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INTRODUCTION 

Either linear or circular polarization is a fundamental property of radiation and is a well 
understood phenomenon. The imaging profiles and signatures of man-made targets are 
polarization-dependent. Natural background-clutter and plume signatures are mostly 
unpolarized or have very different polarization characteristics from those of the targets. 
Based upon this fact, polarization-based imaging of targets in clutter and background has 
received increasing attention since it can provide more discrimination power than simple 
intensity imaging (Reference 1). 

We have made a performance analysis of an infrared passive polarization sensor for 
discrimination applications. The results show the application feasibility for 
(1) target/debris/altitude control module (ACM) discrimination of Ballistic Missile Defense 
(BMD) using linear polarization and (2) detection of a sea-skimming missile in the presence 
of sea clutter and solar background using circular polarization (References 2 through 5). 
The application of linear polarization imaging for real-target/background discrimination and 
mines-target identification has also been demonstrated (References 1 and 6). The three 
Stokes parameters imager was demonstrated by a preliminary pixel-by-pixel mid-wave 
infrared (MWIR) linear-polarization imager (Reference 7). 

These developments provide the application potential of using passive linear 
polarization sensor for BMD discrimination/tracking (References 5 and 8). For a sea- 
skimming missile in the solar corridor, the solar radiation reflected from the (1) sea surface 
and (2) missile surface would have a significant circular component. However, the 
background of solar radiation reflected from the sea would have a negligibly small circular 
component, which is zero for a flat water surface (Reference 4). These phenomena can be 
used to detect a sea-skimming missile in the presence of sea clutter and solar background. 
In this report, we include the effects of atmospheric absorption and the rough sea surface, 
which have been neglected in previous studies. 
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THEORY OF POLARIZATION SIGNATURES 

Based upon the different polarization characteristics of objects in the scene, the 
polarization Stokes parameter Q-, U-, and V-images provide more target-clutter 
discrimination capability than the intensity-only I-image, the existing infrared technology 
(References 1 through 8). As shown in Figure 1, the polarization state of light from a 
target surface coming toward the observer can be completely described by Stokes 
parameters S = (S0, Si, S2, S3) = (I, Q, U, V). I is the total intensity; Q and U are the 
two component intensities of linear polarization radiation. V is the component related to 
circular polarization intensities. They satisfy the relations 

I = Iup+Ip (1) 

and      Ip=(Q2+U2+V2)1/2 (2) 

Ip and Iup are the intensities of polarized and unpolarized components respectively. 

PROPAGATION OF LIGHT 

POLARIZATION ORIENTATION AND BJUPTICITY 

VW" 

^L 

9- 

/       eV 

STOKES PARAMETERS 

laig + L, Isl^ + lp 

Q s I . I, s I,, cos 2ß cos 2% 

U = lp cos 2ß Sin 2x 

V = lp Sin 2ß 

FIGURE 1. The Stokes Parameters Description of Electromagnetic Wave. 

The radiation from the target toward the observer can be formulated as 

and 

(\\ [\\ 
Q 
u = M Qo 

U0 w OO 

(3) 

where M, the Mueller matrix, relates to the optical properties of the target surface, such as 
reflection, emission, and scattering. S0 = (I0, Qo» U0, V0) is the source radiation. 
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For the reflection from a smooth plane, as shown in Figure 2a, taking the x-y axis 
along the s- and p-wave polarization direction of the reflected beam, the reflection Mueller 
matrix is 

(    1 

Mr = R 

cos2\|/ 0 0 

cos2y 1 0 0 

0 0 sin 2\j/ cos A sin 2\\r sin A 

0 0 -sin2\|f sin A sin 2\\f cos A 

(4) 

where \|/ and A are defined from 

■£ = tan\|/eiA (5) 

rs and rp are the complex reflection coefficients for s- and p-waves respectively. 
R = (Rs+Rp)/2 [Rj=lrjl2, j=s,p], is the reflectance. rs, rp, R and thus \|/ and A are 
functions of the angle of incidence. Considering a smooth stainless-steel-like metal surface 
with optical constant (1.5 + i 4.5), the incident angle-dependent reflectance y and A are 
shown in Figure 3a. The two Mueller matrix elements Moi [= R cos 2\|/] and M23 [= R 
sin 2\|/ sin A] are shown in Figure 3b. The two reflectances Rs and Rp are shown in 
Figure 3c. 

REFLECTION EMISSION 

(a) Reflection. (b) Emission. 

FIGURE 2. The Reflection and Emission Geometry From a Plane. 
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FIGURE 3.  The Calculated Reflection \\f, A, Mueller Matrix Elements and Rs, Rp for a 
Smooth Metal Plane of Optical Constants 1.5 + i 4.5. 

For the emission case shown in Figure 2b, the \|/ and A are defined from 

^ = tanVeiA (6) 

ts and tp are the s- and p-wave complex transmission coefficients, for the radiation from the 
target interior below the surface. The emission Mueller matrix Me has the same form as Mr 

in Equation 4, except R is replaced by T = (Ts+Tp)/2 [Tj=ltjl2, j=s,p], the transmittance. ts, 
tp, T and thus y and A are functions of the angle of emission. For the smooth surface with 
optical constant (1.5 + i 4.5), the incident angle-dependent reflectance \|/ and A are shown 
in Figure 4a. The two Mueller matrix elements Moi [= T cos 2\|/] and M23 [= T sin 2\|/ sin 
A] are shown in Figure 4b. es = Ts and ep = Tp, the emission coefficients of s and p 
waves, are shown in Figure 4c. S0 is the radiation from the interior of the target. 
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FIGURE 4.   The Calculated Emission \j/, A, Mueller Matrix Elements and 8S, £p for a 
smooth Metal Plane of Optical Constants 1.5 + i 4.5. 
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POLARIZATION IMAGES OF CYLINDRICAL SURFACE 
NEAR A WATER PLANE 

In this section we calculate the polarization images of a model target with a cylindrical 
surface. As shown in Figure 5, the cylinder is near and parallel to a water plane. Since the 
emissive circular radiation from cylindrical surface is negligibly small, we consider only the 
cases in which the light is either (1) emitted or (2) reflected from the water plane and then 
reflected from the cylinder toward the sensor (References 3 and 4). xyz are the target 
coordinates and the observer imager coordinates are XYZ. x'y'z'-axes [z'=z] are chosen 
such that the x'-axis is normal to the water plane [y'z'-plane]. In addition to the aspect 
angle 0a> the observer direction has an azimuthal angle 8a. 

i IMAGER 

IMAGER 

FIGURE 5. The Observation Geometry of a Cylinder Above the Water Plane. 

The observed emission/reflection radiation from the cylinder (Ray 1 of Figure 5) is 

S = MreS0, (7) 

where Mre = R(0ot) Mr R(0tp) Me (8) 

is the resultant Mueller matrix associated with the radiation emitted from the dielectric plane 
and then reflected from the cylindrical surface (Reference 4). Se [= Me S0] is the emission 
from the water plane toward the cylinder. Mr is the reflection at the cylindrical surface. 
0tp is the angle between the two s-axes of the target and plane surfaces. 0ot is the angle 
between the imager X-axis and the s-axis of the reflecting target surface. 
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where  R(0) = 

riO 0 -(T\ 

0    cos 20 sin 20 0 

0   -sin 20 cos 20 0 

0         0 0 1, 

(9) 

Taking S0 = (1, 0, 0, 0), then Se = (eIt eQ, 8u, ev) and S = (eRl5 eRQ, eRy, eRv). 
eRr, ERQ, eRy, eRv are the effective emissivity-reflectance, due to the emission and 
reflection from the two surfaces, for I, Q, U, and V components respectively. Taking the 
metal surface of optical constants 1.5 + i 4.5, and 10 degrees for the aspect angle, the 
images are calculated for 8a = 70 degrees. The results are shown in Figure 6. 

The reflection image field in the Y-direction is reduced because of the emission- 
reflection geometry. The [eR]j images of the target are in the region Y/r < 1. Y/r > 1 is the 
imaging region that shows the emissivities £j (j = I, Q, U, V) of water surface (Ray la of 
Figure 5). In this case we find that significant circular polarization signature exists. £RV 

has a maximum value 0.06. These results show that the circular polarization signature of a 
target due to reflection is not always small and thus cannot be neglected. Therefore, it is 
potentially useful for practical applications. 

RADIATION   IMAGE   FROM  CYLINDER 
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(6R)Q 

(b) Images. 

FIGURE 6. Calculated Scans and Images of Emissivity-Reflectance From a Metal 
Cylindrical Target Surface (0 < y/R <1) and Emissivity of the Emissive Water Plane 
(1 < y/R <1.5) Observed at 6a= 10 Degrees and 5a= 70 Degrees and Wavelength 
5 Micrometers. 
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Similarly, the observed reflection/reflection radiation from the cylinder (Ray 2 of Figure 5) 
is 

S = MrrS0, (10) 

where Mrr = R(0ot) Mr R(0tp) Mr (11) 

is the resultant Mueller matrix associated with the radiation reflected from the water plane 
and then reflected from the cylindrical surface (Reference 4). Sr [= Mr S0] is the reflected 
signal from the water plane toward the cylinder (Ray 2a of Figure 5). 

POLARIZATION EMISSION-REFLECTION SIGNATURE OF A 
CYLINDRICAL TARGET ABOVE A FLAT WATER PLANE 

For a target at a long range where the emission image becomes a point source and may 
be contained within one pixel of the focal plane array, the total radiant intensities toward the 
sensor pixel are 

"■max 

Ij=JdSn   J<ftej(Ä.,T)LB(kT) (12) 
^-min 

2 

where   j = I, Q, U, V,LB(?t,T) = —? -.— r—   is   the   blackbody   radiance 
X    exp(hc//ikBT) -1 

function. £j and T are the emissivity and absolute temperature of the target/debris surface 
toward the sensor.   [A,min,A,maX] is the waveband. £j is replaced by Rj in the reflectance 
case,  or [ER]J  and [RR]j  in the emission-reflection and  reflection-reflection  cases 

L 
respectively. For the target at range Rg, the irradiance onto the sensor is Ej = —y.   If we 

Rg 
neglected the atmospheric absorption, the acquisition ranges would be 

-|l/2 

H - JL 
Em 

(13) 

Em is the minimum detection irradiance (MDI) of the sensor. 
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Figure 6 shows that the I-, Q-, and U- images of emissive water background are 
nonvanishing, with magnitudes comparable to those of the emission-reflection radiation 
from the target, and will have a serious target signal-clutter contrast problem. However, 
negligible V-signature exists from the water background, and then there is no signal-clutter 
contrast problem for the circular polarization V-image. This result has clearly demonstrated 
the potential benefit for sea-skimming missile detection using the circular polarization. The 
criterion is that the target's V-signature must be strong and detectable by the infrared 
sensors. To show the feasibility, a model calculation has been performed and is described 
in the following paragraphs. 

We consider a cylindrical target model 10 meters long, 0.5 meters radius, and 
10 meters above a water plane (XY-plane) as shown in the Figure 7. This model is located 
at a distance 20 kilometers from the YZ-plane and with its axis in the XZ-plane and along 
the X-direction. The sensor is located in the YZ-plane and with a distance 3.5 kilometers 
from the XZ-plane and an altitude 1.27 kilometers above the water surface. This geometry 
gives 6a = 10 and 8a = 70 degrees. Assuming that the target surface is made from a 
stainless-steel-like metal with optical constants 1.5 + i 4.5 and the water temperature is 
286 K and with optical constants 1.325 + i0.0124 (at a wavelength of 5 micrometers), the 
water-background emissivity-reflectance [eR]j scans are shown in Figure 6. 

For the case of 5a = 70 degrees, the 9a-dependent emission-reflection MWIR 
(wavelength 4.7 - 5.3 micrometers) radiant intensities towards the sensor are shown in 
Figure 8. For a MDI, Em = 10 fW/cm2, the acquisition ranges are calculated, using 
Equation 13 and are also shown in Figure 8. The target V-signature at 0a= 10 and 8a = 
70 degrees is observable with respect to the negligible water background. This result has 
provided the foundation for the application of circular polarization to the problem of a 
sea-skimming missile detection for ship-defense. 

10 



NAWCWDTP8410 
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FIGURE 7. A Model Geometry of the Imaging Sensor and a Cylindrical 
Target Above a Flat Water Plane. 
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CIRCULAR POLARIZATION REFLECTION-REFLECTION 
SIGNATURE OF A CYLINDRICAL TARGET ABOVE 

A SEA SURFACE IN SOLAR CORRIDOR 

We generalize the concept and model to study the detection of a sea-skimmer in the 
solar corridor. In the model calculation, we consider only the major solar radiation source 
and neglect other radiation contributions. The effects of (1) the atmospheric absorption and 
(2) the rough sea surface are included. The atmospheric absorption and the solar radiation 
spectra have the major effect for band selection. The rough water surface would produce 
nonvanishing circular background. These effects are negligible in the flat surface case. As 
shown in Figure 5 [ray 2], the total intensity of the cylindrical skimmer toward the sensor 
is 

^rnax 

Ij=JdSn   J\R[RRw].W8(Vr,)/Q, (14) 

where Ts = 6000 K is the solar temperature, WS(X,,TS) is the solar spectral irradiance at sea 
surface and is shown in Figure 9 for the MWIR band (Reference 9). [RRw]j are the 
effective reflectance coefficients due to the double reflections of water [Rw] and missile 
surface [R]. Qs = 6.3E-3 sir is the solid angle of solar disk. For the target at range Rg, 
the irradiance onto the sensor is 

Ej=x(Rg)i (15) 

x(Rg) is the spectrally [A,min,A,max] averaged atmospheric transmission coefficient between 
the target and the sensor. 

The total radiant intensity of the water-reflected solar radiation toward the sensor is 

''■max 

IWJ=JdSn   JdX[Rw].W,(Vri)/Q, (16) 

[Rw]j is the effective reflectance coefficient of water surface. For the water surface at range 
Rg, the irradiance onto the sensor (ray 2a of Figure 5) is 

12 
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SPECTRAL SOLAR RADIATION 
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FIGURE 9. The MWIR Solar Spectral Irradiance at Sea Surface. 

FLAT-WATER-PLANE MODEL 

We consider a cylindrical target model 10 meters long, 0.5 meters radius, and 
10 meters above a water plane (XY-plane) as shown in the Figure 7. This model is located 
at a distance X kilometers from the YZ-plane and with its axis in the XZ-plane and along 
the X-direction. The sensor at two positions is studied: (1) a shipboard sensor located in 
the YZ-plane, at a distance 100 meters from the XZ-plane and an altitude 20 m above the 
water surface and (2) an interceptor helicopter-board sensor located in the YZ-plane, at a 
distance 2 km from the XZ-plane and an altitude 1 kilometer above the water surface. The 
situation is shown in Figure 10. 

We assume that the water-reflected solar glint toward the sensor has a spread incident 
angles of (1) 10-degree range (79.95 to 89.95 degrees) and (2) 40-degree range (49.95 to 
89.95 degrees), respectively. We also assume that the target surface is made from a 
painted surface with optical constants 1.5 + i 0.15, and the water has optical constants 
1.374 + i0.0036, (at a wavelength of 3.7 micrometers) (Reference 10). 

For the case of flat water surface, the irradiances of I-, V-, and water background I- 
signatures (MWIR band 3.4 - 4.0 micrometers) are calculated and shown in Figure 11. In 
this geometry, the strong water-reflected solar glint exists for a horizontal range X > 
2 kilometers. In this solar corridor, the target I- irradiance is much smaller than the water- 
reflected solar I-background. Taking the sensor MDI = 10 fW/cm2, the circular 
component target signatures are measurable and have acquisition ranges of 16.2 and 
56.8 kilometers for positions 1 and 2, respectively. The band 3.3 to 3.7 micrometers is a 
near optimum choice of the greatest spectral signature of solar radiation source near the sea 
surface (Figure 9). 

13 
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FIGURE 10. Model Sensor Target Geometry in the Solar Corridor. 
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FIGURE 11. The MWIR Irradiances of Solar Glints. The sensors are at (1) [0, 100 m, 
20 m] and (2) [0, 2 km, 1 km]. Flat water surface is assumed. 
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ROÜGH-SEA-SURFACE MODEL 

The double reflection of unpolarized solar radiation from two surfaces would generate 
circular component radiation with a nonvanishing V signature. Then the nonvanishing 
V-component of rough-sea background is expected. This effect will limit the application 
potential of sea-skimmer detection in the solar corridor. We make a study of the strength. 

A model based upon double reflection (Reference 11) for a rough-surface 
backscattering was developed (Reference 12). In this model, the polarization properties of 
double-reflection surface scattering (effective Mueller matrix) are derived. Using the sea- 
surface slope distribution of Cox-Munk model, the Mueller matrix and the MWIR (I, Q, U, 
V) signatures of the reflected solar background from a rough-water surface are calculated. 
The degrees of circular (V/I) and linear (Ijp/I) polarizations are calculated (Reference 13). 
The results for the near grazing cases (incident angles greater than 80 degrees) for sea 
surfaces with wind speeds of 0, 2.5, 5, and 10 m/s are shown in Figure 12. Figure 12 
shows that the circular polarization signal (V) is less than 1E-6 of the intensity signal (I) 
near the horizon (incident angle > 89 degrees). 

For the two sensors at positions 1 [0, 100, 20 meters] and 2 [0, 2, 1 kilometers], the 
I-, V-irradiances of target and water background [MWIR band 3.3 to 3.7 micrometers] are 
calculated. The results for sea-surface wind speeds of 0 and 10 m/s are calculated and 
shown in Figures 13 and 14. The ratio Ey/Eyw is calculated and also shown in Figure 15. 

The relation Ey/Eyw versus Ey for the sensor at position 1 are shown in Figure 16. If 
we take the sensor MDI to be 10 fW/cm2, the acquisition ranges of sensor 1 are 9.9 and 
7.7 kilometers for sea surfaces with wind speeds 0 and 10 m/s respectively. At these 
ranges the circular polarization signal-to-clutter ratios, E/Ew, are 76 and 330 respectively. 
Therefore, the circular component clutter background (Ew) due to roughness of sea surface 
is negligibly small. The relation Ey/Eyw versus Ey for the sensor at position 2 is shown in 
Figure 17. 

The circular sea background Ew is large. Taking E/Ew = 10 as the range criterion, the 
acquisition ranges are 13.9 and 11.5 kilometers for sea surface with wind speeds 0 and 
10 m/s respectively. At these ranges the circular polarization target irradiance E is 2700 
and 1445 fW/cm2 respectively. The results are listed in Table 1. 

The circular component target signature (E) is very strong. These results show that the 
MWIR circular polarization sensor is feasible for the sea-skimming missile detection in the 
solar corridor, either for (1) shipboard or (2) interceptor/helicopter-board sensor 
application. The range of ship defense interest is 7 to 14 kilometers. 
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FIGURE 12. Polarization Background of Water Reflection. The degrees of circular (V/I) 
and linear (I]p/I) polarizations for the near grazing cases with incident angles greater than 
80 degrees. Results for sea surfaces with wind speeds of 0, 2.5, 5, and 10 m/s 
(Cox-Munk model) are shown. 
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FIGURE 13. For the Sensor at Position 1, the MWIR Solar Glints Generated I- and V- 
Irradiances of the Model Cylindrical Target, and That of Water Background in Solar 
Corridor. Results for sea surfaces with wind speeds of 0 and 10 m/s (Cox-Munk model) 
are shown. 
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Corridor. Results for sea surfaces with wind speeds of 0 and 10 m/s (Cox-Munk model) 
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FIGURE 15. For the Sensor at Positions 1 and 2 and in the Solar Corridor (Figures 13 
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TABLE 1. Acquisition Ranges for the Two Sensors 
at Positions 1 and 2. 

Parameter Position Wind speed (m/s) 

0 10 
Acq. range (km) 1 

2 
9.9 

13.9 
7.7 

11.5 
E (fW/cm2) 
at acq. range 

1 
2 

10 
2700 

10 
1445 

E/Ew 

at acq. range 
1 
2 

76 
10 

330 
10 

DISCUSSION AND CONCLUSIONS 

We calculated the polarization signatures of a model cylindrical target with painted 
surface. The circular polarization reflection-reflection signatures for the cylinder above 
water plane with both flat and rough (Cox-Munk model, Reference 13) sea surface are 
studied quantitatively. The result shows the feasibility of detecting sea-skimmer targets 
above the sea surface. In the solar corridor, the sun glints reflected from the water surface 
and then reflected from a target surface would have significant circular polarization. These 
reflected sun glints are stronger than the reflection background from rough sea surface 
(Figure 15). Therefore, a-circular polarization sensor would be feasible to work as an 
adjunct sensor for sea-skimming missile detection in the solar corridor when the current 
intensity-only sensor has difficulty. 

We consider two sensor positions, (1) shipboard and (2) interceptor helicopter-board 
sensor, which are the major interest of naval ship defense application. Until now no 
circular polarization imaging sensor has existed. The research and development of circular 
polarization sensor technology is a challenge. 

For the night application without a hot solar source the thermal radiation emitted from 
the sea surface and then reflected from the target could also produce the circular polarization 
signature for discrimination and tracking. The long-wave infrared (LWIR) is preferred 
because of the low water temperature of the sea. Therefore, band selection is a key 
consideration of circular polarization sensor design for the special application environment. 
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The conclusions are the following: 

1. Theory and algebra of circular polarization of target  signatures  have  been 
developed. 

2. The circular component solar glint background reflected from rough sea surface is 
negligibly small. 

3. A MWIR circular polarization sensor is feasible for sea-skimming missile detection 
in the solar corridor. 

4. The best MWIR band has been simulated and determined. 

5. Infrared circular polarization sensor technology is worthy of development. 
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