
HEP08T DOCUMENTATION PAGE OMfl Mo. 0704-Offft

iiiw»i««»yi"»wtw«i>i

hn AND öAIii COVIMO
4/15/96 - 08/30/96

4. TIKI AMO WH Utl
Workshop on Partial Order Methods in Verification

I AUTHOK(S)
Doron Peled
Vaughan Pratt
Gerard Holzmann

1. MUMM«* U*OAN.2AT.OH NAMIIS) ANO ADO*»«»»

DIMACS, Rutgers University
Piscataway, NJ 08855-1179
Stanford University
Stanford, CA 94305

$. rUNCHNQ NUMIIRS
Grant No: N00014-96-1-0892
PR No.: 96PR05310-00
P.O. Code: 311
Disbursing Code: N68892
AGO Code: N66018
CAGE Code: 2B898

TlMORMINC ORGANISATION
RIPORT NUMf (R

1. SrONSOR.NC MUNIT0».N0 AOtNO NAMC(S) ANO AOURtSXH)

Office of Naval Research
Ballston Tower
800 North Quincy Street
Arlington, VA 22217-5660

™1. SUPHIMINTAAY NOT«

10. SPONSORING / MONITORING
AGINCY RIW)«T NUMIIR

12« OISTÄISUTION , AVAILAIIUTY JTATIMINI

Approved for public release: distribution unlimited.

12k. OlSTRlRUTlON C00C

7j. AISTMCT (Mi.Knwww "^ „Resented at POMIV, the Workshop on Partial
This report consists of the writ en pa£» P™«££ 24_26. P0MIV is one of the
Order Methods in Verification held at £™£j™ ^ Logic, 1995-1996, and also
workshops participating in the DIMA«Special * ^ ^ Rutgers
immediately preceded the Federat-J L°gic Confere K on from the traditional
Julv 27-August 3. The theme of the workshop was concurrency" model based on
interleaving model of concurrent computation to the
computations as partially ordered sets of events.

DTK QUALTT7IN8PECTED %

p^Ä5SÄ«.ti».di.«!*»«'^«^t^r»r/..^ll^, Parallel computation, "—— " ^ event structures,
true concurrency, partial orders, events,,

'is. NUMMR or »AGl*

■*. MUCf coot "
d

17. SlCURlTT CLASSi^CATlOM
or RtJORT

unclass: Led

\$s "Sico^ ;so *.;

II SKURlTT ClASJlfiCATiQW
Of THIS >AGI

unclassified

'it SICUWTY ClASStriCAHO"
Or AISTRACT

unclass-' ried

20. LIMITATION O* AIJTRAU

unlimited

V*"C«'fl '0'"" »" J** * "

Proceedings of

POMIV96

Workshop on

Partial Order Methods in Verification

Princeton, NJ, July 24-26

Sponsored by ONR and DIMACS

Preface 100

A. Mazurkiewicz
Prefix function view of states and events 100

W. Thomas
Elements of an automata theory over partial orders 100

M. W. Shields
Algebraic manipulations and vector languages 100

S. Katz
Refinement with global equivalence proofs in temporal logic 100

W. Penczek, M. Srebrny
A complete axiomatization of a first-order temporal logic over trace systems 100

W. Reisig
Interleaved progress concurrent progress and local progress 100

G. Plotkin, V. Pratt
Teams can see pomsets 100

G. Winskel, M. Nielsen
Presheaves as transition systems 100

Ch. Baier, M. Z. Kwiatkowska
On topological hierarchies of temporal properties 100

M. Mukund, P. S. Thiagarajan
Linear time temporal logics over Mazurkiewicz traces 100

A. R. Meyer, A. Rabinovich
A solution of an interleaving decision problem by a partial order technique 100

A. Valmari
Stubborn Set Methods for Process Algebras 100

D. Peled
Partial order reduction: linear and branching temporal logics and

process algebras 100

U. Montanari, M. Pistore
History dependent verification for partial order systems 100

I

Th. T. Hildebrandt, V. Sassone
Transition systems with independence and multi-arcs 100

P. Godefroid
On the costs and benefits of using partial-order methods for the

verification of concurrent systems 100

E. Best
Partial order verification with PEP 100

D. Luckham
Rapide: a language and toolset for simulation of distributed systems by

partial orderings of events 100

Debate'90: An electronic discussion on true concurrency 100

V

POMIV96 was sponsored by ONR - Office of Naval Research, AT&T
and Lucent Technologies. It was ran under the Special Year on Logic and Al-
gorithms (SYLA), organized by DIMACS - Center for Discrete Mathematics
and Computer Science.

Local arrangements were done by Sandy Barbu, from the computer sci-
ence department, Princeton University, Princeton, NJ.

The organizers would like to thank Sandy for her hard work in helping
to arrange this event. We would like to thanks the invited speakers, the
participants and the sponsors.

Rationale for Concurrent Verification and Partial Orders

The Problem. Enhancing the reliability of concurrent systems is an increas-
ingly important and challenging problem for information technology today.
The problem is more serious than for sequential systems for two reasons.
First, the possible interactions in a computer network are far more complex
than for a traditional stand-alone sequential program. Second, one little
bug may ruin the whole day not just of an individual computer user but an
entire community, many of whom need not even be directly involved with
computers.

With increasing system complexity, whether concurrent or sequential,
come increasing costs of system failure. The widespread outage of the tele-
phone system on the US East coast in January 1991 dramatically testified
to the expensive havoc that one tiny programming error could wreak, as did
the $475 million Pentium chip division bug, and the recent $5 billion crash
of the Ariane 5 rocket.

Expectations. It is unreasonable to expect to eliminate all errors, even
catastrophic ones, but any improvements in software technology that will
reduce their frequency and severity are well worth the effort. If each $100
million invested in enhanced system reliability avoided one billion-dollar
catastrophe, the rate of return on this investment would be a thousand
percent even without counting the savings from the many lesser bugs that
would also have been avoided.

Given the magnitude of the software reliability problem, the software
industry should not put all its eggs in the one basket, but instead aggressively
explore all reasonable alternatives.

The Verification Option. One alternative that has strong support from a
large segment of the software engineering community is verification, the ap-
plication of logic to the efficient search of the entire space of possible behav-
iors. No tool can hope for perfection, and logic is no exception. What logic
accomplishes is not the infallibility popularly attributed to it, but rather
the efficient search of combinatorially large or even infinite state spaces for
all the known types of bugs in a practical amount of time. No methodol-

6

ogy comes near the efficacy of logic in that role, particularly in the case of
infinite search spaces where mathematical induction permits seeking out in
finite time every nook and cranny that may hide a known type of bug.

One weakness of logic is that it cannot guarantee to recognize bugs of a
kind not anticipated by the axioms of the logical system. For this and other
reasons logic should be viewed as just one player on a team whose overall
goal is improved reliability. Logic has proved a valuable player in this role
on many documented occasions, fully justifying its continued support and
growth.

Logic works best when understood as a discipline for manipulating not
just symbols (proof theory) but also facts about some world (model theory).
To the latter end one develops a mathematical model of that world, and
evaluates the soundness of the proof system relative to that model. The
model must be faithful to the world, yet simple enough to permit the logic's
soundness to be assessed.

What is concurrency? A burning problem in program verification today
is how to model the world of concurrent systems. The excellent models of
sequential behavior that have evolved during the past thirty years of sequen-
tial program verification do not adequately reflect the nature of a concurrent
universe. Only when one imagines each and every event in the universe lining
up to take its turn can one confidently apply any of the sequential models.
A variety of "testing scenarios" reveals situations where sequential models
yield a visibly wrong answer and hence an unsound logic. These scenarios
have spurred interest in true concurrency as it has come to be called, namely
modeling concurrency in a way that is faithful to all currently understood
modes of interaction of system components, particularly those beyond the
reach of sequential models.

Two concurrency models. There are two basic approaches to true con-
currency, state-based and event-based. The state-based approach as the
standard model for sequential behavior has the advantage of familiarity. In
this model, the passage from sequential to concurrent behavior is accompa-
nied by an increase in structural complexity of the transition system. The
basic additional structure required is a higher-dimensional filling in of the
spaces between the "commuting squares" characteristic of the state dia-
grams of concurrent systems. While this structure is most simply realized
directly by geometric means, a number of more or less equivalent ways of
achieving essentially the same effects have been proposed by the concurrency
community in the past decade or so.

The event-based approach models behavior in terms of occurrence of
events. A system, or any of its components, is modeled as the set of all events
the system is capable of performing, usually infinite in practice. Pure con-
currency, with no synchronous behavior, interference, or other interaction, is
simply the set of events itself with no additional structure. The many ways in

i

which system components can interact, whether cooperating synchronously
(communication), competing for shared resources that forbid simultaneous
access (mutual exclusion), or inhibiting one another's occurrence altogether
(conflict), are modeled by equipping the event set with structure consisting
of constraints formally expressing those interactions. Note the change in
direction here: with states structure increases with increasing independence
while with events it increases with increasing interaction, the opposite of
independence.

Just as physics needs both waves and particles to model the physical
universe, so does computer science need both state-based and event-based
models of true concurrency.

Partial Orders. The focus of this workshop is on the concurrent struc-
tures supporting the event-based approach, the basic such structure being
the partial order. Total order semantics views each execution of a concurrent
system as a sequence of events, where actions executed concurrently appear
according to some arbitrary order. Partial order semantics allows events to
appear either ordered or unordered, disallowing causality cycles, e.g., action
A happens before action B, which happens before action C, which happens
before A.

Total order semantics, also called interleaving semantics, is traditionally
considered easier to work with as it lends itself to simple representations,
e.g., with finite state machines. Until recently partial order semantics has
not been widely applied in practical verification due to a lack of maturity in
the methodology of its use and a shortage of suitable tools for verification
based on partial orders.

Continuing research into partial order semantics has improved this situ-
ation in recent years, and the partial order approach can now reasonably be
looked to as a viable extension of total order semantics, Since total orders
are a special case of partial orders, the move to the latter has freed verifi-
cation system builders to employ new methods without having to abandon
those sequential methods that have proved useful in concurrent verification.
These new methods are now starting to show worthwhile efficiency gains in
the exploration of state spaces.

Doron Peled, Vaughan Pratt, Gerard Holzmann
Murray Hill, NJ and Palo Alto, CA.

7

Prefix function view of states and events

Antoni Mazurkiewicz*
Institute of Computer Science of PAS
Ordona 21,01-237 Warsaw, Poland

amaz@ipipan.waw.pi

Abstract

Prefix functions are thought as a unifying concept for different ways of look-
ing at discrete processes. The idea of prefix function consists in establishing
relations between events and states; different types of such relations corre-
spond to different ways of understanding states being reached in the course of
computation. This concept covers such concurrent systems description tools
as finite state automata, trees, Petri Nets, traces, occurring graphs, vector
languages, multi-trees and similar. Special attention is paid to operations of
contraction and synchronization on prefix functions.

Keywords: events; states; discrete processes; concurrency.

1 Introduction

The purpose of the present paper is to situate trace calculus within a broader context
of concurrency description tools. Trace theory turns out to be useful for describing
and analysing some concurrency phenomena because of its similarity to the well
established and familiar theory of automata and formal languages on one hand and
of its ability to capture such properties of concurrent processes as partiality of event
occurrences ordering. However, trace theory has succeded only in a limited family
of concurrent systems that can roughly be compared with cooperating sequential
processes; to find its sound extension suitable for more general models is then
of primary interest. To this end, it seems worthwhile to look closier at the basic
concepts of trace theory, identify those that can be generalized, and try to adapt
them to a broader context.

Traces over an alphabet (consisting of events names) equipped with a depen-
dency relation (a symmetric and reflexive binary relation in it) arise by identification

•partially supported by grant KBN 8T11C 029 08

1

all strings over the alphabet that differ only by order of two consecutive not de-
pendent symbols; the result of such an identification is a trace, representing an
action composed of a number of events, some of them occurring independently
of other, or (equivalently) a system state reached after occurring these events. In
trace theory dependency relation defining the way of state identification is fixed
for the whole modelled system; it causes mentioned above limitations of the trace
usage. In this paper the state identification is not restricted to that induced by
a dependency relation; instead, it is considered as a tool that can be tailored to
current needs of system verification: state equivalence useful for proving some
eventualities of system behaviour may be different from that needed for proving
some system invariants. In a system specification or verification, some states can
be treated as equivalent, restricting in this way the number of cases to be analysed;
in case of concurrent systems this restriction may be quite serious.

Labelled graphs, like Pratt's pomsets [9], or labelled posets, indicating causal
relationships of (named) events offer another possibility of concurrent process
descriptions. They can be related to strings of symbols as follows: for each string
w over an alphabet of events, or elementary actions, say A, denote by j(w) the
graph defined recursively: 7(e) is the empty graph, j(wa) arises from the graph
j(w) by adding to it a new node labelled with symbol a and new arcs leading to it
from all vertices ofy(w) labelled with symbols that a causally depends on. Thus,
for any prefix-closed language L representing sequences of actions of a concurrent
process, function defined on L assigning to each w e L the graph 7(11;) constructed
as explained above can be viewed as a description of the process. In this case states
of a process are determined by initial pieces of causally ordered histories.

Yet another view on states of a process takes into account only the 'future' of
a process after its partial execution. In this case it does not matter which is the
history of the process reaching some point, but only which are the possibilities
of its continuation. This approach resembles that of automata theory; number of
states in a process is equal to the number of different continuations of the process;
it it is finite, then the number of states is finite.

Looking at processes as activities of a number of sequentially acting agents,
as in Hoare language [3] with the Shields theoretical background [12], it is quite
natural to define concurrent process as a composition of sequential processes.
This approach looks very promising for at least two reasons: first, the theory of
sequential processes is well elaborated and established, the second, it uses directly
compositionality methods that are especially valuable in dealing with multiagent
systems. However, composition used in this approach concernes only sequential
processes, not accepting cases where single agents can act in nonsequential way;
applying basic concepts of this approach one can expect a perfect tool for process
descriptions.

Thus, the answer what is the 'real' state of a process depends on questions
concerning the process itself. Proving some eventualities that will occur during a
process run, the notion of a state may be different from that needed for proving

10

some invariant properties or estimating the time limit of the process duration.
Therefore, in this paper the notion of a state is not determined. The nature of states
is irrelevant for the present purposes; it is convenient to abstract from their specific
properties, but to concentrate only on the way they are reached by the system. It
leads to the concept of prefix functions, discussed through the paper.

The standard mathematical notation is used in the paper. The set of all integers
is denoted by Z, and the set of all non-negative integers by N. If / is a function,
D(f) denotes the domain of / and R(f) the range of /. Symbol / : A —► B
is used to indicate that / is a function with domain A and range contained in B.
If R(f) = B, f is said to be onto B; a one-to-one function is a bijection. If
/ : A —> B,g : B —> C, then fg : A —>• C denotes the composition of / with
g defined by fg(x) = g(f(x)) for all x € A.

Any finite set (of symbols) is an alphabet; A* is the set of all strings over A,
i.e. finite sequences of symbols in A, including e, the empty string. Any subset of
A* is called a language over A. If w is a string, A is an arbitrary alphabet, then
the projection it A (w) of w onto A is a string arising from w by erasing in w all
symbols not in A; if L is a language, TTA (L) is the set of projections of all strings
in L onto A. lfu,v 6 A*, then uv is the concatenation of strings u, v; string u is
a prefix of string w, if there exists string v with w = uv. Clearly, relation "to be a
prefix of" is a (partial) ordering relation in the set of all strings. Language is prefix
closed, if together with a string it contains all prefixes of this string. The kernel of
language L is the greatest prefix-closed language ker(L) contained in L; the prefix
closure of language L is the least prefix closed language Pref(Z) containing L.
For any string w and symbol a, the number of occurrences of a in w is denoted by
w(a). For any language L and any string w, the continuation of w in L is the set
0(L, w) = {u | wu G L}.

2 Algebraic tools.

The discrete processes considered here are assumed to be composed of finite or
infinite number of event occurrences; the set of events, called here alphabet, is
assumed to be finite. In order to build processes of events a number of algebraic
means has been applied; below some of them are briefly presented. To make
possible their comparison the alphabet A of events is fixed for what follows.

Monoid of strings. Free monoid generated by alphabet A, i.e. the algebra
(A*, o, c) with composition (concatenation) o and the empty string e as the neutral
element, called the monoid of strings over A, is the basic algebra serving in the
sequel for defining others. This monoid will be denoted by S(A) in the sequel.By
the definition of freeness, for any other monoid (X, o, 1) and any mapping / :
A —>■ X there exists the unique extension /* : A* —> X of / such that

/•(e) = l,r(«o) = /*(ti)o/(o).

As it has been mentioned above, prefixes of any string are linearly ordered.
Monoid of traces. Let D C A2 be a symmetric and reflexive relation, called

dependency relation in A and let ID = A2 - D; symbols a, b are called dependent,
if (a, b) e D, and independent otherwise. Let =D be the least congruence in
monoid S(A) such that

ab =D ba <&■ (a,b) 6 ID-

Then the quotient monoid S(A)/ =D denoted by T(D) is called the trace monoid
over D and its elements traces over D (observe that the relation D, as reflexive,
determines alphabet A). By definition of quotient algebras, T(D) arises from 5(A)
by identifying strings that differ only by swapping over some adjacent occurrences
of independent symbols. As usual, [W]D denotes the equivalence class of string w
w.r. to the congruence =D (the trace determined by w); symbol []D denotes also
the homomorphism (f> : S(A) —)■ T(D) such that <f>(w) = [w]D. Symbol T(D)
will also denote the base set of the monoid of traces over D.

[t
[a]

<>
[ab] [ac]

[abb] [abc]

[abbe]
\

[abbca]

Figure 1: The prefix structure of [abbca]D for D = {a, b}2 U {a, c}2.

By definition we have [«]D[U;]D = [uw]D for all u,w e A*; call trace [u]D a prefix
of trace [W]D, if [U]D[V]D = [W]D for some trace [V]D- In contrast to S{A), the set
of prefixes of a trace is ordered by the prefix relation only partially, as it is shown
in Fig. 1.

A subset P of T(D) is confluent, if for each traces t', t" e P there is a trace
t € P such that t' as well as t" are prefixes oft.

Shields algebras. LetA = (A i, A2,..., A N) be a tuple of alphabets such that
A = Ui^i Ai and let D = \jfL{ A

2; clearly, D is a dependency relation in A. Let

P(A) = f[S(Ai)
8=1

be the product of monoids S(Ai),S(A2),..., S{AN), where S(Ai) = {A^o, e);
elements of this monoid, i.e. tuples belonging to

A\ x A\ x • • • x A*N

(^

are called string vectors. Let n denotes the homomorphism of 5(A) to F(A), such
that

ir(w) = (iri(w),TT2(w),.. .,TTN(W)),

where iri(w) denotes the projection of w onto A,-, for each i = 1,2,..., N and
each UEA*. The Shields algebra over A is the image of S(A) given by x; this
image, denoted here by V(A), is a subalgebra of P(A), generated by the set Ao:

A0 = {ir(a) | a G A}.

Images of prefix-closed languages over A given by w ('prefix-closed' subsets
of 5(A)) are called here Shields languages. String vectors are ordered by the
prefix relation defined pointwise: vector (u\, u2,..., UN) is a prefix of vector
(wi, w2,..., WN), if U{ is a prefix of W{ for all i = 1,2,..., iV.

(a, a)
/ \

(ab, a) (a, ac)

(abb, ac) (ab, ac)
\ /
(a66, ac)

(abba, aca)

Figure 2: The prefix structure of string vector (abba, aca) for A = ({a, b}, {a, c}).

The concept of the monoid of string vectors as formulated above originates
in papers of M.W. Shields [12]. His main idea was to represent non-sequential
processes by a collection of individual histories of concurrently running compo-
nents; an individual history is a string of events concerning only one component,
and the global history is a collection of individual ones. This approach, appealing
directly to the intuitive meaning of parallel processing, is particularly well suited
to CSP-like systems [3] where individual components run independently of each
other, with one exception: an event concerning a number of (in CSP at most two)
components can occur only coincidently in all these components ('handshaking'
or 'rendez-vous' synchronization principle). The presentation and the terminology
used here have been adjusted to the present purposes and differ from those of the
author.

Dependence graphs monoid. Let D be a dependency relation in A. Depen-
dence graphs over D (or d-graphs for short) are finite, oriented, acyclic graphs with
nodes labelled with symbols from A in such a way that two nodes of a d-graph are
connected with an arc if and only if they are different and labelled with dependent

"b

symbols. Formally, a graph with the set of nodes V labelled by ip, and with the set
of arcs R, is a dependence graph (d-graph) over D, iff

(vi,v2) G RV (v2,vi) £ RVvi = v2 <£> {<p{vi),(p(v2)) £ D

for all vi,v2 6 V. Two d-graphs 7', 7" are isomorphic, j' ~ 7", if there exists
a bijection between their nodes preserving labelling and arc connections. As
usual, two isomorphic graphs are identified; all inherent properties of d-graphs are
formulated up to isomorphism. The empty d-graph (0,0,0) is denoted by A and
the set of all (isomorphism classes of) d-graphs over D by T(D).

The monoid G(D) of dependence graphs over dependency D C A2 is the
monoid (T(D),o, A) generated by the family {g(a) | a e A} of singleton graphs,
where

9(a) = ({a}A{(a,a)}),

and with the composition o defined as follows: the composition 71 o j2 of 71 with
72 is (isomorphic to) the graph arising from disjoint representations of 71,72 by
introducing new arcs leading from each node of 71 to each node of 72, provided
they are labelled with dependent symbols. It is easy to prove that the composition
of d-graphs is a d-graph again and that the composition operation is associative,
with A as the neutral element. It turns out that the homomorphic extension of the
mapping gD : A —► T to A* —> T is a homomorphism of S(A) onto G(D).

Figure 3: Dependence graph over D = {a, b}2 U {a, c}2.

For a given dependence graph 7, node v of 7 is a prececessor of another node
u of 7, if (u, u) is an arc of 7. Clearly, all predecessors of a node labelled with
symbol a are labelled with symbols dependent on a. Any full subgraph of 7 which,
together with a node, contains all its predecessors, is a prefix of 7. It turns out that
dependence graphs are partially ordered by the above prefix relation. Dependence
graphs are thought as graphical representations of runs of non-sequential processes
which make explicit the ordering of action occurrences within compound actions.
If the dependency in A reflects the causal relationship among events symbolized
by elements of A, then dependence graphs are representations of causal succession
of event occurrences in a process run.

It turns out that for a given dependency D and ID = A2 - D all the three
monoids: of traces, Shields' monoid, and d-graph monoid, can be characterized

14

as images of the monoid of strings 5(A) given by homomorphisms <f> meeting
conditions:

4>(w) = 4>{e) => w = e,

(a, b) £ /D => 4>{ab) = <£(M>

0(«a) = <f)(v'av") =► #(u) = 0(üV),

</>(ua) = <£(i>&) A a j^ b => (a, b) £ /ß,

for each a, 6 £ A, u, u', u; £ A*, v" £ (A — {a})*. From the above condition
one can prove all the three monoids to be isomorphic, hence, it is only a matter of
taste which objects are chosen for representing concurrent processes: equivalence
classes of strings, string vectors, or dependence graphs.

Monoid of multisets. Free commutative monoid (A®, +, 0) generated by A
is the multiset monoid over A (or the monoid of linear forms over A), denoted by
R(A). The additive notation is used here because of commutativity of + operation.
Let /x : A* —> A® be a mapping such that fi(e) = 0, fi(a) = a for a £ A, and
fj,(uv) = /x(w) + /J,(V) for all u, v £ A*. Clearly, \i is a homomorphism of 5(A)
onto i?(A). Multiset 2a + 26 + c is an example of an element of A®; it is the value
of fi(abbca). For any multiset r and symbol a the nonnegative integer r (a) is called
the multiplicity of a in r. For any multiset r we have clearly r = £aeA r(a)a.
Multisets over an alphabet are pointwise ordered: r' < r" iff r'(a) < r"(a) for all
a £ A; if r' < r", we say that r' is a prefix of r".

If r', r" are multisets over A, then max(r', r") is the multiset r over A such
that r(a) = max(r'(a), r"(a)) for each a £ A. The set R of multisets is confluent,
if r', r" £ i? implies max(r', r") £ i?; and is linear, if for any multisets r', r" £ R
either r' < r", or r" < r'. The set R of multisets is connected, if for each r £ R
there exists a string w £ A* such that /t/(w) = r and /J,(U) € R for each prefix u of
w. Clearly, any prefix-closed set of multisets is connected, but not the other way
round. The following condition is necessary and sufficient for connectedness of R:

r £ R <&■ r = 0 V 3r' £ R,d £ A : r = r' + a.

Define the kernel of a set R of multisets over A as the least set ker(i?) of multisets
such that

0 £ R => 0 £ ker(ß), r £ ker(fl) Ar + ae R=>r + ae ker(Ä),

for all r £ A®, a £ A. Thus, ker(Ä) is the greatest connected subset of R, for
each RCA®.

3 Specification tools.

Algebraic tools described in the previous section have been developed in order
to capture in a satisfactory way concurrency phenomena that came out while

S

specifying and analysing non-sequential systems. In particular, the partial order
of event occurrences during systems runs made necessary to look for non-standard
way of describing processes. Historically, the specifications of non-sequential
systems became before the rigorous notions of their behaviour has been proposed.
Below we briefly describe some formal system specifications that are inherently
connected with algebraic tools given in the previous section.

Elementary net systems. Elementary net systems [11, 13] (presented here
with some minor changes) are particular cases of Petri nets, well suited for many
applications and manageable using some formal means. An elementary net system
is any system

E= (P,T, Pre, Post, m°)

where P, T are finite, nonempty sets, of places and transitions, and

Pre : P —► 2T, Post : P —-»• 2T, m° C P,

are such that T = Pre (P) U Post (P) (no isolated transitions) and Pre (p) U
Post (p) ^ 0 for all p e P (no isolated places).

Functions Pre and Post are extended to P U T by setting

Pre (t) = {p | t € Post (p)}, Pbst(t) = {p | t e Pre (p)}.

Partial function 8 : 2P x T —> 2P is defined as follows:

8(mi,t) = m2 <£> Pre (t) C roi A Post («) C m2 A mi - Pre (t) = m2 - Post (t).

The sequential behaviour of E is then defined as the partial function ßj% :
T* —> 2P defined recursively:

0E(e) = ™°, ßE(wt) = S(ßE(w),t)

for all w 6 T*,t € T. The domain of ß% is the set of execution sequences of E
and its range is the set of reachable markings of E. Obviously, the domain of /?E

is a prefix-closed language over T.
Set Prox (t) = Pre (£) U Post (t). Define in T dependency relation D by the

equivalence (t1, t") £D& Prox (*') n Prox (t") ^ 0. It turns out that

w' =D w" =► («/ € Ü(/3E) <=> w" € Z?(/3E)) A /3E(^') = 0E(«>")■

Therefore, from the point of view of reachable markings, strings of transitions
equivalent w.r. to the trace equivalence are also behaviourally equivalent. More-
over, if to each execution sequence w € -D(/?E) assigns trace [w], the prefix
structure of [w] exhibits the expected partial ordering of reachable markings.
Thus, it is possible to define the trace behaviour of E as a partial function
[ßE] : [D(ßE)] —► 2P, such that \fe]([w]) = fa(w); this definition is cor-
rect in view of the implication above. Any confluent subset of the domain D([ßE])
of [ßE] is a concurrent run of the elementary net system E.

Cooperating sequential languages. Let A = (A\, A2, ■ ■ ■, AN) be a tuple of
alphabets and let L = (L1, L2,..., L#•) be a corresponding tuple of prefix-closed
languages, Li C A* for each i = 1,2,..., N. The concurrent behaviour of system
L is function ß-^ with

N
D{ßL) = ker{w\7r(w)el[Li}

»=i

and R(ßL) C üili £» such that/?L(w) = ic(w) for each to e £>(/?L)-

Place-transition Petri Nets. Any place/transition Petri net (abbreviated as
PT-net) is the system N,

N = (P,T,F,m0),

where P, T are finite, non-empty, disjoint sets (of places and transitions, resp.),
F : P x T —> N, and m° : P —> N (the initial marking). Any function
m : P —> N is called a marking of net N; the set of all such markings is denoted
by M. The value of marking m for place p is interpreted as the (instantaneous)
number of 'tokens' contained in p. Transition execution of N is the partial function
Sfq : M x T —► M defined as follows:

<5N(m', t) = m"«-VpeF: m"{p) = m'(p) + F(p, t)>0

for all m', m" G M,t € T. This function assigns to marking m' and transition
t marking m" obtained from m' in effect of the execution of t; execution of t
is possible, if each place p for which F(p, t) < 0 (from which t 'takes' tokens)
contains sufficiently many of them (m' + F(p, t) > 0) and the resulting number
of tokens in any place after execution of t is equal to their previous number minus
the number of tokens taken from this place by t (if F(p, t) < 0) plus the number
of tokens put by t into the place (if F(p, t) < 0).

Let N be an arbitrary PT-net. The marking behaviour of N is defined as the
partial function /?N : T* —> M defined in a similar way as in case of elementary
net systems:

ßN(e) = m°,ßN(wt) = 5(ßx(w),t)

for w € T*, t G T. Elements of £>(/%) are called firing or execution sequences,
those of A(/?N) ^e reachable markings. It is clear that D(ß-^) is a prefix closed
language. The sequential behaviour of N is the domain -D(/?N) °f tne marking
behaviour; for sake of uniformity, it will be considered as the identity function with
the domain £)(/%). However, the sequential behaviour itself is not a sufficient
tool to distingush concurrent runs of a net.

A natural aim in exploring partial order behaviour of PT-nets is to establish a
sort of independency relation among transition ocurrences and then an equivalence
between states reached in effect of such occurrences. However, in contrast to ele-
mentary net systems, where independency was fixed once for ever and determined

n

by structructure of the net, independency between transitions in PT-nets may de-
pend on the reached marking. It is even not quite obvious whether independency,
as exhibited by PT-nets, leads to a partial order of transition occurrences in a system
run. This issue will be discussed further on; for the time being algebra of multi-
sets, as defined above, seems to be a promising tool for describing non-sequential
behaviour of PT-nets, as explained below.

Let A be an alphabet, L C A®. Call L linearly definable, if there is a function
k : A U {e} —>Z such that k(e) > 0 and

L = {reA®\^2 k{a)r(a) + k(e) > 0}.
a&A

L is conjunctive, if it is an intersection of a finite number of linearly definable sets.
The kernel of a conjunctive set is a multitree and any confluent subset of a multitree
is a multitrace. Any maximal linear subset of a multitrace is its (sequential)
observation. The multiset behaviour of a PT-net N = (P, T, F, m°) is defined by
means of homomorphism \i : A* —► A® applied to the domain of its sequential
behaviour, i.e. as function ß'N with the domain

D(ß'N) = ker{W € T* | /\ (£ F(p, t)w(t) + m°(p) > 0)}
PEP i€T

such that ß'N(w) = fi(w) for each w G D(ß^). It turns out that R{ß'N) = B,
where

B = ker{r € T® | /\ QT F(p, t)u(t) + r°(p) > 0)} (1)
P€P ter

and that B is a multitree (recall that r(t) is the multiplicity of t in multiset r).
Maximal multitraces of B can be viewed as runs of N. In this description B is
a state space of N and it determines uniquely all reachable markings of the net.
Let r e B; then any r' e B such that r' < r is an initial part of a history leading
to r; because of the partiality of multiset ordering, this description exhibit partial
ordering of initial histories (or states) of the net runs.

Below we give two examples of PT-nets iv~i, AT2 together with their state spaces
B\, B2 defined by the multiset behaviour. Let

Nx = {{\,2,SA},{a,b,c},F,m°)

where

F(l,a) = F(2,b) = F(3,c) = F(4,c) = -l,F(4,a) = F(4,b) = 1,

m°(l) = m°(2) = m°(3) = 1, ro°(4) = 0.

Graphical representation of net A^i together with its marking is given below:

8

20—HI] 3(»
1

Figure 4: Ni: an example of PT-net.

According to (1) the state space of Ni is the following set of multisets:

B\ = ker{r | r(a) < 1 A r(b) < 1 A r(c) < 1 A r(c) < r(a) + r(b)};

i.e.
B\ = {0, a, 6, a + 6, a + c, b + c, a + 6 + c}.

This set is confluent, hence it represents the (only one) run of the net. Graphical
representation of the ordering of multisets in B\ is given below:

0
/ \

a b
\ /

a-- c b + c

a + b+ c

Figure 5: Structure of the state space given by the multiset behaviour of N\.

Observe that no partial ordering of events can describe the above ordering of
reachable markings (any multiset in P determines uniquely a marking of the
corresponding net).

The second example is in a sense the revers of the previous one; net AT2 is
defined as

iV2= ({1,2,3,4}, {a,6,c},F,m°)

where

F(l,a) = F(2,6) = F(4,6) = F(3,c) = F(4,c) = -l,F(4,a) = l,

m°(l) = m°(2) = m°(3) = m°(4) = 1

which in the graphical form is presented in Figure 6:

2©—-{E 3G

©—40]—0

Figure 6: N2: another example of a PT-net.

il

The state space of N2 given by the multiset behaviour is

B2 = ker{r | r{a) < 1 A r(b) < 1 A r{c) < 1 A r(b) + r{c) < r(a) + 1};

hence,
B2 = {0, a, b, c, a + b, a + c, a + b + c}.

This set is not confluent, since {b, c} C B2, but max(6, c) = b + c g B2. Two
maximal confluent subsets of B2, hence two different runs of N2, are:

R\ = {0, a, c, a + c, b + c, a + b + c}, fi2 = {0, a, b, a + c, b + c, a + b + c}.

b

0

c
a

1/ \\
b a-\- c
\ /

a + b + c

Figure 7: Structure of the state space of JV2 given by the multiset behaviour.

4 Prefix functions

In the previous section some methods of non-sequential systems behaviour de-
scription have been given. There is a similarity of all these descriptions: the
non-sequential behaviour of a system has been defined as a function defined on a
prefix-closed language over the alphabet of (elementary) system actions and with
values viewed as the system states reached after executing initial parts of a system
run. Thus, in the present approach the most important aspects of the behaviour
concern the way of assigning states to sequences of events occurrences rather than
the states themselves. In particular, for many reasons it is useful to reduce the
number of considered states by assigning the same state to a number of strings, and
thus identifying some sequences. It can be then useful to unify all these similar
notions and to find some common features of their construction.

Let A be an alphabet. Any function defined on a prefix closed subset of A* will
be called here a concrete prefix function over A. For any concrete prefix function
a the alphabet of a is denoted by A(a). Interpreting concrete prefix functions
as descriptions of a discrete processes, elements of their alphabets are considered
as events (or actions) of the processes, elements of their domains as all possible
execution sequences of the processes, and elements of their ranges as (concrete)
states of the processes.

Two concrete prefix functions a\,a2 are isomorphic: a\ ~ a2, if A(a\) =
A(a2), D{G\) = D(a2), and there exists a bijection </> : R(a\) —> R{cr2)
such that <TI<£ = a2. Class of all isomorphic concrete prefix functions over A

W

is an abstract prefix function over A, or simply, a prefix function over A. Thus,
in fact, values of prefix functions are known only up to isomorphisms of their
representations (members of isomorphism classes).

There is, however, a canonical representation of values of prefix functions,
defined in a standard way. Let, for any concrete prefix function a, =a be the
equivalence relation in D(a) such that u =a v <=> a(u) = cr(v). It is clear that the
equivalence =„■ is the same for all concrete prefix functions isomorphic to a; then
the concrete prefix function a over A assigning to each string w the equivalence
class [w]a of=a containing w:

a(w) = [w]c

can serve as a canonical representation of the abstract prefix function determined
by a. On the other hand, for any equivalence relation in a prefix closed subset of
A* there exists precisely one prefix function represented by function assigning to
each string the equivalence class containing this string.

Two prefix functions are distinguished for any prefix closed domain: the identity
prefix function, isomorphic with the identity function, and the constant prefix
function, isomorphic with a function assigning a constant value for all strings in
its domain (notice here that, up to isomorphism, there is only one constant prefix
function).

Prefix functions can be viewed as a tool for the discrete systems behaviour
description, interpretating their arguments as the system actions sequences and their
values as the resulting states. Having in mind the intended interpretation and using
prefix functions as models of processes, we avoid then answering the question "what
are states", defining only their representations; the nature of states is irrelevant
from the point of view of prefix functions. Instead, from this point of view relevant
is how execution sequences, or sequences of events, can be identified without
losing essential features of a system behaviour. Thus, we are interested in those
features of prefix functions that are independent of their interpretations; speaking of
abstract prefix functions we always use their concrete representations, remembering
however their abstract nature. The function assigning to each (initiated) transition
sequence of a Petri net the resulting marking is an example of a prefix function.
Another example is related to transition systems with a fixed initial state: a function,
assigning to each sequence of transitions its resulting state is a prefix function. Yet
another example is the function assigning to each string its trace equivalence class,
for a given dependency relation, and the function assigning to each string of symbols
the vector of its projections on distinguished subalphabets. A common feature of
all these functions is the identification of sequences that are considered as identical
from the state space point of view.

For any prefix function a over A and each a € A let the transition relation of
a be defined as follows:

s' 4, s" <* 3u e A* : s' - <T{U),S" = a(ua)

i^\

for each s', s" € R{<r) and a £ A. The step relation of a is the relation ->a defined
as

s' ->a s" <s> 3a e A : s' .1 a, //.
<7 ■* >

the transitive and reflexive closure -»* of the step relation is the progress relation of
a. Clearly, the progress relation of any prefix function is a quasi-ordering relation.
Let a be a prefix function, -» be the step relation of a. Prefix function a is .rtn'cr,
if s' ->■ s" => s' ^ s" for all s', s" £ R{a); is monotone, if ->■* is an ordering of
R(a), and u is strictly monotone, if it is strict and monotone. If o is monotone
and for each w € D(a) the set {s \ s ->* o(w)} is linearly ordered by ->■*, then
o is sequential. In particular, the identity prefix function is strictly monotone and
sequential.

Prefix function a is additive, if the implication

o{w') = a(w") =» u/(a) = -a;"(a)

holds for all strings w and symbols a. Clearly,

1. Any additive prefix function is strictly monotone.

Let I be a prefix closed language over A. Prefix function a is congruent, if it
preserves continuations, i.e. if for each w', w" G D{o)

a{w') = o(w") => 0(D{o),wf) = 6(D(a),w").

Clearly, the identity is congruent. Let L be a prefix closed language; diagram of
the transition relation for the prefix function defined by a(w) = 9(L, w) for each
w £ L is the state diagram for £; if the state diagram for a language L is finite, £
is regular (rational).

2. Trace behaviour of any elementary net system is a congruent and additive prefix
function.

Some typical prefix functions used for specifying or analysis of concurrent
systems are listed below. In these examples A is an alphabet, L C A* is a prefix
closed language, D is a dependency relation in A.

• i{L) : L —^ L with i(w) — w (identity prefix function).

• TD(L) : L —> T(D) with TD(W) = [W]D (trace prefix function);

• ID'- L —> r(D) with JD(W) — 5D(W) (d-graph prefix function);

• 7T :L —►4J x AJ x ---x A*N, with TT(W) = (jri(w),3r2(w),...,T7v(w))
(vector prefix function);

• HL '■ L —> A® (multiset prefix function);

V

• 0 : L —> 2L such that @(w) = 0(L, w) (continuation of w in L) (continu-
ation prefix function);

• I : L —> Z, where l(w) is the length of w (the length prefix function);

• For P C L, S : L —► {0,1} with 6(w) = l«i»eF (test prefix function).

Prefix function States Type of

identification ordering

identity execution
sequences

none

monotone

trace execution
traces

partial
commutation

vector string
vectors

equal
projections

graph dependence
graphs

isomorphic
graphs

multiset multisets all
permutations

continuation control
states

same
continuations folding

test truth
values

subset

constant singleton all

Table 1 A 'taxonomy' of prefix functions w.r. to identification properties.

5 Contractions of prefix functions

Let F be a family of prefix functions over a common alphabet with a common
domain. Let o~i, o~2 be two elements of F; we say that <72 is a contraction of o\ (and
write <T\ > o%), if there exists a function tp such that o\i\) = <72. Such a function
is called a contraction of o\ to 02. Strictly speaking, any contraction is a class of
equivalent functions; for prefix functions o\, 02, contractions tp', V>" of o\ to 02 are
equivalent: ifr' = tp", if there exists a bijection <f> with

o\ty' = a2fp"<f>.

It is easy to see that any contraction if; of a\ to 02 has its canonical form $, which
is the contraction of a\ to <#2 defined by the equality

X>

for all u; 6 D(a\) = Dfa)- From the definition of the canonical representation
of prefix functions it follows that the equivalence determined by prefix function a\
is a refinement of that determined by prefix function oi. Observe that the identity
mapping is a particular case of contraction.

Any two prefix functions over the same alphabet and with a common domain
will be called similar. Since any function determines uniquely an equivalence
relation in its domain, and all equivalence relations in any set forms a lattice, we
have the following property of prefix functions:

3. A family of similar prefix functions ordered by contractions is a complete lattice
with identity as the greatest and the constant as the least element.

The above property implies that any prefix function is (isomorphic to) a contraction
of identity, and can be contracted to the constant. Observe, as an application of the
contraction ordering, that the continuation prefix function is the least congruent
prefix function over its domain.

^*- aba
ab

/ aab
e —-a /

^via
•aaa

Figure 8: Diagram of an identity prefix function.

a + b —- 2a + b
/ /

0 a "2a -3a

Figure 9: Multiset contraction of the prefix function in Fig. 8.

4. Contractions preserve progress relation.

A special part in the whole family of prefix functions over A with domain
D play monotone and congruent members of the family; contractions of such
prefix functions to their state diagrams are called foldings, and the prefix functions
themselves unfoldings of their own state diagrams.

vt

6 Prefix functions synchronization

One of the most important issues concerning discrete systems is their composi-
tionality. In case of concurrent systems composition makes independently acting
systems to communicate with each other and to synchronize some of their actions.
On the abstract level, composition of systems is modelled by synchronization of
prefix functions. Synchronization operation defined below allows us to build com-
plex prefix functions of simple ones, to introduce an independency relation to the
join set of events, and to combine state spaces of components into a single state
space. It also enables to apply synchronization in the 'opposite' direction, decom-
posing complex system into simpler ones and then making analysis and description
of these systems easier.

Let J be a set of indices and (A,),e j be a family of alphabets and let L, C A*
for each i € J. The language

& Li = {w e ([J AiY | V» € J : Ki{w) € L,-},

is called the conjunction of languages L,-. In case of J = {1,2} write L1&L2
rather than &i(z{i,2}Li.

5. Conjunction of any family of prefix-closed languages is a prefix-closed language.

Let (<r,-),-e j be a family of prefix functions. The synchronization of cr, for i G J
is the prefix function

a : & D{ai) —» II R(o-i)
i£J i€J

such that for each w G U»e j ^» ^d each i e J

(a(w))i = (Ti{Tri(w)),

where (o-(w))i denotes the i-th component of the tuple a{w) being a member of
the cartesian product Yliej i?(cr,). The synchronization of family {<T,-}veJ wm< be
denoted by \\iej <rt-. In case of J = {1,2} write o\ || a2 rather than ||,=i)2 <r,-.

The idea of the synchronization defined above originates from modular de-
scription of Petri nets [5] and from string vectors of Shields [12]. Since the domain
of the synchronization defined as above is prefix closed, we have the following:

6. The synchronization of prefix functions is a prefix function.

Since for any sets Si, S2, S3 there exist obvious bijections from Si x S2 to S2 x
Si, from {(s,8) I s e S} to S, and from (Si x S2) x S3 to Si x (S2 x S3)
meeting the required isomorphism conditions, we have the following property of
synchronization operation:

;? ^

7. The synchronization is idempotent, commutative, and associative, i.e. for all
prefix functions a, cr\,cr2, 03:

a\\a = a,

(T\ || a2

(ffl || <72) || ^3

^2II <n,

*1 || (<T2 || ff3).

If -Ri C 5f,Ä2 C Sf, then the product of R\,R2 is the relation Rx x R2 C
(Si x 52)

2 such that

(*'„ s2)(Ä! x ß2)(s'/, 4') <^ *',£,<// A 52i22s2'.

From the synchronization definition it follows that

8. Progress relation of the synchronization is the product of progress relations of
the synchronization components restricted to the range of the synchronization.

By the definition of the step relation of prefix functions and of the synchronization
operation we have:

9. Synchronization of (strictly) monotone prefix functions is (strictly) monotone.

The cartesian product of functions fa : D\ —> R\,fa : D2 —> R2, is the
function fa x fa : D{ x D2 —► Ä, 'x R2 such that

(fa xfa)(dl,d2) = (fa(d1),fa(d2)).

10. Synchronization of contracted prefix functions is a contraction of their synchro-
nization; more precisely,

(fi^i II ai4>i) = (ci || ^2) (fa X fa)

for all prefix functions <J\, a2 and all contractions fa, fa.

The above fact is crucial for a compositional approach to system description.
If systems descriptions are viewed as contractions of their behaviours, then by
the above fact the behaviour of composed systems is the composition of their
components behaviours; and both: systems and their behaviours can be represented
on arbitrary level of abstraction.

(7l-

<t>\

T

"•* a\ II a2 ■*■

I
fa Xfa

\
* o\ II a' ~

a2

fa

'1 II u2 "2

Figure 10: Synchronization and contractions.

According to the above definition of the synchronization operation, synchro-
nization of identity prefix functions is, in general, not sequential. Moreover, it
turns out that

11. Any trace prefix function is the synchronization of a finite number of sequential
prefix functions.

It is worthwhile to compare the synchronization of identity prefix functions with
conjunction of their domains. Let A\,Az be alphabets, L\ C A\,Li C A\ be
prefix-closed languages; then relationship between conjunction and synchroniza-
tion is as shown on the diagram below (ir : (Ai U A2)* —> A\ x A\ is defined by
n(w) = {TTI(W),TT2(W)) where 7ri,7T2 are projections on Ai,A2, respectively).

L\ «-Li&Z^"* L2

I
t{Lj) i{Lx&L2) i(L2)

\
L{LX) || L{L2)

Figure 11: Conjunction and synchronization.

Synchronization of identity prefix functions is, in general, not an identity prefix
function and can introduce an independency of some actions (and hence convert
linear orderings of components into a partial ordering of the synchronization result);
this independency is 'static', i.e. fixed for all possible runs of the described system.
By the synchronization defined above it is not possible to introduce a 'context-
sensitive' concurrency (depending upon the system history). To be more precise,
let us define so-called structural independency. Let a be a prefix function, a, b
be elements of A(a). We say that a, b are structurally independent in a, if there
are prefix functions a', a" such that a = a' \\ a" and a e A(a') - A(a"), b 6
A{a") — A(a'). If a,b are structurally independent, then a ^ b, and for each
w € A(a)*

wab G D(a) $$■ wba G D(CT) A a(wab) = a(wba).

The trace independency is an example of structural independency. There is, how-
ever, another type of independency, call it inner independency; say a and b are in
the inner independency relation, if for all w G A*

wba G D(a) =$■ wab G D(a) A a(wba) = a(wab),

but for some w G A*
wab G D{a) A wba g- D(a).

The inner independency of transitions is typical for the behaviour of the
place/transition Petri nets.

7 Atomic prefix functions

A prefix function is atomic, if it is not the result of synchronization of components
with different domains. Thus, any prefix function is either atomic, or it can be
obtained by the synchronization of a number of atomic prefix functions. Knowledge
of properties of atomic prefix functions of a family can be extended to knowledge
of properties of all members of the family. Here, we concentrate on families of
prefix functions that are applied for descriptions or specifications of Petri nets. In
particular, we shall seek for atomic prefix functions for some descriptive means
considered above.

It follows directly from the definition that in atomic prefix functions no two
symbols are structurally independent; thus, finding atomic prefix functions allows
us to discuss the inner independency. It turns out that even very simple atomic
prefix functions exhibit inherent difficulties of adequate description of concurrency.

12. Every sequential prefix functions is atomic.

Since in a trace prefix function all independent symbols are structurally indepen-
dent, and because of isomorphism of trace prefix functions, Shields prefix functions,
and d-graph prefix functions, we have the following:

13. Every atomic trace prefix function is sequential; every atomic Shields prefix
function has a single component, and every atomic d-graph prefix function is a
graph of linear ordering.

Let consider behaviour of PT-nets and atomic prefix functions describing their
behaviour. First, define the composition of PT-nets [5]. Let

Nx = (P,,r,, F,, m,), N2 = (P2, T2, F2, m2)

be PT-nets; their composition is defined as the PT-net

iV,MiV2= (Pi + P2, T, U P2, F, m)

where P\ + P2 is the disjoint union of P\, P2 and F, m are defined as follows for
aiipePi + P2,*eriur2:

F(p,t) =

m(p) =

F,(p,o, ifpePiAteTi,
F2{P,t), ifPeP2AteT2,
0, if p G Pi A t# T\ V p G P2 A t £ T2,

mi(p), ifpG Pi,
m2(p), ifpG P2

n

(notice that T\ and T2 need not be disjoint). From the definition it follows at once
that the composition operation on PT-nets is associative and commutative (under a
suitable isomorphism of nets it can be also made idempotent). This definition can
be easily extended for any number of components.

14. Let ßi,ß™,ßf be the sequential behaviour, marking behaviour, multiset be-
haviour, respectively, ofNi (i=l,2), and let ßs, ßm, ß® be the sequential behaviour,
marking behaviour, multiset behaviour, respectively, ofN\ txi AT2. Then

ßs = ßtWßi,

ßm = /?rn/*2\
ß® = /5^ 11

It proves soundness of the prefix functions synchronization definition with respect
to the composition of concurrent systems described by PT-nets.

Atomic multiset prefix functions are provided to define the behaviour of the
following one-place PT-net and, in contrast to the previous ones, may exhibit inner
independency of symbols. The net in Figure 12 is an example of atomic PT-net, or
producer-consumer system. Any PT-net can be viewed as the synchronization of
a number of producer-consumer systems; thus, the behaviour of PT-nets depends
upon the understanding of the producer-consumer system activity. In particular,
having chosen a state space for such atomic systems, the set of states of all PT-nets
is the cartesian product of atomic sets of states.

Figure 12: An atomic place/transition net.

The behaviour of the above PT-net, according to the common interpretation,
can be described by means of execution sequences and it is given by the identity
prefix function with the domain

n m

D = ker{w e T* \ k + £ j>(a,-) - £ kiW{bi) > 0},
i=i i=\

where T = \J"=l a, U U£Li &i (recall that w(a) denotes the number of occurrences
of symbol a in string w). However, this description does not capture the inner
independency of transitions in T. The multiset description, introducing as much

%4

independency as possible, is given by the contraction of L{D) by homomorphism
H from T* to T®. The choice of multiset prefix function as a mean of descrip-
tion is here natural, since the condition defining the above set of strings depends
exclusively on multiplicity of symbols in strings, the same for strings and the
corresponding to them multisets.

The behaviour of an arbitrary PT-net is given by the synchronization of
atomic prefix functions, constructed for each place of the original net. Let
N = (P, T, P, m°) be a PT-net and let for each p e P net Np = {{p},Tp, Fp, m°p)
be the atomic (i.e. one-place) PT-net with functions Fp, m° arising from F, m° by
their restriction to {p} x T and {p}, respectively. By the result quoted above, the
behaviour of N = (P, T, P, m°) can be obtained by the synchronization of the
behaviours of all its atomic (one-place) nets, constructed for each p 6 P:

ßN =\\peP ßNp-

It is worthwhile to note the simplicity of atomic prefix functions describing the
behaviour of one place nets; interpreting them as producer-consumer systems,
production and consumption rates are assumed here to be fixed and contribute to
the whole production in a linear way. One can imagine a theory of 'cooperating'
producer-consumer systems that act acording to a more general principle; such
system would be e.g. the synchronization of atomic prefix functions CT; with
domains

D{ai) = ker{w e A? | pi(w) > 0},

where />; : A* —> Z is a more general 'total productivity' function of unit
i, returning for the activity sequence w of agents from A; the total balance of
produced and consumed items.

8 Conclusions

Prefix functions thought as a unifying concept for describing concurrent processes
on different levels of accuracy have been presented. Sets of strings built up from
elementary actions (events) occurring in processes have been taken as the basis
for further transformations. Prefix functions connect strings (called also execution
sequences) with some objects that can be called states. States can be chosen
depending on actual needs; therefore, in prefix function approach the choice of
states is left for the user. From prefix functions point of view states are some abstract
entities, determined by sets of event sequences leading to them; interpretation of
states lies outside the prefix functions formalism and serves only as a tool for states
identification. In the prefix function approach states are nothing but classes of
equivalent sequences of event occurrences; different prefix function descriptions
of the same system differ only by the degree of such sequences identification.

From examples of applying prefix functions to the behaviour description of
known systems, as Petri nets, it follows adequacy of prefix functions as describing

!>o

tools. The stress has been put upon two main operations on prefix functions that
allow to construct new prefix functions of the already defined ones: contraction,
'squeezing' a considered state space, and synchronization, introducing structural
concurrency and enlarging the state space.

References

[1] Abadi, M., Lamport, L. (1989) Composing Specifications. Lecture Notes in
Computer Science, 430,1-41

[2] Diekert, V., Rozenberg, G. (eds.) (1994) The book of traces. World
Scientific, Singapore,New Jersey,London,Hong Kong.

[3] Hoare,C.A.R.: Communicating Sequential Processes, Communications of
the ACM 21 vol.8 (1978)

[4] Mazurkiewicz, A. (1977) Concurrent Program Schemes and Their
Interpretation. Technical Report DAIMIPB-78, Arhus University

[5] Mazurkiewicz, A.(1985) Semantics of Concurrent Systems: A Modular
Fixed-Point Trace Approach. Lecture Notes in Computer Science, 188.

[6] Mazurkiewicz, A., Ochmariski, E.,Penczek, W. (1989) Concurrent systems
and inevitability.Theoretical Computer Science, 64,281-304.

[7] Mazurkiewicz,A., Rabinovich,A.,Trakhtenbrot B.A. (1991) Connectedness
and Synchronization. Theoretical Computer Science,,90 1,171-184

[8] Petri, C.A. (1977) Non-Sequential Processes.GMD Report ISF-77-05.

[9] Pratt, V. (1986) Modeling Concurrency with Partial Orders. International
Journal of Parallel Processing, 15, 33-71.

[10] Reisig, W. (1985) Petri Nets: an Introduction, EATCS Monographs on
Comp.Sci.

[11] Rozenberg, G. (1987) Behaviour of Elementary Net Systems. Lecture Notes
in Computer Science, 254, 26-59

[12] Shields, M.W. (1979) Non-sequential behaviour, part I. Int. Report
CSR-120-82, Dept. of Computer Science, University of Edinburgh.

[13] Thiagarajan, P.S. (1987) Elementary Net Systems. Lecture Notes in
Computer Science, 254, 26-59.

[14] Winskel, G. (1988) An introduction to event structures. Lecture Notes in
Computer Science, 354, 123-172

51

3^

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 00, 19xx

Elements of an Automata Theory Over Partial Orders

Wolfgang Thomas

ABSTRACT. A model of nondeterministic finite automaton over (finite) par-
tial orders is introduced. It captures existential monadic second-order logic in
expressive power and generalizes classical word automata and tree automata.
Special forms, such as deterministic automata, are discussed, and logical and
algorithmic properties are analyzed, like closure under complement and decid-
ability of the nonemptiness problem. These questions are studied in the con-
text of different classes of partial orders, such as trees, Mazurkiewicz traces,
or rectangular grids.

1. Introduction

While automata over strings and trees are a well-known, widely used, and
robust model, with many applications in the specification and verification of con-
current programs, the area of "finite automata over partial orders" cannot be called
an established subject, despite the fact that partial orders are a natural domain for
the study of concurrency. A possible reason for this is that many properties of finite
automata which are essential in logical or algorithmic applications fail to hold when
partial orders are considered as inputs (instead of strings or trees). Such properties
are: equivalence between the deterministic and the nondeterministic model, closure
under operations like complementation or projection, characterization by natural
logical systems (like monadic second-order logic), and decidability of the nonempti-
ness problem (in logical terms: satisfiability problem). A possible remedy in this
situation is to confine oneself to a narrower view of partial orders, for instance by
extracting only sets of paths from partial orders, which brings back the framework
of classical formal language theory.

In the present paper we stay with proper partial orders as inputs of automata
and try to set up connections between such generalized automata and logical sys-
tems. We suggest a model of finite automaton which keeps the basic intuitive idea
of nondeterministic automata on words: It is a device which scans "local neigh-
bourhoods" in a given partial order while (nondeterministically) assigning states
to the points of this partial order. We show that the details of this idea can be
fixed in such a way as to allow a clear connection to logical descriptions: A set of
(finite and labelled) partial orders is recognizable by such a finite automaton iff it is

1991 Mathematics Subject Classification. Primary 54C40, 14E20; Secondary 46E25, 20C20.

©0000 American Mathematical Society
1052-1798/00 $1.00 + $.25 per page

3>

2 WOLFGANG THOMAS

definable in existential monadic second-order logic (i.e., by a sentence which begins
with a prefix of existential set quantifiers, followed by a first-order formula). If the
structures under consideration are even linearly ordered (i.e., words) or if they are
labelled trees, this result can be sharpened to the well-known equivalence between
automata and (full) monadic second-order logic. So, regarding automata theory in
a general context, existential monadic second-order logic can be considered as more
basic than unrestricted monadic second-order logic.

In the automata theoretic view, where the notion of "local neighbourhood"
is essential, it is useful to identify a (discrete) partial order < with an acyclic
directed graph, taking as edge relation E the minimal relation which generates by
its reflexive transitive closure the partial order <. (Thus (u, v) G E holds iff u and
v are distinct, u < v, and there is no w with u < w < v.)

We shall confine ourselves to finite acyclic graphs of this form in the present
paper. While the basic ideas are easily transferred also to infinite structures, some
additional difficulties arise in connection with logic, namely the choice of appro-
priate acceptance conditions in automata. It is (as yet) not clear whether simple
acceptance conditions exist which lead to a characterization of interesting logical
systems (as, for example, the model of tree automaton with the Rabin acceptance
condition of [Rab69] characterizes monadic second-order logic over infinite labelled
binary trees).

As it turns out, the properties of automaton definable sets depend on the
particular class of partial orders (or acyclic graphs) which are allowed as inputs.
Special cases of such classes are: words, trees, Mazurkiewicz trace graphs, and
labelled rectangular grids. We investigate two basic questions: Are the automaton
recognizable sets closed under complement? When is the nonemptiness problem
decidable?

The paper is structured as follows: In the subsequent two sections we introduce
the necessary terminology concerning partial orders and acyclic graphs, as well as
the logical systems of first-order logic and monadic second-order logic. Some easy
propositions are listed which illustrate the expressive power of these logics. In a
section on first-order logic we present the key theorem which supplies a bridge to
automata theory. It is a classical result of first-order model theory, due to Hanf
[Hnf65], but not well-known in the community of theoretical computer science.
Automata over acyclic graphs are introduced in Section 5. Some special forms are
presented, and classes of partial orders are singled out over which these special
forms are no restriction (i.e., normal forms of automata). In Section 6 we analyze
the possibility of showing complementation lemmas and study the nonemptiness
problem. The concluding section offers some directions for further research.

The approach adopted in this paper is based on ideas of [Th91]. Further results
which serve as background have been shown in [GRST96] (mostly concerning
labelled rectangular grids) and [PST94] (concerning general acyclic graphs). We
cannot provide full proofs in this short communication, but try to give enough
information to enable the reader to supply the details.

2. Partial Orders and Acyclic Graphs

As indicated in the introduction, we consider partial orders in the form of
acyclic vertex-labelled and edge-labelled directed graphs. Usually we take A as
label alphabet for vertices and B as label alphabet for edges (both alphabets are

D </

ELEMENTS OF AN AUTOMATA THEORY OVER PARTIAL ORDERS 3

finite). As a relational structure, a graph is thus presented in the form

G = (V,(Pa)aeA,(Eb)beB)

where V is the set of vertices, the Pa are disjoint subsets of V whose union is V,
and the Eb are disjoint non-reflexive binary relations over V. The edge set is the
union E = [j^ß Eb. Thus, we consider a vertex v to be labelled with letter a if
v € Pa, and an edge (u,v) to be labelled with letter 6 if (u,v) € Eb. In the sequel,
such graphs are always assumed to be acyclic (which means that no nonempty path
exists from a vertex v back to v). Hence one obtains a partial order when forming
the reflexive transitive closure E* of the edge set E. We shall also assume that E
is given as minimal edge relation generating a partial order; this means we exclude
the existence of an edge (u, v) in the presence of a vertex w with nonempty paths
from u to w and from w to v. A vertex u is called root of a partial order < if u < v
for all vertices v; in the dual case (when v < u holds for all vertices v) we speak of
a co-root.

A special case of edge labelling is called indexing, namely when the label al-
phabet is a set {1,... , Ar} and either the out-edges of each vertex are numbered by
1,... ,i for some i < k, or the corresponding holds for the ingoing edges of each
vertex. (We shall speak of out-edge indexing, respectively in-edge indexing.)

Let us consider the possibility of accepting such graphs by finite-state devices.
We follow the intuitive idea that acceptance is based on a scanning process which
checks all "local neighbourhoods" in the graph G under consideration. This scan-
ning process should associate (generally in a nondeterministic way) states from a
finite state-set Q to the vertices of G. Here, a minimal version of neighbourhood is
given by a vertex together with its incoming and outgoing edges and their source
vertices, respectively target vertices. If the acceptor (or graph automaton) is hon-
estly finite, it can distinguish only a fixed number of different local neighbourhoods.
In order to match this assumption on finite-state acceptors, we allow only graphs
of bounded degree in a recognizable or definable set, i.e., graphs where for each
vertex v the number of vertices u with (u,v) £ E or (v,u) £ E is bounded by a
predefined constant d. If such a bound is dropped, non-isomorphic neighbourhoods
will be confused. This more general case could also be handled in the framework
to be developed below, but it adds complications and distracts from the essential
points.

Let us list some basic classes of graphs and associated partial orders which fall
under these conventions.

• Words over an alphabet A: These are (in our case nonempty) structures
({1,... ,n}, (Pa)aeA,E) where n is the length of the word, 1,... ,n are the
letter positions, Pa collects the positions carrying letter a, and E is the
successor relation on {1,... , n}.

• Ordered labelled trees: Taking the case of binary trees as a typical example,
these are graphs of the form (V, {Pa)aeA,Ei, E2), where V is the set of tree
nodes, the sets Pa are used as for words, and E\, Ei are the two relations of
"first successor" and "second successor", respectively. In the usual way, this
numbering of the successors induces a "left-to-right ordering" on the set of
leaves.

• Dependency graphs of Mazurkiewicz traces (cf. [DR95]): Here the alphabet
A is given together with a reflexive and symmetric dependency relation
D C A x A. The format of dependency graphs is the same as for words,

3<

4 WOLFGANG THOMAS

however E does not necessarily generate a linear order but just a partial one:
The edge relation E respects D in the sense that edges connect only vertices
with dependent letters and that any two vertices labelled by dependent
letters are connected by a path. By reflexivity of D, the size of antichains in
dependency graphs (subsets consisting of pairwise unrelated vertices in the
associated partial order) is bounded by the size of the alphabet; we say that
dependency graphs have bounded antichains.

• Rectangular grids ("two-dimensional words", "pictures", cf. [GRST96]): In
this case, the vertices are arranged in a two-dimensional array, connected by
a horizontal successor relation E\ ("to the right") and a vertical successor
relation E2 ("downwards"). Thus the signature coincides with that of binary
trees.

• Mirror tree concatenations: These are obtained by concatenating tree struc-
tures ti,si,t2,s2,... ,tk,Sk in the following way (we just consider the case
of binary trees): Each U is a binary tree as above, each s* is obtained from
a binary tree (with the same number of leaves as in <,) by inverting the edge
directions (which makes leaves into "sources" and the root into a "target"),
and concatenation is carried out by identifying the leaves of U (left to right)
with the sources of s,- (right to left), and identifying the target of s,- with
the root of i,-+i.

• (Acyclic) graphs of bounded tree-width k (cf. e.g. [Cou89], [See92]): These
graphs are associated to trees by the following condition: There is a covering
of the vertex set by a collection of vertex sets (called "clusters" here), on
which an undirected edge relation R exists such that

1. for each graph edge (u, v) there is a cluster containing u and v,
2. the clusters together with R define an undirected tree t,
3. each cluster C contains at most k vertices,
4. the clusters in which a given vertex v occurs form a connected subset

of the tree t.

In the order of the list above, we denote the respective classes of acyclic graphs
by Words, Trees, Traces, Grids, MTreeC, BTWGraphs.

3. Basic Logics

In the sequel, words, trees, traces, grids, and, in general, acyclic graphs, are
considered as relational structures of the forms above. This allows to introduce
logical definability notions in a uniform way. Here we do this in the framework of
monadic second-order logic. Over graphs with the label alphabets A (for vertices)
and B (for edges), formulas of monadic second-order logic involve variables x,y,...
for vertices and X, Y,... for sets of vertices; they are built up from atomic formulas

Pa(x) (for aeA), Eb(x, y) (for b G B), x = y, X(y)

by means of the connectives -t, V, A,-»-, +->■ and the quantifiers 3,V which may be
applied to either kind of variable. The notation <p(xi,... , xm, Xi,... , X„) indi-
cates that in the formula ip at most the variables xx,... ,xm,Xi,... ,Xn occur
free, i.e., not in the scope of a quantifier. If G = {V, (P^)a€A,(Eb

3)beB) is a graph,
vi, • • • , vm G V, Vi,... Vn C V, the satisfaction relation

(G,»i,... ,vm,Vi,..,Vn) \=<p(xu...xm,Xi,... ,Xn)

^>

ELEMENTS OF AN AUTOMATA THEORY OVER PARTIAL ORDERS 5

holds if f is formed for the signature given by the label alphabets A, B and satisfied
in G when interpreting a;,- by v,, Xi by Vj, and of course = by equality, Pa by Pjf,
and Eb by E^. The superscripts G thus distinguish the relations in interpretations
from relation symbols in formulas; they will be omitted (as done also above) when
no confusion arises.

Let K, be a class of (acyclic) graphs. Relative to AC, a sentence <p defines the
(graph) language

L(<p) = {G G K | G \= <p}.

A language L C K, is called definable in monadic second-order logic (short: MSO-
definable) if some sentence <p with L = L(<p) exists.

The significance of monadic second-order logic (MSO-logic) for automata theory
rests on the following classical result for the class Words:

THEOREM 3.1. (Büchi [BÜ60], Elgot [Elg61])
A language L C A+ is recognizable by a finite automaton iff it is MSO-definable.

PROOF. The idea for the step from automata to MSO-formulas is to introduce,
for any state </,- of the given automaton, a set variable Xj for the set of those
positions in a word where state g,- is assumed in a run. One formalizes the existence
of an accepting run of an automaton with n states qo, ■ ■ ■ ,qn-i over a word w by
saying that there are sets Xo,... ,Xn-i such that the first letter position belongs
to Xo (assuming go is the initial state), each successor step is compatible with the
transition relation of the automaton, and from the state on the last position, one
reaches by the last letter a final state. Note that the first and last position are
definable by the formulas -ByE{y,x) and -i3yE(x,y), respectively. The resulting
formula is an existential monadic second-order formula, short an EMSO-formula.

The converse direction, from MSO-formulas to automata, is based on stan-
dard closure properties of automaton recognizable languages, namely closure under
union and complement (which captures propositional logic) and projection (which
captures the existential quantifier). For a more detailed proof see e.g. [Th96]. D

By applying the second and the first part of the proof in succession, one obtains
that an MSO-formula (over word graphs) can be rewritten as an EMSO-formula.

The basis of the proof above is the equivalence between nondeterministic and
deterministic finite automata: Nondeterminism serves to show closure of recog-
nizable sets under projection, determinism shows closure under complement. The
reduction to deterministic automata was shown also for finite automata over trees
(using the "frontier-to-root mode" in tree automata, cf.[GS84]), whence an ana-
logue of the theorem above holds also for the class Trees, including the reduction of
MSO-logic to EMSO-logic. Without treating definitions in detail, let us also men-
tion that over Traces a similar development is possible, now invoking Zielonka's
construction of deterministic asynchronous automata ([Zi87]).

Let us introduce further subsystems of MSO-logic, including first-order logic
with different signatures.

In the traditional classification of second-order formulas, the EMSO-formulas
are also called monadic Ej-formulas. The dual formulas, where a prefix of uni-
versal set quantifiers precedes a first-order kernel, are called monadic II}-formulas.
The corresponding properties (defined by such formulas) are called monadic Ej-
properties, respectively monadic II\-properties. A property which is both monadic-
Ej and monadic-Il} is called a monadic A}-property. In short we speak of monEj-,

M

6 WOLFGANG THOMAS

monnj-, and monAj-properties. By (monA[) words we denote the class of word
properties (or: word languages) which are monAj-definable; similarly for the other
definability notions.

As an example, consider a monadic Sj-sentence which says that a successful run
of a finite automaton over a word exists (see the proof above). For a deterministic
finite automaton this sentence can also be written as a monadic üj-sentence, namely
as saying: "All state sequences which start in the initial state and which for any two
succeeding positions are compatible with the transition relation, have a state on the
last letter position from which (by the last letter) a final state is reached." Since
finite automata on words can be made deterministic, we thus have the following
equalities:

PROPOSITION 3.2.

(monA})Worrfs = (mon£{)words - (monTlJ)words = MSO words-

The same is true over Trees.
First-order logic, short FO-logic (over acyclic graphs) is obtained from MSO-

logic as above by dropping set quantifications. Typical quantifications in this logic
are of the form 3y(Eb(x, y)A<p(y)) and Vy(Eb(x, y) -» <p{y)), which express "there is
a 6-successor of x satisfying <p", respectively "all 6-successors of x satisfy <p". Thus
FO-logic includes standard process logics, such as the finitary version of "Hennessy-
Milner-logic" (cf. [Mil90]).

It is well-known that in first-order logic the transitive closure of a given relation
is (in general) not definable: In particular, in acyclic graphs the associated partial
order is not definable. (A proof will be given in the next section.) Thus we obtain
a stronger system of "first-order logic with <" when to FO-logic as above a symbol
< for the reflexive transitive closure of the edge relation E is added. We denote
this system by FO[<]-logic. Typically, it allows to express properties of linear or
partial orders which are formalizable in systems of propositional temporal logic.
Over grids, we obtain an expressively equivalent variant of FO[<]-logic when for
the two edge relations E\ and E?, the respective reflexive transitive closures <i and
<2 are introduced instead of <. Note that we have x < y iff x <i z and z <2 y for
some z. Conversely, each relation <, is first-order definable in terms of the relation
Ei and <: We have x <, y iff x < y and (in case x and y are distinct) any z with
x < z < y is ^.-successor of some z' with x < z' <y.

For a class K of acyclic graphs, any of the above notions of definability induces
a corresponding class of definable graph sets. We denote this class by the logical
system with an index for the class £, in the form FOK, FO[<]*:, (monEj)jc (=
EMSOx:), etc.

The following statement is trivial.

PROPOSITION 3.3. For any class K, of acyclic graphs, we have

FOK C (monA})*: C (monS})*: C MSO*.

Over Words and Trees, FO[<]-logiccan be placed between FO-logic and EMSO-
logic: One notes that x < y is defined by the MSO-formula

VX(X(x) A VzVz'((A"(z) A E(z, z')) -»• X{z')) -> X(y)),

whence the claim follows by the expressive equivalence of EMSO-logic and MSO-
logic over Words, respectively Trees. In fact, we have a sharper result, establishing
the following proper inclusions (indicated by "C") and equalities:

^

ELEMENTS OF AN AUTOMATA THEORY OVER PARTIAL ORDERS 7

PROPOSITION 3.4.

FO Words C F0[<] Words C (monAj) Words - (monSj) Words = MSO Words-

PROOF. (Hint.) The language a*ba*ca* is an example of a word set which is
definable in FO[<]-logic by the sentence

3x3y(Pb{x) Ax<yA Pe(y) A Vz(-i(z = x V z = y) -> Pa{z)))

but not in FO-logic (see next section). The next proper inclusion is exemplified by
the set of words of even length. It is definable by a monadic E}-sentence requiring
a set X of positions which contains the first letter position, then every second
position (i.e. satisfying V£iz'{E{z,z') —>■ {X(z) <-» -iX(z'))), and does not contain
the last position. An equivalent n}-sentence says that all sets which contain the
first position and then every second position do not contain the last position. An
application of the Ehrenfeucht-Fraisse method shows that the word property of
having even length is not expressible in first-order logic with linear ordering (cf.
e.g. [EF95], [Th96]). The last two equalities are clear from Proposition 3.2. D

In Section 6 we shall see that over Grids, FO[<]-logic and EMSO-logic (or
(monEj)-logic) are incompatible in expressive power, and that the last two equali-
ties of Proposition 3.4 turn into strict inclusions.

4. Hanfs Theorem

In [Hnf65], Hanf showed that in the first-order language of graphs only "local
properties" can be specified. A property is local if it depends only on the occur-
rence (or non-occurrence) of certain local neighbourhoods around vertices. More
precisely, call (for r > 0) r-sphere around vertex v in the graph G the induced
subgraph over those vertices in G which have distance < r to v, and with v as
designated center. (The distance of u to v is < r if there is a path v$v\.. .Vk with
k < r, v0 = v, Vk = u, and (vi,vi+i) € E or (i>,-+i,t>,-) G E for i < k.) Clearly,
if the graphs under consideration are of bounded degree (and of a fixed signature
regarding the labellings), there are only finitely many possible isomorphism types
of r-spheres.

It is easy to write down a sentence <pT,>n which says that there are at least n
different occurrences of spheres of a given isomorphism type r. Using conjunctions
of such sentences and negations of such sentences, one can specify for finitely many
types T"i,... ,rm that the occurrence number of r,- is < n<, or < n,-, or = ra,. A
graph language L defined by a disjunction of such conditions (or equivalently: by
a boolean combination of sentences <pT,>n) is called locally threshold testable.

Equivalently, L is representable in terms of a certain equivalence relation ~rit

between graphs. Define G ~r,t G' to hold if for all types r of r-spheres, the
occurrence numbers of r in G and G' are both >< or else coincide. Over graphs
of bounded degree, ~r>t is an equivalence relation of finite index. An easy exercise
shows that a set L is locally threshold testable iff L is a union of ~rit-classes for
some radius r and threshold number t.

The main result in the first-order model theory of graphs says that the above
mentioned conditions on occurrence numbers already exhaust the expressive power
of first-order logic:

THEOREM 4.1. (essentially Hanf [Hnf65])
A first-order definable set of graphs (of bounded degree) is locally threshold testable.

11

8 WOLFGANG THOMAS

In particular, a first-order sentence is equivalent to a boolean combination of sen-
tences of the form "there are > n occurrences of r-spheres of type T".

The proof rests on an application of the Ehrenfeucht-Fraisse-game. We refer
the reader to [EF95], [FSV95], or [Th96] for details.

Let us sketch three applications. First, we verify that the language L —
a*ba*ca* is not in FOwords- Otherwise, we would obtain a contradiction: From
an assumed FO-sentence defining L we would obtain r and t such that two words
(word models) which are ~r_t-equivalent are both in L or both not in L. But it is
easily seen that for sufficiently large n the words anbancan(e L) and ancanban(g L)
have the the same occurrence numbers of r-spheres counted up to threshold t and
thus are ~r]t-equivalent.

In a similar way, it is shown in the domain Grids that the set of all square grids
(of size n x n for n > 1, whose vertices are all labelled with a) is not first-order
definable.

Finally, as a preparation to the next section, we note the following consequence
of Hanfs Theorem:

PROPOSITION 4.2. The class EMSO*: coincides with the class of projections of
locally threshold testable languages L C K,.

PROOF. AS a preparation, consider a graph G with vertex labels in A. An
expansion (G,Vi,... ,Vm) by designated vertex sets Vt, which allows to interpret
a formula <p{X\,... , Xm), can be represented as a graph H with vertex labels in
A x {0, l}m: The i-th additional component has value 1 for vertex v iff v € V{.

Now a graph G satisfies a sentence 3XX ... 3Xm<p(Xi ,...Xm) (with first-order
formula if) iff some graph H, which arises from G by expanding the vertex labels
from A to A x {0, l}m, satisfies ip(Xi,... ,Xm). But this is equivalent to the
existence of a graph H in L(y?) (which by Hanfs Theorem is a locally threshold
testable language) such that h(H) = G for the projection h : Ax {0, l}m -* A. D

Hanfs Theorem connects first-order logic to local properties and is thus a good
starting point for a logically motivated automata theory over graphs.

5. Finite-State Acceptors and Special Forms

We introduce graph acceptors which capture projections of locally threshold
testable sets:

A graph acceptor over the alphabets A, B has the form A = (Q, A, B, A, Occ)
where

• Q is a finite set (of "states"),
• A is, for some r > 0, a finite set of r-spheres with vertex labels in A x Q

and edge labels in B,
• Occ is a boolean combination of conditions "there are > n occurrences of

spheres of type r" (where T is an r-sphere type over the label alphabets
Ax Q and B).

We call A the set of transitions and Occ the occurrence constraint.
The graph acceptor A accepts the graph G if it can be "tiled by transitions"

such that a consistent assignment of states to vertices (a "run") is defined and
such that the occurrence constraint is satisfied. Formally, there should be a run
p : V —>■ Q such that each r-sphere of the expanded graph Gp with vertex labels

V"-

ELEMENTS OF AN AUTOMATA THEORY OVER PARTIAL ORDERS 9

in A x Q matches a transition from A, and the occurrences of these spheres are
compatible with the constraint Occ. We call this covering of G an "accepting tiling"
of G and sometimes speak of transitions as "tiles" and graph acceptors as "tiling
systems" (cf. [Th91]).

The graph language recognized by A (relative to the graph class K.) is

LK{A) = {G e K, | A accepts G).

We say that L C K, is recognizable iff L = Ln{A) for some graph acceptor A.
By Proposition 4.2, graph acceptors characterize existential monadic second-

order logic:

PROPOSITION 5.1. For any class K of graphs of bounded degree, a language
L C K is recognizable iff L G EMSO*;.

Similarly, a language L is recognizable by a graph acceptor with only one state
iff L is first-order definable.

Usual finite automata over words or trees are simulated by special graph accep-
tors, in which only 1-spheres are used as transitions and the occurrence constraints
are cancelled. The use of initial and final states in the classical model is captured
by the use of 1-spheres whose designated center has no predecessor, respectively no
successor; such transitions can only be used at the beginning, respectively at the
end of a word.

In comparison with classical automata, two features of graph automata seem
complicated: the use of r-spheres for r > 1, and the use of occurrence constraints.
We shall see that both features can be eliminated only with extra restrictions on
the input graphs.

In order to see that over acyclic graphs in general the use of r-spheres in transi-
tions can not be eliminated by resorting to 1-spheres only, we consider the following
example, suggested by S. Seibert.

PROPOSITION 5.2. Let Ln be the set of "n-supergrids", which have vertex label
"a" throughout and are obtained from standard grids by substituting for any edge
an edge sequence of length n (called usuper edge"). Ln is recognizable (in the class
of partial orders) by a graph acceptor with 2n-sphere transitions, but not by graph
acceptors with 1-sphere transitions.

PROOF. It is easy to verify recognizability of Ln by a graph acceptor with 2n-
sphere transitions. For contradiction, consider a graph acceptor A which recognizes
Ln (say for n > 4) with 1-sphere transitions. In an accepting run of a large enough
n-supergrid, there will be two occurrences of the same 1-sphere transition at corre-
sponding positions on two superedges, not touching the ends of the superedges and
unrelated in the partial order of the supergrid. (One may choose two occurrences of
the same 1-sphere transition at the central positions of two superedges in the same
row or in the same column of a large enough n-supergrid.) Obtain a new graph by
exchanging the targets of the outgoing edges in the two 1-spheres covered by these
transitions. The new graph is still acyclic, accepted by A, but not in Ln. D

A similar idea appears in Example 3.2 of [Th91]; there it is shown that our
graph acceptors are properly more expressive than the dag automata of Kamimura
and Slutzki [KS81].

In contrast to the proposition above, one verifies that over the classes Words,
Trees, Traces, and Grids, the use of 1-spheres is sufficient. (The reduction from

41

10 WOLFGANG THOMAS

r-sphere transitions to 1-sphere transitions involves a blow-up in the number of
states.) Moreover, in the domain Grids there is a variant of 1-spheres which may
seem more natural: In the approach developed in [GRST96] over Grids, the tran-
sitions are just (2 x 2)-squares of four vertices and edges. In this model, where
transitions have no designated center, the corners and borders of grids are no more
detectable (i.e., tilable by special transitions only), and thus grids are presented
with extra rows and columns of border markers #, also to be covered by transi-
tions.

A precise description of the class of acyclic graphs where in graph acceptors
the use of 1-sphere transitions suffices is not known.

Let us turn to the occurrence constraints. In general they can also not be elim-
inated: We consider the set of acyclic graphs G„ made up of vertices uit... , un

and vi,... ,v„ as follows: From u,- there are two edges, one to vt and one to
u(»'+i) mod n- <-)ne mav imagine the u,- and the u,- arranged in two circles (modulo
n), with two pointers from each vertex of the first circle to the second circle. Now
consider the graph language L consisting of such graphs where at least one u,- is
labelled a and the remaining vertices (not labelled a) are labelled b. It is clear that
by an occurrence constraint the existence of a vertex with label a can be guaran-
teed. Now, for a contradiction suppose that L is recognizable without occurrence
constraints. Consider the graphs Gn over ux,... ,un and vx,... , vn with precisely
one label a, say at m. For sufficiently large n, there will be an accepting tiling
where a transition is repeated, say with centers at «,- and Uj and such that ux is
not covered by these two copies of the transition. Then the graph with vertices
«f+ii • • - , Uj,Vi+i,.. .VJ (built up modulo j - i), which has no label a, admits also
an accepting tiling, a contradiction.

In some situations, however, the occurrence constraints can be eliminated (at
the cost of more states in graph acceptors). In particular, this applies to the classes
Words, Trees, and Grids. The idea is to implement a threshold counting procedure
within the transitions, using the partial order to avoid loops in the counting process.
It is essential that the overall counting result can be collected at some special vertex.
This motivates the following claim:

PROPOSITION 5.3. Let K be a class of acyclic graphs which have indexed out-
edges and a co-root (and hence are connected). Then a language L C K, is recogniz-
able iff it is recognizable by a graph acceptor without occurrence constraints. The
same holds if the graphs in K have indexed in-edges and a root.

PROOF. Consider a graph acceptor with state set Q, transitions n,... ,rk (say
of radius r), and occurrence constraint Occ in which t is a threshold such that
occurrence numbers > t are not distinguished in Occ. We construct a new graph
acceptor whose states are vectors (q, rai,... ,nk) with n,- < t for i = 1,... , A;.
At vertex v this vector indicates that state q G Q is assumed and "up to now"
the transition r,- has occurred n,- times. These occurrence numbers are updated
following the paths of the partial order of the input graph. The indices of the
out-edges serve to avoid double-counting: The accumulated occurrence numbers
are transferred only along the outgoing edges with index 1. Thus, for an r-sphere
of type Ti whose center has no incoming edges, only the vector («i,... ,nk) with
n,- = 1 and nj = 0 for j ^ i is allowed. Any given r-sphere, say of type r,-, which
has incoming edges, is (in its center) supplied with a vector (m,... , nk) where each
nj is the sum of the j'-th components of the sources of incoming edges which carry

V 7-

ELEMENTS OF AN AUTOMATA THEORY OVER PARTIAL ORDERS 11

index 1, and where furthermore 1 is added to n,- (to capture that the present type
is r,). Finally, r-sphere transitions for the co-root (the vertex without outgoing
edges) are allowed only for the case that the center vertex is labelled with some
vector (r»i,'... , nk) which satisfies Occ.

The proof for the case of indexed in-edges and the existence of a root is analo-
gous. D

It is clear that words, trees, and grids are subsumed by the preceding propo-
sition. Formally, in the case of grids one has to modify the edge labels in order
to have indexed out-edges: The vertices of the last column of a grid, which have
no (horizontal) £"i-successors in the original convention, should now have vertical
out-edges in E\ (instead of £2). The elimination of occurrence constraints over
grids is treated in detail in [GRST96].

Finally, we turn to a special form of acceptor on partial orders which represents
a proper restriction: deterministic acceptors. Partial orders are a useful assump-
tion for introducing deterministic acceptors; there should be a uniqueness in the
construction of runs when proceeding from smaller to greater vertices in the partial
order. There seems to be no canonical definition of deterministic graph acceptors;
and even over simple acyclic graphs like the rectangular grids there are several pos-
sibilities. We suggest here a "determinism by states" (rather than "determinism
by transitions"). We call an acceptor (say with r-sphere transitions) over partial
orders deterministic if for any r-sphere around a vertex v and any state assignment
to the vertices u < v in this r-sphere, the assignment of a state to v (by the available
transitions) is unique. (Note that a certain "lookahead" is built into this definition
because a sphere has to match a whole neighbourhood of the input graph.) So,
the state assignment is unique per se for vertices which have no predecessors in the
partial order. This definition is compatible with determinism over words and trees
(using frontier-to-root tree automata, i.e., with the reversed partial order in trees).
For a class /C of acyclic graphs, denote by Detje the class of languages L C K, which
are recognized by deterministic graph acceptors.

An example of a language in Det Grids is the set of square grids (trivially labelled
by a throughout). The assignment of states can be arranged such that a special
state is associated to the diagonal starting from the unique vertex without incoming
edges (which we assume to be on the top left corner). The square property is verified
when in transitions for other border positions this special state is allowed only for
the vertex without any outgoing edges (at the bottom right corner).

Let us verify that determinism is a proper restriction. A well-known example is
provided by the domain Trees when scanned in root-to-frontier mode (cf. [GS84]).
But also over partial orders which have a co-root (where information of a run can
be gathered in a single vertex) this phenomenon occurs:

PROPOSITION 5.4. There is a grid language which is recognizable by a graph
acceptor but not by a deterministic graph acceptor.

PROOF. A suitable example is provided in [PST94]: Consider the set L of
square grids which have label b everywhere except for two vertices labelled a on the
right border and bottom border, in the same distance S to the right-bottom corner.
(Call this S the "a-distance".) An appropriate nondeterministic graph acceptor
guesses a point on the diagonal (from the top left to the bottom right corner), and
from this point sends two "signals" (in the form of special states), one horizontally

*5>

12 WOLFGANG THOMAS

to the right, one vertically to the bottom. If at the two border points hit in this
way letter a occurs, this information can be transmitted to the bottom right corner
(where the transitions are defined as to check this). The test that otherwise letter
b occurs is easily implemented.

Now suppose that a deterministic graph acceptor recognizing this grid lan-
guage L exists. Invoking the construction of Proposition 5.3, we can assume that
occurrence constraints are eliminated (note that the construction transforms deter-
ministic graph acceptors again into deterministic ones). Suppose the acceptor has
r-sphere transitions. Then the states of accepting runs on two grids from L of the
same size are identical except for the last r rows and last r columns. The (r + l)-st
last rows thus coincide except for the last r columns. Because there are only finitely
many assignments of transitions to the last r positions of a row, there exist (for
sufficiently large size of input squares) two squares Gx, G2 G L of same size and
with two different a-distances such that in the corresponding accepting runs also
the last r transitions on the (r + l)-st last row coincide in d and G2. Then the
last r rows from the accepting tiling of Gi can be exchanged with the last r rows
of the accepting tiling of G2. Hence a grid outside the language L is accepted, a
contradiction. rj

For deterministic acceptors over Grids, the reduction of r-spheres to 1-spheres is
no more possible. A simple example is the set of computations of a Turing machine.
Such computations are represented in a space-time diagram and hence in grid form.
To check a labelled grid for being a computation of a given Turing machine, one
can use a deterministic (single-state) acceptor using 2-sphere transitions, but not a
deterministic acceptor with 1-sphere transitions.

Determinism corresponds to a restriction of EMSO-logic. As in the case of
words (see Proposition 3.2), monadic £j-definitions can be put into Il}-form:

PROPOSITION 5.5. If a language L C K, of acyclic graphs is recognizable deter-
ministically, then L G (monAj)^.

6. Some Results on Expressiveness and Decidability

In this section we come back to the question raised in the introduction: Over
which classes of acyclic graphs (or generated partial orders) are the recognizable
sets closed under complement (i.e., EMSO-logic is as expressive as MSO-logic), and
when is the nonemptiness problem decidable? Whereas both questions are solved
positively in the domains Words, Trees, Traces, let us see that this fails over Grids.
In the statement below we also include the relation to deterministic recognizability
and A}-properties. At the same time, we settle the relation between EMSO-logic
and FO[<]-logic over grids.

THEOREM 6.1. (a) The following inclusion chain is proper:

DetGrid5 C (monAj)Grirfit C (monE|)Grirf, c MSOGr,rfj5

(b) The classes FO[<]Gridj and (monE\)Grids are incompatible with respect to
inclusion.

(c) The nonemptiness problem of graph acceptors over grids is undecidable.

PROOF, (a) The inclusions as such are clear from the preceding remarks. To verify
that the first inclusion is strict, take the example set L of Proposition 5.4. To
show that L is in (monAj)Grids, it remains to supply a (monllj)-definition. Such

q-4

ELEMENTS OF AN AUTOMATA THEORY OVER PARTIAL ORDERS 13

a sentence can be constructed starting from the following condition: "For each set
X of vertices consisting of (1) a prefix of the diagonal up to some vertex u, (2) the
vertices to the right of u on the same row, ending with v, and (3) the vertices below
u on the same column, ending with w, we have: if v is labelled with a, so is w."

For the strictness of the second inclusion, we identify a grid with its sequence
of columns, regarding as column the associated sequence of vertex labels. Following
[GRST96], we consider the set N of grids of the form GH where G and H are
distinct square grids of the same size over the vertex label alphabet {a, b}. This set
is monadic £*, because the existence of a pair (x,y) of vertices (at corresponding
positions in G and H) with distinct labels can be formulated using existential set
quantifiers. (Namely, there should be a set X\ containing all points on the same
horizontal as x, and furthermore a set Xi which occupies the diagonal, which starts
at the topmost vertex above x, downward to the right. Now y is the unique point
above the end of this diagonal which belongs to X\.) In order to show that N is not
monadic n}, it suffices to show that the set of grids GG, consisting of two identical
square grids, is not monadic £}. Here we use the characterization of monadic
£}, i.e. EMSO-logic, by graph acceptors with 1-sphere transitions and without
occurrence constraints. Such a graph acceptor can transfer the information from
the left square grid to the right square grid only via the two stripes of transitions
along the border between the two half grids (of square form). For the given graph
acceptor, the number of such stripes is k(r'") (for some fixed k and r) in the length
n of the sides of squares. However the number of possible squares grows by the rate
2" . Thus, for sufficiently large n we find distinct squares G and H of side length
n such that on accepting tilings over GG and HH the stripes of 1-spheres right
and left to the central border are identical. This implies that GH and HG are also
accepted, a contradiction.

The set of grids GG where G is square shows that also the last inclusion of the
claim is proper.
(b) The set of grids consisting of a single column of even length is (mon£})-definable
but not FO[<]-definable (see Proposition 3.4). In order to exhibit a grid language
which is FO[<]-definable but not (monSj)-definable (i.e., not recognizable), con-
sider a variant of the set N above: the set M of grids of the form GCH where C is
a column labelled by a special letter c and where the sets of different column words
occurring in G and H (over the vertex label alphabet {a, b}) coincide. This set M
is definable in FO[<]-logic, making use of the condition that for all positions x in
the first row before the vertex labelled c, there is a position y in the first row after
the vertex labelled c such that the columns associated to x and y coincide; similarly
for each such y after the c-labelled vertex there is a corresponding x before the c-
labelled vertex. The coincidence of the columns below x and y is easily formalizable
with the relations <i and <2, which in turn are definable in terms of < (as shown
in Section 3). The proof that M is not (monEj)-definable is analogous to part (a)
above, using the fact that for any constants k and r, the number of distinct sets of
columns of length n exceeds fc(rn) for sufficiently large n.
(c) We show that for any Turing machine M we can define a graph acceptor AM

over an appropriate label alphabet which accepts some grid iff .M halts when started
on the empty tape. The idea is to let A accept just those grids which code a halting
computation of M on the empty tape. Such a halting computation is finite in space
and time (the two dimensions of the grid). Thus, the first line of such a grid is a

4<r

14 WOLFGANG THOMAS

sequence of blanks, with one pair (s0, blank) (where s0 is the initial state of M).
The correct succession of Turing machine configurations can be checked using 2-
sphere transitions. That the grid is suffiently large to include all work cells of the
computation is guaranteed by excluding transitions for border vertices which code
work cells. Finally the last line should include a final state of M. D

It should be noted that over Words, Trees, and Traces all classes of part (a) of
the preceding theorem coincide (cf. Proposition 3.2).

An interesting problem is to find classes of partial orders beyond the do-
mains Words, Trees, and Traces, over which EMSO-logic is closed under comple-
ment and/or where the nonemptiness problem for recognizable sets (satisfiability of
EMSO-logic) is decidable. We discuss three classes: the partial orders with bounded
antichains, the mirror tree concatenations, and the acyclic graphs of bounded tree-
width.

Partial orders with bounded antichains constitute a generalization of trace
graphs, in which the partial order is no more tied to a dependence structure of
the vertex label alphabet. By a small modification of parts (a) and (c) of the
preceding theorem, one verifies the following:

PROPOSITION 6.2. Over acyclic graphs with bounded antichains, EMSO-logic
is not closed under complement, and the satisfiability problem for EMSO-sentences
(and hence the nonemptiness problem for finite-state graph acceptors) is undecid-
able.

PROOF. We modify the grids of the preceding theorem (following an idea of
I. Schiering): In the definition of the first successor relation (which proceeds hor-
izontally from left to right), add an extra edge from the last vertex of each row
(excluding the last two rows) to the first vertex of the second-next row, respec-
tively. The resulting grid structure generates a partial order with antichains of at
most two elements. One can now adapt the proofs of claims (a) and (c) above for
these modified grids. □

For the class MTreeC if mirror tree concatenations we do not know whether a
complementation result of EMSO-logic holds. However, it is easy to see that the
nonemptiness problem for graph acceptors over the class MTreeC is undecidable:
We use the undecidability of the nonemptiness problem for intersections of context-
free languages. Given two context-free grammars G\,G2, one can construct a graph
acceptor which accepts a pair (t, s) of mirror-concatenated trees iff t is a derivation
tree for G\, s is an inverted derivation tree for G2, and the common sequence of
leaves for t and s consists of terminal symbols only. Such a pair (t, s) exists iff G\
and G2 generate a common terminal word.

A better candidate domain for generalizing the classical closure and decidability
results of automata theory seems to be the class of graphs of bounded tree-width. As
shown by Courcelle [Cou89], the satisfiability of MSO-sentences over BTWGraphs
is decidable. However, a reduction of MSO-logic to EMSO-logic (or equivalently: a
complementation theorem for EMSO-logic) is unknown. In a restricted case, this
reduction is possible ([ST96]), namely where a tree decomposition exists whose
clusters are vertex sets which are connected by the symmetric closure of the graph
edge relation.

L/L

ELEMENTS OF AN AUTOMATA THEORY OVER PARTIAL ORDERS 15

7. Conclusion

In this paper, some suggestions were developed towards an automata theory
over partial orders, and connections to various logical systems were established.
We studied EMSO-logic and acceptors over several classes of finite partial orders
and investigated the complementation problem and the nonemptiness problem for
recognizable sets.

Some open questions have been mentioned already. Let us list some further
directions which are unexplored.
(1) A theory of recognizable sets of infinite partial orders. Over which classes of
infinite partial orders is it possible to introduce logically meaningful acceptance
conditions, and what are these conditions? Over which classes is the nonempti-
ness problem decidable, possibly such that furthermore nonempty recognizable sets
contain "regular" partial orders (where the meaning of "regular" is also open)?
(2) Complexity bounds for transformation algorithms and decision procedures. We
did not discuss the complexity issue, e.g. in the conversion of formulas into au-
tomata or for the nonemptiness test. Note that already in the domain Traces, the
available algorithms are of such a high complexity that a practical application seems
hard.
(3) Development of other descriptive formalisms. Instead of systems of classical
logic, more restrictive systems should be studied, whose expressive power might suf-
fice for interesting applications but with acceptable complexity bounds e.g. for the
satisfiability problem. These can be versions of regular expressions (cf. [BDW95]),
or restrictions of EMSO-logic, or of FO[<]-logic, over partial orders.
(4) Comparison with the algebraic approach to recognizability. Here we refer to
Courcelle's theory of recognizability, which is based on many-sorted and locally
finite graph algebras (cf. [Cou90]). The class of recognizable graph sets in this
setting is closed under boolean operations, and all MSO-definable sets turn out to
be recognizable. Over Grids, recognizability in the algebraic sense is even strictly
stronger than MSO-definability. It is open whether, for instance, the two approaches
of recognizability (via tilings and via locally finite algebras) coincide for exactly
those classes of partial orders where EMSO-logic is closed under complement.

8. Acknowledgment

I thank Oliver Matz, Ina Schiering, and Sebastian Seibert for their comments
and suggestions, which led to corrections and improvements.

References

[BDW95] F. Bossut, M. Dauchet, B. Warin, A Kleene Theorem for a class of planar acyclic graphs,
Inform, and Comput. 117 (1995), 251-265.

[BÜ60] J.R. Biichi, Weak second-order arithmetic and finite automata, Z. Math. Logik Grundl.
Math. 6 (1960), 66-92.

[Cou89] B. Courcelle, The monadic second-order theory of graphs II: Infinite graphs of bounded
width, Math. Syst. Theory 21 (1989), 187-221.

[Cou90] B. Courcelle, The monadic second-order logic of graphs I: recognizable sets of finite graphs
Inform, and Comput. 85 (1990), 12-75.

[DR95] V. Diekert, G. Rozenberg (Eds.), The Book of Traces, World Scientific, Singapore 1995.
[EF95] H.D. Ebbinghaus, J. Flum, Finite Model Theory, Springer-Verlag, New York 1995.
[Elg6l] C.C. Elgot, Decision problems of finite automata design and related arithmetics, Trans.

Amer. Math. Soc. 98, (1961), 21-52.

-Z7

16 WOLFGANG THOMAS

[FSV95] R. Fagin, L.J. Stockmeyer, M.Y. Vardi, On monadic NP versus monadic co-NP, Infor-
mation and Computation 120 (1995), 78-92.

[GRST96] D. Giammarresi, A. Restivo, S. Seibert, W. Thomas, Monadic second-order logic over
rectangular pictures and recognizability by tiling systems, Information and Computation 125
(1996), 32-45.

[GS84] F. Gecseg, M. Steinby, Tree Automata, Akademiai Kiodo, Budapest 1984.
[Hnf65] W. Hanf, Model-theoretic methods in the study of elementary logic, in: The Theory

of Models (J. Addison, L. Henkin, P. Suppes, Eds.), North-Holland, Amsterdam 1965, pp.
132-145.

[Mil90] R. Milner, Operational and algebraic semantics of concurrent processes, in: Handbook of
Theoretical Computer Science (J. v. Leeuwen, Ed.), Vol. B, Elsevier Sei. Publ., Amsterdam
1990.

[KS81] T. Kamimura, G. Slutzki, Parallel and two-way automata on directed ordered acyclic
graphs, Inform. Contr. 49 (1981), 10-51.

[PST94] A. Potthoff, S. Seibert, W. Thomas, Nondeterminism versus determinism of finite au-
tomata over directed acyclic graphs, Bull. Belg. Math. Soc. Simon Stevin 1 (1994), 285-298.

[Rab69] M.O. Rabin, Decidability of second-order theories and automata on infinite trees, Trans.
Amer. Math. Soc. 141 (1969), 1-35.

[See92] D. Seese, Interpretability and tree automata: a.simple way to solve algorithmic problems
on graphs closely related to trees, in: Tree Automata and Languages (M. Nivat, A. Podelski,
Eds.), Elsevier Science Publishers, 1992, pp. 83-114.

[ST96] I. Schiering, W. Thomas, work in progress.
[Th91] W. Thomas, On logics, tilings, and automata, in: Automata, Languages, and Programming

(J. Leach et al., Eds.), Lecture Notes in Computer Science 510 , Springer-Verlag, Berlin 1991,
pp. 441-453.

[Th96] W. Thomas, Languages, automata and logic, in: Handbook of Formal Language Theory,
Vol. Ill (G. Rozenberg, A. Salomaa, Eds.), Springer-Verlag, New York (to appear).

[TW68] J.W. Thatcher, J.B. Wright, Generalized finite automata with an application to a decision
problem of second order logic, Math. Syst. Theory 2 (1968), 57-82.

[Zi87] W. Zielonka, Notes on asynchronous automata, RAIRO Inform. Theor. Appl. 21 (1987),
99-135.

INSTITUT FüR INFORMATIK UND PRAKTISCHE MATHEMATIK, UNIVERSITäT KIEL, D-24098 KIEL

E-mail address: at8informatik.uni-kiel.de

U

ALGEBRAIC MANIPULATIONS AND VECTOR LANGUAGES

Algebraic Manipulations and Vector Languages

M. W. Shields

1. Introduction.

Vector languages [3, 4] stand in relation to Mazurkiewicz trace languages [2] in
much the same way as matrices stand in relation to linear transformations. Given
a basis, a linear transformation determines a matrix; given an indexed cover, a
Mazurkiewicz trace determines an cc-vector, a vector of strings. The advantage of
the representations in each case is that they are in some sense easier to
manipulate. In particular, operations such as concatenation or constructing least
upper bound may be performed co-ordinatewise

We illustrate this claim in section 4, in which we prove various order
theoretic properties of the monoid of a-vectors. In section 3, we show that this
monoid is structurally identical to a monoid of Mazurkiewicz traces. These
results are used to establish properties of a partial order semantics for a class of
extended automata, the hybrid transition systems. In particular, we show that
any system of labelled partial orders which is prefix closed with respect to an
ordering interpretable as 'is an initial part of may, up to isomorphism, be
generated by some hybrid transition system from an initial state.

2. Hybrid Transition Systems.

2.1. DEFINITION. A hybrid transition system is a 6-tuple H -(Q,A,-*, i,E,\i),
where

• Q is a set of (global) states,;
• A is a set of actions;

• -*CQx AxQ is the transition relation. We write q, -*' q2 to indicate that

(qu a,q2)E-*;

• i C A x A is an irreflexive, symmetric relation, the independence relation;
• £ is a set of events;
• [x: A -* 2? (E), where # (E) denotes the set of bags over E.

satisfying

-V\

M. W. SHIELDS

(1) If qvqz,q3 GQ and aGA suchthat q-*' qy and q-*' q2, then q, = q2

(2) If quq2,q3GQ and a,bGA such that q,—"qz^
bq3 and aib, then there

exists % GQ such that q, -*" f{2 ■—' q3.

Informally, if q, -*' q2 then at state q, it is possible for events belonging to the
bag \i(a) to occur simultaneously, sending the system to state q2. For the purpose
of this paper, we shall concentrate on asynchronous systems, and treat (x as a

function \i: A -* E. Thus, if </, -»" q2 then at state q, it is possible for the event

\i(a) to occur sending the system to state q2. If aib, and both qx -*■' q2 and

?i ~*b q3 ^
en ^ is possible for the events \a(a) and \x(b) to occur concurrently

from state qv Figure 1 pictures a hybrid transition system in which the states
are represented by dots and the transition relation is represented by labelled

arrows. For example, there is a transition q, -*' q2 with \i(a) - e. The shading in
the lozenge shape indicates that a i b

We shall now describe a partial-order semantics for hybrid transition
systems; this is built on a means for deriving systems of partial orders from a left-
closed trace language as developed in [1, 5, 6].

Let H be a hybrid transition system We define a partial function
e„:QxA*-Qby

e„<q,Q)-q
9H (q, x. a)-q' <**> 6H (q, x) -*' q'

where Q is the empty sequence, x GA* and aGA.lt q0 GQ, then we define

L(H,q0) - [x GA*\QH(q0,x) is defined;

and note that L(H, q0) isa prefix closed, in the sense that

xGL(H,q0)*y<ix=>yGL(H,q0)

where s is the usual prefix ordering on strings.

b (ft a (e)

q 1 >. j-r c (e)

a (e) b (ft
9r:

Figure 1

i>0

ALGEBRAIC MANIPULATIONS AND VECTOR LANGUAGES

In the example of figure 1, we have L(H, qi) - {Q, a, b, ab, ba, abc, bac}.

We define =1 to be the smallest congruence relation on A* such that if a i b,
then ab «t ba, A ^-equivalence class is a Mazurkieioicz trace. We shall write xL for
the =i-equivalence class of xGA*. and denote the set of all ■ -equivalence
classes of A* by At*. A trace language is a subset of At*.

Since »t is a congruence relation, we may make At* into a semigroup by
defining

-yL-(-yA (2.1)

We may also define what may easily be proved to be a partial order on Av* by

xt syt •**-3zEA*:xi.zi - yt (2.2)

Returning to hybrid transition systems, we associate the pair (H,q0) with the
trace language

TL(H,q0)-{xJx<=L(H,q0)}

and note that TL(H, q0) is a prefix closed, in the sense that

x GTL(H,<70; A y, * ^ =* y, (ETL(H,q0)

In the example if figure 1, we have

We shall say that an element xt of A,* is prime if and only if

Vyuy2 BA*Vaua2 eArfy,.«,), - xt - (y,.«,^ =>a, -a2

and define X-OtJ to be the unique a E.A such that ^ - (y. a)^ some y EL A*'. Thus,
for each xt GAt*, we may define a labelled partial order PO(xJ - (X,&,\io\),
where X is the set of primes s xt. The interpretation is that the elements of X are
occurrences, where pt is an occurrence of event \iCK(pJ). If pt &p[, then pt

occurs before p'.
Incidentally, it may be shown that these elements are the primes of At * in the

order theoretic sense; if a prime pt lies below the least upper bound of a set, then
it lies under one of the element of that set.

In the example of figure 1, the primes are the traces ait b^ and (abc)t

Thus, if H - (Q,A,—, v,E,\i) is a hybrid transition system and q0 E.Q, then
we may associate the pair (H, q0) with a set of labelled partial orders:

57

M. W. SHIELDS

PO(H,qJ - {PO(xJ\Xi<=TL(H,q0)}

PO(H, q,) for the example of figure 1 is pictured in figure 2.

Let us investigate the sets PO(H,q0). First, we define a relation on labelled
partial orders.

2.2. DEFINITION. (Xu&u^)±(X2,z2,4>2) if and only if:

(1) x,cx2

(2) Vxux2 GX2:x, s, x2 **> x2 GX, A X, S2 X2

(3) to EX,: (j), (x) - (j>2 (x) and ranged^,) - range($2)

< is easily seen to be reflexive, antisymmetric and transitive, so restricting it to
PO(H,q0) turns the latter set into a partial order. The ordering relation on

PO(H, q,) for the example of figure 1 is shown in figure 2.
A set of labelled partial orders is prefix closed if and only if

P2 £SAP^P2=> P, e®

The following theorem states the main properties of this construction. For
convenience, if U EA*, then we define (Xu, su, $u) - PO(U) and if P - (X, s, §),
then we define Xp - X, sp -s and typ - §.

2.3. THEOREM . If H - (Q,A,-»vi/E/|A,) is a hybrid transition system and q0 GQ,
then

(1) PO:TL(H,q0)-~ PO(H,q0) is a poset isomorphism;
(2) PO(H, q0) is a prefix closed set of finite labelled partial orders.

PROOF. (1) Let U, V EA;. It is immediate that if U s V, then Xu C Xv and that if

pGXu, then $u(p)-\(p)-$v(p) and rtmge($u) - E-range($v). If pup2GXv,
then

Pi su P2 «> P, * Pa A P„P« eXu <*» p, s p2 A p2 <=XU <*> pt sv p2 A p2 GXU

D
<

<

<

■<

• a
 L„ • h.\ *

Figure 2.

f2~

ALGEBRAIC MANIPULATIONS AND VECTOR LANGUAGES

and we have established that PO(U)<PO(V). It is now clear that PO is
monotonic and onto. To complete the proof of (1) we need the following order
theoretic property, which we establish in section 4.

UGA;^-UXU-U (2.3)

where U Xu denotes the least upper bound of the set X^. From this, we obtain

PO(U)± PO(V) => Xu C Xv =*U -UX„ sUX, - V

which entails that PO is injective, and hence bijective, and that PO~' is
monotonic.
(2) It is clear that the posets in PO(H,q0) are finite. Suppose that U ETL(H,q0)

and P<PO(U). We need another order theoretic property, which we also
establish in section 4:

faweA^vzep.'ZsWj^uPGA; (2.4)

It then follows that V-UPGA,* and that VsU. Since TL(H,q0) is prefix
closed, V GTL(H, q0). We conclude the proof by showing that P - PO(V) and in
view of the definition of PO, it suffices to prove that Xp - Xv. But if W is prime

then WEXP »WsVoWGV,.
QED

Our next theorem shows that up to isomorphism, every prefix-closed system
of labelled partial orders is determined by an initialised hybrid transition system.
This means that our automata model is in some sense capable of describing any
discrete, discrete system.

2.4. DEFINITION. Labelled partial orders (Xuzufa) and (X2,z2,<b2) are
isomorphic if and only if there is a bijective function /.X, -» X2 satisfying

(1) Vx,x'(=X<:x*,x' <*>f(x)z2f(x');

(2) y/x^X,:^(x)-^(f(x))

We write (Xuzu^)m (X2,&2,§2) to indicate that fX,,£,,$,,) and (X2,&2,§2) are
isomorphic.

2.5 DEFINITION. Two sets of labelled partial orders IS, and <B2 are isomorphic if
and only if there exists a bijective function 4>:®, -* lB2 such that

(1) VP.P'E.'ByPlP' *>WP)<MP'))

(2) VP £«,.•?-<1>(P).

5~>

M. W. SHIELDS

We write $, * <B2 to indicate that #, and #2 are isomorphic.

2.6 THEOREM . Suppose that <B is a prefix closed set of finite labelled partial
orders, then there exists a hybrid transition system H = (Q, A, -*, i, E, \i) and
% <EQ such that ® > PO(H,q0).

The proof of this theorem uses a result about systems of partial orders. So as
not to introduce too long a break in this exposition, we have consigned both to an
appendix.

3. Vector Languages.

Let A be a set. An indexed cover for A is a function a: 7 -* * (A) satisfying

\Ja(i)-A
ia

It is clear that the relation ia C A x A given by

aiab#>(Viel:{a,b}g,a(i)) (3.1)

is an independence relation. On the other hand, if i is an independence relation,
then there exists an indexed cover a such that t - ia. For example, define

I-((a,b}QA.\afb}

and let a be the identity function.

3.1. EXAMPLE. If A-{a,b,c} and i~{(a,b),(b,a)}, and aifW-'MJ is
defined by a(V - {a,c} and af2) - {b,c}, then i - ia.

3.2. DEFINITION. We define Ma to be the set of all functions x:I^~ (A*)
satisfying

Vi<=I:x(i)(=a(i)*.

If I - fl, • • •,«/, then we may represent x GMa as a tuple (x(V, • • •, xfnj). We refer
to the elements of Ma as string vectors.

We may make Ma into a semigroup and partially ordered set by defining

Vi G7: fx. yXi) - xff). yd'j (3.2)

x s y *> (Vi GJ.-xd',) <: yd'j) (3.3)

s-y

ALGEBRAIC MANIPULATIONS AND VECTOR LANGUAGES

Ma has as semigroup identity and poset bottom element the string vector Qa

which satisfies Vier.QJi) - Q.

3.3. DEFINITION. If a EA, then we define the string vector aa by

f a if a Ea(i)
«ad)-\n , • (3-4) Q otherwise

We define the set Aa* of a-vectors to be the submonoid of Ma generated by
the set Aa - {aa \aEA}. Aa* inherits the partial order structure, including the

bottom element, from Ma. An a -vector language is a subset of Aa*.

In example 3.1 above, we have aa - (a, Q), ba- (Q, b) and ca - (c, c).
We shall occasionally need to argue by induction on the length of a vector. If

x E.Aa* and a Ea(i) D a(j), then it is easy to see that #„ x(i) - #„ x(j), where #a x
denotes the number of occurrences of a in x. We may therefore unambiguously
define #„ x - #a x(i) where a Ga(i) and the length of x by

\x\ - y#. x

It is not hard to show that IQ^I - 0, that \aa \ - 1 if aGA and \x. y - \x\ + \y\, if

We also define

x inda y •**• (Vi El:x(i) > Q =*■ y(i) - Q)

and observe that inda is an independence relation which satisfies

xinday=>x.y-y.x (3.5)

Our first result relates the order structure of Aa* to its monoid structure

3.4. PROPOSITION. x,yEAa*, then

x s y *> 3z SAa*: y - x.z

PROOF. The •<= implication is trivial. For the => implication, we argue by
induction on then length of x. The base case, where x - Q0, is also trivial. For the

induction step, we have aa s x, some a £ A. We argue that there exists x^ EAa*
suchthat x- aa.x[_.

Indeed, since aa sx, we may write x-xraa.xz where #„x, -0. If aEa(i),

then asx,(i).a.x2(i) and so %/i)-Q. Therefore aaindxx and by (3.5)

*"*r<?a*2 ~<L,*r*2- Thus our claim holds if we define x^-xyx2. Likewise,
since aa*x*y, there exists y'E.Aa* such that y - aa.y'. But now, since

rr

M. W. SHIELDS

aji).x^(i)&aji).y^(i), it follows that x[(i)&f(i), each i. that is, xjsy'. By

induction, there exists zEAa* such that y' -x\z and y - £a-y' - aa.x\z- x.z.

QED

If x.z, - x.z2, then x(i).z,(i) - x(i).z2(i) each i. and so z/O = z2(i) each i and
so z, = z2. Hence, the vector z of proposition 3.4 is unique; we denote it by y/x.

We shall use the same notation for sequences; if x s y, then y/x is defined to be
the unique string such that x. (y/x) - y.

By (3.1), (3.2) and (3.4)

a ia b o a inda b (3.6)
a ia b •*> a * b A a.b - b.a (3.7)

from which it follows that if i - io., then the monoid epimorphism fa: A -» A0*

given by /a (a
1 • • • a") = fl'0 ■ • • fl"„ satisfies

Vx,yGA*:x- y=>/aW-/afy;

so that there exists a monoid epimorphism <pa:A* -» Aa* given by <pjxj-fjx).
In fact:

3.5. THEOREM. The function cpa:At* — Aa* satisfying cpjxj-fjx), all xGA*, is
both a monoid and poset isomorphism.

PROOF. We first show that cpo is injective. Since we know that cpa is a monoid
epimorphism, this shows that q>a is a monoid isomorphism.

Suppose that X, Y EA • such that yJX) - yJY) and let x GX and y GY be

such that if x'GX and y'EY, then |x A y|a|x'A y'|. Here XAy denotes the

longest common prefix of x and y and |x| denotes the length of x. We prove that

x - y, from which it follows that X - Y.

Suppose x*y, then since yJX) - yJY), we may write x-u.a.v and

y-u.V ■■■b'.a.w suchthat a*b", n - 1, ■■■,r. Now, cpJX) -cpJY) means that

fJ^ia-faM-fJu).b:a-b:a.aa.fJw)

and so if fl0(z')>Q, then aatfa(i)---ViJi).a.fJw), and since a*b", n-1, •••,/■,
we must have V^Ji) - Q. Thus, for all n - 1, •••,?-, aa inda fo^0. and hence aiab",

by (3.6) and (3.7), so if we define y' - u.a.tf ■■■V'.w, then y' a^ y, so that y' GY.

But, |x A y| < |x A y'|, the desired contradiction.

Finally, suppose that x,yEA, then

x sy,« 3zt GA *:xi.zi - yt, by (2.1) and (2.2)

<=*• 3zt GAi*:(p0Cxi).cpafzi) - q>jyj, by the first part of the proof

TL

ALGEBRAIC MANIPULATIONS AND VECTOR LANGUAGES

» 3z E.Aa:q>JxJ.z- (fjyj

** wJxJ s tyjyji ^y proposition 3.4.
QED

4. Operations with Vectors.

Consider the following proof that every non-empty set of strings has a greatest
lower bound.

Suppose that 0 C X C A*. It for no a EL A, is it the case that a&x, all x EX,

then the greatest lower bound of X, denoted by 11X, exists and equals Q.
Otherwise, we may form the set X/a- {x/a\xEX}, which is non-empty By

induction (on the length of the shortest string in X), n (X/a) exists, and for all
UKQ

u s a.(\l(X/a)) *> u/a s r\(X/a) ** to EX: u/a =s x/a <* to GX:w s x

so n X, exists and equals a. (Tl (X/a)).
In the above chain of equivalences we are making an implicit use of certain

properties of strings. For example, the first equivalence uses the fact that the set
| x of prefixes of a sequence x is totally ordered, so that if u s a. v and u * £2 ,
then flsu and so u/a is defined and u/a&v. This argument cannot be
generalised directly to vectors. For instance, in example 3.1, we have and
(a,Q),(Q,b)z(a,b) but neither (a, Q) s: (Q, b) nor CQ,h>s ("a, Q). However:

4.1. LEMMA. Suppose x,yE.Aa* and a EA, then

(1) aa,xzyAaa4x=>aaindax;

(2) x*aa.yAaaindax=>xzy.

PROOF. (1) If it is not the case that, aa inda x then for some i El, aji) > Q and
x(i) > Q, so that a,x(i) s y(i) and so a s x(i), which means that #a x > 0 Hence,

for all i El, if aa0',) > Q then x(i) > Q and so a s x(i). But then sasx.
(2) If aJi)-Q, then x(i)*(aa.y)(i)-y(i), whereas if aJi)>Q, then

xdV-QsyCi).

QED

Taking these additional complications into account, we can generalise the
above argument from A* to A a*.

4.2. PROPOSITION. If 0 C X C Aa*, then X has a greatest lower bound.

i7

M. W. SHIELDS

PROOF. Suppose that 0 C X C A*. If for no a E.A, is it the case that aa s x, all

xGX, then I1X, exists and equals Qa. Otherwise, we may form the set
x/«a - {xfaa IxGXj, which is non-empty. By induction (on the length of the

shortest vector in X),!~! (X/aa) exists, Suppose that u GAa*. If aa s «, then

u s aa.(\l(X/aJ) <*> u/aa s nfX/aJ <*> Vx GX:w/aa <; x/aa «> Vx GX.u s x

whereas if aa £ u, then by lemma 4.1.

Msaa.O~l(X/flB;.)«>ffla indaUAU&r\(X/aa)

<*> ffla mda MAVX GX:W S xla) <**> Vx GX:us x

so n X, exists and equals aa. (Tl (X/aa)).

QED

The advantage of a vector representation is well demonstrated in the
computation of least upper bounds; both the existence and the value of a least
upper bound may be determined co-ordinatewise, as we shall show in
proposition 4.4. First, if x,yG.Aa*, then define

x ** y <**> Vz &:x(i) =s y(i) v y(i) s x(i) (4.1)

and if x «-» y, then define x v y GMa

(x v y)(i) = max(xd'), yd')) (4.2)

We prove an extension of lemma 4.1 (1).

4.3 LEMMA. If x,y GA0*, then

x**yi\aaizx\aa4.y=>aa inda y.

PROOF. If it is not the case that aa inda y, then there exists iEI, such that

aji) > Q and yd') > Q. As aa s x, as x(i), and as either x(i) s yd') or yd') s x(i),

we must have a s yd). Arguing as in lemma 4.1, we conclude that aany.

QED

If x,yEAa*, then we denote the least upper bound of x and y , if it exists, by

*Uy.

4.4. PROPOSITION. If x,y^A*, then

f?

ALGEBRAIC MANIPULATIONS AND VECTOR LANGUAGES

(1) If xU y. exists, then x**y;

(2) If x ** y, then xli y exists and equals xvy.

PROOF. (1) If z - xU y, then for all i G7, x(i),y(i) s z(i) and so x ** y as [z(i) is

totally ordered.
(2) It is clear that for all i £7, (x v y)(i) s u(i) **■ xd) s «d') A yd'j s u(i) and so it

remains to be shown that xvy SAa*. We argue by induction on the length of x.

The base case, x - Q0 is trivial. For the induction step, suppose that aa&x.

If aa £ y, then a co-ordinatewise argument gives x/aa ** y/aa; for example, if

x(i)zy(i), then x(i)/aji)zy(i)/aji). By induction (x/aa)v (y/aa)E:Aa* so,

Viel:max(x(i),yji)-aji).max((x(i)/aji)),(y(i)/aji)))

Otherwise aa 4 y and so by lemma 4.3 aa inda y. Again, a co-ordinatewise

argument gives x/aa**y. Indeed, if aa(i)>Q, then y(i) - Q s x(i), while

otherwise, (x/aa)(i)-x(i). By induction (x/aa) v y £Aa*. If aaO',)>Q, then

yd) - Q and so

(<l*-((x/<la)
w y))tt) - a.max(x(i)/a,Q) - xd.) - max(x(i),y(i)) - (xv yXi)

Otherwise aa(i)-Q and so (aa.((x/aa)vy))(i) - max(x(i),y(i)) -(xvy)(i) and

we have established that xyy-aa.((x/aa jvyj GAo*.

QED

The following corollary, together with theorem 3.5, establishes (2.4) which we
used in the proof of theorem 2.3.

4.5. COROLLARY. If X C Aa* and UX exists if and only if X is bounded above
and then

Vi El: (U X)(i) - U (x(i) \x<=X}.

PROOF. If U X then X is bounded above, by U X. Conversely, suppose that X is
bounded above by y, say, then X must be finite, as every vector may have only

a finite number of distinct prefixes. If X is empty, then UX-Qa, or

X - {xu---,x„}, n > 0, X' - {xif---,xj is bounded above, by y so by induction,

x>UX' exists and Viel:(UX'XJJ- \J{x(i)\xGX'}. Both xt and ^ are

bounded above by y, so x, ** x!_, so x,U xj exists and consequently x,U x!_ - U X.

Furthermore,

1 '■?

M. W. SHIELDS

VzGl:(UX)(7)- x<Ll\J{x(i)\x£X'}-U{x(i)\x<=X}.

QED

We now establish a vector version of (2.3), thereby completing the proof of
theorem 2.3. We shall say that p E.Aa* is prime if and only if:

Vu,vGAa*Va,bGA:u.aa -p-v.ba=*> a-b (4.3)

and note that by theorem 3.5, if p GA*, then p,_ is prime if and only if (pjp^) is

prime. We write Pra for the set of primes and for all xGAa* define

Xx_-{pEPra\psx}.

4.6. PROPOSITION. For all xEAa*,UXx. exists andz-UX,.

PROOF. Since X£ is bounded above by x, UXX exists by corollary 4.5 and

UX£ s x. To complete the proof, we show that for each i £7, there exists p GX,

such that p(i) - x(i) and appeal to corollary 4.5.

Let Y-{y GAa* I y s x A yd') - x(i)/, then Y is non-empty, since it contains x.

Let p GY have minimal length. If p is not prime, then there exists u,vGAa* and

a,b£A such that w.aa -p-v.ba and a*b. So u(i).aji)-v(i).bji) and since

a ^ b, we cannot have aji),bji) > Q. Without loss of generality, aji) - Q, and
now we have u<p*x and u(i) - (u.aj(i) -p(i) -x(i), so that «GY and has

shorter length than p, a contradiction.

QED

The construction of primes in the proof of proposition 4.6 may be
generalised, as follows. Suppose that x GAa* and a Gaff), then an element of the
shortest length from the set Y,. - {y E.Aa*lysx.aoA y(i) - x(i).a} is prime, and

furthermore, if we apply this construction to Yy, where a E.a(j), then we obtain

exactly the same vector. We denote it by pra (x, a).
The following proposition will be needed in the proof of theorem 2.6, which

we present in the appendix.

4.7. PROPOSITION. x-±a •..£,, then X, -{pr(£a ■■■ £a,a
k*1)\0zk<r}.

PROOF. Certainly, {pr(£a ■ ■ ■ ^_a,a
M) 10 s k < r} C X,, while if u. aa £XX, then

H-ß.a - pr(^_a •••«!„, aM) where a - aM and #„ u - #a o^a • • • d_a.
QED

We conclude this section with a useful result which allows us to factorise the
prefix of the concatenation of two vectors as a concatenation of their prefixes.

IrC

ALGEBRAIC MANIPULATIONS AND VECTOR LANGUAGES

4.8. PROPOSITION. If x,y,z<=Aa*, then

xay.z=> 3u, v E.Aa*: u.v-XAUsyAvzzAV inda (y/u)

Consequently, y.z-x.(yl u).(z/v).

PROOF. Let u - xf\ y, then w s x and so we may define v - x/u. It immediately

follows that x - u.v and that u s y.

Now, v s (y/u)- z and y/u s (y/u). z. So

vH (y/u) - (x/u)H (y/u) - (xH y)/u - (xV\ y)l(x l~l y) - Qa

and a repeated application on lemma 4.1 establishes that vinda (y/u). Finally,

from u s y and a coordinatewise argument, we may conclude that

(y-z)/u - (y/u).z, so p« X/M S (y.z)/u - (y/u).z. This, together with u wjrf„ (y/u),

entails that »sz.
QED

5. Conclusions and Related Work.

We have demonstrated the use of vectors as representations of traces which
simplify certain relations and constructions. The work reported here is actually
part of a larger study [7] in which, among other things:

• Hybrid transition systems are labelled by bags of events and behaviours are
modelled by labelled pre-orders; the induced equivalence relation on occurrences
is that of simultaneity.

• The use of vectors is otherwise illustrated in establishing structure theorems
for important subclasses of the class of vector languages

• Hybrid transition systems are used to provide a non-interleaving semantic s
for a variety of specification notations, from Net theory to CCS.

• The machinery of category theory is used to related the expressive power of
the specification notations on the basis of the above common semantic domain.

Appendix: Proof of Theorem 2.6.

Before we prove the theorem, we need the following property of sets of finite
labelled partial orders.

id

M. W. SHIELDS

PROPOSITION. If # is a prefix closed set of finite labelled partial orders, then
there exists a prefix closed set of finite labelled partial orders «' such that
3 = <B' and that for all P„ P2 EfB',

Pi±Pt*>XfQXri (A.l)

PROOF. Let M, denote the set of all P G® having a unique maximal element

UP). If PeB, then define 9(P) - (X„sp/$r), where

• XP = {PEM,\P<P}

• P,*PPZ*>P,±P2

• $r(P)-$,(\(P))

and let <B' ~{9(P) I PEfB}.

To prove (A.l), it suffices to show that if PVP2E!B, then

Xp CXP| =><fr(P,)±<P(P2), and in view of the definition of <&, we need only

establish (2) of definition 2.2. But if PUP2 GXP;, then

P, sWi, P2 A P2 GXP, => P, ^ P, ^ P, =* P, GXPi

and so

Pi *»w P2 ** P, d P2 A P„P2 GXP, <* P, «Wi> P2 A P2 GXP|

Since (A.l) holds, to show that <!>:#->■#' satisfies (1) of definition 2.5 we

need only show that if P„P2e8, then P, <P2 <*> Xp,£XPi. If P,^P2, then

PGXrt=>P±Pi ^P±P2=>P<=XPi. Conversely, suppose that XpCXv If

x£Xp, then define \Px- (X, s, ty), where

X - fy GXP] I y sp x/

Vy,y'ex--y*y'*>y*e<y'
VyGX:<Ky)-<|>P(y>-

We note that JP| xGXP| with X(ipx)-x. Hence iP| xGXp/ and in particular,

\,Px< P2, so x GXP! and we have proved that Xp C XPi. Since iPx^ P2, we also

have (|)P (x) - <bifX(x) - tyPi (x) and

y SP, * ** y st,fI x *> y =sP; x A x GXJf x <**> y sP; x A X GXPI

62-

ALGEBRAIC MANIPULATIONS AND VECTOR LANGUAGES

Finally, suppose that P E'S, then it is straightforward to check that the
function qp: P -» <&(P) given by q>(x) - (X, s, §) is an isomorphism, where

X~-(lry\ysrx}

$(lPx)-typ(x).

If P is a labelled partial order and X C Xp then we define

P\X-(X,srn(XxX),$P\X)

QED

We sketch the proof of theorem 2.6. By the proposition, we may assume that
$ satisfies P, < P2 <=> Xp C Xp. Define H - (Q, A, •—, i, E, \i), where

A-UXP pet

Pr ^
x P2 *> XP| C XPs A Xp> - Xp< - fx/

x, i x2 <=*• x, i x2 A x2 ^ x, A (3P G®:x,,x2 GP)

E- Ur<mge(<|>p)
pea

\i(x) - e *> 3P E!B:x GXP A ^fxj-e.

If P -*x P, and P-*x P2, then XP] - Xp U (x/ - XP; and so, by the assumption

P,±P2*> Xp C XPi, we must have P,-P2. Suppose that P -** P, and P, -»' P2

with xiy and define £, - P2|(XP] -{x}), It is not hard to check that *,;<P2,

giving P1 E$, by left-closure. And now, P -*y P, and P, -** P2. We have shown
that H is a hybrid transition system

Define q0 to be the empty labelled partial order, with label set E. We now

define a function 4>, which we shall show to be an isomorphism from # to
PO(H,q0) is given as follows. Suppose PG®,and let Xp - {xu ■■■,xn}, where the
numbering is such that x, <pxj=>i<j; x^--xn is a linear ordering of P. It may

be shown that w - x, ••• x„ EL(H,qB) and that $(P) - PO(uJ does not depend on
the particular linear ordering chosen.

Indeed, it is not hard to show that if we define Pt - P|(x,, •••,xi}, each i, then

P, :< P2 • •■ ?„_, < P and so P, G$ each i, by left closure. We also have q0 -»*' P,

and Pj -»*' PM, each i, and so u - x, ■■•x1I EL(H,q0). If x{ ix,v1, then
x, •••xM.xi ■•• x„ is also a linear ordering of P and that any other linear ordering
of P may be obtained from x, ■ • • x„ by permuting adjacent, unordered elements.

Hence, the linear ordering of P form a »^class and <I» is well-defined.
If P, < P2, then any linear ordering u of P, may be extended to a linear

ordering v of P2, so that H s^ and consequently PO(uJ<PO(vJ, as was

6>

M. W. SHIELDS

established in the proof of theorem 2.3. Thus, $ is monotonic. If uEL(H,q0)r

then <&(P) - PO(uJ, where P - BH(q0,u) and so <t» is onto. If PO(uJ < PO(vJ,

then MC * ^ as was also established in the proof of theorem 2.3, so Xp C X, and

hence P, ^ P2, by (A.l). Thus, $ is injective and <J>~' is monotonic.

The isomorphism from P to <$(P) will be defined by

<p(xi)-pr((xr--xi_,)l,xi)

By proposition 4.7, cp maps Xp onto XW) and so q> is bijective. If xi < x. then

i<; and *,.**,, and so pr((x1-~xiJi,xi)<pr((x,—xH)v,xj). Conversely, if

pr((x, ■ ■ ■ *,._,^,xi) < pr((x, ■ ■ ■ xH\,x.), then x.Gfx,---xH} and x,. >; JC;..so x < x;..

Thus, q> is a poset isomorphism. Finally:

^K(f(xi))~^Jpr((x1-xiJl,xi))~\i(xl)-^r(x{)

QED

References

[1] Bednarcztk, M. A.: Categories of Asynchronous Systems, Ph.D. Thesis,
University of Sussex, October 1987

[2] Mazurkiewicz, A.: Concurrent Program Schema and their Interpretations,
Proceedings Aarhus Workshop on Verification of Parallel Programs, 1977

[3] Shields, M. W.: Adequate Path Expressions, Proceedings, Symposium on the
Semantics of Concurrent Computation, Lecture Notes in Computer Science,
volume 70, pp. 249-265, Springer Verlag, 1979

[4] Shields, M. W.: Non-sequential Behaviours I, Technical Report CRS-119-82,
Computer Science Department, University of Edinburgh, June, 1982

[5] Shields, M.W.: Concurrent Machines, Computer Journal, volume 28, pp. 449-
465,1985

[6] Shields, M. W.: Behavioural Presentations, Proceedings REX Workshop on
Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency, Lecture Notes in Computer Science, volume 354, Springer Verlag,
1989

[7] Shields, M. W.: Semantics of Parallelism, a Non-Interleaving Approach,
Springer Verlag, to appear.

v W

ALGEBRAIC MANIPULATIONS AND VECTOR LANGUAGES

Department of Mathematical and Computing Sciences
The University of Surrey
Guildford
Surrey GU2 5XH
United Kingdom

6<

kU

Refinement With Global Equivalence Proofs In
Temporal Logic

Shmuel Katz*
Computer Science Department

The Technion, Haifa, Israel
email: katz@cs.technion.ac.il

Abstract

Refinement of abstract atomic operations is considered. The temporal
logic ISTL* is used to demonstrate a two-stage approach to verification of
such refinements for distributed systems. In each refinement, convenient lower
level computations are first shown to implement upper level operations, and
then in the second stage, all other computations are shown to be equivalent
to one of the convenient ones. The equivalence maintains the ordering of all
causally dependent events, but allows independent events to occur in different
orders. The advantage of this separation is that different kinds of reasoning
and induction can be used for the two aspects. A proof rule with well-founded
sets is proposed for the proofs of equivalence. The approach is demonstrated
for a refinement that adds output queues between processors and a main
memory.

1 Introduction
In refinements of distributed systems high level atomic operations are replaced by
collections of lower level operations that loosen the synchrony among distributed
processors, but still maintain some key properties. In the approach to justifying the
correctness presented here, each refinement proof is divided into two independent
stages. The first stage shows that convenient executions of operations from the
next lower level are a simple refinement of executions from the upper level, and
can be demonstrated correct using standard refinement mappings. The convenient
executions are precisely those where the lower level operations that implement
a higher level one appear as a subsequence, with no other lower level operations
interspersed. These are legal lower level executions, even if they are unlikely to occur
in practice because the operations are distributed in a collection of asynchronously
executing processors. A mapping function from each convenient execution to some
abstract computation is generally simple and iterative. After this first stage, we
have only shown that every convenient execution sequence is a refinement of some
higher level abstract execution.

•This research was supported by the Fund for the Promotion of Research in the Technion.

67

Then we show that every additional execution sequence at the lower level is
equivalent to one of the convenient ones. This stage could be considered as a
'loosening' of the ordering imposed by the convenient executions.

The two-step reasoning at each level saves having to directly relate each lower
level sequence through a mapping to an upper level one, as is done in other proof
methods. Although such a mapping exists, the use of history and prophecy vari-
ables may be required. The mapping may be extremely difficult to express and
justify because the collection of lower level operations that can be considered the
'implementation' of an upper level one is interleaved with an arbitrary number of
operations that implement other higher level operations. Thus it is difficult to
obtain an iterative proof that is uniform for all the computations when a direct
mapping is required. Note that the difficulty is not in the proof obligations once
appropriate mappings and invariants are found, but in the conceptual complexity
in suggesting appropriate candidates for mappings and intermediate assertions. In
contrast, here we claim that the reasoning used is not far from that used intuitively
by designers of such systems.

The refinement we consider here could be one step in a derivation and ver-
ification of a cache consistency protocol. In this example, we will require that
the refinement maintain what is known as sequential consistency. Intuitively, this
means that the projection of local events of each processor is consistent with use
of a serial memory, even if a version with queues and local caches is used instead.
Although this is natural in the context of cache consistency protocols, note that
there are other applications of the refinement verification technique that have no
such requirement.

The temporal logic I STL* is used to express the properties of computations. It
is based on the idea of a partial order computation which is simply a maximal set
of occurrences of operations (called events) of a distributed system that have some
partial ordering among them. The ordering includes any causality required among
events, and may have additional restrictions. Events which are ordered are called
dependent, and the others are independent. A program or system defines a collection
of such partial order computations. As shown previously in [KP90, KP92b, KP92a],
the collection of all linearizations of the events that are consistent with the partial
order can be considered in a temporal logic framework. Each linearization generates
an execution sequence, which is a sequence of alternating events and global states.
All such execution sequences generated from a given partial order computation
define an interleaving set and are considered equivalent. Intuitively, two execution
sequences will be equivalent if they differ only in that strictly independent events
are executed in a different order in the two sequences.

In I STL*, a branching time assertion is interpreted as true for a distributed
system, if it is true for every interleaving set of the system. This is analogous
to the standard interpretation of a linear temporal logic assertion being true of a
system if it holds for every execution sequence. Then it is easy to express that
each equivalence class has some execution sequence satisfying a property p, simply
as Ep, using the existential modality E. This allows easy expression of the claim
that every equivalence class has a convenient execution. Such properties are often
natural for distributed systems and allow expressing specifications for problems
such as database serializability, distributed snapshots, and sequential consistency
of cache-based shared memory systems.

a

The logic also is natural for a proof of equivalence which is global, using temporal
logic assertions about the entire computation, along with formulas that encode
which operations are independent of each other.

In previous proofs of assertions with Ep [KP92b, PP90], the two stages suggested
here were mixed together. The motivation for showing both properties at once is
to allow a classic iterative proof on the computation, maintaining compositionality
and modularity in the proof. At each step we can assume both that p is true
for (some extension of) the parts of the computations considered so far, and that
sufficient computations are being included so that every computation is equivalent
to one of those explicitly considered. This allows compositional proofs and proof
rules to be used, but has the price of complicated proof rules. In the inductive
step, it is necessary to show that the states reached so far all have a possible next
state that will both maintain p and extend the existing computations to sufficient
representatives. Here, different kinds of reasoning can be used for the two subproofs.

The rest of this paper is structured as follows. In Section 2, the idea of (con-
venient) interleaving sequences and the dependency relation is explained in greater
detail. The implications for independence of queue operations are also examined.
The temporal logic ISTL* is then briefly described in Section 3. In Section 4,
a precise definition of sequential consistency in terms of ISTL* is given. In this
framework the needed restrictions on the independence relation are defined, as
is the implementation of a collection of execution sequences by another collection.
Then the correctness requirements are defined for any refinement that maintains se-
quential consistency, using convenient executions and equivalence. A proof method
based on well founded sets is presented to show that each execution sequence is
equivalent to some convenient one.

Section 5 treats the replacement of an abstract sequential global memory by
a less synchronized version with queues between the processors and the global
memory. In the abstract version, each processor can execute atomic read and write
operations directly from the memory. In the lower level version, a processor can
only write to a local queue, while later the head of the queue is written to the
memory internally. This is one basic step in a series of refinements that can be
used to derive a caching protocol. The proof obligations are presented as temporal
logic implications. Using the properties of queues, it is easy to define convenient
executions for them and show that these implement the more abstract level, and
maintain sequential consistency.

The next crucial step involves showing that each lower level execution sequence
is equivalent to some convenient sequence, through a proof involving well-founded
sets. To guarantee this equivalence, reading from memory is restricted on the
implementation level. Care must be taken in defining which events are dependent,
in order to obtain the appropriate equivalence relation for sequential consistency.
Section 6 summarizes the approach.

2 Defining dependencies and convenient execu-
tions

Definition 1 (Execution sequence) An execution sequence p is an alternating

/-'!

sequence of states and events (occurrences of operations) denoted aoaocriai... For
each state o~i in the sequence, <r,+1 = a,(cr,). The subsequence of states is denoted
by a, and the subsequence of events is denoted by a.

The terms 'execution sequence' and 'computation' are used interchangeably in
the continuation. To apply the methodology, the independence of operations must
be made explicit in a relation among events, and equivalence among execution
sequences under the independence relation must be denned. Knowledge of the
independence relation is essential for the loosening stage, which involves precise
reasoning about which operations are independent in which states. Each operation
is viewed as a guard c (i.e., a condition for applicability on the state s) followed by
a command / that is simply a function of s (with the operation written c -)•/), as
in [ABM93]. Note that such an interpretation of an event is reasonable only when
a state is assumed as a semantic object, as part of the definition of an execution
sequence.

Definition 2 (Conditional independence) Two operations, opl and op2 of the
form cl ->• /l and c2 -)■ /2, respectively, are independent in a state s, denoted
s =S> I(opl,op2), if beginning in state s neither affects the truth of the other's
guard, and the result of executing them in either order is the same, i.e.,

cl(s)=^(c2(/l(s))oc2(s))

c2(s) => (cl(/2(S)) <* cl(s))

(cl(s) A c2(s)) =► (/l(/2(s)) = /2(/l(S))).

The definition above is known as conditional independence[KP92&] because a
pair of operations may be dependent in some states, and independent in others.
The states in which two operations are independent are defined by a state predi-
cate. Two execution sequences are considered equivalent if they differ only in that
independent operations appear in a different order, but all dependent operations
appear in the same order. More formally,

Definition 3 (Equivalence) Two execution sequences po and pn are equivalent
under independence relation I (denoted p0 =/ pn) if they are the first and last
elements in a sequence of execution sequences that each contain the same collection
of operation occurrences and for each adjacent pair, if pt has the form usatißv then
Pi+\ has the form usßt2av where s -> I(a,ß).

This definition means that the operation occurrences of one are a permutation of
those in the other, and one can be reached from the other by repeated interchanging
of events from states in which they are independent.

As a particularly relevant example, we consider the dependencies for a queue q
with operations emptyq(), putq(e), and getq(e), where e is a data element.
When the queue is nonempty, then putq(e) is independent of getq(f):

(-.empty, ()) => I(putq,getq) (1)

When the queue is empty, a putq and a getq operation will be dependent:

emptyq () => -il(putq, getq) (2)

76

All adjacent pairs of putq's are dependent:

->{I(putq,putq)) (3)

All adjacent pairs of getq's are dependent:

->(I(getq,getq)) (4)

The first rule is intuitively true because a putq and a getq by different processors
on a nonempty queue are done at opposite ends of the queue, and never involve
the same item. This is not so when the queue is initially empty, as seen in rule
(2). In "that case the getq operation must follow a putq. Note that if only complete
independence of operations were expressible, we would not be able to exploit the
above independence in those states when the queue is nonempty.

Rules (3) and (4) follow from the fact that the contents of the queue differ
according to the order of putq's, while the states of the rest of the system differ if
getq's are done in a different order. Therefore those operations are not independent
because the final state differs according to the order in which they are executed.

Here the independence relations above are viewed as given assumptions that
are part of the definition of a queue. Alternatively, an algebraic specification of
the queue operations can be defined as in [GH93] to express that the value at the
head of the queue is the oldest one put in that has not yet been removed. Then the
independence relations (1) - (4) can be derived from the algebraic queue axioms and
the definition of conditional independence. In Section 5, a temporal logic version
of the queue axioms is introduced.

3 The logic

The version of temporal logic used in this paper is an adaptation of the logic I STL*
introduced in [KP90], with additions to facilitate showing equivalence of execution
sequences. Most of the operators are those of CTL* [EH86], but interpreted as
true for a system if they hold for each interleaving set. The semantics of a system,
denoted M, is thus the collection of interleaving sets- each a set of equivalent
execution sequences- that are possible from each state. An interleaving set is
defined as an equivalence class of execution sequences for an independence relation
I. The syntax is thus standard, and the semantics (implicitly) universally quantifies
over the interleaving sets. In other temporal logics, the assertions are interpreted
over sequences of states. Here, we consider them over the derived sequence of states
from an execution sequence of alternating states and events. Arbitrary atomic
predicates are assumed, where each predicate is true for a subset of the states,
and false for the complement. Thus for a predicate without temporal modalities,
if an individual state is considered, s \= p is equivalent to p(s). For a sequence, we
evaluate a predicate in the first state:
a \= p - is (To \= p, when p has no temporal modalities

There are two kinds of temporal modalities in the logic. The modalities E
and A are known as state modalities because they deal with all of the possible
continuations from a given global state. The other modalities (F, G, X, and U)
are known as path modalities since they deal with restrictions on a given execution
path.

'II

For the path modalities, their semantics is given for a subsequence of states a
derived from an execution sequence p. We have:
a (= Fp - for some state in a, p is true, Eh'.cr,- f= p
a \= Gp - for every state in a, p is true, Vi.tr,- f= p
<7 |= Xp - for the next state in <r, p is true, cr1 \= p
<r |= pUq - p is true in states of cr until g becomes true (and q does become true),
3i.Vj.(0 < j < i => cr,- f= p) A <Ti \= q

On the other hand, an assertion beginning with a state modality is true if it is
true for every interleaving set of executions beginning from that state. Since the
system M is now a set of interleaving sets of execution sequences, we will quantify
over these sets also. In particular:
(M, s) \= Ap - for every computation in each interleaving set of M from s, p is
true, VL 6 M.Vu € L.s = <r0 => (a (= p)
(M, s) (= Ep- for some computation in each interleaving set of M from s, p is true,
VL G M3a e L.s = (T0 =^ (o- [= p)

Such assertions are said to be true of a system if they are true in the initial
state of the system. To facilitate reasoning about sequences of operations, we add
some conventions. First, an operation name also serves as a state predicate that is
true precisely when that operation was executed in the transition from the previous
state. (An alternative temporal logic that treats operations more directly can be
seen in Lamport's TLA [Lam94]). Then sequences of operations (or other predi-
cates) can be denoted using

Definition 4 (Sequencing) "s;t" is a concise notation for the temporal logic as-
sertion X(s A Xt) (in the next state s holds, followed by a state with t).

Sequencing relates to a single execution sequence and can be preceded by E or A.
A longer sequence is written "s;t;u;..." and is the obvious generalization.

The notation "(s,|i = 1, n)" is used to denote a sequence executing an s,- oper-
ation on each processor i in turn, i.e., "si;s2; ...;s„" Note that all such sequences
are simply temporal logic assertions using the next operator X.

An expression EFEGp means that in each interleaving set there is a computa-
tion such that eventually, there is a state such that for each interleaving set there
is a computation such that along the computation, p is true in all states from that
point. In the starred version of the logic, ISTL*, there is no restriction on which
combinations of the temporal operators are allowed. When temporal logics are used
in model checking of finite state programs, as is done for CTL, it is common to
restrict the combinations to facilitate efficient checking. In particular, the state
modalities E and A are required to alternate with the other (path) modalities.
Although many aspects of the specification below can be treated in ISTL with al-
ternating state and path modalities, here we do not treat whether such restrictions
allow sufficient expressibility, since in any case, model checking techniques are not
used.

Additional information on / within the temporal descriptions of computations
means that more execution sequences can be proven equivalent. In some sense the
equivalence classes are demonstrably larger and fewer convenient executions are
required to guarantee that each equivalence class contains a convenient execution.

7.

4 Expressing independence and allowed compu-
tations

As noted in the Introduction, the refinement here will maintain sequential consis-
tency among a group of processors. The definition of sequential consistency given
in [ABM93] is:

A memory M is sequentially consistent with respect to a serial memory
Mserial, iff

V<7 G Beh(M)3r G Beh(M,eriai)Vi = 1.. .n <x\i = r\i

Beh(M) is the set of execution sequences associated with M, and Beh{Mseriai) is
the set where read and write operations are atomically done on the global memory.
The above asserts that the projections of a general execution on each processor are
the same as those in some execution using a serial memory, even though the general
execution may have extra internal steps associated with the memory, so that a
write operation may not affect the memory directly. Note that in that formulation,
there are no abstract operations: all read and write operations are considered the
same, even though there is a great difference between a write that directly affects
a central memory atomically, and one to a queue that eventually will have its value
transferred elsewhere. To express this in a context with refinement, the behavior
of the serial memory is viewed as a sequence of abstract atomic read and write
operations that satisfy the usual memory consistency requirements (to be defined
below). In a refinement, these are shown to correspond to lower level convenient
sequences, where each abstract operation is implemented as a series of lower level
operations, and where an abstract write will only be associated with a single lower
level write in the sequence, and the same for a read.

In order to define the requirements within the suggested framework, at each level
of refinement a formula Gen,- (standing for general) is used to describe the collection
of general execution sequences at that level, as those satisfying the restrictions seen
in the formula. For each level except the first, an additional assertion, called Corii
(for convenient), is used to describe additional restrictions that define a subset of
the computations satisfying Gen,-.

The highest level abstract read and write operations will be described by a
formula Geno. To capture the intuition of reading and writing into memory, we
express that the value returned for a variable or memory location x in an action
read(c, x) (meaning, read the value c in the variable x) is the last value written into
it by a write(d, x) (that is, write the value d in variable x) action, in the assertion:

AG{{write{d, v) A X(Vb(->write(b, v))Uread(c, v))) => c = d) (5)

This is known as read/write consistency and is a fundamental assumption when
truly atomic reads and writes are being used. It states that if write(d, x) has
just been executed, and from the next state, there is no write action to x with
any value until a read(c,x) action is executed, then the value read is the one
previously written. Note that if there is an intermediate write with the same
value as d, then the left side of the implication does not hold in the state after

11

the first occurrence of write(d,x), but instead the assertion must hold from the
later write(d, x), where the left side of the implication is true, and thus c = d still
must be true. This requirement does not seem to appear explicitly in [ABM93].
However, the operations there are defined using a Memory data structure (an array
representing the contents of memory), and the effects of the atomic operations are
defined so that a value can be returned for a variable only if it is the latest value
written to that variable. Thus the same consistency requirement is simply given
implicitly.

Read/write consistency says nothing about a read operation on a variable never
written to. Among the common default assumptions are that a fixed initial value
is then read, that the value read is arbitrary, or that such an operation is illegal.
In the continuation, we do not treat this issue, since whatever assumption is made
on the abstract level can be easily implemented in the refinements. If a fixed initial
value is assumed, dummy initialization operations can be assumed at the beginning
of every computation. The simplest assumption for verification is that such a read
operation of an undefined variable is never attempted on the abstract level, and
thus the issue will also not arise in refinements.

As part of the specification of sequential consistency, the operations are aug-
mented with subscripts that identify the processor in which they are executed (e.g.,
writes is associated with processor 3). Since the operations are atomic and global
in effect, this association has no other significance, but does establish a local order-
ing for each execution sequence that must be maintained by subsequent refinements
in order to show sequential consistency. Thus Geno is the above equation with all
possible combinations of subscripts added, for every possible state, namely:

For all processors i and k (where j also quantifies over processors),

AG{(writei{d, v) A X(yjVb(-nwritej(b, v))Ureadh(c, v))) =>c=d) (6)

The execution sequences defined by Geno can be identified with M,er,a/.
At the next level, where queues and delayed memory writes are defined, another

temporal logic formula Geni will define all legal computations, and the additional
properties true of those computations that trivially implement the abstract ones
will be described in Con\. The computations defined by Coni also need to be
shown not to effect the ordering of local operations seen in the serial memory.

As part of the proof requirements of a refinement, it is necessary to express as a
formula in the logic which adjacent operations in an execution are independent and
which are not. This is used in proving that each execution sequence of the system
is equivalent to a convenient one within the logic.

The independence relation must be defined so that it reflects sequential consis-
tency. That is, the local operations of each processor must be unchanged for any
two computations that are to be considered equivalent. Thus we assume a total
order (i.e., non-independence) among local operations of a single processor. Since
this order must be maintained for all equivalent execution sequences, we obtain
the identity of local projections for every two equivalent execution sequences, as
required in the definition of sequential consistency.

Before stating the requirements for a correct refinement, some definitions and
properties of the needed independence relation are summarized.

n

Definition 5 An independence relation I is known as s.c. independent if for any
two operations a,- and bj, local to processor i,

-il{ai,bi) (7)

Lemma 1 // two sequences differ by one exchange that occurs in a state that sat-
isfies the s.c. independence condition I, and one of the sequences is sequentially
consistent, then so is the other.

Proof: by requirement 7 two local operations from a single processor do not satisfy
/, and thus these could not be the operations exchanged. Therefore the exchange
does not change the order of the operations for any single processor, and the pro-
jections for each processor are identical in the two sequences. Since the definition
of sequential consistency only relates to these projections, if one sequence satisfies
the definition, so does the other. □

Lemma 2 If two sequences are equivalent under an s.c. independence relation I,
and one is sequentially consistent, then so is the other.

Proof: Since the two execution sequences are equivalent under I, there is a sequence
of sequences that each differ by one exchange. The lemma follows by repeated
application of Lemma 1. □

Lemma 3 If Gen => E Con for an s.c. independence relation I and Con de-
fines computations that are sequentially consistent, then all sequences in Gen are
sequentially consistent.

Proof: Computations defined by Con are sequentially consistent by assumption.
E Con means that every equivalence class of Gen has at least one such computation.
The result follows by Lemma 2. □

In showing a refinement to a lower level, the legal computations of the implemen-
tation are described as temporal logic predicates. This in fact encodes the essential
properties of the implementation, including, for cache consistency, restrictions on
when a read action is possible.

Moreover, predicates are needed that make the independence of adjacent opera-
tions explicit. These can be justified from the underlying semantics of the model, or
by properties of the data structures used. In the case of sequential consistency, the
independence is further restricted by the problem specification, namely that there
is a total ordering among local processor write's and read's. These properties can
often be shown once for a large collection of related problems. The most important
independence relations, that allow exploiting the essential nature of distributed sys-
tems, state that local operations of different processors are independent. That is,
local operations a< and bj of different processors are independent:

i t j => IioiM (8)

The independence relations define what exchanges of operations can be made,
and thus which computations are equivalent. This needs to be introduced into the
logic explicitly, through the formula

AG(I{a,b) =► ((£"a;6") <£>(£"*>;a"))) (9)

n

In words, if I(a, b) holds in a state, then for every interleaving set there is a sequence
that begins in that state and then has "a; 6" iff there is one with "6; a" at that point.

The convenient executions, also described by a temporal logic formula, need to
be shown to correctly implement the general computations from the next higher
level, using the following definition:

Definition 6 A collection of execution sequences S implements a collection T if
there is a mapping function between the states of S and those of T such that for
each sequence in S the mapping yields a sequence in T, and each sequence in T has
at least one sequence in S that maps into it.

Note that it is not sufficient to show that the mapping of the lower level com-
putations are a subset of the higher level ones. As is pointed out in the refinement
calculus of Z [MV94] and elsewhere [BS90], there must be a lower level computation
that implements each higher level one, i.e., we are not allowed to "refuse" to im-
plement a legal higher level sequence of read's and writers. Although the mapping
appears to be unrestricted in the definition, the result must satisfy the higher level
temporal assertion that defines the collection of abstract computations, and thus
only intuitively reasonable mappings will prove acceptable.

Now the correctness requirements for a refinement may be summarized:

Definition 7 For general computations Gen,- and a lower level defined by general
computations Gen,+1 and additional properties that define a convenient computa-
tion CoTii+i, under the equivalence defined by I, the lower level is a correct refine-
ment for sequential consistency if

• The relation I in Gen,+i is s.c. independent.

• (Gen,+i A A Gon,+i) implements Gent

• // Gen,- is sequentially consistent, so is Gen,+i A A Con,+1.

• Geni+i => E Couj+i

The independence relations will be constructed with s.c. independence built
in (because local operations will not be independent), and so this aspect will gen-
erally be trivially satisfied. The correctness of the implementation for convenient
sequences requires defining the mapping function, and then showing by induction
on any lower level convenient execution sequence that it maps to a higher level
execution sequence, if the mapping is applied to each state. As noted, we also need
to show that each higher level computation has a lower-level convenient one that
maps into it. Because the correspondence between the levels seen here involves a
simple substitution, both directions can be shown at once.

The proof of the third requirement, that the lower level convenient computations
are sequentially consistent if the higher level general ones are, is also structural
in nature, and is shown by a simple induction. Since the lower level convenient
executions are obtained by substituting a sequence of operations in place of one, it
is enough to show that in the sequence, local read and write operations are done
in the same order and from the same local state as before the substitution. Since
the upper level computation is given as sequentially consistent, the lower level one
is also.

10

7<*

The remaining requirement, that every lower level computation is equivalent to
some convenient one, can be shown in several ways. One promising approach applies
model checking techniques to this problem, especially techniques modifying known
approaches that exploit partial order. Here we will not pursue that direction, and
instead present semantic proofs of equivalence based on a well-founded function.
That is, for each sequence a measure into a well-founded set is shown. The base
values of the measure are shown to be the result of applying the measure function
to the convenient execution sequences, and every other sequence is shown to be
equivalent to one with a smaller measure.

Theorem 1 Given a temporal predicate P describing a collection of execution se-
quences and independence conditions that define a relation =j, and another tem-
poral predicate Q describing an additional restriction, then P =>■ E Q if there is a
well-founded set with an ordering relation (W, >), and a function f from sequences
such that

• P(a) => f{a) e W

• {P(o-) => {Q{o~) <^ /(c) is a minimal element ofW)

• (PA -^Q){(T) => 3T . P{T) A /(<T) > /(r) A a =/ r

The proof of the soundness of the proof rule seen in the above theorem is identical to
soundness proofs of termination of programs using well-founded sets. Each minimal
element is the result of a mapping from a sequence satisfying Q (that will correspond
to a convenient sequence). Since the domain of the measures is well-founded, by
the definition of well-foundedness, each decreasing chain of values is finite. Each
nonconvenient sequence is shown equivalent under / to one with a smaller function
value, and so both map to values that are part of a decreasing chain. Since these
chains are finite, each sequence is equivalent to one of minimal measure, i.e., to a
convenient sequence.

The definition of the measure is, of course, non-automatic. However, for the
example here a standard measure can be used involving the number of operations
that are interspersed among the sequential subsequences that correspond to the im-
plementations of upper level operations seen in the convenient execution sequences.
This will be illustrated in the proof presented later. A drop in the value of the map-
ping for two equivalent computations can be shown by using the information on
which operations are independent of which other ones. This checking of equivalence
can be automated, and a project is presently underway to implement this.

Theorem 2 If a series of refinements Geno, Gen\, ..., Genn (with convenient
executions Con\, ...,Conn) are shown to be correct refinements for sequential con-
sistency, then the computations defined by Genn are sequentially consistent.

Proof: By induction on the levels. Geno is sequentially consistent by definition. For
each pair of levels, the lower convenient executions are a correct implementation
of the upper level operations, as seen through the mapping function (the second
condition for correctness in Definition 7). In addition, if the upper level is sequen-
tially consistent, then the convenient executions at the next lower level are also

11

11

(the third condition). Since the independence relation is s.c. independent (the first
condition), and every equivalence class contains one of the convenient execution se-
quences (the fourth condition), it follows, using Lemma 3, that every computation
at this level is equivalent to a correct implementation and is sequentially consistent,
as required. □

5 Introducing Out queues

We consider how to refine abstract read and write actions. An abstract write action
can be implemented by adding to the end of a queue the pair consisting of the value
to be written and the memory address, later removing that pair from the head of
the queue, and then writing it in the memory. If we denote the action of putting
the value-address pair in the queue by W{d, v), and the action of removing the pair
from the head of the queue and writing to the memory by MW(d, v) (standing for
Memory Write), such a pair is the implementation of the abstract write. Thus W is
associated with a. put operation, and MW combines a get with writing to memory.

Similarly, an abstract read could be implemented by reading from the memory,
adding the value-location pair to another queue, and later reading the value-address
pair from the head ofthat queue into the local processor. However, this is not done
here, and we assume a direct atomic action denoted R(d, v), meaning that value d
is read from address (or variable) v.

If we now replace the abstract read and write actions of the serial memory by
the lower level actions above, we arrive at a situation that can be viewed as the
addition of abstract write queues to the serial memory. Since we have a collection
of such queues, the "lower" level involves operations on an Outi queue between
the processor i and the central memory, for each processor. Since there now is a
queue for each processor, we denote writing to the end of the ith queue by Wi,
and removing an element from the head of that queue plus writing to the memory
by MWi. Reading by processor i is denoted by Rt. All of these have the same
parameters as previously, namely the value and the address (or variable name).
The events that are considered local to a processor i are not independent, and
these include all occurrences of Wi and Rt, but not MW{. On this level, only the
MWi and Ri operations directly involve the memory and are required to satisfy
read/write consistency. Thus we have:

For all processors i, j, and k,

AG({MWi{d, v) A X(VjV6(-.Af Wj(6, v))URk(c, v))) =► c = d) (10)

Now we shall define a collection of convenient executions that are guaranteed to
satisfy the requirements from M,erial (i.e., from the abstract computations defined
by Gen0). In the convenient executions, items are inserted by the processor i using
Wi operations into the corresponding Outi queue and immediately removed and
copied to the central memory by the MWi action. In these very particular compu-
tations, every Wi is immediately followed by writing into the memory using MWi,
with no intervening operations anywhere in the system. The queues are thus always
empty except when a single item has just been put in and has not yet been written
to the memory in the next step. In temporal logic we can state the requirement for

12

7?

a convenient computation (beyond those for any general computation) as simply

G{Wi{c,x)*>XMWi{c,x)) (11)

That is, throughout the computation, if a Wi has occurred, it is immediately fol-
lowed by the corresponding MWi, and every MWi is preceded by a Wi with the
same parameters. Note that only the Wi and Ri operations are local to processor i.
The MWi operations involve only the head of the i-th queue and the main memory,
and are considered nonlocal to processor i. Every adjacent Wi;MWi pair is clearly
a trivial implementation of the direct write on the abstract level. In order to prove
this precisely, we have the lemma:

Lemma 4 For each computation with atomic read and write operations, there is
a computation where each write is replaced by a Wi;MWi pair, and those are a
correct implementation of the abstract computations.

Proof: By induction on the two sequences, using the identity function from the
lower level central memory to the higher level one, and ignoring the contents of
the queues. The initial states are the same. Assuming the sequences correspond
up to a state where a write occurs in the abstract sequence, then the next lower
state (after the Wi) still is mapped to the present upper one. The state after the
MWi is mapped (and is identical) to the next abstract state. The read commands
correspond identically. Thus the concrete sequence implements the abstract one.
D

Lemma 5 The convenient sequences defined by memory consistency and the for-
mula

AG{Wi{c, x) «• XMWi(c, x))

are sequentially consistent.

Proof: The upper level executions have atomic read's and write's that are by def-
inition sequentially consistent. There is a one-to-one correspondence between the
atomic write's and the Wi's, in the same order, and the lower level R{ operations
are still atomic. The Ri operations have unchanged values relative to the upper
level, because the needed MWi occurs immediately after the Wi. Thus the lower
level executions are also sequentially consistent. □

Then we need to claim that every execution of the lower level satisfying the
queue axioms and the memory consistency assumptions is equivalent under the s.c.
independence relation / to one of the convenient executions defined above. This is
almost true, but we need to restrict the Ri operations of the lower level to maintain
the total order among local actions of a single processor. Consider a situation where
a processor has written a pair (d, x) to its Out queue, then reads the value of x
(implemented as an R), and only then is a MW executed on that queue, changing
the memory. The value read is clearly whatever was in the memory before the last
MW. This implies that there is a linearization consisting of

Wi{d,x);Ri{c,x);MWi(d,x)

with d ^ c. But such a computation is not consistent with the dependency require-
ments, because we claim that it is not equivalent to any convenient computation.

13

~i 7

If we wish to find a convenient execution to which this one is equivalent, we must
show that the R operation can be exchanged, either with the following MW or the
preceding W. The former exchange would lead to

Wi{d,x);MWi{d,x);Ri(c,x)

This is not a convenient execution, since it violates the restrictions on the value
read being the last one written in the memory location (read/write consistency).
Exchanging the Rt and Wi operations would lead to

Ri(c,x);Wi(d,x);MWi[d,x)

This is a convenient sequence, but is not equivalent to the original one, because it
does not have the same total order of the local operations in processor i.

This difficulty is inherent to any implementation that must maintain sequen-
tial consistency (although explained here in terms of equivalent sequences) and is
solved, for example, in [ABM93] by simply requiring that the lower level opera-
tions be restricted: any Ri, is 'delayed' until the Oirf, queue is empty, i.e., until
all of the 'pending' MWi operations have been done. In that case the problematic
computation described above is simply declared impossible. Of course, there is no
such restriction for reading and writing from different processors (when the sub-
scripts are different). The restriction on the implementation is again a temporal
logic formula and can be expressed in several ways. One approach treats the ac-
tions directly, using a # symbol to denote the number of times an operation has
occurred:

AG(Ri => (#Wi = #MWi))

That is, no Rt is between a W, and an MWi, because every Wi before Ri has a
corresponding MWi that also appears in the execution sequence before Rj. Another
way to express this is to define a predicate empty that is true when the queue is
empty and simply state that

AG{Ri=> empty(Outi)). (12)

Such a predicate is expressed using temporal formulas derived from well-known alge-
braic axioms. A predicate number is defined recursively in terms of each operation
(incrementing when an item is inserted and decrementing when one is removed)
and empty can be seen as a derived predicate true when number = 0. We shall
assume that expressions defining such predicates have been defined, and use the
second alternative.

Now we need to express the properties of a queue within our formalism. The
independence relations for queues (1-4) will have Wi corresponding to put and
MWi to get for each queue Outi. A temporal logic queue axiom will be added to
fix the value at the head of the queue when a single item is inserted into an empty
queue:

{empty{Out{) AaWi{c,x);MWi{d,y)") => c = dAx = y (13)

Along with the independence of Wi and MWi when the queue is nonempty, assertion
(13) corresponds to the usual recursive algebraic axiom that a get is independent
of a put when the queue is initially nonempty, and otherwise the value returned by

14

#>

the get is the one just inserted by the put operation. Using this axiom along with
the other independence axioms about queues, we can deduce the expected behavior
of a queue. For example, starting from an empty queue, if the sequence of actions

Wi{a,x);Wi(b,y);MWi{c,z)

is done, then the pair (c, z) must be exactly (a, x) (because the last two operations
are independent by the adaptation of assertion (1), and in the resultant equivalent
execution sequence the assertion (13) can be used).

In addition to the axioms given above, a progress property [MP92] on queues
is needed. It is essential that every element put in the queue will eventually be
removed (with the other axioms fixing the order). Otherwise, a scheduler in which
elements accumulate forever in one of the queues could lead to an incorrect imple-
mentation. This property will be expressed as

AG{Wi{c,x) =► AF MWi(c,x)) (14)

Note that this assertion by itself could be satisfied by a computation where two
Wt(c, x) are followed by only one MWi(c, x). By the assertions that define the
queue, however, such a computation is equivalent to one where the second Wj(c, x)
is exchanged with the MWt(c,x) (because the queue is nonempty at that point).
In that equivalent computation there must be a second MW{(c,x) by the above
assertion. Since all equivalent computations have the same collection of events, it
follows that the original computation also had a second MWi(c, x), i.e., every put
is followed by a matching get.

The properties of the general lower level computations can be obtained by sum-
marizing the discussion so far in temporal logic, with the assertions seen in Figure
1. The queue axioms above are of course essential. We also have the independence
and dependence relations on all local actions in each processor (7-8). To these we
add the read/write consistency rules for simple memory locations (10), the delay
condition on reads (12), and the formula connecting I and equivalence (9). Gen\
is the assertion beginning AG over the conjunction of the assertions in Figure 1,
defining the legal computations in the first level of refinement that adds Out queues.
Note that some independence relations are not given explicitly in Geni, but can
be derived from the relations among the operations that are given. For example,
read/write consistency on this level implies that in some states MW{ and Rj are
not independent since their order affects the value read.

The higher level, GeriQ, is defined by the assertion (6). The added restriction
on the computations satisfying Gen\ that defines the convenient computations,
i.e., Coni, is the assertion (11). Considering the proof obligations, it is clear that
/ is s.c. independent, by definition. Lemma 4 is a proof that Geni A ACon\
implements Geno while Lemma 5 shows that if Geno is sequentially consistent, so
is Gen\ A ACoti\.

It remains to show that an execution sequence satisfying these dependencies
must be equivalent (under the relations /) to one where all W — MW pairs from
the same queue are adjacent (11), i.e., to one of the convenient sequences. In terms
of ISTL*, the temporal logic formula Geni must imply EConi. Below the lemma
is proven by applying the well founded set technique seen in Theorem 1.

Lemma 6 Geni =>■ E Coni.

15

queues, for processor i:

(-iempty{Outi)) => I(Wit MWt)

empty(Outi) => -i/(Wi,MWi)

(emptyiOut^A'Wii^x^MWi^y)") => c = dAx = y

-^I{MWi,MWi)

Wi{c,x)^AF MWi{c,x)

locality, for a,b operations W or R in processors i, j:

->I(ai,bi)

i^j=>I(ai,bj)

read/write memory consistency, for all processors i, j, and k:

AG{ {MWi(d,v)AX{VjVb{-,MWj(b,v))URk(c,v)))=>c = d)

delay of reads, for processor i:

AG{R{ => empty(Outi)).

independence and equivalence, for operations a and b:

AG(I(a,b) => {(E"a;b")&{E"b;a")))

Figure 1: Conjuncts in the formula Gen\ describing lower level computations

16

S'2

Proof: The formula Gen\ is AG (universal quantification over the states) of the
conjunction of the formulas in Figure 1. Assuming this formula, we must show

EG(Wi{c,x)<*XMWi{c,x)).

As noted previously, the queue axioms in Gen\ imply that each Wi(d, x) is even-
tually followed by a matching MWi(d,x). Each matching Wi(d,x) — MWi(d,x)
pair defines an interval: the subsequence of states between the pair. The distance
of the interval is the number of states in it. An adjacent pair has an empty interval
and a distance of zero. The measure of a finite computation sequence is the sum
of the distances of all intervals in it. For all convenient sequences, the measure is
zero, and every sequence with a measure of zero is a convenient one.

The measure thus is the function needed to apply Theorem 1, and it remains
to show that each sequence with a nonzero measure is equivalent to one with a
smaller measure. Consider any nonconvenient sequence cr (which thus has a non-
zero measure), and a matching pair in it (denoted W,(d,x) MWi(d,x)) with
the smallest positive distance. Call the interval of that matching pair the interval
of interest. We will show that the sequence <r is equivalent to one with a smaller
measure by showing that there is a one-to-one correspondence among intervals in
the two sequences where all other intervals have a distance no larger than the
corresponding one in <r, and the interval in the new sequence corresponding to the
interval of interest is strictly smaller.

In practice, either an operation at the beginning of the interval of interest can
be moved to before the preceding Wi (d, x) without affecting other intervals, or one
can be moved from the end of the interval past the following MWi(d, x). If the first
state in the interval of interest satisfies MWj(c,y) for any j, c, and y (including
j = i), the independence relations show that there is an equivalent computation
with the MWj before the Wi(d, x) (j = i is included because the queue is nonempty
at that point). The same is true of any Rj where j ^ i (and R, cannot appear
by equation 12). In each of these cases, the measure of the equivalent sequence is
smaller because all other intervals are unaffected or are made smaller.

If in the first state of the interval of interest there is a Wj(c, y) followed im-
mediately by a matching MWj(c,y) (thus defining an empty interval) there is an
equivalent computation with that pair before the Wi (d, x) and thus with a smaller
measure. The equivalence must be shown in two stages: after the first exchange the
empty interval corresponds to one with a distance of one, but after the second, it
returns to zero. Note that in this case j must be different from i since otherwise the
queue axioms for Outi would be violated: two items are inserted into the queue in
one order and then removed in the opposite order, which contradicts the definition
of a queue.

The only other possibility at the beginning of the interval of interest is of a
Wj(c,v) not followed by a corresponding MWj until after the interval of interest
(otherwise the interval of interest would not define the smallest positive distance).
In this case we must consider how to move an operation past the end of the interval
of interest. The last such Wj before the MWi(c,x) at the end of the interval of
interest also cannot have its corresponding MWj within the interval of interest,
since otherwise the queue axioms for the Outj queue would be violated. There also
cannot be a Rj in the interval. Thus the independence relations on the remaining

17

6

Wj MWi Rj Wi MWi Hi
Wi + + + - (1) -
MWi + (2) (2) (1) (2) (2)
Ri + (2) + - (2) -

(1) '+' if ->empty{Outi), '-' if empty(Outi)
(2) '-', but could extend to '+' for different variables.

Table 1: Summary of independence relations for Gtn\.

operations guarantee that there is an equivalent computation like the one being
considered except with that last Wj exchanged with all possible operations between
it and the end of interval of interest and finally with the MWi(d, x) after the interval
of interest. This again yields a computation with a smaller measure. D

The proof here systematically analyzes which pairs of operations are indepen-
dent under what conditions, to show that any computation is equivalent to a conve-
nient one. We show exchanges that bring a general computation 'closer' according
to some measure to a convenient one.

An aid to following (and generating) the argument above can be given in table
form. In Table 1 the independence relations are given for a matching pair Wi and
MWi, and for Ri, relative to all of the other operations, both for other processors
j ^ i and within i, assuming that they relate to the same variable. The relations
explained previously are the justifications for the symbols, where "+" means that
the operations are independent, while "-" means that they are not. Note that a
conservative approach is taken where sometimes operations are considered depen-
dent even if in some cases (e.g., reading and writing to different variables in the
memory) they may be independent. This only means that some execution sequences
cannot be proven equivalent even though otherwise they could be, and thus each
must be shown equivalent to a different representative execution.

Note that Ri is not independent of either Wi (because they both are local
to i) nor to MWi (because they both relate to the central memory and must
maintain memory consistency). This again reinforces the implementation decision
to forbid such a read operation between writing to the local output queue and
writing from the head of the queue to the central memory. The need to 'shorten'
the distances in intervals of interest, along with the independence relations, dictates
which equivalent sequences must be investigated, and can be used for automatic
generation of the cases to be treated.

Theorem 3 Gen\ is sequentially consistent.

Proof: By Theorem 2, using Lemmas 4-6 and the fact that / is s.c. independent.
a

Further top-down development of a caching algorithm could similarly be divided
into a series of refinements, with each described first by a convenient sequence,
followed by a loosening stage to the rest of the computations at that level. Note
that the convenient executions are lower level implementations of any computation
from the upper level, and not just the convenient upper level ones. In such a series
of refinements we might first define a level where In queues and local caches are

18

^

used, and then afterwards consider the introduction of cache misses in a separate
refinement level.

6 Concluding remarks

In this paper we proved the correctness of a refinement introducing queues, starting
from the definition of serial and sequentially consistent memory. Reasoning in
terms of convenient sequences and their equivalence classes is well-suited for this
purpose. At each refinement, a two-stage proof is used, first showing that the
convenient sequences are a simple refinement using usual mapping functions, and
then separately showing every lower level execution sequence equivalent to one of
the convenient ones, using well-founded sets.

Although the formulas of temporal logic require familiarization, this should not
obscure the fact that the convenient execution sequences are intuitively natural
and are easily devised. Moreover, in those sequences the lower level state is only
examined when the system is in a stable (quiescent) state, so the mapping functions
are also simple.

The independence relations and restrictions on possible implementations are
also intuitively clear to the designer, once the appropriate questions are asked.

In order to prove a refinement stage, the possible computations of the upper
level must be described by an ISTL* formula. The lower level computations also
will have a formula defining them, including conjuncts that make the independence
of adjacent operations explicit. These can be justified from the underlying seman-
tics of the model, or by properties of the data structures used. In the case of
sequential consistency, the independence is further restricted by the problem spec-
ification, namely that there is a total ordering among local processor writes and
reads. These properties can often be shown once for a large collection of related
problems. The lower level legal computations also are derived from a description
of the implementation (either lower level code or a less formal description). In the
example given here, these include restrictions on when a read action is possible.
Next, the convenient computations of the lower level are described, also using the
temporal logic.

At each refinement stage, four correctness claims must be shown: that the
independence relation is appropriate for sequential consistency, that the lower level
convenient executions implement the general computations of the upper level, that
the lower level convenient executions are sequentially consistent if the upper level
executions were, and that every computation on the lower level is equivalent to a
convenient one.

The proof that every equivalence class has a convenient execution in it is done
using a mapping into a well-founded set. In effect, this is an induction showing that
each computation is equivalent to one that is 'closer' to a convenient one. This is
the more difficult part of the proof, mainly because there are a large number of cases
to consider (0(n2) if there are n kinds of operations). A systematic examination
of which operations can be exchanged is done using the independence information.
This aspect seems particularly amenable to automation, since it involves a large
number of very simple assertions. Specific tools for integrating such proofs into
automatic theorem proving systems or to model checking techniques for finite state

19

cC

programs are not yet available, but work has begun in this direction. Such a tool
could be expected to query the user on whether certain pairs of operations are
independent in various states, helping to cover all of the possibilities. Since the
answers on which pairs are independent are generally clear to the designer, the goal
of such a tool is to ensure that all cases are examined.

References

[ABM93] Y/ Afek, G. Brown, and M. Merritt. Lazy caching. ACM Transactions
on Programming Languages and Systems, 15(1):182—206, 1993.

[BS90] R.J.R. Back and K. Sere. Stepwise refinement of parallel algorithms.
Science of Computer Programming, 13:133-180, 1990.

[EH86] E.A. Emerson and J.Y. Halpern. Sometimes and not never revisited:
on branching versus linear time temporal logic. Journal of the ACM,
33:151-178, 1986.

[GH93] J.V. Guttag and J.J. Horning, editors. Larch: Languages and Tools for
Formal Specification. Springer-Verlag, 1993.

[KP90] S. Katz and D. Peled. Interleaving set temporal logic. Theoretical Com-
puter Science, 75:263-287, 1990.

[KP92a] S. Katz and D. Peled. Defining conditional independence using collapses.
Theoretical Computer Science, 101:337-359, 1992.

[KP92b] S. Katz and D. Peled. Verification of distributed programs using rep-
resentative interleaving sequences. Distributed Computing, 6:107-120,
1992.

[Lam94] L. Lamport. The temporal logic of actions. ACM Transactions on Pro-
gramming Languages and Systems, 16(3):872-923, 1994.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, 1992.

[MV94] C. C. Morgan and T. Vickers, editors. On the Refinement Calculus.
Formal Approaches to Computing and Information Technology series
(FACIT). Springer-Verlag, 1994.

[PP90] D. Peled and A. Pnueli. Proving partial order liveness properties. In
Proc. of 17th ICALP, pages 553-571. Springer-Verlag, LNCS 443, 1990.

20

^

A complete axiomatization
of a first-order temporal logic over trace systems*

Wqjciech Penczek and Marian Srebrny

Institute of Computer Science
Polish Academy of Sciences

Ordona 21, Warszawa, Poland
{penczek, marians}@ipipan.waw.pl

Abstract

A complete axiomatization of a first-order temporal logic over trace systems
is introduced. The proof system contains infinitary rules for temporal operators. In
order to show how these rules work, a toy concurrent program is considered, for
which a temporal semantics is provided, and the correctness of the program is for-
mally proved within our logic.

1 Introduction

Temporal logic is an important tool for program verification. Depending on the no-
tion of model, three kinds of temporal logic can be distinguished: temporal logic of
linear time (LTL) [15,10], temporal logic of branching time (BTL) [7], and partial
order temporal logic [21].

Mazurkiewicz traces and trace systems [13] are partial order structures fre-
quently used to give semantics to concurrent programs and interpreting preposi-
tional temporal logics ([12, 6], ISTL [11], TrPTL [26], TSL [22], TLC [1]). The
first-order versions of temporal logics are intended for specifying and proving prop-
erties of infinite-state concurrent programs [23]. The process of program verifica-
tion requires either a relatively complete program proof rules or a complete proof
system of the pure logic usually extended by the temporal semantics axioms of a
given program.

Program proof rules were defined for first-order versions of the following log-
ics: LTL [14], fair CTL [9], and ISTL [23]. However, a complete proof system is
known only for the first-order LTL [25,16], prepositional versions of CTL [8], TSL,

'Partially supported by The State Committee for Scientific Research under two grants
No. 8 Tl 1C 029 08 and No. 2 P301 007 04.

and ISTL [22]. The logics TSL and TrPTL have not yet been extended to their first
order versions.

In the present paper we partialy fill this "gap". We define a first-order ver-
sion of the logic TSL (FTSL, for short), interpreted over Mazurkiewicz trace sys-
tems. The modalities allow universal and existential quantification over forward
and backward paths of the models. This makes most of the branching and partial
order properties expressible in our temporal language. The first-order language is
two-sorted; it has static and dynamic variables and terms. Dynamic variables cor-
respond to variables declared in the programs. They can change their values during
a program execution. The values of the static variables do not depend on the time
points. Quantification is allowed only over the static variables.

We provide a proof system of the logic and prove its completeness by the Ra-
siowa-Sikorski method [24]. The proof system contains infinitary rules for tempo-
ral operators. In order to show how these rules work, we consider a toy concurrent
program for which the corresponding models are exhibited, the temporal semantics
axioms are defined and the correctness of the program is formally proved within our
logic.

The rest of the paper is organized as follows. In Section 2 the trace transition
systems are defined. In Section 3 we introduce the syntax and semantics of the First-
order Trace System Logic. Its proof system is given in Section 4. The completeness
is shown in Section 5. An example of formal verification of the Concurrent Facto-
rial program is given in Section 6. In Section 7 we extend the FTSL by allowing
quantification over the points of time. Section 8 contains some general remarks.

2 Trace Transition Systems

The trace systems were introduced by Mazurkiewicz [13] as semantics of Elemen-
tary Net Systems. The trace systems are isomorphic to the trace transition systems
[22, 6], which form a subclass of the occurrence transition systems [17, 6]. The
trace transition systems enjoy a nice structural characterization, which is taken as
their definition here. The concept of a trace transition system captures the main fea-
tures of transition relation w A w' from state w to w' by performing action a.

Definition 2.1 A trace transition system is a 4-tuple T = (W, E, —, u;,mt), where
W is a set of states, E is a finite set of action labels, -* C W x E x W is a la-
belled successor relation, and u>tmt € W is the initial state, satisfying the following
conditions:

Cl. W = {w | winit -" w}. where -' = {(v,v') \ (la 6 E) v -i i;'}
and —'* denotes the reflexive and transitive closure of-*' (reachability from

C2. (Vu; G W){v | w -' t;} # 0 (-' is total),

C3. {w | U7 —' winit} = 0 (beginning),

$5

C4. (Va € E)(Vti', tr'. w" 6 W) a- — w' and w -i u/" tmp/to u>' = w"
(determinism),

C5. (Va € E)(Vtt', a'', w" € W) u;' — w and w" — iv imp/iej rc' = ic"
(no auto-concurrency),

C6. (Va,6 € S)(Va\u?',ttf" € W)(3w € W) :i/u?' - w and w" - warn/

a ^ 6, fAen r -^ ix'" and v — w' (backward-diamond property),

C7. Ler/ = {(a,6) € S2 | (3u>, w',w" eW): w'^ w, w" ± wand a # 6},

(Va,6 € E)(Vu,\u>'.u;" 6 W)(3» € W) : if w A u;', 10 A u;", fl/u/

(a, 6) 6 /, /Aen u?' —> ü and w" ^* v (forward-diamond property),

C8. (Va,6 € SXVUMIAU;" € W)(3t> € W) : ifw i w' A «," a/kf (a,6) € /.
rA*n u? — I; -!■ «;" (concurrency closure property).

Condition C2 is an inessential restriction of the class of the trace transition systems,
which allows to consider only infinite paths and enables a simpler axiomatization.

The forward and backward paths are defined as follows. Let w0 6 W. A
forward path x starting at WQ is a maximal sequence of states and actions x =
wouQWiai... such that n*, -* w,+i, for all i > 0. A backward path x starting at
WQ is a sequence of states and actions x = woaowidi... Wk such that wt+i ^* tu,-,
for all i < k, and Wk = w„»t-

3 First-order TSL

Syntax

The logic is formalized in the usual first-order language with identity, equipped
with the symbols for temporal operators treated as logical connectives to be used
in building formulas. We distinguish two sorts of variables: v, 6 SV (called static
variables) and Zj € DV (called dynamic, program, or local variables), for natural
numbers i and j. That is, we have a two-sorted language. Its predicate and function
symbols act within their sorts, although the identity is assumed to allow comparison
of all the objects (variables, terms) of whatever sorts they come from. We assume
there are no function or predicate symbols on the sort of dynamic variables except
for the equality just mentioned. The formulas are built up as usual in a many-sorted
language except that quantification over the dynamic variables is not allowed.

Formally, the sets of terms and formulas are defined as follows.

Definition 3.1 The set of static terms T3 is the least set satisfying the following con-
ditions:

• all static variables are in T„,

r/

• all individual constants are in T„

• whenever f is an n-ary function symbol and t{ ,tn £ T3, then
f(tl,...Jn)€ T3.

The set of all terms T is the extension of T3 by the dynamic variables; ie T =
T3 U DV.

Definition 3.2 The set of temporal formulas TF is the least set satisfying the fol-
lowing conditions:

• ifh,t2 eTsandz£ DV,then(tx =h),(z = ti) € TF,

• ifp is an m-ary predicate symbol andtu.. .,tn 6 T3are static terms of the
appriopriatesorts, thenp(h,. ■ .,tn) € TF,

• if i\ veTFandv€ SV, then ->ip, v A *, V»#, 3v4\ E(*Uv), EG* and
EXa* (for a 6 £), E(*Sv), EH* and EYa* (for a 6 Ej are in TF.

Thus the language has EG, EXa, EH and EYa as unary connestives (operators)
and E(.U.) and E{ .S.) as two binary connectives (operators) on formulas. The no-
tation with prefix E is meant to indicate the interpretation in the sense there exists
a path suth that.... Otherwise this is the usual notation for modalities always, next
step and until, together with their past counterparts. The intended interpretation of
the future temporal formulas is as follows: EG* - there is a forward path s.t. *
holds along it; E(*Up) - there is a forward path s.t. eventually p holds and al-
ways before * holds; EXa* - * holds in the next moment in the future after ex-
ecuting a. For the past formulas the interpretation is the same but with backward
paths replacing the forward ones.

Semantics

Definition 33 The language is interpreted in the relational structures (models) of
the form M = (.F, A, I, S), where

• T = (W, E, —, Winit) is a trace transition system,

• A is a carrier set,

• X is an interpretation of the function and the predicate symbols (i.e., (A, I)
is a first-order) relational structure as usual in model theory, possibly many-
sorted),

• S :W x DV —> A is a valuation of the dynamic variables.

We write WM to denote the set W ofT in M.Bya valuation of the static variables
we mean a function V : SV —► A. The valuation functions are extended to T3 in
the standard way, V3 : T3 —► A.

The satisfaction relation of a formula v? to be satisfied by a valuation V in a model
M at a state w0, (Af, V, w0) ^= <p, is defined by induction on the complexity of the
formula:

(M,V,w0) (= (h = t2) iff Vs(h) = Vs(t2), for tut2 € T„

(M,V,w0) \= (s = t) iff S(w0,z) = V,{t),fwz € 0V* € T„

(M, V, wo) (= p('i *m) iff Ip(Vs((i) V',(<m)). where p € P is an m-
ary predicate symbol and ti,..., tm 6 T„

(M, V, tt'o) N -V >ff (A<» y, "'0) £ V.

(Af, V,w0) \= <p A v iff (Af, V, w0) (= v> and (At, V, u;0) |= 0,

(Af,l',w0) f= Vt^ iff for every a 6 4, (Af,V'.w0) N ^ where V'(v') =
V(v') for i'' 6 SV \ {v} and V\v) - a,

(M,V,rvo) \= 3iv iff there exists a € A such that (Af, V, w0) \= <p, where
VV) = V(i/) for v' e SV \ {v} and V'(v) = a,

(Af, V, it'o) \= E(^pUip) iff there is a forward path x — w0ao w\ai... and k > 0
with (Af, V. wk) (= 0, and for all 0 < i < k: (Af, V, w,) f= ^,

(Af,V, wo) |= EG^> iff there is a forward path x = woaowioi... s.t. for all
i>0:(M,V>,-)Nv.

(At, V, w0) (= £Xa¥> iff (3w € W)(w0 - w and (At, ^, w) |= v?),

(Af, V, wo) f= E^Sifr) iff there is a backward path 1 = woao w\a\... wk and
it > 0 with (Af, V, wk) (= 0, and for all 0 < i < k: (Af, V, it-,) f= 9,

(Af, V, wo) |= £#V iff there is a backward path x — woaowjaj... wk s.t. for
allO < i< k: (At,V,Wi) 1=9,

(M,V, w0) N ^y.sf «ff (3w € W')(w - w0 and (Al, V, w) |= 9).

We also need the following definitions:

• (M,V)^(p =f (A*,V»^ foreachw€W,

• (Af,w)|=9 = (At, V, w) (= 9 for each valuation V,

• M\= ip = (Al, V) ^ (^ for each valuation V.

y/

4 Proof system

We shall need the following abbreviations:

• if V v = -1(19 A -iii>), * => 0 =; -,* v c>,

• /rue = * V «v. /a/« =' ^<ruc, y- = «fr =' (^ => #) A (v => 9),

. AF* dU ^£G^, EF* d'd E(trueV*), AG* dL< -,EF^,

• EP* dÜ E(trueSv), AH* dU -£P-v,

. AXa* dU -,£*.-,* AYa* dU iEYa^, EX* Hi Vo€S £Aa9,

. EY*deJ\Ja£rEYa*,AX*d^ ^F.X^*, AY*deJ ^EY^*.

• EX{(<p) dU * A EX(^ A EX{* A ...£A(y-)...))

(the operator EX occurs i times, for i > 0),

• £AV<i>) =' v, EX^.xb) d=f ** £X(y~A £A(v>A ...£A(0)...)),

.4A V0) ^ 0, A.V'(9, v) t' ^ A .4A'(v- A ^Y(v» A ...A.Y(0)...)).
(the operator £A(AA) occurs i times, for i > 0),

• EXai...an* = EXai ... EXan*, for ax...an£ E**,

• I{a, b) dU EPEF(EYatrue A EYbtrue), (or a, be S,

Axioms

AO. all formulas in the form of the tautologies of the classical prepositional cal-
culus

Al. Vj; = Vj and z, = ZJ, for each natural;'

A2. EXa(* A 0) = £Aa(<^) A EXa{rb), for a <E E (determinism)

A3. EG* = *AEX(EG*)

A4. £(v?tf0) = 0 V (v? A £A(£(^)))

A5. £ya(9 A 0) 3 £ya(^) A £ya(0), for a 6 E (no auto-concurrency)

A6. EH* = *A Ur/a/se V EY(EH*))

A7. £(v?50) = 0 V (9 A £y(£(vj5*)))

A8. * =► /!Aa£Fa9 for a 6 E (relating past and future)

A9. <p => AYaEXa<p for a 6 S (relating past and future)

A10. EX true (infiniteness of paths)

All. EP{ AY false) (beginning)

A12. EYaAY),^ => AY'bEYaip, for a £ b (backward-diamond property)

Al 3. (/(a, 6) A EXaAXtf) =*■ AXbEXa<f, for a ^ b (forward-diamond prop-
erty)

A14. (/(a, 6) A EXaEX\><?) => EX\,EXa¥ (concurrency closure property)

A15. VM")^ v(0. teT,

A16. 3vEXa<f(v) = £A'a3iv(i>) (Barcan formula)

A17. VvEXaf(v) = EXaVv<p(v) (Barcan formula)

A18. 3tv = ->Vt>-v

A19. (AYfalse A £Au*rue) => 3i>£Au(z; = v), for j € w and u € S"

A20. («! = <2) s(AG(ti = t2)A^£T(«i = *2)). forix,i2 € Ta,

A21. p(<1(...,«m) = {AG(p{h,.. .,tm)) A AH{p(tu ... ,tm))), where pis any
m- argument predicate symbol

A22. (vi = i'i A ... A t>„ = <) =j» (/(vi,..., vn) = /(t'i,..., r|,)), where / is
any n-argument function symbol

A23. (vi = v[A...M<m = v'm)=> (p(rx,..., vn) = p(v[,..., v'n)), where p is
any m-argument predicate symbol.

Proof rules

MR ip, 9 => i> r- i>

Rl. ^ => v h £A'ayj => £A'a0

R2. v? => V H £VoV5 =* £^a^

R3. {(j> => £Xu£A','(9)},€w J- $ => EXuEGip, foru € E*

R4. {EXuEX^ip, 0) =► 0},-€w I- EXuE{<?Uy) =► 0, for u € S"

R5. AV/a/se => AG^ r- v»

R6. 9 => 0 h 9^Vi70(r), t'not free in 9

7 9

5 Completeness

In this section we show that the proof system is sound and complete.

Lemma 5.1 ([22]) For every model M and w <= WM,

(a) (M, w) \= EG* iff(M, to) h EX'(y) for each i € -;.

(b) (M, tv) N E{*U<b) iff(M. ur) (= £.V'(y". i'), for some i e u.

Theorem 5.1 The proof system is sound and complete.

Proof. Soundness is straightforward, so we are only concerned here with proving
completeness. To this end let a be a sentence that is not provable in our proof system
from a given set Ax of axioms, i.e., Ax Yf a. We build a model for Ax and -.<x. That
is, we construct a model X = [T, A,2,S)with.Vf \= .-Lr and(.M, w) |= -v7,for
some it? € WM.

We follow the idea of Rasiowa and Sikorski for constructing models on ultra-
filters in the Lindenbaum-Tarski algebra of a given theory. (See, e.g., [24] or [2].)
By axiom A15 and the generalization rule R6, the quantifiers correspond to certain
sups and infs in Lindenbaum-Tarski algebra:

• [V«v] = in/{[*(0] : t € T,},

• [3v<p] = JupflvKO] : * € r,}.

By a temporal ultrafilter we mean a maximal proper filter U in the Lindenbaum-
Tarski algebra of Ax preserving the sups and infs corresponding to the existential
and universal quantifiers and to the following infinite operations:

• [EXuEG<p\ = infitAlEXuEX^)]}, for u € E",

• [EXuE{<pUtp)) = aupi^{[EXuEX\^ 0)]}, foru 6 £".

That is,

if [EXuE(<pU^)] € U, then there is i <= w s.t. [EXuEX\y, 0)] 6 U, for

• if [EX*EG<p] $ U, then there is t € w s.t. [EXuEX><p] $. U, for u € E".

We construct the time frame T of .Vf consisting of temporal ultrafilters. Let winit

of M be an arbitrary temporal ultrafilter containing the equivalence class of the
formula AY false A EF(->cr). Such an ultrafilter exists by the Rasiowa-Sikorski
lemma: if a collection Q of infinite operations in a Boolean algebra is at most de-
numerable, then every non-zero element of the Boolean algebra belongs to an ul-
trafilter preserving all the operations of Q. It follows from proof rule R5 that the
equivalence class [AYfalse A EF(-><r)] is non-zero. That is. Ax does not prove
^{AY false A £F(-><r)). Otherwise, Ax h {AYfalse => AG(o)) would give

8

iu

Ax h er, by R5, contradicting our assumption. For all the temporal ultrafilters if
and V, we define

V - U' =f [EA'.SJ] G £' imp/ies [^] 6 tf'.

Now, the universe of T is defined by

\V^{U\ 3n>Q3al,...,an3Ul,...,Un.l trtmf^ U, H. ..Un., H £/}.

The definition of W is unambigous since one can show that there is at most one U
for each re > 0 and each sequence a\,...,an.

Slightly abusing the notation we define the relation — of T as the restriction
of — introduced above to W x £ x W. It is easy to check that the conditions C1-C8
hold (see [22]).

To make sure the above construction of W is not void, we show the existence
of the appropriate ultrafilter for the next step. That is, the induction clause for the
statement that for each re > 0, the appropriate U exists, whenever the sequence
u = ax .. .an is such that [EXjrue] € u.',-„i(. The immediate a-successor of a
temporal ultrafilter (', denoted EXaU, can be constructed as follows:

EXaU
AM {[*] I [EXM 6 U}.

One can show that EXaU is a proper non-principal temporal ultrafilter using the ar-
gument of Lemma 4.9 in [18] and Lemma 5.6 in [22]. Let us now show that EXaU
preserves the infs corresponding to the universal quantifier.

Assume that [?(t)] € EXaU, for each term t. Then [EXa<p(t)] 6 U,
for each t, by the definition of EXaU. Since U is an utrafilter preserving the
infs corresponding to the universal quantifiers, [ivEXaf(v)] € U. Therefore
[EXaVvv(v)] 6 U by axiom A17. Thus [tv<p{v)] € EXaU by the definition of
EXaU.

Similarly, we can use axiom A16 to show that EXaU preserves the sups cor-
responding to the existential quantifier. Suppose that [3tv(w)l 6 EXaU. Then
[EXa3v<p(v)] 6 U by the definition of EXaU. Thus [3vEXa^(v)] € V, by A16.
Hence [EXa<p(t)] € U for some term tt since U preserves the sups corresponding
to the existential quantifiers. Thus [<p(t)] € EXaU for some term t, once more by
the definition of E Xa U.

Now, we define the other components of M = (T, A, I, S). For any t 6 T,
let [t]= = {tf e T, I [(= t'\ e uw}. These are the equivalence classes of the
identity relation according to w,-n;t on the static terms. It follows from A20 that if
[t = *'] € Winit, then [t = t'] e w for all w € WM. Let

• A = {[t]= I t e Ts},

• (Z)(*i = *a)iff[ti]= = [*2]=.

<

• I(f)([t iU [tnU) = [f(t\ *„)]=, for every n-placed function sym-
bol/andf, tn € T„

• I(p)([«i]=, • • •, [tm}=) iff [p{ti,. ..,tm)]€ wtnit, for every m-placed pred-
icate symbol p and tx,..., tm e T„

• S(w, z) = [t}= iff [z = t]e w, for w € W, r € £>K, and * € T,.

Notice that these definitions are unambiguous. To this end, observe that for each
w e WM,

• [p(h,...,tm)]e winitm\p(tl,...,tm)]e w.and

• [f(ti,-...tn) = t]€winititt[f[tu...,tn) = t]ew,

for any p, /, tt...., tm tn, t, z. It follows from A19 that there is t 6 Ts such
that [z = t] € U7. It follows from the transitivity and symmetry of = that for all
tiJ2 € T,if[z = ti],[z = t2] e u;,then[<! = t2\ € it?.

Lemma 5.2 For each formula <f(v0,...,vn) ofFTSL, whose free (static) variables
are among vQ,..., vn,

(*) for all valuations V : SV —- A, and all w € WM,

(M,V,w) t= ^iff[<pivo/t0,...,vn/tn)]Gw.

whereto € K(i?0),...,*„ € V(vn) are any representatives (members) of the equiv-
alence classes V(v0),..., V'(t;n).

Proof. By induction on the complexity of ip according to a well-founded or-
dering on the set TF of temporal formulas respecting Lemma 5.1. That is, EG?
must be greater in this ordering than EX^ip), for each i e u, and E{yUip) greater
than EX'(ifi, ip), for each i 6 u.

In the case of primitive formulas t = t', p(ti,...,tn), and z = t the proof
follows immediately from the definitions of A, I, and S. In the case of negation
and conjunction the proof follows by the ultrafilter properties.

The quantifier step follows by axiom A15 and the generalization rule R6. To
this end, suppose {M, V, w) f= Vt;0(v). Then, <p(t) e w for each term t by the
quantifier clause, the definition of the satisfaction relation, and by the inductive hy-
pothesis. Thus also in f {[<tt{t)] : t'e Ts} € w, since w is closed under this inf.
Hence [Vv<p(v)] £ w, because we have [Vv<p(v)] = inf{[<p(t)] : t 6 T,} in the
algebra. For the converse implication, suppose ftv<p(v)] € w. Then [<p(t)] € w,
for each term t, since [Vr0(v)] < [<p{t)\. By the induction hypothesis this means
(M, V, w) (= 4>(t) for each term t. Hence by the definition of the satisfaction rela-
tion, we get (M, V, w) [= Vv<p(v).

The cases of the temporal operators are similar to those in [22]. We give details
for two of them.

10

r.

Assume o is of the form EGv, where w is a formula whose free variables are
among i'o,...,rn. Then (M, V, w) \= o iff (M,V,w) |= EX'(u>), for each
i € u;, by Lemma 5.1. The induction hypothesis (*) holds for all the formulas
EX^ii'), for each i e w. Thus, (M, V, w) (= EX'(t) iff for each i e <*;,
[EA"*(tt'("b/'o »nAn))] € w, with r0 € V'(i-o) /„ € V'(t-„). Since tr
preserves all the infs of this form the latter holds iff [EGv(vo/t0 vn/tn)] €
UY with t0 € V'(ro) tn € V"(i-n). That is (M, V, w) (= <■> iff
0(l'oAo Vn/tn)\ € li',with<0€ V(VQ) tn 6 V"(l'„).

Now, assume <f> = E(\Uv), where \ and t' are formulas whose free vari-
ables are among v0,..., vn. Then (X, V, w) \= <*> iff (M. V, w) (= EA"'(\, 0),
for some i € -•, by Lemma 5.1. The induction hypothesis, (*) holds for all the
formulas £A"'(\,#). for each i 6 w. Thus, (.M, V, u?) [= £A''(.\, 0) iff for
some t e w,[EX'(x(vo/to,...,vn/tn),i'{vo/to,...,vn/tn))] € u; with (0 €
V'(i'o),..., f„ € V'(i;n). Since w preserves the sups of this form the latter holds iff
E(\(vo/t0,...,vn/tn)Uil>(vo/to ,vn/tn))] € w with t0 € V'(r0) tn €
V(i'n). That is, (M, V, w) ^ 6 iff phi(v0/t0, — vn/tn)} € u-, with <0 €
V'(r0) , tn € V'(fn). This completes the proof.

Clearly, M is a model with M \= Ax and(,Vl, w) \= ->a, for some w € WM,
which completes the proof of the Theorem 5.1.

6 Toy example: Concurrent Factorial

Consider the concurrent program CONFAC, shown in Figure 1, for computing the
factorial n!, for each nonnegative integer input n.

The program has one input variable x of type Nat, one local variable y of type
Nat assumed to be preset to 0, and one output variable z of type Nat assumed to be
preset to 1. CONFAC is composed of two processes (marked by the dotted lines)
synchronizing on the action 6 : y := x. There are two control variables /i and I2
pointing to locations in these processes, respectively. The initial states of the pro-
cesses are marked with 1 and 4, while the terminal states with 6 and 4, respectively.

The variables x, y, z, /1, and /2 are dynamic variables according to our termi-
nology.

The data domain on which the program operates is described in the FTSL lan-
guage with 0, successor, addition and multiplication, as the specific symbols, by
Peano axioms with the induction scheme for all the formulas of the FTSL language.
Alternatively, one can admit the u;-rule. The latter is not a big deal here, since we
already have infinitary proof rules anyway.

The frame T for CONFAC on input x = 1 is shown in Figure 2. The number
of actions executed by CONFAC depends on the input (see Figure 3). Therefore,
there are different frames for different inputs.

11

v7

1 !

 *@) I ^o>- e: If x=0

j

' 1

i
i ; a:ifx>0

!
I

^2T

X
c: x:=x-l

^
^\

b: y:=x d: z:=z*y

-G r / S*

Figure 1: Program Concurrent Factorial

12

5(lt'4,/l)= 1

S{w4,l2) = 5

5KM = 2
S(w6, h) = 5

a-.

a

S(wl,ll) = l

5(u-a,/,)=2
S(u-2,/2) = 4

5(u;3./i) = 3
5(ii'3,/2) = 5

5(u;s,/i) = 3

S(ws,l2) = 4

5(U77,/l)=l

5(U,T, /2) = 4

5(u'8,/i) = 6

5(it'8,/2) = 4

Figure 2: The frame for CONFAC on input x = 1

13

<H

a

a - >

b * <

c) [t

■A- (<
i\ a

h

i_b

C^l
ej \d /<

X3
f

f

Figure 3: The frames for CONFAC

14

As the FTSL temporal semantics for CONFAC we take the conjunction of the
requ.rements l.sted below. It restricts the class of the FTSL models to the ones cor-
responding to trace transition systems representing the computations of CONFAC
on all possible inputs. One of such models is shown in Figure 2. In order to satisfy
the restriction C2 (infiniteness of paths) for the trace transition systems represent-
ing the computations of CONFAC, we adopt the convention that the final state of
CONFAC is repeated infinitely often by executing an additional "dummy" action /
This is reflected in 57. Let Ec = {a.b. c, d, e. /} be the set of actions of CONFAC.

• The initial state:

IS li'o(AY false =>/i = lA/2 = 4Ax = i-oAy = 0A;=l),

• The successor states:

51 Vnj,n2% n3(/i = lA/2 = 4Ax = niAy = n2Ar = n3Anl>0=>
(EXafa = 2 A l2 = 4 A x = m A y = n2 A z = n3) A AX(lx =
2A/2 = 4A/ = n1Aj, = n,A: = n3)) A A,6sc\{,} -<EXgtrue)

52 Vni. n2, n^ = lAl2 = 4Ax = nlAy=n2Az = n3Ax = 0^
(EXefa = 6 A l2 = 4 A x = m A y = n2 A z = n3) A AX(li =
6 A l2 = 4 A x = ni A y = n2 A z = n3) A /\geZc\{e} *EXgtrue)

53 Vm,n2,n3fa = 2A/2 = 4Ax = mAy = n2Az = n3 => (EXbfa =
3A/2 = 5Ax = re1Ay = ra1A2 = n3)A AX(li = 3A/2 = 5AX =
ni A y = n2 A z = n3)) A A5€sc\{6} ->EXgtrue)

54 Vn!,n2,n3(/i = 3A/2 = 5Ax = rtiAy = n2Az = n3 =>■ (EXc(li =
1 A l2 = 5 A x = m - 1 A y = n2 A z = n3) A £Jfrf(/i = 3 A /2 =
4 A x = m A y = n2 A z = n3 * n2) A AX((li = lA/2 = 5Ax =
ni-lAy = n2Az = n3)Vfa =3A/2 = 4Ax = mAy = n2Az =
n3 * n2)) A A<,6Sc\{c,j} -<r-Yy«rue)

55 Vm,n2,n3fa = 1A/2 = 5Ax = nxAy = n2Az = n3 =► [EXdfa =
1 A l2 = 4 A x = m A y = n2 A z = n3 * n2) A EXafa = 2 A /2 =
5Ax = m Ay = njA; = n3)A AJf((/i = 3A/2 = 4Ax = m Ay =

«a A * = n3 * n2) V /i = 2 A /a = 5 A x = n, A y = n2 A z =
"3) A A,esc\{.0 -lEXgtrve)

56 Vn!,n2,n3(/i = 3A/2 = 4Ax = nxAy = n2Aj = n3 => [EXcfa =
lA/2 = 5Ai = m-lAy = n2A2 = n3)A AX (fa = 1 A l2 =
5Ax = m-lAy = n2Az = n3)) A Aff€sc\{c} ->EX8true)

57 Vni,n2,n3(fi = 6A/2 = 4Ax = mAy = n2Az = n3 => [EXjfa =
6A/2 = 4Ax = n1Aj/ = n2A2 = n3)A ^A*(/x = 6A/2 = 4Ax =
nlAy = n2Az = n3)) A A5€£c\{a} -£A'^rue)

58 Vni,n2,n3(/1 = 2A/2 = 5Ax = mAy = n2Az = n3 =► (EXdfa =
2Al2 = 4Ax = mAy = n2Az= n3*n2)A AX(lx = 3 A /2 =
4 A x = m A y = n2 A z = n3 * n2) A Ajr€Sc\{<f} ->£A**™e)

15

The program is correct iff for each natural number n, whenever the program starts
with input x - n. it eventually reaches the state with l\ = 6./2 = 4 and output
r = n\. This property can be expressed in our formal language by the formula:

Spec = Vn(AY false A x = n => AF(h =6A(2 = 4A:= 1 * 2 * ...» n).

Next, we show that the formula Spec can be derived from our temporal se-
mantics TSem = IS A SI A ... A S8 using the proof system, i.e., TSem h Spec.

We show only the major steps of the derivation. First, decompose Spec to the
formulas 1) and 2), from which Spec can be easily derived using first order calculus
rules.

1) TSem \- Vm(AY false A x = nt =► EF(lx = 6A/2 = 4Az = l*2*
. ..*nt).

2) TSem r- Vn(£F(/i = 6A/2 = 4A^ = n) => AF(/i = 6A/2 = 4As = n))

Now in order to prove 2), we derive from the specification Spec:

• TSem r- Vn(£.Y,-(trtte,/i = 6A/2 = 4Az = n)=> AA'*"(triicJi =
6 A 1-2 = 4 A r = n)), for each i € -?,

then using axiom .43 we derive:

• TSem h Vn(£A'i(frue,/l = 6A/2 = 4Az = n)=> AF(/i = 6 A l2 =
4 A 2 = n)), for each i € <*>,

and then using rule A4 we get:

• TSem \- Vn(£F(/i = 6A/2 = 4Az = n)=> AF(lt = 6A/2 = 4Az = n))

Now in order to prove 1), we use axiom A4 to derive from TSem :

• TSem \- Vm{AY false M = nl/\n1>0=> EF(lx = lA/2 = 4Ax =
nj - 1 A z = ni)),

• r5emr-Vn1,n3(/i = lA/2 = 4Ai = rn Ax>0A: = n3=> EF{lx =
1 A /2 = 4 A x = ni - 1 A z = n3 * «i)).

then, using induction on ni, we derive

• TSem r- Vnx{AYfalse Ax = n1An1>0=J> FF(/i = lA/2 = 4Ax =
OAz = 1*2 *...*nt))

and using axiom S2 and axiom A4, we get:

• TSem I- Vrn{AYfalse Ai = iii=> £F(/i = 6Al2 = 4A: = 1*2*

...*r>0)

16

7 Quantifying over the time points

In this section we consider FTSL with variables ranging over the points of time.
For an interesting account of the debate whether such an approach is justified we
refer the reader to [3], especially section 2.4.2. With no intention to even enter that
discussion we just announce the technical result of a complete axiomatization of
such logic, within the same mathematical framework as above.

The syntax of this new logic is the same as in Section 3 above but with one
more sort of variables i* called the temporal variables (TV, for short); the same
sort as that of a new temporal constant C for the time beginning. We allow the ex-
istential and universal quantification over the temporal variables. We interpret this
language in the structures of the same form as above. Here by valuations we mean
mappings V = V3 u \\ such that \\ : SV —• A and Vt : TV —► W. The
satisfaction relation is defined as above with the obvious alterations. We include
C2-C8 in the set of axioms now. Cl can be handled by taking the reachable (initial
segment) substructure of the time frame.

The same argument as above gives the soundness and completeness theorems.

8 Conclusions

We have given a complete proof system of the first-order version of TSL. This is
the first known axiomatization of a first-order temporal logic interpreted over trace
(transition) systems. Our proof system can be easily adapted to ISTL [23] (with
modalities ranging over maximal paths) by removing the formula I{a,b) from ax-
iom A13. The new axiom restricts the frames to conflict-free ones.

It follows from the completeness theorem that the set of all theorems of FTSL
is at most II}. Since the validity problem for TSL is n}-hard [20], it is II}-hard
for FTSL. Therefore, the validity problem for FTSL is n}-complete. Identifying
interesting fragments of FTSL with low complexity is left out as an important open
problem.

We believe that FTSL might turn useful for proving most of interesting bran-
ching-time and partial-order properties of the real life concurrent programs (not
only the academic toy examples) in an (human aided) axiomatic way.

References

[1] R. Alur, D. Peled, and W Penczek, Model-Checking of Causality Properties,
Proc. ofUCS'95.

[2] J.L. Bell and A.B. Slomson, Models and Ultraproducts, North-Holland, 1971.

[3] J. van Benthem, Time, logic and computation, in: J.W. de Bakker, W.P de
Roever, G. Rozenberg, eds., Linear Time, Branching Time and Partial Order

17

in Logics and Models for Concurrency, Lecture Notes in Computer Science,
volume 354, Springer-Verlag, 1989, pp. 1-49.

[4] L. Bole, A. Szalas, eds., Time and Logic: A Computational Approach, UCL
Press Ltd., London, 1995.

[5] E. M. Clarke. E. A. Emerson, and A. P. Sistla. Automatic verification of fi-
nite state concurrent systems using temporal logic specifications: A practi-
cal approach. ACM Transactions on Programming Languages and Systems,
8(2):244-263,1986.'

[6] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
Singapore. 1995.

[7] E.A. Emerson. Temporal and Modal Logic. In J. V.Leuven, editor, Formal Mod-
el" and Semantics, Volume B, The MIT Press Elsevier, 1990, pp. 995-1067.

[8] E.A. Emerson, and J.Y. Halpem, Decision Procedures and Expressiveness in
the Temporal Logic of Branching Time, Proc. of 14th Annual ACM Symp. on
Theory of Computing, San Francisco, pp. 169-180,1982, also appeared in Jour-
nal of Computer and System Sciences, vol. 30(1), pp. 1-24, 1985.

[9] L. Fix, O. Grumberg. Verification of temporal properties, CS Cornell Univ.
Ithaca NY, TR 93-1368 Aug. 1993.

[10] F. Kroger, On temporal program verification rules, TCS 19(3), 1985, pp. 261-
280.

[11] S. Katz and D. Peled. Interleaving set temporal logic. Theoretical Computer
Science, 75(3):21-43,1991.

[12] K. Lodaya, R. Parikh, R. Ramanujam and P.S. Thiagarajan, A logical study of
distributed transition systems, Report IMSC.92.07, The Institute of Mathemat-
ical Sciences, Madras, India, 1992, and to appear in Information and Control.

[13] A. Mazurkiewicz, Trace theory, In W. Brauer et al., editors, Petri Nets, Ap-
plications and Relationship to other Models of Concurrency, number 255 in
Lecture Notes in Computer Science, pages 279-324, Springer-Verlag, 1987.

[14] Z. Manna, A. Pnueli, Verification of concurrent programs: temporal proof
principles, in: D. Boyer and J.S. Moore, eds., The Correctness Problem in Com-
puter Science, Academic Press, New York, 1981, pp. 215-273.

[15] Z. Manna, A. Pnueli, Linear Time Temporal Logic, Springer Verlag, 1991.

[16] H. Andreka, V. Goranko, S. Mikulas, I. Nemeti, and I. Sain, Effective tempo-
ral logics of programs, chapter 2 in [4].

[17] M. Nielsen, G. Rozenberg, and P.S. Thiagarajan, Transition systems, event
structures and unfoldings, Information and Computation 118,1995.

18

[18] W. Penczek, A temporal logic for event structures, Fundamenta Informaticae
XI, pp. 297-326, 1988.

[19] W. Penczek, On undecidability of temporal logics on trace systems, Informa-
tion Processing Letters 43, pp. 147-153, 1992.

[20] W. Penczek, Temporal logics on trace systems: on automated verification, In-
ternational Journal of Foundations of Computer Science, Vol. 4 No. 1, pp. 31-
67,1993.

[21] W. Penczek, Branching time and partial order in temporal logics, chapter 4 in
[4].

[22] W. Penczek, Axiomatizaiions of temporal logics on trace systems, Funda-
menta Informaticae 25, pp. 183-200,1996.

[23] D. Peled, A. Pnueli, Proving partial order properties, Theoretical Computer
Science 126, pp. 143-182,1994.

[24] H. Rasiowa and R. Sikorski, The mathematics of metamathematics, North-
Holland, 1970.

[25] A. Szalas, A Complete Axiomatic Characterization of first-order temporal
logic of linear time, Theoretical Computer Science 54, pp. 199-214, 1987.

[26] P.S. Thiagarajan, A trace based extension of Linear Time Temporal Logic,
Proceedings of LICS'94.

19

16«»

INTERLEAVED PROGRESS
CONCURRENT PROGRESS AND

LOCAL PROGRESS

W. REISIG
HUMBOLDT UNIVERSITY OF BERLIN, GERMANY

1. INTRODUCTION

The relevant properties of distributed algorithms can be classified as safety and
liveness properties, as suggested e.g. in [1,3,7]. Such properties can adequately be
represented and proven by help of Temporal Logic [5].

We consider particular safety- and liveness properties in the sequel, called state-
and progress properties. They are sufficient to describe the decisive properties of a
large class of distributed algorithms. Furthermore, there exist powerful proof rules
for such properties.

Intuitively formulated, a state property p characterizes a subset of system states
(p-states). A state property p is said to hold in a system E iff each reachable
state of E is a p-state. Correspondingly, a progress property is based on two state
properties, and characterizes a subset of runs: A progress property (p, q) holds in
a run w iff each p-state in w is followed by a g-state in w. In the setting of linear
time temporal logic, which we assume exclusively in the sequel, a progress property
(p, q) holds in a system E iff (p, q) holds in each reachable run of E.

This informal characterization of progress properties is far from unique. We will
discuss and mutually relate three versions of progress properties, called interleaved,
concurrent and local progress. Each of which has its own merits.

We concentrate on properties that also are considered in the logic ISTL of [8].
We suggest proof techniques that reveal simpler proofs in many cases.

2. ELEMENTARY SYSTEM NETS

The description of an algorithm usually goes with the implicit assumption of
progress. As an example, each execution of a PASCAL program is assumed to
continue as long as the program counter points at some executable statement. The
situation is more involved for distributed algorithms: Progress is usually assumed
for most, but not necessarily all actions.

As an example, Fig. 2.1 shows a quite simple producer/consumer system, Si.
One may intend Si not to terminate in a state with deliver enabled. Likewise
one may want receive and consume not to remain enabled infinitely. Not enforcing
produce may however be adequate; this action may depend on the environment
of Si, not represented in Fig. 2.1. The action produce is said to be quiescent
in this case (and inscribed with "g"), whereas all other actions are progressing.
Consequently, each acceptable run of Si turns out to be either infinite or terminates

Date: September 10, 1996.

\c1

W. REISIG

A: ready to produce a: produce
B: ready to deliver b: deliver
C: buffer empty c : remove
D: buffer filled d: consume
E: ready to remove
F: ready to consume

FIGURE 2.1. es-net Ei: producer/consumer with quiescent produce

in the initial state. Distributed Algorithms frequently assume fairness for some
progressing actions. This issue is not covered here; we refer to [11-13] instead.
Finally, loops are frequently convenient.

This leads to a class of Petri Nets that have not been identified in the literature
so far: One-safe place/transition nets with quiescent and fair transitions. This class
is worth being named by its own, and we have chosen the term elementary system
nets, in accordance with advanced system nets, considered elsewhere.

As usual we write a net N as N = (P,T,F). We employ standard notations
such as *x and x*, denoting the preset and the post-set of x € PUT or x C Pl)T,
respectively. Due to the intended use of nets, the elements of P and T will frequently
be called local states and actions, respectively. We employ the usual graphical
representation of nets, depicting elements of P, T and F as circles, squares and
arcs, respectively. PN, TN and FN will denote P, T and F, respectively.

Enabledness and occurrence of actions are defined as follows:

Definition 2.1. Let N be a net.

(1) Any subset a C PN of local states is called a (global) state of N.
(2) An action teTN is enabled in a C PN iff'tCa and (f \ *t) n a = 0.
(3) Let a C PN and t eTN. Then eS(a,t) := (a \ *t) U f is the effect of t's

occurrence on a.
(4) Let t ETN be enabled ataC PN. Then (a, t, eff (a, t)) is a step of N, written

a—>efi(a,t).

(5) Any finite or infinite sequence ao —h aj —^ 0,2 ... of steps aj_i -^4 a*
(i = 1,2,...) of N is an AT-based interleaved run. ao is its initial state.

(6) Let t 6 T/v and let w — ao —^>ai —^>... be a N-based interleaved run. w is
said to respect progress of * iff to each state a* that enables t there exists an
index j > i, with tj 6 (**)*•

An elementary system net has an initial state and declares each action either as
progressing or as quiescent.

lo9

INTERLEAVED, CONCURRENT AND LOCAL PROGRESS

Definition 2.2. A net E is called an elementary system net (es-net, for short) iff

(1) a state as C P^ is distinguished, called the initial state of E,
(2) each action in Ts is denoted as either progressing or quiescent.

The initial state as is graphically depicted by a dot in the corresponding circle,
and each quiescent action is inscribed with "g". Reachable states and runs of
elementary system nets are defined as follows:

ii,

Definition 2.3. Let E be an elementary system net.

(1) A state a C Ps is reachable in E iff there exists a H-based run w = ao ■
ai... —^an with ao = as and an = a.

(2) A 11-based interleaved run w = ao—^ai —^... is an interleaved, reachable
run of E iff w respects progress of each progressing action of E and ao is a
reachable state of'S.

In the sequel we also employ concurrent runs of es-nets. They can be defined as
usual for en-systems, and are based on occurrence nets:

Definition 2.4. A net K is called an occurrence net iff

(1) for each p € PK, \'P\ < 1 and \p"\ < 1,
(2) for each t G TK, \'t\ > 1 and \f\ > 1,
(3) the transitive closure F£ of FK, frequently written <K, is irreflexive (i.e.

xiFKx2FK ■ ■ ■ FKxn implies xx ^ xn),
(4) for each x € PK UT«, {y\y <K ^} w finite.

FIGURE 2.2. The unique infinite concurrent run of Ei starting at ast

Fig. 2.2 shows an element labelled occurrence net. <K is a strict partial order
in each occurrence net K. In fact, x <K y iff there exists an arrow sequence from
x to y.

We are particularly interested in states consisting of pairwise unordered places
and consider each occurrence net canonically as an es-net, with the minimal local
states constituting the initial state:

Definition 2.5. Let K be an occurrence net.

(1) K is element labelled iff a set M and a mapping I : PK UTK -> M is
assumed.

(2) Two elements p,q € PK U TK are concurrent iff neither p <K q nor q <K p.
(3) A state a C PK is concurrent iff its elements are pairwise concurrent.
(4) A state a C PK is maximally concurrent iff a is concurrent and for all

p G PK \ a holds: a U {p} is not concurrent.
(5) Let °K:={keK\'k = 0} and let K° := {k £ K \ k* = 0}.

- -1

W. REISIG

(6) A state a C PK is reachable in K iff a is reachable from the initial state °K.

The above definitions immediately imply:

Lemma 2.6. Let K be an occurrence net and let a—>b be a step of K.

(1) If a is concurrent, then b is concurrent, too;
(2) If a is maximal concurrent, then b is maximal concurrent, too.
(3) Each reachable state a C PK is maximally concurrent.

According to the (above described) intended use of an occurrence net K to
describe a run of a net E, each reachable state a of K represents a state of E that
might have been observed during the course of K. Two o-enabled actions of K
represent concurrent (independent) occurrences of the corresponding actions of E.

Definition 2.7. Let E be a net and let K be an element labelled occurrence net.
K is a H-based concurrent run iff

(1) in each concurrent state a of K, different elements of a are differently la-
belled,

(2) for each t £ TK, l{t) e Ts, /(•*) = *l(t) and 1(f) = l(t)'.

According to this definition, Fig. 2.2 in fact shows a concurrent run that is based
on the producer/consumer system in Fig. 2.1. The notion of progress, above already
defined for interleaved runs, is even more intuitive for concurrent runs:

Definition 2.8. Let S be an es-net, let t e 7s and let K be a H-based concurrent
run with labeling I.

(1) K is said to respect progress of t ifft is not enabled at l(K°).
(2) K is a reachable concurrent run of S iff l(°K) is reachable in S and K

respects progress of each progressing action of S.

Fig. 2.2 outlines a reachable concurrent run of Si. There is in fact exactly one
infinite concurrent run of Si that starts in the initial state of Si. As a further
example, the es-net S2 as given in Fig. 2.3 evolves exactly two concurrent runs
starting at the initial state of E2. They are shown in Fig. 2.4.

®—-a—o^*a—o
(•)■— zzz^

® O—^C^D—O
b E d

FIGURE 2.3. es-net S2

3. STATE PROPERTIES

Technically, a state property of an es-net S is a subset of states of E. We describe
state properties by help of propositional formulas, taking the local states of S as
propositional axioms:

Definition 3.1. Let P be a set of symbols. Then

(1) each local state p 6 P is a state formula over P, and

MC

INTERLEAVED, CONCURRENT AND LOCAL PROGRESS

K1:

© HU -0—^0 -©
©
©—-0—<D

K,:

© HZ] 0

0 HI] -0-

FIGURE 2.4. The concurrent runs of S2

(2) if p and q are state formulas over P, then ->p and p A g are state formulas
over P.

Let sf (P) denote the set of state formulas over P. Validity of state formulas is
denned as can be expected:

Definition 3.2. Let S be an es-net, let p, q be state formulas over Ps and let
a C Ps be a state. Then a^p ("a is a p-state") is inductively defined as follows:
a\=p iffp G a, for p G PE,
a \= -ip iff not a ^ p,
a\=p/\qiffa^=p and a |= q.
Furthermore S \=p ("p holds in Y.") iff each reachable state o/E is a p-state.

Of course, we apply the usual propositional conventions such aspVq, p -+ q etc.
S (= p can frequently be proven by help of assertional reasoning: One proves

that p holds initially and for each transition t of N one shows, considering p and
t only, that each step a —> b preserves p. The well known techniques of place
invariants and traps are examples for assertional reasoning.

The following notations turn out useful in the sequel:

Definition 3.3. Let S be an es-net.

(1) With P = {pi,... ,pn) C Ps, the formula p\ A • • • Apn is frequently written
Pi...pn or just P.

(2) Let K be a %-based concurrent run, letp G sf(Ps) and let L C PK. Then L
is said to have a reachable p-state iff there exists a set M C PK, reachable
from L, such that l(M) is a p-state .

For example, let K be the run of Fig. 2.2 and let L = {si, s2 } C PK be concurrent
with l{s\) = B and /(S2) = C. Then L has a reachable A A D-state as well as a
reachable B A £>-state, but no reachable .A A C-state.

n(

W. REISIG

4. INTERLEAVED PROGRESS

In accordance with other formalisms such as UNITY, interleaved progress is
described by help of formulas formed p >-> q ("p leads to q"). Validity of such a
formula in an es-net S is based on its validity in all interleaved runs of S:

Definition 4.1. Let S be an es-net and letp,q 6 sf(Ps).

(1) For any Y,-based interleaved run w let w \= p H- q iffw has a q-state provided
its initial state is a p-state.

(2) S |= p H-> q iff for each reachable interleaved run wofY, holds: w j= p*-¥ q.

For example, in the producer/consumer system Si holds B *-+ A but not A *-* B.
Likewise, in S2 holds ABC >-> FvG, and in S3 holds AB ^ E and A>-> E, but
not AB^ AD.

FIGURE 4.1. A technical example, S3

Elementary leads-to properties can be picked up from the static structure of an
es-net. To this end we define:

Definition 4.2. Let S be an es-net and let Q = {qlt... ,qn} C PE.

(1) Q is progress prone iff' Q enables at least one progressing action o/S.
(2) Q prevents an action t eT iff for 9t={pi,... ,pm} holds: The state formula

(gi A • • • A qn) -¥ -i(pi A • • • A pm) holds in S.
(3) U C T is a change set of Q iffU^® and Q prevents each t eQ*\U.

The pick-up rule for progress is now captured in a Theorem:

Theorem 4.3. Let S be an es-net, let Q C Ps be progress prone and let U CTs
be a change set ofQ. Then

Z\=Q^ V eff(Q,U).
ueu

Proof. Let w = ao —^ ai —^>... be a reachable interleaved run of S and let ao be
a Q-state. Then ao enables a progressing action u with 'u C Q (as Q is assumed
to be progress prone). Furthermore, *u C a0 (by Definition 3.2). Then there exists
an index j > 1 with tj € (mu)' (by Definition 2.3(2) and Definition 2.1(6)). Then
there exists an index / < j with ti E Q*. Let k be the smallest such index. Then
ak \= eS{Q,tk). Furthermore, tk e U (as U is assumed to be a change set of Q),
hence ak f= \/u€Uefi(Q,u). Then w \= Q ^ \/u&ueS(Q,u) with Definition 4.1(1)
and the proposition follows with Definition 4.1(2). D

This Theorem in fact allows to pick up Si |= BC (->• AD with Q = BC and
U = {b} but not Si |= A i->- B because A is not progress prone. Furthermore,
S2 |= DBE H'DGVEF with Q = DBE and U = {c, d}; even more, S2 |= BD H->

DGVF with Q = BD and U = {c, d}.

II *-

INTERLEAVED, CONCURRENT AND LOCAL PROGRESS

Not all valid leads-to properties can be picked up this way. But many such
properties can be gained as the result of combining picked up properties by help of
the following Lemma:

Lemma 4.4. Let E be an es-net, and let p and q be state formulas o/E.

(1) // E \= p -» q then E (= p i-> <?.
(2) // E |= p i->- q and E |= q*-+ r then E (= p i-> r.
(3) // E |= p H-> r and E |= q i-> r i/ien E [= (p V ?) H r.

Proof of this Lemma just applies Definition 4.1 and is left to the reader. The
transitivity of i-> can graphically be depicted by p H g i-> r, and a disjunctive
formula p t-+ (qx V • ■ • V qn) by

(4.1)

5.CDI—^Ö.E

FIGURE 4.2. Proof graph for E3 f= A i-> i?

Proofs of leads-to properties can thus nicely be presented as proof graphs (in [7]
called proof lattices). As an example, the proof graph of Fig. 4.2 proves E3 |=
A<-+ E. With the invariants h = A + C - B - D = 0, i2 = A + C + E = 1 and
i3 = B + D + E = 1 its nodes are justified as follows:

Node 1: ix implies A-> BV D;
node 2: trivial;
node 3: B prevents c by 13;
node 4: A prevents c by ii\
node 5: trivial.

As a further example, the proof graph of Fig. 4.3 proves E2 \= AB H-> F V DG.
The question mark at arc inscriptions indicates that enabledness of action d was
not guaranteed.

1.AB I 8 >2.BD I—2-* 4.F > 6.(F v DG)

3.AG I ^5.DG c

FIGURE 4.3. Proof graph for E2 |= AB i-+ (F V DG)

W. REISIG

5. CONCURRENT PROGRESS

Concurrent progress is described by help of formulas formed p <-+ q ("p causes
q"). Validity of such a formula in an es-net £ is based on its validity in all concurrent
runs of £.

Concurrent progress is weaker than interleaved progress: £ |= p i-> q implies
E |= p <-> q. Vice versa, £ f= p <-> q implies £ (= p I-+ qr in case g is a disjunction
V Q of a set Q C Ps of atomic state formulas. In this case, causes formulas can
be employed for proving leads-to formulas. As the pick-up rule for causes formulas
is more expressive than the pick-up rule for leads-to formulas, concurrent progress
frequently reduces the size of proof graphs for leads-to properties.

Definition 5.1. Let £ be an es-net and letp,q £ sf(Ps).

(1) For any E-based concurrent run K let K (= p «->• q iff K has a reachable
q-state in K, provided °K is a p-state.

(2) £ |= p «-> q iff for each reachable concurrent run K ofS holds: K \= p4 q.

Examples for valid causes formulas p <-> q are £i (= B <-»■ ACE, £2 (= ABC <->•
ABE and £3 |= AB <-t CB. The corresponding leads-to formulas p i-> q are not
valid in the respective es-nets.

The causes operator allows for proof graphs:

Lemma 5.2. Let £ be an es-net and letp,q,r 6 sf(Ps).
(1) E|=p->p
(2) //E^pH? and S|=gHr then £ (= p <-»• r.
(3) 7/ £ |= p <-> r and £ (= g M- r i/ien E |= (p V q) <-> r.

Proof of this Lemma just applies Definition 5.1 and is left to the reader. It is
likewise easy to show that causes is in fact weaker than leads-to:

Lemma 5.3. Let E be an es-net and let p € sf(Ps).

(1) Let q e sf(Ps). If E (= p H> q then £ |= p <->• g.
(2) lei Q C PE and letq:=\JQ.IfZ\=p^q then £ (= p 1-4 q.

The concurrent pick-up rule again is based on change sets of progress prone sets
of states:

Theorem 5.4. Let £ be an es-net, let R C Q C Ps, let R be progress prone and let
U be a change set ofR such that %U C R. Then E|=Q^ (Q\ß)A(Vu6C/ eff (P, u)).

Proo/. Let K be a reachable concurrent run of E and let "ifbe a Q-state. Let
SR C SQ C °i(: with Z(5R) = P and Z(SQ) = Q. Then J(SÄ) enables at least
one progress prone action u 6 TE (by construction of P). Then S^ % K° (by
Definition 2.8(2)). Then there exists some t € SR' with /(£) £ U (as 1/ is a change
set of P). Even more, 't CSR(as'UCR and Definition 2.7(2)). Then (°K\'t)Uf
is a (Q \ P) A eff (P, f (i))-state. Hence the Lemma. D

1.BCE o_b_» 2.ADE c_2-> 3.ACF cl» 4.ACE

FIGURE 5.1. Proof graph for £1 \= BCE <-> ACE

As an example, Fig. 5.1 shows a proof graph for £1 f= BCE «-> ACE. Each
node is justified by immediate application of the pick-up rule.

//•/

INTERLEAVED, CONCURRENT AND LOCAL PROGRESS

1.A »2.AB c_A» 3.AD <^-§-> 4.CD ^—^ 5.E

FIGURE 5.2. Proof graph for S3 (= A *-> £

Likewise, Fig. 5.2 shows a proof graph for S3 |= A «->■ £. The first node is
justified by the place invariant A + C - B - D = 1 which implies A ->• {By D).
All other nodes are gained by immediate application of the pick-up rule. Together
with Lemma 5.3(2), this proof graph coincidently proves S3 \= A *-¥ E. This graph
is smaller than the direct proof graph of Fig. 4.2.

As a further example,

(5.1) S2 \= ABC <->AGvCF

is certainly valid, as with respect to the two concurrent runs of S2, given in Fig. 2.4,
holds Kx f= ABC <-)■ CF and K2 (= ABC <-» AG. But the pick-up rule of
Theorem 5.4 does not suffice to show (5.1). Intuitively formulated, Theorem 5.4
does not squeeze sufficient information out of S2. Proof of (5.1) in fact requires a
further operator, yields, and is postponed to Chapter 7.

6. ROUND BASED ALGORITHMS

Distributed Algorithms are frequently round based. Intuitively formulated, each
concurrent run of a round based algorithm S can be considered as a sequence of
rounds. Each round is an instance of a S-based run that begins and ends at the
same global state a of S (in fact, mostly the initial state). Hence, an a-state
will be reached from any reachable state of any concurrent run of S, formally:
S |= true <-)• a. This implies that each finite concurrent run ends in an a-state and
each infinite concurrent run has infinitely many a-states.

We will refrain from a precise characterization of rounds and consider the more
general notion of ground formulas:

Definition 6.1. Let S be an es-net and let p € sf(Ps) be a state formula, p is a
ground formula of S iff S |= true «-»■ p.

Examples for ground formulas are ACE for Si and AC EG for S4 in Fig. 6.1.
There is an operational characterization of ground formulas. It is based on the
notion of change sets as introduced in Definition 4.2(3).

Theorem 6.2. Let S be an es-net, let p C Ps and let U be a change set of p.
Then p is a ground formula of S iff S |= as <-»• p and for each u € U holds:
S |= eff (p, u) «-► p.

Proof. "=>" is trivial. To show "<=", let K be a reachable concurrent run of S
and let C be a reachable state of K. For each reachable state B C PK of K, let
6(B) = {t €TK \b<Kt <K c for some b£ B and some c£C}. Then holds:

(1) For each reachable state B C PK, 5(B) is finite (by Definition 2.4(4)).
(2) B is reachable from C iff 5(B) = 0.
(3) If A is reachable from B then 5(A) C 5(B).

The Theorem's assumption of S |= as «-»■ p implies there exists a reachable p-state,
D. If 5(D) = 0 then D is reachable from C (by (2)) and we are done. Otherwise,
with (1) there exists a reachable p-state E of K with minimal, nonempty 5(E), i.e.

(< •>

W. REISIG

FIGURE 6.1. es-net £4

(4) for no reachable p-state E' holds: 0 ^ 6{E') C S(E). Let t € 6{E) be a
minimal element w.r.t. <K (which exists according to (1)). Then 't C E
(by definition of 5(E)). Then F := (E \ *t) U f is reachable from £ and
5(F) = 5(E) \ {*}, hence

(5) 5(F) C ö(E).

Now we distinguish two cases, and first assume that F is a p-state. Then 5(F) = 0
(by (5) and (4)), hence F is reachable from C (by (2)) and we are done.

Otherwise, F is no p-state. Then u := l(t) € p*. Even more, u G U (as U is
assumed a change set of p). Then F is an eff (p, u)-state. Then K has a p-state,
G, that is reachable from F (by the Theorem's assumption of S (= eff(p,u) <-* p).
Then <5(G) C 5(F) (by (3)) £ 5(E) (by (5)), hence <J(G) = 0 (by (4)), hence G is
reachable from E (by (2)) and we are done also in this case. D

As an example, we prove that the initial state ACE is a ground formula of Ei by
help of Theorem 6.2. The first condition, Si (= as «-» .4CF, is trivially fullfilled.
For the second condition of Theorem 6.2 we choose q = {A} and U = {a}. Hence
we have to show: Si |= BCE <-> ACE. The proof graph

(6.1) l.BCE 4 2.ADE 4 3.ACF A 4..4CF

shows this property . Its nodes are justified as follows:

Node 1: context E;
node 2: context A;
node 3: context A.

li**

INTERLEAVED, CONCURRENT AND LOCAL PROGRESS

Hence (6.1) proves that ACE will eventually be reached from any reachable state,
though (6.1) does not argue about all reachable states of Si, e.g. not about BDE
or BDF. This advantage of the causes operator is even more evident in the proof of
the ground formula AC EG of E4: It is sufficient to prove E4 \= BCEG ^-> AC EG,
which in turn is gained by help of the proof graph '

3. ACFG J c d

(6.2) 1. BCEG M- 2. ADEG 5. ACEG

\ S
4. ACHE

This proof graph concisely argues about 16 reachable states and infinitely many
concurrent runs of E4! Generally, n consumers yield 2n states and a proof graph
with n + 3 nodes.

Ground formulas support the proof of any causes formulas: In Theorem 5.4, the
requirement of R to be progress prone may be replaced by the requirement to imply
->p for some ground formula p:

Theorem 6.3. Let E be an es-net, let R C Q C P%, let p be a ground formula
of E with E \= R —> ->p and let U be a change set of R such that 'U C R. Then
^^=Q^(Q\R)A(\/ueUeS(R,u)).

Proof. Let K be a reachable concurrent run of E and let C be a i?-state of K.
Then C has a reachable p-state D (as p is a ground formula) and C ^ D (as
E |= R -» ->p). Then there exists a transition t e C with l(t) € U. Hence the
proposition. D

7. LOCAL PROGRESS

Here we consider a progress operator > ("yields") that again is defined over
concurrent runs. It squeezes more information out of an es-net's structure than the
above described causes operator does. Hence E \= p > q implies E ^ p <-► q, for
each es-net E and all state formulas p, q 6 sf(Ps). In addition to a pick-up rule
(in the line of Theorems 4.3 and 5.4), there are rules to embed yields formulas into
a concurrent context and to compose such formulas. Those rules are sharp enough
to prove (among other properties) the validity of the above described property
E2 |= ABC M- AG V CF.

It is the disjunctive composition of yields formulas p > q that fully exploits the
power of the yields operator. Hence we define:

Definition 7.1. Let P be a set and let pi,... ,pn,qi,...,qn € sf(P) be state for-
mulas over P. Then p := (pi > q\) V • • • V (pn > q„) is a yields formula over P. Let
Yf (P) denote the set of all yields formulas over P.

yields formulas over an es-net's local states are interpreted over its concurrent
runs:

Definition 7.2. Let E be an es-net, let p := (pi > qi) V • • • V (p„ > qn) G Yf (P%) be
a yields formula over Ps and let K be a Z-based run.

(1) For 1 <i <n, K \= pi>qt iff each pi-state L C °K has a reachable qt-state.
(2) K\=-p iff for some 1 < i < n holds: K \= pi> qi.
(3) E \= p iff for each reachable concurrent run KofT, holds: K ^ p.

7

W. REISIG

yields is in fact stronger than causes:

Lemma 7.3. Let E be an es-net and letp, q £ sf(Ps). If%\= P>Q then Y, \= p1—* q.

Proof. Let E |= p> q. Then for each reachable run K holds: Each p-state L C °K
has a reachable g-state. Hence °K is no p-state or has a reachable g-state. Hence
K\=p^q. □

The operator > essentially differs from >-» and <-» with respect to implication:
E |= p -> g does in general noi imply E f= p > q. Hence E f= p i-> g does in general
not imply E |= p > g. As an example, S3 |= C i-> £ but not S3 (= Ct>£.

The yields operator allows of proof graphs, too:

Lemma 7.4. (1) // S |= p > q and S (= g > r iften S (= p > r.
(2) IfT,\= p>r and E |= g > r then T,\= (pV q)>r.
(3) // S |= (p> g) V (p> r) then E |= p> (g V r).

Proof of this Lemma just applies Definition 7.2 and is left to the reader.
We stick to standard yields formulas in the sequel: Each state formula pi in

each component pi > qi is just a conjunction (written as a subset according to
Definition 3.3(1)) of local states:

Definition 7.5. Let P be a set of symbols and let p = (pi > gi) V • • • V (pn > qn) £
Yf (P) be a yields formula over P. Then P is said to be standard iffpi,. ..,pnQ P-
In this case, pre(p) := pi U ■ • ■ Upn is the precondition of p.

The validity of standard yields formulas can be characterized as follows:

Lemma 7.6. Let S be an es-net, let p> q 6 Yf(Ps) be standard and let K be a
1,-based run. Then K \=p>q iff either p % l(°K) or L:= {k e°K \ l(k) € p} has
a reachable q-state.

Proof. For p C PE, L C °K is a p-state iff p C l(L). D

Local progress can be picked up from the structure of an es-net:

Theorem 7.7. Let E be an es-net, let Q C Ps be progress prone and let U be a
change set of Q with Q = 'U. Then S f= Vueu *u>u*.

Proof. Let K be a reachable run of S. According to Definition 7.2 we have to show:

(1) K \= 'u > u* for some u £U.

The formula VueE/*u>u* *s apparently standard. In case *U % l(°K), there
exists an action u £ U with 'u % 1{°K) and we are done with Lemma 7.6 and
Definition 7.2. Otherwise mU C l(°K), hence Q C l(°K) (as Q C *U), hence l(°K)
enables at least one progressing action u 6 Q' (as Q is progress prone). Hence for
L:= {k€°K\ l(k) € Q} holds: L % K° (by Definition 2.8). Hence there exists a
transition to € L'. Before continuing the proof's main stream we show

(2) If there exists some t 6 L* then there exists some r £TK with V C L.

by induction on the height h{t) of t: Inductively let h{t) := 0 if *t C L and
h(t) = max{/i(r) | r* D V ^ 0} + 1 if *t % L. Fig. 7.1 outlines the forthcoming
arguments. If h(t) = 0, then (2) holds with r = t. Now for n > 1 assume (2) for all
t' with h(t') < n and let t E L' with /i(t) = n. Then there exists some s £ *t\L.
Furthermore, l(t) £ U (as U is a change set of Q). Then Z(s) £ Q (as *U = Q by
the Theorem's assumption). Then there exists some s' £ L with l(s') = /(s) (by

('«

INTERLEAVED, CONCURRENT AND LOCAL PROGRESS

o
ja zO-

FIGURE 7.1. Outline of the proof of (2)

construction of L). Then s and s' are not concurrent (by Definition 2.7(1)). Then
s' <K s (as s' G °K). Then there exists some i £ TK with s'FKiFKsFKt. Then
h(i) < h(t) (by construction of h). Then there exists some r G TK with *r C L (by
the inductive assumption). Hence the proposition (2).

Turning back to the proof's mainstream, to G L* implies some r G TK with
VCi (by (2)). Then l(r) G U (by construction of L and U). In order to show (1)
we more concretely show

(3) K\='l(r)>l(rf
by help of Lemma 7.6 as follows:
{k e°K \ l(k) G •/(»■)} = {k G °K | Z(jfe) G Z(V)} (by Definition 2.7(2)) = {k G
°Ä" | A; G V} (by Definition 2.7(1)) = V. Obviously, r' is reachable from V in AT,
and r* is a Z(r*)-state (by construction), i.e. a Z(r)*-state (by Definition 2.7(2)).
Hence (3) by Lemma 7.6. □

Components of yields formulas can be embedded into a concurrent context:

Theorem 7.8. Let E be an es-net, let p,q,r C FE with p D r = 0 and let u G
Yf(PE). IfE\=(p>q)Vu then S ^= ((pUr) > (gUr)) V u.

Proo/. Let Ä" be a reachable concurrent run of E. According to Definition 7.2(3)
we have to show:

(1) K |= ((p U r) > (q U r)) V u.
In case Ä" |= u we are done by Definition 7.2(2). Otherwise holds K |= p>q, by the
Theorem's assumption E (= (p > q) V u and Definition 7.2. Then either p g l(°K)
or Lp := {A; G °.ftT | Z(fc) G p} has a reachable g-state, M (by Lemma 7.6). Then
either p U r £ Z(°Ä") or for Lr := {k e°K \ l(k) G r} holds: M U Lr is reachable
from Lp\jLr, hence Lp U Lr has a reachable g U r-state, hence K |= (p U r) > (g U r)
(again by Lemma 7.6, and by construction of M and Lr). This implies (1) by
Definition 7.2(2). D

Yields formulas can quite generally be composed, provided some of the involved
components are standard and their preconditions are sufficiently disjoint:

Theorem 7.9. LetH be an es-net, letp,q,r,s C Ps with (pflr) C q, letu G Yf(P^)
and let v be a standard yields formula with pre(u) D p = 0. Furthermore assume
E (= (p> g) V u and E |= (r > s) V u. Tften E (= (p U (r \ ?) > s U (q \ r)) V u V u.

..1

W. REISIG

Proof. According to Definition 7.2(3) we have to show for each reachable concurrent
run K of S: K \= (pU(r\q)>sö(q\r))Vu\/v. Hence assume a reachable concurrent
run K of E.
If K (= u or K \= v, we are done (by Definition 7.2(2)). Otherwise holds

(1) Kfiv and
(2) K\=(p>q),

by the Theorem's assumptions and Definition 7.2, and we have to show K \=
pU(r\q)>sU(q\r). In casepU{r\q) % l(°K), we are done. Otherwise let L C "AT
with L = {k G °AT | l(k) 6pU(r\ g)}. By Lemma 7.6 we have to show that

(3) L has a reachable (s\J (q\r))-state.

L

4>
Lq

n
Lq

Ls
Lr
\

FIGURE 7.2. Outline of the proof of Theorem 7.9

Fig. 7.2 outlines the forthcoming arguments.

• There exists a subset Lp C L with l(Lp) = p (by construction of L). Then Lp

has a reachable g-state Lq (by (2) and Lemma 7.6). Then L' := (L \ Lp) U Lq is
reachable from L and V is a ({p U (r \ g)) \ p) U g-state (by construction) and even
a (r U g)-state (by the Theorem's assumption (r n p) C g). Hence there exists a
subset LT C L' with /(Lr) = r.

• Let L := (°K \ Lp) U Lq. L is reachable in Ä" and hence

(4) l(L) is reachable in E, and
(5) irci

because Lr C L' C L by construction of Lr, L' and L.

• Let K' be the largest subnet of K such that 'A-' = L (i.e. if' coincides with the
elements of K that are reachable from {°K \ Lp) U Lq).

• Let v = (pi > qx V • • • V pn > qn). Then for all 1 < i < n holds: K ^ pt > q{ (by
(1) and Definition 7.2(2)), hence there exists a subset Li C °K with l{Li) = pi and
Li has no reachable ^-state (by Lemma 7.6). Furthermore, Li D Lp = 0 (by the

2-tf

INTERLEAVED, CONCURRENT AND LOCAL PROGRESS

Theorem's assumption pre(w) Dp = 0), hence Li C °K' (by construction of K'),
hence K' \fc Pi >&.
Then K' \fc v (by Definition 7.2(2)). Then K' (= r>s (by the Theorem's assumption
S(=(r>s)Vi), Definition 7.2(2) and Definition 7.2(3)). Then Lr has a reachable
s-state, Ls (by (5), construction of K, and Lemma 7.6). Then L's := (V \ LT) U Ls

is reachable from V and Lj is a ((r U ?) \ r) U s-state, hence a s U (q\ r)-state.
Furthermore, L's is reachable from L (by construction of V and Lemma 7.4(1)).
This implies (3). D

Theorems 7.7, 7.8 and 7.9 provide rules to pick up, to embed and to compose
yields formulas, sufficient to prove S2 f= ABC <-> AG V CF, as discussed in (5.1).
The proof gives a formal basis for an intuitive justification of (5.1):

1. A > D, picked up: {a} is a change set of A.
2. C >E, picked up: {b} is a change set of C.
3. (BD > F) V (BE > G), picked up: {c, d) is a change set of BDE.
4. (AB > F) V (BE > G) composed, with 1. and 3.
5. (AB > F) V (BC > G) composed, with 2. and 4.
6. (ABC > FC) V (BC > G) embedded, with 5.
7. (ABC > FC) V (ABC > AG) embedded, with 6.
8. ABC > (FC V AG) Lemma 7.4(3).
9. ABC «-+ (FC V i4G) Lemma 7.3.

We consider the corresponding proof in [8] less oriented at intuition. As a variant,
assume quiescence for the action a of S2. Then the above discussed property (5.1)
remains valid. But the above proof fails, because A > D cannot be picked up
anymore: {0} is no change set of A because a change set must contain at least
one progressing action. Proof of (5.1) can nevertheless be conducted by help of
the change set {a, d} of ABE (the action c is excluded by the place invariant
A + D + F = 1). Employing 2., 3., 5.-9. of the above proof we now argue as
follows:

10. (A > D) V (BE > G), picked up: {a, d} is a change set of ABE.
11. (AB > F) V (BE > G) V (BE > G), composed, with 3. and 10. From 11. now

follows 4. by propositional logic, and 5.-9. as above.

8. CONCLUSION

This paper reports some aspects of sustained effort to set an adequate basis
for Distributed Algorithms. One of the outcomes of this effort is the notion of
elementary system nets as introduced in Chapter 2, and particularly the notions of
quiescence, progress and fairness, as required for many real life algorithms, [10-14].
The notion of fairness, as well as the high level formalism of system nets have not
played any role in this paper.

Three versions of temporal logic have been studied in this paper. They are
examples of linear time temporal logic, because for each of them a formula p is said
to hold in a system S if and only if p holds in each reachable run of S. The three
versions of logic differ however with respect to the considered runs (interleaved
runs for leads-to and concurrent runs for yields and causes), and with respect to
the granularity of information that is squeezed out of a concurrent run (yields with
finer granularity than causes).

W. REISIG

Properties of distributed algorithms that are usually considered essential, can
mostly be formulated by help of leads-to formulas p i-> q, where q is a disjunction
q = V Q °f a set Q °f atoms. We have shown that yields and causes can be used to
prove such leads-to properties more elegantly.

The deepening understanding of distributed algorithms reveals that there are also
crucial properties that are not captured by leads-to properties. Examples include
the property (5.1) and rounds: A variant of S2 with property (5.1) has been intro-
duced in [8] as a description of serializability of distributed database transactions.
The concept of rounds allows to simply structure the behaviour of many distrib-
uted algorithms, in particular algorithms on networks of communicating agents.
The behaviour of many such algorithms S can be described by help of "regular"
operators over a finite set of finite, cyclic, S-based concurrent runs (more precisely,
as a regular Mazurkiewicz trace language, c.f. [6]). Causes formulas p <-► q are
an adequate means to represent such properties. Their proof can occasionally be
simplified by help of yields formulas p > q (as in the proof given in Chapter 6 for
(5.1)).

Properties described by causes formulas p «-»• q are intuitively obvious. But
examples of corresponding essential properties of real-life distributed algorithms
remain to be found.

ACKNOWLEDGMENTS

This paper advocates a blend of concepts and operators, developed during many
years by help of many people. It started in 1988 in the framework of the "Sonder-
forschungsbereich 342" at the Technical University of Munich, together with the
EC-based projects DEMON and CALIBAN. It is still going on at the Humboldt
University of Berlin [2,10-14] now supported by the projects "Distributed Algo-
rithms" and "Consensus Algorithms" and the "Forschergruppe Petri Net Technol-
ogy" , all granted by the "Deutsche Forschungsgemeinschaft".

People involved include, among others, Jörg Desel, Dominik Gomm, Ekkart
Kindler, Sibylle Peuker, Tobias Vesper, Hagen Volzer and Rolf Walter.

Amir Pnueli drew my attention to S2 (Fig. 2.3) and property (5.1) a couple of
years ago. This provided a sustained challenge to me and my research group's sev-
eral attempts to design an adequate logic for concurrency, and strongly influenced
the design of the causes and yields operators given in this paper. Many thanks to
Amir and all colleagues mentioned above.

REFERENCES

[1] B. Alpern and F. B. Schneider. Defining Liveness. In Information Processing Letters, vol-
ume 21, pages 181-185, 1985.

[2] E. Kindler. Modularer Entwurf verteilter Systeme mit Petrinetzen. PhD thesis, Technische
Universität München. Edition Versal vol. 1. Bertz Verlag Berlin, December 1995.

[3] L. Lamport. Proving the Correctness of Multiprocess Programs. In IEEE Trans, on Software
Engineering, volume 3, pages 125-143, 1977.

[4] Z. Manna and A. Pnueli. How to Cook a Temporal Proof System for Your Pet Language. In
Proceedings of the Symposium on Principles of Programming Languages (POPL), 1983.

[5] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer-
Verlag, 1992.

[6] A. Mazurkiewicz. Basic Notions of Trace Theory. In de Bakker, de Roever, and Rozenberg,
editors, Linear Time, Branching Time and Partial Orders in Logics and Models for Con-
currency, volume 938 of LNCS, pages 285-263. Springer-Verlag, 1988.

■u

INTERLEAVED, CONCURRENT AND LOCAL PROGRESS

[7] S. Owicki and L. Lamport, Proving Liveness Properties of Concurrent Programs. In ACM
Transact, on Programming Languages and Systems, volume 4(3), pages 455-495, July 1982.

[8] D. Peled and A. Pnueli. Proving Partial Order Properties. In Theoretical Computer Science,
volume 126, pages 143-182, 1994.

[9] V. R. Pratt. Modelling Concurrency with Partial Orders. In Int. J. on Parallel Programming,
volume 15, pages 33-71, 1986.

[10] W. Reisig. Distributed Algorithms: Modelling and Analysis with Petri Nets. Monography (to
appear).

[11] W. Reisig. Correctness Proofs of Distributed Algorithms. In K. P. Birman, editor, Theory
and Practice in Distributed Systems, volume 938 of LNCS, pages 164-177. Springer-Verlag,
1995.

[12] W. Reisig. Petri Net Models of Distributed Algorithms. In J. van Leeuwen, editor, Computer
Science Today: Recent Trends and Developments, volume 1000 of LNCS, pages 441-454.
Springer-Verlag, 1995.

[13] W. Reisig. Modelling and Verification of Distributed Algorithms. In CONCUR 96, LNCS.
Springer-Verlag, 1996.

[14] R. Walter. Petrinetzmodelle verteilter Algorithmen. PhD thesis, Humboldt-Universität zu
Berlin, Institut für Informatik. Edition Versal vol. 2. Bertz Verlag Berlin, December 1995.

HUMBOLDT UNIVERSITY OF BERLIN, GERMANY

E-mail address, W. Reisig: reisig8informatik.hu-berlin.de

■^

\l+

Teams Can See Pomsets
(Preliminary Version)

Gordon Plotkin and Vaughan Pratt*
University of Edinburgh and Stanford University
gdp@dcs.edinburgh.ac.uk, pratt@cs.stanford.edu

Abstract

The sequentially postulate assumes that events occur in a definite or-
der. We explore some of the boundary of applicability of this postulate
for the case of sequential observers, varying number of observers, duration
of events, and variability of events. When there is one observer or events
are atomic, the sequentiality postulate holds, making linear orders a fully
abstract model of concurrent behavior. With more than one observer and
with structured events it fails. We show that unlimited observers and
variable events make pomsets a fully abstract model. Putting duration
in place of variability yields an intermediate situation in which the se-
quentiality postulate does not hold but pomsets are not a fully abstract
model.

1 Overview

It is widely believed that trace or interleaving semantics, which assigns a def-
inite order of occurrence to every pair of events, is sufficient for all practical
purposes. In support of this belief, Jonsson [Jon89] and Russell [Rus89] show
that trace semantics is fully abstract for parallel computation, at least of the
kind represented by Kahn networks.

However these full abstractness results suffer from an overly constrained
notion of observer. In this paper we consider a wider range of observational
behaviors or testing scenarios, and give a detailed picture of just where full
abstractness for trace semantics becomes unsound for the eight scenarios ob-
tained by varying three basic parameters of computation, namely duration D,
variability V, and multiplicity M of observers ("teams").

Duration expresses the notion of an ongoing action, one that can be analyzed
as a sequence of subactions. Duration is naturally modeled as a string. An

•This work was supported by ONR under grant number N00014-92-J-1974.

CZS

action a may be analyzed as say the string 0102 indicating that a decomposes
into two consecutively performed actions, a\ then a2.

Variability expresses choice, naturally modeled as a set of alternatives. An
action a may be analyzed as say the set {ai,a2} indicating that for a to occur
means that exactly one of a\ or a2 occurs.

Multiplicity expresses the notion of two or more observers both observing
the same run of a computation, but from different vantage points. We shall
assume that when two observers see the same events from different viewpoints,
they agree on all choices that have been made, including those associated with
variability, but may disagree on the relative order of events. We understand
choice as absolute, in that it is unambiguous which of two alternatives has been
chosen. However we view time as relative in that two events not occurring in
each other's light cone do not have a well-defined order of occurrence. This
asymmetry of choice and time, while certainly questionable, is consistent with
physics as standardly taught.

Our results in the case of computational behaviors consisting of single pom-
sets (labeled partial orders) is summarized by the following cube.

DVM

VM

Figure 1. Eight testing scenarios

Edges are labeled with the number of the relevant proposition, while the
double lines indicate equivalence, with respect to distinguishing power, of two
kinds of observational behavior, with the remaining lines then indicating strict
inequalities. Thus Proposition 1 shows that Duration on its own makes a dif-
ference while Propositions 2 and 3 show that neither Variability nor Multiplic-
ity make any difference, neither on their own nor as an addition to Duration.
Proposition 4 shows that in the presence of Variability, Multiplicity does make
a difference. Moreover an unlimited supply of observers leads to full abstract-
ness for pomsets even at VM, whence DVM cannot be any bigger and so must

12V

equal VM. This then has the side effect of removing Duration as a contributing
factor.

The identifications reduce the classes to three, namely 0 = V = M, D =
DV = DM, and VM = DVM, while Propositions 1 and 4 show that these
three classes are distinct.

As a refinement of these all-or-nothing results, Proposition 5 extends Propo-
sition 4 to a hierarchy theorem: n + l observers can observe distinctions invisible
to n observers.

We also consider processes as sets of pomsets, and show that the identifica-
tions of VM with DVM, and of 0 with V, continue to hold. (Rob van Glabbeek
has pointed out to us that this cannot be improved, via examples separating D
from DV and from DM, and 0 from M.)

2 Background

Linearly ordered multisets (labelled chains up to isomorphism) are strings. Pom-
sets as partially ordered multisets therefore constitute a generalization of strings
to partial orders. This model as an extension of formal language theory is due
to Grabowski [Gra81] who called it a partial word, the characterization as a par-
tially ordered multiset being due to the second author [Pra82]. Pomsets with a
conflict relation are called event structures, introduced by Nielsen, Plotkin, and
Winskel [NPW81]. Prior related notions are Mazurkiewicz's partial monoids
[Maz77, Maz84] and Greifs treatment of actors [Gre75]. A list of more recent
papers on the topic [MS80, Gis88, Pra86, AH87, Win88] would be bound to be
incomplete.

We shall identify observation with linearization. That is, at least in the case
of atomic events, an observer of a pomset sees its events in some linear order
consistent with the order of the pomset.

To a zeroth order approximation, two pomsets should be observationally
equivalent when they have the same set of linearizations.

The familiar theorem that (the graph of) a poset is the intersection of the
set of (graphs of) its linearizations is due to Szpilrajn [Szp30]. In our framework
posets are pomsets with no repeated elements, i.e. the function assigning labels
to poset elements is injective. Thus in our application Szpilrajn's theorem states
that distinct posets are not observationally equivalent.

At the other extreme from posets are pomsets over a one-letter alphabet,
say the alphabet {a}. In our framework these amount to posets up to iso-
morphism. (So pomsets span a spectrum from posets-up-to-isomorphism to
posets.) There are just two two-element pomsets over {a}, which we write as
aa (linearly ordered) and a\a (discretely ordered). These have the same set of
linearizations and hence are observationally equivalent. So whereas Szpilrajn's
theorem applies to posets this example shows that it does not apply to posets
up to isomorphism.

/■z-7

The meaning of a\a is that we have two copies of an activity a that are
running in parallel. If a is an instantaneous event, as we have been assuming up
to now, and the possibility of exact simultaneity is neglected, then there would
seem to be no basis for distinguishing between aa and a\a in either theory or
practice.

If however a has duration we have the possibility of overlap for the case
a\a, but not for aa. We may represent duration by taking a to be a pomset of
size two or more, e.g. the string 01. Then the only linearization of aa is 0101,
whereas a\a has for its linearizations both 0101 and 0011. Hence in the presence
of events with duration it becomes possible to observe a difference between aa
and a\a. A similar difference is observable if we take a to be 0|1. In this case
the linearizations of aa are 0101, 0110, 1001, and 1010, while those of a\a are
those four together with 0011 and 1100.

Gischer [Gis88] shows that any two pomsets that are observationally equiv-
alent for strings of length two are observationally equivalent for strings of any
length, whence there is no duration hierarchy for strings. Gischer conjectured,
and Tschantz has shown [Tsc94], that duration suffices to distinguish any two
series-parallel (N-free) pomsets. (A series-parallel pomset is a pomset con-
structive using only the operations of concatenation ab and concurrence a\b.)
Hence series-parallel pomsets are extensional in the presence of duration. (An-
other striking corollary of this result is that the equational theory of concatena-
tion and interleaving of languages is completely axiomatized by the equations
for commutativity of interleaving and associativity of both.)

Gischer gives as an example of pomsets indistinguishable even with duration
the two pomsets 7V(a, a, b, b) and ab\ab, where N{\, 2,3,4) is the 4-vertex pomset
ordered so that 1 < 3, 2 < 4, and 1 < 4, these constraints constituting respec-
tively the two verticals and the diagonal of the letter N, so that N(a, a, b, b)
is ab\ab plus the diagonal. If they could be distinguished it would have to be
by a string of ab\ab not allowed by N(a,a,b,b), possible only by violating the
diagonal 1 < 4 of the N. Hence 1 and 4 overlap; where they do, 2 cannot have
started but 3 must have finished, so the other diagonal 2 < 3 is satisfied. But
that diagonal belongs to an isomorphic copy of N(a, a, b, b), whence that string
must be allowed after all.

We may further take a to be not just a single string but a set of strings,
that is, a language. This provides a notion of variety for a: we have a variety of
choices of behaviors of a. When all strings of a are of unit length we have variety
without duration. Variety provides those little unpredictable hints that can
allow observers to reach consensus as to the identities of entities without them
being a part of the observation language. In some observations the observers
may be unlucky and not get enough such hints; it only matters that there exist
observations that do provide sufficient hints.

Gischer's argument above remains valid in the presence of variety, giving a
pair of pomsets which variety does not help distinguish.

Two minor results concerning refinements of observational equivalence in

this setting are as follows.
(i) For a single observer, duration helps but variety does not.
(ii) For multiple observers to make a difference, variety without duration

helps but duration without variety does not.
Our main result is:
(iii) With enough variety and observers any two finite pomsets can be dis-

tinguished, even without duration.
Results (i) and (ii) assign very different roles to duration and variety. Du-

ration is a loner that can help, though not always, as evidenced by Gischer's
example above of N(a, a, b, b) = ab\ab. Variety on the other hand is useless by
itself but in collaboration with multiple observers is able not only to outperform
duration but, as (iii) shows, to make pomsets fully visible, i.e. extensional. The
proof of (iii) is via a straightforward reduction to the poset case, allowing us to
apply Szpilrajn's theorem.

A refinement of (iii) is that with enough variety, the number of observers
needed to distinguish two pomsets is at most the larger of the dimensions of their
underlying posets.1 This shows that the hierarchy of observational equivalences
with n observers is strict: n + 1 observers can resolve more detail than n.
Although our proof of this result is not long, neither is it at all obvious!

3 Definitions

The following notions are essentially as in [Gis84]. We start out by defining
labelled partial orders and their maps.

Definition 1. A labelled partial order or Ipo over a set E is a structure
(V, <, (7, E) where < partially orders V and <r : V —► E assigns to each element
of V an element of E. When necessary we write the components of lpo p as
\Ypt £•?> "pi Sp).

We think of E as an alphabet of actions and V as instances ofthat alphabet,
or events forming a word, with the order of occurrences of letters in the word
given by <. The usual formal language theoretic notion of a word obtains for
< linear. An atomic lpo is one with \V\ = 1.

Definition 2. A map of lpo's (/, t) : (V, <, <r, E) -* (V, <', a', E') consists
of a monotone map / : (V, <) —»■ (V, <') of posets together with an alphabet
map (function) t : E —► E' such that for all v in V, a'(f(v)) = t(a(v)).

Certain maps of lpo's are of special interest here. An isomorphism of lpo's is
a map (/, t) for which / is an isomorphism of posets and t is the identity map on
E (so isomorphic lpo's have a common alphabet). An augmentation of lpo's is a
map (/, t) for which t is the identity function and / is the identity function on
the elements of the poset (but not necessarily an isomorphism of posets, i.e. the

1 The dimension of a poset is the least number of linearizations of that poset whose inter-
section is that poset. The notion is due to Dushnik and Miller [DM41], see Kelly and Trotter
[KT82] for a survey.

/2-^

order may increase); an augmentation yields an augment of its argument. We
write paq to indicate that q is an augment of p; this is the converse of Gischer's
sub sumption relation q X p [Gis84].

Definition 3. A pomset is the isomorphism class of an lpo.
More intuitively a pomset is an lpo in which we pay no attention to the choice

of the set V, other than its cardinality, but retain all other details. Thus if we
replace V = {0,1,2} by V = {5,6,7} without otherwise disturbing either < or
a the pomset does not change. With our definition of observation, isomorphic
lpo's will be seen to be observationally equivalent, whence the most we can hope
to resolve even with multiple observers is pomsets.

We shall understand a map between two pomsets to be a map between
representative lpo's of the respective pomsets.

Definition 4. A process P is a set of finite pomsets. A process is augment
closed when for all paq, p G P implies q e P. The augment closure a(P) of P
is the least augment closed process containing P.

We wish to define observation in terms of the notions of linearization and
substitution, which we now define.

Definition 5. A linearization of a pomset p is a linear augment of p. We
write X(p) for the set of all linearizations of p. This extends to A(P) for P a set
of pomsets, namely as X(P) = \Jp€P A(p).

Formal language theory has the notions of homomorphism and substitution
[HU79]. These both generalize immediately from strings to pomsets. (This no-
tion of homomorphism is quite different from that of map between two pomsets:
the former goes between sets of pomsets, the latter between single pomsets.)

Definition 6. A pomset homomorphism is a function mapping pomsets
on E to pomsets on E'. It is determined by a function / assigning a pomset
on E' to each letter of E. It maps p to the pomset whose set of events is
the disjoint sum of the events of the f(a(u))'s over all u G Vp, definable as
{{u,v)\u G Vp,v G V/(<7(«))}- Each (u,v) is labelled with */(„(„))(v), i.e. just as
v was labelled in f(cr(u)), and ordered so that (u, v) < (u', v') just when u <p u'
(i.e. u <p u' and u £ u') or (u = v! and v </(u) v'), that is, lexicographic
ordering.

Intuitively this is what is obtained by substituting a pomset for each label of
p and flattening the resulting nested structure in the obvious way. For example
the homomorphism taking a to be takes aa to bebe and a\a to bc\bc, while the
homomorphism taking a to b\c takes aa to (b\c)(b\c) and a\a to b\b\c\c.

This generalizes to substitutions of sets of pomsets exactly analogously to the
generalization of homomorphisms of strings to substitutions of sets of strings
[HU79], in which the result of substituting a set of strings for a letter is the set of
all strings obtainable by choosing any string from each substitution instance of
such a set. In lieu of a formal definition we offer the example of substituting the
set {b, c} for a in a\a, having two substitution instances of {6, c} and so yielding
the set of three pomsets b\b, b\c, c\c (c\b being isomorphic to b\c as an lpo and
hence equal as a pomset). Just as for formal languages, a homomorphism can

[■hi-

be viewed as the special case of a substitution of singletons.
We may now regard pomsets as expressions, with the labels acting as vari-

ables. Evaluation is then just substitution: values for the variables determine
the value of the expression. Thus the pomset aba is an expression with variables
a and b, and if the value of a is cd and that of b is {e, /} then the value of aba is
{cdecd,cdfcd}. With this interpretation of substitution in mind we write p(s)
for the value of p under the substitution s. By P(s) for a set P of pomsets we
understand the union over the elements p € P of p{s).

We might say that two pomsets are equivalent when their values are the same
for all substitutions. But merely taking the value of each variable to be itself
already suffices to distinguish distinct pomsets, so this equivalence is trivially
the identity relation.

The notion of observation as linearization, reflecting the sequential life of
an individual observer, leads to more interesting equivalences. We tentatively
define an observation of a pomset to be a linearization of it. Thus the set
of all observations of p is A(p), and the set of all observations of a set P of
pomsets is X(P). Pomsets p and q are equivalent when X(p(s)) = X(q(s)) for all
substitutions s.

We now extend this notion of observation to multiple observers. The idea
is that n observers see n possibly different linearizations of the one observed
pomset.

Definition 7. An n-observation of a pomset p is an n-tuple of linearizations
of p. We write A„(p) for the set consisting of all n-observations of p, a set of
n-tuples of strings. For a process P we take An(P) = \JpeP A„(p).

Definition 8. Pomsets p and q are n-equivalent, written p =„ q, when
A„(p) = An(g). Likewise for processes, P =„ Q when An(P) = A„(P).

Our tentative definitions of observation and equivalence are now subsumed
as 1-observation and 1-equivalence.

Implicit in our definition of n-equivalence is a consensus between the ob-
servers as to which pomset of P to linearize, when constructing an n-observation
in A„(P). This reflects our intuition that the observers agreed on what happened
but not when.

Finally we need the notion of dimension [KT82] in order to show the strict-
ness of the hierarchy of n-equivalence in the presence of variety.

Definition 9. The dimension of a poset is the minimum number of its
linearizations such that the intersection of those linearizations is that poset.
We take the dimension of a pomset p to be the dimension of the underlying
poset of a representative lpo of p.

4 Observation of Single Pomsets

In order to capture duration, variety, etc. we need a parametrized notion of
n-equivalence, parametrized by the permitted substitutions. If substitutions

_ /

are restricted so that the assignment to any variable must come from a class
C of sets of pomsets, e.g. singletons, sets of one-element pomsets, languages
(sets of linear pomsets), we say that two pomsets are n-equivalent for C when
they have the same n-observations of their values for all substitutions where the
assignments to the variables are drawn from C.

In the following we are interested in substitutions that have variety without
duration, and duration without variety. We denote these respective classes
of substitutions by Var and Dur respectively. A substitution from Var can
replace each label by a set of labels. A substitution from Dur can replace each
label by a pomset. The class of substitutions permitting neither duration nor
variety, corresponding to mere renamings of labels, we call Atm for atomic
substitutions.

None of our results make essential use of nonlinearity in the substructure of
events. For example if Dur is taken instead to consist of those substitutions
that replace labels by strings rather than pomsets, no modifications are required
to either the following propositions or their proofs.

The first two propositions are simple, but give some insight into the respec-
tive roles played by duration and variety.

We first show that for a single observer, duration without variety helps but
variety without duration does not.

Proposition 1. 1-equivalence for Dur is strictly finer than 1-equivalence
for Atm.

Proof. It is finer because Dur includes Atm. The example of aa and a\a
shows strictness. I

Proposition 2. 1-equivalence for Var coincides with 1-equivalence for
Atm.

Proof. This follows from X(jp(s)) = (X{p)){s). That is, we can substitute sets
for variables in p and then linearize, or linearize p first (yielding a language) and
then substitute, with the same result in either case. Hence X(p(s)) = (A(p))(s) =
(X(q))(s) = X(q(s)). I

Proposition 3. For all n > 1, 1-equivalence for Dur coincides with n-
equivalence for Dur.

Proof. In this case p(s) is a singleton, substitutions being homomorphisms,
for which Xn(p(s)) is the set of all rc-tuples of linearizations of the pomset p(s).
Hence X„(p(s)) can be computed from A(p(s)). Thus if A(p(s)) = X(q(s)), we
must have A„(p(s)) = Xn(q(s)) as well. I

Corollary. For all n > 1,1-equivalence for Atm coincides with n-equivalence
for Atm.

We now come to the main results. The next two propositions show that
for multiple observers to make a difference, variety without duration helps but
duration without variety does not. The former, proposition 3, is the main result
in that it shows that any two pomsets can be distinguished by n observers
for sufficiently large n. It is noteworthy that duration plays no role in this
result! Since our first explorations in this area focused on the role of duration

8

in distinguishing pomsets we did not at first expect such a result. In retrospect
it is not so surprising, nor particularly deep, being a straightforward reduction
to Szpilrajn's theorem..

Proposition 4. For any pomset p there exists n such that p is not n-
equivalent for Var to any other pomset.

Proof. We use variety to distinguish the otherwise indistinguishable events of
a pomset. Let m be the size of p. We take n to be ml. Consider the substitution
s mapping each letter a of E to the ra-element set {(a,i)|0 < i < m}. This is
enough variety for p(s) to include at least one poset, call it q. Then X(q) has at
most m! members, whence some m!-tuple of Ami (q) will contain all of them. This
gives us a procedure for recovering p from Xmi(p(s)). Discard m!-tuples of Ami(g)
not corresponding to posets (repeated letters). From the remainder select any
m!-tuple with a maximum number of different components, an ml-observation
of some poset q. Use Szpilrajn's theorem to infer q from the m!-observation.
Replace each label (a, i) by a in q, to yield p. This construction shows that the
p so recovered will be independent of the choice of poset from p(s). I

The argument for proposition 4 can be extended to show that, for any class
including Var, «-equivalence for increasing n forms a strict hierarchy. Our par-
ticular witnesses to this hierarchy are independent of the class of substitutions.

Proposition 5. For every n > 1 there exist pomsets p and q such that for
any class C of substitutions including Var, p and q are n-1-equivalent for C but
not n-equivalent for C.

Proof. It suffices to consider pomsets over a one-letter alphabet, i.e. posets
up to isomorphism. (Note that Szpilrajn's theorem separates even isomorphic
posets, and cannot be applied directly here.) Given n we take for our coun-
terexample a certain pair p, q of posets of dimension n. Using essentially the
same argument as in Proposition 4 we show that as one-letter pomsets p and q
cannot be n-equivalent for Var, and hence for any larger class. We then show
that they are n-1-equivalent for any class.

We take p to be the standard poset Sn [KT82], having 2n elements
{ao,..., an_i, 6o, • • •, bn-i}, ordered so that a,- < bj just when i / j. An equiv-
alent description of Sn is as the lattice of atoms and coatoms of an n-atom
Boolean algebra. Sn is known to have dimension n [KT82]. We take q to be
Sn augmented with ao < bo- (As pomsets, p and q are determined only up to
isomorphism, so augmenting p with a,- < 6,- for any i yields the same pomset q.)
Since q has In elements it is of dimension at most n [KT82]. Hence p and q are
not n-equivalent for Var. The role of Var here is as for Proposition 4, namely
allowing us to treat pomsets as posets.

For n-l-equivalence, suppose some linearization of an element of p(s) violates
a,- < 6,- for some i, necessary if we are to distinguish p and q. Then there is a
point in that string where a,- has not yet finished (a,- could have duration in the
general case) yet 6,- has started. The constraints of p require that at that point
all the other aj 's are done (for 6j to start) and none of the other bj's have started
(since a,- is not yet done). Hence for every j ^ i, aj < bj, that is, there can be

,'"?

at most one violation of a,- < bi for any i in any one linearization. But then any
n-1-observation of p(s) can collectively violate at most n — 1 of the constraints
of the form a,- < 6,-. This always leaves one such constraint unviolated, which is
consistent with observing q. Hence the n-1-observations of p(s) must coincide
with those of q(s) for all s. I

5 Observation of Processes

A process is a set of pomsets, as per Definition 4. All our definitions of lineariza-
tion, «-equivalence, etc. have been formulated to hold for processes in general,
with single pomsets identified with singleton processes.

The following shows a basic limitation of all the testing scenarios considered
in this paper when applied to processes.

Proposition 6. Observationally equivalent processes have equal augment
closures.

Proof. Any pomset p of a process P must be visible to a team of size dim(P).
If Q is observationally equivalent to P the same team must be able to observe
p as an apparent behavior of Q. Hence Q must contain a behavior q of which
p is an augment, whence P C a(Q). By symmetry of equivalence Q C a(P),
whence a(P) = a(Q).

Lemma 7. Let p be a pomset. Then there exists n such that for any family
(qi)i of pomsets for which A„(p) C Xn([Ji g;), there must exist g;- in the family
such that p is an augment of q.

Proof. The only g,'s that can contribute to A„(p) have the same number of
vertices as p. Since each n-tuple in AndJ^ g,) arises from a choice of a particular
qi, and since A„(p) includes a single n-tuple completely encoding p, it follows
that some g,- must yield that n-tuple. But this is only possible for a g,- of which
p is an augment. I

Proposition 8. For any two augment-closed processes P and Q there exists
n such that P is not n-equivalent for Var to Q.

Proof. Assume without loss of generality that P contains a pomset p absent
from Q. Then p is not an augment of any pomset of Q. Let n be the number
associated to p by Lemma 7. Then A„(p) cannot belong to Xn(Q), whence A„(P)
contains n-tuples not in An(Q). I

This generalizes Proposition 4 to full abstraction for processes. Hence VM
for processes makes all possible distinctions between processes, whence DVM
can only make the same distinctions. Thus for processes we retain the VM =
DVM edge of Figure 1.

Proposition 2 showed that variability alone makes no difference for single
pomsets. But that proposition applies equally to pomsets and processes, whence
variability also makes no difference for processes and we retain the 0 = V edge
of Figure 1.

10

.?u

References

[AH87] S. Anderson and P. Hudak. Pomset interpretations of parallel func-
tional programs. In Proc. 3rd International Conf. on Functional
Programming Languages and Computer Architecture, Portland, OR,
September 1987.

[DM41] B. Dushnik and E.W. Miller. Partially ordered sets. Amer. J. Math.,
63:600-610, 1941.

[Gis84] J.L. Gischer. Partial Orders and the Axiomatic Theory of Shuffle.
PhD thesis, Computer Science Dept., Stanford University, December
1984.

[Gis88] J.L. Gischer. The equational theory of pomsets. Theoretical Computer
Science, 61:199-224, 1988.

[Gra81] J. Grabowski. On partial languages. Fundamenta Informaticae,
IV.2:427-498,1981.

[Gre75] I. Greif. Semantics of Communicating Parallel Processes. PhD thesis,
Project MAC report TR-154, MIT, 1975.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[Jon89] B. Jonsson. A fully abstract trace model for dataflow networks. In
Proc. 16th Annual ACM Symposium on Principles of Programming
Languages, pages 155-165, January 1989.

[KT82] D. Kelly and W.T. Trotter. Dimension theory for ordered sets. In
I. Rival, editor, Ordered Sets, pages 171-211. D. Reidel, 1982.

[Maz77] A. Mazurkiewicz. Concurrent program Schemas and their interpreta-
tion. In Proc. Aarhus Workshop on Verification of Parallel Programs,
1977.

[Maz84] A. Mazurkiewicz. Traces, histories, graphs: Instances of a process
monoid. In Proc. Conf. on Mathematical Foundations of Computer
Science, volume 176 of Lecture Notes in Computer Science. Springer-
Verlag, 1984.

[MS80] U. Montanari and C. Simonelli. On distinguishing between concur-
rency and nondeterminism. In Proc. Ecole de Printemps on Concur-
rency and Petri Nets, Colleville, 1980.

[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures,
and domains, part I. Theoretical Computer Science, 13:85-108, 1981.

11

^<

[Pra82] V.R. Pratt. On the composition of processes. In Proceedings of the
Ninth Annual ACM Symposium on Principles of Programming Lan-
guages, January 1982.

[Pra86] V.R. Pratt. Modeling concurrency with partial orders. Int. J. of
Parallel Programming, 15(1):33-71, February 1986.

[Rus89] J. Russell. Full abstraction for nondeterministic dataflow networks.
In Proc. 30th IEEE Symposium on Foundations of Computer Science,
October 1989.

[Szp30] E. Szpilrajn. Sur l'extension de l'ordre partiel. Fund. Math., 16:386-
389, 1930.

[Tsc94] S.T. Tschantz. Languages under concatenation and shuffling. Decem-
ber 1994.

[Win88] G. Winskel. An introduction to event structures. In Linear Time,
Branching Time and Partial Order in Logics and Models for Concur-
rency, REX'88, volume 354 of Lecture Notes in Computer Science,
Noordwijkerhout, June 1988. Springer-Verlag.

12

^

PRESHEAVES AS TRANSITION SYSTEMS

GLYNN WINSKEL AND MOGENS NIELSEN

BRICS1

Department of Computer Science, University of Aarhus, Denmark

1. INTRODUCTION

Recall, as background, the content of the handbook chapter [22]. There, a model for
process calculi is presented as a class of objects (like transition systems, or Petri nets),
equipped with a notion of morphism, so that it forms a category. The morphisms represent
a form of simulation between processes, and arise naturally in relating the behaviour of a
construction on processes to that of its components. Basic operations of process calculi
may now be understood as universal constructions (like product and coproduct) of the cat-
egory, and so are characterised abstractly, up to isomorphism. Categorical notions also
come into play in relating different models, for instance, in relating the model of transition
systems to that of Petri nets. Adjunctions, especially coreflections, provide a way to trans-
late between one model and another. The understanding of the operations of process calculi
as universal constructions guides definitions away from the ad hoc, while the preservation
properties of adjoints help relate semantics in one model to a semantics in another.

The richness of the morphisms in the categories of models, a richness which is essential
in yielding the universal constructions, means that many objects with strikingly different
behaviours are connected by morphisms; in particular, morphisms of transition systems
relate transition systems which are far from strongly, or weakly, bisimilar. The categories
do not immediately yield useful abstract equivalences between processes. However, in
[8] it is shown how a general concept of bisimulation arises from the definition of open
map. The definition of open map, applicable to all the categories of models, picks out
those morphisms which, roughly speaking, reflect as well as preserve behaviour. It is then
sensible to take two processes to be bisimilar, in a generalised sense, if they are connected
by open maps.

The definition of open map relies not just on a categorical presentation of a model
(for example, as a category rather than just a class of transition systems) but also on an
acceptance of a notion of computation path and what it means to extend a computation
path by another. For the interleaving model of transition systems a reasonable idea is to
take a computation path (or run) as a sequence of consecutive transitions, which we can
think of as picked out by a morphism from a string of action labels; here it is hard to escape
from the idea that extending a computation path is associated with extending the string of
action labels. For an independence model like event structures a reasonable idea is to take
a computation path as a configuration, or more generally as a morphism from a pomset to
the event structure; this time several ideas suggest themselves as to how we might extend
a computation path shaped like a pomset, because, roughly, we can extend a pomset in

'Basic Research In Computer Science, Centre of the Danish National Research Foundation

1

ft!

2 GLYNN WINSKEL AND MOGENS NIELSEN

"width" (adding concurrent events) as well as "height" (adding later, causally dependent
events).

In the case of familiar models like transition systems or event structures the general def-
inition of bisimulation specialises to familiar concepts; in particular, on transition systems
with strings of actions as paths we obtain Park and Milner's strong bisimulation.

Presheaves offer a method to derive a model directly from a path category whose ob-
jects are path shapes and whose morphisms describe the extension of one path by another.
Forming the category of presheaves over a path category has the effect of freely closing
the path category under small colimits. More intuitively, a presheaf represents the effect
of gluing together a set of computation paths to form a nondeterministic computation; the
category of presheaves can be thought of as a category of nondeterministic computations.
This intuition is backed up by canonical embeddings of traditional models into categories
of presheaves over appropriately chosen path categories (cf. Theorem 4). Because the
original path category embeds via the Yoneda functor into the category of its presheaves,
we automatically obtain a notion of open map and bisimulation on presheaves.

A range of models and their notion of bisimulation can be understood in a uniform way
via their represention as presheaves. Here we emphasise the view that presheaves can be
profitably looked upon as transition systems, in which the labels are morphisms of path
extension. This yields transition-system characterisations of open maps and bisimulation
on presheaves, and through these to generalisations of Hennessy-Milner logic and games,
providing a more operational characterisation. In particular, bisimulation on presheaves
coincides with back-and-forth bisimulation between their associated transition systems.

In a way, by regarding presheaves as transition systems we can repay a debt to the foun-
dational influence transitions systems have had in the theory of concurrent computation.
Many original motivations and intuitions were formed around the model of transition sys-
tems. Through the medium of presheaves, we are able to cope uniformly with a range
of models and their equivalences, from interleaving to independence models, and at the
same time, by altering our view a little, see the approach as only a slight adjustment in the
perspective that motivated Park and Milner's definition of strong bisimulation.

2. MODELS, MORPHISMS AND COMPUTATION PATHS

We quickly describe the models and notions of computation paths we shall use as run-
ning examples.

Transition systems consist of a set of states, with an initial state, together with transitions
between states which are labelled to specify the kind of events they represent. Formally, a
transition system is a structure

(S, i, L,tran)

where

• S is a set of states with initial state i,
• L is a set of labels, and
• tran C S x L x S is the transition relation. As usual, we write

to indicate that (s, a, s') 6 tran.

A state s is said to be reachable when i "' > • • • a" > s for some, possibly empty, string
ai■•-an.

3¥

PRESHEAVES AS TRANSITION SYSTEMS

As morphisms on transition systems we take functions on states which preserve initial
states and transitions. Let

T0 = (So, io, L0, tran0) and

T\ = (Si,h,Li,trani)

be transition systems. A morphism f : To —>• T\ is a function a : So —► Si such that
cr(zo) = ii and

(s,a,s') G fra/io =$" (<7'(s),a,o'(s/)) 6 fra/ii.

Morphisms on transition systems compose as functions. For the concerns of [22], mor-
phisms on transitions systems were more general. They could change labels and even send
labels to undefined. This is necessary in relating the behaviour of compound processes to
that of their components in languages like Milner's CCS, and in obtaining a repertoire of
universal constructions, rich enough to yield a general process language. Here we concen-
trate on bisimulation for which we can take the simpler label-preserving morphisms as our
starting point—such label preserving morphisms play an important role in the categorical
account of [22], for example, in understanding restriction and relabelling operations of
CCS-like languages as universal constructions.

We shall call transition systems which look like trees synchronisation trees. More pre-
cisely, synchronisation trees are those transition systems with no loops, no distinct tran-
sitions to the same state, in which all states are reachable. Synchronisation trees inherit
morphisms from transition systems, and themselves form a category. The inclusion of syn-
chronisation trees in transition systems is a left adjoint to the functor unfolding a transition
systems to a synchronisation tree.

Special synchronisation trees will play a role in our treatment of bisimulation. Consider
a (finite) computation (or run) in a transition system T. It is a sequence of transitions

i = s0 -^-4 «! -2»-» 2a-> s„

—the sequence might possibly be empty. Let us identify strings like s = a\ü2 ■ ■ an in
L* with "path shapes", rather special synchronisation trees consisting of a single branch of
transitions

Then the computation path in T is identified with the morphism

p-.s^T

picking out the chain of transitions in T. Morphisms between such path shapes, consisting
of a single-branch synchronisation trees, inherited from transition systems correspond to
extensions of the associated strings. So we can identify the category of such path shapes
with the (partial-order) category of strings L*; a morphism from string s to string t corre-
sponds to s being an initial prefix oft.

We focus on event structures as our primary example of an independence model—other
independence models like Petri nets and Mazurkiewicz trace languages are related to event
structures via adjunctions in [22] in such a way that they inherit a common notion of
bisimulation (see [8,15]).

Define a (labelled) event structure to be a structure (E, <, Con, I) consisting of a set E,
of events which are partially ordered by <, the causal dependency relation, a consistency
relation Con consisting of finite subsets of events, and a labelling function I : E -¥ L,

iZ'i

4 GLYNN WINSKEL AND MOGENS NIELSEN

which satisfy
{e' | e' < e} is finite,

{e} G Con,

y C X G Con => y € Con,

X G Con & e < e' G X =» X U {e} G Con,

for all events e, e' and their subsets X, Y.
Two events e, e' G £ are said to be concurrent (causally independent) iff

(e£e'&e'£e&{e,e'}GCon).

Define a configuration (or state) of £ to be a subset a; C E which is

downwards-closed: Ve, e'. e' < e £ i => e' 6 i, and
consistent: VX X finite & X C x => X G Con.

As before, we restrict attention to label-preserving morphisms on event structures over
a common labelling set L. Let E = (E,<,Con,l),E' = (£",<',Con',/') be event
structures over L. A morphism from £ to £" consists of a function n : i? -> £" on events
which preserves labels (i.e. / = /' o n) such that

if a; is a configuration of £", then 772; is a configuration of E' and if for ex, e2 G z
their images are equal, /.& ?j(ei) = J7(e2), then ei = e2.

In the category of event structures, morphisms are composed componentwise. The defini-
tion of morphism on event structures is rather abrupt—see [22] for motivation.

In the case of an independence model like event structures a computation path carries
more structure than simply a string of actions. This time we take path shapes to be finite
pomsets. Pomsets are special event structures where all finite subsets of events are con-
sistent. They are essentially labelled partial orders, and morphisms between them, got by
restricting those of event structures, are injective functions which send downwards-closed
sets to downwards-closed sets. Thus a morphism from pomset P to pomset Q may not just
extend P by extra events but also relax the causal dependency relation; two events causally
related in P may have images no longer causally related in Q. We separate the forms of
morphism corresponding to the different ways one pomset can extend another.

Definition: Let I, be a labelling set. Define Point to be the full subcategory of event
structures with finite pomsets with labels in I as objects.

Say a morphism m : P -t Q in Point is & prefix morphism iff m preserves and reflects
the causally dependency order. Define Pom£ to be the subcategory of Point where all
morphisms are prefix morphisms.

Say a morphism m : P -> Q in Point is an augmentation morphism iff m is epimor-
phic. Define Pom£ to be the subcategory of Pomt where all morphisms are augmenta-
tion morphisms.

Proposition 1. Any morphism m : P -> Q factors uniquely to within isomorphism as
a composition m = P -2-> Q0 -i—> Q where a is an augmentation and j is a prefix
morphism.

3. OPEN-MAPS AND BISIMULATION

Assume a category of models M—this could be any one of the categories of models
with label preserving morphisms of the previous section. Assume also a choice of path
category, a subcategory P ^ M consisting of path objects (these could be branches, or
pomsets) together with morphisms expressing how they can be extended.

\HL>

PRESHEAVES AS TRANSITION SYSTEMS 5

Define a. path in an object X of M to be a morphism

p : P -> X,

in M, where P is an object in P. A morphism / : X -> V in M takes such a path p in X
to the path /op : P —> y in Y. The morphism / expresses the sense in which Y simulates
X; any computation path in X is matched by the computation path / o p in Y.

We might demand a stronger condition of a morphism / : X —> Y expressed succinctly
in the following path-lifting condition which when satisfied picks out the open morphisms.
For our purposes later, it is convenient to define open morphisms with respect to a subclass
of morphisms Po of P—of course Po could consist of all the morphisms of the whole
category P, when we shall identify the class of morphisms with P itself.

Whenever, for m : P -» Q a morphism in Po, a "square"

in M commutes, i.e. q o m = f o p, meaning the path / o p in Y can be extended via m to
a path q in Y, then there is a morphism p' such that in the diagram

the two "triangles" commute, i.e. p' o m = p and fop' = q, meaning the path p can be
extended via m to a path p' in X which matches q. When the morphism / satisfies this
condition we shall say it is To-open.

Say two objects X\, X-i of M are V o-bisimilar iff there is a span of Po-open morphisms
/i,/2:

X\ X2

For the well-known model of transition systems open morphisms and the bisimulation
induced by them are already familiar:

Proposition 2. With respect to a labelling set L, the L*-open morphisms of the category
of transition systems with labelling set L are the "zig-zag morphisms" of [20] (the "p-
morphism" o/[18], the "abstraction homomorphisms" of [A], and the "pure morphisms"
of [3]) i.e. those label-preserving morphisms (a, 1L) :T-*T'on transition systems over
labelling set L with the property that for all reachable states s ofT

ifcr(s) -2-». s' in T then s -2-> u in T and <r{u) = s',
for some state u ofT.

Two transition systems (and so synchronisation trees), over the same labelling set L,
are L*-bisimilar iff they are strongly bisimilarin the sense o/[12].

In the case of event structures with Pomx, as the path category we obtain the equiva-
lence of strong history preserving bisimulation on event structures (see [8] or [15]).

itf

6 GLYNN WINSKEL AND MOGENS NIELSEN

In checking whether a morphism is P-open or for P-bisimulation, for a path category
P, it suffices to consider a restricted class of morphisms, sufficient to generate the category
P.

Definition: Let P be a category. Let P0 consist of a subclass of morphisms of P. Say P0

generates P iff the only subcategory of P which includes P0 and all isomorphisms of P
is P itself.

In particular, if P0 is a skeletal subcategory of P, then P0 generates P.

Example: The category L* is generated by the set of morphisms representing the exten-
sion of a string by a single label. >

The category Pom/, is generated by the class of "atomic" morphisms of two kinds:

prefix: morphisms m : P ->■ Q in Pom/, expressing that pomset P is a prefix of
pomset Q where Q contains one more event than P; so m expresses that pomset Q
consists of a copy of P with one additional event adjoined on top;
augmentation: morphisms m : P ->• Q in Pomz, expressing that pomset P is an
augmentation of pomset Q but where the graph of the causal dependency relation in
P contains one more pair than that of Q; so the pomset P consists of a copy of Q
with one extra link of causal dependency between previously concurrent events.

To see that this class of morphisms generates Pomj,, note that any morphism m : P -> Q
in Pomi factors uniquely (to within isomophism) as a composition m = j o a where

a : P ->■ Q0

expresses that P is an augmentation of Qo and

j : Qo -> Q

expresses that Qo is a prefix of Q. Then, clearly any augmentation, or prefix, breaks down
into a composition of basic augmentations, or prefixes, respectively, as above.

Clearly Pom£ is generated by the atomic prefix morphisms while Pom£ is generated
by the atomic augmentation morphisms described above.

Proposition 3. Suppose P is generated by a subclass of morphisms Pn.
1. Letting f be a morphism ofM, f is P-open iff f is Po-open.
2. Let XX,X2 be objects ofM. Then, XltX2 are P-bisimilar iff XX,X2 are P0-

bisimilar.

4. PRESHEAF MODELS

Given a path category P we can build the category P of presheaves over P.2 The
objects of P consist of functors Pop ->■ Set, to the category of sets. The morphisms of P
are natural transformations between functors. Intuitively a presheaf F : P°p ->• Set can be
thought of as specifying for a typical path object P the set F(P) of paths from P. It acts
on a morphism m : P -> Q in P to give a function F(m) : F{Q) ->■ F(P) saying how
Q-paths restrict to P-paths.

Let us see how a model, like a transition system or a labelled event structure, gives rise
to a presheaf. Consider a category of models M and a choice of path category forming
a subcategory P «-)■ M. There is a canonical functor from the category of models M
to the category of presheaves P. It takes an object X of M to the presheaf M(-, X)—
more intuitively, it takes the model X to the to the presheaf which for each path object P

2 Proofs for presheaf models can be found in [8]. A good introduction to presheaves can be found in Chapter
lof[10].

i J
l i

PRESHEAVES AS TRANSITION SYSTEMS 7

yields the set of paths M(P, X) from P into X. The canonical functor takes a morphism
/ : X —¥ Y in M to the natural transformation

M(-,/):M(-,X)4M(-,y)

whose component at an object P of P is the function M(P, X) -> M(P, y) taking p to
/ o p—intuitively, a path p : P -> X in X is taken to a path / o p: P -» V in Y.

Theorem 4.

(i) The canonical functor synchronisation trees, all with labelling set L, to L* is full,
faithful and dense.

(ii) The canonical functor from event structures, all with labelling set L, to Pomi is
full, faithful and dense.

The embeddings of Theorem 4 extend the Yoneda embedding of P ->• P, regarding a
path object P as the presheaf P(—, P) = M(—, P) because, in these cases, the subcate-
gory P e-> M is full. Now, if we regard presheaves as the model M' and the image of P
under the Yoneda embedding as its path category P', we can apply the general definition of
Section 3, to obtain the class of P'-open morphisms of the presheaf category. They form
a category of open maps of the topos P, in the sense of Joyal and Moerdijk.3 The two
notions of P-open and open map agree for the models of synchronisation trees and event
structures, because generally:

Proposition 5. Let P be a dense, full subcategory o/M. A morphism f : X ->Y ofM is
P-open iff the morphism M(—, /) : M(—, X) -» M(—, Y) is an open map of presheaves.

When it comes to relating notions of bisimilarity, we must be a little careful. It is not
the case that two synchronisation trees are Z,*-bisimilar iff their associated presheaves are
related by a span of open maps in L*. But this is only because there are presheaves which
correspond to processes without an initial state; in particular, there is always a span of open
maps between any two presheaves subtended from the initial (always empty) presheaf.

A way to get a correspondence is to restrict the objects in the presheaf category.

Definition: In the situation where the path category P of a model M has an initial object
/, a rooted presheaf is a presheaf F in which F(I) is a singleton.

Remark: Another way to get a correspondence is to define bisimilarity in the entire
presheaf category via spans of surjective open maps. This is the more robust definition,
and indeed the one used in [8]; it applies even when the path category does not have an
initial object, and open maps between rooted presheaves are necessarily surjective (see e.g.
[23]).

Proposition 6. (i) Two synchronisation trees, over labelling set L, are L*-bisimilar
(i.e. strong bisimilar) iff their corresponding presheaves, under the canonical embed-
ding, are related by a span of open maps in the full subcategory of rooted presheaves
off?.

(ii) Two event structures, over labelling set L, are Pomi-bisimilar (i.e. strong history-
preserving bisimilar) iff their corresponding presheaves, under the canonical embed-
ding, are related by a span of open maps in the full subcategory of rooted presheaves

o/Pomx,.

3 See [7], Example 1.1, though there the definition is expressed in terms of the existence of certain quasi-
pullbacks; its equivalence with P'-openness, expressed as a path-lifting property, follows by the Yoneda Lemma.

i*-f ■?

GLYNN WINSKEL AND MOGENS NIELSEN

5. PRESHEAFS AS TRANSITION SYSTEMS

Assume that a path category P has an initial object /, and that P0 is a subclass of
morphismsof P.

It will be helpful to think of a rooted presheaf over P as a transition system with labels
taken from morphisms of P0:

Definition: Let A" be a rooted presheaf over P. Define its P0-transition system, denoted
by £^P0 (X) t0 consist of:

states: (P, p) where P is an object of P and p G X(P); take the unique member of
X(I) as the initial state;
labelling set: Po;
transitions: (P, p) -^ (Q, q) whenever m : P -> Q in P0 and (Xm)(q) = p.

Remark: The construction £lPo(X) on a presheaf X is a slight generalisation of a well-
known construction of a category of elements of a presheaf (see e.g. [10]).

Notice what the construction does on a presheaf X: it forms a transition system with
"states" p £ X(P) which by the Yoneda Lemma correspond 1-1 with the computation
paths from P (or strictly its image under the Yoneda embedding) into X.

Given a morphism of presheaves, i.e. a natural transformation between them, we obtain
a morphism of transition systems; £lp0 extends to a functor on presheaves.

Definition: Suppose / : X -*■ Y is a natural transformation between presheaves X and
Y. Define £lp0{f) to be the morphism of transition systems a which acts on states so
that (P,p) !-»• (P, fp{p))\ thus the transition (P,p) -r2-^ (Q, q) is sent to the transition
(^,/P(P))-^(Q,/<?(<?)).
(It takes a little checking that £lp0{f) is indeed a morphism of transition sytems.)

So, thinking of categories of elements as transition systems, the associated functor is a
label-preserving morphism of transition systems. More than this, provided P0 generates P,
a natural transformation / between presheaves is open iff £lp0 (/) is a zig-zag morphism
between the associated transition systems (cf. Proposition 2).

Proposition 7.^Assume P0 generates P. A morphism f : X -> Y between rooted
presheaves in P is open iff £lp0(f) : £lp0(X) -> £lp0{Y) is a zig-zag morphism be-
tween transition systems with labelling sets Po.

We can go further and characterise bisimulation on presheaves as a form of bisimulation
on transition systems with labels in a generating class of morphisms P0.

Definition: Say two transition systems Ti, T2 with a common label set are back-and-forth
bisimilar iff there is a relation R between their states such that i\Ri2, so their initial states
are related, and whenever sii?s2, then

if «i -2-» s\ then s2 -
2->- s2 and s^Rs'?, for some state s2 of T2,

if s2 -
3—t s'2 then si -2-> s[and s[Rs'2, for some state s[of Ti,

if si -2-»- Si then s'2 -£-*• s2 and si/Js'2, for some state s'2 of T2, and
if s'2 -

2-> s2 then si -2-»- si and sii?s'2> for some state si of Ti.

Propositions. Let X\,X2 be presheaves over P. Assume P0 is a subclass of mor-
phisms generating P. The presheaves X\, X2 are P -bisimilar iff their transition systems
£lp0 (X\), £lp0(X2) are back-and-forth bisimilar.

Remark: Though this result is presented in a different guise it consists essentially of
Lemma 17 in [8] characterising bisimulation between rooted presheaves as strong path
bisimulation.

w-f

PRESHEAVES AS TRANSITION SYSTEMS 9

Warning: This result should not be interpreted in the broader sense that we advocate
back-and-forth bisimulation as the appropriate bisimulation on transition systems. In fact,
the presheaves in L* of transition systems with labelling set L, obtained by the canonical
functor from transition system to presheaves, will be bisimilar iff the original transition
systems are strongly bisimilar in the sense of Park and Milner.

Example:
Paths as strings: When we specialise to the (partial order) category of strings L*, the
subcategory of rooted presheaves in L* is equivalent to the category of synchronisation
trees. Bisimulation between rooted presheaves in Z* is reduced to back-and-forth bisimu-
lation based on extensions of strings by a single label. Thus bisimulation between rooted
presheaves coincides with back-and-forth bisimulation on synchronisation trees, and as is
well-known [13] this coincides with Park and Milner's strong bisimulation. As remarked
above, the bisimulation on transition systems induced by the canonical functor to L* is
strong bisimulation.
Paths as pomsets: Two subcategories of rooted presheaves are of interest, those over path
categories Pom/, and Pom£.

In the case of bisimulation between presheaves over Pom£ it suffices to consider
"atomic" prefix and augmentation morphisms. Presheaves of event structures under the
canonical embedding are bisimilar iff the event structures are strong history-preserving
bisimilar (see [8] for the proof).

Just for the moment, consider the full subcategory of event structures, over labelling set
L, where morphisms rj : E —¥ E' are further constrained to satisfy:

if a; is a configuration of E, then rjx is a configuration of E', and the restriction of r\
from x to rjx is an isomorphism of pomsets.
((-Here we identify a configuration of an event structure E with its pomset structure
induced by E.-))

We call such morphisms prefix morphisms because they generalise their namesakes on
pomsets. The canonical functor from the category of event structures with prefix mor-

phisms, to rooted presheaves in Pom[is full and faithful (because the category of pomsets
with prefix morphisms is dense in the category of event structures with prefix morphisms).
Under it two event structures give rise to bisimilar presheaves iff they are strong history-
preserving bisimilar. This is essentially because if we look at the transition system of the
presheaf obtained from an event structure, its states will correspond to configurations of
the event structure.

Thus, strong history-preserving bisimulation of event structures coincides with bisimu-
lation of the canonical presheaves (obtained by the canonical embedding) in the presheaves
Pomi, and also with bisimulation between the canonical presheaves over just Pom£,
where we restrict to simply prefix morphisms of pomsets and event structures. In investi-
gating the bisimilarity of event structures it suffices to consider just "atomic" prefix mor-
phisms in Pom£ where a single new event is adjoined.

6. LOGIC AND GAME COROLLARIES

By characterising bisimulation on presheaves as back-and-forth bisimulation on their
associated transition systems we can connect with logic and game characterisations of
bisimulation of the kind discussed in [12] (for logic) and [19] (for games and logic).

6.1. A specification logic. Assume the path category P is a small subcategory with initial
object I. Let Po be a subclass of morphisms of P.

i^S

10 GLYNN WINSKEL AND MOGENS NIELSEN

Define Po-assertions by:

A ::= {ri)A \ (m)A \ ->A \ /\ Aj

where m is a morphism in P0, and J is an indexing set, possibly empty and not restricted
to being finite. The modality (m) is a "backwards" modality, while (m) is a "forwards"
modality. We define the semantics with respect to a transition system with labelling set
Po:

• s (= {m)A iff 3s'. s -^ s' and s' (= A

• s |= Jm)A iff 3s'. s' -**-+ s and s' |= A
• the boolean operations receive their expected meanings.

The logic is but a step away from Hennessy-Milner logic, well-known to be character-
istic for strong bisimulation, and the proof is virtually the same (see [12, 8]).

Theorem 9. Let P0 generate P. Two rooted presheaves in P are bisimilar iff their P0-
transition systems satisfy the same assertions.

Example: We determine a satisfaction relation for synchronisation trees and event struc-

tures via their canonical embeddings in presheaf categories L*, Pom^ and Pom[; for a
more direct definition of the satisfaction relation for these concrete models, based on their
paths—see [8].
Paths as strings: Traditional Hennessy-Milner logic arises by reducing the seemingly
richer logic based on all extension morphisms in L*. Firstly, as remarked earlier we can
restrict to just the forwards modalities; for synchronisation trees back-and-forth bisimula-
tion amounts to strong bisimulation. Because extensions by a single symbol are enough to
generate the category of strings L*, it suffices in getting a logic characteristic for bisim-
ulation on synchronisation trees to restrict to forward modal assertions of the form (6),4
where 6 is a single label; specifying the label 6 together with the domain of the morphism
is enough to determine the morphism in the path category.
Paths as pomsets: Bisimulation between rooted presheaves over Pom^ or Pom[is char-
acterised by satisfaction of assertions with modalities labelled by "atomic" morphisms.
The category of event structures, with labelling set L, with prefix morphisms embeds
canonically in Pom[. So strong history-preserving bisimulation of event structures is
characterised by logic with forwards and backwards modalities labelled by "atomic" pre-
fix morphisms. In the case where the event structures have no autoconcurrency (i.e. no
concurrent events with the same label) the labels associated with the modalities can be
simplified to single labels—see [14].

6.2. Games on presheaves. Assume again that the path category P is a small subcategory
with initial object I, and that Po be a subclass of morphisms of P.

Viewing presheaves as transition systems, we may also lift existing notions of games for
transition systems to presheaves. As an example we adopt here a back-and-forth version of
the games for transition systems defined by e.g. [19], well known to be characteristic for
strong bisimulation.

Let To = (So, io, ^o, trano) and T\ = (Si ,ii,L\, tram) be two transition systems. The
game G(T0, T\) played by two players (I and II) is defined as follows. The configurations
of the game consist of pairs of states (s0 € S0,si e Si) with (io, ii) as the starting con-
figuration. A play consists of a sequence of alternating moves by the two players (Player I
making the first move), where a move consists of a choice of a transition from one of the
systems, according to the following game rules:

lWt>

PRESHEAVES AS TRANSITION SYSTEMS 11

At configuration (s0, s\)

- either Player I chooses a transition so -a—»• s0, after which Player II chooses a
transition s\ -2—> s'1(and the game continues at configuration (s'0,s[),

- or Player I chooses a transition si -2-> s[, after which Player II chooses a transition
so -2-> s'o> an<J tne game continues at configuration (s'0>

si)>
- or Player I chooses a transition s'0 -

2—► so, after which Player II chooses a transistion
s[-s-> si, and the game continues at configuration (s'0,s[),

- or Player I chooses a transition s[-2—> si, after which Player II chooses a transition
s'0 -2—> so, and the game continues at configuration (s0, s'J.

Player I wins a play if Player II gets stuck, i.e. at some point cannot match a move by
Player I according to the rules of the game. All other plays are won by Player II, i.e. all
infinite plays, and plays where Player I at some point cannot make a move. A (history-free)
strategy for a player is a set of rules which for each configuration tells the player how to
proceed, i.e. for Player II a rule will associate to each configuration and a choice of back or
forth transition in one of the systems by Player I, a set of matching transitions in the other
system. A strategy is winning for a player, if he or she wins every play played according
to the strategy.

Intuitively, the two players have different goals in game G(TQ,TI): Player I wants
to show that the two transition systems are distinguishable, Player II that they are not.
Viewing presheaves as transition systems notion of distinguishablity is determined by:

Theorem 10. Let Po generate P. Two rooted presheaves in P are bisimilar iff Player II
has a winning strategy in the game defined by their two Po-transition systems.

This theorem follows from Theorem 8 by essentially the proof of the corresponding
theorem for transition systems from [19].
Example: Games for synchronization trees and event structures are obtained from their
canonical embeddings in presheaf categories.
Paths as strings: We obtain the original Stirling games characteristic for synchronization
trees in the same way we obtained the original Hennessy-Milner logic above. First of all,
from [13] we can restrict the games to only forwards moves, i.e. transitions labelled by
extension morphisms. Secondly, from the theorem above we may restrict games to allow
only moves involving extension with a single symbol, and finally such a morphism in the
path category is determined by its domain and the label of the extended single symbol.
Paths as pomsets: Bisimulation between rooted presheaves over Pomz, or Pom£ is char-
acterised by games with moves restricted to transitions labeled by "atomic" morphisms.

We may obtain games for event structures via their canonical embedding in Pom£, and
hence we get that games with moves restricted to forwards and backwards transitions la-
belled by "atomic" prefix morphisms are characteristic for strong history-preserving bisim-
ulation of event structures.

7. CONCLUDING REMARKS

So are presheaves just transition systems? No, they are really much more. While it can
provide helpful intuition to think of presheaves as transition systems, presheaves possess
a great deal of mathematical structure, which has already proved useful, or is potentially
useful. For instance, there are results like that of [5] showing that constructions obtained
from certain left Kan extensions automatically preserve open maps, and observations like
that of [23], that moving to the category of profunctors, essentially presheaves acting as
morphisms, we can begin to tackle higher-order features like process-passing; in recent

'f7

12 GLYNN WINSKEL AND MOGENS NIELSEN

work there appear to be technical advantages in viewing profunctors as transition systems.
More speculatively, we can hope that the fact that presheaves form a topos will become
helpful.

REFERENCES

[1] Barr, M., and Wells, C, Category theory for Computer Science. Prentice Hall, 1990.
[2] Bednarczyk, M., Hereditary history preserving bisimulation or what is the power of the future perfect in

program logics. Technical report, Polish Academy of Sciences, Gdansk, 1991.
[3] Benson, D.B., and Ben-Shachar, O., Bisimulation of automata. Information and Computation, 79, pp. 60-

83, 1988.
[4] Castellani, I., Bisimulation and abstraction homomorphisms. Proc. of CAAP 85, Springer Lecture Notes in

Computer Science, 1985.
[5] Cattani, G.-L. and Winskel, G., Presheaf models for concurrency. To appear in the proc. of CSL'96, Utrecht,

August 1996.

[6] Van Glabeek, R.J., and Goltz, U., Equivalence notions for concurrent systems and refinement of actions.
Proc of MFCS'89, Springer Lecture Notes in Computer Science 379, pp. 237-248,1989.

[7] Joyal, A., and Moerdijk, I., A completeness theorem for open maps. In Annals of Pure and Applied Logic
70, pp. 51-86,1994.

[8] Joyal, A., Nielsen, M. and Winskel, G., Bisimulation from Open Maps. Information and Computation, 127,
no. 2, pp. 164-185,1996.

[9] MacLane, S., Categories for the Working Mathematician. Graduate Texts in Mathematics, Springer Verlag,
1971.

[10] MacLane, S., and Moerdijk, I., Sheaves in geometry and logic: a first introduction to topos theory, Springer
Verlag, 1992.

[11] Milner, A.J.R.G., Calculus of communicating systems. Springer Lecture Notes in Computer Science 92,
1980.

[12] Milner, A.J.R.G., Communication and concurrency. Prentice Hall, 1989.
[13] De Nicola, R., Montanari, U., and Vaandrager, E, Back and Forth Bisimulations. Proceedings of CON-

CUR'90, Springer Lecture Notes in Computer Science 458, pp. 152-165, 1990.
[14] Nielsen, M., and Clausen, C, Bisimulations, Games, and Logic. Proceedings of CONCUR'94, Springer

Lecture Notes in Computer Science 836, pp. 385-400,1994.
[15] Nielsen, M., and Winskel, G., Petri nets and bisimulations. Theoretical Computer Science, vol. 153, pp.

211-244,1996.
[16] Pratt, V.R., Modelling concurrency with partial orders, International Journal of Parallel Programming, 15,

1, pp. 33-71,1986.
[17] Rabinovitch, A., and Trakhtenbrot, B., Behaviour structures and nets. Fundamenta Informatica, 11(4), pp.

357^04,1988.
[18] Segerberg, K., Decidability of S4.1, Theoria 34, pp. 7-20,1968.
[19] Stirling, C, Model Checking and Other Games. Notes for Mathfit Workshop on Finite Model Theory,

University of Wales, Swansea, 1996.
[20] Van Benthem, J., Correspondence theory. In the HandbookofPhilosophical Logic, Vol. II, eds. Gabbay and

Guenther, Reidel, pp. 167-247,1984.
[21] Winskel.G., Event structures. Springer Lecture Notes in Computer Science 255, pp. 325-392,1987.
[22] Winskel, G., and Nielsen, M., Models for concurrency. In the Handbookof Logic in Computer Science, vol.

IV, eds. Abramsky, Gabbay and Maibaum, Oxford University Press, 1995.
[23] Winskel, G., A presheaf semantics of value-passing processes. CONCUR'96, Springer Lecture Notes in

Computer Science 1119, pp. 98-114,1996.

BRICS, DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF AARHUS, DENMARK

[^

On topological hierarchies of temporal properties

Christel Baier and Marta Kwiatkowska

ABSTRACT. The classification of properties of concurrent programs into safety
and liveness was first proposed by Lamport [20]. Since then several characteri-
zations of hierarchies of properties have been given, see e.g. [3, 18, 7, 19]; this
includes syntactic characterizations (in terms classes of formulas of logics such

_ as the linear temporal logic) as well as extensional (as sets of computations in
some abstract domain). The latter often admits a topological characterization
with respect to the natural topologies of the domain of computations. We in-
troduce a general notion of a linear time model of computation which consists
of partial and completed computations satisfying certain axioms. The model is
endowed with a natural topology. We show that the usual topologies on strings,
Mazurkiewicz traces and pomsets arise as special cases. We then introduce a
hierarchy of properties including safety, liveness, guarantee, response and per-
sistence properties, and show that our definition subsumes the hierarchies of:
Alpern & Schneider [3]; Chang, Manna & Pnueli [7]; and Kwiatkowska, Peled
& Penczek [19]. Syntactic characterizations of the properties in the hierarchy
in terms of temporal logic are also studied.

1. Introduction

The classification of properties of concurrent programs into safety and liveness
was first proposed by Lamport [20]. According to the informal intuition intro-
duced there, safety properties assert that "nothing bad happens", whereas liveness
properties ensure that "something good will happen". Thus, a safety property is
satisfied in a program if and only if at no point during its execution something
"bad" happens. Examples of safety properties are: mutual exclusion (where the
bad thing is two processes being in their critical sections at the same time), deadlock
freedom (the bad thing is deadlock, i.e. a state in which no progress can be made)
or partial correctness (where the bad thing is violating the postcondition assuming
the execution started in a state satisfying the precondition). Safety properties are
proved by means of arguments involving invariants; such arguments are usually too
weak to guarantee that something will happen at all (e.g. partial correctness is no
guarantee of termination).

In contrast to safety, proofs of liveness properties often employ well-founded
induction. A liveness property states that at some point during the execution the
program enters a desirable state. Termination is a typical liveness property; in the

1991 Mathematics Subject Classification. Subject Classification. Primary (68Q05, 68Q60);
Secondary (03B70).

The second author was in part supported by EPSRC grant GR/K42028.
1

wq

2 CHRISTEL BAIER AND MARTA KWIATKOWSKA

context of a mutual exclusion protocol it is the statement that a process trying to
enter its critical section will eventually be allowed to enter. Some authors include
also starvation freedom (every process ready to make progress infinitely often is
allowed to do so infinitely often) within the class of liveness properties; here the
desirable state (the process making progress) has to be entered infinitely often.

Apart from the underlying proof methodology, the distinction between safety
and liveness can be made at other levels as well. This includes syntactic charac-
terizations, i.e. classes of formulas that denote the given properties (e.g. safety
is stated in terms of the 'always' modality in temporal logics, whereas liveness in
terms of 'eventually'), see e.g. [23, 7, 19]; automata-theoretic characterizations
(i.e. classes of automata which accept precisely the properties of a given class),
see e.g. [4, 23, 7]; and extensional characterizations as certain sets of computa-
tions in some domain, see e.g. [3, 18, 15, 23, 7, 19]. The latter often admit
the corresponding topological characterization for some topology on the domain of
computations.

While all concerned agree that safety properties are the closed sets, disagree-
ment between what precisely constitutes a liveness property in an abstract domain
of computations persists. For example, Alpern & Schneider [3], working with the
Cantor topology in the domain of infinite sequences of states, define liveness as the
dense sets. In contrast, Chang, Manna & Pnueli [7], see also [23, 8], who work
with the same domain but focus on the syntactic classes of properties expressed
in Linear Time Temporal Logic (LTL), formulate a finer-grain hierarchy of four
classes of properties (safety, guarantee, response and persistence) and show that
they correspond to the two lower levels of the Borel hierarchy; they also show that
the Alpern & Schneider characterization is orthogonal to their hierarchy. When
considering a partial order semantic domain of computations, e.g. Mazurkiewicz
traces, pomsets, etc, together with a partial order temporal logic, the picture com-
plicates further, as the natural topologies of such domains (the relativised Scott
topology) are coarser than, and need not coincide with, their metric topologies1;
only certain aspects of the hierarchy of [7] generalise to this case. For example,
in [18, 15], where the domain of Mazurkiewicz traces is used, liveness is defined
as a Ga-set, and fairness as a dense Gs-set. In [19] this is developed further to a
hierarchy of properties which reduces to the Chang, Manna & Pnueli hierarchy by
considering a syntactic classification in the partial order temporal logic GISTL, to-
gether with a corresponding topological characterization in terms of the relativised
Scott topology. While several aspects of [7] generalise to the partial order case,
the automata-theoretic characterization does not, and only a subset of formulas of
GISTL is considered.

This paper aims to define hierarchies of properties in terms of an abstract,
axiomatically given, semantic domain of computations, which is a common gener-
alisation of domains such as Mazurkiewicz traces [24], pomsets [29] or partial order
executions [13]. The starting point is a linear time model A, i.e. a semantic domain
A subdivided into the 'finite elements' (the set K.(A) of partial computations) and
'infinite elements' (the set A of complete computations). Partial computations can
be thought of as finite execution fragments of complete computations; we suppose
the existence of a mapping x >-)■ K.(x) which assigns to each computation x £ A~

lrThis problem does not arise in the Cantor topology: it is simultaneously Hausdorff and the
Scott topology of the finite and infinite sequences relativised to the maximal (infinite) sequences.

CfO

ON TOPOLOGICAL HIERARCHIES OF TEMPORAL PROPERTIES 3

the set of its partial computations. The behaviour of a program is denoted by the
set of its (complete) computations. A (complete) computation of a program P de-
notes a possible behaviour of P which arises by resolving all the non-deterministic
choices in advance. If there is a non-deterministic choice in a program then ex-
actly one computation will record the specific choice made in that execution (i.e.
computations do not contain branches). For convenience, we assume that all ter-
minating computations .re modelled by the complete (infinite) elements of A; this
can be achieved by extending each terminating computation with infinitely many
occurrences of a special action which does not affect the state of the system.

Observe that A admits both interleaving and partial order (i.e. 'true concur-
rency') models, but does not faithfully represent branching behaviour. In inter-
leaving models - where parallelism is reduced to non-determinism and sequential
composition - no distinction is made between non-determinism arising from paral-
lelism and that arising from explicit choice. In contrast to this, such distinctions
can be made in true concurrency models; there, the execution of concurrent events
can happen in any order or in parallel. Synchronization among processes is treated
in the same way as explicit non-determinism. Hence, in interleaving models the
linearization of a computation is uniquely determined, whereas in true concurrency
models there may exist more than one linearization of a computation (which differ
in the order of concurrent events).

For a fixed model A a property is any subset of 2^ (consisting of those programs
which are assumed to have this property). We suppose that the decision as to which
of the possible computations is executed is made by the environment, and not by
the program itself. Hence, in order to prove the correctness of a program one has
to show that all computations behave well. For this reason we suppose that the
properties under consideration are of the form ET = { P €2A : P CT } where
T is a subset of A which consists of those computations which behave well. In the
sequel we refer to any subset T of A as a property.

In an abstract model A, following [7, 19], we define a hierarchy of four types
of properties which can be verified by observing finite execution fragments: safety,
guarantee, response and persistence properties. This is achieved by means of op-
erators A, S, H and V that assign to each finitary property F (i.e. F C K{A)) a
subset of A. For example, a safety property asserts that all finite approximations
fulfill a certain finitary property F (i.e. a safety property consists of those computa-
tions x such that fC(x) C F), while a guarantee property states that all executions
may pass a state which satisfies a certain finitary property F (i.e. a guarantee
property consists of those computations x where /C(x) fl F ^ 0.). Recurrence TZ
and persistence V are defined similarly. Furthermore, we endow the model with
natural topologies (order-theoretic and, in the presence of the length function, a
metric) and give the corresponding, topological, characterizations of the classes of
properties as described above. Finally, we compare our results with existing hier-
archies defined for the domains of strings and Mazurkiewicz traces. We show that
the result of [3] that safety, resp. liveness, properties are the closed, resp. dense,
subsets carries over to arbitrary linear time models A. In addition, the hierarchy
of [7] corresponds to ours, while that of [19] does not w.r.t. the operators 11 and
V unless the definition of response in [19] is appropriately strengthened.

Our definitions are general enough to admit the transfer of our results to other
interleaving, as well as the partial order, models, e.g. pomsets.

4 CHRISTEL BAIER AND MARTA KWIATKOWSKA

The paper is organized as follows. Section 2 presents the axiomatization of
our model A, and in Section 2.1 we show that the semantic domains of strings,
Mazurkiewicz traces and pomsets are linear time models in our sense. Later we
show that linear time models as defined here are closely related to algebraic dcpo's
(directed-complete partial orders) and metric spaces (section 2.2 and 2.3). In section
3 we define the properties of: safety, liveness, guarantee, response and persistence,
and give a topological characterization of each class of properties. In section 4
we show how temporal logic can be used to describe properties in any linear time
model. We intrepret the linear time logic LTL [7] over the 'interleaving models'
(where the next step of a computation in a given state is uniquely determined, see
section 4.2) and the partial order temporal logic ISTL* [13] over 'true concurrency
models' (where there might be several alternatives - arising from the way in which
concurrent events are executed - to proceed in a given state, see section 4.3).

2. Linear time models

In this section we define the notion of an abstract linear time model. We then
show (Section 2.2) that linear time models in our sense can be endowed with a nat-
ural ordering and that (under additional assumptions) they form algebraic dcpo's.
Furthermore, in Section 2.3 we consider the class of models equipped with a length
function (which counts the number of atomic steps that a partial computation has
to perform) and show that they can be endowed with a distance. We assume that
the reader is familiar with the basic notions of domain theory, see e.g. [2], and
metric spaces, see e.g. [10].

DEFINITION 2.1. A linear time model is a set A which is divided into disjoint
subsets K.(A) and A, together with a mapping x i-> K(x) which assigns to each
x € A a subset K{x) of IC(A) such that:

(1) If £ G K{x) then £(fl C K{x).
(2) For each f 6 K,(A) there is some x e A with £ G K(x).
(3) £ G £(0 for each £ G K{A).
(4) If K{x) = K{y) then x = y.
(5) For each x G A there exists an x-path, i.e. a sequence (f„)„>o in K(x) such

that

/C(&)C/C(&)CX:(&)C... and K{x) = \J £(£„).
n>0

The elements of K.(A) should be thought of as partial computations (the 'finite'
elements), and the elements of A as complete computations, or briefly computa-
tions (the 'infinite', or 'maximal' elements). The set)C(x) is the set of all partial
computations of x. Condition (1) states that if £ is a partial computation of some
computation x then all partial computations of £ are partial computations of x. (2)
ensures that only those partial computations are considered which are execution
fragments of complete computations, or, in other words, which can be extended
to a complete computation. (3) says that each partial computation approximates
itself. (4) ensures that different computations can be distinguished by their partial
computations. By condition (5) each complete computation can be approximated
by its partial computations.

Each x-path should be viewed as a fragment of a possible execution (lineariza-
tion) of z: if fo,£i,£2,--- is an x-path we think of & as an intermediate state

rSa

ON TOPOLOGICAL HIERARCHIES OF TEMPORAL PROPERTIES 5

which the execution reaches after performing the partial computation described by
&. It might be the case that there are additional intermediate states which are not
represented by an element of the x-path. When considering the next step relation
as in Section 4, which determines the possible next steps in an intermediate state,
the executions of a computation x are defined to be those x-paths which obey the
next step relation. In this case the x-paths are exactly the subsequences of the
executions of x. The criterion for an x-path to approximate x (in the sense that
U £(fn) = £(x)) imposes a fairness (or maximal progress) constraint, since every
partial computation must be subsumed by a partial computation of the x-path, i.e.
each action which is performed in some execution is executed in every execution.
This corresponds to the notion of an 'acceptable path' as in [13], 'maximality' of
[18], or 'justice' in the sense of [30]. We extend the notion of an x-path to partial
computations as follows. If £ G IC(A) then a £-path is a sequence (£n)n>o in K(A)
such that

£(&) c mi) c £(6) c ... C £(£„) = £(&+i) = ... = £(£)•

DEFINITION 2.2. A linear time model with an initial state is a linear time
model A satisfying:

(6) There exists ± € K(A) with /C(±) = {±} and ± e K[x) for all x 6 A~.

Because of conditions (3) and (4), the element ± in condition (6) is unique
if it exists. J. can be interpreted as the partial computation which represents
the state in which no action has been performed. By our intrepretation of the
partial computations as the intermediate states of executions the element _L can
be considered as the (common) initial state. (This explains the notion 'linear time
models with an initial state').

2.1. Concrete examples of linear time models. Throughout the paper
we illustrate the use of our framework by means of examples defined for the linear
time models of strings, Mazurkiewicz traces and pomsets. In this section we recall
basic definitions.

We suppose E to be a countable set of atomic actions including special symbols
yj and 8 which model termination and deadlock. Both yj and «5 are assumed not
to affect the state of the system, and which cannot be performed except when the
system has reached its final state.

2.1.1. The domain of strings. By a string over the alphabet E we mean a (finite
or infinite) sequence s = aoOt\a2 ... of elements in E such that either the actions
\J and S do not occur in s or there is some k > 0 such that on ^ y/, 5, for all
0 < i < k and either cti = \J for all i > k or on = 5 for all i > k. Infinite strings
containing yj represent successfully terminating computations, those containing S
model deadlocked computations, while those not containing any occurrence of \J
and 5 non-terminating computations. Finite prefices of a string represent its partial
computations. E* denotes the set of finite strings over S, Ew the set of infinite
strings over E. A = E°° is a linear time model in our sense; take K.{A) = E*,
A = Ew, and define /C(x) to be the set of all finite prefices of x.

Ifi£ E°° then x[n] denotes the n-th prefix of x. (If the length of x is < n put
x[n] = x.) We assume E°° to be endowed with the usual distance

d(s, t) = inf | — : s[n] = t[n] j

|C> 5

6 CHRISTEL BAIER AND MARTA KWIATKOWSKA

and the usual prefix order (denoted by C). Then £°° is a complete ultrametric
space and and an algebraic dcpo. The finite strings are the compact elements in
£°° viewed as an algebraic dcpo. £* is a dense subset of isolated elements in £°°
when viewed as a metric space.

2.1.2. Mazurkiewicz traces. An independency relation on alphabet £ is an ir-
reflexive and symmetric binary relation iCSxS such that ■/ and S are dependent
on every action, i.e. -.(a t vO A ""•(<* to) for all a 6 £. The pair (£, i) is called
a concurent alphabet. The independency relation i identifies those actions in the
system which can happen concurrently; thus, if a t ß then a, ß are independent
actions of two concurrent processes P and Q, i.e. P and Q cannot communicate
via a and ß. Let = [24, 17] be the smallest equivalence relation on £°° such that

whenever s6S*,tG S°°, a, ß G £, a i ß then saßt = sßat.

A trace is an equivalence class [s] of a string s € £°°. If s is (in)finite then [s] is
called (in)finite. The length of a trace is the length of one of its representatives.
[£*] denotes the set of finite traces, while [£w] the set of infinite traces. Clearly,
[£°°] = [£*] U [£w] forms a linear time model in our sense; to see this take the
finite traces as partial computations, the infinite traces as complete computations,
and define the set IC(x) of partial computations of x as consisting of all those finite
traces [s] where s is a prefix of some representative of x.

If x is a trace then x^ denotes the set of finite traces [s] where s is a prefix
of some representative t e £°° of x and where the length of s is at most n. As in
[17, 16], we consider the linear time model [£°°] of traces in the following sense.
We suppose [£°°] to be equipped with the prefix order:

x Q y <=> 3 s,t € £°° sQt, x = [s], y = [t]

Then [£°°] is an algebraic dcpo (see e.g. [17]), with finite traces being the compact
elements. Moreover, [£°°] also has an associated metric d given by:

d(x,y) = inf | ^ : *<»>=»<»> j.

Then [£°°] is a complete ultrametric space and [£*] is a dense subset of isolated
elements (see [16]).

2.1.3. Pomsets. Pomsets (partially ordered multisets) were first introduced in
[29]. Several variants of pomsets are known from the literature; here we use the
notion of a pomset as a labelled prime event structure without conflicts in the sense
of [33]. The underlying partial order is that of [33] restricted to pomsets, and the
underlying metric is due to [5].

A pomset is a partially ordered set (5, <) which is endowed with a labelling
function I : S -¥ £ that maps the elements of S (called events) to an action and
such that either all events are labelled with actions a ^ y/, S, or there exists an
event e 6 S labelled by y/ or S such that:

• e t = {e' e S : e < e'} is totally ordered and 1(e) = Z(e') for all events
e' 6 e |.

• No event e' e S, e' < e, is labelled by y/ or S.

By a finite pomset we mean a pomset where the underlying partially ordered set
is finite. Pomsets represent computations in the following sense. The execution of
an event e G E means the execution of the associated action 1(e). If e < e' (i.e.
e < e' and e ^ e') then e must be executed before e'. If e, e' are independent

m

ON TOPOLOGICAL HIERARCHIES OF TEMPORAL PROPERTIES 7

events (i.e. neither e < e' nor e' < e) then e and e' may be executed in parallel.
In addition, we require that each event is reachable, i.e. for each e G E the set of
predecessors of e is finite. Infinite (non-terminating) computations are represented
by infinite pomsets where no event is labelled by y/ or 5. Terminating computations
correspond to infinite pomsets where some (and hence almost all) events are labelled
by \/. Deadlocked computations are modelled by those infinite pomsets in which
almost all events are labelled by 8. Partial computations are denoted by finite
pomsets.

If x = (S, <, I) is a pomset and e G S then the depth of e in x is given by:

depthx(e) = sup { n : Bei,... , e„ G S ei < ... <en = e}

If S' C S is left-closed (i.e. whenever e € S' and e' < e then e' £ 5') then we define

x\S' = (S', < n S' x S', l\S').

We put x[n] = x \ S[n], where S[n] = {e € S : depthx(e) < n}. Porn°° denotes
the set of all (finite and infinite) pomsets, and Pom* the subset of finite pomsets.
For convenience we assume that the set of events is contained in a fixed countable
set Events2. Clearly, Pom°° forms a linear time model in our sense. To see this
take Pom* as the set of partial computations and Pom" = Pom°° \ Pom* as the
set of complete computations. If x = (S, <,l) is a pomset then define /C(x) to be
all the pomsets xfS' where S' is a finite and left-closed subset of S. Pom°° can be
endowed with the distance

d(x,y) = inf | — : x[n] = y[n] j

and the partial order x C y •$=*■ 35 x = y\S. Then Pom00 is a complete
ultrametric space (see e.g. [5]) and an algebraic dcpo. The compact elements
in Pom°°, when viewed as an algebraic dcpo, are the finite pomsets. Since the
underlying set Events is countable, the set S of events of a pomset is also countable.
Hence, for each pomset x the set of finite pomsets £ with £ C x is countable (since
the set of finite subsets of a countable set is countable). Pom* is a dense subspace
of isolated elements in Pom°° as a metric space.

2.2. Linear time models and algebraic dcpo's. The relation of 'being a
partial computation of on linear time models induces a partial order in the following
sense. Let A be a linear time model and define

x Q y <=► K.{x) C K{y)

Then C is a partial order on A (called the natural order on .4). The partial com-
putations of A are the compact elements. Conditions (1) and (5) of Definition 2.1
ensure that for each x € A the set K{x) is an ideal (i.e. left-closed and directed),
and x is the least upper bound of /C(x). In linear time models with an initial state
the unique element ± with ± € K(x) for all x G A is the bottom element.

DEFINITION 2.3. An order-enriched linear time model is a linear time model
A with an initial state and which satisfies:

(7) For each directed subset X of K.{A) there exists z e A with

K(z) = (J /C(0.

2This assumption is essential to ensure that Pom°° is a set.

1} <r

8 CHRISTEL BAIER AND MARTA KWIATKOWSKA

The following two theorems show that order-enriched linear time models cor-
respond to the algebraic dcpo's satisfying the condition that the set of compact
elements below any element is countable.

THEOREM 2.4. Each order-enriched linear time model A is an algebraic dcpo.
K.{A) is the set of compact elements and _L the bottom element. K,(x) is the set of
compact elements (Ci. Whenever X C A is directed then the (unique) element
z 6 A with

K{z) = U /C(x)

is the least upper bound of X.

PROOF. We only show that for each directed subset X of A~ the least upper
bound LI X exists. The remaining statements are easy verifications. Let X be a
directed subset of X and let K = \JxeX K(x). Then A" is a directed subset of
K(A) (this is because X and the sets K{x) are directed). By condition (7) there
exists z e A with K{z) = {J^ £(£)• It is easy to see that then K{z) = K.

Hence, K.(x) C K{z) for all x € X, i.e. z is an upper bound of X. If y e A. is also
an upper bound of X then K(x) C K.{y) for all x G X. Thus, K(z) = K C K{y)
and therefore z C.y. Hence, z = \J X. □

THEOREM 2.5. If D is an algebraic dcpo such that

(i) For every x £ D the set of compact elements f with f C. x is countable.
(ii) For every compact element f there exists a non-compact element x ED with

£Cx.

Then D is an order-enriched linear time model where the natural order on D as a
linear time model agrees withthe original partial order on D. The finite elements
are the compact elements in D. The set K(x) is the set of compact elements Z,Qx.

_ PROOF. We define K.(D) to be the set of compact elements of D and D =
D\K{D). Then it is easy to see that conditions (1), (3), (4), (6) and (7) are satisfied.
Condition (2) follows by (ii), condition (5) by (i) and the fact that _j K.{x) = x.

D

EXAMPLE 2.6. The algebraic dcpo's E°°, [S°°] and Pom00 satisfy the con-
ditions (i) and (ii) of Theorem 2.5, and hence all are order-enriched linear time
models.

If D is an algebraic dcpo satisfying condition (i) of Theorem 2.5 then D can
be embedded into an order-enriched linear time model A such that for each x eD
the set K.(x) is the set of compact elements (eD with £ C x. Notice that in D
condition (2)_might be violated. In order to fulfill condition (2), for each compact
element £ 6 D which does not have a non-compact upper bound in D we create
new elements (£,n) where n € N0 U {oo}, and we extend the original partial order
E on D as follows: C' is the smallest partial order on A~ (which contains D and the
new elements ((, n)) which satisfies

£ C' ((,0) C (£,1) c' ... C' (£,oo).

Then the elements (f^n), n 6 N0, are compact in A and (£, oo) is a non-compact
upper bound of £ in A.

tuL

ON TOPOLOGICAL HIERARCHIES OF TEMPORAL PROPERTIES 9

COROLLARY 2.7. Each w-algebraic cpo D can be embedded into an order-
enriched linear time model A such that for each x € D the set K{x) is the set of
compact elements £ € D, £ C x.

2.3. Linear time models and metric spaces. If partial computations con-
sist of executions of finitely many atomic actions then we have a natural notion of
a length on K{A): the length of a partial computation £ is the maximum number of
atomic steps which an execution of £ needs. This notion is similar to that defined
for a partial order in [22]. We show that linear time models with a suitable length
function are metric spaces.

DEFINITION 2.8. A length function on a linear time model A with initial state
± is a function

| • | : K(A) -» No

such that:

(8) |-L| = 0 and £_€ K.{n) implies |f| < \n\.
(9) For each x € A there exists an x-path (£n)n>o with |£n| = min { |x|, n }

for all n > 0. Here we put |x| = oo if x € A.

Condition (8) ensures that partial computations of n do not require more steps
than n itself. Condition (9) asserts that each computation x can be approximated
by a length-increasing sequence (£n) of partial computations of x, where the length
of £n is exactly n or \x\. Given a length function on a linear time model A we put

Kn{A) = { £ e K(A) : K| < n }

andlCn(x) = Kn{A)C\K.(x). Then

d(x,y) = inf{ 2^ : ^"^ = Kn^ J

is an ultrametric on A. Note that condition (4) ensures that d(x,y) = 0 implies
x- y.

NOTATION 2.9. If (M,d) is a metric space, x e M and r > 0 then B(x,r)
denotes the open ball with centre x and radius r. B(x,r) denotes the closure of
B(x,r), i.e.

B(x,r) = {y£M : d(x,y) <r }.

Since the induced distance can only be given values 0 or 1/2" for some natural
number n, for all elements x of a linear time model with a length function we have
that B(x,r) = B(x,l/2n) where n = 0 if r > 1 and n is the unique natural
number satisfying l/2n < r < l/2n_1 otherwise.

LEMMA 2.10. Let Abe a linear time model with a length function. Then IC(A)
is a dense subset of A and all elements of K(A) are isolated in A.

In general, the induced metric space of a linear time model with a length
function is not complete. In order to ensure completeness the following condition
is needed:

(10) // (xn)n>o is a sequence in A with Kn(xn) = /Cn(xn+i) for all n > 0 then
there exists x £ A with K(x) = K.n(xn) for all n > 0.

IST

10 CHRISTEL BAIER AND MARTA KWIATKOWSKA

EXAMPLE 2.11. The linear time models E°° and [S°°] can be endowed with
the length function which assigns to each finite string/trace its usual length. On
Pom°° the function

|-| : Pom* ->• No, |f| = max { depth^e) : e is an event in f }

is a length function. In all three cases the ultrametric induced by the underlying
length function coincides with the usual metric (cf. Section 2.1).

THEOREM 2.12. Let M be an ultrametric space, M0 a subspace of M and | • | :
Mo -» Wo a function such that:

(i) For all f £ A/bJf| = n, there exists x £M\M0 with d(£,x) < 1/2".
(ii) For each x £ M with either x £ Mo or \x\ > n there exists a unique element

x[n] £ M0 with

\x[n]\ = n and d(x[n], x) < —.

We put £[n] = f if f £ M0, |£| < n and \x\ = oo if x £ M~ \ M0. Then ~M is a
linear time model with K,(M) = M0 and

K{x) = {x[n] : n > 0 }.

In addition, we have for all x, y £ M:

(a) x[n] is the unique element £ 6 K,{x) with |f| = min{|x|,n}.
(b) d(x,y) <l/2n iff x[n]=y[n]
(c) (a;[m])[n] = (z[n])[m] = x[n] for allO<n<m
(d) \x\ = sup { |f | : £ e K{x) }

PROOF. Let M = M \ M0. (a), (b), (c) and (d) are easy verifications.
Conditions (1) and (3) are satisfied because of (c). Condition (2) follows by (i),
conditions (5) and (9) by (ii), condition (8) by (d).

To see that (4) holds, let x,y be such that K.(x) = K.{y), then x[n] = y[n] for
all n > 0. This is because of (a). Hence, x = lim x[n] = lim y[n] = y. D

DEFINITION 2.13. A linear time model with a length function satisfying the
conditions (i) and (ii) of Theorem 2.12 is called metric-enriched.

EXAMPLE 2.14. The linear time model S°° and the linear time model of pom-
sets x E Pom°° such that x[n] € Pom* for all n > 0 are metric-enriched.

In Example 2.14 it is essential that we deal with pomsets whose n-cuts x[n] are
finite ('finitely approximate' pomsets in the sense of [12]), as otherwise condition
(ii) of Theorem 2.12 would be violated since if x is a pomset where x[n] is infinite
then there is no pomset f £ Pom* with |f| = n and d(x,£) < 1/2". Condition
(ii) of Theorem 2.12 is also violated when we deal with the linear time model of
Mazurkiewicz traces with a non-empty independency relation. For instance, for the
trace x induced by the string s = a/3777 • • • vvith a 1 ß there does not exist a
finite trace f of length 1 with d(x,f) = 1/2. This is because K.i(x) contains the
traces [a] and [/?], and the distance d(x, [a]) = d(x, [ß]) = 1. An alternative length
function for traces can be found by embedding traces into pomsets; with this length
function traces form a metric-enriched model.

I5S

ON TOPOLOGICAL HIERARCHIES OF TEMPORAL PROPERTIES 11

3. Defining properties on linear time models

In this section we give general definitions of safety, guarantee, response, per-
sistence and liveness properties. Following [3] we define liveness properties to be
those properties T C A such that each partial computation £ 6 K(A) has a com-
plete computation x 6 T which is above it in the ordering. As in [7, 19], we define
safety, guarantee, response and persistence properties by operators A, £, V, and V
acting on sets of partial computations (the finitary properties). When applied to
the linear time model E°°, our definitions agree with those of [3, 7]; some early
work due to Landweber, see e.g. [32], introduces a similar topological hierarchy for
accepting conditions of automata on infinite sequences. We show that the hierarchy
and the topological characterizations stated in [3, 7] carry over to arbitrary linear
time models.

For simplicity assume from now on that A is a fixed linear time model. If
F C K(A) then F is called a finitary property. Following [7] we put:

A(F) = {xeA
£{F) = {xeA
11(F) = {xeA
V(F) = {xeA

and

K(x) C F }

K(x) n F ? 0 }
there exists an x-path (£n) with £n € F for all n }

if (£n) is an x-path then £n € F for almost all n }

ARn(F) = {t e K(A) : K(t) C F}, £Rn(F) = {t 6 K(A) : K(t)n F # 0}.

A(F), £(F), V{F) and TZ(F) respectively denote the sets of all the complete
computations x such that: all partial computations of x are contained in F; some
partial computation of x belongs to F; whenever (£n) is an x-path then almost all
(tn) belong to F; and there exists an x-path (fn) such that infinitely many (£n)
belong to F.

The above definitions of A, £, Ti and V correspond precisely to those of [7]
when applied to the linear time model of strings. In the linear time model of
traces, our definitions of the operators A and £ coincide with those of [19], but the
definitions of 1Z and V do not. In [19], where a partial order temporal logic is used,
H(F) is defined as the set of all the infinite traces whose infinitely many prefices
belong to F, and P(F) as the set of all the infinite traces whose almost all prefices
belong to F. This is not compatible with our definition since we require an x-path
to approximate x (in the sense that x is the least upper bound of a x-path w.r.t.
the natural order). For instance, let F be the set of all finite traces

aa. ..a, n > 0.

Let a i ß and let x = [ßaaa...]. Then x belongs to H{F) in the sense of [19],
but x ^ H(F) according to the definition in this paper. The operators TZ and V as
defined above admit an alternative definition shown below.

LEMMA 3.1. Let F C K(A). Then:

(a) x 6 11(F) iff for every t £ K(x) there exists t' e K(x) D F with t £ K(t').
(b) x G P(F) iff there exists t 6 K(x) such that t' S K(x), t S K{t') implies

f eF.

i^c\

12 CHRISTEL BAIER AND MARTA KWIATKOWSKA

PROOF. (a) If x e 11(F) then there exists an z-path (£n) in F. Let £ 6
K(x). Then f e £(i) = U„>0 /C(£„). Hence, there exists n > 0 such that
Z € *#„).

Assume that the condition on the right hand side of (a) is fulfilled.
Let (r)n) be an ar-path. For each n > 0 there exists f„ € K.(x) D F with
*7n £ £(£n)- Then a suitable subsequence of (£„) is an x-path in F.

(b) Follows by the duality of H and V and part (a).
D

DEFINITION 3.2. A safety, guarantee, response, resp. persistence property is
any property of the form A(F), £(F), 11(F), resp. V(F), where F is a fmitary
property. A subset T of A is called a liveness property iff for each f e £(.4) there
exists a; € T such that £ € /C(x). An obligation property is a property of the form

T = f) (SiUG«)
l<i<m

where Si,... ,Sm are safety properties and G\,... ,Gm are guarantee properties.
A reactivity property is a property of the form

T = fj (i^nPO
l<i<m

where Ri,... ,Rm are response properties and Pi,... ,Pm are persistence proper-
ties.

The hierarchy of safety, guarantee, response, persistence, obligation and reac-
tivity properties, and the duality of A and £, resp. 11 and V, as stated in [7] carry
over to our general framework:

THEOREM 3.3. Persistence properties subsume safety properties, guarantee prop-
erties are special kinds of response properties.

A(F) = V(AUF)), £(F) = K(£Rn(F))

Guarantee properties are complements of safety properties, while response properties
complements of persistence properties.

A\A(F) = £(K(A)\F), A\V(F) = K(IC(A)\F)

Obligation properties are special kinds of response and persistence properties.

D (A(Fi)u£(F!)) = K(n HA = pi fj Hi
!<»<"» \l<»<m / \l<i<m)

where
Hi = ^(FjjUffin^).

Reactivity properties subsume response and persistence properties, obligation prop-
erties subsume safety and guarantee properties.

PROOF. The duality of A and £ resp. 1Z and V is an easy verification. It is
clear that each safety or guarantee property is an obligation property since:

A(F) = A(F)ö£(<D), £(F') = A(9)u£(F')

and that each response or persistence property is a reactivity property:

11(F) = 11(F) I) V(<D), P(F') = 1l(<t))öV(F')

ILo

ON TOPOLOGICAL HIERARCHIES OF TEMPORAL PROPERTIES 13

The equation £(F) = 7l(£fin(F)) follows by A(F) = V(ARn(F)) and the duality
of A and £, resp. 1Z and V.

(1) We show A(F) = V(Aaa{F)). If x G A(F) then K(x) C F. Hence, for all
£ G K(x), K{£) C K,(x) C F. Therefore, £ € ARa(F). We conclude that
/C(x) C ,4fin(F), and hence x G V(ARU(F)).

If x G V(Afin(F)) then (by Lemma 3.1(b)) there exists £ G /C(x) such
that whenever f G /C(x), f G /C(f'), then £' € ARn(F). Let n G IC(x).
There exists f € £(x) with ^, 77 € £(£')• Then f G ^„(F) and therefore
n G £(£') C F It follows that x G A(F).

(2) Next we prove that if F, F' C K,(A) then .4(F) U£(F') = 11(H) = V{H)
where tf = ARn(F) U£fin(F').

If x G .4(F) then by part (1) of this proof x G P(^fin(F)) C 7e(.4fin(F)).
Hence, x G P(.4fin(F)) C V(H) and x G 7e(An(F)) C 11(H). If
x G S(F') then there is some £ G /C(x) D F'. Let (£n) be an x-path. Then
£ G £(fn0) f°r some no- Then £ G £(£„) for all n > no. Hence, £n G
£fin(F') for almost all n. Therefore, x G /P(£fin(-fv))- We conclude x G
K(£fin(F')) C ft(ff) and x G P(J-T).

Let x G 71(H). (Since 7>(#) C 11(H) this includes the case x G ?>(#).)
Then there is an x-path (£„) in H.

• If there exists n > 0 such that £„ G £fin(F') then /C(£„) D F' 5^ 0.
Since/C(£„)C/C(x),/C(x)nF' # 0. Thus x G £(F').

• If £„ £ £fin(F') for all n then £„ G v4fin(F) for all n. Hence, £(£„) C F
for all n. Therefore, /C(x) = Un>o £(&») £ F It follows that
x G .4(F).

(3) To show V (rii<i<m Fi) = fli<i<m Wi) observe that C is clear. If
x G C\V(Fi) then there exists & G /C(x) such that, for all £ G K.(x), £j G
/C(£) implies £ G F*. Since /C(x) is directed there is some 77 G /C(x) with
£i5--- ,£m G £(77). Hence, whenever £ G /C(x), 77 G /C(£) then £* G £(£),
and therefore £ G fl Fj. We conclude x£V(f)Fi).

^)f]1<i<m(AFi)U£(FI)) = 11 (a<i<m H) = v(f]1<i<mHi) where
#i = ^fi„(F)Uffin(F/).

By part (2) of this proof, A(Fi)\JS(F[) = 1l(Hi) = V(Hi). and part
(3) we have that

f](A(Fi)U£(F!)) = f)T{Ht) = v(f)Hi)

and

n nH) = n v(H) = v(f]Hi) c 7e(n^) c n ^(H).
Therefore

n{nHi) = n ^) = n w> = n (^)u^^)-
D

It is an open question whether liveness properties are special kinds of reactivity
properties.

Liveness does not subsume safety or guarantee properties. This is because 0 is
a safety and a guarantee property, but not a liveness property. In general, neither

;<W

14 CHRISTEL BAIER AND MARTA KWIATKOWSKA

response nor persistence properties subsume liveness properties, as can be seen from
the example below.

EXAMPLE 3.4. In the linear time model S°° the set

7i = { x G S1" : aw is a suffix of x }

is a liveness property (eventually always a), but not a response property. The set

T2 = { x G Sw : a" is not a suffix of x }

is a liveness property (always eventually not a), but not a persistence property.
(Here au stands for the infinite string aaa)

PROOF. It is clear that Ti and T2 are liveness properties. Suppose T\ = Tl(F)
for some F C S*. Then xx = ßau G Tx. Hence, there exists nx > 1 such that
ii = /fa"1 £ F. Then x2 = ßanißa" G Ti. Thus, there exists n2 > 1
with & = ßoinx /fa"2 G F. Proceeding in this way we get a sequence of natural
numbers rik > 1 such that

& = ßani /fa"2 ... /fa"* G F.

Let x = lim & (i.e. x is the unique infinite string where £* are prefices of x).
Then x G "^(F) (since (&) is an x-path in F), but x £ Tx. Contradiction.

The argument for T2 is similar. □

Part (a) of the following lemma shows that our definition of safety properties
is a generalization of the definition of safety properties in the sense of [3].

LEMMA 3.5. Let T C A. Then:

(a) T is safety property iff for each x £ A\T there exists some £ 6 K{x) such
that whenever y G A, £ G K{y) then y £T.

(b) T is a guarantee property iff for each x G T there exists some £ G K.{x) such
that whenever y G A, £ G K.(y), then y &T.

NOTATION 3.6. If £ e K(A) we put U{£) = {iel:{6 K(x) }.

It_is easy to see that, because of condition (5), whenever C, V G K.(x) for some
x G A then there exists f G K,(x) with £, n G £(£)• In particular, whenever
x G t/(C) n I7(IJ) then x G f/(0 C Z/(fl D C^(ij) for some ^ € /C(A). Hence,
the sets U(£), £ G /C(>1), form a topological basis. In what follows we assume
A to be equipped with the topology induced by the basis C(£), £ G K.{A), and
that A is endowed with the subspace topology. In part (b) of Lemma 3.7 we show
that in order-enriched linear time models the topology induced by the basis £/(£),
£ G K,{A), is the Scott-topology on A considered as an algebraic dcpo. In general,
the topology on A is not T2. This is because whenever /C(x) C IC(y) then each
neighbourhood of x contains y. In particular, a converging sequence might have
more than one limit. We write x = limxn to denote that x is one of the limits of
the sequence (xn). Since the topology on A is not T2, we cannot expect that in
the_case where a linear time model A is equipped with a length function the metric
on A induces the topology on A~. In part (c) of Lemma 3.7 we show that if A is
metric-enriched the metric on A induces the (subspace-)topology on A. Part (c)
of Lemma 3.7 can be applied to the metric-enriched linear time model S°° or the
metric-enriched linear time model of pomsets x G Pom°° where x[n] is finite for all
n.

(&2

ON TOPOLOGICAL HIERARCHIES OF TEMPORAL PROPERTIES 15

LEMMA 3.7. Let A be a linear time model.

(a) Whenever (xn)n>o is a sequence in A such that there exists an x-path (£n)n>o
with £n G K.{xn) for alln>0 then x = lim xn. In particular, each x-path
converges to x.

(b) // A is order-enriched then the topology on A agrees with the Scott topology
on A as an algebraic dcpo.

(c) If A is metric-enriched in the sense of Definition 2.13 then the metric on A
induces the topology on A.

PROOF, (b) is an easy verification using the fact that {/(£) = £ f.

(a) Let (xn) be a sequence in A and (£„) an x-path with £n G /C(x„). Let U be
an open neighbourhood of x. Then there exists 771,... , rjn G IC(A) such that

x e (J U(Vj) c u.
l<j<n

Then r\j € >C(x) = |J /C(&). Since £(&) C £(&+i) there exists k > 0
such that T]J G £(&), j = 1,... , n. Then for all i > k and j = 1,... , n:
Tjj G)C(£k) Q £(&) C £(x*). Hence, for all i > k:

* e (J tffa;) C [/.
l<7<n

Thus, we conclude that x = limx,-.
(c) We first show that if £ G K.(A), |£| = n, then {/(£) = ß(^,l/2"-1). Let

x G £/(£)• Then $ € £(x) and, by Theorem 2.12(a) and (c), £[n] = f = x[n]
and hence d{x,£) < 1/2". Therefore: x € S(f,l/2n) = Bfol^"-1).
If x G ß(C,l/2n-1) then d(x,0 < l/2n. Hence, £ G /C(fl = £„(£) =
ICn(x) Q /C(x). and x G £/(£) follows as required.

Next we show that if x G A and r > 0 then B(x, r) = C/(x[n]) where
n is the natural number with n = 0 if r > 1 and 1/2™ < r < l/2n_1

otherwise. If y G £(x,r) then d(x,y) < r < 1/2"-1. Hence, d(x,y) < 1/2".
Then £n(x) = Kn{y), and thus x[n] = y[n] G £(y), from which we
immediately obtain y G U(x[n]).

If y G £/(x[n]) then x[n] G K(y). Since x G .A we have |x[n]| = n. Hence
x[n] = y[n] and therefore d(x, y) < ^ < r. Thus, y G B(x, r) as required.

D

COROLLARY 3.8. • The topology on A is coarser than the topology on A
induced by the metric. This is because every basis open U(£) can be written
as B{x, 1/2"-1) where f = x[n], x e A. Note that B(x[n], 1/2"-1) =
B(x, 1/2"-1) and that all elements £ G K-(A) are of the form £ = x[n] for
some x G A and n > 0.

• For order-enriched models the topology on A is the relative Scott topology.
A is the subspace of maximal (and also non-compact) elements of A.

The following theorem generalizes the topological characterizations of safety,
guarantee and liveness properties as established in [3, 7, 19].

THEOREM 3.9. Let Abe a linear time model and T C A. Then:

(a) T is a safety property iff T is closed.
(b) T is a guarantee property iff T is open.

\<*5

16 CHRISTEL BAIER AND MARTA KWIATKOWSKA

(c) T is a liveness property iff T is dense.

PROOF. (a) Let T be closed. Then we show T = A(F) where F =
\JxeT K{x). llx£T then K.{x) C F. Hence, x £ A(F). Let x £ A(F),
then K.(x) C F. Let (£n) be a x-path. Since f„eF and, by definition of
F, there exists a sequence (xn) in T with fn € /C(xn) we have by Lemma
3.7(a) that x = limx„. Since T is closed and since xn £ T for all n > 0 we
conclude x £ T.

Let T = A(F), x e A and (xn) a sequence in T such that x is a limit
of (xn). We have to show that x £ T. Let f e /C(x). We have to show that
f £ F. Since £/(£) is an open neighbourhood of x, and since (xn) converges
to x, there exists m > 0 such that xm € U(£). Thus, £ G £(xm), and since
xm e T = ,4(F) we obtain £ £ F.

(b) follows by (a) and the duality of A and £.
(c) Let T be ji liveness property. We have to show that whenever U is an open

subset of A with UnA ^ 0 then £/TlT ^ 0. It is sufficient to consider the case
that U is basic open, i.e. U = f|i<i<„ u(&) f°r some £,... ,£„ € /C(A).
Since U C\ A ^ % there exists iGt/fli Then there exists f G /C(z) with
& € /C(0, i = 1,... ,n. Hence, £/(£) C £/\ Since T is a liveness property
there exists y € T with £ £ £(?/). Then y € [/(£), and thus y eTnU.

Let T be dense in A. If f e £(A) then f/(^) is open, and because of
condition (3) there exists x £ An U(£). Hence, A D C/(^) 7^ 0. Since T is
dense in A there is some y 6 Tfl f/(Oi from which it follows that y € T and
£ € /C(y).

D

In general, we do not obtain the results of [7, 19] which characterize response
and persistence properties as the Gs, resp. Fo-sets, unless the model satisfies
stronger conditions (see Theorem 3.10); in the latter case the hierarchy as in [7]
can be obtained. It is worth noting that the additional conditions are satisfied by
the linear model of strings, but not by traces and pomsets. As a counter-example,
consider aiß and the trace x = [(aß)°°], then there exists an infinite subset [a*] of
K{x) which does not contain an infinite x-path. The case for pomsets is similar,
except that a partial solution can be obtained by modifying the definition of the
map K,(x) to assign to an infinite pomset x the set of its n-cuts x[n], instead of
assigning all finite prefices of x. The results of [19] are more problematic as the
definitions of %{F) and V{F) differ from ours.

Recall that F^-sets are countable unions of closed sets, Gg-sets countable in-
tersection of open sets.

THEOREM 3.10. Let A be a linear time model such that:

(i) If x £ A and X is an infinite subset of K.{x) then X contains an x-path.
(ii) For each £ £ K,{A) the set K{£) is finite.

Then for each subset T of A:

(a) T is a response property iffT is a Gg-set.
(b) T is a persistence property iffT is a Fa-set.

PROOF, (b) follows by (a) and the duality of TZ and V. We show (a). Let
T = 11(F). We define Ft to be the set consisting of all £ £ F such that there exist

/t-V

ON TOPOLOGICAL HIERARCHIES OF TEMPORAL PROPERTIES 17

&,...,& €Fn/C(0 With

/c(6) c £(&) c ... c £(&) c £(£).
We prove that T = f\ £(Fk). Note that because of Theorem 3.9 (b) the sets
£{Fk) are open, hence f]£(Fk) is a Gg-set.

• If x G T then there exists an x-path (&)*>i such that £* € F for all k. Then
ft G Ft and therefore x G £ (Fk).

• If a; G p| S{Fk) then for each k > 1 there exists & 6 Ft fl/C(x). By definition
of Fk the cardinality of JC(£k) is at least A;. Since by assumption (ii) the
cardinality of £(£*) is finite, the set {£; : i > 1} is infinite. By assumption
(i) there exists an x-path in {& : i > 1}. Since & G Ft C F all elements of
the x-path belong to F. Therefore, x G 71(F).

If T = p) Gk, where G* are open sets in A, we may assume that Gi 3 G-i 3
Otherwise we deal with G^ = GiD.. .f)Gk- Because of Theorem 3.9 (b) there exists
subsets Fk of K(A) such that Gk = £ (Fk). W.l.o.g. Fi D F2 2 ... (otherwise we
deal with F'k = \Ji>k Ft). Let Hk be the set consisting of all £ G Ft such that:

whenever f G £(f), £' # 4, then f I Ft.

Let # = \JHk and F = HFt- We show T = £(F) U 11(H) Note that
£(F) = ft(£fin(F)) and hence £(F) U 11(H) = IZ(F') where F' = £Rn(F)UH.

• If x G T then for each k > 1 there exists & G Ft. Since £(£*) is finite (by
assumption (i)) we may assume that £* is minimal, i.e. whenever f G £(£*)>
&#£',then£'£Ft.

Case i: The set {& : k > 1} is finite.
Then there exists £ G {& : A; > 1} with £ = f* for infinitely many A;.

Hence, £ G Ft for infinitely many k. Since Fi D F: 2 • • • we get £ € Fk for
all A;, i.e. f € F and x 6 £(F).

Case 2: The set {£* : A; > 1} is infinite.
Because of the minimality of £* we have that £k £ Hk Q H. Let (rjk)

be an x-path in {£jt = A; > 1} (which exists because of assumption (i)). Then
T)k G H for all A;, and thus x G 1Z(H).

• If x G £(F) then £ € F for some £ G £(x). Hence, £ G Ft for all A; and
therefore x G U £(Ft) = T. If x G 72.(i?) then there exists an x-path (£*)
in ff. Then £* G ifmfc for some m* > 1. Since £(&) C £(£jt+i) we have:

6 G £(&+i) and & ^ &+x

By definition of Hmic we get:

6+1 € Fmk+1 and & g Fmh+1

Since Ft D F2 2 • • • we get: mi < m-i < ■ • ■ and therefore m* > A;. Hence,
6 € Fmh C Ft for all A:. Therefore, x€\J £(Fk) = T.

D

In [19] the respective definitions of 1Z and 7> differ from ours, i.e.

11(F) = {x G A : 3(£„) : £(&) C /C(&) C ... K{x) and £n £ F }.

One can show that under the assumptions (ii) and

(i') Each infinite subset of K(x) contains an increasing sequence

b">

18 CHRISTEL BAIER AND MARTA KWIATKOWSKA

the proof of Theorem 3.10 carries over to the modified definitions of 1Z and V if we
work with increasing sequences in)C(x) instead of x-paths. Note that under the
above conditions the domain of Mazurkiewicz traces becomes finitely concurrent.

LEMMA 3.11. LetF\,F2 be finitary properties. Then:

(a) A(Fi) fl A(F2) = A(Fi n F2) and A{FX) U A{F2) = A (AUF,) U ARn(F2))
(b) £(FO U S{F2) = £(F1 U F2) and £(Fx) n £{F2) = 5 (£fin(F) n £fin(F2))
(c) ft(Fx U F2) = 7e(Fx U F2)
(d) V(F1DF2)=V(F1)nV(F2)

It is an open question whether % and 7> are closed under intersection and
union respectively. However, under the assumptions (i) and (ii) of Theorem 3.10
we obtain that %{Fi C\F2) = 11(F), where F is the set of n G F2 such that there
exists f € Ft nif(77) satisfying: whenever n' E F2 n/C(r/) and £ e /C(V) then 77' = n.
The duality of H and 7? then yields the closedness of V under union.

4. Temporal logic and linear time models

In this section we show how linear or branching time temporal formulas can
be interpreted over arbitrary linear time models with an initial state _L and a next
step relation -K If x € A then we interpret the elements of K.(x) as possible
intermediate states which an execution of x may pass. If an execution of x reaches
the intermediate state £ then the possible next steps are those which lead to an
intermediate state £' £ !C(x) such that £ -► £'. We associate ->• with a mapping
which assigns to each step f -► £' a multiset acfc(£, £') of all those actions which are
executed in the step from £ to £'. If acfc(£,£') contains more than one action then
the actions in acfc(£, £') are executed in parallel. An execution (called observation)
of a (complete) computation is a sequence (£„)„>o which

• starts in the initial state £0 = -L
• successively performs —»-steps, i.e. £n -> £n+i
• approximates x, i.e. (£„) is an x-path.

Observe that the next step relation allows the simultanous execution of inde-
pendent actions; this should be compared with maximal progress.

In the case where the next step relation ensures the existence of a unique
execution, i.e. where the next step of a computation x in an intermediate state £ is
uniquely determined, we consider the linear time logic LTL which is closely related
to the linear time logic of [21, 7]. When the next step relation allows more than
one possible next steps, we use a partial order logic ISTL*.

In section 4.1 we formalize the conditions which a suitable next step relation
on a linear time model has to fulfill. Section 4.2 introduces our interpretation of
the linear time logic LTL over linear time models with a determinisitic next step
relation. We show that our interpretation of LTL over S°° and a suitable next step
relation coincides with those of [21, 23]. In section 4.3 we extend the interpretation
of the logic ISTL* [13, 27] to arbitrary linear time models with a next step relation.
The reader is cautioned to note that our intepretation of ISTL* is non-standar.

Our approach applied to the model [S°°] of traces differs from that of [19] as we
require an execution of a computation x to approximate x. This imposes fairness
in the sense of maximality, see e.g. [14, 18]. If we consider the linear time model
of partial order executions we get the interpretation of ISTL ä la [13].

IL-O

ON TOPOLOGICAL HIERARCHIES OF TEMPORAL PROPERTIES 19

4.1. Linear time models with a next step relation. Let S be a countable
set of atomic actions. In what follows A is a linear time model with an initial state
_L. By a multiset of atomic actions we mean a function K : S —> iVo. If «(a) = n > 1
then n copies of a are contained in K. If «(a) = 0 then a does not occur in K. We
write aE/tto denote that a appears at least once in K, i.e. n(a) > 1. Union of
multisets is defined to be addition.

DEFINITION 4.1. A next step relation on A is a pair (->,act) consisting of a
binary relation -»• on K,{A) and a mapping act which assigns to each pair (£,£')
of finite elements with £ -» £' a multiset act(£, £') of atomic actions such that the
following conditions (i) - (iv) are fulfilled:

(i) If £ ->• n then (Ci/.
(ii) If fi -» & and ^Ci)[l6 then fi -► 77 and 77 -> f2-

(iii) If £ C 77 then there exists A; > 2 and £1, £2, • • • , £* S £(>!) such that

£ = & -> 6 -*• • • • -*• 6-1 -> & = r/.
(iv) Whenever f = 6 -►&-*••.•->•&= »7 and f = & -» &-)•...->■#,= rj

then
(J act(&,6+i) = U act(^,^+i).

l<i<fc l<j<n

Conditions (i) and (iii) assert that the next step relation is compatible with
the natural order. By condition (i), whenever 77 is a possible next step of £ then
77 respresents a partial computation of £, and by (iii), whenever £ is a partial
computation of r\ then the intermediate state 77 can be reached from £ by performing
finitely many steps. Condition (ii) states that whenever £2 can be reached from £1
in one step then each partial computation 77 which lies between £1 and £2 can be
reached from £1 in one step, and there is a step leading from 77 to £2- Condition (ii)
(together with (iv)) reflects the assumption that, whenever the parallel execution
of a multiset K of actions leads from a state £1 to £2 and 77 is a state between £1 and
£2, then K can be divided into multisets «i and «2 such that first performing the
actions in Ki in parallel, and then the actions in K2 leads from £1 to £2 via 77. Note
that it might be the case that £1 -> £2 is a step such that act(£i,£2) consists of more
than one action, and that £1 —> £2 cannot be broken down into a sequence of steps
where in each step only a single action is performed. This is due to the fact that a
step might stand for the synchronized execution of atomic steps which we represent
by the multiset of all actions which participate in the synchronization. Condition
(iv) asserts that each state 77 is associated with a unique multiset of actions which
lead from a previous state £ to 77. In other words, we suppose each state to be
associated with its 'history': the multiset of actions (more precisely, the partially
ordered set of events) which must be performed to reach 77 from the initial state ±.

DEFINITION 4.2. If (-►, act) is a next step relation on A we say (A, -», act) is
a linear time model with next step relation. We say (^4,->,act) is an interleaving
model iff for each x E A there exists an enumeration £o> £1 > £2, • • • of the elements
of K. (x) such that

_ fo = -L -> £1 -► 6 -*■ ■■■
Otherwise we say (A, —>, act) is a true concurrency model.

In interleaving models the sets K,(x) are totally ordered w.r.t. the natural order
on A and the x-paths are exactly the subsequences of the unique sequence (£n) in

/c/7

20 CHRISTEL BAIER AND MARTA KWIATKOWSKA

K{x) with f0 = -L and £n -> £n+i for all n > 0. We say (£„) is the full x-path.
We refer to the n-th element f„ of the (unique) full x-path as the n-cut of x and
denote it by x[n]. In interleaving models, the next step of a computation x is
uniquely determined. Because of this, for the case of interleaving models we choose
a linear time logic. In contrast, in true concurrency models, where the partial
computations does not specify the order in which concurrent events are executed,
there might exist several predecessors for a given intermediate state £. For this
reason, for the true concurrency approach we use a branching time logic, where
the predecessors of an intermediate state arise from parallelism, and not from an
explicit non-deterministic choice operator.

Each metric-enriched linear time model A, together with a next step relation
of the form (->•, act) where

£ -> n <=> 3x 6 A 3n € N0 (f = x[n] A n = x[n + 1])

is an interleaving model. Vice versa, if there is a next step relation ->• on A then
a length function on A can be defined which turns A into a metric-enriched linear
time model.

4.2. Linear time logic and interleaving models. We consider a linear
time logic LTL which is essentially that of [23, 7]. The syntax of LTL is given by:

4> ::= tt I a | fa A fa | ->0 | Xa cj> \ Ya <f> \ fa U fa \ <£i S fo

where a G AP (AP denotes a set of atomic propositions) and a € E.
We interpret LTL over arbitrary interleaving models A as follows.

DEFINITION 4.3. A LTL structure is a 4-tuple (Ä, ->,act, L) consisting of an
interleaving model (A, ->, act) and an interpretation L of the atomic propositions,
i.e. L assigns to each atomic proposition a subset L(d) of K,(A).

Let (^4, ->, act, L) be a LTL-structure. The elements of L(d) fulfill the condition
represented by the atomic proposition a. We identify each computation x e A
with the execution which successively enters the states i[0],a;[l],x[2] In the
n-th state x[n], the unique step leading to x[n + 1] is performed. A formula (j> is
interpreted over the states of computations which are represented by pairs (x, n)
where x 6 A is a computation and n a natural number, (x, n) (= <p means that
in the n-th step of the computation x the condition specified by <j> is fulfilled. An
element x 6 A satisfies a formula <j> (denoted by x f= fa iff <j> is fulfilled in the initial
state, i.e. (x, 0) (= fa The relation (x, n) |= <j> is defined by structural induction.

u/a

ON TOPOLOGICAL HIERARCHIES OF TEMPORAL PROPERTIES 21

(x,n) \= tt

(x,n) \= a <£=>- x[n] G L(a)

(x,n) \= 0iA02 <=>■ {x,n) (= fa, i = 1,2

(x,n) |= -i</> <£=> {x,n) \£ <f>

(x,n) [= Xa cj> <=>• (x, n + 1) (= 0 and a € act(x[n],x[n + 1])

(x, n) (= FQ 0 <=> n > 1, (x,n — 1) |= 0, a £ act(x[n — l],x[n])

(x, n) |= 0i W fa •*=> there exists A; > n s.t. (x, fc) [= 02 and
(x,j) |= 0i, j =n,n + l,... ,A;- 1

(x, n) |= 0i S 02 -£=>■ there exists k <n s.t. (x, A;) f= 02 and
(x,j) \= 01, j = k + 1,... ,n-l,n

Sat(0) denotes the elements x € .A which satisfy 0. XQ and U are called future
operators, Ya and <5 past operators. A past formula is any formula which does not
contain any occurrence of a future operator. A future formula is any formula which
does not contain any occurrence of a past operator. For $ to be a past formula and
£ € K(A), there exists x € A and n > 0 with x[n] = £ and (x, n) ^ $ if and only if
(x, n) \= $ for all x £ J4 and n > 0 with x[n] = £. We put:

F$ = { x[n] : x € A, n > 0, (x, n) [= $ }

We use the following abbreviations. We put:

ff = -'tt, 01 V 02 = -,(-101 A -102), 01 —► 02 = ""01 V 02

and

O0 = tt W 0, G0 = -.O-10

As in [7], we define safety, guarantee, response and persistence formulas to be
formulas of the form □$, 0$, DO$ and OD$ respectively, where $ is a past
formula. A liveness formula is an LTL formula of the form

O (V (*i A OAi) j

where $* are past formulas and A» are future formulas such that:

• G (Vr=i $i) is valid-
• The formulas Ai are everywhere eventually satisfiable, i.e. for all 1 < i < n,

y 6 A and N > 0 there exists x € A and k > N such that x[N] = y[N] and
(x,A;)|=Ai.

Instead of the second condition [7] require that the future formulas Aj are satis-
fiable. In the case of the linear time model S°° satisfiability is equivalent to our
second condition, which can be seen as follows. Let A is a satisfiable future formula
(satisfiability w.r.t. £°°) and s £ S°°, I > 0 such that (s,l) (= A. Then, for each

/^

22 CHRISTEL BAIER AND MARTA KWIATKOWSKA

t € A°° and N > 0, let u be the string s[N]t. Then u[N] = t[N] and (u,k) \= A
where k = N + I. In order to see that (u, k) \= A it is essential that A does not
contain past operators.

LEMMA 4.4. Let $ be a past formula.

(a) Sat(D$) = A(F$) (a safety property)
(b) Sat(0$) = £(F$) (a guarantee property)
(c) Sat(DO*)\/C(M) = 7l(F$) (a response property)
(d) Sat(OD$) \ K,(M) = V{F$) (a persistence property)
(e) // A is a liveness formula then Safc(A) is a liveness property.

PROOF. (a) x € Sat(n$) iff (ar, 1) |= G$ iff (x,n) (= $ for all n > 0 iff
x[n] 6 F$ for all n > 0 iff x e -4(F*).

(b) x e Sat(0$) iff (x, ±) f= 0$ iff (x,n) (= $ for some n > 0 iff x[n] 6 F*
for some n > 0 iff x G £ (Fj>).

(c) x 6 Sat(DO$) iff (x, n) (= $ for infinitely many n iff x[n] G F$ for infinitely
many n iff x € 1Z(F$).

(d) x G Sat(OD$) iff (x,n) \= $ for almost all n iff x[n] G F$ for almost all n
iffxGft(.F*).

(e) Let f G £(4). Then f = y[N] for some y e A and AT > 0. We have to show
that there exists x G Safc(A) with x[JV] = f. Let

A = O (V (*« A OAt) J

Since ü(\/*t) is valid, (y, TV) |= $; for some i. Because Aj is everywhere
eventually satisfiable, there exists x e A and k> N such that x[7V] = f and
(x, fc) (= Aj. Since $; is a past formula we get (x, N) \= $j. Since k > N
we have (x, N) (= OAj, and hence

(x,N) \= $i A OAi

and therefore x (= A.
D

4.3. Partial order logic and true concurrency models. In this section
we briefly introduce the logic ISTL* [13, 27] and show how its formulas can be
interpreted over order-enriched linear time models. The reader is cautioned to note
that our interpretation of ISTL* is over more general, non-standard models, but
coincides with that of [27] for a suitably chosen next step relation. In [13] and
[27] ISTL* formulas are interpreted over interleaving sequences of partial order
executions (i.e. linearizations of pomsets of a certain kind), and Mazurkiewicz
traces respectively, whereas we give semantics (for syntactically the same formulas)
in arbitrary order-enriched linear time models.

A state formula of ISTL* is a formula </> given by the grammar:

<f> ::= tt | a | <j>x A <j>2 | -.0 | Aip

where a G AP is an atomic formula and ip is a path formula built from the following
production system:

rl> := <j> | Vi A^2 | ~«l> | Xa </> | Ya i> | [fa U fa] | [fa S fa]

where 0 is a state formula and a G S.

[!■-

ON TOPOLOGICAL HIERARCHIES OF TEMPORAL PROPERTIES 23

We use the following abbreviations:

ff = -.fct, /iV/2 = -.(-./! A -/a), h -> f2 = -./i V /2

for all state or path formulas /i, /2. If ip, tp' are path formulas then

Etp = ->A(-*I>), F^ = [ttWV], GV» = ->[« W (-^)],

PV = [tt S ip], Hip = i[tt 5 (-^)],

Xtf = Vper -M. Y1> = Vp6r Yp1>-

DEFINITION 4.5. A ISTL* structure is a 4-tuple (Ä, -+,act,L) where (Ä, -»
, act) is a linear time model with next step relation and L an interpretation of the
atomic propositions, i.e. a function which assigns to each atomic proposition a
subset L(a) of IC(A) consisting of those states £ which are supposed to satisfy the
condition a.

Let (A, ->, act, L) be a ISTL* structure. State formulas are interpreted over
intermediate states of computations which we represent by pairs (x, £) where igi
and £ 6 K.(x). Path formulas are interpreted over states of observations.

DEFINITION 4.6. Let (A, —►, act) be a linear time model with next step relation.
An observation on A is a sequence TT = (£n)n>o m £(A) such that:

• either & —t £j+i for all i > 0, or
• there is some k > 0 such that

fo -> & -> & -»...-» £* = £jfe+i = ffc+2 = ...

We write 7r(i) to denote the i-th element of n, i.e. if IT = (£o, &> • • •) then 7T(J) = &.
7T is called a x-observation iff in addition [Jfi = a;. An initial x-observation is an
x-observation 7r = (foj £i, • • •) with £o = -L-

The path quantifiers A and E of ISTL* range over ^-observations. The set of
all such observations is an 'Abramhamson structure', i.e. suffix-closed and fusion-
closed (cf. [1, 9, 13]). Suffix-closedness means that if (£n)n>o is an x-observation
then also (£„)„>* is an x-observation for arbitrary A: > 0. Fusion-closedness means
that if (£n)n>o and (j?n)n>o are x-observations such that fn = T]k for some n > -0
and A; > 0 then the sequence

Co, 6i ••■» £n=%, Vk+1, Vk+2, ••■
is an x-observation.

A computation x is said to satisfy a state formula <f> (denoted by x |= <j>) iff x
satisfies (f> in its initial state _L, i.e. iff (x, ±) |= <f>. Here (x, £) |= cj> where x £ A,
f € /C(x), is defined by structural induction:

(x,£) N tt

(ar.fl \= a <==> ££L(a)

(x,0 |= <£iA02 <=> (s.fl |= <f>i, i = 1,2

(x,0 |= -.0 <=> (x,0 £ <A

(x, £) |= A^ <==> (7T, i) |= V' for each x-observation 7r with 7r(i) = £

24 CHRISTEL BAIER AND MARTA KWIATKOWSKA

and for each observation n = (£o,£i>£2,...) and i > 0:

(*■>*) 1=0 <=*■ (*,&) 1= ^ where x = \Jtn

{ir,i) \= V1AV2 <=> (ir,i) \= iphi = l,2

(n,i) |= -V <=> (TT,*) H= V»

(7T,i) (= X0V <=> (7T,i + l) t= V, aeactfä.fc+i)

(ir,i) |= ra V <=> i > 1 and (TT, ? — 1) |= V, aGact(^_i,{»)

(7T, i) |= [V»i W fo] <=> there exists fc > i s.t. (7r, fc) f= V2
and (7r,j) |= Vi, J = *,* + 1,... ,k-l

(n, i) j= [ipi S ^2] <=>• there exists k < i with (7r, k) f= V2
and (7T,j) |= Vi, J = * + !,-•• ,*-l,»'

REMARK 4.7. If ISTL* formulas are interpreted over a LTL structure (Ä, ->
, act, L) then the quantifiers E and A have the same interpretation. This is because
x[0],x[l],... is the unique x-observation. In this case the logic ISTL* reduces to
the linear time logic. Let <f> be the LTL formula which arises from a state formula
<f> by removing the quantifiers A and E. Then x \=IST <t> if and only if x \=LT 4>.
(The index LT, resp. 1ST, denotes whether (Ä, ->, act, L) is assumed to be a LTL
structure or a ISTL* structure.)

Let Sat(<j>) be the set of all x £ D which satisfies <f>:

Sat(<j>) = {x GD : x \= cf> }

The operators U and X are called future operators, S and Y past opertors. A past
formula is a formula which does not contain any future operators. A future formula
is a formula without past operators. Let $ be a past state formula and £ 6 K(A).
Then (x,£) |= $ for some x e A with f C x if and only if (x,£) |= $ for all
x €. A with (Ci. We define:

F* = {Z€lC(A) : (x,f) |= * for some x e ,4 }

Safety, guarantee, response and persistence properties are given by the forms AG$,
EF$, EGF$ and AFG$ respectively, where $ is a past state formula. A liveness
formula is a state formula of the form

EF (V (*< A FAt))

where $j are past state formulas and Aj future state formulas such that
• AG(\J $i) is valid
• A» is everywhere eventually satisfiable, i.e. for each f e K,{A) there exists

x € A and rj € K{x) with:

£ C JJ C x, (x,77) |= Aj

LEMMA 4.8. Let $ be a past formula. Then:

(a) Sat(AG$) = A(F*)

'7>

ON TOPOLOGICAL HIERARCHIES OF TEMPORAL PROPERTIES 25

(b) Sat(EF$) = £(F9)
(c) Sat(EGF$) \ K{D) = K(F*)
(d) Sat(AFG$) \ IC(D) = V{F^)
(e) If A is a liveness formula then Sat(A) is a liveness property.

PROOF, (a)-(d) The proof is similar to Lemma 4.4.
(e) Let A = EF{ V($* A ■FA«)) be a liveness formula. Let f 6 K.{A). Since

$i are past formulas and since AG{\] $,) is valid, there is some i with
£ € -F<j>i. Since Aj is everywhere eventually satisfiable there exists x £ A
and T) £ /C(x) such that £ C n C x and {x,rj) f= Aj. Let it be an initial
x-observation such that n(j) = £ and 7r(A;) = r) for some 0 < j < k. Then
(n,k) \= Aj and (ir,j) [= #«. Hence, (ir,j) \= $» A FAj and therefore

(TT.O) f= FCV^iAFAO).

Thus, a; [= A, i.e. x e Sat(A).
D

We have not been able to find syntactic descriptions of obligation and reactivity
properties, and also progress properties in the sense of [7]. It is an open problem
whether it can be shown that each of these classes of formulas is characteristic in
the sense that each extensional property corresponds to a syntactic property.

The following lemma shows that our requirement that an x-observations ap-
proximates x ensures that each action a which is enabled in some state £ during
some execution of x is actually performed in every linearization of x at a state
subsuming (above) £, cf maximality [14]. If a € S then we put:

ena = EXatt, exa = AFXatt

Then (x, £) (= en(a) iff the action a is enabled (i.e. can be performed) in the state
£. (x, f) f= exa iff in each execution of x the action a will be performed at some
state subsuming £.

LEMMA 4.9. The formula AG(ena ->• exa) holds for all x e A.

4.4. Examples.
4.4.1. Interpreting LTL over strings. The temporal logic used in [28, 23,

7] is essentially the same as our logic LTL, the only difference being that our
next/previous step operators Xa, Ya are labelled with actions a. Our interpre-
tation of LTL formulas (using X, Y instead of Xa, Ya) over the metric-enriched
linear time model S°° coincides with that of [7].

The language LTL also includes Lamport's linear time logic (called TL) [21,
26]. TL formulas are built from the atomic propositions using the ordinary logical
operators V, A and ->, and the temporal operators □ and O. The interpretation
of [21] of Ti-formulas over sequences of system states corresponds to our inter-
pretation of TL for the case of the interleaving model 0°° = 0* U 0W. Here
0 denotes a set of (possible) system states, typically mappings from program and
control variables to values. 0* denotes the set of finite sequences over 0 and 0W

the set of infinite sequences. Terminating computations are represented by infinite
strings where the final state is repeated infinitely often.

[26] defines safety properties as those which are induced by formulas of the
form a ->■ Ob where a and b are atomic propositions. Liveness formulas in the sense
of [26] have the form D(a -)• Ob).

173

26 CHRISTEL BAIER AND MARTA KWIATKOWSKA

4.4.2. Interpreting ISTL over traces. The logic ISTL* of [27] is interpreted
over Mazurkiewicz traces. We now consider its relationship with our linear model
framework.

In [27], the starting point is a program described by a tuple (E,t,Q,y) where
(E,t) is a concurrent alphabet, 0 a satisfiable predicate (the initial condition) and
y a finite sequence of program variables. An assignment for y is a function J
which assigns to each program variable y a value J(y) of the domain of y. The
assignments can be viewed as states of the program. Each a € E is associated with
a pair < ena,fa > where ena is an enabling condition and fa a transformation that
describes the effect of a applied in a state where ena holds, i.e. fa is a function
which assigns to each assignment J for y with J (= ena an assignment fa(J). (Here
a satisfaction relation |= for the enabling conditions and the assignments for y is
supposed such that J \= ena iff a is enabled in J.) Moreover, the commutativity
of independent actions and the fact that independent actions can neither disable
nor enable each other is required. Formally, for all actions a, ß with aiß and all
assignments J for y:

• If J |= ena A enp then fa(fp(J)) = fp(fa(J)).
• If J (= en a then J (= enp if and only if fa(J) (= en p.

For simplicity, we assume a fixed initial state (an assignment Jinit for y). (Jinit

might be either an assignment where the initial condition 0 holds or an 'accessible'
assignment, i.e. an assignment J which is reachable from an assignment where
the initial condition holds.) We define H*init to be the set of finite strings s =
a0ai...an over E such that Jt (= enai, i = 0,1,... ,n where J0 = Jinit and
Ji+i = fai(Ji)- The interpretation Jn+1 is called the 'final interpretation' of s and
is denoted by fins. The commutativity of independent actions implies that if s = t
then fins = fint. Hence, we may define fin^ = fins for each finite trace £ = [s]
where s G E*nif. Let x be an infinite trace such that x = [s] for some infinite
string s over E where all prefices of s belong to E*nit. x can be viewed as a 'run'
in the sense of [27] (which is defined as a maximal subset of [E*njt] consisting of
pairwise consistent traces where the consistency of two finite traces £i, £2 means
that £i, f2 C f for some finite trace £). An 'observation' of x in the sence of [27]
is a sequence of traces £0,£i, • • • such that £0 is the empty trace, &+i = ^[a^] for
some at e E, and whenever (Ci then £ C & for some i. Hence, the observations
of x in the sense of [27] are exactly the x-observations in the linear time model
[E°°], together with the next step relation ->• defined by:

x -» y <*=> 3s € E*, a 6 Ex = [s] A y = [sa]

where act([s], [sa]) = {a} is the multiset containing a.
We assume that there is a satisfaction relation ^ for the atomic propositions

and the interpretations J for the program variables y such that J ^ a iff a is true
in the state J. This yields an interpretation L for the atomic propositions which
assigns to each atomic proposition a a set L(a) of finite traces £ € [E*ni(]:

£ € L{a) iff fin$ \= a.

[27] associates each run x with an J5TZ,*-structure and obtains a satisfaction
relation 1=^ for each run x. This satisfaction relation agrees with ours (in the sense
that ± \=x ip iff x (= <p) when we deal with the linear time model of traces, the next
step relation -> and the interpretation L as above. Here we replace the next step

|7</

ON TOPOLOGICAL HIERARCHIES OF TEMPORAL PROPERTIES 27

operator X in [27] by the labelled next step operators Xa, and similarly their first
order (state) formulas are substituted by atomic propositions.

Instead of x-observations, which are maximal in the order-theoretic sense, [19]
use arbitrary observations (£n) in K,{x) as executions of x; for example, the latter
admits non-maximal Mazurkiewicz traces. In [19] a computation i in a state £
satisfies a formula of the form E(f> iff there exists an observation -K in K{x) starting
in f with (n, 0) |= (f>. Notice that it is not required that n approximates x, i.e. the
case U ir(i) C. x is allowed. For instance, the formula

$ = EGXatt

is satisfied in the approach of [19] by the trace [s], s = ßaaa ..., where a i ß, but
not in our framework. This is because

[a] ->• [aa] -¥ [aaa] -¥ ...

is considered an execution of [s] in [19], but not in this paper.
Another useful next step relation on [E°°] is given by:

x => y

iff there exists pairwise independent actions e*i,... , an 6 S such that x[ati... an] =
y. The associated multiset of actions is

acfc(x, x[a\,... , an]) = multiset consisting of ai,... , a„.

This next step relation allows the parallel execution of pairwise independent actions
in one step. The interpretation of I STL* formulas over the I STL* structure

([E~],=>,act,L)

differs from the interpretation over ([S°°],->,act, L) in the next (resp. previous)
step operators Xa (resp. Ya).

LEMMA 4.10. If <j> is a formula which does not contain the operators Xa and
Ya then an infinite trace x satisfies <f> w.r.t. the next step relation —> if and only if
(j> is satisfied by x using the interpretation based on the next step relation =>.

If I STL* is used to formulate real-time constraints such as 'a process responds
to a request within 3 time units', and if we suppose that each atomic action can be
executed in a single time unit, the next step relation -¥ is not helpful since it ignores
the fact that the parallel execution of pairwise independent actions c*i,... , an can
be performed within a single time unit. Consider the formula

4> = EG{Yßtt -► XXatt)

where ß stands for an (input-) action which is performed by a handshake mechanism
and where a is an (output-)action representing the acknowledge for the receipt of
the message transmitted by ß. Then <f> ensures the existence of an execution which
satisfies the following: whenever the system receives a message it acknowledges
the receipt after two time units. Let s = ßjat where ß t 7, -i(a 1 ß) and
-i(a 1 7) and where t = %/vV One might think of 7 as an input-action
where the message is transmitted on a channel different from that which is used
for ß (hence ß and 7 can be performed in parallel) and the acknowledge sent by a
consists of a message that uses an information which is given by 7 (hence a and 7
are dependent). Using the next step relation => we get that the trace [s] satisfies
<t>. By means of -¥ the trace [s] does not satisfy <j>.

n>

28 CHRISTEL BAIER AND MARTA KWIATKOWSKA

4.4.3. Interpreting ISTL over pomsets. When considering the order-enriched
linear time model Pom°° there are two natural ways to define the next step relation.

The first possibility is to define the step relation x -+ y iff x C y and whenever
x E z Q y then either x = z or z - y. Then x ->■ y iff x = y\S where 5 arises
from the event set of y by removing a single event e of maximal depth. If a is the
label of this event e in y then we put act(x,y) = {a}.

[13] proposes an interpretation of ISTL* over pomsets of a certain kind, called
'partial order executions'. In the approach of [13] the actions a are associated with
an operation which explains how the variables of a system are modified when a
is executed. A partial order execution is then a pomset together with an initial
'snapshot' (i.e. a partial function from variables to values) such that each pair
of events e, e' which affect the same variables are ordered, i.e. either e < e' or
e' < e. In the approach of [13] intermediate states of a computation represented by
a partial order execution x are 'slices', i.e. a left-closed finite set S' of the event set
of x. Hence, a slice of a pomset x can be identified with a finite pomset £ € K,(x)
which is an intermediate state in our approach. [13] interpret path formulas over
'acceptable paths': if a; is a partial order execution then an acceptable path of x
is a sequence (5„) of z-slices such that 5n = Sn+1 \ {e} for some maximal event
e in 5„+i and such that each event e of a; is contained in some slice Sn- Hence,
an acceptable path is an x-observation w.r.t. the next step relation ->. Identifying
partial order executions and pomsets we obtain that the interpretation of ISTL
in the sense of [13] agrees with our interpretation using the linear time model of
pomsets and the next step relation -K

Secondly, we consider the next step relation => defined as follows. Let y = (5, <
, 0 and x = y\S' where S' C S is left-closed. Then x => y iff, for all e, e' € 5 € 5',
either e = e' or -i(e < e') A (e' < e). I.e. x => y iff the events in S \ S' are pairwise
independent. In this case the step from x to y stands for the parallel execution of
the events S\S'. We define act(x, y) to be multiset of all actions 1(e), e € S\S'.

5. Conclusion and Further Work

We have formulated an abstract, axiomatically given notion of a linear time
model, and considered classes of behavioural properties in such models. Our frame-
work admits the interleaving models, as well as some 'true concurrency' models such
as Mazurkiewicz traces and pomsets as special cases, but it does not handle full
non-determinism. In this general framework we have been able to obtain exten-
sional, topological and temporal characterizations of classes of properties including
safety and liveness, generalising many of the results of [3, 7, 19]. As yet, we do not
know how to admit the automata-theoretic characterization of [7] into our frame-
work, and how to syntactically characterize properties such as reactivity. This is
the subject of future study.

References

[1] K. Abrahamson, Decidability and expressiveness of logics of programs, Ph.D. Thesis, Univer-
sity of Washington at Seattle, 1980.

[2] S. Abramsky, A. Jung, Domain Theory, In S. Abramsky, D.M. Gabbay and T.S.E. Maibaum,
editors, Handbook of Logic in Computer Science, vol. 3, Clarendon Press, 1994.

[3] B. Alpern, F. Schneider, Defining liveness, Information Processing Letters 21, 1985, 181-185.
[4] B. Alpern, F. Schneider, Recognizing safety and liveness, Distributed Computing 2, 1987,

117-126.

<7U

ON TOPOLOGICAL HIERARCHIES OF TEMPORAL PROPERTIES 29

[5] J.W. de Bakker, J.H.A. Warmerdam, Metric pomset semantics for a concurrent language with
recursion, In I. Guessarian, editor, Semantics of Systems of Concurrent Processes, LNCS vol.
469, Springer-Verlag, 1990, 21-49.

[6] E.M. Clarke, E.A. Emerson, Design and Synthesis of Synchronization Skeletons using
Branching Time Temporal Logic, In Proc. Workshop on Logics of Programs, LNCS vol.
131, Springer-Verlag, 1981.

[7] E. Chang, Z. Manna, A. Pnueli, The Safety-Progress Classification, In Proc. Computer and
System Science, NATO Advanced Science Institute Series, Springer-Verlag, 1992.

[8] E. Chang, Z. Manna, A. Pnueli, Characterization of Temporal Property Classes, In W. Kuich,
editor, Proc. ICALP92, LNCS vol. 623, Springer-Verlag, 1992, 474-486.

[9] C. Courcoubetis, M. Vardi, P. Wolper, Reasoning about fair concurrent programs, In Proc.
18th ACM Symposium on Theory of Computing, Berkeley, ACM Press, 1986.

[10] R. Engelking, General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann
Verlag, Berlin, 1989.

[11] G. Gierz, H. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. Scott, A Compendium of
Continuous Lattices, Springer-Verlag, 1980.

[12] U. Goltz, R. Loogen, Modelling Nondeterministic Concurrent Processes with Event Struc-
tures, Fundamenta Informaticae 14 1 (1991) 39-74.

[13] S. Katz, D. Peled, Interleaving Set Temporal Logic, Theoretical Computer Science 75 3 (1990)
21-43!

[14] M. Kwiatkowska, Event Fairness and Non-Interleaving Concurrency, Formal Aspects of
Computing 1 3 (1989) 213-228.

[15] M. Kwiatkowska, Defining Process Fairness for Non-Interleaving Concurrency. In Proc.
Foundations of Software Technology and Theoretical Computer Science, LNCS vol. 472,
Springer-Verlag, 1990, 286-300.

[16] M. Kwiatkowska, A metric for traces, Information Processing Letters 35 (1990) 129-135.
[17] M. Kwiatkowska. On the domain of traces and sequential composition. In S. Abramsky and

T.S.E.. Maibaum, editors, Proc. 16th Coll. on Trees in Algebra and Programming (CAAP'91),
LNCS vol. 493, Springer-Verlag, 1991, 42-56.

[18] M. Kwiatkowska. On topological characterization of behavioural properties. In G. Reed,
A. Roscoe, and R. Wächter, editors, Topology and Category Theory in Computer Science,
Oxford University Press, 1991, 153-177.

[19] M. Kwiatkowska, D. Peled, W. Penczek, A Hierarchy of Partial Order Temporal Properties.
In Proc. Temporal Logic, LNCS vol. 827, Springer-Verlag, 1994, 398-414.

[20] L. Lamport, Proving the Correctness of Multiprocess Programs, IEEE Trans. Software Engi-
neering SE-3 2, (1977) 125-143.

[21] L. Lamport, Specifying Concurrent Program Modules, ACM Transactions on Programming
Languages and Systems 5 2 (1983).

[22] M. Majster-Cederbaum, C. Baier, Metric Completion versus Ideal Completion. To appear in
Theoretical Computer Science.

[23] Z. Manna, A. Pnueli, A Hierarchy of Temporal Properties. In Proc. 9th ACM Symposium on
Principles of Distributed Computing, ACM Press, 1990, 377-408.

[24] A. Mazurkiewicz, Basic notions of trace theory. In Linear Time, Branching Time and Partial
Order in Logics and Models for Concurrency, LNCS vol. 354, Springer-Verlag, 1988, 25-34.

[25] R. Milner, Communication and Concurrency, Prentice Hall, 1989.
[26] S. Owicki, L. Lamport, Proving Liveness Properties of Concurrent Programs, ACM Trans-

actions on Programming Languages and Systems, 4 3 (1982) 455-495.
[27] D. Peled, A. Pnueli, Proving Partial Order Liveness Properties. In Proc. ICALP'90, Warwick,

LNCS vol. 443, Springer-Verlag, 553-571.
[28] A. Pnueli, The Temporal Logic of Programs, Proc. 18th Ann. Symp. on Foundations of

Computer Science, Providence, IEEE Press, 1977.
[29] V. Pratt, The Pomset Model of Parallel Processes: Unifying the Temporal and the Spatial.

In Proc. Seminar on Concurrency, LNCS vol. 197, Springer-Verlag, 1984.
[30] W. Reisig, Partial Order Semantics versus Interleaving Semantics for CSP-like Languages

and its Impact on Fairness. In Proc. ICALP'84, LNCS vol. 172, Springer-Verlag, 1984, 403-
413.

[31] W. Reisig, Elements of a Temporal Logic Coping with Concurrency, SFB-Bericht 342/23,
92A, Techn. Universität München, 1992.

1 1

30 CHRISTEL BAIER AND MARTA KWIATKOWSKA

[32] W. Thomas, Automata on Infinite Objects. In J. van Leeuwen, editor, Handbook of Theoret-
ical Computer Science vol. B, North-Holland, 1990, 135-191.

[33] G. Winskel, An introduction to event structures. In Linear Time, Branching Time and Partial
Order in Models and Logics for Concurrency, LNCS vol. 354, Springer-Verlag, 1988, 364-397.

FAKULTäT FüR MATHEMATIK k INFORMATIK, UNIVERSITäT MANNHEIM, 68131 MANNHEIM,

GERMANY

E-mail address: baierflinformatik.uni-mannheim.de

SCHOOL OF COMPUTER SCIENCE, UNIVERSITY OF BIRMINGHAM, EDGBASTON, BIRMINGHAM

B15 2TT, UK
E-mail address: M.Z.Kwiatkowskaflcs.bham.ac.uk

173

Linear Time Temporal Logics over
Mazurkiewicz Traces*

Madhavan Mukund and P.S. Thiagarajan
School of Mathematics, SPIC Science Foundation,

92 G N Chetty Rd, Madras 600 017, India
E-mail: {madhavan,pst}@ssfernet.in

Abstract

Temporal logics are a well-established tool for specifying and reasoning
about the computations performed by distributed systems. Although tem-
poral logics are interpreted over sequences, it is often the case that such
sequences can be gathered together into equivalence classes where all mem-
bers of an equivalence class represent the same partially ordered stretch of
behaviour of the system. This appears to have important implications for
improving the practical efficiency of automated verification methods based
on temporal logics. With this as motivation, we study logics that are directly
interpreted over partial orders. We survey a number of linear time temporal
logics whose underlying frames are Mazurkiewicz traces. We describe au-
tomata theoretic methods for solving the satisfiability and model checking
problems for these logics. It turns out that we still do not know what the
"canonical" linear time temporal logic over Mazurkiewicz traces looks like.
We identify here the criteria that should be met by this elusive logic.

Introduction
Propositional Linear time Temporal Logic (LTL) proposed by Pnueli [Pnu] has be-
come a well established tool for specifying and reasoning about complex distributed
behaviours [MP]. A central feature of LTL is that its formulas are interpreted over
infinite sequences. In applications of LTL, the infinite sequences consist of the runs
of a distributed system with each run being an infinite sequence of states assumed
by the system or an infinite sequence of actions executed by the system during
the course of a computation. Interesting distributed systems consist of a number
of autonomous sequential agents that coordinate their behaviour with the help of
some communication mechanism. In such systems, substantial portions of a com-
putation will consist of causally independent tasks performed by different agents at
separate locations. Consequently a single partially ordered stretch of behaviour of
the system will be modelled by many different runs that differ from each other only

"This paper originally appeared in W. Penczek (Ed.), Mathematical Foundations of Computer
Science (MFCS) 1996, Proceedings, Lecture Notes in Computer Science, Vol 1113, Springer-Verlag
(1996) 62-92.

7'\ Si

in the order in which they record causally independent occurrences of actions. This
kind of run-based view is often referred to as an interleaved semantics of distributed
systems.

The interleaved view of the behaviour of distributed systems has proved to be
very successful and popular. However it has been known for some time that the
practical effectiveness of LTL and related formalisms can be often enhanced by
modelling and analyzing the concerned behaviours in terms of partial orders rather
than sequences.

In typical applications, an LTL formula constitutes the specification of the sys-
tem behaviour and the verification problem consists of checking whether every run
of the system is a model of the formula and therefore whether the system meets the
specification. The property expressed by the specification is very often of the kind
where either all the interleaved runs corresponding to a single partially ordered
computation have the property or none of the interleavings have the property. A
typical example of such a property is freedom from deadlock, as pointed out by
Valmari [Val]. As a result, it suffices to verify the desired property for just one
representative run of each partially ordered computation. The resulting saving in
running time and memory usage can be substantial in practice [GW]. This is the
background and motivation underlying the so called partial order based verification
methods which are a subject of active research [GW, KP, Val].

There is an alternative way to exploit non-sequential behaviours and the atten-
dant partial order based verification methods. It consists of developing temporal
logics and related techniques that can be directly applied to specify and reason
about the properties of partial order based runs of a distributed system. In this
paper we survey linear time temporal logics that have arisen from this approach.

In going from sequences to partial orders it is easy to go overboard because
so many possibilities are available. Fortunately, in the context of distributed be-
haviours, Mazurkiewicz has formulated a tractable and yet very fruitful way of
passing from sequences to partial orders [Maz]. The resulting restricted partial
orders are known as Mazurkiewicz traces, often called—as we shall do here—just
traces. The theory of traces is well developed [Die, DR] and is strongly related
to the theory of other well known formalisms such as Petri nets and event struc-
tures. Further, the classical theory of w-regular (word) languages in terms of its
logical, algebraic and automata-theoretic aspects has been successfully extended
to w-regular trace languages [EM, GP]. Finally, the structures that underlie the
partial order based verification methods being developed recently can be almost
always be viewed as traces.

Hence there is a good deal of motivation for formulating linear time temporal
logics that are to be directly interpreted over traces. Many such logics are now
available. In the present survey, we will mainly concentrate on the ones that fulfill
two criteria:

(i) The logic should be expressible within the first order theory of traces.

(ii) The satisfiability problem for the logic should admit a treatment in terms of
asynchronous Büchi automata.

This seemingly arbitrary choice of criteria can be justified as follows. LTL is the
linear time temporal logic over sequences in that it is equivalent in expressive power

/£<-

to the first order theory of sequences [Zuc]. We consider the task of identifying the
counterpart of LTL for traces to be an important one both from a theoretical and
practical standpoint (see the last portion of Section 4). At present we do not know
what this counterpart of LTL looks like. However, it seems a good starting point to
concentrate on those linear time temporal logics that are at least no more expressive
than the first order theory of traces.

As for the second criterion, an appealing feature of LTL is that its satisfiability
and model checking problems can be transparently solved using Biichi automata
[VW]. This has led to a clean separation of the logical and combinatorial aspects
of these problems, thus contributing to the development of automated verification
methods and related optimization techniques. The evidence available at present
suggests that asynchronous Biichi automata are an appropriate machine model
for dealing with w-regular trace languages. Hence it seems worthwhile to lift the
interplay between LTL and Biichi automata to the level of traces.

In the next section we review the basic aspects of traces. In Section 2 we de-
scribe asynchronous Biichi automata and present our version of these automata
called, for want of a better name, A2-automata. In Section 3, the heart of the
paper, we present the logic TrPTL (Trace based Propositional Temporal logic of
Linear time) and two of its sublogics TrPTLcon and TrPTL®. The logic TrPTL is
directly interpreted over traces. We show that the satisfiability and model checking
problems for TrPTL can be solved using A2-automata. We then show that the syn-
tactic restrictions imposed to obtain TrPTLcon and TrPTL® lead to corresponding
simplifications in the world of automata. After presenting these results we survey
a number of other temporal logics that use traces as their underlying frames. In
Section 4 we show that TrPTL is expressible within the first order theory of traces.
The final section contains concluding remarks.

Most of the results will be presented without proofs. The proofs are either
available in the literature or can be easily manufactured using the results available
in the literature.

1 Traces

The starting point for trace theory is a trace alphabet (E, I), where E, the alphabet,
is a finite set and / C Ex E is an irreflexive and symmetric independence relation. In
most applications, E consists of the actions performed by a distributed system while
/ captures a strong static notion of causal independence between actions. The idea
is that contiguous independent actions occur with no causal order between them.
Thus, every sequence of actions from E corresponds to an interleaved observation of
a partially-ordered stretch of system behaviour. This leads to a natural equivalence
relation over execution sequences: two sequences are equated iff they correspond
to different interleavings of the same partially-ordered stretch of behaviour.

To formulate this equivalence relation precisely, we need some terminology. For
the rest of the section we fix a trace alphabet (E,/) and let a,b range over E.
D = (E x E) — I is called the dependency relation. Note that D is reflexive and
symmetric. A set p C E is called a D-clique iff p x p C D. We set E°° = E* U E"
where E* is the set of finite words over E and E" is the set of infinite words over
E. We let a, a' with or without subscripts range over E°° and T,T' with or without

. 8

subscripts range over E*. The equivalence relation ~; C E°° x E°° induced by / is
given by:

a ~/ a' iff a \p = a' \p for every D-clique p.

Here and elsewhere, if A is a finite set, p G A°° and B C A then p \B is the
sequence obtained by erasing from p all occurrences of letters in A - B.

Clearly ~/ is an equivalence relation. Notice that if a = Tab<jx and a' = rbaa1

with (a, 6) e / then a ~/ a'. Thus a and a' are identified if they differ only in
the order of appearance of a pair of adjacent independent actions. In fact, for
finite words, an alternative way to characterize ~/ is to say that a ~/ a' iff a' can
be obtained from a by a finite sequence of permutations of adjacent independent
actions. Unfortunately, the definition of ~/ in terms of permutations is too naive
to be transported to infinite words, which is why we work with the less intuitive
definition presented here.

The equivalence classes generated by ~/ are called (Mazurkiewicz) traces. The
theory of traces is well developed and documented—see [Die, DR] for basic material
as well as a substantial number of references to related work.

Traces have many equivalent representations. We shall view traces as special
kinds of labelled partial orders. Since sequences can be viewed as labelled total
orders, this representation emphasizes that traces are an elegant and non-trivial
generalization of sequences.

Recall that a E-labelled poset is a structure F = (£,<, A) where < is a partial
order on the set E and A : E -» E is a labelling function. The covering relation
< C E x E is given by: e < e' iff e < e' (i.e., e < e' and e ^ e') and for every
e" e E, e < e" < e' implies e = e" or e" = e'.

For X C E we define [X to be the set {y \ y < x for some x e X}. If X is a
singleton {x}, we write [x instead of |{x}.

We can now formulate traces in terms of labelled partial orders. A trace over
(E, /) is a E-labelled poset F = (E, <, A) which satisfies the following conditions.

• E is a countable set.

• For each e e E, |e is a finite set.

• For all e, e' € E, if e < e' then (A(e), A(e')) € D.

• For all e, e' € E, if (A(e), A(e')) G D then e < e' or e' < e.

Let TR(T,, I) denote the set of E-labelled posets that satisfy the definition above.
We now sketch briefly the proof that E°°/~/ and Tfl(E, /) represent the same
class of objects. We construct representation maps str : E°° —► TR(E, I) and
trs : Ti?(E, /) -> E°°/ ~/ and state some results which show that these maps are
"inverses" of each other. We shall not prove these results. The details can be easily
obtained using the constructions developed in [WN] for relating traces and event
structures.

Henceforth, we will not distinguish between isomorphic elements in TÄ(E,7).
In other words, whenever we write F = F' for traces F = (E, <,A) and F' =
(£", <', A'), we mean that there is a label-preserving isomorphism between F and
F .

For a e E°°, [a] stands for the ~/-equivalence class containing a. We use ■<
to describe the usual prefix ordering over sequences. Let prf {a) denote the set of
finite prefixes of a.

We now define str : E°° -+ TR(X,I). Let a € E°°. Then str(cr) = (E,<,\)
where:

• E = {TO, I ra € prf(a)}. Recall that r € E* and a € E. Thus £7 =
prf (cr) — {e}, where e is the null string.

• <CExEis the least partial order which satisfies:

For all ra, r'b € E, if ra X r'b and (a, 6) e D then ra < r'b.

• For ra € E, A(ra) = a.

The map str induces a natural map str' from E°°/ ~j to Tß(E, /) defined by
str'([cr]) = str(cr). One can show that if a, a' € E°°, then a ~j a' iff str(cr) = str(a').
This observation guarantees that str' is well defined. In fact, henceforth we shall
write str to denote both str and str'.

To go in the other direction let F = (E,<,\) be a trace over (£,/). Then
p e E°° is called a linearization of F iff every e £ E appears exactly once in p and,
moreover, whenever e, e' S E and e < e', e appears before e' in p.

As usual, we can extend the labelling function A : E —► E to words over E in a
canonical way. If p — eoei... is a word in £7°° then \{p) denotes the corresponding
word A(e0)A(ei)... in E°°. We can now define the map trs : T#(E, /) -> E°°/ ~/
as follows:

trs(F) = {A(p) | p is a linearization of F}.

Proposition 1.1

(i) For every a e E°°, trs(str(<r)) = [a].

(ii) For every F € Ti?(E, /), str(trs(F)) = F.

This result justifies our claim that E°°/ ~j and Ti?(E, /) are indeed two equivalent
ways of talking about the same class of objects.

In the poset representation of traces, finite configurations play the same role
that finite prefixes do in sequences. Let F = (E, <, A) be a trace over (E, /). Then
c C E is a configuration iff c is finite and [c = c. We let CF denote the set of
configurations of F. Notice that 0, the empty set, is a configuration. It is the least
configuration under set inclusion. More importantly, |e is a configuration for every
event e. These "pointed" configurations associated with the events are also called
prime configurations. They constitute the building blocks for the Scott domains
induced by traces [NPW]. We shall see that they also play a fundamental role in
defining linear time temporal logics over traces.

We now turn our attention to distributed alphabets. Distributed alphabets
can be viewed as "implementations" of trace alphabets. They form the basis for
defining machine models with a built-in notion of independence which recognize
trace languages.

Let V be a finite set of sequential agents called processes. A distributed alphabet
is a family {T,p}pe-p where Ep is a finite non-empty alphabet for each p € V. The

?

idea is that whenever an action from Ep occurs, the agent p must participate in it.
Hence the agents can constrain each other's behaviour, both directly and indirectly.

Trace alphabets and distributed alphabets are closely related to each other. Let
S = (?p}pe^ be a distributed alphabet. Then Ep, the global alphabet associated
with E, is the collection [jpeV Ep. The distribution of Ep over V can be described
using a location function locg : Ep —>■ 2P denned as follows:

locg(a) = {p | a e Ep}.

This in turn induces the relation I~ C Ep x Ep given by:

(a, b) e I~ iff locg(a) n locg(6) = 0.

Clearly Ij, is irreflexive and symmetric and hence (Ep, I~) is a trace alphabet.
Thus every distributed alphabet canonically induces a trace alphabet. Two actions
are independent according to E if they are executed by disjoint sets of processes.
Henceforth, we write loc for locg whenever E is clear from the context.

Going in the other direction there are, in general, many different ways to im-
plement a trace alphabet as a distributed alphabet. A standard approach is to
create a separate agent for each maximal Z)-clique generated by (E, I). Recall that
a D-clique of (E, I) is a non-empty subset p C E such that p xp C D. Let V be
the set of maximal .D-cliques of (E, I). This set of processes induces the distributed
alphabet E = {Ep}p6p where Ep = p for every process p. The alphabet E imple-
ments (E, I) in the sense that the canonical trace alphabet induced by it is exactly
(E, /). In other words, Ep = E and i~ = I.

For example, consider the trace alphabet (E, 7) where E = {a, b, d} and I =
{{a, b), (6, a)}. The canonical D-clique implementation of (E, I) yields the dis-
tributed alphabet E = {{a, d}, {d, b}}.

As mentioned earlier, distributed alphabets play a crucial role in the automata-
theoretic aspects of trace theory. The fundamental result of Zielonka [Zie] says
that every regular trace language over (E, I) can be recognized by an asynchronous
automaton over a distributed alphabet E which implements (E,7). This result
has been extended to w-regular trace languages in terms of asynchronous Biichi
automata by Gastin and Petit [GP].

Distributed alphabets arise naturally in a variety of models of distributed sys-
tems. In particular they are associated with the restricted but very useful model
of a distributed system consisting of a network of sequential agents that coordinate
their behaviour by performing common actions together. The linear time temporal
logics that we consider in this paper will be based on distributed alphabets.

We conclude this section with a technical remark. Most of the theory of traces
presented in this paper, including the automata-theoretic and logical aspects, con-
stitutes a natural and conservative extension of the existing theory in the sequen-
tial setting. The sequential theory can almost always be recovered by setting 7 = 0
when dealing with trace alphabets. Correspondingly, when dealing with distributed
alphabets, the sequential case corresponds to having just one agent—i.e., \V\ = 1.

IS U

2 Automata over Infinite Traces

From now on we shall focus on infinite traces. With a little additional work most
of the material we shall present on automata and logics can be extended to handle
finite traces as well. Through the rest of this section we fix a distributed alphabet
E = {Sp}p6p with the induced trace alphabet (E, /), where E = UPeP ^P

anc*
I = {(a,b) |loc(a)nloc(6)=0}.

The terminology and notational conventions developed in the previous section
are assumed here as well. We will be dealing with many V-indexed families. For
convenience we shall often write {Xp} to denote the ^-indexed family {Xp}pe-p.
A similar convention will be followed in dealing with E-indexed families: {Ya} will
denote the family {Ya}aeY,-

Asynchronous Büchi automata, due to Gastin and Petit [GP], are the basic class
of automata operating over infinite traces. They constitute a common generaliza-
tion of the asynchronous automata of Zielonka [Zie] operating over finite traces and
a mild variant of the classical Biichi automata operating over infinite sequences.
We shall consider here a number of variants of asynchronous Biichi automata, each
with a slightly different acceptance condition.

We begin with a brief and slightly non-standard presentation of Biichi automata.
A word w-automaton over E is a pair B = (TS, T) where

• TS = (S, {—»a}, Sin) is a finite state transition system over E. In other words,
S is a finite set of states, —>a C S x 5 is an a-labelled transition relation for
each a £ E and Sin C5isa set of initial states.

• T is an acceptance table accompanied by an acceptance condition.

Before considering a number of possibilities for T, let us define the notion of a
run. The E-indexed family of transition relations {—>a} induces a global transition
relation —>g C S x E x S given by s —>B S' iff (s, s') € —>a- Where B is clear from
the context —>B will be written as —►.

Let a € Ew (i.e., a : w —► E where, as usual, ui = {0,1,2,...} is the set of
natural numbers). A run of TS over a is a map p : w —► 5 such that p(0) e Sin

and p{i) —► p(i+l) for every i > 0.
The set of states encountered infinitely often along the run p is denoted inf(^):

'mf(p) = {s | for infinitely many i,p{i) = s}.
Let us now consider just two of the various possibilities for T.

(BO) T = FCS.
A run p over a is accepting with respect to BO iff inf (p) n F ^ 0. We shall say

that B is a BO-automaton if it uses BO as its acceptance criterion. Of course, we
shall also refer to these by their standard name; Biichi automata.

L(B), the language accepted (recognized) by B, is the set of infinite words a
such that there is an accepting run of ßon<r. A language L C E" is said to be ir-
regular iff there exists a Biichi automaton B over E such that L(B) = L. As is well
known, w-regular languages have equivalent algebraic and logical presentations, as
detailed in the excellent survey [Tho].

A second possibility for T is:

i ^

(Bl) T C 25.

A run p over a is accepting with respect to Bl iff there exists F G T such that
inf(p) D F. It is easy to show that L C Eu is w-regular iff there exists a Bl-
automaton B (i.e., an automaton B that uses Bl as its acceptance criterion) such
that L = L(B). Thus at the level of sequences there is no difference in expressive
power between Büchi automata and Bl-automata. As we shall see, at the level of
traces, BO is weaker than Bl.

For defining automata on infinite traces we need to develop some notation. Let
F — (E, <, A) e Tfl(E, /). Then F is an infinite trace iff E is an infinite set. Let
TFT(T,, I) denote the subclass of infinite traces over (E, J). Often, we shall write
TR" instead of TÄ^E,/).

Let F e TR" with F = (E, <, A) and let peV. Then e G E is a p-event iff
A(e) G Ep. Similarly, e is an a-event iff A(e) = a. We let Ev denote the set of
p-events and Ea denote the set of a-events.

There are two natural transition relations that one can associate with F. The
event based transition relation =>F CCp x E x CF is defined as c =S>F c' iff e g" c
and cU {e} = c'. The action-based transition relation —>j? C CF X E X CF is defined
as c -^F c' iff there exists e e E such that A(e) = a and c =^>P c'.

To define automata on infinite traces, we have to first define a distributed ver-
sion of transition systems. The distributed transition systems we work with here
are essentially the asynchronous automata of Zielonka [Zie]. We begin with some
notation involving local and global states.

Let V be a set of processes. We equip each process p e V with a finite non-
empty set of local p-states, denoted Sp. We set 5 = \Jp€P Sp and call S the set of
local states.

We let P, Q range over non-empty subsets of V and let p, q range over V. A
Q-state is a map s : Q —► S such that s(q) G Sq for every q e Q. We let SQ denote
the set Q-states. We call S-p the set of global states.

UQ'CQ and s G SQ then SQ> is s restricted to Q'. In other words SQ, is the
<5'-state s' which satisfies s'(q') = s(q') for every q' in Q'. We use o to abbreviate
loc(a) when talking about states (recall that loc(a) = {p \ a G Ep}). Thus an a-
state is just a loc(a)-state and Sa denotes the set of all loc(o)-states. If loc(a) C Q
and s is a Q-state we shall write sa to mean sioc(a) •

A distributed transition system TS over E is a structure ({Sp}, {—»■a}, Sin) where

• Sp is a finite non-empty set of p-states for each process p.

• For a G E, —*a C Sa x 5a is a transition relation between a-states.

• Sin Q S-p is a set of initial global states.

The idea is that an a-move by TS involves only the local states of the agents
which participate in the execution a. This is reflected in the global transition
relation —>Ts Q S-p x E x Sp which is defined as:

s -^->TS s' iff (sa,s'a) G ->0 and s^_ioc(a) = sP_loc(a).

From the definition of —*TS, it is clear that actions which are executed by disjoint
sets of agents are processed independently by TS.

>vc

A trace w-automaton over E = {Ep} is a pair A — (TS,T) where TS =

({SP}, {—*o}, Sin) is a distributed transition system over E and X is an acceptance
table (which we will elaborate on later).

A trace run of TS over F € TR" is a map p : Cp —»■ Sp such that p(0) € Sjn

and for every (c, a, c') e —»p, p(c) -^TS /»(C')-

To define acceptance we must now compute infp(p), the set of p-states that
are encountered infinitely often along p. The obvious definition, namely infp(p) =
{sp | p(c){p) = sp for infinitely many c e CF}, will not work. The complication
arises because some processes may make only finitely many moves, even though the
overall trace consists of an infinite number of events.

For instance, consider the distributed alphabet Eo = {{a},{6}}- In the cor-
responding distributed transition system, there are two processes p and q which
execute a's and 6's completely independently. Consider the trace F — (E,<,X)
where \EP\ = 1 and Eq is infinite—i.e., all the infinite words in trs(F) contain one a
and infinitely many 6's. Let sp be the state of p after executing a. Then, there will
be infinitely many configurations whose p-state is sp, even though p only moves a
finite number of times.

Continuing with the same example, consider another infinite trace F' =
(E', <', A') over the same alphabet where both Ep and Eq are infinite. Once again,
let sp be the local state of p after reading one a. Further, let us suppose that after
reading the second a, p never returns to the state sp. It will still be the case that
there are infinitely many configurations whose p-state is sp: consider the configu-
rations co, ci, C2,... where Cj is the finite configuration after one a and j b's have
occurred.

So, we have to define infp(p) carefully in order to be able to distinguish whether
or not process p is making progress. The appropriate formulation is as follows:

Case 1 Ep is finite: infp(p) = {sp}, where p{[Ep) = s and sp — s(p).
Case 2 Ep is an infinite set:

infp(p) = {sp | for infinitely many e e Ep, se(p) = sp, where p(|e) = se}.

We can now begin to consider various acceptance tables.

(AO) T = {Fp} with Fp C Sp for each p.

A run p over F is accepting with respect to AO iff infp(p) n Fp ^ 0 for every p.
The trace language accepted by the AO-automaton A (i.e., where T is of the form
AO) is the set LTT{A) = {F \ 3 an accepting run of TS over F}. AO-automata are
the obvious common generalization of asynchronous automata and Büchi automata.
It turns out that AO-automata are not expressive enough: the acceptance criterion
cannot distinguish whether or not an agent executes infinitely many actions.

To bring this out and to motivate the acceptance condition we are after, we will
put down a crude definition^of w-regular trace languages.

A trace language over E is just a subset of TR". To define w-regular trace
languages, we exploit the result from the previous section linking E°°/ ~j and
Ti?(E, /) which permits us to associate a language of infinite words with each trace
language. We can then transport the definition of w-regularity from subsets of Ew

to infinite traces.

•H?

Let LCEU. Then L is /-consistent iff for every a G £"\ if a e L then [a] C L.
Thus if L is /-consistent either all members of the ~/-equivalence class [a] are in
L or none of them are in L.

Let L' C TR". We say that V is an w-regular trace language iff there exists
an /-consistent w-regular language LC E" such that V = {str(cr) | a e L}.
Stated differently, V C TÄ" is a w-regular trace language iff L = (j{trs(F) |
F e L'} is a w-regular subset of Ew. As in the word case, algebraic and logical
presentations of w-regular trace languages have been worked out [EM, GP]. These
presentations have a flavour which is pleasingly similar to the classical algebraic
and logical characterisations of w-regular subsets of £".

Returning to the distributed alphabet E0 = ({a}, {6}), let (E0,/o) denote the
corresponding trace alphabet. Consider L C T/?w(S0,/o) consisting of the single
trace F = {E, <, A) such that Ea and Eb are both infinite sets. It is easy to check
that L is a w-regular trace language but, as argued in [GP], no AO-automaton over
£ can recognize L.

It is worth noting that having multiple entries in the acceptance table does not
help. In other words, one might consider the following acceptance criterion.

(AO') T = {T0,TU... ,Tn} with % = {Fl
p}p&v and F; C SP for each i €

{1,2,.. .,n} and each p € V. A run p of TS over F e TR" is accepting with
respect to AO' iff there exists i such that infp(p) nFp'^0 for each p.

The reason why AO' does not help is that the class of languages accepted by
AO-automata is closed under union, thanks to the presence of multiple global initial
states. We can construct an AO-automaton At = {TS, Ti) for each entry % from
the table of an AO'-automaton A = {TS, T). If T = {%, Tu ..., Tn}, it is clear
that L{A) = Uie{i,2,...,Ti} ^(A)- Thus, every AO'-automaton can be simulated by
an AO-automaton.

Gastin and Petit showed that the following acceptance condition provides a
suitable generalization of classical Büchi automata to the setting of infinite traces.

(Al) T = {TuT2,...,Tn} with % = {F*}peV and F* C Sp for each i £
{1,2,.. .,n} and each p e V. A run p of TS over F e TR" is accepting with
respect to Al iff there exists i such that infp(/o) 3 F* for each p.

The condition Al is an extension of the sequential condition Bl in a distributed
setting. Notice that Al "couples" together final sets of the components in each
entry % e T.

Theorem 2.1 ([GP]) L C TR" is a uj-regular trace language iff there exists an
Al-automaton A such that LTT{A) = L.

Subsequently, Niebert has shown that the Al condition can be modified to avoid
coupling final sets across processes [Nie]. In effect, it is possible to have a local Bl
table for each process and define a run p to be accepting if for each process p, infp(p)
satisfies p's Bl table. Going one step further, we arrive at the acceptance criterion
A2, which is the one we will use in connection with the logics to be studied in the
next section.

10

(A2) T = {(F£, Fp)}p€P with F£, Fp C Sp for each p.
A run p over F = {E,<, A) is accepting with respect to A2 iff for each process

p the following conditions are met.
Case 1 Ep is finite: Then infp(p) n Fp ^ 0.
Case 2 £p is an infinite set: Then infp(p) n F£ ^ 0.

Thus, on an input F, the decision as to whether a process p uses Fp or F£ to
determine acceptance depends on whether or not p executes infinitely many actions
in F.

Theorem 2.2

(i) The class of languages accepted by A2-automata is closed under union.

(ii) The class of languages accepted by Al-automata is identical to the class of
languages accepted by A2-automata.

Proof Sketch.

(i) Suppose A\ and Ai are two A2-automata. Then we construct an A2-automaton
A which is the disjoint union of A\ and Ai. The global initial states of A
will determine for each run whether A\ or Ai (but not both!) is going to be
explored. It is easy to check that L(A) = L(A\) U L(Ai).

(ii) Let A = {TS,T) be an Al-automaton. From part (i), it suffices to consider
the case where T has just one entry. So assume that T = {T\} and T\ = {Fp}.
Let TS = ({Sp},{-*a},Sin). Define the A2-automaton A' = (TS',T') as
follows. TS1 = ({s;>, {=►.}, SL) where:

• S'p = Spx 2Fp x {on, off} for each p.

• Let s'a,t'a be a-states in TS' such that s'a{p) = (sp,Xp,up) and t'a{p) =
(tp,Yp,vp) for each p € V. Then(s'a,t'a) € =>a iff there exists (sa,ta) € —*a

such that the following conditions are satisfied for each p € loc(a).

(1) up — on, sp = sa(p) and tp = ta(p).

(2) If Xp = 0 then Yp = Fp. Otherwise, Yp = Xp - {tp}.

• S'in = {s' e S!p | 3s e Sin. Vp € V. 3up e {on,off}. s'(p) = (s(p),0,up)}

• T = {(G^, Gp)} where for each p,

G^ = 5px{0}x{on}
Gp = Fpx 2F" x {off}

It is easy to check that LTT{A) = LTT{-A.').

Conversely, let A = (TS, T) be an A2-automaton with TS = ({Sp}, {-»„}, Sin)
and T = {(F^, Fp)}. We say that ^4 is in standard form if it satisfies:

• Fp° n Fp = 0 for each p.

• If («a,*a) € -»a and p e loc(a), then sQ(p) ^ Fp.

/"? 7

Thus, if A is in standard form, the p-states in Fp are "dead" and are disjoint
from Fg. It is a simple exercise to verify that every A2-automaton A can be
converted to an A2-automaton A' in standard form such that Lrr(A) = LTr(A').

So, let A = {TS,T) be an A2-automaton in standard form with TS =
({SP},{-*a},Sin) and T = {(F£,FP)}. Let G be the set of functions of the
form g : V -► S such that g(p) <= F£ U Fp for each p. Define the Al-automaton
A' = (TS',T) where TS' = TS and V = {TJ}geG, such that for each g e G,
Tg = {{9(p)}}p&p- It is easy to verify that LTr(A) = LTr(A'). D

We now argue that the emptiness problem for A2-automata is decidable. This
will be required to settle the satisfiability problem for the logics considered in the
next section. Let A = (TS, T) be an A2-automaton with TS = ({Sp}, {^a}, Sin)
and T = {(F£, Fp)}. Though it is not strictly necessary, it will be illuminating to
first associate a language of infinite words with A.

Let a e £w. Then a (word) run of TS over a is a map p : u -> S-p such that

p(0) e Sin and p(i) —>TS p(i+l) for each i > 0. The run p over a is accepting iff
the following conditions are satisfied for each p.

(i) If i S w such that a(j) £ Ep for every j > i then Si(p) e Fp, where s^ = p(i).

(ii) If a(j') € Ep for infinitely many j then for infinitely many i it is the case that
Si{p) e F£, where s4 = p(i).

We define Lseg(^4), the language of infinite words accepted by A to be the set
of all words a such that there exists an accepting run of A over a. The distributed
nature of TS together with the basic properties of the maps str and trs defined
earlier lead to the next result.

Theorem 2.3 For any A2-automaton A, LTr{A) = {str(cr) | a e Lseq{A)}. Con-
sequently LTr{A) ^ 0 iffLseq(A) ^ 0.

Similar statements hold, of course, for AO-automata and Al-automata.
All the A2-automata that we construct in the next section will be in standard

form. So assume that A — (TS,T) is an A2-automaton in standard form with
TS = {{Sp}, {->a}, 5iB) and T = {(F£, Fp)}. Construct the directed graph GA =
{Sp,EA) where S-p is the set of global states of TS and (s, s') € EA if there exists
a € E such that s -^-*TS S'. We also label each edge in GA with a set of processes.
Let -IT : EA -* 2V be given by TT((S, S')) = U{loc(a) | s -^TS s'}.

We call X C S-p a good component iff X is a maximal strongly connected
component in GA which meets one the following conditions for each p.

(i) There exists s e X such that s(p) e Fp. (Because A is in standard form this
implies that s'(p) = s"(p) e Fp for every s', s" € X).

(ii) There exists s e X such that s(p) e F£ and for some s' G X, (s', s) e EA

andp e 7r((s',s)).

From Theorem 2.3 we know that LTT{A) is non-empty iff Lseq(A) is. It is
not difficult to prove that Lseq(A) is non-empty iff GA has a good component. It
is known that the maximal strongly connected components of a digraph can be

ibö

computed in time which is linear in the size of the digraph [AHU]. Clearly, the size
of G^ is bounded by the number of global states of A. As a consequence it is easy
to derive the next result.

Theorem 2.4 Let A be an A2-automaton in standard form. Then LTT{A) ^ 0 iff
GA has a good component. For p e V, let np = \Sp\ denote the number of p-states.
Let n = max{np}pgp and m— \P\. Then checking that G^ has a good component
can be done in time 0(n2m).

We conclude this section with a few remarks on deterministic automata over in-
finite traces. As with automata on infinite words, non-deterministic A2-automata
on infinite traces are strictly more expressive than deterministic A2-automata. In
the absence of determinacy, complementation is difficult. When applying these
automata to settle questions in logic, complementation is often required to handle
negation in formulas. (Fortunately, the automata-theoretic treatment of linear time
temporal logic on traces which we will describe here does not require complemen-
tation.)

To obtain determinacy without loss of expressive power one must use a more
sophisticated acceptance criterion corresponding to the Müller, Rabin or Streett
acceptance conditions for infinite words. Here, we will look only at the Müller
acceptance condition.

(M) T = {7i,..., Tn} with % = {F*} and F% C Sp for each i and each p. A run
p over F G TR^ is accepting with respect to M iff there exists TJGT such that
infp(/j) = Fp for each p.

Diekert and Muscholl [DM] showed that deterministic M-automata are as ex-
pressive as non-deterministic Al-automata. Their proof however does not lead to
a determinization construction for Al-automata.

There are two independent solutions available in the literature for the difficult
problem of complementing Al-automata. Muscholl first showed how to directly
construct a non-deterministic Al-automaton which is the complement of the given
automaton [Mus]—this approach does not yield a determinization construction for
Al-automata. In [Mus] the complementation is carried out for asynchronous cellular
Biichi automata, in which there is one agent for each letter. To transport this
complementation result to Al-automata, one has to resort to a simulation which
carries non-trivial overheads in the size of the alphabet. The second solution due to
Klarlund, Mukund and Sohoni [KMS] is a direct determinization construction for
Al-automata which then easily leads to the complementation result. In both cases,
the blow-up in the local state space of each process is exponential in the global state
space of the original automaton, which is essentially optimal. Surprisingly in both
[Mus] and [KMS], the Al acceptance condition must be first transformed into an
equivalent one which describes in considerable detail the communication patterns
established by the infinite trace that is being examined for acceptance.

3 Linear Time Temporal Logics over Traces

A variety of linear time temporal logics to be interpreted over traces have been
proposed in the literature. As mentioned in the Introduction, our focus here will

icl\

be on those logics which meet the following criteria:

(i) The logic should be expressible within the first order theory of traces.

(ii) The logic should admit a treatment in terms of asynchronous Biichi automata
of one kind or the other.

We begin with the logic TrPTL (Trace based Proposition^ Temporal logic of
Linear time). This is the earliest and-to date-the most expressive linear time
logic of the chosen kind. For a detailed treatment of this logic the reader is re-

™r »„[Thil]- After presentinS ^PTL we w"l insider two subsystems denoted
THPTL (connected TrPTL) and TrPTL® (product TrPTL). These subsystems
are obtained by placing suitable syntactic restrictions on the formulas. The inter-
esting point is that these restrictions result in proportionate simplification of the
automata theoretic constructions associated with the logics. Towards the end of the
section we will take a quick look at other temporal logics that have been proposed
with traces as the underlying frames.

Henceforth, it will be notationally convenient to deal with distributed alphabets
in which the names of the processes are positive integers. Through this section and
the next, we fix a distributed alphabet £ = {^}ieP with V = {1,2, K} and
K > 1. We let i,j and k range over V. As before, let P, Q range over non-empty
subsets of V. The trace alphabet induced by £ is denoted (£, /). We assume the
terminology and notations developed in the previous sections. In particular when
dealing with a P-indexed family {Xi}i€V, we will often write just {*,}.

The logic TrPTL is parameterized by the class of distributed alphabets. Having
fixed £ we shaUoften almost always write TrPTL to mean TrPTL(E), the logic
associated with £. Fix a set of atomic propositions AP with p, q ranging over AP
Then $TrPTL(£), the set of formulas of TrPTL(E), is defined inductively via:

• For p e AP and i e V, p(i) is a formula (which is to be read "p at i").

• If a and ß are formulas, so are -** and a V /?.

• If a is a formula and a 6 Si then {a)ia is a formula.

• If a and ß are formulas so is a Hiß.

From now on, we denote $TrPTL(S) as just $. In the semantics of the logic which
will be based on infinite traces, the z-view of a configuration will play a crucial role
Let F e TR" with F = (E, <, A). Recall that E{ = {e \ e e E and A(e) e £*}. Let
c € CF and i e V. Then |2(c) is the i-view of c and it is defined as:

We note that | *(c) is also a configuration. It is the "best" configuration that
the^gent t is aware of at c. We say that |«(c) is an i-local configuration. Let
CF - (r(c) I c € CF} be the set of i-local configurations. For Q C V and c € CF

we let [Q{c) denote the set \J{i\c) \ieQ}. Once again, |«(c) is a configuration'
It represents the collective knowledge of the processes in Q about the configuration
c.

The following basic properties of traces follow directly from the definitions.

C\T^

Proposition 3.1 Let F = (E, <, A) be an infinite trace. The following statements
hold.

(i) Let <i — < (~\(Ei x Ei). Then (Ei, <j) is a linear order isomorphic to u if
Ei is infinite and isomorphic to a finite initial segment of ui if Ei is finite.

(ii) (CF, C) is a linear order. In fact {Cl
F — {0}, C) is isomorphic to {Ei, <»).

(Ui) Suppose ll(c) ^ 0 where c e Cp- Then there exists e e Ei such that J,l(c) =|e.
In fact e is the <i-maximum event in (cfl£j).

(iv) Suppose Q CQ' CV andct CF- Then j3(c) =i9(i°'(c)). In particular,
for a single process i, J,*(c) =i*(l*(c)).

We can now present the semantics of TrPTL. A model is a pair M = (F, {Vi}ie-p)
where F = (E,<,\) e TRU and Vi :CF -* 2AP is a valuation function which assigns
a set of atomic propositions to i- local configurations for each process i. Let c e Cj?
and a e 3>. Then M, c f= a denotes that a is satisfied at c in M and it is defined
inductively as follows:

• M,c\= p(i) forpeAPiSpeVi (f(c)).

• M, c \= ->a iff M, c ty= a.

• M, c |= a V /3 iff M, c |= a or M, c (= ß

• M, c \= (a}ia iff there exists e £ Ei — c such that A(e) = a and M, je |= a.
Moreover, for every e' € Ei, e' < e iff e' e c.

• M,c (= en Wi/? iff there exists d e CF such that c C c' and M,^^') \= ß.
Moreover, for every c" € CF, if f(c) Cj^c") ClV) then M, ^(c") |= a.

Thus TrPTL is an action based agent-wise generalization of LTL. Indeed both
in terms of its syntax and semantics, LTL corresponds to the case where there is
only one agent and where this agent can execute only one action at any time. With
V = {1} and Ei = {ao} one then writes p instead of p(l), Oa instead of (oo)a and
a Uß instead of a Uiß. The semantics of TrPTL when specialized down to this
case yields the usual LTL semantics. In the next section we will say more about
the relationship between TrPTL and LTL.

Returning to TrPTL, the assertion p(i) says that the i-view of c satisfies the
atomic proposition p. Observe that we could well have p(i) satisfied at c but not
p(j) (with i^ j). It is interesting to note that all atomic assertions (that we know
of) concerning distributed behaviours are local in nature. Indeed, it is well-known
that global atomic propositions will at once lead to an undecidable logic in the
current setting [LPRT, Pen].

Suppose M = (F, {Vi}) is a model and c -^F C' with j <fc loc(a). Then
M\c \= PÜ) iff M'I

c' H P(j)- IQ *his sense the valuation functions are local. There
are, of course, a number of equivalent ways of formulating this idea which we will
not get into here.

The assertion {a)ia says that the agent i will next participate in an a-event.
Moreover, at the resulting i-view, the assertion a will hold. The assertion a Uiß

"3

says that there is a future z-view (including the present i-view) at which ß will hold
and for all the intermediate i-views (if any) starting from the current i-view, the
assertion a will hold.

Before considering examples of TrPTL specifications, we will introduce some
notation. We let a,ß with or without subscripts range over $. Abusing notation,
we will use loc to denote the map which associates a set of locations with each
formula.

• loc(p(t)) = loc((o)ia) = loc(a Ikß) = {t}.

• loc(-ia) = loc(a).

• loc(a V ß) = loc(a) U loc(/3).

In what follows, ¥ = {a | loc(a) = {i}} is the set of i-type formulas. A basic
observation concerning the semantics of TrPTL can be phrased as follows:

Proposition 3.2 Let M = (F, {FJ) be a model, ceCpandaa formula such that
loc(a) C Q. Then M, c (= a iff M, [Q(c) (= a.

A corollary to this result is that in case a e $* then M, c |= a iff M, |*(c) f= a.
As a result, the formulas in $i can be used in exactly the same manner as one
would use LTL (in the setting of sequences) to express properties of the agent
i. Boolean combinations of such local assertions can be used to capture various
interaction patterns between the agents implied by the logical connectives as well
as the coordination enforced by the distributed alphabet E.

For writing specifications, apart from the usual derived connectives of preposi-
tional calculus such as A, =» and =, the following operators are also available

• T = pi(l) V T>I(1) denotes the constant "True", where AP = {pi,p2,...}.
We use _L = -.T to denote "False". .

• Oja = T Ida is a local version of the O modality of LTL.

• D^a = -lOj-ia is a local version of the D modality of LTL..

• Let X C Ei and X = E* - X. Then a U?ß t (a A Aoey[o]iJ.) hkß. In
other words a U?ß is fulfilled using (at most) actions taken from X. We set
Of a ^ T Ufa and Df a = -Of-a.

• a(i) = a Ida (or equivalently ± Ida). a{i) is to be read as "a at i". If
M = (F, {Vi}) is a model and c e CF then M,c\= a{i) iff M, ^(c) f= a. It
could of course be the case that loc(a) ^ {i}.

A simple but important observation is that every formula is a boolean combi-
nation of formulas taken from \JieV $*. In TrPTL we can say that a specific global
configuration is reachable from the initial configuration. Let {a,}iep be a family
with at e $' for each i. Then we can define a derived connective 0(a1,a2,..., aK)
which has the following semantics at the empty configuration. Let M = (F, {Vi})
be a model. Then M,0 |= 0(aua2,.. .,ak) iff there exists c e CF such that
M, c \= ai A c*2 A • • • A aK-

To define this derived connective set T,[= £1 and, for 1 < i < K, set £^ =
T,i - U{Ej | 1 < j < i}. Then 0(a\, a<i,. ■., Q-K) is the formula:

<>?(<*! A <>f{a2 A of{a3 A • ■•<>£*<**)) • • •)•
The idea is that the sequence of actions leading up to the required configu-

ration can be reordered so that one first performs all the actions in £1, then all
the actions in £2 — £1 etc. Hence, if now is an atomic proposition, the formula
0(now(l), now(2),..., now(Ä')) is satisfied at the empty configuration iff there is a
reachable configuration at which all the agents assert now.

Dually, safety properties that hold at the initial configuration can also be ex-
pressed. For example, let crt(z) be the atomic assertion declaring that the agent i
is currently in its critical section. Then it is possible to write a formula ipME which
asserts that at all reachable configurations at most one agent is in its critical sec-
tion, thereby guaranteeing that the system satisfies the mutual exclusion property.
We omit the details of how to specify y>ME.

On the other hand, it seems difficult to express nested global and safety proper-
ties in TrPTL. This is mainly due to the local nature of the modalities which results
in information about the past sneaking into the semantics even though there are
no explicit past operators in the logic. In particular, TrPTL admits formulas that
are satisfiable but not root-satisfiable.

A formula a is said to be root-satisfiable iff there exists a model M such that
M, 0 |= a. On the other hand, a is said to be satisfiable iff there exists a model M =
(F, {Vi}) and c G CF such that M,c\= a. It turns out that these two notions are not
equivalent. Consider the distributed alphabet £0 = {£1, £2} with £1 = {a, d} and
S2 = {b,d}. Then it is not difficult to verify that the formula p(2)(l) A ü2-ip(2) is
satisfiable but not root-satisfiable. (Recall that p(2)(l) abbreviates ±.U\p(2)). One
can however transform every formula a into a formula a' such that a is satisfiable
iff a' is root satisfiable.

This follows from the observation that every a can be expressed as a boolean
combination of formulas taken from the set \Ji€-p^1- Hence the given formula a
can be assumed to be of the form a = Vjli^ji A a-ji A • • • A OCJK) where ocji e 3>*
for each jr" e {1,2,..., m} and each i S V. Now convert a to the formula a' where
a' = VTli <>(ajU aj2, • • ■, CIJK)- (Recall the derived modality 0(ai, 02, • • •, ax)
introduced earlier.) From the semantics of 0(ai, a2,..., ax) it follows that a is
satisfiable iff a' is root-satisfiable.

Hence, in principle, it suffices to consider only root-satisfiability in developing a
decision procedure for TrPTL. There is of course a blow-up involved in converting
satisfiable formulas to root-satisfiable formulas. If one wants to avoid this blow-up
then the decision procedure for checking root-satisfiability can be suitably modified
to yield a direct decision procedure for checking satisfiability as is done in [Thil].
In any case, it is root satisfiability which is of importance from the standpoint of
model checking. Hence here we shall only develop a procedure for deciding if a
given formula of TrPTL is root-satisfiable.

As a first step we augment the syntax of our logic by one more construct.

• If a is a formula, so is OjC*. In the model M = (F, {Vi}), at the configuration
c e CF, M, C \= OiCt iff M, c f= (a)*« for some a e £». We also define
loc(Oia) = {i}.

Thus OiO. = VaeEi(a)'a is a vand formula and O* is expressible in the former
syntax. It will be however more efficient to admit Oi as a first class modality.

Fix a formula a0. Our aim is to effectively associate an A2-automaton Aao with
a0 such that a0 is root-satisfiable iff Lrr(A*0) ¥" 0- Since the emptiness problem
for A2-automata is decidable (Theorem 2.4), this will yield the desired decision
procedure. Let CL'(a0) be the least set of formulas containing a0 which satisfies:

• -./?€ CL'(a0) implies ß e CL'{a0).

• aVße CL'(ao) implies a,ße CL'(a0).

• {a)ta € CL'(ao) implies a € CL'(ao).

• OjO; e CL'(a0) implies a S CZ/(a0).

• aUiße CL'(ao) implies o,/3 6 CL'(a0). In addition, 04(a Z^/3) e CL'(a0).

We then define CL(a0) to be the set CL'{a0) U {-./? | /? <= CL'(a0)}.
Thus CL(a0), sometimes called the Fisher-Ladner closure of a0, is closed under

negation with the convention that -!-■/? is identified with /?. From now we shall
write CL instead of CL(ao).

A C CL is called an i-type atom iff it satisfies:

• Va e CL. a€A\fi->agA.

• Va V ß€CL. aV ß e A iff a <E A or ß e A.

• Va Wi/3 eCL. aUißeA\ffßeAor{aeA and O«(o W»/?) € A).

• If (o)ja, (b)iß e A then a = 6.

AT* denotes the set of i-type atoms. We now need to define the notion of a
formula in CL being a member of a collection of atoms. Let a e CL and {Ai}iGQ
be a family of atoms with loc(a) C Q and At € ATt for each i e Q. Then the
predicate a 6 {Ai}ieQ is defined inductively as:

• If loc(a) = {j} then a £ {Ai}ieQ iff a £ Aj.

• If a = i/3 then a € {AJieQ iff /? £ {Ai}ieQ.

• If a = a! V a2 then «i V a2 6 {^OieQ iff «i € {Ai}ieQ or a2 G {A»}ie(3.

The construction of the A2-automaton Aa0 is guided by the construction due
to Vardi and Wolper for LTL [VW]. However in the much richer setting of traces it
turns out that one must make crucial use of the latest information that the agents
have about each other when defining the transitions of Aa0 ■ It has been shown by
Mukund and Sohoni [MS] that this information can be kept track of by a deter-
ministic A2-automaton whose size depends only on S. (Actually the automaton
described in [MS] operates over finite traces but it is a trivial task to convert it into
A2-automaton having the desired properties). To bring out the relevant properties
of this automaton, let F € TR" with F = (E, <, A). For each subset Q of pro-
cesses, the function latest^ : CF X V -> Q is given by \ateStp,Q{c,j) = f. iff t is the

f^t/

least member of Q (under the usual ordering over the integers) with the property
ij(iq(c)) Q ij(ie(c)) f°r every q € Q. In other words, among the agents in Q, £
has the best information about j at c, with ties being broken by the usual ordering
over integers.

Theorem 3.3 ([MS]) There exists an effectively constructible deterministic A2-
automaton Ar = {TS,T) with TS = ({Tt}, {=>a}, Fin) such that:

(i) LTr(Ar)=TR«>.

(ii) For each Q = {i\,i2, ■ ■ ■ ,in}, there exists an effectively computable function
gossipg : Til x ri2 x • • • x Tin x V —* Q such that for every F € TR", every
c e CF and every j e V, latestj? Q(C,J) = gossipg(7(ti),... ,7(in), j) where
pF (c) = 7 and pF is the unique (accepting) run of Ar over F.

Henceforth, we refer to Ar as the gossip automaton. Each process in the gossip
automaton has 2°^K lo^K) local states, where K = \V\. Moreover the function
gossipg can be computed in time which is polynomial in the size of K.

Each t-state of the automaton Aa0 will consist of an i-type atom together with
an appropriate i-state of the gossip automaton. Two additional component will be
used to check for liveness requirements. One component will take values from the
set Ni = {0,1,2,..., \Ui\} where Ui = {a Uiß \ a Uiß e CL). This component will
be used to ensure that all "until" requirements are met. The other component will
take values from the set {on,off}. This will be used to detect when an agent has
quit.

The automaton Aa0 can now be defined.

Definition 3.4 Aao = (TS,T), whereTS = {{Si},{-+J,Sin) andT = {{F?,#)}
are defined as follows:

(i) For each i, Si = ATi X I\ X N x {on,off}. Recall that Tj is the set ofi-states of
the gossip automaton and Ni = {0,1,2,..., \Ui\} with Ui — {a Uiß \ a Uiß €
CL}.

(ii) Let sa,s'a e Sa with sa(i) = (Ai,-yi,Ui,Vi) and s'a(i) = (A^-y^u^vl) for each
i € loc(a). Then (sa,s'a) € —*a iff the following conditions are met.

(1) (7a, 7a) 6 =^a (recall that {=>■ a} is the family of transition relations of the
gossip automaton) where ja, 7a S Ta such that ja(i) = li and 7a(i) = 7^
for each i £ loc(a).

(2) Vi,jeloc(a),4=^.

(3) Vi € loc(a) V{a)ia e CL. {a)ta € M iff a e A\.

(4) Vt € loc(a) VOia 6 CL. OiCt e Ai iffae A\.

(5) Vi e \oc(a)\/(b)iß € CL. If (b)iß <= Ai then b = a.

(6) Suppose j & loc(a) and ß G CL with loc(/3) = {j}. Further sup-
pose that loc(a) = {i_,i2, ■ ■ ■ ,in}- Then ß € A\ iff ß S Ag where
£ = gossiploc(a)(7il,7»2,..., iin,j).

<)-?

(7) Let i e loc(o), Ui = {«i Uißuai lUh,..., ani Uißni}. Then u1, and ut

are related to each other via:

u' = = | (ui+1) mod (ni+1), ifm = 0 or #,, e A* or aUi UtfUi <£ At

H, otherwise

(8) For each i e loc(o), Vi = on. Moreover, if v\ = off then {a)ia g A\ for
every i e loc(a) and every (o)jQ e CL.

(iii) Lei s € 5^ wttfe s(i) = (Ai,n,uuVi) for every i. Then s € Sin iff a0 €
{Ai}i6p and 7 6 rin w/iere 7 e r> satisfies 7(1) = 7; /or even/ i. Further-
more, Ui = 0 for every i. Finally, for every i, Vi = off implies that (a)*** £ 4*
/or even/ (a)ja G CL.

(iv) For each i, F? C $ w jtven 6y F^ = {(^,7;,^,^) | Ui = 0 and ^ = on}
and F C Si is given by F = {(^,7*,^,^) | ^ = off}.

The automaton Aa0 extends the automata theoretic construction for LTL de-
scribed in [VW] to the setting of TrPTL. The main new feature is the use of the
gossip automaton in step (ii)(6) when dealing with formulas located at agents not
taking part in the current action. A detailed explanation of Avn can be found in
[Thil].

This construction differs from the original construction for TrPTL presented in
[Thil] in a number of ways. Each St in [Thil] was defined to be ATi x AT2 x
••■x ATK x Ui x {actt,actr,stopJ with Ut as the set of subsets of Ui. The
acceptance condition used was Al. Using A2, we need just two elements {on,off}
to record when an agent has quit. Using the counter Nt instead of Üi leads to a
more compact description of Aao. The significant improvement, namely, replacing
ATX x AT2 x • • • x ATK by just ATi is due to Narayan Kumar [Nar]. The arguments
described in [Thil] go through in the present setting with minor modifications.
These arguments lead to the next set of results.

Theorem 3.5

(i) c*o is root-satisfiable iff LTr{Aa0) ^ 0.

(ii) The number of local states of Aa0 is bounded by 2°(max(">m2 losm)) where
n = \a0\ and m is the number of agents mentioned in a0. Clearly, m <
n. It follows that the root-satisfiability problem (and in fact the satisfiability
problem) for TrPTL is solvable in time 2°(max(">m2l°em)-m).

The number of local states of each process in Aao is determined by two quan-
tities: the length of a0 and the size of the gossip automaton Ar- As far as the size
of ,4r is concerned, it is easy to verify that we need to consider only those agents
in V that are mentioned in loc(a0), rather than all agents in the system.

The model checking problem for TrPTL can be phrased as follows. A fi-
nite state distributed program over E is a pair Pr = (Apr,VPr) where Apr =
(({Sfr}, {=>f r}, Sfn), {(Sfr, Sfr)}) is an A2-automaton modelling the state space

W

of Pr and Vpr : S —► 2AP is an interpretation of the atomic propositions over the
local states of the program. (In this context, one assumes AP to be a finite set.)

Let p be a run of Apr over F = (E,<,\). Then p induces the model Mp via
Vpr as follows: Mp = (F, {Vf}) where for each i and each c e CF, Vf(l*(c)) =
Vpr(si)r\P, where s = p{c) and s* = s(i). Viewing a formula ao as a specification,
we say that Pr meets the specification ao—denoted Pr \= ao—if for every F € TR"
and for every run p of Apr over F, it is the case that Mp, 0 (= ao.

The model checking problem is to determine whether Pr (= ao- This problem
can be solved by "intersecting" the program automaton Apr with the formula au-
tomaton A^ao to yield an automaton A such that Z/ry (A) = LTr(Apr)(^LTr(A^a0)-
It turns out that LTT{A) = 0 iff Pr \= ao. It is easy to construct A. The only
point to care of is that the i-local states of .4 should consist of only those pairs
(si, s'i) (where s* is an z-local state of Apr and s\ = {A\, 7?, n\, v^) is an i-local state
of A^c0) such that Vpr(si) n AP = Ai n AP. The details can be found in [Thil].

It turns out that this model checking problem has time complexity 0(|.Apr| •
2o(max(n,m2logm)m)^ where \Apr\ is the size of the global state space of the A2-
automaton modelling the behaviour of the given program Pr and, as before, n =
|ao| and m is the number of agents mentioned in ao, where ao is the specification
formula.

We now turn to two interesting sublogics of TrPTL. The first is the sublogic
TrPTLcon, which consists of the so called connected formulas of TrPTL. We define
^TrPTL (from now on written as $con) to be the least subset of $ satisfying the
following conditions:

(i) p(i) € $con for every p € P and every i € V.

(ii) If a, ß e 3>con, so are ->a and a V ß.

(iii) If a e $con and a € E4 such that loc(a) C loc(a) then {a)iCt 6 $con.

(iv) If a,ß e $con with loc(a) = loc(/?) = {i} then a Hiß e $con. Actually one
need only demand that loc(a), loc(/3) C f|{loc(a) | a e Ei} but this leads to
notational complications that we wish to avoid here.

(v) If a e $con and loc(a) = {i} then OiO. G $con. (Once again one needs to just
demand that a C f]{loc(a) | a e S»}.)

Connected formulas were first identified by Niebert and used by Huhn [Huh].
They have also been independently identified by Ramanujam [Ram]. Thanks to the
syntactic restrictions imposed on the next state and until formulas, past information
is not allowed to creep in. Indeed one can prove the following:

Proposition 3.6 Let a 6 3>con. Then a is satisfiable iff a is root-satisfiable.

Yet another pleasing feature of TrPTLcon is that the gossip automaton can be
eliminated in the construction of the automaton Aao whenever ao e $con. In fact
one can do a bit more.

Let ao G 3>con and let CLi = CLn^* for each i (recall that CL is an abbreviation
for CL(ao)). We redefine an i-type atom to be a subset A of CLi such that:

fit

• Vß G CLi ß G A iff -iß # A.

• Va V ß G CLi. a V /? G A iff a£/l or ß <= A.

• Va Wi/9 e CLi a Uiß e A iS ß e A or a e A and Oi(a ££/?) G A.

As before (but with the new definition in operation!), ATt is the set of i-type
atoms.

Let a G CL with loc(a) C Q. The notion of a belonging to a family of atoms
{Ai}ieQ, with Ai G AT for each i G Q, is defined inductively in the obvious way—if
loc(a) = {i} then a e {Ai}ieQ iff a G ^ etc. etc. The construction of Ac0 is as
specified in Definition 3.4 with the following modifications:

(i) Si = ATi x NiX {on,off} for each i G V. Thus the gossip automaton is
eliminated and ATi is the set of i-type atoms of the new kind.

(ii) (1) This condition is obviously dropped.

(2) Interestingly enough, this condition is also dropped.

(3) This condition is modified to W(a)ia G CLi.(a)ia G At iff a e {^}j6loc(a).

In addition, condition (ii)(6) is dropped, while conditions (ii)(4), (ii)(5), (ii)(7)
and (ii)(8) remain unchanged. Parts (iii) and (iv) are modified to eliminate all
references to the gossip automaton. After these alterations, it is not difficult to
prove the following result.

Theorem 3.7 Let a0 G $con and Aa0 be constructed as detailed above.

(i) ao is satisfiable iff^Tr(A*0) ¥" 0-

(ii) The satisfiability problem for TrPTLcon is solvable in time 2°^a°^.

Once again, a suitably modified statement can be made about the associated
model checking problem. At present we do not know whether or not TrPTL is
strictly more expressive than TrPTLcon. We shall formulate this question more
rigorously in the next section.

Yet another sublogic of TrPTL is called product TrPTL and is denoted as
TrPTL®. Let $®, the set of formulas of TrPTL®, be the least subset of $ which
satisfies:

(i) p(i) G $® for every p e P and every i e V.

(ii) If a, ß G 3>® then so are -ia and a V ß.

(iii) If a G $® with loc(a) = {i} and aeSj then (a)*a G $®.

(iv) If a, ß G 3>® with loc(a) = loc(/3) = {i} then a Uiß G $®.

Clearly $® C $con C $. In case a0 G $®, the automaton Aa0 can be simplified
even further (than the case when a0 G $con). Aao essentially consists of a synchro-
nized product of Büchi automata. A detailed treatment of TrPTL® is provided in
[Thi2]. The interest in this subsystem lies in the fact that the accompanying pro-
gram model is particularly simple and commonplace. Namely, it consists of a fixed

~^ü

set of finite state transition systems that coordinate their behaviour by performing
common actions together. Here we shall just sketch the construction for Aao.

A product Büchi automaton over £ is a structure A = ({TSi}i€-p, Sin, T) where
TSi = {Si,-*i) for each i with —►< C 5, x S; x Si as the local transition relation
of the agent i. Everything else is as in the definition of an A2-automaton. Thus
the key difference is that each agent comes with its own local transition relation.
From these agent transition relations, one can derive the action indexed transition
relations {—>0} as follows: (sa,s'a) £ —>a iff sa(i) -^-* s'a(i) for every i € loc(a).
Thus product Büchi automata are a (strict) subclass of the class of A2-automata.

Given ao G $®, the construction of Aa0 proceeds as in the case where ao € $con.
The only difference is, we must define the transition relations {—+i}»ep instead of
the transition relations {—>a}aeE- This can be done as follows:

Let Siis'i e Si with s; = (Ai,Ui,Vi) and s£ = {A'i,u'i,v'i). Let a g £*. Then
Si -^-> s[iff the following conditions are satisfied:

(i) V(o)ia e CL. {a)ia € Ai iff a 6 A[.

(ii) VOiO. € CL. Oia € Ai iff a 6 A[.

(iii) If (b)ia e Ai then b = a.

(iv) Ui and u\ are related to each other just as in part (ii)(7) of Definition 3.4.

(v) Vi and v[satisfy part (ii)(8) of Definition 3.4.

As shown in [Thi2] one can establish the following result for TrPTL®.

Theorem 3.8 Let ao € $® and Aa0 be constructed as above.

(i) ao is satisfiable iff LTr(Aa0) ^ 0.

(ii) The satisfiability problem for TrPTL® can be solved in time 2°('a°').

Once again, one can make suitably modified statements about the accompanying
model checking problem. As mentioned earlier, the program model in this setting
consists of a fixed set (one for each i) of finite state transition systems.

We conclude this section with a quick look at some related logics. Katz and
Peled introduced the logic ISTL [KP] which can be easily viewed as a temporal logic
over traces. However, it has branching time modalities which permit quantification
over the so called observations of a trace. ISTL uses global atomic propositions
rather than local atomic propositions. Penczek has also studied a number of tem-
poral logics (including a version of ISTL) with branching time modalities and global
atomic propositions [Pen]. His logics are interpreted directly over the space of con-
figurations of a trace resulting in a variety of axiomatizations and undecidability
results. We feel that local atomic propositions (as used in TrPTL) are crucial for
obtaining tractable partial order based temporal logics. Niebert has considered a
/i-calculus version of TrPTL [Nie] and has obtained a decidability result using a
variant of asynchronous Büchi automata. Since this logic uses "local" fixed points,
it is not clear at present what is the expressive power of this logic. The four linear
time temporal logics studied by Ramanujam in a closely related setting [Ram] can

Xöt

be easily captured as four sublogics of TrPTL through purely syntactic restrictions.
Two of the resulting sublogics are TrPTL® and TrPTLcon. It is not clear at present
whether the other two logics admit a simpler treatment in terms of asynchronous
Büchi automata (than the one for TrPTL).

The temporal logic of causality (TLC) proposed by Alur, Peled and Penczek
is basically a temporal logic over traces [APP]. The concurrent structures used in
[APP] as frames for TLC can be easily represented as traces over an appropriately
chosen trace alphabet. The interesting feature of TLC is that its branching time
modalities are interpreted over causal paths. In a trace (E, <,A), the sequence
e0ei • ■ ■ e E°° is a causal path if e0 < e\ < e2 • • •. This logic is almost certainly not
expressible within the first order theory of traces although it admits an elementary
time (in fact essentially exponential time) decision procedure.

Finally, Ebinger has also proposed a linear time temporal logic to be interpreted
over traces [Ebi]. An interesting property of this logic is that when its frames
are restricted to be finite traces then it is exactly equivalent to the first order
theory of finite traces. Unfortunately the decidability of this logic is settled using a
translation into the first order theory of infinite traces. Hence the decision procedure
has non-elementary time complexity.

4 Expressiveness Issues

Our main aim here is to show that TrPTL is expressible within the first order
theory of traces. In order to simplify the presentation, we shall eliminate atomic
propositions and instead use the single constant T standing for "True" (and _L = -iT
standing for "False"). The resulting logic will also be called TrPTL accompanied
by the notations and terminology developed in the previous section. The function
loc which assigns a set of processes to a formula works exactly as before except
that we start with loc(T) = 0. As will be seen later, this will entail minor changes
in the definition of the syntax of TrPTLcon and TrPTL®. For now, we repeat that
the syntax of 3>, the set of formulas of TrPTL is now given by:

$::= T | -.a | a V ß | (a^a | a Urf.

As before, for (a)ja to be a formula we require aeEj. Local atomic propositions
can be coded up into the actions and hence their elimination does not result in loss
of expressive power.

A model is just an infinite trace F e TR". We set F,c\=T for every c €CF-

The rest of the semantics is as before. La, the w-trace language defined by the
formula a is given by, La = {F \ F e TR" and F, 0 (= a}. We say that L C TR"
is TrPTL-definable iff there exists ael such that L = La.

First we shall compare the expressive powers of TrPTL, TrPTLcon and TrPTL181.
In order to do so, we must define the syntax of the two sublogics in the present
setting. For TrPTLcon the only changes that are required are:

• T e $con.

• If a, ß € $con such that loc(a), loc(£) C {i} then a Utß € 5>con.

For TrPTL®, the only changes that are required are

-y02^

• Te$®.

• If a G $® such that loc(a) C {i} and if a G E* then (a)*« G $®.

• If a, /? G $® with loc(a), loc(/?) C {i} then a Utß G 3>®.

The notion of L C Ttf" being TrPTLcon-definable or TrPTL®-definable is for-
mulated in the obvious way. Since $® C $con C $ it is clear that TrPTL is at least
as expressive as TrPTLcon which in turn is at least as expressive as TrPTL'8'. As
mentioned earlier we do not know at present if TrPTL is strictly more expressive
than TrPTLcon, though we conjecture that this the case.

We do know however that TrPTLcon is strictly more expressive than TrPTL'8'.
To illustrate this it will be convenient to extend the notion of definability to subsets
of £". We say that L C £<" is TrPTL-definable iff L is /-consistent and {str(cr) |
a G L} is TrPTL-definable. This notion is defined for TrPTLcon and TrPTL® in
the obvious way. Hence in order to show that TrPTLcon is more expressive than
TrPTL'8' it suffices to exhibit some £ C E<" which is /-consistent and is TrPTL--
definable but not TrPTL®-definable.

Let f = {Ti, T2} with Ti = {a, a', d} and T2 = {b, b', d}. Let T = {a, a', b, b', d}.
Consider tCP given by:

L={d(ab + ba + a'b' + b'a'))".

It turns out that L is not TrPTL^-definable. Clearly L is /-consistent. As shown in
[Thi2], for L to be TrPTL^-definable, it must be a so-called (synchronized) product
language. As a result, it would have to possess the following property:

(PR) Suppose a G P". Then a g L iff there exist (TI,<T2 e L such that a |Ti =
o\ \Y\ and a fr2 = cr2 fr2.

Now let a = {dab')", ar = {dab)" and a2 = {da'b')" . Clearly a |Ti = ay \Y\
and a \Yi = 01 |P2. Since a\, <r2 e L, this implies that a e L which it is not. Hence
L cannot be a product language and therefore is not TrPTL^-definable. On the
other hand, it is a simple exercise to come up with a formula a € $con such that
{str(a) | a G L} = La.

We now turn to FO{T,), the first order theory of infinite traces over E. One
starts with a countable set of individual variables X = {xo, x\,...} with x, y, z with
or without subscripts ranging over X. For each a G E there is a unary predicate
symbol Ra. There is also a binary predicate symbol <.

Ra{x) and x < y are atomic formulas. If cp and ip' are formulas, so are -*p,
ip V <p' and {3x)(p. The structures for this first order theory are elements of TR".
Let F G TR" with F = {E, <, A) and let I : X -> E be an interpretation. Then
F\=j°Ra{x) iff A(I(x)) = a and F |=f ° x < y iff l{x) < X{y). The remaining
semantic definitions go along the expected lines. Each sentence ip (i.e., a formula
with no free occurrences of variables) defines the w-trace language Lv = {F \

F hFO <p}.
We say that L C TRW is FO-definable iff there exists a sentence <p in FO{T,)

such that L = Lv. As before we will say that L C E" is FO-definable iff L is
/-consistent and {str(cr) | a G L} is FO-definable.

Z-O ^>

Using the fact that LTL has the same expressive power as the first order theory of
sequences, one can show that L C Eu is FO-definable iff it is /-consistent and LTL-
definable [EM]. It will be worthwhile to pin down the notion of LTL-definability.
In the current setting, remembering that (E, /) is the trace alphabet induced by E,
we define the syntax of the logic LTL(E) as follows:

LTL(E) ::= T | -.a | a V /? | (a)a \ a Uß.

A model is a infinite word a. For a e S" and n e w, the notion of a G LTL(E)
being satisfied at stage n is denoted by a,n \= a. This satisfaction relation is
defined in the usual manner. The only point of interest might be that a,n\= {a)a
iff cr(n+l) = a and a,n+l \= a. We say that L C E" is LTL-definable iff there
exists a e LTL(E) such L = La where La = {a G E" | a, 0 ^= a}.

The result in [EM] relating FO-definable subsets of TR" and LTL-definable
subsets of E" can now be phrased as follows.

Proposition 4.1 Let LCE". Then, the following statements are equivalent.

(i) L is I-consistent and LTL-definable.

(ii) {str(o-) | a G L} is an FO-definable subset ofTR".

We now wish to concentrate on showing that TrPTL is expressible within the
first order theory of infinite traces.

To show this, we will freely use the standard derived connectives of Propositional
Calculus, together with universal quantification and abbreviations such as x = y
for (x < y) A (y < x), x < y < z for (x < y) A (y < z) etc.

An event e is an i-event iff A(e) € Ej. With this in mind, we let x e Ei
stand for the formula VaeEi Ra(x)- The keY to the result we are after is the
observation that configurations of a trace can be described using predicates of
bounded dimension. In what follows we let Q,Q',Q" range over the non-empty
subsets of "P. For Q = {ii,i2,... ,in}, the formula config({xi}i6Q) is defined as:

config({xj}i£Q) = (ipi /\ip2 Ay>3), where

Vi = AieQ xi e Ei>
V2 = Ai,j /\a(.R*(Xi) A Ra{Xj)) => Xi = Xj,
¥>3 = Ai,j(Vy) (yZEjAyKxJ^yK Xj.

We can now write down a formula describing prime configurations—recall that a
prime configuration is one of the form je, where e e E. Let loc(a) C Q. Then the
formula primea({xi}i(EQ) is defined as

config({ar4}i6Q) A /\ /\ Ra(Xi) A (Xj < xt).
iGloc(a) j£Q—loc(o)

A careful examination of this formula along with the basic properties of traces
at once leads to the next result.

Proposition 4.2 Let F = (E, <, A) e TR" and let! : X -* E be an interpreta-
tion. Then F \=j° primea({xj}j6Q) iff there exists an a-event e such that for each
j G Q, 1{XJ) is the <j-maximum event in [eDEj and for each j £ Q, [eC\Ej = 0.

2^V

For each a e 5> we now define the sentence SAT(0, a) and the set of formulas
{SAT({xi}ieQ,a) | {xi}ieQ C X and 0 / Q C P} through simultaneous induction
as follows:

• SAT(0,T) = SAT({xi}ieQ,T) = (3z) x = ar.

• SAT(0,-.a) = -SAT(0,a).
SAT({ari}i6Q,-.a) = -.SAT({xi}iGQ, a).

• SAT(0, a V ß) = SAT(0, a) V SAT(0, ß).
SAT({xi}i€Q, a V 0) = SAT({xi}i€Q, a) V SAT({xi}ieQ,ß).

• SAT(0, (a)j-a) = VgDioc(a)(3xn3a;i2, • • -,3xin) ViA^A y>3

where Q = {ii, »2, ■ ■ • i *n} and

V?! = primea({a;i}i6Q),
<P2 = SAT({xi}i(zQ,a),
¥>3 = (^y) (y^ Ej Ay <xj)=^y = xj.

SAT({xi}ieQ, {a}ja) is defined according to two cases.

Case 1 j £ Q: SAT{{xi}ieQ, (a)ja) = SAT(0, (O)JOI).

• Case 2 j € Q
SAT({xi}ieQ, (a)ja) = VQOioc(a)(3yfci' 3^2> ■ • -3yfe„) Vi A V2 A v?3

where Q' = {ki,k2,..., kn} and {yk}keQ' ls disjoint from {xi}ieQ and

ipi = primea({yfc}fc6Q'),
ip2 = SAT{{yk}keQ',a),
fa = Vy (y e £y =* (y < yj & y < Xj)).

• SAT(®, a Ujß) =SAT{9,ß)\/ {SAT(9,a) ASAT(9,\/a€E.(a)jaUjß)).

SAT({xi}ieQ, a Ujß) is defined according to two cases.

Case 1 j £ Q: SAT({xi}ieQ, a Ujß) = SAT(0, a Ujß).

Case 2 j € Q:
SAT{{Xi}ieQ,aUjß) =Va6Ei VQ01oc(a)(3Wi'3y^'---3^n)¥'lAV2A^3Av34
where Q' = {&i, A;2,..., *;„} and {yk}keQ' is disjoint from {xi}i6Q and

V?i = primeo({j/fc}fc6Q0,
¥>2 = Xj<yj,
<P3 = SAT({j/fc}fc6Q/,/9),
¥>4 = Vz(z € JSj AXj <Z < J/j) => (£4.

^o

where ^ = VaeE. VQ'OIOC(„)(
3

**I> 3*<a» • • • > 3^,J <P'AI A <P42 A ¥>43

with Q" = {£ij2,...,£m} and {zt}i€Q„ disjoint from both {xi}ieQ and
{2/fc}*eQ' and

V?4! = primea({2£}£gQ»),

9?42 = (Z = Zj),

V43 = SAT(^}^6Q»,a).

Let / be the map which sends each formula in $ to a sentence in FO(S) via
f(a) = SAT(0,a). Using the previous proposition and the semantics of TrPTL, it
is not difficult to prove the following:

Theorem 4.3

(i) For every F G TR°, F,<D\=aiffF (=FO /(a).

(ii) IfLC TR" is TrPTL definable then it is also F'0(E)-definable.

As mentioned earlier we do not know at present if TrPTL is expressively com-
plete — i.e., whether every L C TR" which is FO(E)-definable is also TrPTL-
definable. Clearly from Proposition 4.1 it follows that the expressive completeness
of TrPTL can be characterized as follows:

Corollary 4.4 The following statements are equivalent:

(i) TrPTL is expressively complete.

(ii) For every L C E", if L is I-consistent and L is LTL-definable then L is
TrPTL definable.

We believe that TrPTL is not expressively complete. This leads to the following
question: What is the linear time temporal logic of infinite traces? Such a logic
should possess the following properties:

(TR1) It should be expressively complete.

(TR2) It should admit a decision procedure (preferably in terms of asynchronous
Büchi automata) whose time complexity is 2p(-n'm') where n is the size of the
input formula, m = |S| and p is a (low degree) polynomial in n and m.

(TR3) It should be possible to transparently express global liveness and safety
properties in the logic.

It is worth noting that TrPTL and most of the decidable temporal logics over
traces mentioned earlier such as [Nie] and [APP] cannot express all global invariant
properties. The somewhat awkward semantics of the logic in [Ebi] also makes it
event-based and hence not suitable for expressing invariant properties. However
we believe that it should be possible to define a logic with a variant of the until
operator defined in [Ebi] which will be able to capture global liveness and safety
properties in a straightforward manner.

2*6

Any linear time temporal logic over traces which fulfills the properties (TR1)-
(TR3) will be a very useful specification tool. In particular it will exactly capture
properties that are expressible by /-consistent formulas in LTL—(a e LTL(E) is
/-consistent iff La is /-consistent). This is important because it is such properties
which can be verified efficiently using partial order based verification methods [GW,
Val].

5 Conclusion

In this paper we have considered linear time temporal logics over traces. Our
emphasis has been on TrPTL and its two sublogics TrPTLcon, IrPTL®. The choice
of these logics has been mainly motivated by the fact that they are expressible
within the first order theory of traces and the fact that they can be studied using
asynchronous Büchi automata.

Our formulation of asynchronous Büchi automata in terms of the acceptance
condition A2 appears to be particularly suited for logical studies. The present
constructions are much more compact and transparent than the ones in [Thil]
which used Al as the acceptance condition. We feel that, in the future, alternating
versions of our automata will play an important role in the study of temporal logics
over traces.

As we have mentioned a number of times, an important open problem is to pin
down a linear time temporal logic for traces (assuming it exists!) which will fulfill
the properties set out in the previous section. A solution to this problem will at
once open up the possibility of investigating branching time temporal logics where
path quantification is over traces.

References

[AHU] A.V. AHO, J.E. HOPCROFT AND J.D. ULLMAN: The Design and Anal-
ysis of Algorithms, Addison-Wesley, Reading (1974).

[APP] R. ALUR, D. PELED AND W. PENCZEK: Model-Checking of Causality
Properties, Proc. 10th IEEE LICS (1994).

[Die] V. DlEKERT: Combinatorics on traces, LNCS 454 (1990).

[DM] V. DlEKERT AND A. MuscHOLL: Deterministic Asynchronous Au-
tomata for Infinite Traces, Ada Inf., 31 (1993) 379-397.

[DR] V. DlEKERT, G. ROZENBERG (Eds.): The Book of Traces, World Scien-
tific, Singapore (1995).

[Ebi] W. EBINGER: Charakterisierung von Sprachklassen unendlicher Spuren
durch Logiken, Ph.D. Thesis, Institut für Informatik, Universität
Stuttgart, Stuttgart, Germany (1994).

[EM] W. EBINGER AND A. MUSCHOLL: Logical Definability on Infinite
Traces, Theor. Comput. Sei., 154 (1996) 67-84.

»• 7

[GP] P. GASTIN AND A. PETIT: Asynchronous Cellular Automata for Infinite
Traces, Proc. ICALP '92, LNCS 623 (1992) 583-594.

[GW] P. GODEFROID AND P. WoLPER: A Partial Approach to Model Check-
ing, Inform, and Comput, 110 (1994) 305-326.

[Huh] M. HUHN: On Semantic and Logical Refinement of Actions, Technical
Report, Institut für Informatik, Universität Hildesheim, Germany (1996).

[KP] S. KATZ AND D. PELED: Interleaving Set Temporal Logic, Theor. Com-
put. Sei., 75 (3) (1992) 21-43.

[KMS] N. KLARLUND, M. MUKUND AND M. SOHONI: Determinizing Büchi
asynchronous automata, Proc. FST&TCS 1995, LNCS 1026 (1995) 456-
470.

[LPRT] K. LODAYA, R. PARIKH, R. RAMANUJAM AND P.S. THIAGARAJAN:
A logical study of distributed transition systems, Inform, and Comput,
119 (1995) 91-118.

[MP] Z. MANNA AND A. PNUELI: The Temporal Logic of Reactive and Con-
current Systems (Specification), Springer-Verlag, Berlin (1991).

[Maz] A. MAZURKIEWICZ: Concurrent Program Schemes and their Interpre-
tations, Report DAIMI-PB-78, Computer Science Department, Aarhus
University, Denmark (1978).

[MS] M. MUKUND AND M. SOHONI : Keeping track of the latest gossip:
Bounded time-stamps suffice, Proc. FST&TCS '93, LNCS 761 (1993)
388-399.

[Mus] A. MUSCHOLL: On the complementation of Büchi asynchronous cellular
automata, Proc. ICALP '94, LNCS 820 (1994) 142-153.

[Nar] K. NARAYAN KUMAR: An Improved Decision Procedure for TrPTL, Un-
published Manuscript, Tata Institute of Fundamental Research, Bombay,
India (1994).

[Nie] P. NlEBERT: A f-Calculus with Local Views for Systems of Sequential
Agents, Proc. MFCS'95, LNCS 969 (1995) 563-573.

[NPW] M. NIELSEN, G.D. PLOTKIN AND G. WINSKEL: Petri Nets, Event
Structures and Domains I, Theor. Comput. Sei., 13 (1980) 86-108.

[Pen] W. PENCZEK: Temporal Logics for Trace Systems: On Automated Ver-
ification, Int. J. Found, of Comput. Sei., 4(1) (1993) 31-68.

[Pnu] A. PNUELI: The Temporal Logic of Programs, Proc. 18th IEEE FOCS
(1977) 46-57.

[Ram] R. RAMANUJAM: Locally Linear Time Temporal Logic, To appear in
Proc. 11th IEEE LICS (1996).

Z-gS

[Thil] P.S. THIAGARAJAN: A Trace Based Extension of Linear Time Temporal
Logic, Proc. 9th IEEE LICS (1994) 438-447. Full version available as:
TrPTL: A Trace Based Extension of Linear Time Temporal Logic, Report
TCS-93-6, School of Mathematics, SPIC Science Foundation, Madras,
India (1993).

[Thi2] P.S. THIAGARAJAN: A Trace Consistent Subset of PTL, Proc. CON-
CUR'95, LNCS 962 (1995) 438-452. Full version available as: PTL over
Product State Spaces, Report TCS-95-4, School of Mathematics, SPIC
Science Foundation, Madras, India (1995).

[Tho] W. THOMAS: Automata on infinite objects, in J. van Leeuwen (ed.),
Handbook of Theoretical Computer Science, Volume B, North-Holland,
Amsterdam (1990) 133-191.

[Val] A. VALMARI: Stubborn Sets for Reduced State Space Generation, LNCS
483 (1990) 491-515.

[VW] M. VARDI, P. WOLPER: An automata theoretic approach to automatic
program verification, Proc. 1st IEEE LICS (1986) 332-345.

[WN] G. WlNSKEL AND M. NIELSEN: Models for Concurrency, In: S. Abram-
sky and D. Gabbay (Eds.), Handbook of Logic in Computer Science, Vol
3, Oxford University Press, Oxford (1994).

[Zie] W. ZIELONKA: Notes on finite asynchronous automata, R.A.I.R.O.—
Inf. Theor. et Appi, 21 (1987) 99-135.

[Zucj L. ZUCK: Past Temporal Logic, Ph.D. Thesis, Weizmann Institute, Re-
hovot, Israel (1986).

1C c\

A solution of an interleaving decision problem
by a partial order technique

Albert R. Meyer* Alexander Rabinovich*

1 Introduction

1.1 Interleaving versus partial order semantics

Approaches to the semantics of concurrent systems may be divided into two main
groups: interleaving and partial order. In the interleaving approach, only the tem-
poral behavior of the events of a run is observable; in the partial order approach,
'causal dependency' between events are considered.

The supporters of the interleaving approach argue that

1. Specifications of concurrent systems always refer only to the temporal behav-
ior and ignore causal behavior.

2. Interleaving semantics are technically much simpler than partial order seman-
tics.

Supporters of the partial order approach argue that this approach gives a better
account of the activity of a concurrent system. However, in view of (1), it is difficult
to convince a researcher of interleaving semantics that casual aspects are important.

Another argument in favor of partial order semantics appeals to partial order heuris-
tics for verification of interleaving behavior. Recently a number of such heuristics
were suggested and in several case studies it was empirically demonstrated that
these heuristics were efficient (see recent Proceedings of CONCUR and CAV). How-
ever, the partial order heuristics do not improve the complexity of verification.

In our paper another argument in favor of partial order semantics is provided. We
consider a decision problem which is formulated in terms of interleaving semantics.
The decision algorithm will be given in interleaving terms. However, we devel-
oped and proved the correctness of the algorithm by appealing to a partial order
semantics.

*MIT Laboratory for Computer Science Cambridge, MA 02139, USA
'Department of Computer Science, The Sackler School of Exact Sciences, Tel Aviv University,

Israel 69978

■VH

This situation is similar with a situation which often occur in mathematics. For
example, to find real valued functions that solve a linear differential equation we
solve it over the complex numbers. Similarly, if one believes that only interleaving
behavior is real he may gain by considering casual semantics.

1.2 Summary of our results

In this paper we consider the following
Decision problem: Given expressions E\ and £2 constructed from variables by
the regular operations and shuffle. Is identity E\ = £"2 true for all instantiation of
its variables by formal languages?

For example, the identity (A'V*)* = (A + V')' is true because for all languages L\,
and £2, the languages {L\L'2Y and (Ii + £2)" are the same.

The above identity contains only regular operations: concatenation, union and iter-
ation. An easy "folk' theorem [3] shows that the validity of an identity over regular
operations can be verified by instantiating the language variables as single letters.
For example, in order to check the validity of (A'V)" = (A + Y)* we instantiate
the variables A and Y by a single letters a and 6 and verify that (a'b")' = (a + b)*.
Checking this variable-free identity is a routine matter of checking equivalence of
finite state automata.

In concurrency a very important role is played by parallel composition operators.
The simplest of these operator is non-communicating parallel connective ||, corre-
sponding to shuffle of languages. The above folk theorem fails for the expressions
containing shuffle. For, example for single letters a and 6, the languages a||6 and
ab + ba are the same. However, the identity X\\Y = XY + YX is not true (indeed,
instantiate A by a and Y by be).

An algorithm for the valid identity problem is provided in this paper. In order to
check the validity of an identity Ei(Xi,..., A'*) = £2(Xi,..., Xk) we will specify
(see Theorem 3) finite languages L\,...,Lk (the languages depends on Ei and
£2) such that the identity is valid iff the variable-free identity obtained through
instantiation of Ai,..., A* by L\,...,Lk is true. Checking this last variable-free
identity is reduced to the checking of language equivalence of finite state automata.

2 Shuffle Regular Expressions

We presuppose two fixed infinite sets

Act = {a, ai,.. .6, bi,...} the actions
Var = {A, A"i ,...Y, V\,...} the variable symbols.

Shuffle regular expressions are defined by the following grammar:

E ::= i | e | E + E | E; E | E\\E | £", where x ranges over alphabet Var of
variable symbols and, c ranges over alphabet Act of constant symbols.

I«k={a}
W«r = (T(*)
[Ei + E2l<r = Union of [EI](T and [E2]<r'""n

[Eu E2]<T = Concatenation of [Ei)<r and [E-i\a
p'"n

[E\\\E-\<T = Shuffle of [£i]<r and [£2l<r

Figure 1: Definition of [E]<r

We denote by £V'ar(£) the set of variables which occur in E.

We say that £ is a variable free expression if FVar(E) = 0.

We use notation E{Ei/X\ .. ■ E„/Xn} for the expression obtained from £ by si-
multaneous substitution of £, for AV We use £,n

=1 £, as an abbreviation for for
Ex + £2 + ...+ £„.

A string is a finite sequence of actions; we use w, u to range over strings. A string
language is a set of strings; we use L to range over string languages.

The operations sum, concatenation, iteration and shuffle are defined in a standard
way on the string languages.

We recall that a string w belongs to the shuffle of languages L\ and I2 if
w = W1U1V2U2 ■ ■ -vukUk where wiw? .. .wt € L\ and uiUo .. .ut £ Li-

A string language environment for {A'i...Xn] is a function which assigns to A'; a
string language. For an expression £ and a string language environment a for a
set that contains the free variables of £, the string language [E\a is assigned in a
standard way by structural induction on the expressions (see Fig. 1).

It is clear that if er(x) = (/(x) for every x € Fvar{E) then [£]<r = [£]<r'

3 The Valid Identity Problem

We will consider the following decision problem
Valid Identity Problem:
Input: A pair of shuffle regular expressions £1 and £2.
Question: Is the identity E\ = £2 valid, i.e., are the languages \E{\<? and [£2](T
equal for every string language environment a for Fvar(Ei) U £V,ar(£2).

The main technical result of our paper is

Theorem 1 The valid identity problem for shuffle regular expressions is decidable.

Theorem 1 follows from the next two theorems.

Theorem 2 The valid identity problem for variable free shuffle regular expressions
is decidable.

•^15

sn(.X) = sn(a) = 0
sn(Ei + E2) = sn(Ei;E3) = max(sn(Ei). sn(E2))
sn{Ei\\En) = sn(Ei) + sn(E2) + 1
sn(E') = sn(E)

Figure 2: Shuffle nesting of Expressions

Proof: The problem is easily reduced to the problem of equivalence of finite state
automata. g

Notation: The shuffle nesting of an expression E is denoted by sn(E) and is
defined in Fig. 2.

Theorem 3 Let £L and E2 be shuffle expressions over variables A'i, X„ such
that the shuffle nesting of E\ and E2 is bounded by k.
Let {dij, äij : i = 1 n; j — \ k} be distinct actions which do not occur

in the expressions Ex, E2. Let SPLITk be the expression £*=1 a.jjä,.,. Identity
E\ = Ei is valid if and only if the variable free identity
ExiSPLlTl/Xx .. .SPLIT?/Xn) = E2{SPLITl!Xx. ..SPLIT? fXn) is valid.

Proof: In order to proof this theorem we appeal to the notions which were developed
in the casual approach to concurrency. Theorem 3 follows from Theorem 7 and
Theorem 9, part 2, below. □

4 Pomsets

Definition 1 (Pratt [6]) A concrete pomset P over set E of labels consists of a set
of events Eventsp which are partially ordered by a relation <p and a function labp
from Eventsp into E. A function f is an isomorphism between concrete pomsets
Pi and P2 if it is label preserving isomorphism between the partial orders of Pi and
P2. An (abstract) pomset is an isomorphism class of concrete pomsets.

Throughout the paper we provide some definitions and constructions for concrete
pomsets. All these definition/constructions are extended in a natural way to the
abstract pomsets.

Definition 2 Events ex and e2 of a pomset P are concurrent (notation ex cop e2)
if neither ex <p e2 nor e2 <p ei.

Definition 3 The width of a pomset P is the maximal number of mutually con-
current events in the P.

Definition 4 A pomset language over E is a set of pomsets over E. We say
that a pomset language PL has width at most n if all pomsets in PL have width
less or equal than n.

W

Definition 5 A concrete pomset P is an augmentation of a concrete pomset
Q if Eventsp = Eventsq, labp = labq and e\ <q en implies e\ <p en for alt
ei.e? € Eventsp.

Definition 6 A concrete pomset P is a linearly ordered pomset if <p is a
linear order over Eventsp.

We will identify a linearly ordered pomset over a label set E with the correspond-
ing string over alphabet E. Also every string language is considered as a pomset
language.

Definition 7 The linearization of a pomset language PL (notation Lin(PL)) is
the string language L such that w € L iff w is a linearly ordered augmentation of a
pomset P€ PL.

Notations: A pomset containing only one event labeled by / will be denoted by
/. The pomset language containing only one pomset P will be denoted by {P}; in
particular, the language containing only the one element pomset labeled by / will
be denoted by {/}.

5 Refinement

Let P be a pomset and / be a function which assigns a pomset to every event of
P.

The /-expansion of P is a pomset Q obtained by replacing every event of P by
its image. Formally,

Eventsq = {(e, e') : e € P, e' € /(e)};

(«i>e2) <Q (e3,ei) if either ei </» e3 or e% = e3 and e2 </(e,) e4.

/a6<3((e,e')) = /a6/(e)(e')-

We use the notation Expan(P, f) for the / expansion of pomset P.

Definition 8 A pomset language environment for a set of labels £ is a function
which assigns a pomset language to every label in E.

Notations We use the notation [/i — PL\, l? — PL?, ...,/„ — PL„] for the pom-
set environment which maps /< to PLit i = 1,..., n. We denote by PLE(Z) the set
of pomset language environment for E. We use a, ß to range over pomset language
environments. We denote by SL£(E) the set of string language environments for
E. We use cr, r to range over string language environments.

Definition 9 Lei P be a pomset. Let f be a function which assigns a pomset to
every event of P and let a be a pomset language environment for E. The function
f is consistent with a if for every event e

■}-l^

/. f(e)€a(labP(e)) iflabP(e) € E.

-• /(«) = {/atp(e)} otherwise.

Definition 10 £e< ait a pomset language environment for E. TAe a-refinement
REF(PL,a) ofapomset language PL ts{Expan(P,f) : P £ PL and f is consistent witk a)

The refinement operation has properties similar to substitution operation:

Lemma 4 Let PL be a pomset language over an alphabet E and a be a pomset
language environment for an alphabet E'. //EflE'C {/I,...,/*} Men
REF((REF(PL, [h-PLx /* - P£t]),a) =
= REF{PL.[h- REF{PLx,a) lk - REF(PLk.a)]).

The next lemma state how linearization operator interacts with refinement.

Lemma 5 Lin(REF(PL.[h — PLi /* — PLk]) = Lin{REF{PL,[lx —
Lin(PL1),...,lk~Lin(PLk)]

6 Operations definable by pomset languages

Definition H The application of a pomset language PL to a string language
environment r (notation PL*r) is the string language defined as Lin(REF(PL, r)).

Definition 12 Let F be a function from string language environments for E into
string languages. We say that F is definable by a pomset language PL if
Fr = PL»r for all r 6 5££(E).

Observation 6 The regular operations and shuffle are pomset language definable,
namely

1. Let PAR(X,Y) be the pomset consisting of two unordered events labeled
by X and Y. It is easy to see that [X||y] defines the same operation as
{PAR(X, Y)} over the string environments for {X, Y).

2. Let SEQ(X, Y) be a pomset with two events labeled by X and Y such that the
event X precedes the event Y. It is easy to see that [X; Y\ defines the same
operation as {SEQ(X, Y)} over the string environments for {X, Y}.

3. Let SUM(X, Y) be the pomset language consisting of two one element pomsets
X and Y. It is easy to see that [X + Y] defines the same operation as
SUM(X,Y) over the string environments for {X, Y}.

4- Let ITER(X) be the pomset language which consists of all finite strings over
symbol X. It is easy to see that [X"\ defines the same operation as ITER(X)
over the string environments for {X}.

1.-1

[a]'- = {a}
UYom = {*)
[Et + E2Y

om = REF(SUM(X, Y), [X - [£,J',om, V - [E->Y°m])
[El;E2]pom = REF{SEQ(X,Y), [X - [Eil'9»". V - [Etf™])
[EiWEiY** = REF(PAR(X,Y), [X - [Ex)"™, Y — [E'IY

0™])
jE.pom _ REF{ITER(X), [X - [£pom])

Figure 3: Pomset Semantics

Theorem 7 For every shuffle regular expression E. the operation \a. [E\a is de-
finable by a pomset language with width bounded by the shuffle nesting of E.

Proof: By structural induction on the expressions the pomset language [E]pom is
assigned to every shuffle regular expression (see Fig. 3). Relying on Lemma 4,
Lemma 5 and Observation 6, it can be shown that [E]a = [£pom • <r, where a is
any language environment a for the Fvar(E). D

Definition 13 A string language environment [l\ —► L\,...ln — Ln], is called a
split-choice environment for {/i.. ./„} if every Li contains only strings of length
two.

Lemma 8 PL • r = PL' • r for every string language environment r for E iff
PL • T = PL' • T for every split-choice environment r for E.

This lemma can be strengthened as follows:

Theorem 9 Let PL and PL' be pomset languages over an alphabet E and let
{(tij, äij : i = 1,..., n , j € Nat} be distinct labels not in E. Let L^ be string
language {a.jjö, j : j 6 Nat} and let L\ be string language {aij;ä~ij : j =
1,2....,*}. '

/. PL»r = PL'*T for every string language environment r for {mi,..., m„} iff
PL . [m, - L\°°\ ..., m„ -* L^] = PL' • [mi - L^, ..„m,- L^].

2. Let PL and PL' be pomset languages of width at most k. Then PL • r = PL' • r
for every string language environment r for {mlt.. .,m„} if and only if
PL • [rm - £<*>,..., mn - L(

n
k)] = PL' • [mi - L?\ ..., mn - L^].

Remarks (1) The above theorem can be strengthened as follows: Let *, be the
bound on the number of mutual concurrent events labeled by m,- in the pomset
languages PL and PL'. Then PL*r = PL'T for every string language environment
T for {mi,..., m„ } if and only if
PI.[m1-L(

l
t,),...,mtl-lkt")] = PL,«[m1-.L(

1*
,),...,mT1-lkt")].

(2) Weaker versions of the above theorem have appeared in the literature.

Xi 7

Gischer [1] considered the operations definable by pomsets. One of his results can
be stated as follows: For pomsets P and P' with less than Jb events, {P}T =
{P'}T for every string language environment r for {mi, m„} if and only

iffPJ.K-M" mB-t(*,]Ä{f"}.[ml-L(
l
k) mn - £«*'].

In [5] the special pomsets which are called semi-words are considered. A pomset
is a semi-word if no events with the same label are concurrent. It was proved
in [5] that for semi-word languages SWL and SWL' the following theorem
holds: SWL • T = SWL' • r for for every string language environment r for
{mi rnn } if and only if

SWL • [m, - L\l) mn - L{„1)] = SW£' • [m, - Z^ mn ~ J#>].

(3) The proof of Theorem 9 can be extracted from the proofs of these two weaker
versions.

7 Further Results

7.1 Complexity of the valid identity problem

An exponential space algorithm can be provided for the valid identity problem.
Mayer and Stockmeyer [2] provided EXPSPACE lower bound for the valid identity
problem of the variable free shuffle regular expression. These results give a tight
lower and upper bound for the valid identity problem.

7.2 Extension by other pomset language definable opera-
tions

Let OP be an n-ary operation on string languages. We say that OP is effective on
regular languages if there exists an algorithm which constructs a finite automaton
for the language OP(L\, ...,Ln) from finite automata for L\,..., L„.

We say that OP is definable by (finite width) pomset language if there exists a (finite
width) pomset language PL such that PL*[\ — £i,..., n —■ L„] = OP(Li, ...,Ln)
for any languages L\,..., I„.

Note that the operations definable by finite pomset languages are effective on reg-
ular languages. Among such operations are operations which are not definable by
any shuffle regular expressions.

The valid identity problem is decidable for the expressions constructed over any set
of operations which are effective on regular languages and are definable by finite
width pomset languages.

7.3 Extension by Intersection

Micciancio [4] proved the decidability of the valid identity problem for constant
free shuffle-intersection regular expressions. These expressions are defined by the

following grammar: E ::= x\EC\E\E + E\E\E\ E\\E | E*, where x ranges
over variable symbols.

Note that the intersection is not a pomset language definable operation. Miccian-
cio's very interesting proof is given in terms of interleaving semantics and does not
use explicitly pomsets. It is an open problem whether his results and techniques
can be extended to other pomset language definable operations and in particular
to the expressions which contain constants.

Acknowledgments

We would like to thank Yoram Hirshfeld and Boris Trakhtenbrot for stimulating
discussions and many constructive suggestions.

References

[1] J. Gischer. Partial Orders and Theory of Shuffle. PhD thesis, Stanford
University, 1984.

[2] A. Mayer and L. Stockmeyer. The complexity of word problem - this
time with interleaving. Information and Computation, pages 293-311, Vol
115, 1994.

[3] A. R. Meyer. Concurrent Process Equivalences: Some decision problems.
In STAC 95, volume 900 of Led. Notes in Computer Science, Springer
Verlag, 1995.

[4] D. Micciancio. The Validity problem for Extended regular Expressions.
M SC thesis, MIT, 1996.

[5] M.. Nielsen, U. Engberg, and K. Larsen. A Simple Process Language
with Refinement. In REX Workshop on Linear Time, Branching time and
Partial Order in Logics and Models for Concurrency , volume 354 of Led.
Notes in Computer Science, pages 523-548, Springer Verlag, 1990.

[6] V. R. Pratt, On the composition of Processes. In Proc. of the Ninth
Annual ACM Symposium on Principles of Programming Languages, 1982.

Mi

ri-o

Stubborn Set Methods for Process Algebras

Antti Valmari

ABSTRACT. The construction of reduced state spaces of concurrent process-
algebraic systems using the stubborn set or related methods is discussed. The
goal is to avoid altogether the construction of the big ordinary state space of the
system, and construct a smaller, but equivalent, state space instead. Five equiv-
alence notions are covered: "deadlock equivalence" (the reduced and full state
spaces have exactly the same deadlock states), trace equivalence, CSP-equiva-
lence, CFFD-equivalence and branching bisimilarity. Most of the methods are
similar to stubborn set or related methods in other application areas. However,
because of the absence of the notion of "structural deterministic transition"
(such as the Petri net transition) in process algebras, earlier definitions and
proofs were not applicable, and the theory behind the methods had to be re-
developed from the beginning.

1. Introduction

The fact that the total effect of a set of concurrent transitions (or operations or
actions) is independent of execution order has been utilised in computer-aided verification
methods in many ways. One main approach is to generate only a subset of the interleaved
executions of the system under verification (see e.g. [God96, Pel93, Val94]). The subset is
represented as an ordinary interleaved state space, called reduced state space. It is chosen
in such a way that from the point of view of the verification task at hand, it can represent
all executions. That is, the answer to the verification question is guaranteed to be the same
for both the full and the reduced state space.

The reduced state space is obtained by using only a subset of enabled transitions
when constructing the immediate successor states of a state. It has turned out that the
selection of a "sufficient" subset depends on the verification question. Furthermore, it may
be necessary to ensure that certain conditions that depend on more than one state hold in
the reduced state space. Even for a fixed verification question, the construction of the suf-
ficient subset depends on the formalism in which the system has been represented — the
techniques that are good for Petri nets do not necessarily work for parallel labelled transi-
tion systems. Moreover, the subset is not completely defined by the requirement that it has
to be "sufficient". Some algorithms are capable of finding smaller sufficient subsets than
others, at the price of consuming more time.

As a consequence, different authors have investigated the reduced state space con-
struction problem with different goals and formal frameworks, and have developed a vari-

P-^l

ety of different algorithms and methods with names such as persistent sets, ample sets and
stubborn sets. Despite of the differences, these approaches have quite a lot in common.
Many ideas that have been originally developed in the context of, say, ample sets, can be
used with, say, stubborn sets. To be consistent with terminology within this article, the
stubborn set vocabulary is used. It is emphasized, however, that from the point of view of
the subject matter this is a somewhat arbitrary choice; this article could have been written
in the ample set or persistent set language.

The generic term "partial-order methods" is often used of the stubborn set method
and its relatives. But it covers also methods that are not based on choosing representative
interleavings and presenting them in the form of an ordinary (but reduced) state space,
such as the unfolding method [McM93, Esp94]. So it is too general for the present article.
Furthermore, in the opinion of the present author, the term "partial-order methods" is mis-
leading. The term refers to semantic models of concurrency where the ordering of the
occurrences of mutually independent transitions is partial. The stubborn set and related
methods take advantage of commutativity properties that resemble the "independency"
relation of partial-order models, but is slightly different, and has sometimes different con-
sequences. (This difference will not be obvious in the context of the present article, but it
has proven important in the case of Petri nets, for instance.)

This article is devoted to the application of the stubborn set approach (or its relatives)
to process-algebraic verification. Compared to other applications of stubborn set methods,
the biggest difference is in the notion of "transition". Stubborn set methods usually rely on
"deterministic" "structural" transitions, such as the transitions of a Petri net. Transitions
are responsible of state changes. That they are "deterministic" means that the occurrence
of a transition in a state produces always the same immediate successor state. The word
"structural" indicates that it is meaningful to talk about the same transition in different
states. In process algebras, the word "transition" denotes what would be the occurrence of
a transition in Petri net terminology. No individual "performer" of the occurrence can be
distinguished; the responsibility of (the execution of) the transition is distributed over sev-
eral processes of the system. Deterministic structural transitions do not exist. The set of
processes that participate (the execution of) a transition is determined by the concept of
action. In some sense, an action is the name of several transitions. Actions are structural,
but they are not deterministic.

The absence of deterministic structural transitions affects the development of the the-
ory. It is not any more possible to utilise the assumption that if two transitions occur in
both orders, the end result is the same. This is because the end result is no more unique, so
the two orderings may choose different members from the set of possible end results. The
use of actions has also some effects on the construction of stubborn sets. In other respects,
the stubborn set methods and algorithms for process-algebraic verification are pretty much
the same as in other stubborn set or related methods.

The goal of the methods described in this article is to produce a reduced state space
that is equivalent to the full one in the sense of some process-algebraic equivalence. Liter-
ally hundreds of different equivalences have been defined in the process algebra literature.
The majority of them is, however, based on few main ideas. In this article we discuss some
well-known and one less well known equivalence that together cover most of the impor-
tant ideas.

The earliest explicit application of the stubborn set or related methods to process
algebras was [VaC91]. In it, transitions were deterministic, but not structural. As a conse-
quence, the mathematics became complicated, and it was almost impossible to describe

•^11

how stubborn sets may be constructed. These problems were solved in [Val92b] by using
actions as transitions and re-working the theory to allow non-deterministic transitions. The
goal of [Val92b] was to produce reduced state spaces that are CSP- [BrR85, Hoa85] or
CFFD-equivalent [VaT91, VaT95] with the full ones. The method was closely related to
the linear temporal logic -preserving stubborn set method presented in [Val92a]. A method
that preserves branching bisimilarity [vGW89, vG190] was first presented in [GK+95].
Because branching bisimilarity implies weak bisimilarity (known also as observation
equivalence) [Mil89], the [GK+95] method preserves also the latter.

This article is organised as follows. The necessary process-algebraic concepts includ-
ing the above-mentioned equivalences are introduced in Section 2. To simplify the devel-
opment of the stubborn set theory, the definitions are presented in a somewhat non-
standard form, although the concepts they define are standard. Section 3 presents the basic
facts about the stubborn sets of process-algebraic concurrent systems. A method preserv-
ing trace equivalence is described in Section 4. This method is a reasonably straightfor-
ward application of the results in [Val91] and [Val92b]. The CSP- and CFFD-preserving
methods from [Val92b] are repeated in Section 5. Section 6 is devoted to a translation of
the [GK+95] branching bisimilarity method to the present framework with non-determin-
istic actions. The conclusions are in Section 7.

Throughout this article, small improvements are made to the methods presented. For
instance, the assumption that the reduced state space is finite, is mostly eliminated. This
may become important in the future, if the stubborn set method is combined with methods
that represent infinite state spaces by finite data structures.

2. Processes, Parallel Composition, and Equivalences

In process algebras, the behaviour of a system consists of executions of actions.
There are two kinds of actions: visible and invisible. Each system has a fixed set of visible
actions it may execute, and the environment of the system can observe or even synchro-
nise with the execution of a visible action. Executions of invisible actions cannot be
directly observed. It is customary to use the one symbol "x" to denote all of them. An
invisible action may represent a hidden internal action that is participated by several com-
ponent processes of the system. Knowledge of the set of the component processes that
participate the internal action is important for the stubborn set method. Therefore, in this
article, invisible actions are not denoted by x, but it is assumed that each process has its
own sets of visible and invisible actions. As was described in [Val92b], a system with
x-transitions can be easily converted to the form required in this article by re-naming the
x-transitions in a suitable way.

In process-algebraic computer-aided verification, the behaviour of a system is usually
represented by a labelled transition system (LTS). An LTS is a directed graph whose verti-
ces correspond to states, one of the vertices is distinguished as the initial state, and edges
correspond to transitions and are labelled by actions.

Definition 2.1 A labelled transition system (LTS) is a five-tuple (5, Ey £/» A, is),
where S is the set of states, £y is the set of visible actions, E/ is the set of invisible actions,
JLy n Z; = 0, A c 5 x (Zv uI/)xS is the set of transitions, and is e S is the initial state.
The action alphabet is X = T.y u S/. □

The following notation is useful for talking about action sequences and enabled
actions.

Z23

Definition 2.2 Let L = (S, Zv 27, A, is) be an LTS, s, s' and s0, ...,sne S, and a and
ax, ...,flng 2.
• 5 -a-> $' if and only if (s, a, s') € A.

s0-al-^sl-a2~
> ■■■-an-J>sn ifandonlyifso-ö!-»*! and... ands„_i-a„-»jn.

j -a{a2...an-^ s' if and only if there are s0, ..., sne S such that J0 = s, sn = s', and
*0 -ai-> *i ~«2^ • • • -a«-» •*«•

• s -»* / if and only if there are aj, ..., an e 2 such that s -a^.. .an-> s'. In particu-
lar, s —>* s.

• 5 -aia2- • ■an~^ 'f anc* only if there is s' such that s -a\a2.. .a„-> /.
• s-kz^.. .an-h s' if and only if-i(5-a1a2...a„->5'),

and similarly with s-kt^.. .an-h and 5 -/>* s'.
• next(s) = { a e 2 I .?-«-> }. Q

The parallel composition of LTSs is denned below. A parallel composition may exe-
cute action a if and only if all component processes that have a in their alphabets are ready
to execute a. The execution of a forces all those component processes to execute an fit-
transition, and does not affect the remaining component processes. Synchronisation is thus
determined by the alphabets of the component processes.

Definition 2.3 Let Lx = (Sh Sw, 2n, Alf is{), ..., L„ = (5„, 2V„, 2/n, A„, isn) be LTSs
such that (2V1 u ... u 2yn) n (2/j u ... u 2/n) = 0. Their parallel composition is the
LTS Lx II ... II Ln = (5, 2^ 2/, A, is) denned as follows:

S = 5[X...x5„, 2^ = 2^ u... u2v„, 2/ = 2n u ... u2/„, and is = (islt ...,isn).

Let(sh ...,sn)e Sandae 2vu2;. WehaveCCs1,,..., sn),a, (s\ s'n))e Aifand
only if for every 1 < i < n, either a e 2M u 2/(- and (st, a, s-) e A,-, or a £ 2W u 2/(- and
s'i = Si. D

We use the following notation for sequences.

Definition 2.4
• The empty sequence is denoted by 6.

• X* and X® are the sets of finite and infinite sequences of symbols from X.

If a and & e X* u X10, then & < a denotes that a7 is a proper prefix of a, and & < a
holds if and only if <? < a or <f = a. D

The main goal of process-algebraic equivalences is to abstract away from invisible
actions. The following notation and concepts are useful for that purpose.

Definition 2.5 Let L = (5, 2^ 27, A, is) be an LTS, s and / e 5, p e 2*. and a 6 2y.
• vis(p) is the result of the removal of all actions in 2/ from p.

• s =a=> s' if and only if there is p e 2* such that s -p—> s' and a = vw(p).

• s =a=> if and only if there is an / such that s =a=> /.

• s *a=b s' if and only if -,(s =a=> s'), and similarly with 5 *a=&. □

Three of the equivalences that we will discuss can be defined in terms of the follow-
ing sets. Stability of a state means that if a process is in a stable state, then its next action
cannot be invisible. A process is stable if its initial state is. The ordinary and infinite traces
of a process are the finite and infinite sequences of visible actions generated by the (not
necessarily complete) executions of the process. A divergence trace is a trace after which

2-TJf

the process can execute an infinite sequence of invisible actions. A divergence trace is
minimal, if none of its proper prefixes is a divergence trace. A stable failure consists of a
trace and a set of visible actions such that after executing the trace, the process may be in
a stable state where it cannot execute any action from the set. In the CSP theory [BrR85,
Hoa85] divergence is considered catastrophic. The catastrophic nature of divergence can
be represented in the present framework by declaring that a process may do just anything
after executing a divergence trace. Therefore, any sequence of visible actions that has a
"real" divergence trace as its prefix is considered a CSP-divergence trace, and it may be
paired with just any set of visible actions to form a CSP-failure.

Definition 2.6 Let L = (5,1.v Z7, A, is) be an LTS.

• s e Sis stable, if and only if s 4-a-h for every a e £/. Furthermore, L is stable if and
only if its initial state is is stable. The predicate stableiL) is "true" if and only if L is
stable.

• The set of traces of L is tr(L) = { a e l,v I is =o=> }.

• The set of stable failures of L is
sfail{L) = { (a, A) £ EyX 2Zv 13 s e S: is =a=> s A next(s) QI.V-A}.

• The set of infinite traces of L is
infiiiL) = { £ e Z% I 3 co € E10: £ = vw(co) A is -co-> }.

• The set of divergence traces of L is
divtr(L) = { a e I.y I 3 co e Z00: a = Ws(a>) A W -CO-» }.

• The set of minimal divergence traces of L is
mindiv(L) = { 0 e divtr(L) I V a* < a: a' « divtHL) }.

• The set of CSP-divergence traces of L is
CSPdiv(L) = { a e Eyl 3 a7 e <#vfr(£): o'So).

The set of CSP-failures of L is
CSPfailiL) = sfail(L) u (CSPdiv(L) x 2Zv"). D

The frace equivalence, CSP-equivalence [BrR85, Hoa85] and CFFD-equivalence
[VaT91, VaT95] can be defined as follows. The trace equivalence simply compares the
sets of traces of two systems. CSP-equivalence compares the CSP variants of the failures
and divergence traces. CFFD-equivalence uses stable failures and "real" divergence
traces. In order to maintain the compositionality property that is often required from proc-
ess-algebraic equivalences, CFFD-equivalence compares also the infinite traces and initial
stability. CFFD-equivalence is strictly stronger than CSP-equivalence in the sense that
CFFD-equivalence makes more distinctions between systems. Unlike CSP-equivalence,
CFFD-equivalence preserves meaningful information of the behaviour of a process even
after it has executed a divergence trace. The motivation behind the definition of CFFD-
equivalence is explained in detail and CFFD-equivalence is compared to CSP-equivalence
in [VaT95].

Definition 2.7 Let L\ and L^ be two LTSs such that their sets of visible actions are
the same, i.e. Zyj = Zyj.

• L\ =tr Li if and only if tr{L{) = triL^)-

• L\ =CSP h if and only if CSPfail(Lx) = CSPfail^) and CSPdiv(Lx) = CSPdivQ^).

• Ly =CFFD Ll if and onty if stable(JL\) = stableiL?), sfail(L{) = sfail(Li),
divtr{Lx) = divtriLj), and inftr(L{) = infiriL^). O

il>

The last two equivalences discussed in this article are weak bisimilarity [Mil89] and
branching bisimilarity [vGW89, vG190]. They are both based on a notion of simulation
between LTSs. Two systems are equivalent, if they can simulate each other starting at their
initial states. In weak bisimilarity, an invisible transition may be simulated by a sequence
of invisible transitions of any length, and a transition labelled by a visible action a may be
simulated by a sequence consisting of an a-transition surrounded by any number of invisi-
ble transitions. In branching bisimilarity, invisible transitions may be simulated by doing
nothing. Furthermore, any a-transition may be simulated by first executing zero or more
invisible transitions in such a way that this sequence may be simulated by doing nothing;
and then executing an a-transition if a is visible, or an invisible transition if a is invisible.
The simulation relations are traditionally defined on the states of a single LTS.

Definition 2.8 Let L = (S, Zv Z7, A, is) be an LTS. A binary relation "~" aSxS over
the states of L is a weak bisimulation, if and only if for every a e Z and every sh s2 and
se S such that s1 ~ s2 the following hold:

• If $1 -a-» s, then there is / e S such that s ~ / and s2 =vw(a)=> s'.

• If s2 -a-» s, then there is s' e S such that s' ~ s and s{ =vis(a)=> s'.

The relation "~" is a branching bisimulation, if and only if for every a e Z and every S\, s2

and s e S such that si ~ s2 the following hold:

• If si -a-* s, then either ael, and s - s2, or there are s0 and s' e S and iisl such
that si~ s0,s ~ s', s2 =e=> SQ -b-* s', and vw(a) = vis(b).

If s2 -a-» s, then either ael; and s^ ~ s, or there are s0 and s' e S and b e Z such
that s0 - s2, s' ~ s, si =£=> s0 -b-+ s', and vis(a) - vis(b).

Furthermore,

• The states Si,s2e S of L are weakly / branching bisimilar, if and only if there is a
weak / branching bisimulation "~" such that jj ~ s2.

Let Lx = (Sj, T.v Z/, A1(is{) and L^ = (S2, Z^ Z/; A2, w2) be two LTSs such that their
alphabets are the same and, furthermore, SiC\ S2 = 0. They are weakly / branching
bisimilar, if and only if their initial states isx and is2 are weakly / branching bisimilar
in their joint LTS (5j u S2,1,v Z7, A! u A2, isi). D

Because any branching bisimulation is also a weak bisimulation, branching bisimilar-
ity is strictly stronger than weak bisimilarity.

3. Stubborn Sets and Reduced State Spaces

The number of states of a parallel composition tends to grow exponentially in the
numbers of states of its component processes. The goal of the stubborn set method is to
construct a reduced LTS for the parallel composition in such a way that it is equivalent
with the full LTS, but contains significantly less states and transitions. This is achieved by
investigating at any state of the parallel composition only a subset of enabled actions and
thus constructing only a subset of the immediate successors of the state. For the develop-
ment of the theory, it is handy to talk about a larger set that may also contain disabled
actions. This larger set is called stubborn.

The construction of stubborn sets for a parallel composition will be discussed soon,
but before that the fundamental properties that stubborn sets guarantee are listed. The
main theorems of this article will be proven from these properties, without relying on any
particular construction of stubborn sets. This makes the theory more modular, and —
hopefully — the fundamental ideas clearer.

i-ZC>

Al

s0 fli jj a2 O—L-o—^ ^4" *> ei jj a2 O—Uo—*-

J0 *1

-=a-«Q

5u$

A2

% ai j» a2 O !-0—*-

*0

*0
o-

*1 -o
a2

50 Jl

a„ s"
-=S-0

^

A3

3jM^g_£l.

*o

Jb^*,
O ^ «O—*-*•

S0 S{ J2

Figure 1 Illustrations of conditions Al, Ä2 and A3

Because we will not always need both Ä2 and A3 in our proofs, we require only one
of them in the below definition.

Definition 3.1 Let L = (5, 2.v Z/, A, is) be an LTS. A stubborn set generator is a
function A: S —» 2s such that for every s'0, s'n, and SQ, S\, ... e 5, a e Ä(J0)» and aj, <z2,... e
X -A(J0), it is true that Ä0, Ä1, and at least one of Ä2 and A3 from the below list hold.

(Ä0) If next(s0) * 0 then Ä(s0) n next(sQ) * 0.

If SQ -a\-> ... -an-* sn and sn -a-> s'n, then there are S'Q, ..., s'^ e S such that
s'o —d\—> ... —an~~* s'n and so ~a~* ^O-
If SQ -aj —> ... -a„—> s„ and ^Q -a—» So» tnen there are Sj,..., s'n e S such that
s0 -0\~* ■ • ■ -A«-* sn an(* sn -Ö-> s'n-

If J0 -aj—>.?! -a2-» ... and J0 -a-* S'Q, then there are s\, J2, ... e 5 such that

SQ-ay-*s\-<i2~* ••• • O

(Al)

(A2)

(A3)

The set Ä(s) is called a stubborn set. The condition Ä0 requires that a stubborn set
should contain an enabled action if there are any. Ä1 guarantees that a disabled action
belonging to a stubborn set remains disabled at least until an action belonging to the set
occurs. Furthermore, it allows in any execution to "move to the front" the first occurrence
of an action in the stubborn set. Ä2 claims that any enabled action within the stubborn set
commutes with all finite sequences of outside actions, and A3 extends Ä2 to infinite
sequences.1 The conditions Al, Ä2 and A3 are illustrated in Figure 1. In the illustration,
vertical and horizontal transitions correspond to actions inside and outside the stubborn
set, respectively.

The following theorem gives a sufficient condition for a stubborn set of a parallel
composition L = Lj II ... II Ln. The proof of the theorem is dull and omitted, but it can be

'Although it might seem that A3 follows from Ä2, this is not the case. The possibility has not
been ruled out that s\, ...,s'„ obtain different values for each n, so that s'0 -aj... an—> for every n, but
srQ-l-a\a2...-b.

2-2- 17

found in [Val92b]. In order to avoid confusion, we use the notation "-a-»,-" and
"nextj(...)" when talking about the transitions and enabled actions of Lp while the absence
of the subscript refers to L.

Theorem 3.2 Let L = Lx II ... II Ln be the parallel composition of the LTSs Lx = (Sb

ZVh £/!, A], is{), ...,Ln = (Sn, IV/J, JLIn, A„, isn), andÄ: 5 -> 2Z. If Ä(s) satisfies the follow-
ing three conditions in the state s = (s{, ...,sn) of L, then ÄO, Äl, Ä2 and A3 hold in s.

If a e Ä(s) and 5 ^a-^, then there is 1 < j < n such that a e Z.-, s ■ /a-A,, and nextfe.) c
A(5).

If a € Ä(s) and 5 -a->, then for every l<j<n, either a e £,, or nextfs-) c Ä(i).

• If there is a e Z such that ä -a-», then there is a e A'(^) such that s -a-*. D

Unlike Äl, Ä2 and A3, the conditions in Theorem 3.2 concern only one state. There-
fore, it is possible to design algorithms that investigate only that state and construct a stub-
born set satisfying the conditions. Many such algorithms have been presented in the
literature, for instance in [Val88, Val92a, God96]. Although the algorithms have been
expressed mostly in other frameworks than the present one, they can be applied to the con-
text of Theorem 3.2 without much difficulties. Therefore, it is not reasonable to repeat
them here. [Val92b] describes some of them in the present framework.

The sets of states and transitions of the reduced LTS are subsets of the sets of states
and transitions of the LTS representing the full parallel composition. To facilitate conven-
ient discussion of the same states and transitions as members of the full and reduced LTS,
a double-dot notation is introduced.

Definition 3.3 Let L = (5, Zy Z7, A, is) be an LTS and A": S -> 2Z a stubborn set gen-
erator. The reduced LTS of L induced by Ä is L = (S, Zv S7, Ä, is), where S is the smallest
subset of S and A is the smallest subset of A such that

• is e S,

• if s e S, s -a-» s', and a e Ä(s), then s' e S and (s, a, s') e Ä.

Furthermore, if s and s' e 5, a e 2, and p e £*, then

• s ^-^ s' if and only if s -a-> / and a e Ä(s).

s ^-^ s' etc. are defined from s -^-^ s' analogously to Definition 2.2.

next(s) = { a e 2 I s -ki-^ } = next(s) n Ä(s). O

As developed so far, the stubborn set method guarantees that the reduced and full
LTS have the same deadlocks. (It is assumed that the full LTS does not contain unreacha-
ble states.) Furthermore, the reduced LTS has an infinite execution if and only if the full
LTS has.

Theorem 3.4 Let L = (5, Xv Z7, A, is) be an LTS such that is -»* s for every s e S.
Let L = (5, Xy S/, A, is) be a reduced LTS obtained from L with the stubborn set generator
Ä.

(a) Assume that ÄO, Ä1 and Ä2 hold. Then s e S and next(s) = 0 if and only if s € S and
tiext(s) = 0.

(b) Assume that ÄO, Ä1 and A3 hold. There are ah a2, ... such that is -axa2...-^ if and
only if there are a\, d^, ... such that is ^ia^...-^.

Proof (a) If s 6 5 and next(s) = 0, then s e S by S c S, and next(s) = 0 by Ä0. If s e
S and next(s) = 0, then hext{s) = next(s) n Ä(s) = 0. It remains to be shown that if s e S

->-> &

Lx L2 1,1112 h L4 L3IIL4

a II 6 = ife fc a II V. = la * = 16

6--*4 4 " <*r-n«
Figure 2 Two parallel compositions with possible reduced LTSs

and nejtr(j) = 0, then s e 5. We will show that if next(s) = 0, s e S, and s -a1...aII-> j
where n > 0, then there are s\ a, and a\, ..., a'n_x such that s ki-^ S' and S' -a\...a'n_x-* s.
The claim s e 5 follows from this and the fact that w e S by "reversed" induction on n.

If i' -nflj...an-> j, then there are sQ, ..., sn such that s0 = s, sn = s, and s0 -ax-+ sx

-a2~* ■ ■ ■ ~an~¥ sn- When n > 0, we have s0 -ax->, and Ä0 guarantees that there is some a
such that s0 ^-a^>. If none of a u ..., an belongs to Ä(sQ), then sn -a-> by Ä2, which is a
contradiction with next(s) = 0. There is thus \<j<n such that a; € Ä(J0). By choosing the
smallest such; we obtain a, g ÄO0) for 1 < i <;'. Now Ä1 implies the existence of s'0, ...,
s'j_i such that s0 -ki^ s'Q,s'0-ax...aj_x-+ s'j_x, and Sj_{ = Sj. We may choose S' = s'0, a = ajy

a\=ah...,a'j_x= ahh and a) = aj+h ..., a'n_x = an.
(b)The "if'-part is obvious from Ä c A. To show the "only if part we will show that

if s e S and s -a^...-*, then there are S', a, and a\, d2, ... such that if -ki-^ s' and
S' -fljfl2-..-». The claim follows then by induction.

Let SQ,SI,... be chosen such that s0 = s and s0-a\-^ sx -c^-* • • • • If mere ls aJ sucn

that a;- e ÄO0) and a, <£ Ä(sQ) when 1 < 1 <j, then Ä1 implies the existence of SQ, ..., jj_j
such that s0 ^J-^ s'0 and s'0 -a{.. .o/_i-> JJ_j -0/+10/+2- • •->, where 5J_! = Sj. Otherwise Ä0
and A3 ensure the existence of an a and s' such that sQ ^-^ 5' -aia2.. .->. D

Without additional assumptions about the selection of stubborn sets, the stubborn set
method does not guarantee much more than Theorem 3.4. This is because of two reasons.

Firstly, when a transition is "moved to the front" by Ä1, the ordering of actions
changes. As a consequence, all possible orderings of visible actions are not necessarily
included into the reduced LTS. This may lead to the omission of traces, stable failures, and
so on. For instance, if both a and b are visible in Figure 2, then tr{Lx II L£) = {e, a, b, ab,
ba}. (In all LTS figures in this article, the alphabet of an LTS is exactly the set of labels of
its transitions. Furthermore, a, b and c are visible, and u and v are invisible.) It is possible
that the stubborn set used in the initial state is {a}. Then the dashed transitions are left out
of the reduced LTS, and its traces are {e, a, ab}.

Secondly, it is even possible that some action is ignored in the sense that it does not
occur at all in the reduced LTS although it is enabled. Consider the system L3 II L4 in Fig-
ure 2. If Ä(is) = {w}, then the stubborn set method investigates only the transition
is -«-» is. But this transition takes the system back to a state that has already been investi-
gated, so the method terminates. Intuitively, the justification for not investigating a ini-
tially is that a is independent of w, so the occurrence of a may be postponed until u has
occurred. But in this example, u can occur an infinite number of times. By postponing the
occurrence of a until u is no more enabled, the stubborn set method postpones a forever.

4. Preserving Trace Equivalence

Throughout this and the following two sections, let L = (S, T.v Z;, A, is) be an LTS
such that all of its states are reachable from is, Ä a stubborn set generator for it, and L =
(5, Zy E/, A, is) the resulting reduced LTS.

>^1

In order to prevent the stubborn set method from changing the ordering of visible
actions, we introduce an additional condition for the selection of stubborn sets. The condi-
tion requires that either all enabled actions in the stubborn set are invisible, or the set con-
tains all (both enabled and disabled) visible actions.

(A4) For every s €. S, either l.v n A'(s) n next(s) = 0 or ~LV c A'(s) (or both).

It is clear from AcA that triL) c tr{L). The system L3II L4 in Figure 2 demonstrates
that A4 is not sufficient for ensuring that tr{L) c fr(L). A4 suffices, however, for showing
that sfail(L) c sfail(L).

Lemma 4.1 If ÄO, Äl, Ä2 and A4 hold, then sfail(L) c sfail(L).

Proof Let (a, A) e sfail(L). There are n > 0, ay, ..., a„e2 and s0, ..., sne S such
that SQ = is, s0 -ay-* ... -an-+ sn, vis{ay...an) = a, and next(sn) c Ey- A. We will show
for increasing values of m that there are s0 m, ..., sn m e S and a permutation aj m, ...,
an,m of al> •••• a« such that s0,m = "> tym ^l.nT* ••• ^m.m"^ Vm -^m+Um^ •••
-an m-¥ sn m, vis(ay m.. .an m) = a, and .?„ m = sn. The biggest value of m for which this
will be shown is at most n, and it has the property that am+y m,..., an m e E/, iiext(sm m) c
E^ and next(sm m) nA = 0. This implies that vis(ay m...am m) = a and (a, A) e sfail(L).

The claim becomes valid for m = 0 if we choose SQQ = s0 = is, st 0 = s,-, and a,- 0 = a,-
for 1 < «' < n. For the induction step, assume that the claim holds for m. Consider the situa-
tion where

(*) Oj me Ä(sm m) for some m + 1 <j < n, and akm « A'(iOT m) for m + 1 <k<j.

If (*) holds, then Ä1 guarantees the existence of sm+l m+l, ..., sn m+y such that
sm,m:laj,m~:* sm+l,m+l> Vm+1 = sn,m' an(^ ^m+l.m+l "^/n+l.m+l-* ••• ~an,m+l~^ sn,m+b
where the sequence am+2,m+l---an,m+l 's obtained from am+y m...an m by removing ay- m.
We define am+1 m+1 = a;- m, J0 m+1 = 50jm, and st m+l = skm and afc m+l = akm for 1 < fc
<m. lfajm e Z,, then clearly vis(ay m+l...anm+y) = vis(ay m...anm). Otherwise ajm e
Y.v n A'(5m m) n next(sm m). By A4, Sv c Ä(jm OT). Thus by (*) ak m i I,v for m + 1 < k <
j, and v/5(fl! m+i-..an m+]) = vis(ay m...an m). Therefore, the induction step follows, if we
can show (*).

If Ä(sm m) contains some enabled invisible action a, then s„ -t-a-h, because next(sn) c
Zy So Ä2 implies (*). If all enabled actions in Ä(sm m) are visible and at least one of
am+y m,..., an m is visible — let it be called av m —, then m < n. Thus next(sm m) ^ 0 and
A(sm m) contains an enabled action by Ä0. Because it is visible, A4 implies ZyCÄ(jm m).
Therefore, av m e Ä(sm m), and (*) holds for some m+ 1 <j < v.

If all enabled actions in Ä(sm m) and none of am+y m,..., an m are visible, then m has
reached its biggest value. We have all parts of the claim except that hext(sm m) n A = 0.
To obtain a contradiction, assume that a e hext{sm m) n A. Because next(sn) c Sy- A, we
have a g next(sn), and Ä2 guarantees that at least one of am+l m, ..., an m is in Ä(sm m).
Let afc m be the first of them. Then Ä1 implies that akm is an enabled invisible action in
Ä(sm m), a contradiction. Thus next(sm m)r\A = 0 holds. D

To preserve all traces, it is sufficient to add a condition that guarantees that visible
actions are not ignored for "too long". It suffices to require that for every state in the
reduced LTS and for all actions that are enabled in that state, it is possible to reach a state
in the reduced LTS such that the action is in its stubborn set.

(Ä5) VseS-.Vae next(s): 3 s' e 5: s ^>* s' A a e A(s').

JL2.

Theorem 4.2 If ÄO, Al, A2, A4 and Ä5 hold, then tr(L) = tr(L).

Proof It is clear from AcA that tr(L) c tr{L). To prove that tr(L) c tr(L), assume
that 0 e tr{L). There are n > 0and alt ...,ane £such that is-aj...a„-> and vis(aj...a„) =
a. We will show for increasing values of m the existence of sm, ä\, ..., äm, and a\, ...,a'k

such that is ^-äy...äm-^ sm -a\...a'k-> and vis(äi...äma\...a'k) = G. We let m grow until it
reaches such a value that vis(a\...a'k) = £, implying that a = v«(äj...äOT) e tr(L).

The claim becomes valid for m = 0 if we choose JQ = is, k = n, and aj = a,- for 1 < i <
n. Assume that the claim holds for an m such that vis(a\...a'k)^z. We consider two cases.

(a) If at least one of a\, ..., a'k belongs to Ä(sm), then, like before, Ä1 guarantees the
existence of ay and sm+l such that sm -ki]-^ sm+\ and sm+y -a\...a.j_iaj+l...a'k—>. Further-
more, vis{a'ja\...a'j_\a'j+i...a'k) = vis(a\...ak) due to A4. So the claim is valid for m+l.

(b) Assume that none of a\, ..., a'k belongs to Ä(sm). At least one of them is visible
because vis(a\...ak)*e. Since sm-a\->, Ä0 gives next(sm) nÄ(sm) * 0. A4 implies that
if a e next(sm) n Ä(sm), then a is invisible, because otherwise the visible one of a\, ...,a'k

would belong to Ä(sm). Furthermore, if sm+i is any state such that sm-a—>sm+l, then
sm -^-^ sm+l because a e Ä(sm), and Ä2 implies that sm+l -a\...a'k—>. Again, the claim is
valid for m+l.

It remains to be proven that m may reach such a value that vis(a\...a'k) = e. The case
(a) clearly makes progress towards such a value, but the case (b) does not. We will now
show that it is possible to ensure that the case (b) occurs at most a finite number of times
without an intervening (a). Ä5 guarantees that there is s' such that sm -^* s' and a\ e Ä(s').
Let S'Q ^i"^ j'i -bi-2* • • • -bh^ Sfi ^e some shortest path from sm to s' in L. No assump-
tions about the choice of a from next(sm) n Ä(sm) were made in the case (b). So we may
choose a = b\ in S'Q, a = b^ in jr'i, and so on, until a state s) is reached such that the condition
of case (a) holds. This happens after h steps at the latest. D

A practical and reasonably fast implementation of Ä5 for finite reduced LTSs was
described in [Val91]. It is based on recognising the terminal strong components of L. A
non-empty set of states ST c 5 is a terminal strong component, if for every s e ST,s -^* s'
if and only if s' e S-p. The idea is to choose an arbitrary state from each terminal strong
component and ensure that every action that is enabled in it occurs somewhere in the com-
ponent. The algorithm is built upon Tarjan's strong component algorithm [Tar72,
AHU74]. (Tarjan's algorithm suits the task better than the more modern strong component
algorithm described in [CLR90], for instance.)

Instead of Ä5, the following condition could be used. It takes into account the fact
that only visible actions are important for traces, at the price of slightly more complicated
or less efficient implementation. It may thus save states when the occurrence of some
invisible enabled action does not lead to occurrences of any visible actions. It is more
complicated to implement than Ä5, because it is easy to check whether an action occurs
anywhere in a terminal strong component, but somewhat more complicated to ensure that
a disabled visible action is taken into account in some state of the component. The main
reason for mentioning Ä5' is that it has an interesting relationship with the condition Ä7
presented in the next section.

(Ä5') V s e S: V a 6 Sy: 3 / e 5: s ^* s' A a e Ä(s').

JL3(

5. Preserving CSP- and CFFD-Equivalence

Consider the system L3 IIL4 in Figure 2. If a is visible and u is not, then its divergence
traces are e and a. The conditions imposed so far allow choosing {a} as the stubborn set of
the initial state of the system. The resulting reduced LTS does not have e as a divergence
trace. As a consequence, the conditions Ä0 to Ä5 are not sufficient for guaranteeing CSP-
or CFFD-equivalence between the full and reduced LTS.

Regarding CSP-equivalence, only the minimal divergence traces are important. In
order to preserve them, a condition is formulated that requires the presence of an enabled
invisible action in the stubborn set, if such an action exist.

(Ä6) For every se S,ifL,n next(s) * 0, then Ä(s) nl,,r\ next(s) * 0.

Lemma 5.1 If ÄO, Ä1, A3, A4 and Ä6 hold, then mindiv(L) = mindiv(L).

Proof Obviously mindiv(L) c divtiiL). The claim follows if we show that also min-
div(L) c divtiiL). If a e mindiv(JL), then there are ax 0, a2Q,... such that is -a^ya^o.. .->
and v«(ali0a2fo---) = <J- Let s0 = is. We will show that for every m > 1, there are sm, äm,
and alm, a2>m, ... such that s0 ^äx^> sx ^ä2^ ■■■ ^nT* sm> •ym-al,^a2,m---^- and

vis(äxä2...ämax ma2m...) = <*. As a consequence, vis(äxä2...) e divtiiL). Furthermore,
vis(äxä2...) e divtiiL) and vis(äxä2...) < a e mindiv(L), so vis(äxä2...) = a.

Assume that the claim holds for m.
If at least one of aXm,a2m,... e Ä(sm), then the existence of sm+l, äm+x, and ax m+x,

a2,m+l> ••• follows from Ä1, and A4 guarantees that vw(ä1ä2...äm+1a1>m+1a2iW+1...) =
vis{älä2...ämax ,ma2m...\

Assume now that none of ax m, a2m,...e Ä(sm). Ä0 implies that there is some äm+x

e Ä(sm) n next(sm). If ax m e I,v then äm+x e Z7 due to A4. If ax m e S/(then Ä6 guaran-
tees that there is some äm+x e Ä(sm) ri^n next(sm). In both cases, A3 gives the required
sm+l and ax m+h a2m+x D

Lemma 5.2 If ÄO, Ä1, Ä2, A4 and Ä6 hold, then sfail(L) = sfail(L).

Lemma 4.1 guarantees that sfail{L) c sfail(t). To show sfail(L) c sfail(L), let (a, A)
e sfail(L). There are s e S and ax, ...,ane S such that is -ax...an-> s, vis(ax...an) = a,
and next(s) cEv-A. Assume that s -a->. Ä6 and next(s) e I.v imply that a is visible.
Thus 2)v c Ä(s) by Ä0 and A4. Therefore, a e Ä(s) and a e /ie;tf(s). As a conclusion,
next(s) c /ie^f(j), and (a, A) e sfail(L). □

The condition Ä6 allows us to strengthen the proof of Lemma 4.1 a bit. Namely, if it
is assumed, then the reduced LTS contains all reachable stable states of the full LTS. That
is, if ÄO, Al, Ä2, A4 and Ä6 hold, is -»* s, and next(s) c l,v then s e S.

It is now straightforward to show that Ä0, ..., A4 and Ä6 suffice to preserve CSP-
equivalence.

Theorem 5.3 If ÄO, Al, Ä2, A3, A4 and Ä6 hold, then CSPfail(L) = CSPfail(L) and
CSPdiviL) = CSPdiv(L).

Proof Lemmas 5.1 and 5.2 give mindiv(L) = mindiv(L) and sfail(L) = sfail(L), from
which CSPdiviL) = CSPdiv(L) and CSPfail(L) = CSPfail(L) follow by Definition 2.6. D

Notice that Ä5 was not needed for preserving CSP-equivalence. This is because an
action may be ignored only after a divergence trace, and CSP-equivalence does not need
any information about the behaviour after a divergence trace. When implementing a stub-

2-3X

L5\\L6 u

V^ v
a i a

Figure 3 A reduced LTS obeying Ä0 to Ä6

born set method for CSP-equivalence, it is not necessary to continue analysis from states
that have proven divergent.

The conditions Ä0 to Ä6 are not sufficient for preserving CFFD-equivalence, not
even if Ä5 is included. This can be seen from the system L5 II Lg in Figure 3. In it, a is vis-
ible, and u and v are invisible. The stubborn set used at the right-most state in the top row
is {v}. The full LTS has the infinite path is -uav<0—», so a e divtriL^ II L6). However, a &
divtriL).

In order to preserve CFFD-equivalence, a new condition is introduced. It requires
that every infinite path of the reduced LTS contains at least one state whose stubborn set
contains all visible actions. Because the start state of the path needs not be the initial state,
the condition may be applied also to any suffix of an infinite path. Thus all infinite paths
should have infinitely many states with all visible actions in their stubborn sets.

(Ä7) For every s0, ^I» ... e S and aj, a2, ... e £, if s0 ^j-^ S{ ^-^ •••» men mere is

i > 0 such that I.v c A(s,).

Lemma 5.4 If ÄO, Ä1, A3, A4 and Ä7 hold, then inftr(L) = infiriL). If, furthermore,
Ä6 holds, then divtriL) = divtriL).

Proof The parts divtriL) c divtriL) and infiriL) c infiriL) are obvious from A c A.
To prove inftr(L) c inftriL) and divtriL) c divtriL), let s0 = is and let a\ 0, a2>o> • • • be such
that SQ-01,002,0"--* an<i v,J(öi>o

fl2,o-) = CT e divtr{L) u inftr{L). We demonstrate for
every m > 0 the existence of sm, äm, and a\ m, a2,m' ... such that s0 ^'j-^ Sj ^-^ •••

Assume that the claim holds for m. If £y n Äism) n nextism) = 0, then Ä0 guarantees
that hext(s„^ * 0, and, depending on whether any of a^ m, a2 m, ... e A(sm), either Ä1 or
A3 yields Jm+j,äOT+i, and ajOT+i,a2,OT+l' ••• with the required properties. If I,vnÄ(sm)n
next(sm) * 0 and at least one of ax m, a2 m,... e Zy then A4 guarantees that a^m e A'Om)
for some j > 0, and Ä1 yields sm+1 and so on. If Zy n Ä(im) n nextism) * 0 and none of
«1 m, a2 m,... e ^v* then a e divtriL). Ä6 and sm -a\>m-^> imply that there is a e Äism) n
nextism) n Z/. Again, either Ä1 or A3 yields sm+y etc.

Because v«(ä'iä2...ämaj<ma2jm.-.) = CT f°r every m > 0, we have visiä\ä2...) S a.
Because condition Ä7 guarantees that Zy c A(5m) for infinitely many m, it is not possible
that Ws(ä"iä2...) < a. Therefore, visiä\ä2...) = a, and the claim has been proven. D

Theorem 5.5 If Ä0 to A4 and Ä6 and Ä7 hold, then L and L are CFFD-equivalent.

Proof Lemmas 5.2 and 5.4 give sfail(L) = sfail(L), divtriL) - divtriL) and inftriL) =
infiriL). That stableiL) = stable(L) follows directly from A c A and Ä6. D

Practical implementations of A4, Ä6 and Ä7 have been described in [Val92a,
Val92b]. In them, A4 and Ä6 are taken into account in the construction algorithm for stub-
born sets. To obtain best reduction results, the implementation tries first to find a stubborn

l^> f

h
\

LjWLi

Figure 4 A reduced LTS obeying Ä0 to Ä7

set with no enabled visible actions. If the construction of stubborn sets is based on an inde-
pendency relation, as is often the case, then A4 can be also implemented simply by treat-
ing all visible actions as not independent of each other. In the context of Theorem 3.2 this
could be done by adding to the parallel composition one more process L0 = (50, Zvo, Z/0,
AQ, is0) such that50 = {is0), X^ = Zn u ... u ZV#I> Z/0 = 0, and A0 = S0xI.vox S0.

The implementation of Ä7 in [Val92a, Val92b] assumes that the reduced LTS is finite.
Under that assumption, Ä7 becomes equivalent to the requirement that every cycle of the
reduced LTS contains a state whose stubborn set contains all visible actions. (A cycle of L
is a set {sh ..., sn) of states such that there are actions ax, ..., an such that Sj -a2~» s2

-a3-> ... -a„-> sn and sn -a{-^ sv) The articles [Val92a, Val92b] describe an efficient
technique for detecting and repairing cycles which do not satisfy the above requirement.
An alternative, not equivalent, implementation of Ä7 can be found in [GK+95], for
instance.

Ä7 has an interesting relationship with Ä5'. A deadlock state can be considered as a
state where all actions are in the stubborn set. Therefore, Ä7 claims, in essence, that for
any state in the reduced LTS, a state where all visible actions are in the stubborn set is
eventually reached. Ä5' claims that for any state in the reduced LTS and any visible
action, it is always possible to go into a state where the action is in the stubborn set. Ä7 is
thus strictly stronger than Ä5'. This added strength was needed to guarantee that all infi-
nite executions have a correct representative in the reduced LTS.

6. Preserving Branching Bisimilarity

A method that is close to the stubborn set method was applied in [GK+95] to the ver-
ification of formulae in the CTL*-X logic and to constructing reduced state spaces that are
branching bisimilar with full state spaces. In this section we translate the method into the
framework of this article. We give it a new correctness proof that is simpler than the origi-
nal one and allows non-deterministic transitions.2

We first demonstrate that Ä0 to Ä7 do not guarantee that the reduced LTS is even
weakly bisimilar with the full LTS. Figure 4 shows a counter-example. In it, a, b and c are
visible and u is invisible. The full LTS contains a state where the next visible action may
be b or c but not a, but the reduced LTS does not contain such a state.

It is apparent from the above counter-example that a very strong condition is needed
to preserve weak and branching bisimilarity. So we require that if a stubborn set does not

2During the POMIV '96 workshop it turned out that [Pel96b] contains a very similar proof to
the one presented in this section. The [Pel96b] and [GK+95] proofs cover also the preservation of
CTL*-X that the proof in this section lacks, but they assume deterministic structural transitions.

««/

§_£l_S_22* ... a"% 1° ai ii Q2 ■ ... «„ jg

2 al 'S a2 ' '" anli 5Q "1 Si

Figure 5 Illustration of super-determinism

contain all actions, then it contains only one enabled action, and (unlike the «-action in
Figure 4) an occurrence of that action may have only one outcome. Furthermore, this
action should be invisible and commutative with all other enabled actions, and retain its
nice properties when other actions occur. Except invisibility, these requirements are for-
mulated in the notion of super-determinism.

Definition 6.1 Action a is super-deterministic in state s0, if and only if for every
«>0, si,.... sn e S, andaj, ...,an e Z- [a] such that sQ-ai~* ... -an-* sn, there are s'Q,
...,s'n such that

• S'Q-ay—> ... -an->s'n and

• for every 0< i<n, s,—a-»sjand { se S I Sj-a—>s } = {s^}. □

Super-determinism is illustrated in Figure 5. The following is easy to check from
Definition 6.1.

Lemma 6.2 If a is super-deterministic in s and s -a'-* s' where a' * a, then a is
super-deterministic in /. □

The branching-bisimilarity-preserving stubborn set method requires that a stubborn
set either contains all actions, or contains only one enabled action. In the latter case, the
action should be super-deterministic and invisible.

(Ä8) For every s e S, either Ä(s) = Z, or there is a e If such that Ä(s) n next(s) = [a}
and a is super-deterministic in s.

Theorem 6.3 If Ä5 and Ä8 hold, then L and L are branching-bisimilar.

Proof We will show that the following relation "-" is a branching bisimulation
between L and L:

s ~ s if and only if there are n > 0, % ...,s„e S, andaj, ...,ane 2/ such that s = s0,
sn = s,s0-ai-*... -an-> sn, and a, is super-deterministic in J,_I for 1 < i < n.

It is obvious from the definition that 5 - s for every s e 5. Therefore, any transition
s ^a-^* s' of L can be simulated by the sequence s -a\.. .a„—> s -a—> s' of L. It remains to
be proven that any transition sQ -a-* S'Q of L can be simulated by L.

If a = a: for some 1 <j<n and a * a,- for every 1 < i <j, then a is invisible. Because
of the super-determinism of ay, ..., a}_y in 50, ..., sy_2, there are s\, ..., s'j_y such that
S'Q -ay-* ... -tf/_i-> J/_i and st -Oj—> s't for 1 < i <j and aj,..., aj_y are super-deterministic
in JQ» •••> sj-2- Furthermore, s'j_y = Sj because aj is super-deterministic in sj_y. As a conse-
quence, s ~ S'Q, and L may simulate the transition SQ -a-> s'Q by doing nothing.

If a ^ a, for every 1 <j<n, then the super-determinism of aj, ..., a„ in SQ, ..., s„_j
guarantees the existence of s\, ..., s'n such that sn -a—» s'n, SQ-ay—> ... -an—> sj,, and a1(

..., a„ are super-deterministic in s'0, ..., ^_j. If a £ Ä(sn), then by Ä8 there are sn+i, s'n+i,

2.3 5»

and an invisible an+l such that sn ^n+l^ sn+l -a-* s'n+h s'n -a„+1-> s'n+h and an+l is
super-deterministic in sn and s'n. Moreover, there are only one an+l and sn+l such that
sn ^n+l^ Vt-l- BY induction, if a <2 Ä(sn), ..., Ä(sn+k_y), then by Ä8 there are sn+l, ...,
sn+h sn+l> •••. s'n+b and invisible an+l, ..., an+k such that sn ^„+1^ ... ^„+^ sn+h
sn+k -a-> sn+k< s'n -^/H-I

-
* ••■ -tf/i+jt-» s'n+b and an+h •••> a/j+jt a16 super-deterministic in

sn< •••> 5n+jt-i and in 4, ..., ^+yfc_!. Moreover, sn+k is the only state that can be reached
from sn by k steps in L. Ä5 guarantees that a e A{sn±k) for some A:. For that k,
sn+k ^^ sn+b sn+k ~ s0> ancl sn+k ~ s0- As a consequence, L may simulate the transition
50 -a-> s'0 by the sequence sn ^n+l-^n+k^ sn+k ^^ s'n+k- For future use we point out
that sn+i ~ s0 for every 0 < i < k. D

The following fact is worth mentioning here. It guarantees, among other things, that
L simulates all divergence traces of L by divergence traces, instead of doing nothing. As a
consequence, L preserves certain branching-time liveness properties of L.

Theorem 6.4 Assume that Ä5 and Ä8 hold. If s0 -a^ s{ -a2-+ ... and s'Q ~ s0,
where s'0 e 5, then there are s\, s'2, ... and a\, a2, ... such that SQ^'^ s\ ^^ ••• and

vis(ala2...) = vis(a\a2...). Furthermore, for every i > 0 there is; > 0 such that sj - s,-, and
for every; > 0 there is 1 > 0 such that s'j ~ Sj.

Proof Consider the construction used for showing that L can simulate transitions of
L. When it is applied repeatedly to the transitions s0 -a{-> sh sy -a2-> s2, and so on start-
ing
am

guarantees for each i > 0 the existence of an action sequence p, such that st -p,—> s'^y Let
«, be the length of p,. The construction implies that nt = n0 + k(i) -1* for every i. Because n,
cannot become negative, k(i) has to grow without limit when i grows without limit. D

The condition Ä8 is not difficult to implement. The following theorem gives a suffi-
cient structural condition for super-determinism in the spirit of Theorem 3.2. It requires
that all component LTSs that synchronise on the super-deterministic action can perform
next only that action and in only one way. Ä(s) may be implemented by seeking for a
super-deterministic invisible action a and choosing Ä(s) = {a}. If that fails, then one
should choose Ä(s) = S, that is, all (enabled) actions should be used for constructing the
immediate successors of the state.

Theorem 6.5 Let Lx II ... II Ln be a parallel composition of the LTSs Lx = (Sh TVh
2/l> Al' "l)> •••> Ln = (sn> £V/i> £//!• A„, «„), and let (sh ..., s„) -ö-» (s\,..., s'n). Assume
that for every 1 < i < n such that a e £,-, and for every a' e D, and / e 5„ st -tf'-», s'
implies a' = a and s' = s't. Then a is super-deterministic in (slt..., sn). D

A "terminal strong component" technique for the implementation of Ä5 when the
reduced LTS is finite was mentioned in Section 4. In the case of branching bisimilarity, if
Ä(s) * 2, then s has only one successor state in the reduced LTS. Therefore, strong compo-
nents that violate Ä5 collapse to cycles. This simplifies the detection of strong compo-
nents that violate Ä5. Indeed, they may be detected and repaired efficiently with the
techniques in [Val92a, Val92b] that were intended for implementing Ä7. For repair, it is
necessary to put all enabled actions to the stubborn set, instead of all visible actions.

>?^

7. Conclusions

We described several methods for constructing reduced labelled transition systems
that are equivalent with the corresponding full LTSs. We covered "deadlock equivalence"
(the reduced LTS has exactly the same deadlock states as the full one), trace equivalence,
CSP-equivalence, ChhD-equi valence, and branching bisimilarity. The methods are based
on requiring that certain conditions are satisfied by the stubborn sets used in the states of
the reduced LTS (ÄO, Äl, Ä2, A3, A4, Ä6, Ä8), and by the reduced LTS as a whole (Ä5,
Ä7). The condition Ä8 implies ÄO, Äl, Ä2, A3, A4, and Ä6; and Ä7 implies a variant of
Ä5. Table 1 summarizes the conditions required by each method.

Table 1: Conditions required by the methods in this article

Ä0 Ä1 Ä2 A3 A4 Ä5 Ä6 Ä7 Ä8

deadlocks X X X

trace X X X X X

CSP X X X X X X

CFFD X X X X X X X

branching bisim. X X

Hundreds of process equivalences have been described in the literature, and we
examined only a small minority of them. Perhaps the most important equivalence that we
did not treat separately is the weak bisimilarity of the CCS theory [Mil89]. Because
branching bisimilarity implies weak bisimilarity, the method for branching bisimilarity
preserves also weak bisimilarity. On the other hand, the more a method preserves, the less
reduction it gives. A method that preserves weak bisimilarity but not branching bisimilar-
ity might therefore lead to better reduction results than the use of the branching bisimilar-
ity method for weak bisimilarity. Unfortunately, the example in Figure 4 leaves little hope
of finding such a method.

Most of the numerous equivalences in the literature are based on a small set of ideas.
If the experience with weak bisimilarity will generalise to many other equivalences, then
it will not be possible to fine-tune reduced LTS construction methods to each equivalence
separately. In such a case the methods presented in this article might be near optimal for
many equivalences that we did not discuss. It is, however, impossible to say at the present
state of knowledge whether this is really the case.

Most, if not all, of the conditions Ä0 to Ä8 are difficult to implement in their full gen-
erality. Therefore, the implementations mentioned in this article give sufficient conditions
that are often more stringent than absolutely necessary, and alternative implementations
do not necessarily yield equal results. In Theorem 3.2, "dependency" between transitions
was analysed at a rather coarse level. It seems possible to devise more and more compli-
cated structural conditions that correspond to more and more careful analysis. It would
thus be hopeless to try to find any "best" structural conditions or implementations of Ä0 to
Ä8. Furthermore, although we attempted to present Ä0 to Ä8 in as abstract forms as possi-
ble, we failed to capture all possibilities. For instance, [Val91] develops a theory of so-
called weak stubborn sets, where Ä2 does not hold for every enabled action. Again, it
seems hopeless to find any "most general" versions of Ä0 to Ä8.

An important topic not covered in this article is on-the-fly verification. The goal of an
on-the-fly method is to demonstrate already during the construction of the reduced state

x.*7

space the presence or absence of some property. One could, for instance, monitor for ille-
gal traces on-the-fly, and stop the construction of the reduced LTS when an illegal trace is
found. "Ordinary" (i.e. based on constructing the full, not a reduced, state space) on-the-
fly methods have been developed for several properties. Also the combination of on-the-
fly and reduced state space methods has been investigated [Val93, Pel96a]. The method in
[Pel96a] is intended for linear time temporal logic properties, and it was presented in a
framework with deterministic transitions. [Val93] uses the framework of parallel LTSs and
non-deterministic actions, but there is some evidence that the methods suggested in it are
not necessarily optimal. Apparently some more research is needed to find the best combi-
nation of on-the-fly and stubborn set techniques for process-algebraic verification.

In the process algebra literature, "reduction" sometimes means the transformation of
an LTS to a smaller, equivalent LTS. Reduction algorithms in that sense of the word facil-
itate compositional LTS construction: if each component process of a parallel composition
is reduced before computing the parallel composition, then a smaller, but equivalent result
is obtained. This approach may be applied hierarchically for even better results. It is worth
noticing that the stubborn set method and compositional LTS construction take advantage
of different aspects of systems, and neither one makes the other unnecessary. That compo-
sitional LTS construction does not make the stubborn set method unnecessary was demon-
strated in [Val92b] by analysing an example system taken from [GrS91]. The example has
9n-2n~2 states, where n is the number of the components of the system. The example had
been intentionally constructed to demonstrate that ordinary compositional LTS construc-
tion does not always work well. Indeed, it fails totally by yielding intermediate LTSs that
are bigger than the full LTS. [GrS91] suggested an advanced compositional LTS construc-
tion method that relies on some manual guidance, and requires the construction of several
LTSs from the example. Experimental evidence reported in [GrS91] strongly suggests that
the biggest of them has 4n + 4 states. The CFFD-preserving stubborn set method is fully
automatic and requires the construction of only one LTS, and the LTS has 5n states. So at
least in this case, the stubborn set method beats compositional LTS construction, and com-
pares favourably with its advanced version in [GrS91].

8. References

[AHU74] Aho, A. V., Hopcroft, J. E. & Ullman, J. D.: The Design and Analysis of Computer Algo-
rithms. Addison-Wesley 1974,470 p.

[BrR85] Brookes, S. D. & Roscoe, A. W.: An Improved Failures Model for Communicating
Sequential Processes. Proc. NSF-SERC Seminar on Concurrency, Lecture Notes in Computer
Science 197, Springer-Verlag 1985, pp. 281-305.

[CLR90] Cormen, T. H., Leiserson, C. E. & Rivest, R. L.: Introduction to Algorithms. The MIT
Press 1990,1028 p.

[Esp94] Esparza, J.: Model Checking Using Net Unfoldings. Science of Computer Programming
(1994) 23: 151-195.

[GK+95] Gerth, R., Kuiper, R., Peled, D. & Penczek, W.: A Partial Order Approach to Branching
Time Logic Model Checking. Proc. Third Israel Symposium on the Theory of Computing and Sys-
tems, IEEE 1995, pp. 130-139.

[God96] Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems, An
Approach to the State-Explosion Problem. Ph.D. Thesis, University of Liege 1994. Lecture Notes
in Computer Science 1032, Springer-Verlag 1996, 142 p.

2-3^

[GrS91] Graf, S. & Steffen, B.: Compositional Minimization of Finite State Processes. Proc.
Computer-Aided Verification '90, AMS-ACM DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, Vol. 3, American Mathematical Society 1991, pp. 57-73.

[Hoa85] Hoare, C. A. R.: Communicating Sequential Processes. Prentice-Hall 1985, 256 p.

[McM93] McMillan, K.: Using Unfoldings to Avoid the State Explosion Problem in the Verifica-
tion of Asynchronous Circuits. Proc. CAV '92, 4th Workshop on Computer-Aided Verification,
Lecture Notes in Computer Science 663, Springer-Verlag 1993, pp. 164-177.

[Mil89] Milner, R.: Communication and Concurrency. Prentice-Hall 1989, 260 p.

[Pel93] Peled, D.: All from One, One for All: On Model Checking Using Representatives. Proc.
CAV '93,5th International Conference on Computer-Aided Verification, Elounda, Greece, Lecture
Notes in Computer Science 697, Springer-Verlag 1993, pp. 409-423.

[Pel96a] Peled, D.: Combining Partial Order Reductions with On-the-fly Model-Checking. For-
mal Methods in System Design 8 (1) 1996: 39-64.

[Pel96b] Peled, D.: Partial Order Reduction: Linear and Branching Temporal Logics and Proc-
ess Algebras. This volume.

[Tar72] Tarjan, R. E.: Depth First Search and Linear Graph Algorithms. SIAM Journal on Com-
puting 1(2) 1972: 146-160.

[Val88] Valmari, A.: State Space Generation: Efficiency and Practicality. PhD Thesis, Tampere
University of Technology Publications 55,1988,169 p.

[Val91] Valmari, A.: Stubborn Sets for Reduced State Space Generation. Advances in Petri Nets
1990, Lecture Notes in Computer Science 483, Springer-Verlag 1991, pp. 491-515.

[Val92a] Valmari, A.: A Stubborn Attack on State Explosion. Formal Methods in System Design
(1992) 1: 297-322. (Earlier version: 2nd International Conference on Computer-Aided Verifica-
tion, New Brunswick, NJ, USA 1990.)

[Val92b] Valmari, A.: Alleviating State Explosion during Verification of Behavioural Equivalence.
Department of Computer Science, University of Helsinki, Report A-1992-4, Helsinki, Finland
1992,57 p.

[Val93] Valmari, A.: On-the-fly Verification with Stubborn Sets. Proc. CAV '93, 5th International
Conference on Computer-Aided Verification, Elounda, Greece, Lecture Notes in Computer Sci-
ence 697, Springer-Verlag 1993, pp. 397-408.

[Val94] Valmari, A.: State of the Art Report: Stubborn Sets. Petri Net Newsletter 46, April 1994,
pp. 6-14.

[VaC91] Valmari, A. & Clegg, M.: Reduced Labelled Transition Systems Save Verification Effort.
Proc. CONCUR '91, Lecture Notes in Computer Science 527, Springer-Verlag 1991, pp. 526-540.

[VaT91] Valmari, A. & Tienari, M.: An Improved Failures Equivalence for Finite-State Systems
with a Reduction Algorithm. Proc. Protocol Specification, Testing and Verification XI, North-Hol-
land 1991, pp. 3-18.

[VaT95] Valmari, A. & Tienari, M.: Compositional Failure-Based Semantic Models for Basic
LOTOS. Formal Aspects of Computing (1995) 7: 440-468.

[vG190] van Glabbeek, R.: Comparative Concurrency Semantics and Refinement of Actions. PhD
Thesis, Centrum voor Wiskunde en Informatica, Amsterdam 1990.

[vGW89] van Glabbeek, R. & Weijland, W.: Branching Time and Abstraction in Bisimulation
Semantics (Extended Abstract). Proc. IFIP International Conference on Information Processing
'89, North-Holland 1989, pp. 613-618.

SOFTWARE SYSTEMS LABORATORY, TAMPERE UNIVERSITY OF TECHNOLOGY, PO BOX 553,
FIN-33101 TAMPERE, FINLAND

E-mail address: Antti.Valmari@cs.tut.fi

2-3?

4ö

Partial Order Reduction:
Linear and Branching Temporal Logics and Process

Algebras

Doron Peled
Bell Laboratories

700 Mountain Avenue
Murray Hill, NJ 07974

doron@research.bell-labs.com

Abstract

Partial order reductions are a family of techniques for diminishing the
state-space explosion problem for model-checking concurrent programs. They
are based on the observation that execution sequences of a concurrent program
can be grouped together into equivalence classes that are indistinguishable by
the property to be checked. Applying the reduction to a description of a
program results in a reduced state-space that generates at least one represen-
tative for each equivalence class. When moving to branching models, e.g., as
in branching temporal logics or process algebras, the execution sequences are
grouped together into a single tree. In this case, the reduction must also be
sensitive to preserving the branching points, where executions with a common
prefix depart from each other.

1 Introduction

Total order semantics, also referred to as interleaving semantics, are traditionally
considered easier to work with, as they lend themselves to simple representations
and manipulation, e.g., using finite state machines. Partial order semantics is more
recent in modeling concurrent programs. It is argued by its supporters that it can
reflect the executions of concurrent systems more accurately, and hence is sometimes
called true concurrency. In recent years, new research showed several advantages of
various partial order specification and verification methods over total order based
methods in terms of efficiency and expressiveness.

Partial order reduction techniques were developed to alleviate the state-space
explosion in automatically verifying concurrent programs [32, 9, 12, 11, 33, 28, 29,
17, 6]. These techniques were integrated in tools such as SPIN [17] and VFSM-
valid [11]. Using the partial order reduction techniques, it has become possible
to analyze problems of larger size, which did not lend themselves to automatic

^u;

verification before. The simplicity of the principles behind these methods suggest
that they can be integrated into any state-based automatic verification tool.

In this paper we survey a family of partial order reduction methods. We show
how equivalence relations can be used to group together sequences that are indis-
tinguishable with respect to the specification. This allows to construct a reduced
state-space for the checked system. A reduced state-space for a concurrent sys-
tem contains only representative sequences from each equivalence class rather than
all the sequences in the class. An algorithm for deciding whether a specification
cannot distinguish between equivalent sequences for such an equivalence relation is
dticribed. We also show how this approach can be extended to deal with branching-
time specification.

We concentrate here on the reduction strategy called ample sets method [28, 29,
6]. We will mention, but not survey, related methods for partial order based ver-
ification and model-checking, including faithful decompositions [19, 20], stubborn
sets [32. 33], persistent and sleep sets [9, 12, 11]. These methods share the idea of
selecting only a subset of the successors from a given program state. They differ in
the details of selecting these subsets, and the properties preserved by the reduction.

2 Modeling Concurrent Systems

2.1 State Spaces of Concurrent Systems

A finite state system T is a triple (5, T, i), where

• 5 is a finite set of states,

• T is a finite set of deterministic transitions. For each transition a € T we
associate a partial function 5 >-- S, with a domain ena C 5.

• i € 5 is the initial state.

The states ena C S are those from which a is executable or enabled. The set
of transitions enabled at a state s is denoted by enabled(s). When a is enabled
from s, executing a from s results in the state t = a(s). We will also denote
this by (s, t) 6 a. Executing the transitions aQai...ai hence obtains the state
ai(ai-l(...al(a0(t))...)).

An interpreted system is a triple 2 = (F, P, M), where

• f = (S, T, i) is a finite state system,

• P is a finite set of propositions, and

• M : S *— 1P is the state labeling function.

In the sequel we will use the term system for interpreted finite state systems.

The (full) state-space SP{1) of a system I = (?, P, M) where T = (5, T, i),
is a labeled graph {V, E) such that

-> ■z-vz

• V C 5 is the minimal set of reachable states satisfying:

1. i€V.

2. If s € V and (5, t) € a € T, then t € V.

• £ = {*-2-OK«. 0 e a € 7"}

Thus, the state-space of I contains the states reachable from the initial state 1
by repeatedly executing the transitions T of I. The label of e = « -^- t is a.

The transitions sequences generated by I correspond to edge labels along the
maximal paths of SP(I) that start from the initial state t. Hence, a transitions
sequence is a finite or infinite sequence of transitions aoai<i2 ... such that there
exists a sequence of states soS[S2 ... satisfying

• SQ = 1 [The first state is the initial state.]

• for each i > 0, (s,, s,+i) € a,. [Each adjacent pairs of states correspond to
the execution of a transition. We say that sI+i is reached after executing a,.]

• The sequence is maximal, namely it is either infinite, or ends with a state s
such that enabled(s) — <t>.

The states sequence that correspond to a transitions sequence v is denoted by
states(v). For simplicity, it is possible to assume that all transitions sequences
are infinite. This can be achieved by adding a new transition a' such that en„< =
S\Uagre"a. and a' — {(s, s)\s € en„<}. In this case, each state has at least one
successor.

Notice that the state-space of a system X can be considered as a more explicit
representation of I; 1 contains in S all the potential states of J, while SP{1)
contains in V only the ac/aa/states that can be reached. The partial order reduction
algorithms are aimed at generating a graph smaller than SP{1) that represents
enough information about the property that we want to check.

For each transitions sequence v of SP{1) there is a sequence prop(v) of sets of
propositions obtained in the following way: if states(v) — s§s\Si..., then prop(v)
is the sequence A/(so)A/(si)A/(s2) • - •• Thus, there are three languages defined for
an interpreted system I:

• The language C(I) C P" of transitions sequences.

• The language £,tates(Z) C 5"" of states sequences.

• The language £prop(I) C 2f"" of prepositional sequences.

A specification for a system I can be given as a language over one of the three
domains T, S or '2P. Most specifications use transitions or propositional sequences.
In the rest of this section we will usually treat the latter case; the others can be
dealt with similarly. In model-checking, the specification is often given using a

zM '5.

regular automaton over infinite words, e.g., as a Biichi automaton, or using a logic,
such as linear temporal logic (LTL) [31]. A system 1 satisfies the specification 9,
corresponding to the language L#, where both are using the same set of propositions
P. ifT£prop(Z) C L.f. Graph-theoretical algorithms [23] can then be applied to state
space graphs to check that I satisfies -p.

2.2 Traces and Trace Equivalence

Using interleaving semantics has a lot of advantages for modeling concurrent sys-
tems. In particular, its simplicity and use of sequences allows exploiting automata
and language theory. On the other hand, interleaving semantics is often criticized
for distinguishing between entities that are basically the same. Namely, it can dis-
tinguish between executions which differ from each other only by the order of some
concurrently executed transitions. This order is largely artificial. Trace semantics
groups transitions sequences into equivalence classes, allowing a higher abstraction
of the specified system. One can exploits this for model-checking properties that
do not distinguish between different sequences that are trace-equivalent.

A concurrent alphabet is a pair (T, D), where T is a finite set (representing
transitions in our context), and D C T x T is a symmetric and reflexive relation
called the dependency relation.

We define trace equivalence in several steps:

1. Define the relation =C T" x T" such that v = v' iff v = v' or v = uabw,
v' — ubaw for some u,w €T~, (a, b) £ D.

2. Define the trace equivalence [24] relation for finite sequences as the reflexive

and transitive closure of =. Thus, v = w iff one can obtain v from w by
repeatedly commuting the order of adjacent independent letters.

3. Define trace preorder relation C among infinite strings as follows: tCt'ifT
for each finite prefix u of v, there exists a finite prefix u' of v' and a finite
string w such that uw = u'.

4. Define trace equivalence among infinite strings [2] such that v = v' iff v C t/'
and v' C v.

Thus, for the concurrent alphabet ({a, 6}, {(a, a), (6,6)}) we have aa66 = a6a6,
aa66 = 66aa, aaab" C (abf, and (ab)" = (aabf.

Traces are then the equivalence classes of the relation = over finite or infinite
strings.

To achieve that if v = w, then v is a transitions sequence of I iff w is a transitions
sequence of J, we enforce the following two conditions for independent transitions
(a, 6) £ D:

Dl if 5 € en„, then s € en4 iff a(s) € en», [executing a does not affect the
enabledness of 6].

-? ^

D2 If a € ena Den,, then a(6(s)) = 6(a(«)). [When both a and 6 are enabled,
executing them in either order results in the same state].

2.3 Stuttering Equivalence

Denote E00 = T." U5>'. The stuttering removal operator ; : D00 ►- E°° applied to a
string v replaces every maximal finite subsequence of identical elements by a single
copy of this element. For example, l(aabaaacc) = abac, l(aabaac") = abac".

Two sequences v, w will be considered stuttering-equivalent iff* 31« = %w. We de-
note this by v — w. Lamport argued [22] that a specification should not distinguish
between two prepositional sequences that are stuttering equivalent.

2.4 Fairness Constraints

The total order semantics or interleaving semantics of a program identifies transi-
tions (or states) sequences as executions of a program. Sometimes, the transitions
sequences that are considered to be executions are constrained using a fairness
assumption. Such a constraint can be given as a language R. If a fairness assump-
tion R is imposed, only sequences that are fair are considered to be execution of a
system. Hence, the fair transitions sequences £R(J) of a system I are £(I) f"l R.

The following fairness assumption is in particular natural when using partial
order semantics:

F-fairness. If a transition a is enabled from some state reached in a fair execution
sequence, then some transition that is dependent on a must appear later in
this sequence.

This fairness assumption was shown in [21, 27] to be equivalent to restricting
the set of sequences to those that are maximal with respect to the relation C.

2.5 Syntax and Semantics of CTL", CTL and LTL

Let P be a finite set of propositions. The set of CTL* state and path formulas are
defined inductively:

51. every member of P is a state formula,

52. if ip and ip are state formulas, then so are -v and <p A ij>,

53. if <p is a path formula, then Aip is a state formula,

PI. any state formula <p is also a path formula,

P2. if ip, il> are path formulas, then so are <p A ip and -><p,

P3. if (p, ifr are path formulas, then so is <pl}il>.

>US

The modal operator A has the intuitive meaning: "for all paths". U denotes the
standard strong "until". CTL" consists of the set of all state formulae. The follow-
ing abbreviations will be used: E^> = ->A-y, F^? = trueU<r>, G,? = ->F-y .

The logic CTL is obtained by restricting the stale modalities E and A and the
path modalities U, F and G to appear paired, i.e., in the combinations EU EF EG
AU, AF and AG.

The logic LTL is obtained by restricting the set of formulas to the form A^,
where ^ does not contain A and E. We write ^ instead of A^J, when confusion is
unlikely. We purposely avoided using the nexttime operator X, which can express
that a change is made from one specific state to another. (The use of the nexttime
operator can defy the ability to exploit partial order reduction.)

A model for CTL* is a quadruple M = (V, E, i, M), where V are states. E are
edges, i e V is a distinguished initial state, and A/ is an interpretation function,
mapping V into subsets of a set of propositions P. The labels on the edges in
the definition of the graph are only used for the benefit of the description of the
suggested algorithm, but are ignored by the interpretation of the temporal logics.

Denote by x = («o.*i) a maximal path (i.e., a path that is either infinite
or cannot be extended) of 5, starting at s0 6 V. Denote the first state of x by
first(x). The suffix of x, starting from state s< will be denoted x<. The satisfaction
of a formula ^ in a state s of V is written M, s \= <p. or just s (= <p. It is defined
inductively as follows:

51. st=q\ffqeM(s), for g 6 P,

52. s ^= -><p iff not s^-tp, s^=<pAipiKs\=<p and s |= n\

53. s ^= Af iff x f= if for every maximal path x starting at s,
PI. x \= tp iff first(n) ^= <p for any state formula <p,

P2. x |= -iyj iff not ir £= <p, x£=^A^iffx^=^ and x (= t%

P3. x (= v?U^ iff there is an i > 0 such that x, f= i- and x, |= <p for all 0 < j < i.

When using a fairness assumption to limit the execution sequences, we replace
"path" by "fair path" in the above definition. (As usual, we require that a fairness
assumption satisfies that an infinite sequence is fair iff each suffix of it is fair). We
write M \= <p iff M, i (= <p. Notice that for an LTL specification Ayj, M (= A*> iff
every (fair) sequence of M satisfies <p.

3 Verification Using Representatives

We are interested in generating a reduced state-space for a system I (without having
to construct first the full state space). Although we want the reduced state-space
to be as small as possible, it must still contain enough information to preserve
the checked property. The aim is that the model-checking algorithm would be
applicable to the reduced state-space instead of the full one. Besides preserving the
truth of the checked specification, the reduced state-space needs also to be able to
supply a counter-example in the case that the specification does not hold for the
checked system.

6

3.1 Ample Sub-state-spaces

A sub-state-space S for a system 2 = {T. P, M) is a labeled subgraph (V, E') of
SP{1) = (V, E) such that

• t € V'' [V includes the initial state],

• V C V, and

• fC £n(V"xTx V).

Similar to state-spaces, a sub-state-space S generates a set of transitions se-
quences £(5), a set of states sequences £,»ate*(<S) and a set of propositional se-
quences Cprop(S). In fact, we have:

C(S) C £(I), C,taU,(S) C £„.,„(!). Cprop(S) C £Prop(I)

Definition 3.1 A language £ is said to be closed under an equivalence relation ~.
if for every equivalence class C of ~, eitherCCC orCn£ = 0. We also say that
~ saturates £.

Definition 3.2 -4 sub-state-space of a system 2 is said to be ample with respect
to the equivalence relation ~ if it generates at least one transitions (or states, or
propositional) sequence for every equivalence class C of ~ such that CC\C(2) ^ 0.

The following simple observation suggests the use of equivalences in conjunction
with sub-state-spaces:

Let Lup be the language of a specification p that is closed under an
equivalence relation ~. Let S be an ample sub-state-space for a system
I with respect to ~. Then, C(S) C L# (Cprop(S) C L^,, respectively)
iff£(I) C £, (CProp(I) C L+, resp.).

To exploit the above observation, we need an equivalence relation ~ where the
following exist:

1. An effective way to decide whether a given specification <p is closed under ~.

2. An effective way to construct an ample sub-state-space for 2 with respect to

3.2 Checking Equivalence Closedness

Section 3.1 motivated the need for checking whether a specification tp is closed
under a given equivalence relation ~. In [30], an algorithm is given for deciding
the closure of a specification for a given class of equivalence relations, represented
as either a non-deterministic automaton (over infinite words) or as linear temporal
logic formula. This class includes in particular trace and stuttering equivalence.

It is characterized by having a symmetric and reflexive relation — on finite strings
such that

2-W7

• ~/m is the transitive closure of ~ (hence ~/in is an equivalence relation).

• ~C E* x E" is a regular language (i.e.. recognizable by a finite automaton)

over the alphabet IxS. Thus. ~ is defined between strings of equal lengths.

• ~/in is a left cancellative relation, i.e., if vw ~Jin vw', then w ~',n w'.

• ~ is defined as the limit extension of *~J'n, namely v ~ v' iff

- for each finite prefix u of v. there exists a finite prefix u' of v' and a finite
string w such that uu> —fin u', and

- for each finite prefix u' of i', there exists a finite prefix u of v and a finite
string w' such that u'w' ~^,n u.

The definition of trace equivalence = in Section 2.2 already uses the relation =,
which satisfies the above conditions.

For stuttering equivalence, there is a small technical complication in obtaining

a relation =. as it needs to be defined between pairs of strings of equal length. We
achieve this by extending the alphabet into E U {$}, where S serves only to force

the strings to have the same length. Then, = can relate u with itself, and uavS
with uaav, where u, v € E* and a € E.

Checking that an w-regular language L, represented by a Büchi automaton .4^,
is closed under an equivalence relation ~ that satisfies the above conditions can
be done using the following algorithm, introduced in [30]. The algorithm checks
the emptiness of the intersection of the following three languages over the alphabet
E x E ((EU {$}) x (EU {$}) for stuttering equivalence, respectively). Hence, each
infinite word w = (wlt w2) over this alphabet has a left component u^ and a right
component w?. The three languages are:

1. The language where the left component wi of the input is in L (after removing
the $ symbols, respectively).

2. The language where the right component u;2 of the input is not in L (after
removing the $ symbols, respectively).

3. An automaton that checks that the input can be decomposed into infinitely
many factors that are all elements of ~.

The naive way to implement the algorithm by constructing the automata for
the three languages and then intersecting them can take space exponentially bigger
than AL. However, the algorithm can be implemented in PSPACE [30]. The idea
is that there is no need to fully construct the automaton for the complement of the
language L; instead, one can use a binary search through the state-space of such a
complement automaton [35].

When the specification L is given as a temporal formula <^£, it is not necessary
to translate first the formula into a Büchi automaton. Such a translation requires

8

-L!-r>

again in the worse case space exponential in the size of the formula. It is again
possible to conduct a binary search through the state-space of the corresponding
automata, for \pi and for "Vi- This requires space only polynomial in the size of
the checked formula. For the stuttering and trace equivalences, checking closeness is
in PSPACE-complete, by a reduction from universality of w-regular automata

4 Partial Order Reduction for Linear Specifica-
tions

Partial order reduction methods is a generic name for a family of model-checking
methods that avoid constructing the full state-space of the checked program. The
family of methods are historically related to partial orders because of the connection
between traces and partial order semantics [24]. The basic ideas of the reduction is
to generate at least one transitions sequence for each such trace. However, as will
be seen later, this is not always the case, i.e., there are cases where there is a single
sequence that represents a collection of traces.

4.1 The Ample-Sets Reduction Method

Partial order reduction is based upon modifying the depth first search (DFS) con-
struction of a state-space, depicted in Figure 1. (Alternatively, one can use other
search methods, e.g., breadth first search [4].) The DFS creates a node for a global
state (starting with the initial state t), pushes this node into its stack, then recur-
sively creates nodes for all the successors of this node, and pops the node from the
stack after all their successors were created. When a new node is generated, the
value is hashed using a hashing table (using the procedure create.node at lines 9).
Checking if a node is new is facilitated by checking if it already exists in the hashing
table (using the function new at line 8). A node that is already discovered during
the search is said to be 'open' if it is on the stack (line 2) and 'closed' once it is
removed from the stack (line 13). Although the information about whether a node
is open or closed is not used here, it will be used in the sequel for detecting cycles.
Recall that a cycle is detected exactly when an edge is created (at line 11) pointing
to a node that is open (hence not new).

The partial order reduction algorithm modifies the DFS by expanding only a
subset of the enabled transitions from each state:

3 working jet(s):=ample(s);

where ample(s) C enabled(s). If ample(s) = enabled(s), we say that 5 is fully
expanded.

The modified DFS obviously generates a sub-state-space. The problem is how
to select these ample sets of successors such that the sub-state-space will be ample
with respect to a given effective equivalence relation.

The ample sets method provides a set of constraints for selecting the successors
of a state. The set of constraints depends on the effective equivalence relation used.

c

1 proc DFS($);
2 push s; /* s n becoming open »/
3 working -set(s): =enabled(s);
4 while working_set(s)?£ <t> do
5 let a €working_set(s);
6 working.set(s) =working_set(s)\{a};
7 t:=a(s);
8 if new(t) then
9 create.node(t);
10 DFS(t) fi;
11 create_edge(s, a, t);
12 end while;
13 pop s; /* 5 I« becoming closed */
14 end DFS.

Figure 1: Using DFS to construct the state-space graph of a program

This in turn can depend on the specification to be checked and whether a fairness
constraint is assumed.

In order to present such a set of constraints, define a visible transition [33] to
be a transition a € T that can change the prepositional interpretation of a state:

Definition 4.1 Given a system (I, P, M) where T = (5, T, i), a transition a £ T
is visible if there are two states s, t € 5 such that M(s) ^ M{t) and t = a(s).

We will consider the following constraints:

CO [Non-emptiness condition] ample(s) is empty iff enabled(s) is empty.

Cl [Faithful decomposition [19, 32, 28, 11]] For every path of SP(I), starting from
the state s, a transition that is dependent on some transition in ample(s)
cannot appear before a transition from ample(s).

C2 [Cycle closing condition [28]] If 5 is not fully expanded then for no transition
a € ample(s) it holds that a(s) is on the search stack (i.e., is open).

C3 [Non-visibility condition [29]] If s is not fully expanded then none of the tran-
sitions in it is visible.

Condition C2 can be weaken to require that for every cycle in the reduced state
space there is at least one fully expanded node. An algorithm for checking this
weaker condition was suggested in [32].

We have the following results concerning sub-states-space constructed using
ample sets:

10

Z^

Theorem 4.2 ([28]) The sub-state-space constructed using conditions C0-C2 is
ample with respect to trace equivalence under F-fairness.

Hence, if the specification is given as a language that is closed under trace equiv-
alence, and F-fairness is assumed, one can use a sub-state-space that is constructed
while conditions C0-C2 are satisfied at each one of its state. Several temporal log-
ics were devised for expressing properties that are closed under trace equivalence,
e.g., the logics TrPTL [36] and TLC [1], Alternatively, one can use the decision
procedure of [30], presented in Section 3.2, to check whether a given LTL or Biichi
automaton specification is closed under trace equivalence.

If the specification is not closed under trace equivalence, one can keep adding
new dependencies, until it becomes closed. Of course, adding dependencies can
ultimately completely prohibit the reduction, e.g., when all transitions are made
interdependent.

There is a subtle point to notice about adding dependencies: the definition of F-
fairness is sensitive to the dependency relation used. By adding more dependencies,
more sequences would become F-fair. Hence, at worst, representatives for sequences
that were not originally fair are generated. Since the model-checking algorithm
applied to the reduced state-space will ignore unfair (defined w.r.t. the original
dependence relation) sequences, correctness is preserved.

To understand why Theorem 4.2 holds, observe the following Lemmas, assuming
the sub-state-space are constructed under conditions C0-C2:

Lemma 4.3 ([29]) Let s be a state in a sub-state-space S = (V, E') of on in-
terpreted system I. Let v be a sequence of transitions labeling a path of SP(X),
staring at s. Then there exists a transition a G ample(s) such thai v = aw, for
some w 6 T".

Proof. According to Cl, only transitions that are independent of those in ample(s)
can appear in v before some transition of ample(s) appears. The fairness F requires
that transitions dependent of those enabled in s, in particular those in ample(s),
eventually appear. (Notice that the dependency relation D is always reflexive.)
Combining the two, v must contain a transition a G arnple(s) that appears after
transitions independent of it. Thus, a can be commuted to the beginning. |

We aim at simulating each fair path of I by a fair path of the reduced sub-state-
space 5. The basic simulation step is based on the following:

Lemma 4.4 ([29]) Let s and v be as in Lemma 4.3. Lei a be the first transi-
tion of v. Then, the reduced sub-state-space S contains a finite path labeled with
6162 .. -b„a, such that each 6< is independent of a, and 06162 .. -bnw = t; for some
w€T".

Proof. The proof is by induction on the order in which nodes are removed from the
stack (at line 13 in Figure 1), i.e., are closed. There are two cases. In the first case,

11

a € ample(s). hence the corresponding path has length of one. In the second case,
a g ample(s). Hence, according to Lemma 4.3, there is a transition 60 € ample{s)
that is independent of a and appears in i; after a sequence of transitions that are
independent of 60. We can look now at the state s' = b0(s). Since a $ ample(s),
we know from Condition C2 that the transition b0 could not close a cycle. Hence,
s' is created after s and thus according to the DFS order, will be removed from
the stack before s. Therefore, we can assume the induction hypothesis from s', i.e.,
there exists a sequence 6163 .. .bna from s' such that each 6* is independent of a.
The required sequence is then 606l6o .. .bna. |

Lemma 4.4 can be used to show that for each sequence t; of I there exists
a sequence w such that u- = i> in 5, proving Theorem 4.2. The proof in [29]
constructs the path w: each transition <ij, taken in its turn from v = aoaioo ...,
either (a) appears in w after some "deficit' sequence of independent transitions
6160 .. .bn, according to Lemma 4.4, or (b) has already appeared as part of the so
far accumulated deficit.

Unfortunately, when the fairness condition F (or any stronger fairness condition)
is not assumed. Lemma 4.3 does not hold. Hence, also Lemma 4.4 and Theorem 4.2
do not hold. To see this, assume there is a transition a which is enabled at a state
s, and independently, a loop starts at s, consisting of the transitions 6 and c,
which are independent of a. Thus, enabled(s) = {a, 6}. Then, without assuming F-
fairness, the transitions sequence v = (6c)1*. starting at state s is allowed. Choosing
ample(s) = {a} satisfies the conditions C0-C2, hence no sequence equivalent to t;
starts from s in the constructed sub-state-space.

To recover the situation, observe that although the sequence w = a(bc)" is not
trace-equivalent to v, a appears before a sequence of independent transitions. If a
is invisible, then no stuttering-closed specification can distinguish between t; and
w. We have the following:

Theorem 4.5 ([29]) The sub-state-space constructed using conditions C0-C3 is
ample with respect to stuttering equivalence.

5 Reduction for Branching TL and Process Alge-
bras

Preserving properties based on branching semantics, where execution sequences
are embedded in a tree requires an additional constraint. The reason is that with
branching properties one can observe the points where execution sequences depart
from each other.

The lefthand structure of Figure 2 contains an example of a full state space
M for a system with a set of transitions T = {a, b, c, d, e} such that D = T x
T\ {(a, b), (6, a), (a, c), (c, a)}. This structure does not satisfy the CTL formula
v? = AG((pA-ig) — (AFgV AF-xji)). The reduced state space M' on the lefthand of
Figure 2 obtained by preserving conditions C0-C3, satisfies <p.

12

. "> s-

Figure 2: Example where C0-C3 do not suffice to preserve CTL.

To recover the correctness of the reduction for the branching case, we impose
the following constraint:

C4 [Singleton condition [6]] Either s is fully expanded, or ampte(s) contains exactly
one transition.

5.1 Behavioral Equivalences

We consider here several notions of behavioral equivalences that are preserved under
our partial order reduction. Some connections between behavioral equivalences and
logics allow adopting the reduction for various logical formalisms.

Definition 5.1 ([3]) A relation =,»C V x V is a stuttering simulation between
the states of two structures M = (V, E, i, M) and M' = (V, £", t', A/') if the
following conditions hold:

1. t 2.» t',

2. if s 2,i s', then M(s) — M'(s') and for every maximal path * of M. that
starts at s, there is a maximal path sr1 in M' that starts at s', a partition
B\, B? ... of JT, and a partition B'\, B'i... of ir1 such thai for each j > 0,
Bj and B'; are nonempty and finite, and every state in Bj is related by 2!,j
to every state in B'j.

A relation =£,4 is a stuttering bisimulation if both 2J,j and 25j"4 (the transpose of
=,i) are stuttering simulations.

13

SI

The following theorem connects CTL* (as defined without the nexttime opera-
tor) and stuttering hisimulation:

Theorem 5.2 (see [3]) Let ^ be a CTL' formula with the set of atomic proposi-
tions P. Let M and M' be two structures, where the range of the labeling function
A/[and A/o is the subsets of atomic propositions P. Let the relation 9J,4 be a
stuttering bisimulation between the states of M and M'. Then for every pair of
stuttering bisimilar states s 25j4 s' it holds that M.s ^= ? iffM'.s' ^= ,?.

Definition 5.3 (Branching bisimulation [8, 26]) A relation £»» C V x V is
a branching simulation between the states of two structures M = (V. E~ t, \f) and
M' -(V, £', i', \f) if it satisfies the following conditions:

1. i S64 t' and

2. if s aj44 s' and s t, then either b = r and t 2« s'. or there exists a path

s' = s0 si -^- ... -^— s„ t' m M' such that s 244 s, for 0 < i < n.
and t 2?641'.

A relation 2E4i is a branching bisimulation if both 2544 and S^ are branching sim-
ulations.

Let M = {V, E, t, A/) be a structure. Denote s =^> s' if there exists path
— T T T a T T , s - so —— si —- ... —» st —► s1+1 —► ... —► s„ = s'. When a is r, the path

can be empty, whence s equals s'.

Definition 5.4 A relation *wi C V x V is a weak simulation [25] between struc-
tures M = (V, E, i, A/) and M' = (V, E', t', A/') if it satisfies the following
conditions:

1. i 3S„,41' and

2. if s 2«,» s' and s —► t, then there exists t' such that s' =^> t' in M' such
that t Sw4 t'.

A relation *£wi is a weak bisimulation if both S„,4 and aj£4 are weak simulations.

Notice that the interpretation functions M and M' are irrelevant and hence can
be omitted in both branching and weak bisimulation. We define now a behavioral
equivalence that includes conditions ou both states and edges. To tie together stut-
tering bisimulation, which observes states but ignores transitions, and branching
bisimulation, which observes transitions and ignores states we define the following
stronger equivalence relation:

Definition 5.5 A relation S„4C V x V is a visible simulation between the states
of two structures M = (V, E, i, M) and M' = (V, E', i'. A/') if i *vi i>, and
when s =„4 s', the following conditions hold:

14

2 s"V'

Visible bisimulation St,i

Stuttering bisimulation =i,i,

[3]

CTL, CTL*
(without nexttime)

Branching bisimulation S^

[8. 26]
i

Weak bisimulation =wt>

[14]
>

Hennessy Milner Logic HML
(with r transitions)

Figure 3: Connections between equivalences and logics

1. M(s) = M'(s').

2. If s —- t € E, either b is invisible and t 2S„j s'. or there exists a path
s' = s0 ——• *i —~ • • • —* sn —► t' in M' such that s S„4 s* for 0 < i < n,
a, is invisible for 0 < i < n and t 2Euj t'.

3. If there is an infinite path s = to —^* <i —^* ..., u/Aers 6, is invisible and
ti =„j s' for i > 0, then there exists a path s' — ro -^* rj -^- ... -^i r; —^~
r; + 1, u;«<A j > 0, such that s 2S„» r,- and c, is invisible for 0 < i < j, and
ti -vb O+i-

A relation 2£„j is a visible bisimulation if both 2J„4 and =ijb art visible simulations.

It is simple to show that visible bisimulation is stronger than stuttering bisim-
ulation. Hence from Theorem 5.2 we conclude that it preserves CTL" properties
(without nexttime). When all invisible transitions are labeled as r, visible bisimu-
lation is stronger than branching bisimulation, which in turn is stronger than weak
bisimulation. This interaction between behavioral equivalences and logics is de-
picted in Figure 3. In the Section 5.2 we show that our reduction (with conditions
C0-C4) preserves visible bisimulation. By the connection between weak bisim-
ulation and Hennessy-Milner logic (HML) with r transitions [14], the reduction
preserves specification expressed in HML.

The paper [34] in this volume relaxes the requirement that the transitions are
deterministic. It also studies various other equivalence relations related to Hoare's
CSP [15].

15

2-Sb

5.2 Correctness of the Algorithm

Let M = {V, E. i, M) be the full state space of an interpreted system I. In
order to obtain a visible bisimulation between the full state space and a reduced
sub-state-space, define the following relation:

Definition 5.6 Define the relation —C V x V such that s — s' iff there ensts a
path s - so — si —— ... — sn = s' such that s, is invisible and {a,} satisfies
condition Cl from state Si for 0 < i < n — 1.

Such a path will be called a forming path. The length of a shortest forming path
between s and s' will be called the distance between s and s'. It is easy to see that
the relation — is transitive and reflexive (but not necessarily symmetric).

Let M' = (V, E', t', A/') be a sub-state-space generated for T by our partial
order reduction algorithm.

Definition 5.7 let *=- fl(K x V)

Notice that by definition, «sC—. Our goal is to show that ss is a visible bisimu-
lation. We will use a number of simple lemmas:

Lemma 5.8 Let s -^- t be an edge of E such that {a} satisfies Condition Cl

from the state s. Let s —► r be another edge of E, with a jib. Then {a} satisfies
Condition Cl from r.

The following can be proved by a simple induction:

Lemma 5.9 Let s = so —^* st —'-~ ... -^ sn = s' be a forming path, and
s —► t € E. Then there are exactly two possibilities (see Figure 4):

1. b is independent of a, for 0 < i < n. There exists a forming path t = t0 -^*
ti -^-* ... -^* tn, with Si —► t, for 0 < j < n.

2. There exists j < n such that b is independent of at for 0 < t < j, and b = a;.

There exists a forming path t = t0 -^* tt -^* ... -^ tj, with Si -5— *,• for
0 < i < j. In this case, there is a forming path of length n — 1 from t to s'.

Corollary 5.10 Let s - s' and s -^t € E. Then there exists an edge s' -^t' 6
E such that t — t' in each one of the following cases:

1. b does not appear on some forming path from s to s' (in particular, when b is
visible), or

16

"~? 4r

S = SQ •sl

ao ai

Sn-l Sn=s' S = ,S0

a„-i

6 indep. of a,, 0 < « < n

«i

ao

ao

a\ 3
J-I

b = dj
al aJ-^i.nJ + l an-^a„_i

< = <0 <1 ';'=s; + l Sn"1 s"=s

6 indep. of a,-. 0 < i < j < n, 6 = a,

Figure 4: Two cases of Lemma 59

2. / + s'.

The reduction algorithm with conditions C0-C4 guarantees the following:

Lemma 5.11 Let s be a state in the reduced sub-state-spaee M'■ Then there is a
formtng path in M' from s to some fully expanded node s'.

Theorem 5.12 (See [6]) The relation & is a visible bisimulation.

Proof. First, observe that t = i' and t £ V. Hence i =s t'. Let s =a s'. Thus, s ~ s'.
Condition 1 of Definition 5.5 is satisfied since according to Definition 5.6, there is a
path of invisible transitions from s to s'. Hence, by Definition 4.1, M{s) = M(s').

We show that condition 2 of Definition 5.5 holds. Let s —> t G E. We argue
by cases:

Case 1. t ~ s' and b is invisible. Immediate from the definition.

Case 2. t + s' or b is visible. According to Corollary 5.10, in both cases there is

an edge s' — t' in M such that t ~ t'. Notice that by the definition of äS,

s' G V, but it is not necessary the case that t' € V. By Lemma 5.11, there
is a forming path in M' from s' to some fully expanded node s". Hence,
s ~ s' ~ s"', which implies by transitivity of ~ that s ~ s". Since s" € V,
also s « s". Again there are two cases (see Figure 5):

Case 2.1. t' ~ s" and b is invisible. Then, t ~ t' — s", hence t ~ s" and also
t as s".

Case 2.2. t' f s" or b is visible. Then, according to Corollary 5.10, there is

an edge s" -±- t", with t' ~ t". Thus, t ~ t' ~ r", hence t ~ i". Since
s" is fully expanded, t" € V, thus * ss t".

Conversely, let s' -^- t' € E'. Since s ~ s', there is a forming path s = s0 -^-*
Sl -fi. ... -ii, Sn = s'. To satisfy Condition 2 of Definition 5.5, we need only to

extend this path with the transition s„ — t'.

17

1*1

Exists in case 2.2

t"

Figure 5: Cases 2.1 and 2.2 of Theorem 5.12

For proving Condition 3 of Definition 5.5, let « = f0 ~ *i — ... be an infinite
path, with bt invisible and i, ss s' for i > 0. By Lemma 5.11, there is a forming
path from s' to s", with s" fully expanded. Thus, tt JS S" for i > 0.

We will show that there exists some ;' > 0 such that bj does not occur on
some forming path from tj to s". The proof will construct a sequence of forming
paths /, from <, to s". for 0 < i < ;, with /„ a path from s to s" via s'. Observe
that by Lemma 5.9, if 6, appears on /,, then we can construct a path /l + 1 that
is shorter than /,-. Since there are infinitely many nodes <,, and /0 has a finite
length, this construction must terminate with some j as above. Now, according to

Corollary 5.10, there is an edge 5" -ii, t' € E such that tj+l ~ t'. Since s" is fully-

expanded, also tj + l ss t'. Appending the edge s" A. /' to the forming path from
5' to s", results in a path that satisfies Condition 3.

The other direction of Condition 3 is similar to the other direction of Condition 2
above. .

6 Implementation Issues

Finding ample sets that satisfy condition Cl is based on analyzing the current
global state. We will discuss two types of concurrent systems, with matching algo-
rithms. In both cases, we assume that each system consists of a set of processes,
with each process containing a (not necessarily disjoint) set of transitions. Each
process has a set of local variables that can be changed only by transitions that be-
long to the process. Transitions whose effect is only to change the process variables
are called local transitions. The local state of each process includes the values of
its local variables. Each (global) system state is a combination of the local states
of all the processes.

Synchronous Communication

Synchronous communication systems incorporate CSP or ADA-like communication.
Communication is done cooperatively at the same time by the sender and the

18

>--? r>

receiver. Sending and receiving can thus be considered a single transition, shared
by two processes. Hence, the communication transition belongs to both the sending
and the receiving process. We say that a communication transition a between a
pair of processes 7\ and Vj is locally enabled by a process Vi at state s if it can
be executed at the current state s, or any state s' such that the local states of
Pi in s and s' are the same. This means that V, is willing to do his part in the
communication transition a. We assume that such a system includes only local and
synchronous communication transitions.

The dependency relation for synchronous communication systems relates transi-
tions that belong to the same process. Hence, two transitions are interdependent iff
they belong to the same process. Notice that a communication transition belongs
to and hence is dependent on transitions of two processes. Choosing a subset of
the enabled transitions that satisfy condition C3 can be done as follows:

Choose all the transitions enabled in the current state s that belong
to a subset V of the processes, such that there is no communication
transition between a process Vi in V and a process outside V that is
locally enabled by V{.

The above rule prevents the case where, by executing transitions outside the
selected ample set, a communication that is dependent on transitions in the set will
become (globally) enabled and will execute before any transition in the ample set,
contradicting Cl. Such a set of transitions can be found by choosing initially the
currently enabled transitions that belong to a single process. If the above rule does
not hold, repeat adding transitions of additional processes, until the rule holds.

Asynchronous Communication

In this communication model, we have separate sends and receives. In addition to
the local variables of each process, pairs of processes that can communicate with
each other share fifo queues, through which the communication is handled. The
sender does not have to wait for the receiver, unless the message queue it uses is
full. Similarly, the receiver does not have to wait for the sender unless there is no
message in its input queue. Send and receive transitions are matching if they share
the same communication queue. We will assume that for each queue there is only
a single (different) process that can send, and a single process that can receive.

It is evident that matching sends and receives do not satisfy the conditions on
the dependency relation from Section 2.2. However, one can weaken condition Dl,
allowing transitions a and b to be independent when executing one cannot disable
the other (but can enabled the other, as oppose to condition Dl). Notice that in
this case, it is no longer true that when v = w and v is a transitions sequence of a
system 2, then w is also a transitions sequence of I.

Choosing a subset of the enabled transitions at s that satisfy condition C3 can
be done as follows:

Choose all the transitions enabled in the current state that belong to a
subset V of the processes, such that

19

^i

• there is no send transition of a process Vt in V that could send a
message to a process outside V if its queue was not full in s.

there is no receive transition of a process V> in V that could receive
a message from a process outside V if its queue was not empty in

Separate Process Analysis

As explained above, additional knowledge about the future enabledness of transi-
tions allows certifying more subsets as ample sets. As an example, in synchronous
communication, we can weaken the requirement that the subset of processes V does
not contain a locally enabled communication transition a. communicating with a
processes that is outside V; the existence of such a transition a does not prohibits
the enabled transitions of V from being an ample set if the process Vj can not par-
ticipate in such a communication in every state that is reachable from the current
one. A similar weakening is possible for the asynchronous communication case.

The future disabledness of a transition from a given state is as hard to check as
the model-checking problem itself. Thus, we may be satisfied with a solution that
would not identify every transition that can no longer become enabled from the
current state, but would identify at least a subset of such transitions. This can be
done using a separate process reachability. In the above example for synchronous
communication, we will check whether process Vj could have reached the matching
communication from its current local state. This search looks at the process Vj in
isolation. It assumes all transitions that are joint with other processes to be locally
enabled by the other processes. Furthermore, we may even choose to ignore data
values, reverting to static analysis.

Such a search can be done in a preparatory stage, identifying from each local
state 'offending' transitions (which can include synchronous communication tran-
sitions, asynchronous communication transitions or use of global variables) that
are not reachable. This information can be used then to improve the reduction by
identifying more subsets as ample sets.

On-the-fly Reduction

In previous sections, the model-checking algorithm was explained as a two-phase
process, where at the first phase, the (reduced) state-space is constructed, and in
the second phase, a graph-theoretic algorithm is applied to it. In practice, many
model-checking tools work in a slightly different, more efficient, way. They combine
the construction of the state space with checking that it satisfies the specification.
Then, it is sometimes possible to identify 'on-the-fly' that the system violates the
specification, before completing the construction. We will describe how partial
order reduction can be applied while doing on-the-fly model-checking.

Obtaining an on-the-fly model-checking algorithm can be done by using a Biichi
automaton A that corresponds to the complement of the specification ,?. Namely,

20

.4 recognizes the sequences that are not allowed by the specification. A translation
from LTL formulas to Biichi automata can be found e.g., in (37, 7].

A Biichi automaton is a fivetuple (Q, i, E, 6, F), where Q is a finite state of
automaton states, i £ Q is the initial automaton state, D is a finite set of input
values, which is in our case 2P, SCQxZxQisa. non-deterministic transition
function, and F C Q is the set of accepting states. A run of the automaton A
over an infinite sequence irgl", where <r = roriro... is an infinite sequence of
automaton states qoqi •• such that for each i > 0, (qi, r,, qi+i) € S. A run is
accepting iff at least one automaton state from F appears on it infinitely many
times.

Verifying that a system I satisfies a specification 9 is thus done by checking
whether there are execution sequences of I that are accepted by runs of A. If
there are such sequences, they correspond to counter-examples (since «4 accept the
sequences disallowed by the specification). Otherwise, I satisfies <p.

To carry out the above task, we can generate the product automaton X x A:
the states of the product are pairs from S x Q. We will refer to such pairs simply
as states. The transitions are pairs from T x 6. The accepting states are fixed by
the automaton state component, i.e., are pairs (s, q) such that q € F. The initial
state is the pair («,«')■ To make the sequences of I x A correspond to runs of A

over sequences of I, we make the following correspondence: {s, q) —^ (s', q') is a
transition of I x A iff (1) s' = a(s), (2) (q, 6, q') g 6, and (3) M{s) = 6. The last
requirement means that the A transition b agrees with the labeling of the outgoing
system state s.

We can now construct X x A on-the-fly: from the current pair {s, q) € 5 x Q,
generate all possible transitions (a, 6) that satisfy (1), (2) and (3) above. Better
yet, we can employ the partial order reduction and restrict the first component such
that a 6 ample(s).

The only condition that appears to be problematic is the cycle closing condi-
tion C2: the cycles in the product are not necessarily the same as the ones in the
reduced state-space for I. However, in [29] it is shown that it is correct to use the
cycles oil x A.

Using Tarjan's DFS algorithm, we can find the maximal strongly connected
components oil x A. A strongly connected component that is reachable from the
initial state and contains an accepting state means that the property <p does not
hold for I, and can be used to construct a counter-example.

An even more efficient model-checking procedure is obtained by observing that
an accepting run exists iff there is a cycle through a reachable accepting state. The
procedure [16, 5] applies an interleaved double DFS procedure: when the first DFS
retracts to an accepting state, the second DFS starts searching for a cycle through
this state. If the second DFS fails to find a cycle, the first DFS resumes from the
point it has stopped. We can use the following bits for every state of the product
that is put in the hash table:

• The state was found during the first DFS.

21

10 (

• The state was found during the second DFS.

• The state is in the first DFS stack.

• The state is in the second DFS stack.

Notice that these bits allow information about the two different (virtual) copies
of the same state in the two searches. Notice further that there is no need to
explicitly store the edges.

Applying the partial order reduction to the improved search requires a subtle
change in the algorithm: it is important to guarantee that the second DFS uses
the states that were already found in the first DFS. Repeating exactly the same
reduction from every state is thus important to achieve this goal. However, notice
that when the second search reaches a state that is on the stack of the first DFS,
it may continue to search new states that were not encountered yet during the
first DFS. Notice also that once a state x that is on the stack of the first DFS is
reached in the second DFS, the search can terminate: it is guaranteed that there is
a path from x to the accepting state from which the second DFS has begun, hence
completing a cycle through it. Hence, the algorithm in [16. 5] can be changed as
follows [18]:

Upon reaching during the second DFS a state that is on the stack of the
first DFS, terminate the search. Use the concatenation of the states in
the first and second DFS as a counter-example.

This early termination of the algorithm can be applied to the full search as well
and can result in shorter counter-examples.

Albeit eliminating some incorrect search scenarios, this provision is not suffi-
cient to guarantee that the second DFS will follow the same reduced set of states as
the first one. A problem may arise when the first search backtracks from a strongly
connected component that does not include an accepting state, hence the second
search was not applied to this component. While searching another component,
which contains an accepting state, the second DFS can propagate now to the pre-
viously abandoned component. This time it starts from a different node in the
component, potentially closing cycles in a different order. This might influence the
reduction, causing different nodes to be discovered in the second search.

Thus, additional state information is needed in order to make sure that the
second DFS will generate the same sets of successors as the first one for every
generated state s. This information reflects how the closing cycle condition C2 was
resolved during the first DFS [18]. One possibility is that it identifies the processes
whose operations where selected for the ample set from s during the first DFS.
Another possibility is that the reduction algorithm checks condition C2 against
the first set that satisfies the other conditions from s. If this Set fails to satisfy
C2, then s is fully expanded. In this case, the information about the success or
failure to find a subset can be stored for the use of the second DFS using a single
additional bit.

22

1-0 '>

The SPIN Implementation

The model-checking tool SPIN [16] contains an implementation of the ample sets
method. SPIN allows a variety of communication mechanisms, including syn-
chronous and asynchronous message communication. It also allows global tran-
sitions, which change values of variables that belong to all the processes. Hence,
the rules to achieve ample sets that satisfy condition Cl are more complicated.
SPIN includes the on-the-fly partial order reduction [17], with the double DFS
described above [18].

Acknowledgement I would like to thank the people that I had the pleasure of
working with on various aspects of partial order verification: Rajeev Alur, Ching-
Tsun Chou, Rob Gerth, Patrice Godefroid, Gerard Holzmann. Shmuel Katz, Ruurd
Kuiper, Wojciech Penczek, Amir Pnueli, Mark Staskauskas, Thomas Wilke, Pierre
Wolper and Mihalis Yannakakis. I would like to thank Bob Kurshan for many
illuminating discussions. Thanks for Antti Valmari for a his comments and the
careful reading of the manuscript.

References

[1] R. Alur. D. Peled, W. Penczek, Model-Checking of Causality Properties, 10th Sym-
posium on Logic in Computer Science, IEEE, 1995, San Diego, California, USA,
90-100.

[2] E. Best, R. Devillers, Sequential and Concurrent Behaviour in Petri net Theory,
Theoretical Computer Science, 55 (1987), 87-137.

[3] M.C. Browne, E.M. Clarke, O. Grümberg, Characterizing Finite Kripke Structures
in Proposition^ Temporal Logic, Theoretical Computer Science 59 (1988), Elsevier,
115-131.

[4] C.T. Chou, D. Peled, Verifying a Model-Checking Algorithm, Tools and Algorithms
for the Construction and Analysis of Systems, LNCS 1055, Springer-Verlag, 1996,
Passau, Germany, to appear March 1996, 241-257.

[5] C. Courcoubetis, M. Vardi, P. Wolper, M, Yannakakis, Memory-efficient algorithms
for the verification of temporal properties, Formal methods in system design 1 (1992)
275-288.

[6] R. Gerth, R. Kuiper, W. Penczek, D. Peled, A Partial Order Approach to Branching
Time Logic Model Checking, ISTCS'95, 3rd Israel Symposium on Theory on Com-
puting and Systems, IEEE press, 1995, Tel Aviv, Israel, 130-139.

[7] R. Gerth, D. Peled, M.Y. Vardi, P. Wolper, Simple On-the-fly Automatic Verification
of Linear Temporal Logic, PSTV95, Protocol Specification Testing and Verification,
3-18, Chapman k Hall, 1995, Warsaw, Poland.

[8] R.J. van Glabbeek, W.P. Weijland, Branching time and abstraction in bisimulation
semantics, Information Processing 89. Elsevier Science Publishers, 1989, 613 618.

[9] P. Godefroid. Using partial orders to improve automatic verification methods. In
Proc. 2nd Workshop on Computer Aided Verification, LNCS 531, Springer-Verlag,
New Brunswick, NJ, 1990, 176-185.

23

7-V^

[10] P. Godefroid. D. Pirottin, Refining dependencies improve» partial order verifica-
tion methods, 5th Conference on Computer Aided Verification, LNCS 697, Elounda
Greece, 1993, 418-449.

[11] P. Godefroid, D. Peled, M. Staskauskas, Using Partial Order Methods in the Formal
Validation of Industrial Concurrent Programs, 1996, ISSTA'96, International Sym-
posium on Software Testing and Analysis. ACM Press, San Diego, California, USA
261-269.

[12] P. Godefroid, P. Wolper, A Partial Approach to Model Checking, 6th Annual IEEE
Symposium on Logic in Computer Science. 1991, Amsterdam, 406-415.

[13] M.J.C. Gordon, T.F. Melham, Introduction to HOL: A Theorem-Proving Environ-
ment for Higher-Order Logic, Cambridge University Press, 1993.

[14] M. Hennessy. R. Milner, Algebraic laws for nondeterminism and concurrency, Journal
of the ACM, 32, 1985, 23-52.

[15] C.A.R. Hoare, Communication Sequential Processes, Prentice Hall. 1995.

[16] G. J. Holzmann, Design and Validation of Computer Protocols, Prentice Hall Software
S«ries, 1992.

[17] G.J. Holzmann. D. Peled, An Improvement in Formal Verification. 7th International
Conference on Formal Description Techniques, Berne, Switzerland, 1994, 177-194.

[18] G.J. Holzmann, D. Peled, M. Yannakakis, On Nested Depth First Search, 2nd SPIN
workshop, Rutgers, NJ, August 1996.

[19] S. Katz, D. Peled, Verification of Distributed Programs using Representative Inter-
leaving Sequences, Distributed Computings (1992), 107-120. A preliminary version
appeared in Temporal Logic in Specification, UK, 1987, LNCS 398, 21-43.

[20] S. Katz, D. Peled, Defining conditional independence using collapses, Theoretical
Computer Science 101 (1992), 337-359, a preliminary version appeared in BCS-FACS
Workshop on Semantics for Concurrency, Leicester, England, July 1990, Springer
262-280.

[21] M. Z. Kwiatkowska, Event Fairness and Non-Interleaving Concurrency, Formal As-
pects of Computing 1 (1989), 213-228.

[22] L. Lamport, What good is temporal logic, Information Processing 83, Elsevier Science
Publishers, 1983, 657-668.

[23] O. Lichtenstein, A. Pnueli, Checking that finite-state concurrent programs satisfy
their linear specification, llth Annual ACM Symposium on Principles of Program-
ming Languages, 1984, 97-107.

[24] A. Mazurlriewicz, Trace Theory, Advances in Petri Nets 1986, Bad Honnef, Germany,
LNCS 255, Springer, 1987, 279-324.

[25] R. Milner, .4 Calculus of Communicating System, LNCS, Springer-Verlag, 92.

[26] R. de Nicola, F. Vaandrager, Three Logics for Branching Bisimulation, Logic in
Computer Science '90, IEEE, 1990, 118-129.

24

[27] D. Peled, A. Pnueli, Proving Partial Order Properties, Theoretical Computer Science,
126(1994), 143-182.

[28] D. Peled, All from one, one for all, on model-checking using representatives, 5th
Conference on Computer Aided Verification, Greece, 1993, LNCS, Springer, 409-
423.

[29] D. Peled. Combining partial order reductions with on-the-fly model-checking. Formal
Methods in System Design 8 (1996), 39-64.

[30] D. Peled, Th. Wilke, P. Wolper, An Algorithmic Approach for Checking Closure
Properties of ui-Regular Languages, to appear in CONCUR'96, 7th International
Conference on Concurrency Theory, Piza, Italy, August 1996.

[31] A. Pnueli, The temporal logic of programs, 18th FOCS, IEEE Symposium on Foun-
dation of Computer Science, 1977, 46-57.

[32] A. Valmari, Stubborn sets for reduced state space generation, 10th International
Conference on Application and Theory of Petri Nets, Bonn, Germany, 1989, LNCS
483, Springer Verlag, 491-515.

[33] A. Valmari, A stubborn attack on state explosion. Formal Methods in System Design,
1 (1992), 297-322.

[34] A. Valmari, Stubborn Set Methods for Process Algebras, POMIV'96, Partial Orders
Methods in Verification, American Mathematical Society, DIMACS, Princeton, NJ,
USA, 1996, this volume.

[35] A-P. Sistla, M.Y. Vardi, P. Wolper, The Complementation Problem for Büchi Au-
tomata with Applications to Temporal Logic, Theoretical Computer Science, 49
(1987), 217—237.

[36] P.S. Thiagarajan, A Trace Based Extension of Linear Time Temporal Logic. Proc.
10th IEEE Conference on Logic In Computer Science, 1994, 438—447.

[37] M.Y. Vardi, P. Wolper, An automata-theoretic approach to automatic program ver-
ification, 1st Annual IEEE Symposium on Logic in Computer Science, 1986, Cam-
bridge, England, 322-331.

25

>c-S

■iMk

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 00, 19xx

History Dependent Verification for
Partial Order Systems

Ugo Montanari and Marco Pistore

ABSTRACT. In this paper we propose a new approach to check bisimulation-
based equivalences for models of concurrency which take into account causal
dependencies between the actions a system can perform. The existing ap-
proaches are based on special definitions of bisimulation and do not allow for
reuse of techniques and tools developed for ordinary labeled transition sys-
tems. This is not the case in our approach, since we map causal systems into
ordinary transition systems. As a consequence, we obtain minimal realiza-
tions and Hennessy-Milner logics also for causal systems. We show how our
approach applies to history-preserving bisimulation for Petri nets [1] and to
location equivalence for CCS [3, 4].

1. Introduction

Bisimulation is widely used to equip concurrent systems with an abstract se-
mantics. A well-established theory and efficient algorithms have been developed for
it. Automatic checking is successful in practice, since many interesting systems are
finite state. One of the most used algorithms is the so-called partition refinement
algorithm [11, 18]. It is particularly interesting since it allows for minimization,
i.e., it can be used to find the minimal transition system in a class of bisimilar tran-
sition systems. Minimization is important both from a theoretical point of view —
equivalent systems give rise to the same (up to isomorphism) minimal realization
— and from a practical point of view — smaller state spaces can be obtained.

However, the standard definition of bisimulation — and most of the results
and algorithms which have been developed for it — can be applied only to sys-
tems whose operational behavior is modeled by labeled transition systems. In this
case computations are simply sequences of atomic actions and hence parallelism of
actions is reduced to interleaving.

Many attempts have been made to overcome the limits of this interleaving
approach and to allow the observer to discriminate systems via bisimulation also
according to the degree of parallelism they exploit in their computations. A possible
approach is to modify the operational semantics so that dependencies between

1991 Mathematics Subject Classification. Primary 68Q55, 68Q10.
Research supported in part by Progetto Integrato CNR/Universitä "Metodi e Strumenti per

la Progettazione e la Verifica di Sistemi Eterogenei Connessi mediante Reti di Comunicazione".
©0000 American Mathematical Society

1052-1798/00 $1.00 + $.25 per page

T,uP

2 U. MONTANARI AND M. PISTORE

actions are taken into account. Dependencies may be of different kinds: for instance
they can be causal dependencies (each action refers to the actions in the past
it depends on) or localities dependencies (the dependencies are used to describe
sublocation relations: each action depends on the actions in the past that generated
the location in which the action occurs).

Bisimulation-based abstract semantics can then be used on the richer opera-
tional semantics. In these cases, however, particular definitions of bisimulation have
to be exploited, since they have to deal with dependencies, and they do not allow
for a full reusage of the existing theories and algorithms for standard bisimulation.
Moreover, since the past history of the system has to be remembered to define
dependencies, the operational models are usually finite only when the system can-
not perform infinite computations. Special techniques must be studied to obtain
decidability also for some systems with infinite behaviors.

In this paper we describe a possible solution to these problems which has been
proposed in [15, 13]. We first define causal automata as a general model for dealing
with dependencies between actions. In this model the dependencies are represented
by means of names: each transition generates a new name which is then referenced
in the labels of the transitions which depend from it. The names which are relevant
for a state of the system are also explicitly remembered in the corresponding state
of the causal automaton.

When a system is mapped on causal automata, it is important to discard part
of the past events and to remember just those events that can (but not necessarily
will) be referenced in the future behavior. This pruning of the past history allows
for reusing the same state of the causal automaton to represent different stages of
a computation. Moreover, by considering as inessential the syntactical identity of
the names, it is possible to identify states whose future behaviors differ just for a
renaming. This allows us to represent classes of systems with infinite behavior with
finite-state — and possibly very compact — causal automata.

To show that causal automata are a good model for dependencies, we give a hint
of how it is possible to translate two classical non-interleaving models of concurrency
— Petri nets with process-based semantics [9, 1] and CCS with localities [3, 4] —
into causal automata.

We also equip causal automata with a notion of bisimulation. This bisimulation
equivalence correctly deals with dependencies. In fact, two systems described in
one of the two formalisms above are equivalent if and only if the corresponding
causal automata are equivalent according to the proposed bisimulation.

Finally we show how, starting from causal automata, it is possible to build
ordinary transition systems and to reuse ordinary bisimulation on them to decide
bisimulation on causal automata. To obtain this, a notion of active names is ex-
ploited, where a name is active for a state if it appears in the label of a transition
reachable from the state. Non-active names can be discarded, thus allowing for a
static correspondence of names between bisimilar states.

This translation into ordinary transition systems allows for the reusing of stan-
dard techniques and tools. In particular, it is possible to associate to each Petri net
a transition system which is minimal w.r.t. those associated to history-preserving
bisimilar nets. As far as we know, this is the first approach which leads to minimal
realizations for Petri nets up to history-preserving bisimulation and for CCS with
localities.

z^S

HISTORY DEPENDENT VERIFICATION 3

The structure of the paper is as follows. In Section 2 causal automata and
bisimulation on causal automata are defined, whereas in Section 3 it is sketched
how Petri nets and CCS with localities are mapped into causal automata. In
Section 4 ordinary automata are obtained from causal automata and in Section 5
an algorithm and a tool are described which exploit the proposed approach.

2. Causal automata

In this section we define causal automata. They are a model for describing
systems whose transitions may refer to previous transitions. Since these references
can be used to represent dependencies and, hence, partial orders, it is clear that
causal automata are an interesting operational model for partial order semantics.
We also equip causal automata with an abstract semantics based on bisimulation.

DEFINITION 2.1 (causal automaton). Let Jsf be a fixed infinite denumerable
set of event names.
A causal automaton is a tuple A = (Q,w,i-t,qo) where:

• Q is a set of states;
• w : Q -> VfiN") associates to each state a finite set of names;
• i-> is a set of transitions; each transition has the form q >->„ a', where:

M
— <7> Q1 € Q are the source and target states;
— a € Labels is the label;
-MC w(q) are the dependencies of the transition;
— a : w(q') <-* w(q) U {*} is the injective (inverse) renaming for the

transition; the special mark * £ Af is used to recognize in the target
state the name corresponding to the current transition;

• <7o € Q is the initial state; we require that w(qo) = 0.

A causal automaton is hence an automaton particularly suited for dealing with
dependencies between transitions. Each state q is labeled by the set w(q) of names,
which correspond to the past events that can still (but not necessarily will) be
referenced in the future behaviors. These names have a meaning that is local,
private to the state. Hence, the particular choice of names cannot by itself make a
distinction between two states of the causal automaton.

Each transition A„. depends on the past transitions identified by M. Due to
M

the local meaning of names, each transition must also specify the correspondence
between the names of the source and those of the target. This correspondence is
obtained via the renaming a, which permits also to deduce which names of the
source are forgotten in the target; the name (if any) used in the target state to
represent the current transition in mapped into the special mark *.

If there are invisible transitions, as for instance in CCS, we add to the automata
a new kind of transitions, which has the form q i-»> q'.

On causal automata a bisimulation cannot simply be a relation on states: also
a partial correspondence between the names of the states has to be specified and
the same pairs of states can be in relation via more than one correspondence.

DEFINITION 2.2 (bisimulation on causal automata). A causal bisimulation for
two causal automata A and B is a set 1Z of triples such that:

• if (p,5,q) € 11 then p £ QA, Q € QB and S is a partial injective function
from U>A(P) to Wß{q);

?^Y

4 U. MONTANARI AND M. PISTORE

• (qoA,Q,qoB) eft;
• if (p, S,q) £ll and p ACT p' in A then there exist some q A „ a' in J5 and

some <5' such that (p1, 6', q') £ U and 8'{m) = n implies a(m) = * = p(n) or
<5(ff(m)) = p(n);

• if (p, S,q) ETl and q A-a q' in ß then there exist some p A- D p' in A and
M 5-HMY

some <5' such that {p',51, q') e H and 6'(m) = n implies a(m) = * = p(n) or
<5(<r(m)) = p(n).

The causal automata A and B are bisimilar, written yl ~ca B, if there is some
bisimulation for them.

Notice that if p and q correspond via 5 in some bisimulation 1Z, then to each
transition of p a transition of q must correspond, such that i) the two transitions
perform the same action, it) they depend on the same past events (via 5), and iii)
the reached states correspond in H via some 5' which relates two names of the target
states only if they both are the names corresponding to the current transitions or
if they are related by 6 in the source states.

The definition of bisimulation can be easily extended to causal automata with
t-4 transitions. Moreover, it is also possible to define a weak causal bisimulation,
which allows each transition &■„ to be simulated with a suitable sequence of tran-

M

sitions &ai ■•■^<Th^Aah^^h+1 ■■•&,,„.

We conclude this section with a remark. The idea of using names to model
dependencies is not new. It has been introduced for instance in [5] and in [3, 4, 12].
There, however, names are global and syntactic (they appear in the terms describing
the system). In the case of causal automata, instead, names are local to states and
are semantic objects; this has the double advantage of making possible to work
directly on names — for instance by discarding some of them from an automaton,
as we will do in Definition 4.2 — and of allowing those states to collapse which
differ just for the syntactical choice of names. Moreover, we will see in Section 4
that, by fixing a strategy for choosing new names, it is possible to generate ordinary
transition systems from causal automata. To have a model which is independent
from the allocation strategy of names is interesting in itself, also since different
strategies have been actually proposed in the literature.

3. Causal automata for partial order systems

In this section we show how it is possible to translate two classical non-inter-
leaving models of concurrency — Petri nets with process-based semantics [9, 1]
and CCS with localities [3, 4] — into causal automata.

Causal automata can be associated also to other models — as, for instance,
CCS with causality [5] — using techniques similar to those used in the two cases
we consider.

3.1. Causal automata for Petri nets. In the context of Petri nets partial
order semantics is obtained via processes. They have been defined in [9] to represent
concurrent runs of the net. In particular, from processes it is possible to obtain
the partial order of the events of the run, which represents the causal dependencies
between them (an event directly causes another event if it generates a token which is
consumed by the second event). A notion of bisimulation, called history-preserving

-Zlo

HISTORY DEPENDENT VERIFICATION 5

bisimulation, which takes into account the partial order behavior has been defined
in [20] for event structures. The same notion has been introduced in [7] using
mixed ordering observations. History-preserving bisimulation has been applied to
Petri nets in [1].

Since processes grow during a computation, infinite-state systems are associated
to all nets which allow for infinite computations. Some alternative approaches
[21, 10] have been proposed so that history-preserving bisimulation can be checked
also for classes of nets with infinite behaviors, namely safe nets. Essentially, in those
approach it is shown how it is possible to remember just a finite part of the past
history of a computation in order to decide equivalence of nets.

In [13] decidability of history-preserving bisimulation on Petri nets has been
extended to a more general subclass of P/T nets, using causal automata. Now we
summarize the approach of [13].

Essentially, a P/T net is defined by:

• a set S of places; each place is supposed to contain a certain number of
tokens; a state of the net is then represented by a function m : S —► N,
called a marking, which describes the distribution of tokens in the places;

• a set T of transitions; each transition fires erasing a certain number of tokens
from some places of the net and adding a certain number of new tokens to
some possibly different places; transition t is enabled at marking m if m
contains enough tokens in the places and in this case we write m -> m',
where m' is the suitably updated marking;

• a labeling function for the transitions I :T -t Labels;
• an initial marking mo.

A formal definition of P/T nets and of history-preserving bisimulation on them can
be found in the Appendix.

As mentioned above, the classical definition of history-preserving bisimulation
is based on processes. Not all the informations carried by processes, however, are
used in the bisimulation. Now we define configurations, which contain only the
informations of processes which are relevant to bisimulation.

DEFINITION 3.1 (configuration). Let TV be a P/T net. A configuration for N
is a tuple c = (E, p,<), where:

• E is a set of events;
• p: S x (EU init) -► N;
• < is a partial ordering for E.

We require that, for each e G E, 5Zs6S p(s, e) > 0.
The initial configuration for N is Co(iV) = (0, po,0), where p0(s, init) = m0(s) for
all seS.

In a configuration, the set E represents (part of) the past events. Since we
are interested in a partial order semantics, a partial order is defined on E, which
represents the causal dependencies between the past events. Function p represents
the current marking of the net; instead of simply defining how many tokens are in
each place of the net, it also remembers which events generated these tokens (init
is a special mark used for the tokens in the initial marking).

We require that in a configuration only the events are remembered which gen-
erated tokens still present in the net. This is important to obtain a finite number
of different configurations also for certain classes of nets with infinite behaviors.

-7'

6 U. MONTANARI AND M. PISTORE

It is possible to define transitions on configurations1: essentially c A- c' if c' is
obtained from c by performing transition t of the net. Tokens are discarded and
added according to the pre- and post-conditions of the net; events which have no
more tokens are discarded, whereas a new event e is added and the tokens generated
by the transition are associated to e; suitable dependencies for e are added to the
partial order, following the rule that e directly depends on all the past events
which generated tokens consumed by the transitions. These events are called the

immediate causes of the transition; we denote with lC(c -4 c') the set of immediate
causes of transition c -> c'.

When a causal automaton is generated from a net, states of the automaton
correspond to configurations of the net. However, to obtain a compact automaton,
it is important to identify configurations which are isomorphic. This can be ob-
tained by fixing a representative for each class of isomorphic configurations and by
defining a function norm such that norm(c) = (c',a) where c' is the representative
of the class of configurations isomorphic to c and a is the bijection between Ec< and
Ee.

Now we are ready to show how, given a net, it is possible to build the causal
automaton corresponding to it, by using its behavior on configurations.

DEFINITION 3.2 (from nets to causal automata). The causal automaton cor-
responding to P/T net N is aut(JV) = (Q,W,H->,CO), where CQ e Q is the initial
configuration for N and whenever ce Q then:

• w{c) = Ec;

• if c -» c' and (c", a) = norm(c') then c" e Q and c Ar*/g]oo. c", where:
M

- a = l(t),
- e = Ec> \ Ec (if Ec< \ Ec = 0 then we can assume e = *), and

- M are the events in lC(c ->■ c') which are maximal w.r.t. <c.

Notice that the renaming corresponding to a transition on the causal automaton
is obtained from the bijection defined by function norm: it is sufficient to re-direct
the new name e to •. Moreover, the maximal causes of the transition are used as
dependencies in the automaton.

This construction generates finite causal automata for the finite nets which are
n-safe for some n, i.e., for the nets whose reachable markings have n or less tokens
in each place.

The general definition of bisimulation on causal automata exactly matches the
classical definition of history-preserving bisimulation on nets, as it is proved in [13].

THEOREM 3.3. Given two P/T nets Ni and N2, a.ut(Nr) ~ca aut(JV2) iff
Ni ~hPN2.

3.2. Causal automata for CCS with locations. The location semantics
for CCS we consider has been introduced in [3, 4]. It discriminates CCS agents also
with respect to how their computations are distributed in space; to each sequential
component of the agent a different location is assigned and two agents are equivalent
if they can bisimulate by performing the same actions in the same locations.

The syntax of CCS is enriched with a location prefix operator l::p meaning
that I e Loc is the location of agent p; the nesting of location prefixes represents

^ee [13] for a formal definition of c -> c'.

Z72^

HISTORY DEPENDENT VERIFICATION 7

the sublocalities relation for the agent. Whenever an action is performed, a new
sublocation is created for the subagent activated by the action; the location in which
an action occurs is added to the label, so that transitions have the form p A p',

u
where u = l\h • ■ -ln is a sequence of locations.

For instance, agent l::(a.b.p\c.q) can perform the following computation:

l::(a.b.p\c.q) A l::(m::b.p\c.q) -> l::(m::b.p\n::q) ->■ l::(m::o::p\n::q).
Im In Imo

We say that two agents p and q are location equivalent (p ~/oc q) if each
transition of one of the agents is matched by a transition of the other agent so that
the two transitions correspond to the same action and occur in the same location,
and the target agents are still equivalent.

This is the standard approach of [3, 4]. The problem is that locations are
created but never forgotten, so that location prefixes continue to grow during the
computation.

In [15] a slightly different approach is followed. Here, we just explain the main
ideas and we refer to [15] for the formal definitions.

First of all, we can notice that the location relation of a particular state can be
deduced also by observing the labels of the past computation: for instance, by just
observing the labels, we know that, in the final state of the computation above, n is
a sublocation of I and o is a sublocation of m and /. So, instead of representing the
sublocation relation directly in the terms, a flat structure can be given to locations:
each agent, up to suitable structural axioms, has then the form:

(hv.pi \h--P2\---\ln--Pn) \Ä

where pi do not contain location prefixes and R is the set of restricted channels.
The previous computation can then be rewritten as follows:

l::(a.b.p\c.q) A m::b.p\lr.c.q A m::b.p\n::q -> o::p\n::q.
Im In mo

If we assume that p = vecx.b.x and q = recx.c.x we see that the second state and
the final state of this computation are the same up to the choice of location names;
this was not true in the approach of [3, 4].

The fact that the location names are different in the two states becomes inessen-
tial when we map agents on causal automata; in fact, we define a function norm
that, given a agent p, returns a pair (p',cr), where p' is obtained from p by nor-
malizing the location names and a describes which location of p corresponds to a
location of p'. CCS agents can now be mapped on causal automata.

DEFINITION 3.4 (from CCS agents to causal automata). Let Zinit be a special
location and let po be a CCS agent without location prefixes. The causal automaton
aut(po) = (Q,w,i-+,qo) is so defined:

• 9o = finit "Po € Q;
• w(p) are those locations appearing in p which are different from Zinit;
• whenever p 6 Q, p A p' and (p", a) = norm(p') then p" € Q and:

lm

~ P fy*/m]o<r P" if ' # *init,

- pA[*/m]o<rp" if Z = /iaif

?~73

U. MONTANARI AND M. PISTORE

Also in this case, the general definition of bisimulation on causal automata ex-
actly matches the ordinary definition of location equivalence, as it is shown in [15].

THEOREM 3.5. Given two CCS agents p and q, p ~loc q iff aut(p) ~ca aut(g).

In this case, with some garbage collecting of terminated (i.e., nil) subagents,
finite causal automata can be obtained for the class of finitary agents. An agent
is finitary if all agents which are reachable from it have a bounded number of
non-terminated parallel components.

4. From causal automata to ordinary automata

In the construction of the causal automata, we consider only names of past
events which are referenced in the present state. In fact, the remaining names
cannot for sure be relevant for the future computation. However it can happen that
some of the names associated to a state are never referenced in future computations.
These names can be safely discarded from the automaton, obtaining a more compact
structure.

DEFINITION 4.1 (active names). Given a causal automaton A, the sets of ac-
tive names corresponding to the states of A, denoted by an(p) with p € QA, are
the smallest sets such that:

if p Aa p' then M C an(p);
M

if p A> p', m e an(p') and a(m) ^ * then cr(m) E an(p).

DEFINITION 4.2 (irredundant reduction). Let A = (Q,w,\-±,q0) be a causal
automaton. Its irredundant reduction is the causal automaton JJ.^4 = (Q, an, (->', q0)
where i-V is obtained from i-4 by restricting the renamings to the active names of
the target states.
We say that an automaton A is irredundant if ty-A = A.

PROPOSITION 4.3. Let A be a causal automaton. Then ty-A ~ca A.

A causal automaton A can be visited beginning from the initial state. In this
visit, the global meaning of the private names of the reached states is made explicit2.
If the global meaning corresponding to the names of a reached state p is given by
a : w(p) <->■ TV and transition p A-p q is followed, the global meaning for q is given

M
essentially by a o p. However, a global meaning has to be associated also to the
name created in the transition (the name of the target state mapped in * by the
transition renaming). To this purpose we use a function new, which gets a transition
p >->p p' and a global meaning a for the names of p and returns a new name. A

M
possible definition of new is as follows:

new(p £■„ p', a) = min{7V \ a(p(w(p')))}
M

This means that the first name is chosen, that is not already used in the target
state. Other allocation strategies can be adopted by changing function new.

To formalize the idea of visiting a causal automaton A, we associate to A a
standard labeled transition system (called the unfolding of A); each state of the

2A state can be visited more than once, with different meanings for its private names.

^7U

HISTORY DEPENDENT VERIFICATION 9

unfolding is a pair (state of the causal automaton, global meaning of its names)
and each transition has the form

<P.ff> \(p'>a>)

where a is an action, M are the names the action depends from and m is the newly
created name.

DEFINITION 4.4 (unfolding). The unfolding corresponding to a causal automa-
ton A = {Q,w,>-¥,qo} is the labeled transition system unf(A) = (Qu,-t,qou) de-
fined as follows:

• the initial state is qou = (<Zo,0) £ Qu,
• if (p, a) e Qu and p A-p p' then (p',cr') G Qu and (p, a) A (p',&'), where

M m,M'

a' = (CT U (*, m)) o p, M' = a(M) and m = new(p H*„ p', CT).
M

It is easy to show that there are equivalent causal automata with non-equivalent
unfoldings. This happens because two equivalent states of the causal automata can
have a different number of names, and in the unfolding this can lead to different
choices for the new names.

The following theorem expresses an important result of this paper: given two
irredundant causal automata, they are equivalent if and only if the corresponding
unfoldings are equivalent. This allows us to apply a standard partitioning algorithm
for checking the equivalence of two automata and to obtain minimal (standard)
automata corresponding to them.

THEOREM 4.5. If A and B are irredundant causal automata then A ~co B iff
unf(A) ~unf(ß).

5. A tool for verifying causal automata

Theorem 4.5 suggests an algorithm for checking history-preserving equivalence
of two systems based on partial orders:

1. construct (separately) the causal automata corresponding to the systems;
2. discover (separately) the active names of the two automata and get the

irredundant reductions: start marking the names that are active due to the
first condition of Definition 4.1 and continue marking all the names reachable
following the dependencies in the other condition of Definition 4.1; at the
end discard the unmarked names;

3. unfold (separately) the obtained irredundant automata;
4. use a standard algorithm for checking the (strong or weak) equivalence of

the obtained transition systems (for instance, partition refinement [11, 18]).

Notice that, while step 1 depends on the formalism in which the systems are
described (CCS, Petri Nets, ...) and on the desired partial order semantics (lo-
calities, causality, ...), steps 2-4 work for generic causal automata and are hence
common to all these formalisms.

To add a new formalism, moreover, it is sufficient to define a new function which
maps systems described in this new formalism into causal automata; obviously, this
function must map history-preserving equivalent systems into equivalent causal
automata. Moreover, it has to map an interesting set of systems into finite causal
automata. As shown in Section 3, this is obtained by having a syntactic notion to

?J7<

10 U. MONTANARI AND M. PISTORE

decide if a past name can be forgotten in a particular state. Step 2 of the algorithm
refines then this notion, discarding all the inactive names that were created during
the generation phase.

In the studied cases, the class of systems which are captured is very significant:
in the case of CCS with localities, all the finitary agents; in the case of Petri nets,
all the n-safe nets.

The proposed algorithm can also be used to generate the minimal transition
system corresponding to a system; to obtain this, the same procedure has to be
applied by starting with just a net and, at the end, a minimization algorithm has
to be applied. As far as we know, this is the first approach which leads to minimal
realizations for Petri nets up to history-preserving bisimulation and for CCS with
localities.

A verification environment is being developed3 in Pisa which is based on the
above approach. The tool is based history-dependent automata [14], which are
slightly more general than the causal automata presented in this paper. In fact,
they model also 7r-calculus agents. The 7r-calculus is an extension of CCS in which
channel names can be used as values in communications, allowing for dynamic
creation of new channels; since channels can be created by some actions and then
used in following communications, it is clear that also 7r-calculus has to deal with
dependencies between transitions.

The environment provides a set of tools on history-dependent automata to edit,
visualize, make irredundant and unfold them. A number of front ends that translate
several formalisms into causal automata are also planed. An existing verification
environment for process algebras, the JACK systems [2], is used instead to work on
ordinary automata (equivalence checking and minimization). Moreover, a model
checker for verifying logical properties of systems has also been implemented. The
model checker allows the user to check behavioral properties (expressed in a vari-
ant of Hennessy-Milner logic) directly on history-dependent automata. Tools are
also under investigation that directly check for bisimulation and minimize history-
dependent automata. The logical structure of the verification environment is illus-
trated in Figure 1.

References

[1] E. Best, R. Devillers, A. Kiehn and L. Pomello. Fully concurrent bisimulation. Acta Infor-
matica 28:231-264, 1991.

[2] A. Bouali, S. Gnesi and S. Larosa. The integration project for the JACK environment. In
EATCS Bullettin, 1994.

[3] G. Boudol, I. Castellani, M. Hennessy and A. Kiehn. A theory of processes with localities.
INRIA Report 1632, 1991. Extended abstract in Proc. CONCUR'92, LNCS 630, 1992.

[4] G. Boudol, I. Castellani, M. Hennessy and A. Kiehn. Observing localities. Theoretical Com-
puter Science, 114:31-61, 1993.

[5] Ph. Darondeau and P. Degano. Causal trees. In Proc. ICALP'89, LNCS 372. Springer-Verlag,
1989.

[6] P. Degano, R. De Nicola and U. Montanari. Observational equivalences for concurrency mod-
els. In Proc. Formal Description of Programming Concepts - ///, 1986. North-Holland, 1987.

3Besides the authors of this paper, the people working on the project are: Gianluigi Ferrari
(Dept. of Computer Science, University of Pisa), Giovanni Ferro (IEI-CNR, Pisa), Stefania Gnesi
(IEI-CNR, Pisa) and Gioia Ristori (Scuola Superiore di Studi Universitari e di Perfezionamento
S. Anna, Pisa).

x?0

HISTORY DEPENDENT VERIFICATION 11

CCS with
7r-calculus localities Petri nets

7r-calculus locality
logic logic

1 1 I 1 1
transl. transl. transl. transl. transl.

^^ ' ^F

HD-automata HD-logic

irred.

HD-automata

unfold.

ordinary automata logic for ordinary automata

FIGURE 1. Structure of the verification environment.

[7] P. Degano, R. De Nicola and U. Montanari. Partial orderings descriptions and observations
of nondeterministic concurrent processes. In Proc. REX School/Workshop on Linear Time,
Branching Time and Partial Orders in Logica and Models for Concurrency, LNCS 354.
Springer Verlag, 1989.

[8] P. Degano, R. De Nicola and U. Montanari. Universal axioms for bisimulation. Theoretical
Computer Science, 114:63-91, 1993.

[9] U. Goltz and W. Reisig. The non-sequential behaviour of Petri nets. Information and Control
57:125-147, 1983.

[10] L. Jategaonkar and A. Meyer. Deciding true concurrency equivalences on finite safe nets. In
Proc. ICALP'93, LNCS 700. Springer Verlag, 1993.

[11] P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state processes, and three problems
of equivalence. Information and Computation, 86:43-68, 1990.

[12] A. Kiehn. Local and global causes. Tech. Rep. 42/23/91, Institut für Informatik, TU
München, 1991.

[13] U. Montanari and M. Pistore. Minimal transition systems for history-preserving bisimulation.
Submitted, 1996. Available as ftp://ftp.di.unipi.it/pub/Papers/pistore/pnets.ps.gz.

[14] U. Montanari and M. Pistore. History-dependent automata. Draft, 1996. Available as
ftp://ftp.di.unipi.it/pub/Papers/pistore/HDautomata.ps.gz. Also: Technical Report,
Universitä di Pisa, to appear.

[15] U. Montanari, M. Pistore and D. Yankelevich. Efficient minimization up to location equiva-
lence. In Proc. ESOP'96, LNCS 1058. Springer Verlag, 1996.

[16] U. Montanari and D. Yankelevich. A parametric approach to localities. In Proc. ICALP'92,
LNCS 623. Springer Verlag, 1992.

7.7 7

12 U. MONTANARI AND M. PISTORE

[17] U. Montanari and D. Yankelevich. Location Equivalence in a Parametric Setting. Theoretical
Computer Science, 149:299-332, 1995.

[18] R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM Journal on Com-
puting, 16(6):973-989, 1987.

[19] D. Yankelevich. Parametric Views of Process Description Languages. PhD Thesis. Diparti-
mento di Informatica, Universitä di Pisa, 1993. Available as report TD-23/93.

[20] A. Rabinovich and B. A. Trakhtenbrot. Behaviour structures and nets. Fundamenta Infor-
maticae, 11:357-404, 1988.

[21] W. Vogler. Deciding history preserving bisimilarity. In Proc. ICALP'91, LNCS 510. Springer
Verlag, 1991.

>-7?

HISTORY DEPENDENT VERIFICATION 13

Appendix

In this appendix we present the basic definitions on Petri nets we use in the
paper. Most of the definitions and of the notations are from [9].

DEFINITION 5.1 (net). A net N is a tuple (S,T,F) where:

• 5 is a set of places and T is a set of transitions; we assume S DT = 0;
• F C (S x T) U (T x S) is the flow relation.

If x 6 SUT then *x = {y | (y,x) € F} and x* = {y \ (x,y) 6 F} are called
respectively the preset and the post-set of x.
Let °iV = {x € 5 U T | »i = 0} and N° = {x 6 S U T | x# = 0}.
A net N is finite if S and T are finite sets.

Given a net N = (S,T,F), we often write SN,TN, FN for S, T, F. We will
apply a similar convention also to the other structures we are going to define.

DEFINITION 5.2 (P/T net). A (labeled, marked) place/transition net (or sim-
ply P/T net) AT is a tuple (5, T, F, W, I, m0), where:

• (S, T, F) is a net;
• W : F ->• N+ assigns a positive weight to each arc of the net; we sometimes

assume that W is defined on (5 x T) U (T x S) by requiring W(x, y) = 0 if
(x,y)?F;

• I :T —t Labels is the labeling function, where Labels is a fixed set of action
labels;

• mo : S —> N is the initial marking.

A marking is a mapping m : 5 -> N. It represents a distribution of the tokens in
the places of the net.
Transition t £ T is enabled at marking m if m(s) > W(s, t) for all s € *t. In this
case, the firing of t at m produces the marking m' with m'(s) = m(s) + W(t, s) —

W(s,t), and we write m -> m'.

DEFINITION 5.3 (occurrence net). An occurrence net is a net K = (C,E,G)
(in this case, states are also called conditions and transitions are also called events)
such that:

• for all c € C, \'c\ < 1 and \c'\ < 1 (conditions are not branching), and
• the transitive closure G+ of G is irreflexive (the net is acyclic).

DEFINITION 5.4 (process). A process IT of a P/T net iV = {S,T,F, W,l,m0)
is a tuple (C,E,G,p), where AT = (C,E,G) is a finite occurrence net and p :
(CU E) ->(SUT) is such that:

• P(C) C 5 and p(E) C T;
• m0(s) = b_1(s) n °K\ for all s G S;
• W(s,p(e)) = |{c € *e | p(c) = s}| and W(p{e),s) = \{c € e* | p(c) = «}| for

all e e £ and all s G 5.

We write °w for 0Ä" and n° for A"°.
The initial process of net JV is the4 process TTQ{N) with an empty set of events.
Let IT = (C,E,G,p) and ir' = (C',E',G',p') be two processes of N. If:

• E' = E U {e} for some e 0 £;

4Notice that the initial process of a net is unique only up to isomorphism of the set of initial
conditions.

2-77

14 U. MONTANARI AND M. PISTORE

•CDC;
• P'\cuE =P

then we write n -> IT', where i = p'(e).

Now we define history-preserving bisimulation. We follow a classical character-
ization, as it appears in [1] under the name of fully concurrent bisimulation.

DEFINITION 5.5 (event structure). The (deterministic) event structure for pro-
cess 7T = (C,E,G,p) of net N is the tuple ev(7r) = (E,F

+
\E,IN °P\E)- An iso-

morphism between two event structures is a bijective function between their events
which respects ordering and labels.

DEFINITION 5.6 (history-preserving bisimulation). A set 1Z of triples is a his-
tory-preserving bisimulation for nets N\ and iV2 if:

• if (7Ti, /, 7r2) € H then 7Ti is a process of iVi, 7r2 is a process of N2 and / is
an isomorphism between ev(7Ti) and ev(7T2);

• K(iV1)!0,7ro(iV2))G7l;
• if (7ri,/,7T2) € 1Z and -K\ -V -K'X then 7r2 -4 7r2 with (7ri,/',7r2) € 11 and

/'lev(TTi) = /;

• if (7Ti,/,ir2) € 11 and 7r2 -4 TT2 then 7Ti -4 ir[with (7ri,/',7r2) € 1Z and
/'lev(TTi) = /•

Two nets Ni and iV2 are history-preserving bisimilar, written Ni ~/,p iV2, if there
is a history-preserving bisimulation for them.

COMPUTER SCIENCE DEPARTMENT, UNIVERSITY OF PISA, CORSO ITALIA 40, 56100 PISA, ITALY
E-mail address: ■Cugo,pistore}«di.unipi.it

2-&£

DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 00,19xx

Transition Systems with Independence and Multi-Arcs

Thomas T. Hildebrandt and Vladimire» Sassone

ABSTRACT. We extend the model of transition systems with independence in order to
provide it with a feature relevant in the noninterleaving analysis of concurrent systems,
namely multi-arcs. Moreover, we study the relationships between the category of transition
systems with independence and multi-arcs and the category of labeled asynchronous tran-
sition systems, extending the results recently obtained by the authors for (simple) transition
systems with independence (cf. Proc. CONCUR'96), and yielding a precise characterisa-
tion of transition systems with independence and multi-arcs in terms of (event-maximal,
diamond-extensionat) labeled asynchronous transition systems.

Introduction

Following the leading idea of CCS [12] and related process calculi [11, 2,13,9], the
behaviour of concurrent systems is often specified extensionally by describing their 'state-
transitions' and the observable behaviours that such transitions produce. The simplest
formal model of computation able to express naturally this idea is that of labeled transition
systems, where the labels on the transitions are thought of as the actions of the system at
its 'external ports', or, more generally, the observable part of its behaviour.

Transition systems are an interleaving model of concurrency, which means that they
do not allow to draw a natural distinction between interleaved and concurrent execution of
actions. More precisely, transition systems do not model the fact that concurrent actions
can overlap in time and reduce concurrency to a nondeterministic choice of action inter-
leavings, so loosing track of the casual dependencies between actions and, consequently,
of the fact that computations that differ only for the order of independent actions represent,
actually, the same behaviour. In other words, interleaving models abstract away from the
difference between the factual temporal occurrence order and the more conceptual causal
ordering of actions. The simplest exemplification of this situation is provided by the CCS
terms a \ b and a.b + b.a, both described by the following transition system.

b b * K a

(1) \4
1991 Mathematics Subject Classification. Primary 68Q55,68Q10, 68Q05.
Key words and phrases. Semantics of Concurrency, Noninterleaving, Independence Models.
Second author partly supported by EU Human Capital and Mobility grant ERBCHBGCT920005.

©0000 American Mathematical Society
1052-1798/00 $1.00 + $.25 per page

2% f

2 THOMAS T. HILDEBRANDT AND VLADIMIRO SASSONE

Although for many applications this level of abstraction is appropriate, for several other
kinds of analysis a model may be desirable that takes full account of concurrency. For
instance, apart from any philosophical consideration about the semantic relevance of cause/
effect relationships, knowing that different interleavings represent the same behaviour can
reduce considerably the state-space explosion problem when checking system properties
such as safety [8] and liveness properties [21,17].

Several efforts have been devoted to the search of transition-based noninteHeaving
models, e.g., transition systems enriched with additional features that make expressing
concurrency explicitly possible (cf., e.g., [18, 4, 6, 7, 5, 3]). The present paper focuses
on two such models, namely asynchronous transition systems, introduced independently
by Bednarczyk [1] and Shields [20], and transitions systems with independence, proposed
by Winskel and Nielsen [22], These two competing approaches are, among the others,
those building on the simplest idea: endow transition systems with some formal notion
of 'similarity' of transitions that enables to distinguish whether or not the opposite edges
in diagrams such as (1) represent the same action. Intuitively, this is achieved in both
approaches by thinking of transitions as occurrences of events, two transitions representing
the same event if they correspond to the same action. However, the differences induced on
the models by the different choices of how to assign events to transitions are definitely not
trivial. And so are the relationships that these models bear to each other.

Getting to the details, asynchronous transition systems assign events to transitions
explicitly and enrich the structure further by adding an independence relation on the events
that describes their causal relationships. This clearly makes distinguishing nondeterminism
and concurrency possible; a.b + b.a and a\b can be represented respectively by, e.g., the
following labeled asynchronous transition systems, where ~ indicates whether or not the
events e and e' (labeled by a and b) are independent.

• • • ^ •

Observe that here and in the rest of the paper we consider labeled asynchronous transition
systems [1, 22], i.e., asynchronous transition systems with a further labeling of events, as
the proper extension of labeled transition systems.

The expressive power of asynchronous transition systems is clearly not limited to the
example above; for instance, Bednarczyk [1] and Mukund and Nielsen [IS] have shown
that noninterleaving related issues for CCS processes — such as localities — can be mod-
eled faithfully using this model. However, it can be argued that assigning both the inde-
pendence relation and the decoration of transitions with events explicitly means assigning
too much. In fact, this obviously introduces some redundancies in the model: there are, for
instance, many non-isomorphic variations of the asynchronous transitions systems above
which can still be reasonably thought as models of a\b and a.b + b.a. Moreover, although
it is usually easy to tell about independence of transitions, in many important cases it is at
least not immediate to assign events to transitions: it might very well be the goal of the
entire semantic analysis to understand what the events of the system and their mutual rela-
tionships are. This consideration seems to indicate that asynchronous transitions systems
cannot have a significant impact in Plotkin's SOS style semantics, unless the independence
relation is promoted to a greater role.

Transition systems with independence are an attempt to answer to the previous obser-
vation. Here events are not introduced explicitly. They are rather derived from the structure

24 <

TRANSITION SYSTEMS, INDEPENDENCE, AND MULTI-ARCS 3

of the 'simply-labeled' transitions, upon which the independence relation is directly lay-
ered. In such a model, each of the CCS terms discussed above admits only one transition
system which can faithfully represent it, viz., respectively,

b * K a b y\ K a

• • • ^ •

• •

The implicit information about events can be easily deduced from the presence (or the
absence) of ~, making the achieved expressive power comparable to that of asynchronous
transition systems. Moreover, avoiding a primitive notion of event makes providing a
'noninterleaving' operational semantics in the SOS style a relatively simple task (cf. [22]).

However, in order to be consistent with the computational intuition, the axiomatics of
transition systems with independence involves (apparently necessarily [19]) one condition
expressed 'globally' in terms of all the transitions representing occurrences of the same
event. This contrasts with the 'local' conditions defining asynchronous transition systems
(due to the globally identified events) and can make hard checking that a given structure is a
transitions system with independence. Thus, the differences induced on the two models by
the choice of a primitive versus a derived notion of event are far-reaching and seem to make
them suitable for different applications. This indicates that it is not wise to choose once and
for all between asynchronous transition systems and transition systems with independence,
which, in turn, opens the issue of investigating/orrna//)' their analogies and differences.

An exhaustive analysis of this question was carried out by the authors in [10], show-
ing that transition systems with independence, besides being nicely related to a class of
asynchronous transition systems called extensional, are equivalent to the so-called event-
maximal asynchronous transition systems. The results of loc. cit. are summarized by the
following diagram, where TSI, LATS, eLATS, and meLATS are, respectively, the cate-
gories of transitions systems with independence, labeled, extensional, and event-maximal
asynchronous transitions systems, and where «->, ±, and = stand respectively for embed-
dings, coreflections, and equivalences.

c »'LATS

meLATS c >eLATS

Essentially, the extensionality condition refers to the existence of a unique way to
'complete' pairs of independent transitions to 'independence-diamonds'. Also, it excludes
multi-arcs, i.e., multiple transitions with the same label between the same two states.
Event-maximality, on the other hand, can be seen at the same time as identifying those
transition systems that make as few identifications of transitions as possible, i.e., con-
tain no confusion about event identities, and those in which such identities are derivable
from the independence relation, i.e., reduce the redundancy. It is worth noticing here that
at: eLATS -* TSI, the right adjoint of the coreflection, complements and corrects a non-
well-defined construction sketched in [22]: as a matter of fact, due to the greater generality
of asynchronous transition systems, eLATS happens to be the largest subcategory of LATS
on which such a construction makes sense.

A question left open by [10] is whether or not the need to restrict to extensional asyn-
chronous transition systems is a consequence of the intrinsic differences between the two
notions of events considered, i.e., if in order to be able to model situations ruled out by the

*3

4 THOMAS T. HILDEBRANDT AND VLADIMIRO SASSONE

extensionality constraints it is necessary to assign events explicitly. This paper addresses
such a question; namely, we remove the restriction to transition systems without multi-
arcs, relaxing the definition of transition systems with independence, and yielding the new
notion of transition systems with independence and multi-arcs (nonextensional transition
systems with independence would probably be a better name, though).

This represents, in our view, an interesting enhancement of the model. In fact, in
noninterleaving semantics, to be able to treat multi-arcs is clearly very relevant. In a sense,
it can be seen as allowing 'quotienting' of the state-space while retaining full information
about events and causality. As an example, consider the CCS term (a\b) +a.b, traditionally
described by the following transition system.

(a\b)+a.b

It is common (see e.g. [13, 15] among others) to quotient the state-space by some struc-
tural congruence that, e.g., collapses the states b and nil\b, obtaining the more compact
representation — with multi-arcs — shown below.

(a\b)+a.b

Observe that, contrarily to the interleaving case, it is vital here to have two different a-
transitions, since they rappresent different events: one is part of the independence-diamond
and is, therefore, independent of b; the other is not.

In order to justify our definition, we prove that, except for the extensionality condition,
the category TSIm of transition systems with independence and multi-arcs bears exactly the
same relationships as TSI to LATS. More precisely, we prove that TSIm is coreflective in
the category dLATS of the diamond-extensional asynchronous transition systems — intu-
itively, those transition systems that make no confusion about the identities of the events
carried by transitions facing each other in independence-diamonds. Similarly to the case of
TSI, dLATS is the largest subcategory of LATS for which such a result holds. Moreover,
among the diamond-extensional, we identify the event-maximal asynchronous transition
systems and prove that they induce the largest full subcategory of LATS, mdLATS, for
which the coreflection cuts down to an equivalence. This yields a precise characterisation
of TSIm in terms of LATS that extends the relationships between TSI and LATS discussed
above: in fact, the category of eLATS and its full subcategory meLATS are, respectively,
the full subcategories of dLATS and mdLATS consisting of transition systems without
multi-arcs.

Summing up, this paper presents the following diagram of formal relationships be-
tween the new model of transition systems with independence and multi-arcs and asyn-
chronous transition systems which can be useful in practise to translate back and forth

2.W

TRANSITION SYSTEMS, INDEPENDENCE, AND MULTI-ARCS

between the two models when the application one has in mind requires it.

TSIm <? > LATS

> dLATS

meLATS »eLATS

Although the technical development here goes along the lines of [10], and therefore,
strictly speaking, this paper is simply an extension of loc. cit., we believe that the definition
of TSIm is a relevant contribution on its own.

1. Preliminaries

In this section we recall briefly the definitions of asynchronous transition systems,
transition systems with independence, and their respective categories [1,22].

As discussed in the introduction, asynchronous transition systems are simply transition
systems whose transitions are decorated by events equipped with an independence relation.
Four axioms (A1-A4) are needed to guarantee the intended meaning for the events and the
independence relation.

DEFINITION 1.1 (Labeled Asynchronous Transition Systems). A labeled asynchro-
nous transition system (lats for short) is a structure

A = (SA,iA,EA,TmnA,IfaLA,l/ti,

where (SA,iA,EA,TranA) is a transition system with set of states S&, initial state i& € S&,
and transitions TranA C SA x EA X SA, and where EA is a set of events, LA a set of la-
bels, I A : EA -t LA a labeling function, and I A C EA X EA, the independence relation, is an
irreflexive, symmetric relation such that

Al. e £ EA =>■ 3s\,s2 € SA. (si,e,s2) S TranA',

A2. (s,e,si),(s,e,s2) £ TranA =*• ^1=^2;

A3. e\ IA e2, (s,el,si),(s,e2,s2) € TranA =^
3u. (sl,e2,u),(s2,el,u) G TranA;

A4. eiIAe2, (s,ei,si),{sl,e2,u) eTranA =*■
3J2. {s,e2,s2),(s2,euu) G TranA.

si *y2

*2 J u U «1

«1 , . «2

S\ h

«2 * u U «1

»2

In the rest of the paper we shall let 1(e) denote the set {e1 \ e IA e'} and, for convenience,
use (s, ea, s1) as a shorthand for a transition (s,e,/) with ^(e) = a.

The following is the standard definition of morphisms for lats, which essentially mim-
ics the idea of simulation (cf. [1,22]).

'Z3^

6 THOMAS T. HILDEBRANDT AND VLADIMIRO SASSONE

DEFINITION 1.2 (Asynchronous Transition System Morphisms). For A and A' lats, a
morphism from A to A' is a triple of (partial) functions1

(a:SA-> SA,,r\: EA ->> EA,,X: LA ->■ LA,),

where (cr,r|) is a morphism of labeled transition systems, i.e.,
► c(iA) = iA,\

>■ (sue,s2)€TranA,T\(e)l =$■ (a(si),r\(e),a{s2)) G TranA,\

(sue,s2) G TranA, T|(c)t =>• o(si) = O(J2);

which preserves the labeling, i.e., makes the following diagram commutative

EA »• EAi

4 J>
and the independence, i.e.,

e\ U «2, Tl(«iH, r|(e2)4- => n(«i) 4' Tl(e2).

It is immediate to see that lats and their morphisms form a category, which we shall
refer to as LATS.

Starting from Definition 1.1, transition systems with independence attempt to simplify
the structure retaining explicitly only the independence, now layered directly on the tran-
sitions. As already mentioned, the notion of event becomes implicit, determined by the
independence relation through the equivalence-classes of the relation ~.

DEFINITION 1.3 (Transition Systems with Independence). A transition system with
independence (tsi for short) is a structure

T = (ST,iT,LT,TranT,IT),

where (ST,h,LT,Tranj) is a transition system and IT C TranT x Tranr, the independence
relation, is an irreflexive, symmetric relation, such that, denoting by ■< the binary relation
on transitions given as

(s,a,S{) -< (s2,a,u) ifandonlyif

3b e LT. (s,a,si) IT (s,b,s2),

(s,a,s{) IT (si,b,u), (s,b,s2) IT (s2,a,u),

and by ~ the least equivalence on transitions which includes it, we have

Tl. (s,a,si) ~ (s,a,s2) =$> si=s2;

T2. (s,a,Si) IT (s,b,s2) => 3u.(s,a,si) IT (si,b,u), (s,b,s2) IT (s2,a,u);

T3. (s,a,si) IT (sub,u) =► Bs2. (s,a,s{) IT (s,b,s2), (s,b,s2) h (s2,a,u);

T4. (s,a,sx) ■<Uy(s2,a,u)IT(w,b,w') =» (s,a,si)IT (w,by).

The "---equivalence classes are to be thought of as events, i.e., t\ -< t2 means that t\
and t2 are part of a 'concurrency diamond', whilst t\ ~ t2 means that they are occurrences
of the same event. Concerning the axioms, notice then that Tl corresponds to A2 and
axioms T2 and T3 correspond, respectively, to A3 and A4.

'We use, respectively, /: A -y B and /: A -± B to indicate total and partial functions. For / a partial
function, /(*)J. (/(*)t) means that / is (un)defined at x.

TRANSITION SYSTEMS, INDEPENDENCE, AND MULTI-ARCS 7

The following definition of morphisms for transition systems with independence re-
sembles closely the one given above for lats.

DEFINITION 1.4 (Transition System with Independence Morphisms). For T and T
tsi, a morphism from T to V consists of a pair of (partial) functions

(a: ST^ST,,X: LT-^LJ,)

which is a morphism of transition systems and, in addition, preserves independence, i.e.,

(si,a,s2) h (s\,b,s'2), X{a)i,X{b)i =»

(ofrUto.ate)) lr (<y(s\)Mb),o(s'2))-

We shall use TSI to denote the category of tsi and their morphisms.
The following lemma states that tsi morphisms are well defined as maps of events, an

easy consequence of the fact that they preserve independence that we shall use in order to
embed TSI into LATS.

LEMMA 1.5 (Morphisms map Events to Events). For {a,X): T -*T' a morphism of
tsi, (si,a,s2) and (s'l,a,s2) transitions of T, (a{si),X(a),a(s2)) ~ (a(s,

l),X{ä),a(s,
2))

whenever (si,a,s2) ~ (s[,a,S2) andX(a)i, i.e., lats morphisms preserve ~.

2. Comparing LATS with TSI: Considering multi-arcs

In this section we first recall the results of the comparison of TSI and LATS carried out
by the authors in [10], and then, reconsidering a restriction used in loc. cit., we introduce
the notion of transition systems with independence and multi-arcs — i.e., tsi in which
multiple transitions carrying the same label are allowed between the same two states. In
the next section we shall then perform an analysis matching that of [10], investigating the
relationship between such a category and LATS, and showing that, in a precise sense, our
definition provides a minimal, conservative way to extend tsi with multi-arcs.

The starting point of the analysis in [10] is the obvious inclusion ta: TSI -^ LATS
which acts on objects by decorating each transition with the event identified by the ~-class
the transition belongs to, and by inheriting the independence relation directly from the tsi.
On the opposite direction, we considered the 'abstraction' at from LATS to TSI that forgets
the events and brings the independence from the events down to the transitions. However,
a simple argument shows that the presence of multi-arcs in LATS makes it impossible for
at to be well-defined as a map to TSI. Thus, the very first step of [10] is to consider only
those lats A satisfying

(Ex) (suei,s2)^(sue\,s2) £TranA => a^b,

whose purpose is to forbids multi-arcs. This allows to prove that the diamond-extensional
asynchronous transition systems, whose definition follows, are exactly those lats A such
that at{A) belongs to TSI.

DEFINITION 2.1 (Diamond-Extensional lats). A diamond extensional labeled asyn-
chronous transition system (dlats for short) is a lats that satisfies

A!3. ey IA e2, {s,e1,sx),(s,e\,s2) £ TranA =>

3! pair (si,x^,u), (s2,x^,u) € TranA. e\ lA x2, e2 IA x\, x\ IA x2\

A!4. ey IA e2, (s^si),(*!,4,") G TranA ^

3! pair {s,x^,s2),{s2,x\,u) € TranA. e\ 1A x2, e2 IA x\, *i IA x2.

1-^7

8 THOMAS T. HILDEBRANDT AND VLADIMIRO SASSONE

The category dLATS is the full subcategory of LATS consisting of the diamond-extensional
lats.

We call extensional the diamond-extensional lats that in addition satisfy (Ex), and we
denote by eLATS the full subcategory of dLATS that they determine. We can now give the
formal definitions of the functors ta: TSI -¥ LATS and at: eLATS -» TSI.

DEFINITION 2.2 (TSI <-> LATS). For T a tsi, let ta{T) be the structure

(ST,iT,E,Tran,I,LT,£),

where, denoting by ~ the equivalence relation induced by IT as in Definition 1.3,

► E = Tranr/~, the set of —classes of Tranj;

► Tran= {(sl,[(sl,a,s2)]~,s2) | {si,a,s2) € TranT};

► [(Ji,a,i2)]~/[(*!,a,^)^ ifandonlyif (sua,s2) h (^,a,^2);

► l{[{si,a,s2)]~)=a.

For (a,X): T -> 7" a morphism of tsi, let ta((a,X)) be (a,T|, A,), where

I undefined ifA,(a)t.

The proof that ta is well defined follows easily from Lemma 1.5. Actually, ta is a
/H/7 and faithful functor, i.e., an embedding of TSI in LATS. In the following, when no
confusion is possible, we may occasionally omit the index ~ from the notation for ~-
classes.

DEFINITION 2.3 (eLATS <-* TSI). For A a lats, let at{A) be the structure

(SA,iA,LA,Tran,I),

where

► (j,a,/) S Tran ifandonlyif (^c0,^) e TranA,

► (s,a,s{) I {s2,b,sj) ifandonlyif (s,e^,si),(s2,e^,s3) £ TranA, el IA e2.

For (a, T|, X): A -+ A' a morphism of lats, let af ((a, r|, X)) be (a, X).

The result of [10] is that ta and at form a coreflection of TSI in eLATS.

PROPOSITION 2.4 (to H af: TSI -»• eLATS). TSI is coreflective in eLATS.

PROOF. Subsumed by that of the forthcoming Proposition 3.8. — D

The lats corresponding to tsi are characterised as the event-maximal lats. Intuitively,
a lats is event-maximal if its events and independence are 'tightly coupled', so that one
cannot 'split' events without destroying the global lats structure. In other words, the iden-
tity of the events in event-maximal lats is forced by the independence relation. This will
provide a direct characterisation of tsi in terms of lats

DEFINITION 2.5 (Event-Maximal lats). For A a lats, e e EA, and T C 7>, where Tg =
{(sje,^) e TranA \e = e}, letA[T] denote the replacement of e on the transitions in T for
a fresh event e & EA, i.e.,

A[T] = (SA,iA,EAU{e},Tran,I,LA,t),

where

► Tran = (TranA \T) U{(sltg,s2) | (slte,s2) 6 T};

■2*6%

On the Costs and Benefits of using Partial-Order Methods
for the Verification of Concurrent Systems

(Invited Paper)

Patrice Godefroid

ABSTRACT. Verification by state-space exploration is one of the most success-
ful strategies for analyzing the correctness of finite-state concurrent reactive
systems. Partial-order methods are algorithms for dynamically pruning the
state space of such systems without incurring the risk of any incompleteness
in the verification results. This paper presents results of experiments per-
formed with these algorithms on real protocol examples, and discusses the
practical significance of partial-order methods.

1. Introduction

State-space exploration is one of the most successful strategies for checking the
correctness of finite-state concurrent reactive systems. It consists in exploring a
global state graph, called the state space, representing the combined behavior of
all concurrent components in the system. Many different types of properties of a
system can be checked by exploring its state space: deadlocks, dead code, unspec-
ified receptions, violations of user-specified assertions, etc. Moreover, the range of
properties that state-space exploration techniques can verify has been substantially
broadened during the last decade thanks to the development of model-checking
methods for various temporal logics (e.g., [CES86, LP85, QS81, VW86]).

The main limit of this approach to verification is the often excessive size of the
state space. Owing to simple combinatorics, this size can be exponential in the
size of the description of the system being analyzed. This exponentiafgrowth is
known as the state-explosion problem. The state-explosion problem is due, among
other causes, to the modeling of concurrency by interleaving, or, more accurately,
to the exploration of all possible interleavings of concurrent events. For instance,
the execution of n concurrent events is investigated by exploring all n! interleavings
of these events.

Recently, a collection of verification techniques, referred to as "partial-order
methods", have demonstrated that exploring all interleavings of concurrent events
is not a priori necessary for verification. Indeed, interleavings corresponding to
the same concurrent execution contain related information. The intuition behind
partial-order methods is that concurrent executions are really partial orders and
that expanding such a partial order into the set of all its interleavings is an inefficient

1991 Mathematics Subject Classification. Primary 68Q05, 68Q60; Secondary 03B70.

1

l^J

2 PATRICE GODEFROID

way of analyzing concurrent executions. Instead, concurrent events should be left
unordered since the order of their occurrence is irrelevant. Hence the name "partial-
order methods". However, rather than choosing to work with direct representations
of partial orders, these algorithms keep to an interleaving representation of partial
orders, but attempt to limit the expansion of each partial-order computation to
just one of its interleavings, instead of all of them. Precisely, given a property tp,
partial-order methods explore only a reduced part of the global state space that is
provably sufficient to check the given property. The difference between the reduced
and the global state spaces is that not all interleavings of concurrent events are
systematically represented in the reduced one. In what follows, we call "partial-
order method" any algorithm for generating such a reduced state space.

Partial-order methods as denned above first appeared independently in [Val88a,
Val88b] and [God90, GW91b], and were developed further in [Val90, GW91a,
GHP92, HGP92, GP93, Pel93, Val93, WG93, GKPP94, HP94, Pel94]. A
detailed comparison of the results published in these papers is available in [God96].
Partial-order methods are now used in several existing verification tools, and have
been tested on numerous real-protocol examples (e.g., see [GHP92, HGP92,
HP94, GPS96]).

Of course, it has been recognized for some time before the early 90's that
concurrency and nondeterminism are not the same thing. This observation has
actually inspired a fairly large body of work on so-called "partial-order models" of
concurrency (e.g., [Lam78, Maz86, Pra86, Win86]). Work in this area studies
various semantics for concurrency, and compares their properties. Also, partial-
order temporal logics (e.g., [PW84, KP86, KP87, Pen88, Pen90]) have been
designed to be semantically more expressive than previously existing (linear-time
and branching-time) temporal logics. In contrast, partial-order methods yields
results identical to those of verification methods based on classical interleaving
semantics, they just make it possible to perform the verification more efficiently.

Several approximate methods based on simple heuristics have been proposed
to restrict the number of interleavings that are explored [GH85, Wes86, Hol87].
These heuristics carry with them the risk of incomplete verification results, i.e., they
can detect errors but cannot prove the absence of errors. In contrast, partial-order
methods reduce the number of interleavings that must be inspected in a completely
reliable manner, provably without the risk of any incompleteness in the verification
results.

Strategies for proving properties of concurrent systems without considering all
possible interleavings of their concurrent actions have been proposed in [AFdR80,
EF82, Pnu85, SdR89, KP92b, JZ93]. These proof methods are applied in the
context of an inference system, in which the correctness of a system is established
by proving assertions about its components. This approach to verification has the
advantage of not being restricted to finite-state systems. On the other hand, it
requires proofs that are manual. Even with the help of a theorem prover, carrying
out proofs with a theorem prover is far from fully automatic since most steps of
the proof require inventive interventions from the user. In contrast, the focus of
the partial-order methods we discuss in this paper is purely on algorithmic issues,
since we discuss fully-automatic state-space exploration techniques.

The idea that the cost of modeling concurrency by interleaving can be avoided
in finite-state verification also appeared in [JK90, PL90, McM92, Esp94]. In
[JK90], the problem of finding an "optimal" reduced state space with just enough

TJ-'lC

ON THE COSTS AND BENEFITS OF USING PARTIAL-ORDER METHODS 3

transitions and states to preserve Mazurkiewicz's trace semantics is addressed.
In [PL90], a method that relies on a pomset grammar description of the system is
introduced. Also, in [McM92, Esp94], one finds a verification method that works
by unfolding a Petri net description of a concurrent system into a finite acyclic
structure. These methods are quite different from those discussed in this work.
Note that so far none of these other methods have been widely experimented on a
large set of realistic examples, as it has been the case for the partial-order methods
discussed here.

2. Basic Notions

Consider a concurrent system composed of several processes. Let us assume
that the system is represented by a set 6 of system transitions, specified for instance
in some guarded-command modeling language. The choice of a particular modeling
language and semantics is not essential for the following discussion. What matters
is that it is possible to compute from 6 a global transition system AQ (or "global
state space") representing the joint behavior of all the processes in the system. For
the sake of simplicity, we will assume that each transition of AQ corresponds to the
execution of one system transition t £ 6.1 We will write s —► s' to mean that the
execution of the transition t £ 6 leads the system from the state s of AQ to the
state s' of AQ, and s =^ s' to mean that the execution of the sequence w € 6* of
transitions leads from s to s'.

The basic idea that enables us to check properties of AQ without constructing
the whole of AQ is the following: AQ contains many paths that correspond simply
to different execution orders of the same system transitions. If these transitions are
"independent", for instance because they are executed by noninteracting processes,
then changing their order will not modify their combined effect.

This notion of independency between transitions and its complementary notion,
the notion of dependency, can be formalized by the following definition (adapted
from [KP92a]).

DEFINITION 2.1. Let 6 be the set of system transitions and D C 6 x 6 be a
binary, reflexive, and symmetric relation. The relation D is a valid dependency
relation for the system iff for all ti,t2 6 8, (h,t2) £ D (h and t2 are independent)
implies that the two following properties hold for all global states s in the global
state space AQ of the system:

1. if #i is enabled in s and s -^ s'', then t2 is enabled in s iff t2 is enabled in s'
(independent transitions can neither disable nor enable each other); and

2. if *i and t2 are enabled in s, then there is a unique state s' such that s =>2 s'

and s 0 s' (commutativity of enabled independent transitions).

This definition characterizes the properties of possible "valid" dependency re-
lations for the transitions of a given system. Note that it is not practical to check
the two properties listed above for all pairs of transitions for all states in order to
determine which transitions are independent and which are not. Therefore, in prac-
tice, one uses easily checkable syntactic conditions that are sufficient for transitions
to be independent. See [God96] for a detailed presentation ofthat topic.

1 Transitions are assumed to be deterministic: the execution of a transition t in a state s
leads to a unique successor state. This is not a restriction since "nondeterministic transitions"
can always be modeled by a set of deterministic transitions with non mutually exclusive guards.

lS\\

PATRICE GODEFROID

Following the work of Mazurkiewicz [Maz86], one can use the notion of inde-
pendent transitions to define an equivalence relation on sequences of transitions:
two sequences of transitions are equivalent if they can be obtained from each other
by successively permuting adjacent independent transitions. Thus, given an inde-
pendency relation, sequences of transitions can be grouped into equivalence classes
which Mazurkiewicz calls traces. It is easy to see that sequences of transitions wi
and w2 belonging to the same trace lead to the same state of Ac- This property is
basically what will allow us to only explore part of the global state space AQ- to
determine if a state is reachable by a trace, it is sufficient to explore one transition
sequence corresponding to that trace.

It might thus appear that we are using Mazurkiewicz's trace semantics. This is
not really so. Indeed, to view Mazurkiewicz's theory as a semantics, the indepen-
dency relation should be considered as part of the semantics: given an independency
relation, one can determine the Mazurkiewicz semantics of a system. The criterion
for a partial construction of the state-space would then be that the Mazurkiewicz
semantics are preserved. Here a less restrictive point of view is taken. The semantic
criterion is that the result of checking a property in the class of interest should be
the same as if checking the property on AG. The link with Mazurkiewicz's seman-
tics is only in the fact that the algorithms presented in the next section rely on the
concept of independency and on the properties it implies. With some algorithms,
it is even possible to use definitions of independence that are weaker than the one
of Definition 2.1 (e.g., [GP93, God96]).

3. The Algorithms

In this section, we present the basic algorithmic ideas used in the style of partial-
order verification methods we are considering. For simplicity, we only consider the
problem of detecting terminating (deadlock) states. In order to check for properties
more elaborate than deadlocks (such as arbitrary safety properties or linear-time
temporal-logic formulas), it is usually necessary to preserve more information in the
reduced state space AR, i.e, to explore more states and transitions. This is done
by enforcing additional conditions that have to be satisfied during the generation
of AR. We refer the reader to [God96] for a detailed comparison of the various
techniques that have been proposed to address this problem.

The specification of the algorithms we discuss here is thus that they should find
all states of AQ with no outgoing transitions while exploring as small a fraction as
possible of AQ- All the partial-order algorithms follow the same basic pattern: they
operate as classical state-space searches except that, at each state s reached during
the search, they compute a subset T of the set of transitions enabled at s and explore
only the transitions in T, the other enabled transitions are not explored. We call
such a search a selective search. It is easy to see that a selective search through AQ

only reaches a subset (not necessarily proper) of the states and transitions of AG-

Two main techniques for computing such sets T have been proposed in the
literature. The first technique actually corresponds to a whole family of algo-
rithms [Ove81, Val91, GW91b, GP93]. It is shown in [God96] that all these
algorithms (including Valmari's algorithms for computing "strong stubborn sets")
compute persistent sets. The second type of technique is the sleep set technique
(e.g., [GW93]). Interestingly, these two techniques are compatible and can be

2*7 2-

ON THE COSTS AND BENEFITS OF USING PARTIAL-ORDER METHODS 5

used simultaneously to further improve the selection of the set T. We first describe
persistent-set techniques.

Intuitively, a subset T of the set of transitions enabled in a state s of AQ is
called persistent in s if all transitions not in T that are enabled in s, or in a state
reachable from s through transitions not in T, are independent with all transitions
in T. In other words, whatever one does from s, while remaining outside of T, does
not interact with or affect T. Formally, we have the following [GP93].

DEFINITION 3.1. A set T of transitions enabled in a state s is persistent in s
iff, for all nonempty sequences of transitions

s = Si —► s2 -> s3 ... -»• sn —► Sn+i

from s in AQ and including only transitions U & T, 1 < i < n, tn is independent
with all transitions in T.

Note that the set of all enabled transitions in a state s is trivially persistent
since nothing is reachable from s by transitions that are not in this set. Persistent
sets are very similar, although not equivalent, to the "faithful decompositions"
introduced (independently) in [KP92b] and to the "ample sets" used in [Pel93].

Let a persistent-set selective search be a selective search through AQ which,
in each state s that it reaches, explores only a set T of enabled transitions that is
persistent in s, and that is nonempty if there exist transitions enabled in s. It is
easy to prove that a persistent-set selective search started from the initial state of
AG will explore all deadlocks of AQ [God96].

Of course, the key element required for the implementation of a persistent-
set selective search is an algorithm for computing persistent sets. Such algo-
rithms [Ove81, Val91, GW91b, GP93] infer the persistent sets from the static
structure (code) of the system being verified. They differ by the type of information
about the representation of the system that they use (e.g., "distinguishing between
internal and global transitions", "which process can access which variable", "which
process can access which variable from its current location", etc.). The aim of these
algorithms is to obtain the smallest possible persistent sets. Usually, the more in-
formation about the program the algorithm uses, the smallest the persistent set it
produces are, albeit at the cost of a higher computational complexity. See [God96]
for a detailed comparison of these algorithms and of their complexity. Note that
exploring the smallest number of enabled transitions at each step of the search
is only a heuristic: it does not necessary lead to the exploration of the smallest
number of states in AR.

The second technique for computing the set of transitions T to consider in a
selective search is the sleep set technique [GW93] introduced in [God90]. This
technique does not exploit information about the static structure (code) of the
program, but rather about the past of the search. Used alone it reduces the number
of transitions explored, but not the number of states [God96], which can still be
very useful as we will see in Section 6. Used in conjunction with a persistent
set technique it can further reduce the number of states explored. Indeed, when
the persistent set technique cannot avoid the selection of independent transitions
in a state, sleep sets can avoid the exploration of multiple interleavings of these
transitions. Again, we refer the reader to [God96] for a detailed presentation of
the sleep set algorithm and of its complexity.

7A*>

6 PATRICE GODEFROID

4. How Can Partial-Order Methods Be Evaluated?

How much can one gain by using these algorithms? It is very difficult to give
a general answer. Indeed, one can quite easily construct families of systems for
which nothing is gained whatsoever. Examples of such systems are systems where
the coupling between the processes is so tight that two independent transitions are
never simultaneously enabled. (The system is in fact purely sequential.) In this
case, partial-order methods yield no reduction, and the selective search becomes
equivalent to a classical exhaustive search.

On the other hand, it is also easy to construct systems for which the growth
of the state space when the number of processes in the system increases is reduced
from exponential to polynomial by a selective search. This is the case, for instance,
for the well-known dining-philosophers example [Val88a]. Going one step further,
it is also possible to find examples of systems for which the global state space
increases in size when the value of some parameter grows, while the reduced state
space remains the same. See Chapter 8 of [God96] for such an example.

Clearly, by a biased choice of examples, an arbitrarily exaggerated impres-
sion of the improvements could thus be suggested. For instance, by setting the
number of philosophers to a sufficiently large number, we can claim that we can
verify properties of systems with astronomical numbers of states, like 1020 states
as in [BCM+90], or even systems with infinite numbers of states. Of course, this
should be taken with a grain of salt since the fact that checking only a small part
of such enormous state spaces is sufficient only indicates that most of the states in
the global state space are uninteresting. This observation leads us to the following
conclusion: the number of states in the global state space of a system does not give
a good measure of its "complexity".

Along the same line of thought, the study of the asymptotic behavior of the
function giving the number of states for different numbers of processes in a system
is only of limited practical interest. Indeed, state-space exploration techniques are
rarely used to verify systems composed of tens of identical processes. For such
systems, it is preferable to use other verification techniques specially tailored for
proving properties of systems with undefined numbers of participants (e.g., [KM89,
WL89]).

Consequently, experiments with realistic examples, including industrial-size
ones, appear to be the most informative approach to evaluating partial-order veri-
fication methods.

5. Evaluation

In order to perform experiments on complex concurrent systems, we have imple-
mented a selective search algorithm using persistent sets and sleep sets in an add-on
package for the protocol verification system SPIN [Hol91]. SPIN is a verification
tool for communication protocols described in the Promela language. Promela is
a nondeterministic guarded-command language. Promela defines systems of asyn-
chronously executing concurrent processes that can interact via shared variables
and message channels. Interaction via message channels can be either synchronous
(i.e., by rendez-vous) or asynchronous (buffered) with arbitrary (user-specified)
buffer capacities, and arbitrary numbers of message parameters. These different
types of communication can be combined. Given a concurrent system described

Zj?

ON THE COSTS AND BENEFITS OF USING PARTIAL-ORDER METHODS 7

by a Promela program, SPIN can verify properties of the system by performing a
depth-first search in the global state space of the system.

The partial-order package for SPIN that we have developed is available free of
charge for educational and research purposes by anonymous ftp from ftp.monte-
fiore.ulg.ac.be in the /pub/po-package directory. More information on the partial-
order package can be found in the README file in this directory.

The partial-order package has been tested on various examples of protocols.
The aim of these experiments was to determine the type of reduction that can be
expected on real protocol examples when using the partial-order verification algo-
rithms, and to evaluate the respective impact of these algorithms on the reduction
obtained. In this Section, results obtained with four sample protocols are detailed.

• PFTP is a file transfer protocol presented in Chapter 14 of [Hol91], modeled
in 206 lines of Promela. It consists of three processes communicating via
FIFO channels.

• MULOG3 is a model of a mutual exclusion algorithm presented in [TN87],
for 3 participants, modeled in 97 lines of Promela. It consists of six processes
communicating via FIFO channels and shared variables.

• ABRA is a model of the Abracadabra protocol presented in [Tur93], mod-
eled in 168 lines of Promela. It consists of four processes communicating via
FIFO channels.

• DTP is a data transfer protocol, modeled in 406 lines of Promela. It consists
of three processes communicating via FIFO channels.

We report here experiments performed using four different algorithms.

• DFS denotes an exhaustive search performed in a depth-first order.
• SLEEP denotes a selective search using sleep sets.
• PS denotes a selective search using persistent sets.
• PS+SLEEP denotes a selective search using both persistent sets and sleep

sets.

Results of these experiments are presented in Table 1. All experiments were
performed on a SPARC2 workstation with 64 Megabytes of RAM, using the Partial-
Order Package version 3.0. For each run, the numbers of visited states and traversed
transitions are given. Time (in seconds) is user time plus system time as reported by
the UNIX-system time command. All visited states are stored in a hash table. To
avoid significant run-time penalties for disk-access, visited states can only be stored
in randomly accessed memory, i.e., in the main memory available in the computer
on which the experiments are performed. Consequently, parameter settings in all
the protocols considered were chosen to produce global state spaces that can easily
be stored in 64 Megabytes of RAM. For each run, the amount of memory used is
directly proportional to the number of stored states.

From the numbers given in Table 1, two main observations can be made con-
cerning the respective impact of persistent sets and sleep sets on the reduction
obtained.

• Persistent Sets yield the most important reductions on the number of vis-
ited states. They can also yield good reductions on the number of explored
transitions.

• Sleep sets yield a less impressive reduction on the number of visited states,
but yield very good reductions on the number of explored transitions.

.if

PATRICE GODEFROID

Protocol Algorithm Stored States Transitions Time
PFTP DFS 446,982 1,257,317 478.2

SLEEP 446,982 622,364 639
PS 276,722 482,722 662.7

PS+SLEEP 249,994 351,633 684.7
MULOG3 DFS 38,181 111,668 25.3

SLEEP 38,181 38,241 30.5
PS 18,537 38,906 25.8

PS+SLEEP 17,984 18,057 26
ABRA DFS 149,816 372,010 494.2

SLEEP 149,816 176,469 546
PS 32,289 40,931 166.3

PS+SLEEP 27,781 34,381 155.7
DTP DFS 251,409 648,467 200.2

SLEEP 251,409 269,912 189
PS 9,904 10,351 11.3

PS+SLEEP 9,904 10,351 11.5
TABLE 1. Evaluation

For all protocols, the best reductions can be obtained with PS+SLEEP, i.e., by-
using simultaneously persistent sets and sleep sets. Using persistent sets and sleep
sets gives better reductions than using persistent sets alone in almost all cases. For
DTP, persistent sets are so good in reducing the number of states and transitions
that sleep sets are not able to improve this result.

These results show that using the partial-order methods discussed in this work
is basically a no-risk improvement. In the worst case, when the reduction is not
sufficient to make up the additional run time overhead (PFTP), the selective search
can be slightly slower than a classical search, but the overall time complexity re-
mains linear in the number of explored transitions.

Moreover, using partial-order methods can strongly decrease both the time and
the memory resources needed to verify properties of concurrent systems (DTP).
Therefore, they can be used to verify more complex protocols.

6. State-Space Caching

Another observation that can be made from the results given in Table 1 is the
following: when using partial-order methods, and especially when using sleep sets,
the number of state matchings, i.e., the number of visited transitions minus the
number of visited states, strongly decreases. This phenomenon can be explained as
follows [GHP92].

When performing a classical search (like DFS), almost all states in the state
space of a concurrent system are typically visited several times. There are two
causes for this:

1. From the initial state, the explorations of all interleavings of a single finite
concurrent execution of the system always lead to the same state. This state
will thus be visited several times because of all these interleavings.

2. From the initial state, explorations of different finite concurrent executions
may lead to the same state.

2^i 0

ON THE COSTS AND BENEFITS OF USING PARTIAL-ORDER METHODS 9

When using partial-order methods, and especially when using sleep sets, most of
the effects of the first cause given above can be avoided, and, in many cases, most
of the states are visited only once during the selective search.

States that are visited only once do not need to be stored in memory. Indeed,
the only reason why visited states are stored in memory is to avoid redundant
explorations of parts of the state space: when a state that has already been visited
is visited again later during the search, it is not necessary to revisit all its successors.
Unfortunately, it is impossible to determine which states are visited only once before
the search is completed. However, if most of the states are visited only once, the
probability that a state will be visited again later during the search is very small,
and the risk of double work when not storing an already visited state becomes
very small as well. This enables one not to store most of the states that have
already been visited without incurring too much redundant explorations of parts
of the state space. The memory requirements can thus strongly decrease without
seriously increasing the time requirements.

State-space caching [Hol85, JJ91] is a memory management technique for
storing the states encountered during a depth-first search that consists in storing
all the states of the current explored path (i.e., those in the current depth-first
search "stack") plus as many other states as possible given the remaining amount
of available memory. It thus creates a restricted cache of selected system states
that have already been visited. Initially, all states encountered are stored into the
cache. When the cache fills up, old states that are not in the stack are removed
from the cache to accommodate new ones. This method never tries to store more
states than possible in the cache. Thus, if the size of the cache is greater than the
maximal size of the stack during the exploration, the search is not truncated, and
eventually terminates.

We have implemented such a caching discipline in our partial-order package.
The caching discipline can be used with any of the selective-search algorithms that
were considered in the previous section. Results of experiments with different cache
sizes and the algorithms DFS, PS, and PS+SLEEP for the MULOG3 protocol are
presented in Figure 1. For each run, the run time is directly proportional to the
number of explored transitions.

With DFS, these results clearly show that the size of the cache, i.e., the num-
ber of stored states, can be reduced to approximately the third of the total number
of states in AQ without seriously affecting the number of explored transitions and
hence the run time. If the cache is further reduced, the run time increases dramati-
cally, due to redundant explorations of large parts of the state space. This run-time
explosion makes state-space caching inefficient under a certain threshold.

With PS, this threshold can be reduced to approximately the eighth of the total
number of states. This improvement is not very spectacular because the number of
matched states, even when using PS, is still too important (see Table 1). The risk
of double work when reaching an already visited state that has been removed from
the cache is not reduced enough.

With PS+SLEEP, the situation is different: there is no run-time explosion
anymore. Indeed, the number of matched states is reduced so much (see Table 1)
that the risk of double work becomes very small. When the cache size is reduced
up to the maximal depth of the search (this maximal depth is the lower bound for
the cache size since all states of the stack are stored to ensure the termination of
the search), the increase of the number of explored transitions is still less than 10%

i>a

10 PATRICE GODEFROID

Transitions

1.2e+06

le+06

800000

600000

400000

200000

 1 1

DFS -♦-
PS .+..

PS + SLEEP -a-

fcH CT-rt --a- m ■ •.■-•■■•-■■-Tt"--!-!

0 5000 10000 15000 20000 25000 30000 35000 40000

Stored states

FIGURE 1. Performances of state-space caching for MULOG3

with respect to the number of transitions explored by PS+SLEEP when all visited
states are stored in memory, i.e., without using state-space caching.

In other words, the MULOG3 protocol, which has 38,181 reachable states that
can be visited by DFS in 25 seconds (see Table 1), can be analyzed with the same
run time by using PS+SLEEP and state-space caching while storing no more than
150 states. The memory requirements are reduced by a factor of 200 while the run
time remains the same.

Of course, the practical interest of this result is that using partial-order methods
and state-space caching together makes possible the complete exploration of very
large state spaces, that could not be explored so far.

For instance, consider two other versions of the MULOG protocol, denoted MU-
LOG4 and MULOG5, with respectively four and five participants. Let PS+SLEEP-
+Caching denote a selective search using persistent sets, sleep sets, and state-space
caching. Tables 2 and 3 present results of experiments performed on MULOG4
and MULOG5 with the algorithms DFS, PS+SLEEP, and PS+SLEEP+Caching.
"Stored states" is the number of stored states at the end of the search. When state-
space caching is used, the maximum number of stored states, i.e., the size of the
cache, is limited to 300,000 states. (This number is approximately the maximum
number of states that can be stored in RAM for MULOG4 and MULOG5 while still
avoiding any paging.) "Cleared states" is the number of times a state was removed
from the cache. "Matched states" is the number of state matchings that occurred
during the search.

l^

ON THE COSTS AND BENEFITS OF USING PARTIAL-ORDER METHODS 11

Algorithm Stored St. Cleared St. Matched St. Transitions Time

DFS - - - - -
PS+SLEEP 654,600 0 6,189 660,789 986.4

(2516.7)
PS+SLEEP+Caching 300,000 354,676 6,198 660,874 1122.6

(1184.4)

TABLE 2. Verification of MULOG4

Algorithm Stored St. Cleared St. Matched St. Transitions Time

DFS - - - - -
PS+SLEEP - - - - -

PS+SLEEP+Caching 300,000 28,613,162 349,904 29,263,066 60,633.1

TABLE 3. Verification of MULOG5

For MULOG4, DFS was not able to complete its search, since its global state
space is too large to be stored in (64 Megabytes of) memory. Using state-space
caching with DFS does not help, because of the run time explosion mentioned
above. MULOG4 can still be verified using PS+SLEEP, even without state-space
caching. Real time as reported by the UNIX-system time command is given be-
tween parentheses below the run time (user time plus system time). The important
difference between these two numbers for PS+SLEEP is due to paging (storing
654,600 states of MULOG4 requires more than 64 Megabytes of RAM, so some of
them had to be stored on disk).

For MULOG5, the only algorithm that is able to completely verify the correct-
ness of this protocol is PS+SLEEP+Caching. The complete selective search takes
approximately 17 hours, and explores 29,263,066 transitions. This means that the
reduced state space AR explored by PS+SLEEP contains at most 29,263,066 states.
The size of the global state space AG of MULOG5 is not known, but is very likely
several orders of magnitude larger than the largest state spaces that can be explored
by other existing verification tools.

Note that the efficiency of the state-space caching technique can be dynamically
estimated during the search: if the maximum stack size remains acceptable with
respect to the cache size and if the proportion of matched states remains small
enough, the run-time explosion will likely be avoided. Else one cannot predict if
the cache size is large enough to avoid the run-time explosion.

7. Conclusion

Using partial-order methods is basically a no-risk improvement with respect
to a classical exhaustive search in the state space of the system being analyzed.
Moreover, partial-order methods can yield substantial improvements in the perfor-
mances of the verification. Therefore, these methods broaden the applicability of
state-space exploration techniques to more complex systems.

The reduction obtained depends on the coupling between the processes in the
system. When the coupling is very tight, partial-order methods yield no reduction,
and the selective search becomes equivalent to a classical exhaustive search. When

2*d

12 PATRICE GODEFROID

the coupling between the processes is very loose, the reduction can be very im-
pressive. For most realistic examples, partial-order methods provide a significant
reduction of the memory and time requirements needed to verify protocols.

It is worth noticing that partial-order methods can already yield good perfor-
mance improvements for verifying systems containing only a handful of processes.
It is not necessary to consider systems composed of tens of processes to obtain spec-
tacular reductions. To put it in another way, the part of the state explosion due to
the exploration of all possible interleavings of independent transitions can already
be very important for systems containing only a few processes, and partial-order
methods are able to get rid of most of this explosion.

This very important point emphasizes the practical significance of partial-order
methods. Indeed, most of the protocol models that are analyzed with state-space
exploration techniques typically contain only a handful of processes. The examples
we have considered in Section 5 reflect this reality. For instance, a typical protocol
example is usually composed of a few processes that communicate asynchronously
by exchanging messages through some communication medium, each process being
described by a long piece of sequential code, with complex interactions between
control and data.

Not only these systems are very frequent, but they are also very hard to verify:
they are complex (several hundreds lines of (Promela) code are needed to model
these systems), and their state spaces are highly irregular. Specifically, their state
spaces seem to be much more irregular than, for instance, those of systems composed
of many identical processes (or pieces of hardware), for which symbolic verification
techniques are able to capture the regularity of the state space with the guidance
of the user (see, e.g., [BCM+90, McM93]). In contrast, for examples of the type
we are considering here, existing symbolic verification techniques were reported to
be inferior to classical state-space exploration algorithms [HD93]. Consequently,
for this particular, though important, class of systems, partial-order methods are
one of the most successful approaches to tackle the state explosion arising during
the analysis of such systems.

Finally, we have shown that using partial-order methods, and especially using
sleep sets, can substantially improve the state-space caching discipline by getting rid
of the main cause of its previous inefficiency, namely prohibitive state matching due
to the exploration of all possible interleavings of concurrent executions all leading
to the same state. Thanks to sleep sets, the memory requirements needed to verify
large reduced state spaces can be strongly decreased (several orders of magnitude)
without seriously affecting the time requirements. This makes possible the complete
exploration of very large reduced state spaces (several tens of million states) in a
reasonable time (one night). Used together, partial-order methods and state-space
caching significantly push back the limits of verification by state-space exploration.

Note

The results reported in this paper appeared in [God96].

References

[AFdR80] K. R. Apt, N. Francez, and W. P. de Roever. A proof system for communicating
sequential processes. ACM Transactions on Programming Languages and Systems,
2:359-385, 1980.

T,cri>

ON THE COSTS AND BENEFITS OF USING PARTIAL-ORDER METHODS 13

[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 1020 states and beyond. In Proceedings of the 5th Symposium on Logic in
Computer Science, pages 428-439, Philadelphia, June 1990.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems, 8(2):244-263, January 1986.

[EF82] T. Elrad and N. Francez. Decomposition of distributed programs into communication
closed layers. Science of Computer Programming, 2:155-173, 1982.

[Esp94] J. Esparza. Model checking using net unfoldings. Science of Computer Programming,
23:151-195, 1994.

[GH85] M. G. Gouda and J. Y. Han. Protocol validation by fair progress state exploration.
Computer Networks and ISDN systems, pages 353-361, May 1985.

[GHP92] P. Godefroid, G. J. Holzmann, and D. Pirottin. State space caching revisited. In
Proc. 4ih Workshop on Computer Aided Verification, volume 663 of Lecture Notes in
Computer Science, pages 178-191, Montreal, June 1992. Springer-Verlag.

[GKPP94] R. Gerth, R. Kuiper, D. Peled, and W. Penczek. A partial order approach to branch-
ing time model checking. Proceedings of the Third Israel Symposium on Theory of
Computing and Systems, 1994.

[God90] P. Godefroid. Using partial orders to improve automatic verification methods. In Proc.
2nd Workshop on Computer Aided Verification, volume 531 of Lecture Notes in Com-
puter Science, pages 176-185, Rutgers, June 1990. Springer-Verlag. Extended version
in ACM/AMS DIMACS Series, volume 3, pages 321-340, 1991.

[God96] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
- An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in
Computer Science. Springer-Verlag, January 1996.

[GP93] P. Godefroid and D. Pirottin. Refining dependencies improves partial-order verification
methods. In Proc. 5th Conference on Computer Aided Verification, volume 697 of
Lecture Notes in Computer Science, pages 438-449, Elounda, June 1993. Springer-
Verlag.

[GPS96] P. Godefroid, D. Peled, and M. Staskauskas. Using partial-order methods in the for-
mal validation of industrial concurrent programs. In Proceedings of ISSTA '96 (Inter-
national Symposium on Software Testing and Analysis), pages 261-269, San Diego,
January 1996.

[GW91a] P. Godefroid and P. Wolper. A partial approach to model checking. In Proceedings of
the 6th IEEE Symposium on Logic in Computer Science, pages 406-415, Amsterdam,
July 1991.

[GW91b] P. Godefroid and P. Wolper. Using partial orders for the efficient verification of dead-
lock freedom and safety properties. In Proc. 3rd Workshop on Computer Aided Veri-
fication, volume 575 of Lecture Notes in Computer Science, pages 332-342, Aalborg,
July 1991.

[GW93] P. Godefroid and P. Wolper. Using partial orders for the efficient verification of dead-
lock freedom and safety properties. Formal Methods in System Design, 2(2):149-164,
April 1993.

[HD93] A. J. Hu and D. L. Dill. Efficient verification with bdds using implicitly conjoined
invariants. In Proc. 5th Conference on Computer Aided Verification, volume 697 of
Lecture Notes in Computer Science, pages 3-14, Elounda, June 1993. Springer-Verlag.

[HGP92] G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction strate-
gies for reachability analysis. In Proc. 12th IFIP WG 6.1 International Symposium on
Protocol Specification, Testing, and Verification, pages 349-363, Lake Buena Vista,
Florida, June 1992. North-Holland.

[Hol85] G. J. Holzmann. Tracing protocols. AT&T Technical Journal, 64(12):2413-2434, 1985.
[Hol87] G. J. Holzmann. Automated protocol validation in argos — assertion proving and

scatter searching. IEEE Trans, on Software Engineering, 13(6):683-696, 1987.
[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.
[HP94] G. J. Holzmann and D. Peled. An improvement in formal verification. In Proc.

FORTE'94, pages 177-191, Bern, 1994.

30

14 PATRICE GODEFROID

[JJ91] C. Jard and Th. Jeron. Bounded-memory algorithms for verification on-the-fly. In
Proc. 3rd Workshop on Computer Aided Verification, volume 575 of Lecture Notes in
Computer Science, Aalborg, July 1991. Springer-Verlag.

[JK90] R. Janicki and M. Koutny. On some implementation of optimal simulations. In Proc.
2nd Workshop on Computer Aided Verification, volume 531 of Lecture Notes in Com-
puter Science, pages 166-175, Rutgers, June 1990. Springer-Verlag.

[JZ93] W. Janssen and J. Zwiers. Specifying and proving communication closedness in proto-
cols. In Proc. 13th IFIP WG 6.1 International Symposium on Protocol Specification,
Testing, and Verification, pages 323-339, Liege, May 1993. North-Holland.

[KM89] R. P. Kurshan and K. McMillan. A structural induction theorem for processes. In
Proceedings of the Eigth ACM Symposium on Principles of Distributed Computing,
pages 239-248, Edmonton, Alberta, August 1989.

[KP86] Y. Kornatzky and S. S. Pinter. A model checker for partial order temporal logic. EE
PUB 597, Department of Electrical Enginering, Technion-Israel Institute of Technol-
ogy, 1986.

[KP87] S. Katz and D. Peled. Interleaving set temporal logic. In Proc. 6th ACM Symp. on
Principles of Distributed Computing, pages 178-190, Vancouver, August 1987.

[KP92a] S. Katz and D. Peled. Defining conditional independence using collapses. Theoretical
Computer Science, 101:337-359, 1992.

[KP92b] S. Katz and D. Peled. Verification of distributed programs using representative inter-
leaving sequences. Distributed Computing, 6:107-120, 1992.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM, 21(7):558-564, 1978.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In Proceedings of the Twelfth ACM Symposium on Principles
of Programming Languages, pages 97-107, New Orleans, January 1985.

[Maz86] A. Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relationships to Other
Models of Concurrency, Advances in Petri Nets 1986, Part II; Proceedings of an
Advanced Course, volume 255 of Lecture Notes in Computer Science, pages 279-324.
Springer-Verlag, 1986.

[McM92] K. McMillan. Using unfolding to avoid the state explosion problem in the verification
of asynchronous circuits. In Proc. 4th Workshop on Computer Aided Verification,
volume 663 of Lecture Notes in Computer Science, pages 164-177, Montreal, June
1992. Springer-Verlag.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
[Ove81] W. T. Overman. Verification of Concurrent Systems: Function and Timing. PhD

thesis, University of California Los Angeles, 1981.
[Pel93] D. Peled. All from one, one for all: on model checking using representatives. In Proc.

5th Conference on Computer Aided Verification, volume 697 of Lecture Notes in Com-
puter Science, pages 409-423, Elounda, June 1993. Springer-Verlag.

[Pel94] D. Peled. Combining partial order reductions with on-the-fly model-checking. In Proc.
6th Conference on Computer Aided Verification, volume 818 of Lecture Notes in Com-
puter Science, pages 377-390, Stanford, June 1994. Springer-Verlag.

[Pen88] W. Penczek. A temporal logic for event structures. Fundamenta Informaticae,
ll(3):297-326, 1988.

[Pen90] W. Penczek. Proving partial order properties using CCTL. Proc. Concurrency and
Compositionality Workshop, San Miniato, Italy, 1990.

[PL90] D. K. Probst and H. F. Li. Using partial-order semantics to avoid the state explosion
problem in asynchronous systems. In Proc. 2nd Workshop on Computer Aided Veri-
fication, volume 531 of Lecture Notes in Computer Science, pages 146-155, Rutgers,
June 1990. Springer-Verlag.

[Pnu85] A. Pnueli. Applications of temporal logic to the specification and verification of reactive
systems: A survey of current trends. In Proc. Advanced School on Current Trends
in Concurrency, volume 224 of Lecture Notes in Computer Science, pages 510-584,
Berlin, 1985. Springer-Verlag.

[Pra86] V. Pratt. Modelling concurrency with partial orders. International Journal of Parallel
Programming, 15(1):33-71, 1986.

$0 Z-

ON THE COSTS AND BENEFITS OF USING PARTIAL-ORDER METHODS 15

[PW84] S. S. Pinter and P. Wolper. A temporal logic for reasoning about partially ordered
computations. In PTOC. 3rd ACM Symposium on Principles of Distributed Computing,
pages 28-37, Vancouver, 1984.

[QS81] J.P. Quielle and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In PTOC. 5th Int'l Symp. on Programming, volume 137 of Lecture Notes in
Computer Science, pages 337-351. Springer-Verlag, 1981.

[SdR89] F. A. Stomp and W. P. de Roever. Designing distributed algorithms by means of formal
sequentially phased reasoning. In Proc. 3rd International Workshop on Distributed
Algorithms, volume 392 of Lecture Notes in Computer Science, pages 242-253, Nice,
1989. Springer-Verlag.

[TN87] M. Trehel and M. Naimi. Un algorithme distribue d'exclusion mutuelle en log(n).
Technique et Science Informatiques, pages 141-150, 1987.

[Tur93] K. J. Turner et al. Using Formal Description Techniques - An Introduction to Estelle,
Lotos and SDL. Wiley, 1993.

[Val88a] A. Valmari. Error detection by reduced reachability graph generation. In Proc. 9th
International Conference on Application and Theory of Petri Nets, pages 95-112,
Venice, 1988.

[Val88b] A. Valmari. Heuristics for lazy state generation speeds up analysis of concurrent sys-
tems. In Proc. of the Finnish Artificial Intelligence Symposium STeP-88, volume 2,
pages 640-650, Helsinki, 1988.

[VaI90] A. Valmari. A stubborn attack on state explosion. In Proc. 2nd Workshop on Com-
puter Aided Verification, volume 531 of Lecture Notes in Computer Science, pages
156-165, Rutgers, June 1990. Springer-Verlag.

[Val91] A. Valmari. Stubborn sets for reduced state space generation. In Advances in Petri
Nets 1990, volume 483 of Lecture Notes in Computer Science, pages 491-515. Springer-
Verlag, 1991.

[Val93] A. Valmari. On-the-fly verification with stubborn sets. In Proc. 5th Conference on
Computer Aided Verification, volume 697 of Lecture Notes in Computer Science, pages
397-408, Elounda, June 1993. Springer-Verlag.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proceedings of the First Symposium on Logic in Computer Science,
pages 322-331, Cambridge, June 1986.

[Wes86] C. H. West. Protocol validation by random state exploration. In Proc. 6th IFIP WG
6.1 International Symposium on Protocol Specification, Testing, and Verification,
pages 233-242. North-Holland, 1986.

[WG93] P. Wolper and P. Godefroid. Partial-order methods for temporal verification (invited
paper). In Proc. CONCUR'93, volume 715 of Lecture Notes in Computer Science,
pages 233-246, Hildesheim, August 1993. Springer-Verlag.

[Win86] G. Winskel. Event structures. In Peirt Nets: Applications and Relationships to Other
Models of Concurrency, Advances in Petri Nets 1986, Part II; Proceedings of an
Advanced Course, volume 255 of Lecture Notes in Computer Science, pages 325-392.
Springer-Verlag, 1986.

[WL89] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with net-
work invariants. In Automatic Verification Methods for Finite State Systems, Proc.
Int. Workshop, Grenoble, volume 407 of Lecture Notes in Computer Science, pages
68-80, Grenoble, June 1989. Springer-Verlag.

BELL LABORATORIES, LUCENT TECHNOLOGIES, 1000 E. WARRENVILLE ROAD, NAPERVILLE,

IL 60566, U.S.A.
E-mail address: god4bell-labs.com

3o3

ley

Partial Order Verification with PEP*

Eike Best

Institut für Informatik, Universität Hildesheim,
Marienburger Platz 22, D-31141 Hildesheim, Germany

Fax: +49 5121 860475, email: e.best@informatik.uni-hildesheim.de

(August 1996)

Abstract

This paper describes the current status of the verification testbed PEP (Pro-
gramming Environment based on Petri Nets) from a personal perspective of
the author. The paper concentrates on what are perceived as the main high-
lights and the major shortcomings of PEP.

1 Overview of PEP

PEP [8,48] is a programming and verification environment which is based on Petri
nets, but in which nets play a background role. Primarily, the system accepts two
types of input: a program n written in a concurrent programming language and a
property <p expressed in some temporal logic language. The atoms of (f> can, for
instance, refer to variables and/or to control points of n. Through a sequence of
compilation and verification steps, PEP allows 0 to be checked against n, i.e. to
determine whether or not <f> is true for it (in other words, whether or not n is a
model of <f>). Figure 1 describes the core functional dependencies between PEP's
implemented modules.

The user may input a parallel program written in a simple language called B(PN)2

(Basic Petri Net Programming Notation) [9]. A program may be edited and compiled
either into a process algebraic expression of the PBC (Petri Box Calculus [3], an
extension of CCS [50]) or into a high-level Petri net of the M-net variety [6], and,
from either, further into a 1-safe low-level net; both routes yield equivalent low-
level nets. In addition, the user may input and edit a temporal logic formula which

"This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under grants Be
1267/2-1, Be 1267/2-2, Be 1267/6-1, Fl 207/1-1 and Sta 450/1-1. Cooperation with the Technische
Universität München has been supported by project A3 (Spezifikation, Analyse, Modellierung) of
the DFG-Sonderforschungsbereich SFB-342 (Methoden und Werkzeuge für die Nutzung paralleler
Rechnerarchitekturen).

SO-,

refers to a program. This formula is compiled into a formula referring to the net
associated with the program, if there exists one. It is also possible to edit a net
(or a formula referring to it), but then, of course, the connection with any program
(formula) it may have come from is destroyed.

Once the system knows of a 1-safe low-level net (which may have been created
either directly or through a program by compilation), the computation of its finite
prefix [43] may be initiated. This prefix represents the partial order semantics of
the net in concise form. When the finite prefix is constructed, the model-checker is
ready to be run. It accepts a (net) formula <p and the finite prefix, executes Esparza's
model checking algorithm [21] and yields a 'yes' or a 'no', depending on whether
or not the formula is true of the net (and hence also whether or not the corresponding
program formula - if any - is true of the program - if any).

PEP also has various sideline functionalities in addition to the mainstream functio-
nality just described. For example, B(PN)2 programs can be created automatically
by input filters, for instance from PFA (Parallel Finite Automata) [29]. There are
output filters as well, for example one for transforming a B(PN)2 program into
executable C code [46]. Moreover, PEP includes various algorithms to check spe-
cific properties of a net, some of them without needing to compute its prefix. Also,
an alternative model checker (which does not need the finite prefix) has been im-
plemented for a special class of nets [4, 65]. These additional functionalities are
represented by broken lines in figure 1.

Section 2 describes history and the rationale of PEP, section 3 deals with the pro-
gramming language and its Petri net semantics, and section 4 describes some of the
verification techniques implemented in PEP.

2 History and rationale of PEP

The PEP system unites two lines of development: Petri net semantics of concurrent
programs and verification algorithms on nets and their partial order semantics.

2.1 Petri net semantics of concurrent programs

For the verification of parallel algorithms expressed in a programming notation,
verification techniques such as the Owicki/Gries method [52] are available. For the
verification of parallel algorithms expressed by means of Petri nets, other verifica-
tion techniques such as through S-invariants and traps can be applied [1, 56, 58].
Good programming notations come with an indigenous technique for structuring
programs, while Petri nets come with indigenous partial order semantics and ana-
lysis methods. Giving a net semantics to a concurrent language may raise the
hope that both advantages can be combined, and that verification techniques can be
transferred between programming languages and Petri nets.

3b<*

parallel finite
automata (PFA)

Ccode
program written
in B(PN)2

process algebraic
expression (PBC)

temporal logic formula
referring to program

high-level net
(M-net)

temporal logic formula
referring to net

restricted model checker

Figure 1: Functionality diagram of the PEP system

It may be hoped of such a combination that its compositionality and its usefulness
are in proportion. For instance, if a program is made up of variables, sequential
compositions and inner blocks, then it is reasonable to expect its associated Petri
net to be made up similarly of smaller nets corresponding to the variables and the
inner blocks, and combined via a sequential composition defined on nets. This calls
for a special kind of algebra on nets, and the box algebra [3] has been developed
with that aim in mind.

2.2 Verification algorithms on nets and their partial order semantics

On Petri nets there is a tradition of relating graph-theoretical properties - as well
as linear-algebraic properties based on the net's incidence matrix - to behavioural
properties. For instance, if a net is covered by an S-invariant [56], then it follows
that its state graph (under any initial marking) is finite. Most conditions of this kind
are either sufficient or necessary, but not both. It is reasonable to expect that fast
graph-theoretical algorithms - or, for that matter, fast linear-algebraic algorithms
such as linear programming - can be exploited to check some of these conditions,
and then to exclude or to assert certain behavioural properties. Such an approach
may be called static, because assertions are deduced about the state graph without
ever constructing any part of it. Of course, there are limits to this approach, but
nevertheless, these limits are far from being fully explored.

More recently, the static approach has been extended to cover not specific properties

S& 7

but a whole class of properties, i.e. a temporal logic. Starting with an observation
by Javier Esparza, we showed that a small branching-time temporal logic that can
be characterised as

'prepositional logic over places, plus the Diamond operator'

can be model-checked by linear algebra - without constructing the state graph
- for safe T-systems [4], which are a class of persistent nets, i.e. nets that are
essentially without conflicts and choices [39]. It was already clear at the time of
writing of [4] it would be difficult to generalise this result to a larger class of nets.
Nevertheless, Javier Esparza found a way of model-checking the entire class of safe
Petri nets against the same logic which retains a key characteristic property of [4],
namely avoiding the construction of the state graph [21]. He showed that instead
of constructing the state graph, McMillan's idea [43] of computing a finite prefix
of the occurrence net [20, 51] of a net can be exploited.

2.3 Historical remark and acknowledgments

When the PEP project was conceived by Hans Fleischhack and myself in 1993, we
were hoping to create not just a testbed for checking the performance of existing
Petri-net-based analysis algorithms and for searching for new algorithms, but also
a user-friendly environment in which both programs and nets can harmoniously be
input, edited, related to each other, simulated, and verified. At that time, all existing
Petri net tools were either oriented towards graphical input and had no or very little
analysis support, or were oriented exclusively towards analysis without graphical
support (the most advanced system of this kind being Peter Starke's INA [62]).
None of the systems had the kind of close connection with a concurrent notation
that we had envisaged. Thus, we (which initially meant a group consisting of myself
and Bernd Grahlmann - who has since then been the chief project researcher and
organiser - in Hildesheim and another group led by Hans Fleischhack in Oldenburg)
took the risk of starting an implementation effort from scratch, using only know-
how from the MOBY project at Oldenburg [23] and input from several students'
projects at both sites. The DFG (Deutsche Forschungsgemeinschaft) supports this
project with two persons per year over a period of (so far) 1993-1996. In the second
stage of the project, 1995-1996, the Humboldt-Universität zu Berlin (by a group
led by Peter Starke) has joined the project.

PEP was lucky in getting quite a number of good students interested in the project
and contribute to its realisation - names that come to mind are Burkhard Bieber [13],
Matthias Damm [16], Burkhard Graves [30], Tobias Himstedt [34], Lars Jenner [37],
Michael Kater, Stephan Melzer [46], Stefan Römer [59], Andree Seidel [61] and
Thomas Thielke [65], many of whom are still working on and around the project.
PEP was also fortunate to have the strong and continued support by Esparza's

y&

research group at the Technische Universität München. By these means, as well as
by the fortunate circumstance that the EU (European Union), DAAD (Deutscher
Akademischer Austauschdienst) and its French counterpart provided funding for
related theoretical work (projects DEMON, CALIBAN and POEM), it was possible
to develop PEP to the point it has now reached.

It is the work of the persons mentioned in this subsection (and others), more than
my own work, that is described in this paper.

3 PEP's inputs and their semantics

PEP primarily accepts two types of input: a program written in the language
B(PN)2 [9] and a property referring to a program or to its associated net. B(PN)2

and its Petri net semantics are discussed in sections 3.1 and 3.2. Ways of inputting
properties are described in section 3.3.

3.1 PEP's programming language

Ideally, the notation implemented in PEP was meant to serve a similar purpose for
parallel programs as Dijkstra's guarded command notation [19] served for sequential
nondeterministic programs, namely to represent algorithms in a 'pure' form while
having a simple formal semantics. However, at least two additional questions are
raised:

• Should different hardware topologies be supported? In B(PN)2, the answer
is a restricted 'yes', in the sense that both shared memory and message-based
topologies are supported. Message buffers may have arbitrary integer size,
ranging from 0 for handshake communication to oo for unbounded buffers.
This may be contrasted with occam [45] which is limited to handshake com-
munication between processes (other communication methods are possible
but have to be implemented explicitly).

• Should special features such as priorities and interrupts be supported? After
convincing ourselves that at least a restricted (i.e. not optimally concurrent)
formal semantics of priorities can be given in terms of ordinary Petri nets
[10, 32], we have decided, for the time being, not to include priorities in
B(PN)2. This may again be contrasted with occam which contains two
constructs for expressing priorities between activities.

In addition, it was decided that B(PN)2 should support the following features:

• Explicit atomic actions. B(PN)2 allows angular brackets (...) to delineate
atomic actions. In the translation, every such construct is translated into one,
or a set of alternative, single transitions of a Petri net.

•

•

Pre- andpostvalue programming in predicative style. For instance, an atomic
action (x:=y) would be written as (x'='yAy'='y), where 'v and v' denote the
prevalue and the postvalue, respectively, of v. The idea is that an action
touches only such variables mentioned explicitly in it, and any value change
making the predicate true is acceptable. Note the difference between the
above action and (x'='y). For the latter, any value change of y would be
acceptable in addition to setting the postvalue of x equal to the prevalue of v.

Unification of shared memory and channel communication. To describe chan-
nel communication in predicative style, we introduced c? and c! as primitives
denoting the value last read on channel c and the value last output to channel
c, respectively. They are analogous to the pre- and postvalues of variables.

Unification of choices and loops. B(PN)2 contains a single do... od clause
both for choices and for loops. The symbol D separates alternatives, which
can be ended either by the keyword exit (indicating exit from the loop) or by
the keyword repeat (indicating a repetition of the loop).

For instance, figure 2 shows a three-component parallel program which exhibits
both shared memory and buffered communication. Note that, due to the channel
having capacity 2, both values could be deposited in it without any value being read.
If its declaration is changed to var c : chan 1 of {3,5}, then at most one value
could be written before reading, and if it is changed to var c : chan 0 of {3,5}, then
writing and reading are simultaneous. In either case, any of the states (y, z)=(3, 3),
(y, z)=(3,5), (y, z)=(5, 3) or (y, z)=(5,5) could be a result of the program.

begin var x : {3,5}; var c : chan 2 of {3,5};
(*'=3); (C\='XAX'='X)

|| (*'=5); (C\='XAX'='X)
|| begin var y, z : {3,5}; (y'=cl); (z'=c?> end

end

Figure 2: A B(PN)2 program with three components and an inner block

B(PN)2 has served a useful purpose of representing algorithms (or nets) linearly.
However, it has also turned out to have at least two shortcomings. First, for any
large-scale applications, it would be indispensable to include recursion, procedures,
and other features. Second, the core language is perhaps slightly too liberal.

As to the first problem, work is in progress to extend B(PN)2 by procedures
while still retaining its property of having a compositional net semantics [24,42].
In a further line of development, object-oriented features are being investigated
with respect to their compositional net semantics [41]. These investigations are
encouraging, in the sense that all extensions seem to be possible without significant

3io

extension of the existing Petri net model on which the semantics of B(PN)2 is
based (section 3.2).

Secondly, there seem to be some problems - or at least, debatable issues - with the
prevalue/postvalue approach to atomic actions and their Petri net semantics. One of
these issues is the (Petri net) semantics of actions such as a$ = (true), a\ = (x'='x)
and Ü2 = (x'=x'). At present, ao is translated into a single 'silent' transition, a\ is
translated into a choice of transitions which access the variable x but do not change
its value, and a% is translated into a choice of transitions accessing x and allowing
any value change. Operationally, this makes sense: for example, the first action
does not interfere with a parallel fourth action accessing x, while the second and
third actions do. However, axiomatically, it does not make much sense since the
predicate true is normally considered equivalent with predicates such as x'=x'.

Another issue is the syntax of choices and loops. The idea to combine them in
a single do... od originally arose from translating them into a process algebra
which contains only recursion but no iteration. For instance, the program fragment
do a\\ exit Da^\ repeat od can be translated into the recursive process algebraic
expression X = (a\ D (02; X)) [11]. It turns out that with a well-behaved (in terms
of its net semantics) process algebraic iteration construct such as [E\ * E2* £3],
where E\ is the initialisation, £2 is the body of the repetition and £3 is finalisation,
the semantics of the general do... od is awkward because E\ must be assumed to
be a silent action in general. Other iteration constructs such as [£2 * £3] (£2 being
the body and £3 being finalisation) or more simply [£2] (denoting £| in terms
of regular expressions) are more convenient for giving the semantics of the loop
construct, but are less well-behaved in terms of their Petri net semantics.

To avoid these problems, at the present time I favour imposing on B(PN)2 the same
restriction that is already built in the guarded command notation and that leads to
well-formed [1] nets: that every alternative of a loop construct must begin with a
plain action which is not itself another loop. In the present version of B(PN)2, this
is implemented by the enter clause which separates the initialisation of a do... od
construct from its body (see figure 3 below for an example).

Another issue is the semantics of multiple communications such as

(c!=5A<f !=3) || (c?=jc'Ac?=y>,

where c and d are channels of capacity 0 and x and y are variables. In the pre-
sent implementation, this parallel command leads to a deadlock, which is due to
the underlying semantic ideas stipulating that a single channel should be sufficient
(and necessary) for creating a handshake synchronisation out of two separate ato-
mic actions. This approach has been found too restrictive in some contexts and
generalisations have been proposed [18, 25].

id

3.2 The compositional Petri net model underlying B(PN)2

In our approach, two important ideas in giving Petri net semantics to a language such
as B(PN)2 are, firstly, that it should be compositional and, secondly, that it should
be transparent. Transparency means that the translation should introduce neither too
many auxiliary places and/or transitions nor additional behaviour. Compositionality
means that every program object - a variable declaration, an atomic action or a block,
... - should be describable by a stand-alone Petri net, and that the set of all these Petri
net ingredients can be combined at the Petri net level by operations which match
the syntactic operators used in the program to combine its ingredients (variable
declarations, atomic actions, inner blocks,...).

Robin Milner has already shown in both his books [49, 50] how such a translation
can be achieved compositionally at the process algebra level. His approach is,
however, lacking in transparency (in the above sense) because of the way of CCS
is constructed. For example, sequential composition has to be implemented in a
roundabout way, which is not too complicated conceptually, but adds complexity
to the resulting expression. As another example, atomic actions such as (x:=y),
where x and y are declared in different blocks, lead to overhead in the translation
and hence also in CCS-based analysis of the properties of programs containing such
actions.

The box algebra [3] has been devised as a modification and (partial) extension of
CCS in order to avoid such overheads. This algebra has been defined together with
a direct translation into a class of labelled 1-safe elementary Petri nets called boxes.
PEP originally used this translation in order to create a net from a program: first
an expression of the algebra is created from the program, and then a box is created
from the expression. In practice, however, this approach is of limited usefulness
because the resulting nets are usually very large; they are necessarily so large, of
course, because all information contained in the program (in particular, variable
types) needs to be stored in Petri net form. Already the expressions, which are
used as intermediate translation results between programs and nets, tend to become
very large in general. (However, they provide a possible interface to toois such as
the Edinburgh Concurrency Work Bench [64].) The advantage of this approach is
that the full set of Petri net analysis methods - described below in section 4 - is
applicable to the result of the translation.

In practice, it turns out that one would wish to translate a program only partially into
a net, or into an abbreviated net from which the full net can be derived in a further
step if desired. Net theory provides a class of nets for just such a purpose: so-called
high-level nets ([26, 38] and others). However, in the PEP project high-level nets
could not be used directly, because we required all translations to be compositional.
Hence prior to using high-level nets, we needed to impose an algebra to make the
box algebra operations available for them.

This line of thought gave rise to the model which is now used in PEP: the M-

8

2, »2^

net (modular net) model [6, 7]. M-nets are high-level nets with an additional
algebra containing box algebra operations such as choice composition, parallel
composition and synchronisation. It is then possible to create an M-net associated
with a B(PN)2 program by first constructing little M-nets corresponding to the
ingredients (declarations, atomic actions etc.) of the program and then composing
these M-nets in the same way as the ingredients of the program are combined. As a
rule, the M-net of a program is not significantly larger than the program itself - but,
of course, it has a set of inscriptions so as not to lose information. The disadvantage
of this approach is that, even though finding structural analysis methods for high-
level nets is presently a vigorous area of research (I mention e.g. [60]), there exist
very few general methods for analysing a high-level net short of unfolding it, i.e.
creating its associated elementary net (which, of course, beats the idea of saving
space).

The existing version of PEP does not exploit the compositionality which is built in
the semantics. More pessimistically, while it is clear that compositionality is vital
for semantics such as Hoare-style axiomatic semantics [35] or weakest precondition
semantics [19], it is not yet clear whether compositionality of Petri net semantics
can be exploited in any significant way in proofs of programs. The current version of
PEP concentrates much more on what I have called transparency, i.e. on minimising
the nets that are created, and on applying analysis algorithms to these objects.

3.3 PEP's (current) ways of specifying properties

PEP supports various ways of specifying properties: directly (see section 4.1); by a
simple branching-time logic (on which the analysis algorithms described in sections
4.2 and 4.3 are based); and in a linear-time notation (for the semidecision analysis
described in section 4.5). The reader will notice that PEP does not (yet) support
a truly strong logic, i.e. that some desirable properties may not be expressible,
and hence not checkable (in the present version). This is due to a conscious effort
of getting as static (and hence, hopefully, as efficient) as possible algorithms for
a small (yet not uninteresting) logic first, before extending them at a later stage.
It is understood that in a further development of the system, if PEP's indigenous
algorithms turn out to be non-generalisable or not easily generalisable, it will be
attempted to complement the existing techniques by more traditional state-graph-
based algorithms.

The language of the branching-time logic, call it BL, refers to a given 1-safe net N
with place set S={si,..., sn}. An atomic formula is either the constant true or a
place name Sj. If <f>, </>i and <fo are formulae, then so are -><f>, <t>\V<h. and 0<f>. The
semantics of this logic refers to pairs (N, M) where N is a net as above and M is a
marking of N. By definition, (N, M) always satisfies true; (N, M) satisfies s,- iff
M(si)>0; (N, M) satisfies -></> iff it does not satisfy cp; (N, M) satisfies fa v 02 iff
it satisfies fa or fa; and (N, M) satisfies 0<f> iff there is a successor marking M' of

313

M such that (N, M') satisfies <p. There are derived operators, such as A = ->v-i,
□ = -><>->, etc.

As usual, this simple definition is computationally uninteresting, because using it,
the evaluation of a formula <p for any given (N, M) involves the (computation and
the) traversal of the state graph, possibly many times, depending on the depth of
nesting of the diamond operators O. In section 4, more efficient algorithms are
described. Examples of properties that can be expressed are:

00(Wse'f. s) (liveness of transition t)
OCXs/ (token trappable on s{)
0(s\/\->S2/\. ■ .A-tfn) (reachability of a marking,

in this case (1,0,..., 0) e N|S|).

Eventuality properties cannot, as a rule, be expressed in BL.

A slight change in the syntax of the logic makes formulae refer to programs rather
than to nets: given a program, we may allow atomic formulae of the form true or
x=v (where x is a variable and v is a value) or at p (where p is a control point).
When the program is translated into a corresponding 1-safe net, a program formula
may automatically be translated into a corresponding formula referring to that net,
because every term of the form x=v or at p refers to a place of the net. Moreover,
the formula is true of the program in its initial state if and only if the corresponding
formula is true of the net and its corresponding initial marking. For example, in
figure 2, the formula O (v=3 A z=3) is true, because there exists an execution in
which both v and z are set to the value 3.

4 PEP's verification components

PEP attempts to do its verification business as statically as possible, e.g. by running
algorithms on the structure of a net (or a program) to deduce properties of the
net's (or the program's) behaviour. Five classes of verification techniques can be
distinguished in PEP: dedicated analysis, restricted static model-checking, model-
checking based on occurrence nets, interfacing to other systems such as INA, and
analysis based on linear algebra. Sections 4.1 to 4.5 describe these techniques in
turn.

4.1 Dedicated analysis algorithms

In its initial phase, PEP was used as a testbed for students to implement static analysis
algorithms. For instance, [17] describes a wealth of theorems giving (often exact)
structural conditions for a variety of behavioural properties of certain subclasses of
Petri nets. In PEP, nets may first be checked as to whether or not they belong to

10

3^

such a subclass, and if so, one of the structural algorithms can be invoked to test
a corresponding property. The test of belonging to a subclass is split into several
subtests: 'is the net free-choice?', 'is it a T-system?', 'is it «-bounded' (this test
can be neglected if the net comes from a program, since it is then 1-bounded by
construction), 'is it live if bounded?' and 'is it deadlock-free?' (using McMillan's
algorithm).

The boundedness test involves constructing the state graph, and the corresponding
algorithm of PEP is therefore (and because it has not been optimised) rather slow.
Nets coming from programs are nearly always non-free-choice, and hence the im-
plemented algorithms for free-choice nets are not useful for such nets. In fact, for
these reasons, this line of development of PEP has been all but discontinued, but
nevertheless, it may still serve a useful purpose as a testbed for new algorithms.
The test for boundedness is faster using the optimised algorithms of INA described
below in section 4.4.

4.2 Static model-checking for persistent nets

The essential idea of this model-checker [4] can be described as follows. Let a
net N with an initial marking M° and a formula 0 of the temporal logic BL be
given, such that (N, M°) is a safe T-system; the problem is to decide whether or not
(N, M°) satisfies (p. To check this, consider an innermost subformula of the form
0(/i A ... A/m) of (j>, where each /,• is a literal, i.e. either $,- or ->Si for some place
si. Exploiting the persistence of (N, M°), it can be shown that this subformula can
be equivalently replaced by a formula of the form W/eT: f,-<Jfc,-, where T is the set
of transitions of N and the £, arise as solutions of a linear programming problem
which encodes the following question:

'What is the maximal number of times that f, can be executed such
that the resulting sequence (there is only one up to equivalent permu-
tations by persistence) does not lose the property of being extendable
to a sequence leading to a marking such that all of s\-sn are mar-
ked/unmarked, depending on whether /,■ is Sj/-<SiT

Replacing 0(/i A... A/m) by Vfj67: ?,<£,• is satisfiability-invariant, i.e. the resul-
ting formula is valid for (N, M°) if and only if the original formula was. It is now a
routine matter to apply this procedure repeatedly until no temporal operator O (nor
Ü) are left in the formula, and temporal-operator-free formulae can be evaluated
directly on the initial state without computing the state graph. (In order to apply
this procedure, the logic has to be extended - temporarily - by atomic formulae of
the form t<k, with k being an element of the set {—l}UNU{+oo}; but this is not a
problem [4].)

In PEP, this algorithm has been implemented for safe T-systems [65], Its perfor-
mance can be startling for people who are used to check other algorithms on very

11

3/<f

concurrent systems, such as the CCS expression ai||... \\an which generates 2"
reachable states (or, to mention a less trivial example, Milner's well-known sche-
duler [50], which is also a T-system). PEP checks formulae on such systems rather
quickly.

The model-checking algorithm described in this section has an interesting charac-
teristic property: it shifts complexity away from one of its input parameters (the
model) towards the other input parameter (the formula). Since our temporal logic
includes the propositional calculus, any model checker is bound to be exponential
in the size of the net (note: this is the net, not its state graph!) or in the length of
the formula. Interleaving-based model-checking algorithms are exponential in the
size of the net (because they generate the state graph) and linear in the length of
the formula. The algorithm described in this section is exponential in the length
of the formula (because it has to compute disjunctive normal forms repeatedly in
order to obtain subformulae of the form <>(/[A. .. A/OT)), but is provably polynomial
in the size of the net. We consider this a desirable property of a model-checking
algorithm: the net (and a fortiori its state graph) will be very large, in most cases,
while the interesting formulae will - in most cases - be of limited size1 and, in
particular, of limited nesting depth.

4.3 Model-checking on finite prefices of occurrence nets

Javier Esparza's model-checking algorithm [21] can be viewed as a generalisation of
the algorithm described in section 4.2. The generalisation consists in allowing any
safe Petri net, rather than just persistent ones, as input while retaining essentially the
same logic, BL. The algorithm itself had to be extended and modified considerably,
but Esparza did this in such a way that one of its main properties - viz., shifting
algorithmic complexity from the size of the net to the size of the formula - remains
as much as possible intact.

Some form of representing behaviour turns out to be necessary, and Esparza has
shown that it is in essence sufficient to keep knowledge about the maximal nonse-
quential processes (i.e. the maximal partial order behaviours [5, 28]) of the input
net. (If the net is persistent, then there is only one such process.) A succinct way
of representing all processes of the net is by its occurrence net [20, 51], which can
loosely be described as a branching structure with processes as 'paths'; the occur-
rence net of a net is to the set of its processes what the execution tree of a net is to
the set of its interleavings.

Unfortunately, the occurrence net of a net is, in general, infinite. Fortunately, there
is a way (detected by McMillan [43]) of defining a 'sufficiently large' prefix of
the occurrence net - where 'sufficiently large' means that it contains implicitly
every reachable marking. That prefix is always finite. Esparza has shown that

'Although we will consider an exception in section 5.

12

■\i^

not only all reachable markings, but also the maximal processes, are recoverable
from that finite prefix. Using this finite prefix, model-checking can be done in a
similar way as described above, i.e. by replacing innermost subformulae of the
form 0(/i A ... A/m) by suitable conjunctions not involving O. However, the actual
algorithm is significantly more complicated, and it involves the reconstruction of
the relevant (maximal) processes from the finite prefix using a continuous 'shift'
operator.

Theoretical results about this model-checking algorithm are, (1): that in the special
case of safe persistent systems it has polynomial complexity in the size of the prefix,
and (2): that for a certain class of safe persistent systems, called safe conflict-free
systems, it has polynomial complexity in the size of the net. A corollary of (1)
and (2) is that in the special case of safe T-systems, the runtime of this algorithm
is provably of the same complexity as that of the previously described algorithm
(by orders of magnitude). Moreover, given that there are examples where the finite
prefix is an order of magnitude smaller than the state graph, this algorithm performs
better than ones based on the latter.

begin var A : {1,2} ink 1; var ini,in2 : {false, true} ink false;
do (true) enter {ini'=true);

do (true) enter (j'n2=false); exit
D (j'rt2=true);

do (true) enter (A=2); (j/ii'=false);
(A=l); (im'=tnie);
exit

G (A=l>; exit
od; repeat

od;
% cs\ : Critical Section 1
(A'=2); <j«i'=false); repeat

od
|| do ... analogous (exchanging 1 and2) ... od
end

Figure 3: Dekker's algorithm in B(PN)2 notation

As before, the algorithm performs particularly well for systems with lots of con-
currency and little choice, such as a\ \\... \\a„. By contrast, in a typical system
without concurrency and with lots of choice, the finite prefix may even be exponen-
tial whereas the state graph is only polynomial in size. Consider, for example, the
process algebraic term {a\+b\); (a2+b2);...; (a„+b„). The Petri net of this term
generates a state graph of size 0{n) and a finite prefix of size 0(2"), because after
each fth choice, the rest of the occurrence net gets duplicated. The paper [22], ho-
wever, describes an improvement of McMillan's unfolding algorithm which allows
the calculation of optimised finite prefixes, such that a further result holds, (3): the

13

.1 n

optimised finite prefix is always of size less or equal to the state graph (in terms of
orders of magnitude), and, moreover, the previous results (1) and (2) still hold for
the optimised prefix. This optimisation is implemented in the current version of
PEP.

After implementing the algorithm in PEP, it was tested on various examples. For
instance, at one point of the development, we tested PEP's model-checking algo-
rithm on Dekker's protocol for mutual exclusion (see e.g. [1]). This protocol is
reproduced in figure 3 in B(PN)1 notation.2 At that point in time, we checked the
following formulae:

-> 0(at csi A at cs2)
O (at «i =» (O at cs2))
O (at«2 =» (Oat«,))
O at «1
O at CS2
a O (atcsj)
ü O (at cs2)
□ O (at «1 v at cs2),

obtaining, respectively,

true
true
true
true
true
false
false
false.

This result is fine for the first five formulae but not for the last three. Burkhard
Graves analysed the problem and traced it back to an error in Javier Esparza's
paper. It is not possible to describe the full details in this paper, but the essential
point is that the finite prefix as defined by McMillan is 'too small' for the 'shift'
operator to function in the way it is supposed to function. It is possible to fix this
problem by creating a finite prefix which is sufficiently large. This solution is easy
to describe and recovers the theoretical results (1) and (2) of Esparza's paper, but it
slows down the entire model-checker very significantly. It is only now (July 1996)
that Burkhard Graves hopes to have found a way of enlarging the finite prefix in a
minimal way while ensuring that the 'shift' operator works as it should and, at the
same time, retaining the efficiency of the algorithm. This work will be reported in
[31].

4.4 INA interface

There have been recent efforts to combine PEP with Peter Starke's analysis tool INA
(Integrated Net Analyser) [62]. Thanks mainly to work by Lutz Pogrell [55], the
present version of PEP contains a user-transparent interface between the two tools
that were originally developed independently of each other. INA can now be called
from the same graphical interface, and nets that are input by PEP can be analysed by
INA. In this paper, I refrain from describing the interface, but I mention the analysis
capabilities of INA just in order to indicate the added capabilities of the combined
tool, PEP/INA. The following is a sample, insignificantly shortened, output of INA,

2We use (h=2) as an abbreviation of (h=2=h'), and we show this algorithm here explicitly just
to give an example for the notation.

14

3!*

referring to a random net (figure 22 of [2]), reproduced here by courtesy of Peter
Starke.

Start of INA output:
Current net options are: token type - black (for place/transition nets); time
option - intervals; elements - transitions; firing rule - safe; priorities - not
to be used; strategy — single transitions.

Information on elementary structural properties: the net has no bad reachable
states; the net is not statically conflict-free; the net is pure; the net has
transitions without pre-places; the net is not coverable by state-machines;
the net is not strongly connected; the net is not covered by semipositive P-
invariants; the net has transitions without post-place; the net is ordinary,
homogeneous, not conservative, not subconservative, not a state machine,
not free choice, not extended free choice, not extended simple, not marked,
not marked with exactly one token, not a marked graph, connected; the net
has a non-blocking multiplicity, no nonempty clean trap, no places without
pre-transition, no places without post-transition; the maximal in/out-degree
is 4.

Computation of the reachability graph. Current analysis options are: no
depth restriction; do not print all states; print the dead states; do not print the
bad states; no reachability / coverability test. Number of states generated:
642.

The net has no dead transitions at the initial marking; the net is bounded; the
net is safe; the net has no dead reachable states.

Current graph analysis options are: no computation of dynamic conflicts; no
computation of distances; no computation of circuits; computation of terminal
SC-components; resetability; liveness test.

Graph analysis: The initial state is reproducible.

Computation of the terminal SC-components. The net is reversible (resetable),
covered by semipositive T-invariants, live, live if dead transitions are ignored,
live and safe, has no time deadlocks.

End of INA output.

INA's computation of the reachability graph (state graph) is very fast. Moreover,
INA has capabilities for exploiting the stubborn-set method by Valmari [67] and
for detecting (and exploiting) state graph symmetries [63]. INA has a small in-built
expert system which allows the conclusions of some known theorems to be added
to the set of analysis results, provided the premises leading to those conclusions
have already been verified for the particular net under consideration.

4.5 Linear-algebraic semidecision analysis

PEP offers a semidecision verification method which is based on a linear upper
approximation of the state space. The theory of this method is described in [47] and

15

s/s

briefly in [48]. The method extracts from the description of the net and its initial
marking, in linear time, a set of linear constraints L that every reachable marking
must satisfy. Thus, the solutions, of L are a superset of the reachable markings.
In order to make use of L for verification, a new set Lp of linear constraints is
added to it which specify the markings that do not satisfy a desirable property P.
Then, linear programming is used to solve the system Ll) Lp; if the system has no
solution, every reachable marking satisfies P.

The set of constraints L is actually the union of two subsets L\ and L2. L\ comes
from the state equation and has been known for many years. The upper approxima-
tion of the state space that can be derived from L\ is often rough and insufficient to
prove many properties. The main contribution of [47] is the definition of L2, a new
set of constraints derived from the traps of the net.

Presently there exist semidecision algorithms for deadlock-freenes (yielding either
'deadlock-free' or 'possibly not deadlock-free, with marking ... being potential
deadlock marking' as results) and for the reachability of a marking or a partially
specified marking.

Semidecision algorithms, in my opinion, provide good compromises between the
inherent algorithmic complexity of full automated verification and the desire to
have computer-assistance during validation. Even if such an algorithm yields an
indecisive answer, this may still help the user. Another role of automatic verifica-
tion is in prototyping: typically, a program is verified on a small data domain to
gain confidence (or not) for the case of arbitrarily large domains, when automatic
verification fails and, if any, manual verification prevails.

5 Performance results

PEP is both a general model-checker and a specific Petri net tool. Hence, its
performance can be compared with other model-checkers and with other specific
net tools. I report on two such comparisons: one done by Stefan Römer^using an
article by James C. Corbett [14] and one carried out by Monika Heiner and Peter
Deussen as described in [33].

Corbett compares existing systems (SPIN [36], SPIN plus Partial Orders [53], SMV
[44] and INCA [15]) on a series of examples, using deadlock detection as a com-
mon property to be checked on all examples and all systems. Stefan Römer of the
Technische Universität München translated the examples into PEP input and mea-
sured the times for checking the same property (deadlock detection) using PEP's
algorithm. It so happens that deadlock-freeness is one of the properties which can
be expressed in BL, but lead to very large formulae.3 Because of the importance

3For a net with about 50 transitions, Bernd Grahlmann has estimated that deadlock-freeness would
lead to disjunctive normal forms - which arise necessarily as intermediate stages of the verification
- that are about 4 GB long.

16

3u>

of deadlock-freeness, therefore, PEP implements a dedicated algorithm (namely,
McMillan's) to check this, which uses and exploits the finite (optimised) prefix.
Hence this comparison is not really about the general model checking algorithm of
PEP but about the dedicated deadlock-detection algorithm.

Table 1 - reproduced here by courtesy of Stefan Römer - gives the preliminary
results of the experiment. The 'P(size)' (Problem) column refers to the set of
examples given in Corbett's paper. The sets S, T and B, E refer to the places and
transitions of the original net and of the finite prefix, respectively.4 The 'Cuts'
column refers to the set of cutoff events (used by the algorithm calculating the finite
prefix). The 'F-prefix' and 'Check' columns give the times (in seconds) measured
for calculating the finite prefix and for checking the deadlock-freeness property,
respectively. The 'C (Compare) column gives a very crude indication of how
PEP's performance relates to the performance of the other systems described in
Corbett's paper; f stands for 'better', | stands for 'worse' and - stands for 'not
applicable' (mainly because the other systems did not give results). The results
contained in table 1 have to be read with a pinch of salt, because it was not possible
to reproduce exactly the same hardware environment as used by Corbett for his
comparison. To compare memory usage, it is necessary to look at the columns
'States' and '\E\'. It must be mentioned also that we did not check the examples
themselves; Stefan Römer just received files from Corbett which he used as input
for PEP.5 We are presently in the process of repeating the comparisons on a more
uniform hardware platform.

The experiment gives a mixed result for PEP: for some examples it performs better
than the other model-checkers, for other examples it performs worse. In the light
of the theory explained above, PEP is at its best when there is a lot of concurrency
but very little choice, and performs comparatively badly in the other extreme, when
there is a lot of choice and little concurrency. (In the majority of 'real' cases, there
would be a good mix of both concurrency and choice, which PEP, as well as any
other automatic model-checker, will have difficulty in coming to grips with.)

The authors of [33] have tested three specifically Petri-net-oriented analysis sy-
stems, INA [62], PROD [66] and PEP, on a single common example and a series
of properties. The example concerns an industrial production cell with six com-
ponents: two conveyor belts, a rotatable robot equipped with two extendable arms,
an elevating rotatable table, a press and a travelling crane. This case study has
recently been used in various (German) projects as a reference example on which
various methods, not just Petri nets, can be tested and compared [40].

I will not repeat the experimental results reported in [33], except for mentioning
that the speed of checking a property is not unfavourable towards PEP, whenever

4Note that the 'transitions' (i.e. |7*|) column does not refer to the transitions of the state graph.
Indeed, the number of these transitions has not been counted as they are irrelevant for the algorithms.

'This has led to strange effects such as a net with 1047 places and 5633 transitions but only 125
reachable markings.

17

S2J

P(size) States \s\ in 1*1 \E\ Cuts F-prefix Check C
CYCL(9) 7423 71 53 172 77 10 0.05 2.18 -
CYCL(12) 74264 95 71 232 104 13 0.13 31.18 -
DAC(12) 14334 84 70 260 146 0 0.12 0.0 t
DAC(15) 114686 105 88 371 206 0 0.23 0.0 t
DP(10) 48897 60 40 580 280 90 0.30 0.92 t
DP(12) - 72 48 840 408 132 0.62 2.97 t
DPD(6) 19861 54 54 3786 1892 499 8.92 103.56 4
DPD(7) 109965 63 63 8630 4314 1129 43.13 1266.08 4
DPFM(8) 49 87 321 426 209 162 0.08 0.68
DPFM(ll) 125 1047 5633 2433 1211 1012 1.27 98.30 —
DPH(6) 16897 57 97 14474 7231 3377 85.78 10344.9 —
DPH(7) 79927 66 121 - - - - _ —
ELEV(3) 7121 327 783 7398 3895 1629 23.75 496.10 4
ELEV(4) 43440 736 1939 32354 16935 7337 417.32 >13463 X
FURN(3) 30861 53 99 34505 20770 13837 330.04 >49927 I
FURN(4) 214757 66 139 - - - - _ 4-
GASN(4) 14847 258 465 15928 7965 2876 115.93 19370.2 4-
GASN(5) 115184 428 841 - - - _ — 4-
GASQ(3) 1705 284 475 2593 1297 490 3.37 102.0
GASQ(4) 15431 1428 2705 19864 9933 4060 177.56 35342.2 —
HART(75) 153 377 227 529 302 1 1.13 0.22 t
HART(IOO) 203 502 302 704 402 1 2.20 0.32 t
KEY(4) 44820 164 174 135556 67775 32081 8811.0 — 4-
KEY(5) - 199 215 - - - - — 4-
MMGT(3) 7703 122 172 11575 5841 2529 51.56 3166.6 4
MMGT(4) 66309 158 232 92940 46902 20957 7509.80 — 4-
OVER(4) 4175 71 74 1561 797 240 1.65 7.52 4
OVER(5) 33460 90 95 7388 3761 1251 30.70 618.39 I
RING(7) 1700 91 77 813 403 79 0.63 1.20 t
RING(9) 211528 117 99 1599 795 137 2.20 4.67 t
RW(9) 523 48 181 9272 4627 4106 5.32 9567.2 4-
RW(12) 4110 63 313 98378 49177 45069 316.84 - 4-
SENT(75) 332 254 105 533 266 40 0.93 1.07 t
SENT(IOO) 382 329 130 608 291 40 1.42 1.67 t
ABP(l) 113 43 95 337 167 56 0.12 0.60 t
BDS(l) 36097 53 59 12310 6330 3701 44.83 6971.3 4-
DART(l) - 331 257 - - - - —
FTP(l) 104911 176 529 178077 89042 35247 15645.5 — I
FTP(2) - 229 934 - - - _ —
Q(D 123597 163 194 16090 8402 1173 220.77 1125.12 _
SPD(l) 8690 33 39 5317 3138 1311 15.30 510.7 4-

Table 1: Experimental results by Stefan Römer (cf. [14])

18

32-2-

Debate'90: An Electronic Discussion on True
Concurrency

Abstract

The following electronic correspondence was posted to the concurrency
mailing list, moderated at the time by Albert Meyer, between October 21
and November 19, 1990. It has been reformatted for publication and
edited for spelling but otherwise is largely untouched. — Vaughan Pratt

To: prattles.Stanford.EDU
From: dclOanna.Staniord.EDU
Subject: Partially Ordered Computations
Date: Sun, 21 Oct 90 13:39:23 -0700

Vaughan,
In some recent discussions with people funded by ONR's program on dis-

tributed and realtime computing, I have found an attitude that
"sets of linear traces are entirely sufficient for analyzing distributed/concurrent

computations, AND Partial Orders are unnecessary".
I also notice that sets of linear traces are the basis for Hoare's PR0C0S

project.
Questions to you:
1. What is your favorite simple example of a system where a partial order

representation of its execution is superior to a set of linear traces of its execution,
2. Would you disagree with the ONR people, and how?
- David

To: dcl4anna.stanford.edu
From: prattOcs.Stanford.EDU
Subject: Re: Partially Ordered Computations
Date: 21 Oct 90 15:14:37 PDT (Sun)
In-Reply-To: Your message of Sun, 21 Oct 90 13:39:23 -0700.

<9010212039.AA07939«Aphid.Stanford.EDU>

The belief that linear orders capture partial is predicated on several assump-
tions, most of which have to hold at the same time in order for it to be reliable.

32-3

While these assumptions tend to hold in very simple or abstract systems, they
all gradually fade away as the systems you look at get larger and more concrete.

Here are seven such assumptions.
1. Fixed granularity.
2. No variability of atomic events.
3. Absence of autocurrence.
4. Single-poset processes.
5. Race-free.
6. Single-observer model.
7. Discrete time.
Here is the meaning of each of these concepts.
1. Variable granularity can arise in various quite different ways. One way is

just to look at a supposedly atomic event more closely and resolve substructure.
But another is to take a binary program whose specification treats it as atomic
(on the ground that the vendor doesn't want you to assume anything about the
package) and find when you run it that it has a series of side effects on your
system, that may interleave with the side effects of other such packages.

You might find it interesting to look at "Teams Can See Pomsets" by Plotkin
and myself to see what influence variable granularity can have. It turns out this
is not the theoretically worst problem in our paper, #2 below is worse, but it
does have some influence.

You can anonymous-ftp a preliminary version of this paper from
boole.stanford.edu on pub/pp2.*. [Also in this proceedings, -vp]

2. Variability of atomic events means that although an event stays atomic
it might not do identical things each time it happens. Plotkin and I use this
phenomenon to show that a sufficiently large team of observers (see item 6) can
distinguish any two finite pomsets.

3. Autocurrence means two concurrent and identical events. Without the
concurrency requirement we find two such repetitions in the word "identity":
there are two t's and two i's. An example with concurrence is when you ask
the bank teller for two dollars. If dollars always came sequentially there'd be no
quarrel about the legitimacy of the string 11 as a specification for two dollars.
But what about 111 meaning "Give me two dollars please." This phenomenon
arises as soon as you distinguish pomsets from posets.

With autocurrence you can get a\a, which traces can't distinguish from aa.
This can be solved via so-called "action refinement", used in solving 1 above.
But action refinement gets you only so far, in particular it can't be used in
conjunction with traces to distinguish TR\TR (two parallel sequences each of
T — Ä, e.g. two parallel message streams) from the same thing with the extra
requirement that one of the T's precede both of the Ä's. But pomsets can make
that distinction, using the N pomset.

4. A single-poset process is one defined by a single poset. This is a key
assumption in the theorem coding posets as their linearizations. However this

assumption is rarely achievable in practice. It is false that a set of poscts can
be encoded with the union of their respective sets of linearizations.

5. When a and b are in a race, the trace model reveals only ab+ba. But
race-free nondeterminism. which chooses one of ab + ba, has the same trace
representation. This matters for example in the glitch problem. You may want
to implement ab + ba glitch-freely, but you cannot say it with traces. This is a
pretty simple argument, so you might use it first (I suppose I should have).

The same argument applies to distinguishing the mutually exclusive execu-
tion of two atomic operations from their concurrent execution. The trace model
has built into it the assumption that mutually exclusive execution and concur-
rent execution are the same thing for atomic events. This interacts with item
1.

6. Most models of concurrency assume that one observer collects all the
observations. In practice observers are as distributed as the systems they ob-
serve, and can pool their distributed observations in ways entirely unrelated to
the computational model used to prove correctness of a particular distributed
system. This is a subtle point that Plotkin and I go to pains to explain in detail
in our paper. [Shortened for the proceedings version, -vp]

7. Time must be discrete for traces to model interleaving. Just what exactly
is the set of all interleavings of two copies of the unit interval [0,1]? Consider
a dual beam oscilloscope. Are you going to describe its two beams in terms of
their interleavings?

These issues are specific technical problems that arise with traces. But
besides any question of what might actually go wrong, there is also the question
of the most natural model. I feel that models should attempt to be reasonably
faithful to what they model, if the mathematics supports this. Even if your
unnatural model happens to be working today, my feeling is that unnatural
models are more likely to break down in the future than natural ones..

When you have a computer in Europe talking via satellite to one in the US,
the time between instructions is thousands of times less than that between com-
puters. A natural way to model the instruction streams of the two computers
then is with two sequences. The trace model does not accept this, on the ground
that a computation consists of one sequence. It says that you must interleave
the two sequences in all possible ways before you can reason soundly about the
system.

The problem is that the only serious mathematics that many practicing
computer scientists get exposed to is computation theory, where they are taught
that all computation is sequential. Getting through their computation theory
course was one of the bigger struggles of their college education, but mastery of
it vindicated the enormous outlay of tuition and board for all those years when
they could have been learning on the job.

So then they run into concurrency in the real world and they simply cannot
cope with the concept of two parallel streams, because they have never seen
any such concept in their textbooks, nor any theorems about such concepts.

->z .*>

Therefore they do the only thing possible: they interleave in order to reduce to
a known model with known theorems.

I can say on the basis of having worked with both models for many years
that posets are far more flexible and easier to work with than traces. Having
to think about systems in terms of traces is like trying to do arithmetic with
Roman numerals. Yes, Roman numerals indeed code integers, and furthermore
the algorithms for adding and multiplying Roman numerals do work, but that's
not a great reason to stick with Roman numerals.

Vaughan Pratt

To: concurr«ncyCtheory.lcs.mit.edu
From: raaceQadm.csc.ncsu.edu (Ranee Cleaveland)
Date: Mon, 22 Oct 90 11:29:48 -0400

Another reason for using posets crops up when one wishes to reason about
the real-time properties of a system. Assuming that one is working in a setting
where each atomic action takes 1 time unit, a\b ("a and b truly in parallel")
should also take 1 time unit, while ab + ba will take 2. So it seems a bit surpris-
ing to me that a group of people interested in real time would find linearizations
an adequate model of concurrency.

Ranee Cleaveland

To: concurrenc7Ctheor7.lcs.mit.edu
From: Vaughan Pratt <pratt«cs.Stanlord.EDU>
Subject: modeling concurrenc7 with partial orders
Date: Mon, 22 Oct 90 12:57:26 PDT

Ranee's comment on real time reminds me. I neglected to connect up with
recent work explaining why true-concurrency hackers seem to prefer the poset
side of an otherwise surely symmetric duality between posets as schedules and
distributive lattices as automata, a duality generalized by Winskel et recently
many al to event structures, dual to families of configurations.

The reason is that automata are 1-dimensional and hence can only exhibit
the structure of interleaving concurrency. This is intuitively obvious to true true
concurrency hackers, and I can only infer that the proponents of this duality in
its published form are false true concurrency hackers.

In order to faithfully and continuously represent, on the automaton side of
the duality, the structure of true concurrency that its proponents like myself
so vividly imagine to exist on the poset side, automata should be made higher
dimensional. This has been done implicitly by van Glabbeek and Vaandrager in
PARLE-87 via the notion of ST-bisimulation. I will be momentarily sending off
my POPL paper explaining how to make more explicit the geometry implicit in
this (if I just can restrain myself long enough from writing these damn messages).

^,1-

Apropos of real time, the phenomenon by which two pencils can be put into
a shirt pocket only high enough to accommodate one. impossible in the inter-
leaving world as Ranee points out, translates under this duality to the need for
the Lx norm (i.e. max(i.y)) in measuring duration of truly concurrent pro-
cesses in higher-dimensional automata. In contrast the L\. norm or Manhattan
metric z + y measures duration of interleaved processes, that operate the way
a New York taxi has to in alternating between going East and North. (So you
should have inferred by now that this is the model where one lays out parallel
instruction streams orthogonally, as Papadimitriou does in treating deadlock).

If one tries to approach true concurrency by refining the granularity of this
interleaving, one arrives in the limit at still the L\ norm. That is, you may
have a perfectly straight line running diagonally across the product square (the
product of two transitions, a surface, arising just as in the product construction
for automata) but it still represents interleaved concurrency by being its limit.
In this extreme case true concurrency can be distinguished from interleaving
not by its shape but only its speed.

Vaughan Pratt

To: concurrency«theory.les.mit.«du
Fron: infhilleikeCrelay.eu.net (Eike Best)
Subject: Re: The discussion on (sometime) superiority of p.orders
Date: Thu, 25 Oct 90 16:08:58 +0100

Here are my 2 Pfennige worth of contribution. I claim:
Sometimes partial orders let you define a concept more smoothly than arbi-

trary interleavings. A case in point is "finite delay". Finite delay is supposed
to mean: if an action is continually enabled, then it occurs sometime.

In a sequential system, finite delay can be expressed by the maximality of
an execution sequence (you would like to go as far as possible).

Consider a * \\b* versus (aQ6)* (where Q is nondet. choice). The sequence
aaaaa... (infinitely often a but no 6) contradicts the finite delay property in
a * \\b*, since the b is not prohibited from occurring and could always occur.
However, aaaaa... does NOT contradict the finite delay property in (a[]&)*, since
the occurrence of a is always alternative to 6, and so 6 is continually prohibited
from occurring.

The distinction can be captured by noticing that aaaaa..., while being max-
imal as a string, is not maximal as a partial order of a * \\b*, but IS maximal as
a partial order of (aQ6)*.

Eike Best
PS I don't claim you NEED partial orders here, but I do claim that it's nice

to use them, since the concept of maximality directly generalizes the sequential
one.

n ■-, -7

To: prattCcs.stanford.edu
Cc: concurrancyCtheory.lcs.mit.edu, dclCanna.stanford.edu
From: meyerCtheory.lcs.mit.edu (Albert R. Meyer)
Subject: modeling concurrency with partial orders
In-Reply-To: prattCcs.stanford.edu Mon, 22 Oct 90 09:57:06 EDT
Date: Fri, 26 Oct 90 14:01:09 EDT

I support most of your remarks, but I don't think we should accept David
Luckham's formulation of the issue as

(1) Linear versus Partial Order
but rather emphasize
(2) Interleaving Nondeterminacy versus Concurrency
Formulation (1) highlights the particular detail of whether concurrent pro-

cesses are abstractly represented by some structure involving linear, rather than
partial, orders. This can hardly be crucial, since, as you well know, every partial
order is uniquely determined by the set of its linearizations.

Formulation (2) forces us to clarify the limitations of the in many respects
successful interleaving-concurrency models of CCS, CSP, MEIJE, ACP, etc.
Though the following remarks are well known to you and the Continental re-
search community in concurrency, Luckham's note confirms my impression that
the issue is still not well understood elsewhere, so maybe it's worth rehashing
the basis of the story another time:

The crux of the criticism of interleaving is captured in the equation
(3) a\b = ab + ba.
Equation (3) may be read as asserting that the process a\b, which can CON-

CURRENTLY perform actions a and 6, may be identified with the process
ab + ba, which NON DETERMINISTIC ALLY chooses to do either a-then-6 or
else 6-then-a.

Equation (3) is an axiom in the interleaving-based theories, but maintaining
it RULES OUT extensions of the theory to include

(i) observations of simultaneity: a and b can be observed simultaneously in
the computation of process a\b, but not in ab+.ba.

(ii) observations of the same computation by two or more sequential ob-
servers at distributed locations: under reasonable assumptions about signal
propagation over distance, two such observers watching a computation of a\b
might see DIFFERENT linear traces (namely one could see la6' during the
same interval that the other saw '6a'), but under the same assumptions two
observers would always see the SAME trace (namely, exactly one of ab or ba)
in any given computation of ab+ba. I was delighted by this remark when I first
learned it from you and Plotkin.

(iii) refinement of action atomicity-what you felicitously called "variable
granularity": refining a in a\b to be the two step sequential process cd yields
a process with the trace cbd, but refining a in ab + 6a yields no such trace; I

first learned this point from a note in 1987 by Castellano et al in the EATCS
Bulletin.

Insofar as these extensions are desirable, one has to retreat from the simple
interleaving model. The ideas that actions have duration, and more generally
the ideas of critical regions and atomicity, are usually regarded as an important
aspect of pragmatic concurrent processing. Because (iii) seem» like a plausible
theoretical way to model both action duration and relaxing atomicity require-
ments, extending the theory to cover it does seem desirable.

On the other hand, having agreed that interleaving theories need modifica-
tion, I don't think we can say that your pomset models or the Mazurkiewicz-
trace models have been fully justified as appropriate concurrency theories. For
example, multiple observers don't justify distinguishing the pomset processes
PI and P2 where PI is the singleton pomset (.a.b) and PI — PI union one of
its augmentations, say the singleton

.a
I
.b

Similarly, the various proposed event/behavior structure models are all based
on generalized notions of bisimulation. I have raised my doubts in earlier mes-
sages to this forum about how the detailed distinctions between processes made
by bisimulation can be justified computationally.

Despite these reservations, let me say that I do believe that the modeling of
a concurrent run of a computation with a pomset is pretty natural.

Regards, A. Moderator, concurrency@theory.lcs.mit.edu

To: concurrencyCTHEORY.LCS.lfIT.EDU, dclCanna.stanzord.edu
From: prattCcs.stanford.edu
Subject: Re: modeling concurrency with partial orders
In-Reply-To: Your message of Fri, 26 Oct 90 14:01:09 EDT.

<9010261801.AA13008Cstork>
Date: 26 Oct 90 14:52:07 PDT (Fri)

I appreciate your words of support, Albert. Some minor comments on four
points.

>This can hardly be crucial, since, as you «ell knov, every
>partial order is uniquely determined by the set of its
linearizations.

This is Szpilrajn's theorem [1], a "fragile" theorem in the following sense.
A robust theorem about a structure should remain true when one adds further
structure. Szpilrajn's theorem holds neither for a set of posets nor for labeled

posets. Both these structures must be added to the basic poset structure to
make it useful as a model of concurrency. I therefore view David's comparison
of linear to partial orders in the context of their application to concurrency as
quite appropriate.

>(3) alb = ab+ba.
>Equation (3) is an axiom in the interleaving-based theories, but
maintaining it RULES OUT extensions of the theory to include

The equational logic of regular expressions has a very interesting property. If
you regard its variables as denoting only themselves as symbols of an alphabet,
the set of equations valid under that very restricted interpretation turns out
to be the same as when you let the variables range over arbitrary languages.
That is, the theory does not change when you treat its variables as self-denoting
constants.

This interesting property fails as soon as you add almost any other operation,
whether or not that operation preserves regularity. Such operations include
complement -a. intersection aflö, interleaving a\b, quotient a\b, and residual
a — 6 = -(ab).

Equational theories are closed under substitution. In view of this I would
like to discourage extending to other languages the practice in the language of
regular expressions of denoting atoms by variables. I would be more comfortable
seeing (3) written as a conditional implication:

atomic(a) A ntomic(b) —■ a\b = ab+ ba

or more generally:

aiomjc(a) A aromic(6) — mutex(a,b)

mutex(a, b) — a\b = ab + ba

since mutex(a,b) (I hope the meaning is clear) is at its most useful when it
holds of particular nonatomic processes.

For example, multiple observers don't justify distinguishing the
pomset processes PI and P2 where PI is the singleton pomset
(.a .b) and P2 = PI union one of its augmentations, say the
singleton

Provably so of course: our multiple observer model can't distinguish a pro-
cess from its augment closure. Gordon and I now have the converse of this,
at least for finite pomsets, that is that distinct augment closed processes of fi-
nite pomsets are distinguishable by sufficiently large teams (infinite when the
dimension of the pomsets is unbounded).

I ha»* raised my doubts in earlier messages to this forum about
how the detailed distinctions between processes made by
bisimulation can be justified computationally.

Having written about it you're better qualified than I to express such reserva-
tions. However my intuitive feeling is that Hennessy-Milner logic, which justifies
all distinctions made by bisimulation, is not an excessively strong language in
the context of debugging, where the programmer marches backwards and for-
wards along a misbehaved nondeterministic computation trying to find what
caused the misbehavior and experimenting by making little changes and see-
ing how they propagate side-effects forward and predicates backwards (through
predicate transformers).

[1] E. Szpilrajn, Sur l'extension de 1'ordre partiel, Fund. Math. 16, 386-389,
1930.

To: sri-unix!theory.lcs.mit.edu!meyerCunix.sri.com,
sri-unix! theory. lcs. mit. edu! concurrencyCunix. sri. com

From: tciproframuOunix.sri.com (Ramu Iyer)
In-Reply-To: Albert R. Meyer Fri, 26 Oct 90 14:01:09 EDT
Subject: modeling concurrency with partial orders
Date: Fri, 26 Oct 90 16:09:54 PDT

On Fri, 26 Oct 90 14:01:09 EDT, Albert R. Meyer said:

Albert> I support most of your remarks, but I don't think we
Albert> should accept David Luckham's formulation of the issue as
Albert> (1) Linear versus Partial Order
Albert> but rather emphasize
Albert> (2) Interleaving londeterminacy versus Concurrency

Here are three references that discuss these pioneering issues:
L. Castellano, G. De Michelis, L. Pomello. Concurrency vs Interleaving: An

Instructive Example. Bulletin of the EATCS, 31, 1987, pp. 12-15.
D.B. Benson, Concurrency and Interleaving are Equally Fundamental. Bul-

letin of the EATCS, 33, 1987.
W. Reisig, Concurrency is More Fundamental than Interleaving, Bulletin of

the EATCS, ??, 1988.
Cheers,
-Ramu Iyer

To: concurrencyQtheory.lcs.mit.edu
From: Vaughan Pratt <prattCcs.stanford.edu>
Subject: modeling concurrency with partial orders
Date: Sat, 27 Oct 90 00:55:01 PDT

~> z> 7/

>»From: tcipro!ramu«unix.sri.com (Ramu Iyer)
>»Subject: modeling concurrency with partial orders
>»Here are three references that discuss these pioneering issues:
>» <3 references from 1987-88: Castellano et al, Benson, Reisig>

I'd like to suggest some earlier dates than 1987 or 1988 as more suitable
candidates for "pioneering."

The earliest proposal I'm aware of to model concurrency with partial orders is
Irene Greifs MIT Ph.D. thesis from 1975. Jan Grabowski and N'ielsen-Plotkin-
Winskel both have 1981 journal papers on partial orders for concurrency, with
both parties reporting on work done at the end of the 1970's. C.A. Petri al-
legedly had advocated partial orders long ago, though not in writing as far as
I'm aware.

Unlike these pioneers I did not appreciate the need for partial orders in
concurrency myself until 1980. This was not for want of experience with con-
current computing. I had implemented various interrupt-driven packages in
1967-69, and I wrote and thought a fair bit about concurrency during the 1970's
(1972: thesis chapter on sorting networks; 1974: showed with Larry Stockmeyer
that P=NP on parallel computers; 1974-5: two circuit complexity results; 1976:
solved the mutual exclusion problem for unreliable processes with Ron Rivest;
1979: axiomatized process logic).

But I did not appreciate the advantages of partial orders for concurrency
until early 1980 when I was trying to understand Brock and Ackerman's paper.
My pomset campaign began with my POPL-82 paper on that subject, "On the
Composition of Processes" which proposed formalizing Brock and Ackerman's
solution to their anomaly in terms of partially ordered multisets. I coined the
abbreviation "pomset" a few months later.

I wrote a short paper on applying pomsets to the Two-Way-Channel-With-
Disconnect problem for the 1983 concurrency workshop in Cambridge UK,
LNCS 207, as well as a statement I circulated at IFIP-83 a week after that
conference as part of a concurrency panel session chaired by Robin Milner in
which I argued the case for pomsets. I also spoke about pomset semantics at
Logics of Programs 1983 (no written paper unfortunately), and again in LOP
85.

This last paper was subsequently published in International Journal of Par-
allel Programming, 15:1, 33-71, 1986, as "Modeling Concurrency with Partial
Orders" (same title as the subject line of the last 10 messages). (IT you don't
have that journal in your library you can retrieve this paper by anonymous FTP
from boole.stanford.edu as /pub/ijjp.{tex,dvi}.)

I reproduce here the arguments I gave in that 1986 paper in support of
partial orders. Note particularly item (v), which begins

(v) "A serious difficulty with the interleaving model is that exactly what is
interleaved depends on which events of a process one takes to be atomic."

and goes on to explain how refinement (as it is now called) distinguishes

10

>> :~> <>12-

a\b from ab + 6a and hence makes the meaning of interleaving dependent on
granularity. While I know of no prior reference in the literature to the use of
refinement to distinguish a\b from ab + ba I'm sure the idea had occurred to
many people before, even if writing it down had not.

See also the postscript-1990 at the end, on the outcome of my long-standing
problem of axiomatizing the equational theory of concatenation and interleaving
for formal languages. It is noteworthy that the solver independently invented
pomsets for the express purpose of solving this purely interleaving question.

Extract from "Modeling Concurrency with Partial Orders. 1986
1.2 Why Partial Orders?
Strings arise naturally in modeling ongoing sequential computation, whether

the symbols in the string correspond to states, commands, or messages. Thus
the string neu may model the sequential execution of three commands u,v, u,
or a transition from state u to state t; followed by a transition back to u, or a
sequence of three messages u.v.u transmitted sequentially on some channel.

Strings are linearly ordered sets, or rather linearly ordered multisets (since
repetitions are possible), of symbols from some alphabet. In unison with the
workers mentioned at the end of this section we advocate partial orders in place
of linear orders in modeling concurrent computation. At present however partial
orders have nowhere near the popularity of linear orders for modeling concurrent
computation. This could be for any of the following reasons.

(i) Languages and their associated operations, particularly union, concate-
nation, Kleene star, and shuffle, provide a natural model for the corresponding
programming language control structures: choice, sequence, iteration, and con-
currency. The behavior of languages under these operations has been studied
intensively for more than two decades. Thus languages provide a familiar and
well-understood model of computation. In this model the linear order on the
elements of a string is interpreted as the linear temporal order of events, and the
operations on languages may be interpreted as control structures: concatenation
as begin-end sequencing, star as iteration, shuffle as concurrency, etc.

(ii) Every poset is representable as the set of its linearizations. This theorem
would appear to confer on linear orders the same representational ability as
partial orders.

(iii) Linear orders appear to be faithful to physical reality. In the practical
engineering world, as opposed say to the physicist's relativistic world, instanta-
neous events have a well-defined temporal order, justifying the assumption of
linearly ordered time. Furthermore, in any rigid system temporal order is well-
defined even in a relativistic model. Any departures from rigidity are assumed
to be sufficiently minor in practice as to justify adhering to a linear-order model.

Reason (i) would lose most of its force if partial orders were to be equipped
with operations analogous to those of formal languages that could be interpreted
as programming language control structures. This is just what ihis paper does;
some of the operations on pomsets that we introduce correspond to more or
less familiar programming language constructs, others are merely candidates

11

3 =5 ~3

for possible future programming or hardware languages.
Reason (ii) is based on the following well-known theorem, which shows that

a partial order can be represented as the set of its linearizations.
Theorem 1. The intersection of the linearizations of a partial order is that

partial order.

(For the purposes of defining intersection, a partial order is considered to be
its graph, that is, the set of all pairs (a, 6) such that a < 6.)

This theorem is easily proved under the (non-obvious) assumption that every
partial order has at least one linearization, by showing that any partial order in
which a and b are incomparable can be extended to one in which a < b and to
another in which b < a.

This theorem about posets runs into two difficulties when trying to apply
it to processes modeled as sets of pomsets. The theorem generalizes neither
to pomsets nor to sets of posets, and a fortiori not to sets of pomsets. We will
return to this issue in section 2.6, after the necessary definitions have been given.

Reason (iii), that the engineer's world is linear in time, fails in at least three
situations: complex systems, nonatomic events, and relativistic systems. Be-
yond a certain scale of system complexity it becomes infeasible to keep thinking
in terms of a global clock and a linear sequence of events. A cover story in the
magazine Electronics^ describes a growing trend in the design of logic circuits
to eliminate global clocks and rely more on self-timed circuits. On a larger
scale asynchrony has been with us for a long time. When a large number of
computers communicate with each other over channels whose delay is several
orders of magnitude greater than the clock time of each computer, the concept
of global time provides neither a faithful account of the concurrent computation
of all those computers nor even a particularly useful one. There is no reason to
suppose that the various instructions streams of these computers are interleaved
to form one stream. Indeed it is much more convenient, both conceptually and
computationally (e.g. when computing with such streams as part of reasoning
about them) just to lay down these streams side by side and call this juxtapo-
sition of streams a model of their concurrent execution. Data flowing between
the computers may augment the order implicit in the juxtaposition, but this
relatively sparse augmentation of the order is motivated by the actual mechan-
ics of communication, unlike the more stringent and totally artificial ordering
requirement of completely interleaving the streams.

A concrete situation that may make this more compelling consists of a ship
rolling somewhere in the Pacific, in satellite communication with another ship
in the Indian Ocean. The events on the buses of the computers on each ship
take place with a precision measured in nanoseconds, but the delay in getting a
packet from one computer to another may be on the order of a second or more.
The idea that the totality of events in the two computers has a well-defined linear
ordering can have no practical status beyond that of a convenient mathematical
fiction. Our position is that it is neither convenient nor mathematically useful.
It is just as convenient, and more useful, to work with partial orders.

12

1

Nonatomic events provide another situation where linear orders break down.
An event may be more complex than a moment in time. It may be an interval,
in the sense of a convex subset of a linear order. It may be a set of intervals, such
as a game punctuated by timeouts or a TV movie punctuated by commercials.
More generally still it may be some arbitrary set of moments. However even
for such complex events it still makes sense to say that one event may precede
or follow another, meaning that every moment of the first event precedes every
moment of the second. Yet such events are clearly not linearly ordered.

Relativity provides yet another situation where time is not linearly ordered.
In any nonrigid system, that is, one whose components are moving with respect
to each other, simultaneity ceases to be well-defined and two moving observers
can report contradictory orders of occurrence of a pair of events. Any system
nontrivially subject to relativistic effects is a candidate for a partially ordered
model of computation. Of course many systems will not be so subject, but we
see it as an advantage of the partial-order approach that it applies equally well
to relativistic and Newtonian (global-time) situations.

In addition to our responses to (i)-(iii), we have the following additional
reasons for preferring partial orders.

(iv) Some concepts are only definable for partial orders, in particular or-
thocurrence, which amounts to the direct product of pomsets, which we define
in full later. The solution given above to the problem of specifying the two-
way-channel-with-disconnect contains two essential uses of orthocurrence, along
with two less essential uses. The concept is an extremely natural and useful one
for partial orders, but it is not at all obvious how one would go about defining-
it in a linear-order model, or even whether it is definable.

(v) A serious difficulty with the interleaving model is that exactly what is
interleaved depends on which events of a process one takes to be atomic. If
processes P and Q consist of the single atomic events a and b respectively then
their interleaving is {ab,ba}. However if the same events a and b are perceived
by someone else not to be atomic, by virtue of having subevents, then P and Q
have a richer interleaving than ab\jba. It is reasonable to consider instantaneous
events as absolutely atomic, but we would like a theory of processes to be just
as usable for events having duration or structure, where a single event can be
atomic from one point of view and compound from another. In the partial-order
model what it means for two events to be concurrent does not depend on the
granularity of atomicity.

(vi) In some situations pomsets appear to be easier to reason about than
strings. For example it is relatively straightforward to axiomatize the equational
theory of pomsets under the operations of concurrence and concatenation (The-
orem 5.2<4)). The corresponding theory for strings has resisted all attempts at
its axiomatization. Gischer and the author have both worked extensively on the
problem of whether this simply described theory has a finite axiomatization.
The problem has been posed on two occasions at the (San Francisco) Bay Area
Theory Symposium, generating interest but no answers in more than eighteen

13

months.
[Postscript 1990: this problem was finally solved in 1988 by Steven Tschantz,

an algebraist at Vanderbilt, who settled it in the affirmative by a truly beautiful
argument only a week after I posed the problem along with a list of others at
the end of an invited lecture at a universal algebra conference in 1988. In doing
so he reinvented pomsets quite independently as an essential tool in the proof;
I had stated the problem purely for languages with no mention of pomsets at
any point in my talk, which was about dynamic logic, -vp]

[Postscript 1996: Tschantz's result was subsequently published in Mathe-
matical Structures in Computer Science 4:4 (December 1994), pp. 505-511.
-vp]

Vaughan Pratt

To: concurrancyCtheory.lcs.mit.edu
From: lamportOsrc.dec.com (Leslie Lamport)
Subject: ior the concurrency mailing list

[Moderator's retitle: Flame re distributed processes and
granulity]

Date: Tue, 6 lov 90 17:13:59 -0800

I admire philosophers. They have so much to teach us. From Aristotle I
learned that heavier bodies fall faster than lighter ones; Kant showed me that
nonEuclidean geometry is impossible; and Spinoza proved that there can be
at most seven planets. And now, the philosophers on the concurrency mailing
list have told me all the things I can't do because I use a logic based on an
interleaving model:

/ can't reason about distributed systems.
In 1982 I published a proof of the distributed algorithm then used in the

Arpanet to maintain its routing tables ["An Assertional Correctness Proof of a
Distributed Algorithm", Science of Computer Programming 2, 3 (Dec. 1982),
175-206]. Since then I have written more formal proofs of more complicated
distributed algorithms.

/ can't deal with changes in the grain of atomicity.
In 1983 I published a paper ["Specifying Concurrent Program Modules",

TOPLAS 5, 2 (April 1983) 190-222] containing:
A specification of a queue, in which adding or removing an element is a single

atomic operation.
An implementation in which an element is moved into and out of the queue

one bit at a time.
A proof that the implementation satisfies the specification.
Nowadays, my standard approach to verification is to start with a high-level

program having a coarse grain of atomicity, and to refine the grain of atomicity
until I reach the desired program.

14

3 2» 4.--

/ can't reason about (nondtscrtte) real time.
At a workshop in 1988, I gave a one-hour lecture in which I:
Specified a distributed spanning-tree algorithm having the requirement that

the computation reach and maintain a correct configuration within a fixed length
of (real) time.

Gave an implementation using timers. I assumed only that timers ran at
a rate of 1 +/- epsilon seconds per second, and that messages were delivered
within delta seconds of the time they were sent. (Epsilon is any real number in
the range [0, 1) and delta is any positive real number.)

Sketched a proof that the implementation satisfied the specification.
I have since written a detailed formal correctness proof.
/ can't reason about programs without assuming a fixed granularity.
A recent paper of mine ["win and sin-Predicate Transformers for Concur-

rency", TOPLAS 12, 3 (July 1990), 396-428] gave a rigorous correctness proof
for the bakery algorithm. This algorithm makes no assumption about the grain
of atomicity of its operations. (It was the first algorithm to achieve mutual
exclusion without assuming lower-level mutual exclusion.)

I'm sure the philosophers can explain why I haven't really done these things.
I'll be happy to listen to their explanations, as soon as they can use their
philosophically approved methods to reason formally about something more
complicated than a biscuit machine.

To: concarrenc7Ctheor7.lcs.mit.edu
From: prattttcs.Stanzord.EDU
Subject: Re: Flame re distributed processes and granulit7
Date: 08 lov 90 12:58:19 PST (Thu)

On p.419 of the proceedings of Logics of Programs 81 (LNCS 131) appears
the following extract from the panel discussion that wrapped up that confer-
ence. Context: Amir Pnueli had just expressed the wish that every paper on
programming logic say something about how this programming logic is to be
applied to proving something about programs.

"Nemeti: I'd like to protest a little bit about what you (Pnueli) said about
our papers. The structure of our technological society is just not like that.
There was a guy called Roentgen. You could have gone to him and said, 'What
are you doing playing around with these funny things of yours? Why don't you
try to heal people who have colds?' There are theoreticians who are doing basic
research, and there are less theoretical theoreticians, and there are technologists,
so there is a whole spectrum of research in science. The theoreticians doing the
basic research arc really needed, because the basic ideas, the fundamental ways
we look at things, come from there. Now, if you want to restrict them to report
each time how this will be used, then it will result in impotence."

While I have nothing to add to this, I do have a question arising out of
it. Who believes that "the basic ideas, the fundamental ways *systems people*

15

337

look at things" come from the theoreticians? Do systems people believe this?
And do theoreticians believe it?

Vaughan Pratt

To: concurrencyCtheory.lcs.mit.edu
From: lanportCsrc.dec.com (Leslie Lamport)
Subject: [lamportflsrc.dec.com: for the concurrency mailing list]
Date: 10 IOT 1990 1721-PST (Saturday)

Dear Dr. Roentgen.
I am writing to congratulate you on the success of your continuing experi-

ments with X-rays. I can imagine your dismay at the many charlatans who have
used your X-rays to justify "invisible ray"" theories based on fancy rather than
science. And those silly French physicists with their N-rays! How fortunate that
we live in a society where scientific validity is determined by rigorous experi-
ment. I presume you are aware of the disturbing developments in the Soviet
Union, where Dr. Lysenko attacks the work of Mendel on ideological grounds.
I'm afraid it will be many years before the Soviets permit sound research in
genetics, since they value philosophical correctness above empirical observation.

Sincerely yours,
Leslie Lamport

To: prattflcs.stanford.edu, concurrencyfltheory.lcs.mit.edu
From: Robert J. Hall <RJHCai.mit.edu>
Subject: re: Re: Flame re distributed processes and granulity
In-Reply-To: <9011082123.AA07740Cstork>
Date: Sat, 10 lov 90 12:58 EST

From: prattCcs.Stanford
On p.419 of the proceedings of Logics of Programs 81 (LICS 131)
appears... "lemeti: ..." (regarding need for theoreticians,
etc)

It seems to me this quote does not directly address Lamport's complaint
which was, I believe, that the theoreticians on this list seem to be making false
claims (as enumerated by Lamport). He seemed to be fraternally suggesting that
one way of avoiding such false claims may be to keep a closer contact between
theory and practice, if indeed theory is attempting to have some benefits for
practice. In particular, if one's claim is to the effect that a technologist "can't
do" something using a theory, one must at least be more precise about what it
means to do that thing. Obviously, Lamport believes he has successfully used the
interleaving-based view to reason about multiple granularities, whereas previous

16

5 s.S

discussions on the list seem to claim he can't have done so (similarly for the
other issues raised).

-Bob

To: "Robert J. Hall" <RJHCai.mit.edu>
Cc: concurrencyCtheory.lcs.mit.edu
From: prattCcs.Stanford.EDU
Subject: Re: Flame re distributed processes and granulity
Date: 11 lov 90 20:22:55 PST (Sun)

It seems to me this quote does not directly address Lamport's
complaint which «as, I believe, that the theoreticians on this
list seem to be making false claims (as enumerated by
Lamport).

My quote addressed Leslie's complaint in the most direct way possible under
the circumstances. Leslie did not identify any particular claim made on the list.
Rather he complained generally that certain contributors to the list, whom he
did not specify, had claimed there were certain things he couldn't do, which
he did specify. There have been various claims on this list about limitations of
interleaving, but none that I recall making the claims Leslie was complaining
about, nor any that conflicted with the evidence he adduced in support of his
complaint.

One claim about interleaving in this forum is in my October 26 message to
David Luckham. There I claimed that Szpilrajn's representation theorem for
posets, that every poset is representable as the set of its linearizations, depends
on several assumptions. For each assumption I showed informally in what way
the theorem could fail in the absence of that assumption, in some cases giving
pointers to where more detailed proofs of those failure modes could be found.

I see no logical connection between Leslie's complaint and my claim. And
even if there were some connection, the existence of failure modes of trace-based
logic when certain assumptions are violated in no way implies that every trace-
based proof violating those assumptions must be unsound. I do not begrudge
Leslie his sound proofs, however obtained.

The failure modes of Szpilrajn's theorem are not just mathematical curiosi-
ties but potentially real engineering problems. Perhaps Leslie knows how to take
care of these problems using trace-based logic, but I don't see how his cited ex-
amples demonstrate this at all. How might a logic based on sets of traces deal
with each of the following situations?

1. Distinguish the race implicit in a\b from the race-free situation implied
by ab + ba.

2. Reason about observations made by a team of distributed observers who
agree on what events happened but not in what order.

17

*3 7 Z>"~>

3. Reason about the possible interleavings of two concurrent sine waves.
(Presumably one falls back on some other technique for combining traces than
interleaving them.)

He seemed to be fraternally suggesting that one way of avoiding such false
claims may be to keep a closer contact between theory and practice

I found no hint of such a suggestion in Leslie's message.
V'aughan Pratt

To: concurrencyOtheory.let.mit. «du
From: prattCcs.Stanford.EDU
Subject: Re: for the concurrency mailing list
Date: 12 lov 90 13:20:67 PST (Hon)

Leslie's "fraternal suggestions" could easily create the impression that he is
for interleaving and I am against. This construes my position too narrowly. Let
me set this in the historical perspective of a FOCS-76 paper by Ron Rivest and
myself that Leslie attacked at that time.

Ron and I had given an interleaving proof of correctness of our solution
of the mutual exclusion problem for two unreliable processes. The gist of our
proof was that the many paths through our code fell into 6 classes, permitting
a straightforward case analysis each case of which had a simple argument. We
found this program by making small random perturbations to a tiny but buggy
mutual exclusion protocol. Even after looking at the four instructions of our
resulting program for a long time we had absolutely no intuitive understanding
of why that perturbation was correct and others very like it were not!

Leslie protested to us that such a proof as ours based on classification of
interleavings was inappropriate. He showed us a proof of correctness of our
procedure based on a theory he had evolved of why it worked.

Had we considered our program to be the final word on this subject we could
well have agreed with Leslie that having an "insightful theory" of our code was
worthwhile. After all, the method used to find a prime need not be the best
method to convince someone of its primality.

However even assuming that Leslie's proof gave us the additional insight into
our procedure that he claimed it should, it seemed to us that our procedure
was surely just one of more to come, and that the effort of making up such
a theory after the fact was therefore wasted. Furthermore our strategy for
discovering new such algorithms depended critically on the automatic nature
of interleaving analysis; we had no idea how to write a program which given a
random algorithm would generate a theory of how it might work, whereas we
knew how to enumerate and check all its interleavings mechanically in a short
time.

This was borne out by the subsequent extension of our work by Mike Fischer
and Gary Peterson, published in STOC-77. Whereas our solution involved I

18

3VL

think 7 states for each of two processes they had 3 states each (3+;i, and another
solution with 4 states at one process and 2 states at the other. 4+2). They
found their very economical solutions by trying out various possible programs
and checking all interleavings of each until they found one that worked. They
used two such checkers, written independently by Mike and Gary.

Gary did come up with a Lamport-style after-the-fact theory of why their
3+3 mutex procedure worked. Mike*s comment to me about that proof was
that since they'd already mechanically checked correctness simply by running
their procedure through all possible interleavings, this more conventional proof,
which had to be manually checked, added nothing to Mike's confidence in the
correctness of their procedure, and indeed seemed to him more likely to contain
lacunae.

Now I can see clearly that such post hoc theories of these procedures might
have a certain esthetic attraction, and might even be useful. My point is not
to fault Leslie for coming up with such a theory but only to demonstrate that
I am not a religious zealot on the use of interleaving analysis in concurrency.
Indeed I still know of no simpler proof of our FOCS-76 algorithm than our 6-
case interleaving analysis, and if I were writing it up today I would still prove
it correct in that way. Moreover I have no problem with the use of interleaving
in any situation to which it is applicable. In particular I have no quarrel with
Leslie on the applicability of logics based on interleaving to the problems he
listed in his flame.

I trust that Leslie uses a different logic to prove the correctness of his algo-
rithms from the one he uses to prove that those of us who have in the course of
twenty-five years gradually moved from writing concurrent programs to reason-
ing abstractly about them have by so doing turned themselves into charlatans.
This was the only fraternal suggestion I found in Leslie's two messages. A
century ago the same logic would have demonstrated with equal validity that
Cantor was a charlatan.

Vaughan Pratt

(In the course of my obtaining publication clearances from the contributors
to this debate in July 1996, Leslie Lamport asked that the following response to
the above be included. —Vaughan Pratt)

My objection was not that your proof was "inappropriate", but that it wasn't
believable. It was a hand proof based on analyzing about 26 cases. Your pa-
per did not mention, and at the time I knew nothing about, your exhaustive
computer checking of the algorithm. I would not have objected to your written
"proof" had it been called a sketch of a mechanical verification.

Leslie

To: concurrancyCtheory.lcs.ait.edu
Fron: mischuCallegra.tempo.nj.att.com (Michael Herritt)

19

"yfl

Subject: Begin-the great debate-End
Oate: Mon, 12 lov 90 15:45:48 EST

While I can't pretend to follow all the subtleties of the ongoing discussion,
I do have a fairly specific query for the proponents of partial orders, growing
out of my fairly extensive experience in modeling concurrent algorithms using
interleaving.

Specifically, I generally model operations as consisting of a sequence of two
atomic events, the beginning and ending of the operation. When communica-
tion is involved, these are described as requests and replies. (E.g. Request-
Read(register-x). Reply-Read(register-x,value).) When operations run concur-
rently, their begin and end events occur in an interleaved sequence. Using
this approach, I would resolve the a\b vs ab + ba debate by denoting o and
6 by begin-a,end-a and begin-b,end-b, respectively. Then a\b is the set of se-
quences: (begin-a.end-a,begin-b,end-b), (begin-b,end-b,begin-a,end-a), (begin-
a,begin-b,end-a,end-b), (begin-b,begin-a,end-b,end-a)

and ab + 6a is the (very different set)
(begin-a,end-a,begin-b,end-b), (begin-b.end-b,begin-a,end-a).
Similar causally distinct processes would seem to be distinguished by such

a semantics, as well.
When refining an operation, I never change the symbols denoting the begin

and end of the operation. I simply change the (internal) operations that occur
between the begin and end actions.

The begin/end distinction is particularly useful at interfaces, where the sys-
tem issues a request and the environment responds, or vice-versa.

I am interested in reactions to this method of resolving the (over-emphasized,
in my mind) debate.

On multiple observers of concurrent systems: it seems to me that an accurate
model of such systems should distinguish between the occurrence of an event
and its observation. (I think even the physicists do this much.) A run of such a
system then consists of an interleaved sequence of events and their observations.
The subsequence experienced by a single observer is obviously consistent with
a set of runs.

What's missing?
I'll send references and/or papers if anyone is interested in seeing these ideas

applied to algorithmic problems. But I should say that I work within the formal
framework (I/O automata) devised by Nancy Lynch and Mark Tuttle.

Now, it is true that in reasoning about concurrent systems I often find myself
reasoning about partial orders embedded in the language (set of sequences)
denoted by the system, and I am interested in tools that would help me do
that. But I am also reluctant to give up induction as a proof technique. Why
can't I have both?

Michael Merritt

20

To: concurrencyCtheory.lcs.mit.edu
From: prattCcs.steoiford.edu
Subject: DO the great debate COHTIIUE
In-Reply-To: Your message of Tue, 13 lov 90 08:49:13 EST.

<9011131349.AA01750Cstork>
Date: 13 lov 90 12:30:27 PST (Tue)

From: mischuCallegra.tempo.nj.att.com (Michael Merritt)
Specifically, I generally model operations as consisting
of a sequence of tso atomic events, the beginning and
ending of the operation

What's missing?

In fact for deterministic parallel constructs this is a provably sound abstrac-
tion (or contrapositively, languages are a fully abstract model with respect to
the semantics defined by just sets of such begin-end pairs). Theorem 2.3 of
Gischer's thesis (Stanford report STAN-CS-84-1033, 1984) is that two pomsets
are language equivalent iff they are digram equivalent. (I don't know why Jay-
omitted this theorem from the journal version, TCS 61:199-224.) That is, take
the operations of one's language to be all pomset-definable operations (namely
concatenation, concurrence, N(a,b,c,d), etc.), and let the variables range over
arbitrary sets of strings. Then the resulting equational theory, consisting of
all equations between terms of this language that are universally true in this
interpretation, is the same theory as obtained when the strings are restricted to
strings of length two.

Perhaps you don't care about all pomset definable operations, but presum-
ably you at least care about two of them, namely concatenation and interleav-
ing. This case can be formally defined and treated without mentioning pomsets
or true concurrency at all. In this case the theorem is just about how sets of
strings combine under concatenation and interleaving. Jay's theorem 2.3 applies
equally to this restricted case.

This seems to provide positive support for the two-event interpretation of
operations. But in fact there is something missing, namely nondeterminism.
(Pomset definable operations such as concurrence, although indeed nondeter-
ministic from a false-concurrency perspective, are properly considered deter-
ministic in the true concurrency world.)

In 1988 Van Glabbeek and Vaandrager asked whether digrams sufficed for the
richer language obtained by expanding this deterministic language of pomset-
definable operations with the nondeterministic choice operator p+q, interpreted
simply as language union. Their initial answer was that a gap now appeared
between digrams and trigrams, which they showed with an automaton they
called the "owl" because of its shape. They have subsequently extended this
result to show that (n-f-l)-grams make finer distinctions than n-grams for all n.

21

■^3

(This incidentally is a very nontrivial result, which took them a long time to
find. I tried very hard even just to separate 3 from 4 without success, I guess
my brain is out to lunch these days.)

So why don't practitioners notice these phenomena in their work? Presum-
ably because they don't leap out at the casual observer. For just this reason
19th century engineers did not notice discrepancies in their day-to-day work
due to relativity and quantum mechanics. It is true that any engineer whose
measurements depended on the velocity of light not changing between summer
and winter by an amount as large as twice the earth's orbital velocity would
be grateful for relativity, but how many engineers in those days felt this was a
serious problem?

Nowadays surveyors who use $10.000 interferometers routinely in the field
to measure hundreds of feet to an accuracy of hundredths of an inch would find
these seasonal variations in the velocity of light very distracting if they existed.
The earth's orbital velocity is 29.8 km/s and light travels at 299.800 km/s, so
according to the ether theory the length of a 500-foot boundary would appear
to be gently oscillating at 32 nanohertz with a peak-to-peak amplitude of 1.2
inches.

By the same token Wien's law did havs an odd bump, but how many prac-
ticing chemical and other engineers of the day had their work thrown off by
it?

Nowadays quantum mechanics explains a host of phenomena that would
have started accumulating without explanation at an alarming rate during this
century had quantum mechanics not been in place to account for them.

But to early 20th century engineers relativity and quantum mechanics were
just theoretical curiosities that one would only notice if one looked extremely
closely in the neighborhood of where their delicate effects were to be felt. Per-
haps more strikingly, it has been said that a common view among late 19th
century physicists was that the structural aspects of physics had been fully
elucidated, with the bulk of the remaining work being a matter of measuring
everything more accurately.

I suggest that we have much the same situation here. Take the largest
concurrent algorithm that anyone has ever proved correct. Is the future of
concurrency just a matter of extending the proof techniques that worked there
to yet larger code fragments? I don't think so, for the various reasons I gave
in my message to David Luckham. As we pass to more widely distributed
computations, as the ratio of end-to-end time over bit-to-bit time increases, as
observations become more complex, and as glitching intrudes itself into yet more
situations, the linear-time model will become a Procrustean bed that some may
continue to find the equal of a Beautyrest mattress but thit many others will
find unreasonably painful.

low, it is true that in reasoning about concurrent systems I
often find myself reasoning about partial orders embedded in

22

49<-.

the language (set of sequences) denoted by the system, and I am
interested in tools that nould help me do that. But I am also
reluctant to give up induction as a proof technique. Why can't
I have both?

I could not ask for a better example of reason (i) in my 1986 IJPP paper (ob-
tainable by ftp from boole.stanford.edu as ijpp.tex,dvi, instructions in Boole's
/pub/README) for why people prefer interleaving. Over the years people have
built up a substantial workshop full of tools for manipulating strings and sets
of strings. Put them in a partial order environment and they fee! disoriented
and deprived of their tools.

My answer to this reason was that we should remove it by building the
tools needed for a universe in which time is partially ordered. To this end
my IJPP paper developed a number of language constructs some of which like
orthocurrence had no analog in the world of linear orders, and some of which like
network composition could be denned for linear orders but were then vulnerable
to the Brock-Ackerman anomalies in the presence of nondeterminism.

With regard specifically to induction, my recent paper "Action Logic and
Pure Induction" (similarly obtainable from Boole as jelia.{tex,dvi}) shows how
to do induction in a wide range of situations, going well beyond languages
and binary relations. In commutative action logic the "horizontal" operation
ab becomes concurrence, a\b. Yet one can still perform induction on iterated
concurrence. Another interpretation of ab is orthocurrence, as per my IJPP
86 paper. Again one can do induction with iterated orthocurrence. And as
always one can do induction on iterated concatenation, i.e. the usual Kleene
star but in other settings than languages and relations, e.g. pomsets, where the
concatenation of pomsets is only linear when the given pomsets are linear.

If all you want is the ability to reason as you have always done by induction,
that is no reason to replace pomsets by strings.

Tony Hoare disagrees with me that unfamiliarity with partially ordered time
is a major obstacle to its greater adoption. I confess I don't have any strong
evidence (though the above is one data point), but I do have a very strong feeling
that if people felt that they could move from linear time to partial without giving
up any of their tools, and also appreciated the advantages I and others have been
pointing out for partial orders, there would be a lot more such migration than
at present.

The argument is sometimes made that linear time is fully abstract for con-
current computation and partial time is not (i.e. it makes unobservable distinc-
tions), e.g. Bengt Jonsson in POPL-89, Jim Russell in FOCS-89, and I think
others (I recently saw a mention by Tony Hoare of a similar sounding result by
Mark Josephs). While this is true in the domain of Szpilrajn's theorem, outside
its domain what happens is that partial time becomes fully abstract while lin-
ear time becomes unsound (asserts false equalities), see my paper on this with
Gordon Plotkin (pp2.tex,dvi obtainable from Boole as above).

23

T^

Given the choice of two theories such that, as one moves in and out of the
domain of Szpilrajn's theorem, one theory varies between being fully abstract
and not fully abstract, but always remaining sound, while the other varies be-
tween sound and unsound, but always remaining fully abstract, which would
you choose?

Vaughan Pratt

To: concurrencyCtheory.lea.nit.edu
Fron: Rob van Glabbeek <rvgWrege.Stanford.EDU>
Subject: Begin-the great debate-End
In-Reply-To: Michael Merritt Tue, 13 lov 90 08:49:13 EST
Date: Tue, 13 lov 90 16:53:13 PST

From: BischuCallegra.tempo.nj.att.com (Michael Merritt)
Date: Mon, 12 lov 90 15:45:48 EST
I am interested in reactions to this method ox
resolving the (over-emphasized, in my mind) debate.

This idea occurs in many texts on interleaving semantics. The following
formulation is taken from HOARE 85: 'The actual occurrence of each event in
the life of an object should be regarded as an instantaneous or an atomic action
without duration. Extended or time-consuming actions should be represented
by a pair of events, the first denoting its start and the second denoting its finish.'

The idea of splitting events with a duration is a very powerful one, and
makes that many features of concurrent systems can in principle be modeled
adequately in interleaving semantics. However, in a lot of cases one can doubt
whether it is natural to model a concurrent system in interleaving semantics
only, even if this can be done theoretically.

Take for instance the extremely useful distinction between functional be-
haviour and performance. The idea is that for a given (distributed) system
one first studies whether it is functionally correct, and only when this has been
shown (ideally), one moves to questions concerning its time/space complex-
ity. The problem that we see in the above 'solution' for dealing with actions
with duration, is that the issues of functional behaviour and performance get
mixed up. The following trivial example to illustrate this point comes from Frits
Vaandrager, but is for the opportunity adapted by me to a setting with biscuit
machines.

Suppose we are interested in a vending machine which produces two biscuits
when a coin is inserted and then returns to its initial state. The machine should
satisfy the following trace-specification S:

2 x (coins - 1) < biscuits < 2 x coins,

24

5^

i.e. for each sequential trace of the machine we should have that the number
of occurrences of the action biscuit in this trace is bounded by 2 times the
occurrences of the action coin and 2 times (coins - 1).

A first proposal for a machine with this property is described by the recursion
equation

VMS = coin ; bisc ; bisc ; VMS .
An alternative proposal could be
VMS' = coin ; (bisc || bisc) ; VMS' .
In interleaving semantics we of course have: VMS = VMS'. This means

that under certain conditions we may infer that VMS and VMS' have the same
functional behaviour. So as soon as we have shown in some appropriate calculus
that VMS satisfies S, we can conclude that also VMS' satisfies S. We now can
make two observations:

1. Especially when dealing with the functional aspects of the system the
above choice of actions seems very natural. Working with actions begin-coin,
end-coin, etc. gives an overhead which nobody would like to have. The tradi-
tional problem of interleaving semantics, namely combinatorial state explosion,
will arise even faster in case actions are split. Moreover the functional equiva-
lence of the two machines can not so easily be determined.

2. Intuitively the situation concerning performance is clear: machine VMS'
is faster than machine VMS because it will work in parallel. So why not build
a semantic theory in which this intuition can be formalized?

In the view of Frits and myself the above considerations strongly plead for
a semantic theory with at least two notions of equivalence: (1) an interleaving
equivalence for dealing with functional aspects, and (2) a non-interleaved equiv-
alence for dealing with performance. The idea is then that at the non-interleaved
level actions can have duration and structure, whereas at the interleaving level
one abstracts from these aspects and imposes a total order on the actions.

One of the options for the non-interleaved equivalence — in the spirit of
Hoare and Merritt — is to say that two processes are to be regarded as equiv-
alent iff their split versions have the same interleavings. This non-interleaved
semantics lies somewhere between interleaving semantics and partial order se-
mantics.

Similar causally distinct processes would
seem to be distinguished by such a semantics, as «all.

However not all causally distinct processes can be distinguished by such
a semantics. Especially when permitting autoconcurrency (the independent
execution of two events which on the chosen level of abstraction are considered
to be occurrences of the same action) the proposed semantics falls short in a
number of aspects:

Consider the processes (o6c||6) + (a6||6c) and (a6||6c).
Here ab is the sequential composition of actions a and b, ab\\bc is the parallel

and independent composition of the processes ab and ac, and P + Q denotes

25

V/7

a (nondeterministic) process that behaves either like P or like Q. If we don't
care for branching time the left hand side process can be represented by the
automata:

->*- ->•

I
c

I
I

c

I
I

->*

I
b b

I
I

I
b

I
I

->* START a >* b >* c-

After splitting al actions in two the automaton looks like:

-aO->-al->*-bO->*-bl->*

I
cl
I

I
cl
I

I
cl cl cl

-aO->-al->*-bO->*-bl->*

1
cO

1
1

1
cO

1
1

1
cO

1
1

1
cO

1
1

cO

♦-aO->*-al->*-bO->*-bl->«-cO->*-cl->*

I I I I / I I I
bl bl bl bl / bl bl bl
I I I I /
1111/
-aO->-al->*-bO->*-bl->*-cO->*-cl->*

I I I / I
bO bO bO / bO bO bO bl
i I I / I
I I 1/ I

START-aO->*-al->*-bO->*-bl->*-cO->*-cl->*

bl
I

I
bO
I

26

■2*S

By mirroring the right wing of the automaton in the displayed diagonal one
easily sees that all interleavings originating from (a6c||6) are already present in
the big square (a6||6c). Hence the two processes (a6c||6) + (o6||6c) and (a6||6c)
(if allowed to exist) are equivalent in Merritt's semantics. Nevertheless one can
argue that (a6||6c) can be executed faster than (a6r||6) + (a6||6c). If all actions
a, 6 and c are considered 10 take one hour each, and the automata don't wait
needlessly, the left hand automaton has the possibility to need one hour more
than the right hand one.

A slightly more complicated example shows that in fact it makes a difference
whether actions are split in two or in three (considering start, end and halfway
actions for instance)!

When refining an operation, I never change the symbols
denoting the begin and end of the operation. I simply
change the (internal) operations that occur between
the begin and end actions.

In case you don't allow autoconcurrency - as occurs in the example above -
that's fine. In order to capture the more general case, where processes like the
one above are considered, you have to do some bookkeeping linking end actions
explicitly to begin actions. Otherwise the operation of refining an action fails
to be a congruence for your semantical equivalence, i.e. cannot be defined
consistently. Counterexamples on request.

The begin/end distinction is particularly useful at interfaces,
where the system issues a request and the environment responds,
or vice-versa.

Don't misunderstand me; I do think the distinction can be applied usefully.

On multiple observers of concurrent systems: it seems to me
that an accurate model of such systems should distinguish
between the occurance of an event and its observation. (I
think even the physicists do this much.) A run of such a
system then consists of an interleaved sequence of events and
their observations. The subsequence experienced by a single
observer is obviously consistent with a set of runs.

What's missing?

The coordination, at the end of each single run of the investigated system, of
the data obtained by different observers. Suppose that the system (a||6), where
the occurrences of a and 6 may even be considered to be instantaneous events,
runs only once, and is observed by two experimenters (traveling in different
inertial frames for instance). Then it may happen that one of them observes ab

27

W

whereas the other observes 60. If they now would simply drop there observations
into a big bag of interleavings where also sequences that where observed during
other runs of the system are gathered, their work does not provide evidence for
the fact that they are observing (a||6) rather than (ab + 6a). However, if the
two meet after their observations and compare notes, they may realize that they
perceived the very same run of the system in a different way. From this they
conclude that a and b must have been executed independently.

I'll lend references and/or papers if anyone is interested
in seeing these ideas applied to algorithmic problems.

Send me.

But I should say that I work within the formal framework
(I/O automata) devised by lancy Lynch and Mark Tuttle.

Oh... Well, send me anyway.

low, it is true that in reasoning about concurrent systems I
often find myself reasoning about partial orders embedded in
the language (set of sequences) denoted by the system, and I
am interested in tools that would help me do that. But I am
also reluctant to give up induction as a proof technique. Why
can't I have both?

Yes, why can't you?
Rob van Glabbeek

To: concurrencyCtheory.lcs.mit.edu
From: lamportOsrc.dec.com (Leslie Lamport)
Subject: Reply to Pratt
Date: Thu, IS lov 90 11:43:10 -0800

Vaughan asks
How might a logic based on sets of traces deal with each of the following

situations?
1. Distinguish the race implicit in a\b from the race-free situation implied

by ab + ba.
2. Reason about observations made by a team of distributed observers who

agree on what events happened but not in what order.
3. Reason about the possible interleavings of two concurrent sine waves.

(Presumably one falls back on some other technique for combining traces than
interleaving them.)

The answer is that I don't know and I don't care. These questions never
arise in my work.

28

How can it be that I find these issues to be irrelevant when Vaughan, who's
an intelligent and (generally :-) reasonable computer scientist, considers them
important? To answer this, I must begin with a discussion of the nature of
science.

Any science is ultimately concerned with the real world. A scientific the-
ory consists of a mathematical formalism together with a way of relating that
formalism to the real world. For example, Newtonian mechanics consists of a
mathematical theory of point masses moving along trajectories in mathemati-
cal 3-space, together with a way of relating those mathematical objects to the
motions of real objects, such as planets. Note that not every concept in the
mathematical formalism need correspond to something in the physical reality-
for example, the vector potential of classical electromagnetism has no physical
counterpart.

Any useful scientific theory has a limited domain of application. A theory-
of-everything is generally good for nothing. Newtonian mechanics can't describe
the flow of fluids, for which one needs a theory containing mathematical concepts
corresponding to friction and viscosity.

For computer science, the real world usually consists of computers (hunks of
wire and silicon) executing programs. Theories in computer science are based
on such diverse mathematical formalisms as Turing machines, temporal logic,
and CCS.

To judge a scientific theory, one must know what its claimed domain of
applicability is. The work of mine that I mentioned in an earlier message in-
volves a theory whose domain is the specification and verification of functional
properties of concurrent systems. I won't describe this domain here, except to
note that "functional properties" include eventual termination and upper and
lower time bounds on termination; they exclude probability of termination and
expected time to termination.

Computer scientists have tended to be vague about the domain of applica-
bility of their theories. As a result, people who work in one theory often think
their theory is good for everything. For example, I have heard people say that
the algebraic laws of CCS make it good for verifying distributed algorithms.
CCS works fine for verifying biscuit machines. It is hopelessly impractical for
verifying even the simplest distributed spanning tree algorithm, let alone the
more complex algorithms that system builders use. Robin Milner realizes this
(I've discussed it with him), but many of his disciples don't.

This doesn't mean that CCS is worse than my theory; just that it has a
different domain of applicability. It is as silly to say that CCS is better or worse
than my theory as it is to say that physics is better or worse than biology.
Human nature being what it is, almost all physicists believe in their hearts
that physics is more important than biology. However, physicists understand
that not everyone believes this, so a university will teach biology even if the
dean of faculty is a physicist. One wishes that computer scientists were as
understanding.

29

I think there are two general reasons why a concept that's important to
theory A may be absent from theory B:

(i) The concept is irrelevant to the domain of applicability of theory B.
(ii) The concept belongs to the mathematical formalism of theory A and,

even though the two theories have overlapping domains of applicability, the-
ory B's method of translating reality into mathematical formalism makes the
concept irrelevant or meaningless.

Case (ii) is the more insidious cause of misunderstanding. People get so
used to their favorite theory that they confuse its mathematical formalism with
physical reality. For example, some advocates of CCS will say that my theory
is deficient because it doesn't distinguish between internal and external nonde-
terminism. They don't realize that internal/external nondeterminism is part of
the mathematical formalism of CCS, not a property of physical reality, so there
is no reason why it should be a meaningful concept in another theory. This
error is not confined to one side of any. ideological fence. A colleague of mine
once asserted that he could prove any kind of property of a program, since he
could prove safety and liveness properties and any property is the conjunction
of a safety and a liveness property. He was confusing the real-world concept of
a property (in "prove any kind of property") with the mathematical concept of
a property as a set of behaviors (in "any property is the conjunction ...").

It can be argued that (ii) is an unavoidable source of misunderstanding, since
one can discuss physical reality only in terms of mathematical models. I don't
think the situation is so hopeless. We can make statements about the physical
world like "if you press this key, then the system crashes" that mean approxi-
mately the same thing to everyone, regardless of his philosophical persuasion.

I think that Vaughan's question 3 (sine waves) is an example of (i) and
his question 2 (teams of observers) is an example of (ii). His question 1 (race
conditions) is more interesting and warrants discussion.

A race condition is bad if it makes the circuit behave incorrectly. When ver-
ifying circuits, one is interested only in proving that a circuit behaves correctly,
not that it behaves incorrectly. So, one never has to prove the existence of a
race condition. The specification of the circuit describes its external behavior,
and a race condition is something that happens inside the circuit. So, proving
the absence of a race condition is never a primary goal. If there is a poten-
tial race condition that never actually occurs-for instance, because of the initial
conditions-then the proof will contain a lemma (a mathematical formula) whose
physical interpretation will be the absence of a race condition.

However, the concept of a race condition is not irrelevant. A race condition
on its inputs might cause a circuit component to produce an invalid output
voltage-a " 1/2" instead of a "0" or a "1". In this case, a mathematical model
of the component that allows only the outputs "0" and "1" is inadequate. With
such a model, the domain of applicability of the theory would not include the
actual circuit. Fortunately, with more sophisticated models (for example, by
including a "1/2" output), I believe it is possible to use my theory to reason

30

3*>

about real circuits. (I haven't done such reasoning myself, but others have
using similar theories.) The concept of a race condition is relevant for modeling
the real circuit in the mathematical formalism, but it doesn't appear in the
formalism itself.

Scientific theories are useful because the mathematical formalism is simpler
than physical reality. Newtonian physics eliminates an awful lot of important
details-like you and me-when it represents the earth as a point mass. Those
details are irrelevant for computing planetary orbits. They are not irrelevant
for studying human history. Science is the art of simplification.

A theory should be as simple as possible, but no simpler. - Albert Einstein
The test of a scientific theory is how well it helps us understand and/or

manipulate the real world.
I will close with a word about mathematics. Many computer scientists aren't

scientists at all; they're mathematicians. They work in the domain of mathe-
matical formalism, with no concern for its application to the real world. That's
fine. The world needs pure mathematicians as well as scientists. But it's impor-
tant for mathematicians to realize that they're not scientists. Number theorists
don't criticize Newtonian mechanics for using real numbers rather than integers.
Computer-scientist/mathematicians should be equally sensible.

[Postscript contributed for this proceedings, Sept. 1996.]
I now believe that one can use process algebra (though probably not pure

CCS) to write a practical correctness proof of a spanning-tree algorithm—at
least of its safety properties. I'm not sure if this is because the process-algebra
folks have made progress, or because I now understand better how to write
proofs in process algebra. (On the other hand, progress in assertional methods
has not stopped either.)

To: concuxTencyCtheory.lcs.mit.edu
From: lynchChoImes.lcs.mit.edu (fancy A. Lynch)
Subject: On Lamport and Nilner
Date: Sat, 17 lov 90 07:03:36 EST

I have been following the debate about trace models with interest, and liked
Leslie Lamport's most recent comments. They do seem to get at the heart of
the differences between the different research communities.

One of the most interesting (and troubling) comments he makes is the re-
mark about CCS not being useful for verifying distributed algorithms of any
complexity; supposedly, Robin Milner agrees with this (!). Now, I thought I
understood that a major goal of process algebraic research WAS to verify com-
plex concurrent and distributed algorithms. I would like to hear more about
this issue from proponents of CCS-like methods. More specifically, can anyone
tell me clearly what types of algorithms such methods are suited for verifying,
and what are outside their domain of applicability? If the methods so far have

31

:-> ?

really had only limited success, then is this limitation inherent in the methods
(or their intended domain of applicability) or just a matter of time?

Nancy Lynch

To: concurrencyCtheory.lcs.mit.«du
Fron: prattCcs.Stanford.EDU
Subject: Reply to Lamport's reply to Pratt
In-Reply-To: Your message of Fri, 16 lov 90 18:28:10 EST.

<9011162328.AA05325«stork>
Date: 18 lov 90 00:04:52 PST (Sun)

[The story so far.] On Oct. 21 David Luckham queried me about an attitude
to partial orders that he'd run into during discussions with ONR-funded software
people. I shared my reply to David with this list, which led to considerable
discussion. On Nov. 6 Leslie Lamport entered the discussion with a complaint
that certain parties to this discussion whom he did not name were claiming that
he couldn't do what he was doing, an assertion that he could indeed do what
he was doing, and a deduction that those parties must therefore be charlatans.

I pleaded innocent to the complaint, agreed with the assertion, and, in case
Leslie had me in mind as one of the charged parties, attempted to refute the
deduction with some situations where partial orders helped.

Leslie's reply of yesterday (Nov. 16) put my situations into three classes:
those outside his world, e.g. sine waves, those in his world but independent
of his theory of his world, e.g. multiple observers, and those that potentially
conflicted with his theory but which he felt confident his theory could be ex-
tended gracefully to handle, e.g. race conditions. He concluded by chastising
mathematicians who criticize what scientists do. [Now read on.]

This conclusion leaves me puzzled. While Leslie has defended himself ad-
mirably, I cannot tell what criticism stung him into defense. Let me repeat
what I said on Nov. 12:

There have been various claims on this list about limitations
of interleaving, but none that I recall making the claims
Leslie was complaining about, nor any that conflicted with the
evidence he adduced in support of his complaint.

Leslie's techniques seem to be fine for their purposes. I don't know why this
message isn't getting through.

Echoing Sol Feferman's "Bravo," I heartily concur with the rest of Leslie's
stimulating essay, to within the following differences.

The answer is that I don't know and I don't care. These
questions never arise in my work.

32

I know that and I didn't care at first. Robert Hall supplied the necessary
existence proof that there were people on the list who did care, or I would have
let the matter rest with just the Nemeti quote from LOP-81 (LNCS 131, p.419),
my initial response to Leslie's opening message.

Although Leslie's view of concurrency is adequate for him, it is also some-
what of a straitjacket. There are aspects of concurrency that he does not find
worth studying but that others do. Perhaps the implications of those aspects
will never insinuate themselves into Leslie's world, but who knows? Which res-
idents of Nagasaki and Hiroshima foresaw the abrupt intrusion of the abstract
equation E — mc1 into their world?

Fortunately, nith more sophisticated models (for example, by
including a "1/2" output), I believe it is possible to use my
theory to reason about real circuits.

Yes, this is an excellent idea. Its origins are surely shrouded in history,
but it can be found recently in van Glabbeek and Vaandrager's PARLE-87 no-
tion of ST-bisimulation, with Leslie's 1/2 represented as marked transitions.
It is also the basis for the "presset" model Gaifman and I described in LICS-
87, a model described more elegantly in "Temporal Structures" (in LNCS 389
21-51, also STAN-CS-89-1297, also available by ftp from boole.stanford.edu as
man.jtex.dvi}, and to appear in Math. Struct. inCS 1:2), in terms of the "idem-
potent closed ordinal" 3'. In Leslie's notation 3' = {0,1/2,1}. This important
(non-cartesian-closed) ordinal is also the dualizing object 3 in the Stone-Birkhoff
duality described in my POPL-91 paper, though space and time have conspired
to let me do little more than name 3 in that paper; a proper account of the
dualizing role of 3 will appear in a subsequent paper. The essential idea is that
{0,1/2,1}, or {0,T,1} as I call it in the POPL paper, refer respectively to before,
transition, and after. A race is characterized by the possibility of having two
processes both being in state T. The function of mutual exclusion is to rule out
that combination. This is the essential distinction between a\b and ab+ab: both
permit 8 of the 9 = 32 combinations in {0, T, 1} x {0, T, 1}, but only the former
permits the 9th combination (T,T),

I apologize for the large amount of algebraic machinery in which we have
embedded Leslie's 1/2 in some of this work, like Sigourney Weaver in her ex-
oskeleton in Aliens. Those wishing to meet 1/2 in a more comfortable outfit
will have to await our return to planet Earth, hopefully soon. Meanwhile let me
assure you that this unnerving exoskeleton really does amplify power just like
the ads promise. I had no idea by how much until my students started using it
on big jobs.

CCS works line for verifying biscuit machines. It is
hopelessly impractical for verifying even the simplest
distributed spanning tree algorithm, let alone the more complex

33

T-. >

algorithm that system buildars us«. Robin Hilner realizes
this (I've discussed it with him), but many of his disciples
don't.

You could get both Robin and me to agree to this, much as perhaps Robin
and certainly I would agree that the axiomatic theory of vector spaces is fine for
treating sums and scalar multiples of vectors, but is hopelessly impractical for
inverting even the most well-conditioned matrices, let alone the ill-conditioned
matrices that arise in transcontinental surveys. Surveyors just want their pro-
grams to give the right results, their passion for the .ixiomatic theory of vector
spaces rarely exceeds that of Leslie's for CCS.

But it's important for mathematicians to realize that they're
not scientists.

This is indeed the popular, standard, and authorized view. Nicolas Good-
man makes a strong argument for the opposing view in a recent article entitled
"Mathematics as Natural Science," JSL 55(1)182-193 (March 1990).

My own view (I do hope no one is actually paying to receive this stuff:-)
strays even further from the standard than Goodman's. I think of us as deal-
ing with incoming data from the world mainly by inventing theories through
which this data is filtered to yield predictions about the world; that, mutatis
mutandis (important), natural selection selects for those theories whose pre-
dictions are more accurate; and (the most controversial bit) that the theories
most successful at predicting are sufficiently like the most successful theories of
pure mathematics that the latter should prove to have good survival value while
the former could with little violence be turned into respectable mathematics.
The controversial bit has the merit that both directions are in principle testable
given suitable advances in AI and brain mapping respectively.

A theory-of-everything is generally good for nothing...
For computer science, the real world usually consists of
computers (hunks of wire and silicon) executing programs.

It has not escaped the attention of some contributors to concurrency theory
that it is starting to look like a "theory of everything." This is the result of
abstracting away wire, silicon, and programs to leave a set of abstractions that
could as readily be applied to the interactions of galaxies of stars, swarms of bees,
and rioting soccer fans as to processes communicating via ethernets, IP/TCP,
and remote procedure calls.

However concurrency theory is only a "theory of pverything' in the same
sense that number theory and group theory are "theories of everything." Just
as number theory is more than the theory of counting sheep and beans, and
group theory more than a means of proving that quintics don't have solutions

34

expressible in radicals, so is concurrency theory more than the theory of what
concurrent "hunks of wire and silicon" do.

There are then two roads one may follow here, the conservative and the
liberal. The conservative road requires keeping wire and silicon in mind as the
ultimate domain of application of concurrency research. The liberal road re-
places "computer science" by "information science" and seeks instead a theory
of information processing that will turn out to be applicable to information pro-
cessors in general, whether dumb like galaxies, smart like bees and computers,
or brilliant like us (pats all round).

I am most interested in the liberal road because it seems to me that the
techniques of both computer science and engineering, provided they are not
artificially constrained, should turn out to be broadly applicable.

For example today's factory designers have only relatively primitive tools to
help them develop a design on line, test it out to get a better feeling for how
well it might work in practice, turn it into a detailed blueprint for a factory,
and make it the basis both for the ongoing operation and maintenance of the
factory and for future modifications and redesigns.

The analog of this scenario for software systems is much further along,
though it too has far to go or software research would have nothing left to
do. There is no reason why the foundations of the latter should not also prove
to be equally useful foundations for the former. If this is the case then the tax-
payers' research dollars are spent more efficiently by working out concurrency
theory so as to fully realize its benefits in all domains to which it is applicable.

I want very badly to follow the liberal road. My big problem has always
been that I don't know how to write a good program until I understand the
theory of what that program is about. Hence my current preoccupation with
theory. This is now well along however, and I hope to be able to start designing
and implementing soon. I'm hoping that many of Leslie's excellent ideas will
prove useful in aspects of this work.

Vaughan Pratt

To: concurrencyCtheory.lcs.»it.edu
Fro«: Luca Aceto <lucatcogs.su8sei.ac.uk>
Subject: Two papers on begin-end
Date: Mon, 19 lov 90 14:20:31 GMT

In the debate on "True Concurrency vs. Interleaving" on the concurrency
mailing list some of the recent messages have been concerned with the modeling
of the behaviour of concurrent systems under the assumption that actions have a
beginning and an ending. We have been working on semantic theories for process
algebras based on variations on the above idea and our results are reported in
a series of papers, which are available to whoever requests them.

L Aceto, M Hennessy

35

vr?

Towards Action Refinement in Process Algebras
Luca Aceto and Matthew Hennessy

ABSTRACT

We present a simple process algebra which supports a form of refinement of
an action by a process and address the question of an appropriate equivalence
relation for it. The main result of the paper is that an adequate equivalence
can be defined in a very intuitive manner. In fact we show that it coincides
with the "timed-equivalence" proposed by one of the authors in [H88]. This
is a bisimulation-like equivalence based upon the idea of splitting every action
into two sub-actions, the beginning and the end. For the language which we
consider this equivalence also coincides with a variation, called "refine equiv-
alence" , in which the beginnings and endings of actions with the same name
must be properly matched.

Reference: [H88] M. Hennessy, Axiomatizing Finite Concurrent Processes,
SIAM Journal on Computing 17(5), pp. 997-1017, 1988.

Adding Action Refinement to a Finite Process Algebra
Luca Aceto and Matthew Hennessy

ABSTRACT

In this paper we present a process algebra for the specification of concur-
rent, communicating processes which incorporates operators for the refinement
of actions by processes, in addition to the usual operators for communication,
nondeterminism, internal actions and restrictions, and study a suitable notion
of semantic equivalence for it. We argue that action-refinements should, in some
formal sense, preserve the synchronization structure of processes and their ap-
plication to processes should consider the restriction operator as a "binder". We
show that, under the above assumptions, the weak version of the refine equiva-
lence introduced in [AH89] is preserved by action refinement and, moreover, is
the largest such equivalence relation contained in weak bisimulation equivalence.
We also discuss an example showing that, contrary to what happens in [AH89],
refine equivalence and timed equivalence are different notions of equivalence over
the language considered in this paper.

Reference: [AH89] This is the paper mentioned above.

To: concurrencyQtheory.lcs.mit.edu
From: round3Cca0n.engin.umich.edu (Prof Rounds)
Subject: can't resist a comment
Date: Mon, 19 lov 90 12:09:21 EST

I'd like to throw two cents' worth into what seems to be one of the best
'bulletin board" discussions I've seen in a long time.

36

I agree with both Leslie Lamport and Vaughan Pratt. A mathematical
model is always just that; it represents our cognitive abstraction of what reality
we perceive. The theorems true in the model make predictions, which we then
reinterpret in the real world, at least that part of the world which interests
us. The best models simplify and constrain reality enough so that they make
really strong predictions (I would put the finite-state machine in that category.)
Of course, in a particular domain, the model may not account for observed
phenomena, and may in fact be contradicted. If one wants to predict these new
phenomena, one must refine the mathematical model. This process, though
painful for those who believe in the old model, is at the heart of scientific
progress.

The preceding paragraph talked about science; there is another point to
make about engineering. In the field of computers we have the unprecedented
opportunity to create real-world systems which conform to our mathematical
perceptions. So, machines were designed to mirror our conception of digital
computation; programming languages help us express mathematical algorithms,
and so forth. The fascinating thing about concurrency theory is that it seems to
be on the fence between science and engineering. We can use it to "explain" race
conditions, or we can use it to help us design programs (witness CSP, occam,
and the transputer.) Of course this was true about computability theory itself
in the 30's and 40's. Witness the creation of the stored-program machine to
embody the Universal Turing machine.

One other nice thing about mathematical models is that they port them-
selves into other domains of applicability. About 4 years ago I was working
with a graduate student, Bob Kasper, on some problems in natural language
processing. The problem involved specifying disjunctive information in record-
like structures - more or less like variant record types are specified in Pascal.
We saw a simple way to understand and to implement a system, using extremely
basic notions from concurrency theory. Essentially one views a complex record
as a transition system. The states are the individual nodes, and the transitions
are the field designators. Then the simple logic of Hennessy and Milner, or
the simplest possible subcase of deterministic PDL, becomes a way of declaring
record types. Once this is seen, there are a lot of ways to reinterpret the con-
cepts of concurrency in data types. I've been using the notions of Smyth and
Hoare powerdomains, along with Aczel's non-wellfounded set theory, for exam-
ple, to help understand and design so-called complex objects in object-oriented
databases. Notice that Aczel's work came from an attempt to provide a proper
mathematical foundation for SCCS!

The point of this last experience is that one should always keep an open
mind, especially where mathematical models are concerned.

Bill Rounds

To: concurrencyCtheory.lcs.mit. edu

37

-^ 7 :>>

From: Haim Gaifman <hgl7«cunixd.cc.Columbia.edn>
Subject: Lamport on Spinoza, Science and related matters
Date: Mon, 19 lov 90 19:39:10 EST

This is rather a belated reaction to some of the claims made in the ex-
change that has started with Leslie Lamport's inessage of November 7 ("Flame
etc.") While Lamport's observations concerning Aristotles, Kant and Spinoza
are marginal to the real issues of the debate, at least one point needs correction:

".... and Spinoza proved that there can be at most seven planets."
As a matter of fact, Spinoza never "proved" that there can be at most seven

planets. Lamport is probably confusing Spinoza with Hegel (who lived two
centuries later). Somewhere in Hegel's dissertation, so the story goes, is buried
an argument purporting to show that the number of planets should be seven.

Perhaps the difference between Spinoza and Hegel does not mean much to
Lamport. After all, they were both philosophers, that is to say vaporizing
theoreticians making ridiculously unfounded claims. But, as a scientist, he
should have gotten his facts straight.

As to the debate itself:
If A claims to have done something that B has proved to be impossible, then

either
(i) there is an errors in A's construction,
or
(ii) there is an error in B's proof,
or
(iii) they are speaking about different things.
In cases (i) and (ii) the debate can be clearly decided; the errors are found,

one of the claims (perhaps both) is withdrawn and there the matter ends. But
this happy state of affairs is mostly a privilege of mathematicians. In philosophy
it is usually the third case that obtains. When things get clarified, it turns out
that the real issue is not the correctness of a certain proof, but the correct way
of defining certain notions, or of setting up a framework. The debate is about
which setup is more intuitive, illuminating, fruitful, efficient, etc.

It appears that, in this respect, many computer scientists share the fate of
philosophers. What has started as a claim for a contradiction ("I have done
something that somebody proved cannot be done") turns out to be a claim
about the relative merits of trace models versus partial order models.

Lamport is certainly entitled to the view that the methods developed by
him are simpler and more efficient, for the purposes of analyzing and prov-
ing correctness of distributed algorithms. No doubt, he can produce his own
impressive work as an argument for this view. The claim could be evaluated
(certainly not by me!) in a matter of fact way. This does not guarantee that the
question would be settled, but at least we would have a clearer view of what is
involved. Unfortunately, he has got this bad habit of philosophers to start with
an imprecise presentation of the problem.

38

36<

Another bad influence of popularized philosophy is the temptation to anchor
one's views, no matter what the subject is, in some major principles; in the
present case maxims about what is and what is not good science are mobilized
for the sake of the argument:

"Any useful scientific theory has a limited domain of
application. A theory-of-everything is generally good for
nothing."

In one sense, this is a sound rule of thumb that one would hardly wish to
quarrel with: The more phenomena you try to accommodate the more likely
you are to get an impractical system. The rule has, nonetheless, some spectac-
ular exceptions. A higher level description that encompasses a wider range of
phenomena might be more efficient then a narrower view. Every mathematician
knows cases in which generalizing (hence strengthening) a theorem leads to a
conceptually clearer, hence easier, proof of it. From an Aristotelian point of
view Newtonian physics would have been a project unlikely to succeed, because
it tried to account for the immense variegated domain of movement phenomena
by few simple laws.

As a general prescription for science, the above quote goes certainly against
the grain that is exemplified by great scientists, such as Newton, Maxwell or
Einstein. A "theory-of-everything" is the elusive goal that has motivated big
scientific enterprises. What else is the point of the reduction of chemistry to
physics, or of finding a unified field theory?

All this has no direct bearing on whether an interleaving model, or a partial
order model, or some other abstract model, is more suitable for reasoning about
concurrent processes. But in trying to drag in general philosophical principles,
Leslie Lamport seems to have committed himself to quite a narrow perspective
of science, it is rather an engineer's view than anything else.

Haim Gaifman

To: concurrencyCtheory.lcs.ait. edu
Froa: Vaughan Pratt <prattCcs.Stanford.EDU>
Subject: Early poaset paper
Date: Sun, 25 lov 90 12:25:32 PST

If there are any historians of concurrency theory subscribing to this forum
they might be interested in the origins (as I understand them) of the term
"pomset."

The terms "labeled partial order" and "partial word" had been used pre-
viously, but the earliest paper I'm aware of that refers explicitly to partially
ordered multisets as a synonym for these notions is:

•InProceedings(

39

(>/

Pr82, Author="Pratt, V.R.",
Title="On the Composition of Processes",
Booktitle="Proceedings of the linth Annual ACM Symposium

on Principles of Programming Languages",
Month=Jan, Year=1982)

However I had not at that time come up with the contraction "pomset."
This term was first advertised in a talk I gave on Sept. 13, 1983 at a workshop
whose proceedings however were not published until 1985:

•InProceedings(
Pr83, Author="Pratt, V.R.",

Title="T¥o-Vay Channel with Disconnect",
Booktitle="The Analysis of Concurrent Systems:

Proceedings of a Tutorial and Workshop, LICS 207",
Publisher="Springer-Verlag", Year=1985)

I also used it in a talk I gave the following week at IFIP-83 in Paris. It
appears in the position statement I circulated at that panel, a hundred or so
copies of which were distributed to the audience:

«Unpublished(
Pr83b, Author="Pratt, V.R.",

Title="Position Statement",
Iote="Circulated at the Panel on Mathematics of Parallel
Processes, chair A.R.G. Milner, IFIP-83",
Month=Sep, Year=1983)

Now that I look at it again it seems to me that this position statement is
quite clear about my motivation in those days for pomsets and how I thought
they should be used. Since it's reasonably short and can't be found elsewhere
I've appended it below. (My apologies for it's being in Scribe, this was what
many of us at MIT and Stanford used back then. Just read the raw Scribe, the
only obscurity should be x15>-[y], the Scribe for xt. [Fixed for this proceedings
-vp])

The cryptic allusion therein to ab\ab and N(a, a, b, b) refers to the fact, found
by my student Jay Gischer, that these two pomsets are language-equivalent.
That is, regarded as language operations applied to languages a and b under
the evident interpretation, they denote the same language. In 1982 Jay in-
dependently came up with the partially ordered multiset concept, though not
by that name, while investigating the problem of completely axiomatizing the
equational theory of concatenation and shuffle of languages which I had posed
to him. Jay reduced my axiomatization problem to the question of whether for
any two N'-free pomsets, language-equivalence implied isomorphism. I was quite
surprised to find the partially ordered multisets of my POPL-82 paper arising

40

so naturally in connection with this question about pure interleaving seman-
tics. Neither Jay nor I found an answer to this question, which I publicized
(as an axiomatization question) on various occasions during 1986-1988. It was
eventually solved in 1988 by Steve Tschantz. an algebraist at Yanderbilt, in

CUnpublished(
Tsch, Author="Tschantz, S.T.",
Title="Languages under concatenation and shuffling (preliminary)",
Iote="Manuscript, Department of Mathematics, Vanderbilt
university",
Month=Jun, Year=1988)

Steve independently discovered the same reduction of the axiomatization
problem to the question about language-equivalence of N-free pomsets, which
he answered affirmatively by an ingenious argument. Luca Aceto subsequently
applied Tschantz s theorem to infer the surprising result [correspondence, Apr.
1989] that timed-equivalence coincides with trace-equivalence for the language
p ::= 0 | a \ p;p \ p\p.

Since 1983, starting with my LOP-85 paper

OlnProceedings(
Pr85, Author="Pratt, V.R.",

Title="Some Constructions for Order-Theoretic Models of
Concurrency", Booktitle="Proc. Conf. on Logics of Programs,
LICS 193", Address="Brooklyn", Publisher="Springer-Verlag",
Pages="269-283", Year=198S),

which turned into

«Article(
Pr86, Author="Pratt, V.R.",

Title="Modeling Concurrency with Partial Orders",
Jouraal="International Journal of Parallel Programming",
Volume*lS, Iumber=l, Pages="33-71", Month=Feb, Year=1986),

my thoughts on the appropriate combinators for pomsets have shifted from
the network emphasis in my POPL-82 paper and IFIP-83 statement to a more
arithmetic kind of language in which pomsets are added and multiplied (and
these days exponentiated, whose relevance to concurrency I did not appreciate
in 1985). Nowadays, at my student Roger Crew's prodding, I regard network
combination as merely one of several variants of addition.

Vaughan Pratt
lov. 25, 1990

41

3 63

APPENDIX—IFIP-83 STATEMENT
IFIP-83 - Panel on Mathematics of Parallel Processes

Position Statement
V. R. Pratt

Stanford University
September, 1983

Abstract. The notion of function as a set of ordered pairs is mathematically
appealing but not quite rich enough for modeling processes. Our position is that
it suffices to generalize ordered pairs to pomsets (partially ordered multisets) to
obtain a satisfactory notion of process.

Functions. A function abstracts the essence of stimulus-response: it collects
all possible stimuli and pairs each with a corresponding response. Furthermore
functions obey the principle of behavioral extensionality: two functions with
the same set of stimulus-response pairs are considered not merely behaviorally
equivalent functions but in fact the same function. These two attributes are
captured simultaneously in defining a function from A to B to be a subset of
.4x0 (with additional conditions when being single-valued and total matters).

Processes. Processes are like functions in some respects. Processes accept
stimuli and emit responses. And behavioral extensionality is just as natural for
processes as for functions.

A process is not however an ordinary function. It may for example respond
to each of a series of numeric inputs with the sum of all inputs to date; this is
the behavior of a cumulative "function," which is not really a function since it
takes memory to keep a running sum.

Functions on Histories. A process can be made a function if the domain is
taken to be sequences of stimuli instead of individual stimuli. That is, a process
may be defined to be a function from histories. It is natural to then take the
codomain to be histories as well, i.e. a process is a function on histories.

This definition is the basis for the semantics of parallel processes given at
IFIP 74 by G. Kahn [K], and elaborated on at IFIP 77 by Kahn and D. Mac-
Queen [KM]. This definition works well for deterministic processes.

The Nondeterminism Anomaly. In 1978 D. Brock and W. Ackerman ex-
hibited an anomaly demonstrating that the straightforward extension of Kahn-
MacQueen semantics to nondeterministic processes, namely relations on histo-
ries, did not yield sensible behaviors [BA]. They identified the problem as a
lack of information about the relative timing of individual input and output
events. The Kahn-MacQueen model did not specify any interleaving informa-
tion between input and output histories. Brock and Ackerman noted that a
little additional information of this sort sufficed to dispose of the anomaly at
hand.

Our Position. We consider the Brock-Ackerman fix, appropriately formal-
ized [Pr], to provide a very attractive model of processes. Before defining this
model we introduce the notion of partially ordered multiset or pomset.

Pomsets. A pomset on a set A is, up to isomorphism,.a structure (£7, L, <)

42

consisting of an underlying set U, a labelling function L : I' — A. and a partial
order < on U.

The labels supply the elements of the pomset. The same label can be reused,
hence multiset rather than set. Pomsets are defined only up to isomorphism (of
structures) because the identity of the underlying set is unimportant; only the
labels (the rea/multiset elements) and the order matter.

Main definition. A process on a sei E is a set of pomsets on E.
Intended Interpretation. £ is a set of events. Each pomset of events is

one of the possible computations of the process. The order on each pomset is
that of necessary temporal precedence; the order of the events in a computation
need not be completely specified.

Contrast with Functions. A function is a set of totally ordered double-
tons. This definition exposes three differences between functions and processes:
the dropping of the cardinality requirement that each element of a function
have two elements, the switch from sets to multisets, and the switch from a
total order to a partial order.

The cardinality change is motivated by the ongoing nature of a process:
many events may need to be considered as part of a single computation. Multi-
sets are needed because an event may be repeated, e.g. the arrival of the number
3. Partial orders are preferred over total because it is not always natural to to-
tally order events - consider for example two communicating processes on Earth
and Saturn respectively, each running at nanosecond speeds.

Inadequacy of Total Orders. The use of total rather than partial orders
enjoys some currency in modeling parallel processes [H][Pn]. However there does
not appear to be a natural way of using total orders to distinguish the following
two ways in which two a's might precede two b's.

a a a a
I I l\ I
I I I \ I
I MM
b b b b

Thus not only are total orders unnatural, they are not an expressively ade-
quate substitute for pomsets.

Examples. The above-drawn pomsets together form a two-element process.
Any n-ary relation (hence binary relation, and hence function) is a process if
each n-tuple in the relation is regarded as a totally ordered set. A power set
is a process if each element is regarded as a set with the empty partial order.
The power set C of a power set 5 is a process if each element of C is regarded
as ordered by inclusion on B: event e necessarily follows event d just when e is
d with some additional elements - the process makes progress by accumulating
elements and distinct accumulations leading to the same subset are (in this case)
considered the same event.

43

y^

Spatial Localization. In order to put processes in communication with
each other it is helpful to know where their events are taking place (cf. [VV],
p.64). We define an event space to be a Cartesian product C x D, consisting
of spatial events. The intended interpretation is that C is a set of channels or
places (cf. [B]) where the events may be found and D the set of data that may
be sent over the channels of C. A spatial process is a process on an event space.

Nets. A net is a process P on C x D having constituent processes Pi P„
on C\ x D,..., Cn x D respectively. Process P, is a constituent of P just when
there exists a function a, : C, —» C determining a projection .4, : P —» Pi.
(a, gives the attachment of the channels (i.e. ports) of P, to the channels of
the net.) The projection ,4, is determined from a, by taking ,4,(p) to be the
multiset {(c,d)\(ai(c),d) £ p). Order is preserved, that is, (c,d) < (c/, <f') in
Ai{p) ifF(ai(c),flf) < (a,(e')< d') in p. (Note that .4, need not be onto, i.e. it is
not required that P, equal Ai(P), only that it include it.)

Process Composition. Processes are composed to form a new process in
two steps: given the processes Pi with corresponding attachments a< : C, — C
for i from 1 to n — 1, the maximum (under set inclusion) net P having those
processes as constituents is formed, and then an additional attachment an :
Cn —- C is used to determine the projection An : P —* P„. The result is i4„(P).
The n attachments themselves can thus be seen to determine an (n — l)-ary
operation on processes.

Example. Ordinary composition of binary relations on D is determined
by Cx = C2 = C3 = {0,1}, C = {0,1,2} with ai(c) = c, a2(c) = c + 1, and
03(c) = 2c. In this net Pi and P2 are composed to yield P3. This is of course a
particularly simple example.

Bibliography
[B] Brauer, W., Net Theory and Applications, Springer-Verlag LNCS 84,

1980.
[BA] Brock, J.D. and W.B. Ackerman, Scenarios: A Model of Non-Determinate

Computation. In LNCS 107: Formalization of Programming Concepts, J. Diaz
and I. Ramos, Eds., Springer-Verlag, New York, 1981, 252-259.

[H] Hoare, C.A.R., Communicating Sequential Processes, CACM, 21, 8, 666-
672, August, 1978,

[K] Kahn, G., The Semantics of a Simple Language for Parallel Program-
ming, IFIP 74, North-Holland, Amsterdam, 1974.

[KM] Kahn, G. and D.B. MacQueen, Coroutines and Networks of Parallel
Processes, IFIP 77, 993-998, North-Holland, Amsterdam, 1977.

[M] Milner, R., A Calculus of Communicating Systems, Springer-Verlag
LNCS 92, 1980.

[Pn] Pnueli, A., The Temporal Logic of Programs, 18th IEEE Symposium
on Foundations of Computer Science, 46-57. Oct. 1977.

[Pr] Pratt, V.R., On the Composition of Processes, Proceedings of the Ninth
Annual ACM Symposium on Principles of Programming Languages, Jan. 1982.

44

[W] Winskel, G., Events in Computation, Ph.D. Th., Dept. Comp. Sei, U.
of Edinburgh, Dec. 1980.

To: concurrencyCtheory.les.mit.edu
From: Eike Best <gmdzi!eikeCrelay.eu.net>
Subject: Re: Zeno machines
Date: Wed, 2 Jan 91 16:07:24 -0100

In a message shortly before Christmas, Vaughan Pratt writes:

»"Probably the earliest mention oi partial orders
»in respect to concurrency is in Irene Greifs Thesis of 1975..."

(quote from memory).
Claim:
Partial ordering ideas have been around at least since the mid-sixties.
A fairly extensive formal discussion of "occurrence graphs" (special partial

orders of the type I will describe below) and "occurrence systems" (sets of
occurrence graphs) is in:

A.W.Holt: Final Report of the Information System Theory Project. Techni-
cal Report RADC-TR-68-305, Rome Air Development Center, Grifiss Air Force
Base, New York (1968).

Or compare A.W.Holt: Events and Conditions, Project MAC Conference
(1970):

"Two ... occurrences are ordered if they are connected by a directed path.
They are then ordered in the sense of the path if (two events) are not
ordered with respect to one another, (then they are) concurrent."

Or from Suhas Patil's PhD Thesis (Coordination of Asynchronous Events,
MIT, June 1970):

"...The events corresponding to the nodes which are ordered must occur in
that order but the events corresponding to nodes which are not ordered may
occur concurrently."

45

3 67

