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1    Introduction 

Breast cancer is the most frequently diagnosed malignancy among women in the United 

States [1]. In 1996, the American Cancer Society estimated that 184,300 women would be 

newly diagnosed with breast cancer and that 44,300 would die from the disease [1]. Breast 

cancer accounts for 31% of all cancers detected and 17% of all cancer deaths, and ranks as 

the second leading cause of death from cancer among women in the United States [1]. Five 

year survival rates are generally very high (93%) for breast cancer staged as being 

localized, falling to 72% for regional disease and only 18% for distant disease [2]. The early 

detection of breast cancer is clearly a key ingredient of any strategy designed to reduce 

breast cancer mortality. 

Mammography's role is the early detection of breast cancer. Although more accurate than 

any other modality, existing techniques for mammography only find 80 to 90% of the breast 

cancers. Moreover, in 7 to 10% of cases, the cancer will not be visible on the mammogram. 

It has been suggested that mammograms as normally viewed, display only about 3% of the 

total information detected. Perception is a problem particularly for patients with dense 

fibroglandular patterns. The importance of diagnosis of breast cancer at an early stage is 

critical to patient survival. The general inability to detect small tumors and other salient 

features within mammograms motivates our investigation. 

The goal of this project is to develop a diagnostic tool for radiologists that will refine the 

perception of mammographic features (including lesions, masses and calcifications) and 

improve the accuracy of diagnosis. Our research efforts are geared towards improving the 

local mammographic viewing environment by selectively processing mammograms for 

presence of different features, and towards providing a better global mammographic 

viewing environment by fusing together locally processed sections of images. By improving 

the visualization of breast pathology, we can increase the chances of early detection of 

breast cancers (improve quality) while requiring less time to evaluate mammograms for 

most patients (lower costs). 

A major reason for poor visualization of small malignant masses is the subtle difference in 

x-ray attenuation between normal glandular tissues and malignant disease [3]. This fact 

makes the detection of small malignancies problematical, especially in younger women who 

have denser breast tissue. Although calcifications have high inherent attenuation 

properties, their small size also results in a low subject contrast [4]. As a result, the 

visibility of small tumors, and any associated microcalcifications, will always be a problem 

in mammography as it is currently performed using analog film. 

We are investigating a methodology for accomplishing mammographic feature analysis 



through multiscale representations. Wide variety of feature sizes and shapes in 

mammograms makes single-scale processing methods ineffective. In [5], it was shown that, 

in the context of mammography, multiscale image processing algorithms can outperform 

traditional contrast enhancement methods such as histogram equalization and unsharp 

masking. As reported in [6], an improvement in feature visualization was noted for 

mammograms processed using multiscale wavelet processing techniques. Furthermore, in 

[7], it was demonstrated that unsharp masking with a Gaussian lowpass filter can be 

formulated as a special case of contrast enhancement via a discrete dyadic wavelet 

transform. 

Here, we present a scheme for local enhancement and fusion of clinically significant 

features. We devised a wavelet transform that is flexible enough for incorporation of a 

variety of enhancement methods and used the derived wavelet framework for enhancement 

of microcalcifications, circumscribed masses, and stellate lesions. 

In the following sections, we briefly overview the contents of the report, list publications, 

and explain notation that we use. 

1.1    Overview of Contents 

Mammographic image enhancement methods are typically aimed at either improvement of 

the overall visibility of features or enhancement of a specific sign of malignancy. In this 

report, we present a synthesis of the two paradigms by means of image fusion. Section 2.1 

introduces the idea and provides an overview of the algorithm. 

Enhancement of different mammographic features is achieved within a single wavelet 

transform framework which must enable inclusion of a variety of methods (the derivations 

of such a versatile transform can be viewed as an extension of Task 3 of our Statement of 

Work). The transform is described in Section 2.2. First, Section 2.2.1 builds upon the 

foundation from our previous report to derive the transform, and then, Section 2.2.2 deals 

with fast implementations issues. 

Different methods are used to enhance distinct mammographic features. Section 2.3 

reports on three enhancement strategies. Enhancement of microcalcifications is based upon 

second derivatives of a Gaussian and given in Section 2.3.1. Circumscribed masses are 

enhanced through inputting the result from Laplacian of Gaussian approximations to 

enhancement functions as shown in Section 2.3.2. Stellate lesions are the topic of Section 

2.3.3: directional derivatives are employed to determine local orientations needed for 

enhancement. 

Lastly, Section 2.4 mentions the framework for fusion of enhanced features. 



1.2 Publications 

Below, we provide the list of publications accomplished during 1998. 

[1] I. Koren, A. Laine, and F. Taylor, "Enhancement via fusion of mammographic 

features," in Proc. IEEE Int. Conf. Image Process., Chicago, II, Oct. 1998. 

[2] I. Koren, A. Laine, S. Smith, E. Nickoloff, and F. Taylor, "Enhancement of 

mammograms via fusion of enhanced features," in 1st Int. Workshop on Computer-Aided 

Diagnosis, Chicago, II, Sep. 1998. 

[3] I. Koren and A. Laine, "A discrete dyadic wavelet transform for multidimensional 

feature analysis," in M. Akay (Editor), Time-Frequency and Wavelets in Biomedical Signal 

Engineering, New York, NY: IEEE Press, 1998, pp. 425-449. 

1.3 Notation 

We use symbols N, Z, and R for the sets of naturals, integers, and reals, respectively. 

L2{R) and L2(R2) denote the Hilbert spaces of measurable, square-integrable functions 

f(x) and f(x,y), respectively. 

The inner product of two functions f(x) G L2(R) and g(x) G L2(R) is given by 

/oo 
f(x) g(x) dx. 

-00 

The norm of a function f(x) G L2(R) is defined as 

i/£>>i! \2dx. 

The convolution of functions f(x) G L2(R) and g(x) G L2(R) is computed as 

/oo 
f(t)g(x-t)dt, 

-oo 

and the convolution of two functions f(x,y) G L2(R2) and g(x,y) G L2(R2) equals 

/oo     roo 
/     f(tx,ty)g(x-tx,y-ty)dtxdty. 

-oo J — oo 

The Fourier transform of a function f(x) G L2(R) is defined as 

/•oo 
f{u)=        f(x)e~^dx, 

J —OO 

and the Fourier transform of a function f(x, y) G L2(R2) is equal to 

/•oo     roo 
f(ux, uv)= /     f(x, y)e-^**+^ dx dy. 

J —oo J—oo 

9 



12{Z) and l2(Z2) stand for the spaces of square-summable discrete signals /(n) and 

f(nx,ny), respectively. 

The ^-transform of a discrete signal f(n) G l2(Z) is defined as 
oo 

n*) = E /(^Kn- 
n=—oo 

The convolution of discrete signals f(n) G 12{Z) and g(n) G l2(Z) is equal to 
00 

f*g(n)=   Y,   f(m)g(n-m), 
m=—oo 

and the convolution of discrete signals f(nx, ny) G /2(Z2) and g(nx, ny) G /2(Z2) is given by 
00 00 

f*g{nx,ny)=    ^      E   f(mx,my)g(nx-mx,ny - my). 
77lx=z —OO )7ly=-oo 

The Fourier transform of a discrete signal /(n) G i2(^) is equal to the z-transform 

evaluated on the unit circle 
oo 

FH=   E   f(n)e-j"n, 
n=—oo 

and the Fourier transform of a discrete signal f(nx, ny) G l2(Z2) is defined as 
oo 00 

F(u>t,uv) =    E      E   f(nx,ny)e-^*n*+»vny\ 
nx~—oo riy=—oo 

For later use, we define the following functions: 

1. the unit impulse function 

6u(x) 
1   for x = 0 
0   otherwise, 

2. the unit step function 

3. the rectangular function 

4. the sine function 

5. the unit impulse sequence 

where x G R and n G Z. 

/ N _ f 1   for x > 0 
U^ :_ \ 0   for x < 0, 

rect(x) :- 
1   for Id < i 

f 0   for |x| > 5, 

.               sin(7rx) 
sine (a;) := —= ,    and 

nx 

S(n) :-- 
1   for n = 0 
0   otherwise, 

10 



2    Body 

2.1    Enhancement via Fusion 

Existing methods of mammographic image enhancement can be divided roughly into two 

categories: (1) methods aimed at better visualization of all features present in the image 

[5, 10, 13, 14], and (2) methods that target specific features of importance (e.g., 

microcalcifications [15, 16], stellate lesions [9]). 

Methods from the first category are not optimized for a specific type of cancer and 

frequently not even for mammography. Rather, they try to improve the perceptual quality 

of the entire image and are often developed with a framework more general than 

mammography alone in mind. 

The second category methods concentrate on revelation of particular signs of malignancy. 

They can be very successful in their area of specialization; however, in order to process 

mammogram for presence of various features, one would need to apply different algorithms 

independently resulting in both larger number of images to be interpreted by a radiologist 

and increased computational complexity of such a procedure. 

Here, we present an approach which overcomes these shortcomings and problematic 

limitations via synthesis of the two paradigms by means of image fusion. 

The goal of our method is to adapt specific enhancement schemes for distinct 

mammographic features, and then combine the set of processed images into an enhanced 

image. The input mammographic image is first processed for enhancement of 

microcalcifications, masses, and stellate lesions. From the resulting enhanced images, the 

final enhanced image is synthesized by means of image fusion. Wavelet based image 

enhancement and fusion are merged into a unified framework, so that there is no need for 

carrying out the two operations independently (i.e., computing wavelet decompositions, 

modifying wavelet coefficients for enhancement of specific features, reconstructing the 

enhanced images, performing wavelet transforms of the enhanced images, fusing transform 

coefficients, and obtaining the final result by reconstruction from fused wavelet 

coefficients). Both enhancement and fusion are therefore implicit (i.e., performed in the 

wavelet domain only). Figure 1 presents a block scheme of the overall algorithm. 

The algorithm consists of two major steps: (1) wavelet coefficients are modified distinctly 

for each type of malignancy; (2) the obtained multiple sets of wavelet coefficients are fused 

into a single set from which the reconstruction is computed. The devised scheme allows 

efficient deployment of an enhancement strategy appropriate for clinical screening 

protocols: enhancement algorithm is first developed for each specific type of feature 

independently, and the results are then combined using an appropriate fusion strategy. 

11 
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Figure 1: Overview of the algorithm. 

The structure of the algorithm also enables independent development and optimization of 

enhancement strategies for individual mammographic features as well as the fusion module. 

2.2    Wavelet Transform 

In our previous report, we modified the one-dimensional discrete dyadic wavelet transform 

and used the obtained representation for derivation of several two-dimensional transforms. 

Here, we focus on approximations of steerable wavelets and employ the multiscale spline 

derivatives with both first and second derivative wavelet decomposition. Such a 

representation allows for both directional and isotropic processing of mammograms while 

being shift-invariant and aliasing-free as already reported. The derivation of the transform 

is presented in Section 2.2.1. As is the case with the majority of wavelet transforms, 

multiscale spline derivatives are implemented in a filter bank, so Section 2.2.2 deals with 

efficient implementations of the filters in the filter bank when the input image is mirror 

extended to alleviate boundary artifacts. 

2.2.1    Multiscale Spline Derivatives 

We define a steerable dyadic wavelet transform of a function s(x, y) G L2(R2) at a scale 

2m, m € Z, as [9] 

W2
i
ms(x,y) = s*ipi

2m(x,y), (1) 

where ip2m(x,y) denotes ip2m(x,y) rotated by 9i, ij)2™{x,y) = 2~2mip(2~mx,2~my), ^(x,y) is 

a steerable wavelet that can be steered with I basis functions, and 6i — ^-K with 

i G {1,2,...,/}. (For introduction to steerability, please refer to our previous report.) 

Analogous to the one-dimensional case, we require the two-dimensional Fourier plane to be 

covered by the dyadic dilations of •ijjl{2rnüjx, 2muy): there must exist A3 > 0 and B3 < oo 

12 



such that 
00 / 

As <   £   El^(2m^,2mo;y)|
2< B3 (2) 

m=—oo i=l 

is satisfied almost everywhere. 

If (nonunique) reconstructing functions X2m(x>v) are chosen such that their Fourier 

transforms satisfy 
00 / 

E   E ^(2™wx> TTtjy) x*(2mwx> 2*X) = 1, (3) 
m=—oo i=l 

the function s(x,y) may be reconstructed from its steerable dyadic wavelet transform by 

oo / 

s{x,y)=   Y,   Y,W^s*xU(x,y), (4) 
m=—oo i=l 

where X2™(x>v) denotes X2™(x,y) rotated by 6{ and X2™(%,y) = 2'2mx{2~mx,2~my). 

We choose wavelets that are steerable analogs to the one-dimensional derivatives of central 

B-spline wavelets [18]: 

^K, coe) = (M cosM)d (^^) , (5) 

where UJT = JCOI + UJ
2
, ug = aig(ux,LOy), and d G {1,2}. These wavelets can be steered with 

d+1 basis functions. 

Wavelets (5) are equal to d-ih order derivatives of circularly symmetric spline functions in 

the direction of z-axis (note that knots for these splines are circles). To implement the 

transform efficiently, we approximate the wavelets with x-y separable wavelets 

iK*,v) = ^%^/Wv), (6) 

where ßp(x) denotes the central B-spline of order p. 

Based on the fact that B-splines tend to a Gaussian probability density function as their 

order increases, it is easy to see that both wavelets (5) and (6) converge to the same 

functions (i.e., d-th order derivatives of the normalized Gaussian in the direction of x-axis) 

as p —> co. In order to steer wavelets ip(x, y) given by (6) (note that steering will be only 

approximate, since these wavelets are not steerable), we need to find basis functions that 

will approximately steer ip(x, y). To accomplish this, we take advantage of the property of 

circularly symmetric functions that rotations of their directional derivatives are equal to 

directional derivatives in rotated directions: 

jddQc(x,y)\ _ ddQc(x,y) 
K9o\     dn*     j dnd

6o     ' 

13 



where TZe0 stands for rotation by 90, 
dQ~'y' = nVgc(x,y), Qc{x,y) is a circularly symmetric 

function, and Hg0 denotes vector n = (cos9, sin 9) rotated by 9Q. 

Let us choose 

g(x,y) = ßp+d(x)ßp+d{y), 

which is approximately circularly symmetric function for higher order splines. A rotation of 

t/)(x,y) = d f?iv> from Equation (6) by 90 can therefore be approximated by 

V      ; dnd ~"o\l ) dx dyl 

where n = (cos90, sin^0) = (nx, ny). (Note that in case of Gaussian, which is both x-y 

separable and circularly symmetric, Equation (7) becomes exact.) 

To derive an algorithm for the fast computation of the transform, we introduce two 

smoothing functions such that 

oo      I 

El 
m=0 i=l 

4>(ux, uy) v(ux, uy) = f] £ ^(2mwx, 2muy) x
<(2mwa, 2

muy). (8) 

Using a set of basis functions (7) that approximately steer wavelets (6), we want to 

construct a transform such that Equations (1) through (4) and (8) will be valid (superscript 

i must be viewed now as an index, rather than rotation by 9i). 

Let F{UJ) be a digital filter frequency response and let us denote 

Fa{u) = e?uaF{u>) 

with s being a filter dependent sampling shift needed to obtain finite impulse response 

(FIR) filters. 

In frequency domain, we can express basis functions from (7) as 

^+1K, uy) = Gt,Kwx)&-sMßp+iMßp+d-iM,     i G {0,1,2}, (9) 

where Gd{u>) is given by 

Gd(u) = e^s(2jsin {^y, (10) 

where d is the order of the derivative, d G {1,2}, the sampling shift for filter (10) is 

s = *sf*2, and G°(u) = 1. 

Since we are interested in the first and second derivative wavelets, we impose 

ip(ux,uy) = 4>(cox,u)y) = ßp(ux)ßp(uy) 

14 



and choose 

x\ujx,ujy) = K*(ujx)T(u)y)ßp(ujx)ßp-2(uy), (11) 

f(ux,uy) = Kl(ux)Kt(wy)ßp-i(ux)ßp-i{uy), (12) 

X3(u>x,u)y) =T(cjx)K
2

s(cüy)ßp^(ux)ßp(uy), (13) 

where 

with the sampling shift for Kd{ui) being the same as the one for Gd(co), and 

T(u>) = \H(u>)\2 (15) 

with 

#(ü,) = e^(cos(!))P+ , (16) 

the sampling shift for H(u) being s=^mod2. 

Using the relation derived in the previous report 

4(2«) = ff_.(u;)&(w) (17) 

together with Equations (9) and (11) through (13) with Equation (8) results in 

G2(u,x)K
2(ux)T(uy) + G\u}x)K\u,x)G\uy)K\u>y) + T(cvx)G

2(uy)K
2(üJy)+ 

+\H{cjx)H(uy)\
2 = l. 

Next, we derive a filter bank implementation of the transform. Assuming a bandlimited 

input signal s(ux,Lüy) = 0 for \LOX\ > 7r or |«y| > 7r and using Shannon's sampling theorem in 

two dimensions [19] with Equation (1) and basis functions from Equation (9), we can write 

/       5Z     £   s(ix,iy)smc(tx-ix)smc(ty-iy)- 
-OO J— OO _• _■   _  

Zx— — OO !•»= —OO 

£   9-s
%(mx)ßp+i(x-tx-mx)    J2   gt_s(

my)ßp+d-i{y-ty-my)dtxdty, 
mx=—oo my=—oo 

where i e {0,1,2} as in Equation (9). 

We approximate sine functions with r-order cardinal splines, then use the relation between 

cardinal and B-splines 
OO 

15 



Table 1: Transfer functions of direct B-spline filters for orders from 0 to 9. 
P B-\z) 

Z+6+Z-1 

6 
Z+4+Z-1 

384 
z2+76z+230+76z-1+z-2 

 120  
z2+26z+66+26z-1+z-2 

 46080  
z3+722z2+10543z+23548+10543z-1+722z-2+z-3 

 5040  
z3+120z2+1191z+2416+1191z-1+120z-2+z-3 

 10321920  
z4+6552z3+331612z2+2485288z+4675014+2485288z-1+331612z-2+6552z-3+z-4 

 362880  
z4+502z3+14608z2+88234z+156190+88234z-1+14608z-2+502z-3+z-4 

and get 

T{W^ms(x,y) _   } - S(ux,uiy) Br 
1 (uix) Br 

l{uiy) Bp+r+i+1 (ux)• 

m— 1 

■Bp+r+d_i+1(u;y) G^r(2™wx) GLiiTTuy) Ü Hp+
s
i(2nux)H

p_+/-1 (2nuy), (18) 
n=0 

where B~l{ui) denotes the Fourier transform of the direct B-spline filter of order p. Table 1 

shows the ^-transforms of direct B-spline filters for the first ten orders. 

Using Equation (18) with an approximation Bp+r+i+i(ui) ~ Bp+r(ui)Bi(uj), we can obtain a 

filter bank implementation of the transform decomposition. The reconstruction part 

follows from Equations (8), (9), and (11) through (13). Figure 2 shows a filter bank 

implementation of the transform. Noninteger shifts at scale 1 are rounded to the nearest 

integer. Tables 2 through 5 list impulse responses of the filters used in the filter bank for 

p e {0,1,2}. 

The derived transform enables both second derivative directional analysis and Laplacian of 

Gaussian approximations across dyadic scales (the latter can be obtained through 

summation of the outputs from blocks G2(2mui) applied along x and y axis). Furthermore, 

addition of a block G1_s(2mu) at each level of decomposition allows first derivative 

16 



gr
1(o)x) ffr

1(coy) f-| Bp+r+1((Ox) Bp+r+1((oy) 

(a) 

KT+\(®X) 
Bp1

+r+l(tOy) H BrK) Br^: 

(b) 

G2(2mcox) K2(2mcox) T (2mco ) 

G1
s(2

m0)x)G
1

s(2
m(fly) KfcXJK&'V) 

G2(2mcov) T(2X)K2(2mcoy) 

Hs(2
m(Ox)Hs(2m(Dy) H(2m<Dx) m^y) 

(c) (d) 

Figure 2: Filter bank implementation of multiscale spline derivatives for me [0, M — 1]: (a) 
Prefiltering, (b) postfiltering, (c) decomposition module, and (d) reconstruction module. 

Table 2: Impulse responses gl(n) and g2(n). 
n ^H 92(n) 

Table 3: Impulse responses h(n), kl{n), A;5 

n %) 
0.5 
0.5 

ife^ra) 

-0.25 
0.25 

[n), and i(n) for p=0. 
k2{n) 

-0.25 

t(n) 
0.25 
0.5 
0.25 

Table 4: Impulse responses h(n), k}{n), A;2(n), and i(n) for p=l. 
n /i(n) Jfc^n) A;2(n) t(n) 
-2 0.0625 
-1 0.25 -0.0625 -0.0625 0.25 

0 0.5 -0.3125 -0.375 0.375 
1 0.25 0.3125 -0.0625 0.25 
2 0.0625 0.0625 
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Table 5: Impulse responses h(n), kl{n), k2(n), and t(n) for p=2. 
n h(n) kl{n) k2(n) t(n) 
-3 0.015625 
-2 0.125 -0.015625 -0.015625 0.09375 
-1 0.375 -0.109375 -0.125 0.234375 

0 0.375 -0.34375 -0.46875 0.3125 
1 0.125 0.34375 -0.125 0.234375 
2 0.109375 -0.015625 0.09375 

3 0.015625 0.015625 

(b) 

Figure 3: Spline derivatives in the rr-axis direction, (a) Wavelet equal to the first derivative 
of a quartic spline, (b) Wavelet equal to the second derivative of a quintic spline. 

directional analysis as well. Figure 3 shows first and second derivative wavelets obtained as 

linear combinations of cubic B-splines. 

2.2.2    Filter Implementations 

Since all two-dimensional filters used in the filter bank implementation of the transforms 

are x-y separable, only one-dimensional filters need to be implemented. We describe the 

implementation of finite impulse response (FIR) filters first and then treat prefiltering and 

postfiltering infinite impulse response (IIR) filters from Figure 2(a) and (b). 

Let us refer to filters applied at scale 2m as filters at level ra+1, and let filters at level 1 

(Equations (10), (14), (15), and (16) be called "original filters," to distinguish them from 

their upsampled versions. Let us split the input to the filter bank from Figure 2 into image 

matrix rows and columns, each corresponding to a real signal s(n) E l2(Z), n E [0, N — 1]. 
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Depending on the length of each filter impulse response, filtering an input signal may be 

computed either by multiplying the discrete Fourier transforms of the two sequences or by 

circularly convolving s(n) with a filter's impulse response. Using circular rather than linear 

convolution, as is customary in image processing, can lead to boundary artifacts caused by 

abrupt changes in the periodically extended signal. A common remedy for such a problem 

is realized by constructing a mirror extended signal [12] 

Sme[n) ~ { s(n) ifne[0,iV-l], liyj 

where we chose the signal sme(n) to be supported in [-N, N — 1]. 

Let us classify symmetric/antisymmetric real even-length signals into four types [20]: 

Type I f(n) = /(-n), 

TypeII/(n) = /(-n-l), 

Type III f(n) = -f(-n), 

TypeIV/(n) = -/(-n-l), 

where n G [-N, N — 1]. Note that for Type I signals the values at /(0) and f(—N) are 

unique, and that for Type III signals the values at /(0) and f(—N) are equal to zero. 

(This is important for storage requirements: for signals of Type II or Type IV, N samples 

need to be saved, while Type I and Type III signals require N+l and N—l sample 

representations, respectively.) 

Using properties of the Fourier transform, it is easy to show that the convolution of 

symmetric/antisymmetric real signals results in a symmetric/antisymmetric real signal. If 

a symmetric/antisymmetric real signal has an even length, then there always exists an 

integer shift such that the shifted signal belongs to one of the above types. 

Now, we are ready to examine the filter bank implementation of the wavelet transform 

from Figure 2 with filters given by Equations (10), (14), (15), and (16) driven by mirrored 

signals of the form sme(n) from Equation (19) at the input. Let the number of levels M be 

restricted by 

M < l + log2 T
N~*, (20) 
Jmax 

where Lmax is the length of the longest original FIR filter impulse response. 

Each FIR filter block in the filter bank consists of a filter and a circular shift operator. 

Equation (20) guarantees that the length of the filter impulse response does not exceed the 

length of the signal at any block. 
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Since our mirror extended input row or column sme(n) is of Type II and noninteger shifts 

at level 1 are rounded to the nearest integer, it follows that a processed one-dimensional 

signal at any point in the filter bank belongs to one of the types defined above. This means 

that filtering a signal of length 2N can be reduced to filtering a signal of approximately one 

half of its length. 

Implementation is particularly simple for FIR filters designed with d=2 and p odd. Filters 

are of Type I in this case, so their output will be of Type II. An FIR filter block from the 

filter bank shown in Figure 2 can therefore be implemented by 

Fs,mu(n) = f(0)un(n) + £ f(i)[un{n - 2mi) + un(n + 2mi)},      ne[0,N- 1],      (21) 
i=i 

where 
'u(-n-l) ifne[-f,-l] 

un{n) = I  u(n) if n e [0, N - 1] (22) 
_ u(2N-n-l)   ifne[N,^}, 

u(n) is an input signal to a block, f(n) is an impulse response of G2(2mw), K2(2muj), 

T(2mu), or H(2muj) with p odd, L is the length of the filter, and N is the length of an 

input signal s(n) to the filter bank. Implementation of filters bp{n) used for prefiltering and 

postfiltering (Figure 2(a) and (b)) represents a special case of Equation (21) with ra = 0. 

A filter bank with the above implementation of blocks and signal s(n) at the input yields 

equivalent results as circular convolution of input sme(n) as defined by Equation (19). In 

addition to requiring one half the amount of memory, the computational savings over a 

circular convolution implementation of blocks are, depending on the original filter length, 

three to four times fewer multiplications and one half as many additions. 

A similar approach is used for other filters. The problem becomes slightly more involved in 

this case, because the filters change type from first to subsequent levels, and the signal 

component type can be altered by a filter block as well. As a consequence, an 

implementation of blocks that use distinct original filters may not be the same, and the 

implementation of blocks at level 1 may differ from the implementation of blocks at other 

levels of analysis. 

The decomposition blocks at level 1 can be implemented by 

G-s,ou(n) = E 9(i)[un(n - i - 1) - un(n + *)],      ne[l,N- 1] 

and 
2      ■"■ 

iJ_S)0u(n) = YJ h(i)[un(n - % - 1) + un(n + *)],      ne [0, N], 
»=o 
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for p even, where Uu(l) is defined by (22), g(n) and h(n) are impulse responses of the 

filters computed from (10) and (16), respectively, and L is the length of the corresponding 

impulse response. 

The output from a block G\s(u) at level 1 is of Type III, while the output from H_S{UJ) at 

the same level is of Type I. 

The decomposition blocks at subsequent levels m G [l,M—1] can be implemented by 

2      X 

G^Mn) = £ g{i)[uj{n - 2m(i + s)) - u,(n + 2m(i + a))],     n G [1, N - 1], 

for p even, 

i=0 

n       J- 

Gl-S,mu(n) = Y, 9(i)[un(n - 2m(i + s)) - un(n + 2m(i + s))],      n G [0, JV - 1], 
i=0 

for p odd, 

2 

F_s>rnu(n) = /(0)u7(n) + £ /(*)[«j(n - 2mi) + u,(n + 2mi)l      n G [0, iV], (23) 
j=i 

with /(n) = g(n) for d=2 and p even, 

ff_,,mu(n) = £ h(t)[Ul(n - 2m{% + s)) + ur{n + 2m(i + s))],      n G [0, N],       (24) 
i=0 

for p even, where 
' u(-n) ifn£[-f,-l] 

Ul{n) = ^  u(n) if n G [0, JV] (25) 
_ u{2N-n) ifnG[iV + l,^]. 

The outputs from blocks G-S{2mu) are of Type III for d=l and p even, of Type IV for 

d=l and p odd, and of Type I for d=2 and p even, whereas the outputs from i/_s(2mu;) 

are of Type I for p even. 

Next, the reconstruction blocks at level 1 can be implemented by 

L 
2 

Kou(n) = E Hi)[uni(n - i + 1) - uHI(n + «)],      nG[0,JV-l] 

and 

i=i 

Hsfiu(n) = Y /i(t)[«/(n - « + 1) + «7(n +1)],      n G [0, iV - 1], 
t=i 
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uni{n) 

ifne[-f,-l] 
ifn = 0 
line [1, iV - 1] 
if n = iV 

for p even, where 
—u(—n) 
0 
u(n) 
0 

b -u{2N-n)   ifne [N + l,^-], 

ui(n) is as defined by (25) and k(n) is an impulse response of the filter from (14). Note 

that both outputs from blocks K]{ui) and Hs(ui) are of Type II. 

The reconstruction blocks at subsequent levels can be implemented by 

(26) 

r-l 

Km<n) =Y,kd + l)[um{n - 2m{% + s)) - um(n + 2m(i + s))},      n e [0, N], 
i=0 

for d—1 and p even, (23) with /(n) = k(n) for d—2 and p even, 

Kf!mu(n) = Y, k(i + l)[uIV{n - 2m{i + s)) - uIV{n + 2m{i + s))],      ne[0,N- 1], 

for d=l and p odd, 

HSjmu(n) = 7/_s,mM(n), 

for p even, where um(l) is given by (26), 

' -u(-n-l) ifne[-f,-l] 
uIV{n) = I  u{n) if n e [0, N - 1] 

_ -u(2N-n-l)   ifne[N,^-], 

and H_s>mu(n) is specified by Equation (24). We observe that the outputs from blocks 

Kd
s(2mu) and Hs(2muj), m <E [1, M - 1], for p even are of Type I. 

When we compare the above implementation of blocks to circular convolution driven by a 

mirrored signal sme(n) at the input, we observe that approximately twofold less memory 

space, three to four times fewer multiplications and one half as many additions are 

required. (For Type I signals an additional sample has to be stored because two values are 

without a pair). 

The implementation presented in this section performs all operations in the spatial domain; 

however, one could also implement the structures shown in Figure 2 with an input signal 

sme(n) in the frequency domain. For short filter impulse responses, such as those given in 

Tables 3, 4 and 5, the spatial implementation described in this section is certainly more 

efficient. For long filter impulse responses, however, filtering is faster if implemented in the 

frequency domain. Additional details on alternative FIR filter implementation strategies 

can be found in [21]. 
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Implementation of IIR filters b~ 1(n) used for prefiltering and postfiltering is a bit more 

involved than the one of their FIR counterparts. Fortunately, the number of different cases 

is much smaller here: possible input to b~l(n) in the filter bank from Figure 2 is either of 

Type II or of Type I (symmetry types for IIR filters slightly differ from those defined for 

FIR filters: here, mirror extended signals are periodically repeated, so that they stretch 

from —oo to oo). We use ideas and a few results from [22]. 

Let us first take a closer look at the system function B~1(z) with p G {2,3}. This function 

can be written as a cascade of terms 

1 -a 
E(z) = z_i±£L + z-i = (i_ari)(i-aZ)' (27) 

which can be expressed in a parallel form as 

E(z) = T^l (j-^—ri + rJ— - 0 ' (28) 1 — or \ 1 — az l      1 — OLZ       ) 

where a and - are poles of the causal and the anticausal filter, respectively. 

The impulse response of this term can be written as 

e(n) = T^*
1
"

1
- 1 — az 

We choose to implement E(z) in a cascade form and therefore extract the difference 

equations from Equation (27): 

c+(n)=u(n) + ac+(n-l)     n = 1,2,... ,iV-l, (29) 

and 

c(n)=a(c(n + l)-c+(n))     n = N-2, N-3,... ,0, (30) 

where u(n) denotes the input to the block, c+(n) is the output from the causal part, and 

c(n) stands for the output from the block. 

To solve Equations (29) and (30) we need boundary conditions c+(0) and c(N—l). We 

derive 

0 N-l     t+1   ,   n2N-i io 

c+(o) = E «-*«//,(0 = u(o) + Y: \_1N  »(0 - u(°) + E ^«(O,     (3i) 
»=-oo »=0 a »=0 

and, using parallel form (28) 

<N-V = 733('+(tf-i)+E " r:2N »(0) 
-a   /^/.r   .,     

1^aN-i + aN+1+i 

\-a2 f^0       1-a2 

-a N'1 

(c+(N-l)+    E  a^uii)), (32) 
1-a2 
1
      " i=iV-l-t0 
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where 
( \- I un(n mod (2A0) if n > 0 

uiip{n) - <  U//(_(„ + !) mod (2jv))   if n < 0, 

un(n) 
u{n) if n € [0, iV - 1] 
u{2N - n - 1)   if n G [N, 2N - 1], 

iV is the length of an input signal to the filter bank, and i0 < N-l is selected such that a10 

falls below a predefined precision threshold. 

For orders p greater than three, we implement B~1(z) as a cascade of terms E(z) with 

different OJ'S. Note that the output from block E(z) is always of the same type as the input 

to it. 

2.3    Enhancement of Mammographic Features 

2.3.1    Microcalcifications 

Microcalcifications appear on mammograms in approximately half of breast cancer cases. 

The assessment of shape, number, and distribution of microcalcifications is important for a 

radiologist to reach the correct diagnosis. Microcalcifications are smaller than 1 mm in size 

and can be difficult to locate when they are superimposed on dense breast tissue. 

Several techniques have been developed to improve the visibility of microcalcifications 

[15, 16, 23, 24]. The approach devised by Strickland and Hahn [15] is particularly well 

suited for our framework: they used an undecimated wavelet transform to approximate 

second derivatives of a Gaussian probability density function for a multiscale matched 

filtering for presence of microcalcifications. 

Strickland and Hahn based their method on the observation that the average 

microcalcification can be modeled by a circularly symmetric Gaussian function. Using a 

combination of a separable Markov process with autocorrelation rnn = er^e_aV lfcl+l'l and a 

nonseparable Markov process with autocorrelation rnn = o^e"~Q^fe2+'2 to represent 

mammogram texture, they obtained the separable matched filter 

Msep(cjx,ujy) = M{ux)M(ujy), (33) 

where 
...  N     ay/nco2 A;! MM - ~k—e 2 ' V2a<7n 

and the nonseparable matched filter 

7T(T 2   2 

Mnsep(ux,uy) ~ —(u% + u)2y)e^-. (34) 
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In order to deal with different sizes of microcalcifications, one must vary a of matched 

filters (33) and (34) appropriately. In Strickland and Harm's scheme, a wavelet 

decomposition was chosen to approximate the matched filters across the desired scale 

range. Considering the 100/xm resolution of the Nijmegen database, the wavelet transform 

was computed over the first 4 octaves. For a denser sampling of scale, voices were inserted 

at octaves "2.5" and "3.5." The wavelet analysis stage acted as a bank of matched filters; 

wavelet coefficients at locations indicating microcalcifications were multiplied by a gain 

factor, and then the inverse wavelet transform was applied to the modified coefficients. 

In our approach, microcalcifications are modeled by central B-splines. Using the relation 

between the standard deviation of a Gaussian function and the order of B-splines that 

approximate it a = J^- [25], the assumption that a Gaussian object is visible 

approximately over ±a pixels [15], and the fact that the mammograms in the University of 

Florida database were digitized at 116/mi resolution, four levels of the transform from 

Section 2.2 with, for example, p=3 are needed to encompass different sizes of 

microcalcifications. The wavelet decomposition including voices at scales 3 and 6 

(corresponding to Strickland and Hahn's octaves "2.5" and "3.5") can be obtained by 

deriving a counterpart to Equation (18) for the two scales. 

ßp(3üü) can be related to ßp{oj) by expressing ßp(3u)) as (cf. Proposition 1 of [26]) 

/ ■   /3oA\ p+1  ' ■   t*^\ p+1 1    /sm  f 
M    '     3"+* ^ gin (f) 

Using £^{™+e) = Sin[.^) e'»+0), we get 

4(3w) = V{u)ßp{u>), 

where 

V(w)=(i(c-*' + l + e*')y 
Filter V(u) can be implemented as a moving sum with 2 (p+1) additions per sample and a 

multiplicative factor ^^ applied to the wavelet coefficients [26]. 

Next, ßp(6u>) is expressed by means of Equation (17): 

ßp(6u) = H_s(3u)ßp(3u) 

with odd orders p used for the sampling shift s to be zero. 

Now, we can write 

F{W£s(x,y)   _     _   } ~ S(ux,Uy)B~1(ux)B~l(u}y)Bp+r+i+1{ujx)- 
X—Tla; ,2/—fly 

■Bp+r+d^i+1(ujy) G
d_-;(3ux) GU^yW^MV^-'M (35) 

25 



and 

F{Wis{x,y)  _     _   }~S(Lüx,uy)B;1{ux)B;\ujy)Bp+r+i+1(uxy 
X—Tlx tV—fly 

■Bp+r+d-i+1(uy) G±?(tox) ^.(H)^ (3wx)Ä!^(H) V^WV'^'K)       (36) 

with notation being the same as in Equation (18), and superscript p in Hts{uj) denoting 

the order p in Equation (16). 

Wavelet coefficients obtained via Equations (35) and (36) are not used for 

reconstruction—the inverse transform is carried out as given in Section 2.2. 

The decomposition described by Equations (18), (35), and (36) with additional filtering by 

G2(lu) at each scale I e {1,2,3,4,6,8} enables approximations to the second derivatives of 

Gaussian along both x and y directions and to Laplacian of Gaussian across distinct scales 

employed by Strickland and Hahn [15] (cf. Equations (33) and (34)). We proceed in a 

similar fashion as therein: the two outputs per scale are thresholded independently, all 

binary results are then combined, a circular region centered at detected pixel locations are 

next multiplied by a gain, and, finally, the reconstruction process uses modified transform 

coefficients. 

2.3.2    Circumscribed Masses 

Almost half of missed cancers appear on mammograms as masses. Perception is a problem 

particularly for patients with dense fibroglandular patterns. The detection of masses can 

be especially difficult because of their small size and subtle contrast compared with normal 

breast structures. 

Fan and Laine [10] developed a discrete dyadic wavelet transform based algorithm suitable 

for enhancement of masses. They constructed an approximation to Laplacian of Gaussian 

across dyadic scales for an isotropic input to a piecewise linear enhancement function. 

Approximation to Laplacian of Gaussian across dyadic scales is easy to obtain using 

multiscale spline derivatives derived in Section 2.2: Equation (18) with i = 0 and i = 2 

approximates the second derivative of a Gaussian function along directions of x and y axis, 

respectively (the corresponding branches in Figure 2(c) are the first and third from the 

top). The appropriate transform coefficient at each dyadic scales are therefore added and 

their sum input to the piecewise linear function 

( x - (K-1)T   if x < -T 
C(x) = I Kx if |a;| < T (37) 

[ x + (K-1)T   iix > T. 

used at each level m+1 of the transform separately. Due to the expected size of masses, 

levels greater than 4 are enhanced more aggressively. 
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Figure 4: Enhancement function (Equation (37) with K = 20 and T = 1). 

Figure 4 shows the enhancement function from Equation (37) for parameter values K = 20 

and T = 1. 

The multiplicative factor obtained as the ratio between the output and input of the 

enhancement function is next applied to the original wavelet coefficients [10], and then the 

reconstruction (Figure 2(b) and (d)) is carried out. 

Figure 5 shows the cranio-caudal view of a patient with bloody nipple discharge. On the 

enhanced image cropped to the area of interest, irregular anterior borders of a mass are 

better seen. 

2.3.3    Stellate Lesions 

It is important for radiologists to identify stellate lesions since their presence is a serious 

indicator of malignancy. Stellate lesions vary in size and subtlety and, in addition, do not 

have a clear boundary, making them difficult to detect. 

In the development of our algorithm, we follow an observation made by Kegelmeyer et al. 

about the distortion of edge orientation distribution induced by a stellate lesion [27]. 

Normal mammograms show a roughly radial pattern with structure radiating from the 

nipple to the chest wall. A stellate lesion not only changes this pattern, but also creates 
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wM 
!rJH 

Figure 5: Contrast enhancement of the cranio-caudal of a patient with bloody nipple dis- 
charge, (a) The original mammogram with area of interest delineated, (b) Unprocessed 
extracted area, (c) The enhanced area improves the visualization of the mass. 
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another center from which rays radiate. Directional analysis using the Sobel edge operator 

was employed for assessment of local orientations [27]. 

Wavelet transform from Section 2.2 enables directional analysis as well. By adding 

additional filter G1_s(2mu) to each scale of decomposition from Figure 2, approximations to 

both first and second steerable derivatives of a Gaussian are available. A multiscale 

derivative-pair quadratic feature detector is computed by finding the maximum of the local 

oriented energy with respect to angle 9 

Ee
2m {x, y) = J(Wle

2ms(x,y)¥ + (W202ms{x,y))z, (38) 

where Wl2ms(x, y) and W22ms(x, y) denote wavelet decompositions using first (Equation 

(6) with d=l) and second (Equation (6) with d=2) derivative wavelet, respectively, 

steered to angle 6. The angle that maximizes the local oriented energy (38) represents 

orientation at pixel location (x,y). 

Similarly to the method from Section 2.3.1, processing is carried out within windows with 

scale dependent sizes: 1-norm of differences between the local and average orientations is 

computed in the window and used as a measure of orientation nonuniformity. Soft 

thresholding as a function of the orientation nonuniformity measure is next applied to the 

transform coefficients at each dyadic scale independently [9]. The altered coefficients are 

then included for reconstruction. 

Figure 6 shows the oblique view with a mass visible in the mid-posterior breast. The 

enhanced image demonstrates the irregularity and spiculation of the mass. 

2.4    Fusion of Enhanced Features 

Enhanced features from Section 2.3 are fused into the final enhanced image. Image fusion 

using redundant steerable wavelet representations was treated in detail in our previous 

report, so let us only point out that the fusion used here is implicit rather than explicit: 

wavelet transform coefficients are first modified for enhancement of micro calcifications, 

circumscribed masses, and stellate lesions, and then the new coefficients are obtained by 

fusion before the reconstruction is accomplished. 

Note also that it is possible to put different weights on features, and exclude certain 

features from the final result. 
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Figure 6: Contrast enhancement of the oblique view, (a) The original mammogram with 
area of interest delineated, (b) Unprocessed extracted area, (c) The enhanced area improves 
the visibility of the mass. 
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3    Conclusions 

During our second year, we developed a method that improves the visibility of specific 

mammographic features by local enhancement and fusion of the enhanced areas. The 

described method incorporates a variety of properties of mammographic image 

enhancement methods tailored to specific signs of malignancy into a unified computational 

framework. 

We derived a wavelet transform with analysis stage enabling approximations to directional 

first and second derivatives of a Gaussian function and to Laplacian of Gaussian across 

distinct scales. Such a decomposition is suitable for both anisotropic and isotropic 

multiscale analysis, and, in addition, provides an adaptable framework for incorporation of 

a variety of mammographic processing methods. 

The derived transform has also proved flexible enough for enhancement and fusion of 

individual types of mammographic features. Separate enhancement algorithms have been 

developed for microcalcifications, circumscribed masses, and stellate lesions, and fusion of 

the modified transform coefficients performed before the reconstruction of the final 

enhanced image. It is worth mentioning that there is a certain overlap between the 

enhancement modules: for example, the enhancement strategy developed for stellate lesions 

may also enhance circumscribed masses and vice versa since the two share many common 

properties. 

In addition to its efficiency, the algorithm is also well suited for further refinements; 

optimizations can be performed for each type of malignancy alone, and separately for the 

fusion module. 

The work in the final year of our investigation will concentrate on extensive testing and 

possible refinements of the developed algorithms. 
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