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Rationale for Concurrent Verification and Partial Orders 

The Problem. Enhancing the reliability of concurrent systems is an increas- 
ingly important and challenging problem for information technology today. 
The problem is more serious than for sequential systems for two reasons. 
First, the possible interactions in a computer network are far more complex 
than for a traditional stand-alone sequential program. Second, one little 
bug may ruin the whole day not just of an individual computer user but an 
entire community, many of whom need not even be directly involved with 
computers. 

With increasing system complexity, whether concurrent or sequential, 
come increasing costs of system failure. The widespread outage of the tele- 
phone system on the US East coast in January 1991 dramatically testified 
to the expensive havoc that one tiny programming error could wreak, as did 
the $475 million Pentium chip division bug, and the recent $5 billion crash 
of the Ariane 5 rocket. 

Expectations. It is unreasonable to expect to eliminate all errors, even 
catastrophic ones, but any improvements in software technology that will 
reduce their frequency and severity are well worth the effort. If each $100 
million invested in enhanced system reliability avoided one billion-dollar 
catastrophe, the rate of return on this investment would be a thousand 
percent even without counting the savings from the many lesser bugs that 
would also have been avoided. 

Given the magnitude of the software reliability problem, the software 
industry should not put all its eggs in the one basket, but instead aggressively 
explore all reasonable alternatives. 

The Verification Option. One alternative that has strong support from a 
large segment of the software engineering community is verification, the ap- 
plication of logic to the efficient search of the entire space of possible behav- 
iors. No tool can hope for perfection, and logic is no exception. What logic 
accomplishes is not the infallibility popularly attributed to it, but rather 
the efficient search of combinatorially large or even infinite state spaces for 
all the known types of bugs in a practical amount of time.  No methodol- 
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ogy comes near the efficacy of logic in that role, particularly in the case of 
infinite search spaces where mathematical induction permits seeking out in 
finite time every nook and cranny that may hide a known type of bug. 

One weakness of logic is that it cannot guarantee to recognize bugs of a 
kind not anticipated by the axioms of the logical system. For this and other 
reasons logic should be viewed as just one player on a team whose overall 
goal is improved reliability. Logic has proved a valuable player in this role 
on many documented occasions, fully justifying its continued support and 
growth. 

Logic works best when understood as a discipline for manipulating not 
just symbols (proof theory) but also facts about some world (model theory). 
To the latter end one develops a mathematical model of that world, and 
evaluates the soundness of the proof system relative to that model. The 
model must be faithful to the world, yet simple enough to permit the logic's 
soundness to be assessed. 

What is concurrency? A burning problem in program verification today 
is how to model the world of concurrent systems. The excellent models of 
sequential behavior that have evolved during the past thirty years of sequen- 
tial program verification do not adequately reflect the nature of a concurrent 
universe. Only when one imagines each and every event in the universe lining 
up to take its turn can one confidently apply any of the sequential models. 
A variety of "testing scenarios" reveals situations where sequential models 
yield a visibly wrong answer and hence an unsound logic. These scenarios 
have spurred interest in true concurrency as it has come to be called, namely 
modeling concurrency in a way that is faithful to all currently understood 
modes of interaction of system components, particularly those beyond the 
reach of sequential models. 

Two concurrency models. There are two basic approaches to true con- 
currency, state-based and event-based. The state-based approach as the 
standard model for sequential behavior has the advantage of familiarity. In 
this model, the passage from sequential to concurrent behavior is accompa- 
nied by an increase in structural complexity of the transition system. The 
basic additional structure required is a higher-dimensional filling in of the 
spaces between the "commuting squares" characteristic of the state dia- 
grams of concurrent systems. While this structure is most simply realized 
directly by geometric means, a number of more or less equivalent ways of 
achieving essentially the same effects have been proposed by the concurrency 
community in the past decade or so. 

The event-based approach models behavior in terms of occurrence of 
events. A system, or any of its components, is modeled as the set of all events 
the system is capable of performing, usually infinite in practice. Pure con- 
currency, with no synchronous behavior, interference, or other interaction, is 
simply the set of events itself with no additional structure. The many ways in 
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which system components can interact, whether cooperating synchronously 
(communication), competing for shared resources that forbid simultaneous 
access (mutual exclusion), or inhibiting one another's occurrence altogether 
(conflict), are modeled by equipping the event set with structure consisting 
of constraints formally expressing those interactions. Note the change in 
direction here: with states structure increases with increasing independence 
while with events it increases with increasing interaction, the opposite of 
independence. 

Just as physics needs both waves and particles to model the physical 
universe, so does computer science need both state-based and event-based 
models of true concurrency. 

Partial Orders. The focus of this workshop is on the concurrent struc- 
tures supporting the event-based approach, the basic such structure being 
the partial order. Total order semantics views each execution of a concurrent 
system as a sequence of events, where actions executed concurrently appear 
according to some arbitrary order. Partial order semantics allows events to 
appear either ordered or unordered, disallowing causality cycles, e.g., action 
A happens before action B, which happens before action C, which happens 
before A. 

Total order semantics, also called interleaving semantics, is traditionally 
considered easier to work with as it lends itself to simple representations, 
e.g., with finite state machines. Until recently partial order semantics has 
not been widely applied in practical verification due to a lack of maturity in 
the methodology of its use and a shortage of suitable tools for verification 
based on partial orders. 

Continuing research into partial order semantics has improved this situ- 
ation in recent years, and the partial order approach can now reasonably be 
looked to as a viable extension of total order semantics, Since total orders 
are a special case of partial orders, the move to the latter has freed verifi- 
cation system builders to employ new methods without having to abandon 
those sequential methods that have proved useful in concurrent verification. 
These new methods are now starting to show worthwhile efficiency gains in 
the exploration of state spaces. 

Doron Peled, Vaughan Pratt, Gerard Holzmann 
Murray Hill, NJ and Palo Alto, CA. 
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Prefix function view of states and events 
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Abstract 

Prefix functions are thought as a unifying concept for different ways of look- 
ing at discrete processes. The idea of prefix function consists in establishing 
relations between events and states; different types of such relations corre- 
spond to different ways of understanding states being reached in the course of 
computation. This concept covers such concurrent systems description tools 
as finite state automata, trees, Petri Nets, traces, occurring graphs, vector 
languages, multi-trees and similar. Special attention is paid to operations of 
contraction and synchronization on prefix functions. 

Keywords: events; states; discrete processes; concurrency. 

1   Introduction 

The purpose of the present paper is to situate trace calculus within a broader context 
of concurrency description tools. Trace theory turns out to be useful for describing 
and analysing some concurrency phenomena because of its similarity to the well 
established and familiar theory of automata and formal languages on one hand and 
of its ability to capture such properties of concurrent processes as partiality of event 
occurrences ordering. However, trace theory has succeded only in a limited family 
of concurrent systems that can roughly be compared with cooperating sequential 
processes; to find its sound extension suitable for more general models is then 
of primary interest. To this end, it seems worthwhile to look closier at the basic 
concepts of trace theory, identify those that can be generalized, and try to adapt 
them to a broader context. 

Traces over an alphabet (consisting of events names) equipped with a depen- 
dency relation (a symmetric and reflexive binary relation in it) arise by identification 

•partially supported by grant KBN 8T11C 029 08 
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all strings over the alphabet that differ only by order of two consecutive not de- 
pendent symbols; the result of such an identification is a trace, representing an 
action composed of a number of events, some of them occurring independently 
of other, or (equivalently) a system state reached after occurring these events. In 
trace theory dependency relation defining the way of state identification is fixed 
for the whole modelled system; it causes mentioned above limitations of the trace 
usage. In this paper the state identification is not restricted to that induced by 
a dependency relation; instead, it is considered as a tool that can be tailored to 
current needs of system verification: state equivalence useful for proving some 
eventualities of system behaviour may be different from that needed for proving 
some system invariants. In a system specification or verification, some states can 
be treated as equivalent, restricting in this way the number of cases to be analysed; 
in case of concurrent systems this restriction may be quite serious. 

Labelled graphs, like Pratt's pomsets [9], or labelled posets, indicating causal 
relationships of (named) events offer another possibility of concurrent process 
descriptions. They can be related to strings of symbols as follows: for each string 
w over an alphabet of events, or elementary actions, say A, denote by j(w) the 
graph defined recursively: 7(e) is the empty graph, j(wa) arises from the graph 
j(w) by adding to it a new node labelled with symbol a and new arcs leading to it 
from all vertices ofy(w) labelled with symbols that a causally depends on. Thus, 
for any prefix-closed language L representing sequences of actions of a concurrent 
process, function defined on L assigning to each w e L the graph 7(11;) constructed 
as explained above can be viewed as a description of the process. In this case states 
of a process are determined by initial pieces of causally ordered histories. 

Yet another view on states of a process takes into account only the 'future' of 
a process after its partial execution. In this case it does not matter which is the 
history of the process reaching some point, but only which are the possibilities 
of its continuation. This approach resembles that of automata theory; number of 
states in a process is equal to the number of different continuations of the process; 
it it is finite, then the number of states is finite. 

Looking at processes as activities of a number of sequentially acting agents, 
as in Hoare language [3] with the Shields theoretical background [12], it is quite 
natural to define concurrent process as a composition of sequential processes. 
This approach looks very promising for at least two reasons: first, the theory of 
sequential processes is well elaborated and established, the second, it uses directly 
compositionality methods that are especially valuable in dealing with multiagent 
systems. However, composition used in this approach concernes only sequential 
processes, not accepting cases where single agents can act in nonsequential way; 
applying basic concepts of this approach one can expect a perfect tool for process 
descriptions. 

Thus, the answer what is the 'real' state of a process depends on questions 
concerning the process itself. Proving some eventualities that will occur during a 
process run, the notion of a state may be different from that needed for proving 
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some invariant properties or estimating the time limit of the process duration. 
Therefore, in this paper the notion of a state is not determined. The nature of states 
is irrelevant for the present purposes; it is convenient to abstract from their specific 
properties, but to concentrate only on the way they are reached by the system. It 
leads to the concept of prefix functions, discussed through the paper. 

The standard mathematical notation is used in the paper. The set of all integers 
is denoted by Z, and the set of all non-negative integers by N. If / is a function, 
D(f) denotes the domain of / and R(f) the range of /. Symbol / : A —► B 
is used to indicate that / is a function with domain A and range contained in B. 
If R(f) = B, f is said to be onto B; a one-to-one function is a bijection. If 
/ : A —> B,g : B —> C, then fg : A —>• C denotes the composition of / with 
g defined by fg(x) = g(f(x)) for all x € A. 

Any finite set (of symbols) is an alphabet; A* is the set of all strings over A, 
i.e. finite sequences of symbols in A, including e, the empty string. Any subset of 
A* is called a language over A. If w is a string, A is an arbitrary alphabet, then 
the projection it A (w) of w onto A is a string arising from w by erasing in w all 
symbols not in A; if L is a language, TTA (L) is the set of projections of all strings 
in L onto A. lfu,v 6 A*, then uv is the concatenation of strings u, v; string u is 
a prefix of string w, if there exists string v with w = uv. Clearly, relation "to be a 
prefix of" is a (partial) ordering relation in the set of all strings. Language is prefix 
closed, if together with a string it contains all prefixes of this string. The kernel of 
language L is the greatest prefix-closed language ker(L) contained in L; the prefix 
closure of language L is the least prefix closed language Pref(Z) containing L. 
For any string w and symbol a, the number of occurrences of a in w is denoted by 
w(a). For any language L and any string w, the continuation of w in L is the set 
0(L, w) = {u | wu G L}. 

2   Algebraic tools. 

The discrete processes considered here are assumed to be composed of finite or 
infinite number of event occurrences; the set of events, called here alphabet, is 
assumed to be finite. In order to build processes of events a number of algebraic 
means has been applied; below some of them are briefly presented. To make 
possible their comparison the alphabet A of events is fixed for what follows. 

Monoid of strings. Free monoid generated by alphabet A, i.e. the algebra 
(A*, o, c) with composition (concatenation) o and the empty string e as the neutral 
element, called the monoid of strings over A, is the basic algebra serving in the 
sequel for defining others. This monoid will be denoted by S(A) in the sequel.By 
the definition of freeness, for any other monoid (X, o, 1) and any mapping / : 
A —>■ X there exists the unique extension /* : A* —> X of / such that 

/•(e) = l,r(«o) = /*(ti)o/(o). 



As it has been mentioned above, prefixes of any string are linearly ordered. 
Monoid of traces. Let D C A2 be a symmetric and reflexive relation, called 

dependency relation in A and let ID = A2 - D; symbols a, b are called dependent, 
if (a, b) e D, and independent otherwise. Let =D be the least congruence in 
monoid S(A) such that 

ab =D ba <&■ (a,b) 6 ID- 

Then the quotient monoid S(A)/ =D denoted by T(D) is called the trace monoid 
over D and its elements traces over D (observe that the relation D, as reflexive, 
determines alphabet A). By definition of quotient algebras, T(D) arises from 5(A) 
by identifying strings that differ only by swapping over some adjacent occurrences 
of independent symbols. As usual, [W]D denotes the equivalence class of string w 
w.r. to the congruence =D (the trace determined by w); symbol [ ]D denotes also 
the homomorphism (f> : S(A) —)■ T(D) such that <f>(w) = [w]D. Symbol T(D) 
will also denote the base set of the monoid of traces over D. 

[t 
[a] 

<> 
[ab] [ac] 

[abb] [abc] 

[abbe] 
\ 

[abbca] 

Figure 1: The prefix structure of [abbca]D for D = {a, b}2 U {a, c}2. 

By definition we have [«]D[U;]D = [uw]D for all u,w e A*; call trace [u]D a prefix 
of trace [W]D, if [U]D[V]D = [W]D for some trace [V]D- In contrast to S{A), the set 
of prefixes of a trace is ordered by the prefix relation only partially, as it is shown 
in Fig. 1. 

A subset P of T(D) is confluent, if for each traces t', t" e P there is a trace 
t € P such that t' as well as t" are prefixes oft. 

Shields algebras. LetA = (A i, A2,..., A N) be a tuple of alphabets such that 
A = Ui^i Ai and let D = \jfL{ A

2; clearly, D is a dependency relation in A. Let 

P(A) = f[S(Ai) 
8=1 

be the product of monoids S(Ai),S(A2),..., S{AN), where S(Ai) = {A^o, e); 
elements of this monoid, i.e. tuples belonging to 

A\ x A\ x • • • x A*N 
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are called string vectors. Let n denotes the homomorphism of 5(A) to F(A), such 
that 

ir(w) = (iri(w),TT2(w),.. .,TTN(W)), 

where iri(w) denotes the projection of w onto A,-, for each i = 1,2,..., N and 
each UEA*. The Shields algebra over A is the image of S(A) given by x; this 
image, denoted here by V(A), is a subalgebra of P(A), generated by the set Ao: 

A0 = {ir(a) | a G A}. 

Images of prefix-closed languages over A given by w ('prefix-closed' subsets 
of 5(A)) are called here Shields languages. String vectors are ordered by the 
prefix relation defined pointwise: vector (u\, u2,..., UN) is a prefix of vector 
(wi, w2,..., WN), if U{ is a prefix of W{ for all i = 1,2,..., iV. 

(a, a) 
/   \ 

(ab, a)      (a, ac) 

(abb, ac)   (ab, ac) 
\   / 
(a66, ac) 

(abba, aca) 

Figure 2: The prefix structure of string vector (abba, aca) for A = ({a, b}, {a, c}). 

The concept of the monoid of string vectors as formulated above originates 
in papers of M.W. Shields [12]. His main idea was to represent non-sequential 
processes by a collection of individual histories of concurrently running compo- 
nents; an individual history is a string of events concerning only one component, 
and the global history is a collection of individual ones. This approach, appealing 
directly to the intuitive meaning of parallel processing, is particularly well suited 
to CSP-like systems [3] where individual components run independently of each 
other, with one exception: an event concerning a number of (in CSP at most two) 
components can occur only coincidently in all these components ('handshaking' 
or 'rendez-vous' synchronization principle). The presentation and the terminology 
used here have been adjusted to the present purposes and differ from those of the 
author. 

Dependence graphs monoid. Let D be a dependency relation in A. Depen- 
dence graphs over D (or d-graphs for short) are finite, oriented, acyclic graphs with 
nodes labelled with symbols from A in such a way that two nodes of a d-graph are 
connected with an arc if and only if they are different and labelled with dependent 
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symbols. Formally, a graph with the set of nodes V labelled by ip, and with the set 
of arcs R, is a dependence graph (d-graph) over D, iff 

(vi,v2) G RV (v2,vi) £ RVvi = v2     <£>     {<p{vi),(p(v2)) £ D 

for all vi,v2 6 V. Two d-graphs 7', 7" are isomorphic, j' ~ 7", if there exists 
a bijection between their nodes preserving labelling and arc connections. As 
usual, two isomorphic graphs are identified; all inherent properties of d-graphs are 
formulated up to isomorphism. The empty d-graph (0,0,0) is denoted by A and 
the set of all (isomorphism classes of) d-graphs over D by T(D). 

The monoid G(D) of dependence graphs over dependency D C A2 is the 
monoid (T(D),o, A) generated by the family {g(a) | a e A} of singleton graphs, 
where 

9(a) = ({a}A{(a,a)}), 

and with the composition o defined as follows: the composition 71 o j2 of 71 with 
72 is (isomorphic to) the graph arising from disjoint representations of 71,72 by 
introducing new arcs leading from each node of 71 to each node of 72, provided 
they are labelled with dependent symbols. It is easy to prove that the composition 
of d-graphs is a d-graph again and that the composition operation is associative, 
with A as the neutral element. It turns out that the homomorphic extension of the 
mapping gD : A —► T to A* —> T is a homomorphism of S(A) onto G(D). 

Figure 3: Dependence graph over D = {a, b}2 U {a, c}2. 

For a given dependence graph 7, node v of 7 is a prececessor of another node 
u of 7, if (u, u) is an arc of 7. Clearly, all predecessors of a node labelled with 
symbol a are labelled with symbols dependent on a. Any full subgraph of 7 which, 
together with a node, contains all its predecessors, is a prefix of 7. It turns out that 
dependence graphs are partially ordered by the above prefix relation. Dependence 
graphs are thought as graphical representations of runs of non-sequential processes 
which make explicit the ordering of action occurrences within compound actions. 
If the dependency in A reflects the causal relationship among events symbolized 
by elements of A, then dependence graphs are representations of causal succession 
of event occurrences in a process run. 

It turns out that for a given dependency D and ID = A2 - D all the three 
monoids: of traces, Shields' monoid, and d-graph monoid, can be characterized 
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as images of the monoid of strings 5(A) given by homomorphisms <f> meeting 
conditions: 

4>(w) = 4>{e) => w = e, 

(a, b) £ /D => 4>{ab) = <£(M> 

0(«a) = <f)(v'av") =► #(u) = 0(üV), 

</>(ua) = <£(i>&) A a j^ b => (a, b) £ /ß, 

for each a, 6 £ A, u, u', u; £ A*, v" £ (A — {a})*. From the above condition 
one can prove all the three monoids to be isomorphic, hence, it is only a matter of 
taste which objects are chosen for representing concurrent processes: equivalence 
classes of strings, string vectors, or dependence graphs. 

Monoid of multisets. Free commutative monoid (A®, +, 0) generated by A 
is the multiset monoid over A (or the monoid of linear forms over A), denoted by 
R(A). The additive notation is used here because of commutativity of + operation. 
Let /x : A* —> A® be a mapping such that fi(e) = 0, fi(a) = a for a £ A, and 
fj,(uv) = /x(w) + /J,(V) for all u, v £ A*. Clearly, \i is a homomorphism of 5(A) 
onto i?( A). Multiset 2a + 26 + c is an example of an element of A®; it is the value 
of fi(abbca). For any multiset r and symbol a the nonnegative integer r (a) is called 
the multiplicity of a in r. For any multiset r we have clearly r = £aeA r(a)a. 
Multisets over an alphabet are pointwise ordered: r' < r" iff r'(a) < r"(a) for all 
a £ A; if r' < r", we say that r' is a prefix of r". 

If r', r" are multisets over A, then max(r', r") is the multiset r over A such 
that r(a) = max(r'(a), r"(a)) for each a £ A. The set R of multisets is confluent, 
if r', r" £ i? implies max(r', r") £ i?; and is linear, if for any multisets r', r" £ R 
either r' < r", or r" < r'. The set R of multisets is connected, if for each r £ R 
there exists a string w £ A* such that /t/(w) = r and /J,(U) € R for each prefix u of 
w. Clearly, any prefix-closed set of multisets is connected, but not the other way 
round. The following condition is necessary and sufficient for connectedness of R: 

r £ R <&■ r = 0 V 3r' £ R,d £ A : r = r' + a. 

Define the kernel of a set R of multisets over A as the least set ker(i?) of multisets 
such that 

0 £ R => 0 £ ker(ß),    r £ ker(fl) Ar + ae R=>r + ae ker(Ä), 

for all r £ A®, a £ A. Thus, ker(Ä) is the greatest connected subset of R, for 
each RCA®. 

3   Specification tools. 

Algebraic tools described in the previous section have been developed in order 
to capture in a satisfactory way concurrency phenomena that came out while 
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specifying and analysing non-sequential systems. In particular, the partial order 
of event occurrences during systems runs made necessary to look for non-standard 
way of describing processes. Historically, the specifications of non-sequential 
systems became before the rigorous notions of their behaviour has been proposed. 
Below we briefly describe some formal system specifications that are inherently 
connected with algebraic tools given in the previous section. 

Elementary net systems. Elementary net systems [11, 13] (presented here 
with some minor changes) are particular cases of Petri nets, well suited for many 
applications and manageable using some formal means. An elementary net system 
is any system 

E= (P,T, Pre, Post, m°) 

where P, T are finite, nonempty sets, of places and transitions, and 

Pre : P —► 2T, Post : P —-»• 2T, m° C P, 

are such that T = Pre (P) U Post (P) (no isolated transitions) and Pre (p) U 
Post (p) ^ 0 for all p e P (no isolated places). 

Functions Pre and Post are extended to P U T by setting 

Pre (t) = {p | t € Post (p)}, Pbst(t) = {p | t e Pre (p)}. 

Partial function 8 : 2P x T —> 2P is defined as follows: 

8(mi,t) = m2 <£> Pre (t) C roi A Post («) C m2 A mi - Pre (t) = m2 - Post (t). 

The sequential behaviour of E is then defined as the partial function ßj% : 
T* —> 2P defined recursively: 

0E(e) = ™°,        ßE(wt) = S(ßE(w),t) 

for all w 6 T*,t € T. The domain of ß% is the set of execution sequences of E 
and its range is the set of reachable markings of E. Obviously, the domain of /?E 

is a prefix-closed language over T. 
Set Prox (t) = Pre (£) U Post (t). Define in T dependency relation D by the 

equivalence (t1, t") £D& Prox (*') n Prox (t") ^ 0. It turns out that 

w' =D w" =► («/ € Ü(/3E) <=> w" € Z?(/3E)) A /3E(^') = 0E(«>")■ 

Therefore, from the point of view of reachable markings, strings of transitions 
equivalent w.r. to the trace equivalence are also behaviourally equivalent. More- 
over, if to each execution sequence w € -D(/?E) assigns trace [w], the prefix 
structure of [w] exhibits the expected partial ordering of reachable markings. 
Thus, it is possible to define the trace behaviour of E as a partial function 
[ßE] : [D(ßE)] —► 2P, such that \fe]([w]) = fa(w); this definition is cor- 
rect in view of the implication above. Any confluent subset of the domain D([ßE]) 
of [ßE] is a concurrent run of the elementary net system E. 



Cooperating sequential languages. Let A = (A\, A2, ■ ■ ■, AN) be a tuple of 
alphabets and let L = (L1, L2,..., L#•) be a corresponding tuple of prefix-closed 
languages, Li C A* for each i = 1,2,..., N. The concurrent behaviour of system 
L is function ß-^ with 

N 
D{ßL) = ker{w\7r(w)el[Li} 

»=i 

and R(ßL) C üili £» such that/?L(w) = ic(w) for each to e £>(/?L)- 

Place-transition Petri Nets. Any place/transition Petri net (abbreviated as 
PT-net) is the system N, 

N = (P,T,F,m0), 

where P, T are finite, non-empty, disjoint sets (of places and transitions, resp.), 
F : P x T —> N, and m° : P —> N (the initial marking). Any function 
m : P —> N is called a marking of net N; the set of all such markings is denoted 
by M. The value of marking m for place p is interpreted as the (instantaneous) 
number of 'tokens' contained in p. Transition execution of N is the partial function 
Sfq : M x T —► M defined as follows: 

<5N(m', t) = m"«-VpeF: m"{p) = m'(p) + F(p, t)>0 

for all m', m" G M,t € T. This function assigns to marking m' and transition 
t marking m" obtained from m' in effect of the execution of t; execution of t 
is possible, if each place p for which F(p, t) < 0 (from which t 'takes' tokens) 
contains sufficiently many of them (m' + F(p, t) > 0) and the resulting number 
of tokens in any place after execution of t is equal to their previous number minus 
the number of tokens taken from this place by t (if F(p, t) < 0) plus the number 
of tokens put by t into the place (if F(p, t) < 0). 

Let N be an arbitrary PT-net. The marking behaviour of N is defined as the 
partial function /?N : T* —> M defined in a similar way as in case of elementary 
net systems: 

ßN(e) = m°,ßN(wt) = 5(ßx(w),t) 

for w € T*, t G T. Elements of £>(/%) are called firing or execution sequences, 
those of A(/?N) ^e reachable markings. It is clear that D(ß-^) is a prefix closed 
language. The sequential behaviour of N is the domain -D(/?N) °f tne marking 
behaviour; for sake of uniformity, it will be considered as the identity function with 
the domain £)(/%). However, the sequential behaviour itself is not a sufficient 
tool to distingush concurrent runs of a net. 

A natural aim in exploring partial order behaviour of PT-nets is to establish a 
sort of independency relation among transition ocurrences and then an equivalence 
between states reached in effect of such occurrences. However, in contrast to ele- 
mentary net systems, where independency was fixed once for ever and determined 
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by structructure of the net, independency between transitions in PT-nets may de- 
pend on the reached marking. It is even not quite obvious whether independency, 
as exhibited by PT-nets, leads to a partial order of transition occurrences in a system 
run. This issue will be discussed further on; for the time being algebra of multi- 
sets, as defined above, seems to be a promising tool for describing non-sequential 
behaviour of PT-nets, as explained below. 

Let A be an alphabet, L C A®. Call L linearly definable, if there is a function 
k : A U {e} —>Z such that k(e) > 0 and 

L = {reA®\^2 k{a)r(a) + k(e) > 0}. 
a&A 

L is conjunctive, if it is an intersection of a finite number of linearly definable sets. 
The kernel of a conjunctive set is a multitree and any confluent subset of a multitree 
is a multitrace. Any maximal linear subset of a multitrace is its (sequential) 
observation. The multiset behaviour of a PT-net N = (P, T, F, m°) is defined by 
means of homomorphism \i : A* —► A® applied to the domain of its sequential 
behaviour, i.e. as function ß'N with the domain 

D(ß'N) = ker{W € T* | /\ (£ F(p, t)w(t) + m°(p) > 0)} 
PEP i€T 

such that ß'N(w) = fi(w) for each w G D(ß^). It turns out that R{ß'N) = B, 
where 

B = ker{r € T® | /\ QT F(p, t)u(t) + r°(p) > 0)} (1) 
P€P ter 

and that B is a multitree (recall that r(t) is the multiplicity of t in multiset r). 
Maximal multitraces of B can be viewed as runs of N. In this description B is 
a state space of N and it determines uniquely all reachable markings of the net. 
Let r e B; then any r' e B such that r' < r is an initial part of a history leading 
to r; because of the partiality of multiset ordering, this description exhibit partial 
ordering of initial histories (or states) of the net runs. 

Below we give two examples of PT-nets iv~i, AT2 together with their state spaces 
B\, B2 defined by the multiset behaviour. Let 

Nx = {{\,2,SA},{a,b,c},F,m°) 

where 

F(l,a) = F(2,b) = F(3,c) = F(4,c) = -l,F(4,a) = F(4,b) = 1, 

m°(l) = m°(2) = m°(3) = 1, ro°(4) = 0. 

Graphical representation of net A^i together with its marking is given below: 
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Figure 4: Ni: an example of PT-net. 

According to (1) the state space of Ni is the following set of multisets: 

B\ = ker{r | r(a) < 1 A r(b) < 1 A r(c) < 1 A r(c) < r(a) + r(b)}; 

i.e. 
B\ = {0, a, 6, a + 6, a + c, b + c, a + 6 + c}. 

This set is confluent, hence it represents the (only one) run of the net. Graphical 
representation of the ordering of multisets in B\ is given below: 

0 
/   \ 

a b 
\   / 

a-- c b + c 

a + b+ c 

Figure 5: Structure of the state space given by the multiset behaviour of N\. 

Observe that no partial ordering of events can describe the above ordering of 
reachable markings (any multiset in P determines uniquely a marking of the 
corresponding net). 

The second example is in a sense the revers of the previous one; net AT2 is 
defined as 

iV2= ({1,2,3,4}, {a,6,c},F,m°) 

where 

F(l,a) = F(2,6) = F(4,6) = F(3,c) = F(4,c) = -l,F(4,a) = l, 

m°(l) = m°(2) = m°(3) = m°(4) = 1 

which in the graphical form is presented in Figure 6: 

2©—-{E 3G 

©—40]—0 

Figure 6: N2: another example of a PT-net. 
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The state space of N2 given by the multiset behaviour is 

B2 = ker{r | r{a) < 1 A r(b) < 1 A r{c) < 1 A r(b) + r{c) < r(a) + 1}; 

hence, 
B2 = {0, a, b, c, a + b, a + c, a + b + c}. 

This set is not confluent, since {b, c} C B2, but max(6, c) = b + c g B2. Two 
maximal confluent subsets of B2, hence two different runs of N2, are: 

R\ = {0, a, c, a + c, b + c, a + b + c},    fi2 = {0, a, b, a + c, b + c, a + b + c}. 

b 

0 

c 
a 

1/   \\ 
b       a-\- c 
\   / 

a + b + c 

Figure 7: Structure of the state space of JV2 given by the multiset behaviour. 

4   Prefix functions 

In the previous section some methods of non-sequential systems behaviour de- 
scription have been given. There is a similarity of all these descriptions: the 
non-sequential behaviour of a system has been defined as a function defined on a 
prefix-closed language over the alphabet of (elementary) system actions and with 
values viewed as the system states reached after executing initial parts of a system 
run. Thus, in the present approach the most important aspects of the behaviour 
concern the way of assigning states to sequences of events occurrences rather than 
the states themselves. In particular, for many reasons it is useful to reduce the 
number of considered states by assigning the same state to a number of strings, and 
thus identifying some sequences. It can be then useful to unify all these similar 
notions and to find some common features of their construction. 

Let A be an alphabet. Any function defined on a prefix closed subset of A* will 
be called here a concrete prefix function over A. For any concrete prefix function 
a the alphabet of a is denoted by A(a). Interpreting concrete prefix functions 
as descriptions of a discrete processes, elements of their alphabets are considered 
as events (or actions) of the processes, elements of their domains as all possible 
execution sequences of the processes, and elements of their ranges as (concrete) 
states of the processes. 

Two concrete prefix functions a\,a2 are isomorphic: a\ ~ a2, if A(a\) = 
A(a2), D{G\) = D(a2), and there exists a bijection </> : R(a\) —> R{cr2) 
such that <TI<£ = a2.  Class of all isomorphic concrete prefix functions over A 
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is an abstract prefix function over A, or simply, a prefix function over A. Thus, 
in fact, values of prefix functions are known only up to isomorphisms of their 
representations (members of isomorphism classes). 

There is, however, a canonical representation of values of prefix functions, 
defined in a standard way. Let, for any concrete prefix function a, =a be the 
equivalence relation in D(a) such that u =a v <=> a(u) = cr(v). It is clear that the 
equivalence =„■ is the same for all concrete prefix functions isomorphic to a; then 
the concrete prefix function a over A assigning to each string w the equivalence 
class [w]a of=a containing w: 

a(w) = [w]c 

can serve as a canonical representation of the abstract prefix function determined 
by a. On the other hand, for any equivalence relation in a prefix closed subset of 
A* there exists precisely one prefix function represented by function assigning to 
each string the equivalence class containing this string. 

Two prefix functions are distinguished for any prefix closed domain: the identity 
prefix function, isomorphic with the identity function, and the constant prefix 
function, isomorphic with a function assigning a constant value for all strings in 
its domain (notice here that, up to isomorphism, there is only one constant prefix 
function). 

Prefix functions can be viewed as a tool for the discrete systems behaviour 
description, interpretating their arguments as the system actions sequences and their 
values as the resulting states. Having in mind the intended interpretation and using 
prefix functions as models of processes, we avoid then answering the question "what 
are states", defining only their representations; the nature of states is irrelevant 
from the point of view of prefix functions. Instead, from this point of view relevant 
is how execution sequences, or sequences of events, can be identified without 
losing essential features of a system behaviour. Thus, we are interested in those 
features of prefix functions that are independent of their interpretations; speaking of 
abstract prefix functions we always use their concrete representations, remembering 
however their abstract nature. The function assigning to each (initiated) transition 
sequence of a Petri net the resulting marking is an example of a prefix function. 
Another example is related to transition systems with a fixed initial state: a function, 
assigning to each sequence of transitions its resulting state is a prefix function. Yet 
another example is the function assigning to each string its trace equivalence class, 
for a given dependency relation, and the function assigning to each string of symbols 
the vector of its projections on distinguished subalphabets. A common feature of 
all these functions is the identification of sequences that are considered as identical 
from the state space point of view. 

For any prefix function a over A and each a € A let the transition relation of 
a be defined as follows: 

s' 4, s" <* 3u e A* : s' - <T{U),S" = a(ua) 
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for each s', s" € R{<r) and a £ A. The step relation of a is the relation ->a defined 
as 

s' ->a s" <s> 3a e A : s' .1   a,        //. 
<7   ■*     > 

the transitive and reflexive closure -»* of the step relation is the progress relation of 
a. Clearly, the progress relation of any prefix function is a quasi-ordering relation. 
Let a be a prefix function, -» be the step relation of a. Prefix function a is .rtn'cr, 
if s' ->■ s" => s' ^ s" for all s', s" £ R{a); is monotone, if ->■* is an ordering of 
R(a), and u is strictly monotone, if it is strict and monotone. If o is monotone 
and for each w € D(a) the set {s \ s ->* o(w)} is linearly ordered by ->■*, then 
o is sequential. In particular, the identity prefix function is strictly monotone and 
sequential. 

Prefix function a is additive, if the implication 

o{w') = a(w") =» u/(a) = -a;"(a) 

holds for all strings w and symbols a. Clearly, 

1. Any additive prefix function is strictly monotone. 

Let I be a prefix closed language over A. Prefix function a is congruent, if it 
preserves continuations, i.e. if for each w', w" G D{o) 

a{w') = o(w") => 0(D{o),wf) = 6(D(a),w"). 

Clearly, the identity is congruent. Let L be a prefix closed language; diagram of 
the transition relation for the prefix function defined by a(w) = 9(L, w) for each 
w £ L is the state diagram for £; if the state diagram for a language L is finite, £ 
is regular (rational). 

2. Trace behaviour of any elementary net system is a congruent and additive prefix 
function. 

Some typical prefix functions used for specifying or analysis of concurrent 
systems are listed below. In these examples A is an alphabet, L C A* is a prefix 
closed language, D is a dependency relation in A. 

• i{L) : L —^ L with i(w) — w (identity prefix function). 

• TD(L) : L —> T(D) with TD(W) = [W]D (trace prefix function); 

• ID'- L —> r(D) with JD(W) — 5D(W) (d-graph prefix function); 

• 7T :L —►4J x AJ x ---x A*N, with TT(W) = (jri(w),3r2(w),...,T7v(w)) 
(vector prefix function); 

• HL '■ L —> A® (multiset prefix function); 
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• 0 : L —> 2L such that @(w) = 0(L, w) (continuation of w in L) (continu- 
ation prefix function); 

• I : L —> Z, where l(w) is the length of w (the length prefix function); 

• For P C L, S : L —► {0,1} with 6(w) = l«i»eF (test prefix function). 

Prefix function States Type of 

identification ordering 

identity execution 
sequences 

none 

monotone 

trace execution 
traces 

partial 
commutation 

vector string 
vectors 

equal 
projections 

graph dependence 
graphs 

isomorphic 
graphs 

multiset multisets all 
permutations 

continuation control 
states 

same 
continuations folding 

test truth 
values 

subset 

constant singleton all 

Table 1 A 'taxonomy' of prefix functions w.r. to identification properties. 

5   Contractions of prefix functions 

Let F be a family of prefix functions over a common alphabet with a common 
domain. Let o~i, o~2 be two elements of F; we say that <72 is a contraction of o\ (and 
write <T\ > o%), if there exists a function tp such that o\i\) = <72. Such a function 
is called a contraction of o\ to 02. Strictly speaking, any contraction is a class of 
equivalent functions; for prefix functions o\, 02, contractions tp', V>" of o\ to 02 are 
equivalent: ifr' = tp", if there exists a bijection <f> with 

o\ty' = a2fp"<f>. 

It is easy to see that any contraction if; of a\ to 02 has its canonical form $, which 
is the contraction of a\ to <#2 defined by the equality 
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for all u; 6 D(a\) = Dfa)- From the definition of the canonical representation 
of prefix functions it follows that the equivalence determined by prefix function a\ 
is a refinement of that determined by prefix function oi. Observe that the identity 
mapping is a particular case of contraction. 

Any two prefix functions over the same alphabet and with a common domain 
will be called similar. Since any function determines uniquely an equivalence 
relation in its domain, and all equivalence relations in any set forms a lattice, we 
have the following property of prefix functions: 

3. A family of similar prefix functions ordered by contractions is a complete lattice 
with identity as the greatest and the constant as the least element. 

The above property implies that any prefix function is (isomorphic to) a contraction 
of identity, and can be contracted to the constant. Observe, as an application of the 
contraction ordering, that the continuation prefix function is the least congruent 
prefix function over its domain. 

^*- aba 
ab 

/ aab 
e —-a / 

^via 
•aaa 

Figure 8: Diagram of an identity prefix function. 

a + b —- 2a + b 
/          / 

0  a "2a -3a 

Figure 9: Multiset contraction of the prefix function in Fig. 8. 

4. Contractions preserve progress relation. 

A special part in the whole family of prefix functions over A with domain 
D play monotone and congruent members of the family; contractions of such 
prefix functions to their state diagrams are called foldings, and the prefix functions 
themselves unfoldings of their own state diagrams. 
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6   Prefix functions synchronization 

One of the most important issues concerning discrete systems is their composi- 
tionality. In case of concurrent systems composition makes independently acting 
systems to communicate with each other and to synchronize some of their actions. 
On the abstract level, composition of systems is modelled by synchronization of 
prefix functions. Synchronization operation defined below allows us to build com- 
plex prefix functions of simple ones, to introduce an independency relation to the 
join set of events, and to combine state spaces of components into a single state 
space. It also enables to apply synchronization in the 'opposite' direction, decom- 
posing complex system into simpler ones and then making analysis and description 
of these systems easier. 

Let J be a set of indices and (A,),e j be a family of alphabets and let L, C A* 
for each i € J. The language 

& Li = {w e ([J AiY | V» € J : Ki{w) € L,-}, 

is called the conjunction of languages L,-. In case of J = {1,2} write L1&L2 
rather than &i(z{i,2}Li. 

5. Conjunction of any family of prefix-closed languages is a prefix-closed language. 

Let (<r,-),-e j be a family of prefix functions. The synchronization of cr, for i G J 
is the prefix function 

a : & D{ai) —» II R(o-i) 
i£J i€J 

such that for each w G U»e j ^» ^d each i e J 

(a(w))i = (Ti{Tri(w)), 

where (o-(w))i denotes the i-th component of the tuple a{w) being a member of 
the cartesian product Yliej i?(cr,). The synchronization of family {<T,-}veJ wm< be 
denoted by \\iej <rt-. In case of J = {1,2} write o\ || a2 rather than ||,=i)2 <r,-. 

The idea of the synchronization defined above originates from modular de- 
scription of Petri nets [5] and from string vectors of Shields [12]. Since the domain 
of the synchronization defined as above is prefix closed, we have the following: 

6. The synchronization of prefix functions is a prefix function. 

Since for any sets Si, S2, S3 there exist obvious bijections from Si x S2 to S2 x 
Si, from {(s,8) I s e S} to S, and from (Si x S2) x S3 to Si x (S2 x S3) 
meeting the required isomorphism conditions, we have the following property of 
synchronization operation: 
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7. The synchronization is idempotent, commutative, and associative, i.e. for all 
prefix functions a, cr\,cr2, 03: 

a\\a   =   a, 

(T\ || a2 

(ffl  || <72) || ^3 

^2II <n, 

*1  || (<T2 || ff3). 

If -Ri C 5f,Ä2 C Sf, then the product of R\,R2 is the relation Rx x R2 C 
(Si x 52)

2 such that 

(*'„ s2)(Ä! x ß2)(s'/, 4') <^ *',£,<// A 52i22s2'. 

From the synchronization definition it follows that 

8. Progress relation of the synchronization is the product of progress relations of 
the synchronization components restricted to the range of the synchronization. 

By the definition of the step relation of prefix functions and of the synchronization 
operation we have: 

9. Synchronization of (strictly) monotone prefix functions is (strictly) monotone. 

The cartesian product of functions fa : D\ —> R\,fa : D2 —> R2, is the 
function fa x fa : D{ x D2 —► Ä, 'x R2 such that 

(fa xfa)(dl,d2) = (fa(d1),fa(d2)). 

10. Synchronization of contracted prefix functions is a contraction of their synchro- 
nization; more precisely, 

(fi^i II ai4>i) = (ci || ^2) (fa X fa) 

for all prefix functions <J\, a2 and all contractions fa, fa. 

The above fact is crucial for a compositional approach to system description. 
If systems descriptions are viewed as contractions of their behaviours, then by 
the above fact the behaviour of composed systems is the composition of their 
components behaviours; and both: systems and their behaviours can be represented 
on arbitrary level of abstraction. 

(7l- 

<t>\ 

T 

"•*  a\ II a2 ■*■ 

I 
fa Xfa 

\ 
* o\ II a' ~ 

a2 

fa 

'1 II u2 "2 

Figure 10: Synchronization and contractions. 



According to the above definition of the synchronization operation, synchro- 
nization of identity prefix functions is, in general, not sequential. Moreover, it 
turns out that 

11. Any trace prefix function is the synchronization of a finite number of sequential 
prefix functions. 

It is worthwhile to compare the synchronization of identity prefix functions with 
conjunction of their domains. Let A\,Az be alphabets, L\ C A\,Li C A\ be 
prefix-closed languages; then relationship between conjunction and synchroniza- 
tion is as shown on the diagram below (ir : (Ai U A2)* —> A\ x A\ is defined by 
n(w) = {TTI(W),TT2(W)) where 7ri,7T2 are projections on Ai,A2, respectively). 

L\ «-Li&Z^"* L2 

I 
t{Lj)    i{Lx&L2)    i(L2) 

\ 
L{LX) || L{L2) 

Figure 11: Conjunction and synchronization. 

Synchronization of identity prefix functions is, in general, not an identity prefix 
function and can introduce an independency of some actions (and hence convert 
linear orderings of components into a partial ordering of the synchronization result); 
this independency is 'static', i.e. fixed for all possible runs of the described system. 
By the synchronization defined above it is not possible to introduce a 'context- 
sensitive' concurrency (depending upon the system history). To be more precise, 
let us define so-called structural independency. Let a be a prefix function, a, b 
be elements of A(a). We say that a, b are structurally independent in a, if there 
are prefix functions a', a" such that a = a' \\ a" and a e A(a') - A(a"), b 6 
A{a") — A(a'). If a,b are structurally independent, then a ^ b, and for each 
w € A(a)* 

wab G D(a) $$■ wba G D(CT) A a(wab) = a(wba). 

The trace independency is an example of structural independency. There is, how- 
ever, another type of independency, call it inner independency; say a and b are in 
the inner independency relation, if for all w G A* 

wba G D(a) =$■ wab G D(a) A a(wba) = a(wab), 

but for some w G A* 
wab G D{a) A wba g- D(a). 



The inner independency of transitions is typical for the behaviour of the 
place/transition Petri nets. 

7   Atomic prefix functions 

A prefix function is atomic, if it is not the result of synchronization of components 
with different domains. Thus, any prefix function is either atomic, or it can be 
obtained by the synchronization of a number of atomic prefix functions. Knowledge 
of properties of atomic prefix functions of a family can be extended to knowledge 
of properties of all members of the family. Here, we concentrate on families of 
prefix functions that are applied for descriptions or specifications of Petri nets. In 
particular, we shall seek for atomic prefix functions for some descriptive means 
considered above. 

It follows directly from the definition that in atomic prefix functions no two 
symbols are structurally independent; thus, finding atomic prefix functions allows 
us to discuss the inner independency. It turns out that even very simple atomic 
prefix functions exhibit inherent difficulties of adequate description of concurrency. 

12. Every sequential prefix functions is atomic. 

Since in a trace prefix function all independent symbols are structurally indepen- 
dent, and because of isomorphism of trace prefix functions, Shields prefix functions, 
and d-graph prefix functions, we have the following: 

13. Every atomic trace prefix function is sequential; every atomic Shields prefix 
function has a single component, and every atomic d-graph prefix function is a 
graph of linear ordering. 

Let consider behaviour of PT-nets and atomic prefix functions describing their 
behaviour. First, define the composition of PT-nets [5]. Let 

Nx = (P,,r,, F,, m,), N2 = (P2, T2, F2, m2) 

be PT-nets; their composition is defined as the PT-net 

iV,MiV2= (Pi + P2, T, U P2, F, m) 

where P\ + P2 is the disjoint union of P\, P2 and F, m are defined as follows for 
aiipePi + P2,*eriur2: 

F(p,t)   = 

m(p)   = 

F,(p,o, ifpePiAteTi, 
F2{P,t), ifPeP2AteT2, 
0, if p G Pi A t# T\ V p G P2 A t £ T2, 

mi(p), ifpG Pi, 
m2(p), ifpG P2 
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(notice that T\ and T2 need not be disjoint). From the definition it follows at once 
that the composition operation on PT-nets is associative and commutative (under a 
suitable isomorphism of nets it can be also made idempotent). This definition can 
be easily extended for any number of components. 

14. Let ßi,ß™,ßf be the sequential behaviour, marking behaviour, multiset be- 
haviour, respectively, ofNi (i=l,2), and let ßs, ßm, ß® be the sequential behaviour, 
marking behaviour, multiset behaviour, respectively, ofN\ txi AT2. Then 

ßs  = ßtWßi, 

ßm = /?rn/*2\ 
ß®   =  /5^ 11 

It proves soundness of the prefix functions synchronization definition with respect 
to the composition of concurrent systems described by PT-nets. 

Atomic multiset prefix functions are provided to define the behaviour of the 
following one-place PT-net and, in contrast to the previous ones, may exhibit inner 
independency of symbols. The net in Figure 12 is an example of atomic PT-net, or 
producer-consumer system. Any PT-net can be viewed as the synchronization of 
a number of producer-consumer systems; thus, the behaviour of PT-nets depends 
upon the understanding of the producer-consumer system activity. In particular, 
having chosen a state space for such atomic systems, the set of states of all PT-nets 
is the cartesian product of atomic sets of states. 

Figure 12: An atomic place/transition net. 

The behaviour of the above PT-net, according to the common interpretation, 
can be described by means of execution sequences and it is given by the identity 
prefix function with the domain 

n m 

D = ker{w e T* \ k + £ j>(a,-) - £ kiW{bi) > 0}, 
i=i i=\ 

where T = \J"=l a, U U£Li &i (recall that w(a) denotes the number of occurrences 
of symbol a in string w). However, this description does not capture the inner 
independency of transitions in T. The multiset description, introducing as much 
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independency as possible, is given by the contraction of L{D) by homomorphism 
H from T* to T®. The choice of multiset prefix function as a mean of descrip- 
tion is here natural, since the condition defining the above set of strings depends 
exclusively on multiplicity of symbols in strings, the same for strings and the 
corresponding to them multisets. 

The behaviour of an arbitrary PT-net is given by the synchronization of 
atomic prefix functions, constructed for each place of the original net. Let 
N = (P, T, P, m°) be a PT-net and let for each p e P net Np = {{p},Tp, Fp, m°p) 
be the atomic (i.e. one-place) PT-net with functions Fp, m° arising from F, m° by 
their restriction to {p} x T and {p}, respectively. By the result quoted above, the 
behaviour of N = (P, T, P, m°) can be obtained by the synchronization of the 
behaviours of all its atomic (one-place) nets, constructed for each p 6 P: 

ßN =\\peP ßNp- 

It is worthwhile to note the simplicity of atomic prefix functions describing the 
behaviour of one place nets; interpreting them as producer-consumer systems, 
production and consumption rates are assumed here to be fixed and contribute to 
the whole production in a linear way. One can imagine a theory of 'cooperating' 
producer-consumer systems that act acording to a more general principle; such 
system would be e.g. the synchronization of atomic prefix functions CT; with 
domains 

D{ai) = ker{w e A? | pi(w) > 0}, 

where />; : A* —> Z is a more general 'total productivity' function of unit 
i, returning for the activity sequence w of agents from A; the total balance of 
produced and consumed items. 

8   Conclusions 

Prefix functions thought as a unifying concept for describing concurrent processes 
on different levels of accuracy have been presented. Sets of strings built up from 
elementary actions (events) occurring in processes have been taken as the basis 
for further transformations. Prefix functions connect strings (called also execution 
sequences) with some objects that can be called states. States can be chosen 
depending on actual needs; therefore, in prefix function approach the choice of 
states is left for the user. From prefix functions point of view states are some abstract 
entities, determined by sets of event sequences leading to them; interpretation of 
states lies outside the prefix functions formalism and serves only as a tool for states 
identification. In the prefix function approach states are nothing but classes of 
equivalent sequences of event occurrences; different prefix function descriptions 
of the same system differ only by the degree of such sequences identification. 

From examples of applying prefix functions to the behaviour description of 
known systems, as Petri nets, it follows adequacy of prefix functions as describing 
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tools. The stress has been put upon two main operations on prefix functions that 
allow to construct new prefix functions of the already defined ones: contraction, 
'squeezing' a considered state space, and synchronization, introducing structural 
concurrency and enlarging the state space. 
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Elements of an Automata Theory Over Partial Orders 

Wolfgang Thomas 

ABSTRACT. A model of nondeterministic finite automaton over (finite) par- 
tial orders is introduced. It captures existential monadic second-order logic in 
expressive power and generalizes classical word automata and tree automata. 
Special forms, such as deterministic automata, are discussed, and logical and 
algorithmic properties are analyzed, like closure under complement and decid- 
ability of the nonemptiness problem. These questions are studied in the con- 
text of different classes of partial orders, such as trees, Mazurkiewicz traces, 
or rectangular grids. 

1.  Introduction 

While automata over strings and trees are a well-known, widely used, and 
robust model, with many applications in the specification and verification of con- 
current programs, the area of "finite automata over partial orders" cannot be called 
an established subject, despite the fact that partial orders are a natural domain for 
the study of concurrency. A possible reason for this is that many properties of finite 
automata which are essential in logical or algorithmic applications fail to hold when 
partial orders are considered as inputs (instead of strings or trees). Such properties 
are: equivalence between the deterministic and the nondeterministic model, closure 
under operations like complementation or projection, characterization by natural 
logical systems (like monadic second-order logic), and decidability of the nonempti- 
ness problem (in logical terms: satisfiability problem). A possible remedy in this 
situation is to confine oneself to a narrower view of partial orders, for instance by 
extracting only sets of paths from partial orders, which brings back the framework 
of classical formal language theory. 

In the present paper we stay with proper partial orders as inputs of automata 
and try to set up connections between such generalized automata and logical sys- 
tems. We suggest a model of finite automaton which keeps the basic intuitive idea 
of nondeterministic automata on words: It is a device which scans "local neigh- 
bourhoods" in a given partial order while (nondeterministically) assigning states 
to the points of this partial order. We show that the details of this idea can be 
fixed in such a way as to allow a clear connection to logical descriptions: A set of 
(finite and labelled) partial orders is recognizable by such a finite automaton iff it is 
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2 WOLFGANG THOMAS 

definable in existential monadic second-order logic (i.e., by a sentence which begins 
with a prefix of existential set quantifiers, followed by a first-order formula). If the 
structures under consideration are even linearly ordered (i.e., words) or if they are 
labelled trees, this result can be sharpened to the well-known equivalence between 
automata and (full) monadic second-order logic. So, regarding automata theory in 
a general context, existential monadic second-order logic can be considered as more 
basic than unrestricted monadic second-order logic. 

In the automata theoretic view, where the notion of "local neighbourhood" 
is essential, it is useful to identify a (discrete) partial order < with an acyclic 
directed graph, taking as edge relation E the minimal relation which generates by 
its reflexive transitive closure the partial order <. (Thus (u, v) G E holds iff u and 
v are distinct, u < v, and there is no w with u < w < v.) 

We shall confine ourselves to finite acyclic graphs of this form in the present 
paper. While the basic ideas are easily transferred also to infinite structures, some 
additional difficulties arise in connection with logic, namely the choice of appro- 
priate acceptance conditions in automata. It is (as yet) not clear whether simple 
acceptance conditions exist which lead to a characterization of interesting logical 
systems (as, for example, the model of tree automaton with the Rabin acceptance 
condition of [Rab69] characterizes monadic second-order logic over infinite labelled 
binary trees). 

As it turns out, the properties of automaton definable sets depend on the 
particular class of partial orders (or acyclic graphs) which are allowed as inputs. 
Special cases of such classes are: words, trees, Mazurkiewicz trace graphs, and 
labelled rectangular grids. We investigate two basic questions: Are the automaton 
recognizable sets closed under complement? When is the nonemptiness problem 
decidable? 

The paper is structured as follows: In the subsequent two sections we introduce 
the necessary terminology concerning partial orders and acyclic graphs, as well as 
the logical systems of first-order logic and monadic second-order logic. Some easy 
propositions are listed which illustrate the expressive power of these logics. In a 
section on first-order logic we present the key theorem which supplies a bridge to 
automata theory. It is a classical result of first-order model theory, due to Hanf 
[Hnf65], but not well-known in the community of theoretical computer science. 
Automata over acyclic graphs are introduced in Section 5. Some special forms are 
presented, and classes of partial orders are singled out over which these special 
forms are no restriction (i.e., normal forms of automata). In Section 6 we analyze 
the possibility of showing complementation lemmas and study the nonemptiness 
problem. The concluding section offers some directions for further research. 

The approach adopted in this paper is based on ideas of [Th91]. Further results 
which serve as background have been shown in [GRST96] (mostly concerning 
labelled rectangular grids) and [PST94] (concerning general acyclic graphs). We 
cannot provide full proofs in this short communication, but try to give enough 
information to enable the reader to supply the details. 

2.  Partial Orders and Acyclic Graphs 

As indicated in the introduction, we consider partial orders in the form of 
acyclic vertex-labelled and edge-labelled directed graphs. Usually we take A as 
label alphabet for vertices and B as label alphabet for edges (both alphabets are 
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finite). As a relational structure, a graph is thus presented in the form 

G = (V,(Pa)aeA,(Eb)beB) 

where V is the set of vertices, the Pa are disjoint subsets of V whose union is V, 
and the Eb are disjoint non-reflexive binary relations over V. The edge set is the 
union E = [j^ß Eb. Thus, we consider a vertex v to be labelled with letter a if 
v € Pa, and an edge (u,v) to be labelled with letter 6 if (u,v) € Eb. In the sequel, 
such graphs are always assumed to be acyclic (which means that no nonempty path 
exists from a vertex v back to v). Hence one obtains a partial order when forming 
the reflexive transitive closure E* of the edge set E. We shall also assume that E 
is given as minimal edge relation generating a partial order; this means we exclude 
the existence of an edge (u, v) in the presence of a vertex w with nonempty paths 
from u to w and from w to v. A vertex u is called root of a partial order < if u < v 
for all vertices v; in the dual case (when v < u holds for all vertices v) we speak of 
a co-root. 

A special case of edge labelling is called indexing, namely when the label al- 
phabet is a set {1,... , Ar} and either the out-edges of each vertex are numbered by 
1,... ,i for some i < k, or the corresponding holds for the ingoing edges of each 
vertex. (We shall speak of out-edge indexing, respectively in-edge indexing.) 

Let us consider the possibility of accepting such graphs by finite-state devices. 
We follow the intuitive idea that acceptance is based on a scanning process which 
checks all "local neighbourhoods" in the graph G under consideration. This scan- 
ning process should associate (generally in a nondeterministic way) states from a 
finite state-set Q to the vertices of G. Here, a minimal version of neighbourhood is 
given by a vertex together with its incoming and outgoing edges and their source 
vertices, respectively target vertices. If the acceptor (or graph automaton) is hon- 
estly finite, it can distinguish only a fixed number of different local neighbourhoods. 
In order to match this assumption on finite-state acceptors, we allow only graphs 
of bounded degree in a recognizable or definable set, i.e., graphs where for each 
vertex v the number of vertices u with (u,v) £ E or (v,u) £ E is bounded by a 
predefined constant d. If such a bound is dropped, non-isomorphic neighbourhoods 
will be confused. This more general case could also be handled in the framework 
to be developed below, but it adds complications and distracts from the essential 
points. 

Let us list some basic classes of graphs and associated partial orders which fall 
under these conventions. 

• Words over an alphabet A: These are (in our case nonempty) structures 
({1,... ,n}, (Pa)aeA,E) where n is the length of the word, 1,... ,n are the 
letter positions, Pa collects the positions carrying letter a, and E is the 
successor relation on {1,... , n}. 

• Ordered labelled trees: Taking the case of binary trees as a typical example, 
these are graphs of the form (V, {Pa)aeA,Ei, E2), where V is the set of tree 
nodes, the sets Pa are used as for words, and E\, Ei are the two relations of 
"first successor" and "second successor", respectively. In the usual way, this 
numbering of the successors induces a "left-to-right ordering" on the set of 
leaves. 

• Dependency graphs of Mazurkiewicz traces (cf. [DR95]): Here the alphabet 
A is given together with a reflexive and symmetric dependency relation 
D C A x A.  The format of dependency graphs is the same as for words, 
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however E does not necessarily generate a linear order but just a partial one: 
The edge relation E respects D in the sense that edges connect only vertices 
with dependent letters and that any two vertices labelled by dependent 
letters are connected by a path. By reflexivity of D, the size of antichains in 
dependency graphs (subsets consisting of pairwise unrelated vertices in the 
associated partial order) is bounded by the size of the alphabet; we say that 
dependency graphs have bounded antichains. 

• Rectangular grids ("two-dimensional words", "pictures", cf. [GRST96]): In 
this case, the vertices are arranged in a two-dimensional array, connected by 
a horizontal successor relation E\ ("to the right") and a vertical successor 
relation E2 ("downwards"). Thus the signature coincides with that of binary 
trees. 

• Mirror tree concatenations: These are obtained by concatenating tree struc- 
tures ti,si,t2,s2,... ,tk,Sk in the following way (we just consider the case 
of binary trees): Each U is a binary tree as above, each s* is obtained from 
a binary tree (with the same number of leaves as in <,) by inverting the edge 
directions (which makes leaves into "sources" and the root into a "target"), 
and concatenation is carried out by identifying the leaves of U (left to right) 
with the sources of s,- (right to left), and identifying the target of s,- with 
the root of i,-+i. 

• (Acyclic) graphs of bounded tree-width k (cf. e.g. [Cou89], [See92]): These 
graphs are associated to trees by the following condition: There is a covering 
of the vertex set by a collection of vertex sets (called "clusters" here), on 
which an undirected edge relation R exists such that 

1. for each graph edge (u, v) there is a cluster containing u and v, 
2. the clusters together with R define an undirected tree t, 
3. each cluster C contains at most k vertices, 
4. the clusters in which a given vertex v occurs form a connected subset 

of the tree t. 

In the order of the list above, we denote the respective classes of acyclic graphs 
by Words, Trees, Traces, Grids, MTreeC, BTWGraphs. 

3.  Basic Logics 

In the sequel, words, trees, traces, grids, and, in general, acyclic graphs, are 
considered as relational structures of the forms above. This allows to introduce 
logical definability notions in a uniform way. Here we do this in the framework of 
monadic second-order logic. Over graphs with the label alphabets A (for vertices) 
and B (for edges), formulas of monadic second-order logic involve variables x,y,... 
for vertices and X, Y,... for sets of vertices; they are built up from atomic formulas 

Pa(x) (for aeA), Eb(x, y) (for b G B), x = y, X(y) 

by means of the connectives -t, V, A,-»-, +->■ and the quantifiers 3,V which may be 
applied to either kind of variable. The notation <p(xi,... , xm, Xi,... , X„) indi- 
cates that in the formula ip at most the variables xx,... ,xm,Xi,... ,Xn occur 
free, i.e., not in the scope of a quantifier. If G = {V, (P^)a€A,(Eb

3)beB) is a graph, 
vi, • • • , vm G V, Vi,... Vn C V, the satisfaction relation 

(G,»i,... ,vm,Vi,..,Vn) \=<p(xu...xm,Xi,... ,Xn) 
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holds if f is formed for the signature given by the label alphabets A, B and satisfied 
in G when interpreting a;,- by v,, Xi by Vj, and of course = by equality, Pa by Pjf, 
and Eb by E^. The superscripts G thus distinguish the relations in interpretations 
from relation symbols in formulas; they will be omitted (as done also above) when 
no confusion arises. 

Let K, be a class of (acyclic) graphs. Relative to AC, a sentence <p defines the 
(graph) language 

L(<p) = {G G K | G \= <p}. 

A language L C K, is called definable in monadic second-order logic (short: MSO- 
definable) if some sentence <p with L = L(<p) exists. 

The significance of monadic second-order logic (MSO-logic) for automata theory 
rests on the following classical result for the class Words: 

THEOREM 3.1. (Büchi [BÜ60], Elgot [Elg61]) 
A language L C A+ is recognizable by a finite automaton iff it is MSO-definable. 

PROOF. The idea for the step from automata to MSO-formulas is to introduce, 
for any state </,- of the given automaton, a set variable Xj for the set of those 
positions in a word where state g,- is assumed in a run. One formalizes the existence 
of an accepting run of an automaton with n states qo, ■ ■ ■ ,qn-i over a word w by 
saying that there are sets Xo,... ,Xn-i such that the first letter position belongs 
to Xo (assuming go is the initial state), each successor step is compatible with the 
transition relation of the automaton, and from the state on the last position, one 
reaches by the last letter a final state. Note that the first and last position are 
definable by the formulas -ByE{y,x) and -i3yE(x,y), respectively. The resulting 
formula is an existential monadic second-order formula, short an EMSO-formula. 

The converse direction, from MSO-formulas to automata, is based on stan- 
dard closure properties of automaton recognizable languages, namely closure under 
union and complement (which captures propositional logic) and projection (which 
captures the existential quantifier). For a more detailed proof see e.g. [Th96].    D 

By applying the second and the first part of the proof in succession, one obtains 
that an MSO-formula (over word graphs) can be rewritten as an EMSO-formula. 

The basis of the proof above is the equivalence between nondeterministic and 
deterministic finite automata: Nondeterminism serves to show closure of recog- 
nizable sets under projection, determinism shows closure under complement. The 
reduction to deterministic automata was shown also for finite automata over trees 
(using the "frontier-to-root mode" in tree automata, cf.[GS84]), whence an ana- 
logue of the theorem above holds also for the class Trees, including the reduction of 
MSO-logic to EMSO-logic. Without treating definitions in detail, let us also men- 
tion that over Traces a similar development is possible, now invoking Zielonka's 
construction of deterministic asynchronous automata ([Zi87]). 

Let us introduce further subsystems of MSO-logic, including first-order logic 
with different signatures. 

In the traditional classification of second-order formulas, the EMSO-formulas 
are also called monadic Ej-formulas. The dual formulas, where a prefix of uni- 
versal set quantifiers precedes a first-order kernel, are called monadic II}-formulas. 
The corresponding properties (defined by such formulas) are called monadic Ej- 
properties, respectively monadic II\-properties. A property which is both monadic- 
Ej and monadic-Il} is called a monadic A}-property. In short we speak of monEj-, 
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monnj-, and monAj-properties. By (monA[) words we denote the class of word 
properties (or: word languages) which are monAj-definable; similarly for the other 
definability notions. 

As an example, consider a monadic Sj-sentence which says that a successful run 
of a finite automaton over a word exists (see the proof above). For a deterministic 
finite automaton this sentence can also be written as a monadic üj-sentence, namely 
as saying: "All state sequences which start in the initial state and which for any two 
succeeding positions are compatible with the transition relation, have a state on the 
last letter position from which (by the last letter) a final state is reached." Since 
finite automata on words can be made deterministic, we thus have the following 
equalities: 

PROPOSITION 3.2. 

(monA})Worrfs = (mon£{)words - (monTlJ)words = MSO words- 

The same is true over Trees. 
First-order logic, short FO-logic (over acyclic graphs) is obtained from MSO- 

logic as above by dropping set quantifications. Typical quantifications in this logic 
are of the form 3y(Eb(x, y)A<p(y)) and Vy(Eb(x, y) -» <p{y)), which express "there is 
a 6-successor of x satisfying <p", respectively "all 6-successors of x satisfy <p". Thus 
FO-logic includes standard process logics, such as the finitary version of "Hennessy- 
Milner-logic" (cf. [Mil90]). 

It is well-known that in first-order logic the transitive closure of a given relation 
is (in general) not definable: In particular, in acyclic graphs the associated partial 
order is not definable. (A proof will be given in the next section.) Thus we obtain 
a stronger system of "first-order logic with <" when to FO-logic as above a symbol 
< for the reflexive transitive closure of the edge relation E is added. We denote 
this system by FO[<]-logic. Typically, it allows to express properties of linear or 
partial orders which are formalizable in systems of propositional temporal logic. 
Over grids, we obtain an expressively equivalent variant of FO[<]-logic when for 
the two edge relations E\ and E?, the respective reflexive transitive closures <i and 
<2 are introduced instead of <. Note that we have x < y iff x <i z and z <2 y for 
some z. Conversely, each relation <, is first-order definable in terms of the relation 
Ei and <: We have x <, y iff x < y and (in case x and y are distinct) any z with 
x < z < y is ^.-successor of some z' with x < z' <y. 

For a class K of acyclic graphs, any of the above notions of definability induces 
a corresponding class of definable graph sets. We denote this class by the logical 
system with an index for the class £, in the form FOK, FO[<]*:, (monEj)jc (= 
EMSOx:), etc. 

The following statement is trivial. 

PROPOSITION 3.3. For any class K, of acyclic graphs, we have 

FOK  C   (monA})*:   C  (monS})*:  C  MSO*. 

Over Words and Trees, FO[<]-logiccan be placed between FO-logic and EMSO- 
logic: One notes that x < y is defined by the MSO-formula 

VX(X(x) A VzVz'((A"(z) A E(z, z')) -»• X{z')) -> X(y)), 

whence the claim follows by the expressive equivalence of EMSO-logic and MSO- 
logic over Words, respectively Trees. In fact, we have a sharper result, establishing 
the following proper inclusions (indicated by "C") and equalities: 
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PROPOSITION 3.4. 

FO Words    C    F0[<] Words    C    (monAj) Words    -    (monSj) Words    =   MSO Words- 

PROOF. (Hint.) The language a*ba*ca* is an example of a word set which is 
definable in FO[<]-logic by the sentence 

3x3y(Pb{x) Ax<yA Pe(y) A Vz(-i(z = x V z = y) -> Pa{z))) 

but not in FO-logic (see next section). The next proper inclusion is exemplified by 
the set of words of even length. It is definable by a monadic E}-sentence requiring 
a set X of positions which contains the first letter position, then every second 
position (i.e. satisfying V£iz'{E{z,z') —>■ {X(z) <-» -iX(z'))), and does not contain 
the last position. An equivalent n}-sentence says that all sets which contain the 
first position and then every second position do not contain the last position. An 
application of the Ehrenfeucht-Fraisse method shows that the word property of 
having even length is not expressible in first-order logic with linear ordering (cf. 
e.g. [EF95], [Th96]). The last two equalities are clear from Proposition 3.2.      D 

In Section 6 we shall see that over Grids, FO[<]-logic and EMSO-logic (or 
(monEj)-logic) are incompatible in expressive power, and that the last two equali- 
ties of Proposition 3.4 turn into strict inclusions. 

4. Hanfs Theorem 

In [Hnf65], Hanf showed that in the first-order language of graphs only "local 
properties" can be specified. A property is local if it depends only on the occur- 
rence (or non-occurrence) of certain local neighbourhoods around vertices. More 
precisely, call (for r > 0) r-sphere around vertex v in the graph G the induced 
subgraph over those vertices in G which have distance < r to v, and with v as 
designated center. (The distance of u to v is < r if there is a path v$v\.. .Vk with 
k < r, v0 = v, Vk = u, and (vi,vi+i) € E or (i>,-+i,t>,-) G E for i < k.) Clearly, 
if the graphs under consideration are of bounded degree (and of a fixed signature 
regarding the labellings), there are only finitely many possible isomorphism types 
of r-spheres. 

It is easy to write down a sentence <pT,>n which says that there are at least n 
different occurrences of spheres of a given isomorphism type r. Using conjunctions 
of such sentences and negations of such sentences, one can specify for finitely many 
types T"i,... ,rm that the occurrence number of r,- is < n<, or < n,-, or = ra,. A 
graph language L defined by a disjunction of such conditions (or equivalently: by 
a boolean combination of sentences <pT,>n) is called locally threshold testable. 

Equivalently, L is representable in terms of a certain equivalence relation ~rit 

between graphs. Define G ~r,t G' to hold if for all types r of r-spheres, the 
occurrence numbers of r in G and G' are both >< or else coincide. Over graphs 
of bounded degree, ~r>t is an equivalence relation of finite index. An easy exercise 
shows that a set L is locally threshold testable iff L is a union of ~rit-classes for 
some radius r and threshold number t. 

The main result in the first-order model theory of graphs says that the above 
mentioned conditions on occurrence numbers already exhaust the expressive power 
of first-order logic: 

THEOREM 4.1. (essentially Hanf [Hnf65]) 
A first-order definable set of graphs (of bounded degree) is locally threshold testable. 

11 
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In particular, a first-order sentence is equivalent to a boolean combination of sen- 
tences of the form "there are > n occurrences of r-spheres of type T". 

The proof rests on an application of the Ehrenfeucht-Fraisse-game. We refer 
the reader to [EF95], [FSV95], or [Th96] for details. 

Let us sketch three applications. First, we verify that the language L — 
a*ba*ca* is not in FOwords- Otherwise, we would obtain a contradiction: From 
an assumed FO-sentence defining L we would obtain r and t such that two words 
(word models) which are ~r_t-equivalent are both in L or both not in L. But it is 
easily seen that for sufficiently large n the words anbancan(e L) and ancanban(g L) 
have the the same occurrence numbers of r-spheres counted up to threshold t and 
thus are ~r]t-equivalent. 

In a similar way, it is shown in the domain Grids that the set of all square grids 
(of size n x n for n > 1, whose vertices are all labelled with a) is not first-order 
definable. 

Finally, as a preparation to the next section, we note the following consequence 
of Hanfs Theorem: 

PROPOSITION 4.2. The class EMSO*: coincides with the class of projections of 
locally threshold testable languages L C K,. 

PROOF. AS a preparation, consider a graph G with vertex labels in A. An 
expansion (G,Vi,... ,Vm) by designated vertex sets Vt, which allows to interpret 
a formula <p{X\,... , Xm), can be represented as a graph H with vertex labels in 
A x {0, l}m: The i-th additional component has value 1 for vertex v iff v € V{. 

Now a graph G satisfies a sentence 3XX ... 3Xm<p(Xi ,...Xm) (with first-order 
formula if) iff some graph H, which arises from G by expanding the vertex labels 
from A to A x {0, l}m, satisfies ip(Xi,... ,Xm). But this is equivalent to the 
existence of a graph H in L(y?) (which by Hanfs Theorem is a locally threshold 
testable language) such that h(H) = G for the projection h : Ax {0, l}m -* A.    D 

Hanfs Theorem connects first-order logic to local properties and is thus a good 
starting point for a logically motivated automata theory over graphs. 

5.  Finite-State Acceptors and Special Forms 

We introduce graph acceptors which capture projections of locally threshold 
testable sets: 

A graph acceptor over the alphabets A, B has the form A = (Q, A, B, A, Occ) 
where 

• Q is a finite set (of "states"), 
• A is, for some r > 0, a finite set of r-spheres with vertex labels in A x Q 

and edge labels in B, 
• Occ is a boolean combination of conditions "there are > n occurrences of 

spheres of type r" (where T is an r-sphere type over the label alphabets 
Ax Q and B). 

We call A the set of transitions and Occ the occurrence constraint. 
The graph acceptor A accepts the graph G if it can be "tiled by transitions" 

such that a consistent assignment of states to vertices (a "run") is defined and 
such that the occurrence constraint is satisfied. Formally, there should be a run 
p : V —>■ Q such that each r-sphere of the expanded graph Gp with vertex labels 

V"- 
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in A x Q matches a transition from A, and the occurrences of these spheres are 
compatible with the constraint Occ. We call this covering of G an "accepting tiling" 
of G and sometimes speak of transitions as "tiles" and graph acceptors as "tiling 
systems" (cf. [Th91]). 

The graph language recognized by A (relative to the graph class K.) is 

LK{A) = {G e K, | A accepts G). 

We say that L C K, is recognizable iff L = Ln{A) for some graph acceptor A. 
By Proposition 4.2, graph acceptors characterize existential monadic second- 

order logic: 

PROPOSITION 5.1. For any class K of graphs of bounded degree, a language 
L C K is recognizable iff L G EMSO*;. 

Similarly, a language L is recognizable by a graph acceptor with only one state 
iff L is first-order definable. 

Usual finite automata over words or trees are simulated by special graph accep- 
tors, in which only 1-spheres are used as transitions and the occurrence constraints 
are cancelled. The use of initial and final states in the classical model is captured 
by the use of 1-spheres whose designated center has no predecessor, respectively no 
successor; such transitions can only be used at the beginning, respectively at the 
end of a word. 

In comparison with classical automata, two features of graph automata seem 
complicated: the use of r-spheres for r > 1, and the use of occurrence constraints. 
We shall see that both features can be eliminated only with extra restrictions on 
the input graphs. 

In order to see that over acyclic graphs in general the use of r-spheres in transi- 
tions can not be eliminated by resorting to 1-spheres only, we consider the following 
example, suggested by S. Seibert. 

PROPOSITION 5.2. Let Ln be the set of "n-supergrids", which have vertex label 
"a" throughout and are obtained from standard grids by substituting for any edge 
an edge sequence of length n (called usuper edge"). Ln is recognizable (in the class 
of partial orders) by a graph acceptor with 2n-sphere transitions, but not by graph 
acceptors with 1-sphere transitions. 

PROOF. It is easy to verify recognizability of Ln by a graph acceptor with 2n- 
sphere transitions. For contradiction, consider a graph acceptor A which recognizes 
Ln (say for n > 4) with 1-sphere transitions. In an accepting run of a large enough 
n-supergrid, there will be two occurrences of the same 1-sphere transition at corre- 
sponding positions on two superedges, not touching the ends of the superedges and 
unrelated in the partial order of the supergrid. (One may choose two occurrences of 
the same 1-sphere transition at the central positions of two superedges in the same 
row or in the same column of a large enough n-supergrid.) Obtain a new graph by 
exchanging the targets of the outgoing edges in the two 1-spheres covered by these 
transitions. The new graph is still acyclic, accepted by A, but not in Ln. D 

A similar idea appears in Example 3.2 of [Th91]; there it is shown that our 
graph acceptors are properly more expressive than the dag automata of Kamimura 
and Slutzki [KS81]. 

In contrast to the proposition above, one verifies that over the classes Words, 
Trees, Traces, and Grids, the use of 1-spheres is sufficient.   (The reduction from 
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r-sphere transitions to 1-sphere transitions involves a blow-up in the number of 
states.) Moreover, in the domain Grids there is a variant of 1-spheres which may 
seem more natural: In the approach developed in [GRST96] over Grids, the tran- 
sitions are just (2 x 2)-squares of four vertices and edges. In this model, where 
transitions have no designated center, the corners and borders of grids are no more 
detectable (i.e., tilable by special transitions only), and thus grids are presented 
with extra rows and columns of border markers #, also to be covered by transi- 
tions. 

A precise description of the class of acyclic graphs where in graph acceptors 
the use of 1-sphere transitions suffices is not known. 

Let us turn to the occurrence constraints. In general they can also not be elim- 
inated: We consider the set of acyclic graphs G„ made up of vertices uit... , un 

and vi,... ,v„ as follows: From u,- there are two edges, one to vt and one to 
u(»'+i) mod n- <-)ne mav imagine the u,- and the u,- arranged in two circles (modulo 
n), with two pointers from each vertex of the first circle to the second circle. Now 
consider the graph language L consisting of such graphs where at least one u,- is 
labelled a and the remaining vertices (not labelled a) are labelled b. It is clear that 
by an occurrence constraint the existence of a vertex with label a can be guaran- 
teed. Now, for a contradiction suppose that L is recognizable without occurrence 
constraints. Consider the graphs Gn over ux,... ,un and vx,... , vn with precisely 
one label a, say at m. For sufficiently large n, there will be an accepting tiling 
where a transition is repeated, say with centers at «,- and Uj and such that ux is 
not covered by these two copies of the transition. Then the graph with vertices 
«f+ii • • - , Uj,Vi+i,.. .VJ (built up modulo j - i), which has no label a, admits also 
an accepting tiling, a contradiction. 

In some situations, however, the occurrence constraints can be eliminated (at 
the cost of more states in graph acceptors). In particular, this applies to the classes 
Words, Trees, and Grids. The idea is to implement a threshold counting procedure 
within the transitions, using the partial order to avoid loops in the counting process. 
It is essential that the overall counting result can be collected at some special vertex. 
This motivates the following claim: 

PROPOSITION 5.3. Let K be a class of acyclic graphs which have indexed out- 
edges and a co-root (and hence are connected). Then a language L C K, is recogniz- 
able iff it is recognizable by a graph acceptor without occurrence constraints. The 
same holds if the graphs in K have indexed in-edges and a root. 

PROOF. Consider a graph acceptor with state set Q, transitions n,... ,rk (say 
of radius r), and occurrence constraint Occ in which t is a threshold such that 
occurrence numbers > t are not distinguished in Occ. We construct a new graph 
acceptor whose states are vectors (q, rai,... ,nk) with n,- < t for i = 1,... , A;. 
At vertex v this vector indicates that state q G Q is assumed and "up to now" 
the transition r,- has occurred n,- times. These occurrence numbers are updated 
following the paths of the partial order of the input graph. The indices of the 
out-edges serve to avoid double-counting: The accumulated occurrence numbers 
are transferred only along the outgoing edges with index 1. Thus, for an r-sphere 
of type Ti whose center has no incoming edges, only the vector («i,... ,nk) with 
n,- = 1 and nj = 0 for j ^ i is allowed. Any given r-sphere, say of type r,-, which 
has incoming edges, is (in its center) supplied with a vector (m,... , nk) where each 
nj is the sum of the j'-th components of the sources of incoming edges which carry 
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index 1, and where furthermore 1 is added to n,- (to capture that the present type 
is r,). Finally, r-sphere transitions for the co-root (the vertex without outgoing 
edges) are allowed only for the case that the center vertex is labelled with some 
vector (r»i,'... , nk) which satisfies Occ. 

The proof for the case of indexed in-edges and the existence of a root is analo- 
gous. D 

It is clear that words, trees, and grids are subsumed by the preceding propo- 
sition. Formally, in the case of grids one has to modify the edge labels in order 
to have indexed out-edges: The vertices of the last column of a grid, which have 
no (horizontal) £"i-successors in the original convention, should now have vertical 
out-edges in E\ (instead of £2). The elimination of occurrence constraints over 
grids is treated in detail in [GRST96]. 

Finally, we turn to a special form of acceptor on partial orders which represents 
a proper restriction: deterministic acceptors. Partial orders are a useful assump- 
tion for introducing deterministic acceptors; there should be a uniqueness in the 
construction of runs when proceeding from smaller to greater vertices in the partial 
order. There seems to be no canonical definition of deterministic graph acceptors; 
and even over simple acyclic graphs like the rectangular grids there are several pos- 
sibilities. We suggest here a "determinism by states" (rather than "determinism 
by transitions"). We call an acceptor (say with r-sphere transitions) over partial 
orders deterministic if for any r-sphere around a vertex v and any state assignment 
to the vertices u < v in this r-sphere, the assignment of a state to v (by the available 
transitions) is unique. (Note that a certain "lookahead" is built into this definition 
because a sphere has to match a whole neighbourhood of the input graph.) So, 
the state assignment is unique per se for vertices which have no predecessors in the 
partial order. This definition is compatible with determinism over words and trees 
(using frontier-to-root tree automata, i.e., with the reversed partial order in trees). 
For a class /C of acyclic graphs, denote by Detje the class of languages L C K, which 
are recognized by deterministic graph acceptors. 

An example of a language in Det Grids is the set of square grids (trivially labelled 
by a throughout). The assignment of states can be arranged such that a special 
state is associated to the diagonal starting from the unique vertex without incoming 
edges (which we assume to be on the top left corner). The square property is verified 
when in transitions for other border positions this special state is allowed only for 
the vertex without any outgoing edges (at the bottom right corner). 

Let us verify that determinism is a proper restriction. A well-known example is 
provided by the domain Trees when scanned in root-to-frontier mode (cf. [GS84]). 
But also over partial orders which have a co-root (where information of a run can 
be gathered in a single vertex) this phenomenon occurs: 

PROPOSITION 5.4. There is a grid language which is recognizable by a graph 
acceptor but not by a deterministic graph acceptor. 

PROOF. A suitable example is provided in [PST94]: Consider the set L of 
square grids which have label b everywhere except for two vertices labelled a on the 
right border and bottom border, in the same distance S to the right-bottom corner. 
(Call this S the "a-distance".) An appropriate nondeterministic graph acceptor 
guesses a point on the diagonal (from the top left to the bottom right corner), and 
from this point sends two "signals" (in the form of special states), one horizontally 

*5> 



12 WOLFGANG THOMAS 

to the right, one vertically to the bottom. If at the two border points hit in this 
way letter a occurs, this information can be transmitted to the bottom right corner 
(where the transitions are defined as to check this). The test that otherwise letter 
b occurs is easily implemented. 

Now suppose that a deterministic graph acceptor recognizing this grid lan- 
guage L exists. Invoking the construction of Proposition 5.3, we can assume that 
occurrence constraints are eliminated (note that the construction transforms deter- 
ministic graph acceptors again into deterministic ones). Suppose the acceptor has 
r-sphere transitions. Then the states of accepting runs on two grids from L of the 
same size are identical except for the last r rows and last r columns. The (r + l)-st 
last rows thus coincide except for the last r columns. Because there are only finitely 
many assignments of transitions to the last r positions of a row, there exist (for 
sufficiently large size of input squares) two squares Gx, G2 G L of same size and 
with two different a-distances such that in the corresponding accepting runs also 
the last r transitions on the (r + l)-st last row coincide in d and G2. Then the 
last r rows from the accepting tiling of Gi can be exchanged with the last r rows 
of the accepting tiling of G2. Hence a grid outside the language L is accepted, a 
contradiction. rj 

For deterministic acceptors over Grids, the reduction of r-spheres to 1-spheres is 
no more possible. A simple example is the set of computations of a Turing machine. 
Such computations are represented in a space-time diagram and hence in grid form. 
To check a labelled grid for being a computation of a given Turing machine, one 
can use a deterministic (single-state) acceptor using 2-sphere transitions, but not a 
deterministic acceptor with 1-sphere transitions. 

Determinism corresponds to a restriction of EMSO-logic. As in the case of 
words (see Proposition 3.2), monadic £j-definitions can be put into Il}-form: 

PROPOSITION 5.5. If a language L C K, of acyclic graphs is recognizable deter- 
ministically, then L G (monAj)^. 

6.  Some Results on Expressiveness and Decidability 

In this section we come back to the question raised in the introduction: Over 
which classes of acyclic graphs (or generated partial orders) are the recognizable 
sets closed under complement (i.e., EMSO-logic is as expressive as MSO-logic), and 
when is the nonemptiness problem decidable? Whereas both questions are solved 
positively in the domains Words, Trees, Traces, let us see that this fails over Grids. 
In the statement below we also include the relation to deterministic recognizability 
and A}-properties. At the same time, we settle the relation between EMSO-logic 
and FO[<]-logic over grids. 

THEOREM 6.1. (a) The following inclusion chain is proper: 

DetGrid5   C   (monAj)Grirfit   C   (monE|)Grirf,  c  MSOGr,rfj5 

(b) The classes FO[<]Gridj and (monE\)Grids are incompatible with respect to 
inclusion. 

(c) The nonemptiness problem of graph acceptors over grids is undecidable. 

PROOF, (a) The inclusions as such are clear from the preceding remarks. To verify 
that the first inclusion is strict, take the example set L of Proposition 5.4. To 
show that L is in (monAj)Grids, it remains to supply a (monllj)-definition. Such 
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a sentence can be constructed starting from the following condition: "For each set 
X of vertices consisting of (1) a prefix of the diagonal up to some vertex u, (2) the 
vertices to the right of u on the same row, ending with v, and (3) the vertices below 
u on the same column, ending with w, we have: if v is labelled with a, so is w." 

For the strictness of the second inclusion, we identify a grid with its sequence 
of columns, regarding as column the associated sequence of vertex labels. Following 
[GRST96], we consider the set N of grids of the form GH where G and H are 
distinct square grids of the same size over the vertex label alphabet {a, b}. This set 
is monadic £*, because the existence of a pair (x,y) of vertices (at corresponding 
positions in G and H) with distinct labels can be formulated using existential set 
quantifiers. (Namely, there should be a set X\ containing all points on the same 
horizontal as x, and furthermore a set Xi which occupies the diagonal, which starts 
at the topmost vertex above x, downward to the right. Now y is the unique point 
above the end of this diagonal which belongs to X\.) In order to show that N is not 
monadic n}, it suffices to show that the set of grids GG, consisting of two identical 
square grids, is not monadic £}. Here we use the characterization of monadic 
£}, i.e. EMSO-logic, by graph acceptors with 1-sphere transitions and without 
occurrence constraints. Such a graph acceptor can transfer the information from 
the left square grid to the right square grid only via the two stripes of transitions 
along the border between the two half grids (of square form). For the given graph 
acceptor, the number of such stripes is k(r'") (for some fixed k and r) in the length 
n of the sides of squares. However the number of possible squares grows by the rate 
2" . Thus, for sufficiently large n we find distinct squares G and H of side length 
n such that on accepting tilings over GG and HH the stripes of 1-spheres right 
and left to the central border are identical. This implies that GH and HG are also 
accepted, a contradiction. 

The set of grids GG where G is square shows that also the last inclusion of the 
claim is proper. 
(b) The set of grids consisting of a single column of even length is (mon£})-definable 
but not FO[<]-definable (see Proposition 3.4). In order to exhibit a grid language 
which is FO[<]-definable but not (monSj)-definable (i.e., not recognizable), con- 
sider a variant of the set N above: the set M of grids of the form GCH where C is 
a column labelled by a special letter c and where the sets of different column words 
occurring in G and H (over the vertex label alphabet {a, b}) coincide. This set M 
is definable in FO[<]-logic, making use of the condition that for all positions x in 
the first row before the vertex labelled c, there is a position y in the first row after 
the vertex labelled c such that the columns associated to x and y coincide; similarly 
for each such y after the c-labelled vertex there is a corresponding x before the c- 
labelled vertex. The coincidence of the columns below x and y is easily formalizable 
with the relations <i and <2, which in turn are definable in terms of < (as shown 
in Section 3). The proof that M is not (monEj)-definable is analogous to part (a) 
above, using the fact that for any constants k and r, the number of distinct sets of 
columns of length n exceeds fc(rn) for sufficiently large n. 
(c) We show that for any Turing machine M we can define a graph acceptor AM 

over an appropriate label alphabet which accepts some grid iff .M halts when started 
on the empty tape. The idea is to let A accept just those grids which code a halting 
computation of M on the empty tape. Such a halting computation is finite in space 
and time (the two dimensions of the grid). Thus, the first line of such a grid is a 
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sequence of blanks, with one pair (s0, blank) (where s0 is the initial state of M). 
The correct succession of Turing machine configurations can be checked using 2- 
sphere transitions. That the grid is suffiently large to include all work cells of the 
computation is guaranteed by excluding transitions for border vertices which code 
work cells. Finally the last line should include a final state of M. D 

It should be noted that over Words, Trees, and Traces all classes of part (a) of 
the preceding theorem coincide (cf. Proposition 3.2). 

An interesting problem is to find classes of partial orders beyond the do- 
mains Words, Trees, and Traces, over which EMSO-logic is closed under comple- 
ment and/or where the nonemptiness problem for recognizable sets (satisfiability of 
EMSO-logic) is decidable. We discuss three classes: the partial orders with bounded 
antichains, the mirror tree concatenations, and the acyclic graphs of bounded tree- 
width. 

Partial orders with bounded antichains constitute a generalization of trace 
graphs, in which the partial order is no more tied to a dependence structure of 
the vertex label alphabet. By a small modification of parts (a) and (c) of the 
preceding theorem, one verifies the following: 

PROPOSITION 6.2. Over acyclic graphs with bounded antichains, EMSO-logic 
is not closed under complement, and the satisfiability problem for EMSO-sentences 
(and hence the nonemptiness problem for finite-state graph acceptors) is undecid- 
able. 

PROOF. We modify the grids of the preceding theorem (following an idea of 
I. Schiering): In the definition of the first successor relation (which proceeds hor- 
izontally from left to right), add an extra edge from the last vertex of each row 
(excluding the last two rows) to the first vertex of the second-next row, respec- 
tively. The resulting grid structure generates a partial order with antichains of at 
most two elements. One can now adapt the proofs of claims (a) and (c) above for 
these modified grids. □ 

For the class MTreeC if mirror tree concatenations we do not know whether a 
complementation result of EMSO-logic holds. However, it is easy to see that the 
nonemptiness problem for graph acceptors over the class MTreeC is undecidable: 
We use the undecidability of the nonemptiness problem for intersections of context- 
free languages. Given two context-free grammars G\,G2, one can construct a graph 
acceptor which accepts a pair (t, s) of mirror-concatenated trees iff t is a derivation 
tree for G\, s is an inverted derivation tree for G2, and the common sequence of 
leaves for t and s consists of terminal symbols only. Such a pair (t, s) exists iff G\ 
and G2 generate a common terminal word. 

A better candidate domain for generalizing the classical closure and decidability 
results of automata theory seems to be the class of graphs of bounded tree-width. As 
shown by Courcelle [Cou89], the satisfiability of MSO-sentences over BTWGraphs 
is decidable. However, a reduction of MSO-logic to EMSO-logic (or equivalently: a 
complementation theorem for EMSO-logic) is unknown. In a restricted case, this 
reduction is possible ([ST96]), namely where a tree decomposition exists whose 
clusters are vertex sets which are connected by the symmetric closure of the graph 
edge relation. 
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7.  Conclusion 

In this paper, some suggestions were developed towards an automata theory 
over partial orders, and connections to various logical systems were established. 
We studied EMSO-logic and acceptors over several classes of finite partial orders 
and investigated the complementation problem and the nonemptiness problem for 
recognizable sets. 

Some open questions have been mentioned already. Let us list some further 
directions which are unexplored. 
(1) A theory of recognizable sets of infinite partial orders. Over which classes of 
infinite partial orders is it possible to introduce logically meaningful acceptance 
conditions, and what are these conditions? Over which classes is the nonempti- 
ness problem decidable, possibly such that furthermore nonempty recognizable sets 
contain "regular" partial orders (where the meaning of "regular" is also open)? 
(2) Complexity bounds for transformation algorithms and decision procedures. We 
did not discuss the complexity issue, e.g. in the conversion of formulas into au- 
tomata or for the nonemptiness test. Note that already in the domain Traces, the 
available algorithms are of such a high complexity that a practical application seems 
hard. 
(3) Development of other descriptive formalisms. Instead of systems of classical 
logic, more restrictive systems should be studied, whose expressive power might suf- 
fice for interesting applications but with acceptable complexity bounds e.g. for the 
satisfiability problem. These can be versions of regular expressions (cf. [BDW95]), 
or restrictions of EMSO-logic, or of FO[<]-logic, over partial orders. 
(4) Comparison with the algebraic approach to recognizability. Here we refer to 
Courcelle's theory of recognizability, which is based on many-sorted and locally 
finite graph algebras (cf. [Cou90]). The class of recognizable graph sets in this 
setting is closed under boolean operations, and all MSO-definable sets turn out to 
be recognizable. Over Grids, recognizability in the algebraic sense is even strictly 
stronger than MSO-definability. It is open whether, for instance, the two approaches 
of recognizability (via tilings and via locally finite algebras) coincide for exactly 
those classes of partial orders where EMSO-logic is closed under complement. 
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ALGEBRAIC MANIPULATIONS AND VECTOR LANGUAGES 

Algebraic Manipulations and Vector Languages 

M. W. Shields 

1. Introduction. 

Vector languages [3, 4] stand in relation to Mazurkiewicz trace languages [2] in 
much the same way as matrices stand in relation to linear transformations. Given 
a basis, a linear transformation determines a matrix; given an indexed cover, a 
Mazurkiewicz trace determines an cc-vector, a vector of strings. The advantage of 
the representations in each case is that they are in some sense easier to 
manipulate. In particular, operations such as concatenation or constructing least 
upper bound may be performed co-ordinatewise 

We illustrate this claim in section 4, in which we prove various order 
theoretic properties of the monoid of a-vectors. In section 3, we show that this 
monoid is structurally identical to a monoid of Mazurkiewicz traces. These 
results are used to establish properties of a partial order semantics for a class of 
extended automata, the hybrid transition systems. In particular, we show that 
any system of labelled partial orders which is prefix closed with respect to an 
ordering interpretable as 'is an initial part of may, up to isomorphism, be 
generated by some hybrid transition system from an initial state. 

2. Hybrid Transition Systems. 

2.1. DEFINITION. A hybrid transition system is a 6-tuple H -(Q,A,-*, i,E,\i), 
where 

• Q is a set of (global) states,; 
• A is a set of actions; 

• -*CQx AxQ is the transition relation. We write q, -*' q2 to indicate that 

(qu a,q2)E-*; 

• i C A x A is an irreflexive, symmetric relation, the independence relation; 
• £ is a set of events; 
• [x: A -* 2? (E), where # (E) denotes the set of bags over E. 

satisfying 
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(1) If qvqz,q3 GQ and aGA suchthat q-*' qy and q-*' q2, then q, = q2 

(2) If quq2,q3GQ and a,bGA such that q,—"qz^
bq3 and aib, then there 

exists % GQ such that q, -*" f{2 ■—' q3. 

Informally, if q, -*' q2 then at state q, it is possible for events belonging to the 
bag \i(a) to occur simultaneously, sending the system to state q2. For the purpose 
of this paper, we shall concentrate on asynchronous systems, and treat (x as a 

function \i: A -* E. Thus, if </, -»" q2 then at state q, it is possible for the event 

\i(a) to occur sending the system to state q2. If aib, and both qx -*■' q2 and 

?i ~*b q3 ^
en ^ is possible for the events \a(a) and \x(b) to occur concurrently 

from state qv Figure 1 pictures a hybrid transition system in which the states 
are represented by dots and the transition relation is represented by labelled 

arrows. For example, there is a transition q, -*' q2 with \i(a) - e. The shading in 
the lozenge shape indicates that a i b 

We shall now describe a partial-order semantics for hybrid transition 
systems; this is built on a means for deriving systems of partial orders from a left- 
closed trace language as developed in [1, 5, 6]. 

Let H be a hybrid transition system We define a partial function 
e„:QxA*-Qby 

e„<q,Q)-q 
9H (q, x. a)-q' <**> 6H (q, x) -*' q' 

where Q is the empty sequence, x GA* and aGA.lt q0 GQ, then we define 

L(H,q0) - [x GA*\QH(q0,x) is defined; 

and note that L(H, q0) isa prefix closed, in the sense that 

xGL(H,q0)*y<ix=>yGL(H,q0) 

where s is the usual prefix ordering on strings. 

b (ft a (e) 

q 1 >. j-r c (e) 

a (e) b (ft 
9r: 

Figure 1 
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In the example of figure 1, we have L(H, qi) - {Q, a, b, ab, ba, abc, bac}. 

We define =1 to be the smallest congruence relation on A* such that if a i b, 
then ab «t ba, A ^-equivalence class is a Mazurkieioicz trace. We shall write xL for 
the =i-equivalence class of xGA*. and denote the set of all ■ -equivalence 
classes of A* by At*. A trace language is a subset of At*. 

Since »t is a congruence relation, we may make At* into a semigroup by 
defining 

*-yL-(*-yA (2.1) 

We may also define what may easily be proved to be a partial order on Av* by 

xt syt •**-3zEA*:xi.zi - yt (2.2) 

Returning to hybrid transition systems, we associate the pair (H,q0) with the 
trace language 

TL(H,q0)-{xJx<=L(H,q0)} 

and note that TL(H, q0) is a prefix closed, in the sense that 

x GTL(H,<70; A y, * ^ =* y, (ETL(H,q0) 

In the example if figure 1, we have 

We shall say that an element xt of A,* is prime if and only if 

Vyuy2 BA*Vaua2 eArfy,.«,), - xt - (y,.«,^ =>a, -a2 

and define X-OtJ to be the unique a E.A such that ^ - (y. a)^ some y EL A*'. Thus, 
for each xt GAt*, we may define a labelled partial order PO(xJ - (X,&,\io\), 
where X is the set of primes s xt. The interpretation is that the elements of X are 
occurrences, where pt is an occurrence of event \iCK(pJ). If pt &p[ , then pt 

occurs before p'. 
Incidentally, it may be shown that these elements are the primes of At * in the 

order theoretic sense; if a prime pt lies below the least upper bound of a set, then 
it lies under one of the element of that set. 

In the example of figure 1, the primes are the traces ait b^ and (abc)t 

Thus, if H - (Q,A,—, v,E,\i) is a hybrid transition system and q0 E.Q, then 
we may associate the pair (H, q0) with a set of labelled partial orders: 
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PO(H,qJ - {PO(xJ\Xi<=TL(H,q0)} 

PO(H, q,) for the example of figure 1 is pictured in figure 2. 

Let us investigate the sets PO(H,q0). First, we define a relation on labelled 
partial orders. 

2.2. DEFINITION. (Xu&u^)±(X2,z2,4>2) if and only if: 

(1) x,cx2 

(2) Vxux2 GX2:x, s, x2 **> x2 GX, A X, S2 X2 

(3) to EX,: (j), (x) - (j>2 (x) and ranged^,) - range($2) 

< is easily seen to be reflexive, antisymmetric and transitive, so restricting it to 
PO(H,q0) turns the latter set into a partial order. The ordering relation on 

PO(H, q,) for the example of figure 1 is shown in figure 2. 
A set of labelled partial orders is prefix closed if and only if 

P2 £SAP^P2=> P, e® 

The following theorem states the main properties of this construction. For 
convenience, if U EA*, then we define (Xu, su, $u) - PO(U) and if P - (X, s, §), 
then we define Xp - X, sp -s and typ - §. 

2.3. THEOREM . If H - (Q,A,-»vi/E/|A,) is a hybrid transition system and q0 GQ, 
then 

(1) PO:TL(H,q0)-~ PO(H,q0) is a poset isomorphism; 
(2) PO(H, q0) is a prefix closed set of finite labelled partial orders. 

PROOF. (1) Let U, V EA;. It is immediate that if U s V, then Xu C Xv and that if 

pGXu, then $u(p)-\(p)-$v(p) and rtmge($u) - E-range($v). If pup2GXv, 
then 

Pi su P2 «> P, * Pa A P„P« eXu <*» p, s p2 A p2 <=XU <*> pt sv p2 A p2 GXU 

D 
< 

< 

< 

■< 

• a 
 L„ • h.\ * 

Figure 2. 
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and we have established that PO(U)<PO(V). It is now clear that PO is 
monotonic and onto. To complete the proof of (1) we need the following order 
theoretic property, which we establish in section 4. 

UGA;^-UXU-U (2.3) 

where U Xu denotes the least upper bound of the set X^. From this, we obtain 

PO(U)± PO(V) => Xu C Xv =*U -UX„ sUX, - V 

which entails that PO is injective, and hence bijective, and that  PO~' is 
monotonic. 
(2) It is clear that the posets in PO(H,q0) are finite. Suppose that U ETL(H,q0) 

and  P<PO(U). We need another order theoretic property, which we also 
establish in section 4: 

faweA^vzep.'ZsWj^uPGA; (2.4) 

It then follows that V-UPGA,* and that VsU. Since TL(H,q0) is prefix 
closed, V GTL(H, q0). We conclude the proof by showing that P - PO(V) and in 
view of the definition of PO, it suffices to prove that Xp - Xv. But if W is prime 

then WEXP »WsVoWGV,. 
QED 

Our next theorem shows that up to isomorphism, every prefix-closed system 
of labelled partial orders is determined by an initialised hybrid transition system. 
This means that our automata model is in some sense capable of describing any 
discrete, discrete system. 

2.4. DEFINITION. Labelled partial orders (Xuzufa) and (X2,z2,<b2) are 
isomorphic if and only if there is a bijective function /.X, -» X2 satisfying 

(1) Vx,x'(=X<:x*,x' <*>f(x)z2f(x'); 

(2) y/x^X,:^(x)-^(f(x)) 

We write (Xuzu^)m (X2,&2,§2) to indicate that fX,,£,,$,,) and (X2,&2,§2) are 
isomorphic. 

2.5 DEFINITION. Two sets of labelled partial orders IS, and <B2 are isomorphic if 
and only if there exists a bijective function 4>:®, -* lB2 such that 

(1) VP.P'E.'ByPlP' *>WP)<MP')) 

(2) VP £«,.•?-<1>(P). 
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We write $, * <B2 to indicate that #, and #2 are isomorphic. 

2.6 THEOREM . Suppose that <B is a prefix closed set of finite labelled partial 
orders, then there exists a hybrid transition system H = (Q, A, -*, i, E, \i) and 
% <EQ such that ® > PO(H,q0). 

The proof of this theorem uses a result about systems of partial orders. So as 
not to introduce too long a break in this exposition, we have consigned both to an 
appendix. 

3. Vector Languages. 

Let A be a set. An indexed cover for A is a function a: 7 -* * (A) satisfying 

\Ja(i)-A 
ia 

It is clear that the relation ia C A x A given by 

aiab#>(Viel:{a,b}g,a(i)) (3.1) 

is an independence relation. On the other hand, if i is an independence relation, 
then there exists an indexed cover a such that t - ia. For example, define 

I-((a,b}QA.\afb} 

and let a be the identity function. 

3.1. EXAMPLE.  If  A-{a,b,c}  and    i~{(a,b),(b,a)},  and   aifW-'MJ  is 
defined by a(V - {a,c} and af2) - {b,c}, then i - ia. 

3.2. DEFINITION. We define Ma to be the set of all functions x:I^~ (A*) 
satisfying 

Vi<=I:x(i)(=a(i)*. 

If I - fl, • • •,«/, then we may represent x GMa as a tuple (x(V, • • •, xfnj). We refer 
to the elements of Ma as string vectors. 

We may make Ma into a semigroup and partially ordered set by defining 

Vi G7: fx. yXi) - xff). yd'j (3.2) 

x s y *> (Vi GJ.-xd',) <: yd'j) (3.3) 

s-y 
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Ma has as semigroup identity and poset bottom element the string vector Qa 

which satisfies Vier.QJi) - Q. 

3.3. DEFINITION. If a EA, then we define the string vector aa by 

f a if a Ea(i) 
«ad)-\n    ,       • (3-4) Q otherwise 

We define the set Aa* of a-vectors to be the submonoid of Ma generated by 
the set Aa - {aa \aEA}. Aa* inherits the partial order structure, including the 

bottom element, from Ma. An a -vector language is a subset of Aa*. 

In example 3.1 above, we have aa - (a, Q), ba- (Q, b) and ca - (c, c). 
We shall occasionally need to argue by induction on the length of a vector. If 

x E.Aa* and a Ea(i) D a(j), then it is easy to see that #„ x(i) - #„ x(j), where #a x 
denotes the number of occurrences of a in x. We may therefore unambiguously 
define #„ x - #a x(i) where a Ga(i) and the length of x by 

\x\ - y#. x 

It is not hard to show that IQ^I - 0, that \aa \ - 1 if aGA and \x. y - \x\ + \y\, if 

We also define 

x inda y •**• (Vi El:x(i) > Q =*■ y(i) - Q) 

and observe that inda is an independence relation which satisfies 

xinday=>x.y-y.x (3.5) 

Our first result relates the order structure of Aa* to its monoid structure 

3.4. PROPOSITION. x,yEAa*, then 

x s y *> 3z SAa*: y - x.z 

PROOF. The •<= implication is trivial. For the => implication, we argue by 
induction on then length of x. The base case, where x - Q0, is also trivial. For the 

induction step, we have aa s x, some a £ A. We argue that there exists x^ EAa* 
suchthat x- aa.x[_. 

Indeed, since aa sx, we may write x-xraa.xz where #„x, -0. If aEa(i), 

then asx,(i).a.x2(i) and so %/i)-Q. Therefore aaindxx and by (3.5) 

*"*r<?a*2 ~<L,*r*2- Thus our claim holds if we define x^-xyx2. Likewise, 
since  aa*x*y, there exists  y'E.Aa*  such that  y - aa.y'. But now, since 
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aji).x^(i)&aji).y^(i), it follows that x[(i)&f(i), each i. that is, xjsy'. By 

induction, there exists zEAa* such that y' -x\z and y - £a-y' - aa.x\z- x.z. 

QED 

If x.z, - x.z2, then x(i).z,(i) - x(i).z2(i) each i. and so z/O = z2(i) each i and 
so z, = z2. Hence, the vector z of proposition 3.4 is unique; we denote it by y/x. 

We shall use the same notation for sequences; if x s y, then y/x is defined to be 
the unique string such that x. (y/x) - y. 

By (3.1), (3.2) and (3.4) 

a ia b o a inda b (3.6) 
a ia b •*> a * b A a.b - b.a (3.7) 

from which it follows that if i - io., then the monoid epimorphism fa: A -» A0* 

given by /a (a
1 • • • a") = fl'0 ■ • • fl"„ satisfies 

Vx,yGA*:x- y=>/aW-/afy; 

so that there exists a monoid epimorphism <pa:A* -» Aa* given by <pjxj-fjx). 
In fact: 

3.5. THEOREM. The function cpa:At* — Aa* satisfying cpjxj-fjx), all xGA*, is 
both a monoid and poset isomorphism. 

PROOF. We first show that cpo is injective. Since we know that cpa is a monoid 
epimorphism, this shows that q>a is a monoid isomorphism. 

Suppose that X, Y EA • such that yJX) - yJY) and let x GX and y GY be 

such that if x'GX and y'EY, then |x A y|a|x'A y'|. Here XAy denotes the 

longest common prefix of x and y and |x| denotes the length of x. We prove that 

x - y, from which it follows that X - Y. 

Suppose x*y, then since yJX) - yJY), we may write x-u.a.v and 

y-u.V ■■■b'.a.w suchthat a*b", n - 1, ■■■,r. Now, cpJX) -cpJY) means that 

fJ^ia-faM-fJu).b:a-b:a.aa.fJw) 

and so if fl0(z')>Q, then aatfa(i)---ViJi).a.fJw), and since a*b", n-1, •••,/■, 
we must have V^Ji) - Q. Thus, for all n - 1, •••,?-, aa inda fo^0. and hence aiab", 

by (3.6) and (3.7), so if we define y' - u.a.tf ■■■V'.w, then y' a^ y, so that y' GY. 

But, |x A y| < |x A y'|, the desired contradiction. 

Finally, suppose that x,yEA, then 

x sy,« 3zt GA *:xi.zi - yt, by (2.1) and (2.2) 

<=*• 3zt GAi*:(p0Cxi).cpafzi) - q>jyj, by the first part of the proof 

TL 
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*» 3z E.Aa*:q>JxJ.z- (fjyj 

** wJxJ s tyjyji ^y proposition 3.4. 
QED 

4. Operations with Vectors. 

Consider the following proof that every non-empty set of strings has a greatest 
lower bound. 

Suppose that 0 C X C A*. It for no a EL A, is it the case that a&x, all x EX, 

then the greatest lower bound of X, denoted by 11X, exists and equals Q. 
Otherwise, we may form the set X/a- {x/a\xEX}, which is non-empty By 

induction (on the length of the shortest string in X), n (X/a) exists, and for all 
UKQ 

u s a.(\l(X/a)) *> u/a s r\(X/a) ** to EX: u/a =s x/a <* to GX:w s x 

so n X, exists and equals a. (Tl (X/a)). 
In the above chain of equivalences we are making an implicit use of certain 

properties of strings. For example, the first equivalence uses the fact that the set 
| x of prefixes of a sequence x is totally ordered, so that if u s a. v and u * £2 , 
then flsu and so u/a is defined and u/a&v. This argument cannot be 
generalised directly to vectors. For instance, in example 3.1, we have   and 
(a,Q),(Q,b)z(a,b) but neither (a, Q) s: (Q, b) nor CQ,h>s ("a, Q). However: 

4.1. LEMMA. Suppose x,yE.Aa* and a EA, then 

(1) aa,xzyAaa4x=>aaindax; 

(2) x*aa.yAaaindax=>xzy. 

PROOF. (1) If it is not the case that, aa inda x then for some i El, aji) > Q and 
x(i) > Q, so that a,x(i) s y(i) and so a s x(i), which means that #a x > 0 Hence, 

for all i El, if aa0',) > Q then x(i) > Q and so a s x(i). But then sasx. 
(2)   If   aJi)-Q,   then   x(i)*(aa.y)(i)-y(i),   whereas   if   aJi)>Q,   then 

xdV-QsyCi). 

QED 

Taking these additional complications into account, we can generalise the 
above argument from A* to A a*. 

4.2. PROPOSITION. If 0 C X C Aa*, then X has a greatest lower bound. 
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PROOF. Suppose that 0 C X C A*. If for no a E.A, is it the case that aa s x, all 

xGX, then I1X, exists and equals Qa. Otherwise, we may form the set 
x/«a - {xfaa IxGXj, which is non-empty. By induction (on the length of the 

shortest vector in X),!~! (X/aa) exists, Suppose that u GAa*. If aa s «, then 

u s aa.(\l(X/aJ) <*> u/aa s nfX/aJ <*> Vx GX:w/aa <; x/aa «> Vx GX.u s x 

whereas if aa £ u, then by lemma 4.1. 

Msaa.O~l(X/flB;.)«>ffla indaUAU&r\(X/aa) 

<*> ffla mda MAVX GX:W S xla) <**> Vx GX:us x 

so n X, exists and equals aa. (Tl (X/aa)). 

QED 

The advantage of a vector representation is well demonstrated in the 
computation of least upper bounds; both the existence and the value of a least 
upper bound may be determined co-ordinatewise, as we shall show in 
proposition 4.4. First, if x,yG.Aa*, then define 

x ** y <**> Vz &:x(i) =s y(i) v y(i) s x(i) (4.1) 

and if x «-» y, then define x v y GMa 

(x v y)(i) = max(xd'), yd')) (4.2) 

We prove an extension of lemma 4.1 (1). 

4.3 LEMMA. If x,y GA0*, then 

x**yi\aaizx\aa4.y=>aa inda y. 

PROOF. If it is not the case that aa inda y, then there exists iEI, such that 

aji) > Q and yd') > Q. As aa s x, as x(i), and as either x(i) s yd') or yd') s x(i), 

we must have a s yd). Arguing as in lemma 4.1, we conclude that aany. 

QED 

If x,yEAa*, then we denote the least upper bound of x and y , if it exists, by 

*Uy. 

4.4. PROPOSITION. If x,y^A*, then 

f? 
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(1) If xU y. exists, then x**y; 

(2) If x ** y, then xli y exists and equals xvy. 

PROOF. (1) If z - xU y, then for all i G7, x(i),y(i) s z(i) and so x ** y as [z(i) is 

totally ordered. 
(2) It is clear that for all i £7, (x v y)(i) s u(i) **■ xd) s «d') A yd'j s u(i) and so it 

remains to be shown that xvy SAa*. We argue by induction on the length of x. 

The base case, x - Q0 is trivial. For the induction step, suppose that aa&x. 

If aa £ y, then a co-ordinatewise argument gives x/aa ** y/aa; for example, if 

x(i)zy(i), then x(i)/aji)zy(i)/aji). By induction (x/aa)v (y/aa)E:Aa* so, 

Viel:max(x(i),yji)-aji).max((x(i)/aji)),(y(i)/aji))) 

Otherwise aa 4 y and so by lemma 4.3 aa inda y. Again, a co-ordinatewise 

argument gives x/aa**y. Indeed, if aa(i)>Q, then y(i) - Q s x(i), while 

otherwise, (x/aa)(i)-x(i). By induction (x/aa) v y £Aa*. If aaO',)>Q, then 

yd) - Q and so 

(<l*-((x/<la)
w y))tt) - a.max(x(i)/a,Q) - xd.) - max(x(i),y(i)) - (xv yXi) 

Otherwise aa(i)-Q and so (aa.((x/aa)vy))(i) - max(x(i),y(i)) -(xvy)(i) and 

we have established that xyy-aa.((x/aa jvyj GAo*. 

QED 

The following corollary, together with theorem 3.5, establishes (2.4) which we 
used in the proof of theorem 2.3. 

4.5. COROLLARY. If X C Aa* and UX exists if and only if X is bounded above 
and then 

Vi El: (U X)(i) - U (x(i) \x<=X}. 

PROOF. If U X then X is bounded above, by U X. Conversely, suppose that X is 
bounded above by y, say, then X must be finite, as every vector may have only 

a finite number of distinct prefixes. If X is empty, then UX-Qa, or 

X - {xu---,x„}, n > 0, X' - {xif---,xj is bounded above, by y so by induction, 

x>UX' exists and Viel:(UX'XJJ- \J{x(i)\xGX'}. Both xt and ^ are 

bounded above by y, so x, ** x!_, so x,U xj exists and consequently x,U x!_ - U X. 

Furthermore, 
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VzGl:(UX)(7)- x<Ll\J{x(i)\x£X'}-U{x(i)\x<=X}. 

QED 

We now establish a vector version of (2.3), thereby completing the proof of 
theorem 2.3. We shall say that p E.Aa* is prime if and only if: 

Vu,vGAa*Va,bGA:u.aa -p-v.ba=*> a-b (4.3) 

and note that by theorem 3.5, if p GA*, then p,_ is prime if and only if (pjp^ ) is 

prime. We write Pra for the set of primes and for all xGAa* define 

Xx_-{pEPra\psx}. 

4.6. PROPOSITION. For all xEAa*,UXx. exists andz-UX,. 

PROOF. Since X£ is bounded above by x, UXX exists by corollary 4.5 and 

UX£ s x. To complete the proof, we show that for each i £7, there exists p GX, 

such that p(i) - x(i) and appeal to corollary 4.5. 

Let Y-{y GAa* I y s x A yd') - x(i)/, then Y is non-empty, since it contains x. 

Let p GY have minimal length. If p is not prime, then there exists u,vGAa* and 

a,b£A such that w.aa -p-v.ba and a*b. So u(i).aji)-v(i).bji) and since 

a ^ b, we cannot have aji),bji) > Q. Without loss of generality, aji) - Q, and 
now we have u<p*x and u(i) - (u.aj(i) -p(i) -x(i), so that «GY and has 

shorter length than p, a contradiction. 

QED 

The construction of primes in the proof of proposition 4.6 may be 
generalised, as follows. Suppose that x GAa* and a Gaff), then an element of the 
shortest length from the set Y,. - {y E.Aa*lysx.aoA y(i) - x(i).a} is prime, and 

furthermore, if we apply this construction to Yy, where a E.a(j), then we obtain 

exactly the same vector. We denote it by pra (x, a). 
The following proposition will be needed in the proof of theorem 2.6, which 

we present in the appendix. 

4.7. PROPOSITION. x-±a •..£,, then X, -{pr(£a ■■■ £a,a
k*1)\0zk<r}. 

PROOF. Certainly, {pr(£a ■ ■ ■ ^_a,a
M) 10 s k < r} C X,, while if u. aa £XX, then 

H-ß.a - pr(^_a •••«!„, aM) where a - aM and #„ u - #a o^a • • • d_a. 
QED 

We conclude this section with a useful result which allows us to factorise the 
prefix of the concatenation of two vectors as a concatenation of their prefixes. 
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4.8. PROPOSITION. If x,y,z<=Aa*, then 

xay.z=> 3u, v E.Aa*: u.v-XAUsyAvzzAV inda (y/u) 

Consequently, y.z-x.(yl u).(z/v). 

PROOF. Let u - xf\ y, then w s x and so we may define v - x/u. It immediately 

follows that x - u.v and that u s y. 

Now, v s (y/u)- z and y/u s (y/u). z. So 

vH (y/u) - (x/u)H (y/u) - (xH y)/u - (xV\ y)l(x l~l y) - Qa 

and a repeated application on lemma 4.1 establishes that vinda (y/u). Finally, 

from    u s y   and   a   coordinatewise   argument,   we   may   conclude   that 

(y-z)/u - (y/u).z, so p« X/M S (y.z)/u - (y/u).z. This, together with u wjrf„ (y/u), 

entails that »sz. 
QED 

5. Conclusions and Related Work. 

We have demonstrated the use of vectors as representations of traces which 
simplify certain relations and constructions. The work reported here is actually 
part of a larger study [7] in which, among other things: 

• Hybrid transition systems are labelled by bags of events and behaviours are 
modelled by labelled pre-orders; the induced equivalence relation on occurrences 
is that of simultaneity. 

• The use of vectors is otherwise illustrated in establishing structure theorems 
for important subclasses of the class of vector languages 

• Hybrid transition systems are used to provide a non-interleaving semantic s 
for a variety of specification notations, from Net theory to CCS. 

• The machinery of category theory is used to related the expressive power of 
the specification notations on the basis of the above common semantic domain. 

Appendix: Proof of Theorem 2.6. 

Before we prove the theorem, we need the following property of sets of finite 
labelled partial orders. 
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PROPOSITION. If # is a prefix closed set of finite labelled partial orders, then 
there exists a prefix closed set of finite labelled partial orders «' such that 
3 = <B' and that for all P„ P2 EfB', 

Pi±Pt*>XfQXri (A.l) 

PROOF. Let M, denote the set of all P G® having a unique maximal element 

UP). If PeB, then define 9(P) - (X„sp/$r), where 

• XP = {PEM,\P<P} 

• P,*PPZ*>P,±P2 

• $r(P)-$,(\(P)) 

and let <B' ~{9(P) I PEfB}. 

To prove (A.l), it suffices to show that if PVP2E!B, then 

Xp CXP| =><fr(P,)±<P(P2), and in view of the definition of <&, we need only 

establish (2) of definition 2.2. But if PUP2 GXP;, then 

P, sWi, P2 A P2 GXP, => P, ^ P, ^ P, =* P, GXPi 

and so 

Pi *»w P2 ** P, d P2 A P„P2 GXP, <* P, «Wi> P2 A P2 GXP| 

Since (A.l) holds, to show that <!>:#->■#' satisfies (1) of definition 2.5 we 

need only show that if P„P2e8, then P, <P2 <*> Xp,£XPi. If P,^P2, then 

PGXrt=>P±Pi ^P±P2=>P<=XPi. Conversely, suppose that XpCXv If 

x£Xp, then define \Px- (X, s, ty), where 

X - fy GXP] I y sp x/ 

Vy,y'ex--y*y'*>y*e<y' 
VyGX:<Ky)-<|>P(y>- 

We note that JP| xGXP| with X(ipx)-x. Hence iP| xGXp/ and in particular, 

\,Px< P2, so x GXP! and we have proved that Xp C XPi. Since iPx^ P2, we also 

have (|)P (x) - <bifX(x) - tyPi (x) and 

y SP, * ** y st,fI x *> y =sP; x A x GXJf x <**> y sP; x A X GXPI 
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Finally, suppose that P E'S, then it is straightforward to check that the 
function qp: P -» <&(P) given by q>(x) - (X, s, §) is an isomorphism, where 

X~-(lry\ysrx} 

$(lPx)-typ(x). 

If P is a labelled partial order and X C Xp then we define 

P\X-(X,srn(XxX),$P\X) 

QED 

We sketch the proof of theorem 2.6. By the proposition, we may assume that 
$ satisfies P, < P2 <=> Xp C Xp. Define H - (Q, A, •—, i, E, \i), where 

A-UXP pet 

Pr ^
x P2 *> XP| C XPs A Xp> - Xp< - fx/ 

x, i x2 <=*• x, i x2 A x2 ^ x, A (3P G®:x,,x2 GP) 

E- Ur<mge(<|>p) 
pea 

\i(x) - e *> 3P E!B:x GXP A ^fxj-e. 

If P -*x P, and P-*x P2, then XP] - Xp U (x/ - XP; and so, by the assumption 

P,±P2*> Xp C XPi, we must have P,-P2. Suppose that P -** P, and P, -»' P2 

with xiy and define £, - P2|(XP] -{x}), It is not hard to check that *,;<P2, 

giving P1 E$, by left-closure. And now, P -*y P, and P, -** P2. We have shown 
that H is a hybrid transition system 

Define q0 to be the empty labelled partial order, with label set E. We now 

define a function 4>, which we shall show to be an isomorphism from # to 
PO(H,q0) is given as follows. Suppose PG®,and let Xp - {xu ■■■,xn}, where the 
numbering is such that x, <pxj=>i<j; x^--xn is a linear ordering of P. It may 

be shown that w - x, ••• x„ EL(H,qB) and that $(P) - PO(uJ does not depend on 
the particular linear ordering chosen. 

Indeed, it is not hard to show that if we define Pt - P|(x,, •••,xi}, each i, then 

P, :< P2 • •■ ?„_, < P and so P, G$ each i, by left closure. We also have q0 -»*' P, 

and Pj -»*' PM, each i, and so u - x, ■■•x1I EL(H,q0). If x{ ix,v1, then 
x, •••xM.xi ■•• x„ is also a linear ordering of P and that any other linear ordering 
of P may be obtained from x, ■ • • x„ by permuting adjacent, unordered elements. 

Hence, the linear ordering of P form a »^class and <I» is well-defined. 
If P, < P2, then any linear ordering u of P, may be extended to a linear 

ordering v of  P2, so that H s^ and consequently PO(uJ<PO(vJ, as was 
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established in the proof of theorem 2.3. Thus, $ is monotonic. If uEL(H,q0)r 

then <&(P) - PO(uJ, where P - BH(q0,u) and so <t» is onto. If PO(uJ < PO(vJ, 

then MC * ^ as was also established in the proof of theorem 2.3, so Xp C X, and 

hence P, ^ P2, by (A.l). Thus, $ is injective and <J>~' is monotonic. 

The isomorphism from P to <$(P) will be defined by 

<p(xi)-pr((xr--xi_,)l,xi) 

By proposition 4.7, cp maps Xp onto XW) and so q> is bijective. If xi < x. then 

i<; and *,.**,, and so pr((x1-~xiJi,xi)<pr((x,—xH)v,xj). Conversely, if 

pr((x, ■ ■ ■ *,._,^,xi) < pr((x, ■ ■ ■ xH\,x.), then x.Gfx,---xH}  and  x,. >; JC;..so  x < x;.. 

Thus, q> is a poset isomorphism. Finally: 

^K(f(xi))~^Jpr((x1-xiJl,xi))~\i(xl)-^r(x{) 

QED 
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Abstract 

Refinement of abstract atomic operations is considered. The temporal 
logic ISTL* is used to demonstrate a two-stage approach to verification of 
such refinements for distributed systems. In each refinement, convenient lower 
level computations are first shown to implement upper level operations, and 
then in the second stage, all other computations are shown to be equivalent 
to one of the convenient ones. The equivalence maintains the ordering of all 
causally dependent events, but allows independent events to occur in different 
orders. The advantage of this separation is that different kinds of reasoning 
and induction can be used for the two aspects. A proof rule with well-founded 
sets is proposed for the proofs of equivalence. The approach is demonstrated 
for a refinement that adds output queues between processors and a main 
memory. 

1    Introduction 
In refinements of distributed systems high level atomic operations are replaced by 
collections of lower level operations that loosen the synchrony among distributed 
processors, but still maintain some key properties. In the approach to justifying the 
correctness presented here, each refinement proof is divided into two independent 
stages. The first stage shows that convenient executions of operations from the 
next lower level are a simple refinement of executions from the upper level, and 
can be demonstrated correct using standard refinement mappings. The convenient 
executions are precisely those where the lower level operations that implement 
a higher level one appear as a subsequence, with no other lower level operations 
interspersed. These are legal lower level executions, even if they are unlikely to occur 
in practice because the operations are distributed in a collection of asynchronously 
executing processors. A mapping function from each convenient execution to some 
abstract computation is generally simple and iterative. After this first stage, we 
have only shown that every convenient execution sequence is a refinement of some 
higher level abstract execution. 

•This research was supported by the Fund for the Promotion of Research in the Technion. 
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Then we show that every additional execution sequence at the lower level is 
equivalent to one of the convenient ones. This stage could be considered as a 
'loosening' of the ordering imposed by the convenient executions. 

The two-step reasoning at each level saves having to directly relate each lower 
level sequence through a mapping to an upper level one, as is done in other proof 
methods. Although such a mapping exists, the use of history and prophecy vari- 
ables may be required. The mapping may be extremely difficult to express and 
justify because the collection of lower level operations that can be considered the 
'implementation' of an upper level one is interleaved with an arbitrary number of 
operations that implement other higher level operations. Thus it is difficult to 
obtain an iterative proof that is uniform for all the computations when a direct 
mapping is required. Note that the difficulty is not in the proof obligations once 
appropriate mappings and invariants are found, but in the conceptual complexity 
in suggesting appropriate candidates for mappings and intermediate assertions. In 
contrast, here we claim that the reasoning used is not far from that used intuitively 
by designers of such systems. 

The refinement we consider here could be one step in a derivation and ver- 
ification of a cache consistency protocol. In this example, we will require that 
the refinement maintain what is known as sequential consistency. Intuitively, this 
means that the projection of local events of each processor is consistent with use 
of a serial memory, even if a version with queues and local caches is used instead. 
Although this is natural in the context of cache consistency protocols, note that 
there are other applications of the refinement verification technique that have no 
such requirement. 

The temporal logic I STL* is used to express the properties of computations. It 
is based on the idea of a partial order computation which is simply a maximal set 
of occurrences of operations (called events) of a distributed system that have some 
partial ordering among them. The ordering includes any causality required among 
events, and may have additional restrictions. Events which are ordered are called 
dependent, and the others are independent. A program or system defines a collection 
of such partial order computations. As shown previously in [KP90, KP92b, KP92a], 
the collection of all linearizations of the events that are consistent with the partial 
order can be considered in a temporal logic framework. Each linearization generates 
an execution sequence, which is a sequence of alternating events and global states. 
All such execution sequences generated from a given partial order computation 
define an interleaving set and are considered equivalent. Intuitively, two execution 
sequences will be equivalent if they differ only in that strictly independent events 
are executed in a different order in the two sequences. 

In I STL*, a branching time assertion is interpreted as true for a distributed 
system, if it is true for every interleaving set of the system. This is analogous 
to the standard interpretation of a linear temporal logic assertion being true of a 
system if it holds for every execution sequence. Then it is easy to express that 
each equivalence class has some execution sequence satisfying a property p, simply 
as Ep, using the existential modality E. This allows easy expression of the claim 
that every equivalence class has a convenient execution. Such properties are often 
natural for distributed systems and allow expressing specifications for problems 
such as database serializability, distributed snapshots, and sequential consistency 
of cache-based shared memory systems. 
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The logic also is natural for a proof of equivalence which is global, using temporal 
logic assertions about the entire computation, along with formulas that encode 
which operations are independent of each other. 

In previous proofs of assertions with Ep [KP92b, PP90], the two stages suggested 
here were mixed together. The motivation for showing both properties at once is 
to allow a classic iterative proof on the computation, maintaining compositionality 
and modularity in the proof. At each step we can assume both that p is true 
for (some extension of) the parts of the computations considered so far, and that 
sufficient computations are being included so that every computation is equivalent 
to one of those explicitly considered. This allows compositional proofs and proof 
rules to be used, but has the price of complicated proof rules. In the inductive 
step, it is necessary to show that the states reached so far all have a possible next 
state that will both maintain p and extend the existing computations to sufficient 
representatives. Here, different kinds of reasoning can be used for the two subproofs. 

The rest of this paper is structured as follows. In Section 2, the idea of (con- 
venient) interleaving sequences and the dependency relation is explained in greater 
detail. The implications for independence of queue operations are also examined. 
The temporal logic ISTL* is then briefly described in Section 3. In Section 4, 
a precise definition of sequential consistency in terms of ISTL* is given. In this 
framework the needed restrictions on the independence relation are defined, as 
is the implementation of a collection of execution sequences by another collection. 
Then the correctness requirements are defined for any refinement that maintains se- 
quential consistency, using convenient executions and equivalence. A proof method 
based on well founded sets is presented to show that each execution sequence is 
equivalent to some convenient one. 

Section 5 treats the replacement of an abstract sequential global memory by 
a less synchronized version with queues between the processors and the global 
memory. In the abstract version, each processor can execute atomic read and write 
operations directly from the memory. In the lower level version, a processor can 
only write to a local queue, while later the head of the queue is written to the 
memory internally. This is one basic step in a series of refinements that can be 
used to derive a caching protocol. The proof obligations are presented as temporal 
logic implications. Using the properties of queues, it is easy to define convenient 
executions for them and show that these implement the more abstract level, and 
maintain sequential consistency. 

The next crucial step involves showing that each lower level execution sequence 
is equivalent to some convenient sequence, through a proof involving well-founded 
sets. To guarantee this equivalence, reading from memory is restricted on the 
implementation level. Care must be taken in defining which events are dependent, 
in order to obtain the appropriate equivalence relation for sequential consistency. 
Section 6 summarizes the approach. 

2    Defining dependencies and convenient execu- 
tions 

Definition 1 (Execution sequence) An execution sequence p is an alternating 
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sequence of states and events (occurrences of operations) denoted aoaocriai... For 
each state o~i in the sequence, <r,+1 = a,(cr,). The subsequence of states is denoted 
by a, and the subsequence of events is denoted by a. 

The terms 'execution sequence' and 'computation' are used interchangeably in 
the continuation. To apply the methodology, the independence of operations must 
be made explicit in a relation among events, and equivalence among execution 
sequences under the independence relation must be denned. Knowledge of the 
independence relation is essential for the loosening stage, which involves precise 
reasoning about which operations are independent in which states. Each operation 
is viewed as a guard c (i.e., a condition for applicability on the state s) followed by 
a command / that is simply a function of s (with the operation written c -)•/), as 
in [ABM93]. Note that such an interpretation of an event is reasonable only when 
a state is assumed as a semantic object, as part of the definition of an execution 
sequence. 

Definition 2 (Conditional independence)  Two operations, opl and op2 of the 
form cl ->• /l and c2 -)■ /2, respectively, are independent in a state s, denoted 
s =S> I(opl,op2), if beginning in state s neither affects the truth of the other's 
guard, and the result of executing them in either order is the same, i.e., 

cl(s)=^(c2(/l(s))oc2(s)) 

c2(s) => (cl(/2(S)) <* cl(s)) 

(cl(s) A c2(s)) =► (/l(/2(s)) = /2(/l(S))). 

The definition above is known as conditional independence[KP92&] because a 
pair of operations may be dependent in some states, and independent in others. 
The states in which two operations are independent are defined by a state predi- 
cate. Two execution sequences are considered equivalent if they differ only in that 
independent operations appear in a different order, but all dependent operations 
appear in the same order. More formally, 

Definition 3 (Equivalence) Two execution sequences po and pn are equivalent 
under independence relation I (denoted p0 =/ pn) if they are the first and last 
elements in a sequence of execution sequences that each contain the same collection 
of operation occurrences and for each adjacent pair, if pt has the form usatißv then 
Pi+\ has the form usßt2av where s -> I(a,ß). 

This definition means that the operation occurrences of one are a permutation of 
those in the other, and one can be reached from the other by repeated interchanging 
of events from states in which they are independent. 

As a particularly relevant example, we consider the dependencies for a queue q 
with operations emptyq(), putq(e), and getq(e), where e is a data element. 
When the queue is nonempty, then putq(e) is independent of getq(f): 

(-.empty, ()) => I(putq,getq) (1) 

When the queue is empty, a putq and a getq operation will be dependent: 

emptyq () => -il(putq, getq) (2) 
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All adjacent pairs of putq's are dependent: 

->{I(putq,putq)) (3) 

All adjacent pairs of getq's are dependent: 

->(I(getq,getq)) (4) 

The first rule is intuitively true because a putq and a getq by different processors 
on a nonempty queue are done at opposite ends of the queue, and never involve 
the same item. This is not so when the queue is initially empty, as seen in rule 
(2). In "that case the getq operation must follow a putq. Note that if only complete 
independence of operations were expressible, we would not be able to exploit the 
above independence in those states when the queue is nonempty. 

Rules (3) and (4) follow from the fact that the contents of the queue differ 
according to the order of putq's, while the states of the rest of the system differ if 
getq's are done in a different order. Therefore those operations are not independent 
because the final state differs according to the order in which they are executed. 

Here the independence relations above are viewed as given assumptions that 
are part of the definition of a queue. Alternatively, an algebraic specification of 
the queue operations can be defined as in [GH93] to express that the value at the 
head of the queue is the oldest one put in that has not yet been removed. Then the 
independence relations (1) - (4) can be derived from the algebraic queue axioms and 
the definition of conditional independence. In Section 5, a temporal logic version 
of the queue axioms is introduced. 

3    The logic 

The version of temporal logic used in this paper is an adaptation of the logic I STL* 
introduced in [KP90], with additions to facilitate showing equivalence of execution 
sequences. Most of the operators are those of CTL* [EH86], but interpreted as 
true for a system if they hold for each interleaving set. The semantics of a system, 
denoted M, is thus the collection of interleaving sets- each a set of equivalent 
execution sequences- that are possible from each state. An interleaving set is 
defined as an equivalence class of execution sequences for an independence relation 
I. The syntax is thus standard, and the semantics (implicitly) universally quantifies 
over the interleaving sets. In other temporal logics, the assertions are interpreted 
over sequences of states. Here, we consider them over the derived sequence of states 
from an execution sequence of alternating states and events. Arbitrary atomic 
predicates are assumed, where each predicate is true for a subset of the states, 
and false for the complement. Thus for a predicate without temporal modalities, 
if an individual state is considered, s \= p is equivalent to p(s). For a sequence, we 
evaluate a predicate in the first state: 
a \= p - is (To \= p, when p has no temporal modalities 

There are two kinds of temporal modalities in the logic. The modalities E 
and A are known as state modalities because they deal with all of the possible 
continuations from a given global state. The other modalities (F, G, X, and U) 
are known as path modalities since they deal with restrictions on a given execution 
path. 
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For the path modalities, their semantics is given for a subsequence of states a 
derived from an execution sequence p. We have: 
a (= Fp - for some state in a, p is true, Eh'.cr,- f= p 
a \= Gp - for every state in a, p is true, Vi.tr,- f= p 
<7 |= Xp - for the next state in <r, p is true, cr1 \= p 
<r |= pUq - p is true in states of cr until g becomes true (and q does become true), 
3i.Vj.(0 < j < i => cr,- f= p) A <Ti \= q 

On the other hand, an assertion beginning with a state modality is true if it is 
true for every interleaving set of executions beginning from that state. Since the 
system M is now a set of interleaving sets of execution sequences, we will quantify 
over these sets also. In particular: 
(M, s) \= Ap - for every computation in each interleaving set of M from s, p is 
true, VL 6 M.Vu € L.s = <r0 => (a (= p) 
(M, s) (= Ep- for some computation in each interleaving set of M from s, p is true, 
VL G M3a e L.s = (T0 =^ (o- [= p) 

Such assertions are said to be true of a system if they are true in the initial 
state of the system. To facilitate reasoning about sequences of operations, we add 
some conventions. First, an operation name also serves as a state predicate that is 
true precisely when that operation was executed in the transition from the previous 
state. (An alternative temporal logic that treats operations more directly can be 
seen in Lamport's TLA [Lam94]). Then sequences of operations (or other predi- 
cates) can be denoted using 

Definition 4 (Sequencing) "s;t" is a concise notation for the temporal logic as- 
sertion X(s A Xt) (in the next state s holds, followed by a state with t). 

Sequencing relates to a single execution sequence and can be preceded by E or A. 
A longer sequence is written "s;t;u;..." and is the obvious generalization. 

The notation "(s,|i = 1, n)" is used to denote a sequence executing an s,- oper- 
ation on each processor i in turn, i.e., "si;s2; ...;s„" Note that all such sequences 
are simply temporal logic assertions using the next operator X. 

An expression EFEGp means that in each interleaving set there is a computa- 
tion such that eventually, there is a state such that for each interleaving set there 
is a computation such that along the computation, p is true in all states from that 
point. In the starred version of the logic, ISTL*, there is no restriction on which 
combinations of the temporal operators are allowed. When temporal logics are used 
in model checking of finite state programs, as is done for CTL, it is common to 
restrict the combinations to facilitate efficient checking. In particular, the state 
modalities E and A are required to alternate with the other (path) modalities. 
Although many aspects of the specification below can be treated in ISTL with al- 
ternating state and path modalities, here we do not treat whether such restrictions 
allow sufficient expressibility, since in any case, model checking techniques are not 
used. 

Additional information on / within the temporal descriptions of computations 
means that more execution sequences can be proven equivalent. In some sense the 
equivalence classes are demonstrably larger and fewer convenient executions are 
required to guarantee that each equivalence class contains a convenient execution. 
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4    Expressing independence and allowed compu- 
tations 

As noted in the Introduction, the refinement here will maintain sequential consis- 
tency among a group of processors. The definition of sequential consistency given 
in [ABM93] is: 

A memory M is sequentially consistent with respect to a serial memory 
Mserial, iff 

V<7 G Beh(M)3r G Beh(M,eriai)Vi = 1.. .n <x\i = r\i 

Beh(M) is the set of execution sequences associated with M, and Beh{Mseriai) is 
the set where read and write operations are atomically done on the global memory. 
The above asserts that the projections of a general execution on each processor are 
the same as those in some execution using a serial memory, even though the general 
execution may have extra internal steps associated with the memory, so that a 
write operation may not affect the memory directly. Note that in that formulation, 
there are no abstract operations: all read and write operations are considered the 
same, even though there is a great difference between a write that directly affects 
a central memory atomically, and one to a queue that eventually will have its value 
transferred elsewhere. To express this in a context with refinement, the behavior 
of the serial memory is viewed as a sequence of abstract atomic read and write 
operations that satisfy the usual memory consistency requirements (to be defined 
below). In a refinement, these are shown to correspond to lower level convenient 
sequences, where each abstract operation is implemented as a series of lower level 
operations, and where an abstract write will only be associated with a single lower 
level write in the sequence, and the same for a read. 

In order to define the requirements within the suggested framework, at each level 
of refinement a formula Gen,- (standing for general) is used to describe the collection 
of general execution sequences at that level, as those satisfying the restrictions seen 
in the formula. For each level except the first, an additional assertion, called Corii 
(for convenient), is used to describe additional restrictions that define a subset of 
the computations satisfying Gen,-. 

The highest level abstract read and write operations will be described by a 
formula Geno. To capture the intuition of reading and writing into memory, we 
express that the value returned for a variable or memory location x in an action 
read(c, x) (meaning, read the value c in the variable x) is the last value written into 
it by a write(d, x) (that is, write the value d in variable x) action, in the assertion: 

AG{{write{d, v) A X(Vb(->write(b, v))Uread(c, v))) => c = d) (5) 

This is known as read/write consistency and is a fundamental assumption when 
truly atomic reads and writes are being used. It states that if write(d, x) has 
just been executed, and from the next state, there is no write action to x with 
any value until a read(c,x) action is executed, then the value read is the one 
previously written. Note that if there is an intermediate write with the same 
value as d, then the left side of the implication does not hold in the state after 
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the first occurrence of write(d,x), but instead the assertion must hold from the 
later write(d, x), where the left side of the implication is true, and thus c = d still 
must be true. This requirement does not seem to appear explicitly in [ABM93]. 
However, the operations there are defined using a Memory data structure (an array 
representing the contents of memory), and the effects of the atomic operations are 
defined so that a value can be returned for a variable only if it is the latest value 
written to that variable. Thus the same consistency requirement is simply given 
implicitly. 

Read/write consistency says nothing about a read operation on a variable never 
written to. Among the common default assumptions are that a fixed initial value 
is then read, that the value read is arbitrary, or that such an operation is illegal. 
In the continuation, we do not treat this issue, since whatever assumption is made 
on the abstract level can be easily implemented in the refinements. If a fixed initial 
value is assumed, dummy initialization operations can be assumed at the beginning 
of every computation. The simplest assumption for verification is that such a read 
operation of an undefined variable is never attempted on the abstract level, and 
thus the issue will also not arise in refinements. 

As part of the specification of sequential consistency, the operations are aug- 
mented with subscripts that identify the processor in which they are executed (e.g., 
writes is associated with processor 3). Since the operations are atomic and global 
in effect, this association has no other significance, but does establish a local order- 
ing for each execution sequence that must be maintained by subsequent refinements 
in order to show sequential consistency. Thus Geno is the above equation with all 
possible combinations of subscripts added, for every possible state, namely: 

For all processors i and k (where j also quantifies over processors), 

AG{(writei{d, v) A X(yjVb(-nwritej(b, v))Ureadh(c, v))) =>c=d) (6) 

The execution sequences defined by Geno can be identified with M,er,a/. 
At the next level, where queues and delayed memory writes are defined, another 

temporal logic formula Geni will define all legal computations, and the additional 
properties true of those computations that trivially implement the abstract ones 
will be described in Con\. The computations defined by Coni also need to be 
shown not to effect the ordering of local operations seen in the serial memory. 

As part of the proof requirements of a refinement, it is necessary to express as a 
formula in the logic which adjacent operations in an execution are independent and 
which are not. This is used in proving that each execution sequence of the system 
is equivalent to a convenient one within the logic. 

The independence relation must be defined so that it reflects sequential consis- 
tency. That is, the local operations of each processor must be unchanged for any 
two computations that are to be considered equivalent. Thus we assume a total 
order (i.e., non-independence) among local operations of a single processor. Since 
this order must be maintained for all equivalent execution sequences, we obtain 
the identity of local projections for every two equivalent execution sequences, as 
required in the definition of sequential consistency. 

Before stating the requirements for a correct refinement, some definitions and 
properties of the needed independence relation are summarized. 
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Definition 5 An independence relation I is known as s.c. independent if for any 
two operations a,- and bj, local to processor i, 

-il{ai,bi) (7) 

Lemma 1 // two sequences differ by one exchange that occurs in a state that sat- 
isfies the s.c. independence condition I, and one of the sequences is sequentially 
consistent, then so is the other. 

Proof: by requirement 7 two local operations from a single processor do not satisfy 
/, and thus these could not be the operations exchanged. Therefore the exchange 
does not change the order of the operations for any single processor, and the pro- 
jections for each processor are identical in the two sequences. Since the definition 
of sequential consistency only relates to these projections, if one sequence satisfies 
the definition, so does the other. □ 

Lemma 2 If two sequences are equivalent under an s.c. independence relation I, 
and one is sequentially consistent, then so is the other. 

Proof: Since the two execution sequences are equivalent under I, there is a sequence 
of sequences that each differ by one exchange. The lemma follows by repeated 
application of Lemma 1. □ 

Lemma 3 If Gen => E Con for an s.c. independence relation I and Con de- 
fines computations that are sequentially consistent, then all sequences in Gen are 
sequentially consistent. 

Proof: Computations defined by Con are sequentially consistent by assumption. 
E Con means that every equivalence class of Gen has at least one such computation. 
The result follows by Lemma 2. □ 

In showing a refinement to a lower level, the legal computations of the implemen- 
tation are described as temporal logic predicates. This in fact encodes the essential 
properties of the implementation, including, for cache consistency, restrictions on 
when a read action is possible. 

Moreover, predicates are needed that make the independence of adjacent opera- 
tions explicit. These can be justified from the underlying semantics of the model, or 
by properties of the data structures used. In the case of sequential consistency, the 
independence is further restricted by the problem specification, namely that there 
is a total ordering among local processor write's and read's. These properties can 
often be shown once for a large collection of related problems. The most important 
independence relations, that allow exploiting the essential nature of distributed sys- 
tems, state that local operations of different processors are independent. That is, 
local operations a< and bj of different processors are independent: 

i t j => IioiM (8) 

The independence relations define what exchanges of operations can be made, 
and thus which computations are equivalent. This needs to be introduced into the 
logic explicitly, through the formula 

AG(I{a,b)    =►    ((£"a;6") <£>(£"*>;a"))) (9) 
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In words, if I(a, b) holds in a state, then for every interleaving set there is a sequence 
that begins in that state and then has "a; 6" iff there is one with "6; a" at that point. 

The convenient executions, also described by a temporal logic formula, need to 
be shown to correctly implement the general computations from the next higher 
level, using the following definition: 

Definition 6 A collection of execution sequences S implements a collection T if 
there is a mapping function between the states of S and those of T such that for 
each sequence in S the mapping yields a sequence in T, and each sequence in T has 
at least one sequence in S that maps into it. 

Note that it is not sufficient to show that the mapping of the lower level com- 
putations are a subset of the higher level ones. As is pointed out in the refinement 
calculus of Z [MV94] and elsewhere [BS90], there must be a lower level computation 
that implements each higher level one, i.e., we are not allowed to "refuse" to im- 
plement a legal higher level sequence of read's and writers. Although the mapping 
appears to be unrestricted in the definition, the result must satisfy the higher level 
temporal assertion that defines the collection of abstract computations, and thus 
only intuitively reasonable mappings will prove acceptable. 

Now the correctness requirements for a refinement may be summarized: 

Definition 7 For general computations Gen,- and a lower level defined by general 
computations Gen,+1 and additional properties that define a convenient computa- 
tion CoTii+i, under the equivalence defined by I, the lower level is a correct refine- 
ment for sequential consistency if 

• The relation I in Gen,+i is s.c. independent. 

• (Gen,+i  A A Gon,+i) implements Gent 

• // Gen,- is sequentially consistent, so is Gen,+i A A Con,+1. 

• Geni+i => E Couj+i 

The independence relations will be constructed with s.c. independence built 
in (because local operations will not be independent), and so this aspect will gen- 
erally be trivially satisfied. The correctness of the implementation for convenient 
sequences requires defining the mapping function, and then showing by induction 
on any lower level convenient execution sequence that it maps to a higher level 
execution sequence, if the mapping is applied to each state. As noted, we also need 
to show that each higher level computation has a lower-level convenient one that 
maps into it. Because the correspondence between the levels seen here involves a 
simple substitution, both directions can be shown at once. 

The proof of the third requirement, that the lower level convenient computations 
are sequentially consistent if the higher level general ones are, is also structural 
in nature, and is shown by a simple induction. Since the lower level convenient 
executions are obtained by substituting a sequence of operations in place of one, it 
is enough to show that in the sequence, local read and write operations are done 
in the same order and from the same local state as before the substitution. Since 
the upper level computation is given as sequentially consistent, the lower level one 
is also. 
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The remaining requirement, that every lower level computation is equivalent to 
some convenient one, can be shown in several ways. One promising approach applies 
model checking techniques to this problem, especially techniques modifying known 
approaches that exploit partial order. Here we will not pursue that direction, and 
instead present semantic proofs of equivalence based on a well-founded function. 
That is, for each sequence a measure into a well-founded set is shown. The base 
values of the measure are shown to be the result of applying the measure function 
to the convenient execution sequences, and every other sequence is shown to be 
equivalent to one with a smaller measure. 

Theorem 1 Given a temporal predicate P describing a collection of execution se- 
quences and independence conditions that define a relation =j, and another tem- 
poral predicate Q describing an additional restriction, then P =>■ E Q if there is a 
well-founded set with an ordering relation (W, >), and a function f from sequences 
such that 

• P(a) =>    f{a) e W 

• {P(o-) => {Q{o~) <^    /(c) is a minimal element ofW) 

• (PA -^Q){(T) => 3T . P{T) A /(<T) > /(r)  A a =/ r 

The proof of the soundness of the proof rule seen in the above theorem is identical to 
soundness proofs of termination of programs using well-founded sets. Each minimal 
element is the result of a mapping from a sequence satisfying Q (that will correspond 
to a convenient sequence). Since the domain of the measures is well-founded, by 
the definition of well-foundedness, each decreasing chain of values is finite. Each 
nonconvenient sequence is shown equivalent under / to one with a smaller function 
value, and so both map to values that are part of a decreasing chain. Since these 
chains are finite, each sequence is equivalent to one of minimal measure, i.e., to a 
convenient sequence. 

The definition of the measure is, of course, non-automatic. However, for the 
example here a standard measure can be used involving the number of operations 
that are interspersed among the sequential subsequences that correspond to the im- 
plementations of upper level operations seen in the convenient execution sequences. 
This will be illustrated in the proof presented later. A drop in the value of the map- 
ping for two equivalent computations can be shown by using the information on 
which operations are independent of which other ones. This checking of equivalence 
can be automated, and a project is presently underway to implement this. 

Theorem 2 If a series of refinements Geno, Gen\, ..., Genn (with convenient 
executions Con\, ...,Conn) are shown to be correct refinements for sequential con- 
sistency, then the computations defined by Genn are sequentially consistent. 

Proof: By induction on the levels. Geno is sequentially consistent by definition. For 
each pair of levels, the lower convenient executions are a correct implementation 
of the upper level operations, as seen through the mapping function (the second 
condition for correctness in Definition 7). In addition, if the upper level is sequen- 
tially consistent, then the convenient executions at the next lower level are also 
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(the third condition). Since the independence relation is s.c. independent (the first 
condition), and every equivalence class contains one of the convenient execution se- 
quences (the fourth condition), it follows, using Lemma 3, that every computation 
at this level is equivalent to a correct implementation and is sequentially consistent, 
as required. □ 

5    Introducing Out queues 

We consider how to refine abstract read and write actions. An abstract write action 
can be implemented by adding to the end of a queue the pair consisting of the value 
to be written and the memory address, later removing that pair from the head of 
the queue, and then writing it in the memory. If we denote the action of putting 
the value-address pair in the queue by W{d, v), and the action of removing the pair 
from the head of the queue and writing to the memory by MW(d, v) (standing for 
Memory Write), such a pair is the implementation of the abstract write. Thus W is 
associated with a. put operation, and MW combines a get with writing to memory. 

Similarly, an abstract read could be implemented by reading from the memory, 
adding the value-location pair to another queue, and later reading the value-address 
pair from the head ofthat queue into the local processor. However, this is not done 
here, and we assume a direct atomic action denoted R(d, v), meaning that value d 
is read from address (or variable) v. 

If we now replace the abstract read and write actions of the serial memory by 
the lower level actions above, we arrive at a situation that can be viewed as the 
addition of abstract write queues to the serial memory. Since we have a collection 
of such queues, the "lower" level involves operations on an Outi queue between 
the processor i and the central memory, for each processor. Since there now is a 
queue for each processor, we denote writing to the end of the ith queue by Wi, 
and removing an element from the head of that queue plus writing to the memory 
by MWi. Reading by processor i is denoted by Rt. All of these have the same 
parameters as previously, namely the value and the address (or variable name). 
The events that are considered local to a processor i are not independent, and 
these include all occurrences of Wi and Rt, but not MW{. On this level, only the 
MWi and Ri operations directly involve the memory and are required to satisfy 
read/write consistency. Thus we have: 

For all processors i, j, and k, 

AG({MWi{d, v) A X(VjV6(-.Af Wj(6, v))URk(c, v))) =► c = d) (10) 

Now we shall define a collection of convenient executions that are guaranteed to 
satisfy the requirements from M,erial (i.e., from the abstract computations defined 
by Gen0). In the convenient executions, items are inserted by the processor i using 
Wi operations into the corresponding Outi queue and immediately removed and 
copied to the central memory by the MWi action. In these very particular compu- 
tations, every Wi is immediately followed by writing into the memory using MWi, 
with no intervening operations anywhere in the system. The queues are thus always 
empty except when a single item has just been put in and has not yet been written 
to the memory in the next step. In temporal logic we can state the requirement for 
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a convenient computation (beyond those for any general computation) as simply 

G{Wi{c,x)*>XMWi{c,x)) (11) 

That is, throughout the computation, if a Wi has occurred, it is immediately fol- 
lowed by the corresponding MWi, and every MWi is preceded by a Wi with the 
same parameters. Note that only the Wi and Ri operations are local to processor i. 
The MWi operations involve only the head of the i-th queue and the main memory, 
and are considered nonlocal to processor i. Every adjacent Wi;MWi pair is clearly 
a trivial implementation of the direct write on the abstract level. In order to prove 
this precisely, we have the lemma: 

Lemma 4 For each computation with atomic read and write operations, there is 
a computation where each write is replaced by a Wi;MWi pair, and those are a 
correct implementation of the abstract computations. 

Proof: By induction on the two sequences, using the identity function from the 
lower level central memory to the higher level one, and ignoring the contents of 
the queues. The initial states are the same. Assuming the sequences correspond 
up to a state where a write occurs in the abstract sequence, then the next lower 
state (after the Wi) still is mapped to the present upper one. The state after the 
MWi is mapped (and is identical) to the next abstract state. The read commands 
correspond identically. Thus the concrete sequence implements the abstract one. 
D 

Lemma 5 The convenient sequences defined by memory consistency and the for- 
mula 

AG{Wi{c, x) «• XMWi(c, x)) 

are sequentially consistent. 

Proof: The upper level executions have atomic read's and write's that are by def- 
inition sequentially consistent. There is a one-to-one correspondence between the 
atomic write's and the Wi's, in the same order, and the lower level R{ operations 
are still atomic. The Ri operations have unchanged values relative to the upper 
level, because the needed MWi occurs immediately after the Wi. Thus the lower 
level executions are also sequentially consistent. □ 

Then we need to claim that every execution of the lower level satisfying the 
queue axioms and the memory consistency assumptions is equivalent under the s.c. 
independence relation / to one of the convenient executions defined above. This is 
almost true, but we need to restrict the Ri operations of the lower level to maintain 
the total order among local actions of a single processor. Consider a situation where 
a processor has written a pair (d, x) to its Out queue, then reads the value of x 
(implemented as an R ), and only then is a MW executed on that queue, changing 
the memory. The value read is clearly whatever was in the memory before the last 
MW. This implies that there is a linearization consisting of 

Wi{d,x);Ri{c,x);MWi(d,x) 

with d ^ c. But such a computation is not consistent with the dependency require- 
ments, because we claim that it is not equivalent to any convenient computation. 
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If we wish to find a convenient execution to which this one is equivalent, we must 
show that the R operation can be exchanged, either with the following MW or the 
preceding W. The former exchange would lead to 

Wi{d,x);MWi{d,x);Ri(c,x) 

This is not a convenient execution, since it violates the restrictions on the value 
read being the last one written in the memory location (read/write consistency). 
Exchanging the Rt and Wi operations would lead to 

Ri(c,x);Wi(d,x);MWi[d,x) 

This is a convenient sequence, but is not equivalent to the original one, because it 
does not have the same total order of the local operations in processor i. 

This difficulty is inherent to any implementation that must maintain sequen- 
tial consistency (although explained here in terms of equivalent sequences) and is 
solved, for example, in [ABM93] by simply requiring that the lower level opera- 
tions be restricted: any Ri, is 'delayed' until the Oirf, queue is empty, i.e., until 
all of the 'pending' MWi operations have been done. In that case the problematic 
computation described above is simply declared impossible. Of course, there is no 
such restriction for reading and writing from different processors (when the sub- 
scripts are different). The restriction on the implementation is again a temporal 
logic formula and can be expressed in several ways. One approach treats the ac- 
tions directly, using a # symbol to denote the number of times an operation has 
occurred: 

AG(Ri => ( #Wi = #MWi)) 

That is, no Rt is between a W, and an MWi, because every Wi before Ri has a 
corresponding MWi that also appears in the execution sequence before Rj. Another 
way to express this is to define a predicate empty that is true when the queue is 
empty and simply state that 

AG{Ri=> empty(Outi)). (12) 

Such a predicate is expressed using temporal formulas derived from well-known alge- 
braic axioms. A predicate number is defined recursively in terms of each operation 
(incrementing when an item is inserted and decrementing when one is removed) 
and empty can be seen as a derived predicate true when number = 0. We shall 
assume that expressions defining such predicates have been defined, and use the 
second alternative. 

Now we need to express the properties of a queue within our formalism. The 
independence relations for queues (1-4) will have Wi corresponding to put and 
MWi to get for each queue Outi. A temporal logic queue axiom will be added to 
fix the value at the head of the queue when a single item is inserted into an empty 
queue: 

{empty{Out{) AaWi{c,x);MWi{d,y)")  =>   c = dAx = y (13) 

Along with the independence of Wi and MWi when the queue is nonempty, assertion 
(13) corresponds to the usual recursive algebraic axiom that a get is independent 
of a put when the queue is initially nonempty, and otherwise the value returned by 
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the get is the one just inserted by the put operation. Using this axiom along with 
the other independence axioms about queues, we can deduce the expected behavior 
of a queue. For example, starting from an empty queue, if the sequence of actions 

Wi{a,x);Wi(b,y);MWi{c,z) 

is done, then the pair (c, z) must be exactly (a, x) (because the last two operations 
are independent by the adaptation of assertion (1), and in the resultant equivalent 
execution sequence the assertion (13) can be used). 

In addition to the axioms given above, a progress property [MP92] on queues 
is needed. It is essential that every element put in the queue will eventually be 
removed (with the other axioms fixing the order). Otherwise, a scheduler in which 
elements accumulate forever in one of the queues could lead to an incorrect imple- 
mentation. This property will be expressed as 

AG{Wi{c,x) =► AF MWi(c,x)) (14) 

Note that this assertion by itself could be satisfied by a computation where two 
Wt(c, x) are followed by only one MWi(c, x). By the assertions that define the 
queue, however, such a computation is equivalent to one where the second Wj(c, x) 
is exchanged with the MWt(c,x) (because the queue is nonempty at that point). 
In that equivalent computation there must be a second MW{(c,x) by the above 
assertion. Since all equivalent computations have the same collection of events, it 
follows that the original computation also had a second MWi(c, x), i.e., every put 
is followed by a matching get. 

The properties of the general lower level computations can be obtained by sum- 
marizing the discussion so far in temporal logic, with the assertions seen in Figure 
1. The queue axioms above are of course essential. We also have the independence 
and dependence relations on all local actions in each processor (7-8). To these we 
add the read/write consistency rules for simple memory locations (10), the delay 
condition on reads (12), and the formula connecting I and equivalence (9). Gen\ 
is the assertion beginning AG over the conjunction of the assertions in Figure 1, 
defining the legal computations in the first level of refinement that adds Out queues. 
Note that some independence relations are not given explicitly in Geni, but can 
be derived from the relations among the operations that are given. For example, 
read/write consistency on this level implies that in some states MW{ and Rj are 
not independent since their order affects the value read. 

The higher level, GeriQ, is defined by the assertion (6). The added restriction 
on the computations satisfying Gen\ that defines the convenient computations, 
i.e., Coni, is the assertion (11). Considering the proof obligations, it is clear that 
/ is s.c. independent, by definition. Lemma 4 is a proof that Geni A ACon\ 
implements Geno while Lemma 5 shows that if Geno is sequentially consistent, so 
is Gen\ A ACoti\. 

It remains to show that an execution sequence satisfying these dependencies 
must be equivalent (under the relations /) to one where all W — MW pairs from 
the same queue are adjacent (11), i.e., to one of the convenient sequences. In terms 
of ISTL*, the temporal logic formula Geni must imply EConi. Below the lemma 
is proven by applying the well founded set technique seen in Theorem 1. 

Lemma 6 Geni   =>■    E Coni. 
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queues, for processor i: 

(-iempty{Outi)) => I(Wit MWt) 

empty(Outi) => -i/(Wi,MWi) 

(emptyiOut^A'Wii^x^MWi^y)")  =>   c = dAx = y 

-^I{MWi,MWi) 

Wi{c,x)^AF MWi{c,x) 

locality, for a,b operations W or R in processors i, j: 

->I(ai,bi) 

i^j=>I(ai,bj) 

read/write memory consistency, for all processors i, j, and k: 

AG{ {MWi(d,v)AX{VjVb{-,MWj(b,v))URk(c,v)))=>c = d) 

delay of reads, for processor i: 

AG{R{ => empty(Outi)). 

independence and equivalence, for operations a and b: 

AG(I(a,b)    =>    {(E"a;b")&{E"b;a"))) 

Figure 1: Conjuncts in the formula Gen\ describing lower level computations 
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Proof: The formula Gen\ is AG (universal quantification over the states) of the 
conjunction of the formulas in Figure 1. Assuming this formula, we must show 

EG(Wi{c,x)<*XMWi{c,x)). 

As noted previously, the queue axioms in Gen\ imply that each Wi(d, x) is even- 
tually followed by a matching MWi(d,x). Each matching Wi(d,x) — MWi(d,x) 
pair defines an interval: the subsequence of states between the pair. The distance 
of the interval is the number of states in it. An adjacent pair has an empty interval 
and a distance of zero. The measure of a finite computation sequence is the sum 
of the distances of all intervals in it. For all convenient sequences, the measure is 
zero, and every sequence with a measure of zero is a convenient one. 

The measure thus is the function needed to apply Theorem 1, and it remains 
to show that each sequence with a nonzero measure is equivalent to one with a 
smaller measure. Consider any nonconvenient sequence cr (which thus has a non- 
zero measure), and a matching pair in it (denoted W,(d,x) MWi(d,x)) with 
the smallest positive distance. Call the interval of that matching pair the interval 
of interest. We will show that the sequence <r is equivalent to one with a smaller 
measure by showing that there is a one-to-one correspondence among intervals in 
the two sequences where all other intervals have a distance no larger than the 
corresponding one in <r, and the interval in the new sequence corresponding to the 
interval of interest is strictly smaller. 

In practice, either an operation at the beginning of the interval of interest can 
be moved to before the preceding Wi (d, x) without affecting other intervals, or one 
can be moved from the end of the interval past the following MWi(d, x). If the first 
state in the interval of interest satisfies MWj(c,y) for any j, c, and y (including 
j = i), the independence relations show that there is an equivalent computation 
with the MWj before the Wi(d, x) (j = i is included because the queue is nonempty 
at that point). The same is true of any Rj where j ^ i (and R, cannot appear 
by equation 12). In each of these cases, the measure of the equivalent sequence is 
smaller because all other intervals are unaffected or are made smaller. 

If in the first state of the interval of interest there is a Wj(c, y) followed im- 
mediately by a matching MWj(c,y) (thus defining an empty interval) there is an 
equivalent computation with that pair before the Wi (d, x) and thus with a smaller 
measure. The equivalence must be shown in two stages: after the first exchange the 
empty interval corresponds to one with a distance of one, but after the second, it 
returns to zero. Note that in this case j must be different from i since otherwise the 
queue axioms for Outi would be violated: two items are inserted into the queue in 
one order and then removed in the opposite order, which contradicts the definition 
of a queue. 

The only other possibility at the beginning of the interval of interest is of a 
Wj(c,v) not followed by a corresponding MWj until after the interval of interest 
(otherwise the interval of interest would not define the smallest positive distance). 
In this case we must consider how to move an operation past the end of the interval 
of interest. The last such Wj before the MWi(c,x) at the end of the interval of 
interest also cannot have its corresponding MWj within the interval of interest, 
since otherwise the queue axioms for the Outj queue would be violated. There also 
cannot be a Rj in the interval. Thus the independence relations on the remaining 
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Wj MWi Rj Wi MWi Hi 
Wi + + + - (1) - 
MWi + (2) (2) (1) (2) (2) 
Ri + (2) + - (2) - 

(1) '+' if ->empty{Outi), '-' if empty(Outi) 
(2) '-', but could extend to '+' for different variables. 

Table 1: Summary of independence relations for Gtn\. 

operations guarantee that there is an equivalent computation like the one being 
considered except with that last Wj exchanged with all possible operations between 
it and the end of interval of interest and finally with the MWi(d, x) after the interval 
of interest. This again yields a computation with a smaller measure. D 

The proof here systematically analyzes which pairs of operations are indepen- 
dent under what conditions, to show that any computation is equivalent to a conve- 
nient one. We show exchanges that bring a general computation 'closer' according 
to some measure to a convenient one. 

An aid to following (and generating) the argument above can be given in table 
form. In Table 1 the independence relations are given for a matching pair Wi and 
MWi, and for Ri, relative to all of the other operations, both for other processors 
j ^ i and within i, assuming that they relate to the same variable. The relations 
explained previously are the justifications for the symbols, where "+" means that 
the operations are independent, while "-" means that they are not. Note that a 
conservative approach is taken where sometimes operations are considered depen- 
dent even if in some cases (e.g., reading and writing to different variables in the 
memory) they may be independent. This only means that some execution sequences 
cannot be proven equivalent even though otherwise they could be, and thus each 
must be shown equivalent to a different representative execution. 

Note that Ri is not independent of either Wi (because they both are local 
to i) nor to MWi (because they both relate to the central memory and must 
maintain memory consistency). This again reinforces the implementation decision 
to forbid such a read operation between writing to the local output queue and 
writing from the head of the queue to the central memory. The need to 'shorten' 
the distances in intervals of interest, along with the independence relations, dictates 
which equivalent sequences must be investigated, and can be used for automatic 
generation of the cases to be treated. 

Theorem 3 Gen\ is sequentially consistent. 

Proof: By Theorem 2, using Lemmas 4-6 and the fact that / is s.c. independent. 
a 

Further top-down development of a caching algorithm could similarly be divided 
into a series of refinements, with each described first by a convenient sequence, 
followed by a loosening stage to the rest of the computations at that level. Note 
that the convenient executions are lower level implementations of any computation 
from the upper level, and not just the convenient upper level ones. In such a series 
of refinements we might first define a level where In queues and local caches are 
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used, and then afterwards consider the introduction of cache misses in a separate 
refinement level. 

6    Concluding remarks 

In this paper we proved the correctness of a refinement introducing queues, starting 
from the definition of serial and sequentially consistent memory. Reasoning in 
terms of convenient sequences and their equivalence classes is well-suited for this 
purpose. At each refinement, a two-stage proof is used, first showing that the 
convenient sequences are a simple refinement using usual mapping functions, and 
then separately showing every lower level execution sequence equivalent to one of 
the convenient ones, using well-founded sets. 

Although the formulas of temporal logic require familiarization, this should not 
obscure the fact that the convenient execution sequences are intuitively natural 
and are easily devised. Moreover, in those sequences the lower level state is only 
examined when the system is in a stable (quiescent) state, so the mapping functions 
are also simple. 

The independence relations and restrictions on possible implementations are 
also intuitively clear to the designer, once the appropriate questions are asked. 

In order to prove a refinement stage, the possible computations of the upper 
level must be described by an ISTL* formula. The lower level computations also 
will have a formula defining them, including conjuncts that make the independence 
of adjacent operations explicit. These can be justified from the underlying seman- 
tics of the model, or by properties of the data structures used. In the case of 
sequential consistency, the independence is further restricted by the problem spec- 
ification, namely that there is a total ordering among local processor writes and 
reads. These properties can often be shown once for a large collection of related 
problems. The lower level legal computations also are derived from a description 
of the implementation (either lower level code or a less formal description). In the 
example given here, these include restrictions on when a read action is possible. 
Next, the convenient computations of the lower level are described, also using the 
temporal logic. 

At each refinement stage, four correctness claims must be shown: that the 
independence relation is appropriate for sequential consistency, that the lower level 
convenient executions implement the general computations of the upper level, that 
the lower level convenient executions are sequentially consistent if the upper level 
executions were, and that every computation on the lower level is equivalent to a 
convenient one. 

The proof that every equivalence class has a convenient execution in it is done 
using a mapping into a well-founded set. In effect, this is an induction showing that 
each computation is equivalent to one that is 'closer' to a convenient one. This is 
the more difficult part of the proof, mainly because there are a large number of cases 
to consider (0(n2) if there are n kinds of operations). A systematic examination 
of which operations can be exchanged is done using the independence information. 
This aspect seems particularly amenable to automation, since it involves a large 
number of very simple assertions. Specific tools for integrating such proofs into 
automatic theorem proving systems or to model checking techniques for finite state 
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programs are not yet available, but work has begun in this direction. Such a tool 
could be expected to query the user on whether certain pairs of operations are 
independent in various states, helping to cover all of the possibilities. Since the 
answers on which pairs are independent are generally clear to the designer, the goal 
of such a tool is to ensure that all cases are examined. 
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Abstract 

A complete axiomatization of a first-order temporal logic over trace systems 
is introduced. The proof system contains infinitary rules for temporal operators. In 
order to show how these rules work, a toy concurrent program is considered, for 
which a temporal semantics is provided, and the correctness of the program is for- 
mally proved within our logic. 

1    Introduction 

Temporal logic is an important tool for program verification. Depending on the no- 
tion of model, three kinds of temporal logic can be distinguished: temporal logic of 
linear time (LTL) [15,10], temporal logic of branching time (BTL) [7], and partial 
order temporal logic [21]. 

Mazurkiewicz traces and trace systems [13] are partial order structures fre- 
quently used to give semantics to concurrent programs and interpreting preposi- 
tional temporal logics ([12, 6], ISTL [11], TrPTL [26], TSL [22], TLC [1]). The 
first-order versions of temporal logics are intended for specifying and proving prop- 
erties of infinite-state concurrent programs [23]. The process of program verifica- 
tion requires either a relatively complete program proof rules or a complete proof 
system of the pure logic usually extended by the temporal semantics axioms of a 
given program. 

Program proof rules were defined for first-order versions of the following log- 
ics: LTL [14], fair CTL [9], and ISTL [23]. However, a complete proof system is 
known only for the first-order LTL [25,16], prepositional versions of CTL [8], TSL, 

'Partially  supported by The State Committee for Scientific Research under two grants 
No. 8 Tl 1C 029 08 and No. 2 P301 007 04. 



and ISTL [22]. The logics TSL and TrPTL have not yet been extended to their first 
order versions. 

In the present paper we partialy fill this "gap". We define a first-order ver- 
sion of the logic TSL (FTSL, for short), interpreted over Mazurkiewicz trace sys- 
tems. The modalities allow universal and existential quantification over forward 
and backward paths of the models. This makes most of the branching and partial 
order properties expressible in our temporal language. The first-order language is 
two-sorted; it has static and dynamic variables and terms. Dynamic variables cor- 
respond to variables declared in the programs. They can change their values during 
a program execution. The values of the static variables do not depend on the time 
points. Quantification is allowed only over the static variables. 

We provide a proof system of the logic and prove its completeness by the Ra- 
siowa-Sikorski method [24]. The proof system contains infinitary rules for tempo- 
ral operators. In order to show how these rules work, we consider a toy concurrent 
program for which the corresponding models are exhibited, the temporal semantics 
axioms are defined and the correctness of the program is formally proved within our 
logic. 

The rest of the paper is organized as follows. In Section 2 the trace transition 
systems are defined. In Section 3 we introduce the syntax and semantics of the First- 
order Trace System Logic. Its proof system is given in Section 4. The completeness 
is shown in Section 5. An example of formal verification of the Concurrent Facto- 
rial program is given in Section 6. In Section 7 we extend the FTSL by allowing 
quantification over the points of time. Section 8 contains some general remarks. 

2   Trace Transition Systems 

The trace systems were introduced by Mazurkiewicz [13] as semantics of Elemen- 
tary Net Systems. The trace systems are isomorphic to the trace transition systems 
[22, 6], which form a subclass of the occurrence transition systems [17, 6]. The 
trace transition systems enjoy a nice structural characterization, which is taken as 
their definition here. The concept of a trace transition system captures the main fea- 
tures of transition relation w A w' from state w to w' by performing action a. 

Definition 2.1 A trace transition system is a 4-tuple T = (W, E, —, u;,mt), where 
W is a set of states, E is a finite set of action labels, -* C W x E x W is a la- 
belled successor relation, and u>tmt € W is the initial state, satisfying the following 
conditions: 

Cl. W = {w | winit -" w}. where -' = {(v,v') \ (la 6 E) v -i i;'} 
and —'* denotes the reflexive and transitive closure of-*' (reachability from 

C2. (Vu; G W){v | w -' t;} # 0 (-' is total), 

C3. {w | U7 —' winit} = 0 (beginning), 
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C4. (Va € E)(Vti', tr'. w" 6 W) a- — w' and w -i u/" tmp/to u>' = w" 
(determinism), 

C5. (Va € E)(Vtt', a'', w" € W) u;' — w and w" — iv imp/iej rc' = ic" 
(no auto-concurrency), 

C6. (Va,6 € S)(Va\u?',ttf" € W)(3w € W) :i/u?' - w and w" - warn/ 

a ^ 6, fAen r -^ ix'" and v — w' (backward-diamond property), 

C7. Ler/ = {(a,6) € S2 | (3u>, w',w" eW): w'^ w, w" ± wand a # 6}, 

(Va,6 €  E)(Vu,\u>'.u;" 6  W)(3» € W) : if w A u;', 10 A  u;", fl/u/ 

(a, 6) 6 /, /Aen u?' —> ü and w" ^* v (forward-diamond property), 

C8. (Va,6 € SXVUMIAU;" € W)(3t> € W) : ifw i w' A «," a/kf (a,6) € /. 
rA*n u? — I; -!■ «;" (concurrency closure property). 

Condition C2 is an inessential restriction of the class of the trace transition systems, 
which allows to consider only infinite paths and enables a simpler axiomatization. 

The forward and backward paths are defined as follows. Let w0 6 W. A 
forward path x starting at WQ is a maximal sequence of states and actions x = 
wouQWiai... such that n*, -* w,+i, for all i > 0. A backward path x starting at 
WQ is a sequence of states and actions x = woaowidi... Wk such that wt+i ^* tu,-, 
for all i < k, and Wk = w„»t- 

3   First-order TSL 

Syntax 

The logic is formalized in the usual first-order language with identity, equipped 
with the symbols for temporal operators treated as logical connectives to be used 
in building formulas. We distinguish two sorts of variables: v, 6 SV (called static 
variables) and Zj € DV (called dynamic, program, or local variables), for natural 
numbers i and j. That is, we have a two-sorted language. Its predicate and function 
symbols act within their sorts, although the identity is assumed to allow comparison 
of all the objects (variables, terms) of whatever sorts they come from. We assume 
there are no function or predicate symbols on the sort of dynamic variables except 
for the equality just mentioned. The formulas are built up as usual in a many-sorted 
language except that quantification over the dynamic variables is not allowed. 

Formally, the sets of terms and formulas are defined as follows. 

Definition 3.1 The set of static terms T3 is the least set satisfying the following con- 
ditions: 

• all static variables are in T„, 
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• all individual constants are in T„ 

• whenever f is an n-ary function symbol and t{ ,tn     £     T3, then 
f(tl,...Jn)€   T3. 

The set of all terms T is the extension of T3 by the dynamic variables; ie T = 
T3 U DV. 

Definition 3.2 The set of temporal formulas TF is the least set satisfying the fol- 
lowing conditions: 

• ifh,t2 eTsandz£ DV,then(tx =h),(z = ti) € TF, 

• ifp is an m-ary predicate symbol andtu.. .,tn 6 T3are static terms of the 
appriopriatesorts, thenp(h,. ■ .,tn) € TF, 

• if i\ veTFandv€ SV, then ->ip, v A *, V»#, 3v4\ E(*Uv), EG* and 
EXa* (for a 6 £), E(*Sv), EH* and EYa* (for a 6 Ej are in TF. 

Thus the language has EG, EXa, EH and EYa as unary connestives (operators) 
and E(.U.) and E{ .S.) as two binary connectives (operators) on formulas. The no- 
tation with prefix E is meant to indicate the interpretation in the sense there exists 
a path suth that.... Otherwise this is the usual notation for modalities always, next 
step and until, together with their past counterparts. The intended interpretation of 
the future temporal formulas is as follows: EG* - there is a forward path s.t. * 
holds along it; E(*Up) - there is a forward path s.t. eventually p holds and al- 
ways before * holds; EXa* - * holds in the next moment in the future after ex- 
ecuting a. For the past formulas the interpretation is the same but with backward 
paths replacing the forward ones. 

Semantics 

Definition 33 The language is interpreted in the relational structures (models) of 
the form M = (.F, A, I, S), where 

• T = (W, E, —, Winit) is a trace transition system, 

• A is a carrier set, 

• X is an interpretation of the function and the predicate symbols (i.e., (A, I) 
is a first-order) relational structure as usual in model theory, possibly many- 
sorted), 

• S :W x DV —> A is a valuation of the dynamic variables. 

We write WM to denote the set W ofT in M.Bya valuation of the static variables 
we mean a function V : SV —► A. The valuation functions are extended to T3 in 
the standard way, V3 : T3 —► A. 



The satisfaction relation of a formula v? to be satisfied by a valuation V in a model 
M at a state w0, (Af, V, w0) ^= <p, is defined by induction on the complexity of the 
formula: 

(M,V,w0) (= (h = t2) iff Vs(h) = Vs(t2), for tut2 € T„ 

(M,V,w0) \= (s = t) iff S(w0,z) = V,{t),fwz € 0V\* € T„ 

(M, V, wo) (= p('i *m) iff Ip( Vs((i) V',(<m)). where p € P is an m- 
ary predicate symbol and ti,..., tm 6 T„ 

(M, V, tt'o) N -V >ff (A<» y, "'0) £ V. 

(Af, V,w0) \= <p A v iff (Af, V, w0) (= v> and (At, V, u;0) |= 0, 

(Af,l',w0) f= Vt^ iff for every a 6 4, (Af,V'.w0) N ^ where V'(v') = 
V(v') for i'' 6 SV \ {v} and V\v) - a, 

(M,V,rvo) \= 3iv iff there exists a € A such that (Af, V, w0) \= <p, where 
VV) = V(i/) for v' e SV \ {v} and V'(v) = a, 

(Af, V, it'o) \= E(^pUip) iff there is a forward path x — w0ao w\ai... and k > 0 
with (Af, V. wk) (= 0, and for all 0 < i < k: (Af, V, w,) f= ^, 

(Af,V, wo) |= EG^> iff there is a forward path x = woaowioi... s.t. for all 
i>0:(M,V>,-)Nv. 

(At, V, w0) (= £Xa¥> iff (3w € W)(w0 - w and (At, ^, w) |= v?), 

(Af, V, wo) f= E^Sifr) iff there is a backward path 1 = woao w\a\... wk and 
it > 0 with (Af, V, wk) (= 0, and for all 0 < i < k: (Af, V, it-,) f= 9, 

(Af, V, wo) |= £#V iff there is a backward path x — woaowjaj... wk s.t. for 
allO < i< k: (At,V,Wi) 1=9, 

(M,V, w0) N ^y.sf «ff (3w € W')(w - w0 and (Al, V, w) |= 9). 

We also need the following definitions: 

• (M,V)^(p   =f  (A*,V»^  foreachw€W, 

• (Af,w)|=9    =   (At, V, w) (= 9  for each valuation V, 

• M\= ip   =   (Al, V) ^ (^  for each valuation V. 
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4   Proof system 

We shall need the following abbreviations: 

• if V v = -1(19 A -iii>),  * => 0 =; -,* v c>, 

• /rue = * V «v.   /a/« =' ^<ruc, y- = «fr =' (^ => #) A (v => 9), 

. AF* dU ^£G^, EF* d'd E(trueV*), AG* dL< -,EF^, 

• EP* dÜ E(trueSv), AH* dU -£P-v, 

. AXa* dU -,£*.-,* AYa* dU iEYa^, EX* Hi Vo€S £Aa9, 

. EY*deJ\Ja£rEYa*,AX*d^ ^F.X^*,  AY*deJ ^EY^*. 

• EX{(<p) dU * A EX(^ A EX{* A ...£A(y-)...)) 

(the operator EX occurs i times, for i > 0), 

• £AV<i>) =' v, EX^.xb) d=f ** £X(y~A £A(v>A ...£A(0)...)), 

.4A V0) ^ 0, A.V'(9, v) t' ^ A .4A'(v- A ^Y(v» A ...A.Y(0)...)). 
(the operator £A(AA) occurs i times, for i > 0), 

• EXai...an* = EXai ... EXan*, for ax...an£ E**, 

• I{a, b) dU EPEF(EYatrue A EYbtrue), (or a, be S, 

Axioms 

AO. all formulas in the form of the tautologies of the classical prepositional cal- 
culus 

Al. Vj; = Vj and z, = ZJ, for each natural;' 

A2. EXa(* A 0) = £Aa(<^) A EXa{rb),  for a <E E (determinism) 

A3. EG* = *AEX(EG*) 

A4. £(v?tf0) = 0 V (v? A £A(£(^))) 

A5. £ya(9 A 0) 3 £ya(^) A £ya(0),  for a 6 E (no auto-concurrency) 

A6. EH* = *A Ur/a/se V EY(EH*)) 

A7. £(v?50) = 0 V (9 A £y(£(vj5*))) 

A8. * =► /!Aa£Fa9 for a 6 E  (relating past and future) 



A9. <p => AYaEXa<p for a 6 S  (relating past and future) 

A10. EX true  (infiniteness of paths) 

All. EP{ AY false)  (beginning) 

A12. EYaAY),^ => AY'bEYaip,   for a £ b  (backward-diamond property) 

Al 3. (/(a, 6) A EXaAXtf) =*■ AXbEXa<f,  for a ^ b (forward-diamond prop- 
erty) 

A14. (/(a, 6) A EXaEX\><?) => EX\,EXa¥  (concurrency closure property) 

A15. VM")^ v(0. teT, 

A16. 3vEXa<f(v) = £A'a3iv(i>) (Barcan formula) 

A17. VvEXaf(v) = EXaVv<p(v) (Barcan formula) 

A18. 3tv = ->Vt>-v 

A19. (AYfalse A £Au*rue) => 3i>£Au(z; = v),  for j € w and u € S" 

A20. («! = <2) s(AG(ti = t2)A^£T(«i = *2)). forix,i2 € Ta, 

A21. p(<1(...,«m) = {AG(p{h,.. .,tm)) A AH{p(tu ... ,tm))), where pis any 
m- argument predicate symbol 

A22. (vi = i'i A ... A t>„ = <) =j» (/(vi,..., vn) = /(t'i,..., r|,)), where / is 
any n-argument function symbol 

A23. (vi = v[A...M<m = v'm)=> (p(rx,..., vn) = p(v[,..., v'n)), where p is 
any m-argument predicate symbol. 

Proof rules 

MR ip, 9 => i> r- i> 

Rl. ^ => v h £A'ayj => £A'a0 

R2.   v? => V   H   £VoV5 =* £^a^ 

R3. {(j> => £Xu£A','(9)},€w J- $ => EXuEGip, foru € E* 

R4. {EXuEX^ip, 0) =► 0},-€w I- EXuE{<?Uy) =► 0, for u € S" 

R5. AV/a/se => AG^ r- v» 

R6. 9 => 0 h 9^Vi70(r), t'not free in 9 
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5    Completeness 

In this section we show that the proof system is sound and complete. 

Lemma 5.1 ([22]) For every model M and w <= WM, 

(a) (M, w) \= EG* iff(M, to) h EX'(y) for each i € -;. 

(b) (M, tv) N E{*U<b) iff(M. ur) (= £.V'(y". i'), for some i e u. 

Theorem 5.1 The proof system is sound and complete. 

Proof. Soundness is straightforward, so we are only concerned here with proving 
completeness. To this end let a be a sentence that is not provable in our proof system 
from a given set Ax of axioms, i.e., Ax Yf a. We build a model for Ax and -.<x. That 
is, we construct a model X = [T, A,2,S)with.Vf \= .-Lr and(.M, w) |= -v7,for 
some it? € WM. 

We follow the idea of Rasiowa and Sikorski for constructing models on ultra- 
filters in the Lindenbaum-Tarski algebra of a given theory. (See, e.g., [24] or [2].) 
By axiom A15 and the generalization rule R6, the quantifiers correspond to certain 
sups and infs in Lindenbaum-Tarski algebra: 

• [V«v] = in/{[*(0] : t € T,}, 

• [3v<p] = JupflvKO] : * € r,}. 

By a temporal ultrafilter we mean a maximal proper filter U in the Lindenbaum- 
Tarski algebra of Ax preserving the sups and infs corresponding to the existential 
and universal quantifiers and to the following infinite operations: 

• [EXuEG<p\ = infitAlEXuEX^)]},  for u € E", 

• [EXuE{<pUtp)) = aupi^{[EXuEX\^ 0)]},  foru 6 £". 

That is, 

if [EXuE(<pU^)] € U, then there is i <= w s.t. [EXuEX\y, 0)] 6 U, for 

• if [EX*EG<p] $ U, then there is t € w s.t. [EXuEX><p] $. U, for u € E". 

We construct the time frame T of .Vf consisting of temporal ultrafilters. Let winit 

of M be an arbitrary temporal ultrafilter containing the equivalence class of the 
formula AY false A EF(->cr). Such an ultrafilter exists by the Rasiowa-Sikorski 
lemma: if a collection Q of infinite operations in a Boolean algebra is at most de- 
numerable, then every non-zero element of the Boolean algebra belongs to an ul- 
trafilter preserving all the operations of Q. It follows from proof rule R5 that the 
equivalence class [AYfalse A EF(-><r)] is non-zero. That is. Ax does not prove 
^{AY false A £F(-><r)). Otherwise, Ax h {AYfalse => AG(o)) would give 
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Ax h er, by R5, contradicting our assumption. For all the temporal ultrafilters if 
and V, we define 

V - U'    =f   [EA'.SJ] G £'  imp/ies [^] 6 tf'. 

Now, the universe of T is defined by 

\V^{U\ 3n>Q3al,...,an3Ul,...,Un.l trtmf^ U, H. ..Un., H £/}. 

The definition of W is unambigous since one can show that there is at most one U 
for each re > 0 and each sequence a\,...,an. 

Slightly abusing the notation we define the relation — of T as the restriction 
of — introduced above to W x £ x W. It is easy to check that the conditions C1-C8 
hold (see [22]). 

To make sure the above construction of W is not void, we show the existence 
of the appropriate ultrafilter for the next step. That is, the induction clause for the 
statement that for each re > 0, the appropriate U exists, whenever the sequence 
u = ax .. .an is such that [EXjrue] € u.',-„i(. The immediate a-successor of a 
temporal ultrafilter (', denoted EXaU, can be constructed as follows: 

EXaU 
AM {[*] I [EXM 6 U}. 

One can show that EXaU is a proper non-principal temporal ultrafilter using the ar- 
gument of Lemma 4.9 in [18] and Lemma 5.6 in [22]. Let us now show that EXaU 
preserves the infs corresponding to the universal quantifier. 

Assume that [?(t)] € EXaU, for each term t. Then [EXa<p(t)] 6 U, 
for each t, by the definition of EXaU. Since U is an utrafilter preserving the 
infs corresponding to the universal quantifiers, [ivEXaf(v)] € U. Therefore 
[EXaVvv(v)] 6 U by axiom A17. Thus [tv<p{v)] € EXaU by the definition of 
EXaU. 

Similarly, we can use axiom A16 to show that EXaU preserves the sups cor- 
responding to the existential quantifier. Suppose that [3tv(w)l 6 EXaU. Then 
[EXa3v<p(v)] 6 U by the definition of EXaU. Thus [3vEXa^(v)] € V, by A16. 
Hence [EXa<p(t)] € U for some term tt since U preserves the sups corresponding 
to the existential quantifiers. Thus [<p(t)] € EXaU for some term t, once more by 
the definition of E Xa U. 

Now, we define the other components of M = (T, A, I, S). For any t 6 T, 
let [t]= = {tf e T, I [( = t'\ e uw}. These are the equivalence classes of the 
identity relation according to w,-n;t on the static terms. It follows from A20 that if 
[t = *'] € Winit, then [t = t'] e w for all w € WM. Let 

• A = {[t]= I t e Ts}, 

• (Z)(*i = *a)iff[ti]= = [*2]=. 
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• I( f)([t iU [tnU) = [f(t\ *„)]=, for every n-placed function sym- 
bol/andf, tn € T„ 

• I(p)([«i]=, • • •, [tm}=) iff [p{ti,. ..,tm)]€ wtnit, for every m-placed pred- 
icate symbol p and tx,..., tm e T„ 

• S( w, z) = [t}= iff [z = t]e w, for w € W, r € £>K, and * € T,. 

Notice that these definitions are unambiguous. To this end, observe that for each 
w e WM, 

• [p(h,...,tm)]e winitm\p(tl,...,tm)]e w.and 

• [f(ti,-...tn) = t]€winititt[f[tu...,tn) = t]ew, 

for any p, /, tt...., tm tn, t, z. It follows from A19 that there is t 6 Ts such 
that [z = t] € U7. It follows from the transitivity and symmetry of = that for all 
tiJ2 € T,if[z = ti],[z = t2] e u;,then[<! = t2\ € it?. 

Lemma 5.2 For each formula <f(v0,...,vn) ofFTSL, whose free (static) variables 
are among vQ,..., vn, 

(*) for all valuations V : SV —- A, and all w € WM, 

(M,V,w) t= ^iff[<pivo/t0,...,vn/tn)]Gw. 

whereto € K(i?0),...,*„ € V(vn) are any representatives (members) of the equiv- 
alence classes V(v0),..., V'(t;n). 

Proof. By induction on the complexity of ip according to a well-founded or- 
dering on the set TF of temporal formulas respecting Lemma 5.1. That is, EG? 
must be greater in this ordering than EX^ip), for each i e u, and E{yUip) greater 
than EX'(ifi, ip), for each i 6 u. 

In the case of primitive formulas t = t', p(ti,...,tn), and z = t the proof 
follows immediately from the definitions of A, I, and S. In the case of negation 
and conjunction the proof follows by the ultrafilter properties. 

The quantifier step follows by axiom A15 and the generalization rule R6. To 
this end, suppose {M, V, w) f= Vt;0(v). Then, <p(t) e w for each term t by the 
quantifier clause, the definition of the satisfaction relation, and by the inductive hy- 
pothesis. Thus also in f {[<tt{t)] : t'e Ts} € w, since w is closed under this inf. 
Hence [Vv<p(v)] £ w, because we have [Vv<p(v)] = inf{[<p(t)] : t 6 T,} in the 
algebra. For the converse implication, suppose ftv<p(v)] € w. Then [<p(t)] € w, 
for each term t, since [Vr0(v)] < [<p{t)\. By the induction hypothesis this means 
(M, V, w) (= 4>(t) for each term t. Hence by the definition of the satisfaction rela- 
tion, we get (M, V, w) [= Vv<p(v). 

The cases of the temporal operators are similar to those in [22]. We give details 
for two of them. 

10 
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Assume o is of the form EGv, where w is a formula whose free variables are 
among i'o,...,rn. Then (M, V, w) \= o iff (M,V,w) |= EX'(u>), for each 
i € u;, by Lemma 5.1. The induction hypothesis (*) holds for all the formulas 
EX^ii'), for each i e w. Thus, (M, V, w) (=  EX'(t)  iff for each i e <*;, 
[EA"*(tt'("b/'o »nAn))] € w, with r0 € V'(i-o) /„ € V'(t-„). Since tr 
preserves all the infs of this form the latter holds iff [EGv( vo/t0 vn/tn)] € 
UY   with t0    €    V'(ro) tn    €    V"(i-n).     That is (M, V, w)   (=    <■> iff 
0(l'oAo Vn/tn)\ € li',with<0€ V(VQ) tn 6 V"(l'„). 

Now, assume <f> = E(\Uv), where \ and t' are formulas whose free vari- 
ables are among v0,..., vn. Then (X, V, w) \= <*> iff (M. V, w) (= EA"'(\, 0), 
for some i € -•, by Lemma 5.1. The induction hypothesis, (*) holds for all the 
formulas £A"'(\,#). for each i 6 w. Thus, (.M, V, u?) [= £A''(.\, 0) iff for 
some t e w,[EX'(x(vo/to,...,vn/tn),i'{vo/to,...,vn/tn))] € u; with (0 € 
V'( i'o),..., f„ € V'( i;n). Since w preserves the sups of this form the latter holds iff 
E(\(vo/t0,...,vn/tn)Uil>(vo/to ,vn/tn))] € w with t0 € V'(r0) tn € 
V(i'n).   That is, (M, V, w) ^  6 iff phi( v0/t0, — vn/tn)}  €   u-, with <0  € 
V'( r0) , tn € V'(fn). This completes the proof. 

Clearly, M is a model with M \= Ax and(,Vl, w) \= ->a, for some w € WM, 
which completes the proof of the Theorem 5.1. 

6   Toy example: Concurrent Factorial 

Consider the concurrent program CONFAC, shown in Figure 1, for computing the 
factorial n!, for each nonnegative integer input n. 

The program has one input variable x of type Nat, one local variable y of type 
Nat assumed to be preset to 0, and one output variable z of type Nat assumed to be 
preset to 1. CONFAC is composed of two processes (marked by the dotted lines) 
synchronizing on the action 6 : y := x. There are two control variables /i and I2 
pointing to locations in these processes, respectively. The initial states of the pro- 
cesses are marked with 1 and 4, while the terminal states with 6 and 4, respectively. 

The variables x, y, z, /1, and /2 are dynamic variables according to our termi- 
nology. 

The data domain on which the program operates is described in the FTSL lan- 
guage with 0, successor, addition and multiplication, as the specific symbols, by 
Peano axioms with the induction scheme for all the formulas of the FTSL language. 
Alternatively, one can admit the u;-rule. The latter is not a big deal here, since we 
already have infinitary proof rules anyway. 

The frame T for CONFAC on input x = 1 is shown in Figure 2. The number 
of actions executed by CONFAC depends on the input (see Figure 3). Therefore, 
there are different frames for different inputs. 
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Figure 1: Program Concurrent Factorial 
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5(lt'4,/l)= 1 

S{w4,l2) = 5 

5KM = 2 
S(w6, h) = 5 

a-. 

a 

S(wl,ll) = l 

5(u-a,/,)=2 
S(u-2,/2) = 4 

5(u;3./i) = 3 
5(ii'3,/2) = 5 

5(u;s,/i) = 3 

S(ws,l2) = 4 

5(U77,/l)=l 

5(U,T, /2) = 4 

5(u'8,/i) = 6 

5(it'8,/2) = 4 

Figure 2:       The frame for CONFAC on input x = 1 
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Figure 3: The frames for CONFAC 
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As the FTSL temporal semantics for CONFAC we take the conjunction of the 
requ.rements l.sted below. It restricts the class of the FTSL models to the ones cor- 
responding to trace transition systems representing the computations of CONFAC 
on all possible inputs. One of such models is shown in Figure 2. In order to satisfy 
the restriction C2 (infiniteness of paths) for the trace transition systems represent- 
ing the computations of CONFAC, we adopt the convention that the final state of 
CONFAC is repeated infinitely often by executing an additional "dummy" action / 
This is reflected in 57. Let Ec = {a.b. c, d, e. /} be the set of actions of CONFAC. 

• The initial state: 

IS   li'o( AY false =>/i = lA/2 = 4Ax = i-oAy = 0A;=l), 

• The successor states: 

51 Vnj,n2% n3(/i = lA/2 = 4Ax = niAy = n2Ar = n3Anl>0=> 
(EXafa = 2 A l2 = 4 A x = m A y = n2 A z = n3) A AX(lx = 
2A/2 = 4A/ = n1Aj, = n,A: = n3)) A A,6sc\{,} -<EXgtrue) 

52 Vni. n2, n^ = lAl2 = 4Ax = nlAy=n2Az = n3Ax = 0^ 
(EXefa = 6 A l2 = 4 A x = m A y = n2 A z = n3) A AX(li = 
6 A l2 = 4 A x = ni A y = n2 A z = n3) A /\geZc\{e} *EXgtrue) 

53 Vm,n2,n3fa = 2A/2 = 4Ax = mAy = n2Az = n3 => (EXbfa = 
3A/2 = 5Ax = re1Ay = ra1A2 = n3)A AX(li = 3A/2 = 5AX = 
ni A y = n2 A z = n3)) A A5€sc\{6} ->EXgtrue) 

54 Vn!,n2,n3(/i = 3A/2 = 5Ax = rtiAy = n2Az = n3 =>■ (EXc(li = 
1 A l2 = 5 A x = m - 1 A y = n2 A z = n3) A £Jfrf(/i = 3 A /2 = 
4 A x = m A y = n2 A z = n3 * n2) A AX((li = lA/2 = 5Ax = 
ni-lAy = n2Az = n3)Vfa =3A/2 = 4Ax = mAy = n2Az = 
n3 * n2)) A A<,6Sc\{c,j} -<r-Yy«rue) 

55 Vm,n2,n3fa = 1A/2 = 5Ax = nxAy = n2Az = n3 =► [EXdfa = 
1 A l2 = 4 A x = m A y = n2 A z = n3 * n2) A EXafa = 2 A /2 = 
5Ax = m Ay = njA; = n3)A AJf((/i = 3A/2 = 4Ax = m Ay = 

«a A * = n3 * n2) V /i = 2 A /a = 5 A x = n, A y = n2 A z = 
"3) A A,esc\{.0 -lEXgtrve) 

56 Vn!,n2,n3(/i = 3A/2 = 4Ax = nxAy = n2Aj = n3 => [EXcfa = 
lA/2 = 5Ai = m-lAy = n2A2 = n3)A AX (fa = 1 A l2 = 
5Ax = m-lAy = n2Az = n3)) A Aff€sc\{c} ->EX8true) 

57 Vni,n2,n3(fi = 6A/2 = 4Ax = mAy = n2Az = n3 => [EXjfa = 
6A/2 = 4Ax = n1Aj/ = n2A2 = n3)A ^A*(/x = 6A/2 = 4Ax = 
nlAy = n2Az = n3)) A A5€£c\{a} -£A'^rue) 

58 Vni,n2,n3(/1 = 2A/2 = 5Ax = mAy = n2Az = n3 =► (EXdfa = 
2Al2 = 4Ax = mAy = n2Az= n3*n2)A AX(lx = 3 A /2 = 
4 A x = m A y = n2 A z = n3 * n2) A Ajr€Sc\{<f} ->£A**™e) 
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The program is correct iff for each natural number n, whenever the program starts 
with input x - n. it eventually reaches the state with l\ = 6./2 = 4 and output 
r = n\. This property can be expressed in our formal language by the formula: 

Spec = Vn(AY false A x = n => AF(h =6A(2 = 4A:= 1 * 2 * ...» n). 

Next, we show that the formula Spec can be derived from our temporal se- 
mantics TSem = IS A SI A ... A S8 using the proof system, i.e., TSem h Spec. 

We show only the major steps of the derivation. First, decompose Spec to the 
formulas 1) and 2), from which Spec can be easily derived using first order calculus 
rules. 

1) TSem \- Vm( AY false A x = nt =► EF(lx = 6A/2 = 4Az = l*2* 
. ..*nt). 

2) TSem r- Vn(£F(/i = 6A/2 = 4A^ = n) => AF(/i = 6A/2 = 4As = n)) 

Now in order to prove 2), we derive from the specification Spec: 

• TSem r- Vn(£.Y,-(trtte,/i = 6A/2 = 4Az = n)=> AA'*"(triicJi = 
6 A 1-2 = 4 A r = n)), for each i € -?, 

then using axiom .43 we derive: 

• TSem h Vn(£A'i(frue,/l = 6A/2 = 4Az = n)=> AF(/i = 6 A l2 = 
4 A 2 = n)), for each i € <*>, 

and then using rule A4 we get: 

• TSem \- Vn(£F(/i = 6A/2 = 4Az = n)=> AF(lt = 6A/2 = 4Az = n)) 

Now in order to prove 1), we use axiom A4 to derive from TSem : 

• TSem \- Vm{AY false M = nl/\n1>0=> EF(lx = lA/2 = 4Ax = 
nj - 1 A z = ni)), 

• r5emr-Vn1,n3(/i = lA/2 = 4Ai = rn Ax>0A: = n3=> EF{lx = 
1 A /2 = 4 A x = ni - 1 A z = n3 * «i)). 

then, using induction on ni, we derive 

• TSem r- Vnx{AYfalse Ax = n1An1>0=J> FF(/i = lA/2 = 4Ax = 
OAz = 1*2 *...*nt)) 

and using axiom S2 and axiom A4, we get: 

• TSem I- Vrn{AYfalse Ai = iii=> £F(/i = 6Al2 = 4A: = 1*2* 

...*r>0) 
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7 Quantifying over the time points 

In this section we consider FTSL with variables ranging over the points of time. 
For an interesting account of the debate whether such an approach is justified we 
refer the reader to [3], especially section 2.4.2. With no intention to even enter that 
discussion we just announce the technical result of a complete axiomatization of 
such logic, within the same mathematical framework as above. 

The syntax of this new logic is the same as in Section 3 above but with one 
more sort of variables i* called the temporal variables (TV, for short); the same 
sort as that of a new temporal constant C for the time beginning. We allow the ex- 
istential and universal quantification over the temporal variables. We interpret this 
language in the structures of the same form as above. Here by valuations we mean 
mappings V = V3 u \\ such that \\ : SV —• A and Vt : TV —► W. The 
satisfaction relation is defined as above with the obvious alterations. We include 
C2-C8 in the set of axioms now. Cl can be handled by taking the reachable (initial 
segment) substructure of the time frame. 

The same argument as above gives the soundness and completeness theorems. 

8 Conclusions 

We have given a complete proof system of the first-order version of TSL. This is 
the first known axiomatization of a first-order temporal logic interpreted over trace 
(transition) systems. Our proof system can be easily adapted to ISTL [23] (with 
modalities ranging over maximal paths) by removing the formula I{a,b) from ax- 
iom A13. The new axiom restricts the frames to conflict-free ones. 

It follows from the completeness theorem that the set of all theorems of FTSL 
is at most II}. Since the validity problem for TSL is n}-hard [20], it is II}-hard 
for FTSL. Therefore, the validity problem for FTSL is n}-complete. Identifying 
interesting fragments of FTSL with low complexity is left out as an important open 
problem. 

We believe that FTSL might turn useful for proving most of interesting bran- 
ching-time and partial-order properties of the real life concurrent programs (not 
only the academic toy examples) in an (human aided) axiomatic way. 
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INTERLEAVED PROGRESS 
CONCURRENT PROGRESS AND 

LOCAL PROGRESS 

W. REISIG 
HUMBOLDT UNIVERSITY OF BERLIN, GERMANY 

1. INTRODUCTION 

The relevant properties of distributed algorithms can be classified as safety and 
liveness properties, as suggested e.g. in [1,3,7]. Such properties can adequately be 
represented and proven by help of Temporal Logic [5]. 

We consider particular safety- and liveness properties in the sequel, called state- 
and progress properties. They are sufficient to describe the decisive properties of a 
large class of distributed algorithms. Furthermore, there exist powerful proof rules 
for such properties. 

Intuitively formulated, a state property p characterizes a subset of system states 
(p-states). A state property p is said to hold in a system E iff each reachable 
state of E is a p-state. Correspondingly, a progress property is based on two state 
properties, and characterizes a subset of runs: A progress property (p, q) holds in 
a run w iff each p-state in w is followed by a g-state in w. In the setting of linear 
time temporal logic, which we assume exclusively in the sequel, a progress property 
(p, q) holds in a system E iff (p, q) holds in each reachable run of E. 

This informal characterization of progress properties is far from unique. We will 
discuss and mutually relate three versions of progress properties, called interleaved, 
concurrent and local progress. Each of which has its own merits. 

We concentrate on properties that also are considered in the logic ISTL of [8]. 
We suggest proof techniques that reveal simpler proofs in many cases. 

2. ELEMENTARY SYSTEM NETS 

The description of an algorithm usually goes with the implicit assumption of 
progress. As an example, each execution of a PASCAL program is assumed to 
continue as long as the program counter points at some executable statement. The 
situation is more involved for distributed algorithms: Progress is usually assumed 
for most, but not necessarily all actions. 

As an example, Fig. 2.1 shows a quite simple producer/consumer system, Si. 
One may intend Si not to terminate in a state with deliver enabled. Likewise 
one may want receive and consume not to remain enabled infinitely. Not enforcing 
produce may however be adequate; this action may depend on the environment 
of Si, not represented in Fig. 2.1. The action produce is said to be quiescent 
in this case (and inscribed with "g"), whereas all other actions are progressing. 
Consequently, each acceptable run of Si turns out to be either infinite or terminates 
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A: ready to produce a: produce 
B: ready to deliver b: deliver 
C: buffer empty c : remove 
D: buffer filled d: consume 
E: ready to remove 
F: ready to consume 

FIGURE 2.1. es-net Ei: producer/consumer with quiescent produce 

in the initial state. Distributed Algorithms frequently assume fairness for some 
progressing actions. This issue is not covered here; we refer to [11-13] instead. 
Finally, loops are frequently convenient. 

This leads to a class of Petri Nets that have not been identified in the literature 
so far: One-safe place/transition nets with quiescent and fair transitions. This class 
is worth being named by its own, and we have chosen the term elementary system 
nets, in accordance with advanced system nets, considered elsewhere. 

As usual we write a net N as N = (P,T,F). We employ standard notations 
such as *x and x*, denoting the preset and the post-set of x € PUT or x C Pl)T, 
respectively. Due to the intended use of nets, the elements of P and T will frequently 
be called local states and actions, respectively. We employ the usual graphical 
representation of nets, depicting elements of P, T and F as circles, squares and 
arcs, respectively. PN, TN and FN will denote P, T and F, respectively. 

Enabledness and occurrence of actions are defined as follows: 

Definition 2.1. Let N be a net. 

(1) Any subset a C PN of local states is called a (global) state of N. 
(2) An action teTN is enabled in a C PN iff'tCa and (f \ *t) n a = 0. 
(3) Let a C PN and t eTN. Then eS(a,t) := (a \ *t) U f is the effect of t's 

occurrence on a. 
(4) Let t ETN be enabled ataC PN. Then (a, t, eff (a, t)) is a step of N, written 

a—>efi(a,t). 

(5) Any finite or infinite sequence ao —h aj —^ 0,2 ... of steps aj_i -^4 a* 
(i = 1,2,...) of N is an AT-based interleaved run. ao is its initial state. 

(6) Let t 6 T/v and let w — ao —^>ai —^>... be a N-based interleaved run. w is 
said to respect progress of * iff to each state a* that enables t there exists an 
index j > i, with tj 6 (**)*• 

An elementary system net has an initial state and declares each action either as 
progressing or as quiescent. 
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INTERLEAVED, CONCURRENT AND LOCAL PROGRESS 

Definition 2.2. A net E is called an elementary system net (es-net, for short) iff 

(1) a state as C P^ is distinguished, called the initial state of E, 
(2) each action in Ts is denoted as either progressing or quiescent. 

The initial state as is graphically depicted by a dot in the corresponding circle, 
and each quiescent action is inscribed with "g". Reachable states and runs of 
elementary system nets are defined as follows: 

ii, 

Definition 2.3. Let E be an elementary system net. 

(1) A state a C Ps is reachable in E iff there exists a H-based run w = ao ■ 
ai... —^an with ao = as and an = a. 

(2) A 11-based interleaved run w = ao—^ai —^... is an interleaved, reachable 
run of E iff w respects progress of each progressing action of E and ao is a 
reachable state of'S. 

In the sequel we also employ concurrent runs of es-nets. They can be defined as 
usual for en-systems, and are based on occurrence nets: 

Definition 2.4. A net K is called an occurrence net iff 

(1) for each p € PK, \'P\ < 1 and \p"\ < 1, 
(2) for each t G TK, \'t\ > 1 and \f\ > 1, 
(3) the transitive closure F£ of FK, frequently written <K, is irreflexive (i.e. 

xiFKx2FK ■ ■ ■ FKxn implies xx ^ xn), 
(4) for each x € PK UT«, {y\y <K ^} w finite. 

FIGURE 2.2. The unique infinite concurrent run of Ei starting at ast 

Fig. 2.2 shows an element labelled occurrence net. <K is a strict partial order 
in each occurrence net K. In fact, x <K y iff there exists an arrow sequence from 
x to y. 

We are particularly interested in states consisting of pairwise unordered places 
and consider each occurrence net canonically as an es-net, with the minimal local 
states constituting the initial state: 

Definition 2.5. Let K be an occurrence net. 

(1) K is element labelled iff a set M and a mapping I : PK UTK -> M is 
assumed. 

(2) Two elements p,q € PK U TK are concurrent iff neither p <K q nor q <K p. 
(3) A state a C PK is concurrent iff its elements are pairwise concurrent. 
(4) A state a C PK is maximally concurrent iff a is concurrent and for all 

p G PK \ a holds: a U {p} is not concurrent. 
(5) Let °K:={keK\'k = 0} and let K° := {k £ K \ k* = 0}. 
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(6) A state a C PK is reachable in K iff a is reachable from the initial state °K. 

The above definitions immediately imply: 

Lemma 2.6. Let K be an occurrence net and let a—>b be a step of K. 

(1) If a is concurrent, then b is concurrent, too; 
(2) If a is maximal concurrent, then b is maximal concurrent, too. 
(3) Each reachable state a C PK is maximally concurrent. 

According to the (above described) intended use of an occurrence net K to 
describe a run of a net E, each reachable state a of K represents a state of E that 
might have been observed during the course of K. Two o-enabled actions of K 
represent concurrent (independent) occurrences of the corresponding actions of E. 

Definition 2.7. Let E be a net and let K be an element labelled occurrence net. 
K is a H-based concurrent run iff 

(1) in each concurrent state a of K, different elements of a are differently la- 
belled, 

(2) for each t £ TK, l{t) e Ts, /(•*) = *l(t) and 1(f) = l(t)'. 

According to this definition, Fig. 2.2 in fact shows a concurrent run that is based 
on the producer/consumer system in Fig. 2.1. The notion of progress, above already 
defined for interleaved runs, is even more intuitive for concurrent runs: 

Definition 2.8. Let S be an es-net, let t e 7s and let K be a H-based concurrent 
run with labeling I. 

(1) K is said to respect progress of t ifft is not enabled at l(K°). 
(2) K is a reachable concurrent run of S iff l(°K) is reachable in S and K 

respects progress of each progressing action of S. 

Fig. 2.2 outlines a reachable concurrent run of Si. There is in fact exactly one 
infinite concurrent run of Si that starts in the initial state of Si. As a further 
example, the es-net S2 as given in Fig. 2.3 evolves exactly two concurrent runs 
starting at the initial state of E2. They are shown in Fig. 2.4. 

®—-a—o^*a—o 
(•)■— zzz^ 

® O—^C^D—O 
b E d 

FIGURE 2.3. es-net S2 

3. STATE PROPERTIES 

Technically, a state property of an es-net S is a subset of states of E. We describe 
state properties by help of propositional formulas, taking the local states of S as 
propositional axioms: 

Definition 3.1. Let P be a set of symbols. Then 

(1) each local state p 6 P is a state formula over P, and 

MC 
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K1: 

© HU -0—^0 -© 
©  
©—-0—<D 

K,: 

© HZ] 0 

0 HI] -0- 

FIGURE 2.4. The concurrent runs of S2 

(2) if p and q are state formulas over P, then ->p and p A g are state formulas 
over P. 

Let sf (P) denote the set of state formulas over P. Validity of state formulas is 
denned as can be expected: 

Definition 3.2. Let S be an es-net, let p, q be state formulas over Ps and let 
a C Ps be a state. Then a^p ("a is a p-state") is inductively defined as follows: 
a\=p iffp G a, for p G PE, 
a \= -ip iff not a ^ p, 
a\=p/\qiffa^=p and a |= q. 
Furthermore S \=p ("p holds in Y.") iff each reachable state o/E is a p-state. 

Of course, we apply the usual propositional conventions such aspVq, p -+ q etc. 
S (= p can frequently be proven by help of assertional reasoning: One proves 

that p holds initially and for each transition t of N one shows, considering p and 
t only, that each step a —> b preserves p. The well known techniques of place 
invariants and traps are examples for assertional reasoning. 

The following notations turn out useful in the sequel: 

Definition 3.3. Let S be an es-net. 

(1) With P = {pi,... ,pn) C Ps, the formula p\ A • • • Apn is frequently written 
Pi...pn or just P. 

(2) Let K be a %-based concurrent run, letp G sf(Ps) and let L C PK. Then L 
is said to have a reachable p-state iff there exists a set M C PK, reachable 
from L, such that l(M) is a p-state . 

For example, let K be the run of Fig. 2.2 and let L = {si, s2 } C PK be concurrent 
with l{s\) = B and /(S2) = C. Then L has a reachable A A D-state as well as a 
reachable B A £>-state, but no reachable .A A C-state. 

n( 
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4. INTERLEAVED PROGRESS 

In accordance with other formalisms such as UNITY, interleaved progress is 
described by help of formulas formed p >-> q ("p leads to q"). Validity of such a 
formula in an es-net S is based on its validity in all interleaved runs of S: 

Definition 4.1. Let S be an es-net and letp,q 6 sf(Ps). 

(1) For any Y,-based interleaved run w let w \= p H- q iffw has a q-state provided 
its initial state is a p-state. 

(2) S |= p H-> q iff for each reachable interleaved run wofY, holds: w j= p*-¥ q. 

For example, in the producer/consumer system Si holds B *-+ A but not A *-* B. 
Likewise, in S2 holds ABC >-> FvG, and in S3 holds AB ^ E and A>-> E, but 
not AB^ AD. 

FIGURE 4.1. A technical example, S3 

Elementary leads-to properties can be picked up from the static structure of an 
es-net. To this end we define: 

Definition 4.2. Let S be an es-net and let Q = {qlt... ,qn} C PE. 

(1) Q is progress prone iff' Q enables at least one progressing action o/S. 
(2) Q prevents an action t eT iff for 9t={pi,... ,pm} holds: The state formula 

(gi A • • • A qn) -¥ -i(pi A • • • A pm) holds in S. 
(3) U C T is a change set of Q iffU^® and Q prevents each t eQ*\U. 

The pick-up rule for progress is now captured in a Theorem: 

Theorem 4.3. Let S be an es-net, let Q C Ps be progress prone and let U CTs 
be a change set ofQ. Then 

Z\=Q^ V eff(Q,U). 
ueu 

Proof. Let w = ao —^ ai —^>... be a reachable interleaved run of S and let ao be 
a Q-state. Then ao enables a progressing action u with 'u C Q (as Q is assumed 
to be progress prone). Furthermore, *u C a0 (by Definition 3.2). Then there exists 
an index j > 1 with tj € (mu)' (by Definition 2.3(2) and Definition 2.1(6)). Then 
there exists an index / < j with ti E Q*. Let k be the smallest such index. Then 
ak \= eS{Q,tk). Furthermore, tk e U (as U is assumed to be a change set of Q), 
hence ak f= \/u€Uefi(Q,u). Then w \= Q ^ \/u&ueS(Q,u) with Definition 4.1(1) 
and the proposition follows with Definition 4.1(2). D 

This Theorem in fact allows to pick up Si |= BC (->• AD with Q = BC and 
U = {b} but not Si |= A i->- B because A is not progress prone. Furthermore, 
S2 |= DBE H'DGVEF with Q = DBE and U = {c, d}; even more, S2 |= BD H-> 

DGVF with Q = BD and U = {c, d}. 

II *- 
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Not all valid leads-to properties can be picked up this way. But many such 
properties can be gained as the result of combining picked up properties by help of 
the following Lemma: 

Lemma 4.4. Let E be an es-net, and let p and q be state formulas o/E. 

(1) // E \= p -» q then E (= p i-> <?. 
(2) // E |= p i->- q and E |= q*-+ r then E (= p i-> r. 
(3) // E |= p H-> r and E |= q i-> r i/ien E [= (p V ?) H r. 

Proof of this Lemma just applies Definition 4.1 and is left to the reader. The 
transitivity of i-> can graphically be depicted by p H g i-> r, and a disjunctive 
formula p t-+ (qx V • ■ • V qn) by 

(4.1) 

5.CDI—^Ö.E 

FIGURE 4.2. Proof graph for E3 f= A i-> i? 

Proofs of leads-to properties can thus nicely be presented as proof graphs (in [7] 
called proof lattices). As an example, the proof graph of Fig. 4.2 proves E3 |= 
A<-+ E. With the invariants h = A + C - B - D = 0, i2 = A + C + E = 1 and 
i3 = B + D + E = 1 its nodes are justified as follows: 

Node 1:   ix implies A-> BV D; 
node 2:    trivial; 
node 3:    B prevents c by 13; 
node 4:    A prevents c by ii\ 
node 5:    trivial. 

As a further example, the proof graph of Fig. 4.3 proves E2 \= AB H-> F V DG. 
The question mark at arc inscriptions indicates that enabledness of action d was 
not guaranteed. 

1.AB I    8   >2.BD I—2-* 4.F  > 6.(F v DG) 

3.AG I ^5.DG c 

FIGURE 4.3. Proof graph for E2 |= AB i-+ (F V DG) 
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5. CONCURRENT PROGRESS 

Concurrent progress is described by help of formulas formed p <-+ q ("p causes 
q"). Validity of such a formula in an es-net £ is based on its validity in all concurrent 
runs of £. 

Concurrent progress is weaker than interleaved progress: £ |= p i-> q implies 
E |= p <-> q. Vice versa, £ f= p <-> q implies £ (= p I-+ qr in case g is a disjunction 
V Q of a set Q C Ps of atomic state formulas. In this case, causes formulas can 
be employed for proving leads-to formulas. As the pick-up rule for causes formulas 
is more expressive than the pick-up rule for leads-to formulas, concurrent progress 
frequently reduces the size of proof graphs for leads-to properties. 

Definition 5.1. Let £ be an es-net and letp,q £ sf(Ps). 

(1) For any E-based concurrent run K let K (= p «->• q iff K has a reachable 
q-state in K, provided °K is a p-state. 

(2) £ |= p «-> q iff for each reachable concurrent run K ofS holds: K \= p4 q. 

Examples for valid causes formulas p <-> q are £i (= B <-»■ ACE, £2 (= ABC <->• 
ABE and £3 |= AB <-t CB. The corresponding leads-to formulas p i-> q are not 
valid in the respective es-nets. 

The causes operator allows for proof graphs: 

Lemma 5.2. Let £ be an es-net and letp,q,r 6 sf(Ps). 
(1) E|=p->p 
(2) //E^pH? and S|=gHr then £ (= p <-»• r. 
(3) 7/ £ |= p <-> r and £ (= g M- r i/ien E |= (p V q) <-> r. 

Proof of this Lemma just applies Definition 5.1 and is left to the reader. It is 
likewise easy to show that causes is in fact weaker than leads-to: 

Lemma 5.3. Let E be an es-net and let p € sf(Ps). 

(1) Let q e sf(Ps). If E (= p H> q then £ |= p <->• g. 
(2) lei Q C PE and letq:=\JQ.IfZ\=p^q then £ (= p 1-4 q. 

The concurrent pick-up rule again is based on change sets of progress prone sets 
of states: 

Theorem 5.4. Let £ be an es-net, let R C Q C Ps, let R be progress prone and let 
U be a change set ofR such that %U C R. Then E|=Q^ (Q\ß)A(Vu6C/ eff (P, u)). 

Proo/. Let K be a reachable concurrent run of E and let "ifbe a Q-state. Let 
SR C SQ C °i(: with Z(5R) = P and Z(SQ) = Q. Then J(SÄ) enables at least 
one progress prone action u 6 TE (by construction of P). Then S^ % K° (by 
Definition 2.8(2)). Then there exists some t € SR' with /(£) £ U (as 1/ is a change 
set of P). Even more, 't CSR(as'UCR and Definition 2.7(2)). Then (°K\'t)Uf 
is a (Q \ P) A eff (P, f (i))-state. Hence the Lemma. D 

1.BCE o_b_» 2.ADE c_2-> 3.ACF cl» 4.ACE 

FIGURE 5.1. Proof graph for £1 \= BCE <-> ACE 

As an example, Fig. 5.1 shows a proof graph for £1 f= BCE «-> ACE. Each 
node is justified by immediate application of the pick-up rule. 

//•/ 
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1.A »2.AB c_A» 3.AD <^-§-> 4.CD ^—^ 5.E 

FIGURE 5.2. Proof graph for S3 (= A *-> £ 

Likewise, Fig. 5.2 shows a proof graph for S3 |= A «->■ £. The first node is 
justified by the place invariant A + C - B - D = 1 which implies A ->• {By D). 
All other nodes are gained by immediate application of the pick-up rule. Together 
with Lemma 5.3(2), this proof graph coincidently proves S3 \= A *-¥ E. This graph 
is smaller than the direct proof graph of Fig. 4.2. 

As a further example, 

(5.1) S2 \= ABC <->AGvCF 

is certainly valid, as with respect to the two concurrent runs of S2, given in Fig. 2.4, 
holds Kx f= ABC <-)■ CF and K2 (= ABC <-» AG. But the pick-up rule of 
Theorem 5.4 does not suffice to show (5.1). Intuitively formulated, Theorem 5.4 
does not squeeze sufficient information out of S2. Proof of (5.1) in fact requires a 
further operator, yields, and is postponed to Chapter 7. 

6. ROUND BASED ALGORITHMS 

Distributed Algorithms are frequently round based. Intuitively formulated, each 
concurrent run of a round based algorithm S can be considered as a sequence of 
rounds. Each round is an instance of a S-based run that begins and ends at the 
same global state a of S ( in fact, mostly the initial state). Hence, an a-state 
will be reached from any reachable state of any concurrent run of S, formally: 
S |= true <-)• a. This implies that each finite concurrent run ends in an a-state and 
each infinite concurrent run has infinitely many a-states. 

We will refrain from a precise characterization of rounds and consider the more 
general notion of ground formulas: 

Definition 6.1. Let S be an es-net and let p € sf(Ps) be a state formula, p is a 
ground formula of S iff S |= true «-»■ p. 

Examples for ground formulas are ACE for Si and AC EG for S4 in Fig. 6.1. 
There is an operational characterization of ground formulas. It is based on the 
notion of change sets as introduced in Definition 4.2(3). 

Theorem 6.2. Let S be an es-net, let p C Ps and let U be a change set of p. 
Then p is a ground formula of S iff S |= as <-»• p and for each u € U holds: 
S |= eff (p, u) «-► p. 

Proof. "=>" is trivial. To show "<=", let K be a reachable concurrent run of S 
and let C be a reachable state of K. For each reachable state B C PK of K, let 
6(B) = {t €TK \b<Kt <K c for some b£ B and some c£C}. Then holds: 

(1) For each reachable state B C PK, 5(B) is finite (by Definition 2.4(4)). 
(2) B is reachable from C iff 5(B) = 0. 
(3) If A is reachable from B then 5(A) C 5(B). 

The Theorem's assumption of S |= as «-»■ p implies there exists a reachable p-state, 
D. If 5(D) = 0 then D is reachable from C (by (2)) and we are done. Otherwise, 
with (1) there exists a reachable p-state E of K with minimal, nonempty 5(E), i.e. 

(< •> 
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FIGURE 6.1. es-net £4 

(4) for no reachable p-state E' holds: 0 ^ 6{E') C S(E). Let t € 6{E) be a 
minimal element w.r.t. <K (which exists according to (1)). Then 't C E 
(by definition of 5(E)). Then F := (E \ *t) U f is reachable from £ and 
5(F) = 5(E) \ {*}, hence 

(5) 5(F) C ö(E). 

Now we distinguish two cases, and first assume that F is a p-state. Then 5(F) = 0 
(by (5) and (4)), hence F is reachable from C (by (2)) and we are done. 

Otherwise, F is no p-state. Then u := l(t) € p*. Even more, u G U (as U is 
assumed a change set of p). Then F is an eff (p, u)-state. Then K has a p-state, 
G, that is reachable from F (by the Theorem's assumption of S (= eff(p,u) <-* p). 
Then <5(G) C 5(F) (by (3)) £ 5(E) (by (5)), hence <J(G) = 0 (by (4)), hence G is 
reachable from E (by (2)) and we are done also in this case. D 

As an example, we prove that the initial state ACE is a ground formula of Ei by 
help of Theorem 6.2. The first condition, Si (= as «-» .4CF, is trivially fullfilled. 
For the second condition of Theorem 6.2 we choose q = {A} and U = {a}. Hence 
we have to show: Si |= BCE <-> ACE. The proof graph 

(6.1) l.BCE 4 2.ADE 4 3.ACF A 4..4CF 

shows this property . Its nodes are justified as follows: 

Node 1: context E; 
node 2: context A; 
node 3:    context A. 

li** 



INTERLEAVED, CONCURRENT AND LOCAL PROGRESS 

Hence (6.1) proves that ACE will eventually be reached from any reachable state, 
though (6.1) does not argue about all reachable states of Si, e.g. not about BDE 
or BDF. This advantage of the causes operator is even more evident in the proof of 
the ground formula AC EG of E4: It is sufficient to prove E4 \= BCEG ^-> AC EG, 
which in turn is gained by help of the proof graph   ' 

3. ACFG     J c d 

(6.2) 1. BCEG M- 2. ADEG 5. ACEG 

\ S 
4. ACHE 

This proof graph concisely argues about 16 reachable states and infinitely many 
concurrent runs of E4! Generally, n consumers yield 2n states and a proof graph 
with n + 3 nodes. 

Ground formulas support the proof of any causes formulas: In Theorem 5.4, the 
requirement of R to be progress prone may be replaced by the requirement to imply 
->p for some ground formula p: 

Theorem 6.3. Let E be an es-net, let R C Q C P%, let p be a ground formula 
of E with E \= R —> ->p and let U be a change set of R such that 'U C R. Then 
^^=Q^(Q\R)A(\/ueUeS(R,u)). 

Proof. Let K be a reachable concurrent run of E and let C be a i?-state of K. 
Then C has a reachable p-state D (as p is a ground formula) and C ^ D (as 
E |= R -» ->p). Then there exists a transition t e C with l(t) € U. Hence the 
proposition. D 

7. LOCAL PROGRESS 

Here we consider a progress operator > ("yields") that again is defined over 
concurrent runs. It squeezes more information out of an es-net's structure than the 
above described causes operator does. Hence E \= p > q implies E ^ p <-► q, for 
each es-net E and all state formulas p, q 6 sf(Ps). In addition to a pick-up rule 
(in the line of Theorems 4.3 and 5.4), there are rules to embed yields formulas into 
a concurrent context and to compose such formulas. Those rules are sharp enough 
to prove (among other properties) the validity of the above described property 
E2 |= ABC M- AG V CF. 

It is the disjunctive composition of yields formulas p > q that fully exploits the 
power of the yields operator. Hence we define: 

Definition 7.1. Let P be a set and let pi,... ,pn,qi,...,qn € sf(P) be state for- 
mulas over P. Then p := (pi > q\) V • • • V (pn > q„) is a yields formula over P. Let 
Yf (P) denote the set of all yields formulas over P. 

yields formulas over an es-net's local states are interpreted over its concurrent 
runs: 

Definition 7.2. Let E be an es-net, let p := (pi > qi) V • • • V (p„ > qn) G Yf (P%) be 
a yields formula over Ps and let K be a Z-based run. 

(1) For 1 <i <n, K \= pi>qt iff each pi-state L C °K has a reachable qt-state. 
(2) K\=-p iff for some 1 < i < n holds: K \= pi> qi. 
(3) E \= p iff for each reachable concurrent run KofT, holds: K ^ p. 

7 
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yields is in fact stronger than causes: 

Lemma 7.3. Let E be an es-net and letp, q £ sf(Ps). If%\= P>Q then Y, \= p1—* q. 

Proof. Let E |= p> q. Then for each reachable run K holds: Each p-state L C °K 
has a reachable g-state. Hence °K is no p-state or has a reachable g-state. Hence 
K\=p^q. □ 

The operator > essentially differs from >-» and <-» with respect to implication: 
E |= p -> g does in general noi imply E f= p > q. Hence E f= p i-> g does in general 
not imply E |= p > g. As an example, S3 |= C i-> £ but not S3 (= Ct>£. 

The yields operator allows of proof graphs, too: 

Lemma 7.4.       (1) // S |= p > q and S (= g > r iften S (= p > r. 
(2) IfT,\= p>r and E |= g > r then T,\= (pV q)>r. 
(3) // S |= (p> g) V (p> r) then E |= p> (g V r). 

Proof of this Lemma just applies Definition 7.2 and is left to the reader. 
We stick to standard yields formulas in the sequel: Each state formula pi in 

each component pi > qi is just a conjunction (written as a subset according to 
Definition 3.3(1)) of local states: 

Definition 7.5. Let P be a set of symbols and let p = (pi > gi) V • • • V (pn > qn) £ 
Yf (P) be a yields formula over P. Then P is said to be standard iffpi,. ..,pnQ P- 
In this case, pre(p) := pi U ■ • ■ Upn is the precondition of p. 

The validity of standard yields formulas can be characterized as follows: 

Lemma 7.6. Let S be an es-net, let p> q 6 Yf(Ps) be standard and let K be a 
1,-based run. Then K \=p>q iff either p % l(°K) or L:= {k e°K \ l(k) € p} has 
a reachable q-state. 

Proof. For p C PE, L C °K is a p-state iff p C l(L). D 

Local progress can be picked up from the structure of an es-net: 

Theorem 7.7. Let E be an es-net, let Q C Ps be progress prone and let U be a 
change set of Q with Q = 'U. Then S f= Vueu *u>u*. 

Proof. Let K be a reachable run of S. According to Definition 7.2 we have to show: 

(1) K \= 'u > u* for some u £U. 

The formula VueE/*u>u* *s apparently standard. In case *U % l(°K), there 
exists an action u £ U with 'u % 1{°K) and we are done with Lemma 7.6 and 
Definition 7.2. Otherwise mU C l(°K), hence Q C l(°K) (as Q C *U), hence l(°K) 
enables at least one progressing action u 6 Q' (as Q is progress prone). Hence for 
L:= {k€°K\ l(k) € Q} holds: L % K° (by Definition 2.8). Hence there exists a 
transition to € L'. Before continuing the proof's main stream we show 

(2) If there exists some t 6 L* then there exists some r £TK with V C L. 

by induction on the height h{t) of t: Inductively let h{t) := 0 if *t C L and 
h(t) = max{/i(r) | r* D V ^ 0} + 1 if *t % L. Fig. 7.1 outlines the forthcoming 
arguments. If h(t) = 0, then (2) holds with r = t. Now for n > 1 assume (2) for all 
t' with h(t') < n and let t E L' with /i(t) = n. Then there exists some s £ *t\L. 
Furthermore, l(t) £ U (as U is a change set of Q). Then Z(s) £ Q (as *U = Q by 
the Theorem's assumption). Then there exists some s' £ L with l(s') = /(s) (by 

('« 
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o 
ja zO- 

FIGURE 7.1. Outline of the proof of (2) 

construction of L). Then s and s' are not concurrent (by Definition 2.7(1)). Then 
s' <K s (as s' G °K). Then there exists some i £ TK with s'FKiFKsFKt. Then 
h(i) < h(t) (by construction of h). Then there exists some r G TK with *r C L (by 
the inductive assumption). Hence the proposition (2). 

Turning back to the proof's mainstream, to G L* implies some r G TK with 
VCi (by (2)). Then l(r) G U (by construction of L and U). In order to show (1) 
we more concretely show 

(3) K\='l(r)>l(rf 
by help of Lemma 7.6 as follows: 
{k e°K \ l(k) G •/(»■)} = {k G °K | Z(jfe) G Z(V)} (by Definition 2.7(2)) = {k G 
°Ä" | A; G V} (by Definition 2.7(1)) = V. Obviously, r' is reachable from V in AT, 
and r* is a Z(r*)-state (by construction), i.e. a Z(r)*-state (by Definition 2.7(2)). 
Hence (3) by Lemma 7.6. □ 

Components of yields formulas can be embedded into a concurrent context: 

Theorem 7.8. Let E be an es-net, let p,q,r C FE with p D r = 0 and let u G 
Yf(PE). IfE\=(p>q)Vu then S ^= ((pUr) > (gUr)) V u. 

Proo/. Let Ä" be a reachable concurrent run of E. According to Definition 7.2(3) 
we have to show: 

(1) K |= ((p U r) > (q U r)) V u. 
In case Ä" |= u we are done by Definition 7.2(2). Otherwise holds K |= p>q, by the 
Theorem's assumption E (= (p > q) V u and Definition 7.2. Then either p g l(°K) 
or Lp := {A; G °.ftT | Z(fc) G p} has a reachable g-state, M (by Lemma 7.6). Then 
either p U r £ Z(°Ä") or for Lr := {k e°K \ l(k) G r} holds: M U Lr is reachable 
from Lp\jLr, hence Lp U Lr has a reachable g U r-state, hence K |= (p U r) > (g U r) 
(again by Lemma 7.6, and by construction of M and Lr). This implies (1) by 
Definition 7.2(2). D 

Yields formulas can quite generally be composed, provided some of the involved 
components are standard and their preconditions are sufficiently disjoint: 

Theorem 7.9. LetH be an es-net, letp,q,r,s C Ps with (pflr) C q, letu G Yf(P^) 
and let v be a standard yields formula with pre(u) D p = 0. Furthermore assume 
E (= (p> g) V u and E |= (r > s) V u. Tften E (= (p U (r \ ?) > s U (q \ r)) V u V u. 

..1 
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Proof. According to Definition 7.2(3) we have to show for each reachable concurrent 
run K of S: K \= (pU(r\q)>sö(q\r))Vu\/v. Hence assume a reachable concurrent 
run K of E. 
If K (= u or K \= v, we are done (by Definition 7.2(2)). Otherwise holds 

(1) Kfiv and 
(2) K\=(p>q), 

by the Theorem's assumptions and Definition 7.2, and we have to show K \= 
pU(r\q)>sU(q\r). In casepU{r\q) % l(°K), we are done. Otherwise let L C "AT 
with L = {k G °AT | l(k) 6pU(r\ g)}. By Lemma 7.6 we have to show that 

(3) L has a reachable (s\J (q\r))-state. 

L 

4> 
Lq 

n 
Lq 

Ls 
Lr 
\ 

FIGURE 7.2. Outline of the proof of Theorem 7.9 

Fig. 7.2 outlines the forthcoming arguments. 

• There exists a subset Lp C L with l(Lp) = p (by construction of L). Then Lp 

has a reachable g-state Lq (by (2) and Lemma 7.6). Then L' := (L \ Lp) U Lq is 
reachable from L and V is a ({p U (r \ g)) \ p) U g-state (by construction) and even 
a (r U g)-state (by the Theorem's assumption (r n p) C g). Hence there exists a 
subset LT C L' with /(Lr) = r. 

• Let L := (°K \ Lp) U Lq. L is reachable in Ä" and hence 

(4) l(L) is reachable in E, and 
(5) irci 

because Lr C L' C L by construction of Lr, L' and L. 

• Let K' be the largest subnet of K such that 'A-' = L (i.e. if' coincides with the 
elements of K that are reachable from {°K \ Lp) U Lq). 

• Let v = (pi > qx V • • • V pn > qn). Then for all 1 < i < n holds: K ^ pt > q{ (by 
(1) and Definition 7.2(2)), hence there exists a subset Li C °K with l{Li) = pi and 
Li has no reachable ^-state (by Lemma 7.6). Furthermore, Li D Lp = 0 (by the 
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Theorem's assumption pre(w) Dp = 0), hence Li C °K' (by construction of K'), 
hence K' \fc Pi >&. 
Then K' \fc v (by Definition 7.2(2)). Then K' (= r>s (by the Theorem's assumption 
S(=(r>s)Vi), Definition 7.2(2) and Definition 7.2(3)). Then Lr has a reachable 
s-state, Ls (by (5), construction of K, and Lemma 7.6). Then L's := (V \ LT) U Ls 

is reachable from V and Lj is a ((r U ?) \ r) U s-state, hence a s U (q\ r)-state. 
Furthermore, L's is reachable from L (by construction of V and Lemma 7.4(1)). 
This implies (3). D 

Theorems 7.7, 7.8 and 7.9 provide rules to pick up, to embed and to compose 
yields formulas, sufficient to prove S2 f= ABC <-> AG V CF, as discussed in (5.1). 
The proof gives a formal basis for an intuitive justification of (5.1): 

1. A > D, picked up: {a} is a change set of A. 
2. C >E, picked up: {b} is a change set of C. 
3. (BD > F) V (BE > G), picked up: {c, d) is a change set of BDE. 
4. (AB > F) V (BE > G) composed, with 1. and 3. 
5. (AB > F) V (BC > G) composed, with 2. and 4. 
6. (ABC > FC) V (BC > G) embedded, with 5. 
7. (ABC > FC) V (ABC > AG) embedded, with 6. 
8. ABC > (FC V AG) Lemma 7.4(3). 
9. ABC «-+ (FC V i4G) Lemma 7.3. 

We consider the corresponding proof in [8] less oriented at intuition. As a variant, 
assume quiescence for the action a of S2. Then the above discussed property (5.1) 
remains valid. But the above proof fails, because A > D cannot be picked up 
anymore: {0} is no change set of A because a change set must contain at least 
one progressing action. Proof of (5.1) can nevertheless be conducted by help of 
the change set {a, d} of ABE (the action c is excluded by the place invariant 
A + D + F = 1). Employing 2., 3., 5.-9. of the above proof we now argue as 
follows: 

10. (A > D) V (BE > G), picked up: {a, d} is a change set of ABE. 
11. (AB > F) V (BE > G) V (BE > G), composed, with 3. and 10. From 11. now 

follows 4. by propositional logic, and 5.-9. as above. 

8. CONCLUSION 

This paper reports some aspects of sustained effort to set an adequate basis 
for Distributed Algorithms. One of the outcomes of this effort is the notion of 
elementary system nets as introduced in Chapter 2, and particularly the notions of 
quiescence, progress and fairness, as required for many real life algorithms, [10-14]. 
The notion of fairness, as well as the high level formalism of system nets have not 
played any role in this paper. 

Three versions of temporal logic have been studied in this paper. They are 
examples of linear time temporal logic, because for each of them a formula p is said 
to hold in a system S if and only if p holds in each reachable run of S. The three 
versions of logic differ however with respect to the considered runs (interleaved 
runs for leads-to and concurrent runs for yields and causes), and with respect to 
the granularity of information that is squeezed out of a concurrent run (yields with 
finer granularity than causes). 
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Properties of distributed algorithms that are usually considered essential, can 
mostly be formulated by help of leads-to formulas p i-> q, where q is a disjunction 
q = V Q °f a set Q °f atoms. We have shown that yields and causes can be used to 
prove such leads-to properties more elegantly. 

The deepening understanding of distributed algorithms reveals that there are also 
crucial properties that are not captured by leads-to properties. Examples include 
the property (5.1) and rounds: A variant of S2 with property (5.1) has been intro- 
duced in [8] as a description of serializability of distributed database transactions. 
The concept of rounds allows to simply structure the behaviour of many distrib- 
uted algorithms, in particular algorithms on networks of communicating agents. 
The behaviour of many such algorithms S can be described by help of "regular" 
operators over a finite set of finite, cyclic, S-based concurrent runs (more precisely, 
as a regular Mazurkiewicz trace language, c.f. [6] ). Causes formulas p <-► q are 
an adequate means to represent such properties. Their proof can occasionally be 
simplified by help of yields formulas p > q (as in the proof given in Chapter 6 for 
(5.1)). 

Properties described by causes formulas p «-»• q are intuitively obvious. But 
examples of corresponding essential properties of real-life distributed algorithms 
remain to be found. 
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Abstract 

The sequentially postulate assumes that events occur in a definite or- 
der. We explore some of the boundary of applicability of this postulate 
for the case of sequential observers, varying number of observers, duration 
of events, and variability of events. When there is one observer or events 
are atomic, the sequentiality postulate holds, making linear orders a fully 
abstract model of concurrent behavior. With more than one observer and 
with structured events it fails. We show that unlimited observers and 
variable events make pomsets a fully abstract model. Putting duration 
in place of variability yields an intermediate situation in which the se- 
quentiality postulate does not hold but pomsets are not a fully abstract 
model. 

1    Overview 

It is widely believed that trace or interleaving semantics, which assigns a def- 
inite order of occurrence to every pair of events, is sufficient for all practical 
purposes. In support of this belief, Jonsson [Jon89] and Russell [Rus89] show 
that trace semantics is fully abstract for parallel computation, at least of the 
kind represented by Kahn networks. 

However these full abstractness results suffer from an overly constrained 
notion of observer. In this paper we consider a wider range of observational 
behaviors or testing scenarios, and give a detailed picture of just where full 
abstractness for trace semantics becomes unsound for the eight scenarios ob- 
tained by varying three basic parameters of computation, namely duration D, 
variability V, and multiplicity M of observers ("teams"). 

Duration expresses the notion of an ongoing action, one that can be analyzed 
as a sequence of subactions.   Duration is naturally modeled as a string.   An 

•This work was supported by ONR under grant number N00014-92-J-1974. 
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action a may be analyzed as say the string 0102 indicating that a decomposes 
into two consecutively performed actions, a\ then a2. 

Variability expresses choice, naturally modeled as a set of alternatives. An 
action a may be analyzed as say the set {ai,a2} indicating that for a to occur 
means that exactly one of a\ or a2 occurs. 

Multiplicity expresses the notion of two or more observers both observing 
the same run of a computation, but from different vantage points. We shall 
assume that when two observers see the same events from different viewpoints, 
they agree on all choices that have been made, including those associated with 
variability, but may disagree on the relative order of events. We understand 
choice as absolute, in that it is unambiguous which of two alternatives has been 
chosen. However we view time as relative in that two events not occurring in 
each other's light cone do not have a well-defined order of occurrence. This 
asymmetry of choice and time, while certainly questionable, is consistent with 
physics as standardly taught. 

Our results in the case of computational behaviors consisting of single pom- 
sets (labeled partial orders) is summarized by the following cube. 

DVM 

VM 

Figure 1. Eight testing scenarios 

Edges are labeled with the number of the relevant proposition, while the 
double lines indicate equivalence, with respect to distinguishing power, of two 
kinds of observational behavior, with the remaining lines then indicating strict 
inequalities. Thus Proposition 1 shows that Duration on its own makes a dif- 
ference while Propositions 2 and 3 show that neither Variability nor Multiplic- 
ity make any difference, neither on their own nor as an addition to Duration. 
Proposition 4 shows that in the presence of Variability, Multiplicity does make 
a difference. Moreover an unlimited supply of observers leads to full abstract- 
ness for pomsets even at VM, whence DVM cannot be any bigger and so must 
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equal VM. This then has the side effect of removing Duration as a contributing 
factor. 

The identifications reduce the classes to three, namely 0 = V = M, D = 
DV = DM, and VM = DVM, while Propositions 1 and 4 show that these 
three classes are distinct. 

As a refinement of these all-or-nothing results, Proposition 5 extends Propo- 
sition 4 to a hierarchy theorem: n + l observers can observe distinctions invisible 
to n observers. 

We also consider processes as sets of pomsets, and show that the identifica- 
tions of VM with DVM, and of 0 with V, continue to hold. (Rob van Glabbeek 
has pointed out to us that this cannot be improved, via examples separating D 
from DV and from DM, and 0 from M.) 

2    Background 

Linearly ordered multisets (labelled chains up to isomorphism) are strings. Pom- 
sets as partially ordered multisets therefore constitute a generalization of strings 
to partial orders. This model as an extension of formal language theory is due 
to Grabowski [Gra81] who called it a partial word, the characterization as a par- 
tially ordered multiset being due to the second author [Pra82]. Pomsets with a 
conflict relation are called event structures, introduced by Nielsen, Plotkin, and 
Winskel [NPW81]. Prior related notions are Mazurkiewicz's partial monoids 
[Maz77, Maz84] and Greifs treatment of actors [Gre75]. A list of more recent 
papers on the topic [MS80, Gis88, Pra86, AH87, Win88] would be bound to be 
incomplete. 

We shall identify observation with linearization. That is, at least in the case 
of atomic events, an observer of a pomset sees its events in some linear order 
consistent with the order of the pomset. 

To a zeroth order approximation, two pomsets should be observationally 
equivalent when they have the same set of linearizations. 

The familiar theorem that (the graph of) a poset is the intersection of the 
set of (graphs of) its linearizations is due to Szpilrajn [Szp30]. In our framework 
posets are pomsets with no repeated elements, i.e. the function assigning labels 
to poset elements is injective. Thus in our application Szpilrajn's theorem states 
that distinct posets are not observationally equivalent. 

At the other extreme from posets are pomsets over a one-letter alphabet, 
say the alphabet {a}. In our framework these amount to posets up to iso- 
morphism. (So pomsets span a spectrum from posets-up-to-isomorphism to 
posets.) There are just two two-element pomsets over {a}, which we write as 
aa (linearly ordered) and a\a (discretely ordered). These have the same set of 
linearizations and hence are observationally equivalent. So whereas Szpilrajn's 
theorem applies to posets this example shows that it does not apply to posets 
up to isomorphism. 
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The meaning of a\a is that we have two copies of an activity a that are 
running in parallel. If a is an instantaneous event, as we have been assuming up 
to now, and the possibility of exact simultaneity is neglected, then there would 
seem to be no basis for distinguishing between aa and a\a in either theory or 
practice. 

If however a has duration we have the possibility of overlap for the case 
a\a, but not for aa. We may represent duration by taking a to be a pomset of 
size two or more, e.g. the string 01. Then the only linearization of aa is 0101, 
whereas a\a has for its linearizations both 0101 and 0011. Hence in the presence 
of events with duration it becomes possible to observe a difference between aa 
and a\a. A similar difference is observable if we take a to be 0|1. In this case 
the linearizations of aa are 0101, 0110, 1001, and 1010, while those of a\a are 
those four together with 0011 and 1100. 

Gischer [Gis88] shows that any two pomsets that are observationally equiv- 
alent for strings of length two are observationally equivalent for strings of any 
length, whence there is no duration hierarchy for strings. Gischer conjectured, 
and Tschantz has shown [Tsc94], that duration suffices to distinguish any two 
series-parallel (N-free) pomsets. (A series-parallel pomset is a pomset con- 
structive using only the operations of concatenation ab and concurrence a\b.) 
Hence series-parallel pomsets are extensional in the presence of duration. (An- 
other striking corollary of this result is that the equational theory of concatena- 
tion and interleaving of languages is completely axiomatized by the equations 
for commutativity of interleaving and associativity of both.) 

Gischer gives as an example of pomsets indistinguishable even with duration 
the two pomsets 7V(a, a, b, b) and ab\ab, where N{\, 2,3,4) is the 4-vertex pomset 
ordered so that 1 < 3, 2 < 4, and 1 < 4, these constraints constituting respec- 
tively the two verticals and the diagonal of the letter N, so that N(a, a, b, b) 
is ab\ab plus the diagonal. If they could be distinguished it would have to be 
by a string of ab\ab not allowed by N(a,a,b,b), possible only by violating the 
diagonal 1 < 4 of the N. Hence 1 and 4 overlap; where they do, 2 cannot have 
started but 3 must have finished, so the other diagonal 2 < 3 is satisfied. But 
that diagonal belongs to an isomorphic copy of N(a, a, b, b), whence that string 
must be allowed after all. 

We may further take a to be not just a single string but a set of strings, 
that is, a language. This provides a notion of variety for a: we have a variety of 
choices of behaviors of a. When all strings of a are of unit length we have variety 
without duration. Variety provides those little unpredictable hints that can 
allow observers to reach consensus as to the identities of entities without them 
being a part of the observation language. In some observations the observers 
may be unlucky and not get enough such hints; it only matters that there exist 
observations that do provide sufficient hints. 

Gischer's argument above remains valid in the presence of variety, giving a 
pair of pomsets which variety does not help distinguish. 

Two minor results concerning refinements of observational equivalence in 



this setting are as follows. 
(i) For a single observer, duration helps but variety does not. 
(ii) For multiple observers to make a difference, variety without duration 

helps but duration without variety does not. 
Our main result is: 
(iii) With enough variety and observers any two finite pomsets can be dis- 

tinguished, even without duration. 
Results (i) and (ii) assign very different roles to duration and variety. Du- 

ration is a loner that can help, though not always, as evidenced by Gischer's 
example above of N(a, a, b, b) = ab\ab. Variety on the other hand is useless by 
itself but in collaboration with multiple observers is able not only to outperform 
duration but, as (iii) shows, to make pomsets fully visible, i.e. extensional. The 
proof of (iii) is via a straightforward reduction to the poset case, allowing us to 
apply Szpilrajn's theorem. 

A refinement of (iii) is that with enough variety, the number of observers 
needed to distinguish two pomsets is at most the larger of the dimensions of their 
underlying posets.1 This shows that the hierarchy of observational equivalences 
with n observers is strict: n + 1 observers can resolve more detail than n. 
Although our proof of this result is not long, neither is it at all obvious! 

3    Definitions 

The following notions are essentially as in [Gis84].   We start out by defining 
labelled partial orders and their maps. 

Definition 1. A labelled partial order or Ipo over a set E is a structure 
(V, <, (7, E) where < partially orders V and <r : V —► E assigns to each element 
of V an element of E.   When necessary we write the components of lpo p as 
\Ypt £•?> "pi Sp). 

We think of E as an alphabet of actions and V as instances ofthat alphabet, 
or events forming a word, with the order of occurrences of letters in the word 
given by <. The usual formal language theoretic notion of a word obtains for 
< linear. An atomic lpo is one with \V\ = 1. 

Definition 2. A map of lpo's (/, t) : (V, <, <r, E) -* (V, <', a', E') consists 
of a monotone map / : (V, <) —»■ (V, <') of posets together with an alphabet 
map (function) t : E —► E' such that for all v in V, a'(f(v)) = t(a(v)). 

Certain maps of lpo's are of special interest here. An isomorphism of lpo's is 
a map (/, t) for which / is an isomorphism of posets and t is the identity map on 
E (so isomorphic lpo's have a common alphabet). An augmentation of lpo's is a 
map (/, t) for which t is the identity function and / is the identity function on 
the elements of the poset (but not necessarily an isomorphism of posets, i.e. the 

1 The dimension of a poset is the least number of linearizations of that poset whose inter- 
section is that poset. The notion is due to Dushnik and Miller [DM41], see Kelly and Trotter 
[KT82] for a survey. 
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order may increase); an augmentation yields an augment of its argument. We 
write paq to indicate that q is an augment of p; this is the converse of Gischer's 
sub sumption relation q X p [Gis84]. 

Definition 3. A pomset is the isomorphism class of an lpo. 
More intuitively a pomset is an lpo in which we pay no attention to the choice 

of the set V, other than its cardinality, but retain all other details. Thus if we 
replace V = {0,1,2} by V = {5,6,7} without otherwise disturbing either < or 
a the pomset does not change. With our definition of observation, isomorphic 
lpo's will be seen to be observationally equivalent, whence the most we can hope 
to resolve even with multiple observers is pomsets. 

We shall understand a map between two pomsets to be a map between 
representative lpo's of the respective pomsets. 

Definition 4. A process P is a set of finite pomsets. A process is augment 
closed when for all paq, p G P implies q e P. The augment closure a(P) of P 
is the least augment closed process containing P. 

We wish to define observation in terms of the notions of linearization and 
substitution, which we now define. 

Definition 5. A linearization of a pomset p is a linear augment of p. We 
write X(p) for the set of all linearizations of p. This extends to A(P) for P a set 
of pomsets, namely as X(P) = \Jp€P A(p). 

Formal language theory has the notions of homomorphism and substitution 
[HU79]. These both generalize immediately from strings to pomsets. (This no- 
tion of homomorphism is quite different from that of map between two pomsets: 
the former goes between sets of pomsets, the latter between single pomsets.) 

Definition 6. A pomset homomorphism is a function mapping pomsets 
on E to pomsets on E'. It is determined by a function / assigning a pomset 
on E' to each letter of E. It maps p to the pomset whose set of events is 
the disjoint sum of the events of the f(a(u))'s over all u G Vp, definable as 
{{u,v)\u G Vp,v G V/(<7(«))}- Each (u,v) is labelled with */(„(„))(v), i.e. just as 
v was labelled in f(cr(u)), and ordered so that (u, v) < (u', v') just when u <p u' 
(i.e. u <p u' and u £ u') or (u = v! and v </(u) v'), that is, lexicographic 
ordering. 

Intuitively this is what is obtained by substituting a pomset for each label of 
p and flattening the resulting nested structure in the obvious way. For example 
the homomorphism taking a to be takes aa to bebe and a\a to bc\bc, while the 
homomorphism taking a to b\c takes aa to (b\c)(b\c) and a\a to b\b\c\c. 

This generalizes to substitutions of sets of pomsets exactly analogously to the 
generalization of homomorphisms of strings to substitutions of sets of strings 
[HU79], in which the result of substituting a set of strings for a letter is the set of 
all strings obtainable by choosing any string from each substitution instance of 
such a set. In lieu of a formal definition we offer the example of substituting the 
set {b, c} for a in a\a, having two substitution instances of {6, c} and so yielding 
the set of three pomsets b\b, b\c, c\c (c\b being isomorphic to b\c as an lpo and 
hence equal as a pomset). Just as for formal languages, a homomorphism can 
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be viewed as the special case of a substitution of singletons. 
We may now regard pomsets as expressions, with the labels acting as vari- 

ables. Evaluation is then just substitution: values for the variables determine 
the value of the expression. Thus the pomset aba is an expression with variables 
a and b, and if the value of a is cd and that of b is {e, /} then the value of aba is 
{cdecd,cdfcd}. With this interpretation of substitution in mind we write p(s) 
for the value of p under the substitution s. By P(s) for a set P of pomsets we 
understand the union over the elements p € P of p{s). 

We might say that two pomsets are equivalent when their values are the same 
for all substitutions. But merely taking the value of each variable to be itself 
already suffices to distinguish distinct pomsets, so this equivalence is trivially 
the identity relation. 

The notion of observation as linearization, reflecting the sequential life of 
an individual observer, leads to more interesting equivalences. We tentatively 
define an observation of a pomset to be a linearization of it. Thus the set 
of all observations of p is A(p), and the set of all observations of a set P of 
pomsets is X(P). Pomsets p and q are equivalent when X(p(s)) = X(q(s)) for all 
substitutions s. 

We now extend this notion of observation to multiple observers. The idea 
is that n observers see n possibly different linearizations of the one observed 
pomset. 

Definition 7. An n-observation of a pomset p is an n-tuple of linearizations 
of p. We write A„(p) for the set consisting of all n-observations of p, a set of 
n-tuples of strings. For a process P we take An(P) = \JpeP A„(p). 

Definition 8. Pomsets p and q are n-equivalent, written p =„ q, when 
A„(p) = An(g). Likewise for processes, P =„ Q when An(P) = A„(P). 

Our tentative definitions of observation and equivalence are now subsumed 
as 1-observation and 1-equivalence. 

Implicit in our definition of n-equivalence is a consensus between the ob- 
servers as to which pomset of P to linearize, when constructing an n-observation 
in A„(P). This reflects our intuition that the observers agreed on what happened 
but not when. 

Finally we need the notion of dimension [KT82] in order to show the strict- 
ness of the hierarchy of n-equivalence in the presence of variety. 

Definition 9. The dimension of a poset is the minimum number of its 
linearizations such that the intersection of those linearizations is that poset. 
We take the dimension of a pomset p to be the dimension of the underlying 
poset of a representative lpo of p. 

4    Observation of Single Pomsets 

In order to capture duration, variety, etc.   we need a parametrized notion of 
n-equivalence, parametrized by the permitted substitutions.   If substitutions 
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are restricted so that the assignment to any variable must come from a class 
C of sets of pomsets, e.g. singletons, sets of one-element pomsets, languages 
(sets of linear pomsets), we say that two pomsets are n-equivalent for C when 
they have the same n-observations of their values for all substitutions where the 
assignments to the variables are drawn from C. 

In the following we are interested in substitutions that have variety without 
duration, and duration without variety. We denote these respective classes 
of substitutions by Var and Dur respectively. A substitution from Var can 
replace each label by a set of labels. A substitution from Dur can replace each 
label by a pomset. The class of substitutions permitting neither duration nor 
variety, corresponding to mere renamings of labels, we call Atm for atomic 
substitutions. 

None of our results make essential use of nonlinearity in the substructure of 
events. For example if Dur is taken instead to consist of those substitutions 
that replace labels by strings rather than pomsets, no modifications are required 
to either the following propositions or their proofs. 

The first two propositions are simple, but give some insight into the respec- 
tive roles played by duration and variety. 

We first show that for a single observer, duration without variety helps but 
variety without duration does not. 

Proposition 1. 1-equivalence for Dur is strictly finer than 1-equivalence 
for Atm. 

Proof. It is finer because Dur includes Atm. The example of aa and a\a 
shows strictness. I 

Proposition 2. 1-equivalence for Var coincides with 1-equivalence for 
Atm. 

Proof. This follows from X(jp(s)) = (X{p)){s). That is, we can substitute sets 
for variables in p and then linearize, or linearize p first (yielding a language) and 
then substitute, with the same result in either case. Hence X(p(s)) = (A(p))(s) = 
(X(q))(s) = X(q(s)). I 

Proposition 3. For all n > 1, 1-equivalence for Dur coincides with n- 
equivalence for Dur. 

Proof. In this case p(s) is a singleton, substitutions being homomorphisms, 
for which Xn(p(s)) is the set of all rc-tuples of linearizations of the pomset p(s). 
Hence X„(p(s)) can be computed from A(p(s)). Thus if A(p(s)) = X(q(s)), we 
must have A„(p(s)) = Xn(q(s)) as well. I 

Corollary. For all n > 1,1-equivalence for Atm coincides with n-equivalence 
for Atm. 

We now come to the main results. The next two propositions show that 
for multiple observers to make a difference, variety without duration helps but 
duration without variety does not. The former, proposition 3, is the main result 
in that it shows that any two pomsets can be distinguished by n observers 
for sufficiently large n. It is noteworthy that duration plays no role in this 
result! Since our first explorations in this area focused on the role of duration 
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in distinguishing pomsets we did not at first expect such a result. In retrospect 
it is not so surprising, nor particularly deep, being a straightforward reduction 
to Szpilrajn's theorem.. 

Proposition 4. For any pomset p there exists n such that p is not n- 
equivalent for Var to any other pomset. 

Proof. We use variety to distinguish the otherwise indistinguishable events of 
a pomset. Let m be the size of p. We take n to be ml. Consider the substitution 
s mapping each letter a of E to the ra-element set {(a,i)|0 < i < m}. This is 
enough variety for p(s) to include at least one poset, call it q. Then X(q) has at 
most m! members, whence some m!-tuple of Ami (q) will contain all of them. This 
gives us a procedure for recovering p from Xmi(p(s)). Discard m!-tuples of Ami(g) 
not corresponding to posets (repeated letters). From the remainder select any 
m!-tuple with a maximum number of different components, an ml-observation 
of some poset q. Use Szpilrajn's theorem to infer q from the m!-observation. 
Replace each label (a, i) by a in q, to yield p. This construction shows that the 
p so recovered will be independent of the choice of poset from p(s). I 

The argument for proposition 4 can be extended to show that, for any class 
including Var, «-equivalence for increasing n forms a strict hierarchy. Our par- 
ticular witnesses to this hierarchy are independent of the class of substitutions. 

Proposition 5. For every n > 1 there exist pomsets p and q such that for 
any class C of substitutions including Var, p and q are n-1-equivalent for C but 
not n-equivalent for C. 

Proof. It suffices to consider pomsets over a one-letter alphabet, i.e. posets 
up to isomorphism. (Note that Szpilrajn's theorem separates even isomorphic 
posets, and cannot be applied directly here.) Given n we take for our coun- 
terexample a certain pair p, q of posets of dimension n. Using essentially the 
same argument as in Proposition 4 we show that as one-letter pomsets p and q 
cannot be n-equivalent for Var, and hence for any larger class. We then show 
that they are n-1-equivalent for any class. 

We take p to be the standard poset Sn [KT82], having 2n elements 
{ao,..., an_i, 6o, • • •, bn-i}, ordered so that a,- < bj just when i / j. An equiv- 
alent description of Sn is as the lattice of atoms and coatoms of an n-atom 
Boolean algebra. Sn is known to have dimension n [KT82]. We take q to be 
Sn augmented with ao < bo- (As pomsets, p and q are determined only up to 
isomorphism, so augmenting p with a,- < 6,- for any i yields the same pomset q.) 
Since q has In elements it is of dimension at most n [KT82]. Hence p and q are 
not n-equivalent for Var. The role of Var here is as for Proposition 4, namely 
allowing us to treat pomsets as posets. 

For n-l-equivalence, suppose some linearization of an element of p(s) violates 
a,- < 6,- for some i, necessary if we are to distinguish p and q. Then there is a 
point in that string where a,- has not yet finished (a,- could have duration in the 
general case) yet 6,- has started. The constraints of p require that at that point 
all the other aj 's are done (for 6j to start) and none of the other bj's have started 
(since a,- is not yet done). Hence for every j ^ i, aj < bj, that is, there can be 
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at most one violation of a,- < bi for any i in any one linearization. But then any 
n-1-observation of p(s) can collectively violate at most n — 1 of the constraints 
of the form a,- < 6,-. This always leaves one such constraint unviolated, which is 
consistent with observing q. Hence the n-1-observations of p(s) must coincide 
with those of q(s) for all s. I 

5    Observation of Processes 

A process is a set of pomsets, as per Definition 4. All our definitions of lineariza- 
tion, «-equivalence, etc. have been formulated to hold for processes in general, 
with single pomsets identified with singleton processes. 

The following shows a basic limitation of all the testing scenarios considered 
in this paper when applied to processes. 

Proposition 6. Observationally equivalent processes have equal augment 
closures. 

Proof. Any pomset p of a process P must be visible to a team of size dim(P). 
If Q is observationally equivalent to P the same team must be able to observe 
p as an apparent behavior of Q. Hence Q must contain a behavior q of which 
p is an augment, whence P C a(Q). By symmetry of equivalence Q C a(P), 
whence a(P) = a(Q). 

Lemma 7. Let p be a pomset. Then there exists n such that for any family 
(qi)i of pomsets for which A„(p) C Xn([Ji g;), there must exist g;- in the family 
such that p is an augment of q. 

Proof. The only g,'s that can contribute to A„(p) have the same number of 
vertices as p. Since each n-tuple in AndJ^ g,) arises from a choice of a particular 
qi, and since A„(p) includes a single n-tuple completely encoding p, it follows 
that some g,- must yield that n-tuple. But this is only possible for a g,- of which 
p is an augment. I 

Proposition 8. For any two augment-closed processes P and Q there exists 
n such that P is not n-equivalent for Var to Q. 

Proof. Assume without loss of generality that P contains a pomset p absent 
from Q. Then p is not an augment of any pomset of Q. Let n be the number 
associated to p by Lemma 7. Then A„(p) cannot belong to Xn(Q), whence A„(P) 
contains n-tuples not in An(Q). I 

This generalizes Proposition 4 to full abstraction for processes. Hence VM 
for processes makes all possible distinctions between processes, whence DVM 
can only make the same distinctions. Thus for processes we retain the VM = 
DVM edge of Figure 1. 

Proposition 2 showed that variability alone makes no difference for single 
pomsets. But that proposition applies equally to pomsets and processes, whence 
variability also makes no difference for processes and we retain the 0 = V edge 
of Figure 1. 
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PRESHEAVES AS TRANSITION SYSTEMS 

GLYNN WINSKEL AND MOGENS NIELSEN 

BRICS1 

Department of Computer Science, University of Aarhus, Denmark 

1. INTRODUCTION 

Recall, as background, the content of the handbook chapter [22]. There, a model for 
process calculi is presented as a class of objects (like transition systems, or Petri nets), 
equipped with a notion of morphism, so that it forms a category. The morphisms represent 
a form of simulation between processes, and arise naturally in relating the behaviour of a 
construction on processes to that of its components. Basic operations of process calculi 
may now be understood as universal constructions (like product and coproduct) of the cat- 
egory, and so are characterised abstractly, up to isomorphism. Categorical notions also 
come into play in relating different models, for instance, in relating the model of transition 
systems to that of Petri nets. Adjunctions, especially coreflections, provide a way to trans- 
late between one model and another. The understanding of the operations of process calculi 
as universal constructions guides definitions away from the ad hoc, while the preservation 
properties of adjoints help relate semantics in one model to a semantics in another. 

The richness of the morphisms in the categories of models, a richness which is essential 
in yielding the universal constructions, means that many objects with strikingly different 
behaviours are connected by morphisms; in particular, morphisms of transition systems 
relate transition systems which are far from strongly, or weakly, bisimilar. The categories 
do not immediately yield useful abstract equivalences between processes. However, in 
[8] it is shown how a general concept of bisimulation arises from the definition of open 
map. The definition of open map, applicable to all the categories of models, picks out 
those morphisms which, roughly speaking, reflect as well as preserve behaviour. It is then 
sensible to take two processes to be bisimilar, in a generalised sense, if they are connected 
by open maps. 

The definition of open map relies not just on a categorical presentation of a model 
(for example, as a category rather than just a class of transition systems) but also on an 
acceptance of a notion of computation path and what it means to extend a computation 
path by another. For the interleaving model of transition systems a reasonable idea is to 
take a computation path (or run) as a sequence of consecutive transitions, which we can 
think of as picked out by a morphism from a string of action labels; here it is hard to escape 
from the idea that extending a computation path is associated with extending the string of 
action labels. For an independence model like event structures a reasonable idea is to take 
a computation path as a configuration, or more generally as a morphism from a pomset to 
the event structure; this time several ideas suggest themselves as to how we might extend 
a computation path shaped like a pomset, because, roughly, we can extend a pomset in 
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2 GLYNN WINSKEL AND MOGENS NIELSEN 

"width" (adding concurrent events) as well as "height" (adding later, causally dependent 
events). 

In the case of familiar models like transition systems or event structures the general def- 
inition of bisimulation specialises to familiar concepts; in particular, on transition systems 
with strings of actions as paths we obtain Park and Milner's strong bisimulation. 

Presheaves offer a method to derive a model directly from a path category whose ob- 
jects are path shapes and whose morphisms describe the extension of one path by another. 
Forming the category of presheaves over a path category has the effect of freely closing 
the path category under small colimits. More intuitively, a presheaf represents the effect 
of gluing together a set of computation paths to form a nondeterministic computation; the 
category of presheaves can be thought of as a category of nondeterministic computations. 
This intuition is backed up by canonical embeddings of traditional models into categories 
of presheaves over appropriately chosen path categories (cf. Theorem 4). Because the 
original path category embeds via the Yoneda functor into the category of its presheaves, 
we automatically obtain a notion of open map and bisimulation on presheaves. 

A range of models and their notion of bisimulation can be understood in a uniform way 
via their represention as presheaves. Here we emphasise the view that presheaves can be 
profitably looked upon as transition systems, in which the labels are morphisms of path 
extension. This yields transition-system characterisations of open maps and bisimulation 
on presheaves, and through these to generalisations of Hennessy-Milner logic and games, 
providing a more operational characterisation. In particular, bisimulation on presheaves 
coincides with back-and-forth bisimulation between their associated transition systems. 

In a way, by regarding presheaves as transition systems we can repay a debt to the foun- 
dational influence transitions systems have had in the theory of concurrent computation. 
Many original motivations and intuitions were formed around the model of transition sys- 
tems. Through the medium of presheaves, we are able to cope uniformly with a range 
of models and their equivalences, from interleaving to independence models, and at the 
same time, by altering our view a little, see the approach as only a slight adjustment in the 
perspective that motivated Park and Milner's definition of strong bisimulation. 

2. MODELS, MORPHISMS AND COMPUTATION PATHS 

We quickly describe the models and notions of computation paths we shall use as run- 
ning examples. 

Transition systems consist of a set of states, with an initial state, together with transitions 
between states which are labelled to specify the kind of events they represent. Formally, a 
transition system is a structure 

(S, i, L,tran) 

where 

• S is a set of states with initial state i, 
• L is a set of labels, and 
• tran C S x L x S is the transition relation. As usual, we write 

to indicate that (s, a, s') 6 tran. 

A state s is said to be reachable when i   "' > • • •   a" > s for some, possibly empty, string 
ai■•-an. 
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PRESHEAVES AS TRANSITION SYSTEMS 

As morphisms on transition systems we take functions on states which preserve initial 
states and transitions. Let 

T0 = (So, io, L0, tran0) and 

T\ = (Si,h,Li,trani) 

be transition systems. A morphism f : To —>• T\ is a function a : So —► Si such that 
cr(zo) = ii and 

(s,a,s') G fra/io =$" (<7'(s),a,o'(s/)) 6 fra/ii. 

Morphisms on transition systems compose as functions. For the concerns of [22], mor- 
phisms on transitions systems were more general. They could change labels and even send 
labels to undefined. This is necessary in relating the behaviour of compound processes to 
that of their components in languages like Milner's CCS, and in obtaining a repertoire of 
universal constructions, rich enough to yield a general process language. Here we concen- 
trate on bisimulation for which we can take the simpler label-preserving morphisms as our 
starting point—such label preserving morphisms play an important role in the categorical 
account of [22], for example, in understanding restriction and relabelling operations of 
CCS-like languages as universal constructions. 

We shall call transition systems which look like trees synchronisation trees. More pre- 
cisely, synchronisation trees are those transition systems with no loops, no distinct tran- 
sitions to the same state, in which all states are reachable. Synchronisation trees inherit 
morphisms from transition systems, and themselves form a category. The inclusion of syn- 
chronisation trees in transition systems is a left adjoint to the functor unfolding a transition 
systems to a synchronisation tree. 

Special synchronisation trees will play a role in our treatment of bisimulation. Consider 
a (finite) computation (or run) in a transition system T. It is a sequence of transitions 

i = s0 -^-4 «! -2»-» 2a-> s„ 

—the sequence might possibly be empty. Let us identify strings like s = a\ü2 ■ ■ an in 
L* with "path shapes", rather special synchronisation trees consisting of a single branch of 
transitions 

Then the computation path in T is identified with the morphism 

p-.s^T 

picking out the chain of transitions in T. Morphisms between such path shapes, consisting 
of a single-branch synchronisation trees, inherited from transition systems correspond to 
extensions of the associated strings. So we can identify the category of such path shapes 
with the (partial-order) category of strings L*; a morphism from string s to string t corre- 
sponds to s being an initial prefix oft. 

We focus on event structures as our primary example of an independence model—other 
independence models like Petri nets and Mazurkiewicz trace languages are related to event 
structures via adjunctions in [22] in such a way that they inherit a common notion of 
bisimulation (see [8,15]). 

Define a (labelled) event structure to be a structure (E, <, Con, I) consisting of a set E, 
of events which are partially ordered by <, the causal dependency relation, a consistency 
relation Con consisting of finite subsets of events, and a labelling function I : E -¥ L, 
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4 GLYNN WINSKEL AND MOGENS NIELSEN 

which satisfy 
{e' | e' < e} is finite, 

{e} G Con, 

y C X G Con => y € Con, 

X G Con & e < e' G X =» X U {e} G Con, 

for all events e, e' and their subsets X, Y. 
Two events e, e' G £ are said to be concurrent (causally independent) iff 

(e£e'&e'£e&{e,e'}GCon). 

Define a configuration (or state) of £ to be a subset a; C E which is 

downwards-closed: Ve, e'. e' < e £ i => e' 6 i, and 
consistent: VX X finite & X C x => X G Con. 

As before, we restrict attention to label-preserving morphisms on event structures over 
a common labelling set L.  Let E = (E,<,Con,l),E' = (£",<',Con',/') be event 
structures over L. A morphism from £ to £" consists of a function n : i? -> £" on events 
which preserves labels (i.e. / = /' o n) such that 

if a; is a configuration of £", then 772; is a configuration of E' and if for ex, e2 G z 
their images are equal, /.& ?j(ei) = J7(e2), then ei = e2. 

In the category of event structures, morphisms are composed componentwise. The defini- 
tion of morphism on event structures is rather abrupt—see [22] for motivation. 

In the case of an independence model like event structures a computation path carries 
more structure than simply a string of actions. This time we take path shapes to be finite 
pomsets. Pomsets are special event structures where all finite subsets of events are con- 
sistent. They are essentially labelled partial orders, and morphisms between them, got by 
restricting those of event structures, are injective functions which send downwards-closed 
sets to downwards-closed sets. Thus a morphism from pomset P to pomset Q may not just 
extend P by extra events but also relax the causal dependency relation; two events causally 
related in P may have images no longer causally related in Q. We separate the forms of 
morphism corresponding to the different ways one pomset can extend another. 

Definition: Let I, be a labelling set. Define Point to be the full subcategory of event 
structures with finite pomsets with labels in I as objects. 

Say a morphism m : P -t Q in Point is & prefix morphism iff m preserves and reflects 
the causally dependency order. Define Pom£ to be the subcategory of Point where all 
morphisms are prefix morphisms. 

Say a morphism m : P -> Q in Point is an augmentation morphism iff m is epimor- 
phic. Define Pom£ to be the subcategory of Pomt where all morphisms are augmenta- 
tion morphisms. 

Proposition 1. Any morphism m : P -> Q factors uniquely to within isomorphism as 
a composition m = P -2-> Q0 -i—> Q where a is an augmentation and j is a prefix 
morphism. 

3. OPEN-MAPS AND BISIMULATION 

Assume a category of models M—this could be any one of the categories of models 
with label preserving morphisms of the previous section. Assume also a choice of path 
category, a subcategory P ^ M consisting of path objects (these could be branches, or 
pomsets) together with morphisms expressing how they can be extended. 
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PRESHEAVES AS TRANSITION SYSTEMS 5 

Define a. path in an object X of M to be a morphism 

p : P -> X, 

in M, where P is an object in P. A morphism / : X -> V in M takes such a path p in X 
to the path /op : P —> y in Y. The morphism / expresses the sense in which Y simulates 
X; any computation path in X is matched by the computation path / o p in Y. 

We might demand a stronger condition of a morphism / : X —> Y expressed succinctly 
in the following path-lifting condition which when satisfied picks out the open morphisms. 
For our purposes later, it is convenient to define open morphisms with respect to a subclass 
of morphisms Po of P—of course Po could consist of all the morphisms of the whole 
category P, when we shall identify the class of morphisms with P itself. 

Whenever, for m : P -» Q a morphism in Po, a "square" 

in M commutes, i.e. q o m = f o p, meaning the path / o p in Y can be extended via m to 
a path q in Y, then there is a morphism p' such that in the diagram 

the two "triangles" commute, i.e. p' o m = p and fop' = q, meaning the path p can be 
extended via m to a path p' in X which matches q. When the morphism / satisfies this 
condition we shall say it is To-open. 

Say two objects X\, X-i of M are V o-bisimilar iff there is a span of Po-open morphisms 
/i,/2: 

X\ X2 

For the well-known model of transition systems open morphisms and the bisimulation 
induced by them are already familiar: 

Proposition 2. With respect to a labelling set L, the L*-open morphisms of the category 
of transition systems with labelling set L are the "zig-zag morphisms" of [20] (the "p- 
morphism" o/[18], the "abstraction homomorphisms" of [A], and the "pure morphisms" 
of [3]) i.e. those label-preserving morphisms (a, 1L) :T-*T'on transition systems over 
labelling set L with the property that for all reachable states s ofT 

ifcr(s) -2-». s' in T then s -2-> u in T and <r{u) = s', 
for some state u ofT. 

Two transition systems (and so synchronisation trees), over the same labelling set L, 
are L*-bisimilar iff they are strongly bisimilarin the sense o/[12]. 

In the case of event structures with Pomx, as the path category we obtain the equiva- 
lence of strong history preserving bisimulation on event structures (see [8] or [15]). 
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6 GLYNN WINSKEL AND MOGENS NIELSEN 

In checking whether a morphism is P-open or for P-bisimulation, for a path category 
P, it suffices to consider a restricted class of morphisms, sufficient to generate the category 
P. 

Definition: Let P be a category. Let P0 consist of a subclass of morphisms of P. Say P0 

generates P iff the only subcategory of P which includes P0 and all isomorphisms of P 
is P itself. 

In particular, if P0 is a skeletal subcategory of P, then P0 generates P. 

Example: The category L* is generated by the set of morphisms representing the exten- 
sion of a string by a single label. > 

The category Pom/, is generated by the class of "atomic" morphisms of two kinds: 

prefix: morphisms m : P ->■ Q in Pom/, expressing that pomset P is a prefix of 
pomset Q where Q contains one more event than P; so m expresses that pomset Q 
consists of a copy of P with one additional event adjoined on top; 
augmentation: morphisms m : P ->• Q in Pomz, expressing that pomset P is an 
augmentation of pomset Q but where the graph of the causal dependency relation in 
P contains one more pair than that of Q; so the pomset P consists of a copy of Q 
with one extra link of causal dependency between previously concurrent events. 

To see that this class of morphisms generates Pomj,, note that any morphism m : P -> Q 
in Pomi factors uniquely (to within isomophism) as a composition m = j o a where 

a : P ->■ Q0 

expresses that P is an augmentation of Qo and 

j : Qo -> Q 

expresses that Qo is a prefix of Q. Then, clearly any augmentation, or prefix, breaks down 
into a composition of basic augmentations, or prefixes, respectively, as above. 

Clearly Pom£ is generated by the atomic prefix morphisms while Pom£ is generated 
by the atomic augmentation morphisms described above. 

Proposition 3. Suppose P is generated by a subclass of morphisms Pn. 
1. Letting f be a morphism ofM, f is P-open iff f is Po-open. 
2. Let XX,X2 be objects ofM.   Then, XltX2 are P-bisimilar iff XX,X2 are P0- 

bisimilar. 

4. PRESHEAF MODELS 

Given a path category P we can build the category P of presheaves over P.2 The 
objects of P consist of functors Pop ->■ Set, to the category of sets. The morphisms of P 
are natural transformations between functors. Intuitively a presheaf F : P°p ->• Set can be 
thought of as specifying for a typical path object P the set F(P) of paths from P. It acts 
on a morphism m : P -> Q in P to give a function F(m) : F{Q) ->■ F(P) saying how 
Q-paths restrict to P-paths. 

Let us see how a model, like a transition system or a labelled event structure, gives rise 
to a presheaf. Consider a category of models M and a choice of path category forming 
a subcategory P «-)■ M. There is a canonical functor from the category of models M 
to the category of presheaves P. It takes an object X of M to the presheaf M(-, X)— 
more intuitively, it takes the model X to the to the presheaf which for each path object P 

2 Proofs for presheaf models can be found in [8]. A good introduction to presheaves can be found in Chapter 
lof[10]. 
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PRESHEAVES AS TRANSITION SYSTEMS 7 

yields the set of paths M(P, X) from P into X. The canonical functor takes a morphism 
/ : X —¥ Y in M to the natural transformation 

M(-,/):M(-,X)4M(-,y) 

whose component at an object P of P is the function M(P, X) -> M(P, y) taking p to 
/ o p—intuitively, a path p : P -> X in X is taken to a path / o p: P -» V in Y. 

Theorem 4. 

(i) The canonical functor synchronisation trees, all with labelling set L, to L* is full, 
faithful and dense. 

(ii) The canonical functor from event structures, all with labelling set L, to Pomi is 
full, faithful and dense. 

The embeddings of Theorem 4 extend the Yoneda embedding of P ->• P, regarding a 
path object P as the presheaf P(—, P) = M(—, P) because, in these cases, the subcate- 
gory P e-> M is full. Now, if we regard presheaves as the model M' and the image of P 
under the Yoneda embedding as its path category P', we can apply the general definition of 
Section 3, to obtain the class of P'-open morphisms of the presheaf category. They form 
a category of open maps of the topos P, in the sense of Joyal and Moerdijk.3 The two 
notions of P-open and open map agree for the models of synchronisation trees and event 
structures, because generally: 

Proposition 5. Let P be a dense, full subcategory o/M. A morphism f : X ->Y ofM is 
P-open iff the morphism M(—, /) : M(—, X) -» M(—, Y) is an open map of presheaves. 

When it comes to relating notions of bisimilarity, we must be a little careful. It is not 
the case that two synchronisation trees are Z,*-bisimilar iff their associated presheaves are 
related by a span of open maps in L*. But this is only because there are presheaves which 
correspond to processes without an initial state; in particular, there is always a span of open 
maps between any two presheaves subtended from the initial (always empty) presheaf. 

A way to get a correspondence is to restrict the objects in the presheaf category. 

Definition: In the situation where the path category P of a model M has an initial object 
/, a rooted presheaf is a presheaf F in which F(I) is a singleton. 

Remark: Another way to get a correspondence is to define bisimilarity in the entire 
presheaf category via spans of surjective open maps. This is the more robust definition, 
and indeed the one used in [8]; it applies even when the path category does not have an 
initial object, and open maps between rooted presheaves are necessarily surjective (see e.g. 
[23]). 

Proposition 6. (i) Two synchronisation trees, over labelling set L, are L*-bisimilar 
(i.e. strong bisimilar) iff their corresponding presheaves, under the canonical embed- 
ding, are related by a span of open maps in the full subcategory of rooted presheaves 
off?. 

(ii) Two event structures, over labelling set L, are Pomi-bisimilar (i.e. strong history- 
preserving bisimilar) iff their corresponding presheaves, under the canonical embed- 
ding, are related by a span of open maps in the full subcategory of rooted presheaves 

o/Pomx,. 

3 See [7], Example 1.1, though there the definition is expressed in terms of the existence of certain quasi- 
pullbacks; its equivalence with P'-openness, expressed as a path-lifting property, follows by the Yoneda Lemma. 
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5. PRESHEAFS AS TRANSITION SYSTEMS 

Assume that a path category P has an initial object /, and that P0 is a subclass of 
morphismsof P. 

It will be helpful to think of a rooted presheaf over P as a transition system with labels 
taken from morphisms of P0: 

Definition: Let A" be a rooted presheaf over P. Define its P0-transition system, denoted 
by £^P0 (X) t0 consist of: 

states: (P, p) where P is an object of P and p G X(P); take the unique member of 
X(I) as the initial state; 
labelling set: Po; 
transitions: (P, p) -^ (Q, q) whenever m : P -> Q in P0 and (Xm)(q) = p. 

Remark: The construction £lPo(X) on a presheaf X is a slight generalisation of a well- 
known construction of a category of elements of a presheaf (see e.g. [10]). 

Notice what the construction does on a presheaf X: it forms a transition system with 
"states" p £ X(P) which by the Yoneda Lemma correspond 1-1 with the computation 
paths from P (or strictly its image under the Yoneda embedding) into X. 

Given a morphism of presheaves, i.e. a natural transformation between them, we obtain 
a morphism of transition systems; £lp0 extends to a functor on presheaves. 

Definition: Suppose / : X -*■ Y is a natural transformation between presheaves X and 
Y. Define £lp0{f) to be the morphism of transition systems a which acts on states so 
that (P,p) !-»• (P, fp{p))\ thus the transition (P,p) -r2-^ (Q, q) is sent to the transition 
(^,/P(P))-^(Q,/<?(<?)). 
(It takes a little checking that £lp0{f) is indeed a morphism of transition sytems.) 

So, thinking of categories of elements as transition systems, the associated functor is a 
label-preserving morphism of transition systems. More than this, provided P0 generates P, 
a natural transformation / between presheaves is open iff £lp0 (/) is a zig-zag morphism 
between the associated transition systems (cf. Proposition 2). 

Proposition 7.^Assume P0 generates P. A morphism f : X -> Y between rooted 
presheaves in P is open iff £lp0(f) : £lp0(X) -> £lp0{Y) is a zig-zag morphism be- 
tween transition systems with labelling sets Po. 

We can go further and characterise bisimulation on presheaves as a form of bisimulation 
on transition systems with labels in a generating class of morphisms P0. 

Definition: Say two transition systems Ti, T2 with a common label set are back-and-forth 
bisimilar iff there is a relation R between their states such that i\Ri2, so their initial states 
are related, and whenever sii?s2, then 

if «i -2-» s\ then s2 -
2->- s2 and s^Rs'?, for some state s2 of T2, 

if s2 -
3—t s'2 then si -2-> s[ and s[Rs'2, for some state s[ of Ti, 

if si -2-»- Si then s'2 -£-*• s2 and si/Js'2, for some state s'2 of T2, and 
if s'2 -

2-> s2 then si -2-»- si and sii?s'2> for some state si of Ti. 

Propositions. Let X\,X2 be presheaves over P. Assume P0 is a subclass of mor- 
phisms generating P. The presheaves X\, X2 are P -bisimilar iff their transition systems 
£lp0 (X\), £lp0(X2) are back-and-forth bisimilar. 

Remark: Though this result is presented in a different guise it consists essentially of 
Lemma 17 in [8] characterising bisimulation between rooted presheaves as strong path 
bisimulation. 

w-f 
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Warning: This result should not be interpreted in the broader sense that we advocate 
back-and-forth bisimulation as the appropriate bisimulation on transition systems. In fact, 
the presheaves in L* of transition systems with labelling set L, obtained by the canonical 
functor from transition system to presheaves, will be bisimilar iff the original transition 
systems are strongly bisimilar in the sense of Park and Milner. 

Example: 
Paths as strings: When we specialise to the (partial order) category of strings L*, the 
subcategory of rooted presheaves in L* is equivalent to the category of synchronisation 
trees. Bisimulation between rooted presheaves in Z* is reduced to back-and-forth bisimu- 
lation based on extensions of strings by a single label. Thus bisimulation between rooted 
presheaves coincides with back-and-forth bisimulation on synchronisation trees, and as is 
well-known [13] this coincides with Park and Milner's strong bisimulation. As remarked 
above, the bisimulation on transition systems induced by the canonical functor to L* is 
strong bisimulation. 
Paths as pomsets: Two subcategories of rooted presheaves are of interest, those over path 
categories Pom/, and Pom£. 

In the case of bisimulation between presheaves over Pom£ it suffices to consider 
"atomic" prefix and augmentation morphisms. Presheaves of event structures under the 
canonical embedding are bisimilar iff the event structures are strong history-preserving 
bisimilar (see [8] for the proof). 

Just for the moment, consider the full subcategory of event structures, over labelling set 
L, where morphisms rj : E —¥ E' are further constrained to satisfy: 

if a; is a configuration of E, then rjx is a configuration of E', and the restriction of r\ 
from x to rjx is an isomorphism of pomsets. 
((-Here we identify a configuration of an event structure E with its pomset structure 
induced by E.-)) 

We call such morphisms prefix morphisms because they generalise their namesakes on 
pomsets. The canonical functor from the category of event structures with prefix mor- 

phisms, to rooted presheaves in Pom[ is full and faithful (because the category of pomsets 
with prefix morphisms is dense in the category of event structures with prefix morphisms). 
Under it two event structures give rise to bisimilar presheaves iff they are strong history- 
preserving bisimilar. This is essentially because if we look at the transition system of the 
presheaf obtained from an event structure, its states will correspond to configurations of 
the event structure. 

Thus, strong history-preserving bisimulation of event structures coincides with bisimu- 
lation of the canonical presheaves (obtained by the canonical embedding) in the presheaves 
Pomi, and also with bisimulation between the canonical presheaves over just Pom£, 
where we restrict to simply prefix morphisms of pomsets and event structures. In investi- 
gating the bisimilarity of event structures it suffices to consider just "atomic" prefix mor- 
phisms in Pom£ where a single new event is adjoined. 

6. LOGIC AND GAME COROLLARIES 

By characterising bisimulation on presheaves as back-and-forth bisimulation on their 
associated transition systems we can connect with logic and game characterisations of 
bisimulation of the kind discussed in [12] (for logic) and [19] (for games and logic). 

6.1. A specification logic. Assume the path category P is a small subcategory with initial 
object I. Let Po be a subclass of morphisms of P. 

i^S 
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Define Po-assertions by: 

A ::= {ri)A \ (m)A \ ->A \ /\ Aj 

where m is a morphism in P0, and J is an indexing set, possibly empty and not restricted 
to being finite. The modality (m) is a "backwards" modality, while (m) is a "forwards" 
modality. We define the semantics with respect to a transition system with labelling set 
Po: 

• s (= {m)A iff 3s'. s -^ s' and s' (= A 

• s |= Jm)A iff 3s'. s' -**-+ s and s' |= A 
• the boolean operations receive their expected meanings. 

The logic is but a step away from Hennessy-Milner logic, well-known to be character- 
istic for strong bisimulation, and the proof is virtually the same (see [12, 8]). 

Theorem 9. Let P0 generate P. Two rooted presheaves in P are bisimilar iff their P0- 
transition systems satisfy the same assertions. 

Example: We determine a satisfaction relation for synchronisation trees and event struc- 

tures via their canonical embeddings in presheaf categories L*, Pom^ and Pom[; for a 
more direct definition of the satisfaction relation for these concrete models, based on their 
paths—see [8]. 
Paths as strings: Traditional Hennessy-Milner logic arises by reducing the seemingly 
richer logic based on all extension morphisms in L*. Firstly, as remarked earlier we can 
restrict to just the forwards modalities; for synchronisation trees back-and-forth bisimula- 
tion amounts to strong bisimulation. Because extensions by a single symbol are enough to 
generate the category of strings L*, it suffices in getting a logic characteristic for bisim- 
ulation on synchronisation trees to restrict to forward modal assertions of the form (6),4 
where 6 is a single label; specifying the label 6 together with the domain of the morphism 
is enough to determine the morphism in the path category. 
Paths as pomsets: Bisimulation between rooted presheaves over Pom^ or Pom[ is char- 
acterised by satisfaction of assertions with modalities labelled by "atomic" morphisms. 
The category of event structures, with labelling set L, with prefix morphisms embeds 
canonically in Pom[. So strong history-preserving bisimulation of event structures is 
characterised by logic with forwards and backwards modalities labelled by "atomic" pre- 
fix morphisms. In the case where the event structures have no autoconcurrency (i.e. no 
concurrent events with the same label) the labels associated with the modalities can be 
simplified to single labels—see [14]. 

6.2. Games on presheaves. Assume again that the path category P is a small subcategory 
with initial object I, and that Po be a subclass of morphisms of P. 

Viewing presheaves as transition systems, we may also lift existing notions of games for 
transition systems to presheaves. As an example we adopt here a back-and-forth version of 
the games for transition systems defined by e.g. [19], well known to be characteristic for 
strong bisimulation. 

Let To = (So, io, ^o, trano) and T\ = (Si ,ii,L\, tram) be two transition systems. The 
game G(T0, T\) played by two players (I and II) is defined as follows. The configurations 
of the game consist of pairs of states (s0 € S0,si e Si) with (io, ii) as the starting con- 
figuration. A play consists of a sequence of alternating moves by the two players (Player I 
making the first move), where a move consists of a choice of a transition from one of the 
systems, according to the following game rules: 

lWt> 
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At configuration (s0, s\) 

- either Player I chooses a transition so -a—»• s0, after which Player II chooses a 
transition s\ -2—> s'1( and the game continues at configuration (s'0,s[), 

- or Player I chooses a transition si -2-> s[, after which Player II chooses a transition 
so -2-> s'o> an<J tne game continues at configuration (s'0> 

si)> 
- or Player I chooses a transition s'0 -

2—► so, after which Player II chooses a transistion 
s[ -s-> si, and the game continues at configuration (s'0,s[), 

- or Player I chooses a transition s[ -2—> si, after which Player II chooses a transition 
s'0 -2—> so, and the game continues at configuration (s0, s'J. 

Player I wins a play if Player II gets stuck, i.e. at some point cannot match a move by 
Player I according to the rules of the game. All other plays are won by Player II, i.e. all 
infinite plays, and plays where Player I at some point cannot make a move. A (history-free) 
strategy for a player is a set of rules which for each configuration tells the player how to 
proceed, i.e. for Player II a rule will associate to each configuration and a choice of back or 
forth transition in one of the systems by Player I, a set of matching transitions in the other 
system. A strategy is winning for a player, if he or she wins every play played according 
to the strategy. 

Intuitively, the two players have different goals in game G(TQ,TI): Player I wants 
to show that the two transition systems are distinguishable, Player II that they are not. 
Viewing presheaves as transition systems notion of distinguishablity is determined by: 

Theorem 10. Let Po generate P. Two rooted presheaves in P are bisimilar iff Player II 
has a winning strategy in the game defined by their two Po-transition systems. 

This theorem follows from Theorem 8 by essentially the proof of the corresponding 
theorem for transition systems from [19]. 
Example: Games for synchronization trees and event structures are obtained from their 
canonical embeddings in presheaf categories. 
Paths as strings: We obtain the original Stirling games characteristic for synchronization 
trees in the same way we obtained the original Hennessy-Milner logic above. First of all, 
from [13] we can restrict the games to only forwards moves, i.e. transitions labelled by 
extension morphisms. Secondly, from the theorem above we may restrict games to allow 
only moves involving extension with a single symbol, and finally such a morphism in the 
path category is determined by its domain and the label of the extended single symbol. 
Paths as pomsets: Bisimulation between rooted presheaves over Pomz, or Pom£ is char- 
acterised by games with moves restricted to transitions labeled by "atomic" morphisms. 

We may obtain games for event structures via their canonical embedding in Pom£, and 
hence we get that games with moves restricted to forwards and backwards transitions la- 
belled by "atomic" prefix morphisms are characteristic for strong history-preserving bisim- 
ulation of event structures. 

7. CONCLUDING REMARKS 

So are presheaves just transition systems? No, they are really much more. While it can 
provide helpful intuition to think of presheaves as transition systems, presheaves possess 
a great deal of mathematical structure, which has already proved useful, or is potentially 
useful. For instance, there are results like that of [5] showing that constructions obtained 
from certain left Kan extensions automatically preserve open maps, and observations like 
that of [23], that moving to the category of profunctors, essentially presheaves acting as 
morphisms, we can begin to tackle higher-order features like process-passing; in recent 
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work there appear to be technical advantages in viewing profunctors as transition systems. 
More speculatively, we can hope that the fact that presheaves form a topos will become 
helpful. 
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On topological hierarchies of temporal properties 

Christel Baier and Marta Kwiatkowska 

ABSTRACT. The classification of properties of concurrent programs into safety 
and liveness was first proposed by Lamport [20]. Since then several characteri- 
zations of hierarchies of properties have been given, see e.g. [3, 18, 7, 19]; this 
includes syntactic characterizations (in terms classes of formulas of logics such 

_ as the linear temporal logic) as well as extensional (as sets of computations in 
some abstract domain). The latter often admits a topological characterization 
with respect to the natural topologies of the domain of computations. We in- 
troduce a general notion of a linear time model of computation which consists 
of partial and completed computations satisfying certain axioms. The model is 
endowed with a natural topology. We show that the usual topologies on strings, 
Mazurkiewicz traces and pomsets arise as special cases. We then introduce a 
hierarchy of properties including safety, liveness, guarantee, response and per- 
sistence properties, and show that our definition subsumes the hierarchies of: 
Alpern & Schneider [3]; Chang, Manna & Pnueli [7]; and Kwiatkowska, Peled 
& Penczek [19]. Syntactic characterizations of the properties in the hierarchy 
in terms of temporal logic are also studied. 

1. Introduction 

The classification of properties of concurrent programs into safety and liveness 
was first proposed by Lamport [20]. According to the informal intuition intro- 
duced there, safety properties assert that "nothing bad happens", whereas liveness 
properties ensure that "something good will happen". Thus, a safety property is 
satisfied in a program if and only if at no point during its execution something 
"bad" happens. Examples of safety properties are: mutual exclusion (where the 
bad thing is two processes being in their critical sections at the same time), deadlock 
freedom (the bad thing is deadlock, i.e. a state in which no progress can be made) 
or partial correctness (where the bad thing is violating the postcondition assuming 
the execution started in a state satisfying the precondition). Safety properties are 
proved by means of arguments involving invariants; such arguments are usually too 
weak to guarantee that something will happen at all (e.g. partial correctness is no 
guarantee of termination). 

In contrast to safety, proofs of liveness properties often employ well-founded 
induction. A liveness property states that at some point during the execution the 
program enters a desirable state. Termination is a typical liveness property; in the 
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Secondary (03B70). 
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context of a mutual exclusion protocol it is the statement that a process trying to 
enter its critical section will eventually be allowed to enter. Some authors include 
also starvation freedom (every process ready to make progress infinitely often is 
allowed to do so infinitely often) within the class of liveness properties; here the 
desirable state (the process making progress) has to be entered infinitely often. 

Apart from the underlying proof methodology, the distinction between safety 
and liveness can be made at other levels as well. This includes syntactic charac- 
terizations, i.e. classes of formulas that denote the given properties (e.g. safety 
is stated in terms of the 'always' modality in temporal logics, whereas liveness in 
terms of 'eventually'), see e.g. [23, 7, 19]; automata-theoretic characterizations 
(i.e. classes of automata which accept precisely the properties of a given class), 
see e.g. [4, 23, 7]; and extensional characterizations as certain sets of computa- 
tions in some domain, see e.g. [3, 18, 15, 23, 7, 19]. The latter often admit 
the corresponding topological characterization for some topology on the domain of 
computations. 

While all concerned agree that safety properties are the closed sets, disagree- 
ment between what precisely constitutes a liveness property in an abstract domain 
of computations persists. For example, Alpern & Schneider [3], working with the 
Cantor topology in the domain of infinite sequences of states, define liveness as the 
dense sets. In contrast, Chang, Manna & Pnueli [7], see also [23, 8], who work 
with the same domain but focus on the syntactic classes of properties expressed 
in Linear Time Temporal Logic (LTL), formulate a finer-grain hierarchy of four 
classes of properties (safety, guarantee, response and persistence) and show that 
they correspond to the two lower levels of the Borel hierarchy; they also show that 
the Alpern & Schneider characterization is orthogonal to their hierarchy. When 
considering a partial order semantic domain of computations, e.g. Mazurkiewicz 
traces, pomsets, etc, together with a partial order temporal logic, the picture com- 
plicates further, as the natural topologies of such domains (the relativised Scott 
topology) are coarser than, and need not coincide with, their metric topologies1; 
only certain aspects of the hierarchy of [7] generalise to this case. For example, 
in [18, 15], where the domain of Mazurkiewicz traces is used, liveness is defined 
as a Ga-set, and fairness as a dense Gs-set. In [19] this is developed further to a 
hierarchy of properties which reduces to the Chang, Manna & Pnueli hierarchy by 
considering a syntactic classification in the partial order temporal logic GISTL, to- 
gether with a corresponding topological characterization in terms of the relativised 
Scott topology. While several aspects of [7] generalise to the partial order case, 
the automata-theoretic characterization does not, and only a subset of formulas of 
GISTL is considered. 

This paper aims to define hierarchies of properties in terms of an abstract, 
axiomatically given, semantic domain of computations, which is a common gener- 
alisation of domains such as Mazurkiewicz traces [24], pomsets [29] or partial order 
executions [13]. The starting point is a linear time model A, i.e. a semantic domain 
A subdivided into the 'finite elements' (the set K.(A) of partial computations) and 
'infinite elements' (the set A of complete computations). Partial computations can 
be thought of as finite execution fragments of complete computations; we suppose 
the existence of a mapping x >-)■ K.(x) which assigns to each computation x £ A~ 

lrThis problem does not arise in the Cantor topology: it is simultaneously Hausdorff and the 
Scott topology of the finite and infinite sequences relativised to the maximal (infinite) sequences. 
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the set of its partial computations. The behaviour of a program is denoted by the 
set of its (complete) computations. A (complete) computation of a program P de- 
notes a possible behaviour of P which arises by resolving all the non-deterministic 
choices in advance. If there is a non-deterministic choice in a program then ex- 
actly one computation will record the specific choice made in that execution (i.e. 
computations do not contain branches). For convenience, we assume that all ter- 
minating computations .re modelled by the complete (infinite) elements of A; this 
can be achieved by extending each terminating computation with infinitely many 
occurrences of a special action which does not affect the state of the system. 

Observe that A admits both interleaving and partial order (i.e. 'true concur- 
rency') models, but does not faithfully represent branching behaviour. In inter- 
leaving models - where parallelism is reduced to non-determinism and sequential 
composition - no distinction is made between non-determinism arising from paral- 
lelism and that arising from explicit choice. In contrast to this, such distinctions 
can be made in true concurrency models; there, the execution of concurrent events 
can happen in any order or in parallel. Synchronization among processes is treated 
in the same way as explicit non-determinism. Hence, in interleaving models the 
linearization of a computation is uniquely determined, whereas in true concurrency 
models there may exist more than one linearization of a computation (which differ 
in the order of concurrent events). 

For a fixed model A a property is any subset of 2^ (consisting of those programs 
which are assumed to have this property). We suppose that the decision as to which 
of the possible computations is executed is made by the environment, and not by 
the program itself. Hence, in order to prove the correctness of a program one has 
to show that all computations behave well. For this reason we suppose that the 
properties under consideration are of the form ET = { P €2A : P CT } where 
T is a subset of A which consists of those computations which behave well. In the 
sequel we refer to any subset T of A as a property. 

In an abstract model A, following [7, 19], we define a hierarchy of four types 
of properties which can be verified by observing finite execution fragments: safety, 
guarantee, response and persistence properties. This is achieved by means of op- 
erators A, S, H and V that assign to each finitary property F (i.e. F C K{A)) a 
subset of A. For example, a safety property asserts that all finite approximations 
fulfill a certain finitary property F (i.e. a safety property consists of those computa- 
tions x such that fC(x) C F), while a guarantee property states that all executions 
may pass a state which satisfies a certain finitary property F (i.e. a guarantee 
property consists of those computations x where /C(x) fl F ^ 0.). Recurrence TZ 
and persistence V are defined similarly. Furthermore, we endow the model with 
natural topologies (order-theoretic and, in the presence of the length function, a 
metric) and give the corresponding, topological, characterizations of the classes of 
properties as described above. Finally, we compare our results with existing hier- 
archies defined for the domains of strings and Mazurkiewicz traces. We show that 
the result of [3] that safety, resp. liveness, properties are the closed, resp. dense, 
subsets carries over to arbitrary linear time models A. In addition, the hierarchy 
of [7] corresponds to ours, while that of [19] does not w.r.t. the operators 11 and 
V unless the definition of response in [19] is appropriately strengthened. 

Our definitions are general enough to admit the transfer of our results to other 
interleaving, as well as the partial order, models, e.g. pomsets. 
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The paper is organized as follows. Section 2 presents the axiomatization of 
our model A, and in Section 2.1 we show that the semantic domains of strings, 
Mazurkiewicz traces and pomsets are linear time models in our sense. Later we 
show that linear time models as defined here are closely related to algebraic dcpo's 
(directed-complete partial orders) and metric spaces (section 2.2 and 2.3). In section 
3 we define the properties of: safety, liveness, guarantee, response and persistence, 
and give a topological characterization of each class of properties. In section 4 
we show how temporal logic can be used to describe properties in any linear time 
model. We intrepret the linear time logic LTL [7] over the 'interleaving models' 
(where the next step of a computation in a given state is uniquely determined, see 
section 4.2) and the partial order temporal logic ISTL* [13] over 'true concurrency 
models' (where there might be several alternatives - arising from the way in which 
concurrent events are executed - to proceed in a given state, see section 4.3). 

2. Linear time models 

In this section we define the notion of an abstract linear time model. We then 
show (Section 2.2) that linear time models in our sense can be endowed with a nat- 
ural ordering and that (under additional assumptions) they form algebraic dcpo's. 
Furthermore, in Section 2.3 we consider the class of models equipped with a length 
function (which counts the number of atomic steps that a partial computation has 
to perform) and show that they can be endowed with a distance. We assume that 
the reader is familiar with the basic notions of domain theory, see e.g. [2], and 
metric spaces, see e.g. [10]. 

DEFINITION 2.1. A linear time model is a set A which is divided into disjoint 
subsets K.(A) and A, together with a mapping x i-> K(x) which assigns to each 
x € A a subset K{x) of IC(A) such that: 

(1) If £ G K{x) then £(fl C K{x). 
(2) For each f 6 K,(A) there is some x e A with £ G K(x). 
(3) £ G £(0 for each £ G K{A). 
(4) If K{x) = K{y) then x = y. 
(5) For each x G A there exists an x-path, i.e. a sequence (f„)„>o in K(x) such 

that 

/C(&)C/C(&)CX:(&)C...   and K{x)  =   \J  £(£„). 
n>0 

The elements of K.(A) should be thought of as partial computations (the 'finite' 
elements), and the elements of A as complete computations, or briefly computa- 
tions (the 'infinite', or 'maximal' elements). The set )C(x) is the set of all partial 
computations of x. Condition (1) states that if £ is a partial computation of some 
computation x then all partial computations of £ are partial computations of x. (2) 
ensures that only those partial computations are considered which are execution 
fragments of complete computations, or, in other words, which can be extended 
to a complete computation. (3) says that each partial computation approximates 
itself. (4) ensures that different computations can be distinguished by their partial 
computations. By condition (5) each complete computation can be approximated 
by its partial computations. 

Each x-path should be viewed as a fragment of a possible execution (lineariza- 
tion) of z:  if fo,£i,£2,--- is an x-path we think of & as an intermediate state 

rSa 
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which the execution reaches after performing the partial computation described by 
&. It might be the case that there are additional intermediate states which are not 
represented by an element of the x-path. When considering the next step relation 
as in Section 4, which determines the possible next steps in an intermediate state, 
the executions of a computation x are defined to be those x-paths which obey the 
next step relation. In this case the x-paths are exactly the subsequences of the 
executions of x. The criterion for an x-path to approximate x (in the sense that 
U £(fn) = £(x)) imposes a fairness (or maximal progress) constraint, since every 
partial computation must be subsumed by a partial computation of the x-path, i.e. 
each action which is performed in some execution is executed in every execution. 
This corresponds to the notion of an 'acceptable path' as in [13], 'maximality' of 
[18], or 'justice' in the sense of [30]. We extend the notion of an x-path to partial 
computations as follows. If £ G IC(A) then a £-path is a sequence (£n)n>o in K(A) 
such that 

£(&) c mi) c £(6) c ... C £(£„) = £(&+i) = ... = £(£)• 

DEFINITION 2.2. A linear time model with an initial state is a linear time 
model A satisfying: 

(6) There exists ± € K(A) with /C(±) = {±} and ± e K[x) for all x 6 A~. 

Because of conditions (3) and (4), the element ± in condition (6) is unique 
if it exists. J. can be interpreted as the partial computation which represents 
the state in which no action has been performed. By our intrepretation of the 
partial computations as the intermediate states of executions the element _L can 
be considered as the (common) initial state. (This explains the notion 'linear time 
models with an initial state'). 

2.1. Concrete examples of linear time models. Throughout the paper 
we illustrate the use of our framework by means of examples defined for the linear 
time models of strings, Mazurkiewicz traces and pomsets. In this section we recall 
basic definitions. 

We suppose E to be a countable set of atomic actions including special symbols 
yj and 8 which model termination and deadlock. Both yj and «5 are assumed not 
to affect the state of the system, and which cannot be performed except when the 
system has reached its final state. 

2.1.1. The domain of strings. By a string over the alphabet E we mean a (finite 
or infinite) sequence s = aoOt\a2 ... of elements in E such that either the actions 
\J and S do not occur in s or there is some k > 0 such that on ^ y/, 5, for all 
0 < i < k and either cti = \J for all i > k or on = 5 for all i > k. Infinite strings 
containing yj represent successfully terminating computations, those containing S 
model deadlocked computations, while those not containing any occurrence of \J 
and 5 non-terminating computations. Finite prefices of a string represent its partial 
computations. E* denotes the set of finite strings over S, Ew the set of infinite 
strings over E. A = E°° is a linear time model in our sense; take K.{A) = E*, 
A = Ew, and define /C(x) to be the set of all finite prefices of x. 

Ifi£ E°° then x[n] denotes the n-th prefix of x. (If the length of x is < n put 
x[n] = x.) We assume E°° to be endowed with the usual distance 

d(s, t)  = inf | —   : s[n] = t[n] j 

|C> 5 
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and the usual prefix order (denoted by C). Then £°° is a complete ultrametric 
space and and an algebraic dcpo. The finite strings are the compact elements in 
£°° viewed as an algebraic dcpo. £* is a dense subset of isolated elements in £°° 
when viewed as a metric space. 

2.1.2. Mazurkiewicz traces. An independency relation on alphabet £ is an ir- 
reflexive and symmetric binary relation iCSxS such that ■/ and S are dependent 
on every action, i.e. -.( a t vO A ""•( <* to ) for all a 6 £. The pair (£, i) is called 
a concurent alphabet. The independency relation i identifies those actions in the 
system which can happen concurrently; thus, if a t ß then a, ß are independent 
actions of two concurrent processes P and Q, i.e. P and Q cannot communicate 
via a and ß. Let = [24, 17] be the smallest equivalence relation on £°° such that 

whenever s6S*,tG S°°, a, ß G £, a i ß then saßt = sßat. 

A trace is an equivalence class [s] of a string s € £°°. If s is (in)finite then [s] is 
called (in)finite. The length of a trace is the length of one of its representatives. 
[£*] denotes the set of finite traces, while [£w] the set of infinite traces. Clearly, 
[£°°] = [£*] U [£w] forms a linear time model in our sense; to see this take the 
finite traces as partial computations, the infinite traces as complete computations, 
and define the set IC(x) of partial computations of x as consisting of all those finite 
traces [s] where s is a prefix of some representative of x. 

If x is a trace then x^ denotes the set of finite traces [s] where s is a prefix 
of some representative t e £°° of x and where the length of s is at most n. As in 
[17, 16], we consider the linear time model [£°°] of traces in the following sense. 
We suppose [£°°] to be equipped with the prefix order: 

x  Q y    <=>     3 s,t € £°°   sQt, x = [s], y = [t] 

Then [£°°] is an algebraic dcpo (see e.g. [17]), with finite traces being the compact 
elements. Moreover, [£°°] also has an associated metric d given by: 

d(x,y)  = inf | ^   : *<»>=»<»> j. 

Then [£°°] is a complete ultrametric space and [£*] is a dense subset of isolated 
elements (see [16]). 

2.1.3. Pomsets. Pomsets (partially ordered multisets) were first introduced in 
[29]. Several variants of pomsets are known from the literature; here we use the 
notion of a pomset as a labelled prime event structure without conflicts in the sense 
of [33]. The underlying partial order is that of [33] restricted to pomsets, and the 
underlying metric is due to [5]. 

A pomset is a partially ordered set (5, <) which is endowed with a labelling 
function I : S -¥ £ that maps the elements of S (called events) to an action and 
such that either all events are labelled with actions a ^ y/, S, or there exists an 
event e 6 S labelled by y/ or S such that: 

• e t =   {e' e S : e < e'} is totally ordered and 1(e) = Z(e') for all events 
e' 6  e |. 

• No event e' e S, e' < e, is labelled by y/ or S. 

By a finite pomset we mean a pomset where the underlying partially ordered set 
is finite. Pomsets represent computations in the following sense. The execution of 
an event e G E means the execution of the associated action 1(e). If e < e' (i.e. 
e < e' and e ^ e') then e must be executed before e'.  If e, e' are independent 

m 



ON TOPOLOGICAL HIERARCHIES OF TEMPORAL PROPERTIES 7 

events (i.e. neither e < e' nor e' < e) then e and e' may be executed in parallel. 
In addition, we require that each event is reachable, i.e. for each e G E the set of 
predecessors of e is finite. Infinite (non-terminating) computations are represented 
by infinite pomsets where no event is labelled by y/ or 5. Terminating computations 
correspond to infinite pomsets where some (and hence almost all) events are labelled 
by \/. Deadlocked computations are modelled by those infinite pomsets in which 
almost all events are labelled by 8. Partial computations are denoted by finite 
pomsets. 

If x = (S, <, I) is a pomset and e G S then the depth of e in x is given by: 

depthx(e)  = sup { n  :  Bei,... , e„ G S  ei < ... <en = e} 

If S' C S is left-closed (i.e. whenever e € S' and e' < e then e' £ 5') then we define 

x\S' = ( S', < n S' x S', l\S' ). 

We put x[n] = x \ S[n], where S[n] = {e € S : depthx(e) < n}. Porn°° denotes 
the set of all (finite and infinite) pomsets, and Pom* the subset of finite pomsets. 
For convenience we assume that the set of events is contained in a fixed countable 
set Events2. Clearly, Pom°° forms a linear time model in our sense. To see this 
take Pom* as the set of partial computations and Pom" = Pom°° \ Pom* as the 
set of complete computations. If x = (S, <,l) is a pomset then define /C(x) to be 
all the pomsets xfS' where S' is a finite and left-closed subset of S. Pom°° can be 
endowed with the distance 

d(x,y)  = inf | —  : x[n] = y[n] j 

and the partial order x C y •$=*■ 35 x = y\S. Then Pom00 is a complete 
ultrametric space (see e.g. [5]) and an algebraic dcpo. The compact elements 
in Pom°°, when viewed as an algebraic dcpo, are the finite pomsets. Since the 
underlying set Events is countable, the set S of events of a pomset is also countable. 
Hence, for each pomset x the set of finite pomsets £ with £ C x is countable (since 
the set of finite subsets of a countable set is countable). Pom* is a dense subspace 
of isolated elements in Pom°° as a metric space. 

2.2. Linear time models and algebraic dcpo's. The relation of 'being a 
partial computation of on linear time models induces a partial order in the following 
sense. Let A be a linear time model and define 

x Q y     <=►     K.{x) C K{y) 

Then C is a partial order on A (called the natural order on .4). The partial com- 
putations of A are the compact elements. Conditions (1) and (5) of Definition 2.1 
ensure that for each x € A the set K{x) is an ideal (i.e. left-closed and directed), 
and x is the least upper bound of /C(x). In linear time models with an initial state 
the unique element ± with ± € K(x) for all x G A is the bottom element. 

DEFINITION 2.3. An order-enriched linear time model is a linear time model 
A with an initial state and which satisfies: 

(7) For each directed subset X of K.{A) there exists z e A with 

K(z) =   (J  /C(0. 

2This assumption is essential to ensure that Pom°° is a set. 

1} <r 
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The following two theorems show that order-enriched linear time models cor- 
respond to the algebraic dcpo's satisfying the condition that the set of compact 
elements below any element is countable. 

THEOREM 2.4. Each order-enriched linear time model A is an algebraic dcpo. 
K.{A) is the set of compact elements and _L the bottom element. K,(x) is the set of 
compact elements (Ci. Whenever X C A is directed then the (unique) element 
z 6 A with 

K{z)  =   U   /C(x) 

is the least upper bound of X. 

PROOF. We only show that for each directed subset X of A~ the least upper 
bound LI X exists. The remaining statements are easy verifications. Let X be a 
directed subset of X and let K = \JxeX K(x). Then A" is a directed subset of 
K(A) (this is because X and the sets K{x) are directed). By condition (7) there 
exists z e A with K{z) = {J^ £(£)• It is easy to see that then K{z) = K. 

Hence, K.(x) C K{z) for all x € X, i.e. z is an upper bound of X. If y e A. is also 
an upper bound of X then K(x) C K.{y) for all x G X. Thus, K(z) = K C K{y) 
and therefore z C.y. Hence, z = \J X. □ 

THEOREM 2.5. If D is an algebraic dcpo such that 

(i) For every x £ D the set of compact elements f with f C. x is countable. 
(ii) For every compact element f there exists a non-compact element x ED with 

£Cx. 

Then D is an order-enriched linear time model where the natural order on D as a 
linear time model agrees withthe original partial order on D. The finite elements 
are the compact elements in D. The set K(x) is the set of compact elements Z,Qx. 

_ PROOF. We define K.(D) to be the set of compact elements of D and D = 
D\K{D). Then it is easy to see that conditions (1), (3), (4), (6) and (7) are satisfied. 
Condition (2) follows by (ii), condition (5) by (i) and the fact that \_j K.{x)  = x. 

D 

EXAMPLE 2.6. The algebraic dcpo's E°°, [S°°] and Pom00 satisfy the con- 
ditions (i) and (ii) of Theorem 2.5, and hence all are order-enriched linear time 
models. 

If D is an algebraic dcpo satisfying condition (i) of Theorem 2.5 then D can 
be embedded into an order-enriched linear time model A such that for each x eD 
the set K.(x) is the set of compact elements (eD with £ C x. Notice that in D 
condition (2)_might be violated. In order to fulfill condition (2), for each compact 
element £ 6 D which does not have a non-compact upper bound in D we create 
new elements (£,n) where n € N0 U {oo}, and we extend the original partial order 
E on D as follows: C' is the smallest partial order on A~ (which contains D and the 
new elements ((, n)) which satisfies 

£  C'  ((,0)  C  (£,1)  c'  ...  C'  (£,oo). 

Then the elements (f^n), n 6 N0, are compact in A and (£, oo) is a non-compact 
upper bound of £ in A. 

tuL 
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COROLLARY 2.7. Each w-algebraic cpo D can be embedded into an order- 
enriched linear time model A such that for each x € D the set K{x) is the set of 
compact elements £ € D, £ C x. 

2.3. Linear time models and metric spaces. If partial computations con- 
sist of executions of finitely many atomic actions then we have a natural notion of 
a length on K{A): the length of a partial computation £ is the maximum number of 
atomic steps which an execution of £ needs. This notion is similar to that defined 
for a partial order in [22]. We show that linear time models with a suitable length 
function are metric spaces. 

DEFINITION 2.8. A length function on a linear time model A with initial state 
± is a function 

| • | : K(A) -» No 

such that: 

(8) |-L| = 0 and £_€ K.{n) implies |f|  <  \n\. 
(9) For each x € A there exists an x-path (£n)n>o with  |£n|  = min { |x|, n } 

for all n > 0. Here we put |x| = oo if x € A. 

Condition (8) ensures that partial computations of n do not require more steps 
than n itself. Condition (9) asserts that each computation x can be approximated 
by a length-increasing sequence (£n) of partial computations of x, where the length 
of £n is exactly n or \x\. Given a length function on a linear time model A we put 

Kn{A)  =  { £ e K(A)  :  K| < n } 

andlCn(x) = Kn{A)C\K.(x). Then 

d(x,y) = inf{ 2^  : ^"^  = Kn^ J 

is an ultrametric on A.  Note that condition (4) ensures that d(x,y) = 0 implies 
x- y. 

NOTATION 2.9. If (M,d) is a metric space, x e M and r > 0 then B(x,r) 
denotes the open ball with centre x and radius r. B(x,r) denotes the closure of 
B(x,r), i.e. 

B(x,r)  =  {y£M  : d(x,y) <r }. 

Since the induced distance can only be given values 0 or 1/2" for some natural 
number n, for all elements x of a linear time model with a length function we have 
that B(x,r) = B(x,l/2n) where n = 0 if r > 1 and n is the unique natural 
number satisfying l/2n < r < l/2n_1 otherwise. 

LEMMA 2.10. Let Abe a linear time model with a length function. Then IC(A) 
is a dense subset of A and all elements of K(A) are isolated in A. 

In general, the induced metric space of a linear time model with a length 
function is not complete. In order to ensure completeness the following condition 
is needed: 

(10) // (xn)n>o is a sequence in A with Kn(xn) = /Cn(xn+i) for all n > 0 then 
there exists x £ A with K(x)  = K.n(xn) for all n > 0. 

IST 
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EXAMPLE 2.11. The linear time models E°° and [S°°] can be endowed with 
the length function which assigns to each finite string/trace its usual length. On 
Pom°° the function 

|-|  : Pom* ->• No,   |f|  = max { depth^e)  : e is an event in f } 

is a length function. In all three cases the ultrametric induced by the underlying 
length function coincides with the usual metric (cf. Section 2.1). 

THEOREM 2.12. Let M be an ultrametric space, M0 a subspace of M and | • | : 
Mo -» Wo a function such that: 

(i) For all f £ A/bJf| = n, there exists x £M\M0 with d(£,x) < 1/2". 
(ii) For each x £ M with either x £ Mo or \x\ > n there exists a unique element 

x[n] £ M0 with 

\x[n]\  =  n    and   d( x[n], x)   <   —. 

We put £[n]   =   f if f £ M0, |£| < n and \x\ = oo if x £ M~ \ M0.   Then ~M is a 
linear time model with K,(M) = M0 and 

K{x)   =  {x[n]  :  n > 0 }. 

In addition, we have for all x, y £ M: 

(a) x[n] is the unique element £ 6 K,{x) with |f| = min{|x|,n}. 
(b) d(x,y) <l/2n iff x[n]=y[n] 
(c) (a;[m])[n]   =  (z[n])[m]   = x[n] for allO<n<m 
(d) \x\  = sup { |f |   :  £ e K{x) } 

PROOF. Let M = M \ M0. (a), (b), (c) and (d) are easy verifications. 
Conditions (1) and (3) are satisfied because of (c). Condition (2) follows by (i), 
conditions (5) and (9) by (ii), condition (8) by (d). 

To see that (4) holds, let x,y be such that K.(x) = K.{y), then x[n] = y[n] for 
all n > 0. This is because of (a). Hence, x = lim x[n] = lim y[n] = y. D 

DEFINITION 2.13. A linear time model with a length function satisfying the 
conditions (i) and (ii) of Theorem 2.12 is called metric-enriched. 

EXAMPLE 2.14. The linear time model S°° and the linear time model of pom- 
sets x E Pom°° such that x[n] € Pom* for all n > 0 are metric-enriched. 

In Example 2.14 it is essential that we deal with pomsets whose n-cuts x[n] are 
finite ('finitely approximate' pomsets in the sense of [12]), as otherwise condition 
(ii) of Theorem 2.12 would be violated since if x is a pomset where x[n] is infinite 
then there is no pomset f £ Pom* with |f| = n and d(x,£) < 1/2". Condition 
(ii) of Theorem 2.12 is also violated when we deal with the linear time model of 
Mazurkiewicz traces with a non-empty independency relation. For instance, for the 
trace x induced by the string s = a/3777 • • • vvith a 1 ß there does not exist a 
finite trace f of length 1 with d(x,f) = 1/2. This is because K.i(x) contains the 
traces [a] and [/?], and the distance d(x, [a]) = d(x, [ß]) = 1. An alternative length 
function for traces can be found by embedding traces into pomsets; with this length 
function traces form a metric-enriched model. 

I5S 
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3. Defining properties on linear time models 

In this section we give general definitions of safety, guarantee, response, per- 
sistence and liveness properties. Following [3] we define liveness properties to be 
those properties T C A such that each partial computation £ 6 K(A) has a com- 
plete computation x 6 T which is above it in the ordering. As in [7, 19], we define 
safety, guarantee, response and persistence properties by operators A, £, V, and V 
acting on sets of partial computations (the finitary properties). When applied to 
the linear time model E°°, our definitions agree with those of [3, 7]; some early 
work due to Landweber, see e.g. [32], introduces a similar topological hierarchy for 
accepting conditions of automata on infinite sequences. We show that the hierarchy 
and the topological characterizations stated in [3, 7] carry over to arbitrary linear 
time models. 

For simplicity assume from now on that A is a fixed linear time model. If 
F C K(A) then F is called a finitary property. Following [7] we put: 

A(F) = {xeA 
£{F) = {xeA 
11(F) = {xeA 
V(F) = {xeA 

and 

K(x) C F } 

K(x) n F ? 0 } 
there exists an x-path (£n) with £n € F for all n } 

if (£n) is an x-path then £n € F for almost all n } 

ARn(F)  =  {t e K(A) : K(t) C F},    £Rn(F)  =  {t 6 K(A) : K(t)n F # 0}. 

A(F), £(F), V{F) and TZ(F) respectively denote the sets of all the complete 
computations x such that: all partial computations of x are contained in F; some 
partial computation of x belongs to F; whenever (£n) is an x-path then almost all 
(tn) belong to F; and there exists an x-path (fn) such that infinitely many (£n) 
belong to F. 

The above definitions of A, £, Ti and V correspond precisely to those of [7] 
when applied to the linear time model of strings. In the linear time model of 
traces, our definitions of the operators A and £ coincide with those of [19], but the 
definitions of 1Z and V do not. In [19], where a partial order temporal logic is used, 
H(F) is defined as the set of all the infinite traces whose infinitely many prefices 
belong to F, and P(F) as the set of all the infinite traces whose almost all prefices 
belong to F. This is not compatible with our definition since we require an x-path 
to approximate x (in the sense that x is the least upper bound of a x-path w.r.t. 
the natural order). For instance, let F be the set of all finite traces 

aa. ..a,    n > 0. 

Let a i ß and let x = [ßaaa...]. Then x belongs to H{F) in the sense of [19], 
but x ^ H(F) according to the definition in this paper. The operators TZ and V as 
defined above admit an alternative definition shown below. 

LEMMA 3.1. Let F C K(A). Then: 

(a) x 6 11(F) iff for every t £ K(x) there exists t' e  K(x) D F with t £ K(t'). 
(b) x G P(F) iff there exists t 6 K(x) such that t' S K(x), t S K{t') implies 

f eF. 

i^c\ 
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PROOF. (a) If x e 11(F) then there exists an z-path (£n) in F. Let £ 6 
K(x). Then f e £(i) = U„>0 /C(£„). Hence, there exists n > 0 such that 
Z € *#„). 

Assume that the condition on the right hand side of (a) is fulfilled. 
Let (r)n) be an ar-path.  For each n > 0 there exists f„ €   K.(x) D F with 
*7n £ £(£n)- Then a suitable subsequence of (£„) is an x-path in F. 

(b) Follows by the duality of H and V and part (a). 
D 

DEFINITION 3.2. A safety, guarantee, response, resp. persistence property is 
any property of the form A(F), £(F), 11(F), resp. V(F), where F is a fmitary 
property. A subset T of A is called a liveness property iff for each f e £(.4) there 
exists a; € T such that £ € /C(x). An obligation property is a property of the form 

T =     f)    (SiUG«) 
l<i<m 

where Si,... ,Sm are safety properties and G\,... ,Gm are guarantee properties. 
A reactivity property is a property of the form 

T =    fj     (i^nPO 
l<i<m 

where Ri,... ,Rm are response properties and Pi,... ,Pm are persistence proper- 
ties. 

The hierarchy of safety, guarantee, response, persistence, obligation and reac- 
tivity properties, and the duality of A and £, resp. 11 and V, as stated in [7] carry 
over to our general framework: 

THEOREM 3.3. Persistence properties subsume safety properties, guarantee prop- 
erties are special kinds of response properties. 

A(F)  = V( AUF) ),   £(F)  = K( £Rn(F) ) 

Guarantee properties are complements of safety properties, while response properties 
complements of persistence properties. 

A\A(F) = £(K(A)\F),    A\V(F)  = K(IC(A)\F) 

Obligation properties are special kinds of response and persistence properties. 

D    (A(Fi)u£(F!))   =   K(   n   HA    =   pi   fj   Hi 
!<»<"» \l<»<m       / \l<i<m       ) 

where 
Hi   =   ^(FjjUffin^). 

Reactivity properties subsume response and persistence properties, obligation prop- 
erties subsume safety and guarantee properties. 

PROOF. The duality of A and £ resp. 1Z and V is an easy verification. It is 
clear that each safety or guarantee property is an obligation property since: 

A(F)   = A(F)ö£(<D),    £(F') = A(9)u£(F') 

and that each response or persistence property is a reactivity property: 

11(F)   = 11(F) I) V(<D),    P(F') = 1l(<t))öV(F') 

ILo 
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The equation £(F)   =  7l(£fin(F)) follows by A(F) = V(ARn(F)) and the duality 
of A and £, resp. 1Z and V. 

(1) We show A(F) = V(Aaa{F)). If x G A(F) then K(x) C F. Hence, for all 
£ G K(x), K{£) C K,(x) C F. Therefore, £ € ARa(F). We conclude that 
/C(x) C ,4fin(F), and hence x G V(ARU(F)). 

If x G V(Afin(F)) then (by Lemma 3.1(b)) there exists £ G /C(x) such 
that whenever f G /C(x), f G /C(f'), then £' € ARn(F). Let n G IC(x). 
There exists f € £(x) with ^, 77 € £(£')• Then f G ^„(F) and therefore 
n G £(£')  C F It follows that x G A(F). 

(2) Next we prove that if F, F' C K,(A) then .4(F) U£(F') = 11(H) = V{H) 
where tf = ARn(F) U£fin(F'). 

If x G .4(F) then by part (1) of this proof x G P(^fin(F)) C 7e(.4fin(F)). 
Hence, x G P(.4fin(F)) C V(H) and x G 7e(An(F)) C 11(H). If 
x G S(F') then there is some £ G /C(x) D F'. Let (£n) be an x-path. Then 
£ G £(fn0) f°r some no- Then £ G £(£„) for all n > no. Hence, £n G 
£fin(F') for almost all n. Therefore, x G /P(£fin(-fv))- We conclude x G 
K(£fin(F'))  C ft(ff) and x G P(J-T). 

Let x G 71(H). (Since 7>(#) C 11(H) this includes the case x G ?>(#).) 
Then there is an x-path (£„) in H. 

• If there exists n > 0 such that £„ G £fin(F') then /C(£„) D F' 5^ 0. 
Since/C(£„)C/C(x),/C(x)nF'  # 0. Thus x G £(F'). 

• If £„ £ £fin(F') for all n then £„ G v4fin(F) for all n. Hence, £(£„) C F 
for all n. Therefore, /C(x) = Un>o £(&») £ F It follows that 
x G .4(F). 

(3) To show V (rii<i<m Fi ) = fli<i<m Wi) observe that C is clear. If 
x G C\V(Fi) then there exists & G /C(x) such that, for all £ G K.(x), £j G 
/C(£) implies £ G F*. Since /C(x) is directed there is some 77 G /C(x) with 
£i5--- ,£m G £(77). Hence, whenever £ G /C(x), 77 G /C(£) then £* G £(£), 
and therefore £ G fl Fj. We conclude x£V(f)Fi). 

^)f]1<i<m(AFi)U£(FI)) = 11 (a<i<m H) = v(f]1<i<mHi) where 
#i  = ^fi„(F)Uffin(F/). 

By part (2) of this proof, A(Fi)\JS(F[) = 1l(Hi) = V(Hi). and part 
(3) we have that 

f](A(Fi)U£(F!))  =   f)T{Ht) = v(f)Hi) 

and 

n nH) = n v(H) = v(f]Hi) c 7e(n^) c n ^(H). 
Therefore 

n{nHi) = n ^) = n w> = n (^)u^^)- 
D 

It is an open question whether liveness properties are special kinds of reactivity 
properties. 

Liveness does not subsume safety or guarantee properties. This is because 0 is 
a safety and a guarantee property, but not a liveness property. In general, neither 

;<W 
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response nor persistence properties subsume liveness properties, as can be seen from 
the example below. 

EXAMPLE 3.4. In the linear time model S°° the set 

7i   =  { x G S1"   : aw is a suffix of x } 

is a liveness property (eventually always a), but not a response property. The set 

T2  =  { x G Sw  :   a" is not a suffix of x } 

is a liveness property (always eventually not a), but not a persistence property. 
(Here au stands for the infinite string aaa ) 

PROOF. It is clear that Ti and T2 are liveness properties. Suppose T\ = Tl(F) 
for some F C S*. Then xx = ßau G Tx. Hence, there exists nx > 1 such that 
ii = /fa"1 £ F. Then x2 = ßanißa" G Ti. Thus, there exists n2 > 1 
with & = ßoinx /fa"2 G F. Proceeding in this way we get a sequence of natural 
numbers rik > 1 such that 

&  = ßani /fa"2 ... /fa"*   G F. 

Let x   =   lim & (i.e.  x is the unique infinite string where £* are prefices of x). 
Then x G "^(F) (since (&) is an x-path in F), but x £ Tx. Contradiction. 

The argument for T2 is similar. □ 

Part (a) of the following lemma shows that our definition of safety properties 
is a generalization of the definition of safety properties in the sense of [3]. 

LEMMA 3.5. Let T C A. Then: 

(a) T is safety property iff for each x £ A\T there exists some £ 6 K{x) such 
that whenever y G A, £ G K{y) then y £T. 

(b) T is a guarantee property iff for each x G T there exists some £ G K.{x) such 
that whenever y G A, £ G K.(y), then y &T. 

NOTATION 3.6. If £ e K(A) we put U{£) = {iel:{6 K(x) }. 

It_is easy to see that, because of condition (5), whenever C, V G K.(x) for some 
x G A then there exists f G K,(x) with £, n G £(£)• In particular, whenever 
x G t/(C) n I7(IJ) then x G f/(0 C Z/(fl D C^(ij) for some ^ € /C(A). Hence, 
the sets U(£), £ G /C(>1), form a topological basis. In what follows we assume 
A to be equipped with the topology induced by the basis C(£), £ G K.{A), and 
that A is endowed with the subspace topology. In part (b) of Lemma 3.7 we show 
that in order-enriched linear time models the topology induced by the basis £/(£), 
£ G K,{A), is the Scott-topology on A considered as an algebraic dcpo. In general, 
the topology on A is not T2. This is because whenever /C(x) C IC(y) then each 
neighbourhood of x contains y. In particular, a converging sequence might have 
more than one limit. We write x = limxn to denote that x is one of the limits of 
the sequence (xn). Since the topology on A is not T2, we cannot expect that in 
the_case where a linear time model A is equipped with a length function the metric 
on A induces the topology on A~. In part (c) of Lemma 3.7 we show that if A is 
metric-enriched the metric on A induces the (subspace-)topology on A. Part (c) 
of Lemma 3.7 can be applied to the metric-enriched linear time model S°° or the 
metric-enriched linear time model of pomsets x G Pom°° where x[n] is finite for all 
n. 

(&2 
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LEMMA 3.7. Let A be a linear time model. 

(a) Whenever (xn)n>o is a sequence in A such that there exists an x-path (£n)n>o 
with £n G K.{xn) for alln>0 then x = lim xn. In particular, each x-path 
converges to x. 

(b) // A is order-enriched then the topology on A agrees with the Scott topology 
on A as an algebraic dcpo. 

(c) If A is metric-enriched in the sense of Definition 2.13 then the metric on A 
induces the topology on A. 

PROOF, (b) is an easy verification using the fact that {/(£)  = £ f. 

(a) Let (xn) be a sequence in A and (£„) an x-path with £n G /C(x„). Let U be 
an open neighbourhood of x. Then there exists 771,... , rjn G IC(A) such that 

x e     (J   U(Vj) c u. 
l<j<n 

Then r\j € >C(x) = |J /C(&). Since £(&) C £(&+i) there exists k > 0 
such that T]J G £(&), j = 1,... , n. Then for all i > k and j = 1,... , n: 
Tjj  G )C(£k)  Q £(&)  C £(x*). Hence, for all i > k: 

*  e      (J    tffa;)  C [/. 
l<7<n 

Thus, we conclude that x = limx,-. 
(c) We first show that if £ G K.(A), |£| = n, then {/(£) = ß(^,l/2"-1). Let 

x G £/(£)• Then $ € £(x) and, by Theorem 2.12(a) and (c), £[n] = f = x[n] 
and hence d{x,£) < 1/2". Therefore: x € S(f,l/2n) = Bfol^"-1). 
If x G ß(C,l/2n-1) then d(x,0 < l/2n. Hence, £ G /C(fl = £„(£) = 
ICn(x)  Q /C(x). and x G £/(£) follows as required. 

Next we show that if x G A and r > 0 then B(x, r) = C/(x[n]) where 
n is the natural number with n = 0 if r > 1 and 1/2™ < r < l/2n_1 

otherwise. If y G £(x,r) then d(x,y) < r < 1/2"-1. Hence, d(x,y) < 1/2". 
Then £n(x) = Kn{y), and thus x[n] = y[n] G £(y), from which we 
immediately obtain y G U(x[n]). 

If y G £/(x[n]) then x[n] G K(y). Since x G .A we have |x[n]| = n. Hence 
x[n] = y[n] and therefore d(x, y)  <  ^  < r. Thus, y G B(x, r) as required. 

D 

COROLLARY 3.8. • The topology on A is coarser than the topology on A 
induced by the metric. This is because every basis open U(£) can be written 
as B{x, 1/2"-1) where f = x[n], x e A. Note that B(x[n], 1/2"-1) = 
B(x, 1/2"-1) and that all elements £ G K-(A) are of the form £ = x[n] for 
some x G A and n > 0. 

• For order-enriched models the topology on A is the relative Scott topology. 
A is the subspace of maximal (and also non-compact) elements of A. 

The following theorem generalizes the topological characterizations of safety, 
guarantee and liveness properties as established in [3, 7, 19]. 

THEOREM 3.9. Let Abe a linear time model and T C A. Then: 

(a) T is a safety property iff T is closed. 
(b) T is a guarantee property iff T is open. 

\<*5 
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(c) T is a liveness property iff T is dense. 

PROOF. (a) Let T be closed. Then we show T = A(F) where F = 
\JxeT K{x). llx£T then K.{x) C F. Hence, x £ A(F). Let x £ A(F), 
then K.(x) C F. Let (£n) be a x-path. Since f„eF and, by definition of 
F, there exists a sequence (xn) in T with fn € /C(xn) we have by Lemma 
3.7(a) that x = limx„. Since T is closed and since xn £ T for all n > 0 we 
conclude x £ T. 

Let T = A(F), x e A and (xn) a sequence in T such that x is a limit 
of (xn). We have to show that x £ T. Let f e /C(x). We have to show that 
f £ F. Since £/(£) is an open neighbourhood of x, and since (xn) converges 
to x, there exists m > 0 such that xm € U(£). Thus, £ G £(xm), and since 
xm e T = ,4(F) we obtain £ £ F. 

(b) follows by (a) and the duality of A and £. 
(c) Let T be ji liveness property. We have to show that whenever U is an open 

subset of A with UnA ^ 0 then £/TlT ^ 0. It is sufficient to consider the case 
that U is basic open, i.e. U = f|i<i<„ u(&) f°r some £,... ,£„ € /C(A). 
Since U C\ A ^ % there exists iGt/fli Then there exists f G /C(z) with 
& € /C(0, i = 1,... ,n. Hence, £/(£) C £/\ Since T is a liveness property 
there exists y € T with £ £ £(?/). Then y € [/(£), and thus y eTnU. 

Let T be dense in A. If f e £(A) then f/(^) is open, and because of 
condition (3) there exists x £ An U(£). Hence, A D C/(^) 7^ 0. Since T is 
dense in A there is some y 6 Tfl f/(Oi from which it follows that y € T and 
£ € /C(y). 

D 

In general, we do not obtain the results of [7, 19] which characterize response 
and persistence properties as the Gs, resp. Fo-sets, unless the model satisfies 
stronger conditions (see Theorem 3.10); in the latter case the hierarchy as in [7] 
can be obtained. It is worth noting that the additional conditions are satisfied by 
the linear model of strings, but not by traces and pomsets. As a counter-example, 
consider aiß and the trace x = [(aß)°°], then there exists an infinite subset [a*] of 
K{x) which does not contain an infinite x-path. The case for pomsets is similar, 
except that a partial solution can be obtained by modifying the definition of the 
map K,(x) to assign to an infinite pomset x the set of its n-cuts x[n], instead of 
assigning all finite prefices of x. The results of [19] are more problematic as the 
definitions of %{F) and V{F) differ from ours. 

Recall that F^-sets are countable unions of closed sets, Gg-sets countable in- 
tersection of open sets. 

THEOREM 3.10. Let A be a linear time model such that: 

(i) If x £ A and X is an infinite subset of K.{x) then X contains an x-path. 
(ii) For each £ £ K,{A) the set K{£) is finite. 

Then for each subset T of A: 

(a) T is a response property iffT is a Gg-set. 
(b) T is a persistence property iffT is a Fa-set. 

PROOF, (b) follows by (a) and the duality of TZ and V. We show (a). Let 
T = 11(F). We define Ft to be the set consisting of all £ £ F such that there exist 

/t-V 
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&,...,& €Fn/C(0 With 

/c(6) c £(&) c ... c £(&) c £(£). 
We prove that T = f\ £(Fk). Note that because of Theorem 3.9 (b) the sets 
£{Fk) are open, hence f]£(Fk) is a Gg-set. 

• If x G T then there exists an x-path (&)*>i such that £* € F for all k. Then 
ft G Ft and therefore x G £ (Fk). 

• If a; G p| S{Fk) then for each k > 1 there exists & 6 Ft fl/C(x). By definition 
of Fk the cardinality of JC(£k) is at least A;. Since by assumption (ii) the 
cardinality of £(£*) is finite, the set {£; : i > 1} is infinite. By assumption 
(i) there exists an x-path in {& : i > 1}. Since & G Ft C F all elements of 
the x-path belong to F. Therefore, x G 71(F). 

If T = p) Gk, where G* are open sets in A, we may assume that Gi 3 G-i 3  
Otherwise we deal with G^ = GiD.. .f)Gk- Because of Theorem 3.9 (b) there exists 
subsets Fk of K(A) such that Gk = £ (Fk). W.l.o.g. Fi D F2 2 ... (otherwise we 
deal with F'k  = \Ji>k Ft). Let Hk be the set consisting of all £ G Ft such that: 

whenever f G £(f), £' # 4, then f I Ft. 

Let # = \JHk and F = HFt- We show T = £(F) U 11(H) Note that 
£(F) = ft(£fin(F)) and hence £(F) U 11(H) = IZ(F') where F' = £Rn(F)UH. 

• If x G T then for each k > 1 there exists & G Ft. Since £(£*) is finite (by 
assumption (i)) we may assume that £* is minimal, i.e. whenever f G £(£*)> 
&#£',then£'£Ft. 

Case i: The set {& : k > 1} is finite. 
Then there exists £ G {& : A; > 1} with £ = f* for infinitely many A;. 

Hence, £ G Ft for infinitely many k. Since Fi D F: 2 • • • we get £ € Fk for 
all A;, i.e. f € F and x 6 £(F). 

Case 2: The set {£* : A; > 1} is infinite. 
Because of the minimality of £* we have that £k £ Hk Q H. Let (rjk) 

be an x-path in {£jt = A; > 1} (which exists because of assumption (i)). Then 
T)k G H for all A;, and thus x G 1Z(H). 

• If x G £(F) then £ € F for some £ G £(x). Hence, £ G Ft for all A; and 
therefore x G U £(Ft) = T. If x G 72.(i?) then there exists an x-path (£*) 
in ff. Then £* G ifmfc for some m* > 1. Since £(&) C £(£jt+i) we have: 

6 G £(&+i)    and   & ^ &+x 

By definition of Hmic we get: 

6+1 € Fmk+1    and   & g Fmh+1 

Since Ft D F2 2 • • • we get: mi < m-i < ■ • ■ and therefore m* > A;. Hence, 
6  € Fmh   C Ft for all A:. Therefore, x€\J £(Fk) = T. 

D 

In [19] the respective definitions of 1Z and 7> differ from ours, i.e. 

11(F) = {x G A : 3(£„) : £(&) C /C(&) C ... K{x) and £n £ F }. 

One can show that under the assumptions (ii) and 

(i') Each infinite subset of K(x) contains an increasing sequence 

b"> 
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the proof of Theorem 3.10 carries over to the modified definitions of 1Z and V if we 
work with increasing sequences in )C(x) instead of x-paths. Note that under the 
above conditions the domain of Mazurkiewicz traces becomes finitely concurrent. 

LEMMA 3.11. LetF\,F2 be finitary properties.  Then: 

(a) A(Fi) fl A(F2) = A(Fi n F2) and A{FX) U A{F2) = A (AUF,) U ARn(F2)) 
(b) £(FO U S{F2) = £(F1 U F2) and £(Fx) n £{F2) = 5 (£fin(F) n £fin(F2)) 
(c) ft(Fx U F2) = 7e(Fx U F2) 
(d) V(F1DF2)=V(F1)nV(F2) 

It is an open question whether % and 7> are closed under intersection and 
union respectively. However, under the assumptions (i) and (ii) of Theorem 3.10 
we obtain that %{Fi C\F2) = 11(F), where F is the set of n G F2 such that there 
exists f € Ft nif(77) satisfying: whenever n' E F2 n/C(r/) and £ e /C(V) then 77' = n. 
The duality of H and 7? then yields the closedness of V under union. 

4. Temporal logic and linear time models 

In this section we show how linear or branching time temporal formulas can 
be interpreted over arbitrary linear time models with an initial state _L and a next 
step relation -K If x € A then we interpret the elements of K.(x) as possible 
intermediate states which an execution of x may pass. If an execution of x reaches 
the intermediate state £ then the possible next steps are those which lead to an 
intermediate state £' £ !C(x) such that £ -► £'. We associate ->• with a mapping 
which assigns to each step f -► £' a multiset acfc(£, £') of all those actions which are 
executed in the step from £ to £'. If acfc(£,£') contains more than one action then 
the actions in acfc(£, £') are executed in parallel. An execution (called observation) 
of a (complete) computation is a sequence (£„)„>o which 

• starts in the initial state £0 = -L 
• successively performs —»-steps, i.e. £n -> £n+i 
• approximates x, i.e. (£„) is an x-path. 

Observe that the next step relation allows the simultanous execution of inde- 
pendent actions; this should be compared with maximal progress. 

In the case where the next step relation ensures the existence of a unique 
execution, i.e. where the next step of a computation x in an intermediate state £ is 
uniquely determined, we consider the linear time logic LTL which is closely related 
to the linear time logic of [21, 7]. When the next step relation allows more than 
one possible next steps, we use a partial order logic ISTL*. 

In section 4.1 we formalize the conditions which a suitable next step relation 
on a linear time model has to fulfill. Section 4.2 introduces our interpretation of 
the linear time logic LTL over linear time models with a determinisitic next step 
relation. We show that our interpretation of LTL over S°° and a suitable next step 
relation coincides with those of [21, 23]. In section 4.3 we extend the interpretation 
of the logic ISTL* [13, 27] to arbitrary linear time models with a next step relation. 
The reader is cautioned to note that our intepretation of ISTL* is non-standar. 

Our approach applied to the model [S°°] of traces differs from that of [19] as we 
require an execution of a computation x to approximate x. This imposes fairness 
in the sense of maximality, see e.g. [14, 18]. If we consider the linear time model 
of partial order executions we get the interpretation of ISTL ä la [13]. 

IL-O 
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4.1. Linear time models with a next step relation. Let S be a countable 
set of atomic actions. In what follows A is a linear time model with an initial state 
_L. By a multiset of atomic actions we mean a function K : S —> iVo. If «(a) = n > 1 
then n copies of a are contained in K. If «(a) = 0 then a does not occur in K. We 
write aE/tto denote that a appears at least once in K, i.e. n(a) > 1. Union of 
multisets is defined to be addition. 

DEFINITION 4.1. A next step relation on A is a pair (->,act) consisting of a 
binary relation -»• on K,{A) and a mapping act which assigns to each pair (£,£') 
of finite elements with £ -» £' a multiset act(£, £') of atomic actions such that the 
following conditions (i) - (iv) are fulfilled: 

(i) If £ ->• n then (Ci/. 
(ii) If fi -» & and ^Ci)[l6 then fi -► 77 and 77 -> f2- 

(iii) If £ C 77 then there exists A; > 2 and £1, £2, • • • , £* S £(>!) such that 

£ = &   -> 6  -*•  • • •  -*• 6-1   ->  & = r/. 
(iv) Whenever f = 6 -►&-*••.•->•&= »7 and f = & -» &-)•...->■#,= rj 

then 
(J    act(&,6+i)  =     U    act(^,^+i). 

l<i<fc l<j<n 

Conditions (i) and (iii) assert that the next step relation is compatible with 
the natural order. By condition (i), whenever 77 is a possible next step of £ then 
77 respresents a partial computation of £, and by (iii), whenever £ is a partial 
computation of r\ then the intermediate state 77 can be reached from £ by performing 
finitely many steps. Condition (ii) states that whenever £2 can be reached from £1 
in one step then each partial computation 77 which lies between £1 and £2 can be 
reached from £1 in one step, and there is a step leading from 77 to £2- Condition (ii) 
(together with (iv)) reflects the assumption that, whenever the parallel execution 
of a multiset K of actions leads from a state £1 to £2 and 77 is a state between £1 and 
£2, then K can be divided into multisets «i and «2 such that first performing the 
actions in Ki in parallel, and then the actions in K2 leads from £1 to £2 via 77. Note 
that it might be the case that £1 -> £2 is a step such that act(£i,£2) consists of more 
than one action, and that £1 —> £2 cannot be broken down into a sequence of steps 
where in each step only a single action is performed. This is due to the fact that a 
step might stand for the synchronized execution of atomic steps which we represent 
by the multiset of all actions which participate in the synchronization. Condition 
(iv) asserts that each state 77 is associated with a unique multiset of actions which 
lead from a previous state £ to 77. In other words, we suppose each state to be 
associated with its 'history': the multiset of actions (more precisely, the partially 
ordered set of events) which must be performed to reach 77 from the initial state ±. 

DEFINITION 4.2. If (-►, act) is a next step relation on A we say (A, -», act) is 
a linear time model with next step relation. We say (^4,->,act) is an interleaving 
model iff for each x E A there exists an enumeration £o> £1 > £2, • • • of the elements 
of K. (x) such that 

_ fo = -L  -> £1   -► 6  -*■  ■■■ 
Otherwise we say (A, —>, act) is a true concurrency model. 

In interleaving models the sets K,(x) are totally ordered w.r.t. the natural order 
on A and the x-paths are exactly the subsequences of the unique sequence (£n) in 

/c/7 
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K{x) with f0 = -L and £n -> £n+i for all n > 0. We say (£„) is the full x-path. 
We refer to the n-th element f„ of the (unique) full x-path as the n-cut of x and 
denote it by x[n]. In interleaving models, the next step of a computation x is 
uniquely determined. Because of this, for the case of interleaving models we choose 
a linear time logic. In contrast, in true concurrency models, where the partial 
computations does not specify the order in which concurrent events are executed, 
there might exist several predecessors for a given intermediate state £. For this 
reason, for the true concurrency approach we use a branching time logic, where 
the predecessors of an intermediate state arise from parallelism, and not from an 
explicit non-deterministic choice operator. 

Each metric-enriched linear time model A, together with a next step relation 
of the form (->•, act) where 

£ -> n     <=>    3x 6 A 3n € N0   ( f = x[n]   A n = x[n + 1] ) 

is an interleaving model. Vice versa, if there is a next step relation ->• on A then 
a length function on A can be defined which turns A into a metric-enriched linear 
time model. 

4.2. Linear time logic and interleaving models. We consider a linear 
time logic LTL which is essentially that of [23, 7]. The syntax of LTL is given by: 

4> ::=  tt  I   a  |   fa A fa   |   ->0  |  Xa cj>  \  Ya <f>  \     fa U fa   \   <£i S fo 

where a G AP (AP denotes a set of atomic propositions) and a € E. 
We interpret LTL over arbitrary interleaving models A as follows. 

DEFINITION 4.3. A LTL structure is a 4-tuple (Ä, ->,act, L) consisting of an 
interleaving model (A, ->, act) and an interpretation L of the atomic propositions, 
i.e. L assigns to each atomic proposition a subset L(d) of K,(A). 

Let (^4, ->, act, L) be a LTL-structure. The elements of L(d) fulfill the condition 
represented by the atomic proposition a.   We identify each computation x e A 
with the execution which successively enters the states i[0],a;[l],x[2]   In the 
n-th state x[n], the unique step leading to x[n + 1] is performed. A formula (j> is 
interpreted over the states of computations which are represented by pairs (x, n) 
where x 6 A is a computation and n a natural number, (x, n) (= <p means that 
in the n-th step of the computation x the condition specified by <j> is fulfilled. An 
element x 6 A satisfies a formula <j> (denoted by x f= fa iff <j> is fulfilled in the initial 
state, i.e. (x, 0)  (= fa The relation (x, n)  |= <j> is defined by structural induction. 

u/a 
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(x,n) \= tt 

(x,n) \= a <£=>- x[n] G L(a) 

(x,n) \= 0iA02 <=>■ {x,n)  (= fa, i = 1,2 

(x,n) |= -i</> <£=> {x,n)   \£ <f> 

(x,n) [= Xa cj> <=>• (x, n + 1)   (= 0 and a € act(x[n],x[n + 1]) 

(x, n) (= FQ 0 <=> n > 1, (x,n — 1)  |= 0, a £ act(x[n — l],x[n]) 

(x, n)  |= 0i W fa     •*=>     there exists A; > n s.t. (x, fc) [= 02 and 
(x,j)   |=  0i, j =n,n + l,... ,A;- 1 

(x, n)  |= 0i S 02     -£=>■    there exists k <n s.t. (x, A;) f= 02 and 
(x,j)  \=  01, j = k + 1,... ,n-l,n 

Sat(0) denotes the elements x € .A which satisfy 0. XQ and U are called future 
operators, Ya and <5 past operators. A past formula is any formula which does not 
contain any occurrence of a future operator. A future formula is any formula which 
does not contain any occurrence of a past operator. For $ to be a past formula and 
£ € K(A), there exists x € A and n > 0 with x[n] = £ and (x, n) ^ $ if and only if 
(x, n) \= $ for all x £ J4 and n > 0 with x[n] = £. We put: 

F$  =  { x[n]  : x € A, n > 0, (x, n) [= $ } 

We use the following abbreviations. We put: 

ff =   -'tt,    01 V 02    =   -,(-101 A -102),     01 —► 02    =   ""01 V 02 

and 

O0      =      tt W 0, G0      =     -.O-10 

As in [7], we define safety, guarantee, response and persistence formulas to be 
formulas of the form □$, 0$, DO$ and OD$ respectively, where $ is a past 
formula. A liveness formula is an LTL formula of the form 

O (V ( *i A OAi ) j 

where $* are past formulas and A» are future formulas such that: 

• G ( Vr=i $i ) is valid- 
• The formulas Ai are everywhere eventually satisfiable, i.e. for all 1 < i < n, 

y 6 A and N > 0 there exists x € A and k > N such that x[N] = y[N] and 
(x,A;)|=Ai. 

Instead of the second condition [7] require that the future formulas Aj are satis- 
fiable. In the case of the linear time model S°° satisfiability is equivalent to our 
second condition, which can be seen as follows. Let A is a satisfiable future formula 
(satisfiability w.r.t. £°°) and s £ S°°, I > 0 such that (s,l)   (= A. Then, for each 

/^ 
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t € A°° and N > 0, let u be the string s[N]t. Then u[N] = t[N] and (u,k) \= A 
where k = N + I. In order to see that (u, k) \= A it is essential that A does not 
contain past operators. 

LEMMA 4.4. Let $ be a past formula. 

(a) Sat( D$ )  = A(F$) (a safety property) 
(b) Sat( 0$ )   =  £(F$) (a guarantee property) 
(c) Sat( DO* )\/C(M)   =  7l(F$) (a response property) 
(d) Sat( OD$ ) \ K,(M)  =  V{F$) (a persistence property) 
(e) // A is a liveness formula then Safc(A) is a liveness property. 

PROOF.       (a) x € Sat( n$ ) iff (ar, 1) |= G$ iff (x,n) (= $ for all n > 0 iff 
x[n] 6 F$ for all n > 0 iff x e -4(F*). 

(b) x e Sat( 0$ ) iff (x, ±) f= 0$ iff (x,n) (= $ for some n > 0 iff x[n] 6 F* 
for some n > 0 iff x G £ (Fj>). 

(c) x 6 Sat(DO$) iff (x, n) (= $ for infinitely many n iff x[n] G F$ for infinitely 
many n iff x € 1Z(F$). 

(d) x G Sat(OD$) iff (x,n) \= $ for almost all n iff x[n] G F$ for almost all n 
iffxGft(.F*). 

(e) Let f G £(4). Then f = y[N] for some y e A and AT > 0. We have to show 
that there exists x G Safc(A) with x[JV] = f. Let 

A = O ( V ( *« A OAt ) J 

Since ü(\/*t) is valid, (y, TV) |= $; for some i. Because Aj is everywhere 
eventually satisfiable, there exists x e A and k> N such that x[7V] = f and 
(x, fc) (= Aj. Since $; is a past formula we get (x, N) \= $j. Since k > N 
we have (x, N)  (=  OAj, and hence 

(x,N)  \= $i A OAi 

and therefore x  (= A. 
D 

4.3. Partial order logic and true concurrency models. In this section 
we briefly introduce the logic ISTL* [13, 27] and show how its formulas can be 
interpreted over order-enriched linear time models. The reader is cautioned to note 
that our interpretation of ISTL* is over more general, non-standard models, but 
coincides with that of [27] for a suitably chosen next step relation. In [13] and 
[27] ISTL* formulas are interpreted over interleaving sequences of partial order 
executions (i.e. linearizations of pomsets of a certain kind), and Mazurkiewicz 
traces respectively, whereas we give semantics (for syntactically the same formulas) 
in arbitrary order-enriched linear time models. 

A state formula of ISTL* is a formula </> given by the grammar: 

<f> ::=  tt  |  a  |   <j>x A <j>2   |   -.0  |   Aip 

where a G AP is an atomic formula and ip is a path formula built from the following 
production system: 

rl>  :=   <j>  |  Vi A^2   |   ~«l>  |   Xa </>   |   Ya i>  |   [fa U fa]   |   [fa S fa] 

where 0 is a state formula and a G S. 
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We use the following abbreviations: 

ff =  -.fct,   /iV/2  =  -.(-./! A -/a),   h -> f2  =  -./i V /2 

for all state or path formulas /i, /2. If ip, tp' are path formulas then 

Etp    =   ->A(-*I>), F^    =    [ttWV], GV» = ->[« W (-^)], 

PV    =    [tt S ip], Hip   =   i[tt 5 (-^)], 

Xtf   =   Vper -M. Y1>    =   Vp6r Yp1>- 

DEFINITION 4.5. A ISTL* structure is a 4-tuple (Ä, -+,act,L) where (Ä, -» 
, act) is a linear time model with next step relation and L an interpretation of the 
atomic propositions, i.e. a function which assigns to each atomic proposition a 
subset L(a) of IC(A) consisting of those states £ which are supposed to satisfy the 
condition a. 

Let (A, ->, act, L) be a ISTL* structure. State formulas are interpreted over 
intermediate states of computations which we represent by pairs (x, £) where igi 
and £ 6 K.(x). Path formulas are interpreted over states of observations. 

DEFINITION 4.6. Let (A, —►, act) be a linear time model with next step relation. 
An observation on A is a sequence TT = (£n)n>o m £(A) such that: 

• either & —t £j+i for all i > 0, or 
• there is some k > 0 such that 

fo  -> &  -> &  -»...-» £*  = £jfe+i  = ffc+2  =  ... 

We write 7r(i) to denote the i-th element of n, i.e. if IT = (£o, &> • • •) then 7T(J) = &. 
7T is called a x-observation iff in addition [Jfi = a;. An initial x-observation is an 
x-observation 7r = (foj £i, • • •) with £o = -L- 

The path quantifiers A and E of ISTL* range over ^-observations. The set of 
all such observations is an 'Abramhamson structure', i.e. suffix-closed and fusion- 
closed (cf. [1, 9, 13]). Suffix-closedness means that if (£n)n>o is an x-observation 
then also (£„)„>* is an x-observation for arbitrary A: > 0. Fusion-closedness means 
that if (£n)n>o and (j?n)n>o are x-observations such that fn = T]k for some n > -0 
and A; > 0 then the sequence 

Co,  6i   ••■»  £n=%,  Vk+1,  Vk+2,   ••■ 
is an x-observation. 

A computation x is said to satisfy a state formula <f> (denoted by x |= <j>) iff x 
satisfies (f> in its initial state _L, i.e. iff (x, ±) |= <f>. Here (x, £) |= cj> where x £ A, 
f € /C(x), is defined by structural induction: 

(x,£) N tt 

(ar.fl \= a <==> ££L(a) 

(x,0 |= <£iA02 <=> (s.fl  |= <f>i, i = 1,2 

(x,0 |= -.0 <=> (x,0   £  <A 

(x, £) |= A^ <==> (7T, i) |= V' for each x-observation 7r with 7r(i) = £ 



24 CHRISTEL BAIER AND MARTA KWIATKOWSKA 

and for each observation n = (£o,£i>£2,...) and i > 0: 

(*■>*) 1=0 <=*■ (*,&)  1= ^ where x = \Jtn 

{ir,i) \= V1AV2 <=> (ir,i)  \= iphi = l,2 

(n,i) |=  -V <=> (TT,*)   H= V» 

(7T,i) (= X0V <=> (7T,i + l)  t= V,   aeactfä.fc+i) 

(ir,i) |= ra V <=> i > 1 and (TT, ? — 1)  |= V,   aGact(^_i,{») 

(7T, i)  |=  [V»i W fo]     <=>     there exists fc > i s.t. (7r, fc)  f= V2 
and (7r,j)  |= Vi, J = *,* + 1,... ,k-l 

(n, i)  j=  [ipi S ^2]     <=>•     there exists k < i with (7r, k)  f= V2 
and (7T,j)  |= Vi, J = * + !,-•• ,*-l,»' 

REMARK 4.7. If ISTL* formulas are interpreted over a LTL structure (Ä, -> 
, act, L) then the quantifiers E and A have the same interpretation. This is because 
x[0],x[l],... is the unique x-observation. In this case the logic ISTL* reduces to 
the linear time logic. Let <f> be the LTL formula which arises from a state formula 
<f> by removing the quantifiers A and E. Then x \=IST <t> if and only if x \=LT 4>. 
(The index LT, resp. 1ST, denotes whether (Ä, ->, act, L) is assumed to be a LTL 
structure or a ISTL* structure.) 

Let Sat(<j>) be the set of all x £ D which satisfies <f>: 

Sat(<j>)  =  {x GD  : x \= cf> } 

The operators U and X are called future operators, S and Y past opertors. A past 
formula is a formula which does not contain any future operators. A future formula 
is a formula without past operators. Let $ be a past state formula and £ 6 K(A). 
Then (x,£) |= $ for some x e A with f C x if and only if (x,£) |= $ for all 
x €. A with (Ci. We define: 

F*  =  {Z€lC(A)  :  (x,f)  |= * for some x e ,4 } 

Safety, guarantee, response and persistence properties are given by the forms AG$, 
EF$, EGF$ and AFG$ respectively, where $ is a past state formula. A liveness 
formula is a state formula of the form 

EF ( V (*< A FAt) ) 

where $j are past state formulas and Aj future state formulas such that 
• AG(\J $i) is valid 
• A» is everywhere eventually satisfiable, i.e. for each f e K,{A) there exists 

x € A and rj € K{x) with: 

£  C JJ  C x,     (x,77)   |= Aj 

LEMMA 4.8. Let $ be a past formula. Then: 

(a) Sat( AG$ )  = A( F* ) 

'7> 
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(b) Sat( EF$ )  = £(F9) 
(c) Sat( EGF$ ) \ K{D)  = K( F* ) 
(d) Sat( AFG$ ) \ IC(D)  = V{F^) 
(e) If A is a liveness formula then Sat(A) is a liveness property. 

PROOF, (a)-(d) The proof is similar to Lemma 4.4. 
(e) Let A = EF{ V($* A ■FA«) ) be a liveness formula. Let f 6 K.{A). Since 

$i are past formulas and since AG{\] $,) is valid, there is some i with 
£ € -F<j>i. Since Aj is everywhere eventually satisfiable there exists x £ A 
and T) £ /C(x) such that £ C n C x and {x,rj) f= Aj. Let it be an initial 
x-observation such that n(j) = £ and 7r(A;) = r) for some 0 < j < k. Then 
(n,k)  \= Aj  and  (ir,j)  [= #«. Hence, (ir,j)  \= $» A FAj and therefore 

(TT.O)  f= FCV^iAFAO). 

Thus, a; [= A, i.e. x e Sat(A). 
D 

We have not been able to find syntactic descriptions of obligation and reactivity 
properties, and also progress properties in the sense of [7]. It is an open problem 
whether it can be shown that each of these classes of formulas is characteristic in 
the sense that each extensional property corresponds to a syntactic property. 

The following lemma shows that our requirement that an x-observations ap- 
proximates x ensures that each action a which is enabled in some state £ during 
some execution of x is actually performed in every linearization of x at a state 
subsuming (above) £, cf maximality [14]. If a € S then we put: 

ena  = EXatt,   exa = AFXatt 

Then (x, £) (= en(a) iff the action a is enabled (i.e. can be performed) in the state 
£. (x, f) f= exa iff in each execution of x the action a will be performed at some 
state subsuming £. 

LEMMA 4.9.  The formula AG( ena  ->•  exa) holds for all x e A. 

4.4. Examples. 
4.4.1. Interpreting LTL over strings. The temporal logic used in [28, 23, 

7] is essentially the same as our logic LTL, the only difference being that our 
next/previous step operators Xa, Ya are labelled with actions a. Our interpre- 
tation of LTL formulas (using X, Y instead of Xa, Ya) over the metric-enriched 
linear time model S°° coincides with that of [7]. 

The language LTL also includes Lamport's linear time logic (called TL) [21, 
26]. TL formulas are built from the atomic propositions using the ordinary logical 
operators V, A and ->, and the temporal operators □ and O. The interpretation 
of [21] of Ti-formulas over sequences of system states corresponds to our inter- 
pretation of TL for the case of the interleaving model 0°° = 0* U 0W. Here 
0 denotes a set of (possible) system states, typically mappings from program and 
control variables to values. 0* denotes the set of finite sequences over 0 and 0W 

the set of infinite sequences. Terminating computations are represented by infinite 
strings where the final state is repeated infinitely often. 

[26] defines safety properties as those which are induced by formulas of the 
form a ->■ Ob where a and b are atomic propositions. Liveness formulas in the sense 
of [26] have the form D(a -)• Ob). 

173 
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4.4.2. Interpreting ISTL over traces. The logic ISTL* of [27] is interpreted 
over Mazurkiewicz traces. We now consider its relationship with our linear model 
framework. 

In [27], the starting point is a program described by a tuple (E,t,Q,y) where 
(E,t) is a concurrent alphabet, 0 a satisfiable predicate (the initial condition) and 
y a finite sequence of program variables. An assignment for y is a function J 
which assigns to each program variable y a value J(y) of the domain of y. The 
assignments can be viewed as states of the program. Each a € E is associated with 
a pair < ena,fa > where ena is an enabling condition and fa a transformation that 
describes the effect of a applied in a state where ena holds, i.e. fa is a function 
which assigns to each assignment J for y with J (= ena an assignment fa(J). (Here 
a satisfaction relation |= for the enabling conditions and the assignments for y is 
supposed such that J \= ena iff a is enabled in J.) Moreover, the commutativity 
of independent actions and the fact that independent actions can neither disable 
nor enable each other is required. Formally, for all actions a, ß with aiß and all 
assignments J for y: 

• If J |= ena A enp then fa(fp(J))  = fp(fa(J)). 
• If J (= en a then J (= enp if and only if fa(J) (= en p. 

For simplicity, we assume a fixed initial state (an assignment Jinit for y). (Jinit 

might be either an assignment where the initial condition 0 holds or an 'accessible' 
assignment, i.e. an assignment J which is reachable from an assignment where 
the initial condition holds.) We define H*init to be the set of finite strings s = 
a0ai...an over E such that Jt (= enai, i = 0,1,... ,n where J0 = Jinit and 
Ji+i = fai(Ji)- The interpretation Jn+1 is called the 'final interpretation' of s and 
is denoted by fins. The commutativity of independent actions implies that if s = t 
then fins = fint. Hence, we may define fin^ = fins for each finite trace £ = [s] 
where s G E*nif. Let x be an infinite trace such that x = [s] for some infinite 
string s over E where all prefices of s belong to E*nit. x can be viewed as a 'run' 
in the sense of [27] (which is defined as a maximal subset of [E*njt] consisting of 
pairwise consistent traces where the consistency of two finite traces £i, £2 means 
that £i, f2 C f for some finite trace £). An 'observation' of x in the sence of [27] 
is a sequence of traces £0,£i, • • • such that £0 is the empty trace, &+i = ^[a^] for 
some at e E, and whenever (Ci then £ C & for some i. Hence, the observations 
of x in the sense of [27] are exactly the x-observations in the linear time model 
[E°°], together with the next step relation ->• defined by: 

x -» y   <*=>   3s € E*, a 6 Ex = [s] A y = [sa] 

where act([s], [sa])  =  {a} is the multiset containing a. 
We assume that there is a satisfaction relation ^ for the atomic propositions 

and the interpretations J for the program variables y such that J ^ a iff a is true 
in the state J. This yields an interpretation L for the atomic propositions which 
assigns to each atomic proposition a a set L(a) of finite traces £ € [E*ni(]: 

£ € L{a) iff fin$ \= a. 

[27] associates each run x with an J5TZ,*-structure and obtains a satisfaction 
relation 1=^ for each run x. This satisfaction relation agrees with ours (in the sense 
that ± \=x ip iff x (= <p) when we deal with the linear time model of traces, the next 
step relation -> and the interpretation L as above. Here we replace the next step 
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operator X in [27] by the labelled next step operators Xa, and similarly their first 
order (state) formulas are substituted by atomic propositions. 

Instead of x-observations, which are maximal in the order-theoretic sense, [19] 
use arbitrary observations (£n) in K,{x) as executions of x; for example, the latter 
admits non-maximal Mazurkiewicz traces. In [19] a computation i in a state £ 
satisfies a formula of the form E(f> iff there exists an observation -K in K{x) starting 
in f with (n, 0) |= (f>. Notice that it is not required that n approximates x, i.e. the 
case U ir(i)  C. x is allowed. For instance, the formula 

$  = EGXatt 

is satisfied in the approach of [19] by the trace [s], s = ßaaa ..., where a i ß, but 
not in our framework. This is because 

[a]  ->•  [aa] -¥ [aaa]  -¥  ... 

is considered an execution of [s] in [19], but not in this paper. 
Another useful next step relation on [E°°] is given by: 

x => y 

iff there exists pairwise independent actions e*i,... , an 6 S such that x[ati... an] = 
y. The associated multiset of actions is 

acfc( x, x[a\,... , an] )  = multiset consisting of ai,... , a„. 

This next step relation allows the parallel execution of pairwise independent actions 
in one step. The interpretation of I STL* formulas over the I STL* structure 

([E~],=>,act,L) 

differs from the interpretation over ([S°°],->,act, L) in the next (resp. previous) 
step operators Xa (resp. Ya). 

LEMMA 4.10. If <j> is a formula which does not contain the operators Xa and 
Ya then an infinite trace x satisfies <f> w.r.t. the next step relation —> if and only if 
(j> is satisfied by x using the interpretation based on the next step relation =>. 

If I STL* is used to formulate real-time constraints such as 'a process responds 
to a request within 3 time units', and if we suppose that each atomic action can be 
executed in a single time unit, the next step relation -¥ is not helpful since it ignores 
the fact that the parallel execution of pairwise independent actions c*i,... , an can 
be performed within a single time unit. Consider the formula 

4>   =   EG{Yßtt -► XXatt) 

where ß stands for an (input-) action which is performed by a handshake mechanism 
and where a is an (output-)action representing the acknowledge for the receipt of 
the message transmitted by ß. Then <f> ensures the existence of an execution which 
satisfies the following: whenever the system receives a message it acknowledges 
the receipt after two time units.   Let s   =   ßjat where ß t 7, -i( a 1 ß ) and 
-i( a 1 7 ) and where t   =   %/vV   One might think of 7 as an input-action 
where the message is transmitted on a channel different from that which is used 
for ß (hence ß and 7 can be performed in parallel) and the acknowledge sent by a 
consists of a message that uses an information which is given by 7 (hence a and 7 
are dependent). Using the next step relation => we get that the trace [s] satisfies 
<t>. By means of -¥ the trace [s] does not satisfy <j>. 

n> 



28 CHRISTEL BAIER AND MARTA KWIATKOWSKA 

4.4.3. Interpreting ISTL over pomsets. When considering the order-enriched 
linear time model Pom°° there are two natural ways to define the next step relation. 

The first possibility is to define the step relation x -+ y iff x C y and whenever 
x E z Q y then either x = z or z - y. Then x ->■ y iff x = y\S where 5 arises 
from the event set of y by removing a single event e of maximal depth. If a is the 
label of this event e in y then we put act(x,y) = {a}. 

[13] proposes an interpretation of ISTL* over pomsets of a certain kind, called 
'partial order executions'. In the approach of [13] the actions a are associated with 
an operation which explains how the variables of a system are modified when a 
is executed. A partial order execution is then a pomset together with an initial 
'snapshot' (i.e. a partial function from variables to values) such that each pair 
of events e, e' which affect the same variables are ordered, i.e. either e < e' or 
e' < e. In the approach of [13] intermediate states of a computation represented by 
a partial order execution x are 'slices', i.e. a left-closed finite set S' of the event set 
of x. Hence, a slice of a pomset x can be identified with a finite pomset £ € K,(x) 
which is an intermediate state in our approach. [13] interpret path formulas over 
'acceptable paths': if a; is a partial order execution then an acceptable path of x 
is a sequence (5„) of z-slices such that 5n = Sn+1 \ {e} for some maximal event 
e in 5„+i and such that each event e of a; is contained in some slice Sn- Hence, 
an acceptable path is an x-observation w.r.t. the next step relation ->. Identifying 
partial order executions and pomsets we obtain that the interpretation of ISTL 
in the sense of [13] agrees with our interpretation using the linear time model of 
pomsets and the next step relation -K 

Secondly, we consider the next step relation => defined as follows. Let y = (5, < 
, 0 and x = y\S' where S' C S is left-closed. Then x => y iff, for all e, e' € 5 € 5', 
either e = e' or -i(e < e') A (e' < e). I.e. x => y iff the events in S \ S' are pairwise 
independent. In this case the step from x to y stands for the parallel execution of 
the events S\S'. We define act(x, y) to be multiset of all actions 1(e), e € S\S'. 

5.  Conclusion and Further Work 

We have formulated an abstract, axiomatically given notion of a linear time 
model, and considered classes of behavioural properties in such models. Our frame- 
work admits the interleaving models, as well as some 'true concurrency' models such 
as Mazurkiewicz traces and pomsets as special cases, but it does not handle full 
non-determinism. In this general framework we have been able to obtain exten- 
sional, topological and temporal characterizations of classes of properties including 
safety and liveness, generalising many of the results of [3, 7, 19]. As yet, we do not 
know how to admit the automata-theoretic characterization of [7] into our frame- 
work, and how to syntactically characterize properties such as reactivity. This is 
the subject of future study. 

References 

[1] K. Abrahamson, Decidability and expressiveness of logics of programs, Ph.D. Thesis, Univer- 
sity of Washington at Seattle, 1980. 

[2] S. Abramsky, A. Jung, Domain Theory, In S. Abramsky, D.M. Gabbay and T.S.E. Maibaum, 
editors, Handbook of Logic in Computer Science, vol. 3, Clarendon Press, 1994. 

[3] B. Alpern, F. Schneider, Defining liveness, Information Processing Letters 21, 1985, 181-185. 
[4] B. Alpern, F. Schneider, Recognizing safety and liveness, Distributed Computing 2, 1987, 

117-126. 

<7U 



ON TOPOLOGICAL HIERARCHIES OF TEMPORAL PROPERTIES 29 

[5] J.W. de Bakker, J.H.A. Warmerdam, Metric pomset semantics for a concurrent language with 
recursion, In I. Guessarian, editor, Semantics of Systems of Concurrent Processes, LNCS vol. 
469, Springer-Verlag, 1990, 21-49. 

[6] E.M. Clarke,  E.A. Emerson,  Design and Synthesis of Synchronization Skeletons using 
Branching Time Temporal Logic, In Proc. Workshop on Logics of Programs, LNCS vol. 
131, Springer-Verlag, 1981. 

[7] E. Chang, Z. Manna, A. Pnueli, The Safety-Progress Classification, In Proc. Computer and 
System Science, NATO Advanced Science Institute Series, Springer-Verlag, 1992. 

[8] E. Chang, Z. Manna, A. Pnueli, Characterization of Temporal Property Classes, In W. Kuich, 
editor, Proc. ICALP92, LNCS vol. 623, Springer-Verlag, 1992, 474-486. 

[9] C. Courcoubetis, M. Vardi, P. Wolper, Reasoning about fair concurrent programs, In Proc. 
18th ACM Symposium on Theory of Computing, Berkeley, ACM Press, 1986. 

[10] R. Engelking,  General Topology, Sigma Series in Pure Mathematics, vol. 6, Heldermann 
Verlag, Berlin, 1989. 

[11] G. Gierz, H. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. Scott, A Compendium of 
Continuous Lattices, Springer-Verlag, 1980. 

[12] U. Goltz, R. Loogen, Modelling Nondeterministic Concurrent Processes with Event Struc- 
tures, Fundamenta Informaticae 14 1 (1991) 39-74. 

[13] S. Katz, D. Peled, Interleaving Set Temporal Logic, Theoretical Computer Science 75 3 (1990) 
21-43! 

[14] M. Kwiatkowska, Event Fairness and Non-Interleaving Concurrency, Formal Aspects of 
Computing 1 3 (1989) 213-228. 

[15] M. Kwiatkowska,  Defining Process Fairness for Non-Interleaving Concurrency. In Proc. 
Foundations of Software Technology and Theoretical Computer Science, LNCS vol. 472, 
Springer-Verlag, 1990, 286-300. 

[16] M. Kwiatkowska, A metric for traces, Information Processing Letters 35 (1990) 129-135. 
[17] M. Kwiatkowska. On the domain of traces and sequential composition. In S. Abramsky and 

T.S.E.. Maibaum, editors, Proc. 16th Coll. on Trees in Algebra and Programming (CAAP'91), 
LNCS vol. 493, Springer-Verlag, 1991, 42-56. 

[18] M. Kwiatkowska.  On topological characterization of behavioural properties. In G. Reed, 
A. Roscoe, and R. Wächter, editors, Topology and Category Theory in Computer Science, 
Oxford University Press, 1991, 153-177. 

[19] M. Kwiatkowska, D. Peled, W. Penczek, A Hierarchy of Partial Order Temporal Properties. 
In Proc. Temporal Logic, LNCS vol. 827, Springer-Verlag, 1994, 398-414. 

[20] L. Lamport, Proving the Correctness of Multiprocess Programs, IEEE Trans. Software Engi- 
neering SE-3 2, (1977) 125-143. 

[21] L. Lamport, Specifying Concurrent Program Modules, ACM Transactions on Programming 
Languages and Systems 5 2 (1983). 

[22] M. Majster-Cederbaum, C. Baier, Metric Completion versus Ideal Completion. To appear in 
Theoretical Computer Science. 

[23] Z. Manna, A. Pnueli, A Hierarchy of Temporal Properties. In Proc. 9th ACM Symposium on 
Principles of Distributed Computing, ACM Press, 1990, 377-408. 

[24] A. Mazurkiewicz, Basic notions of trace theory. In Linear Time, Branching Time and Partial 
Order in Logics and Models for Concurrency, LNCS vol. 354, Springer-Verlag, 1988, 25-34. 

[25] R. Milner, Communication and Concurrency, Prentice Hall, 1989. 
[26] S. Owicki, L. Lamport, Proving Liveness Properties of Concurrent Programs, ACM Trans- 

actions on Programming Languages and Systems, 4 3 (1982) 455-495. 
[27] D. Peled, A. Pnueli, Proving Partial Order Liveness Properties. In Proc. ICALP'90, Warwick, 

LNCS vol. 443, Springer-Verlag, 553-571. 
[28] A. Pnueli,  The Temporal Logic of Programs, Proc. 18th Ann. Symp. on Foundations of 

Computer Science, Providence, IEEE Press, 1977. 
[29] V. Pratt, The Pomset Model of Parallel Processes:  Unifying the Temporal and the Spatial. 

In Proc. Seminar on Concurrency, LNCS vol. 197, Springer-Verlag, 1984. 
[30] W. Reisig, Partial Order Semantics versus Interleaving Semantics for CSP-like Languages 

and its Impact on Fairness. In Proc. ICALP'84, LNCS vol. 172, Springer-Verlag, 1984, 403- 
413. 

[31] W. Reisig, Elements of a Temporal Logic Coping with Concurrency, SFB-Bericht 342/23, 
92A, Techn. Universität München, 1992. 

1 1 



30 CHRISTEL BAIER AND MARTA KWIATKOWSKA 

[32] W. Thomas, Automata on Infinite Objects. In J. van Leeuwen, editor, Handbook of Theoret- 
ical Computer Science vol. B, North-Holland, 1990, 135-191. 

[33] G. Winskel, An introduction to event structures. In Linear Time, Branching Time and Partial 
Order in Models and Logics for Concurrency, LNCS vol. 354, Springer-Verlag, 1988, 364-397. 

FAKULTäT FüR MATHEMATIK k INFORMATIK, UNIVERSITäT MANNHEIM, 68131 MANNHEIM, 

GERMANY 

E-mail address: baierflinformatik.uni-mannheim.de 

SCHOOL OF COMPUTER SCIENCE, UNIVERSITY OF BIRMINGHAM, EDGBASTON, BIRMINGHAM 

B15 2TT, UK 
E-mail address: M.Z.Kwiatkowskaflcs.bham.ac.uk 

173 



Linear Time Temporal Logics over 
Mazurkiewicz Traces* 

Madhavan Mukund and P.S. Thiagarajan 
School of Mathematics, SPIC Science Foundation, 

92 G N Chetty Rd, Madras 600 017, India 
E-mail: {madhavan,pst}@ssfernet.in 

Abstract 

Temporal logics are a well-established tool for specifying and reasoning 
about the computations performed by distributed systems. Although tem- 
poral logics are interpreted over sequences, it is often the case that such 
sequences can be gathered together into equivalence classes where all mem- 
bers of an equivalence class represent the same partially ordered stretch of 
behaviour of the system. This appears to have important implications for 
improving the practical efficiency of automated verification methods based 
on temporal logics. With this as motivation, we study logics that are directly 
interpreted over partial orders. We survey a number of linear time temporal 
logics whose underlying frames are Mazurkiewicz traces. We describe au- 
tomata theoretic methods for solving the satisfiability and model checking 
problems for these logics. It turns out that we still do not know what the 
"canonical" linear time temporal logic over Mazurkiewicz traces looks like. 
We identify here the criteria that should be met by this elusive logic. 

Introduction 
Propositional Linear time Temporal Logic (LTL) proposed by Pnueli [Pnu] has be- 
come a well established tool for specifying and reasoning about complex distributed 
behaviours [MP]. A central feature of LTL is that its formulas are interpreted over 
infinite sequences. In applications of LTL, the infinite sequences consist of the runs 
of a distributed system with each run being an infinite sequence of states assumed 
by the system or an infinite sequence of actions executed by the system during 
the course of a computation. Interesting distributed systems consist of a number 
of autonomous sequential agents that coordinate their behaviour with the help of 
some communication mechanism. In such systems, substantial portions of a com- 
putation will consist of causally independent tasks performed by different agents at 
separate locations. Consequently a single partially ordered stretch of behaviour of 
the system will be modelled by many different runs that differ from each other only 

"This paper originally appeared in W. Penczek (Ed.), Mathematical Foundations of Computer 
Science (MFCS) 1996, Proceedings, Lecture Notes in Computer Science, Vol 1113, Springer-Verlag 
(1996) 62-92. 
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in the order in which they record causally independent occurrences of actions. This 
kind of run-based view is often referred to as an interleaved semantics of distributed 
systems. 

The interleaved view of the behaviour of distributed systems has proved to be 
very successful and popular. However it has been known for some time that the 
practical effectiveness of LTL and related formalisms can be often enhanced by 
modelling and analyzing the concerned behaviours in terms of partial orders rather 
than sequences. 

In typical applications, an LTL formula constitutes the specification of the sys- 
tem behaviour and the verification problem consists of checking whether every run 
of the system is a model of the formula and therefore whether the system meets the 
specification. The property expressed by the specification is very often of the kind 
where either all the interleaved runs corresponding to a single partially ordered 
computation have the property or none of the interleavings have the property. A 
typical example of such a property is freedom from deadlock, as pointed out by 
Valmari [Val]. As a result, it suffices to verify the desired property for just one 
representative run of each partially ordered computation. The resulting saving in 
running time and memory usage can be substantial in practice [GW]. This is the 
background and motivation underlying the so called partial order based verification 
methods which are a subject of active research [GW, KP, Val]. 

There is an alternative way to exploit non-sequential behaviours and the atten- 
dant partial order based verification methods. It consists of developing temporal 
logics and related techniques that can be directly applied to specify and reason 
about the properties of partial order based runs of a distributed system. In this 
paper we survey linear time temporal logics that have arisen from this approach. 

In going from sequences to partial orders it is easy to go overboard because 
so many possibilities are available. Fortunately, in the context of distributed be- 
haviours, Mazurkiewicz has formulated a tractable and yet very fruitful way of 
passing from sequences to partial orders [Maz]. The resulting restricted partial 
orders are known as Mazurkiewicz traces, often called—as we shall do here—just 
traces. The theory of traces is well developed [Die, DR] and is strongly related 
to the theory of other well known formalisms such as Petri nets and event struc- 
tures. Further, the classical theory of w-regular (word) languages in terms of its 
logical, algebraic and automata-theoretic aspects has been successfully extended 
to w-regular trace languages [EM, GP]. Finally, the structures that underlie the 
partial order based verification methods being developed recently can be almost 
always be viewed as traces. 

Hence there is a good deal of motivation for formulating linear time temporal 
logics that are to be directly interpreted over traces. Many such logics are now 
available. In the present survey, we will mainly concentrate on the ones that fulfill 
two criteria: 

(i) The logic should be expressible within the first order theory of traces. 

(ii) The satisfiability problem for the logic should admit a treatment in terms of 
asynchronous Büchi automata. 

This seemingly arbitrary choice of criteria can be justified as follows. LTL is the 
linear time temporal logic over sequences in that it is equivalent in expressive power 
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to the first order theory of sequences [Zuc]. We consider the task of identifying the 
counterpart of LTL for traces to be an important one both from a theoretical and 
practical standpoint (see the last portion of Section 4). At present we do not know 
what this counterpart of LTL looks like. However, it seems a good starting point to 
concentrate on those linear time temporal logics that are at least no more expressive 
than the first order theory of traces. 

As for the second criterion, an appealing feature of LTL is that its satisfiability 
and model checking problems can be transparently solved using Biichi automata 
[VW]. This has led to a clean separation of the logical and combinatorial aspects 
of these problems, thus contributing to the development of automated verification 
methods and related optimization techniques. The evidence available at present 
suggests that asynchronous Biichi automata are an appropriate machine model 
for dealing with w-regular trace languages. Hence it seems worthwhile to lift the 
interplay between LTL and Biichi automata to the level of traces. 

In the next section we review the basic aspects of traces. In Section 2 we de- 
scribe asynchronous Biichi automata and present our version of these automata 
called, for want of a better name, A2-automata. In Section 3, the heart of the 
paper, we present the logic TrPTL (Trace based Propositional Temporal logic of 
Linear time) and two of its sublogics TrPTLcon and TrPTL®. The logic TrPTL is 
directly interpreted over traces. We show that the satisfiability and model checking 
problems for TrPTL can be solved using A2-automata. We then show that the syn- 
tactic restrictions imposed to obtain TrPTLcon and TrPTL® lead to corresponding 
simplifications in the world of automata. After presenting these results we survey 
a number of other temporal logics that use traces as their underlying frames. In 
Section 4 we show that TrPTL is expressible within the first order theory of traces. 
The final section contains concluding remarks. 

Most of the results will be presented without proofs. The proofs are either 
available in the literature or can be easily manufactured using the results available 
in the literature. 

1    Traces 

The starting point for trace theory is a trace alphabet (E, I), where E, the alphabet, 
is a finite set and / C Ex E is an irreflexive and symmetric independence relation. In 
most applications, E consists of the actions performed by a distributed system while 
/ captures a strong static notion of causal independence between actions. The idea 
is that contiguous independent actions occur with no causal order between them. 
Thus, every sequence of actions from E corresponds to an interleaved observation of 
a partially-ordered stretch of system behaviour. This leads to a natural equivalence 
relation over execution sequences: two sequences are equated iff they correspond 
to different interleavings of the same partially-ordered stretch of behaviour. 

To formulate this equivalence relation precisely, we need some terminology. For 
the rest of the section we fix a trace alphabet (E,/) and let a,b range over E. 
D = (E x E) — I is called the dependency relation. Note that D is reflexive and 
symmetric. A set p C E is called a D-clique iff p x p C D. We set E°° = E* U E" 
where E* is the set of finite words over E and E" is the set of infinite words over 
E. We let a, a' with or without subscripts range over E°° and T,T' with or without 
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subscripts range over E*. The equivalence relation ~; C E°° x E°° induced by / is 
given by: 

a ~/ a' iff a \p = a' \p for every D-clique p. 

Here and elsewhere, if A is a finite set, p G A°° and B C A then p \B is the 
sequence obtained by erasing from p all occurrences of letters in A - B. 

Clearly ~/ is an equivalence relation. Notice that if a = Tab<jx and a' = rbaa1 

with (a, 6) e / then a ~/ a'. Thus a and a' are identified if they differ only in 
the order of appearance of a pair of adjacent independent actions. In fact, for 
finite words, an alternative way to characterize ~/ is to say that a ~/ a' iff a' can 
be obtained from a by a finite sequence of permutations of adjacent independent 
actions. Unfortunately, the definition of ~/ in terms of permutations is too naive 
to be transported to infinite words, which is why we work with the less intuitive 
definition presented here. 

The equivalence classes generated by ~/ are called (Mazurkiewicz) traces. The 
theory of traces is well developed and documented—see [Die, DR] for basic material 
as well as a substantial number of references to related work. 

Traces have many equivalent representations. We shall view traces as special 
kinds of labelled partial orders. Since sequences can be viewed as labelled total 
orders, this representation emphasizes that traces are an elegant and non-trivial 
generalization of sequences. 

Recall that a E-labelled poset is a structure F = (£,<, A) where < is a partial 
order on the set E and A : E -» E is a labelling function. The covering relation 
< C E x E is given by: e < e' iff e < e' (i.e., e < e' and e ^ e') and for every 
e" e E, e < e" < e' implies e = e" or e" = e'. 

For X C E we define [X to be the set {y \ y < x for some x e X}. If X is a 
singleton {x}, we write [x instead of |{x}. 

We can now formulate traces in terms of labelled partial orders. A trace over 
(E, /) is a E-labelled poset F = (E, <, A) which satisfies the following conditions. 

• E is a countable set. 

• For each e e E, |e is a finite set. 

• For all e, e' € E, if e < e' then (A(e), A(e')) € D. 

• For all e, e' € E, if (A(e), A(e')) G D then e < e' or e' < e. 

Let TR(T,, I) denote the set of E-labelled posets that satisfy the definition above. 
We now sketch briefly the proof that E°°/~/ and Tfl(E, /) represent the same 
class of objects. We construct representation maps str : E°° —► TR(E, I) and 
trs : Ti?(E, /) -> E°°/ ~/ and state some results which show that these maps are 
"inverses" of each other. We shall not prove these results. The details can be easily 
obtained using the constructions developed in [WN] for relating traces and event 
structures. 

Henceforth, we will not distinguish between isomorphic elements in TÄ(E,7). 
In other words, whenever we write F = F' for traces F = (E, <,A) and F' = 
(£", <', A'), we mean that there is a label-preserving isomorphism between F and 
F . 



For a e E°°, [a] stands for the ~/-equivalence class containing a. We use ■< 
to describe the usual prefix ordering over sequences. Let prf {a) denote the set of 
finite prefixes of a. 

We now define str : E°° -+ TR(X,I). Let a € E°°. Then str(cr) = (E,<,\) 
where: 

• E = {TO, I ra € prf(a)}.    Recall that r € E* and a € E.   Thus £7 = 
prf (cr) — {e}, where e is the null string. 

• <CExEis the least partial order which satisfies: 

For all ra, r'b € E, if ra X r'b and (a, 6) e D then ra < r'b. 

• For ra € E, A(ra) = a. 

The map str induces a natural map str' from E°°/ ~j to Tß(E, /) defined by 
str'([cr]) = str(cr). One can show that if a, a' € E°°, then a ~j a' iff str(cr) = str(a'). 
This observation guarantees that str' is well defined. In fact, henceforth we shall 
write str to denote both str and str'. 

To go in the other direction let F = (E,<,\) be a trace over (£,/). Then 
p e E°° is called a linearization of F iff every e £ E appears exactly once in p and, 
moreover, whenever e, e' S E and e < e', e appears before e' in p. 

As usual, we can extend the labelling function A : E —► E to words over E in a 
canonical way. If p — eoei... is a word in £7°° then \{p) denotes the corresponding 
word A(e0)A(ei)... in E°°. We can now define the map trs : T#(E, /) -> E°°/ ~/ 
as follows: 

trs(F) = {A(p) | p is a linearization of F}. 

Proposition 1.1 

(i) For every a e E°°, trs(str(<r)) = [a]. 

(ii) For every F € Ti?(E, /), str(trs(F)) = F. 

This result justifies our claim that E°°/ ~j and Ti?(E, /) are indeed two equivalent 
ways of talking about the same class of objects. 

In the poset representation of traces, finite configurations play the same role 
that finite prefixes do in sequences. Let F = (E, <, A) be a trace over (E, /). Then 
c C E is a configuration iff c is finite and [c = c. We let CF denote the set of 
configurations of F. Notice that 0, the empty set, is a configuration. It is the least 
configuration under set inclusion. More importantly, |e is a configuration for every 
event e. These "pointed" configurations associated with the events are also called 
prime configurations. They constitute the building blocks for the Scott domains 
induced by traces [NPW]. We shall see that they also play a fundamental role in 
defining linear time temporal logics over traces. 

We now turn our attention to distributed alphabets. Distributed alphabets 
can be viewed as "implementations" of trace alphabets. They form the basis for 
defining machine models with a built-in notion of independence which recognize 
trace languages. 

Let V be a finite set of sequential agents called processes. A distributed alphabet 
is a family {T,p}pe-p where Ep is a finite non-empty alphabet for each p € V. The 
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idea is that whenever an action from Ep occurs, the agent p must participate in it. 
Hence the agents can constrain each other's behaviour, both directly and indirectly. 

Trace alphabets and distributed alphabets are closely related to each other. Let 
S = (?p}pe^ be a distributed alphabet. Then Ep, the global alphabet associated 
with E, is the collection [jpeV Ep. The distribution of Ep over V can be described 
using a location function locg : Ep —>■ 2P denned as follows: 

locg(a) = {p | a e Ep}. 

This in turn induces the relation I~ C Ep x Ep given by: 

(a, b) e I~ iff locg(a) n locg(6) = 0. 

Clearly Ij, is irreflexive and symmetric and hence (Ep, I~) is a trace alphabet. 
Thus every distributed alphabet canonically induces a trace alphabet. Two actions 
are independent according to E if they are executed by disjoint sets of processes. 
Henceforth, we write loc for locg whenever E is clear from the context. 

Going in the other direction there are, in general, many different ways to im- 
plement a trace alphabet as a distributed alphabet. A standard approach is to 
create a separate agent for each maximal Z)-clique generated by (E, I). Recall that 
a D-clique of (E, I) is a non-empty subset p C E such that p xp C D. Let V be 
the set of maximal .D-cliques of (E, I). This set of processes induces the distributed 
alphabet E = {Ep}p6p where Ep = p for every process p. The alphabet E imple- 
ments (E, I) in the sense that the canonical trace alphabet induced by it is exactly 
(E, /). In other words, Ep = E and i~ = I. 

For example, consider the trace alphabet (E, 7) where E = {a, b, d} and I = 
{{a, b), (6, a)}. The canonical D-clique implementation of (E, I) yields the dis- 
tributed alphabet E = {{a, d}, {d, b}}. 

As mentioned earlier, distributed alphabets play a crucial role in the automata- 
theoretic aspects of trace theory. The fundamental result of Zielonka [Zie] says 
that every regular trace language over (E, I) can be recognized by an asynchronous 
automaton over a distributed alphabet E which implements (E,7). This result 
has been extended to w-regular trace languages in terms of asynchronous Biichi 
automata by Gastin and Petit [GP]. 

Distributed alphabets arise naturally in a variety of models of distributed sys- 
tems. In particular they are associated with the restricted but very useful model 
of a distributed system consisting of a network of sequential agents that coordinate 
their behaviour by performing common actions together. The linear time temporal 
logics that we consider in this paper will be based on distributed alphabets. 

We conclude this section with a technical remark. Most of the theory of traces 
presented in this paper, including the automata-theoretic and logical aspects, con- 
stitutes a natural and conservative extension of the existing theory in the sequen- 
tial setting. The sequential theory can almost always be recovered by setting 7 = 0 
when dealing with trace alphabets. Correspondingly, when dealing with distributed 
alphabets, the sequential case corresponds to having just one agent—i.e., \V\ = 1. 
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2    Automata over Infinite Traces 

From now on we shall focus on infinite traces. With a little additional work most 
of the material we shall present on automata and logics can be extended to handle 
finite traces as well. Through the rest of this section we fix a distributed alphabet 
E = {Sp}p6p with the induced trace alphabet (E, /), where E = UPeP ^P 

anc* 
I = {(a,b) |loc(a)nloc(6)=0}. 

The terminology and notational conventions developed in the previous section 
are assumed here as well. We will be dealing with many V-indexed families. For 
convenience we shall often write {Xp} to denote the ^-indexed family {Xp}pe-p. 
A similar convention will be followed in dealing with E-indexed families: {Ya} will 
denote the family {Ya}aeY,- 

Asynchronous Büchi automata, due to Gastin and Petit [GP], are the basic class 
of automata operating over infinite traces. They constitute a common generaliza- 
tion of the asynchronous automata of Zielonka [Zie] operating over finite traces and 
a mild variant of the classical Biichi automata operating over infinite sequences. 
We shall consider here a number of variants of asynchronous Biichi automata, each 
with a slightly different acceptance condition. 

We begin with a brief and slightly non-standard presentation of Biichi automata. 
A word w-automaton over E is a pair B = (TS, T) where 

• TS = (S, {—»a}, Sin) is a finite state transition system over E. In other words, 
S is a finite set of states, —>a C S x 5 is an a-labelled transition relation for 
each a £ E and Sin C5isa set of initial states. 

• T is an acceptance table accompanied by an acceptance condition. 

Before considering a number of possibilities for T, let us define the notion of a 
run. The E-indexed family of transition relations {—>a} induces a global transition 
relation —>g C S x E x S given by s —>B S' iff (s, s') € —>a- Where B is clear from 
the context —>B will be written as —►. 

Let a € Ew (i.e., a : w —► E where, as usual, ui = {0,1,2,...} is the set of 
natural numbers). A run of TS over a is a map p : w —► 5 such that p(0) e Sin 

and p{i) —► p(i+l) for every i > 0. 
The set of states encountered infinitely often along the run p is denoted inf(^): 

'mf(p) = {s |  for infinitely many i,p{i) = s}. 
Let us now consider just two of the various possibilities for T. 

(BO)     T = FCS. 
A run p over a is accepting with respect to BO iff inf (p) n F ^ 0. We shall say 

that B is a BO-automaton if it uses BO as its acceptance criterion. Of course, we 
shall also refer to these by their standard name; Biichi automata. 

L(B), the language accepted (recognized) by B, is the set of infinite words a 
such that there is an accepting run of ßon<r. A language L C E" is said to be ir- 
regular iff there exists a Biichi automaton B over E such that L(B) = L. As is well 
known, w-regular languages have equivalent algebraic and logical presentations, as 
detailed in the excellent survey [Tho]. 

A second possibility for T is: 
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(Bl)     T C 25. 

A run p over a is accepting with respect to Bl iff there exists F G T such that 
inf(p) D F. It is easy to show that L C Eu is w-regular iff there exists a Bl- 
automaton B (i.e., an automaton B that uses Bl as its acceptance criterion) such 
that L = L(B). Thus at the level of sequences there is no difference in expressive 
power between Büchi automata and Bl-automata. As we shall see, at the level of 
traces, BO is weaker than Bl. 

For defining automata on infinite traces we need to develop some notation. Let 
F — (E, <, A) e Tfl(E, /). Then F is an infinite trace iff E is an infinite set. Let 
TFT(T,, I) denote the subclass of infinite traces over (E, J). Often, we shall write 
TR" instead of TÄ^E,/). 

Let F e TR" with F = (E, <, A) and let peV. Then e G E is a p-event iff 
A(e) G Ep. Similarly, e is an a-event iff A(e) = a. We let Ev denote the set of 
p-events and Ea denote the set of a-events. 

There are two natural transition relations that one can associate with F. The 
event based transition relation =>F CCp x E x CF is defined as c =S>F c' iff e g" c 
and cU {e} = c'. The action-based transition relation —>j? C CF X E X CF is defined 
as c -^F c' iff there exists e e E such that A(e) = a and c =^>P c'. 

To define automata on infinite traces, we have to first define a distributed ver- 
sion of transition systems. The distributed transition systems we work with here 
are essentially the asynchronous automata of Zielonka [Zie]. We begin with some 
notation involving local and global states. 

Let V be a set of processes. We equip each process p e V with a finite non- 
empty set of local p-states, denoted Sp. We set 5 = \Jp€P Sp and call S the set of 
local states. 

We let P, Q range over non-empty subsets of V and let p, q range over V. A 
Q-state is a map s : Q —► S such that s(q) G Sq for every q e Q. We let SQ denote 
the set Q-states. We call S-p the set of global states. 

UQ'CQ and s G SQ then SQ> is s restricted to Q'. In other words SQ, is the 
<5'-state s' which satisfies s'(q') = s(q') for every q' in Q'. We use o to abbreviate 
loc(a) when talking about states (recall that loc(a) = {p \ a G Ep}). Thus an a- 
state is just a loc(a)-state and Sa denotes the set of all loc(o)-states. If loc(a) C Q 
and s is a Q-state we shall write sa to mean sioc(a) • 

A distributed transition system TS over E is a structure ({Sp}, {—»■a}, Sin) where 

• Sp is a finite non-empty set of p-states for each process p. 

• For a G E, —*a C Sa x 5a is a transition relation between a-states. 

• Sin Q S-p is a set of initial global states. 

The idea is that an a-move by TS involves only the local states of the agents 
which participate in the execution a. This is reflected in the global transition 
relation —>Ts Q S-p x E x Sp which is defined as: 

s -^->TS s' iff (sa,s'a) G ->0  and s^_ioc(a) = sP_loc(a). 

From the definition of —*TS, it is clear that actions which are executed by disjoint 
sets of agents are processed independently by TS. 
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A trace w-automaton over E = {Ep} is a pair A — (TS,T) where TS = 

({SP}, {—*o}, Sin) is a distributed transition system over E and X is an acceptance 
table (which we will elaborate on later). 

A trace run of TS over F € TR" is a map p : Cp —»■ Sp such that p(0) € Sjn 

and for every (c, a, c') e —»p, p(c) -^TS /»(C')- 

To define acceptance we must now compute infp(p), the set of p-states that 
are encountered infinitely often along p. The obvious definition, namely infp(p) = 
{sp | p(c){p) = sp for infinitely many c e CF}, will not work. The complication 
arises because some processes may make only finitely many moves, even though the 
overall trace consists of an infinite number of events. 

For instance, consider the distributed alphabet Eo = {{a},{6}}- In the cor- 
responding distributed transition system, there are two processes p and q which 
execute a's and 6's completely independently. Consider the trace F — (E,<,X) 
where \EP\ = 1 and Eq is infinite—i.e., all the infinite words in trs(F) contain one a 
and infinitely many 6's. Let sp be the state of p after executing a. Then, there will 
be infinitely many configurations whose p-state is sp, even though p only moves a 
finite number of times. 

Continuing with the same example, consider another infinite trace F' = 
(E', <', A') over the same alphabet where both Ep and Eq are infinite. Once again, 
let sp be the local state of p after reading one a. Further, let us suppose that after 
reading the second a, p never returns to the state sp. It will still be the case that 
there are infinitely many configurations whose p-state is sp: consider the configu- 
rations co, ci, C2,... where Cj is the finite configuration after one a and j b's have 
occurred. 

So, we have to define infp(p) carefully in order to be able to distinguish whether 
or not process p is making progress. The appropriate formulation is as follows: 

Case 1   Ep is finite:   infp(p) = {sp}, where p{[Ep) = s and sp — s(p). 
Case 2   Ep is an infinite set: 

infp(p) = {sp | for infinitely many e e Ep, se(p) = sp, where p(|e) = se}. 

We can now begin to consider various acceptance tables. 

(AO)     T = {Fp} with Fp C Sp for each p. 

A run p over F is accepting with respect to AO iff infp(p) n Fp ^ 0 for every p. 
The trace language accepted by the AO-automaton A (i.e., where T is of the form 
AO) is the set LTT{A) = {F \ 3 an accepting run of TS over F}. AO-automata are 
the obvious common generalization of asynchronous automata and Büchi automata. 
It turns out that AO-automata are not expressive enough: the acceptance criterion 
cannot distinguish whether or not an agent executes infinitely many actions. 

To bring this out and to motivate the acceptance condition we are after, we will 
put down a crude definition^of w-regular trace languages. 

A trace language over E is just a subset of TR". To define w-regular trace 
languages, we exploit the result from the previous section linking E°°/ ~j and 
Ti?(E, /) which permits us to associate a language of infinite words with each trace 
language. We can then transport the definition of w-regularity from subsets of Ew 

to infinite traces. 
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Let LCEU. Then L is /-consistent iff for every a G £"\ if a e L then [a] C L. 
Thus if L is /-consistent either all members of the ~/-equivalence class [a] are in 
L or none of them are in L. 

Let L' C TR". We say that V is an w-regular trace language iff there exists 
an /-consistent w-regular language LC E" such that V = {str(cr) | a e L}. 
Stated differently, V C TÄ" is a w-regular trace language iff L = (j{trs(F) | 
F e L'} is a w-regular subset of Ew. As in the word case, algebraic and logical 
presentations of w-regular trace languages have been worked out [EM, GP]. These 
presentations have a flavour which is pleasingly similar to the classical algebraic 
and logical characterisations of w-regular subsets of £". 

Returning to the distributed alphabet E0 = ({a}, {6}), let (E0,/o) denote the 
corresponding trace alphabet. Consider L C T/?w(S0,/o) consisting of the single 
trace F = {E, <, A) such that Ea and Eb are both infinite sets. It is easy to check 
that L is a w-regular trace language but, as argued in [GP], no AO-automaton over 
£ can recognize L. 

It is worth noting that having multiple entries in the acceptance table does not 
help. In other words, one might consider the following acceptance criterion. 

(AO') T = {T0,TU... ,Tn} with % = {Fl
p}p&v and F; C SP for each i € 

{1,2,.. .,n} and each p € V. A run p of TS over F e TR" is accepting with 
respect to AO' iff there exists i such that infp(p) nFp'^0 for each p. 

The reason why AO' does not help is that the class of languages accepted by 
AO-automata is closed under union, thanks to the presence of multiple global initial 
states. We can construct an AO-automaton At = {TS, Ti) for each entry % from 
the table of an AO'-automaton A = {TS, T). If T = {%, Tu ..., Tn}, it is clear 
that L{A) = Uie{i,2,...,Ti} ^(A)- Thus, every AO'-automaton can be simulated by 
an AO-automaton. 

Gastin and Petit showed that the following acceptance condition provides a 
suitable generalization of classical Büchi automata to the setting of infinite traces. 

(Al) T = {TuT2,...,Tn} with % = {F*}peV and F* C Sp for each i £ 
{1,2,.. .,n} and each p e V. A run p of TS over F e TR" is accepting with 
respect to Al iff there exists i such that infp(/o) 3 F* for each p. 

The condition Al is an extension of the sequential condition Bl in a distributed 
setting. Notice that Al "couples" together final sets of the components in each 
entry % e T. 

Theorem 2.1 ([GP]) L C TR" is a uj-regular trace language iff there exists an 
Al-automaton A such that LTT{A) = L. 

Subsequently, Niebert has shown that the Al condition can be modified to avoid 
coupling final sets across processes [Nie]. In effect, it is possible to have a local Bl 
table for each process and define a run p to be accepting if for each process p, infp(p) 
satisfies p's Bl table. Going one step further, we arrive at the acceptance criterion 
A2, which is the one we will use in connection with the logics to be studied in the 
next section. 
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(A2)     T = {(F£, Fp)}p€P with F£, Fp C Sp for each p. 
A run p over F = {E,<, A) is accepting with respect to A2 iff for each process 

p the following conditions are met. 
Case 1   Ep is finite: Then infp(p) n Fp ^ 0. 
Case 2   £p is an infinite set: Then infp(p) n F£ ^ 0. 

Thus, on an input F, the decision as to whether a process p uses Fp or F£ to 
determine acceptance depends on whether or not p executes infinitely many actions 
in F. 

Theorem 2.2 

(i)  The class of languages accepted by A2-automata is closed under union. 

(ii) The class of languages accepted by Al-automata is identical to the class of 
languages accepted by A2-automata. 

Proof Sketch. 

(i) Suppose A\ and Ai are two A2-automata. Then we construct an A2-automaton 
A which is the disjoint union of A\ and Ai.  The global initial states of A 
will determine for each run whether A\ or Ai (but not both!) is going to be 
explored. It is easy to check that L(A) = L(A\) U L(Ai). 

(ii) Let A = {TS,T) be an Al-automaton. From part (i), it suffices to consider 
the case where T has just one entry. So assume that T = {T\} and T\ = {Fp}. 
Let TS = ({Sp},{-*a},Sin).   Define the A2-automaton A' = (TS',T') as 
follows. TS1 = ({s;>, {=►.}, SL) where: 

• S'p = Spx 2Fp x {on, off} for each p. 

• Let s'a,t'a be a-states in TS' such that s'a{p) = (sp,Xp,up) and t'a{p) = 
(tp,Yp,vp) for each p € V. Then(s'a,t'a) € =>a iff there exists (sa,ta) € —*a 

such that the following conditions are satisfied for each p € loc(a). 

(1) up — on, sp = sa(p) and tp = ta(p). 

(2) If Xp = 0 then Yp = Fp. Otherwise, Yp = Xp - {tp}. 

• S'in = {s' e S!p | 3s e Sin. Vp € V. 3up e {on,off}. s'(p) = (s(p),0,up)} 

• T = {(G^, Gp)} where for each p, 

G^    =   5px{0}x{on} 
Gp   =   Fpx 2F" x {off} 

It is easy to check that LTT{A) = LTT{-A.'). 

Conversely, let A = (TS, T) be an A2-automaton with TS = ({Sp}, {-»„}, Sin) 
and T = {(F^, Fp)}. We say that ^4 is in standard form if it satisfies: 

• Fp° n Fp = 0 for each p. 

• If («a,*a) € -»a and p e loc(a), then sQ(p) ^ Fp. 
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Thus, if A is in standard form, the p-states in Fp are "dead" and are disjoint 
from Fg. It is a simple exercise to verify that every A2-automaton A can be 
converted to an A2-automaton A' in standard form such that Lrr(A) = LTr(A'). 

So, let A = {TS,T) be an A2-automaton in standard form with TS = 
({SP},{-*a},Sin) and T = {(F£,FP)}. Let G be the set of functions of the 
form g : V -► S such that g(p) <= F£ U Fp for each p. Define the Al-automaton 
A' = (TS',T) where TS' = TS and V = {TJ}geG, such that for each g e G, 
Tg = {{9(p)}}p&p- It is easy to verify that LTr(A) = LTr(A'). D 

We now argue that the emptiness problem for A2-automata is decidable. This 
will be required to settle the satisfiability problem for the logics considered in the 
next section. Let A = (TS, T) be an A2-automaton with TS = ({Sp}, {^a}, Sin) 
and T = {(F£, Fp)}. Though it is not strictly necessary, it will be illuminating to 
first associate a language of infinite words with A. 

Let a e £w. Then a (word) run of TS over a is a map p : u -> S-p such that 

p(0) e Sin and p(i) —>TS p(i+l) for each i > 0. The run p over a is accepting iff 
the following conditions are satisfied for each p. 

(i) If i S w such that a(j) £ Ep for every j > i then Si(p) e Fp, where s^ = p(i). 

(ii) If a(j') € Ep for infinitely many j then for infinitely many i it is the case that 
Si{p) e F£, where s4 = p(i). 

We define Lseg(^4), the language of infinite words accepted by A to be the set 
of all words a such that there exists an accepting run of A over a. The distributed 
nature of TS together with the basic properties of the maps str and trs defined 
earlier lead to the next result. 

Theorem 2.3 For any A2-automaton A, LTr{A) = {str(cr) | a e Lseq{A)}. Con- 
sequently LTr{A) ^ 0 iffLseq(A) ^ 0. 

Similar statements hold, of course, for AO-automata and Al-automata. 
All the A2-automata that we construct in the next section will be in standard 

form. So assume that A — (TS,T) is an A2-automaton in standard form with 
TS = {{Sp}, {->a}, 5iB) and T = {(F£, Fp)}. Construct the directed graph GA = 
{Sp,EA) where S-p is the set of global states of TS and (s, s') € EA if there exists 
a € E such that s -^-*TS S'. We also label each edge in GA with a set of processes. 
Let -IT : EA -* 2V be given by TT((S, S')) = U{loc(a) | s -^TS s'}. 

We call X C S-p a good component iff X is a maximal strongly connected 
component in GA which meets one the following conditions for each p. 

(i) There exists s e X such that s(p) e Fp. (Because A is in standard form this 
implies that s'(p) = s"(p) e Fp for every s', s" € X). 

(ii) There exists s e X such that s(p) e F£ and for some s' G X, (s', s) e EA 

andp e 7r((s',s)). 

From Theorem 2.3 we know that LTT{A) is non-empty iff Lseq(A) is. It is 
not difficult to prove that Lseq(A) is non-empty iff GA has a good component. It 
is known that the maximal strongly connected components of a digraph can be 
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computed in time which is linear in the size of the digraph [AHU]. Clearly, the size 
of G^ is bounded by the number of global states of A. As a consequence it is easy 
to derive the next result. 

Theorem 2.4 Let A be an A2-automaton in standard form. Then LTT{A) ^ 0 iff 
GA has a good component. For p e V, let np = \Sp\ denote the number of p-states. 
Let n = max{np}pgp and m— \P\. Then checking that G^ has a good component 
can be done in time 0(n2m). 

We conclude this section with a few remarks on deterministic automata over in- 
finite traces. As with automata on infinite words, non-deterministic A2-automata 
on infinite traces are strictly more expressive than deterministic A2-automata. In 
the absence of determinacy, complementation is difficult. When applying these 
automata to settle questions in logic, complementation is often required to handle 
negation in formulas. (Fortunately, the automata-theoretic treatment of linear time 
temporal logic on traces which we will describe here does not require complemen- 
tation.) 

To obtain determinacy without loss of expressive power one must use a more 
sophisticated acceptance criterion corresponding to the Müller, Rabin or Streett 
acceptance conditions for infinite words. Here, we will look only at the Müller 
acceptance condition. 

(M) T = {7i,..., Tn} with % = {F*} and F% C Sp for each i and each p. A run 
p over F G TR^ is accepting with respect to M iff there exists TJGT such that 
infp(/j) = Fp for each p. 

Diekert and Muscholl [DM] showed that deterministic M-automata are as ex- 
pressive as non-deterministic Al-automata. Their proof however does not lead to 
a determinization construction for Al-automata. 

There are two independent solutions available in the literature for the difficult 
problem of complementing Al-automata. Muscholl first showed how to directly 
construct a non-deterministic Al-automaton which is the complement of the given 
automaton [Mus]—this approach does not yield a determinization construction for 
Al-automata. In [Mus] the complementation is carried out for asynchronous cellular 
Biichi automata, in which there is one agent for each letter. To transport this 
complementation result to Al-automata, one has to resort to a simulation which 
carries non-trivial overheads in the size of the alphabet. The second solution due to 
Klarlund, Mukund and Sohoni [KMS] is a direct determinization construction for 
Al-automata which then easily leads to the complementation result. In both cases, 
the blow-up in the local state space of each process is exponential in the global state 
space of the original automaton, which is essentially optimal. Surprisingly in both 
[Mus] and [KMS], the Al acceptance condition must be first transformed into an 
equivalent one which describes in considerable detail the communication patterns 
established by the infinite trace that is being examined for acceptance. 

3    Linear Time Temporal Logics over Traces 

A variety of linear time temporal logics to be interpreted over traces have been 
proposed in the literature. As mentioned in the Introduction, our focus here will 
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be on those logics which meet the following criteria: 

(i) The logic should be expressible within the first order theory of traces. 

(ii) The logic should admit a treatment in terms of asynchronous Biichi automata 
of one kind or the other. 

We begin with the logic TrPTL (Trace based Proposition^ Temporal logic of 
Linear time). This is the earliest and-to date-the most expressive linear time 
logic of the chosen kind.   For a detailed treatment of this logic the reader is re- 

™r »„[Thil]- After presentinS ^PTL we w"l insider two subsystems denoted 
THPTL (connected TrPTL) and TrPTL® (product TrPTL). These subsystems 
are obtained by placing suitable syntactic restrictions on the formulas. The inter- 
esting point is that these restrictions result in proportionate simplification of the 
automata theoretic constructions associated with the logics. Towards the end of the 
section we will take a quick look at other temporal logics that have been proposed 
with traces as the underlying frames. 

Henceforth, it will be notationally convenient to deal with distributed alphabets 
in which the names of the processes are positive integers. Through this section and 
the next, we fix a distributed alphabet £ = {^}ieP with V = {1,2, K} and 
K > 1. We let i,j and k range over V. As before, let P, Q range over non-empty 
subsets of V. The trace alphabet induced by £ is denoted (£, /). We assume the 
terminology and notations developed in the previous sections. In particular when 
dealing with a P-indexed family {Xi}i€V, we will often write just {*,}. 

The logic TrPTL is parameterized by the class of distributed alphabets. Having 
fixed £ we shaUoften almost always write TrPTL to mean TrPTL(E), the logic 
associated with £. Fix a set of atomic propositions AP with p, q ranging over AP 
Then $TrPTL(£), the set of formulas of TrPTL(E), is defined inductively via: 

• For p e AP and i e V, p(i) is a formula (which is to be read "p at i"). 

• If a and ß are formulas, so are -** and a V /?. 

• If a is a formula and a 6 Si then {a)ia is a formula. 

• If a and ß are formulas so is a Hiß. 

From now on, we denote $TrPTL(S) as just $. In the semantics of the logic which 
will be based on infinite traces, the z-view of a configuration will play a crucial role 
Let F e TR" with F = (E, <, A). Recall that E{ = {e \ e e E and A(e) e £*}. Let 
c € CF and i e V. Then |2(c) is the i-view of c and it is defined as: 

We note that | *(c) is also a configuration. It is the "best" configuration that 
the^gent t is aware of at c. We say that |«(c) is an i-local configuration. Let 
CF - (r(c) I c € CF} be the set of i-local configurations. For Q C V and c € CF 

we let [Q{c) denote the set \J{i\c) \ieQ}. Once again, |«(c) is a configuration' 
It represents the collective knowledge of the processes in Q about the configuration 
c. 

The following basic properties of traces follow directly from the definitions. 
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Proposition 3.1 Let F = (E, <, A) be an infinite trace. The following statements 
hold. 

(i) Let <i — < (~\(Ei x Ei).   Then (Ei, <j) is a linear order isomorphic to u if 
Ei is infinite and isomorphic to a finite initial segment of ui if Ei is finite. 

(ii) (CF, C) is a linear order. In fact {Cl
F — {0}, C) is isomorphic to {Ei, <»). 

(Ui) Suppose ll(c) ^ 0 where c e Cp- Then there exists e e Ei such that J,l(c) =|e. 
In fact e is the <i-maximum event in (cfl£j). 

(iv) Suppose Q CQ' CV andct CF-   Then j3(c) =i9(i°'(c)).  In particular, 
for a single process i, J,*(c) =i*(l*(c)). 

We can now present the semantics of TrPTL. A model is a pair M = (F, {Vi}ie-p) 
where F = (E,<,\) e TRU and Vi :CF -* 2AP is a valuation function which assigns 
a set of atomic propositions to i- local configurations for each process i. Let c e Cj? 
and a e 3>. Then M, c f= a denotes that a is satisfied at c in M and it is defined 
inductively as follows: 

• M,c\= p(i) forpeAPiSpeVi (f(c)). 

• M, c \= ->a iff M, c ty= a. 

• M, c |= a V /3 iff M, c |= a or M, c (= ß 

• M, c \= (a}ia iff there exists e £ Ei — c such that A(e) = a and M, je |= a. 
Moreover, for every e' € Ei, e' < e iff e' e c. 

• M,c (= en Wi/? iff there exists d e CF such that c C c' and M,^^') \= ß. 
Moreover, for every c" € CF, if f(c) Cj^c") ClV) then M, ^(c") |= a. 

Thus TrPTL is an action based agent-wise generalization of LTL. Indeed both 
in terms of its syntax and semantics, LTL corresponds to the case where there is 
only one agent and where this agent can execute only one action at any time. With 
V = {1} and Ei = {ao} one then writes p instead of p(l), Oa instead of (oo)a and 
a Uß instead of a Uiß. The semantics of TrPTL when specialized down to this 
case yields the usual LTL semantics. In the next section we will say more about 
the relationship between TrPTL and LTL. 

Returning to TrPTL, the assertion p(i) says that the i-view of c satisfies the 
atomic proposition p. Observe that we could well have p(i) satisfied at c but not 
p(j) (with i^ j). It is interesting to note that all atomic assertions (that we know 
of) concerning distributed behaviours are local in nature. Indeed, it is well-known 
that global atomic propositions will at once lead to an undecidable logic in the 
current setting [LPRT, Pen]. 

Suppose M = (F, {Vi}) is a model and c -^F C' with j <fc loc(a). Then 
M\c \= PÜ) iff M'I 

c' H P(j)- IQ *his sense the valuation functions are local. There 
are, of course, a number of equivalent ways of formulating this idea which we will 
not get into here. 

The assertion {a)ia says that the agent i will next participate in an a-event. 
Moreover, at the resulting i-view, the assertion a will hold. The assertion a Uiß 
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says that there is a future z-view (including the present i-view) at which ß will hold 
and for all the intermediate i-views (if any) starting from the current i-view, the 
assertion a will hold. 

Before considering examples of TrPTL specifications, we will introduce some 
notation. We let a,ß with or without subscripts range over $. Abusing notation, 
we will use loc to denote the map which associates a set of locations with each 
formula. 

• loc(p(t)) = loc((o)ia) = loc(a Ikß) = {t}. 

• loc(-ia) = loc(a). 

• loc(a V ß) = loc(a) U loc(/3). 

In what follows, ¥ = {a | loc(a) = {i}} is the set of i-type formulas. A basic 
observation concerning the semantics of TrPTL can be phrased as follows: 

Proposition 3.2 Let M = (F, {FJ) be a model, ceCpandaa formula such that 
loc(a) C Q. Then M, c (= a iff M, [Q(c) (= a. 

A corollary to this result is that in case a e $* then M, c |= a iff M, |*(c) f= a. 
As a result, the formulas in $i can be used in exactly the same manner as one 
would use LTL (in the setting of sequences) to express properties of the agent 
i. Boolean combinations of such local assertions can be used to capture various 
interaction patterns between the agents implied by the logical connectives as well 
as the coordination enforced by the distributed alphabet E. 

For writing specifications, apart from the usual derived connectives of preposi- 
tional calculus such as A, =» and =, the following operators are also available 

• T = pi(l) V T>I(1) denotes the constant "True", where AP = {pi,p2,...}. 
We use _L = -.T to denote "False". . 

• Oja = T Ida is a local version of the O modality of LTL. 

• D^a = -lOj-ia is a local version of the D modality of LTL.. 

• Let X C Ei and X = E* - X. Then a U?ß t (a A Aoey[o]iJ.) hkß. In 
other words a U?ß is fulfilled using (at most) actions taken from X. We set 
Of a ^ T Ufa and Df a = -Of-a. 

• a(i) = a Ida (or equivalently ± Ida). a{i) is to be read as "a at i". If 
M = (F, {Vi}) is a model and c e CF then M,c\= a{i) iff M, ^(c) f= a. It 
could of course be the case that loc(a) ^ {i}. 

A simple but important observation is that every formula is a boolean combi- 
nation of formulas taken from \JieV $*. In TrPTL we can say that a specific global 
configuration is reachable from the initial configuration. Let {a,}iep be a family 
with at e $' for each i. Then we can define a derived connective 0(a1,a2,..., aK) 
which has the following semantics at the empty configuration. Let M = (F, {Vi}) 
be a model. Then M,0 |= 0(aua2,.. .,ak) iff there exists c e CF such that 
M, c \= ai A c*2 A • • • A aK- 



To define this derived connective set T,[ = £1 and, for 1 < i < K, set £^ = 
T,i - U{Ej | 1 < j < i}. Then 0(a\, a<i,. ■., Q-K) is the formula: 

<>?(<*! A <>f{a2 A of{a3 A • ■•<>£*<**)) • • •)• 
The idea is that the sequence of actions leading up to the required configu- 

ration can be reordered so that one first performs all the actions in £1, then all 
the actions in £2 — £1 etc. Hence, if now is an atomic proposition, the formula 
0(now(l), now(2),..., now(Ä')) is satisfied at the empty configuration iff there is a 
reachable configuration at which all the agents assert now. 

Dually, safety properties that hold at the initial configuration can also be ex- 
pressed. For example, let crt(z) be the atomic assertion declaring that the agent i 
is currently in its critical section. Then it is possible to write a formula ipME which 
asserts that at all reachable configurations at most one agent is in its critical sec- 
tion, thereby guaranteeing that the system satisfies the mutual exclusion property. 
We omit the details of how to specify y>ME. 

On the other hand, it seems difficult to express nested global and safety proper- 
ties in TrPTL. This is mainly due to the local nature of the modalities which results 
in information about the past sneaking into the semantics even though there are 
no explicit past operators in the logic. In particular, TrPTL admits formulas that 
are satisfiable but not root-satisfiable. 

A formula a is said to be root-satisfiable iff there exists a model M such that 
M, 0 |= a. On the other hand, a is said to be satisfiable iff there exists a model M = 
(F, {Vi}) and c G CF such that M,c\= a. It turns out that these two notions are not 
equivalent. Consider the distributed alphabet £0 = {£1, £2} with £1 = {a, d} and 
S2 = {b,d}. Then it is not difficult to verify that the formula p(2)(l) A ü2-ip(2) is 
satisfiable but not root-satisfiable. (Recall that p(2)(l) abbreviates ±.U\p(2)). One 
can however transform every formula a into a formula a' such that a is satisfiable 
iff a' is root satisfiable. 

This follows from the observation that every a can be expressed as a boolean 
combination of formulas taken from the set \Ji€-p^1- Hence the given formula a 
can be assumed to be of the form a = Vjli^ji A a-ji A • • • A OCJK) where ocji e 3>* 
for each jr" e {1,2,..., m} and each i S V. Now convert a to the formula a' where 
a' = VTli <>(ajU aj2, • • ■, CIJK)- (Recall the derived modality 0(ai, 02, • • •, ax) 
introduced earlier.) From the semantics of 0(ai, a2,..., ax) it follows that a is 
satisfiable iff a' is root-satisfiable. 

Hence, in principle, it suffices to consider only root-satisfiability in developing a 
decision procedure for TrPTL. There is of course a blow-up involved in converting 
satisfiable formulas to root-satisfiable formulas. If one wants to avoid this blow-up 
then the decision procedure for checking root-satisfiability can be suitably modified 
to yield a direct decision procedure for checking satisfiability as is done in [Thil]. 
In any case, it is root satisfiability which is of importance from the standpoint of 
model checking. Hence here we shall only develop a procedure for deciding if a 
given formula of TrPTL is root-satisfiable. 

As a first step we augment the syntax of our logic by one more construct. 

• If a is a formula, so is OjC*. In the model M = (F, {Vi}), at the configuration 
c e CF, M, C \= OiCt iff M, c f= (a)*« for some a e £». We also define 
loc(Oia) = {i}. 



Thus OiO. = VaeEi(a)'a is a vand formula and O* is expressible in the former 
syntax. It will be however more efficient to admit Oi as a first class modality. 

Fix a formula a0. Our aim is to effectively associate an A2-automaton Aao with 
a0 such that a0 is root-satisfiable iff Lrr(A*0) ¥" 0- Since the emptiness problem 
for A2-automata is decidable (Theorem 2.4), this will yield the desired decision 
procedure. Let CL'(a0) be the least set of formulas containing a0 which satisfies: 

• -./?€ CL'(a0) implies ß e CL'{a0). 

• aVße CL'(ao) implies a,ße CL'(a0). 

• {a)ta € CL'(ao) implies a € CL'(ao). 

• OjO; e CL'(a0) implies a S CZ/(a0). 

• aUiße CL'(ao) implies o,/3 6 CL'(a0). In addition, 04(a Z^/3) e CL'(a0). 

We then define CL(a0) to be the set CL'{a0) U {-./? | /? <= CL'(a0)}. 
Thus CL(a0), sometimes called the Fisher-Ladner closure of a0, is closed under 

negation with the convention that -!-■/? is identified with /?. From now we shall 
write CL instead of CL(ao). 

A C CL is called an i-type atom iff it satisfies: 

• Va e CL. a€A\fi->agA. 

• Va V ß€CL. aV ß e A iff a <E A or ß e A. 

• Va Wi/3 eCL. aUißeA\ffßeAor{aeA and O«(o W»/?) € A). 

• If (o)ja, (b)iß e A then a = 6. 

AT* denotes the set of i-type atoms. We now need to define the notion of a 
formula in CL being a member of a collection of atoms. Let a e CL and {Ai}iGQ 
be a family of atoms with loc(a) C Q and At € ATt for each i e Q. Then the 
predicate a 6 {Ai}ieQ is defined inductively as: 

• If loc(a) = {j} then a £ {Ai}ieQ iff a £ Aj. 

• If a = i/3 then a € {AJieQ iff /? £ {Ai}ieQ. 

• If a = a! V a2 then «i V a2 6 {^OieQ iff «i € {Ai}ieQ or a2 G {A»}ie(3. 

The construction of the A2-automaton Aa0 is guided by the construction due 
to Vardi and Wolper for LTL [VW]. However in the much richer setting of traces it 
turns out that one must make crucial use of the latest information that the agents 
have about each other when defining the transitions of Aa0 ■ It has been shown by 
Mukund and Sohoni [MS] that this information can be kept track of by a deter- 
ministic A2-automaton whose size depends only on S. (Actually the automaton 
described in [MS] operates over finite traces but it is a trivial task to convert it into 
A2-automaton having the desired properties). To bring out the relevant properties 
of this automaton, let F € TR" with F = (E, <, A). For each subset Q of pro- 
cesses, the function latest^ : CF X V -> Q is given by \ateStp,Q{c,j) = f. iff t is the 
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least member of Q (under the usual ordering over the integers) with the property 
ij(iq(c)) Q ij(ie(c)) f°r every q € Q. In other words, among the agents in Q, £ 
has the best information about j at c, with ties being broken by the usual ordering 
over integers. 

Theorem 3.3 ([MS]) There exists an effectively constructible deterministic A2- 
automaton Ar = {TS,T) with TS = ({Tt}, {=>a}, Fin) such that: 

(i) LTr(Ar)=TR«>. 

(ii) For each Q = {i\,i2, ■ ■ ■ ,in}, there exists an effectively computable function 
gossipg : Til x ri2 x • • • x Tin x V —* Q such that for every F € TR", every 
c e CF and every j e V, latestj? Q(C,J) = gossipg(7(ti),... ,7(in), j) where 
pF (c) = 7 and pF is the unique (accepting) run of Ar over F. 

Henceforth, we refer to Ar as the gossip automaton. Each process in the gossip 
automaton has 2°^K lo^K) local states, where K = \V\. Moreover the function 
gossipg can be computed in time which is polynomial in the size of K. 

Each t-state of the automaton Aa0 will consist of an i-type atom together with 
an appropriate i-state of the gossip automaton. Two additional component will be 
used to check for liveness requirements. One component will take values from the 
set Ni = {0,1,2,..., \Ui\} where Ui = {a Uiß \ a Uiß e CL). This component will 
be used to ensure that all "until" requirements are met. The other component will 
take values from the set {on,off}. This will be used to detect when an agent has 
quit. 

The automaton Aa0 can now be defined. 

Definition 3.4 Aao = (TS,T), whereTS = {{Si},{-+J,Sin) andT = {{F?,#)} 
are defined as follows: 

(i) For each i, Si = ATi X I\ X N x {on,off}. Recall that Tj is the set ofi-states of 
the gossip automaton and Ni = {0,1,2,..., \Ui\} with Ui — {a Uiß \ a Uiß € 
CL}. 

(ii) Let sa,s'a e Sa with sa(i) = (Ai,-yi,Ui,Vi) and s'a(i) = (A^-y^u^vl) for each 
i € loc(a).  Then (sa,s'a) € —*a iff the following conditions are met. 

(1) (7a, 7a) 6 =^a (recall that {=>■ a} is the family of transition relations of the 
gossip automaton) where ja, 7a S Ta such that ja(i) = li and 7a(i) = 7^ 
for each i £ loc(a). 

(2) Vi,jeloc(a),4=^. 

(3) Vi € loc(a) V{a)ia e CL. {a)ta € M iff a e A\. 

(4) Vt € loc(a) VOia 6 CL. OiCt e Ai iffae A\. 

(5) Vi e \oc(a)\/(b)iß € CL. If (b)iß <= Ai then b = a. 

(6) Suppose j & loc(a) and ß G CL with loc(/3) = {j}. Further sup- 
pose that loc(a) = {i\_,i2, ■ ■ ■ ,in}- Then ß € A\ iff ß S Ag where 
£ = gossiploc(a)(7il,7»2,..., iin,j). 
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(7) Let i e loc(o), Ui = {«i Uißuai lUh,..., ani Uißni}.  Then u1, and ut 

are related to each other via: 

u' = = |  (ui+1) mod (ni+1),    ifm = 0 or #,, e A* or aUi UtfUi <£ At 

H, otherwise 

(8)  For each i e loc(o), Vi = on.  Moreover, if v\ = off then {a)ia g A\ for 
every i e loc(a) and every (o)jQ e CL. 

(iii) Lei s € 5^ wttfe s(i) = (Ai,n,uuVi) for every i. Then s € Sin iff a0 € 
{Ai}i6p and 7 6 rin w/iere 7 e r> satisfies 7(1) = 7; /or even/ i. Further- 
more, Ui = 0 for every i. Finally, for every i, Vi = off implies that (a)*** £ 4* 
/or even/ (a)ja G CL. 

(iv) For each i, F? C $ w jtven 6y F^ = {(^,7;,^,^) | Ui = 0 and ^ = on} 
and F C Si is given by F = {(^,7*,^,^) | ^ = off}. 

The automaton Aa0 extends the automata theoretic construction for LTL de- 
scribed in [VW] to the setting of TrPTL. The main new feature is the use of the 
gossip automaton in step (ii)(6) when dealing with formulas located at agents not 
taking part in the current action. A detailed explanation of Avn can be found in 
[Thil]. 

This construction differs from the original construction for TrPTL presented in 
[Thil] in a number of ways. Each St in [Thil] was defined to be ATi x AT2 x 
••■x ATK x Ui x {actt,actr,stopJ with Ut as the set of subsets of Ui. The 
acceptance condition used was Al. Using A2, we need just two elements {on,off} 
to record when an agent has quit. Using the counter Nt instead of Üi leads to a 
more compact description of Aao. The significant improvement, namely, replacing 
ATX x AT2 x • • • x ATK by just ATi is due to Narayan Kumar [Nar]. The arguments 
described in [Thil] go through in the present setting with minor modifications. 
These arguments lead to the next set of results. 

Theorem 3.5 

(i) c*o is root-satisfiable iff LTr{Aa0) ^ 0. 

(ii) The number of local states of Aa0 is bounded by 2°(max(">m2 losm)) where 
n = \a0\ and m is the number of agents mentioned in a0. Clearly, m < 
n. It follows that the root-satisfiability problem (and in fact the satisfiability 
problem) for TrPTL is solvable in time 2°(max(">m2l°em)-m). 

The number of local states of each process in Aao is determined by two quan- 
tities: the length of a0 and the size of the gossip automaton Ar- As far as the size 
of ,4r is concerned, it is easy to verify that we need to consider only those agents 
in V that are mentioned in loc(a0), rather than all agents in the system. 

The model checking problem for TrPTL can be phrased as follows. A fi- 
nite state distributed program over E is a pair Pr = (Apr,VPr) where Apr = 
(({Sfr}, {=>f r}, Sfn), {(Sfr, Sfr)}) is an A2-automaton modelling the state space 
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of Pr and Vpr : S —► 2AP is an interpretation of the atomic propositions over the 
local states of the program. (In this context, one assumes AP to be a finite set.) 

Let p be a run of Apr over F = (E,<,\). Then p induces the model Mp via 
Vpr as follows: Mp = (F, {Vf}) where for each i and each c e CF, Vf(l*(c)) = 
Vpr(si)r\P, where s = p{c) and s* = s(i). Viewing a formula ao as a specification, 
we say that Pr meets the specification ao—denoted Pr \= ao—if for every F € TR" 
and for every run p of Apr over F, it is the case that Mp, 0 (= ao. 

The model checking problem is to determine whether Pr (= ao- This problem 
can be solved by "intersecting" the program automaton Apr with the formula au- 
tomaton A^ao to yield an automaton A such that Z/ry (A) = LTr(Apr)(^LTr(A^a0)- 
It turns out that LTT{A) = 0 iff Pr \= ao. It is easy to construct A. The only 
point to care of is that the i-local states of .4 should consist of only those pairs 
(si, s'i) (where s* is an z-local state of Apr and s\ = {A\, 7?, n\, v^) is an i-local state 
of A^c0) such that Vpr(si) n AP = Ai n AP. The details can be found in [Thil]. 

It turns out that this model checking problem has time complexity 0(|.Apr| • 
2o(max(n,m2logm)m)^ where \Apr\ is the size of the global state space of the A2- 
automaton modelling the behaviour of the given program Pr and, as before, n = 
|ao| and m is the number of agents mentioned in ao, where ao is the specification 
formula. 

We now turn to two interesting sublogics of TrPTL. The first is the sublogic 
TrPTLcon, which consists of the so called connected formulas of TrPTL. We define 
^TrPTL (from now on written as $con) to be the least subset of $ satisfying the 
following conditions: 

(i) p(i) € $con for every p € P and every i € V. 

(ii) If a, ß e 3>con, so are ->a and a V ß. 

(iii) If a e $con and a € E4 such that loc(a) C loc(a) then {a)iCt 6 $con. 

(iv) If a,ß e $con with loc(a) = loc(/?) = {i} then a Hiß e $con. Actually one 
need only demand that loc(a), loc(/3) C f|{loc(a) | a e Ei} but this leads to 
notational complications that we wish to avoid here. 

(v) If a e $con and loc(a) = {i} then OiO. G $con. (Once again one needs to just 
demand that a C f]{loc(a) | a e S»}.) 

Connected formulas were first identified by Niebert and used by Huhn [Huh]. 
They have also been independently identified by Ramanujam [Ram]. Thanks to the 
syntactic restrictions imposed on the next state and until formulas, past information 
is not allowed to creep in. Indeed one can prove the following: 

Proposition 3.6 Let a 6 3>con.  Then a is satisfiable iff a is root-satisfiable. 

Yet another pleasing feature of TrPTLcon is that the gossip automaton can be 
eliminated in the construction of the automaton Aao whenever ao e $con. In fact 
one can do a bit more. 

Let ao G 3>con and let CLi = CLn^* for each i (recall that CL is an abbreviation 
for CL(ao)). We redefine an i-type atom to be a subset A of CLi such that: 
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• Vß G CLi ß G A iff -iß # A. 

• Va V ß G CLi. a V /? G A iff a£/l or ß <= A. 

• Va Wi/9 e CLi a Uiß e A iS ß e A or a e A and Oi(a ££/?) G A. 

As before (but with the new definition in operation!), ATt is the set of i-type 
atoms. 

Let a G CL with loc(a) C Q. The notion of a belonging to a family of atoms 
{Ai}ieQ, with Ai G AT for each i G Q, is defined inductively in the obvious way—if 
loc(a) = {i} then a e {Ai}ieQ iff a G ^ etc. etc. The construction of Ac0 is as 
specified in Definition 3.4 with the following modifications: 

(i) Si = ATi x NiX {on,off} for each i G V.   Thus the gossip automaton is 
eliminated and ATi is the set of i-type atoms of the new kind. 

(ii)    (1) This condition is obviously dropped. 

(2) Interestingly enough, this condition is also dropped. 

(3) This condition is modified to W(a)ia G CLi.(a)ia G At iff a e {^}j6loc(a). 

In addition, condition (ii)(6) is dropped, while conditions (ii)(4), (ii)(5), (ii)(7) 
and (ii)(8) remain unchanged. Parts (iii) and (iv) are modified to eliminate all 
references to the gossip automaton. After these alterations, it is not difficult to 
prove the following result. 

Theorem 3.7 Let a0 G $con and Aa0 be constructed as detailed above. 

(i) ao is satisfiable iff^Tr(A*0) ¥" 0- 

(ii)   The satisfiability problem for TrPTLcon is solvable in time 2°^a°^. 

Once again, a suitably modified statement can be made about the associated 
model checking problem. At present we do not know whether or not TrPTL is 
strictly more expressive than TrPTLcon. We shall formulate this question more 
rigorously in the next section. 

Yet another sublogic of TrPTL is called product TrPTL and is denoted as 
TrPTL®. Let $®, the set of formulas of TrPTL®, be the least subset of $ which 
satisfies: 

(i) p(i) G $® for every p e P and every i e V. 

(ii) If a, ß G 3>® then so are -ia and a V ß. 

(iii) If a G $® with loc(a) = {i} and aeSj then (a)*a G $®. 

(iv) If a, ß G 3>® with loc(a) = loc(/3) = {i} then a Uiß G $®. 

Clearly $® C $con C $. In case a0 G $®, the automaton Aa0 can be simplified 
even further (than the case when a0 G $con). Aao essentially consists of a synchro- 
nized product of Büchi automata. A detailed treatment of TrPTL® is provided in 
[Thi2]. The interest in this subsystem lies in the fact that the accompanying pro- 
gram model is particularly simple and commonplace. Namely, it consists of a fixed 
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set of finite state transition systems that coordinate their behaviour by performing 
common actions together. Here we shall just sketch the construction for Aao. 

A product Büchi automaton over £ is a structure A = ({TSi}i€-p, Sin, T) where 
TSi = {Si,-*i) for each i with —►< C 5, x S; x Si as the local transition relation 
of the agent i. Everything else is as in the definition of an A2-automaton. Thus 
the key difference is that each agent comes with its own local transition relation. 
From these agent transition relations, one can derive the action indexed transition 
relations {—>0} as follows: (sa,s'a) £ —>a iff sa(i) -^-* s'a(i) for every i € loc(a). 
Thus product Büchi automata are a (strict) subclass of the class of A2-automata. 

Given ao G $®, the construction of Aa0 proceeds as in the case where ao € $con. 
The only difference is, we must define the transition relations {—+i}»ep instead of 
the transition relations {—>a}aeE- This can be done as follows: 

Let Siis'i e Si with s; = (Ai,Ui,Vi) and s£ = {A'i,u'i,v'i). Let a g £*. Then 
Si -^-> s[ iff the following conditions are satisfied: 

(i) V(o)ia e CL. {a)ia € Ai iff a 6 A[. 

(ii) VOiO. € CL. Oia € Ai iff a 6 A[. 

(iii) If (b)ia e Ai then b = a. 

(iv) Ui and u\ are related to each other just as in part (ii)(7) of Definition 3.4. 

(v) Vi and v[ satisfy part (ii)(8) of Definition 3.4. 

As shown in [Thi2] one can establish the following result for TrPTL®. 

Theorem 3.8 Let ao € $® and Aa0 be constructed as above. 

(i) ao is satisfiable iff LTr(Aa0) ^ 0. 

(ii)   The satisfiability problem for TrPTL® can be solved in time 2°('a°'). 

Once again, one can make suitably modified statements about the accompanying 
model checking problem. As mentioned earlier, the program model in this setting 
consists of a fixed set (one for each i) of finite state transition systems. 

We conclude this section with a quick look at some related logics. Katz and 
Peled introduced the logic ISTL [KP] which can be easily viewed as a temporal logic 
over traces. However, it has branching time modalities which permit quantification 
over the so called observations of a trace. ISTL uses global atomic propositions 
rather than local atomic propositions. Penczek has also studied a number of tem- 
poral logics (including a version of ISTL) with branching time modalities and global 
atomic propositions [Pen]. His logics are interpreted directly over the space of con- 
figurations of a trace resulting in a variety of axiomatizations and undecidability 
results. We feel that local atomic propositions (as used in TrPTL) are crucial for 
obtaining tractable partial order based temporal logics. Niebert has considered a 
/i-calculus version of TrPTL [Nie] and has obtained a decidability result using a 
variant of asynchronous Büchi automata. Since this logic uses "local" fixed points, 
it is not clear at present what is the expressive power of this logic. The four linear 
time temporal logics studied by Ramanujam in a closely related setting [Ram] can 
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be easily captured as four sublogics of TrPTL through purely syntactic restrictions. 
Two of the resulting sublogics are TrPTL® and TrPTLcon. It is not clear at present 
whether the other two logics admit a simpler treatment in terms of asynchronous 
Büchi automata (than the one for TrPTL). 

The temporal logic of causality (TLC) proposed by Alur, Peled and Penczek 
is basically a temporal logic over traces [APP]. The concurrent structures used in 
[APP] as frames for TLC can be easily represented as traces over an appropriately 
chosen trace alphabet. The interesting feature of TLC is that its branching time 
modalities are interpreted over causal paths. In a trace (E, <,A), the sequence 
e0ei • ■ ■ e E°° is a causal path if e0 < e\ < e2 • • •. This logic is almost certainly not 
expressible within the first order theory of traces although it admits an elementary 
time (in fact essentially exponential time) decision procedure. 

Finally, Ebinger has also proposed a linear time temporal logic to be interpreted 
over traces [Ebi]. An interesting property of this logic is that when its frames 
are restricted to be finite traces then it is exactly equivalent to the first order 
theory of finite traces. Unfortunately the decidability of this logic is settled using a 
translation into the first order theory of infinite traces. Hence the decision procedure 
has non-elementary time complexity. 

4    Expressiveness Issues 

Our main aim here is to show that TrPTL is expressible within the first order 
theory of traces. In order to simplify the presentation, we shall eliminate atomic 
propositions and instead use the single constant T standing for "True" (and _L = -iT 
standing for "False"). The resulting logic will also be called TrPTL accompanied 
by the notations and terminology developed in the previous section. The function 
loc which assigns a set of processes to a formula works exactly as before except 
that we start with loc(T) = 0. As will be seen later, this will entail minor changes 
in the definition of the syntax of TrPTLcon and TrPTL®. For now, we repeat that 
the syntax of 3>, the set of formulas of TrPTL is now given by: 

$ ::= T | -.a | a V ß | (a^a | a Urf. 

As before, for (a)ja to be a formula we require aeEj. Local atomic propositions 
can be coded up into the actions and hence their elimination does not result in loss 
of expressive power. 

A model is just an infinite trace F e TR". We set F,c\=T for every c €CF- 

The rest of the semantics is as before. La, the w-trace language defined by the 
formula a is given by, La = {F \ F e TR" and F, 0 (= a}. We say that L C TR" 
is TrPTL-definable iff there exists ael such that L = La. 

First we shall compare the expressive powers of TrPTL, TrPTLcon and TrPTL181. 
In order to do so, we must define the syntax of the two sublogics in the present 
setting. For TrPTLcon the only changes that are required are: 

• T e $con. 

• If a, ß € $con such that loc(a), loc(£) C {i} then a Utß € 5>con. 

For TrPTL®, the only changes that are required are 
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• Te$®. 

• If a G $® such that loc(a) C {i} and if a G E* then (a)*« G $®. 

• If a, /? G $® with loc(a), loc(/?) C {i} then a Utß G 3>®. 

The notion of L C Ttf" being TrPTLcon-definable or TrPTL®-definable is for- 
mulated in the obvious way. Since $® C $con C $ it is clear that TrPTL is at least 
as expressive as TrPTLcon which in turn is at least as expressive as TrPTL'8'. As 
mentioned earlier we do not know at present if TrPTL is strictly more expressive 
than TrPTLcon, though we conjecture that this the case. 

We do know however that TrPTLcon is strictly more expressive than TrPTL'8'. 
To illustrate this it will be convenient to extend the notion of definability to subsets 
of £". We say that L C £<" is TrPTL-definable iff L is /-consistent and {str(cr) | 
a G L} is TrPTL-definable. This notion is defined for TrPTLcon and TrPTL® in 
the obvious way. Hence in order to show that TrPTLcon is more expressive than 
TrPTL'8' it suffices to exhibit some £ C E<" which is /-consistent and is TrPTL-- 
definable but not TrPTL®-definable. 

Let f = {Ti, T2} with Ti = {a, a', d} and T2 = {b, b', d}. Let T = {a, a', b, b', d}. 
Consider tCP given by: 

L={d(ab + ba + a'b' + b'a'))". 

It turns out that L is not TrPTL^-definable. Clearly L is /-consistent. As shown in 
[Thi2], for L to be TrPTL^-definable, it must be a so-called (synchronized) product 
language. As a result, it would have to possess the following property: 

(PR) Suppose a G P". Then a g L iff there exist (TI,<T2 e L such that a |Ti = 
o\ \Y\ and a fr2 = cr2 fr2. 

Now let a = {dab')", ar = {dab)" and a2 = {da'b')" . Clearly a |Ti = ay \Y\ 
and a \Yi = 01 |P2. Since a\, <r2 e L, this implies that a e L which it is not. Hence 
L cannot be a product language and therefore is not TrPTL^-definable. On the 
other hand, it is a simple exercise to come up with a formula a € $con such that 
{str(a) | a G L} = La. 

We now turn to FO{T,), the first order theory of infinite traces over E. One 
starts with a countable set of individual variables X = {xo, x\,...} with x, y, z with 
or without subscripts ranging over X. For each a G E there is a unary predicate 
symbol Ra. There is also a binary predicate symbol <. 

Ra{x) and x < y are atomic formulas. If cp and ip' are formulas, so are -*p, 
ip V <p' and {3x)(p. The structures for this first order theory are elements of TR". 
Let F G TR" with F = {E, <, A) and let I : X -> E be an interpretation. Then 
F\=j°Ra{x) iff A(I(x)) = a and F |=f ° x < y iff l{x) < X{y). The remaining 
semantic definitions go along the expected lines. Each sentence ip (i.e., a formula 
with no free occurrences of variables) defines the w-trace language Lv = {F \ 

F hFO <p}. 
We say that L C TRW is FO-definable iff there exists a sentence <p in FO{T,) 

such that L = Lv. As before we will say that L C E" is FO-definable iff L is 
/-consistent and {str(cr) | a G L} is FO-definable. 
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Using the fact that LTL has the same expressive power as the first order theory of 
sequences, one can show that L C Eu is FO-definable iff it is /-consistent and LTL- 
definable [EM]. It will be worthwhile to pin down the notion of LTL-definability. 
In the current setting, remembering that (E, /) is the trace alphabet induced by E, 
we define the syntax of the logic LTL(E) as follows: 

LTL(E) ::= T | -.a | a V /? | (a)a \ a Uß. 

A model is a infinite word a. For a e S" and n e w, the notion of a G LTL(E) 
being satisfied at stage n is denoted by a,n \= a. This satisfaction relation is 
defined in the usual manner. The only point of interest might be that a,n\= {a)a 
iff cr(n+l) = a and a,n+l \= a. We say that L C E" is LTL-definable iff there 
exists a e LTL(E) such L = La where La = {a G E" | a, 0 ^= a}. 

The result in [EM] relating FO-definable subsets of TR" and LTL-definable 
subsets of E" can now be phrased as follows. 

Proposition 4.1 Let LCE". Then, the following statements are equivalent. 

(i) L is I-consistent and LTL-definable. 

(ii) {str(o-) | a G L} is an FO-definable subset ofTR". 

We now wish to concentrate on showing that TrPTL is expressible within the 
first order theory of infinite traces. 

To show this, we will freely use the standard derived connectives of Propositional 
Calculus, together with universal quantification and abbreviations such as x = y 
for (x < y) A (y < x), x < y < z for (x < y) A (y < z) etc. 

An event e is an i-event iff A(e) € Ej. With this in mind, we let x e Ei 
stand for the formula VaeEi Ra(x)- The keY to the result we are after is the 
observation that configurations of a trace can be described using predicates of 
bounded dimension. In what follows we let Q,Q',Q" range over the non-empty 
subsets of "P. For Q = {ii,i2,... ,in}, the formula config({xi}i6Q) is defined as: 

config({xj}i£Q)    =    (ipi /\ip2 Ay>3), where 

Vi     =    AieQ xi e Ei> 
V2      =      Ai,j /\a(.R*(Xi) A Ra{Xj)) => Xi = Xj, 
¥>3    =    Ai,j(Vy) (yZEjAyKxJ^yK Xj. 

We can now write down a formula describing prime configurations—recall that a 
prime configuration is one of the form je, where e e E. Let loc(a) C Q. Then the 
formula primea({xi}i(EQ) is defined as 

config({ar4}i6Q) A    /\ /\       Ra(Xi) A (Xj < xt). 
iGloc(a) j£Q—loc(o) 

A careful examination of this formula along with the basic properties of traces 
at once leads to the next result. 

Proposition 4.2 Let F = (E, <, A) e TR" and let! : X -* E be an interpreta- 
tion. Then F \=j° primea({xj}j6Q) iff there exists an a-event e such that for each 
j G Q, 1{XJ) is the <j-maximum event in [eDEj and for each j £ Q, [eC\Ej = 0. 
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For each a e 5> we now define the sentence SAT(0, a) and the set of formulas 
{SAT({xi}ieQ,a) | {xi}ieQ C X and 0 / Q C P} through simultaneous induction 
as follows: 

• SAT(0,T) = SAT({xi}ieQ,T) = (3z) x = ar. 

• SAT(0,-.a) = -SAT(0,a). 
SAT({ari}i6Q,-.a) = -.SAT({xi}iGQ, a). 

• SAT(0, a V ß) = SAT(0, a) V SAT(0, ß). 
SAT({xi}i€Q, a V 0) = SAT({xi}i€Q, a) V SAT({xi}ieQ,ß). 

• SAT(0, (a)j-a) = VgDioc(a)(3xn3a;i2, • • -,3xin) ViA^A y>3 

where Q = {ii, »2, ■ ■ • i *n} and 

V?! = primea({a;i}i6Q), 
<P2 = SAT({xi}i(zQ,a), 
¥>3    =    (^y) (y^ Ej Ay <xj)=^y = xj. 

SAT({xi}ieQ, {a}ja) is defined according to two cases. 

Case 1  j £ Q:    SAT{{xi}ieQ, (a)ja) = SAT(0, (O)JOI). 

• Case 2  j € Q 
SAT({xi}ieQ, (a)ja) = VQOioc(a)(3yfci' 3^2> ■ • -3yfe„) Vi A V2 A v?3 

where Q' = {ki,k2,..., kn} and {yk}keQ' ls disjoint from {xi}ieQ and 

ipi = primea({yfc}fc6Q'), 
ip2 = SAT{{yk}keQ',a), 
fa   =   Vy (y e £y =* (y < yj & y < Xj)). 

• SAT(®, a Ujß) =SAT{9,ß)\/ {SAT(9,a) ASAT(9,\/a€E.(a)jaUjß)). 

SAT({xi}ieQ, a Ujß) is defined according to two cases. 

Case 1  j £ Q:    SAT({xi}ieQ, a Ujß) = SAT(0, a Ujß). 

Case 2  j € Q: 
SAT{{Xi}ieQ,aUjß) =Va6Ei VQ01oc(a)(3Wi'3y^'---3^n)¥'lAV2A^3Av34 
where Q' = {&i, A;2,..., *;„} and {yk}keQ' is disjoint from {xi}i6Q and 

V?i    =    primeo({j/fc}fc6Q0, 
¥>2    =    Xj<yj, 
<P3    =    SAT({j/fc}fc6Q/,/9), 
¥>4      =     Vz(z € JSj AXj <Z < J/j) => (£4. 
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where ^ = VaeE. VQ'OIOC(„)(
3

**I> 3*<a» • • • > 3^,J <P'AI A <P42 A ¥>43 

with Q" = {£ij2,...,£m} and {zt}i€Q„ disjoint from both {xi}ieQ and 
{2/fc}*eQ' and 

V?4!    =    primea({2£}£gQ»), 

9?42      =      (Z = Zj), 

V43    =    SAT(^}^6Q»,a). 

Let / be the map which sends each formula in $ to a sentence in FO(S) via 
f(a) = SAT(0,a). Using the previous proposition and the semantics of TrPTL, it 
is not difficult to prove the following: 

Theorem 4.3 

(i) For every F G TR°, F,<D\=aiffF (=FO /(a). 

(ii) IfLC TR" is TrPTL definable then it is also F'0(E)-definable. 

As mentioned earlier we do not know at present if TrPTL is expressively com- 
plete — i.e., whether every L C TR" which is FO(E)-definable is also TrPTL- 
definable. Clearly from Proposition 4.1 it follows that the expressive completeness 
of TrPTL can be characterized as follows: 

Corollary 4.4  The following statements are equivalent: 

(i)   TrPTL is expressively complete. 

(ii) For every L C E", if L is I-consistent and L is LTL-definable then L is 
TrPTL definable. 

We believe that TrPTL is not expressively complete. This leads to the following 
question: What is the linear time temporal logic of infinite traces? Such a logic 
should possess the following properties: 

(TR1) It should be expressively complete. 

(TR2) It should admit a decision procedure (preferably in terms of asynchronous 
Büchi automata) whose time complexity is 2p(-n'm') where n is the size of the 
input formula, m = |S| and p is a (low degree) polynomial in n and m. 

(TR3) It should be possible to transparently express global liveness and safety 
properties in the logic. 

It is worth noting that TrPTL and most of the decidable temporal logics over 
traces mentioned earlier such as [Nie] and [APP] cannot express all global invariant 
properties. The somewhat awkward semantics of the logic in [Ebi] also makes it 
event-based and hence not suitable for expressing invariant properties. However 
we believe that it should be possible to define a logic with a variant of the until 
operator defined in [Ebi] which will be able to capture global liveness and safety 
properties in a straightforward manner. 
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Any linear time temporal logic over traces which fulfills the properties (TR1)- 
(TR3) will be a very useful specification tool. In particular it will exactly capture 
properties that are expressible by /-consistent formulas in LTL—(a e LTL(E) is 
/-consistent iff La is /-consistent). This is important because it is such properties 
which can be verified efficiently using partial order based verification methods [GW, 
Val]. 

5    Conclusion 

In this paper we have considered linear time temporal logics over traces. Our 
emphasis has been on TrPTL and its two sublogics TrPTLcon, IrPTL®. The choice 
of these logics has been mainly motivated by the fact that they are expressible 
within the first order theory of traces and the fact that they can be studied using 
asynchronous Büchi automata. 

Our formulation of asynchronous Büchi automata in terms of the acceptance 
condition A2 appears to be particularly suited for logical studies. The present 
constructions are much more compact and transparent than the ones in [Thil] 
which used Al as the acceptance condition. We feel that, in the future, alternating 
versions of our automata will play an important role in the study of temporal logics 
over traces. 

As we have mentioned a number of times, an important open problem is to pin 
down a linear time temporal logic for traces (assuming it exists!) which will fulfill 
the properties set out in the previous section. A solution to this problem will at 
once open up the possibility of investigating branching time temporal logics where 
path quantification is over traces. 
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A solution of an interleaving decision problem 
by a partial order technique 

Albert R. Meyer* Alexander Rabinovich* 

1    Introduction 

1.1    Interleaving versus partial order semantics 

Approaches to the semantics of concurrent systems may be divided into two main 
groups: interleaving and partial order. In the interleaving approach, only the tem- 
poral behavior of the events of a run is observable; in the partial order approach, 
'causal dependency' between events are considered. 

The supporters of the interleaving approach argue that 

1. Specifications of concurrent systems always refer only to the temporal behav- 
ior and ignore causal behavior. 

2. Interleaving semantics are technically much simpler than partial order seman- 
tics. 

Supporters of the partial order approach argue that this approach gives a better 
account of the activity of a concurrent system. However, in view of (1), it is difficult 
to convince a researcher of interleaving semantics that casual aspects are important. 

Another argument in favor of partial order semantics appeals to partial order heuris- 
tics for verification of interleaving behavior. Recently a number of such heuristics 
were suggested and in several case studies it was empirically demonstrated that 
these heuristics were efficient (see recent Proceedings of CONCUR and CAV). How- 
ever, the partial order heuristics do not improve the complexity of verification. 

In our paper another argument in favor of partial order semantics is provided. We 
consider a decision problem which is formulated in terms of interleaving semantics. 
The decision algorithm will be given in interleaving terms. However, we devel- 
oped and proved the correctness of the algorithm by appealing to a partial order 
semantics. 

*MIT Laboratory for Computer Science Cambridge, MA 02139, USA 
'Department of Computer Science, The Sackler School of Exact Sciences, Tel Aviv University, 

Israel 69978 
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This situation is similar with a situation which often occur in mathematics. For 
example, to find real valued functions that solve a linear differential equation we 
solve it over the complex numbers. Similarly, if one believes that only interleaving 
behavior is real he may gain by considering casual semantics. 

1.2    Summary of our results 

In this paper we consider the following 
Decision problem: Given expressions E\ and £2 constructed from variables by 
the regular operations and shuffle. Is identity E\ = £"2 true for all instantiation of 
its variables by formal languages? 

For example, the identity (A'V*)* = (A + V')' is true because for all languages L\, 
and £2, the languages {L\L'2Y and (Ii + £2)" are the same. 

The above identity contains only regular operations: concatenation, union and iter- 
ation. An easy "folk' theorem [3] shows that the validity of an identity over regular 
operations can be verified by instantiating the language variables as single letters. 
For example, in order to check the validity of (A'V)" = (A + Y)* we instantiate 
the variables A and Y by a single letters a and 6 and verify that (a'b")' = (a + b)*. 
Checking this variable-free identity is a routine matter of checking equivalence of 
finite state automata. 

In concurrency a very important role is played by parallel composition operators. 
The simplest of these operator is non-communicating parallel connective ||, corre- 
sponding to shuffle of languages. The above folk theorem fails for the expressions 
containing shuffle. For, example for single letters a and 6, the languages a||6 and 
ab + ba are the same. However, the identity X\\Y = XY + YX is not true (indeed, 
instantiate A by a and Y by be). 

An algorithm for the valid identity problem is provided in this paper. In order to 
check the validity of an identity Ei(Xi,..., A'*) = £2(Xi,..., Xk) we will specify 
(see Theorem 3) finite languages L\,...,Lk (the languages depends on Ei and 
£2) such that the identity is valid iff the variable-free identity obtained through 
instantiation of Ai,..., A* by L\,...,Lk is true. Checking this last variable-free 
identity is reduced to the checking of language equivalence of finite state automata. 

2    Shuffle Regular Expressions 

We presuppose two fixed infinite sets 

Act = {a, ai,.. .6, bi,...}      the actions 
Var = {A, A"i ,...Y, V\,...}      the variable symbols. 

Shuffle regular expressions are defined by the following grammar: 

E ::= i | e | E + E | E; E | E\\E | £", where x ranges over alphabet Var of 
variable symbols and, c ranges over alphabet Act of constant symbols. 



I«k={a} 
W«r = (T(*) 
[Ei + E2l<r = Union of [EI](T and [E2]<r'""n 

[Eu E2]<T = Concatenation of [Ei)<r and [E-i\a
p'"n 

[E\\\E-\<T = Shuffle of [£i]<r and [£2l<r 

Figure 1: Definition of [E]<r 

We denote by £V'ar(£) the set of variables which occur in E. 

We say that £ is a variable free expression if FVar(E) = 0. 

We use notation E{Ei/X\ .. ■ E„/Xn} for the expression obtained from £ by si- 
multaneous substitution of £, for AV We use £,n

=1 £, as an abbreviation for for 
Ex + £2 + ...+ £„. 

A string is a finite sequence of actions; we use w, u to range over strings. A string 
language is a set of strings; we use L to range over string languages. 

The operations sum, concatenation, iteration and shuffle are defined in a standard 
way on the string languages. 

We recall that a string w belongs to the shuffle of languages L\ and I2 if 
w = W1U1V2U2 ■ ■ -vukUk where wiw? .. .wt € L\ and uiUo .. .ut £ Li- 

A string language environment for {A'i...Xn] is a function which assigns to A'; a 
string language. For an expression £ and a string language environment a for a 
set that contains the free variables of £, the string language [E\a is assigned in a 
standard way by structural induction on the expressions (see Fig. 1). 

It is clear that if er(x) = (/(x) for every x € Fvar{E) then [£]<r = [£]<r' 

3    The Valid Identity Problem 

We will consider the following decision problem 
Valid Identity Problem: 
Input: A pair of shuffle regular expressions £1 and £2. 
Question: Is the identity E\ = £2 valid, i.e., are the languages \E{\<? and [£2](T 
equal for every string language environment a for Fvar(Ei) U £V,ar(£2). 

The main technical result of our paper is 

Theorem 1  The valid identity problem for shuffle regular expressions is decidable. 

Theorem 1 follows from the next two theorems. 

Theorem 2 The valid identity problem for variable free shuffle regular expressions 
is decidable. 
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sn(.X) = sn(a) = 0 
sn(Ei + E2) = sn(Ei;E3) = max(sn(Ei). sn(E2)) 
sn{Ei\\En) = sn(Ei) + sn(E2) + 1 
sn(E') = sn(E) 

Figure 2: Shuffle nesting of Expressions 

Proof: The problem is easily reduced to the problem of equivalence of finite state 
automata. g 

Notation: The shuffle nesting of an expression E is denoted by sn(E) and is 
defined in Fig. 2. 

Theorem 3 Let £L and E2 be shuffle expressions over variables A'i, X„ such 
that the shuffle nesting of E\ and E2 is bounded by k. 
Let {dij, äij   :  i = 1 n; j — \ k} be distinct actions which do not occur 

in the expressions Ex, E2.  Let SPLITk be the expression £*=1 a.jjä,.,. Identity 
E\ = Ei is valid if and only if the variable free identity 
ExiSPLlTl/Xx .. .SPLIT?/Xn) = E2{SPLITl!Xx. ..SPLIT? fXn) is valid. 

Proof: In order to proof this theorem we appeal to the notions which were developed 
in the casual approach to concurrency. Theorem 3 follows from Theorem 7 and 
Theorem 9, part 2, below. □ 

4    Pomsets 

Definition 1 (Pratt [6]) A concrete pomset P over set E of labels consists of a set 
of events Eventsp which are partially ordered by a relation <p and a function labp 
from Eventsp into E. A function f is an isomorphism between concrete pomsets 
Pi and P2 if it is label preserving isomorphism between the partial orders of Pi and 
P2. An (abstract) pomset is an isomorphism class of concrete pomsets. 

Throughout the paper we provide some definitions and constructions for concrete 
pomsets. All these definition/constructions are extended in a natural way to the 
abstract pomsets. 

Definition 2 Events ex and e2 of a pomset P are concurrent (notation ex cop e2) 
if neither ex <p e2 nor e2 <p ei. 

Definition 3 The width of a pomset P is the maximal number of mutually con- 
current events in the P. 

Definition 4 A pomset language over E is a set of pomsets over E. We say 
that a pomset language PL has width at most n if all pomsets in PL have width 
less or equal than n. 
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Definition 5 A concrete pomset P is an augmentation of a concrete pomset 
Q if Eventsp = Eventsq, labp = labq and e\ <q en implies e\ <p en for alt 
ei.e? € Eventsp. 

Definition 6 A concrete pomset P is a linearly ordered pomset if <p is a 
linear order over Eventsp. 

We will identify a linearly ordered pomset over a label set E with the correspond- 
ing string over alphabet E. Also every string language is considered as a pomset 
language. 

Definition 7 The linearization of a pomset language PL (notation Lin(PL)) is 
the string language L such that w € L iff w is a linearly ordered augmentation of a 
pomset P€ PL. 

Notations: A pomset containing only one event labeled by / will be denoted by 
/. The pomset language containing only one pomset P will be denoted by {P}; in 
particular, the language containing only the one element pomset labeled by / will 
be denoted by {/}. 

5    Refinement 

Let P be a pomset and / be a function which assigns a pomset to every event of 
P. 

The /-expansion of P is a pomset Q obtained by replacing every event of P by 
its image. Formally, 

Eventsq = {(e, e')  : e € P, e' € /(e)}; 

(«i>e2) <Q (e3,ei) if either ei </» e3 or e% = e3 and e2 </(e,) e4. 

/a6<3((e,e')) = /a6/(e)(e')- 

We use the notation Expan(P, f) for the / expansion of pomset P. 

Definition 8 A pomset language environment for a set of labels £ is a function 
which assigns a pomset language to every label in E. 

Notations We use the notation [/i — PL\, l? — PL?, ...,/„ — PL„] for the pom- 
set environment which maps /< to PLit i = 1,..., n. We denote by PLE(Z) the set 
of pomset language environment for E. We use a, ß to range over pomset language 
environments. We denote by SL£(E) the set of string language environments for 
E. We use cr, r to range over string language environments. 

Definition 9 Lei P be a pomset. Let f be a function which assigns a pomset to 
every event of P and let a be a pomset language environment for E. The function 
f is consistent with a if for every event e 
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/. f(e)€a(labP(e)) iflabP(e) € E. 

-• /(«) = {/atp(e)} otherwise. 

Definition 10 £e< ait a pomset language environment for E.  TAe a-refinement 
REF(PL,a) ofapomset language PL ts{Expan(P,f) : P £ PL and f is consistent witk a) 

The refinement operation has properties similar to substitution operation: 

Lemma 4 Let PL be a pomset language over an alphabet E and a be a pomset 
language environment for an alphabet E'. //EflE'C {/I,...,/*} Men 
REF((REF(PL, [h-PLx /* - P£t]),a) = 
= REF{PL.[h- REF{PLx,a) lk - REF(PLk.a)]). 

The next lemma state how linearization operator interacts with refinement. 

Lemma 5 Lin(REF(PL.[h   —  PLi /*   —  PLk]) =  Lin{REF{PL,[lx  — 
Lin(PL1),...,lk~Lin(PLk)] 

6    Operations definable by pomset languages 

Definition H The application of a pomset language PL to a string language 
environment r (notation PL*r) is the string language defined as Lin(REF(PL, r)). 

Definition 12 Let F be a function from string language environments for E into 
string languages. We say that F is definable by a pomset language PL if 
Fr = PL»r for all r 6 5££(E). 

Observation 6 The regular operations and shuffle are pomset language definable, 
namely 

1. Let PAR(X,Y) be the pomset consisting of two unordered events labeled 
by X and Y. It is easy to see that [X||y] defines the same operation as 
{PAR(X, Y)} over the string environments for {X, Y). 

2. Let SEQ(X, Y) be a pomset with two events labeled by X and Y such that the 
event X precedes the event Y. It is easy to see that [X; Y\ defines the same 
operation as {SEQ(X, Y)} over the string environments for {X, Y}. 

3. Let SUM(X, Y) be the pomset language consisting of two one element pomsets 
X and Y. It is easy to see that [X + Y] defines the same operation as 
SUM(X,Y) over the string environments for {X, Y}. 

4- Let ITER(X) be the pomset language which consists of all finite strings over 
symbol X. It is easy to see that [X"\ defines the same operation as ITER(X) 
over the string environments for {X}. 
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[a]'- = {a} 
UYom = {*) 
[Et + E2Y

om = REF(SUM(X, Y), [X - [£,J',om, V - [E->Y°m]) 
[El;E2]pom = REF{SEQ(X,Y), [X - [Eil'9»". V - [Etf™]) 
[EiWEiY** = REF(PAR(X,Y), [X - [Ex)"™, Y — [E'IY

0™]) 
jE.pom _ REF{ITER(X), [X - [£pom]) 

Figure 3: Pomset Semantics 

Theorem 7 For every shuffle regular expression E. the operation \a. [E\a is de- 
finable by a pomset language with width bounded by the shuffle nesting of E. 

Proof: By structural induction on the expressions the pomset language [E]pom is 
assigned to every shuffle regular expression (see Fig. 3). Relying on Lemma 4, 
Lemma 5 and Observation 6, it can be shown that [E]a = [£pom • <r, where a is 
any language environment a for the Fvar(E). D 

Definition 13 A string language environment [l\ —► L\,...ln — Ln], is called a 
split-choice environment for {/i.. ./„} if every Li contains only strings of length 
two. 

Lemma 8 PL • r = PL' • r for every string language environment r for E iff 
PL • T = PL' • T for every split-choice environment r for E. 

This lemma can be strengthened as follows: 

Theorem 9 Let PL and PL' be pomset languages over an alphabet E and let 
{(tij, äij : i = 1,..., n , j € Nat} be distinct labels not in E. Let L^ be string 
language {a.jjö, j : j 6 Nat} and let L\ be string language {aij;ä~ij : j = 
1,2....,*}. ' 

/. PL»r = PL'*T for every string language environment r for {mi,..., m„} iff 
PL . [m, - L\°°\ ..., m„ -* L^] = PL' • [mi - L^, ..„m,- L^]. 

2. Let PL and PL' be pomset languages of width at most k. Then PL • r = PL' • r 
for every string language environment r for {mlt.. .,m„}  if and only if 
PL • [rm - £<*>,..., mn - L(

n
k)] = PL' • [mi - L?\ ..., mn - L^]. 

Remarks (1) The above theorem can be strengthened as follows: Let *, be the 
bound on the number of mutual concurrent events labeled by m,- in the pomset 
languages PL and PL'. Then PL*r = PL'T for every string language environment 
T for {mi,..., m„ } if and only if 
PI.[m1-L(

l
t,),...,mtl-lkt")] = PL,«[m1-.L(

1*
,),...,mT1-lkt")]. 

(2) Weaker versions of the above theorem have appeared in the literature. 
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Gischer [1] considered the operations definable by pomsets. One of his results can 
be stated as follows: For pomsets P and P' with less than Jb events, {P}T = 
{P'}T for every string language environment r for {mi, m„} if and only 

iffPJ.K-M" mB-t(*,]Ä{f"}.[ml-L(
l
k) mn - £«*']. 

In [5] the special pomsets which are called semi-words are considered. A pomset 
is a semi-word if no events with the same label are concurrent. It was proved 
in [5] that for semi-word languages SWL and SWL' the following theorem 
holds: SWL • T = SWL' • r for for every string language environment r for 
{mi rnn } if and only if 

SWL • [m, - L\l) mn - L{„1)] = SW£' • [m, - Z^ mn ~ J#>]. 

(3) The proof of Theorem 9 can be extracted from the proofs of these two weaker 
versions. 

7    Further Results 

7.1 Complexity of the valid identity problem 

An exponential space algorithm can be provided for the valid identity problem. 
Mayer and Stockmeyer [2] provided EXPSPACE lower bound for the valid identity 
problem of the variable free shuffle regular expression. These results give a tight 
lower and upper bound for the valid identity problem. 

7.2 Extension by other pomset language definable opera- 
tions 

Let OP be an n-ary operation on string languages. We say that OP is effective on 
regular languages if there exists an algorithm which constructs a finite automaton 
for the language OP(L\, ...,Ln) from finite automata for L\,..., L„. 

We say that OP is definable by (finite width) pomset language if there exists a (finite 
width) pomset language PL such that PL*[\ — £i,..., n —■ L„] = OP(Li, ...,Ln) 
for any languages L\,..., I„. 

Note that the operations definable by finite pomset languages are effective on reg- 
ular languages. Among such operations are operations which are not definable by 
any shuffle regular expressions. 

The valid identity problem is decidable for the expressions constructed over any set 
of operations which are effective on regular languages and are definable by finite 
width pomset languages. 

7.3 Extension by Intersection 

Micciancio [4] proved the decidability of the valid identity problem for constant 
free shuffle-intersection regular expressions.  These expressions are defined by the 



following grammar: E ::= x\EC\E\E + E\E\E\ E\\E | E*, where x ranges 
over variable symbols. 

Note that the intersection is not a pomset language definable operation. Miccian- 
cio's very interesting proof is given in terms of interleaving semantics and does not 
use explicitly pomsets. It is an open problem whether his results and techniques 
can be extended to other pomset language definable operations and in particular 
to the expressions which contain constants. 
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Stubborn Set Methods for Process Algebras 

Antti Valmari 

ABSTRACT. The construction of reduced state spaces of concurrent process- 
algebraic systems using the stubborn set or related methods is discussed. The 
goal is to avoid altogether the construction of the big ordinary state space of the 
system, and construct a smaller, but equivalent, state space instead. Five equiv- 
alence notions are covered: "deadlock equivalence" (the reduced and full state 
spaces have exactly the same deadlock states), trace equivalence, CSP-equiva- 
lence, CFFD-equivalence and branching bisimilarity. Most of the methods are 
similar to stubborn set or related methods in other application areas. However, 
because of the absence of the notion of "structural deterministic transition" 
(such as the Petri net transition) in process algebras, earlier definitions and 
proofs were not applicable, and the theory behind the methods had to be re- 
developed from the beginning. 

1. Introduction 

The fact that the total effect of a set of concurrent transitions (or operations or 
actions) is independent of execution order has been utilised in computer-aided verification 
methods in many ways. One main approach is to generate only a subset of the interleaved 
executions of the system under verification (see e.g. [God96, Pel93, Val94]). The subset is 
represented as an ordinary interleaved state space, called reduced state space. It is chosen 
in such a way that from the point of view of the verification task at hand, it can represent 
all executions. That is, the answer to the verification question is guaranteed to be the same 
for both the full and the reduced state space. 

The reduced state space is obtained by using only a subset of enabled transitions 
when constructing the immediate successor states of a state. It has turned out that the 
selection of a "sufficient" subset depends on the verification question. Furthermore, it may 
be necessary to ensure that certain conditions that depend on more than one state hold in 
the reduced state space. Even for a fixed verification question, the construction of the suf- 
ficient subset depends on the formalism in which the system has been represented — the 
techniques that are good for Petri nets do not necessarily work for parallel labelled transi- 
tion systems. Moreover, the subset is not completely defined by the requirement that it has 
to be "sufficient". Some algorithms are capable of finding smaller sufficient subsets than 
others, at the price of consuming more time. 

As a consequence, different authors have investigated the reduced state space con- 
struction problem with different goals and formal frameworks, and have developed a vari- 
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ety of different algorithms and methods with names such as persistent sets, ample sets and 
stubborn sets. Despite of the differences, these approaches have quite a lot in common. 
Many ideas that have been originally developed in the context of, say, ample sets, can be 
used with, say, stubborn sets. To be consistent with terminology within this article, the 
stubborn set vocabulary is used. It is emphasized, however, that from the point of view of 
the subject matter this is a somewhat arbitrary choice; this article could have been written 
in the ample set or persistent set language. 

The generic term "partial-order methods" is often used of the stubborn set method 
and its relatives. But it covers also methods that are not based on choosing representative 
interleavings and presenting them in the form of an ordinary (but reduced) state space, 
such as the unfolding method [McM93, Esp94]. So it is too general for the present article. 
Furthermore, in the opinion of the present author, the term "partial-order methods" is mis- 
leading. The term refers to semantic models of concurrency where the ordering of the 
occurrences of mutually independent transitions is partial. The stubborn set and related 
methods take advantage of commutativity properties that resemble the "independency" 
relation of partial-order models, but is slightly different, and has sometimes different con- 
sequences. (This difference will not be obvious in the context of the present article, but it 
has proven important in the case of Petri nets, for instance.) 

This article is devoted to the application of the stubborn set approach (or its relatives) 
to process-algebraic verification. Compared to other applications of stubborn set methods, 
the biggest difference is in the notion of "transition". Stubborn set methods usually rely on 
"deterministic" "structural" transitions, such as the transitions of a Petri net. Transitions 
are responsible of state changes. That they are "deterministic" means that the occurrence 
of a transition in a state produces always the same immediate successor state. The word 
"structural" indicates that it is meaningful to talk about the same transition in different 
states. In process algebras, the word "transition" denotes what would be the occurrence of 
a transition in Petri net terminology. No individual "performer" of the occurrence can be 
distinguished; the responsibility of (the execution of) the transition is distributed over sev- 
eral processes of the system. Deterministic structural transitions do not exist. The set of 
processes that participate (the execution of) a transition is determined by the concept of 
action. In some sense, an action is the name of several transitions. Actions are structural, 
but they are not deterministic. 

The absence of deterministic structural transitions affects the development of the the- 
ory. It is not any more possible to utilise the assumption that if two transitions occur in 
both orders, the end result is the same. This is because the end result is no more unique, so 
the two orderings may choose different members from the set of possible end results. The 
use of actions has also some effects on the construction of stubborn sets. In other respects, 
the stubborn set methods and algorithms for process-algebraic verification are pretty much 
the same as in other stubborn set or related methods. 

The goal of the methods described in this article is to produce a reduced state space 
that is equivalent to the full one in the sense of some process-algebraic equivalence. Liter- 
ally hundreds of different equivalences have been defined in the process algebra literature. 
The majority of them is, however, based on few main ideas. In this article we discuss some 
well-known and one less well known equivalence that together cover most of the impor- 
tant ideas. 

The earliest explicit application of the stubborn set or related methods to process 
algebras was [VaC91]. In it, transitions were deterministic, but not structural. As a conse- 
quence, the mathematics became complicated, and it was almost impossible to describe 
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how stubborn sets may be constructed. These problems were solved in [Val92b] by using 
actions as transitions and re-working the theory to allow non-deterministic transitions. The 
goal of [Val92b] was to produce reduced state spaces that are CSP- [BrR85, Hoa85] or 
CFFD-equivalent [VaT91, VaT95] with the full ones. The method was closely related to 
the linear temporal logic -preserving stubborn set method presented in [Val92a]. A method 
that preserves branching bisimilarity [vGW89, vG190] was first presented in [GK+95]. 
Because branching bisimilarity implies weak bisimilarity (known also as observation 
equivalence) [Mil89], the [GK+95] method preserves also the latter. 

This article is organised as follows. The necessary process-algebraic concepts includ- 
ing the above-mentioned equivalences are introduced in Section 2. To simplify the devel- 
opment of the stubborn set theory, the definitions are presented in a somewhat non- 
standard form, although the concepts they define are standard. Section 3 presents the basic 
facts about the stubborn sets of process-algebraic concurrent systems. A method preserv- 
ing trace equivalence is described in Section 4. This method is a reasonably straightfor- 
ward application of the results in [Val91] and [Val92b]. The CSP- and CFFD-preserving 
methods from [Val92b] are repeated in Section 5. Section 6 is devoted to a translation of 
the [GK+95] branching bisimilarity method to the present framework with non-determin- 
istic actions. The conclusions are in Section 7. 

Throughout this article, small improvements are made to the methods presented. For 
instance, the assumption that the reduced state space is finite, is mostly eliminated. This 
may become important in the future, if the stubborn set method is combined with methods 
that represent infinite state spaces by finite data structures. 

2. Processes, Parallel Composition, and Equivalences 

In process algebras, the behaviour of a system consists of executions of actions. 
There are two kinds of actions: visible and invisible. Each system has a fixed set of visible 
actions it may execute, and the environment of the system can observe or even synchro- 
nise with the execution of a visible action. Executions of invisible actions cannot be 
directly observed. It is customary to use the one symbol "x" to denote all of them. An 
invisible action may represent a hidden internal action that is participated by several com- 
ponent processes of the system. Knowledge of the set of the component processes that 
participate the internal action is important for the stubborn set method. Therefore, in this 
article, invisible actions are not denoted by x, but it is assumed that each process has its 
own sets of visible and invisible actions. As was described in [Val92b], a system with 
x-transitions can be easily converted to the form required in this article by re-naming the 
x-transitions in a suitable way. 

In process-algebraic computer-aided verification, the behaviour of a system is usually 
represented by a labelled transition system (LTS). An LTS is a directed graph whose verti- 
ces correspond to states, one of the vertices is distinguished as the initial state, and edges 
correspond to transitions and are labelled by actions. 

Definition 2.1 A labelled transition system (LTS) is a five-tuple (5, Ey £/» A, is), 
where S is the set of states, £y is the set of visible actions, E/ is the set of invisible actions, 
JLy n Z; = 0, A c 5 x (Zv uI/)xS is the set of transitions, and is e S is the initial state. 
The action alphabet is X = T.y u S/.   □ 

The following notation is useful for talking about action sequences and enabled 
actions. 
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Definition 2.2 Let L = (S, Zv 27, A, is) be an LTS, s, s' and s0, ...,sne S, and a and 
ax, ...,flng 2. 
• 5 -a-> $' if and only if (s, a, s') € A. 

s0-al-^sl-a2~
> ■■■-an-J>sn ifandonlyifso-ö!-»*! and... ands„_i-a„-»jn. 

j -a{a2...an-^ s' if and only if there are s0, ..., sne S such that J0 = s, sn = s', and 
*0 -ai-> *i ~«2^ • • • -a«-» •*«• 

• s -»* / if and only if there are aj, ..., an e 2 such that s -a^.. .an-> s'. In particu- 
lar, s —>* s. 

• 5 -aia2- • ■an~^ 'f anc* only if there is s' such that s -a\a2.. .a„-> /. 
• s-kz^.. .an-h s' if and only if-i(5-a1a2...a„->5'), 

and similarly with s-kt^.. .an-h and 5 -/>* s'. 
• next(s) = { a e 2 I .?-«-> }.   Q 

The parallel composition of LTSs is denned below. A parallel composition may exe- 
cute action a if and only if all component processes that have a in their alphabets are ready 
to execute a. The execution of a forces all those component processes to execute an fit- 
transition, and does not affect the remaining component processes. Synchronisation is thus 
determined by the alphabets of the component processes. 

Definition 2.3 Let Lx = (Sh Sw, 2n, Alf is{), ..., L„ = (5„, 2V„, 2/n, A„, isn) be LTSs 
such that (2V1 u ... u 2yn) n (2/j u ... u 2/n) = 0. Their parallel composition is the 
LTS Lx II ... II Ln = (5, 2^ 2/, A, is) denned as follows: 

S = 5[X...x5„, 2^ = 2^ u... u2v„, 2/ = 2n u ... u2/„, and is = (islt ...,isn). 

Let(sh ...,sn)e Sandae 2vu2;. WehaveCCs1,,..., sn),a, (s\ s'n))e Aifand 
only if for every 1 < i < n, either a e 2M u 2/(- and (st, a, s-) e A,-, or a £ 2W u 2/(- and 
s'i = Si.     D 

We use the following notation for sequences. 

Definition 2.4 
• The empty sequence is denoted by 6. 

• X* and X® are the sets of finite and infinite sequences of symbols from X. 

If a and & e X* u X10, then & < a denotes that a7 is a proper prefix of a, and & < a 
holds if and only if <? < a or <f = a.   D 

The main goal of process-algebraic equivalences is to abstract away from invisible 
actions. The following notation and concepts are useful for that purpose. 

Definition 2.5 Let L = (5, 2^ 27, A, is) be an LTS, s and / e 5, p e 2*. and a 6 2y. 
• vis(p) is the result of the removal of all actions in 2/ from p. 

• s =a=> s' if and only if there is p e 2* such that s -p—> s' and a = vw(p). 

• s =a=> if and only if there is an / such that s =a=> /. 

• s *a=b s' if and only if -,(s =a=> s'), and similarly with 5 *a=&.   □ 

Three of the equivalences that we will discuss can be defined in terms of the follow- 
ing sets. Stability of a state means that if a process is in a stable state, then its next action 
cannot be invisible. A process is stable if its initial state is. The ordinary and infinite traces 
of a process are the finite and infinite sequences of visible actions generated by the (not 
necessarily complete) executions of the process. A divergence trace is a trace after which 
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the process can execute an infinite sequence of invisible actions. A divergence trace is 
minimal, if none of its proper prefixes is a divergence trace. A stable failure consists of a 
trace and a set of visible actions such that after executing the trace, the process may be in 
a stable state where it cannot execute any action from the set. In the CSP theory [BrR85, 
Hoa85] divergence is considered catastrophic. The catastrophic nature of divergence can 
be represented in the present framework by declaring that a process may do just anything 
after executing a divergence trace. Therefore, any sequence of visible actions that has a 
"real" divergence trace as its prefix is considered a CSP-divergence trace, and it may be 
paired with just any set of visible actions to form a CSP-failure. 

Definition 2.6 Let L = (5,1.v Z7, A, is) be an LTS. 

• s e Sis stable, if and only if s 4-a-h for every a e £/. Furthermore, L is stable if and 
only if its initial state is is stable. The predicate stableiL) is "true" if and only if L is 
stable. 

• The set of traces of L is tr(L) = { a e l,v I is =o=> }. 

• The set of stable failures of L is 
sfail{L) = { (a, A) £ EyX 2Zv 13 s e S: is =a=> s A next(s) QI.V-A}. 

• The set of infinite traces of L is 
infiiiL) = { £ e Z% I 3 co € E10: £ = vw(co) A is -co-> }. 

• The set of divergence traces of L is 
divtr(L) = { a e I.y I 3 co e Z00: a = Ws(a>) A W -CO-» }. 

• The set of minimal divergence traces of L is 
mindiv(L) = { 0 e divtr(L) I V a* < a: a' « divtHL) }. 

• The set of CSP-divergence traces of L is 
CSPdiv(L) = { a e Eyl 3 a7 e <#vfr(£): o'So). 

The set of CSP-failures of L is 
CSPfailiL) = sfail(L) u ( CSPdiv(L) x 2Zv").   D 

The frace equivalence, CSP-equivalence [BrR85, Hoa85] and CFFD-equivalence 
[VaT91, VaT95] can be defined as follows. The trace equivalence simply compares the 
sets of traces of two systems. CSP-equivalence compares the CSP variants of the failures 
and divergence traces. CFFD-equivalence uses stable failures and "real" divergence 
traces. In order to maintain the compositionality property that is often required from proc- 
ess-algebraic equivalences, CFFD-equivalence compares also the infinite traces and initial 
stability. CFFD-equivalence is strictly stronger than CSP-equivalence in the sense that 
CFFD-equivalence makes more distinctions between systems. Unlike CSP-equivalence, 
CFFD-equivalence preserves meaningful information of the behaviour of a process even 
after it has executed a divergence trace. The motivation behind the definition of CFFD- 
equivalence is explained in detail and CFFD-equivalence is compared to CSP-equivalence 
in [VaT95]. 

Definition 2.7 Let L\ and L^ be two LTSs such that their sets of visible actions are 
the same, i.e. Zyj = Zyj. 

• L\ =tr Li if and only if tr{L{) = triL^)- 

• L\ =CSP h if and only if CSPfail(Lx) = CSPfail^) and CSPdiv(Lx) = CSPdivQ^). 

• Ly =CFFD Ll if and onty if stable(JL\) = stableiL?), sfail(L{) = sfail(Li), 
divtr{Lx) = divtriLj), and inftr(L{) = infiriL^).    O 
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The last two equivalences discussed in this article are weak bisimilarity [Mil89] and 
branching bisimilarity [vGW89, vG190]. They are both based on a notion of simulation 
between LTSs. Two systems are equivalent, if they can simulate each other starting at their 
initial states. In weak bisimilarity, an invisible transition may be simulated by a sequence 
of invisible transitions of any length, and a transition labelled by a visible action a may be 
simulated by a sequence consisting of an a-transition surrounded by any number of invisi- 
ble transitions. In branching bisimilarity, invisible transitions may be simulated by doing 
nothing. Furthermore, any a-transition may be simulated by first executing zero or more 
invisible transitions in such a way that this sequence may be simulated by doing nothing; 
and then executing an a-transition if a is visible, or an invisible transition if a is invisible. 
The simulation relations are traditionally defined on the states of a single LTS. 

Definition 2.8 Let L = (S, Zv Z7, A, is) be an LTS. A binary relation "~" aSxS over 
the states of L is a weak bisimulation, if and only if for every a e Z and every sh s2 and 
se S such that s1 ~ s2 the following hold: 

• If $1 -a-» s, then there is / e S such that s ~ / and s2 =vw(a)=> s'. 

• If s2 -a-» s, then there is s' e S such that s' ~ s and s{ =vis(a)=> s'. 

The relation "~" is a branching bisimulation, if and only if for every a e Z and every S\, s2 

and s e S such that si ~ s2 the following hold: 

• If si -a-* s, then either ael, and s - s2, or there are s0 and s' e S and iisl such 
that si~ s0,s ~ s', s2 =e=> SQ -b-* s', and vw(a) = vis(b). 

If s2 -a-» s, then either ael; and s^ ~ s, or there are s0 and s' e S and b e Z such 
that s0 - s2, s' ~ s, si =£=> s0 -b-+ s', and vis(a) - vis(b). 

Furthermore, 

• The states Si,s2e S of L are weakly / branching bisimilar, if and only if there is a 
weak / branching bisimulation "~" such that jj ~ s2. 

Let Lx = (Sj, T.v Z/, A1( is{) and L^ = (S2, Z^ Z/; A2, w2) be two LTSs such that their 
alphabets are the same and, furthermore, SiC\ S2 = 0. They are weakly / branching 
bisimilar, if and only if their initial states isx and is2 are weakly / branching bisimilar 
in their joint LTS (5j u S2,1,v Z7, A! u A2, isi).    D 

Because any branching bisimulation is also a weak bisimulation, branching bisimilar- 
ity is strictly stronger than weak bisimilarity. 

3. Stubborn Sets and Reduced State Spaces 

The number of states of a parallel composition tends to grow exponentially in the 
numbers of states of its component processes. The goal of the stubborn set method is to 
construct a reduced LTS for the parallel composition in such a way that it is equivalent 
with the full LTS, but contains significantly less states and transitions. This is achieved by 
investigating at any state of the parallel composition only a subset of enabled actions and 
thus constructing only a subset of the immediate successors of the state. For the develop- 
ment of the theory, it is handy to talk about a larger set that may also contain disabled 
actions. This larger set is called stubborn. 

The construction of stubborn sets for a parallel composition will be discussed soon, 
but before that the fundamental properties that stubborn sets guarantee are listed. The 
main theorems of this article will be proven from these properties, without relying on any 
particular construction of stubborn sets. This makes the theory more modular, and — 
hopefully — the fundamental ideas clearer. 
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Figure 1 Illustrations of conditions Al, Ä2 and A3 

Because we will not always need both Ä2 and A3 in our proofs, we require only one 
of them in the below definition. 

Definition 3.1 Let L = (5, 2.v Z/, A, is) be an LTS. A stubborn set generator is a 
function A: S —» 2s such that for every s'0, s'n, and SQ, S\, ... e 5, a e Ä(J0)» and aj, <z2,... e 
X -A(J0), it is true that Ä0, Ä1, and at least one of Ä2 and A3 from the below list hold. 

(Ä0)   If next(s0) * 0 then Ä(s0) n next(sQ) * 0. 

If SQ -a\-> ... -an-* sn and sn -a-> s'n, then there are S'Q, ..., s'^ e S such that 
s'o —d\—> ... —an~~* s'n and so ~a~* ^O- 
If SQ -aj —> ... -a„—> s„ and ^Q -a—» So» tnen there are Sj,..., s'n e S such that 
s0 -0\~* ■ • ■ -A«-* sn an(* sn -Ö-> s'n- 

If J0 -aj—>.?! -a2-» ... and J0 -a-* S'Q, then there are s\, J2, ... e 5 such that 

SQ-ay-*s\-<i2~* ••• •    O 

(Al) 

(A2) 

(A3) 

The set Ä(s) is called a stubborn set. The condition Ä0 requires that a stubborn set 
should contain an enabled action if there are any. Ä1 guarantees that a disabled action 
belonging to a stubborn set remains disabled at least until an action belonging to the set 
occurs. Furthermore, it allows in any execution to "move to the front" the first occurrence 
of an action in the stubborn set. Ä2 claims that any enabled action within the stubborn set 
commutes with all finite sequences of outside actions, and A3 extends Ä2 to infinite 
sequences.1 The conditions Al, Ä2 and A3 are illustrated in Figure 1. In the illustration, 
vertical and horizontal transitions correspond to actions inside and outside the stubborn 
set, respectively. 

The following theorem gives a sufficient condition for a stubborn set of a parallel 
composition L = Lj II ... II Ln. The proof of the theorem is dull and omitted, but it can be 

'Although it might seem that A3 follows from Ä2, this is not the case. The possibility has not 
been ruled out that s\, ...,s'„ obtain different values for each n, so that s'0 -aj... an—> for every n, but 
srQ-l-a\a2...-b. 
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found in [Val92b]. In order to avoid confusion, we use the notation "-a-»,-" and 
"nextj(...)" when talking about the transitions and enabled actions of Lp while the absence 
of the subscript refers to L. 

Theorem 3.2 Let L = Lx II ... II Ln be the parallel composition of the LTSs Lx = (Sb 

ZVh £/!, A], is{), ...,Ln = (Sn, IV/J, JLIn, A„, isn), andÄ: 5 -> 2Z. If Ä(s) satisfies the follow- 
ing three conditions in the state s = (s{, ...,sn) of L, then ÄO, Äl, Ä2 and A3 hold in s. 

If a e Ä(s) and 5 ^a-^, then there is 1 < j < n such that a e Z.-, s ■ /a-A,, and nextfe.) c 
A(5). 

If a € Ä(s) and 5 -a->, then for every l<j<n, either a e £,, or nextfs-) c Ä(i). 

• If there is a e Z such that ä -a-», then there is a e A'(^) such that s -a-*.   D 

Unlike Äl, Ä2 and A3, the conditions in Theorem 3.2 concern only one state. There- 
fore, it is possible to design algorithms that investigate only that state and construct a stub- 
born set satisfying the conditions. Many such algorithms have been presented in the 
literature, for instance in [Val88, Val92a, God96]. Although the algorithms have been 
expressed mostly in other frameworks than the present one, they can be applied to the con- 
text of Theorem 3.2 without much difficulties. Therefore, it is not reasonable to repeat 
them here. [Val92b] describes some of them in the present framework. 

The sets of states and transitions of the reduced LTS are subsets of the sets of states 
and transitions of the LTS representing the full parallel composition. To facilitate conven- 
ient discussion of the same states and transitions as members of the full and reduced LTS, 
a double-dot notation is introduced. 

Definition 3.3 Let L = (5, Zy Z7, A, is) be an LTS and A": S -> 2Z a stubborn set gen- 
erator. The reduced LTS of L induced by Ä is L = (S, Zv S7, Ä, is), where S is the smallest 
subset of S and A is the smallest subset of A such that 

• is e S, 

• if s e S, s -a-» s', and a e Ä(s), then s' e S and (s, a, s') e Ä. 

Furthermore, if s and s' e 5, a e 2, and p e £*, then 

• s ^-^ s' if and only if s -a-> / and a e Ä(s). 

s ^-^ s' etc. are defined from s -^-^ s' analogously to Definition 2.2. 

next(s) = { a e 2 I s -ki-^ } = next(s) n Ä(s).   O 

As developed so far, the stubborn set method guarantees that the reduced and full 
LTS have the same deadlocks. (It is assumed that the full LTS does not contain unreacha- 
ble states.) Furthermore, the reduced LTS has an infinite execution if and only if the full 
LTS has. 

Theorem 3.4 Let L = (5, Xv Z7, A, is) be an LTS such that is -»* s for every s e S. 
Let L = (5, Xy S/, A, is) be a reduced LTS obtained from L with the stubborn set generator 
Ä. 

(a) Assume that ÄO, Ä1 and Ä2 hold. Then s e S and next(s) = 0 if and only if s € S and 
tiext(s) = 0. 

(b) Assume that ÄO, Ä1 and A3 hold. There are ah a2, ... such that is -axa2...-^ if and 
only if there are a\, d^, ... such that is ^ia^...-^. 

Proof (a) If s 6 5 and next(s) = 0, then s e S by S c S, and next(s) = 0 by Ä0. If s e 
S and next(s) = 0, then hext{s) = next(s) n Ä(s) = 0. It remains to be shown that if s e S 

->-> & 
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Figure 2 Two parallel compositions with possible reduced LTSs 

and nejtr(j) = 0, then s e 5. We will show that if next(s) = 0, s e S, and s -a1...aII-> j 
where n > 0, then there are s\ a, and a\, ..., a'n_x such that s ki-^ S' and S' -a\...a'n_x-* s. 
The claim s e 5 follows from this and the fact that w e S by "reversed" induction on n. 

If i' -nflj...an-> j, then there are sQ, ..., sn such that s0 = s, sn = s, and s0 -ax-+ sx 

-a2~* ■ ■ ■ ~an~¥ sn- When n > 0, we have s0 -ax->, and Ä0 guarantees that there is some a 
such that s0 ^-a^>. If none of a u ..., an belongs to Ä(sQ), then sn -a-> by Ä2, which is a 
contradiction with next(s) = 0. There is thus \<j<n such that a; € Ä(J0). By choosing the 
smallest such; we obtain a, g ÄO0) for 1 < i <;'. Now Ä1 implies the existence of s'0, ..., 
s'j_i such that s0 -ki^ s'Q,s'0-ax...aj_x-+ s'j_x, and Sj_{ = Sj. We may choose S' = s'0, a = ajy 

a\=ah...,a'j_x= ahh and a) = aj+h ..., a'n_x = an. 
(b)The "if'-part is obvious from Ä c A. To show the "only if part we will show that 

if s e S and s -a^...-*, then there are S', a, and a\, d2, ... such that if -ki-^ s' and 
S' -fljfl2-..-». The claim follows then by induction. 

Let SQ,SI,... be chosen such that s0 = s and s0-a\-^ sx -c^-* • • • • If mere ls aJ sucn 

that a;- e ÄO0) and a, <£ Ä(sQ) when 1 < 1 <j, then Ä1 implies the existence of SQ, ..., jj_j 
such that s0 ^J-^ s'0 and s'0 -a{.. .o/_i-> JJ_j -0/+10/+2- • •->, where 5J_! = Sj. Otherwise Ä0 
and A3 ensure the existence of an a and s' such that sQ ^-^ 5' -aia2.. .->.    D 

Without additional assumptions about the selection of stubborn sets, the stubborn set 
method does not guarantee much more than Theorem 3.4. This is because of two reasons. 

Firstly, when a transition is "moved to the front" by Ä1, the ordering of actions 
changes. As a consequence, all possible orderings of visible actions are not necessarily 
included into the reduced LTS. This may lead to the omission of traces, stable failures, and 
so on. For instance, if both a and b are visible in Figure 2, then tr{Lx II L£) = {e, a, b, ab, 
ba}. (In all LTS figures in this article, the alphabet of an LTS is exactly the set of labels of 
its transitions. Furthermore, a, b and c are visible, and u and v are invisible.) It is possible 
that the stubborn set used in the initial state is {a}. Then the dashed transitions are left out 
of the reduced LTS, and its traces are {e, a, ab}. 

Secondly, it is even possible that some action is ignored in the sense that it does not 
occur at all in the reduced LTS although it is enabled. Consider the system L3 II L4 in Fig- 
ure 2. If Ä(is) = {w}, then the stubborn set method investigates only the transition 
is -«-» is. But this transition takes the system back to a state that has already been investi- 
gated, so the method terminates. Intuitively, the justification for not investigating a ini- 
tially is that a is independent of w, so the occurrence of a may be postponed until u has 
occurred. But in this example, u can occur an infinite number of times. By postponing the 
occurrence of a until u is no more enabled, the stubborn set method postpones a forever. 

4. Preserving Trace Equivalence 

Throughout this and the following two sections, let L = (S, T.v Z;, A, is) be an LTS 
such that all of its states are reachable from is, Ä a stubborn set generator for it, and L = 
(5, Zy E/, A, is) the resulting reduced LTS. 
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In order to prevent the stubborn set method from changing the ordering of visible 
actions, we introduce an additional condition for the selection of stubborn sets. The condi- 
tion requires that either all enabled actions in the stubborn set are invisible, or the set con- 
tains all (both enabled and disabled) visible actions. 

(A4)   For every s €. S, either l.v n A'(s) n next(s) = 0 or ~LV c A'(s) (or both). 

It is clear from AcA that triL) c tr{L). The system L3II L4 in Figure 2 demonstrates 
that A4 is not sufficient for ensuring that tr{L) c fr(L). A4 suffices, however, for showing 
that sfail(L) c sfail(L). 

Lemma 4.1 If ÄO, Äl, Ä2 and A4 hold, then sfail(L) c sfail(L). 

Proof Let (a, A) e sfail(L). There are n > 0, ay, ..., a„e2 and s0, ..., sne S such 
that SQ = is, s0 -ay-* ... -an-+ sn, vis{ay...an) = a, and next(sn) c Ey- A. We will show 
for increasing values of m that there are s0 m, ..., sn m e S and a permutation aj m, ..., 
an,m of al> •••• a« such that s0,m = "> tym ^l.nT* ••• ^m.m"^ Vm -^m+Um^ ••• 
-an m-¥ sn m, vis(ay m.. .an m) = a, and .?„ m = sn. The biggest value of m for which this 
will be shown is at most n, and it has the property that am+y m,..., an m e E/, iiext(sm m) c 
E^ and next(sm m) nA = 0. This implies that vis(ay m...am m) = a and (a, A) e sfail(L). 

The claim becomes valid for m = 0 if we choose SQQ = s0 = is, st 0 = s,-, and a,- 0 = a,- 
for 1 < «' < n. For the induction step, assume that the claim holds for m. Consider the situa- 
tion where 

(*)   Oj me Ä(sm m) for some m + 1 <j < n, and akm « A'(iOT m) for m + 1 <k<j. 

If (*) holds, then Ä1 guarantees the existence of sm+l m+l, ..., sn m+y such that 
sm,m:laj,m~:* sm+l,m+l> Vm+1 = sn,m' an(^ ^m+l.m+l "^/n+l.m+l-* ••• ~an,m+l~^ sn,m+b 
where the sequence am+2,m+l---an,m+l 's obtained from am+y m...an m by removing ay- m. 
We define am+1 m+1 = a;- m, J0 m+1 = 50jm, and st m+l = skm and afc m+l = akm for 1 < fc 
<m. lfajm e Z,, then clearly vis(ay m+l...anm+y) = vis(ay m...anm). Otherwise ajm e 
Y.v n A'(5m m) n next(sm m). By A4, Sv c Ä(jm OT). Thus by (*) ak m i I,v for m + 1 < k < 
j, and v/5(fl! m+i-..an m+]) = vis(ay m...an m). Therefore, the induction step follows, if we 
can show (*). 

If Ä(sm m) contains some enabled invisible action a, then s„ -t-a-h, because next(sn) c 
Zy So Ä2 implies (*). If all enabled actions in Ä(sm m) are visible and at least one of 
am+y m,..., an m is visible — let it be called av m —, then m < n. Thus next(sm m) ^ 0 and 
A(sm m) contains an enabled action by Ä0. Because it is visible, A4 implies ZyCÄ(jm m). 
Therefore, av m e Ä(sm m), and (*) holds for some m+ 1 <j < v. 

If all enabled actions in Ä(sm m) and none of am+y m,..., an m are visible, then m has 
reached its biggest value. We have all parts of the claim except that hext(sm m) n A = 0. 
To obtain a contradiction, assume that a e hext{sm m) n A. Because next(sn) c Sy- A, we 
have a g next(sn), and Ä2 guarantees that at least one of am+l m, ..., an m is in Ä(sm m). 
Let afc m be the first of them. Then Ä1 implies that akm is an enabled invisible action in 
Ä(sm m), a contradiction. Thus next(sm m)r\A = 0 holds.    D 

To preserve all traces, it is sufficient to add a condition that guarantees that visible 
actions are not ignored for "too long". It suffices to require that for every state in the 
reduced LTS and for all actions that are enabled in that state, it is possible to reach a state 
in the reduced LTS such that the action is in its stubborn set. 

(Ä5)   VseS-.Vae next(s): 3 s' e 5: s ^>* s' A a e A(s'). 
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Theorem 4.2 If ÄO, Al, A2, A4 and Ä5 hold, then tr(L) = tr(L). 

Proof It is clear from AcA that tr(L) c tr{L). To prove that tr(L) c tr(L), assume 
that 0 e tr{L). There are n > 0and alt ...,ane £such that is-aj...a„-> and vis(aj...a„) = 
a. We will show for increasing values of m the existence of sm, ä\, ..., äm, and a\, ...,a'k 

such that is ^-äy...äm-^ sm -a\...a'k-> and vis(äi...äma\...a'k) = G. We let m grow until it 
reaches such a value that vis(a\...a'k) = £, implying that a = v«(äj...äOT) e tr(L). 

The claim becomes valid for m = 0 if we choose JQ = is, k = n, and aj = a,- for 1 < i < 
n. Assume that the claim holds for an m such that vis(a\...a'k)^z. We consider two cases. 

(a) If at least one of a\, ..., a'k belongs to Ä(sm), then, like before, Ä1 guarantees the 
existence of ay and sm+l such that sm -ki]-^ sm+\ and sm+y -a\...a.j_iaj+l...a'k—>. Further- 
more, vis{a'ja\...a'j_\a'j+i...a'k) = vis(a\...ak) due to A4. So the claim is valid for m+l. 

(b) Assume that none of a\, ..., a'k belongs to Ä(sm). At least one of them is visible 
because vis(a\...ak)*e. Since sm-a\->, Ä0 gives next(sm) nÄ(sm) * 0. A4 implies that 
if a e next(sm) n Ä(sm), then a is invisible, because otherwise the visible one of a\, ...,a'k 

would belong to Ä(sm). Furthermore, if sm+i is any state such that sm-a—>sm+l, then 
sm -^-^ sm+l because a e Ä(sm), and Ä2 implies that sm+l -a\...a'k—>. Again, the claim is 
valid for m+l. 

It remains to be proven that m may reach such a value that vis(a\...a'k) = e. The case 
(a) clearly makes progress towards such a value, but the case (b) does not. We will now 
show that it is possible to ensure that the case (b) occurs at most a finite number of times 
without an intervening (a). Ä5 guarantees that there is s' such that sm -^* s' and a\ e Ä(s'). 
Let S'Q ^i"^ j'i -bi-2* • • • -bh^ Sfi ^e some shortest path from sm to s' in L. No assump- 
tions about the choice of a from next(sm) n Ä(sm) were made in the case (b). So we may 
choose a = b\ in S'Q, a = b^ in jr'i, and so on, until a state s) is reached such that the condition 
of case (a) holds. This happens after h steps at the latest.   D 

A practical and reasonably fast implementation of Ä5 for finite reduced LTSs was 
described in [Val91]. It is based on recognising the terminal strong components of L. A 
non-empty set of states ST c 5 is a terminal strong component, if for every s e ST,s -^* s' 
if and only if s' e S-p. The idea is to choose an arbitrary state from each terminal strong 
component and ensure that every action that is enabled in it occurs somewhere in the com- 
ponent. The algorithm is built upon Tarjan's strong component algorithm [Tar72, 
AHU74]. (Tarjan's algorithm suits the task better than the more modern strong component 
algorithm described in [CLR90], for instance.) 

Instead of Ä5, the following condition could be used. It takes into account the fact 
that only visible actions are important for traces, at the price of slightly more complicated 
or less efficient implementation. It may thus save states when the occurrence of some 
invisible enabled action does not lead to occurrences of any visible actions. It is more 
complicated to implement than Ä5, because it is easy to check whether an action occurs 
anywhere in a terminal strong component, but somewhat more complicated to ensure that 
a disabled visible action is taken into account in some state of the component. The main 
reason for mentioning Ä5' is that it has an interesting relationship with the condition Ä7 
presented in the next section. 

(Ä5')  V s e S: V a 6 Sy: 3 / e 5: s ^* s' A a e Ä(s'). 
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5. Preserving CSP- and CFFD-Equivalence 

Consider the system L3 IIL4 in Figure 2. If a is visible and u is not, then its divergence 
traces are e and a. The conditions imposed so far allow choosing {a} as the stubborn set of 
the initial state of the system. The resulting reduced LTS does not have e as a divergence 
trace. As a consequence, the conditions Ä0 to Ä5 are not sufficient for guaranteeing CSP- 
or CFFD-equivalence between the full and reduced LTS. 

Regarding CSP-equivalence, only the minimal divergence traces are important. In 
order to preserve them, a condition is formulated that requires the presence of an enabled 
invisible action in the stubborn set, if such an action exist. 

(Ä6)   For every se S,ifL,n next(s) * 0, then Ä(s) nl,,r\ next(s) * 0. 

Lemma 5.1 If ÄO, Ä1, A3, A4 and Ä6 hold, then mindiv(L) = mindiv(L). 

Proof Obviously mindiv(L) c divtiiL). The claim follows if we show that also min- 
div(L) c divtiiL). If a e mindiv(JL), then there are ax 0, a2Q,... such that is -a^ya^o.. .-> 
and v«(ali0a2fo---) = <J- Let s0 = is. We will show that for every m > 1, there are sm, äm, 
and alm, a2>m, ... such that s0 ^äx^> sx ^ä2^ ■■■ ^nT* sm> •ym-al,^a2,m---^- and 

vis(äxä2...ämax ma2m...) = <*. As a consequence, vis(äxä2...) e divtiiL). Furthermore, 
vis(äxä2...) e divtiiL) and vis(äxä2...) < a e mindiv(L), so vis(äxä2...) = a. 

Assume that the claim holds for m. 
If at least one of aXm,a2m,... e Ä(sm), then the existence of sm+l, äm+x, and ax m+x, 

a2,m+l> ••• follows from Ä1, and A4 guarantees that vw(ä1ä2...äm+1a1>m+1a2iW+1...) = 
vis{älä2...ämax ,ma2m...\ 

Assume now that none of ax m, a2m,...e Ä(sm). Ä0 implies that there is some äm+x 

e Ä(sm) n next(sm). If ax m e I,v then äm+x e Z7 due to A4. If ax m e S/( then Ä6 guaran- 
tees that there is some äm+x e Ä(sm) ri^n next(sm). In both cases, A3 gives the required 
sm+l and ax m+h a2m+x     D 

Lemma 5.2 If ÄO, Ä1, Ä2, A4 and Ä6 hold, then sfail(L) = sfail(L). 

Lemma 4.1 guarantees that sfail{L) c sfail(t). To show sfail(L) c sfail(L), let (a, A) 
e sfail(L). There are s e S and ax, ...,ane S such that is -ax...an-> s, vis(ax...an) = a, 
and next(s) cEv-A. Assume that s -a->. Ä6 and next(s) e I.v imply that a is visible. 
Thus 2)v c Ä(s) by Ä0 and A4. Therefore, a e Ä(s) and a e /ie;tf(s). As a conclusion, 
next(s) c /ie^f(j), and (a, A) e sfail(L).    □ 

The condition Ä6 allows us to strengthen the proof of Lemma 4.1 a bit. Namely, if it 
is assumed, then the reduced LTS contains all reachable stable states of the full LTS. That 
is, if ÄO, Al, Ä2, A4 and Ä6 hold, is -»* s, and next(s) c l,v then s e S. 

It is now straightforward to show that Ä0, ..., A4 and Ä6 suffice to preserve CSP- 
equivalence. 

Theorem 5.3 If ÄO, Al, Ä2, A3, A4 and Ä6 hold, then CSPfail(L) = CSPfail(L) and 
CSPdiviL) = CSPdiv(L). 

Proof Lemmas 5.1 and 5.2 give mindiv(L) = mindiv(L) and sfail(L) = sfail(L), from 
which CSPdiviL) = CSPdiv(L) and CSPfail(L) = CSPfail(L) follow by Definition 2.6.   D 

Notice that Ä5 was not needed for preserving CSP-equivalence. This is because an 
action may be ignored only after a divergence trace, and CSP-equivalence does not need 
any information about the behaviour after a divergence trace. When implementing a stub- 
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Figure 3 A reduced LTS obeying Ä0 to Ä6 

born set method for CSP-equivalence, it is not necessary to continue analysis from states 
that have proven divergent. 

The conditions Ä0 to Ä6 are not sufficient for preserving CFFD-equivalence, not 
even if Ä5 is included. This can be seen from the system L5 II Lg in Figure 3. In it, a is vis- 
ible, and u and v are invisible. The stubborn set used at the right-most state in the top row 
is {v}. The full LTS has the infinite path is -uav<0—», so a e divtriL^ II L6). However, a & 
divtriL). 

In order to preserve CFFD-equivalence, a new condition is introduced. It requires 
that every infinite path of the reduced LTS contains at least one state whose stubborn set 
contains all visible actions. Because the start state of the path needs not be the initial state, 
the condition may be applied also to any suffix of an infinite path. Thus all infinite paths 
should have infinitely many states with all visible actions in their stubborn sets. 

(Ä7)   For every s0, ^I» ... e S and aj, a2, ... e £, if s0 ^j-^ S{ ^-^ •••» men mere is 

i > 0 such that I.v c A(s,). 

Lemma 5.4 If ÄO, Ä1, A3, A4 and Ä7 hold, then inftr(L) = infiriL). If, furthermore, 
Ä6 holds, then divtriL) = divtriL). 

Proof The parts divtriL) c divtriL) and infiriL) c infiriL) are obvious from A c A. 
To prove inftr(L) c inftriL) and divtriL) c divtriL), let s0 = is and let a\ 0, a2>o> • • • be such 
that SQ-01,002,0"--* an<i v,J(öi>o

fl2,o-) = CT e divtr{L) u inftr{L). We demonstrate for 
every m > 0 the existence of sm, äm, and a\ m, a2,m' ... such that s0 ^'j-^ Sj ^-^ ••• 

Assume that the claim holds for m. If £y n Äism) n nextism) = 0, then Ä0 guarantees 
that hext(s„^ * 0, and, depending on whether any of a^ m, a2 m, ... e A(sm), either Ä1 or 
A3 yields Jm+j,äOT+i, and ajOT+i,a2,OT+l' ••• with the required properties. If I,vnÄ(sm)n 
next(sm) * 0 and at least one of ax m, a2 m,... e Zy then A4 guarantees that a^m e A'Om) 
for some j > 0, and Ä1 yields sm+1 and so on. If Zy n Ä(im) n nextism) * 0 and none of 
«1 m, a2 m,... e ^v* then a e divtriL). Ä6 and sm -a\>m-^> imply that there is a e Äism) n 
nextism) n Z/. Again, either Ä1 or A3 yields sm+y etc. 

Because v«(ä'iä2...ämaj<ma2jm.-.) = CT f°r every m > 0, we have visiä\ä2...) S a. 
Because condition Ä7 guarantees that Zy c A(5m) for infinitely many m, it is not possible 
that Ws(ä"iä2...) < a. Therefore, visiä\ä2...) = a, and the claim has been proven.   D 

Theorem 5.5 If Ä0 to A4 and Ä6 and Ä7 hold, then L and L are CFFD-equivalent. 

Proof Lemmas 5.2 and 5.4 give sfail(L) = sfail(L), divtriL) - divtriL) and inftriL) = 
infiriL). That stableiL) = stable(L) follows directly from A c A and Ä6.   D 

Practical implementations of A4, Ä6 and Ä7 have been described in [Val92a, 
Val92b]. In them, A4 and Ä6 are taken into account in the construction algorithm for stub- 
born sets. To obtain best reduction results, the implementation tries first to find a stubborn 
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Figure 4 A reduced LTS obeying Ä0 to Ä7 

set with no enabled visible actions. If the construction of stubborn sets is based on an inde- 
pendency relation, as is often the case, then A4 can be also implemented simply by treat- 
ing all visible actions as not independent of each other. In the context of Theorem 3.2 this 
could be done by adding to the parallel composition one more process L0 = (50, Zvo, Z/0, 
AQ, is0) such that50 = {is0), X^ = Zn u ... u ZV#I> Z/0 = 0, and A0 = S0xI.vox S0. 

The implementation of Ä7 in [Val92a, Val92b] assumes that the reduced LTS is finite. 
Under that assumption, Ä7 becomes equivalent to the requirement that every cycle of the 
reduced LTS contains a state whose stubborn set contains all visible actions. (A cycle of L 
is a set {sh ..., sn) of states such that there are actions ax, ..., an such that Sj -a2~» s2 

-a3-> ... -a„-> sn and sn -a{-^ sv) The articles [Val92a, Val92b] describe an efficient 
technique for detecting and repairing cycles which do not satisfy the above requirement. 
An alternative, not equivalent, implementation of Ä7 can be found in [GK+95], for 
instance. 

Ä7 has an interesting relationship with Ä5'. A deadlock state can be considered as a 
state where all actions are in the stubborn set. Therefore, Ä7 claims, in essence, that for 
any state in the reduced LTS, a state where all visible actions are in the stubborn set is 
eventually reached. Ä5' claims that for any state in the reduced LTS and any visible 
action, it is always possible to go into a state where the action is in the stubborn set. Ä7 is 
thus strictly stronger than Ä5'. This added strength was needed to guarantee that all infi- 
nite executions have a correct representative in the reduced LTS. 

6. Preserving Branching Bisimilarity 

A method that is close to the stubborn set method was applied in [GK+95] to the ver- 
ification of formulae in the CTL*-X logic and to constructing reduced state spaces that are 
branching bisimilar with full state spaces. In this section we translate the method into the 
framework of this article. We give it a new correctness proof that is simpler than the origi- 
nal one and allows non-deterministic transitions.2 

We first demonstrate that Ä0 to Ä7 do not guarantee that the reduced LTS is even 
weakly bisimilar with the full LTS. Figure 4 shows a counter-example. In it, a, b and c are 
visible and u is invisible. The full LTS contains a state where the next visible action may 
be b or c but not a, but the reduced LTS does not contain such a state. 

It is apparent from the above counter-example that a very strong condition is needed 
to preserve weak and branching bisimilarity. So we require that if a stubborn set does not 

2During the POMIV '96 workshop it turned out that [Pel96b] contains a very similar proof to 
the one presented in this section. The [Pel96b] and [GK+95] proofs cover also the preservation of 
CTL*-X that the proof in this section lacks, but they assume deterministic structural transitions. 
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Figure 5 Illustration of super-determinism 

contain all actions, then it contains only one enabled action, and (unlike the «-action in 
Figure 4) an occurrence of that action may have only one outcome. Furthermore, this 
action should be invisible and commutative with all other enabled actions, and retain its 
nice properties when other actions occur. Except invisibility, these requirements are for- 
mulated in the notion of super-determinism. 

Definition 6.1 Action a is super-deterministic in state s0, if and only if for every 
«>0, si,.... sn e S, andaj, ...,an e Z- [a] such that sQ-ai~* ... -an-* sn, there are s'Q, 
...,s'n such that 

• S'Q-ay—> ... -an->s'n and 

• for every 0< i<n, s,—a-»sjand { se S I Sj-a—>s } = {s^}.   □ 

Super-determinism is illustrated in Figure 5. The following is easy to check from 
Definition 6.1. 

Lemma 6.2 If a is super-deterministic in s and s -a'-* s' where a' * a, then a is 
super-deterministic in /.   □ 

The branching-bisimilarity-preserving stubborn set method requires that a stubborn 
set either contains all actions, or contains only one enabled action. In the latter case, the 
action should be super-deterministic and invisible. 

(Ä8)   For every s e S, either Ä(s) = Z, or there is a e If such that Ä(s) n next(s) = [a} 
and a is super-deterministic in s. 

Theorem 6.3 If Ä5 and Ä8 hold, then L and L are branching-bisimilar. 

Proof We will show that the following relation "-" is a branching bisimulation 
between L and L: 

s ~ s if and only if there are n > 0, % ...,s„e S, andaj, ...,ane 2/ such that s = s0, 
sn = s,s0-ai-*... -an-> sn, and a, is super-deterministic in J,_I for 1 < i < n. 

It is obvious from the definition that 5 - s for every s e 5. Therefore, any transition 
s ^a-^* s' of L can be simulated by the sequence s -a\.. .a„—> s -a—> s' of L. It remains to 
be proven that any transition sQ -a-* S'Q of L can be simulated by L. 

If a = a: for some 1 <j<n and a * a,- for every 1 < i <j, then a is invisible. Because 
of the super-determinism of ay, ..., a}_y in 50, ..., sy_2, there are s\, ..., s'j_y such that 
S'Q -ay-* ... -tf/_i-> J/_i and st -Oj—> s't for 1 < i <j and aj,..., aj_y are super-deterministic 
in JQ» •••> sj-2- Furthermore, s'j_y = Sj because aj is super-deterministic in sj_y. As a conse- 
quence, s ~ S'Q, and L may simulate the transition SQ -a-> s'Q by doing nothing. 

If a ^ a, for every 1 <j<n, then the super-determinism of aj, ..., a„ in SQ, ..., s„_j 
guarantees the existence of s\, ..., s'n such that sn -a—» s'n, SQ-ay—> ... -an—> sj,, and a1( 

..., a„ are super-deterministic in s'0, ..., ^_j. If a £ Ä(sn), then by Ä8 there are sn+i, s'n+i, 
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and an invisible an+l such that sn ^n+l^ sn+l -a-* s'n+h s'n -a„+1-> s'n+h and an+l is 
super-deterministic in sn and s'n. Moreover, there are only one an+l and sn+l such that 
sn ^n+l^ Vt-l- BY induction, if a <2 Ä(sn), ..., Ä(sn+k_y), then by Ä8 there are sn+l, ..., 
sn+h sn+l> •••. s'n+b and invisible an+l, ..., an+k such that sn ^„+1^ ... ^„+^ sn+h 
sn+k -a-> sn+k< s'n -^/H-I

-
* ••■ -tf/i+jt-» s'n+b and an+h •••> a/j+jt a16 super-deterministic in 

sn< •••> 5n+jt-i and in 4, ..., ^+yfc_!. Moreover, sn+k is the only state that can be reached 
from sn by k steps in L. Ä5 guarantees that a e A{sn±k) for some A:. For that k, 
sn+k ^^ sn+b sn+k ~ s0> ancl sn+k ~ s0- As a consequence, L may simulate the transition 
50 -a-> s'0 by the sequence sn ^n+l-^n+k^ sn+k ^^ s'n+k- For future use we point out 
that sn+i ~ s0 for every 0 < i < k.    D 

The following fact is worth mentioning here. It guarantees, among other things, that 
L simulates all divergence traces of L by divergence traces, instead of doing nothing. As a 
consequence, L preserves certain branching-time liveness properties of L. 

Theorem 6.4 Assume that Ä5 and Ä8 hold. If s0 -a^ s{ -a2-+ ... and s'Q ~ s0, 
where s'0 e 5, then there are s\, s'2, ... and a\, a2, ... such that SQ^'^ s\ ^^ ••• and 

vis(ala2...) = vis(a\a2...). Furthermore, for every i > 0 there is; > 0 such that sj - s,-, and 
for every; > 0 there is 1 > 0 such that s'j ~ Sj. 

Proof Consider the construction used for showing that L can simulate transitions of 
L. When it is applied repeatedly to the transitions s0 -a{-> sh sy -a2-> s2, and so on start- 
ing 
am 

guarantees for each i > 0 the existence of an action sequence p, such that st -p,—> s'^y Let 
«, be the length of p,. The construction implies that nt = n0 + k(i) -1* for every i. Because n, 
cannot become negative, k(i) has to grow without limit when i grows without limit.    D 

The condition Ä8 is not difficult to implement. The following theorem gives a suffi- 
cient structural condition for super-determinism in the spirit of Theorem 3.2. It requires 
that all component LTSs that synchronise on the super-deterministic action can perform 
next only that action and in only one way. Ä(s) may be implemented by seeking for a 
super-deterministic invisible action a and choosing Ä(s) = {a}. If that fails, then one 
should choose Ä(s) = S, that is, all (enabled) actions should be used for constructing the 
immediate successors of the state. 

Theorem 6.5 Let Lx II ... II Ln be a parallel composition of the LTSs Lx = (Sh TVh 
2/l> Al' "l)> •••> Ln = (sn> £V/i> £//!• A„, «„), and let (sh ..., s„) -ö-» (s\,..., s'n). Assume 
that for every 1 < i < n such that a e £,-, and for every a' e D, and / e 5„ st -tf'-», s' 
implies a' = a and s' = s't. Then a is super-deterministic in (slt..., sn).   D 

A "terminal strong component" technique for the implementation of Ä5 when the 
reduced LTS is finite was mentioned in Section 4. In the case of branching bisimilarity, if 
Ä(s) * 2, then s has only one successor state in the reduced LTS. Therefore, strong compo- 
nents that violate Ä5 collapse to cycles. This simplifies the detection of strong compo- 
nents that violate Ä5. Indeed, they may be detected and repaired efficiently with the 
techniques in [Val92a, Val92b] that were intended for implementing Ä7. For repair, it is 
necessary to put all enabled actions to the stubborn set, instead of all visible actions. 
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7. Conclusions 

We described several methods for constructing reduced labelled transition systems 
that are equivalent with the corresponding full LTSs. We covered "deadlock equivalence" 
(the reduced LTS has exactly the same deadlock states as the full one), trace equivalence, 
CSP-equivalence, ChhD-equi valence, and branching bisimilarity. The methods are based 
on requiring that certain conditions are satisfied by the stubborn sets used in the states of 
the reduced LTS (ÄO, Äl, Ä2, A3, A4, Ä6, Ä8), and by the reduced LTS as a whole (Ä5, 
Ä7). The condition Ä8 implies ÄO, Äl, Ä2, A3, A4, and Ä6; and Ä7 implies a variant of 
Ä5. Table 1 summarizes the conditions required by each method. 

Table 1: Conditions required by the methods in this article 

Ä0 Ä1 Ä2 A3 A4 Ä5 Ä6 Ä7 Ä8 

deadlocks X X X 

trace X X X X X 

CSP X X X X X X 

CFFD X X X X X X X 

branching bisim. X X 

Hundreds of process equivalences have been described in the literature, and we 
examined only a small minority of them. Perhaps the most important equivalence that we 
did not treat separately is the weak bisimilarity of the CCS theory [Mil89]. Because 
branching bisimilarity implies weak bisimilarity, the method for branching bisimilarity 
preserves also weak bisimilarity. On the other hand, the more a method preserves, the less 
reduction it gives. A method that preserves weak bisimilarity but not branching bisimilar- 
ity might therefore lead to better reduction results than the use of the branching bisimilar- 
ity method for weak bisimilarity. Unfortunately, the example in Figure 4 leaves little hope 
of finding such a method. 

Most of the numerous equivalences in the literature are based on a small set of ideas. 
If the experience with weak bisimilarity will generalise to many other equivalences, then 
it will not be possible to fine-tune reduced LTS construction methods to each equivalence 
separately. In such a case the methods presented in this article might be near optimal for 
many equivalences that we did not discuss. It is, however, impossible to say at the present 
state of knowledge whether this is really the case. 

Most, if not all, of the conditions Ä0 to Ä8 are difficult to implement in their full gen- 
erality. Therefore, the implementations mentioned in this article give sufficient conditions 
that are often more stringent than absolutely necessary, and alternative implementations 
do not necessarily yield equal results. In Theorem 3.2, "dependency" between transitions 
was analysed at a rather coarse level. It seems possible to devise more and more compli- 
cated structural conditions that correspond to more and more careful analysis. It would 
thus be hopeless to try to find any "best" structural conditions or implementations of Ä0 to 
Ä8. Furthermore, although we attempted to present Ä0 to Ä8 in as abstract forms as possi- 
ble, we failed to capture all possibilities. For instance, [Val91] develops a theory of so- 
called weak stubborn sets, where Ä2 does not hold for every enabled action. Again, it 
seems hopeless to find any "most general" versions of Ä0 to Ä8. 

An important topic not covered in this article is on-the-fly verification. The goal of an 
on-the-fly method is to demonstrate already during the construction of the reduced state 
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space the presence or absence of some property. One could, for instance, monitor for ille- 
gal traces on-the-fly, and stop the construction of the reduced LTS when an illegal trace is 
found. "Ordinary" (i.e. based on constructing the full, not a reduced, state space) on-the- 
fly methods have been developed for several properties. Also the combination of on-the- 
fly and reduced state space methods has been investigated [Val93, Pel96a]. The method in 
[Pel96a] is intended for linear time temporal logic properties, and it was presented in a 
framework with deterministic transitions. [Val93] uses the framework of parallel LTSs and 
non-deterministic actions, but there is some evidence that the methods suggested in it are 
not necessarily optimal. Apparently some more research is needed to find the best combi- 
nation of on-the-fly and stubborn set techniques for process-algebraic verification. 

In the process algebra literature, "reduction" sometimes means the transformation of 
an LTS to a smaller, equivalent LTS. Reduction algorithms in that sense of the word facil- 
itate compositional LTS construction: if each component process of a parallel composition 
is reduced before computing the parallel composition, then a smaller, but equivalent result 
is obtained. This approach may be applied hierarchically for even better results. It is worth 
noticing that the stubborn set method and compositional LTS construction take advantage 
of different aspects of systems, and neither one makes the other unnecessary. That compo- 
sitional LTS construction does not make the stubborn set method unnecessary was demon- 
strated in [Val92b] by analysing an example system taken from [GrS91]. The example has 
9n-2n~2 states, where n is the number of the components of the system. The example had 
been intentionally constructed to demonstrate that ordinary compositional LTS construc- 
tion does not always work well. Indeed, it fails totally by yielding intermediate LTSs that 
are bigger than the full LTS. [GrS91] suggested an advanced compositional LTS construc- 
tion method that relies on some manual guidance, and requires the construction of several 
LTSs from the example. Experimental evidence reported in [GrS91] strongly suggests that 
the biggest of them has 4n + 4 states. The CFFD-preserving stubborn set method is fully 
automatic and requires the construction of only one LTS, and the LTS has 5n states. So at 
least in this case, the stubborn set method beats compositional LTS construction, and com- 
pares favourably with its advanced version in [GrS91]. 
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Abstract 

Partial order reductions are a family of techniques for diminishing the 
state-space explosion problem for model-checking concurrent programs. They 
are based on the observation that execution sequences of a concurrent program 
can be grouped together into equivalence classes that are indistinguishable by 
the property to be checked. Applying the reduction to a description of a 
program results in a reduced state-space that generates at least one represen- 
tative for each equivalence class. When moving to branching models, e.g., as 
in branching temporal logics or process algebras, the execution sequences are 
grouped together into a single tree. In this case, the reduction must also be 
sensitive to preserving the branching points, where executions with a common 
prefix depart from each other. 

1    Introduction 

Total order semantics, also referred to as interleaving semantics, are traditionally 
considered easier to work with, as they lend themselves to simple representations 
and manipulation, e.g., using finite state machines. Partial order semantics is more 
recent in modeling concurrent programs. It is argued by its supporters that it can 
reflect the executions of concurrent systems more accurately, and hence is sometimes 
called true concurrency. In recent years, new research showed several advantages of 
various partial order specification and verification methods over total order based 
methods in terms of efficiency and expressiveness. 

Partial order reduction techniques were developed to alleviate the state-space 
explosion in automatically verifying concurrent programs [32, 9, 12, 11, 33, 28, 29, 
17, 6]. These techniques were integrated in tools such as SPIN [17] and VFSM- 
valid [11]. Using the partial order reduction techniques, it has become possible 
to analyze problems of larger size, which did not lend themselves to automatic 
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verification before. The simplicity of the principles behind these methods suggest 
that they can be integrated into any state-based automatic verification tool. 

In this paper we survey a family of partial order reduction methods. We show 
how equivalence relations can be used to group together sequences that are indis- 
tinguishable with respect to the specification. This allows to construct a reduced 
state-space for the checked system. A reduced state-space for a concurrent sys- 
tem contains only representative sequences from each equivalence class rather than 
all the sequences in the class. An algorithm for deciding whether a specification 
cannot distinguish between equivalent sequences for such an equivalence relation is 
dticribed. We also show how this approach can be extended to deal with branching- 
time specification. 

We concentrate here on the reduction strategy called ample sets method [28, 29, 
6]. We will mention, but not survey, related methods for partial order based ver- 
ification and model-checking, including faithful decompositions [19, 20], stubborn 
sets [32. 33], persistent and sleep sets [9, 12, 11]. These methods share the idea of 
selecting only a subset of the successors from a given program state. They differ in 
the details of selecting these subsets, and the properties preserved by the reduction. 

2    Modeling Concurrent Systems 

2.1    State Spaces of Concurrent Systems 

A finite state system T is a triple (5, T, i), where 

• 5 is a finite set of states, 

• T is a finite set of deterministic transitions.   For each transition a € T we 
associate a partial function 5 >-- S, with a domain ena C 5. 

• i € 5 is the initial state. 

The states ena C S are those from which a is executable or enabled. The set 
of transitions enabled at a state s is denoted by enabled(s). When a is enabled 
from s, executing a from s results in the state t = a(s). We will also denote 
this by (s, t) 6 a. Executing the transitions aQai...ai hence obtains the state 
ai(ai-l(...al(a0(t))...)). 

An interpreted system is a triple 2 = (F, P, M), where 

• f = (S, T, i) is a finite state system, 

• P is a finite set of propositions, and 

• M : S *— 1P is the state labeling function. 

In the sequel we will use the term system for interpreted finite state systems. 

The (full) state-space SP{1) of a system I = (?, P, M) where T = (5, T, i), 
is a labeled graph {V, E) such that 
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• V C 5 is the minimal set of reachable states satisfying: 

1. i€V. 

2. If s € V and (5, t) € a € T, then t € V. 

• £ = {*-2-OK«. 0 e a € 7"} 

Thus, the state-space of I contains the states reachable from the initial state 1 
by repeatedly executing the transitions T of I. The label of e = « -^- t is a. 

The transitions sequences generated by I correspond to edge labels along the 
maximal paths of SP(I) that start from the initial state t. Hence, a transitions 
sequence is a finite or infinite sequence of transitions aoai<i2 ... such that there 
exists a sequence of states soS[S2 ... satisfying 

• SQ = 1 [The first state is the initial state.] 

• for each i > 0, (s,, s,+i) € a,. [Each adjacent pairs of states correspond to 
the execution of a transition. We say that sI+i is reached after executing a,.] 

• The sequence is maximal, namely it is either infinite, or ends with a state s 
such that enabled(s) — <t>. 

The states sequence that correspond to a transitions sequence v is denoted by 
states(v). For simplicity, it is possible to assume that all transitions sequences 
are infinite. This can be achieved by adding a new transition a' such that en„< = 
S\Uagre"a. and a' — {(s, s)\s € en„<}. In this case, each state has at least one 
successor. 

Notice that the state-space of a system X can be considered as a more explicit 
representation of I; 1 contains in S all the potential states of J, while SP{1) 
contains in V only the ac/aa/states that can be reached. The partial order reduction 
algorithms are aimed at generating a graph smaller than SP{1) that represents 
enough information about the property that we want to check. 

For each transitions sequence v of SP{1) there is a sequence prop(v) of sets of 
propositions obtained in the following way: if states(v) — s§s\Si..., then prop(v) 
is the sequence A/(so)A/(si)A/(s2) • - •• Thus, there are three languages defined for 
an interpreted system I: 

• The language C(I) C P" of transitions sequences. 

• The language £,tates(Z) C 5"" of states sequences. 

• The language £prop(I) C 2f"" of prepositional sequences. 

A specification for a system I can be given as a language over one of the three 
domains T, S or '2P. Most specifications use transitions or propositional sequences. 
In the rest of this section we will usually treat the latter case; the others can be 
dealt with similarly.   In model-checking, the specification is often given using a 
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regular automaton over infinite words, e.g., as a Biichi automaton, or using a logic, 
such as linear temporal logic (LTL) [31]. A system 1 satisfies the specification 9, 
corresponding to the language L#, where both are using the same set of propositions 
P. ifT£prop(Z) C L.f. Graph-theoretical algorithms [23] can then be applied to state 
space graphs to check that I satisfies -p. 

2.2    Traces and Trace Equivalence 

Using interleaving semantics has a lot of advantages for modeling concurrent sys- 
tems. In particular, its simplicity and use of sequences allows exploiting automata 
and language theory. On the other hand, interleaving semantics is often criticized 
for distinguishing between entities that are basically the same. Namely, it can dis- 
tinguish between executions which differ from each other only by the order of some 
concurrently executed transitions. This order is largely artificial. Trace semantics 
groups transitions sequences into equivalence classes, allowing a higher abstraction 
of the specified system. One can exploits this for model-checking properties that 
do not distinguish between different sequences that are trace-equivalent. 

A concurrent alphabet is a pair (T, D), where T is a finite set (representing 
transitions in our context), and D C T x T is a symmetric and reflexive relation 
called the dependency relation. 

We define trace equivalence in several steps: 

1. Define the relation =C T" x T" such that v = v' iff v = v' or v = uabw, 
v' — ubaw for some u,w €T~, (a, b) £ D. 

2. Define the trace equivalence [24] relation for finite sequences as the reflexive 

and transitive closure of =. Thus, v = w iff one can obtain v from w by 
repeatedly commuting the order of adjacent independent letters. 

3. Define trace preorder relation C among infinite strings as follows: tCt'ifT 
for each finite prefix u of v, there exists a finite prefix u' of v' and a finite 
string w such that uw = u'. 

4. Define trace equivalence among infinite strings [2] such that v = v' iff v C t/' 
and v' C v. 

Thus, for the concurrent alphabet ({a, 6}, {(a, a), (6,6)}) we have aa66 = a6a6, 
aa66 = 66aa, aaab" C (abf, and (ab)" = (aabf. 

Traces are then the equivalence classes of the relation = over finite or infinite 
strings. 

To achieve that if v = w, then v is a transitions sequence of I iff w is a transitions 
sequence of J, we enforce the following two conditions for independent transitions 
(a, 6) £ D: 

Dl if 5 € en„, then s € en4 iff a(s) € en»,   [executing a does not affect the 
enabledness of 6]. 
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D2 If a € ena Den,, then a(6(s)) = 6(a(«)). [When both a and 6 are enabled, 
executing them in either order results in the same state]. 

2.3 Stuttering Equivalence 

Denote E00 = T." U5>'. The stuttering removal operator ; : D00 ►- E°° applied to a 
string v replaces every maximal finite subsequence of identical elements by a single 
copy of this element. For example, l(aabaaacc) = abac, l(aabaac") = abac". 

Two sequences v, w will be considered stuttering-equivalent iff* 31« = %w. We de- 
note this by v — w. Lamport argued [22] that a specification should not distinguish 
between two prepositional sequences that are stuttering equivalent. 

2.4 Fairness Constraints 

The total order semantics or interleaving semantics of a program identifies transi- 
tions (or states) sequences as executions of a program. Sometimes, the transitions 
sequences that are considered to be executions are constrained using a fairness 
assumption. Such a constraint can be given as a language R. If a fairness assump- 
tion R is imposed, only sequences that are fair are considered to be execution of a 
system. Hence, the fair transitions sequences £R(J) of a system I are £(I) f"l R. 

The following fairness assumption is in particular natural when using partial 
order semantics: 

F-fairness. If a transition a is enabled from some state reached in a fair execution 
sequence, then some transition that is dependent on a must appear later in 
this sequence. 

This fairness assumption was shown in [21, 27] to be equivalent to restricting 
the set of sequences to those that are maximal with respect to the relation C. 

2.5 Syntax and Semantics of CTL", CTL and LTL 

Let P be a finite set of propositions. The set of CTL* state and path formulas are 
defined inductively: 

51. every member of P is a state formula, 

52. if ip and ip are state formulas, then so are -v and <p A ij>, 

53. if <p is a path formula, then Aip is a state formula, 

PI. any state formula <p is also a path formula, 

P2. if ip, il> are path formulas, then so are <p A ip and -><p, 

P3. if (p, ifr are path formulas, then so is <pl}il>. 
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The modal operator A has the intuitive meaning: "for all paths". U denotes the 
standard strong "until". CTL" consists of the set of all state formulae. The follow- 
ing abbreviations will be used: E^> = ->A-y, F^? = trueU<r>, G,? = ->F-y . 

The logic CTL is obtained by restricting the stale modalities E and A and the 
path modalities U, F and G to appear paired, i.e., in the combinations EU  EF  EG 
AU, AF and AG. 

The logic LTL is obtained by restricting the set of formulas to the form A^, 
where ^ does not contain A and E. We write ^ instead of A^J, when confusion is 
unlikely. We purposely avoided using the nexttime operator X, which can express 
that a change is made from one specific state to another. (The use of the nexttime 
operator can defy the ability to exploit partial order reduction.) 

A model for CTL* is a quadruple M = (V, E, i, M), where V are states. E are 
edges, i e V is a distinguished initial state, and A/ is an interpretation function, 
mapping V into subsets of a set of propositions P. The labels on the edges in 
the definition of the graph are only used for the benefit of the description of the 
suggested algorithm, but are ignored by the interpretation of the temporal logics. 

Denote by x = («o.*i ) a maximal path (i.e., a path that is either infinite 
or cannot be extended) of 5, starting at s0 6 V. Denote the first state of x by 
first(x). The suffix of x, starting from state s< will be denoted x<. The satisfaction 
of a formula ^ in a state s of V is written M, s \= <p. or just s (= <p. It is defined 
inductively as follows: 

51. st=q\ffqeM(s), for g 6 P, 

52. s ^= -><p iff not s^-tp,    s^=<pAipiKs\=<p and s |= n\ 

53. s ^= Af iff x f= if for every maximal path x starting at s, 
PI. x \= tp iff first(n) ^= <p for any state formula <p, 

P2. x |= -iyj iff not ir £= <p,    x£=^A^iffx^=^ and x (= t% 

P3. x (= v?U^ iff there is an i > 0 such that x, f= i- and x, |= <p for all 0 < j < i. 

When using a fairness assumption to limit the execution sequences, we replace 
"path" by "fair path" in the above definition. (As usual, we require that a fairness 
assumption satisfies that an infinite sequence is fair iff each suffix of it is fair). We 
write M \= <p iff M, i (= <p. Notice that for an LTL specification Ayj, M (= A*> iff 
every (fair) sequence of M satisfies <p. 

3    Verification Using Representatives 

We are interested in generating a reduced state-space for a system I (without having 
to construct first the full state space). Although we want the reduced state-space 
to be as small as possible, it must still contain enough information to preserve 
the checked property. The aim is that the model-checking algorithm would be 
applicable to the reduced state-space instead of the full one. Besides preserving the 
truth of the checked specification, the reduced state-space needs also to be able to 
supply a counter-example in the case that the specification does not hold for the 
checked system. 
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3.1    Ample Sub-state-spaces 

A sub-state-space S for a system 2 = {T. P, M) is a labeled subgraph (V, E') of 
SP{1) = (V, E) such that 

• t € V'' [V includes the initial state], 

• V C V, and 

• fC £n(V"xTx V). 

Similar to state-spaces, a sub-state-space S generates a set of transitions se- 
quences £(5), a set of states sequences £,»ate*(<S) and a set of propositional se- 
quences Cprop(S). In fact, we have: 

C(S) C £(I), C,taU,(S) C £„.,„(!). Cprop(S) C £Prop(I) 

Definition 3.1 A language £ is said to be closed under an equivalence relation ~. 
if for every equivalence class C of ~, eitherCCC orCn£ = 0. We also say that 
~ saturates £. 

Definition 3.2 -4 sub-state-space of a system 2 is said to be ample with respect 
to the equivalence relation ~ if it generates at least one transitions (or states, or 
propositional) sequence for every equivalence class C of ~ such that CC\C(2) ^ 0. 

The following simple observation suggests the use of equivalences in conjunction 
with sub-state-spaces: 

Let Lup be the language of a specification p that is closed under an 
equivalence relation ~. Let S be an ample sub-state-space for a system 
I with respect to ~. Then, C(S) C L# (Cprop(S) C L^,, respectively) 
iff£(I) C £, (CProp(I) C L+, resp.). 

To exploit the above observation, we need an equivalence relation ~ where the 
following exist: 

1. An effective way to decide whether a given specification <p is closed under ~. 

2. An effective way to construct an ample sub-state-space for 2 with respect to 

3.2    Checking Equivalence Closedness 

Section 3.1 motivated the need for checking whether a specification tp is closed 
under a given equivalence relation ~. In [30], an algorithm is given for deciding 
the closure of a specification for a given class of equivalence relations, represented 
as either a non-deterministic automaton (over infinite words) or as linear temporal 
logic formula.  This class includes in particular trace and stuttering equivalence. 

It is characterized by having a symmetric and reflexive relation — on finite strings 
such that 
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• ~/m is the transitive closure of ~ (hence ~/in is an equivalence relation). 

• ~C E* x E" is a regular language (i.e.. recognizable by a finite automaton) 

over the alphabet IxS. Thus. ~ is defined between strings of equal lengths. 

• ~/in is a left cancellative relation, i.e., if vw ~Jin vw', then w ~',n w'. 

• ~ is defined as the limit extension of *~J'n, namely v ~ v' iff 

- for each finite prefix u of v. there exists a finite prefix u' of v' and a finite 
string w such that uu> —fin u', and 

- for each finite prefix u' of i', there exists a finite prefix u of v and a finite 
string w' such that u'w' ~^,n u. 

The definition of trace equivalence = in Section 2.2 already uses the relation =, 
which satisfies the above conditions. 

For stuttering equivalence, there is a small technical complication in obtaining 

a relation =. as it needs to be defined between pairs of strings of equal length. We 
achieve this by extending the alphabet into E U {$}, where S serves only to force 

the strings to have the same length. Then, = can relate u with itself, and uavS 
with uaav, where u, v € E* and a € E. 

Checking that an w-regular language L, represented by a Büchi automaton .4^, 
is closed under an equivalence relation ~ that satisfies the above conditions can 
be done using the following algorithm, introduced in [30]. The algorithm checks 
the emptiness of the intersection of the following three languages over the alphabet 
E x E ((EU {$}) x (EU {$}) for stuttering equivalence, respectively). Hence, each 
infinite word w = (wlt w2) over this alphabet has a left component u^ and a right 
component w?. The three languages are: 

1. The language where the left component wi of the input is in L (after removing 
the $ symbols, respectively). 

2. The language where the right component u;2 of the input is not in L (after 
removing the $ symbols, respectively). 

3. An automaton that checks that the input can be decomposed into infinitely 
many factors that are all elements of ~. 

The naive way to implement the algorithm by constructing the automata for 
the three languages and then intersecting them can take space exponentially bigger 
than AL. However, the algorithm can be implemented in PSPACE [30]. The idea 
is that there is no need to fully construct the automaton for the complement of the 
language L; instead, one can use a binary search through the state-space of such a 
complement automaton [35]. 

When the specification L is given as a temporal formula <^£, it is not necessary 
to translate first the formula into a Büchi automaton. Such a translation requires 
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again in the worse case space exponential in the size of the formula. It is again 
possible to conduct a binary search through the state-space of the corresponding 
automata, for \pi and for "Vi- This requires space only polynomial in the size of 
the checked formula. For the stuttering and trace equivalences, checking closeness is 
in PSPACE-complete, by a reduction from universality of w-regular automata 

4    Partial Order Reduction for Linear Specifica- 
tions 

Partial order reduction methods is a generic name for a family of model-checking 
methods that avoid constructing the full state-space of the checked program. The 
family of methods are historically related to partial orders because of the connection 
between traces and partial order semantics [24]. The basic ideas of the reduction is 
to generate at least one transitions sequence for each such trace. However, as will 
be seen later, this is not always the case, i.e., there are cases where there is a single 
sequence that represents a collection of traces. 

4.1    The Ample-Sets Reduction Method 

Partial order reduction is based upon modifying the depth first search (DFS) con- 
struction of a state-space, depicted in Figure 1. (Alternatively, one can use other 
search methods, e.g., breadth first search [4].) The DFS creates a node for a global 
state (starting with the initial state t), pushes this node into its stack, then recur- 
sively creates nodes for all the successors of this node, and pops the node from the 
stack after all their successors were created. When a new node is generated, the 
value is hashed using a hashing table (using the procedure create.node at lines 9). 
Checking if a node is new is facilitated by checking if it already exists in the hashing 
table (using the function new at line 8). A node that is already discovered during 
the search is said to be 'open' if it is on the stack (line 2) and 'closed' once it is 
removed from the stack (line 13). Although the information about whether a node 
is open or closed is not used here, it will be used in the sequel for detecting cycles. 
Recall that a cycle is detected exactly when an edge is created (at line 11) pointing 
to a node that is open (hence not new). 

The partial order reduction algorithm modifies the DFS by expanding only a 
subset of the enabled transitions from each state: 

3 working jet(s):=ample( s ); 

where ample(s) C enabled(s). If ample(s) = enabled(s), we say that 5 is fully 
expanded. 

The modified DFS obviously generates a sub-state-space. The problem is how 
to select these ample sets of successors such that the sub-state-space will be ample 
with respect to a given effective equivalence relation. 

The ample sets method provides a set of constraints for selecting the successors 
of a state. The set of constraints depends on the effective equivalence relation used. 
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1 proc DFS($); 
2 push s; /* s n becoming open »/ 
3 working -set(s): =enabled(s); 
4 while working_set(s)?£ <t> do 
5 let a €working_set(s); 
6 working.set(s) =working_set(s)\{a}; 
7 t:=a(s); 
8 if new(t) then 
9 create.node(t); 
10 DFS(t) fi; 
11 create_edge(s, a, t); 
12 end while; 
13 pop s; /* 5 I« becoming closed */ 
14 end DFS. 

Figure 1: Using DFS to construct the state-space graph of a program 

This in turn can depend on the specification to be checked and whether a fairness 
constraint is assumed. 

In order to present such a set of constraints, define a visible transition [33] to 
be a transition a € T that can change the prepositional interpretation of a state: 

Definition 4.1 Given a system (I, P, M) where T = (5, T, i), a transition a £ T 
is visible if there are two states s, t € 5 such that M(s) ^ M{t) and t = a(s). 

We will consider the following constraints: 

CO [Non-emptiness condition] ample(s) is empty iff enabled(s) is empty. 

Cl [Faithful decomposition [19, 32, 28, 11]] For every path of SP(I), starting from 
the state s, a transition that is dependent on some transition in ample(s) 
cannot appear before a transition from ample(s). 

C2 [Cycle closing condition [28]] If 5 is not fully expanded then for no transition 
a € ample(s) it holds that a(s) is on the search stack (i.e., is open). 

C3 [Non-visibility condition [29]] If s is not fully expanded then none of the tran- 
sitions in it is visible. 

Condition C2 can be weaken to require that for every cycle in the reduced state 
space there is at least one fully expanded node. An algorithm for checking this 
weaker condition was suggested in [32]. 

We have the following results concerning sub-states-space constructed using 
ample sets: 
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Theorem 4.2 ([28]) The sub-state-space constructed using conditions C0-C2 is 
ample with respect to trace equivalence under F-fairness. 

Hence, if the specification is given as a language that is closed under trace equiv- 
alence, and F-fairness is assumed, one can use a sub-state-space that is constructed 
while conditions C0-C2 are satisfied at each one of its state. Several temporal log- 
ics were devised for expressing properties that are closed under trace equivalence, 
e.g., the logics TrPTL [36] and TLC [1], Alternatively, one can use the decision 
procedure of [30], presented in Section 3.2, to check whether a given LTL or Biichi 
automaton specification is closed under trace equivalence. 

If the specification is not closed under trace equivalence, one can keep adding 
new dependencies, until it becomes closed. Of course, adding dependencies can 
ultimately completely prohibit the reduction, e.g., when all transitions are made 
interdependent. 

There is a subtle point to notice about adding dependencies: the definition of F- 
fairness is sensitive to the dependency relation used. By adding more dependencies, 
more sequences would become F-fair. Hence, at worst, representatives for sequences 
that were not originally fair are generated. Since the model-checking algorithm 
applied to the reduced state-space will ignore unfair (defined w.r.t. the original 
dependence relation) sequences, correctness is preserved. 

To understand why Theorem 4.2 holds, observe the following Lemmas, assuming 
the sub-state-space are constructed under conditions C0-C2: 

Lemma 4.3 ([29]) Let s be a state in a sub-state-space S = (V, E') of on in- 
terpreted system I. Let v be a sequence of transitions labeling a path of SP(X), 
staring at s. Then there exists a transition a G ample(s) such thai v = aw, for 
some w 6 T". 

Proof. According to Cl, only transitions that are independent of those in ample(s) 
can appear in v before some transition of ample(s) appears. The fairness F requires 
that transitions dependent of those enabled in s, in particular those in ample(s), 
eventually appear. (Notice that the dependency relation D is always reflexive.) 
Combining the two, v must contain a transition a G arnple(s) that appears after 
transitions independent of it. Thus, a can be commuted to the beginning. | 

We aim at simulating each fair path of I by a fair path of the reduced sub-state- 
space 5. The basic simulation step is based on the following: 

Lemma 4.4 ([29]) Let s and v be as in Lemma 4.3. Lei a be the first transi- 
tion of v. Then, the reduced sub-state-space S contains a finite path labeled with 
6162 .. -b„a, such that each 6< is independent of a, and 06162 .. -bnw = t; for some 
w€T". 

Proof. The proof is by induction on the order in which nodes are removed from the 
stack (at line 13 in Figure 1), i.e., are closed. There are two cases. In the first case, 
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a € ample(s). hence the corresponding path has length of one. In the second case, 
a g ample(s). Hence, according to Lemma 4.3, there is a transition 60 € ample{s) 
that is independent of a and appears in i; after a sequence of transitions that are 
independent of 60. We can look now at the state s' = b0(s). Since a $ ample(s), 
we know from Condition C2 that the transition b0 could not close a cycle. Hence, 
s' is created after s and thus according to the DFS order, will be removed from 
the stack before s. Therefore, we can assume the induction hypothesis from s', i.e., 
there exists a sequence 6163 .. .bna from s' such that each 6* is independent of a. 
The required sequence is then 606l6o .. .bna. | 

Lemma 4.4 can be used to show that for each sequence t; of I there exists 
a sequence w such that u- = i> in 5, proving Theorem 4.2. The proof in [29] 
constructs the path w: each transition <ij, taken in its turn from v = aoaioo ..., 
either (a) appears in w after some "deficit' sequence of independent transitions 
6160 .. .bn, according to Lemma 4.4, or (b) has already appeared as part of the so 
far accumulated deficit. 

Unfortunately, when the fairness condition F (or any stronger fairness condition) 
is not assumed. Lemma 4.3 does not hold. Hence, also Lemma 4.4 and Theorem 4.2 
do not hold. To see this, assume there is a transition a which is enabled at a state 
s, and independently, a loop starts at s, consisting of the transitions 6 and c, 
which are independent of a. Thus, enabled(s) = {a, 6}. Then, without assuming F- 
fairness, the transitions sequence v = (6c)1*. starting at state s is allowed. Choosing 
ample(s) = {a} satisfies the conditions C0-C2, hence no sequence equivalent to t; 
starts from s in the constructed sub-state-space. 

To recover the situation, observe that although the sequence w = a(bc)" is not 
trace-equivalent to v, a appears before a sequence of independent transitions. If a 
is invisible, then no stuttering-closed specification can distinguish between t; and 
w. We have the following: 

Theorem 4.5 ([29]) The sub-state-space constructed using conditions C0-C3 is 
ample with respect to stuttering equivalence. 

5    Reduction for Branching TL and Process Alge- 
bras 

Preserving properties based on branching semantics, where execution sequences 
are embedded in a tree requires an additional constraint. The reason is that with 
branching properties one can observe the points where execution sequences depart 
from each other. 

The lefthand structure of Figure 2 contains an example of a full state space 
M for a system with a set of transitions T = {a, b, c, d, e} such that D = T x 
T\ {(a, b), (6, a), (a, c), (c, a)}. This structure does not satisfy the CTL formula 
v? = AG((pA-ig) — (AFgV AF-xji)). The reduced state space M' on the lefthand of 
Figure 2 obtained by preserving conditions C0-C3, satisfies <p. 
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Figure 2: Example where C0-C3 do not suffice to preserve CTL. 

To recover the correctness of the reduction for the branching case, we impose 
the following constraint: 

C4 [Singleton condition [6]] Either s is fully expanded, or ampte(s) contains exactly 
one transition. 

5.1    Behavioral Equivalences 

We consider here several notions of behavioral equivalences that are preserved under 
our partial order reduction. Some connections between behavioral equivalences and 
logics allow adopting the reduction for various logical formalisms. 

Definition 5.1 ([3]) A relation =,»C V x V is a stuttering simulation between 
the states of two structures M = (V, E, i, M) and M' = (V, £", t', A/') if the 
following conditions hold: 

1. t 2.» t', 

2. if s 2,i s', then M(s) — M'(s') and for every maximal path * of M. that 
starts at s, there is a maximal path sr1 in M' that starts at s', a partition 
B\, B? ... of JT, and a partition B'\, B'i... of ir1 such thai for each j > 0, 
Bj and B'; are nonempty and finite, and every state in Bj is related by 2!,j 
to every state in B'j. 

A relation =£,4 is a stuttering bisimulation if both 2J,j and 25j"4 (the transpose of 
=,i) are stuttering simulations. 
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The following theorem connects CTL* (as defined without the nexttime opera- 
tor) and stuttering hisimulation: 

Theorem 5.2 (see [3]) Let ^ be a CTL' formula with the set of atomic proposi- 
tions P. Let M and M' be two structures, where the range of the labeling function 
A/[ and A/o is the subsets of atomic propositions P. Let the relation 9J,4 be a 
stuttering bisimulation between the states of M and M'. Then for every pair of 
stuttering bisimilar states s 25j4 s' it holds that M.s ^= ? iffM'.s' ^= ,?. 

Definition 5.3 (Branching bisimulation [8, 26]) A relation £»» C V x V is 
a branching simulation between the states of two structures M = (V. E~ t, \f) and 
M' -(V, £', i', \f) if it satisfies the following conditions: 

1. i S64 t' and 

2. if s aj44 s' and s  t, then either b = r and t 2« s'. or there exists a path 

s' = s0  si -^- ... -^— s„  t' m M' such that s 244 s, for 0 < i < n. 
and t 2?641'. 

A relation 2E4i is a branching bisimulation if both 2544 and S^ are branching sim- 
ulations. 

Let M = {V, E, t, A/) be a structure.   Denote s =^> s' if there exists path 
— T T T a T T , s - so —— si —- ... —» st —► s1+1 —► ... —► s„ = s'. When a is r, the path 

can be empty, whence s equals s'. 

Definition 5.4 A relation *wi C V x V is a weak simulation [25] between struc- 
tures M = (V, E, i, A/) and M' = (V, E', t', A/') if it satisfies the following 
conditions: 

1. i 3S„,41' and 

2. if s 2«,» s' and s —► t, then there exists t' such that s' =^> t' in M' such 
that t Sw4 t'. 

A relation *£wi is a weak bisimulation if both S„,4 and aj£4 are weak simulations. 

Notice that the interpretation functions M and M' are irrelevant and hence can 
be omitted in both branching and weak bisimulation. We define now a behavioral 
equivalence that includes conditions ou both states and edges. To tie together stut- 
tering bisimulation, which observes states but ignores transitions, and branching 
bisimulation, which observes transitions and ignores states we define the following 
stronger equivalence relation: 

Definition 5.5 A relation S„4C V x V is a visible simulation between the states 
of two structures M = (V, E, i, M) and M' = (V, E', i'. A/') if i *vi i>, and 
when s =„4 s', the following conditions hold: 
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Visible bisimulation St,i 

Stuttering bisimulation =i,i, 

[3] 

CTL, CTL* 
(without nexttime) 

Branching bisimulation S^ 

[8. 26] 
i 

Weak bisimulation =wt> 

[14] 
> 

Hennessy Milner Logic HML 
(with r transitions) 

Figure 3: Connections between equivalences and logics 

1. M(s) = M'(s'). 

2. If s —- t € E,  either b is invisible and t 2S„j s'.  or there exists a path 
s' = s0 ——• *i —~ • • • —* sn —► t' in M' such that s S„4 s* for 0 < i < n, 
a, is invisible for 0 < i < n and t 2Euj t'. 

3. If there is an infinite path s = to —^* <i —^* ..., u/Aers 6, is invisible and 
ti =„j s' for i > 0, then there exists a path s' — ro -^* rj -^- ... -^i r; —^~ 
r; + 1, u;«<A j > 0, such that s 2S„» r,- and c, is invisible for 0 < i < j, and 
ti -vb O+i- 

A relation 2£„j is a visible bisimulation if both 2J„4 and =ijb art visible simulations. 

It is simple to show that visible bisimulation is stronger than stuttering bisim- 
ulation. Hence from Theorem 5.2 we conclude that it preserves CTL" properties 
(without nexttime). When all invisible transitions are labeled as r, visible bisimu- 
lation is stronger than branching bisimulation, which in turn is stronger than weak 
bisimulation. This interaction between behavioral equivalences and logics is de- 
picted in Figure 3. In the Section 5.2 we show that our reduction (with conditions 
C0-C4) preserves visible bisimulation. By the connection between weak bisim- 
ulation and Hennessy-Milner logic (HML) with r transitions [14], the reduction 
preserves specification expressed in HML. 

The paper [34] in this volume relaxes the requirement that the transitions are 
deterministic. It also studies various other equivalence relations related to Hoare's 
CSP [15]. 
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5.2    Correctness of the Algorithm 

Let M = {V, E. i, M) be the full state space of an interpreted system I. In 
order to obtain a visible bisimulation between the full state space and a reduced 
sub-state-space, define the following relation: 

Definition 5.6 Define the relation —C V x V such that s — s' iff there ensts a 
path s - so — si —— ... — sn = s' such that s, is invisible and {a,} satisfies 
condition Cl from state Si for 0 < i < n — 1. 

Such a path will be called a forming path. The length of a shortest forming path 
between s and s' will be called the distance between s and s'. It is easy to see that 
the relation — is transitive and reflexive (but not necessarily symmetric). 

Let M' = (V, E', t', A/') be a sub-state-space generated for T by our partial 
order reduction algorithm. 

Definition 5.7 let *=- fl(K x V) 

Notice that by definition, «sC—. Our goal is to show that ss is a visible bisimu- 
lation. We will use a number of simple lemmas: 

Lemma 5.8 Let s -^- t be an edge of E such that {a} satisfies Condition Cl 

from the state s. Let s —► r be another edge of E, with a jib. Then {a} satisfies 
Condition Cl from r. 

The following can be proved by a simple induction: 

Lemma 5.9 Let s = so —^* st —'-~ ... -^ sn = s' be a forming path, and 
s —► t € E. Then there are exactly two possibilities (see Figure 4): 

1. b is independent of a, for 0 < i < n. There exists a forming path t = t0 -^* 
ti -^-* ... -^* tn, with Si —► t, for 0 < j < n. 

2. There exists j < n such that b is independent of at for 0 < t < j, and b = a;. 

There exists a forming path t = t0 -^* tt -^* ... -^ tj, with Si -5— *,• for 
0 < i < j. In this case, there is a forming path of length n — 1 from t to s'. 

Corollary 5.10 Let s - s' and s -^t € E.  Then there exists an edge s' -^t' 6 
E such that t — t' in each one of the following cases: 

1. b does not appear on some forming path from s to s' (in particular, when b is 
visible), or 
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S = SQ •sl 

ao ai 

Sn-l      Sn=s'       S = ,S0 

a„-i 

6 indep. of a,, 0 < « < n 

«i 

ao 

ao 

a\ 3
J-I 

b = dj 
al      aJ-^i.nJ + l   an-^a„_i 

< = <0 <1 ';'=s; + l Sn"1     s"=s 

6 indep. of a,-. 0 < i < j < n, 6 = a, 

Figure 4: Two cases of Lemma 59 

2. / + s'. 

The reduction algorithm with conditions C0-C4 guarantees the following: 

Lemma 5.11 Let s be a state in the reduced sub-state-spaee M'■ Then there is a 
formtng path in M' from s to some fully expanded node s'. 

Theorem 5.12 (See [6])  The relation & is a visible bisimulation. 

Proof. First, observe that t = i' and t £ V. Hence i =s t'. Let s =a s'. Thus, s ~ s'. 
Condition 1 of Definition 5.5 is satisfied since according to Definition 5.6, there is a 
path of invisible transitions from s to s'. Hence, by Definition 4.1, M{s) = M(s'). 

We show that condition 2 of Definition 5.5 holds. Let s —> t G E. We argue 
by cases: 

Case 1. t ~ s' and b is invisible. Immediate from the definition. 

Case 2. t + s' or b is visible. According to Corollary 5.10, in both cases there is 

an edge s' — t' in M such that t ~ t'. Notice that by the definition of äS, 

s' G V, but it is not necessary the case that t' € V. By Lemma 5.11, there 
is a forming path in M' from s' to some fully expanded node s". Hence, 
s ~ s' ~ s"', which implies by transitivity of ~ that s ~ s". Since s" € V, 
also s « s". Again there are two cases (see Figure 5): 

Case 2.1. t' ~ s" and b is invisible. Then, t ~ t' — s", hence t ~ s" and also 
t as s". 

Case 2.2. t' f s" or b is visible. Then, according to Corollary 5.10, there is 

an edge s" -±- t", with t' ~ t". Thus, t ~ t' ~ r", hence t ~ i". Since 
s" is fully expanded, t" € V, thus * ss t". 

Conversely, let s' -^- t' € E'. Since s ~ s', there is a forming path s = s0 -^-* 
Sl -fi. ... -ii, Sn = s'. To satisfy Condition 2 of Definition 5.5, we need only to 

extend this path with the transition s„ — t'. 
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Exists in case 2.2 

t" 

Figure 5: Cases 2.1 and 2.2 of Theorem 5.12 

For proving Condition 3 of Definition 5.5, let « = f0 ~ *i — ... be an infinite 
path, with bt invisible and i, ss s' for i > 0. By Lemma 5.11, there is a forming 
path from s' to s", with s" fully expanded. Thus, tt JS S" for i > 0. 

We will show that there exists some ;' > 0 such that bj does not occur on 
some forming path from tj to s". The proof will construct a sequence of forming 
paths /, from <, to s". for 0 < i < ;, with /„ a path from s to s" via s'. Observe 
that by Lemma 5.9, if 6, appears on /,, then we can construct a path /l + 1 that 
is shorter than /,-. Since there are infinitely many nodes <,, and /0 has a finite 
length, this construction must terminate with some j as above. Now, according to 

Corollary 5.10, there is an edge 5" -ii, t' € E such that tj+l ~ t'. Since s" is fully- 

expanded, also tj + l ss t'. Appending the edge s" A. /' to the forming path from 
5' to s", results in a path that satisfies Condition 3. 

The other direction of Condition 3 is similar to the other direction of Condition 2 
above. . 

6    Implementation Issues 

Finding ample sets that satisfy condition Cl is based on analyzing the current 
global state. We will discuss two types of concurrent systems, with matching algo- 
rithms. In both cases, we assume that each system consists of a set of processes, 
with each process containing a (not necessarily disjoint) set of transitions. Each 
process has a set of local variables that can be changed only by transitions that be- 
long to the process. Transitions whose effect is only to change the process variables 
are called local transitions. The local state of each process includes the values of 
its local variables. Each (global) system state is a combination of the local states 
of all the processes. 

Synchronous Communication 

Synchronous communication systems incorporate CSP or ADA-like communication. 
Communication is done cooperatively at the same time by the sender and the 

18 

>--? r> 



receiver. Sending and receiving can thus be considered a single transition, shared 
by two processes. Hence, the communication transition belongs to both the sending 
and the receiving process. We say that a communication transition a between a 
pair of processes 7\ and Vj is locally enabled by a process Vi at state s if it can 
be executed at the current state s, or any state s' such that the local states of 
Pi in s and s' are the same. This means that V, is willing to do his part in the 
communication transition a. We assume that such a system includes only local and 
synchronous communication transitions. 

The dependency relation for synchronous communication systems relates transi- 
tions that belong to the same process. Hence, two transitions are interdependent iff 
they belong to the same process. Notice that a communication transition belongs 
to and hence is dependent on transitions of two processes. Choosing a subset of 
the enabled transitions that satisfy condition C3 can be done as follows: 

Choose all the transitions enabled in the current state s that belong 
to a subset V of the processes, such that there is no communication 
transition between a process Vi in V and a process outside V that is 
locally enabled by V{. 

The above rule prevents the case where, by executing transitions outside the 
selected ample set, a communication that is dependent on transitions in the set will 
become (globally) enabled and will execute before any transition in the ample set, 
contradicting Cl. Such a set of transitions can be found by choosing initially the 
currently enabled transitions that belong to a single process. If the above rule does 
not hold, repeat adding transitions of additional processes, until the rule holds. 

Asynchronous Communication 

In this communication model, we have separate sends and receives. In addition to 
the local variables of each process, pairs of processes that can communicate with 
each other share fifo queues, through which the communication is handled. The 
sender does not have to wait for the receiver, unless the message queue it uses is 
full. Similarly, the receiver does not have to wait for the sender unless there is no 
message in its input queue. Send and receive transitions are matching if they share 
the same communication queue. We will assume that for each queue there is only 
a single (different) process that can send, and a single process that can receive. 

It is evident that matching sends and receives do not satisfy the conditions on 
the dependency relation from Section 2.2. However, one can weaken condition Dl, 
allowing transitions a and b to be independent when executing one cannot disable 
the other (but can enabled the other, as oppose to condition Dl). Notice that in 
this case, it is no longer true that when v = w and v is a transitions sequence of a 
system 2, then w is also a transitions sequence of I. 

Choosing a subset of the enabled transitions at s that satisfy condition C3 can 
be done as follows: 

Choose all the transitions enabled in the current state that belong to a 
subset V of the processes, such that 
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• there is no send transition of a process Vt in V that could send a 
message to a process outside V if its queue was not full in s. 

there is no receive transition of a process V> in V that could receive 
a message from a process outside V if its queue was not empty in 

Separate Process Analysis 

As explained above, additional knowledge about the future enabledness of transi- 
tions allows certifying more subsets as ample sets. As an example, in synchronous 
communication, we can weaken the requirement that the subset of processes V does 
not contain a locally enabled communication transition a. communicating with a 
processes that is outside V; the existence of such a transition a does not prohibits 
the enabled transitions of V from being an ample set if the process Vj can not par- 
ticipate in such a communication in every state that is reachable from the current 
one. A similar weakening is possible for the asynchronous communication case. 

The future disabledness of a transition from a given state is as hard to check as 
the model-checking problem itself. Thus, we may be satisfied with a solution that 
would not identify every transition that can no longer become enabled from the 
current state, but would identify at least a subset of such transitions. This can be 
done using a separate process reachability. In the above example for synchronous 
communication, we will check whether process Vj could have reached the matching 
communication from its current local state. This search looks at the process Vj in 
isolation. It assumes all transitions that are joint with other processes to be locally 
enabled by the other processes. Furthermore, we may even choose to ignore data 
values, reverting to static analysis. 

Such a search can be done in a preparatory stage, identifying from each local 
state 'offending' transitions (which can include synchronous communication tran- 
sitions, asynchronous communication transitions or use of global variables) that 
are not reachable. This information can be used then to improve the reduction by 
identifying more subsets as ample sets. 

On-the-fly Reduction 

In previous sections, the model-checking algorithm was explained as a two-phase 
process, where at the first phase, the (reduced) state-space is constructed, and in 
the second phase, a graph-theoretic algorithm is applied to it. In practice, many 
model-checking tools work in a slightly different, more efficient, way. They combine 
the construction of the state space with checking that it satisfies the specification. 
Then, it is sometimes possible to identify 'on-the-fly' that the system violates the 
specification, before completing the construction. We will describe how partial 
order reduction can be applied while doing on-the-fly model-checking. 

Obtaining an on-the-fly model-checking algorithm can be done by using a Biichi 
automaton A that corresponds to the complement of the specification ,?. Namely, 
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.4 recognizes the sequences that are not allowed by the specification. A translation 
from LTL formulas to Biichi automata can be found e.g., in (37, 7]. 

A Biichi automaton is a fivetuple (Q, i, E, 6, F), where Q is a finite state of 
automaton states, i £ Q is the initial automaton state, D is a finite set of input 
values, which is in our case 2P, SCQxZxQisa. non-deterministic transition 
function, and F C Q is the set of accepting states. A run of the automaton A 
over an infinite sequence irgl", where <r = roriro... is an infinite sequence of 
automaton states qoqi •• such that for each i > 0, (qi, r,, qi+i) € S. A run is 
accepting iff at least one automaton state from F appears on it infinitely many 
times. 

Verifying that a system I satisfies a specification 9 is thus done by checking 
whether there are execution sequences of I that are accepted by runs of A. If 
there are such sequences, they correspond to counter-examples (since «4 accept the 
sequences disallowed by the specification). Otherwise, I satisfies <p. 

To carry out the above task, we can generate the product automaton X x A: 
the states of the product are pairs from S x Q. We will refer to such pairs simply 
as states. The transitions are pairs from T x 6. The accepting states are fixed by 
the automaton state component, i.e., are pairs (s, q) such that q € F. The initial 
state is the pair («,«')■ To make the sequences of I x A correspond to runs of A 

over sequences of I, we make the following correspondence: {s, q) —^ (s', q') is a 
transition of I x A iff (1) s' = a(s), (2) (q, 6, q') g 6, and (3) M{s) = 6. The last 
requirement means that the A transition b agrees with the labeling of the outgoing 
system state s. 

We can now construct X x A on-the-fly: from the current pair {s, q) € 5 x Q, 
generate all possible transitions (a, 6) that satisfy (1), (2) and (3) above. Better 
yet, we can employ the partial order reduction and restrict the first component such 
that a 6 ample(s). 

The only condition that appears to be problematic is the cycle closing condi- 
tion C2: the cycles in the product are not necessarily the same as the ones in the 
reduced state-space for I. However, in [29] it is shown that it is correct to use the 
cycles oil x A. 

Using Tarjan's DFS algorithm, we can find the maximal strongly connected 
components oil x A. A strongly connected component that is reachable from the 
initial state and contains an accepting state means that the property <p does not 
hold for I, and can be used to construct a counter-example. 

An even more efficient model-checking procedure is obtained by observing that 
an accepting run exists iff there is a cycle through a reachable accepting state. The 
procedure [16, 5] applies an interleaved double DFS procedure: when the first DFS 
retracts to an accepting state, the second DFS starts searching for a cycle through 
this state. If the second DFS fails to find a cycle, the first DFS resumes from the 
point it has stopped. We can use the following bits for every state of the product 
that is put in the hash table: 

• The state was found during the first DFS. 
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• The state was found during the second DFS. 

• The state is in the first DFS stack. 

• The state is in the second DFS stack. 

Notice that these bits allow information about the two different (virtual) copies 
of the same state in the two searches. Notice further that there is no need to 
explicitly store the edges. 

Applying the partial order reduction to the improved search requires a subtle 
change in the algorithm: it is important to guarantee that the second DFS uses 
the states that were already found in the first DFS. Repeating exactly the same 
reduction from every state is thus important to achieve this goal. However, notice 
that when the second search reaches a state that is on the stack of the first DFS, 
it may continue to search new states that were not encountered yet during the 
first DFS. Notice also that once a state x that is on the stack of the first DFS is 
reached in the second DFS, the search can terminate: it is guaranteed that there is 
a path from x to the accepting state from which the second DFS has begun, hence 
completing a cycle through it. Hence, the algorithm in [16. 5] can be changed as 
follows [18]: 

Upon reaching during the second DFS a state that is on the stack of the 
first DFS, terminate the search. Use the concatenation of the states in 
the first and second DFS as a counter-example. 

This early termination of the algorithm can be applied to the full search as well 
and can result in shorter counter-examples. 

Albeit eliminating some incorrect search scenarios, this provision is not suffi- 
cient to guarantee that the second DFS will follow the same reduced set of states as 
the first one. A problem may arise when the first search backtracks from a strongly 
connected component that does not include an accepting state, hence the second 
search was not applied to this component. While searching another component, 
which contains an accepting state, the second DFS can propagate now to the pre- 
viously abandoned component. This time it starts from a different node in the 
component, potentially closing cycles in a different order. This might influence the 
reduction, causing different nodes to be discovered in the second search. 

Thus, additional state information is needed in order to make sure that the 
second DFS will generate the same sets of successors as the first one for every 
generated state s. This information reflects how the closing cycle condition C2 was 
resolved during the first DFS [18]. One possibility is that it identifies the processes 
whose operations where selected for the ample set from s during the first DFS. 
Another possibility is that the reduction algorithm checks condition C2 against 
the first set that satisfies the other conditions from s. If this Set fails to satisfy 
C2, then s is fully expanded. In this case, the information about the success or 
failure to find a subset can be stored for the use of the second DFS using a single 
additional bit. 
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The SPIN Implementation 

The model-checking tool SPIN [16] contains an implementation of the ample sets 
method. SPIN allows a variety of communication mechanisms, including syn- 
chronous and asynchronous message communication. It also allows global tran- 
sitions, which change values of variables that belong to all the processes. Hence, 
the rules to achieve ample sets that satisfy condition Cl are more complicated. 
SPIN includes the on-the-fly partial order reduction [17], with the double DFS 
described above [18]. 
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ABSTRACT. In this paper we propose a new approach to check bisimulation- 
based equivalences for models of concurrency which take into account causal 
dependencies between the actions a system can perform. The existing ap- 
proaches are based on special definitions of bisimulation and do not allow for 
reuse of techniques and tools developed for ordinary labeled transition sys- 
tems. This is not the case in our approach, since we map causal systems into 
ordinary transition systems. As a consequence, we obtain minimal realiza- 
tions and Hennessy-Milner logics also for causal systems. We show how our 
approach applies to history-preserving bisimulation for Petri nets [1] and to 
location equivalence for CCS [3, 4]. 

1. Introduction 

Bisimulation is widely used to equip concurrent systems with an abstract se- 
mantics. A well-established theory and efficient algorithms have been developed for 
it. Automatic checking is successful in practice, since many interesting systems are 
finite state. One of the most used algorithms is the so-called partition refinement 
algorithm [11, 18]. It is particularly interesting since it allows for minimization, 
i.e., it can be used to find the minimal transition system in a class of bisimilar tran- 
sition systems. Minimization is important both from a theoretical point of view — 
equivalent systems give rise to the same (up to isomorphism) minimal realization 
— and from a practical point of view — smaller state spaces can be obtained. 

However, the standard definition of bisimulation — and most of the results 
and algorithms which have been developed for it — can be applied only to sys- 
tems whose operational behavior is modeled by labeled transition systems. In this 
case computations are simply sequences of atomic actions and hence parallelism of 
actions is reduced to interleaving. 

Many attempts have been made to overcome the limits of this interleaving 
approach and to allow the observer to discriminate systems via bisimulation also 
according to the degree of parallelism they exploit in their computations. A possible 
approach is to modify the operational semantics so that dependencies between 
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2 U. MONTANARI AND M. PISTORE 

actions are taken into account. Dependencies may be of different kinds: for instance 
they can be causal dependencies (each action refers to the actions in the past 
it depends on) or localities dependencies (the dependencies are used to describe 
sublocation relations: each action depends on the actions in the past that generated 
the location in which the action occurs). 

Bisimulation-based abstract semantics can then be used on the richer opera- 
tional semantics. In these cases, however, particular definitions of bisimulation have 
to be exploited, since they have to deal with dependencies, and they do not allow 
for a full reusage of the existing theories and algorithms for standard bisimulation. 
Moreover, since the past history of the system has to be remembered to define 
dependencies, the operational models are usually finite only when the system can- 
not perform infinite computations. Special techniques must be studied to obtain 
decidability also for some systems with infinite behaviors. 

In this paper we describe a possible solution to these problems which has been 
proposed in [15, 13]. We first define causal automata as a general model for dealing 
with dependencies between actions. In this model the dependencies are represented 
by means of names: each transition generates a new name which is then referenced 
in the labels of the transitions which depend from it. The names which are relevant 
for a state of the system are also explicitly remembered in the corresponding state 
of the causal automaton. 

When a system is mapped on causal automata, it is important to discard part 
of the past events and to remember just those events that can (but not necessarily 
will) be referenced in the future behavior. This pruning of the past history allows 
for reusing the same state of the causal automaton to represent different stages of 
a computation. Moreover, by considering as inessential the syntactical identity of 
the names, it is possible to identify states whose future behaviors differ just for a 
renaming. This allows us to represent classes of systems with infinite behavior with 
finite-state — and possibly very compact — causal automata. 

To show that causal automata are a good model for dependencies, we give a hint 
of how it is possible to translate two classical non-interleaving models of concurrency 
— Petri nets with process-based semantics [9, 1] and CCS with localities [3, 4] — 
into causal automata. 

We also equip causal automata with a notion of bisimulation. This bisimulation 
equivalence correctly deals with dependencies. In fact, two systems described in 
one of the two formalisms above are equivalent if and only if the corresponding 
causal automata are equivalent according to the proposed bisimulation. 

Finally we show how, starting from causal automata, it is possible to build 
ordinary transition systems and to reuse ordinary bisimulation on them to decide 
bisimulation on causal automata. To obtain this, a notion of active names is ex- 
ploited, where a name is active for a state if it appears in the label of a transition 
reachable from the state. Non-active names can be discarded, thus allowing for a 
static correspondence of names between bisimilar states. 

This translation into ordinary transition systems allows for the reusing of stan- 
dard techniques and tools. In particular, it is possible to associate to each Petri net 
a transition system which is minimal w.r.t. those associated to history-preserving 
bisimilar nets. As far as we know, this is the first approach which leads to minimal 
realizations for Petri nets up to history-preserving bisimulation and for CCS with 
localities. 
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The structure of the paper is as follows. In Section 2 causal automata and 
bisimulation on causal automata are defined, whereas in Section 3 it is sketched 
how Petri nets and CCS with localities are mapped into causal automata. In 
Section 4 ordinary automata are obtained from causal automata and in Section 5 
an algorithm and a tool are described which exploit the proposed approach. 

2.  Causal automata 

In this section we define causal automata. They are a model for describing 
systems whose transitions may refer to previous transitions. Since these references 
can be used to represent dependencies and, hence, partial orders, it is clear that 
causal automata are an interesting operational model for partial order semantics. 
We also equip causal automata with an abstract semantics based on bisimulation. 

DEFINITION 2.1 (causal automaton). Let Jsf be a fixed infinite denumerable 
set of event names. 
A causal automaton is a tuple A = (Q,w,i-t,qo) where: 

• Q is a set of states; 
• w : Q -> VfiN") associates to each state a finite set of names; 
• i-> is a set of transitions; each transition has the form q >->„ a', where: 

M 
— <7> Q1 € Q are the source and target states; 
— a € Labels is the label; 
-MC w(q) are the dependencies of the transition; 
— a : w(q') <-* w(q) U {*} is the injective (inverse) renaming for the 

transition; the special mark * £ Af is used to recognize in the target 
state the name corresponding to the current transition; 

• <7o € Q is the initial state; we require that w(qo) = 0. 

A causal automaton is hence an automaton particularly suited for dealing with 
dependencies between transitions. Each state q is labeled by the set w(q) of names, 
which correspond to the past events that can still (but not necessarily will) be 
referenced in the future behaviors. These names have a meaning that is local, 
private to the state. Hence, the particular choice of names cannot by itself make a 
distinction between two states of the causal automaton. 

Each transition A„. depends on the past transitions identified by M. Due to 
M 

the local meaning of names, each transition must also specify the correspondence 
between the names of the source and those of the target. This correspondence is 
obtained via the renaming a, which permits also to deduce which names of the 
source are forgotten in the target; the name (if any) used in the target state to 
represent the current transition in mapped into the special mark *. 

If there are invisible transitions, as for instance in CCS, we add to the automata 
a new kind of transitions, which has the form q i-»> q'. 

On causal automata a bisimulation cannot simply be a relation on states: also 
a partial correspondence between the names of the states has to be specified and 
the same pairs of states can be in relation via more than one correspondence. 

DEFINITION 2.2 (bisimulation on causal automata). A causal bisimulation for 
two causal automata A and B is a set 1Z of triples such that: 

• if (p,5,q) € 11 then p £ QA, Q € QB and S is a partial injective function 
from U>A(P) to Wß{q); 
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• (qoA,Q,qoB) eft; 
• if (p, S,q) £ll and p ACT p' in A then there exist some q   A „ a' in J5 and 

some <5' such that (p1, 6', q') £ U and 8'{m) = n implies a(m) = * = p(n) or 
<5(ff(m)) = p(n); 

• if (p, S,q) ETl and q A-a q' in ß then there exist some p    A-   D p' in A and 
M 5-HMY 

some <5' such that {p',51, q') e H and 6'(m) = n implies a(m) = * = p(n) or 
<5(<r(m)) = p(n). 

The causal automata A and B are bisimilar, written yl ~ca B, if there is some 
bisimulation for them. 

Notice that if p and q correspond via 5 in some bisimulation 1Z, then to each 
transition of p a transition of q must correspond, such that i) the two transitions 
perform the same action, it) they depend on the same past events (via 5), and iii) 
the reached states correspond in H via some 5' which relates two names of the target 
states only if they both are the names corresponding to the current transitions or 
if they are related by 6 in the source states. 

The definition of bisimulation can be easily extended to causal automata with 
t-4 transitions. Moreover, it is also possible to define a weak causal bisimulation, 
which allows each transition &■„ to be simulated with a suitable sequence of tran- 

M 

sitions &ai ■•■^<Th^Aah^^h+1 ■■•&,,„. 

We conclude this section with a remark. The idea of using names to model 
dependencies is not new. It has been introduced for instance in [5] and in [3, 4, 12]. 
There, however, names are global and syntactic (they appear in the terms describing 
the system). In the case of causal automata, instead, names are local to states and 
are semantic objects; this has the double advantage of making possible to work 
directly on names — for instance by discarding some of them from an automaton, 
as we will do in Definition 4.2 — and of allowing those states to collapse which 
differ just for the syntactical choice of names. Moreover, we will see in Section 4 
that, by fixing a strategy for choosing new names, it is possible to generate ordinary 
transition systems from causal automata. To have a model which is independent 
from the allocation strategy of names is interesting in itself, also since different 
strategies have been actually proposed in the literature. 

3. Causal automata for partial order systems 

In this section we show how it is possible to translate two classical non-inter- 
leaving models of concurrency — Petri nets with process-based semantics [9, 1] 
and CCS with localities [3, 4] — into causal automata. 

Causal automata can be associated also to other models — as, for instance, 
CCS with causality [5] — using techniques similar to those used in the two cases 
we consider. 

3.1. Causal automata for Petri nets. In the context of Petri nets partial 
order semantics is obtained via processes. They have been defined in [9] to represent 
concurrent runs of the net. In particular, from processes it is possible to obtain 
the partial order of the events of the run, which represents the causal dependencies 
between them (an event directly causes another event if it generates a token which is 
consumed by the second event). A notion of bisimulation, called history-preserving 
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bisimulation, which takes into account the partial order behavior has been defined 
in [20] for event structures. The same notion has been introduced in [7] using 
mixed ordering observations. History-preserving bisimulation has been applied to 
Petri nets in [1]. 

Since processes grow during a computation, infinite-state systems are associated 
to all nets which allow for infinite computations. Some alternative approaches 
[21, 10] have been proposed so that history-preserving bisimulation can be checked 
also for classes of nets with infinite behaviors, namely safe nets. Essentially, in those 
approach it is shown how it is possible to remember just a finite part of the past 
history of a computation in order to decide equivalence of nets. 

In [13] decidability of history-preserving bisimulation on Petri nets has been 
extended to a more general subclass of P/T nets, using causal automata. Now we 
summarize the approach of [13]. 

Essentially, a P/T net is defined by: 

• a set S of places; each place is supposed to contain a certain number of 
tokens; a state of the net is then represented by a function m : S —► N, 
called a marking, which describes the distribution of tokens in the places; 

• a set T of transitions; each transition fires erasing a certain number of tokens 
from some places of the net and adding a certain number of new tokens to 
some possibly different places; transition t is enabled at marking m if m 
contains enough tokens in the places and in this case we write m -> m', 
where m' is the suitably updated marking; 

• a labeling function for the transitions I :T -t Labels; 
• an initial marking mo. 

A formal definition of P/T nets and of history-preserving bisimulation on them can 
be found in the Appendix. 

As mentioned above, the classical definition of history-preserving bisimulation 
is based on processes. Not all the informations carried by processes, however, are 
used in the bisimulation. Now we define configurations, which contain only the 
informations of processes which are relevant to bisimulation. 

DEFINITION 3.1 (configuration). Let TV be a P/T net. A configuration for N 
is a tuple c = (E, p,<), where: 

• E is a set of events; 
• p: S x (EU init) -► N; 
• < is a partial ordering for E. 

We require that, for each e G E, 5Zs6S p(s, e) > 0. 
The initial configuration for N is Co(iV) = (0, po,0), where p0(s, init) = m0(s) for 
all seS. 

In a configuration, the set E represents (part of) the past events. Since we 
are interested in a partial order semantics, a partial order is defined on E, which 
represents the causal dependencies between the past events. Function p represents 
the current marking of the net; instead of simply defining how many tokens are in 
each place of the net, it also remembers which events generated these tokens (init 
is a special mark used for the tokens in the initial marking). 

We require that in a configuration only the events are remembered which gen- 
erated tokens still present in the net. This is important to obtain a finite number 
of different configurations also for certain classes of nets with infinite behaviors. 

-7' 
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It is possible to define transitions on configurations1: essentially c A- c' if c' is 
obtained from c by performing transition t of the net. Tokens are discarded and 
added according to the pre- and post-conditions of the net; events which have no 
more tokens are discarded, whereas a new event e is added and the tokens generated 
by the transition are associated to e; suitable dependencies for e are added to the 
partial order, following the rule that e directly depends on all the past events 
which generated tokens consumed by the transitions. These events are called the 

immediate causes of the transition; we denote with lC(c -4 c') the set of immediate 
causes of transition c -> c'. 

When a causal automaton is generated from a net, states of the automaton 
correspond to configurations of the net. However, to obtain a compact automaton, 
it is important to identify configurations which are isomorphic. This can be ob- 
tained by fixing a representative for each class of isomorphic configurations and by 
defining a function norm such that norm(c) = (c',a) where c' is the representative 
of the class of configurations isomorphic to c and a is the bijection between Ec< and 
Ee. 

Now we are ready to show how, given a net, it is possible to build the causal 
automaton corresponding to it, by using its behavior on configurations. 

DEFINITION 3.2 (from nets to causal automata). The causal automaton cor- 
responding to P/T net N is aut(JV) = (Q,W,H->,CO), where CQ e Q is the initial 
configuration for N and whenever ce Q then: 

• w{c) = Ec; 

• if c -» c' and (c", a) = norm(c') then c" e Q and c Ar*/g]oo. c", where: 
M 

- a = l(t), 
- e = Ec> \ Ec (if Ec< \ Ec = 0 then we can assume e = *), and 

- M are the events in lC(c ->■ c') which are maximal w.r.t. <c. 

Notice that the renaming corresponding to a transition on the causal automaton 
is obtained from the bijection defined by function norm: it is sufficient to re-direct 
the new name e to •. Moreover, the maximal causes of the transition are used as 
dependencies in the automaton. 

This construction generates finite causal automata for the finite nets which are 
n-safe for some n, i.e., for the nets whose reachable markings have n or less tokens 
in each place. 

The general definition of bisimulation on causal automata exactly matches the 
classical definition of history-preserving bisimulation on nets, as it is proved in [13]. 

THEOREM 3.3. Given two P/T nets Ni and N2, a.ut(Nr) ~ca aut(JV2) iff 
Ni ~hPN2. 

3.2. Causal automata for CCS with locations. The location semantics 
for CCS we consider has been introduced in [3, 4]. It discriminates CCS agents also 
with respect to how their computations are distributed in space; to each sequential 
component of the agent a different location is assigned and two agents are equivalent 
if they can bisimulate by performing the same actions in the same locations. 

The syntax of CCS is enriched with a location prefix operator l::p meaning 
that I e Loc is the location of agent p; the nesting of location prefixes represents 

^ee [13] for a formal definition of c -> c'. 
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the sublocalities relation for the agent. Whenever an action is performed, a new 
sublocation is created for the subagent activated by the action; the location in which 
an action occurs is added to the label, so that transitions have the form p A p', 

u 
where u = l\h • ■ -ln is a sequence of locations. 

For instance, agent l::(a.b.p\c.q) can perform the following computation: 

l::(a.b.p\c.q) A l::(m::b.p\c.q) -> l::(m::b.p\n::q) ->■ l::(m::o::p\n::q). 
Im In Imo 

We say that two agents p and q are location equivalent (p ~/oc q) if each 
transition of one of the agents is matched by a transition of the other agent so that 
the two transitions correspond to the same action and occur in the same location, 
and the target agents are still equivalent. 

This is the standard approach of [3, 4]. The problem is that locations are 
created but never forgotten, so that location prefixes continue to grow during the 
computation. 

In [15] a slightly different approach is followed. Here, we just explain the main 
ideas and we refer to [15] for the formal definitions. 

First of all, we can notice that the location relation of a particular state can be 
deduced also by observing the labels of the past computation: for instance, by just 
observing the labels, we know that, in the final state of the computation above, n is 
a sublocation of I and o is a sublocation of m and /. So, instead of representing the 
sublocation relation directly in the terms, a flat structure can be given to locations: 
each agent, up to suitable structural axioms, has then the form: 

(hv.pi \h--P2\---\ln--Pn) \Ä 

where pi do not contain location prefixes and R is the set of restricted channels. 
The previous computation can then be rewritten as follows: 

l::(a.b.p\c.q) A m::b.p\lr.c.q A m::b.p\n::q -> o::p\n::q. 
Im In mo 

If we assume that p = vecx.b.x and q = recx.c.x we see that the second state and 
the final state of this computation are the same up to the choice of location names; 
this was not true in the approach of [3, 4]. 

The fact that the location names are different in the two states becomes inessen- 
tial when we map agents on causal automata; in fact, we define a function norm 
that, given a agent p, returns a pair (p',cr), where p' is obtained from p by nor- 
malizing the location names and a describes which location of p corresponds to a 
location of p'. CCS agents can now be mapped on causal automata. 

DEFINITION 3.4 (from CCS agents to causal automata). Let Zinit be a special 
location and let po be a CCS agent without location prefixes. The causal automaton 
aut(po) = (Q,w,i-+,qo) is so defined: 

• 9o = finit "Po € Q; 
• w(p) are those locations appearing in p which are different from Zinit; 
• whenever p 6 Q, p A p' and (p", a) = norm(p') then p" € Q and: 

lm 

~ P fy*/m]o<r P" if ' # *init, 

- pA[*/m]o<rp" if Z = /iaif 
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Also in this case, the general definition of bisimulation on causal automata ex- 
actly matches the ordinary definition of location equivalence, as it is shown in [15]. 

THEOREM 3.5.  Given two CCS agents p and q, p ~loc q iff aut(p) ~ca aut(g). 

In this case, with some garbage collecting of terminated (i.e., nil) subagents, 
finite causal automata can be obtained for the class of finitary agents. An agent 
is finitary if all agents which are reachable from it have a bounded number of 
non-terminated parallel components. 

4. From causal automata to ordinary automata 

In the construction of the causal automata, we consider only names of past 
events which are referenced in the present state. In fact, the remaining names 
cannot for sure be relevant for the future computation. However it can happen that 
some of the names associated to a state are never referenced in future computations. 
These names can be safely discarded from the automaton, obtaining a more compact 
structure. 

DEFINITION 4.1 (active names). Given a causal automaton A, the sets of ac- 
tive names corresponding to the states of A, denoted by an(p) with p € QA, are 
the smallest sets such that: 

if p Aa p' then M C an(p); 
M 

if p A> p', m e an(p') and a(m) ^ * then cr(m) E an(p). 

DEFINITION 4.2 (irredundant reduction). Let A = (Q,w,\-±,q0) be a causal 
automaton. Its irredundant reduction is the causal automaton JJ.^4 = (Q, an, (->', q0) 
where i-V is obtained from i-4 by restricting the renamings to the active names of 
the target states. 
We say that an automaton A is irredundant if ty-A = A. 

PROPOSITION 4.3. Let A be a causal automaton. Then ty-A ~ca A. 

A causal automaton A can be visited beginning from the initial state. In this 
visit, the global meaning of the private names of the reached states is made explicit2. 
If the global meaning corresponding to the names of a reached state p is given by 
a : w(p) <->■ TV and transition p A-p q is followed, the global meaning for q is given 

M 
essentially by a o p. However, a global meaning has to be associated also to the 
name created in the transition (the name of the target state mapped in * by the 
transition renaming). To this purpose we use a function new, which gets a transition 
p >->p p' and a global meaning a for the names of p and returns a new name. A 

M 
possible definition of new is as follows: 

new(p £■„ p', a) = min{7V \ a(p(w(p')))} 
M 

This means that the first name is chosen, that is not already used in the target 
state. Other allocation strategies can be adopted by changing function new. 

To formalize the idea of visiting a causal automaton A, we associate to A a 
standard labeled transition system (called the unfolding of A); each state of the 

2A state can be visited more than once, with different meanings for its private names. 

^7U 



HISTORY DEPENDENT VERIFICATION 9 

unfolding is a pair (state of the causal automaton, global meaning of its names) 
and each transition has the form 

<P.ff>   \(p'>a>) 

where a is an action, M are the names the action depends from and m is the newly 
created name. 

DEFINITION 4.4 (unfolding). The unfolding corresponding to a causal automa- 
ton A = {Q,w,>-¥,qo} is the labeled transition system unf(A) = (Qu,-t,qou) de- 
fined as follows: 

• the initial state is qou = (<Zo,0) £ Qu, 
• if (p, a) e Qu and p A-p p' then (p',cr') G Qu and (p, a)   A   (p',&'), where 

M m,M' 

a' = (CT U (*, m)) o p, M' = a(M) and m = new(p H*„ p', CT). 
M 

It is easy to show that there are equivalent causal automata with non-equivalent 
unfoldings. This happens because two equivalent states of the causal automata can 
have a different number of names, and in the unfolding this can lead to different 
choices for the new names. 

The following theorem expresses an important result of this paper: given two 
irredundant causal automata, they are equivalent if and only if the corresponding 
unfoldings are equivalent. This allows us to apply a standard partitioning algorithm 
for checking the equivalence of two automata and to obtain minimal (standard) 
automata corresponding to them. 

THEOREM 4.5. If A and B are irredundant causal automata then A ~co B iff 
unf(A) ~unf(ß). 

5. A tool for verifying causal automata 

Theorem 4.5 suggests an algorithm for checking history-preserving equivalence 
of two systems based on partial orders: 

1. construct (separately) the causal automata corresponding to the systems; 
2. discover (separately) the active names of the two automata and get the 

irredundant reductions: start marking the names that are active due to the 
first condition of Definition 4.1 and continue marking all the names reachable 
following the dependencies in the other condition of Definition 4.1; at the 
end discard the unmarked names; 

3. unfold (separately) the obtained irredundant automata; 
4. use a standard algorithm for checking the (strong or weak) equivalence of 

the obtained transition systems (for instance, partition refinement [11, 18]). 

Notice that, while step 1 depends on the formalism in which the systems are 
described (CCS, Petri Nets, ... ) and on the desired partial order semantics (lo- 
calities, causality, ... ), steps 2-4 work for generic causal automata and are hence 
common to all these formalisms. 

To add a new formalism, moreover, it is sufficient to define a new function which 
maps systems described in this new formalism into causal automata; obviously, this 
function must map history-preserving equivalent systems into equivalent causal 
automata. Moreover, it has to map an interesting set of systems into finite causal 
automata. As shown in Section 3, this is obtained by having a syntactic notion to 
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decide if a past name can be forgotten in a particular state. Step 2 of the algorithm 
refines then this notion, discarding all the inactive names that were created during 
the generation phase. 

In the studied cases, the class of systems which are captured is very significant: 
in the case of CCS with localities, all the finitary agents; in the case of Petri nets, 
all the n-safe nets. 

The proposed algorithm can also be used to generate the minimal transition 
system corresponding to a system; to obtain this, the same procedure has to be 
applied by starting with just a net and, at the end, a minimization algorithm has 
to be applied. As far as we know, this is the first approach which leads to minimal 
realizations for Petri nets up to history-preserving bisimulation and for CCS with 
localities. 

A verification environment is being developed3 in Pisa which is based on the 
above approach. The tool is based history-dependent automata [14], which are 
slightly more general than the causal automata presented in this paper. In fact, 
they model also 7r-calculus agents. The 7r-calculus is an extension of CCS in which 
channel names can be used as values in communications, allowing for dynamic 
creation of new channels; since channels can be created by some actions and then 
used in following communications, it is clear that also 7r-calculus has to deal with 
dependencies between transitions. 

The environment provides a set of tools on history-dependent automata to edit, 
visualize, make irredundant and unfold them. A number of front ends that translate 
several formalisms into causal automata are also planed. An existing verification 
environment for process algebras, the JACK systems [2], is used instead to work on 
ordinary automata (equivalence checking and minimization). Moreover, a model 
checker for verifying logical properties of systems has also been implemented. The 
model checker allows the user to check behavioral properties (expressed in a vari- 
ant of Hennessy-Milner logic) directly on history-dependent automata. Tools are 
also under investigation that directly check for bisimulation and minimize history- 
dependent automata. The logical structure of the verification environment is illus- 
trated in Figure 1. 
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Appendix 

In this appendix we present the basic definitions on Petri nets we use in the 
paper. Most of the definitions and of the notations are from [9]. 

DEFINITION 5.1 (net). A net N is a tuple (S,T,F) where: 

• 5 is a set of places and T is a set of transitions; we assume S DT = 0; 
• F C (S x T) U (T x S) is the flow relation. 

If x 6 SUT then *x = {y | (y,x) € F} and x* = {y \ (x,y) 6 F} are called 
respectively the preset and the post-set of x. 
Let °iV = {x € 5 U T | »i = 0} and N° = {x 6 S U T | x# = 0}. 
A net N is finite if S and T are finite sets. 

Given a net N = (S,T,F), we often write SN,TN, FN for S, T, F. We will 
apply a similar convention also to the other structures we are going to define. 

DEFINITION 5.2 (P/T net). A (labeled, marked) place/transition net (or sim- 
ply P/T net) AT is a tuple (5, T, F, W, I, m0), where: 

• (S, T, F) is a net; 
• W : F ->• N+ assigns a positive weight to each arc of the net; we sometimes 

assume that W is defined on (5 x T) U (T x S) by requiring W(x, y) = 0 if 
(x,y)?F; 

• I :T —t Labels is the labeling function, where Labels is a fixed set of action 
labels; 

• mo : S —> N is the initial marking. 

A marking is a mapping m : 5 -> N. It represents a distribution of the tokens in 
the places of the net. 
Transition t £ T is enabled at marking m if m(s) > W(s, t) for all s € *t. In this 
case, the firing of t at m produces the marking m' with m'(s) = m(s) + W(t, s) — 

W(s,t), and we write m -> m'. 

DEFINITION 5.3 (occurrence net). An occurrence net is a net K = (C,E,G) 
(in this case, states are also called conditions and transitions are also called events) 
such that: 

• for all c € C, \'c\ < 1 and \c'\ < 1 (conditions are not branching), and 
• the transitive closure G+ of G is irreflexive (the net is acyclic). 

DEFINITION 5.4 (process). A process IT of a P/T net iV = {S,T,F, W,l,m0) 
is a tuple (C,E,G,p), where AT = (C,E,G) is a finite occurrence net and p : 
(CU E) ->(SUT) is such that: 

• P(C) C 5 and p(E) C T; 
• m0(s) = b_1(s) n °K\ for all s G S; 
• W(s,p(e)) = |{c € *e | p(c) = s}| and W(p{e),s) = \{c € e* | p(c) = «}| for 

all e e £ and all s G 5. 

We write °w for 0Ä" and n° for A"°. 
The initial process of net JV is the4 process TTQ{N) with an empty set of events. 
Let IT = (C,E,G,p) and ir' = (C',E',G',p') be two processes of N. If: 

• E' = E U {e} for some e 0 £; 

4Notice that the initial process of a net is unique only up to isomorphism of the set of initial 
conditions. 
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•CDC; 
• P'\cuE =P 

then we write n -> IT', where i = p'(e). 

Now we define history-preserving bisimulation. We follow a classical character- 
ization, as it appears in [1] under the name of fully concurrent bisimulation. 

DEFINITION 5.5 (event structure). The (deterministic) event structure for pro- 
cess 7T = (C,E,G,p) of net N is the tuple ev(7r) = (E,F

+
\E,IN °P\E)- An iso- 

morphism between two event structures is a bijective function between their events 
which respects ordering and labels. 

DEFINITION 5.6 (history-preserving bisimulation). A set 1Z of triples is a his- 
tory-preserving bisimulation for nets N\ and iV2 if: 

• if (7Ti, /, 7r2) € H then 7Ti is a process of iVi, 7r2 is a process of N2 and / is 
an isomorphism between ev(7Ti) and ev(7T2); 

• K(iV1)!0,7ro(iV2))G7l; 
• if (7ri,/,7T2) € 1Z and -K\ -V -K'X then 7r2 -4 7r2 with (7ri,/',7r2) € 11 and 

/'lev(TTi) = /; 

• if (7Ti,/,ir2) € 11 and 7r2 -4 TT2 then 7Ti -4 ir[ with (7ri,/',7r2) € 1Z and 
/'lev(TTi) = /• 

Two nets Ni and iV2 are history-preserving bisimilar, written Ni ~/,p iV2, if there 
is a history-preserving bisimulation for them. 

COMPUTER SCIENCE DEPARTMENT, UNIVERSITY OF PISA, CORSO ITALIA 40, 56100 PISA, ITALY 
E-mail address: ■Cugo,pistore}«di.unipi.it 
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Transition Systems with Independence and Multi-Arcs 

Thomas T. Hildebrandt and Vladimire» Sassone 

ABSTRACT. We extend the model of transition systems with independence in order to 
provide it with a feature relevant in the noninterleaving analysis of concurrent systems, 
namely multi-arcs. Moreover, we study the relationships between the category of transition 
systems with independence and multi-arcs and the category of labeled asynchronous tran- 
sition systems, extending the results recently obtained by the authors for (simple) transition 
systems with independence (cf. Proc. CONCUR'96), and yielding a precise characterisa- 
tion of transition systems with independence and multi-arcs in terms of (event-maximal, 
diamond-extensionat) labeled asynchronous transition systems. 

Introduction 

Following the leading idea of CCS [12] and related process calculi [11, 2,13,9], the 
behaviour of concurrent systems is often specified extensionally by describing their 'state- 
transitions' and the observable behaviours that such transitions produce. The simplest 
formal model of computation able to express naturally this idea is that of labeled transition 
systems, where the labels on the transitions are thought of as the actions of the system at 
its 'external ports', or, more generally, the observable part of its behaviour. 

Transition systems are an interleaving model of concurrency, which means that they 
do not allow to draw a natural distinction between interleaved and concurrent execution of 
actions. More precisely, transition systems do not model the fact that concurrent actions 
can overlap in time and reduce concurrency to a nondeterministic choice of action inter- 
leavings, so loosing track of the casual dependencies between actions and, consequently, 
of the fact that computations that differ only for the order of independent actions represent, 
actually, the same behaviour. In other words, interleaving models abstract away from the 
difference between the factual temporal occurrence order and the more conceptual causal 
ordering of actions. The simplest exemplification of this situation is provided by the CCS 
terms a \ b and a.b + b.a, both described by the following transition system. 

b b *   K a 

(1) \4 
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Although for many applications this level of abstraction is appropriate, for several other 
kinds of analysis a model may be desirable that takes full account of concurrency. For 
instance, apart from any philosophical consideration about the semantic relevance of cause/ 
effect relationships, knowing that different interleavings represent the same behaviour can 
reduce considerably the state-space explosion problem when checking system properties 
such as safety [8] and liveness properties [21,17]. 

Several efforts have been devoted to the search of transition-based noninteHeaving 
models, e.g., transition systems enriched with additional features that make expressing 
concurrency explicitly possible (cf., e.g., [18, 4, 6, 7, 5, 3]). The present paper focuses 
on two such models, namely asynchronous transition systems, introduced independently 
by Bednarczyk [1] and Shields [20], and transitions systems with independence, proposed 
by Winskel and Nielsen [22], These two competing approaches are, among the others, 
those building on the simplest idea: endow transition systems with some formal notion 
of 'similarity' of transitions that enables to distinguish whether or not the opposite edges 
in diagrams such as (1) represent the same action. Intuitively, this is achieved in both 
approaches by thinking of transitions as occurrences of events, two transitions representing 
the same event if they correspond to the same action. However, the differences induced on 
the models by the different choices of how to assign events to transitions are definitely not 
trivial. And so are the relationships that these models bear to each other. 

Getting to the details, asynchronous transition systems assign events to transitions 
explicitly and enrich the structure further by adding an independence relation on the events 
that describes their causal relationships. This clearly makes distinguishing nondeterminism 
and concurrency possible; a.b + b.a and a\b can be represented respectively by, e.g., the 
following labeled asynchronous transition systems, where ~ indicates whether or not the 
events e and e' (labeled by a and b) are independent. 

• • • ^ • 

Observe that here and in the rest of the paper we consider labeled asynchronous transition 
systems [1, 22], i.e., asynchronous transition systems with a further labeling of events, as 
the proper extension of labeled transition systems. 

The expressive power of asynchronous transition systems is clearly not limited to the 
example above; for instance, Bednarczyk [1] and Mukund and Nielsen [IS] have shown 
that noninterleaving related issues for CCS processes — such as localities — can be mod- 
eled faithfully using this model. However, it can be argued that assigning both the inde- 
pendence relation and the decoration of transitions with events explicitly means assigning 
too much. In fact, this obviously introduces some redundancies in the model: there are, for 
instance, many non-isomorphic variations of the asynchronous transitions systems above 
which can still be reasonably thought as models of a\b and a.b + b.a. Moreover, although 
it is usually easy to tell about independence of transitions, in many important cases it is at 
least not immediate to assign events to transitions: it might very well be the goal of the 
entire semantic analysis to understand what the events of the system and their mutual rela- 
tionships are. This consideration seems to indicate that asynchronous transitions systems 
cannot have a significant impact in Plotkin's SOS style semantics, unless the independence 
relation is promoted to a greater role. 

Transition systems with independence are an attempt to answer to the previous obser- 
vation. Here events are not introduced explicitly. They are rather derived from the structure 
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of the 'simply-labeled' transitions, upon which the independence relation is directly lay- 
ered. In such a model, each of the CCS terms discussed above admits only one transition 
system which can faithfully represent it, viz., respectively, 

b *   K a b y\   K a 

• • •       ^        • 

• • 

The implicit information about events can be easily deduced from the presence (or the 
absence) of ~, making the achieved expressive power comparable to that of asynchronous 
transition systems. Moreover, avoiding a primitive notion of event makes providing a 
'noninterleaving' operational semantics in the SOS style a relatively simple task (cf. [22]). 

However, in order to be consistent with the computational intuition, the axiomatics of 
transition systems with independence involves (apparently necessarily [19]) one condition 
expressed 'globally' in terms of all the transitions representing occurrences of the same 
event. This contrasts with the 'local' conditions defining asynchronous transition systems 
(due to the globally identified events) and can make hard checking that a given structure is a 
transitions system with independence. Thus, the differences induced on the two models by 
the choice of a primitive versus a derived notion of event are far-reaching and seem to make 
them suitable for different applications. This indicates that it is not wise to choose once and 
for all between asynchronous transition systems and transition systems with independence, 
which, in turn, opens the issue of investigating/orrna//)' their analogies and differences. 

An exhaustive analysis of this question was carried out by the authors in [10], show- 
ing that transition systems with independence, besides being nicely related to a class of 
asynchronous transition systems called extensional, are equivalent to the so-called event- 
maximal asynchronous transition systems. The results of loc. cit. are summarized by the 
following diagram, where TSI, LATS, eLATS, and meLATS are, respectively, the cate- 
gories of transitions systems with independence, labeled, extensional, and event-maximal 
asynchronous transitions systems, and where «->, ±, and = stand respectively for embed- 
dings, coreflections, and equivalences. 

c »'LATS 

meLATS c >eLATS 

Essentially, the extensionality condition refers to the existence of a unique way to 
'complete' pairs of independent transitions to 'independence-diamonds'. Also, it excludes 
multi-arcs, i.e., multiple transitions with the same label between the same two states. 
Event-maximality, on the other hand, can be seen at the same time as identifying those 
transition systems that make as few identifications of transitions as possible, i.e., con- 
tain no confusion about event identities, and those in which such identities are derivable 
from the independence relation, i.e., reduce the redundancy. It is worth noticing here that 
at: eLATS -* TSI, the right adjoint of the coreflection, complements and corrects a non- 
well-defined construction sketched in [22]: as a matter of fact, due to the greater generality 
of asynchronous transition systems, eLATS happens to be the largest subcategory of LATS 
on which such a construction makes sense. 

A question left open by [10] is whether or not the need to restrict to extensional asyn- 
chronous transition systems is a consequence of the intrinsic differences between the two 
notions of events considered, i.e., if in order to be able to model situations ruled out by the 
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extensionality constraints it is necessary to assign events explicitly. This paper addresses 
such a question; namely, we remove the restriction to transition systems without multi- 
arcs, relaxing the definition of transition systems with independence, and yielding the new 
notion of transition systems with independence and multi-arcs (nonextensional transition 
systems with independence would probably be a better name, though). 

This represents, in our view, an interesting enhancement of the model. In fact, in 
noninterleaving semantics, to be able to treat multi-arcs is clearly very relevant. In a sense, 
it can be seen as allowing 'quotienting' of the state-space while retaining full information 
about events and causality. As an example, consider the CCS term (a\b) +a.b, traditionally 
described by the following transition system. 

(a\b)+a.b 

It is common (see e.g. [13, 15] among others) to quotient the state-space by some struc- 
tural congruence that, e.g., collapses the states b and nil\b, obtaining the more compact 
representation — with multi-arcs — shown below. 

(a\b)+a.b 

Observe that, contrarily to the interleaving case, it is vital here to have two different a- 
transitions, since they rappresent different events: one is part of the independence-diamond 
and is, therefore, independent of b; the other is not. 

In order to justify our definition, we prove that, except for the extensionality condition, 
the category TSIm of transition systems with independence and multi-arcs bears exactly the 
same relationships as TSI to LATS. More precisely, we prove that TSIm is coreflective in 
the category dLATS of the diamond-extensional asynchronous transition systems — intu- 
itively, those transition systems that make no confusion about the identities of the events 
carried by transitions facing each other in independence-diamonds. Similarly to the case of 
TSI, dLATS is the largest subcategory of LATS for which such a result holds. Moreover, 
among the diamond-extensional, we identify the event-maximal asynchronous transition 
systems and prove that they induce the largest full subcategory of LATS, mdLATS, for 
which the coreflection cuts down to an equivalence. This yields a precise characterisation 
of TSIm in terms of LATS that extends the relationships between TSI and LATS discussed 
above: in fact, the category of eLATS and its full subcategory meLATS are, respectively, 
the full subcategories of dLATS and mdLATS consisting of transition systems without 
multi-arcs. 

Summing up, this paper presents the following diagram of formal relationships be- 
tween the new model of transition systems with independence and multi-arcs and asyn- 
chronous transition systems which can be useful in practise to translate back and forth 
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between the two models when the application one has in mind requires it. 

TSIm     <? > LATS 

> dLATS 

meLATS »eLATS 

Although the technical development here goes along the lines of [10], and therefore, 
strictly speaking, this paper is simply an extension of loc. cit., we believe that the definition 
of TSIm is a relevant contribution on its own. 

1. Preliminaries 

In this section we recall briefly the definitions of asynchronous transition systems, 
transition systems with independence, and their respective categories [1,22]. 

As discussed in the introduction, asynchronous transition systems are simply transition 
systems whose transitions are decorated by events equipped with an independence relation. 
Four axioms (A1-A4) are needed to guarantee the intended meaning for the events and the 
independence relation. 

DEFINITION 1.1 (Labeled Asynchronous Transition Systems). A labeled asynchro- 
nous transition system (lats for short) is a structure 

A = (SA,iA,EA,TmnA,IfaLA,l/ti, 

where (SA,iA,EA,TranA) is a transition system with set of states S&, initial state i& € S&, 
and transitions TranA C SA x EA X SA, and where EA is a set of events, LA a set of la- 
bels, I A : EA -t LA a labeling function, and I A C EA X EA, the independence relation, is an 
irreflexive, symmetric relation such that 

Al. e £ EA     =>■     3s\,s2 € SA. (si,e,s2) S TranA', 

A2. (s,e,si),(s,e,s2) £ TranA     =*•    ^1=^2; 

A3.    e\ IA e2, (s,el,si),(s,e2,s2) € TranA     =^ 
3u. (sl,e2,u),(s2,el,u) G TranA; 

A4.    eiIAe2, (s,ei,si),{sl,e2,u) eTranA     =*■ 
3J2. {s,e2,s2),(s2,euu) G TranA. 

si *y2 

*2 J u U «1 

«1   ,      .  «2 

S\ h 

«2 * u U «1 

»2 

In the rest of the paper we shall let 1(e) denote the set {e1 \ e IA e'} and, for convenience, 
use (s, ea, s1) as a shorthand for a transition (s,e,/) with ^(e) = a. 

The following is the standard definition of morphisms for lats, which essentially mim- 
ics the idea of simulation (cf. [1,22]). 
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DEFINITION 1.2 (Asynchronous Transition System Morphisms). For A and A' lats, a 
morphism from A to A' is a triple of (partial) functions1 

(a:SA-> SA,,r\: EA ->> EA,,X: LA ->■ LA,), 

where (cr,r|) is a morphism of labeled transition systems, i.e., 
► c(iA) = iA,\ 

>■ (sue,s2)€TranA,T\(e)l    =$■     (a(si),r\(e),a{s2)) G TranA,\ 

(sue,s2) G TranA, T|(c)t    =>•    o(si) = O(J2); 

which preserves the labeling, i.e., makes the following diagram commutative 

EA »• EAi 

4    J> 
and the independence, i.e., 

e\ U «2, Tl(«iH, r|(e2)4-    =>    n(«i) 4' Tl(e2). 

It is immediate to see that lats and their morphisms form a category, which we shall 
refer to as LATS. 

Starting from Definition 1.1, transition systems with independence attempt to simplify 
the structure retaining explicitly only the independence, now layered directly on the tran- 
sitions. As already mentioned, the notion of event becomes implicit, determined by the 
independence relation through the equivalence-classes of the relation ~. 

DEFINITION 1.3 (Transition Systems with Independence). A transition system with 
independence (tsi for short) is a structure 

T = (ST,iT,LT,TranT,IT), 

where (ST,h,LT,Tranj) is a transition system and IT C TranT x Tranr, the independence 
relation, is an irreflexive, symmetric relation, such that, denoting by ■< the binary relation 
on transitions given as 

(s,a,S{) -< (s2,a,u)    ifandonlyif 

3b e LT. (s,a,si) IT (s,b,s2), 

(s,a,s{) IT (si,b,u), (s,b,s2) IT (s2,a,u), 

and by ~ the least equivalence on transitions which includes it, we have 

Tl. (s,a,si) ~ (s,a,s2)    =$>    si=s2; 

T2. (s,a,Si) IT (s,b,s2)    =>    3u.(s,a,si) IT (si,b,u), (s,b,s2) IT (s2,a,u); 

T3. (s,a,si) IT (sub,u)     =►    Bs2. (s,a,s{) IT (s,b,s2), (s,b,s2) h (s2,a,u); 

T4. (s,a,sx) ■<Uy(s2,a,u)IT(w,b,w')     =»     (s,a,si)IT (w,by). 

The "---equivalence classes are to be thought of as events, i.e., t\ -< t2 means that t\ 
and t2 are part of a 'concurrency diamond', whilst t\ ~ t2 means that they are occurrences 
of the same event. Concerning the axioms, notice then that Tl corresponds to A2 and 
axioms T2 and T3 correspond, respectively, to A3 and A4. 

'We use, respectively, /: A -y B and /: A -± B to indicate total and partial functions.  For / a partial 
function, /(*)J. (/(*)t) means that / is (un)defined at x. 
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The following definition of morphisms for transition systems with independence re- 
sembles closely the one given above for lats. 

DEFINITION 1.4 (Transition System with Independence Morphisms). For T and T 
tsi, a morphism from T to V consists of a pair of (partial) functions 

(a: ST^ST,,X: LT-^LJ,) 

which is a morphism of transition systems and, in addition, preserves independence, i.e., 

(si,a,s2) h (s\,b,s'2), X{a)i,X{b)i    =» 

(ofrUto.ate)) lr (<y(s\)Mb),o(s'2))- 

We shall use TSI to denote the category of tsi and their morphisms. 
The following lemma states that tsi morphisms are well defined as maps of events, an 

easy consequence of the fact that they preserve independence that we shall use in order to 
embed TSI into LATS. 

LEMMA 1.5 (Morphisms map Events to Events). For {a,X): T -*T' a morphism of 
tsi, (si,a,s2) and (s'l,a,s2) transitions of T, (a{si),X(a),a(s2)) ~ (a(s,

l),X{ä),a(s,
2)) 

whenever (si,a,s2) ~ (s[,a,S2) andX(a)i, i.e., lats morphisms preserve ~. 

2. Comparing LATS with TSI: Considering multi-arcs 

In this section we first recall the results of the comparison of TSI and LATS carried out 
by the authors in [10], and then, reconsidering a restriction used in loc. cit., we introduce 
the notion of transition systems with independence and multi-arcs — i.e., tsi in which 
multiple transitions carrying the same label are allowed between the same two states. In 
the next section we shall then perform an analysis matching that of [10], investigating the 
relationship between such a category and LATS, and showing that, in a precise sense, our 
definition provides a minimal, conservative way to extend tsi with multi-arcs. 

The starting point of the analysis in [10] is the obvious inclusion ta: TSI -^ LATS 
which acts on objects by decorating each transition with the event identified by the ~-class 
the transition belongs to, and by inheriting the independence relation directly from the tsi. 
On the opposite direction, we considered the 'abstraction' at from LATS to TSI that forgets 
the events and brings the independence from the events down to the transitions. However, 
a simple argument shows that the presence of multi-arcs in LATS makes it impossible for 
at to be well-defined as a map to TSI. Thus, the very first step of [10] is to consider only 
those lats A satisfying 

(Ex) (suei,s2)^(sue\,s2) £TranA     =>    a^b, 

whose purpose is to forbids multi-arcs. This allows to prove that the diamond-extensional 
asynchronous transition systems, whose definition follows, are exactly those lats A such 
that at{A) belongs to TSI. 

DEFINITION 2.1 (Diamond-Extensional lats). A diamond extensional labeled asyn- 
chronous transition system (dlats for short) is a lats that satisfies 

A!3. ey IA e2, {s,e1,sx),(s,e\,s2) £ TranA     => 

3! pair (si,x^,u), (s2,x^,u) € TranA. e\ lA x2, e2 IA x\, x\ IA x2\ 

A!4. ey IA e2, (s^si),(*!,4,") G TranA     ^ 

3! pair {s,x^,s2),{s2,x\,u) € TranA. e\ 1A x2, e2 IA x\, *i IA x2. 

1-^7 
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The category dLATS is the full subcategory of LATS consisting of the diamond-extensional 
lats. 

We call extensional the diamond-extensional lats that in addition satisfy (Ex), and we 
denote by eLATS the full subcategory of dLATS that they determine. We can now give the 
formal definitions of the functors ta: TSI -¥ LATS and at: eLATS -» TSI. 

DEFINITION 2.2 (TSI <-> LATS). For T a tsi, let ta{T) be the structure 

(ST,iT,E,Tran,I,LT,£), 

where, denoting by ~ the equivalence relation induced by IT as in Definition 1.3, 

► E = Tranr/~, the set of —classes of Tranj; 

► Tran= {(sl,[(sl,a,s2)]~,s2) | {si,a,s2) € TranT}; 

► [(Ji,a,i2)]~/[(*!,a,^)^ ifandonlyif (sua,s2) h (^,a,^2); 

► l{[{si,a,s2)]~)=a. 

For (a,X): T -> 7" a morphism of tsi, let ta((a,X)) be (a,T|, A,), where 

I undefined ifA,(a)t. 

The proof that ta is well defined follows easily from Lemma 1.5. Actually, ta is a 
/H/7 and faithful functor, i.e., an embedding of TSI in LATS. In the following, when no 
confusion is possible, we may occasionally omit the index ~ from the notation for ~- 
classes. 

DEFINITION 2.3 (eLATS <-* TSI). For A a lats, let at{A) be the structure 

(SA,iA,LA,Tran,I), 

where 

► (j,a,/) S Tran ifandonlyif (^c0,^) e TranA, 

► (s,a,s{) I {s2,b,sj) ifandonlyif (s,e^,si),(s2,e^,s3) £ TranA, el IA e2. 

For (a, T|, X): A -+ A' a morphism of lats, let af ((a, r|, X)) be (a, X). 

The result of [10] is that ta and at form a coreflection of TSI in eLATS. 

PROPOSITION 2.4 (to H af: TSI -»• eLATS). TSI is coreflective in eLATS. 

PROOF. Subsumed by that of the forthcoming Proposition 3.8. — D 

The lats corresponding to tsi are characterised as the event-maximal lats. Intuitively, 
a lats is event-maximal if its events and independence are 'tightly coupled', so that one 
cannot 'split' events without destroying the global lats structure. In other words, the iden- 
tity of the events in event-maximal lats is forced by the independence relation. This will 
provide a direct characterisation of tsi in terms of lats 

DEFINITION 2.5 (Event-Maximal lats). For A a lats, e e EA, and T C 7>, where Tg = 
{(sje,^) e TranA \e = e}, letA[T] denote the replacement of e on the transitions in T for 
a fresh event e & EA, i.e., 

A[T] = (SA,iA,EAU{e},Tran,I,LA,t), 

where 

► Tran = (TranA \T) U{(sltg,s2) | (slte,s2) 6 T}; 
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On the Costs and Benefits of using Partial-Order Methods 
for the Verification of Concurrent Systems 

(Invited Paper) 

Patrice Godefroid 

ABSTRACT. Verification by state-space exploration is one of the most success- 
ful strategies for analyzing the correctness of finite-state concurrent reactive 
systems. Partial-order methods are algorithms for dynamically pruning the 
state space of such systems without incurring the risk of any incompleteness 
in the verification results. This paper presents results of experiments per- 
formed with these algorithms on real protocol examples, and discusses the 
practical significance of partial-order methods. 

1. Introduction 

State-space exploration is one of the most successful strategies for checking the 
correctness of finite-state concurrent reactive systems. It consists in exploring a 
global state graph, called the state space, representing the combined behavior of 
all concurrent components in the system. Many different types of properties of a 
system can be checked by exploring its state space: deadlocks, dead code, unspec- 
ified receptions, violations of user-specified assertions, etc. Moreover, the range of 
properties that state-space exploration techniques can verify has been substantially 
broadened during the last decade thanks to the development of model-checking 
methods for various temporal logics (e.g., [CES86, LP85, QS81, VW86]). 

The main limit of this approach to verification is the often excessive size of the 
state space. Owing to simple combinatorics, this size can be exponential in the 
size of the description of the system being analyzed. This exponentiafgrowth is 
known as the state-explosion problem. The state-explosion problem is due, among 
other causes, to the modeling of concurrency by interleaving, or, more accurately, 
to the exploration of all possible interleavings of concurrent events. For instance, 
the execution of n concurrent events is investigated by exploring all n! interleavings 
of these events. 

Recently, a collection of verification techniques, referred to as "partial-order 
methods", have demonstrated that exploring all interleavings of concurrent events 
is not a priori necessary for verification. Indeed, interleavings corresponding to 
the same concurrent execution contain related information. The intuition behind 
partial-order methods is that concurrent executions are really partial orders and 
that expanding such a partial order into the set of all its interleavings is an inefficient 
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way of analyzing concurrent executions. Instead, concurrent events should be left 
unordered since the order of their occurrence is irrelevant. Hence the name "partial- 
order methods". However, rather than choosing to work with direct representations 
of partial orders, these algorithms keep to an interleaving representation of partial 
orders, but attempt to limit the expansion of each partial-order computation to 
just one of its interleavings, instead of all of them. Precisely, given a property tp, 
partial-order methods explore only a reduced part of the global state space that is 
provably sufficient to check the given property. The difference between the reduced 
and the global state spaces is that not all interleavings of concurrent events are 
systematically represented in the reduced one. In what follows, we call "partial- 
order method" any algorithm for generating such a reduced state space. 

Partial-order methods as denned above first appeared independently in [Val88a, 
Val88b] and [God90, GW91b], and were developed further in [Val90, GW91a, 
GHP92, HGP92, GP93, Pel93, Val93, WG93, GKPP94, HP94, Pel94]. A 
detailed comparison of the results published in these papers is available in [God96]. 
Partial-order methods are now used in several existing verification tools, and have 
been tested on numerous real-protocol examples (e.g., see [GHP92, HGP92, 
HP94, GPS96]). 

Of course, it has been recognized for some time before the early 90's that 
concurrency and nondeterminism are not the same thing. This observation has 
actually inspired a fairly large body of work on so-called "partial-order models" of 
concurrency (e.g., [Lam78, Maz86, Pra86, Win86]). Work in this area studies 
various semantics for concurrency, and compares their properties. Also, partial- 
order temporal logics (e.g., [PW84, KP86, KP87, Pen88, Pen90]) have been 
designed to be semantically more expressive than previously existing (linear-time 
and branching-time) temporal logics. In contrast, partial-order methods yields 
results identical to those of verification methods based on classical interleaving 
semantics, they just make it possible to perform the verification more efficiently. 

Several approximate methods based on simple heuristics have been proposed 
to restrict the number of interleavings that are explored [GH85, Wes86, Hol87]. 
These heuristics carry with them the risk of incomplete verification results, i.e., they 
can detect errors but cannot prove the absence of errors. In contrast, partial-order 
methods reduce the number of interleavings that must be inspected in a completely 
reliable manner, provably without the risk of any incompleteness in the verification 
results. 

Strategies for proving properties of concurrent systems without considering all 
possible interleavings of their concurrent actions have been proposed in [AFdR80, 
EF82, Pnu85, SdR89, KP92b, JZ93]. These proof methods are applied in the 
context of an inference system, in which the correctness of a system is established 
by proving assertions about its components. This approach to verification has the 
advantage of not being restricted to finite-state systems. On the other hand, it 
requires proofs that are manual. Even with the help of a theorem prover, carrying 
out proofs with a theorem prover is far from fully automatic since most steps of 
the proof require inventive interventions from the user. In contrast, the focus of 
the partial-order methods we discuss in this paper is purely on algorithmic issues, 
since we discuss fully-automatic state-space exploration techniques. 

The idea that the cost of modeling concurrency by interleaving can be avoided 
in finite-state verification also appeared in [JK90, PL90, McM92, Esp94]. In 
[JK90], the problem of finding an "optimal" reduced state space with just enough 
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ON THE COSTS AND BENEFITS OF USING PARTIAL-ORDER METHODS 3 

transitions and states to preserve Mazurkiewicz's trace semantics is addressed. 
In [PL90], a method that relies on a pomset grammar description of the system is 
introduced. Also, in [McM92, Esp94], one finds a verification method that works 
by unfolding a Petri net description of a concurrent system into a finite acyclic 
structure. These methods are quite different from those discussed in this work. 
Note that so far none of these other methods have been widely experimented on a 
large set of realistic examples, as it has been the case for the partial-order methods 
discussed here. 

2. Basic Notions 

Consider a concurrent system composed of several processes. Let us assume 
that the system is represented by a set 6 of system transitions, specified for instance 
in some guarded-command modeling language. The choice of a particular modeling 
language and semantics is not essential for the following discussion. What matters 
is that it is possible to compute from 6 a global transition system AQ (or "global 
state space") representing the joint behavior of all the processes in the system. For 
the sake of simplicity, we will assume that each transition of AQ corresponds to the 
execution of one system transition t £ 6.1 We will write s —► s' to mean that the 
execution of the transition t £ 6 leads the system from the state s of AQ to the 
state s' of AQ, and s =^ s' to mean that the execution of the sequence w € 6* of 
transitions leads from s to s'. 

The basic idea that enables us to check properties of AQ without constructing 
the whole of AQ is the following: AQ contains many paths that correspond simply 
to different execution orders of the same system transitions. If these transitions are 
"independent", for instance because they are executed by noninteracting processes, 
then changing their order will not modify their combined effect. 

This notion of independency between transitions and its complementary notion, 
the notion of dependency, can be formalized by the following definition (adapted 
from [KP92a]). 

DEFINITION 2.1. Let 6 be the set of system transitions and D C 6 x 6 be a 
binary, reflexive, and symmetric relation. The relation D is a valid dependency 
relation for the system iff for all ti,t2 6 8, (h,t2) £ D (h and t2 are independent) 
implies that the two following properties hold for all global states s in the global 
state space AQ of the system: 

1. if #i is enabled in s and s -^ s'', then t2 is enabled in s iff t2 is enabled in s' 
(independent transitions can neither disable nor enable each other); and 

2. if *i and t2 are enabled in s, then there is a unique state s' such that s =>2 s' 

and s 0 s' (commutativity of enabled independent transitions). 

This definition characterizes the properties of possible "valid" dependency re- 
lations for the transitions of a given system. Note that it is not practical to check 
the two properties listed above for all pairs of transitions for all states in order to 
determine which transitions are independent and which are not. Therefore, in prac- 
tice, one uses easily checkable syntactic conditions that are sufficient for transitions 
to be independent. See [God96] for a detailed presentation ofthat topic. 

1 Transitions are assumed to be deterministic: the execution of a transition t in a state s 
leads to a unique successor state. This is not a restriction since "nondeterministic transitions" 
can always be modeled by a set of deterministic transitions with non mutually exclusive guards. 
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Following the work of Mazurkiewicz [Maz86], one can use the notion of inde- 
pendent transitions to define an equivalence relation on sequences of transitions: 
two sequences of transitions are equivalent if they can be obtained from each other 
by successively permuting adjacent independent transitions. Thus, given an inde- 
pendency relation, sequences of transitions can be grouped into equivalence classes 
which Mazurkiewicz calls traces. It is easy to see that sequences of transitions wi 
and w2 belonging to the same trace lead to the same state of Ac- This property is 
basically what will allow us to only explore part of the global state space AQ- to 
determine if a state is reachable by a trace, it is sufficient to explore one transition 
sequence corresponding to that trace. 

It might thus appear that we are using Mazurkiewicz's trace semantics. This is 
not really so. Indeed, to view Mazurkiewicz's theory as a semantics, the indepen- 
dency relation should be considered as part of the semantics: given an independency 
relation, one can determine the Mazurkiewicz semantics of a system. The criterion 
for a partial construction of the state-space would then be that the Mazurkiewicz 
semantics are preserved. Here a less restrictive point of view is taken. The semantic 
criterion is that the result of checking a property in the class of interest should be 
the same as if checking the property on AG. The link with Mazurkiewicz's seman- 
tics is only in the fact that the algorithms presented in the next section rely on the 
concept of independency and on the properties it implies. With some algorithms, 
it is even possible to use definitions of independence that are weaker than the one 
of Definition 2.1 (e.g., [GP93, God96]). 

3. The Algorithms 

In this section, we present the basic algorithmic ideas used in the style of partial- 
order verification methods we are considering. For simplicity, we only consider the 
problem of detecting terminating (deadlock) states. In order to check for properties 
more elaborate than deadlocks (such as arbitrary safety properties or linear-time 
temporal-logic formulas), it is usually necessary to preserve more information in the 
reduced state space AR, i.e, to explore more states and transitions. This is done 
by enforcing additional conditions that have to be satisfied during the generation 
of AR. We refer the reader to [God96] for a detailed comparison of the various 
techniques that have been proposed to address this problem. 

The specification of the algorithms we discuss here is thus that they should find 
all states of AQ with no outgoing transitions while exploring as small a fraction as 
possible of AQ- All the partial-order algorithms follow the same basic pattern: they 
operate as classical state-space searches except that, at each state s reached during 
the search, they compute a subset T of the set of transitions enabled at s and explore 
only the transitions in T, the other enabled transitions are not explored. We call 
such a search a selective search. It is easy to see that a selective search through AQ 

only reaches a subset (not necessarily proper) of the states and transitions of AG- 

Two main techniques for computing such sets T have been proposed in the 
literature. The first technique actually corresponds to a whole family of algo- 
rithms [Ove81, Val91, GW91b, GP93]. It is shown in [God96] that all these 
algorithms (including Valmari's algorithms for computing "strong stubborn sets") 
compute persistent sets. The second type of technique is the sleep set technique 
(e.g., [GW93]).   Interestingly, these two techniques are compatible and can be 
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used simultaneously to further improve the selection of the set T. We first describe 
persistent-set techniques. 

Intuitively, a subset T of the set of transitions enabled in a state s of AQ is 
called persistent in s if all transitions not in T that are enabled in s, or in a state 
reachable from s through transitions not in T, are independent with all transitions 
in T. In other words, whatever one does from s, while remaining outside of T, does 
not interact with or affect T. Formally, we have the following [GP93]. 

DEFINITION 3.1. A set T of transitions enabled in a state s is persistent in s 
iff, for all nonempty sequences of transitions 

s = Si —► s2 -> s3 ...  -»•  sn —► Sn+i 

from s in AQ and including only transitions U & T, 1 < i < n, tn is independent 
with all transitions in T. 

Note that the set of all enabled transitions in a state s is trivially persistent 
since nothing is reachable from s by transitions that are not in this set. Persistent 
sets are very similar, although not equivalent, to the "faithful decompositions" 
introduced (independently) in [KP92b] and to the "ample sets" used in [Pel93]. 

Let a persistent-set selective search be a selective search through AQ which, 
in each state s that it reaches, explores only a set T of enabled transitions that is 
persistent in s, and that is nonempty if there exist transitions enabled in s. It is 
easy to prove that a persistent-set selective search started from the initial state of 
AG will explore all deadlocks of AQ [God96]. 

Of course, the key element required for the implementation of a persistent- 
set selective search is an algorithm for computing persistent sets. Such algo- 
rithms [Ove81, Val91, GW91b, GP93] infer the persistent sets from the static 
structure (code) of the system being verified. They differ by the type of information 
about the representation of the system that they use (e.g., "distinguishing between 
internal and global transitions", "which process can access which variable", "which 
process can access which variable from its current location", etc.). The aim of these 
algorithms is to obtain the smallest possible persistent sets. Usually, the more in- 
formation about the program the algorithm uses, the smallest the persistent set it 
produces are, albeit at the cost of a higher computational complexity. See [God96] 
for a detailed comparison of these algorithms and of their complexity. Note that 
exploring the smallest number of enabled transitions at each step of the search 
is only a heuristic: it does not necessary lead to the exploration of the smallest 
number of states in AR. 

The second technique for computing the set of transitions T to consider in a 
selective search is the sleep set technique [GW93] introduced in [God90]. This 
technique does not exploit information about the static structure (code) of the 
program, but rather about the past of the search. Used alone it reduces the number 
of transitions explored, but not the number of states [God96], which can still be 
very useful as we will see in Section 6. Used in conjunction with a persistent 
set technique it can further reduce the number of states explored. Indeed, when 
the persistent set technique cannot avoid the selection of independent transitions 
in a state, sleep sets can avoid the exploration of multiple interleavings of these 
transitions. Again, we refer the reader to [God96] for a detailed presentation of 
the sleep set algorithm and of its complexity. 
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4. How Can Partial-Order Methods Be Evaluated? 

How much can one gain by using these algorithms? It is very difficult to give 
a general answer. Indeed, one can quite easily construct families of systems for 
which nothing is gained whatsoever. Examples of such systems are systems where 
the coupling between the processes is so tight that two independent transitions are 
never simultaneously enabled. (The system is in fact purely sequential.) In this 
case, partial-order methods yield no reduction, and the selective search becomes 
equivalent to a classical exhaustive search. 

On the other hand, it is also easy to construct systems for which the growth 
of the state space when the number of processes in the system increases is reduced 
from exponential to polynomial by a selective search. This is the case, for instance, 
for the well-known dining-philosophers example [Val88a]. Going one step further, 
it is also possible to find examples of systems for which the global state space 
increases in size when the value of some parameter grows, while the reduced state 
space remains the same. See Chapter 8 of [God96] for such an example. 

Clearly, by a biased choice of examples, an arbitrarily exaggerated impres- 
sion of the improvements could thus be suggested. For instance, by setting the 
number of philosophers to a sufficiently large number, we can claim that we can 
verify properties of systems with astronomical numbers of states, like 1020 states 
as in [BCM+90], or even systems with infinite numbers of states. Of course, this 
should be taken with a grain of salt since the fact that checking only a small part 
of such enormous state spaces is sufficient only indicates that most of the states in 
the global state space are uninteresting. This observation leads us to the following 
conclusion: the number of states in the global state space of a system does not give 
a good measure of its "complexity". 

Along the same line of thought, the study of the asymptotic behavior of the 
function giving the number of states for different numbers of processes in a system 
is only of limited practical interest. Indeed, state-space exploration techniques are 
rarely used to verify systems composed of tens of identical processes. For such 
systems, it is preferable to use other verification techniques specially tailored for 
proving properties of systems with undefined numbers of participants (e.g., [KM89, 
WL89]). 

Consequently, experiments with realistic examples, including industrial-size 
ones, appear to be the most informative approach to evaluating partial-order veri- 
fication methods. 

5. Evaluation 

In order to perform experiments on complex concurrent systems, we have imple- 
mented a selective search algorithm using persistent sets and sleep sets in an add-on 
package for the protocol verification system SPIN [Hol91]. SPIN is a verification 
tool for communication protocols described in the Promela language. Promela is 
a nondeterministic guarded-command language. Promela defines systems of asyn- 
chronously executing concurrent processes that can interact via shared variables 
and message channels. Interaction via message channels can be either synchronous 
(i.e., by rendez-vous) or asynchronous (buffered) with arbitrary (user-specified) 
buffer capacities, and arbitrary numbers of message parameters. These different 
types of communication can be combined.   Given a concurrent system described 
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by a Promela program, SPIN can verify properties of the system by performing a 
depth-first search in the global state space of the system. 

The partial-order package for SPIN that we have developed is available free of 
charge for educational and research purposes by anonymous ftp from ftp.monte- 
fiore.ulg.ac.be in the /pub/po-package directory. More information on the partial- 
order package can be found in the README file in this directory. 

The partial-order package has been tested on various examples of protocols. 
The aim of these experiments was to determine the type of reduction that can be 
expected on real protocol examples when using the partial-order verification algo- 
rithms, and to evaluate the respective impact of these algorithms on the reduction 
obtained. In this Section, results obtained with four sample protocols are detailed. 

• PFTP is a file transfer protocol presented in Chapter 14 of [Hol91], modeled 
in 206 lines of Promela. It consists of three processes communicating via 
FIFO channels. 

• MULOG3 is a model of a mutual exclusion algorithm presented in [TN87], 
for 3 participants, modeled in 97 lines of Promela. It consists of six processes 
communicating via FIFO channels and shared variables. 

• ABRA is a model of the Abracadabra protocol presented in [Tur93], mod- 
eled in 168 lines of Promela. It consists of four processes communicating via 
FIFO channels. 

• DTP is a data transfer protocol, modeled in 406 lines of Promela. It consists 
of three processes communicating via FIFO channels. 

We report here experiments performed using four different algorithms. 

• DFS denotes an exhaustive search performed in a depth-first order. 
• SLEEP denotes a selective search using sleep sets. 
• PS denotes a selective search using persistent sets. 
• PS+SLEEP denotes a selective search using both persistent sets and sleep 

sets. 

Results of these experiments are presented in Table 1. All experiments were 
performed on a SPARC2 workstation with 64 Megabytes of RAM, using the Partial- 
Order Package version 3.0. For each run, the numbers of visited states and traversed 
transitions are given. Time (in seconds) is user time plus system time as reported by 
the UNIX-system time command. All visited states are stored in a hash table. To 
avoid significant run-time penalties for disk-access, visited states can only be stored 
in randomly accessed memory, i.e., in the main memory available in the computer 
on which the experiments are performed. Consequently, parameter settings in all 
the protocols considered were chosen to produce global state spaces that can easily 
be stored in 64 Megabytes of RAM. For each run, the amount of memory used is 
directly proportional to the number of stored states. 

From the numbers given in Table 1, two main observations can be made con- 
cerning the respective impact of persistent sets and sleep sets on the reduction 
obtained. 

• Persistent Sets yield the most important reductions on the number of vis- 
ited states. They can also yield good reductions on the number of explored 
transitions. 

• Sleep sets yield a less impressive reduction on the number of visited states, 
but yield very good reductions on the number of explored transitions. 

.if 



PATRICE GODEFROID 

Protocol Algorithm Stored States Transitions Time 
PFTP DFS 446,982 1,257,317 478.2 

SLEEP 446,982 622,364 639 
PS 276,722 482,722 662.7 

PS+SLEEP 249,994 351,633 684.7 
MULOG3 DFS 38,181 111,668 25.3 

SLEEP 38,181 38,241 30.5 
PS 18,537 38,906 25.8 

PS+SLEEP 17,984 18,057 26 
ABRA DFS 149,816 372,010 494.2 

SLEEP 149,816 176,469 546 
PS 32,289 40,931 166.3 

PS+SLEEP 27,781 34,381 155.7 
DTP DFS 251,409 648,467 200.2 

SLEEP 251,409 269,912 189 
PS 9,904 10,351 11.3 

PS+SLEEP 9,904 10,351 11.5 
TABLE 1. Evaluation 

For all protocols, the best reductions can be obtained with PS+SLEEP, i.e., by- 
using simultaneously persistent sets and sleep sets. Using persistent sets and sleep 
sets gives better reductions than using persistent sets alone in almost all cases. For 
DTP, persistent sets are so good in reducing the number of states and transitions 
that sleep sets are not able to improve this result. 

These results show that using the partial-order methods discussed in this work 
is basically a no-risk improvement. In the worst case, when the reduction is not 
sufficient to make up the additional run time overhead (PFTP), the selective search 
can be slightly slower than a classical search, but the overall time complexity re- 
mains linear in the number of explored transitions. 

Moreover, using partial-order methods can strongly decrease both the time and 
the memory resources needed to verify properties of concurrent systems (DTP). 
Therefore, they can be used to verify more complex protocols. 

6. State-Space Caching 

Another observation that can be made from the results given in Table 1 is the 
following: when using partial-order methods, and especially when using sleep sets, 
the number of state matchings, i.e., the number of visited transitions minus the 
number of visited states, strongly decreases. This phenomenon can be explained as 
follows [GHP92]. 

When performing a classical search (like DFS), almost all states in the state 
space of a concurrent system are typically visited several times. There are two 
causes for this: 

1. From the initial state, the explorations of all interleavings of a single finite 
concurrent execution of the system always lead to the same state. This state 
will thus be visited several times because of all these interleavings. 

2. From the initial state, explorations of different finite concurrent executions 
may lead to the same state. 
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When using partial-order methods, and especially when using sleep sets, most of 
the effects of the first cause given above can be avoided, and, in many cases, most 
of the states are visited only once during the selective search. 

States that are visited only once do not need to be stored in memory. Indeed, 
the only reason why visited states are stored in memory is to avoid redundant 
explorations of parts of the state space: when a state that has already been visited 
is visited again later during the search, it is not necessary to revisit all its successors. 
Unfortunately, it is impossible to determine which states are visited only once before 
the search is completed. However, if most of the states are visited only once, the 
probability that a state will be visited again later during the search is very small, 
and the risk of double work when not storing an already visited state becomes 
very small as well. This enables one not to store most of the states that have 
already been visited without incurring too much redundant explorations of parts 
of the state space. The memory requirements can thus strongly decrease without 
seriously increasing the time requirements. 

State-space caching [Hol85, JJ91] is a memory management technique for 
storing the states encountered during a depth-first search that consists in storing 
all the states of the current explored path (i.e., those in the current depth-first 
search "stack") plus as many other states as possible given the remaining amount 
of available memory. It thus creates a restricted cache of selected system states 
that have already been visited. Initially, all states encountered are stored into the 
cache. When the cache fills up, old states that are not in the stack are removed 
from the cache to accommodate new ones. This method never tries to store more 
states than possible in the cache. Thus, if the size of the cache is greater than the 
maximal size of the stack during the exploration, the search is not truncated, and 
eventually terminates. 

We have implemented such a caching discipline in our partial-order package. 
The caching discipline can be used with any of the selective-search algorithms that 
were considered in the previous section. Results of experiments with different cache 
sizes and the algorithms DFS, PS, and PS+SLEEP for the MULOG3 protocol are 
presented in Figure 1. For each run, the run time is directly proportional to the 
number of explored transitions. 

With DFS, these results clearly show that the size of the cache, i.e., the num- 
ber of stored states, can be reduced to approximately the third of the total number 
of states in AQ without seriously affecting the number of explored transitions and 
hence the run time. If the cache is further reduced, the run time increases dramati- 
cally, due to redundant explorations of large parts of the state space. This run-time 
explosion makes state-space caching inefficient under a certain threshold. 

With PS, this threshold can be reduced to approximately the eighth of the total 
number of states. This improvement is not very spectacular because the number of 
matched states, even when using PS, is still too important (see Table 1). The risk 
of double work when reaching an already visited state that has been removed from 
the cache is not reduced enough. 

With PS+SLEEP, the situation is different: there is no run-time explosion 
anymore. Indeed, the number of matched states is reduced so much (see Table 1) 
that the risk of double work becomes very small. When the cache size is reduced 
up to the maximal depth of the search (this maximal depth is the lower bound for 
the cache size since all states of the stack are stored to ensure the termination of 
the search), the increase of the number of explored transitions is still less than 10% 

i>a 



10 PATRICE GODEFROID 

Transitions 

1.2e+06 

le+06 

800000 

600000 

400000 

200000 

 1 1  

DFS -♦- 
PS .+.. 

PS + SLEEP -a- 

fcH CT-rt --a- m ■ •.■-•■■•-■■-Tt"--!-! 

0 5000      10000     15000      20000     25000     30000     35000     40000 

Stored states 

FIGURE 1. Performances of state-space caching for MULOG3 

with respect to the number of transitions explored by PS+SLEEP when all visited 
states are stored in memory, i.e., without using state-space caching. 

In other words, the MULOG3 protocol, which has 38,181 reachable states that 
can be visited by DFS in 25 seconds (see Table 1), can be analyzed with the same 
run time by using PS+SLEEP and state-space caching while storing no more than 
150 states. The memory requirements are reduced by a factor of 200 while the run 
time remains the same. 

Of course, the practical interest of this result is that using partial-order methods 
and state-space caching together makes possible the complete exploration of very 
large state spaces, that could not be explored so far. 

For instance, consider two other versions of the MULOG protocol, denoted MU- 
LOG4 and MULOG5, with respectively four and five participants. Let PS+SLEEP- 
+Caching denote a selective search using persistent sets, sleep sets, and state-space 
caching. Tables 2 and 3 present results of experiments performed on MULOG4 
and MULOG5 with the algorithms DFS, PS+SLEEP, and PS+SLEEP+Caching. 
"Stored states" is the number of stored states at the end of the search. When state- 
space caching is used, the maximum number of stored states, i.e., the size of the 
cache, is limited to 300,000 states. (This number is approximately the maximum 
number of states that can be stored in RAM for MULOG4 and MULOG5 while still 
avoiding any paging.) "Cleared states" is the number of times a state was removed 
from the cache. "Matched states" is the number of state matchings that occurred 
during the search. 
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Algorithm Stored St. Cleared St. Matched St. Transitions Time 

DFS - - - - - 
PS+SLEEP 654,600 0 6,189 660,789 986.4 

(2516.7) 
PS+SLEEP+Caching 300,000 354,676 6,198 660,874 1122.6 

(1184.4) 

TABLE 2. Verification of MULOG4 

Algorithm Stored St. Cleared St. Matched St. Transitions Time 

DFS - - - - - 
PS+SLEEP - - - - - 

PS+SLEEP+Caching 300,000 28,613,162 349,904 29,263,066 60,633.1 

TABLE 3. Verification of MULOG5 

For MULOG4, DFS was not able to complete its search, since its global state 
space is too large to be stored in (64 Megabytes of) memory. Using state-space 
caching with DFS does not help, because of the run time explosion mentioned 
above. MULOG4 can still be verified using PS+SLEEP, even without state-space 
caching. Real time as reported by the UNIX-system time command is given be- 
tween parentheses below the run time (user time plus system time). The important 
difference between these two numbers for PS+SLEEP is due to paging (storing 
654,600 states of MULOG4 requires more than 64 Megabytes of RAM, so some of 
them had to be stored on disk). 

For MULOG5, the only algorithm that is able to completely verify the correct- 
ness of this protocol is PS+SLEEP+Caching. The complete selective search takes 
approximately 17 hours, and explores 29,263,066 transitions. This means that the 
reduced state space AR explored by PS+SLEEP contains at most 29,263,066 states. 
The size of the global state space AG of MULOG5 is not known, but is very likely 
several orders of magnitude larger than the largest state spaces that can be explored 
by other existing verification tools. 

Note that the efficiency of the state-space caching technique can be dynamically 
estimated during the search: if the maximum stack size remains acceptable with 
respect to the cache size and if the proportion of matched states remains small 
enough, the run-time explosion will likely be avoided. Else one cannot predict if 
the cache size is large enough to avoid the run-time explosion. 

7. Conclusion 

Using partial-order methods is basically a no-risk improvement with respect 
to a classical exhaustive search in the state space of the system being analyzed. 
Moreover, partial-order methods can yield substantial improvements in the perfor- 
mances of the verification. Therefore, these methods broaden the applicability of 
state-space exploration techniques to more complex systems. 

The reduction obtained depends on the coupling between the processes in the 
system. When the coupling is very tight, partial-order methods yield no reduction, 
and the selective search becomes equivalent to a classical exhaustive search. When 
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the coupling between the processes is very loose, the reduction can be very im- 
pressive. For most realistic examples, partial-order methods provide a significant 
reduction of the memory and time requirements needed to verify protocols. 

It is worth noticing that partial-order methods can already yield good perfor- 
mance improvements for verifying systems containing only a handful of processes. 
It is not necessary to consider systems composed of tens of processes to obtain spec- 
tacular reductions. To put it in another way, the part of the state explosion due to 
the exploration of all possible interleavings of independent transitions can already 
be very important for systems containing only a few processes, and partial-order 
methods are able to get rid of most of this explosion. 

This very important point emphasizes the practical significance of partial-order 
methods. Indeed, most of the protocol models that are analyzed with state-space 
exploration techniques typically contain only a handful of processes. The examples 
we have considered in Section 5 reflect this reality. For instance, a typical protocol 
example is usually composed of a few processes that communicate asynchronously 
by exchanging messages through some communication medium, each process being 
described by a long piece of sequential code, with complex interactions between 
control and data. 

Not only these systems are very frequent, but they are also very hard to verify: 
they are complex (several hundreds lines of (Promela) code are needed to model 
these systems), and their state spaces are highly irregular. Specifically, their state 
spaces seem to be much more irregular than, for instance, those of systems composed 
of many identical processes (or pieces of hardware), for which symbolic verification 
techniques are able to capture the regularity of the state space with the guidance 
of the user (see, e.g., [BCM+90, McM93]). In contrast, for examples of the type 
we are considering here, existing symbolic verification techniques were reported to 
be inferior to classical state-space exploration algorithms [HD93]. Consequently, 
for this particular, though important, class of systems, partial-order methods are 
one of the most successful approaches to tackle the state explosion arising during 
the analysis of such systems. 

Finally, we have shown that using partial-order methods, and especially using 
sleep sets, can substantially improve the state-space caching discipline by getting rid 
of the main cause of its previous inefficiency, namely prohibitive state matching due 
to the exploration of all possible interleavings of concurrent executions all leading 
to the same state. Thanks to sleep sets, the memory requirements needed to verify 
large reduced state spaces can be strongly decreased (several orders of magnitude) 
without seriously affecting the time requirements. This makes possible the complete 
exploration of very large reduced state spaces (several tens of million states) in a 
reasonable time (one night). Used together, partial-order methods and state-space 
caching significantly push back the limits of verification by state-space exploration. 

Note 

The results reported in this paper appeared in [God96]. 
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Abstract 

This paper describes the current status of the verification testbed PEP (Pro- 
gramming Environment based on Petri Nets) from a personal perspective of 
the author. The paper concentrates on what are perceived as the main high- 
lights and the major shortcomings of PEP. 

1    Overview of PEP 

PEP [8,48] is a programming and verification environment which is based on Petri 
nets, but in which nets play a background role. Primarily, the system accepts two 
types of input: a program n written in a concurrent programming language and a 
property <p expressed in some temporal logic language. The atoms of (f> can, for 
instance, refer to variables and/or to control points of n. Through a sequence of 
compilation and verification steps, PEP allows 0 to be checked against n, i.e. to 
determine whether or not <f> is true for it (in other words, whether or not n is a 
model of <f>). Figure 1 describes the core functional dependencies between PEP's 
implemented modules. 

The user may input a parallel program written in a simple language called B(PN)2 

(Basic Petri Net Programming Notation) [9]. A program may be edited and compiled 
either into a process algebraic expression of the PBC (Petri Box Calculus [3], an 
extension of CCS [50]) or into a high-level Petri net of the M-net variety [6], and, 
from either, further into a 1-safe low-level net; both routes yield equivalent low- 
level nets. In addition, the user may input and edit a temporal logic formula which 

"This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under grants Be 
1267/2-1, Be 1267/2-2, Be 1267/6-1, Fl 207/1-1 and Sta 450/1-1. Cooperation with the Technische 
Universität München has been supported by project A3 (Spezifikation, Analyse, Modellierung) of 
the DFG-Sonderforschungsbereich SFB-342 (Methoden und Werkzeuge für die Nutzung paralleler 
Rechnerarchitekturen). 
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refers to a program. This formula is compiled into a formula referring to the net 
associated with the program, if there exists one. It is also possible to edit a net 
(or a formula referring to it), but then, of course, the connection with any program 
(formula) it may have come from is destroyed. 

Once the system knows of a 1-safe low-level net (which may have been created 
either directly or through a program by compilation), the computation of its finite 
prefix [43] may be initiated. This prefix represents the partial order semantics of 
the net in concise form. When the finite prefix is constructed, the model-checker is 
ready to be run. It accepts a (net) formula <p and the finite prefix, executes Esparza's 
model checking algorithm [21] and yields a 'yes' or a 'no', depending on whether 
or not the formula is true of the net (and hence also whether or not the corresponding 
program formula - if any - is true of the program - if any). 

PEP also has various sideline functionalities in addition to the mainstream functio- 
nality just described. For example, B(PN)2 programs can be created automatically 
by input filters, for instance from PFA (Parallel Finite Automata) [29]. There are 
output filters as well, for example one for transforming a B(PN)2 program into 
executable C code [46]. Moreover, PEP includes various algorithms to check spe- 
cific properties of a net, some of them without needing to compute its prefix. Also, 
an alternative model checker (which does not need the finite prefix) has been im- 
plemented for a special class of nets [4, 65]. These additional functionalities are 
represented by broken lines in figure 1. 

Section 2 describes history and the rationale of PEP, section 3 deals with the pro- 
gramming language and its Petri net semantics, and section 4 describes some of the 
verification techniques implemented in PEP. 

2   History and rationale of PEP 

The PEP system unites two lines of development: Petri net semantics of concurrent 
programs and verification algorithms on nets and their partial order semantics. 

2.1    Petri net semantics of concurrent programs 

For the verification of parallel algorithms expressed in a programming notation, 
verification techniques such as the Owicki/Gries method [52] are available. For the 
verification of parallel algorithms expressed by means of Petri nets, other verifica- 
tion techniques such as through S-invariants and traps can be applied [1, 56, 58]. 
Good programming notations come with an indigenous technique for structuring 
programs, while Petri nets come with indigenous partial order semantics and ana- 
lysis methods. Giving a net semantics to a concurrent language may raise the 
hope that both advantages can be combined, and that verification techniques can be 
transferred between programming languages and Petri nets. 
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Figure 1: Functionality diagram of the PEP system 

It may be hoped of such a combination that its compositionality and its usefulness 
are in proportion. For instance, if a program is made up of variables, sequential 
compositions and inner blocks, then it is reasonable to expect its associated Petri 
net to be made up similarly of smaller nets corresponding to the variables and the 
inner blocks, and combined via a sequential composition defined on nets. This calls 
for a special kind of algebra on nets, and the box algebra [3] has been developed 
with that aim in mind. 

2.2   Verification algorithms on nets and their partial order semantics 

On Petri nets there is a tradition of relating graph-theoretical properties - as well 
as linear-algebraic properties based on the net's incidence matrix - to behavioural 
properties. For instance, if a net is covered by an S-invariant [56], then it follows 
that its state graph (under any initial marking) is finite. Most conditions of this kind 
are either sufficient or necessary, but not both. It is reasonable to expect that fast 
graph-theoretical algorithms - or, for that matter, fast linear-algebraic algorithms 
such as linear programming - can be exploited to check some of these conditions, 
and then to exclude or to assert certain behavioural properties. Such an approach 
may be called static, because assertions are deduced about the state graph without 
ever constructing any part of it. Of course, there are limits to this approach, but 
nevertheless, these limits are far from being fully explored. 

More recently, the static approach has been extended to cover not specific properties 
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but a whole class of properties, i.e. a temporal logic. Starting with an observation 
by Javier Esparza, we showed that a small branching-time temporal logic that can 
be characterised as 

'prepositional logic over places, plus the Diamond operator' 

can be model-checked by linear algebra - without constructing the state graph 
- for safe T-systems [4], which are a class of persistent nets, i.e. nets that are 
essentially without conflicts and choices [39]. It was already clear at the time of 
writing of [4] it would be difficult to generalise this result to a larger class of nets. 
Nevertheless, Javier Esparza found a way of model-checking the entire class of safe 
Petri nets against the same logic which retains a key characteristic property of [4], 
namely avoiding the construction of the state graph [21]. He showed that instead 
of constructing the state graph, McMillan's idea [43] of computing a finite prefix 
of the occurrence net [20, 51 ] of a net can be exploited. 

2.3   Historical remark and acknowledgments 

When the PEP project was conceived by Hans Fleischhack and myself in 1993, we 
were hoping to create not just a testbed for checking the performance of existing 
Petri-net-based analysis algorithms and for searching for new algorithms, but also 
a user-friendly environment in which both programs and nets can harmoniously be 
input, edited, related to each other, simulated, and verified. At that time, all existing 
Petri net tools were either oriented towards graphical input and had no or very little 
analysis support, or were oriented exclusively towards analysis without graphical 
support (the most advanced system of this kind being Peter Starke's INA [62]). 
None of the systems had the kind of close connection with a concurrent notation 
that we had envisaged. Thus, we (which initially meant a group consisting of myself 
and Bernd Grahlmann - who has since then been the chief project researcher and 
organiser - in Hildesheim and another group led by Hans Fleischhack in Oldenburg) 
took the risk of starting an implementation effort from scratch, using only know- 
how from the MOBY project at Oldenburg [23] and input from several students' 
projects at both sites. The DFG (Deutsche Forschungsgemeinschaft) supports this 
project with two persons per year over a period of (so far) 1993-1996. In the second 
stage of the project, 1995-1996, the Humboldt-Universität zu Berlin (by a group 
led by Peter Starke) has joined the project. 

PEP was lucky in getting quite a number of good students interested in the project 
and contribute to its realisation - names that come to mind are Burkhard Bieber [13], 
Matthias Damm [16], Burkhard Graves [30], Tobias Himstedt [34], Lars Jenner [37], 
Michael Kater, Stephan Melzer [46], Stefan Römer [59], Andree Seidel [61] and 
Thomas Thielke [65], many of whom are still working on and around the project. 
PEP was also fortunate to have the strong and continued support by Esparza's 
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research group at the Technische Universität München. By these means, as well as 
by the fortunate circumstance that the EU (European Union), DAAD (Deutscher 
Akademischer Austauschdienst) and its French counterpart provided funding for 
related theoretical work (projects DEMON, CALIBAN and POEM), it was possible 
to develop PEP to the point it has now reached. 

It is the work of the persons mentioned in this subsection (and others), more than 
my own work, that is described in this paper. 

3   PEP's inputs and their semantics 

PEP primarily accepts two types of input: a program written in the language 
B(PN)2 [9] and a property referring to a program or to its associated net. B(PN)2 

and its Petri net semantics are discussed in sections 3.1 and 3.2. Ways of inputting 
properties are described in section 3.3. 

3.1   PEP's programming language 

Ideally, the notation implemented in PEP was meant to serve a similar purpose for 
parallel programs as Dijkstra's guarded command notation [ 19] served for sequential 
nondeterministic programs, namely to represent algorithms in a 'pure' form while 
having a simple formal semantics. However, at least two additional questions are 
raised: 

• Should different hardware topologies be supported? In B(PN)2, the answer 
is a restricted 'yes', in the sense that both shared memory and message-based 
topologies are supported. Message buffers may have arbitrary integer size, 
ranging from 0 for handshake communication to oo for unbounded buffers. 
This may be contrasted with occam [45] which is limited to handshake com- 
munication between processes (other communication methods are possible 
but have to be implemented explicitly). 

• Should special features such as priorities and interrupts be supported? After 
convincing ourselves that at least a restricted (i.e. not optimally concurrent) 
formal semantics of priorities can be given in terms of ordinary Petri nets 
[10, 32], we have decided, for the time being, not to include priorities in 
B(PN)2. This may again be contrasted with occam which contains two 
constructs for expressing priorities between activities. 

In addition, it was decided that B(PN)2 should support the following features: 

• Explicit atomic actions. B(PN)2 allows angular brackets (...) to delineate 
atomic actions. In the translation, every such construct is translated into one, 
or a set of alternative, single transitions of a Petri net. 



• 

• 

Pre- andpostvalue programming in predicative style. For instance, an atomic 
action (x:=y) would be written as (x'='yAy'='y), where 'v and v' denote the 
prevalue and the postvalue, respectively, of v. The idea is that an action 
touches only such variables mentioned explicitly in it, and any value change 
making the predicate true is acceptable. Note the difference between the 
above action and (x'='y). For the latter, any value change of y would be 
acceptable in addition to setting the postvalue of x equal to the prevalue of v. 

Unification of shared memory and channel communication. To describe chan- 
nel communication in predicative style, we introduced c? and c! as primitives 
denoting the value last read on channel c and the value last output to channel 
c, respectively. They are analogous to the pre- and postvalues of variables. 

Unification of choices and loops. B(PN)2 contains a single do... od clause 
both for choices and for loops. The symbol D separates alternatives, which 
can be ended either by the keyword exit (indicating exit from the loop) or by 
the keyword repeat (indicating a repetition of the loop). 

For instance, figure 2 shows a three-component parallel program which exhibits 
both shared memory and buffered communication. Note that, due to the channel 
having capacity 2, both values could be deposited in it without any value being read. 
If its declaration is changed to var c : chan 1 of {3,5}, then at most one value 
could be written before reading, and if it is changed to var c : chan 0 of {3,5}, then 
writing and reading are simultaneous. In either case, any of the states (y, z)=(3, 3), 
(y, z)=(3,5), (y, z)=(5, 3) or (y, z)=(5,5) could be a result of the program. 

begin   var x : {3,5}; var c : chan 2 of {3,5}; 
(*'=3); (C\='XAX'='X) 

||    (*'=5); (C\='XAX'='X) 
||    begin var y, z : {3,5}; (y'=cl); (z'=c?> end 

end 

Figure 2: A B(PN)2 program with three components and an inner block 

B(PN)2 has served a useful purpose of representing algorithms (or nets) linearly. 
However, it has also turned out to have at least two shortcomings. First, for any 
large-scale applications, it would be indispensable to include recursion, procedures, 
and other features. Second, the core language is perhaps slightly too liberal. 

As to the first problem, work is in progress to extend B(PN)2 by procedures 
while still retaining its property of having a compositional net semantics [24,42]. 
In a further line of development, object-oriented features are being investigated 
with respect to their compositional net semantics [41]. These investigations are 
encouraging, in the sense that all extensions seem to be possible without significant 

3io 



extension of the existing Petri net model on which the semantics of B(PN)2 is 
based (section 3.2). 

Secondly, there seem to be some problems - or at least, debatable issues - with the 
prevalue/postvalue approach to atomic actions and their Petri net semantics. One of 
these issues is the (Petri net) semantics of actions such as a$ = (true), a\ = (x'='x) 
and Ü2 = (x'=x'). At present, ao is translated into a single 'silent' transition, a\ is 
translated into a choice of transitions which access the variable x but do not change 
its value, and a% is translated into a choice of transitions accessing x and allowing 
any value change. Operationally, this makes sense: for example, the first action 
does not interfere with a parallel fourth action accessing x, while the second and 
third actions do. However, axiomatically, it does not make much sense since the 
predicate true is normally considered equivalent with predicates such as x'=x'. 

Another issue is the syntax of choices and loops. The idea to combine them in 
a single do... od originally arose from translating them into a process algebra 
which contains only recursion but no iteration. For instance, the program fragment 
do a\\ exit Da^\ repeat od can be translated into the recursive process algebraic 
expression X = (a\ D (02; X)) [11]. It turns out that with a well-behaved (in terms 
of its net semantics) process algebraic iteration construct such as [E\ * E2* £3], 
where E\ is the initialisation, £2 is the body of the repetition and £3 is finalisation, 
the semantics of the general do... od is awkward because E\ must be assumed to 
be a silent action in general. Other iteration constructs such as [£2 * £3] (£2 being 
the body and £3 being finalisation) or more simply [£2] (denoting £| in terms 
of regular expressions) are more convenient for giving the semantics of the loop 
construct, but are less well-behaved in terms of their Petri net semantics. 

To avoid these problems, at the present time I favour imposing on B(PN)2 the same 
restriction that is already built in the guarded command notation and that leads to 
well-formed [1] nets: that every alternative of a loop construct must begin with a 
plain action which is not itself another loop. In the present version of B(PN)2, this 
is implemented by the enter clause which separates the initialisation of a do... od 
construct from its body (see figure 3 below for an example). 

Another issue is the semantics of multiple communications such as 

(c!=5A<f !=3) || (c?=jc'Ac?=y>, 

where c and d are channels of capacity 0 and x and y are variables. In the pre- 
sent implementation, this parallel command leads to a deadlock, which is due to 
the underlying semantic ideas stipulating that a single channel should be sufficient 
(and necessary) for creating a handshake synchronisation out of two separate ato- 
mic actions. This approach has been found too restrictive in some contexts and 
generalisations have been proposed [18, 25]. 
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3.2   The compositional Petri net model underlying B(PN)2 

In our approach, two important ideas in giving Petri net semantics to a language such 
as B(PN)2 are, firstly, that it should be compositional and, secondly, that it should 
be transparent. Transparency means that the translation should introduce neither too 
many auxiliary places and/or transitions nor additional behaviour. Compositionality 
means that every program object - a variable declaration, an atomic action or a block, 
... - should be describable by a stand-alone Petri net, and that the set of all these Petri 
net ingredients can be combined at the Petri net level by operations which match 
the syntactic operators used in the program to combine its ingredients (variable 
declarations, atomic actions, inner blocks,...). 

Robin Milner has already shown in both his books [49, 50] how such a translation 
can be achieved compositionally at the process algebra level. His approach is, 
however, lacking in transparency (in the above sense) because of the way of CCS 
is constructed. For example, sequential composition has to be implemented in a 
roundabout way, which is not too complicated conceptually, but adds complexity 
to the resulting expression. As another example, atomic actions such as (x:=y), 
where x and y are declared in different blocks, lead to overhead in the translation 
and hence also in CCS-based analysis of the properties of programs containing such 
actions. 

The box algebra [3] has been devised as a modification and (partial) extension of 
CCS in order to avoid such overheads. This algebra has been defined together with 
a direct translation into a class of labelled 1-safe elementary Petri nets called boxes. 
PEP originally used this translation in order to create a net from a program: first 
an expression of the algebra is created from the program, and then a box is created 
from the expression. In practice, however, this approach is of limited usefulness 
because the resulting nets are usually very large; they are necessarily so large, of 
course, because all information contained in the program (in particular, variable 
types) needs to be stored in Petri net form. Already the expressions, which are 
used as intermediate translation results between programs and nets, tend to become 
very large in general. (However, they provide a possible interface to toois such as 
the Edinburgh Concurrency Work Bench [64].) The advantage of this approach is 
that the full set of Petri net analysis methods - described below in section 4 - is 
applicable to the result of the translation. 

In practice, it turns out that one would wish to translate a program only partially into 
a net, or into an abbreviated net from which the full net can be derived in a further 
step if desired. Net theory provides a class of nets for just such a purpose: so-called 
high-level nets ([26, 38] and others). However, in the PEP project high-level nets 
could not be used directly, because we required all translations to be compositional. 
Hence prior to using high-level nets, we needed to impose an algebra to make the 
box algebra operations available for them. 

This line of thought gave rise to the model which is now used in PEP: the M- 
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net (modular net) model [6, 7]. M-nets are high-level nets with an additional 
algebra containing box algebra operations such as choice composition, parallel 
composition and synchronisation. It is then possible to create an M-net associated 
with a B(PN)2 program by first constructing little M-nets corresponding to the 
ingredients (declarations, atomic actions etc.) of the program and then composing 
these M-nets in the same way as the ingredients of the program are combined. As a 
rule, the M-net of a program is not significantly larger than the program itself - but, 
of course, it has a set of inscriptions so as not to lose information. The disadvantage 
of this approach is that, even though finding structural analysis methods for high- 
level nets is presently a vigorous area of research (I mention e.g. [60]), there exist 
very few general methods for analysing a high-level net short of unfolding it, i.e. 
creating its associated elementary net (which, of course, beats the idea of saving 
space). 

The existing version of PEP does not exploit the compositionality which is built in 
the semantics. More pessimistically, while it is clear that compositionality is vital 
for semantics such as Hoare-style axiomatic semantics [35] or weakest precondition 
semantics [19], it is not yet clear whether compositionality of Petri net semantics 
can be exploited in any significant way in proofs of programs. The current version of 
PEP concentrates much more on what I have called transparency, i.e. on minimising 
the nets that are created, and on applying analysis algorithms to these objects. 

3.3   PEP's (current) ways of specifying properties 

PEP supports various ways of specifying properties: directly (see section 4.1); by a 
simple branching-time logic (on which the analysis algorithms described in sections 
4.2 and 4.3 are based); and in a linear-time notation (for the semidecision analysis 
described in section 4.5). The reader will notice that PEP does not (yet) support 
a truly strong logic, i.e. that some desirable properties may not be expressible, 
and hence not checkable (in the present version). This is due to a conscious effort 
of getting as static (and hence, hopefully, as efficient) as possible algorithms for 
a small (yet not uninteresting) logic first, before extending them at a later stage. 
It is understood that in a further development of the system, if PEP's indigenous 
algorithms turn out to be non-generalisable or not easily generalisable, it will be 
attempted to complement the existing techniques by more traditional state-graph- 
based algorithms. 

The language of the branching-time logic, call it BL, refers to a given 1-safe net N 
with place set S={si,..., sn}. An atomic formula is either the constant true or a 
place name Sj. If <f>, </>i and <fo are formulae, then so are -><f>, <t>\V<h. and 0<f>. The 
semantics of this logic refers to pairs (N, M) where N is a net as above and M is a 
marking of N. By definition, (N, M) always satisfies true; (N, M) satisfies s,- iff 
M(si)>0; (N, M) satisfies -></> iff it does not satisfy cp; (N, M) satisfies fa v 02 iff 
it satisfies fa or fa; and (N, M) satisfies 0<f> iff there is a successor marking M' of 
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M such that (N, M') satisfies <p. There are derived operators, such as A = ->v-i, 
□ = -><>->, etc. 

As usual, this simple definition is computationally uninteresting, because using it, 
the evaluation of a formula <p for any given (N, M) involves the (computation and 
the) traversal of the state graph, possibly many times, depending on the depth of 
nesting of the diamond operators O. In section 4, more efficient algorithms are 
described. Examples of properties that can be expressed are: 

00(Wse'f. s) (liveness of transition t) 
OCXs/ (token trappable on s{) 
0(s\/\->S2/\. ■ .A-tfn)   (reachability of a marking, 

in this case (1,0,..., 0) e N|S|). 

Eventuality properties cannot, as a rule, be expressed in BL. 

A slight change in the syntax of the logic makes formulae refer to programs rather 
than to nets: given a program, we may allow atomic formulae of the form true or 
x=v (where x is a variable and v is a value) or at p (where p is a control point). 
When the program is translated into a corresponding 1-safe net, a program formula 
may automatically be translated into a corresponding formula referring to that net, 
because every term of the form x=v or at p refers to a place of the net. Moreover, 
the formula is true of the program in its initial state if and only if the corresponding 
formula is true of the net and its corresponding initial marking. For example, in 
figure 2, the formula O (v=3 A z=3) is true, because there exists an execution in 
which both v and z are set to the value 3. 

4   PEP's verification components 

PEP attempts to do its verification business as statically as possible, e.g. by running 
algorithms on the structure of a net (or a program) to deduce properties of the 
net's (or the program's) behaviour. Five classes of verification techniques can be 
distinguished in PEP: dedicated analysis, restricted static model-checking, model- 
checking based on occurrence nets, interfacing to other systems such as INA, and 
analysis based on linear algebra. Sections 4.1 to 4.5 describe these techniques in 
turn. 

4.1    Dedicated analysis algorithms 

In its initial phase, PEP was used as a testbed for students to implement static analysis 
algorithms. For instance, [17] describes a wealth of theorems giving (often exact) 
structural conditions for a variety of behavioural properties of certain subclasses of 
Petri nets. In PEP, nets may first be checked as to whether or not they belong to 
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such a subclass, and if so, one of the structural algorithms can be invoked to test 
a corresponding property. The test of belonging to a subclass is split into several 
subtests: 'is the net free-choice?', 'is it a T-system?', 'is it «-bounded' (this test 
can be neglected if the net comes from a program, since it is then 1-bounded by 
construction), 'is it live if bounded?' and 'is it deadlock-free?' (using McMillan's 
algorithm). 

The boundedness test involves constructing the state graph, and the corresponding 
algorithm of PEP is therefore (and because it has not been optimised) rather slow. 
Nets coming from programs are nearly always non-free-choice, and hence the im- 
plemented algorithms for free-choice nets are not useful for such nets. In fact, for 
these reasons, this line of development of PEP has been all but discontinued, but 
nevertheless, it may still serve a useful purpose as a testbed for new algorithms. 
The test for boundedness is faster using the optimised algorithms of INA described 
below in section 4.4. 

4.2   Static model-checking for persistent nets 

The essential idea of this model-checker [4] can be described as follows. Let a 
net N with an initial marking M° and a formula 0 of the temporal logic BL be 
given, such that (N, M°) is a safe T-system; the problem is to decide whether or not 
(N, M°) satisfies (p. To check this, consider an innermost subformula of the form 
0(/i A ... A/m) of (j>, where each /,• is a literal, i.e. either $,- or ->Si for some place 
si. Exploiting the persistence of (N, M°), it can be shown that this subformula can 
be equivalently replaced by a formula of the form W/eT: f,-<Jfc,-, where T is the set 
of transitions of N and the £, arise as solutions of a linear programming problem 
which encodes the following question: 

'What is the maximal number of times that f, can be executed such 
that the resulting sequence (there is only one up to equivalent permu- 
tations by persistence) does not lose the property of being extendable 
to a sequence leading to a marking such that all of s\-sn are mar- 
ked/unmarked, depending on whether /,■ is Sj/-<SiT 

Replacing 0(/i A... A/m) by Vfj67: ?,<£,• is satisfiability-invariant, i.e. the resul- 
ting formula is valid for (N, M°) if and only if the original formula was. It is now a 
routine matter to apply this procedure repeatedly until no temporal operator O (nor 
Ü) are left in the formula, and temporal-operator-free formulae can be evaluated 
directly on the initial state without computing the state graph. (In order to apply 
this procedure, the logic has to be extended - temporarily - by atomic formulae of 
the form t<k, with k being an element of the set {—l}UNU{+oo}; but this is not a 
problem [4].) 

In PEP, this algorithm has been implemented for safe T-systems [65], Its perfor- 
mance can be startling for people who are used to check other algorithms on very 
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concurrent systems, such as the CCS expression ai||... \\an which generates 2" 
reachable states (or, to mention a less trivial example, Milner's well-known sche- 
duler [50], which is also a T-system). PEP checks formulae on such systems rather 
quickly. 

The model-checking algorithm described in this section has an interesting charac- 
teristic property: it shifts complexity away from one of its input parameters (the 
model) towards the other input parameter (the formula). Since our temporal logic 
includes the propositional calculus, any model checker is bound to be exponential 
in the size of the net (note: this is the net, not its state graph!) or in the length of 
the formula. Interleaving-based model-checking algorithms are exponential in the 
size of the net (because they generate the state graph) and linear in the length of 
the formula. The algorithm described in this section is exponential in the length 
of the formula (because it has to compute disjunctive normal forms repeatedly in 
order to obtain subformulae of the form <>(/[ A. .. A/OT)), but is provably polynomial 
in the size of the net. We consider this a desirable property of a model-checking 
algorithm: the net (and a fortiori its state graph) will be very large, in most cases, 
while the interesting formulae will - in most cases - be of limited size1 and, in 
particular, of limited nesting depth. 

4.3   Model-checking on finite prefices of occurrence nets 

Javier Esparza's model-checking algorithm [21] can be viewed as a generalisation of 
the algorithm described in section 4.2. The generalisation consists in allowing any 
safe Petri net, rather than just persistent ones, as input while retaining essentially the 
same logic, BL. The algorithm itself had to be extended and modified considerably, 
but Esparza did this in such a way that one of its main properties - viz., shifting 
algorithmic complexity from the size of the net to the size of the formula - remains 
as much as possible intact. 

Some form of representing behaviour turns out to be necessary, and Esparza has 
shown that it is in essence sufficient to keep knowledge about the maximal nonse- 
quential processes (i.e. the maximal partial order behaviours [5, 28]) of the input 
net. (If the net is persistent, then there is only one such process.) A succinct way 
of representing all processes of the net is by its occurrence net [20, 51], which can 
loosely be described as a branching structure with processes as 'paths'; the occur- 
rence net of a net is to the set of its processes what the execution tree of a net is to 
the set of its interleavings. 

Unfortunately, the occurrence net of a net is, in general, infinite. Fortunately, there 
is a way (detected by McMillan [43]) of defining a 'sufficiently large' prefix of 
the occurrence net - where 'sufficiently large' means that it contains implicitly 
every reachable marking.  That prefix is always finite.  Esparza has shown that 

'Although we will consider an exception in section 5. 
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not only all reachable markings, but also the maximal processes, are recoverable 
from that finite prefix. Using this finite prefix, model-checking can be done in a 
similar way as described above, i.e. by replacing innermost subformulae of the 
form 0(/i A ... A/m) by suitable conjunctions not involving O. However, the actual 
algorithm is significantly more complicated, and it involves the reconstruction of 
the relevant (maximal) processes from the finite prefix using a continuous 'shift' 
operator. 

Theoretical results about this model-checking algorithm are, (1): that in the special 
case of safe persistent systems it has polynomial complexity in the size of the prefix, 
and (2): that for a certain class of safe persistent systems, called safe conflict-free 
systems, it has polynomial complexity in the size of the net. A corollary of (1) 
and (2) is that in the special case of safe T-systems, the runtime of this algorithm 
is provably of the same complexity as that of the previously described algorithm 
(by orders of magnitude). Moreover, given that there are examples where the finite 
prefix is an order of magnitude smaller than the state graph, this algorithm performs 
better than ones based on the latter. 

begin var A : {1,2} ink 1; var ini,in2 : {false, true} ink false; 
do     (true)   enter   {ini'=true); 

do (true)   enter   (j'n2=false); exit 
D     (j'rt2=true); 

do (true)   enter   (A=2); (j/ii'=false); 
(A=l); (im'=tnie); 
exit 

G    (A=l>; exit 
od; repeat 

od; 
% cs\ : Critical Section 1 
(A'=2); <j«i'=false); repeat 

od 
||        do    ... analogous (exchanging 1 and2) ... od 
end 

Figure 3: Dekker's algorithm in B(PN)2 notation 

As before, the algorithm performs particularly well for systems with lots of con- 
currency and little choice, such as a\ \\... \\a„. By contrast, in a typical system 
without concurrency and with lots of choice, the finite prefix may even be exponen- 
tial whereas the state graph is only polynomial in size. Consider, for example, the 
process algebraic term {a\+b\); (a2+b2);...; (a„+b„). The Petri net of this term 
generates a state graph of size 0{n) and a finite prefix of size 0(2"), because after 
each fth choice, the rest of the occurrence net gets duplicated. The paper [22], ho- 
wever, describes an improvement of McMillan's unfolding algorithm which allows 
the calculation of optimised finite prefixes, such that a further result holds, (3): the 
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optimised finite prefix is always of size less or equal to the state graph (in terms of 
orders of magnitude), and, moreover, the previous results (1) and (2) still hold for 
the optimised prefix. This optimisation is implemented in the current version of 
PEP. 

After implementing the algorithm in PEP, it was tested on various examples. For 
instance, at one point of the development, we tested PEP's model-checking algo- 
rithm on Dekker's protocol for mutual exclusion (see e.g. [1]). This protocol is 
reproduced in figure 3 in B(PN)1 notation.2 At that point in time, we checked the 
following formulae: 

-> 0(at csi A at cs2) 
O (at «i =» (O at cs2)) 
O (at«2 =» (Oat«,)) 
O at «1 
O at CS2 
a O (atcsj) 
ü O (at cs2) 
□ O (at «1 v at cs2), 

obtaining, respectively, 

true 
true 
true 
true 
true 
false 
false 
false. 

This result is fine for the first five formulae but not for the last three. Burkhard 
Graves analysed the problem and traced it back to an error in Javier Esparza's 
paper. It is not possible to describe the full details in this paper, but the essential 
point is that the finite prefix as defined by McMillan is 'too small' for the 'shift' 
operator to function in the way it is supposed to function. It is possible to fix this 
problem by creating a finite prefix which is sufficiently large. This solution is easy 
to describe and recovers the theoretical results (1) and (2) of Esparza's paper, but it 
slows down the entire model-checker very significantly. It is only now (July 1996) 
that Burkhard Graves hopes to have found a way of enlarging the finite prefix in a 
minimal way while ensuring that the 'shift' operator works as it should and, at the 
same time, retaining the efficiency of the algorithm. This work will be reported in 
[31]. 

4.4   INA interface 

There have been recent efforts to combine PEP with Peter Starke's analysis tool INA 
(Integrated Net Analyser) [62]. Thanks mainly to work by Lutz Pogrell [55], the 
present version of PEP contains a user-transparent interface between the two tools 
that were originally developed independently of each other. INA can now be called 
from the same graphical interface, and nets that are input by PEP can be analysed by 
INA. In this paper, I refrain from describing the interface, but I mention the analysis 
capabilities of INA just in order to indicate the added capabilities of the combined 
tool, PEP/INA. The following is a sample, insignificantly shortened, output of INA, 

2We use (h=2) as an abbreviation of (h=2=h'), and we show this algorithm here explicitly just 
to give an example for the notation. 
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referring to a random net (figure 22 of [2]), reproduced here by courtesy of Peter 
Starke. 

Start of INA output: 
Current net options are: token type - black (for place/transition nets); time 
option - intervals; elements - transitions; firing rule - safe; priorities - not 
to be used; strategy — single transitions. 

Information on elementary structural properties: the net has no bad reachable 
states; the net is not statically conflict-free; the net is pure; the net has 
transitions without pre-places; the net is not coverable by state-machines; 
the net is not strongly connected; the net is not covered by semipositive P- 
invariants; the net has transitions without post-place; the net is ordinary, 
homogeneous, not conservative, not subconservative, not a state machine, 
not free choice, not extended free choice, not extended simple, not marked, 
not marked with exactly one token, not a marked graph, connected; the net 
has a non-blocking multiplicity, no nonempty clean trap, no places without 
pre-transition, no places without post-transition; the maximal in/out-degree 
is 4. 

Computation of the reachability graph. Current analysis options are: no 
depth restriction; do not print all states; print the dead states; do not print the 
bad states; no reachability / coverability test. Number of states generated: 
642. 

The net has no dead transitions at the initial marking; the net is bounded; the 
net is safe; the net has no dead reachable states. 

Current graph analysis options are: no computation of dynamic conflicts; no 
computation of distances; no computation of circuits; computation of terminal 
SC-components; resetability; liveness test. 

Graph analysis: The initial state is reproducible. 

Computation of the terminal SC-components. The net is reversible (resetable), 
covered by semipositive T-invariants, live, live if dead transitions are ignored, 
live and safe, has no time deadlocks. 

End of INA output. 

INA's computation of the reachability graph (state graph) is very fast. Moreover, 
INA has capabilities for exploiting the stubborn-set method by Valmari [67] and 
for detecting (and exploiting) state graph symmetries [63]. INA has a small in-built 
expert system which allows the conclusions of some known theorems to be added 
to the set of analysis results, provided the premises leading to those conclusions 
have already been verified for the particular net under consideration. 

4.5   Linear-algebraic semidecision analysis 

PEP offers a semidecision verification method which is based on a linear upper 
approximation of the state space. The theory of this method is described in [47] and 
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briefly in [48]. The method extracts from the description of the net and its initial 
marking, in linear time, a set of linear constraints L that every reachable marking 
must satisfy. Thus, the solutions, of L are a superset of the reachable markings. 
In order to make use of L for verification, a new set Lp of linear constraints is 
added to it which specify the markings that do not satisfy a desirable property P. 
Then, linear programming is used to solve the system Ll) Lp; if the system has no 
solution, every reachable marking satisfies P. 

The set of constraints L is actually the union of two subsets L\ and L2. L\ comes 
from the state equation and has been known for many years. The upper approxima- 
tion of the state space that can be derived from L\ is often rough and insufficient to 
prove many properties. The main contribution of [47] is the definition of L2, a new 
set of constraints derived from the traps of the net. 

Presently there exist semidecision algorithms for deadlock-freenes (yielding either 
'deadlock-free' or 'possibly not deadlock-free, with marking ... being potential 
deadlock marking' as results) and for the reachability of a marking or a partially 
specified marking. 

Semidecision algorithms, in my opinion, provide good compromises between the 
inherent algorithmic complexity of full automated verification and the desire to 
have computer-assistance during validation. Even if such an algorithm yields an 
indecisive answer, this may still help the user. Another role of automatic verifica- 
tion is in prototyping: typically, a program is verified on a small data domain to 
gain confidence (or not) for the case of arbitrarily large domains, when automatic 
verification fails and, if any, manual verification prevails. 

5   Performance results 

PEP is both a general model-checker and a specific Petri net tool. Hence, its 
performance can be compared with other model-checkers and with other specific 
net tools. I report on two such comparisons: one done by Stefan Römer^using an 
article by James C. Corbett [14] and one carried out by Monika Heiner and Peter 
Deussen as described in [33]. 

Corbett compares existing systems (SPIN [36], SPIN plus Partial Orders [53], SMV 
[44] and INCA [15]) on a series of examples, using deadlock detection as a com- 
mon property to be checked on all examples and all systems. Stefan Römer of the 
Technische Universität München translated the examples into PEP input and mea- 
sured the times for checking the same property (deadlock detection) using PEP's 
algorithm. It so happens that deadlock-freeness is one of the properties which can 
be expressed in BL, but lead to very large formulae.3 Because of the importance 

3For a net with about 50 transitions, Bernd Grahlmann has estimated that deadlock-freeness would 
lead to disjunctive normal forms - which arise necessarily as intermediate stages of the verification 
- that are about 4 GB long. 
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of deadlock-freeness, therefore, PEP implements a dedicated algorithm (namely, 
McMillan's) to check this, which uses and exploits the finite (optimised) prefix. 
Hence this comparison is not really about the general model checking algorithm of 
PEP but about the dedicated deadlock-detection algorithm. 

Table 1 - reproduced here by courtesy of Stefan Römer - gives the preliminary 
results of the experiment. The 'P(size)' (Problem) column refers to the set of 
examples given in Corbett's paper. The sets S, T and B, E refer to the places and 
transitions of the original net and of the finite prefix, respectively.4 The 'Cuts' 
column refers to the set of cutoff events (used by the algorithm calculating the finite 
prefix). The 'F-prefix' and 'Check' columns give the times (in seconds) measured 
for calculating the finite prefix and for checking the deadlock-freeness property, 
respectively. The 'C (Compare) column gives a very crude indication of how 
PEP's performance relates to the performance of the other systems described in 
Corbett's paper; f stands for 'better', | stands for 'worse' and - stands for 'not 
applicable' (mainly because the other systems did not give results). The results 
contained in table 1 have to be read with a pinch of salt, because it was not possible 
to reproduce exactly the same hardware environment as used by Corbett for his 
comparison. To compare memory usage, it is necessary to look at the columns 
'States' and '\E\'. It must be mentioned also that we did not check the examples 
themselves; Stefan Römer just received files from Corbett which he used as input 
for PEP.5 We are presently in the process of repeating the comparisons on a more 
uniform hardware platform. 

The experiment gives a mixed result for PEP: for some examples it performs better 
than the other model-checkers, for other examples it performs worse. In the light 
of the theory explained above, PEP is at its best when there is a lot of concurrency 
but very little choice, and performs comparatively badly in the other extreme, when 
there is a lot of choice and little concurrency. (In the majority of 'real' cases, there 
would be a good mix of both concurrency and choice, which PEP, as well as any 
other automatic model-checker, will have difficulty in coming to grips with.) 

The authors of [33] have tested three specifically Petri-net-oriented analysis sy- 
stems, INA [62], PROD [66] and PEP, on a single common example and a series 
of properties. The example concerns an industrial production cell with six com- 
ponents: two conveyor belts, a rotatable robot equipped with two extendable arms, 
an elevating rotatable table, a press and a travelling crane. This case study has 
recently been used in various (German) projects as a reference example on which 
various methods, not just Petri nets, can be tested and compared [40]. 

I will not repeat the experimental results reported in [33], except for mentioning 
that the speed of checking a property is not unfavourable towards PEP, whenever 

4Note that the 'transitions' (i.e. |7*|) column does not refer to the transitions of the state graph. 
Indeed, the number of these transitions has not been counted as they are irrelevant for the algorithms. 

'This has led to strange effects such as a net with 1047 places and 5633 transitions but only 125 
reachable markings. 
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P(size) States \s\ in 1*1 \E\ Cuts F-prefix Check C 
CYCL(9) 7423 71 53 172 77 10 0.05 2.18 - 
CYCL(12) 74264 95 71 232 104 13 0.13 31.18 - 
DAC(12) 14334 84 70 260 146 0 0.12 0.0 t 
DAC(15) 114686 105 88 371 206 0 0.23 0.0 t 
DP(10) 48897 60 40 580 280 90 0.30 0.92 t 
DP(12) - 72 48 840 408 132 0.62 2.97 t 
DPD(6) 19861 54 54 3786 1892 499 8.92 103.56 4 
DPD(7) 109965 63 63 8630 4314 1129 43.13 1266.08 4 
DPFM(8) 49 87 321 426 209 162 0.08 0.68 
DPFM(ll) 125 1047 5633 2433 1211 1012 1.27 98.30 — 
DPH(6) 16897 57 97 14474 7231 3377 85.78 10344.9 — 
DPH(7) 79927 66 121 - - - - _ — 
ELEV(3) 7121 327 783 7398 3895 1629 23.75 496.10 4 
ELEV(4) 43440 736 1939 32354 16935 7337 417.32 >13463 X 
FURN(3) 30861 53 99 34505 20770 13837 330.04 >49927 I 
FURN(4) 214757 66 139 - - - - _ 4- 
GASN(4) 14847 258 465 15928 7965 2876 115.93 19370.2 4- 
GASN(5) 115184 428 841 - - - _ — 4- 
GASQ(3) 1705 284 475 2593 1297 490 3.37 102.0 
GASQ(4) 15431 1428 2705 19864 9933 4060 177.56 35342.2 — 
HART(75) 153 377 227 529 302 1 1.13 0.22 t 
HART(IOO) 203 502 302 704 402 1 2.20 0.32 t 
KEY(4) 44820 164 174 135556 67775 32081 8811.0 — 4- 
KEY(5) - 199 215 - - - - — 4- 
MMGT(3) 7703 122 172 11575 5841 2529 51.56 3166.6 4 
MMGT(4) 66309 158 232 92940 46902 20957 7509.80 — 4- 
OVER(4) 4175 71 74 1561 797 240 1.65 7.52 4 
OVER(5) 33460 90 95 7388 3761 1251 30.70 618.39 I 
RING(7) 1700 91 77 813 403 79 0.63 1.20 t 
RING(9) 211528 117 99 1599 795 137 2.20 4.67 t 
RW(9) 523 48 181 9272 4627 4106 5.32 9567.2 4- 
RW(12) 4110 63 313 98378 49177 45069 316.84 - 4- 
SENT(75) 332 254 105 533 266 40 0.93 1.07 t 
SENT(IOO) 382 329 130 608 291 40 1.42 1.67 t 
ABP(l) 113 43 95 337 167 56 0.12 0.60 t 
BDS(l) 36097 53 59 12310 6330 3701 44.83 6971.3 4- 
DART(l) - 331 257 - - - - — 
FTP(l) 104911 176 529 178077 89042 35247 15645.5 — I 
FTP(2) - 229 934 - - - _ — 
Q(D 123597 163 194 16090 8402 1173 220.77 1125.12 _ 
SPD(l) 8690 33 39 5317 3138 1311 15.30 510.7 4- 

Table 1: Experimental results by Stefan Römer (cf. [14]) 
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Debate'90: An Electronic Discussion on True 
Concurrency 

Abstract 

The following electronic correspondence was posted to the concurrency 
mailing list, moderated at the time by Albert Meyer, between October 21 
and November 19, 1990. It has been reformatted for publication and 
edited for spelling but otherwise is largely untouched. — Vaughan Pratt 

To: prattles.Stanford.EDU 
From: dclOanna.Staniord.EDU 
Subject: Partially Ordered Computations 
Date: Sun, 21 Oct 90 13:39:23 -0700 

Vaughan, 
In some recent discussions with people funded by ONR's program on dis- 

tributed and realtime computing, I have found an attitude that 
"sets of linear traces are entirely sufficient for analyzing distributed/concurrent 

computations, AND Partial Orders are unnecessary". 
I also notice that sets of linear traces are the basis for Hoare's PR0C0S 

project. 
Questions to you: 
1. What is your favorite simple example of a system where a partial order 

representation of its execution is superior to a set of linear traces of its execution, 
2. Would you disagree with the ONR people, and how? 
- David 

To: dcl4anna.stanford.edu 
From: prattOcs.Stanford.EDU 
Subject: Re: Partially Ordered Computations 
Date:  21 Oct 90 15:14:37 PDT  (Sun) 
In-Reply-To: Your message of Sun, 21 Oct 90 13:39:23 -0700. 

<9010212039.AA07939«Aphid.Stanford.EDU> 

The belief that linear orders capture partial is predicated on several assump- 
tions, most of which have to hold at the same time in order for it to be reliable. 
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While these assumptions tend to hold in very simple or abstract systems, they 
all gradually fade away as the systems you look at get larger and more concrete. 

Here are seven such assumptions. 
1. Fixed granularity. 
2. No variability of atomic events. 
3. Absence of autocurrence. 
4. Single-poset processes. 
5. Race-free. 
6. Single-observer model. 
7. Discrete time. 
Here is the meaning of each of these concepts. 
1. Variable granularity can arise in various quite different ways. One way is 

just to look at a supposedly atomic event more closely and resolve substructure. 
But another is to take a binary program whose specification treats it as atomic 
(on the ground that the vendor doesn't want you to assume anything about the 
package) and find when you run it that it has a series of side effects on your 
system, that may interleave with the side effects of other such packages. 

You might find it interesting to look at "Teams Can See Pomsets" by Plotkin 
and myself to see what influence variable granularity can have. It turns out this 
is not the theoretically worst problem in our paper, #2 below is worse, but it 
does have some influence. 

You can anonymous-ftp a preliminary version of this paper from 
boole.stanford.edu on pub/pp2.*. [Also in this proceedings, -vp] 

2. Variability of atomic events means that although an event stays atomic 
it might not do identical things each time it happens. Plotkin and I use this 
phenomenon to show that a sufficiently large team of observers (see item 6) can 
distinguish any two finite pomsets. 

3. Autocurrence means two concurrent and identical events. Without the 
concurrency requirement we find two such repetitions in the word "identity": 
there are two t's and two i's. An example with concurrence is when you ask 
the bank teller for two dollars. If dollars always came sequentially there'd be no 
quarrel about the legitimacy of the string 11 as a specification for two dollars. 
But what about 111 meaning "Give me two dollars please." This phenomenon 
arises as soon as you distinguish pomsets from posets. 

With autocurrence you can get a\a, which traces can't distinguish from aa. 
This can be solved via so-called "action refinement", used in solving 1 above. 
But action refinement gets you only so far, in particular it can't be used in 
conjunction with traces to distinguish TR\TR (two parallel sequences each of 
T — Ä, e.g. two parallel message streams) from the same thing with the extra 
requirement that one of the T's precede both of the Ä's. But pomsets can make 
that distinction, using the N pomset. 

4. A single-poset process is one defined by a single poset. This is a key 
assumption in the theorem coding posets as their linearizations. However this 



assumption is rarely achievable in practice.  It is false that a set of poscts can 
be encoded with the union of their respective sets of linearizations. 

5. When a and b are in a race, the trace model reveals only ab+ba. But 
race-free nondeterminism. which chooses one of ab + ba, has the same trace 
representation. This matters for example in the glitch problem. You may want 
to implement ab + ba glitch-freely, but you cannot say it with traces. This is a 
pretty simple argument, so you might use it first (I suppose I should have). 

The same argument applies to distinguishing the mutually exclusive execu- 
tion of two atomic operations from their concurrent execution. The trace model 
has built into it the assumption that mutually exclusive execution and concur- 
rent execution are the same thing for atomic events. This interacts with item 
1. 

6. Most models of concurrency assume that one observer collects all the 
observations. In practice observers are as distributed as the systems they ob- 
serve, and can pool their distributed observations in ways entirely unrelated to 
the computational model used to prove correctness of a particular distributed 
system. This is a subtle point that Plotkin and I go to pains to explain in detail 
in our paper. [Shortened for the proceedings version, -vp] 

7. Time must be discrete for traces to model interleaving. Just what exactly 
is the set of all interleavings of two copies of the unit interval [0,1]? Consider 
a dual beam oscilloscope. Are you going to describe its two beams in terms of 
their interleavings? 

These issues are specific technical problems that arise with traces. But 
besides any question of what might actually go wrong, there is also the question 
of the most natural model. I feel that models should attempt to be reasonably 
faithful to what they model, if the mathematics supports this. Even if your 
unnatural model happens to be working today, my feeling is that unnatural 
models are more likely to break down in the future than natural ones.. 

When you have a computer in Europe talking via satellite to one in the US, 
the time between instructions is thousands of times less than that between com- 
puters. A natural way to model the instruction streams of the two computers 
then is with two sequences. The trace model does not accept this, on the ground 
that a computation consists of one sequence. It says that you must interleave 
the two sequences in all possible ways before you can reason soundly about the 
system. 

The problem is that the only serious mathematics that many practicing 
computer scientists get exposed to is computation theory, where they are taught 
that all computation is sequential. Getting through their computation theory 
course was one of the bigger struggles of their college education, but mastery of 
it vindicated the enormous outlay of tuition and board for all those years when 
they could have been learning on the job. 

So then they run into concurrency in the real world and they simply cannot 
cope with the concept of two parallel streams, because they have never seen 
any such concept in their textbooks, nor any theorems about such concepts. 
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Therefore they do the only thing possible: they interleave in order to reduce to 
a known model with known theorems. 

I can say on the basis of having worked with both models for many years 
that posets are far more flexible and easier to work with than traces. Having 
to think about systems in terms of traces is like trying to do arithmetic with 
Roman numerals. Yes, Roman numerals indeed code integers, and furthermore 
the algorithms for adding and multiplying Roman numerals do work, but that's 
not a great reason to stick with Roman numerals. 

Vaughan Pratt 

To:  concurr«ncyCtheory.lcs.mit.edu 
From: raaceQadm.csc.ncsu.edu (Ranee Cleaveland) 
Date:  Mon,  22 Oct 90 11:29:48 -0400 

Another reason for using posets crops up when one wishes to reason about 
the real-time properties of a system. Assuming that one is working in a setting 
where each atomic action takes 1 time unit, a\b ("a and b truly in parallel") 
should also take 1 time unit, while ab + ba will take 2. So it seems a bit surpris- 
ing to me that a group of people interested in real time would find linearizations 
an adequate model of concurrency. 

Ranee Cleaveland 

To:  concurrenc7Ctheor7.lcs.mit.edu 
From:  Vaughan Pratt <pratt«cs.Stanlord.EDU> 
Subject: modeling concurrenc7 with partial orders 
Date:  Mon, 22 Oct 90 12:57:26 PDT 

Ranee's comment on real time reminds me. I neglected to connect up with 
recent work explaining why true-concurrency hackers seem to prefer the poset 
side of an otherwise surely symmetric duality between posets as schedules and 
distributive lattices as automata, a duality generalized by Winskel et recently 
many al to event structures, dual to families of configurations. 

The reason is that automata are 1-dimensional and hence can only exhibit 
the structure of interleaving concurrency. This is intuitively obvious to true true 
concurrency hackers, and I can only infer that the proponents of this duality in 
its published form are false true concurrency hackers. 

In order to faithfully and continuously represent, on the automaton side of 
the duality, the structure of true concurrency that its proponents like myself 
so vividly imagine to exist on the poset side, automata should be made higher 
dimensional. This has been done implicitly by van Glabbeek and Vaandrager in 
PARLE-87 via the notion of ST-bisimulation. I will be momentarily sending off 
my POPL paper explaining how to make more explicit the geometry implicit in 
this (if I just can restrain myself long enough from writing these damn messages). 
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Apropos of real time, the phenomenon by which two pencils can be put into 
a shirt pocket only high enough to accommodate one. impossible in the inter- 
leaving world as Ranee points out, translates under this duality to the need for 
the Lx norm (i.e. max(i.y)) in measuring duration of truly concurrent pro- 
cesses in higher-dimensional automata. In contrast the L\. norm or Manhattan 
metric z + y measures duration of interleaved processes, that operate the way 
a New York taxi has to in alternating between going East and North. (So you 
should have inferred by now that this is the model where one lays out parallel 
instruction streams orthogonally, as Papadimitriou does in treating deadlock). 

If one tries to approach true concurrency by refining the granularity of this 
interleaving, one arrives in the limit at still the L\ norm. That is, you may 
have a perfectly straight line running diagonally across the product square (the 
product of two transitions, a surface, arising just as in the product construction 
for automata) but it still represents interleaved concurrency by being its limit. 
In this extreme case true concurrency can be distinguished from interleaving 
not by its shape but only its speed. 

Vaughan Pratt 

To:  concurrency«theory.les.mit.«du 
Fron:  infhilleikeCrelay.eu.net (Eike Best) 
Subject: Re: The discussion on (sometime) superiority of p.orders 
Date: Thu, 25 Oct 90 16:08:58 +0100 

Here are my 2 Pfennige worth of contribution. I claim: 
Sometimes partial orders let you define a concept more smoothly than arbi- 

trary interleavings. A case in point is "finite delay". Finite delay is supposed 
to mean: if an action is continually enabled, then it occurs sometime. 

In a sequential system, finite delay can be expressed by the maximality of 
an execution sequence (you would like to go as far as possible). 

Consider a * \\b* versus (aQ6)* (where Q is nondet. choice). The sequence 
aaaaa... (infinitely often a but no 6) contradicts the finite delay property in 
a * \\b*, since the b is not prohibited from occurring and could always occur. 
However, aaaaa... does NOT contradict the finite delay property in (a[]&)*, since 
the occurrence of a is always alternative to 6, and so 6 is continually prohibited 
from occurring. 

The distinction can be captured by noticing that aaaaa..., while being max- 
imal as a string, is not maximal as a partial order of a * \\b*, but IS maximal as 
a partial order of (aQ6)*. 

Eike Best 
PS I don't claim you NEED partial orders here, but I do claim that it's nice 

to use them, since the concept of maximality directly generalizes the sequential 
one. 
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To: prattCcs.stanford.edu 
Cc:  concurrancyCtheory.lcs.mit.edu, dclCanna.stanford.edu 
From: meyerCtheory.lcs.mit.edu (Albert R.  Meyer) 
Subject: modeling concurrency with partial orders 
In-Reply-To: prattCcs.stanford.edu Mon,  22 Oct 90 09:57:06 EDT 
Date:  Fri,  26 Oct 90 14:01:09 EDT 

I support most of your remarks, but I don't think we should accept David 
Luckham's formulation of the issue as 

(1) Linear versus Partial Order 
but rather emphasize 
(2) Interleaving Nondeterminacy versus Concurrency 
Formulation (1) highlights the particular detail of whether concurrent pro- 

cesses are abstractly represented by some structure involving linear, rather than 
partial, orders. This can hardly be crucial, since, as you well know, every partial 
order is uniquely determined by the set of its linearizations. 

Formulation (2) forces us to clarify the limitations of the in many respects 
successful interleaving-concurrency models of CCS, CSP, MEIJE, ACP, etc. 
Though the following remarks are well known to you and the Continental re- 
search community in concurrency, Luckham's note confirms my impression that 
the issue is still not well understood elsewhere, so maybe it's worth rehashing 
the basis of the story another time: 

The crux of the criticism of interleaving is captured in the equation 
(3) a\b = ab + ba. 
Equation (3) may be read as asserting that the process a\b, which can CON- 

CURRENTLY perform actions a and 6, may be identified with the process 
ab + ba, which NON DETERMINISTIC ALLY chooses to do either a-then-6 or 
else 6-then-a. 

Equation (3) is an axiom in the interleaving-based theories, but maintaining 
it RULES OUT extensions of the theory to include 

(i) observations of simultaneity: a and b can be observed simultaneously in 
the computation of process a\b, but not in ab+.ba. 

(ii) observations of the same computation by two or more sequential ob- 
servers at distributed locations: under reasonable assumptions about signal 
propagation over distance, two such observers watching a computation of a\b 
might see DIFFERENT linear traces (namely one could see la6' during the 
same interval that the other saw '6a'), but under the same assumptions two 
observers would always see the SAME trace (namely, exactly one of ab or ba) 
in any given computation of ab+ba. I was delighted by this remark when I first 
learned it from you and Plotkin. 

(iii) refinement of action atomicity-what you felicitously called "variable 
granularity": refining a in a\b to be the two step sequential process cd yields 
a process with the trace cbd, but refining a in ab + 6a yields no such trace; I 



first learned this point from a note in 1987 by Castellano et al in the EATCS 
Bulletin. 

Insofar as these extensions are desirable, one has to retreat from the simple 
interleaving model. The ideas that actions have duration, and more generally 
the ideas of critical regions and atomicity, are usually regarded as an important 
aspect of pragmatic concurrent processing. Because (iii) seem» like a plausible 
theoretical way to model both action duration and relaxing atomicity require- 
ments, extending the theory to cover it does seem desirable. 

On the other hand, having agreed that interleaving theories need modifica- 
tion, I don't think we can say that your pomset models or the Mazurkiewicz- 
trace models have been fully justified as appropriate concurrency theories. For 
example, multiple observers don't justify distinguishing the pomset processes 
PI and P2 where PI is the singleton pomset (.a.b) and PI — PI union one of 
its augmentations, say the singleton 

.a 
I 
.b 

Similarly, the various proposed event/behavior structure models are all based 
on generalized notions of bisimulation. I have raised my doubts in earlier mes- 
sages to this forum about how the detailed distinctions between processes made 
by bisimulation can be justified computationally. 

Despite these reservations, let me say that I do believe that the modeling of 
a concurrent run of a computation with a pomset is pretty natural. 

Regards, A. Moderator, concurrency@theory.lcs.mit.edu 

To:  concurrencyCTHEORY.LCS.lfIT.EDU, dclCanna.stanzord.edu 
From: prattCcs.stanford.edu 
Subject: Re: modeling concurrency with partial orders 
In-Reply-To: Your message of Fri, 26 Oct 90 14:01:09 EDT. 

<9010261801.AA13008Cstork> 
Date: 26 Oct 90 14:52:07 PDT (Fri) 

I appreciate your words of support, Albert. Some minor comments on four 
points. 

>This can hardly be crucial,  since, as you «ell knov, every 
>partial order is uniquely determined by the set of its 
linearizations. 

This is Szpilrajn's theorem [1], a "fragile" theorem in the following sense. 
A robust theorem about a structure should remain true when one adds further 
structure. Szpilrajn's theorem holds neither for a set of posets nor for labeled 



posets. Both these structures must be added to the basic poset structure to 
make it useful as a model of concurrency. I therefore view David's comparison 
of linear to partial orders in the context of their application to concurrency as 
quite appropriate. 

>(3) alb = ab+ba. 
>Equation (3)  is an axiom in the interleaving-based theories, but 
maintaining it RULES OUT extensions of the theory to include 

The equational logic of regular expressions has a very interesting property. If 
you regard its variables as denoting only themselves as symbols of an alphabet, 
the set of equations valid under that very restricted interpretation turns out 
to be the same as when you let the variables range over arbitrary languages. 
That is, the theory does not change when you treat its variables as self-denoting 
constants. 

This interesting property fails as soon as you add almost any other operation, 
whether or not that operation preserves regularity. Such operations include 
complement -a. intersection aflö, interleaving a\b, quotient a\b, and residual 
a — 6 = -(ab). 

Equational theories are closed under substitution. In view of this I would 
like to discourage extending to other languages the practice in the language of 
regular expressions of denoting atoms by variables. I would be more comfortable 
seeing (3) written as a conditional implication: 

atomic(a) A ntomic(b) —■ a\b = ab+ ba 

or more generally: 

aiomjc(a) A aromic(6) — mutex(a,b) 

mutex(a, b) — a\b = ab + ba 

since mutex(a,b) (I hope the meaning is clear) is at its most useful when it 
holds of particular nonatomic processes. 

For example, multiple observers don't justify distinguishing the 
pomset processes PI and P2 where PI is the singleton pomset 
(  .a .b ) and P2 = PI union one of its augmentations, say the 
singleton 

Provably so of course: our multiple observer model can't distinguish a pro- 
cess from its augment closure. Gordon and I now have the converse of this, 
at least for finite pomsets, that is that distinct augment closed processes of fi- 
nite pomsets are distinguishable by sufficiently large teams (infinite when the 
dimension of the pomsets is unbounded). 



I ha»* raised my doubts in earlier messages to this forum about 
how the detailed distinctions between processes made by 
bisimulation can be justified computationally. 

Having written about it you're better qualified than I to express such reserva- 
tions. However my intuitive feeling is that Hennessy-Milner logic, which justifies 
all distinctions made by bisimulation, is not an excessively strong language in 
the context of debugging, where the programmer marches backwards and for- 
wards along a misbehaved nondeterministic computation trying to find what 
caused the misbehavior and experimenting by making little changes and see- 
ing how they propagate side-effects forward and predicates backwards (through 
predicate transformers). 

[1] E. Szpilrajn, Sur l'extension de 1'ordre partiel, Fund. Math. 16, 386-389, 
1930. 

To:  sri-unix!theory.lcs.mit.edu!meyerCunix.sri.com, 
sri-unix! theory. lcs. mit. edu! concurrencyCunix. sri. com 

From: tciproframuOunix.sri.com (Ramu Iyer) 
In-Reply-To:  Albert R.   Meyer Fri,  26 Oct 90 14:01:09 EDT 
Subject: modeling concurrency with partial orders 
Date: Fri, 26 Oct 90 16:09:54 PDT 

On Fri, 26 Oct 90 14:01:09 EDT, Albert R. Meyer said: 

Albert> I support most of your remarks, but I don't think we 
Albert> should accept David Luckham's formulation of the issue as 
Albert> (1) Linear versus Partial Order 
Albert> but rather emphasize 
Albert> (2) Interleaving londeterminacy versus Concurrency 

Here are three references that discuss these pioneering issues: 
L. Castellano, G. De Michelis, L. Pomello. Concurrency vs Interleaving: An 

Instructive Example. Bulletin of the EATCS, 31, 1987, pp. 12-15. 
D.B. Benson, Concurrency and Interleaving are Equally Fundamental. Bul- 

letin of the EATCS, 33, 1987. 
W. Reisig, Concurrency is More Fundamental than Interleaving, Bulletin of 

the EATCS, ??, 1988. 
Cheers, 
-Ramu Iyer 

To: concurrencyQtheory.lcs.mit.edu 
From: Vaughan Pratt <prattCcs.stanford.edu> 
Subject: modeling concurrency with partial orders 
Date: Sat, 27 Oct 90 00:55:01 PDT 
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>»From: tcipro!ramu«unix.sri.com (Ramu Iyer) 
>»Subject: modeling concurrency with partial orders 
>»Here are three references that discuss these pioneering issues: 
>»    <3 references from 1987-88: Castellano et al, Benson, Reisig> 

I'd like to suggest some earlier dates than 1987 or 1988 as more suitable 
candidates for "pioneering." 

The earliest proposal I'm aware of to model concurrency with partial orders is 
Irene Greifs MIT Ph.D. thesis from 1975. Jan Grabowski and N'ielsen-Plotkin- 
Winskel both have 1981 journal papers on partial orders for concurrency, with 
both parties reporting on work done at the end of the 1970's. C.A. Petri al- 
legedly had advocated partial orders long ago, though not in writing as far as 
I'm aware. 

Unlike these pioneers I did not appreciate the need for partial orders in 
concurrency myself until 1980. This was not for want of experience with con- 
current computing. I had implemented various interrupt-driven packages in 
1967-69, and I wrote and thought a fair bit about concurrency during the 1970's 
(1972: thesis chapter on sorting networks; 1974: showed with Larry Stockmeyer 
that P=NP on parallel computers; 1974-5: two circuit complexity results; 1976: 
solved the mutual exclusion problem for unreliable processes with Ron Rivest; 
1979: axiomatized process logic). 

But I did not appreciate the advantages of partial orders for concurrency 
until early 1980 when I was trying to understand Brock and Ackerman's paper. 
My pomset campaign began with my POPL-82 paper on that subject, "On the 
Composition of Processes" which proposed formalizing Brock and Ackerman's 
solution to their anomaly in terms of partially ordered multisets. I coined the 
abbreviation "pomset" a few months later. 

I wrote a short paper on applying pomsets to the Two-Way-Channel-With- 
Disconnect problem for the 1983 concurrency workshop in Cambridge UK, 
LNCS 207, as well as a statement I circulated at IFIP-83 a week after that 
conference as part of a concurrency panel session chaired by Robin Milner in 
which I argued the case for pomsets. I also spoke about pomset semantics at 
Logics of Programs 1983 (no written paper unfortunately), and again in LOP 
85. 

This last paper was subsequently published in International Journal of Par- 
allel Programming, 15:1, 33-71, 1986, as "Modeling Concurrency with Partial 
Orders" (same title as the subject line of the last 10 messages). (IT you don't 
have that journal in your library you can retrieve this paper by anonymous FTP 
from boole.stanford.edu as /pub/ijjp.{tex,dvi}.) 

I reproduce here the arguments I gave in that 1986 paper in support of 
partial orders. Note particularly item (v), which begins 

(v) "A serious difficulty with the interleaving model is that exactly what is 
interleaved depends on which events of a process one takes to be atomic." 

and goes on to explain how refinement (as it is now called) distinguishes 
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a\b from ab + 6a and hence makes the meaning of interleaving dependent on 
granularity. While I know of no prior reference in the literature to the use of 
refinement to distinguish a\b from ab + ba I'm sure the idea had occurred to 
many people before, even if writing it down had not. 

See also the postscript-1990 at the end, on the outcome of my long-standing 
problem of axiomatizing the equational theory of concatenation and interleaving 
for formal languages.  It is noteworthy that the solver independently invented 
pomsets for the express purpose of solving this purely interleaving question. 

Extract from "Modeling Concurrency with Partial Orders. 1986 
1.2 Why Partial Orders? 
Strings arise naturally in modeling ongoing sequential computation, whether 

the symbols in the string correspond to states, commands, or messages. Thus 
the string neu may model the sequential execution of three commands u,v, u, 
or a transition from state u to state t; followed by a transition back to u, or a 
sequence of three messages u.v.u transmitted sequentially on some channel. 

Strings are linearly ordered sets, or rather linearly ordered multisets (since 
repetitions are possible), of symbols from some alphabet. In unison with the 
workers mentioned at the end of this section we advocate partial orders in place 
of linear orders in modeling concurrent computation. At present however partial 
orders have nowhere near the popularity of linear orders for modeling concurrent 
computation. This could be for any of the following reasons. 

(i) Languages and their associated operations, particularly union, concate- 
nation, Kleene star, and shuffle, provide a natural model for the corresponding 
programming language control structures: choice, sequence, iteration, and con- 
currency. The behavior of languages under these operations has been studied 
intensively for more than two decades. Thus languages provide a familiar and 
well-understood model of computation. In this model the linear order on the 
elements of a string is interpreted as the linear temporal order of events, and the 
operations on languages may be interpreted as control structures: concatenation 
as begin-end sequencing, star as iteration, shuffle as concurrency, etc. 

(ii) Every poset is representable as the set of its linearizations. This theorem 
would appear to confer on linear orders the same representational ability as 
partial orders. 

(iii) Linear orders appear to be faithful to physical reality. In the practical 
engineering world, as opposed say to the physicist's relativistic world, instanta- 
neous events have a well-defined temporal order, justifying the assumption of 
linearly ordered time. Furthermore, in any rigid system temporal order is well- 
defined even in a relativistic model. Any departures from rigidity are assumed 
to be sufficiently minor in practice as to justify adhering to a linear-order model. 

Reason (i) would lose most of its force if partial orders were to be equipped 
with operations analogous to those of formal languages that could be interpreted 
as programming language control structures. This is just what ihis paper does; 
some of the operations on pomsets that we introduce correspond to more or 
less familiar programming language constructs, others are merely candidates 
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for possible future programming or hardware languages. 
Reason (ii) is based on the following well-known theorem, which shows that 

a partial order can be represented as the set of its linearizations. 
Theorem 1. The intersection of the linearizations of a partial order is that 

partial order. 

(For the purposes of defining intersection, a partial order is considered to be 
its graph, that is, the set of all pairs (a, 6) such that a < 6.) 

This theorem is easily proved under the (non-obvious) assumption that every 
partial order has at least one linearization, by showing that any partial order in 
which a and b are incomparable can be extended to one in which a < b and to 
another in which b < a. 

This theorem about posets runs into two difficulties when trying to apply 
it to processes modeled as sets of pomsets. The theorem generalizes neither 
to pomsets nor to sets of posets, and a fortiori not to sets of pomsets. We will 
return to this issue in section 2.6, after the necessary definitions have been given. 

Reason (iii), that the engineer's world is linear in time, fails in at least three 
situations: complex systems, nonatomic events, and relativistic systems. Be- 
yond a certain scale of system complexity it becomes infeasible to keep thinking 
in terms of a global clock and a linear sequence of events. A cover story in the 
magazine Electronics^ describes a growing trend in the design of logic circuits 
to eliminate global clocks and rely more on self-timed circuits. On a larger 
scale asynchrony has been with us for a long time. When a large number of 
computers communicate with each other over channels whose delay is several 
orders of magnitude greater than the clock time of each computer, the concept 
of global time provides neither a faithful account of the concurrent computation 
of all those computers nor even a particularly useful one. There is no reason to 
suppose that the various instructions streams of these computers are interleaved 
to form one stream. Indeed it is much more convenient, both conceptually and 
computationally (e.g. when computing with such streams as part of reasoning 
about them) just to lay down these streams side by side and call this juxtapo- 
sition of streams a model of their concurrent execution. Data flowing between 
the computers may augment the order implicit in the juxtaposition, but this 
relatively sparse augmentation of the order is motivated by the actual mechan- 
ics of communication, unlike the more stringent and totally artificial ordering 
requirement of completely interleaving the streams. 

A concrete situation that may make this more compelling consists of a ship 
rolling somewhere in the Pacific, in satellite communication with another ship 
in the Indian Ocean. The events on the buses of the computers on each ship 
take place with a precision measured in nanoseconds, but the delay in getting a 
packet from one computer to another may be on the order of a second or more. 
The idea that the totality of events in the two computers has a well-defined linear 
ordering can have no practical status beyond that of a convenient mathematical 
fiction. Our position is that it is neither convenient nor mathematically useful. 
It is just as convenient, and more useful, to work with partial orders. 
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Nonatomic events provide another situation where linear orders break down. 
An event may be more complex than a moment in time. It may be an interval, 
in the sense of a convex subset of a linear order. It may be a set of intervals, such 
as a game punctuated by timeouts or a TV movie punctuated by commercials. 
More generally still it may be some arbitrary set of moments. However even 
for such complex events it still makes sense to say that one event may precede 
or follow another, meaning that every moment of the first event precedes every 
moment of the second. Yet such events are clearly not linearly ordered. 

Relativity provides yet another situation where time is not linearly ordered. 
In any nonrigid system, that is, one whose components are moving with respect 
to each other, simultaneity ceases to be well-defined and two moving observers 
can report contradictory orders of occurrence of a pair of events. Any system 
nontrivially subject to relativistic effects is a candidate for a partially ordered 
model of computation. Of course many systems will not be so subject, but we 
see it as an advantage of the partial-order approach that it applies equally well 
to relativistic and Newtonian (global-time) situations. 

In addition to our responses to (i)-(iii), we have the following additional 
reasons for preferring partial orders. 

(iv) Some concepts are only definable for partial orders, in particular or- 
thocurrence, which amounts to the direct product of pomsets, which we define 
in full later. The solution given above to the problem of specifying the two- 
way-channel-with-disconnect contains two essential uses of orthocurrence, along 
with two less essential uses. The concept is an extremely natural and useful one 
for partial orders, but it is not at all obvious how one would go about defining- 
it in a linear-order model, or even whether it is definable. 

(v) A serious difficulty with the interleaving model is that exactly what is 
interleaved depends on which events of a process one takes to be atomic. If 
processes P and Q consist of the single atomic events a and b respectively then 
their interleaving is {ab,ba}. However if the same events a and b are perceived 
by someone else not to be atomic, by virtue of having subevents, then P and Q 
have a richer interleaving than ab\jba. It is reasonable to consider instantaneous 
events as absolutely atomic, but we would like a theory of processes to be just 
as usable for events having duration or structure, where a single event can be 
atomic from one point of view and compound from another. In the partial-order 
model what it means for two events to be concurrent does not depend on the 
granularity of atomicity. 

(vi) In some situations pomsets appear to be easier to reason about than 
strings. For example it is relatively straightforward to axiomatize the equational 
theory of pomsets under the operations of concurrence and concatenation (The- 
orem 5.2<4)). The corresponding theory for strings has resisted all attempts at 
its axiomatization. Gischer and the author have both worked extensively on the 
problem of whether this simply described theory has a finite axiomatization. 
The problem has been posed on two occasions at the (San Francisco) Bay Area 
Theory Symposium, generating interest but no answers in more than eighteen 
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months. 
[Postscript 1990: this problem was finally solved in 1988 by Steven Tschantz, 

an algebraist at Vanderbilt, who settled it in the affirmative by a truly beautiful 
argument only a week after I posed the problem along with a list of others at 
the end of an invited lecture at a universal algebra conference in 1988. In doing 
so he reinvented pomsets quite independently as an essential tool in the proof; 
I had stated the problem purely for languages with no mention of pomsets at 
any point in my talk, which was about dynamic logic, -vp] 

[Postscript 1996: Tschantz's result was subsequently published in Mathe- 
matical Structures in Computer Science 4:4 (December 1994), pp. 505-511. 
-vp] 

Vaughan Pratt 

To:  concurrancyCtheory.lcs.mit.edu 
From:  lamportOsrc.dec.com (Leslie Lamport) 
Subject:  ior the concurrency mailing list 

[Moderator's retitle: Flame re distributed processes and 
granulity] 

Date: Tue, 6 lov 90 17:13:59 -0800 

I admire philosophers. They have so much to teach us. From Aristotle I 
learned that heavier bodies fall faster than lighter ones; Kant showed me that 
nonEuclidean geometry is impossible; and Spinoza proved that there can be 
at most seven planets. And now, the philosophers on the concurrency mailing 
list have told me all the things I can't do because I use a logic based on an 
interleaving model: 

/ can't reason about distributed systems. 
In 1982 I published a proof of the distributed algorithm then used in the 

Arpanet to maintain its routing tables ["An Assertional Correctness Proof of a 
Distributed Algorithm", Science of Computer Programming 2, 3 (Dec. 1982), 
175-206]. Since then I have written more formal proofs of more complicated 
distributed algorithms. 

/ can't deal with changes in the grain of atomicity. 
In 1983 I published a paper ["Specifying Concurrent Program Modules", 

TOPLAS 5, 2 (April 1983) 190-222] containing: 
A specification of a queue, in which adding or removing an element is a single 

atomic operation. 
An implementation in which an element is moved into and out of the queue 

one bit at a time. 
A proof that the implementation satisfies the specification. 
Nowadays, my standard approach to verification is to start with a high-level 

program having a coarse grain of atomicity, and to refine the grain of atomicity 
until I reach the desired program. 
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/ can't reason about (nondtscrtte) real time. 
At a workshop in 1988, I gave a one-hour lecture in which I: 
Specified a distributed spanning-tree algorithm having the requirement that 

the computation reach and maintain a correct configuration within a fixed length 
of (real) time. 

Gave an implementation using timers. I assumed only that timers ran at 
a rate of 1 +/- epsilon seconds per second, and that messages were delivered 
within delta seconds of the time they were sent. (Epsilon is any real number in 
the range [0, 1) and delta is any positive real number.) 

Sketched a proof that the implementation satisfied the specification. 
I have since written a detailed formal correctness proof. 
/ can't reason about programs without assuming a fixed granularity. 
A recent paper of mine ["win and sin-Predicate Transformers for Concur- 

rency", TOPLAS 12, 3 (July 1990), 396-428] gave a rigorous correctness proof 
for the bakery algorithm. This algorithm makes no assumption about the grain 
of atomicity of its operations. (It was the first algorithm to achieve mutual 
exclusion without assuming lower-level mutual exclusion.) 

I'm sure the philosophers can explain why I haven't really done these things. 
I'll be happy to listen to their explanations, as soon as they can use their 
philosophically approved methods to reason formally about something more 
complicated than a biscuit machine. 

To:  concarrenc7Ctheor7.lcs.mit.edu 
From: prattttcs.Stanzord.EDU 
Subject:  Re: Flame re distributed processes and granulit7 
Date: 08 lov 90 12:58:19 PST (Thu) 

On p.419 of the proceedings of Logics of Programs 81 (LNCS 131) appears 
the following extract from the panel discussion that wrapped up that confer- 
ence. Context: Amir Pnueli had just expressed the wish that every paper on 
programming logic say something about how this programming logic is to be 
applied to proving something about programs. 

"Nemeti: I'd like to protest a little bit about what you (Pnueli) said about 
our papers. The structure of our technological society is just not like that. 
There was a guy called Roentgen. You could have gone to him and said, 'What 
are you doing playing around with these funny things of yours? Why don't you 
try to heal people who have colds?' There are theoreticians who are doing basic 
research, and there are less theoretical theoreticians, and there are technologists, 
so there is a whole spectrum of research in science. The theoreticians doing the 
basic research arc really needed, because the basic ideas, the fundamental ways 
we look at things, come from there. Now, if you want to restrict them to report 
each time how this will be used, then it will result in impotence." 

While I have nothing to add to this, I do have a question arising out of 
it. Who believes that "the basic ideas, the fundamental ways *systems people* 
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look at things" come from the theoreticians?  Do systems people believe this? 
And do theoreticians believe it? 

Vaughan Pratt 

To:  concurrencyCtheory.lcs.mit.edu 
From: lanportCsrc.dec.com (Leslie Lamport) 
Subject:   [lamportflsrc.dec.com: for the concurrency mailing list] 
Date:   10 IOT 1990 1721-PST (Saturday) 

Dear Dr. Roentgen. 
I am writing to congratulate you on the success of your continuing experi- 

ments with X-rays. I can imagine your dismay at the many charlatans who have 
used your X-rays to justify "invisible ray"" theories based on fancy rather than 
science. And those silly French physicists with their N-rays! How fortunate that 
we live in a society where scientific validity is determined by rigorous experi- 
ment. I presume you are aware of the disturbing developments in the Soviet 
Union, where Dr. Lysenko attacks the work of Mendel on ideological grounds. 
I'm afraid it will be many years before the Soviets permit sound research in 
genetics, since they value philosophical correctness above empirical observation. 

Sincerely yours, 
Leslie Lamport 

To:  prattflcs.stanford.edu, concurrencyfltheory.lcs.mit.edu 
From:  Robert J.  Hall <RJHCai.mit.edu> 
Subject: re: Re:  Flame re distributed processes and granulity 
In-Reply-To: <9011082123.AA07740Cstork> 
Date:  Sat,  10 lov 90 12:58 EST 

From: prattCcs.Stanford 
On p.419 of the proceedings of Logics of Programs 81 (LICS 131) 
appears... "lemeti:   ..." (regarding need for theoreticians, 
etc) 

It seems to me this quote does not directly address Lamport's complaint 
which was, I believe, that the theoreticians on this list seem to be making false 
claims (as enumerated by Lamport). He seemed to be fraternally suggesting that 
one way of avoiding such false claims may be to keep a closer contact between 
theory and practice, if indeed theory is attempting to have some benefits for 
practice. In particular, if one's claim is to the effect that a technologist "can't 
do" something using a theory, one must at least be more precise about what it 
means to do that thing. Obviously, Lamport believes he has successfully used the 
interleaving-based view to reason about multiple granularities, whereas previous 
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discussions on the list seem to claim he can't have done so (similarly for the 
other issues raised). 

-Bob 

To:   "Robert J.  Hall" <RJHCai.mit.edu> 
Cc:  concurrencyCtheory.lcs.mit.edu 
From: prattCcs.Stanford.EDU 
Subject:  Re:  Flame re distributed processes and granulity 
Date:   11 lov 90 20:22:55 PST  (Sun) 

It seems to me this quote does not directly address Lamport's 
complaint which «as,  I believe, that the theoreticians on this 
list seem to be making false claims (as enumerated by 
Lamport). 

My quote addressed Leslie's complaint in the most direct way possible under 
the circumstances. Leslie did not identify any particular claim made on the list. 
Rather he complained generally that certain contributors to the list, whom he 
did not specify, had claimed there were certain things he couldn't do, which 
he did specify. There have been various claims on this list about limitations of 
interleaving, but none that I recall making the claims Leslie was complaining 
about, nor any that conflicted with the evidence he adduced in support of his 
complaint. 

One claim about interleaving in this forum is in my October 26 message to 
David Luckham. There I claimed that Szpilrajn's representation theorem for 
posets, that every poset is representable as the set of its linearizations, depends 
on several assumptions. For each assumption I showed informally in what way 
the theorem could fail in the absence of that assumption, in some cases giving 
pointers to where more detailed proofs of those failure modes could be found. 

I see no logical connection between Leslie's complaint and my claim. And 
even if there were some connection, the existence of failure modes of trace-based 
logic when certain assumptions are violated in no way implies that every trace- 
based proof violating those assumptions must be unsound. I do not begrudge 
Leslie his sound proofs, however obtained. 

The failure modes of Szpilrajn's theorem are not just mathematical curiosi- 
ties but potentially real engineering problems. Perhaps Leslie knows how to take 
care of these problems using trace-based logic, but I don't see how his cited ex- 
amples demonstrate this at all. How might a logic based on sets of traces deal 
with each of the following situations? 

1. Distinguish the race implicit in a\b from the race-free situation implied 
by ab + ba. 

2. Reason about observations made by a team of distributed observers who 
agree on what events happened but not in what order. 
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3. Reason about the possible interleavings of two concurrent sine waves. 
(Presumably one falls back on some other technique for combining traces than 
interleaving them.) 

He seemed to be fraternally suggesting that one way of avoiding such false 
claims may be to keep a closer contact between theory and practice 

I found no hint of such a suggestion in Leslie's message. 
V'aughan Pratt 

To:  concurrencyOtheory.let.mit. «du 
From: prattCcs.Stanford.EDU 
Subject: Re:  for the concurrency mailing list 
Date:   12 lov 90 13:20:67 PST (Hon) 

Leslie's "fraternal suggestions" could easily create the impression that he is 
for interleaving and I am against. This construes my position too narrowly. Let 
me set this in the historical perspective of a FOCS-76 paper by Ron Rivest and 
myself that Leslie attacked at that time. 

Ron and I had given an interleaving proof of correctness of our solution 
of the mutual exclusion problem for two unreliable processes. The gist of our 
proof was that the many paths through our code fell into 6 classes, permitting 
a straightforward case analysis each case of which had a simple argument. We 
found this program by making small random perturbations to a tiny but buggy 
mutual exclusion protocol. Even after looking at the four instructions of our 
resulting program for a long time we had absolutely no intuitive understanding 
of why that perturbation was correct and others very like it were not! 

Leslie protested to us that such a proof as ours based on classification of 
interleavings was inappropriate. He showed us a proof of correctness of our 
procedure based on a theory he had evolved of why it worked. 

Had we considered our program to be the final word on this subject we could 
well have agreed with Leslie that having an "insightful theory" of our code was 
worthwhile. After all, the method used to find a prime need not be the best 
method to convince someone of its primality. 

However even assuming that Leslie's proof gave us the additional insight into 
our procedure that he claimed it should, it seemed to us that our procedure 
was surely just one of more to come, and that the effort of making up such 
a theory after the fact was therefore wasted. Furthermore our strategy for 
discovering new such algorithms depended critically on the automatic nature 
of interleaving analysis; we had no idea how to write a program which given a 
random algorithm would generate a theory of how it might work, whereas we 
knew how to enumerate and check all its interleavings mechanically in a short 
time. 

This was borne out by the subsequent extension of our work by Mike Fischer 
and Gary Peterson, published in STOC-77.   Whereas our solution involved I 
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think 7 states for each of two processes they had 3 states each (3+;i, and another 
solution with 4 states at one process and 2 states at the other. 4+2). They 
found their very economical solutions by trying out various possible programs 
and checking all interleavings of each until they found one that worked. They 
used two such checkers, written independently by Mike and Gary. 

Gary did come up with a Lamport-style after-the-fact theory of why their 
3+3 mutex procedure worked. Mike*s comment to me about that proof was 
that since they'd already mechanically checked correctness simply by running 
their procedure through all possible interleavings, this more conventional proof, 
which had to be manually checked, added nothing to Mike's confidence in the 
correctness of their procedure, and indeed seemed to him more likely to contain 
lacunae. 

Now I can see clearly that such post hoc theories of these procedures might 
have a certain esthetic attraction, and might even be useful. My point is not 
to fault Leslie for coming up with such a theory but only to demonstrate that 
I am not a religious zealot on the use of interleaving analysis in concurrency. 
Indeed I still know of no simpler proof of our FOCS-76 algorithm than our 6- 
case interleaving analysis, and if I were writing it up today I would still prove 
it correct in that way. Moreover I have no problem with the use of interleaving 
in any situation to which it is applicable. In particular I have no quarrel with 
Leslie on the applicability of logics based on interleaving to the problems he 
listed in his flame. 

I trust that Leslie uses a different logic to prove the correctness of his algo- 
rithms from the one he uses to prove that those of us who have in the course of 
twenty-five years gradually moved from writing concurrent programs to reason- 
ing abstractly about them have by so doing turned themselves into charlatans. 
This was the only fraternal suggestion I found in Leslie's two messages. A 
century ago the same logic would have demonstrated with equal validity that 
Cantor was a charlatan. 

Vaughan Pratt 

(In the course of my obtaining publication clearances from the contributors 
to this debate in July 1996, Leslie Lamport asked that the following response to 
the above be included. —Vaughan Pratt) 

My objection was not that your proof was "inappropriate", but that it wasn't 
believable. It was a hand proof based on analyzing about 26 cases. Your pa- 
per did not mention, and at the time I knew nothing about, your exhaustive 
computer checking of the algorithm. I would not have objected to your written 
"proof" had it been called a sketch of a mechanical verification. 

Leslie 

To: concurrancyCtheory.lcs.ait.edu 
Fron: mischuCallegra.tempo.nj.att.com (Michael Herritt) 
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Subject: Begin-the great debate-End 
Oate: Mon,   12 lov 90 15:45:48 EST 

While I can't pretend to follow all the subtleties of the ongoing discussion, 
I do have a fairly specific query for the proponents of partial orders, growing 
out of my fairly extensive experience in modeling concurrent algorithms using 
interleaving. 

Specifically, I generally model operations as consisting of a sequence of two 
atomic events, the beginning and ending of the operation. When communica- 
tion is involved, these are described as requests and replies. (E.g. Request- 
Read(register-x). Reply-Read(register-x,value).) When operations run concur- 
rently, their begin and end events occur in an interleaved sequence. Using 
this approach, I would resolve the a\b vs ab + ba debate by denoting o and 
6 by begin-a,end-a and begin-b,end-b, respectively. Then a\b is the set of se- 
quences: (begin-a.end-a,begin-b,end-b), (begin-b,end-b,begin-a,end-a), (begin- 
a,begin-b,end-a,end-b), (begin-b,begin-a,end-b,end-a) 

and ab + 6a is the (very different set) 
(begin-a,end-a,begin-b,end-b), (begin-b.end-b,begin-a,end-a). 
Similar causally distinct processes would seem to be distinguished by such 

a semantics, as well. 
When refining an operation, I never change the symbols denoting the begin 

and end of the operation. I simply change the (internal) operations that occur 
between the begin and end actions. 

The begin/end distinction is particularly useful at interfaces, where the sys- 
tem issues a request and the environment responds, or vice-versa. 

I am interested in reactions to this method of resolving the (over-emphasized, 
in my mind) debate. 

On multiple observers of concurrent systems: it seems to me that an accurate 
model of such systems should distinguish between the occurrence of an event 
and its observation. (I think even the physicists do this much.) A run of such a 
system then consists of an interleaved sequence of events and their observations. 
The subsequence experienced by a single observer is obviously consistent with 
a set of runs. 

What's missing? 
I'll send references and/or papers if anyone is interested in seeing these ideas 

applied to algorithmic problems. But I should say that I work within the formal 
framework (I/O automata) devised by Nancy Lynch and Mark Tuttle. 

Now, it is true that in reasoning about concurrent systems I often find myself 
reasoning about partial orders embedded in the language (set of sequences) 
denoted by the system, and I am interested in tools that would help me do 
that. But I am also reluctant to give up induction as a proof technique. Why 
can't I have both? 

Michael Merritt 
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To:  concurrencyCtheory.lcs.mit.edu 
From:  prattCcs.steoiford.edu 
Subject:  DO the great debate COHTIIUE 
In-Reply-To:  Your message of Tue,   13 lov 90 08:49:13 EST. 

<9011131349.AA01750Cstork> 
Date:   13 lov 90 12:30:27 PST (Tue) 

From: mischuCallegra.tempo.nj.att.com (Michael Merritt) 
Specifically, I generally model operations as consisting 
of a sequence of tso atomic events, the beginning and 
ending of the operation 

What's missing? 

In fact for deterministic parallel constructs this is a provably sound abstrac- 
tion (or contrapositively, languages are a fully abstract model with respect to 
the semantics defined by just sets of such begin-end pairs). Theorem 2.3 of 
Gischer's thesis (Stanford report STAN-CS-84-1033, 1984) is that two pomsets 
are language equivalent iff they are digram equivalent. (I don't know why Jay- 
omitted this theorem from the journal version, TCS 61:199-224.) That is, take 
the operations of one's language to be all pomset-definable operations (namely 
concatenation, concurrence, N(a,b,c,d), etc.), and let the variables range over 
arbitrary sets of strings. Then the resulting equational theory, consisting of 
all equations between terms of this language that are universally true in this 
interpretation, is the same theory as obtained when the strings are restricted to 
strings of length two. 

Perhaps you don't care about all pomset definable operations, but presum- 
ably you at least care about two of them, namely concatenation and interleav- 
ing. This case can be formally defined and treated without mentioning pomsets 
or true concurrency at all. In this case the theorem is just about how sets of 
strings combine under concatenation and interleaving. Jay's theorem 2.3 applies 
equally to this restricted case. 

This seems to provide positive support for the two-event interpretation of 
operations. But in fact there is something missing, namely nondeterminism. 
(Pomset definable operations such as concurrence, although indeed nondeter- 
ministic from a false-concurrency perspective, are properly considered deter- 
ministic in the true concurrency world.) 

In 1988 Van Glabbeek and Vaandrager asked whether digrams sufficed for the 
richer language obtained by expanding this deterministic language of pomset- 
definable operations with the nondeterministic choice operator p+q, interpreted 
simply as language union. Their initial answer was that a gap now appeared 
between digrams and trigrams, which they showed with an automaton they 
called the "owl" because of its shape. They have subsequently extended this 
result to show that (n-f-l)-grams make finer distinctions than n-grams for all n. 
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(This incidentally is a very nontrivial result, which took them a long time to 
find. I tried very hard even just to separate 3 from 4 without success, I guess 
my brain is out to lunch these days.) 

So why don't practitioners notice these phenomena in their work? Presum- 
ably because they don't leap out at the casual observer. For just this reason 
19th century engineers did not notice discrepancies in their day-to-day work 
due to relativity and quantum mechanics. It is true that any engineer whose 
measurements depended on the velocity of light not changing between summer 
and winter by an amount as large as twice the earth's orbital velocity would 
be grateful for relativity, but how many engineers in those days felt this was a 
serious problem? 

Nowadays surveyors who use $10.000 interferometers routinely in the field 
to measure hundreds of feet to an accuracy of hundredths of an inch would find 
these seasonal variations in the velocity of light very distracting if they existed. 
The earth's orbital velocity is 29.8 km/s and light travels at 299.800 km/s, so 
according to the ether theory the length of a 500-foot boundary would appear 
to be gently oscillating at 32 nanohertz with a peak-to-peak amplitude of 1.2 
inches. 

By the same token Wien's law did havs an odd bump, but how many prac- 
ticing chemical and other engineers of the day had their work thrown off by 
it? 

Nowadays quantum mechanics explains a host of phenomena that would 
have started accumulating without explanation at an alarming rate during this 
century had quantum mechanics not been in place to account for them. 

But to early 20th century engineers relativity and quantum mechanics were 
just theoretical curiosities that one would only notice if one looked extremely 
closely in the neighborhood of where their delicate effects were to be felt. Per- 
haps more strikingly, it has been said that a common view among late 19th 
century physicists was that the structural aspects of physics had been fully 
elucidated, with the bulk of the remaining work being a matter of measuring 
everything more accurately. 

I suggest that we have much the same situation here. Take the largest 
concurrent algorithm that anyone has ever proved correct. Is the future of 
concurrency just a matter of extending the proof techniques that worked there 
to yet larger code fragments? I don't think so, for the various reasons I gave 
in my message to David Luckham. As we pass to more widely distributed 
computations, as the ratio of end-to-end time over bit-to-bit time increases, as 
observations become more complex, and as glitching intrudes itself into yet more 
situations, the linear-time model will become a Procrustean bed that some may 
continue to find the equal of a Beautyrest mattress but thit many others will 
find unreasonably painful. 

low, it is true that in reasoning about concurrent systems I 
often find myself reasoning about partial orders embedded in 
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the language (set of sequences) denoted by the system, and I am 
interested in tools that nould help me do that.    But I am also 
reluctant to give up induction as a proof technique.    Why can't 
I have both? 

I could not ask for a better example of reason (i) in my 1986 IJPP paper (ob- 
tainable by ftp from boole.stanford.edu as ijpp.tex,dvi, instructions in Boole's 
/pub/README) for why people prefer interleaving. Over the years people have 
built up a substantial workshop full of tools for manipulating strings and sets 
of strings. Put them in a partial order environment and they fee! disoriented 
and deprived of their tools. 

My answer to this reason was that we should remove it by building the 
tools needed for a universe in which time is partially ordered. To this end 
my IJPP paper developed a number of language constructs some of which like 
orthocurrence had no analog in the world of linear orders, and some of which like 
network composition could be denned for linear orders but were then vulnerable 
to the Brock-Ackerman anomalies in the presence of nondeterminism. 

With regard specifically to induction, my recent paper "Action Logic and 
Pure Induction" (similarly obtainable from Boole as jelia.{tex,dvi}) shows how 
to do induction in a wide range of situations, going well beyond languages 
and binary relations. In commutative action logic the "horizontal" operation 
ab becomes concurrence, a\b. Yet one can still perform induction on iterated 
concurrence. Another interpretation of ab is orthocurrence, as per my IJPP 
86 paper. Again one can do induction with iterated orthocurrence. And as 
always one can do induction on iterated concatenation, i.e. the usual Kleene 
star but in other settings than languages and relations, e.g. pomsets, where the 
concatenation of pomsets is only linear when the given pomsets are linear. 

If all you want is the ability to reason as you have always done by induction, 
that is no reason to replace pomsets by strings. 

Tony Hoare disagrees with me that unfamiliarity with partially ordered time 
is a major obstacle to its greater adoption. I confess I don't have any strong 
evidence (though the above is one data point), but I do have a very strong feeling 
that if people felt that they could move from linear time to partial without giving 
up any of their tools, and also appreciated the advantages I and others have been 
pointing out for partial orders, there would be a lot more such migration than 
at present. 

The argument is sometimes made that linear time is fully abstract for con- 
current computation and partial time is not (i.e. it makes unobservable distinc- 
tions), e.g. Bengt Jonsson in POPL-89, Jim Russell in FOCS-89, and I think 
others (I recently saw a mention by Tony Hoare of a similar sounding result by 
Mark Josephs). While this is true in the domain of Szpilrajn's theorem, outside 
its domain what happens is that partial time becomes fully abstract while lin- 
ear time becomes unsound (asserts false equalities), see my paper on this with 
Gordon Plotkin (pp2.tex,dvi obtainable from Boole as above). 
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Given the choice of two theories such that, as one moves in and out of the 
domain of Szpilrajn's theorem, one theory varies between being fully abstract 
and not fully abstract, but always remaining sound, while the other varies be- 
tween sound and unsound, but always remaining fully abstract, which would 
you choose? 

Vaughan Pratt 

To:  concurrencyCtheory.lea.nit.edu 
Fron: Rob van Glabbeek <rvgWrege.Stanford.EDU> 
Subject: Begin-the great debate-End 
In-Reply-To: Michael Merritt Tue,  13 lov 90 08:49:13 EST 
Date: Tue,   13 lov 90 16:53:13 PST 

From: BischuCallegra.tempo.nj.att.com (Michael Merritt) 
Date:  Mon,   12 lov 90  15:45:48 EST 
I am interested in reactions to this method ox 
resolving the (over-emphasized, in my mind) debate. 

This idea occurs in many texts on interleaving semantics. The following 
formulation is taken from HOARE 85: 'The actual occurrence of each event in 
the life of an object should be regarded as an instantaneous or an atomic action 
without duration. Extended or time-consuming actions should be represented 
by a pair of events, the first denoting its start and the second denoting its finish.' 

The idea of splitting events with a duration is a very powerful one, and 
makes that many features of concurrent systems can in principle be modeled 
adequately in interleaving semantics. However, in a lot of cases one can doubt 
whether it is natural to model a concurrent system in interleaving semantics 
only, even if this can be done theoretically. 

Take for instance the extremely useful distinction between functional be- 
haviour and performance. The idea is that for a given (distributed) system 
one first studies whether it is functionally correct, and only when this has been 
shown (ideally), one moves to questions concerning its time/space complex- 
ity. The problem that we see in the above 'solution' for dealing with actions 
with duration, is that the issues of functional behaviour and performance get 
mixed up. The following trivial example to illustrate this point comes from Frits 
Vaandrager, but is for the opportunity adapted by me to a setting with biscuit 
machines. 

Suppose we are interested in a vending machine which produces two biscuits 
when a coin is inserted and then returns to its initial state. The machine should 
satisfy the following trace-specification S: 

2 x (coins - 1) < biscuits < 2 x coins, 
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i.e. for each sequential trace of the machine we should have that the number 
of occurrences of the action biscuit in this trace is bounded by 2 times the 
occurrences of the action coin and 2 times (coins - 1). 

A first proposal for a machine with this property is described by the recursion 
equation 

VMS = coin ; bisc ; bisc ; VMS . 
An alternative proposal could be 
VMS' = coin ; ( bisc || bisc) ; VMS' . 
In interleaving semantics we of course have: VMS = VMS'. This means 

that under certain conditions we may infer that VMS and VMS' have the same 
functional behaviour. So as soon as we have shown in some appropriate calculus 
that VMS satisfies S, we can conclude that also VMS' satisfies S. We now can 
make two observations: 

1. Especially when dealing with the functional aspects of the system the 
above choice of actions seems very natural. Working with actions begin-coin, 
end-coin, etc. gives an overhead which nobody would like to have. The tradi- 
tional problem of interleaving semantics, namely combinatorial state explosion, 
will arise even faster in case actions are split. Moreover the functional equiva- 
lence of the two machines can not so easily be determined. 

2. Intuitively the situation concerning performance is clear: machine VMS' 
is faster than machine VMS because it will work in parallel. So why not build 
a semantic theory in which this intuition can be formalized? 

In the view of Frits and myself the above considerations strongly plead for 
a semantic theory with at least two notions of equivalence: (1) an interleaving 
equivalence for dealing with functional aspects, and (2) a non-interleaved equiv- 
alence for dealing with performance. The idea is then that at the non-interleaved 
level actions can have duration and structure, whereas at the interleaving level 
one abstracts from these aspects and imposes a total order on the actions. 

One of the options for the non-interleaved equivalence — in the spirit of 
Hoare and Merritt — is to say that two processes are to be regarded as equiv- 
alent iff their split versions have the same interleavings. This non-interleaved 
semantics lies somewhere between interleaving semantics and partial order se- 
mantics. 

Similar causally distinct processes would 
seem to be distinguished by such a semantics, as «all. 

However not all causally distinct processes can be distinguished by such 
a semantics. Especially when permitting autoconcurrency (the independent 
execution of two events which on the chosen level of abstraction are considered 
to be occurrences of the same action) the proposed semantics falls short in a 
number of aspects: 

Consider the processes (o6c||6) + (a6||6c) and (a6||6c). 
Here ab is the sequential composition of actions a and b, ab\\bc is the parallel 

and independent composition of the processes ab and ac, and P + Q denotes 
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a (nondeterministic) process that behaves either like P or like Q. If we don't 
care for branching time the left hand side process can be represented by the 
automata: 

->*- ->• 
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By mirroring the right wing of the automaton in the displayed diagonal one 
easily sees that all interleavings originating from (a6c||6) are already present in 
the big square (a6||6c). Hence the two processes (a6c||6) + (o6||6c) and (a6||6c) 
(if allowed to exist) are equivalent in Merritt's semantics. Nevertheless one can 
argue that (a6||6c) can be executed faster than (a6r||6) + (a6||6c). If all actions 
a, 6 and c are considered 10 take one hour each, and the automata don't wait 
needlessly, the left hand automaton has the possibility to need one hour more 
than the right hand one. 

A slightly more complicated example shows that in fact it makes a difference 
whether actions are split in two or in three (considering start, end and halfway 
actions for instance)! 

When refining an operation, I never change the symbols 
denoting the begin and end of the operation.    I simply 
change the (internal) operations that occur between 
the begin and end actions. 

In case you don't allow autoconcurrency - as occurs in the example above - 
that's fine. In order to capture the more general case, where processes like the 
one above are considered, you have to do some bookkeeping linking end actions 
explicitly to begin actions. Otherwise the operation of refining an action fails 
to be a congruence for your semantical equivalence, i.e. cannot be defined 
consistently. Counterexamples on request. 

The begin/end distinction is particularly useful at interfaces, 
where the system issues a request and the environment responds, 
or vice-versa. 

Don't misunderstand me; I do think the distinction can be applied usefully. 

On multiple observers of concurrent systems:    it seems to me 
that an accurate model of such systems should distinguish 
between the occurance of an event and its observation.    (I 
think even the physicists do this much.) A run of such a 
system then consists of an interleaved sequence of events and 
their observations.    The subsequence experienced by a single 
observer is obviously consistent with a set of runs. 

What's missing? 

The coordination, at the end of each single run of the investigated system, of 
the data obtained by different observers. Suppose that the system (a||6), where 
the occurrences of a and 6 may even be considered to be instantaneous events, 
runs only once, and is observed by two experimenters (traveling in different 
inertial frames for instance). Then it may happen that one of them observes ab 
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whereas the other observes 60. If they now would simply drop there observations 
into a big bag of interleavings where also sequences that where observed during 
other runs of the system are gathered, their work does not provide evidence for 
the fact that they are observing (a||6) rather than (ab + 6a). However, if the 
two meet after their observations and compare notes, they may realize that they 
perceived the very same run of the system in a different way. From this they 
conclude that a and b must have been executed independently. 

I'll lend references and/or papers if anyone is interested 
in seeing these ideas applied to algorithmic problems. 

Send me. 

But I should say that I work within the formal framework 
(I/O automata) devised by lancy Lynch and Mark Tuttle. 

Oh... Well, send me anyway. 

low, it is true that in reasoning about concurrent systems I 
often find myself reasoning about partial orders embedded in 
the language (set of sequences) denoted by the system, and I 
am interested in tools that would help me do that. But I am 
also reluctant to give up induction as a proof technique. Why 
can't I have both? 

Yes, why can't you? 
Rob van Glabbeek 

To: concurrencyCtheory.lcs.mit.edu 
From: lamportOsrc.dec.com (Leslie Lamport) 
Subject: Reply to Pratt 
Date: Thu,   IS lov 90 11:43:10 -0800 

Vaughan asks 
How might a logic based on sets of traces deal with each of the following 

situations? 
1. Distinguish the race implicit in a\b from the race-free situation implied 

by ab + ba. 
2. Reason about observations made by a team of distributed observers who 

agree on what events happened but not in what order. 
3. Reason about the possible interleavings of two concurrent sine waves. 

(Presumably one falls back on some other technique for combining traces than 
interleaving them.) 

The answer is that I don't know and I don't care. These questions never 
arise in my work. 
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How can it be that I find these issues to be irrelevant when Vaughan, who's 
an intelligent and (generally :-) reasonable computer scientist, considers them 
important? To answer this, I must begin with a discussion of the nature of 
science. 

Any science is ultimately concerned with the real world. A scientific the- 
ory consists of a mathematical formalism together with a way of relating that 
formalism to the real world. For example, Newtonian mechanics consists of a 
mathematical theory of point masses moving along trajectories in mathemati- 
cal 3-space, together with a way of relating those mathematical objects to the 
motions of real objects, such as planets. Note that not every concept in the 
mathematical formalism need correspond to something in the physical reality- 
for example, the vector potential of classical electromagnetism has no physical 
counterpart. 

Any useful scientific theory has a limited domain of application. A theory- 
of-everything is generally good for nothing. Newtonian mechanics can't describe 
the flow of fluids, for which one needs a theory containing mathematical concepts 
corresponding to friction and viscosity. 

For computer science, the real world usually consists of computers (hunks of 
wire and silicon) executing programs. Theories in computer science are based 
on such diverse mathematical formalisms as Turing machines, temporal logic, 
and CCS. 

To judge a scientific theory, one must know what its claimed domain of 
applicability is. The work of mine that I mentioned in an earlier message in- 
volves a theory whose domain is the specification and verification of functional 
properties of concurrent systems. I won't describe this domain here, except to 
note that "functional properties" include eventual termination and upper and 
lower time bounds on termination; they exclude probability of termination and 
expected time to termination. 

Computer scientists have tended to be vague about the domain of applica- 
bility of their theories. As a result, people who work in one theory often think 
their theory is good for everything. For example, I have heard people say that 
the algebraic laws of CCS make it good for verifying distributed algorithms. 
CCS works fine for verifying biscuit machines. It is hopelessly impractical for 
verifying even the simplest distributed spanning tree algorithm, let alone the 
more complex algorithms that system builders use. Robin Milner realizes this 
(I've discussed it with him), but many of his disciples don't. 

This doesn't mean that CCS is worse than my theory; just that it has a 
different domain of applicability. It is as silly to say that CCS is better or worse 
than my theory as it is to say that physics is better or worse than biology. 
Human nature being what it is, almost all physicists believe in their hearts 
that physics is more important than biology. However, physicists understand 
that not everyone believes this, so a university will teach biology even if the 
dean of faculty is a physicist. One wishes that computer scientists were as 
understanding. 
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I think there are two general reasons why a concept that's important to 
theory A may be absent from theory B: 

(i) The concept is irrelevant to the domain of applicability of theory B. 
(ii) The concept belongs to the mathematical formalism of theory A and, 

even though the two theories have overlapping domains of applicability, the- 
ory B's method of translating reality into mathematical formalism makes the 
concept irrelevant or meaningless. 

Case (ii) is the more insidious cause of misunderstanding. People get so 
used to their favorite theory that they confuse its mathematical formalism with 
physical reality. For example, some advocates of CCS will say that my theory 
is deficient because it doesn't distinguish between internal and external nonde- 
terminism. They don't realize that internal/external nondeterminism is part of 
the mathematical formalism of CCS, not a property of physical reality, so there 
is no reason why it should be a meaningful concept in another theory. This 
error is not confined to one side of any. ideological fence. A colleague of mine 
once asserted that he could prove any kind of property of a program, since he 
could prove safety and liveness properties and any property is the conjunction 
of a safety and a liveness property. He was confusing the real-world concept of 
a property (in "prove any kind of property") with the mathematical concept of 
a property as a set of behaviors (in "any property is the conjunction ..."). 

It can be argued that (ii) is an unavoidable source of misunderstanding, since 
one can discuss physical reality only in terms of mathematical models. I don't 
think the situation is so hopeless. We can make statements about the physical 
world like "if you press this key, then the system crashes" that mean approxi- 
mately the same thing to everyone, regardless of his philosophical persuasion. 

I think that Vaughan's question 3 (sine waves) is an example of (i) and 
his question 2 (teams of observers) is an example of (ii). His question 1 (race 
conditions) is more interesting and warrants discussion. 

A race condition is bad if it makes the circuit behave incorrectly. When ver- 
ifying circuits, one is interested only in proving that a circuit behaves correctly, 
not that it behaves incorrectly. So, one never has to prove the existence of a 
race condition. The specification of the circuit describes its external behavior, 
and a race condition is something that happens inside the circuit. So, proving 
the absence of a race condition is never a primary goal. If there is a poten- 
tial race condition that never actually occurs-for instance, because of the initial 
conditions-then the proof will contain a lemma (a mathematical formula) whose 
physical interpretation will be the absence of a race condition. 

However, the concept of a race condition is not irrelevant. A race condition 
on its inputs might cause a circuit component to produce an invalid output 
voltage-a " 1/2" instead of a "0" or a "1". In this case, a mathematical model 
of the component that allows only the outputs "0" and "1" is inadequate. With 
such a model, the domain of applicability of the theory would not include the 
actual circuit. Fortunately, with more sophisticated models (for example, by 
including a "1/2" output), I believe it is possible to use my theory to reason 
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about real circuits. (I haven't done such reasoning myself, but others have 
using similar theories.) The concept of a race condition is relevant for modeling 
the real circuit in the mathematical formalism, but it doesn't appear in the 
formalism itself. 

Scientific theories are useful because the mathematical formalism is simpler 
than physical reality. Newtonian physics eliminates an awful lot of important 
details-like you and me-when it represents the earth as a point mass. Those 
details are irrelevant for computing planetary orbits. They are not irrelevant 
for studying human history. Science is the art of simplification. 

A theory should be as simple as possible, but no simpler. - Albert Einstein 
The test of a scientific theory is how well it helps us understand and/or 

manipulate the real world. 
I will close with a word about mathematics. Many computer scientists aren't 

scientists at all; they're mathematicians. They work in the domain of mathe- 
matical formalism, with no concern for its application to the real world. That's 
fine. The world needs pure mathematicians as well as scientists. But it's impor- 
tant for mathematicians to realize that they're not scientists. Number theorists 
don't criticize Newtonian mechanics for using real numbers rather than integers. 
Computer-scientist/mathematicians should be equally sensible. 

[Postscript contributed for this proceedings, Sept. 1996.] 
I now believe that one can use process algebra (though probably not pure 

CCS) to write a practical correctness proof of a spanning-tree algorithm—at 
least of its safety properties. I'm not sure if this is because the process-algebra 
folks have made progress, or because I now understand better how to write 
proofs in process algebra. (On the other hand, progress in assertional methods 
has not stopped either.) 

To:   concuxTencyCtheory.lcs.mit.edu 
From: lynchChoImes.lcs.mit.edu (fancy A. Lynch) 
Subject: On Lamport and Nilner 
Date:  Sat,  17 lov 90 07:03:36 EST 

I have been following the debate about trace models with interest, and liked 
Leslie Lamport's most recent comments. They do seem to get at the heart of 
the differences between the different research communities. 

One of the most interesting (and troubling) comments he makes is the re- 
mark about CCS not being useful for verifying distributed algorithms of any 
complexity; supposedly, Robin Milner agrees with this (!). Now, I thought I 
understood that a major goal of process algebraic research WAS to verify com- 
plex concurrent and distributed algorithms. I would like to hear more about 
this issue from proponents of CCS-like methods. More specifically, can anyone 
tell me clearly what types of algorithms such methods are suited for verifying, 
and what are outside their domain of applicability? If the methods so far have 
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really had only limited success, then is this limitation inherent in the methods 
(or their intended domain of applicability) or just a matter of time? 

Nancy Lynch 

To:  concurrencyCtheory.lcs.mit.«du 
Fron: prattCcs.Stanford.EDU 
Subject:  Reply to Lamport's reply to Pratt 
In-Reply-To: Your message of Fri,   16 lov 90 18:28:10 EST. 

<9011162328.AA05325«stork> 
Date:   18 lov 90 00:04:52 PST  (Sun) 

[The story so far.] On Oct. 21 David Luckham queried me about an attitude 
to partial orders that he'd run into during discussions with ONR-funded software 
people. I shared my reply to David with this list, which led to considerable 
discussion. On Nov. 6 Leslie Lamport entered the discussion with a complaint 
that certain parties to this discussion whom he did not name were claiming that 
he couldn't do what he was doing, an assertion that he could indeed do what 
he was doing, and a deduction that those parties must therefore be charlatans. 

I pleaded innocent to the complaint, agreed with the assertion, and, in case 
Leslie had me in mind as one of the charged parties, attempted to refute the 
deduction with some situations where partial orders helped. 

Leslie's reply of yesterday (Nov. 16) put my situations into three classes: 
those outside his world, e.g. sine waves, those in his world but independent 
of his theory of his world, e.g. multiple observers, and those that potentially 
conflicted with his theory but which he felt confident his theory could be ex- 
tended gracefully to handle, e.g. race conditions. He concluded by chastising 
mathematicians who criticize what scientists do. [Now read on.] 

This conclusion leaves me puzzled. While Leslie has defended himself ad- 
mirably, I cannot tell what criticism stung him into defense. Let me repeat 
what I said on Nov. 12: 

There have been various claims on this list about limitations 
of interleaving, but none that I recall making the claims 
Leslie was complaining about, nor any that conflicted with the 
evidence he adduced in support of his complaint. 

Leslie's techniques seem to be fine for their purposes. I don't know why this 
message isn't getting through. 

Echoing Sol Feferman's "Bravo," I heartily concur with the rest of Leslie's 
stimulating essay, to within the following differences. 

The answer is that I don't know and I don't care.    These 
questions never arise in my work. 
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I know that and I didn't care at first. Robert Hall supplied the necessary 
existence proof that there were people on the list who did care, or I would have 
let the matter rest with just the Nemeti quote from LOP-81 (LNCS 131, p.419), 
my initial response to Leslie's opening message. 

Although Leslie's view of concurrency is adequate for him, it is also some- 
what of a straitjacket. There are aspects of concurrency that he does not find 
worth studying but that others do. Perhaps the implications of those aspects 
will never insinuate themselves into Leslie's world, but who knows? Which res- 
idents of Nagasaki and Hiroshima foresaw the abrupt intrusion of the abstract 
equation E — mc1 into their world? 

Fortunately, nith more sophisticated models (for example, by 
including a "1/2" output), I believe it is possible to use my 
theory to reason about real circuits. 

Yes, this is an excellent idea. Its origins are surely shrouded in history, 
but it can be found recently in van Glabbeek and Vaandrager's PARLE-87 no- 
tion of ST-bisimulation, with Leslie's 1/2 represented as marked transitions. 
It is also the basis for the "presset" model Gaifman and I described in LICS- 
87, a model described more elegantly in "Temporal Structures" (in LNCS 389 
21-51, also STAN-CS-89-1297, also available by ftp from boole.stanford.edu as 
man.jtex.dvi}, and to appear in Math. Struct. inCS 1:2), in terms of the "idem- 
potent closed ordinal" 3'. In Leslie's notation 3' = {0,1/2,1}. This important 
(non-cartesian-closed) ordinal is also the dualizing object 3 in the Stone-Birkhoff 
duality described in my POPL-91 paper, though space and time have conspired 
to let me do little more than name 3 in that paper; a proper account of the 
dualizing role of 3 will appear in a subsequent paper. The essential idea is that 
{0,1/2,1}, or {0,T,1} as I call it in the POPL paper, refer respectively to before, 
transition, and after. A race is characterized by the possibility of having two 
processes both being in state T. The function of mutual exclusion is to rule out 
that combination. This is the essential distinction between a\b and ab+ab: both 
permit 8 of the 9 = 32 combinations in {0, T, 1} x {0, T, 1}, but only the former 
permits the 9th combination (T,T), 

I apologize for the large amount of algebraic machinery in which we have 
embedded Leslie's 1/2 in some of this work, like Sigourney Weaver in her ex- 
oskeleton in Aliens. Those wishing to meet 1/2 in a more comfortable outfit 
will have to await our return to planet Earth, hopefully soon. Meanwhile let me 
assure you that this unnerving exoskeleton really does amplify power just like 
the ads promise. I had no idea by how much until my students started using it 
on big jobs. 

CCS works line for verifying biscuit machines.    It is 
hopelessly impractical for verifying even the simplest 
distributed spanning tree algorithm, let alone the more complex 
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algorithm that system buildars us«.    Robin Hilner realizes 
this (I've discussed it with him), but many of his disciples 
don't. 

You could get both Robin and me to agree to this, much as perhaps Robin 
and certainly I would agree that the axiomatic theory of vector spaces is fine for 
treating sums and scalar multiples of vectors, but is hopelessly impractical for 
inverting even the most well-conditioned matrices, let alone the ill-conditioned 
matrices that arise in transcontinental surveys. Surveyors just want their pro- 
grams to give the right results, their passion for the .ixiomatic theory of vector 
spaces rarely exceeds that of Leslie's for CCS. 

But it's important for mathematicians to realize that they're 
not scientists. 

This is indeed the popular, standard, and authorized view. Nicolas Good- 
man makes a strong argument for the opposing view in a recent article entitled 
"Mathematics as Natural Science," JSL 55(1)182-193 (March 1990). 

My own view (I do hope no one is actually paying to receive this stuff:-) 
strays even further from the standard than Goodman's. I think of us as deal- 
ing with incoming data from the world mainly by inventing theories through 
which this data is filtered to yield predictions about the world; that, mutatis 
mutandis (important), natural selection selects for those theories whose pre- 
dictions are more accurate; and (the most controversial bit) that the theories 
most successful at predicting are sufficiently like the most successful theories of 
pure mathematics that the latter should prove to have good survival value while 
the former could with little violence be turned into respectable mathematics. 
The controversial bit has the merit that both directions are in principle testable 
given suitable advances in AI and brain mapping respectively. 

A theory-of-everything is generally good for nothing... 
For computer science, the real world usually consists of 
computers (hunks of wire and silicon) executing programs. 

It has not escaped the attention of some contributors to concurrency theory 
that it is starting to look like a "theory of everything." This is the result of 
abstracting away wire, silicon, and programs to leave a set of abstractions that 
could as readily be applied to the interactions of galaxies of stars, swarms of bees, 
and rioting soccer fans as to processes communicating via ethernets, IP/TCP, 
and remote procedure calls. 

However concurrency theory is only a "theory of pverything' in the same 
sense that number theory and group theory are "theories of everything." Just 
as number theory is more than the theory of counting sheep and beans, and 
group theory more than a means of proving that quintics don't have solutions 

34 



expressible in radicals, so is concurrency theory more than the theory of what 
concurrent "hunks of wire and silicon" do. 

There are then two roads one may follow here, the conservative and the 
liberal. The conservative road requires keeping wire and silicon in mind as the 
ultimate domain of application of concurrency research. The liberal road re- 
places "computer science" by "information science" and seeks instead a theory 
of information processing that will turn out to be applicable to information pro- 
cessors in general, whether dumb like galaxies, smart like bees and computers, 
or brilliant like us (pats all round). 

I am most interested in the liberal road because it seems to me that the 
techniques of both computer science and engineering, provided they are not 
artificially constrained, should turn out to be broadly applicable. 

For example today's factory designers have only relatively primitive tools to 
help them develop a design on line, test it out to get a better feeling for how 
well it might work in practice, turn it into a detailed blueprint for a factory, 
and make it the basis both for the ongoing operation and maintenance of the 
factory and for future modifications and redesigns. 

The analog of this scenario for software systems is much further along, 
though it too has far to go or software research would have nothing left to 
do. There is no reason why the foundations of the latter should not also prove 
to be equally useful foundations for the former. If this is the case then the tax- 
payers' research dollars are spent more efficiently by working out concurrency 
theory so as to fully realize its benefits in all domains to which it is applicable. 

I want very badly to follow the liberal road. My big problem has always 
been that I don't know how to write a good program until I understand the 
theory of what that program is about. Hence my current preoccupation with 
theory. This is now well along however, and I hope to be able to start designing 
and implementing soon. I'm hoping that many of Leslie's excellent ideas will 
prove useful in aspects of this work. 

Vaughan Pratt 

To:  concurrencyCtheory.lcs.»it.edu 
Fro«: Luca Aceto <lucatcogs.su8sei.ac.uk> 
Subject: Two papers on begin-end 
Date: Mon,  19 lov 90 14:20:31 GMT 

In the debate on "True Concurrency vs. Interleaving" on the concurrency 
mailing list some of the recent messages have been concerned with the modeling 
of the behaviour of concurrent systems under the assumption that actions have a 
beginning and an ending. We have been working on semantic theories for process 
algebras based on variations on the above idea and our results are reported in 
a series of papers, which are available to whoever requests them. 

L Aceto, M Hennessy 
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Towards Action Refinement in Process Algebras 
Luca Aceto and Matthew Hennessy 

ABSTRACT 

We present a simple process algebra which supports a form of refinement of 
an action by a process and address the question of an appropriate equivalence 
relation for it. The main result of the paper is that an adequate equivalence 
can be defined in a very intuitive manner. In fact we show that it coincides 
with the "timed-equivalence" proposed by one of the authors in [H88]. This 
is a bisimulation-like equivalence based upon the idea of splitting every action 
into two sub-actions, the beginning and the end. For the language which we 
consider this equivalence also coincides with a variation, called "refine equiv- 
alence" , in which the beginnings and endings of actions with the same name 
must be properly matched. 

Reference: [H88] M. Hennessy, Axiomatizing Finite Concurrent Processes, 
SIAM Journal on Computing 17(5), pp. 997-1017, 1988. 

Adding Action Refinement to a Finite Process Algebra 
Luca Aceto and Matthew Hennessy 

ABSTRACT 

In this paper we present a process algebra for the specification of concur- 
rent, communicating processes which incorporates operators for the refinement 
of actions by processes, in addition to the usual operators for communication, 
nondeterminism, internal actions and restrictions, and study a suitable notion 
of semantic equivalence for it. We argue that action-refinements should, in some 
formal sense, preserve the synchronization structure of processes and their ap- 
plication to processes should consider the restriction operator as a "binder". We 
show that, under the above assumptions, the weak version of the refine equiva- 
lence introduced in [AH89] is preserved by action refinement and, moreover, is 
the largest such equivalence relation contained in weak bisimulation equivalence. 
We also discuss an example showing that, contrary to what happens in [AH89], 
refine equivalence and timed equivalence are different notions of equivalence over 
the language considered in this paper. 

Reference: [AH89] This is the paper mentioned above. 

To:  concurrencyQtheory.lcs.mit.edu 
From: round3Cca0n.engin.umich.edu (Prof Rounds) 
Subject: can't resist a comment 
Date: Mon,  19 lov 90 12:09:21 EST 

I'd like to throw two cents' worth into what seems to be one of the best 
'bulletin board" discussions I've seen in a long time. 
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I agree with both Leslie Lamport and Vaughan Pratt. A mathematical 
model is always just that; it represents our cognitive abstraction of what reality 
we perceive. The theorems true in the model make predictions, which we then 
reinterpret in the real world, at least that part of the world which interests 
us. The best models simplify and constrain reality enough so that they make 
really strong predictions (I would put the finite-state machine in that category.) 
Of course, in a particular domain, the model may not account for observed 
phenomena, and may in fact be contradicted. If one wants to predict these new 
phenomena, one must refine the mathematical model. This process, though 
painful for those who believe in the old model, is at the heart of scientific 
progress. 

The preceding paragraph talked about science; there is another point to 
make about engineering. In the field of computers we have the unprecedented 
opportunity to create real-world systems which conform to our mathematical 
perceptions. So, machines were designed to mirror our conception of digital 
computation; programming languages help us express mathematical algorithms, 
and so forth. The fascinating thing about concurrency theory is that it seems to 
be on the fence between science and engineering. We can use it to "explain" race 
conditions, or we can use it to help us design programs (witness CSP, occam, 
and the transputer.) Of course this was true about computability theory itself 
in the 30's and 40's. Witness the creation of the stored-program machine to 
embody the Universal Turing machine. 

One other nice thing about mathematical models is that they port them- 
selves into other domains of applicability. About 4 years ago I was working 
with a graduate student, Bob Kasper, on some problems in natural language 
processing. The problem involved specifying disjunctive information in record- 
like structures - more or less like variant record types are specified in Pascal. 
We saw a simple way to understand and to implement a system, using extremely 
basic notions from concurrency theory. Essentially one views a complex record 
as a transition system. The states are the individual nodes, and the transitions 
are the field designators. Then the simple logic of Hennessy and Milner, or 
the simplest possible subcase of deterministic PDL, becomes a way of declaring 
record types. Once this is seen, there are a lot of ways to reinterpret the con- 
cepts of concurrency in data types. I've been using the notions of Smyth and 
Hoare powerdomains, along with Aczel's non-wellfounded set theory, for exam- 
ple, to help understand and design so-called complex objects in object-oriented 
databases. Notice that Aczel's work came from an attempt to provide a proper 
mathematical foundation for SCCS! 

The point of this last experience is that one should always keep an open 
mind, especially where mathematical models are concerned. 

Bill Rounds 

To: concurrencyCtheory.lcs.mit. edu 
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From: Haim Gaifman <hgl7«cunixd.cc.Columbia.edn> 
Subject: Lamport on Spinoza, Science and related matters 
Date: Mon,   19 lov 90 19:39:10 EST 

This is rather a belated reaction to some of the claims made in the ex- 
change that has started with Leslie Lamport's inessage of November 7 ("Flame 
etc.") While Lamport's observations concerning Aristotles, Kant and Spinoza 
are marginal to the real issues of the debate, at least one point needs correction: 

".... and Spinoza proved that there can be at most seven planets." 
As a matter of fact, Spinoza never "proved" that there can be at most seven 

planets. Lamport is probably confusing Spinoza with Hegel (who lived two 
centuries later). Somewhere in Hegel's dissertation, so the story goes, is buried 
an argument purporting to show that the number of planets should be seven. 

Perhaps the difference between Spinoza and Hegel does not mean much to 
Lamport. After all, they were both philosophers, that is to say vaporizing 
theoreticians making ridiculously unfounded claims. But, as a scientist, he 
should have gotten his facts straight. 

As to the debate itself: 
If A claims to have done something that B has proved to be impossible, then 

either 
(i) there is an errors in A's construction, 
or 
(ii) there is an error in B's proof, 
or 
(iii) they are speaking about different things. 
In cases (i) and (ii) the debate can be clearly decided; the errors are found, 

one of the claims (perhaps both) is withdrawn and there the matter ends. But 
this happy state of affairs is mostly a privilege of mathematicians. In philosophy 
it is usually the third case that obtains. When things get clarified, it turns out 
that the real issue is not the correctness of a certain proof, but the correct way 
of defining certain notions, or of setting up a framework. The debate is about 
which setup is more intuitive, illuminating, fruitful, efficient, etc. 

It appears that, in this respect, many computer scientists share the fate of 
philosophers. What has started as a claim for a contradiction ("I have done 
something that somebody proved cannot be done") turns out to be a claim 
about the relative merits of trace models versus partial order models. 

Lamport is certainly entitled to the view that the methods developed by 
him are simpler and more efficient, for the purposes of analyzing and prov- 
ing correctness of distributed algorithms. No doubt, he can produce his own 
impressive work as an argument for this view. The claim could be evaluated 
(certainly not by me!) in a matter of fact way. This does not guarantee that the 
question would be settled, but at least we would have a clearer view of what is 
involved. Unfortunately, he has got this bad habit of philosophers to start with 
an imprecise presentation of the problem. 
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Another bad influence of popularized philosophy is the temptation to anchor 
one's views, no matter what the subject is, in some major principles; in the 
present case maxims about what is and what is not good science are mobilized 
for the sake of the argument: 

"Any useful scientific theory has a limited domain of 
application.    A theory-of-everything is generally good for 
nothing." 

In one sense, this is a sound rule of thumb that one would hardly wish to 
quarrel with: The more phenomena you try to accommodate the more likely 
you are to get an impractical system. The rule has, nonetheless, some spectac- 
ular exceptions. A higher level description that encompasses a wider range of 
phenomena might be more efficient then a narrower view. Every mathematician 
knows cases in which generalizing (hence strengthening) a theorem leads to a 
conceptually clearer, hence easier, proof of it. From an Aristotelian point of 
view Newtonian physics would have been a project unlikely to succeed, because 
it tried to account for the immense variegated domain of movement phenomena 
by few simple laws. 

As a general prescription for science, the above quote goes certainly against 
the grain that is exemplified by great scientists, such as Newton, Maxwell or 
Einstein. A "theory-of-everything" is the elusive goal that has motivated big 
scientific enterprises. What else is the point of the reduction of chemistry to 
physics, or of finding a unified field theory? 

All this has no direct bearing on whether an interleaving model, or a partial 
order model, or some other abstract model, is more suitable for reasoning about 
concurrent processes. But in trying to drag in general philosophical principles, 
Leslie Lamport seems to have committed himself to quite a narrow perspective 
of science, it is rather an engineer's view than anything else. 

Haim Gaifman 

To:  concurrencyCtheory.lcs.ait. edu 
Froa: Vaughan Pratt <prattCcs.Stanford.EDU> 
Subject: Early poaset paper 
Date: Sun, 25 lov 90 12:25:32 PST 

If there are any historians of concurrency theory subscribing to this forum 
they might be interested in the origins (as I understand them) of the term 
"pomset." 

The terms "labeled partial order" and "partial word" had been used pre- 
viously, but the earliest paper I'm aware of that refers explicitly to partially 
ordered multisets as a synonym for these notions is: 

•InProceedings( 
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Pr82,      Author="Pratt, V.R.", 
Title="On the Composition of Processes", 
Booktitle="Proceedings of the linth Annual ACM Symposium 

on Principles of Programming Languages", 
Month=Jan,  Year=1982) 

However I had not at that time come up with the contraction "pomset." 
This term was first advertised in a talk I gave on Sept. 13, 1983 at a workshop 
whose proceedings however were not published until 1985: 

•InProceedings( 
Pr83,      Author="Pratt, V.R.", 

Title="T¥o-Vay Channel with Disconnect", 
Booktitle="The Analysis of Concurrent Systems: 

Proceedings of a Tutorial and Workshop, LICS 207", 
Publisher="Springer-Verlag", Year=1985) 

I also used it in a talk I gave the following week at IFIP-83 in Paris. It 
appears in the position statement I circulated at that panel, a hundred or so 
copies of which were distributed to the audience: 

«Unpublished( 
Pr83b,    Author="Pratt, V.R.", 

Title="Position Statement", 
Iote="Circulated at the Panel on Mathematics of Parallel 
Processes, chair A.R.G. Milner, IFIP-83", 
Month=Sep, Year=1983) 

Now that I look at it again it seems to me that this position statement is 
quite clear about my motivation in those days for pomsets and how I thought 
they should be used. Since it's reasonably short and can't be found elsewhere 
I've appended it below. (My apologies for it's being in Scribe, this was what 
many of us at MIT and Stanford used back then. Just read the raw Scribe, the 
only obscurity should be x15>-[y], the Scribe for xt. [Fixed for this proceedings 
-vp]) 

The cryptic allusion therein to ab\ab and N(a, a, b, b) refers to the fact, found 
by my student Jay Gischer, that these two pomsets are language-equivalent. 
That is, regarded as language operations applied to languages a and b under 
the evident interpretation, they denote the same language. In 1982 Jay in- 
dependently came up with the partially ordered multiset concept, though not 
by that name, while investigating the problem of completely axiomatizing the 
equational theory of concatenation and shuffle of languages which I had posed 
to him. Jay reduced my axiomatization problem to the question of whether for 
any two N'-free pomsets, language-equivalence implied isomorphism. I was quite 
surprised to find the partially ordered multisets of my POPL-82 paper arising 
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so naturally in connection with this question about pure interleaving seman- 
tics. Neither Jay nor I found an answer to this question, which I publicized 
(as an axiomatization question) on various occasions during 1986-1988. It was 
eventually solved in 1988 by Steve Tschantz. an algebraist at Yanderbilt, in 

CUnpublished( 
Tsch, Author="Tschantz, S.T.", 
Title="Languages under concatenation and shuffling (preliminary)", 
Iote="Manuscript, Department of Mathematics, Vanderbilt 
university", 
Month=Jun, Year=1988) 

Steve independently discovered the same reduction of the axiomatization 
problem to the question about language-equivalence of N-free pomsets, which 
he answered affirmatively by an ingenious argument. Luca Aceto subsequently 
applied Tschantz s theorem to infer the surprising result [correspondence, Apr. 
1989] that timed-equivalence coincides with trace-equivalence for the language 
p ::=  0 | a \ p;p \ p\p. 

Since 1983, starting with my LOP-85 paper 

OlnProceedings( 
Pr85,      Author="Pratt, V.R.", 

Title="Some Constructions for Order-Theoretic Models of 
Concurrency", Booktitle="Proc. Conf.  on Logics of Programs, 
LICS 193",  Address="Brooklyn", Publisher="Springer-Verlag", 
Pages="269-283", Year=198S), 

which turned into 

«Article( 
Pr86,      Author="Pratt, V.R.", 

Title="Modeling Concurrency with Partial Orders", 
Jouraal="International Journal of Parallel Programming", 
Volume*lS, Iumber=l, Pages="33-71", Month=Feb, Year=1986), 

my thoughts on the appropriate combinators for pomsets have shifted from 
the network emphasis in my POPL-82 paper and IFIP-83 statement to a more 
arithmetic kind of language in which pomsets are added and multiplied (and 
these days exponentiated, whose relevance to concurrency I did not appreciate 
in 1985). Nowadays, at my student Roger Crew's prodding, I regard network 
combination as merely one of several variants of addition. 

Vaughan Pratt 
lov. 25, 1990 
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APPENDIX—IFIP-83 STATEMENT 
IFIP-83 - Panel on Mathematics of Parallel Processes 

Position Statement 
V. R. Pratt 

Stanford University 
September, 1983 

Abstract. The notion of function as a set of ordered pairs is mathematically 
appealing but not quite rich enough for modeling processes. Our position is that 
it suffices to generalize ordered pairs to pomsets (partially ordered multisets) to 
obtain a satisfactory notion of process. 

Functions. A function abstracts the essence of stimulus-response: it collects 
all possible stimuli and pairs each with a corresponding response. Furthermore 
functions obey the principle of behavioral extensionality: two functions with 
the same set of stimulus-response pairs are considered not merely behaviorally 
equivalent functions but in fact the same function. These two attributes are 
captured simultaneously in defining a function from A to B to be a subset of 
.4x0 (with additional conditions when being single-valued and total matters). 

Processes. Processes are like functions in some respects. Processes accept 
stimuli and emit responses. And behavioral extensionality is just as natural for 
processes as for functions. 

A process is not however an ordinary function. It may for example respond 
to each of a series of numeric inputs with the sum of all inputs to date; this is 
the behavior of a cumulative "function," which is not really a function since it 
takes memory to keep a running sum. 

Functions on Histories. A process can be made a function if the domain is 
taken to be sequences of stimuli instead of individual stimuli. That is, a process 
may be defined to be a function from histories. It is natural to then take the 
codomain to be histories as well, i.e. a process is a function on histories. 

This definition is the basis for the semantics of parallel processes given at 
IFIP 74 by G. Kahn [K], and elaborated on at IFIP 77 by Kahn and D. Mac- 
Queen [KM]. This definition works well for deterministic processes. 

The Nondeterminism Anomaly. In 1978 D. Brock and W. Ackerman ex- 
hibited an anomaly demonstrating that the straightforward extension of Kahn- 
MacQueen semantics to nondeterministic processes, namely relations on histo- 
ries, did not yield sensible behaviors [BA]. They identified the problem as a 
lack of information about the relative timing of individual input and output 
events. The Kahn-MacQueen model did not specify any interleaving informa- 
tion between input and output histories. Brock and Ackerman noted that a 
little additional information of this sort sufficed to dispose of the anomaly at 
hand. 

Our Position. We consider the Brock-Ackerman fix, appropriately formal- 
ized [Pr], to provide a very attractive model of processes. Before defining this 
model we introduce the notion of partially ordered multiset or pomset. 

Pomsets. A pomset on a set A is, up to isomorphism,.a structure (£7, L, <) 
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consisting of an underlying set U, a labelling function L : I' — A. and a partial 
order < on U. 

The labels supply the elements of the pomset. The same label can be reused, 
hence multiset rather than set. Pomsets are defined only up to isomorphism (of 
structures) because the identity of the underlying set is unimportant; only the 
labels (the rea/multiset elements) and the order matter. 

Main definition. A process on a sei E is a set of pomsets on E. 
Intended Interpretation. £ is a set of events. Each pomset of events is 

one of the possible computations of the process. The order on each pomset is 
that of necessary temporal precedence; the order of the events in a computation 
need not be completely specified. 

Contrast with Functions. A function is a set of totally ordered double- 
tons. This definition exposes three differences between functions and processes: 
the dropping of the cardinality requirement that each element of a function 
have two elements, the switch from sets to multisets, and the switch from a 
total order to a partial order. 

The cardinality change is motivated by the ongoing nature of a process: 
many events may need to be considered as part of a single computation. Multi- 
sets are needed because an event may be repeated, e.g. the arrival of the number 
3. Partial orders are preferred over total because it is not always natural to to- 
tally order events - consider for example two communicating processes on Earth 
and Saturn respectively, each running at nanosecond speeds. 

Inadequacy of Total Orders. The use of total rather than partial orders 
enjoys some currency in modeling parallel processes [H][Pn]. However there does 
not appear to be a natural way of using total orders to distinguish the following 
two ways in which two a's might precede two b's. 

a a a     a 
I I   l\    I 
I I   I  \ I 
I MM 
b b b     b 

Thus not only are total orders unnatural, they are not an expressively ade- 
quate substitute for pomsets. 

Examples. The above-drawn pomsets together form a two-element process. 
Any n-ary relation (hence binary relation, and hence function) is a process if 
each n-tuple in the relation is regarded as a totally ordered set. A power set 
is a process if each element is regarded as a set with the empty partial order. 
The power set C of a power set 5 is a process if each element of C is regarded 
as ordered by inclusion on B: event e necessarily follows event d just when e is 
d with some additional elements - the process makes progress by accumulating 
elements and distinct accumulations leading to the same subset are (in this case) 
considered the same event. 
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Spatial Localization. In order to put processes in communication with 
each other it is helpful to know where their events are taking place (cf. [VV], 
p.64). We define an event space to be a Cartesian product C x D, consisting 
of spatial events. The intended interpretation is that C is a set of channels or 
places (cf. [B]) where the events may be found and D the set of data that may 
be sent over the channels of C. A spatial process is a process on an event space. 

Nets. A net is a process P on C x D having constituent processes Pi P„ 
on C\ x D,..., Cn x D respectively. Process P, is a constituent of P just when 
there exists a function a, : C, —» C determining a projection .4, : P —» Pi. 
(a, gives the attachment of the channels (i.e. ports) of P, to the channels of 
the net.) The projection ,4, is determined from a, by taking ,4,(p) to be the 
multiset {(c,d)\(ai(c),d) £ p). Order is preserved, that is, (c,d) < (c/, <f') in 
Ai{p) ifF(ai(c),flf) < (a,(e')< d') in p. (Note that .4, need not be onto, i.e. it is 
not required that P, equal Ai(P), only that it include it.) 

Process Composition. Processes are composed to form a new process in 
two steps: given the processes Pi with corresponding attachments a< : C, — C 
for i from 1 to n — 1, the maximum (under set inclusion) net P having those 
processes as constituents is formed, and then an additional attachment an : 
Cn —- C is used to determine the projection An : P —* P„. The result is i4„(P). 
The n attachments themselves can thus be seen to determine an (n — l)-ary 
operation on processes. 

Example. Ordinary composition of binary relations on D is determined 
by Cx = C2 = C3 = {0,1}, C = {0,1,2} with ai(c) = c, a2(c) = c + 1, and 
03(c) = 2c. In this net Pi and P2 are composed to yield P3. This is of course a 
particularly simple example. 
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To:  concurrencyCtheory.les.mit.edu 
From: Eike Best <gmdzi!eikeCrelay.eu.net> 
Subject: Re: Zeno machines 
Date: Wed, 2 Jan 91 16:07:24 -0100 

In a message shortly before Christmas, Vaughan Pratt writes: 

»"Probably the earliest mention oi partial orders 
»in respect to concurrency is in Irene Greifs Thesis of 1975..." 

(quote from memory). 
Claim: 
Partial ordering ideas have been around at least since the mid-sixties. 
A fairly extensive formal discussion of "occurrence graphs" (special partial 

orders of the type I will describe below) and "occurrence systems" (sets of 
occurrence graphs) is in: 

A.W.Holt: Final Report of the Information System Theory Project. Techni- 
cal Report RADC-TR-68-305, Rome Air Development Center, Grifiss Air Force 
Base, New York (1968). 

Or compare A.W.Holt: Events and Conditions, Project MAC Conference 
(1970): 

"Two ... occurrences are ordered if they are connected by a directed path. 
They are then ordered in the sense of the path  if (two events) are not 
ordered with respect to one another, (then they are) concurrent." 

Or from Suhas Patil's PhD Thesis (Coordination of Asynchronous Events, 
MIT, June 1970): 

"...The events corresponding to the nodes which are ordered must occur in 
that order but the events corresponding to nodes which are not ordered may 
occur concurrently." 
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