontinuities. Given scene discontinuities, image motion can be estimated very 
accurately [8]. As a consequence, the eye in Figure 5 is very well suited to developing accurate 
models of the world, and many experiments have confirmed this finding. However, such an eye, 
although appropriate for a moving robotic system, may be impractical to use in a laboratory. 
Fortuitously from a mathematical viewpoint, it makes no difference whether the cameras are 
looking inward or outward! Consider, then, a "negative" spherical eye like the one in Figure 
6, where video cameras are arranged on the surface of a sphere pointing toward its center. 
Imaging a moving rigid object at the center of the sphere creates image motion fields at the 
center of each camera which are the same as the ones that would be created if the whole 
spherical dome were moving with the opposite rigid motion! Thus, utilizing information from 
all the cameras, the 3D motion of the object inside the sphere can be accurately estimated, 
and at the same time accurate shape models can be obtained from the motion field of each 
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camera. The negative spherical eye also allows for accurate recovery of models of action, such 
as human movement, because putting together motion and shape, sequences of 3D motion fields 
representing the motion inside the dome can be estimated. Such action models will find many 
applications in telereality, graphics and recognition. The above described configurations are 
examples of alternative sensors, and they also demonstrate that multiple-view vision has great 
potential. Different arrangements best suited for other problems can be imagined. This was 
perhaps foreseen in ancient Greek mythology, which has Argus, the hundred-eyed guardian of 
Hera, the goddess of Olympus, defeating a whole army of Cyclopes, one-eyed giants! 

Figure 5: A compound-like eye composed of conventional video cameras, arranged on a sphere 
and looking outward. 
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