
AFRL-IF-RS-TR-1998-194
Final Technical Report
September 1998

«s^

KNOWLEDGED-BASED SOFTWARE ASSISTANT
ADVANCED DEVELOPMENT MODEL
(KBSA/ADM)

Andersen Consulting

Chris Faris, Kevin Benner, Junhui Luo, Enaganti B. Naidu, James Fawcett,
Benjamin Brunk, Kiran Ganesh, and Udayan Parvate

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

DTIC QUALITY INSPECTED 4

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1998-194 has been reviewed and is approved for publication.

APPROVED:
DOUGLAS A. WHITE
Project Engineer

FOR THE DIRECTOR: ^
EUGENE C. BLACKBURN
Chief, Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Rd, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

 Sep98
3. REPORT TYPE AND DATES COVERED

Final Dec 92 - Jul 97
4. TITLE AND SURTITLE

KNOWLEDGE-BASED SOFTWARE ASSISTANT ADVANCED DEVELOPMENT
MODEL (KBSA/ADM)
6. AUTHOR(S)

Chris Faris, Kevin Benner, Junhui Luo, Enaganti B. Naidu, James Fawcett, Benjamin
Brank, Kiran Ganesh and Udayan Parvate

5. FUNDING NUMBERS

C - F30602-93-C-0015
PE -63728F
PR -2532
TA -01
WU-40

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Andersen Consulting
Center for Strategic Technology Research
3773 Willow Rd
Northbrook, IL 60062-6212

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFTD
525 Brooks Rd
Rome, NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1998-194

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Douglas A. White, IFTD, (315) 330-2129

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT maximum 200 words)

This document constitutes Andersen Consulting's Final Report on the project, the Knowledge-Based Software
Assistant/Advanced Development Model (KBSA/ADM). The KBSA/ADM project significantly explored tools and
techniques for solving the software development crisis - improving the productivity, quality, and reliability of software
development activities. In particular, the KBSA/ADM explored solutions to these quality of service properties by examining
them in the context of: managing the complexity inherent in software development activities; enhancing coordination
especially among large development teams composed from different skills sets, stakeholders, experience levels etc., and
automating what is understood about the software development process in order to enhance human performance. The
KBSA/ADM project conducted by Andersen Consulting has been insightful and fruitful. The results of the project team's
efforts begin to implement and describe how KBSA/ADM technologies begin to address the software development problems
associated with complexity, automation, and coordination. The most innovative aspects of this work have been in the areas
of contextual knowledge (i.e., discussion databases and object linking), process support (i.e., personalized agendas and
process enactment), evolution transformations (i.e., transformations which automate stereotypical changes to a model), and
critics (i.e., integrating intelligent analysis with process enactment). While significant progress has been made, there are
many areas for additional research and expansion on the work presented here.

14. SUBJECT TERMS

knowledge-based software, software engineering, knowledge-engineering, artificial intelligence,
environments, specification languages, requirements analysis, object-oriented

15. NUMBER OF PAGES

176
IB. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89 (EG)
Prescribed by ANSI Sid. 238.18
- ■ ■ -' ;g Perform Pro, WHSIDI0R, Oct 94

TABLE OF CONTENTS

EXECUTIVE SUMMARY 1

RESEARCH OVERVIEW 3

PROJECT APPROACH 3

KBSA/ADM PROJECT STATEMENT OF WORK 3

KBSA/ADM Architecture 4

KBSA/ADM Process Support 6

KBSA/ADM Requirements Capture 6

KBSA/ADM Modeling and Implementation 7

TECHNICAL ACHIEVEMENTS 9

KBSA/ADM ARCHITECTURE 10

INTEGRATED PROCESS SUPPORT ENVIRONMENT (IPSE) 13

REQUIREMENTS ACQUISITION SUPPORT ENVIRONMENT (RASE) 14

ARGO LANGUAGE ENVIRONMENT (ALE) 14

SESSION AND AGENDA MANAGER (SAM) 15

GRAPH EDITOR FRAMEWORK (GEF) 16

AESTHETIC GRAPH LAYOUT (AGL) 17

SCRIBBLES 17

EXTENDED MODEL VIEW FRAMEWORK (XMVF) 18

REMOTE OPERATIONS (RO) 18

PERSISTENCE AND VERSIONING MECHANISM (PVM) 19

OBJECT LINKING (OL) 19

IMPACT AND INFLUENCE 21

CONCLUSION 24

APPENDIX 1 - Addressing Complexity, Coordination, and Automation in Software Development
with the KBSA/ADM 26

Introduction 26

The Problem 26

TABLE OF CONTENTS (Continued)

A Functional Description of the ADM 27

The Solution 28

Conclusion 36

APPENDIX 2 - RASE: an Integrated Requirements Acquisition Support Environment 38

INTRODUCTION 38

PROBLEM STATEMENT 39

RASE CORE FUNCTIONALITY 40

EXTENDED RASE CAPABILITIES 43

IMPLEMENTATION INFORMATION 45

RELATED WORK 46

CONCLUSION AND FUTURE DIRECTIONS 47

REFERENCES 48

APPENDIX 3 - Evaluation of a Knowledge Based Software Assistant Advanced
Development Model 50

TABLE OF CONTENTS FOR APPENDIX 3 52

TABLE OF FIGURES

Figure 1 - Prototypical Software Development Life Cycle with KSBA/ADM Vision Overlay 2

Figure 2 - KSBA/ADM Capabilities Relative to Software Development Problem Areas 4

Figure 3 - KSBA/ADM Session-View Paradigm Architecture 11

Figure 4 - KSBA/ADM Intra-Tool Architecture 12

Figure 5 - Process to Process Communications Flows 16

Figure 6 - ADM Common Services, Tools, and Development Activities 28

Figure 7 - ADM Session and Agenda Manager 32

Figure 8 - The hyper document editor / browser tool 41

Figure 9 - The REMAP Model 42

Figure 10 - The REMAP tool user interface 42

Figure 11 - The Term Dictionary tool user interface 43

Figure 12 - KSBA - Architecture 50

Figure 13: Project Knowledge Structure 1Q4

Figure 14: Conceptual Model 105

Executive Summary
This document constitutes Andersen Consulting^ Final Report on its project, the Knowledge-
Based Software Assistant/Advanced Development Model (KBSA/ADM). Instantiated under
contract F30602-93-C-0015 by Rome Laboratory in 1992, the KBSA/ADM project significantly
explored tools and techniques for solving the software development crisis — improving the
productivity, quality, and reliability of software development activities. In particular, the
KBSA/ADM explored solutions to these specific "ilities" by examining them in the context of:

• Managing the complexity inherent in software development activities,

• Enhancing coordination especially among large development teams composed from
different skills sets, stakeholders, experience levels etc., and

• Automating what is understood about the software development process in order to enhance
human performance.

Focusing on these areas required a holistic, full software development life cycle approach and
addressed several key areas:

1. Methodology and Project Process Definition - The ability to define, manage, and repeat a
comprehensive software development process is recognized industry wide as a key to
successful software development. The KBSA/ADM uses methodology and project process
definition, instantiation, and enactment as a back bone to all other KBSA/ADM tool
processes, yet still allows for flexibility in responding to the dynamic nature of an on-going
project to new information, tasks, changing personnel, etc.

2. Requirements Capture - Simply building a system without adequately capturing the
requirements, decisions, and discussions predicating the system is a recipe for disaster.
Requirements capture within the context of a project process was a focal point of the
KBSA/ADM project. Requirements and supporting documentation in the commercial
software development arena takes on many forms: meetings, informal discussions, memos,
drawings, recordings etc. In the KBSA/ADM this knowledge is referred to as formal and
informal knowledge. The KBSA/ADM project focused extensively on the capture and
management and tracability of this knowledge throughout the life cycle through the use of
tools and evolutionary transformations (ETs) .

3. System Modeling - Once requirements are captured, the definition of a software system
transforms or evolves through a series of modeling mutations until the final system is
deployed (and in fact, in the maintenance phase of the software life cycle, continues to
evolve). Continuous refinement of these models, linking these refinements back to original
requirements and early concepts was the goal of the KBSA/ADM. As a system evolves to a
state of executing computer code, these refinements are continuously captured and evolved.

Graphically, the complexity and dynamic nature of the software development process is
represented in figure 1.

Figure 1 - Prototypical Software Development Life Cycle with KBSA/ADM Vision Overlay.

It is within the above three areas that the KBSA/ADM researchers and development team
focused its efforts and research activities. The KBSA/ADM team extended work first articulated
in a vision for the KBSA program in "Report on a Knowledge-Based Software Assistant"[Gr83]
in 1983. Since then, Rome Laboratory has funded a variety of research efforts which have made
significant steps toward realizing and refining this vision ([Sm93], [Jo93], and [De92] among
several others). Today, Andersen Consulting's Center for Strategic Technology Research
(CSTaR) field-able prototype of a KBSA called the Knowledge-Based Software Assistant /
Advanced Development Model (or ADM for short) embodies many of the results of preceding
research efforts, as well as refines the KBSA vision as it relates to addressing today's software
development problems.

It is not enough, however, to focus primarily on these research areas without considering the
unifying "glue" which holds them together. At the functional level, software development
process and methodology provide the guidance by which team members perform their assigned
roles. At the technical level, a unifying architecture ensures the suite of KBSA/ADM
capabilities forms a consistent, extensMe federation of cooperating tools to deliver value on the
KBSA/ADM vision.

Research Overview

Project Approach
Andersen Consulting's formal involvement on the KBSA/ADM consisted of two phases:

Phase 1 - Initial Exploration: This effort focused on the examination and exploration of
emerging technologies suitable for incorporation into a KBSA/ADM integration effort.
Specifically, they included: software selection (e.g. Objectstore OODBMS, Galaxy Graphical
User Interface library, Sun Solaris, C++ etc.); infrastructure building, including the development
of the Aesthetic Graph Layout (AGL) and Scribbles libraries; research examination
(IBIS/REMAP understanding, as well as Module Specification Language - i.e. ARGO); and
initial prototyping (e.g. early releases of project management tool, REMAP, and Module
Specification Language Environment).

Phase 2 - Field-able Prototype Roll-out: This effort expanded on "lessons learned" from Phase
1 to incorporate existing functionality and new KBSA/ADM tool capability onto a common and
extensible technical architecture. During Phase 2 the project team began collaborations with
additional software engineering research efforts across Andersen Consulting including the
"Component-based Software Engineering (CBSE)" project, Foundation, and AC Design. The
KBSA/ADM's influence on these efforts is outlined in the Impact and Influence section of this
document.

KBSA/ADM Project Statement of Work
An examination of the KBSA/ADM Statement of Work (SOW) identifies some overriding areas
of research focus. With respect to the KBSA/ADM research effort, the project's researchers and
developers have focused on some significant areas of the software development life cycle relative
to key SOW requirements. In this section, a correlation of these research areas, their significant
contributions and results is made with the SOW.

The KBSA/ADM project team, during Phase 2 of the project, identified figure 2 as a high-level
model to approach the software development problems articulated in the Executive Summary
section

^

Session
Management

Repository
Services

Multi-user
Support

View
Management

Analysis
Stnictuxed Un-stnjcturcd

Design ;

Static & D>Tiamic
Models 1

Implementation

Code Gciteration

■ R requirements
A cquisition
S upport
E nv.

Automating what
is understood

C++
CORÖA• •
compliant
com Don cut

Figure 2 - KBSA/ADM Capabilities Relative to Software Development Problem Areas.

From figure 2, across the a typical software development life cycle (e.g. Analysis, Design,
Implementation), an architecture and suite (i.e. the "federation") of KBSA/ADM tools was
identified to attack the issues of complexity, coordination, and automation. These problem areas
are also identified in the KBSA/ADM Statement of Work (SOW) as particular areas of emphasis.

KBSA/ADM Architecture
The KBSA/ADM SOW is particularly emphatic with respect to the following:

• "...the KBSA shall consist of an integrated and uniform design...[SOW -p. 3]"
• "The KBSA shall be designed to be flexible and extensible...[SOW p. 3)]"
• "Primary concerns are the completeness, quality, and maturity of technology and products to

be used or produced and the overall usability of the ADM...[SOW p. 7]

KBSA/ADM project researchers and developers spent considerable effort in ensuring the
achievement of these three requirements. As of delivery of the KBSA/ADM prototype, these
three objectives have been met:

1. The suite of KBSA/ADM capabilities is constructed on a unifying technical architecture.
Composed of a Session-View paradigm built around a central, object-oriented database
design repository, the KBSA/ADM architecture allows for tools to be developed
independently of each other, yet achieve a high degree of collaboration required to support
teams of developers across the software development life cycle. Built from a set of object-
oriented frameworks, the KBSA/ADM federation of tools adheres to a unifying method of
inter- and intra-tool communication. The KBSA/ADM Technical Design documentation
outlines the design philosophies, framework descriptions, and current KBSA/ADM tool
descriptions from a technical perspective.

2. The software development life cycle is a complex, ever evolving process by which
practitioners of software engineering perform their work. It is highly desirable that a
KBSA/ADM have a flexible architecture to incorporate unanticipated needs. In fact, as a
research project, the KBSA/ADM has evolved over the life of the contract incorporating
fresh ideas from project participants. Within this context of flexibility, new ideas, tools, and
KBSA/ADM capabilities can and have been incorporated. The Naval Post-Graduate has
extended KBSA/ADM requirements capture capability with Truth Maintenance System
Extensions (TMS), and Syracuse University has added a completely new tool for the
management of source code and test data information. As the evaluator of KBSA/ADM
technology, Syracuse extended the KBSA/ADM federation with completely new
functionality as opposed to NPS's functional extensions.

3. The KBSA/ADM prototype is built upon state of the market, market leading technologies:
• Objectstore - This object-oriented database management system acts as the

underlying DBMS for the design repository. State of the art, Objectstore supports a
"virtual plain" of objects, versioning all within a client/server architecture.

• Galaxy Graphical User Interface - This GUI builder supports the development of
cross-platform applications using state of the market window-based interfaces.
Additionally, Andersen's Aesthetic Graph Layout (AGL) library supports the
implementation of sophisticated graphical interfaces.

• C++ - The leading object-oriented development environment, the KBSA/ADM team
developed the prototype using Sun Microsystem's current version of Teamware.

• Sun Solaris v2.5 and Windows NT 3.5.1 - These operating systems are technical
leaders in their respective markets.

• Pure Software Testing Products - Designed to ease the development of complex
software, these tools were invaluable for debugging KBSA/ADM functionality.

• Expersoft's Powerbroker Object Request Broker - Using Powerbroker facilitated
the development of communication infrastructure for inter-process communication.

• Windows NT Port - While built upon market leading system software, the attribute
inexpensive does characterize to these systems and platforms. In an effort to reduce
costs, a prototype port of certain KBSA/ADM functionality demonstrated the
feasibility of moving the KBSA/ADM to the Windows NT platform, providing
further evidence of the extensibility of the prototype.

Clearly the decisions made by the KBSA/ADM development team and researchers have
positioned the KBSA/ADM for the future. In terms of innovation, the KBSA/ADM technical
architecture provides a platform for additional research, a platform for increasing KBSA/ADM
robustness, extending into new areas of research, and a platform for enhancing existing ideas
already implemented.

KBSA/ADM Process Support
To support the collaboration of a software development team, both among its members and with
outside customers, stakeholders, and sponsors, a development process must be defined to assure
success. The KBSA/ADM SOW clearly defines the objectives regarding the requirement for
process support:

• "Formal coordination of activities and communications enabling automation of the software
life cycle processes [SOW p. 8]"

• "Project management for all management levels including assistance for project planning,
analysis... [SOW p. 8]"

• "Support for application developments of 50KLOC [SOW p. 9]"
• "Support for simultaneous and interactive use by a development team consisting of 1 to 4

developers, [p. 9]".

With respect to these requirements, the KBSA/ADM prototype enables a small team of
developers to establish a methodology, instantiate project plans from that methodology and be
guided by the methodology once enacted. The KBSA/ADM prototype interfaces with Microsoft
Project to utilize Project's capabilities for defining projects, tasks, and deliverables. Extensive
on-line help assistance at both the methodology and project plan definition level is provided on
the Windows NT and UNIX platforms. Critics "hover" over an imported project plan and
determine when a task can be enacted by a project team member depending on the state of
dependent tasks and work-in-progress.

Limitations in the existing KBSA/ADM prototype restrict the sophistication and complexity of
the defined project, but support for 1 to 4 developers creating 50,000 lines of code is achievable.
Syracuse University's work in project management is a promising extension to the existing
KBSA/ADM project capabilities and should be encouraged. Additionally, CoGenTex's
(www.cogentex.com) work with the Project Reporter is another interesting extension of natural
language technologies to project status reporting.

KBSA/ADM Requirements Capture
The Statement of Work required the KBSA/ADM make significant advances in the area of
requirements capture. The implementation of the KBSA/ADM Requirements Acquisition
Support Environment (RASE) functionality meets the following requirements:

• "Acquisition, analysis, integration,...of application system requirements...representations that
are appropriate for the application user community. [SOW p. 7]"

• "Acquisition, recording, and management of domain knowledge... reuse and replay. [SOW
p. 8]"

• "Capture, maintenance, and generation of documentation in both interactive help and report
form. [SOW p. 8]"

RASE supports a sophisticated capability for collection of knowledge in different media and
forms. Unstructured discussions of requirements can be ordered using REMAP technology.
Information in multi-media formats can be linked into hyper documents capturing textual
information. The ability to link information, print information, and relate information to

"upstream" and "downstream" development artifacts of the software life cycle is a RASE
strength.

A key "assistance" technology demonstrated in RASE is the implementation of evolution
transformations (ETs). ETs demonstrate the capability to transform one form of knowledge (e.g.
a text phrase) into another semantically related form of knowledge (e.g. an object class) and
preserve the contextual link between the concepts. In this way, a developer can begin to capture
at a high level, the requirements and concepts underlying the software system and relate them
back to earlier concepts. Over time, a lattice of objects and links develops in the design
repository that is traceable and analyzable by critics, "visitors" (as proposed by Syracuse
University), or humans responsible for further system development.

KBSA/ADM Modeling and Implementation
The process of transforming requirements into system capabilities is typically an evolution of
models to ever greater levels of precision. Executable source code on a computer is the ultimate
refinement of a requirement through to an executing, computing process. Determining whether
that executable process is correct, adequately meets the requirements, or is error free is
dependent on the quality of the requirement and the transformation processes placed on the
intermediate models.

The KBSA/ADM has focused on modeling, the transformation of information, and the linking of
related concepts in order to illustrate capabilities at the prototype level. Specifically in the
KBSA/ADM SOW, modeling and model transformation capabilities are describes as follows:

• "Incremental elaboration, evolution, analysis, refinement and validation of formal
specification... [SOW p. 8]"

• "Optimization, generation, and targeting of application software from formal specifications.
[SOW p. 8]

• "Ability to produce software systems written in C/C++ [SOW p. 9]"
• "Assistance and Generation of test data and programs. [SOW p. 9]"

The KBSA/ADM, through its ARGO Language Environment (ALE) component demonstrates a
capability for these areas by modeling concepts introduced using evolution transformations from
RASE (concept-to-class transformation) in an OMT-like notation. ALE provides rudimentary
language and modeling capabilities with the ability to generate C++ header files and link to
requirements documented in RASE. The underlying ARGO language semantic checker performs
rudimentary semantic checking of a model, however additional research remains in this area.
Complementing ALE's ability to model software system concepts is CoGenTex's Model
Explainer technology (refer to www.cogentex.com). Using a Web-based HTML generator,
Model Explainer "reads" ARGO specifications to generate a natural language interpretation
(with examples) of the model. Ideal for review and discussion with stakeholders and other non-
technical personnel (e.g. review participants not versed in ARGO language or OMT-like object-
oriented modeling notation), the Model Explainer provides an alternative "view" onto a model,
providing added insight.

Syracuse University has extended the KBSA/ADM suite of tools with a Project Archival and
Report Tool (PART) to more strongly augment the relationship between software program
deliverables (e.g. code modules, test data) and the project plan tasks creating these deliverables.
PART augments some of the frailties in this implementation of ALE by allowing source code to
be imported directly into the KBSA/ADM repository and treated as any other design artifact.
Using object linking and hyper document repository topics, source code can be annotated with
additional semantic information and models.

The particular KBSA/ADM Statement of Work accomplishments are elaborated in the next
section, Technical Achievements.

Technical Achievements
The technical goals of the KBSA/ADM project are to research and develop the various technical
deliverables. The key technical deliverables include:

• KBSA/ADM Architecture: an architectural framework that supports requirements of
various types of stakeholders such as the End Users, Tool Developers, System Architects and
Project Management involved in the software development process. It is an open,
distributive, collaborative and customizable architecture, and developed based on the
principle of federation of cooperating processes.

• Integrated Process Support Environment (IPSE): a KSBA/ADM facility that supports
the process and methodology functionality including project plan definition, task
assignment, task enactment, and collaboration.

• Requirements Acquisition Support Environment (RASE): a KBSA/ADM facility that
addresses the "upstream" life-cycle issues such as capturing informal systems descriptions
and design rationale in a software development process.

• ARGO Language Environment (ALE): a KBSA/ADM facility that supports the
"downstream" life-cycle stages such as design and maintenance in software development.
ARGO is a KBSA/ADM language for the specification and implementation of object-
oriented systems.

• Session and Agenda Manager (SAM): forms the hub of a KBSA/ADM environment, and
manages the inter tool cooperation and provides the session-view paradigm.

• Graph Editor Framework (GEF): provides a virtual and customizable diagrammatic
interface through automatic visualization and manipulation processes.

• Aesthetic Graph Layout (AGL): provides automatic graph layout capabilities including
node positioning, moving and re-sizing, automatic edge graphs and multiple layout routing.

• SCRIBBLES: provides the capabilities to visualize and interact with graphical objects such
as rectangles and lines.

• extended Model View Framework (XMVF): provides intra-tool message based
communication between the front-end (views) and the back-end (model) of a tool.

• Remote Operations (RO): provides inter-tool message based communication across a
network of KBSA/ADM facilities.

• Persistence and Versioning Management (PVM): defines the KBSA/ADM repository and
provide version management (check in/out) and project management utilities.

• Object Linking (OL): implements the relationship that cross KBSA/ADM work objects and
process boundaries.

The rest of section describes all the technical deliverables in detail.

KBSA/ADM Architecture
Key technical elements: KBSA/ADM environment provides an architectural framework that
supports requirements of various types of stakeholders such as the End Users, Tool Developers,
System Architects and Project Managers involved in the software development process. It is
developed based on the principle of federation of tools rather a monolithic system. It is an open,
distributive, collaborative and customizable architecture.

The KBSA/ADM architecture is a three-tiered model consisting of the session-view layer, tool
layer and repository layer as shown in figure 3. The session-view layer represents the end user
perception of KBSA. The tool layer represents the inter connection (a star network of KBSA
facilities with SAM as a hub) among KBSA/ADM facilities such as ALE, RASE, IPSE etc. The
repository layer consists of back end facilities such as the Objectstore server for managing
persistent objects.

10

Session-View

Front
End

KBSA - Architecture
(Session-View Paradigan)

Figure 3 - KBSA/ADMSession-View Paradigm Architecture

The KBSA/ADM architecture provides session-view paradigm, message based communication,
and framework based tool development. A Session-View paradigm provides the end users
(developers) with a perception of the KBSA/ADM as a seamless development environment
rather than a set of distinctly independent tools. Message based communication is provided to de-
couple the tools from each other, and views from the model in a tool.

The KBSA/ADM architecture proposes framework based tool development for effective reuse by
reducing a tools research and development effort. The KBSA/ADM tool architecture consists of
three layers of frameworks including Presentation Layer, Messaging Layer, and Repository
Layer, as shown in figure 4. The Presentation Layer frameworks are responsible for empowering
the end user to perform the automatic visualization and manipulation of work objects. The
Messaging Layer frameworks are responsible for providing inter- and intra-tool communication.

11

The Repository Layer frameworks are concerned with the persistence and version management
of work objects in the KBSA/ADM repository, and implementing the relationship between
persistent objects.

Custom Tool
built on ADM technical architecture

Presentation Layer

Tool Specialized Presentation Layer

GEF
Scribbles

AGL Galaxy

Messaging Layer

Tool Specialized XMVF
Tool Sp.

RO

XMVF
Views
Notifications
Requests

Remote
Operations

Figure 4 - KBSA/ADM Intra-Tool Architecture

Innovative ideas: The Session-View paradigm is a fundamental design axiom that enables an
intuitive interface for software developers to understand their requirements in terms of the
elements of a software development methodology (such as requirements, class diagrams etc.).
Hence the evolutionary changes to the KBSA/ADM environment does not affect the user's
(developers) perspective of the environment in the session-view paradigm. The three tier
architecture enables the end users (i.e. "developers") to extend and customize the environment to
their requirements. Architecture openness has been demonstrated successfully through the
KBSA/ADM COTS interface to Microsoft Project and PART (Project Archival and Report Tool)

12

as part of the KBSA/ADM evaluation. The KBSA/ADM provides a seamless protocol for inter-
tool communication.

Framework based tool development adds substantial value to the process of KBSA/ADM tool
development. The main advantage of the frameworks include software reusability (higher
productivity, better portability, and higher reliability) and ease of enforcement of a uniform
interface standard. The challenge of developing reusable frameworks is effectively demonstrated
during the development of the KBSA/ADM architecture.

Status: The KBSA/ADM architecture is fully developed and tested. It provides multi-user
capability effectively. In the current implementation, the IPSE is linked to the Session and
Agenda Manager (SAM) as one process.

Areas for improvement: The KBSA/ADM login functionality is primitive - not allowing re-
login as a different user or login into another database from the current login. The session-view
management can be further improved with a graphical interface to projects, tasks, users,
deliverables and the relationship among them.

Integrated Process Support Environment (IPSE)
Key technical elements: The Integrated Process Support Environment (IPSE) is a KBSA/ADM
facility (tool) that addresses the process and methodology related issues in software
development. IPSE supports a methodology independent and process driven approach
facilitating the management of the software development process. It provides collaboration in
KBSA through automated task definition, tracking and resolution support. IPSE's meta model
includes the concepts of project plan, task, resource, deliverable, dependency and resolution.
IPSE supports isomorphic representation of project plans through a tight integration with MS
Project. The integration between IPSE and MS Project is provided through the KBSA/ADM
commercial off-the-shelf (COTS) tool interface.

Innovative ideas: The IPSE design supports a neutral representation (KBSA independent) of
project plans through the COTS interface with MS Project. The KBSA/ADM's usage of
methodology independence, as demonstrated by integrating Andersen Consulting's Object
Design Methodology (ODM) deliverables, demonstrates this methodology independent
capability . One of the challenges in IPSE is ensuring the project consistency both on-line and
off-line across users. Some hard issues like automatic task enactment, automatic generation of
users tasks, automatic propagation of critic resolution tasks have been successfully addressed.

Status: The IPSE tool is fully functional. Usability analysis and initial testing have been
performed successfully. The current version IPSE supports a limited functionality in resource
allocation and time management.

13

Areas for improvement: Advanced Critic resolution task management, graphical representation
of project plan, and better project merge/synchronization features are some of the areas for future
research.

Requirements Acquisition Support Environment (RASE)
Key technical elements: The Requirements Acquisition Support Environment (RASE) is a
KBSA/ADM facility (tool) that addresses the "upstream" life-cycle issues in software
development. RASE supports the capturing of an informal system description in natural
language, such as user interview transcripts, memos, requirements or design documents in the
form of hypertext documents; and semi-formal descriptions such as design rationale (i.e. Why it
is the way it is?) in the form of structured design discussions.

Innovative ideas: RASE provides a hypertext document editor/browser for capturing systems
descriptions in natural language. It provides an enhanced IBIS/REMAP structured discussion
model to capture design rationale. REMAP is further enhanced with Truth Maintenance
capabilities, including the automatic validation of dependencies between discussion nodes. The
user is alerted if previous decisions must be re-evaluated through automatic propagation of
decision dependencies. Across all of RASE views, object linking capability is enabled to link
design information to various life cycle artifacts in the KBSA/ADM environment. Additionally,
advanced evolution transformations (ETs) are provided to automate mundane analysis and
development tasks across tools.

Status: The RASE tool is fully functional including the truth maintenance capability. It provides
a general purpose and reusable Hypertext library for other tools to incorporate hypertext
capability if needed. Usability analysis and detailed testing have been performed successfully.

Areas for improvement: The future research areas in RASE include extending the structured
discussion component with World-Wide-Web based user interface and the concept of
stakeholder.

ARGO Language Environment (ALE)
Key technical elements: The ARGO Language Environment (ALE) is a KBSA/ADM facility
(tool) that supports the "downstream" life-cycle stages such as design and maintenance in
software development. It provides an environment for the specification and evolution of object-
oriented specifications in the ARGO specification language. ARGO is the KBSA/ADM
language for the specification and implementation of object-oriented systems. It supports the
concept of attributes and relations to specify the object structure, and class invariant and pre- and
post-conditions on member functions. ALE's meta model is represented using the ARGO
language. ALE provides critics that evaluate the specification and propose changes that could
improve its quality. It also provides c++ code generation capability for the design components.

Innovative ideas: ARGO supports Meyer's notation of "Design by Contract" explicitly. It
attempts an enhanced version of C++ with a simplified object declaration syntax. ARGO is
influenced by ODMG's ODL and OMG's IDL. It is implemented using PCCTS (Purdue

14

Compiler Construction Tool Set) - a public domain software tool similar to YACC. ALE is
empowered with the ideas of critics and evolution transformations. Critics are the best
manifestation of the assistant metaphor in the KBSA. The work on critics draws from that of
Fischer, whose goal was to automate mundane tasks and help bring to bear knowledge at the
appropriate time and location when the users needed it. Evolution Transformations are editing
operations which make complete semantic changes to a model.

Status: ALE is presently the weakest tool in the KBSA/ADM federation of tools. Usability
analysis and initial testing have been performed identifying significant areas for enhancement.

Areas for improvement: Future research areas in ALE include enhancing the ARGO language
and its front-end graphical support, developing a general purpose framework for critics,
advanced evolution transformations, and tighter integration with CoGenTex's Model Explainer
technology.

Session and Agenda Manager (SAM)
Key technical elements: The KBSA/ADM facilities are constructed as a federation of
cooperating processes. The Session and Agenda Manager (SAM) manages the inter tool
cooperation and provides the session-view paradigm. SAM is one of the KBSA/ADM facilities
built on the same tool technical architecture as are the other KBSA/ADM facilities such as ALE,
RASE etc. The underlying design principles of SAM are to cooperate with the facilities in
providing inter-tool communication and to enable smooth integration and customization of
facilities (old or new) with the KBSA/ADM environment. SAM forms the hub of the
KBSA/ADM facilities network as shown in figure 5. Upon login, SAM automatically connects
to other instances of SAMs (KBSA/ADM instances) that are logged into its repository.

15

UNIX Client Machine UNIX Client Machine

Figure 5 - Process to Process Communication Flows

Innovative ideas: The session-view paradigm successfully demonstrates the required level of
transparency to the end-user working in the KBSA/ADM environment. Sessions, saving session
context on exit, and restoration of session context upon re-login are some of the ideas that add a
great value to the end-user. The concept of on-line registration of KBSA/ADM facilities paved
the way to the smooth integration and customization of the environment. The concept of a
transportation layer in the remote messages enabled the effective de-coupling of the facilities.
Automatic connection to other related SAMs enabled effective collaboration among a team of
users.

Status: SAM is fully functional. Usability analysis and detailed testing have been performed
successfully.

Areas for improvement: A graphical user interface to a session and its contents would greatly
improve usability. Usability would be greatly improved with the ability to login as a different
user or to another repository without the need to log out of and restart the KBSA/ADM.

Graph Editor Framework (GEF)
Key technical elements: The Graph Editor Framework (GEF) is one of the frameworks of the
Presentation layer. It provides a virtual and customizable diagrammatic interface through
visualization and manipulation processes. It encapsulates AGL and SCRIBBLES frameworks and
makes them as transparent as possible for developers thereby accelerating diagrammatic interface

16

development. The GEF is developed over Galaxy - a platform independent GUI development
environment.

Innovative ideas: The challenge of developing a reusable framework is proved effectively
through this framework. GEF set the standards in defining the framework interfaces and
addressed the issues relating to integration of frameworks while developing a tool. One of the
key ideas in GEF is to identify the two independent processes in graph editing namely
visualization and manipulation. This framework reduced the development effort considerably
(10-to-l code reduction and reduced the development time by one-third).

Status: This framework is fully developed, thoroughly tested and effectively reusable. Currently
it is reused across three projects - KBSA/ADM, Component-based Software Engineering and the
Naval Post-Graduate School-KBSA . The required reference and user manuals are available. It is
available both on Unix and NT.

Areas for improvement: GEF currently depends on Galaxy. However, supporting it with the
same unified interface on other popular platforms such as Microsoft Foundation Classes(MFC) is
a great challenge. GEF currently has a limited support for enforcing restrictions between
graphical objects. This is one research area where a simplified and code free interface is required
to enforce restrictions between objects.

Aesthetic Graph Layout (AGL)
Key technical elements: Aesthetic Graph Layout (AGL) is one of the frameworks of
Presentation Layer. It provides automatic graph layout capabilities including node positioning,
moving and resizing, automatic edge routing, nested graphs and multiple layouts: tree, hierarchy,
network and manual.

Innovative ideas: As part of this framework, a number of new algorithms are developed. These
include automatic edge routing, node placing, space creation and compaction, and static graph
layout for network layout. Also developed was a test framework to visualize the graph layout
process. Providing a layout neutral interface is an idea that enhanced usability the AGL
considerably.

Status: It is fully developed, thoroughly tested and reusable effectively. It is currently used by
GEF. It does not depend on any commercial software.

Areas for improvement: Extending the AGL concepts to other diagrammatic domains such as
VLSI layout and CAD/CAM applications is a new research area. Enhancing the AGL with
manual operations such as updating the edge orientation is challenging task for future research.

SCRIBBLES
Key technical elements: SCRIBBLES is one of the frameworks of the Presentation layer. It
provides the capabilities to visualize and interact with graphical objects such as rectangles and
lines. It is an extension of Galaxy's graphical features.

17

Innovative ideas: Galaxy provides very primitive facilities for graphical objects. Scribbles
effectively encapsulates the Galaxy graphical facilities and defines various objects and
operations on them effectively.

Status: It is fully developed, thoroughly tested and reusable effectively. It is available for both
Unix and Windows NT platforms.

Areas for improvement: SCRIBBLES fully depends on Galaxy. However, supporting it with
the same unified interface on other popular platforms such as MFC is a great challenge.

extended Model View Framework (XMVF)
Key technical elements: The extended Model View Framework (XMVF) is one of the
frameworks of the Messaging layer. It is a modified model-view-controller framework often
found in Smalltalk environments. The key objectives of this framework include establishing and
maintaining the relationships between the front-end (views) and back-end (model) of a tool, and
providing a consistent mechanism for defining messages between the views and the model of a
tool. The communication between the views and model is provided through messages called
requests and notifications.

Innovative ideas: De-coupling of views from the model is effectively implemented. It
encapsulates the transaction management functionality and distributions of notifications to the
related views.

Status: It is fully developed and thoroughly tested. It is difficult to use XMVF without Object
Store and PVM functionality.

Areas for improvement: Current implementation of XMVF depends on the back-end (Object
Store) functionality. This is one of the bottlenecks in reusing the framework effectively. An
improved filtering mechanism over the notification would add value to XMVF functionality.
Providing publish and subscribe mechanisms between views and models in some cases is also
desirable.

Remote Operations (RO)
Key technical elements: The Remote Operations (RO) is one of the frameworks of the
Messaging layer. It is built upon Expersoft's Powerbroker object request broker framework. RO
provides inter-tool communication across a network of KBSA/ADM facilities. The
communication between KBSA/ADM facilities is provided through messages (knows as Abstract
Data Types -ADTs). RO provides communication between platforms such as UNIX and
Windows NT.

Innovative ideas: This framework completely encapsulates Powerbroker thereby providing
flexibility to migrate to other industry standard object brokers if needed. RO supports
synchronous communication between processes. One of the strengths of this framework is its
simplicity in the interface (two functions - send and process a message).

18

Status: This framework is fully developed and thoroughly tested. It is reusable with little effort.

Areas for improvement: Enhancing the RO with Publish and Subscribe mechanism across
processes would be an interesting research area. RO currently uses ports for inter process
communication. This mechanism is very primitive and not CORBA compliant. Migrating to an
advanced communication mechanism is desirable to reduce complexity. Support for nested
messages is another area to be addressed.

Persistence and Versioning Mechanism (PVM)
Key technical elements: The Persistent and Versioning Management (PVM) is one of the
frameworks of the Repository Layer framework. PVM defines the KBSA/ADM repository and
provides version management (check in/out) and project management utilities. Built over an
object-oriented database management system called ObjectStore, PVM encapsulates the required
functionality of ObjectStore for basic persistent and versioning. It defines various XMVF
requests and notifications to update the persistent objects.

Innovative ideas: One of the challenges in developing PVM is to define the KBSA/ADM
repository. We overcome the challenge by defining the two-tiered workspaces - project and
session, basic versioning particle (topic) and basic persistent particle (first class object).

Status: It is fully developed and tested. It is reusable with some additional effort.

Areas for improvement: Support for sub-project and project base-lining are two areas that can
add greater value to the KBSA/ADM. Adding a repository manager that browses the database
and allows some simple editing features over the persistent objects is desirable for effective
repository management. Support for alternative design options is another future research area.

Object Linking (OL)
Key technical elements: Object Linking is also a framework of the Repository layer. It
implements relationships that cross KBSA/ADM work objects and process boundaries. It
supports the ability to create, traverse and delete cross-work object relationships. It uses Remote
Operations (RO) functionality internally. The object linking is the key mechanism for providing
the ability to link design artifacts and understand the relationship between artifacts as and when
needed.

Innovative ideas: Encapsulating the object link capability within the first class object is a great
idea that provided flexibility in linking design artifacts of different kinds. Distributing object
links into two halves between their respective objects proved to be a feasible solution.

Status: It is fully developed and partially tested. It is reusable with little effort.

19

Areas for improvement: Enhancing of object links with semantics would provide opportunity
for future research. Handling broken links with contextual information would add great value to
the end user.

20

Impact and Influence
In Syracuse University's "Evaluation of a Knowledge Based Software Assistant Advanced
Development Model", they state: "There is a lot to like about the KBSA/ADM." With respect to
this statement, Andersen's KBSA/ADM research and development team spent considerable
resources to engage and support those interested in the technical areas the research was
exploring. Specifically, the KBSA/ADM team focused on the following organizations to
facilitate technology transfer:

• Andersen Consulting
■ FOUNDATION
■ AC Design
■ Architecture and Tools Program
■ Component-Based Software Engineering (CBSE)
■ Technology Reinvestment Program (TRP)

• CoGenTex, Inc.

• Naval Post-Graduate School

• Syracuse University

• George Mason University

The expenditure of effort with respect to these organizations took on many forms:

• Sharing of technical ideas with respect to solving fundamental software engineering
problems.

• With respect to the Andersen organization, collaborating on functional and technical
objectives relative to commercial CASE tool efforts within FOUNDATION and AC Design.

• Supporting parallel research into KBSA/ADM topics by Syracuse University, Naval Post-
Graduate School, and George Mason University.

Additionally, CSTaR has been an active participant in the last three Knowledge-based Software
Engineering (KBSE) Conferences. Our work in this area has resulted in many papers, significant
among them is Dr. Kevin Benner's work "Addressing Complexity, Coordination, and
Automation in Software Development with the KBSA/ADM" (see Appendix A for a complete
copy of this influential paper.) Andersen Consulting's participation in these conferences has
resulted in a variety of KBSA/ADM program related publications:

Benner, K. M, Addressing Complexity, Coordination, and Automation in Software Development
with the KBSA/ADM. Proceedings of the Eleventh Annual Knowledge-Based Software
Assistant Conference, Syracuse, NY, September 1996.

Sparks, S, Benner, K; Faris, C. Managing Object-Oriented Framework Reuse. IEEE Computer,
September 1996.

21

Benner, K. M., Tradeoffs in Packaging Reusable Assets. Proceedings of the Seventh Workshop
on Software Reuse, St. Charles, Illinois, August 1995, (also available in
http://www.umcs.maine.edu/-ftp/wisr/wisr.html).

Benner, K. M., WISR Working Group Summary: Software Reuse in A Business Environment-
A Case Study. Workshop on Software Reuse, St. Charles, Illinois, August 1995. Published at
WISR home page http://www.umcs.maine.edu/-ftp/wisr/wisr7/orgwg/orgwg.html.

Kim, J. J. and K. M. Benner, A Design Patterns Experience: Lessons Learned and Tool Support.
Proceeding of The Pattern Languages of Object-Oriented Programs Workshop at the Ninth
European Conference on Object-Oriented Programming (ECOOP '95); Aarhus, Denmark; August
7-11, 1995.

Naidu, E. B., and K. Miriyala, Space Creation and Compaction in Dynamic Diagramming. The
International Workshop on CASE, 1995.

Sasso, W. and K. M. Benner, An Empirical Evaluation of KBSA Technology. Proceedings of the
11th Annual Knowledge-Based Software Engineering Conference, Boston, MA, November 1995.

Sasso, W. C. and K. M. Benner, An Empirical Evaluation of KBSA Technology. Proceedings of
The Tenth Knowledge-Based Software Engineering Conference, Boston, MA, November 1995.
IEEE Computer Society Press.

Sasso, W., Empirical Evaluation of KBSA Technology. Rome Laboratory, March 1995.

Luo, J., and K. Miriyala, A Practical Approach to Static Node Positioning. Proceedings of
DIMACS International Workshop on Graph Drawing 1994. Lecture Notes in Computer Science,
Vol. 894, pp. 436-443.

Benner, K. M., The ARIES Simulation Component (ASC). The Eighth Knowledge-Based
Software Engineering Conference, Chicago, Illinois, September 1993.

Sasso, W. and M. DeBellis, Plan-Based Guidance for Knowledge-Based Software Engineering.
Proceedings of the Software Engineering and Knowledge Engineering Conference, San
Francisco, CA, June 1993.

Sasso, W., M. DeBellis, S. Bhat, O. Rambow and K. Miriyala, KBSA Concept Demo: Final
Report. Technical Report RL-TR-93-38: U. S. Air Force Rome Laboratory, April 1993.

Sasso, W. and M. DeBellis, Plan-Based Guidance for Knowledge-Based Software Engineering.
Short Papers of the 14th International Conference on Software Engineering (abbreviated form),
Melbourne, Australia, May 1992.

Sasso, W., M. DeBellis and G. Cabral, Directions for Future KBSA Research. Proceedings of the
Sixth Annual Knowledge-Based Software Engineering Conference, Syracuse, NY, September
1991.

22

Sasso, W., Motivating Adoption of KBSA: Issues, Arguments, and Strategies. Proceedings of the
Sixth Annual Knowledge-Based Software Engineering Conference, Syracuse, NY, September
1991.

Sasso, W., Encouraging the Adoption of KBSE Technology: What Needs to Happen First?
(editor, panel description). Proceedings of the Sixth Annual Knowledge-Based Software
Engineering Conference, Syracuse, NY, September 1991.

Sasso, W. and M. DeBellis, A Software Development Process Model for the KBSA Concept
Demonstration System. Proceedings of the Fifth Annual Knowledge-Based Software Assistant
Conference, Syracuse, NY, September 1990.

Sasso, W., Empirical Study of Re-engineering Behavior: Design Recovery by Experienced
Professionals. Software Engineering: Tools, Techniques, Practice 1(1), March 1990.

Benner, K. M., Simulation in Support of Specification Validation. Fifth Annual Knowledge-
Based Software Assistant Conference, Syracuse, NY, September 1990.

Clearly from these interactions, the KBSA/ADM project has been influential.

23

Conclusion
The KBSA/ADM project conducted by Andersen Consulting has been insightful and fruitful.
The results of the project team's efforts begin to implement and describe how KBSA/ADM
technologies address the software development problems associated with complexity,
automation, and coordination. The most innovative aspects of this work have been in the areas
of contextual knowledge (i.e., discussion databases, and object linking), process support (i.e.,
personalized agendas and process enactment), evolution transformations (i.e., transformations
which automate stereotypical changes to a model), and critics (i.e., integrating intelligent
analysis with process enactment).

While significant progress has been made, there are many areas for additional research and
expansion on the work presented here.

• What is the appropriate development process for using the ADM? Current development
processes have been constrained by the limits of the available tools and the discipline of the
developers using them. More powerful and more intelligent tools should shift the balance of
responsibilities and make new processes feasible which may not have been possible in
traditional development environments.

• How effective is the synergy between the technologies described and implemented in this
project? Have the technologies been integrated so as to support developers building complex
systems or do developers find themselves trying to span awkwardly integrated tools and
technologies?

• What might the effects of new implementation languages (e.g. JAVA) and the World-wide
Web have on a KBSA/ADM implementation? As the convergence of networks, cheaper
computers, and ever smarter systems spread across heterogeneous computing platforms, we
might expect ever greater levels of software development collaboration at lower cost.

• What might a critic architecture look like and what is a full elicitation of critics? An
organization's needs in terms of the number and types of critics required cannot be known a
priori. A critic architecture, capable of quickly and easily capturing the "rules and
regulations" by which a critic performs its analysis must be created.

These questions and others remain for researchers and entrepreneurs to explore using the
KBSA/ADM technical architecture and existing tool foundation.

Acknowledgments

The KBSA/ADM is the result of the work of many people without whom it would not have been
possible. These people include past and present members of the KBSA/ADM development
team: Kevin Benner (Co-Principle Investigator), Steve Sparks (Co-Principle Investigator), Chris
Faris (Project Manger), Dave Gaffaney (IPSE), Jung Kim (ALE), Frank Luo (RASE), Enaganti
B. Naidu (SAM), Bill Sasso (Contract Manager), George Ding (RASE), Mike Mikhail (ALE),
Steve Killian (ALE, NT Port), Ilango Radhakrishnan (Remote Operations, SAM), Mike DeBellis

24

(Principle Investigator), Jim Coker (ARGO), Xiangyang Shen (Technical Architecture), and
Sudin Bhat (Technical Architecture).

25

Appendix 1

Addressing Complexity, Coordination, and Automation
in Software Development with the KBSA/ADM

Kevin M. Benner
Center for Strategic Technology Research

Andersen Consulting
kbenner@cstar.ac.com

Abstract

This paper will describe how the Knowledge-Based
Software Assistant / Advanced Development Model
brings together technologies from the KBSE domain
along with more traditional software engineering
practices in order to address the pervasive software
development problems associated with complexity,
coordination, and automation. This paper describes
how the KBSA/ADM realizes and refines the vision of
Rome Laboratory's Knowledge-Based Software
Assistant research program. The most innovative
aspects of this work have been in the areas of
contextual knowledge (i.e., design history, discussion
databases, and object linking), process support (i.e.,
personalized agendas and process enactment),
evolution transformations (i.e., transformations which
automate stereotypical changes to a model), and
critics (i.e., integrating intelligent analysis with
process enactment).

1. Introduction

The Knowledge-Based Software Assistant (KBSA)
program is a Rome Laboratory funded effort to
provide automated assistance to individuals and teams
of software developers spanning the entire life-cycle
of large software projects. The vision for this program
was first articulated in "Report on a Knowledge-Based
Software Assistant"[Gr93] in 1983. Since then, Rome
Laboratory has funded a variety of research efforts
which have made significant steps toward realizing and
refining this vision ([Sm93], [Jo93], and [Dc92]
among several others). Today, Andersen Consulting's
Center for Strategic Technology Research (CSTaR) is
building a field prototype of a KBSA called the
Knowledge-Based Software Assistant / Advanced
Development Model (or ADM for short). The ADM
embodies many of the results of preceding research
efforts, as well as refines the KBSA vision as it relates

to addressing today's software development
problems. The goal of this paper is to answer the
question, "How does the ADM integrate KBSA
technologies to address pervasive problems in
software development?"

This paper is organized as follows: Section 2 will
describe the problems associated with building and
evolving large software systems. Section 3 will
describe the ADM from a functional perspective.
Section 4 will describe the details of what the ADM
docs—how the ADM manages complexity, automates
what is understood, and supports coordination.
Finally, section 5 will conclude with
accomplishments and open issues.

2. The Problem

There are various problems associated with
building and evolving large systems. Some of the
most significant problems fall under the headings of
complexity, collaboration, and automation. The
problems under each of these topics arc described in
the following:

2.1. Complexity

As Brooks suggests, "The complexity of software
is an essential property, not an accidental one"[Br87].
Booch elaborates on this point by saying, "We
observe that this inherent complexity derives from
four elements: the complexity of the problem domain,
the difficulty of managing the development process,
the flexibility possible through software, and the
problems of characterizing the behavior of discrete
systems"[Bo94] Because of this, only a small number
of developers ever really understand the entire
system. This understanding, however, is critical for
finding and resolving inconsistent requirements,
developing a coherent design, factoring the total
system into manageable pieces for development, and
evolving the system when requirements change in
unanticipated ways. Critical design decisions,

26

assumptions, and rationale are seldom documented and
indexed. Project memory and knowledge transfer are
particularly problematic when evolving deployed
systems or utilizing reusable assets. This is further
exacerbated by the loss of the original asset's
developers. Even if original developers remain with
the project, over time they will not be able to
remember all pertinent facts about the system.

2.2. Automation

In any development there are inevitably routine
tasks which are well understood but tedious to perform
(e.g., making changes to a program or specification
which are not localized to one spot; or running an
analysis tool like Lint and then making the necessary
changes to remove the reported errors and warnings).
These tasks take time to perform and too often,
because of their routine nature, result in additional,
avoidable errors which also have to be addressed. In a
small project, one lives with these inconveniences. In
an iterative development, this sort of thing happens all
the time. In large projects, the cost of performing
these small tasks and fixing the resulting avoidable
errors compound quickly.

2.3. Coordination

As teams get larger, coordination becomes more
essential, but harder to achieve. No matter how well a
system is factored, communication among teams and
within teams is necessary. This is true because of
dependencies between work products, tasks, and the
people performing the tasks. In a typical case,
knowledge of how the system should work is
fragmented across different teams and people. Curtis,
et al, refer to this as "the thin spread of application
domain knowledge"[Cu88]. The difficulty in these
communications is disseminating knowledge in a
timely and understandable manner to interested parties.
Too often this knowledge is represented as static work
products which soon become out of date. A big part of
enabling coordination is establishing for developers
the proper context in which to understand work
products so that they can use and evolve them
properly.

At the highest level, solutions to the above
problems are not found in any single technology,
technique, or capability, but rather they are found in
the synergies between them. Within the ADM, the
unifying theme is the Assistant metaphor. In this
metaphor, the assistant brings to bear appropriate
solution technologies in a coherent way to aid the
developer or a team of developers address the
problem at hand. This paper will describe how the
ADM brings together several technologies from the

KBSE domain along with more traditional software
engineering practices. The next section will provide
an overview of the ADM by describing it from a
functional perspective. The following section will
dive into the component technologies and how they
address these problems.

3. A Functional Description of the
ADM

The focus of the ADM is to provide intelligent,
process-driven support to a team of individuals who
are developing and evolving object oriented
software/systems. This effort has had two driving
goals: (1) to provide a suite of intelligent, process-
driven, integrated software development tools, and
(2) to provide a tool construction and integration
framework in which tools may be built and integrated.
As a tool construction and integration framework, the
ADM provides the necessary openness to allow deep
process enactment and intelligent assistance within
and between individual tools and their work products.
The framework provides a foundation upon which to
build future tools and assistants as their need becomes
evident.

As a suite of software development tools, the
ADM provides set of capabilities which demonstrate
the utility of automated support across the entire
development life-cycle for both individual developers
and teams of developers. Automated support
includes the ability to manage informal knowledge in
either an unstructured manner (i.e., as hypertext) or
in a more structured manner (i.e., typed nodes and
links reflecting important relationships—a la REMAP
[Ra92]. Where more formal models are needed, the
ADM supports specification creation and evolution of
object-oriented models in a manner similar to ARIES'
support for multiple views and evolution
transformations[Jo93]. When multiple models are
necessary, the ADM either ensures consistency within
and between models or points out the inconsistencies
to the developer. A specification, when complete,
may automatically be translated into C++. Automatic
code generation allows the developer to perform both
system development and long term maintenance at the
specification level. Testing is supported by
automatically producing checking code to ensure
stated specification conditions are satisfied.

Evolvability of a software system is supported in a
variety of ways. Extensive work product linking
capabilities allows one to capture either automatically
or manually the rich dependencies between work
products and the design rationale behind the creation
and modification of each work product. Analysis of
work products and changes to them are accomplished

27

via intelligent critics which evaluate their quality and
suggest ways to improve them. Adaptability is further
supported by lifting developer's activities from the
code level to the specification level. The ADM
provides for automating or assisting in the creation and
modification of specifications including: performing
stereotypical changes, coordinating complex
modifications, and incorporating and maintaining
design patterns/cliches and design rationale within a
specification.

The ADM is currently made up of three principal
tools which are tightly integrated via the ADM
Technical Architecture:
• The Argo Language Environment (ALE) supports

graphical and textual viewing and evolving of
object oriented specifications. Critics evaluate the
quality of the specification and suggest ways to
improve it. When a specification is compete ALE
can generate C++ code for a system, subsystem, or
component.

• The Integrated Process Support Environment
(IPSE) guides and coordinates teams of (multiple)
developers in their execution of various software
development tasks. The focus of IPSE is on task
management via personalized agendas and task
automation via enactment of tasks from one's
agenda. IPSE supports project-wide project
planning via its integration with MS Project™ for
project plan development and modification.

• The Requirement Acquisition Support
Environment (RASE) creates and manages
informal documents, text, and pictures typical to
requirements acquisition and analysis. In
particular, it provides a hypermedia tool for
capturing less structured, informal notations like
natural language text, existing documents, and
multimedia clips. RASE also provides a semi-
structured representation based on typed nodes
and links (a la REMAP) in which one can capture
design rationale as part of a structured, multi-
party, on-line discussion. While the focus of
RASE has been on requirement acquisition, its
capabilities are accessible throughout all life-cycle
phases to capture informal knowledge whenever
necessary. For example, REMAP discussions arc
often associated with deliverables and used as
design discussion databases. In this way,
discussions about alternative modeling decisions
can be captured and directly related to the
appropriate parts of the specification.

Fig. 6: ADM Common Services, Tools,
and Development Activities

4. The Solution

While there are many technologies, techniques,
and capabilities which makeup the ADM, this paper
will group them under three broad categories:
managing complexity, automating what is understood,
and supporting coordination.

4.1. Manage Complexity

Management of complexity is a long recognized
issue for large-system developers. The ADM
addresses this issue by a combination of the
following: (1) support for appropriate notations in
which to capture and evolve software development
work products, (2) mechanisms to maintain
consistency between interdependent work products,
(3) mechanisms to capture and make accessible
contextual knowledge about why work products arc
the way they are, and (4) explicit project task support
to formalize and enact the process of building a
software system.

4.1.1. Appropriate Notations
Appropriate notations provide the necessary

underlying representations to capture desired
information and present it for viewing and
modification in an understandable and useful fashion.
Within the ADM, underlying representations are
expressed as metamodcls. Presentations are
described as graphical or textual projection defined in
terms of the underlying mctamodel. This is similar to
the approach pioneered in ARIES[Jo92].

In the three tools which currently constitute the
ADM, we see several examples of distinct
representations and presentations. ALE's
representation is the mctamodel of the object oriented
specification language that it uses—Argo. This

28

model includes concepts like class, attribute, relation,
operation, and package (a unit of encapsulation
analogous to folder or module). From this metamodel,
ALE defines several presentations including a class
diagram (a diagram showing classes and the
relationships between them), a package diagram (a
diagram showing import relationships between
packages), and an Argo view (a view showing of a
textual projection of our object-oriented specification
language)

RASE's representation is an extension of the
REMAP metamodel. Its extensions include more
general concepts necessary for term-definition pairs
found in the Term Dictionary, as well as hypernodes
and hyperlinks found in the HyperText Editor. RASE
supports one view for each of its component tools. In
the HyperText Editor, hypernodes which are connected
by hyperlinks are visualized in an outline format (a la
the outline view in MS Word™). Within a hypernode,
additional hyperlinks are viewed as "hot spots" which
can be navigated to other hypernodes. In the Term
Dictionary, terms are related to their definitions and
then via object links associated with a REMAP term
discussion. A term discussion is an instance of a
REMAP discussion which, instead of focusing on
requirement elicitation and refinement, is focused on
deciding what concepts should be terms.

IPSE's metamodel includes the concepts of task,
plan, resource, deliverable, dependency, and
resolution. Its principal view is a personalized agenda
of tasks which have been assigned to an individual.
Views of the entire project are realized by maintaining
an isomorphic representation in MS Project™ where
more traditional project management views are
supported.

Looking at the preceding metamodels, it is
important to note the varying degrees of formality
which are present. The Argo metamodel (like most
specification languages) has a precise semantics.
Several checkers have been developed to enforce
various sets of semantic rules. The RASE metamodel
has a much looser semantics. It allows users to
classify information by using its typed nodes and links.
This imposes a structure on the information, but does
not impose a specific semantics which can be checked
and enforced. At the informal extreme, HyperText is
almost completely free form. It captures blocks of text
as hypernodes connected via traverseable links.

Support for metamodels of varying formality is an
essential strength of the ADM. Experience with
systems which are all formal or all informal have
demonstrated that reliance on one extreme to the
exclusion of the other is inadequate.

Within the ADM all of its metamodel concepts are

derived from a base concept which provides
persistence, versioning, distribution, design histories,
and object linking (i.e., a mechanism for hyperlinking
between concepts in the ADM).

The metamodels, views, and tools described
above are not meant to be definitive of the best set of
metamodels, views, and tools. Rather, they are meant
to convey the kinds of metamodels, views, and tools
which can be defined within the ADM.

4.1.2. Multiple Models and Maintaining
Consistency

One of the principal differences between the
current KBSA vision and that described in the
original KBSA report is the presence of multiple
models. In the original report, only one model is
built. This is the system specification. It captures all
the essential features of the system to be built.
Development is the process of gathering additional
information and evolving the specification of the
initial model into the final specification from which
an implementation may be generated.

The problem with this approach was that the
single model became too complex to easily
comprehend. ARIES [Jo92] addressed this problem
by providing alternative views on the model based on
projections of it. While very useful, it was
insufficient for all of the ways people needed to see a
system description in order to validate and evolve it.
In particular, many of the simpler models developed
early in the development process continue to play
important roles later on. Evolution, which does not
preserve these simpler models, makes comprehension
and validation more difficult. Some people might
think that these simpler models could be preserved
and accessed as earlier versions of the more complex
models. This would be an incorrect use of the
concept of "version".

These simpler models are more than just
abstractions of more detailed models. They are
artifacts unto themselves which need to be preserved
and evolved as necessary. One way to think about
software development is as the creation of a series of
models. Earlier models might be called requirements
models. Latter models might be called
implementation models. In between are models like
conceptual models, functional models, design models,
technical architecture models, etceteras.

Rather than transforming one model into the next,
the ADM is more closely aligned with Rumbaugh's
vision when he advocates "Each layer [model]
captures design decisions made at that particular
stage of the life-cycle of a particular system
element"[Ru96]. Breaking the development into
multiple models allows the developer to separate

29

concerns and express design decisions within the
model in which it is most relevant and easily
understood. This not only eases the development
process, but also aids the understanding process of
why things are the way they are.

In the ADM we are concerned with being able to
create these models, capture the dependencies between
these models, and mediate and enact the process by
which these models are created and evolved.
Managing complexity is more than just being able to
differentiate between each of the above models. It is
also being able to support the best ways to capture the
information which makes up each of these models and
maintain consistency between interdependent models.

As an example, consider the creation of a
conceptual model. Inputs to this task include
transcripts of interviews with stakeholders, user
manuals and functional descriptions of legacy systems,
white papers, etceteras. In the ADM, these are
captured in the HypcrText Editor. As requirements
acquisition proceeds, discussions about conflicting
requirements and elaboration of requirements arc
performed in REMAP. Eventually, common
terminology needs to be identified by extracting terms
from the HyperText Editor and creating entries in the
Term Dictionary. Over time, terminology is
consolidated and refined based on feedback from
stakeholders. These terms eventually become the
starting point for a more formal domain model to be
expressed as Argo and built with ALE to reflect the
classes, objects, relations, and behaviors of the
conceptual model. The resulting conceptual model is
a formal specification with traccability links to terms
in the Term Dictionary and relevant portions of a
REMAP requirements discussion on what should and
should not be part of this model.

Throughout the above process, not only are work
products being used to create subsequent work
products, but dependencies are being created between
the work products. A failing of many multi-model
development approaches is that these dependencies arc
not maintained and the earlier work products typically
become inconsistent. The ADM addresses this
problem by creating and maintaining object links
between dependent objects—even when they span
models. Via this mechanism changes in one model
result in changes in dependent models (more on this in
the next section when talking about object linking).
This sort of behavior is essential for iterative
development methodologies where individual models
are continuously modified. The failure to manage this
problem has long been one of the principal
shortcomings of traditional CASE tools.

4.1.3. Capturing Contextual Knowledge
Simply representing a model is seldom sufficient

to be able to understand, maintain, evolve, or reuse it.
It is necessary to understand why it is the way it is, as
well as how it got that way. The "why" and "how"
questions define the context in which a model exists.
This context is often the informal knowledge which is
in the heads of developers when creating a model.
The ADM provides three mechanisms for capturing
context knowledge: design histories, design
discussions, and object linking.

Design history is a record of all the modifications
which have happened to a work product. In the
ADM, modifications are captured at the granularity of
an editing gesture from the user interface. Each time a
modification occurs, a record is created of the
specific change. This record is then added to the
detailed design histories of each of the objects it
changes and is added to the design history of the
current active project task.

When a developer is interested in how some
object became the way it is (e.g., the class Inventory),
he/she can view the design history of that object.
When viewing the design history of an object, one
can see the sequence of modifications which were
made to it. Viewing an individual modification, the
user can sec what the specific change was and what
other objects were changed at the same time.
Following links from a history record, one can sec in
which project task the modification was made. For
example, one may sec that the Inventory class was
created during the task Create Functional Model.
Further inspection of the task's design history shows
that the Inventory class was later renamed to
Manufacturer's Inventory and made a specialization
of a new, abstract class called Inventory.

It is via this lattice of objects, tasks, and
modification records that a developer can see how
objects have evolved. This record of what was
changed, by who, and with which other objects is a
starting point for understanding the contextual
knowledge about a work product.

While the task pointer in a history record provides
the project task context in which the modification was
performed, it still leaves unanswered the more general
question on why the change was performed. The
following two mechanisms provide some support for
addressing this problem.

The second mechanism for capturing contextual
knowledge is a design discussion. A design
discussion is a straight forward application of
REMAP to document design discussions rather than
requirements discussions. The same mctamodcl
developed for the requirements domain (i.e., issues,
positions, arguments, assumptions, decisions, etc.) is

30

valid for the design domain. In general, the ADM
allows the developer to create new discussions as
he/she sees fit. Typically, a discussion is associated
with one or more work products. Controversial issues
are recorded in the discussion and then related via
object links to the pertinent portions of the work
product.

The third mechanism for capturing contextual
knowledge is object linking. Throughout the ADM,
object links are used to show that concepts which are
not physically close to each other are in fact related.
For example, an object link can show the relationship
between a hypertext node which captures a
requirement to a class in an Argo specification which
is responsible for satisfying this requirement. While
the notion of object linking (or more commonly
hyperlink) is not new, the ADM has gone to
considerable lengths to maintain links in spite of
objects being deleted (e.g., cause object link to point to
old version only), modified (e.g., migrate pointers as
objects evolve), and versioned (i.e., cause object links
to migrate to latest version).

The semantics of a Basic object link is fairly weak.
Its presence between two concepts shows that two
concepts are related. If either of the concepts are
deleted, then the object link will also be deleted. If a

new version of either the source or destination objects
is created, the link follows (or migrates) to the latest
version.

A variant of the Basic object link, the Fixed
object link, will remain fixed on the current versioned
object regardless of the existence of more recent
versions.

A more interesting specialization of a Basic object
link is a Depends_on object link. If the target object
of a Depends_on object link is deleted, the ADM
notices this as an inconsistency and proposes
alternative ways of resolving the inconsistency.
These options include deleting the object link and the
source object, mediating the selection of a new
target, or creating a surrogate target to be replaced
later. The basic goal is to ensure that the consistency
rules for Depends_on object links are maintained.

4.1.4. Project Task Decomposition and
Enactment

This element for managing complexity focuses on
the process dimension of software development. This
includes both the macro and micro processes. Macro
processes are defined in terms of tasks from a project
management perspective. The process model for a

31

SAM083876196901

*SÄV

* : ProjectName I dummy
V'l, A... '>J r. ,' :

TopJcNama ,

IP

lit

TA Testing Approach

B TA Testing Approach

B— Execution Archtecture Design

S™ Execution Architecture Design

r
Fig. 7: ADM Session and Agenda Manager

macro process includes: resource allocation, task
dependencies, and task status. Micro processes are
focused on the detailed tasks performed by a single
developer in his/her session. A Critique Resolution Task
is a micro process task. It is created by a critic. It
typically entails performing some very specific task to
resolve a problem discovered by a critic, and is discussed
further below.

Each developer has an agenda for each of his/her
sessions. Figure 2 shows which work objects have been
checked out into the session "Architecture", as well as

the outstanding tasks to be performed in this session.
For the selected task, "Design Execution
Architecture", two alternative resolutions are shown.

Within the ADM, macro process tasks arc
defined using MS Project™. In general, the ADM
uses MS Project for defining a project's tasks, their
dependencies, and the allocation of resources.
When imported into the ADM, MS Project tasks arc
converted into IPSE's task representation. IPSE,
which is responsible for task management in the
ADM, then distributes tasks to the personal agendas

32

of the developers assigned to them. IPSE synchronizes
the IPSE and MS Project task models during import and
export.

The developer can see what tasks have been assigned
to him/her, as well as upon which tasks his/her tasks are
dependent. Though this may seem simple, it is a
significant step toward reducing the process complexity
from the perspective of an individual developer. In a
following section, we will see how things are assisted
even more by supporting enactment of tasks on one's
agenda by providing automation support for the supplied
resolutions.

4.2. Automate What Is Understood

The place where the knowledge-based (KB) part of
KBSA is most evident in the ADM is in the area of
automation. Automation can be broken down into four
broad categories: Evolution Transformations, Critics,
Process Enactment, and Code Generation.

4.2.1. Evolution Transformations
Evolution Transformations (ETs) are editing

operations which make complete semantic changes to a
model. Their intent is to formalize as a single operation
stereotypical editing operations which are made up of
several other editing operations. This work is based on
the ET work done in ARIES[Jo91]. The ADM extends
this work by defining ETs which manipulate object-
oriented specifications, as well as create and maintain
object links between dependent concepts. The following
are some example ETs:
• Transform a relationship into a class: When

evolving simple models into more complex models,
a relationship between two classes must often be
transformed into a class in order to model more
complex information about the relationship. This
ET replaces the original relationship with a class
and two new relationships. The cardinality of the
new relationships is set to be consistent with the
original relationship. All object links to the original
relationship are moved to the new class. Finally,
accesses which traversed the original relationship
are updated to include the additional level of
indirection through the new class.

• Encapsulate concepts in package: When
transforming a conceptual model into a functional
model, information hiding becomes an issue.
Packages provide the encapsulation to achieve
information hiding. Encapsulating concepts in a
package requires creating the appropriate import
relationships between packages to preserve
necessary visibility between concepts.

• Change inheritance to delegation: In a conceptual
model one may show two classes as being related via
inheritance. In the functional model, one may

decide that this results in a model which is too
tightly coupled and thus would prefer to use
delegation instead. This ET will remove the
inheritance relationship, add a reference
relationship, update all references to the
previously inherited properties and operations
by adding the extra level of indirection over the
delegation relation, and update the constructors
of both classes with some stub code.

• Create a new model from an existing model:
One way to create a functional model is to
evolve the conceptual model into the functional
model. If you want to preserve the conceptual
model while also creating the functional model
you can make a copy of the conceptual model
and then evolve the copy. This ET both creates
the model and creates object links between the
objects of the two models. These links are the
basis for maintaining traceability and
propagating changes between models.

• Formalize dictionary term as Argo concept:
This ET creates an Argo concept of the same
name as the dictionary term from which it is
created. Additionally, it creates a traceability
link between the two concepts.

The advantages of ETs include: increased
productivity over performing several smaller editing
operations for the same semantic effect, reduced
opportunity for errors which could be caused by
forgetting to do one of the component edits or
performing it incorrectly, and more accurate
reflection of the users intent in the design history by
capturing modifications at the larger granularity of
ETs.

4.2.2. Process Enactment
Earlier we talked about how the project model

represented tasks and their interdependencies.
Simply representing them was a significant step
toward understanding and managing the complexity
of the software development process. Several
researcher (including [Hu89] and [Ka88] have taken
this concept further by monitoring process execution
for correctness and automating ("enacting") selected
process steps where possible. The ADM extends
this work by supporting a broader range of
enactments spanning both micro and macro process
steps.

There are two types of tasks which can be in
one's agenda and are enactable: Project Tasks (part
of a macro process) and Critique Resolution Tasks
(part of a micro process).
• Project Task: When the developer begins a

Project Task (e.g., create static model of
subsystem xyz) by selecting it from his/her

33

agenda to enact, IPSE automatically (1) ensures that
the entry criteria arc satisfied, (2) collects the
appropriate work products for the task, (3) launches
the tool(s) necessary for the task, and (4) updates the
project task's status to "in_progress". When the
developer completes the project task, IPSE
automatically (1) checks that the exit criteria arc
satisfied. If the exit criteria arc acceptable, IPSE (2)
returns the work products to the repository, (3)
creates a new version of modified work products, (4)
creates object links between work products and the
project task for traccability purposes, and (5)
updates the project task's status to "completed".

• Critique Resolution Task: When the developer
selects a Critique Resolution Task from his/her
agenda, he/she is presented with a description of a
problem which was found by some critic. Critics
evaluate work products and report their findings by
posting tasks to a developer's agenda. These
critique resolution tasks point out particular
problems or shortcomings in work products. Unlike
typical analyzers, ADM's critics are intelligent in
that they often include—as a part of their critique—
specific, alternative means of fixing or improving
the work product. The analyst may select the
desired alternative, at which point the critic
automatically or interactively makes the selected
improvement. Alternatively, the developer may
ignore the advice and do something completely
different. In the latter case, the task may be deferred
and/or revalidated. More information on critics will
be presented in the next section.

4.2.3. Critics
Critics are the best manifestation of an assistant in the

ADM. In general, they are analyzers which both check
models for desired properties and kibitz on how to fix the
model should the desired property not be satisfied. This
work draws most heavily on Fischer's critics work whose
goal was to automate the mundane and help bring to bear
knowledge at the appropriate time and place when the
developer needed it [Fi91]. The principal innovation of
the ADM in this area is the integration of critics with
IPSE. IPSE's agenda allows any critic to post a potential
task or problem and its potential resolutions on the
developer's agenda. The developer may then work on
which every problem he/she is ready to work on.

As an example, consider the type checker/linker—a
well understood analyzer. The ADM extends the
traditional functionality of this analyzer to include
suggesting ways to fix the errors it finds. When the type
checker/linker discovers a dangling reference it also
generates several resolutions each of which can fix this
problem. In this case, the generated resolutions arc (1)
rename the reference, (2) define the referenced concept

based on the reference, and (3) import a package
into the current package so that the referenced
concept is visible.

A resolution is basically a packaging of the
evolution transformation which will make the
desired modification so as to remove the error.
Additionally, it includes some subset of its
parameters already bound based on the context in
which the error was discovered. For example, in the
second resolution above, if the referenced concept is
a class, a create class ET will be selected. The name
parameter will be bound to the name of the
referenced concept and the package in which to
define the concept will be bound to the current
package.

Problems and resolutions are presented to the
user as Critique Resolution Tasks (CRTs) which
when created arc placed on the users task agenda.
The user upon selecting a CRT is presented both
with a description of the problem and the
enumeration of the alternative resolutions. The user
may then select the desired resolution which results
in executing the associated ET.

CRTs are managed by the critic which created
them. If a CRT is no longer valid (e.g., the model is
modified to remove the error), the critic must tell
IPSE to remove it from the agenda.

Currently the ADM has implemented three
critics: a type checker/linker, an Argo semantics
critic, and an object-oriented style critic.

4.2.4. Code Generation
ADM code generation translates an Argo

specification into C++. Toward this end, ALE has
been successful in several ways. The principal
success is preserving the semantics of Argo in the
generated C++. In particular, Argo has a fairly rich
data model which the generated code enforces.
Specific features include: maintaining referential
integrity on relationships, enforcing cardinality
constraints on attributes and relations, creating
appropriate destructors and copy constructors to
realize the desired semantics of composition
relations (e.g., cascade delete and deep copy over
composition relations), and creating initializers for
all properties. With respect to the dynamic model,
preconditions, postconditions, and class invariants
can be automatically inserted into the generated
code to aide in testing and runtime verification of the
specification.

Given KBSA's lineage back to automatic
programming, code generation has always been
considered one of the more important aspects of the
ADM. As we have explored technology transfer
opportunities within Andersen Consulting, we have

34

consistently found that code generation was of little
interest to the organizations we have targeted. Basically,
code generation is perceived as being of limited value.
Coding at the unit level is cheap. Code generation may
minimize the need for unit testing, but it does not address
assembly test, system test, product test, or acceptance
testing. The complexity is in describing all of the
business process to be covered, not in actually coding up
the individual business processes.

The problems with code generation as applied in a
business setting are four-fold: (1) How to integrate with
commercial COTS products (e.g., GUI builders,
relational database management systems, object-oriented
database management systems, and middleware of all
sorts)? These products often have their own proprietary
high level languages and have their own life-cycle of
versions to deal with. (2) Will the a set of products ever
be stable enough that the code generator can be used
enough times to justify the cost of modifying it for the
latest version of these COTS products? (3) Are the skills
necessary to build and maintain code generators
consistent with the skills available to a typical
engagement (i.e., project team)? And (4) how much does
adding generation technology to a development
environment add to the project's complexity and
associated risk?

A common request of front line developers within
Andersen has been, "Get me through analysis and design,
and then provide reliable pointers to where specific
concepts are reflected in the code." In this context, code
refers to either source code files or other source file (i.e.,
files which contain the proprietary high level language of
the advanced COTS product). With appropriate object
links, they could then do coarse grained impact analysis
when requirements or COTS products change and thus
be in a better position to manage when and where to
change the implementation.

4.3. Support Coordination

A primary shortcoming of much work in the KBSE
arena is that it has not addressed the issues associated
with teams of developers. The ADM addresses this by
providing a client/server development environment in
which multiple people can work simultaneously. Within
this environment the ADM provides repository
management, task management, and multi-party
discussions.

4.3.1. Repository Management
At the core of this environment is a centralized

repository from which developers working on their own
workstation can check-out work products and perform
development activities in the context of a long
transaction model. The repository supports both version
and configuration control. Interaction with the repository

is mediated by a session metaphor. When a
developer wants to view or edit some work product,
he/she checks the work product out of the repository
for either read or write. The repository enforces a
single writer, multiple reader protocol.

When a new version of a work product is
created, the ADM uses the agenda mechanism of
IPSE to inform all developers using older versions
that the work product currently in their session is no
longer the latest version. The notification appears as
a critic resolution task and offers as a resolution to
check-in the current work product and check-out the
latest version. By using the agenda mechanism, the
ADM gives the developer the flexibility of knowing
as soon as possible that he/she is working with an
older version, but allows the developer to delay
integration of the new version until he/she is ready
(maybe after finishing the task he/she is working
on).

The versioning system also facilitates
exploration of the design space by allowing
alternative versions of a work product to be created.
Central to managing alternative versions is the use of
discussion databases (i.e., a REMAP discussion) in
which developers can record why alternatives are
being created. Object links are used to connect the
discussion to the appropriate portions of the designs
(in either version). In this way, the differences
between versions can be highlighted and explained.
When one version is finally selected over another,
the rationale for the decisions can be captured as the
conclusion of the discussion. The capture of this
sort of information is central to supporting
coordination and collaboration between multiple
developers. This is another example of capturing
contextual knowledge which would normally remain
in the heads of a small number of developers who
were directly involved in the decision. It is now
available to other people on the team. As team
personnel turns over, this will become even more
important.

4.3.2. Task Management
As was described in earlier sections, the ADM

formalizes and manages the Project Tasks of a
development effort. From a coordination
perspective, this formalization and management
allows the ADM to identify and mediate resource
contentions which can arise within a team of
developers. The most obvious contention is clashes
over work products. Because IPSE understands the
dependencies between tasks it can moderate who
should have priority with a given resource.
Additionally, when a developer is denied write
access to a work product, IPSE can inform the

35

developer who has the work product and what project
task they are performing.

A more subtle contention occurs when developers
begin using work products which they believe are
released, but which are really still under development.
IPSE manages this via both explicit status attributes on
work products and formalized exit criteria on work
products. In the latter case, when a developer says a
work product is done, IPSE runs the exit criteria checks
to ensure they are satisfied. In this way, when a
developer goes to use a work product developed by
someone else, they understand exactly what its state is
and thus will use it correctly. That is, one may still want
to use a work product even though it is still under
development, but now with the knowledge on how stable
it is likely to be.

4.3.3. Multi-party, Structured Discussions
Previous sections described how REMAP discussions

can be used to capture both requirements and design
discussions. Because these discussions support multiple
participants, they make a significant contribution toward
supporting coordination and collaboration between
competing interests as a consensus is striven for.

A criticism of REMAP discussions is that they are a
mechanism outside of the normal process flow of a
development team. Most significantly, meetings—where
many critical requirements and design discussions and
decisions occur—arc outside the system and thus are a
source of lost contextual knowledge. The response by
the ADM is more methodological than technological.
Where are the meeting notes captured?

It is certainly the case that meetings are critical for
high band width discussions. But if notes are not
recorded of what alternatives where considered and what
decisions were made, then as we all know from personal
experience, important details will be lost and the meeting
will have to be held again (at least a short one to
reconstruct the "what" and "why"). REMAP should be
used to address this problem by using it to summarize the
meeting after the fact. The advantage of this approach is
that participants of the meeting will see the record and
have the opportunity to correct the record. If desired, the
discussion can be continued within REMAP. Of equal
importance, people who were not part of the meeting
have an opportunity to see what was discussed and add
their input if necessary. REMAP provides a significant
advantage over straight textual notes because it imposes
a specific structure on the discussion which allows
readers to quickly track the high level issues and then
selectively dive down into greater detail as desired.

5. Conclusion

This paper has described how the ADM incorporates

KBSA technology to address the software
development problems associated with complexity,
automation, and coordination. The most innovative
aspects of this work have been in the areas of
contextual knowledge (i.e., design history,
discussion databases, and object linking), process
support (i.e., personalized agendas and process
enactment), evolution transformations (i.e.,
transformations which automate stereotypical
changes to a model), and critics (i.e., integrating
intelligent analysis with process enactment).

While significant progress has been made there
are still several open issues. What is the appropriate
development process for using the ADM? Current
development processes have been constrained by the
limits of the available tools and the discipline of the
developers using them. More powerful and more
intelligent tools should shift the balance of
responsibilities and make new processes feasible
which may not have been possible in traditional
development environments.

How effective is the synergy between the
technologies described in this paper? Have the
technologies been integrated so as to support
developers building complex systems or do
developers find themselves trying to span awkwardly
integrated tools and technologies?

Past KBSA and KBSE efforts have suffered from
usability problems. Andersen's ADM precursor (the
KBSA Concept Demo), while an excellent
demonstration system, lacked many of the necessary
capabilities a development team had to have. The
ADM team has actively attempted to provide full
coverage for the types of tasks developers must have
in a development environment. In one case it meant
integrating a COTS tool (i.e., MS Project™). In
other cases, it meant building within our
environment less sexy, but critical capabilities
which are common in CASE tools (e.g., support for
multiple developers). The result has been a
development suite of tools which do span the full
life-cycle and demonstrate the application of
knowledge based techniques to address important
software development problems.

Answers to the above questions can only be
addressed by empirical evaluation. This is our next
task within the ADM Project. Empirical evaluation
of the ADM begins January 1997.

Acknowledgments

The ADM is the result of the work of many
people without whom it would not have been
possible. These people include past and present
members of the ADM development team: Steve

36

Sparks (Co-Principle Investigator), Chris Faris (Project
Manger), Dave Gaffaney, Jung Kim, Frank Luo,
Enaganti B. Naidu, Bill Sasso, George Ding, Steve
Killian, Ilango Radhakrishnan, Mike DeBellis, Jim
Coker, Xiangyang Shen, and Sudin Bhat.

This research is supported by Rome Laboratory of
the Air Force Materiel Command under contract F30602-
93-C-0015.

Rome Laboratory and Andersen Consulting are
interested in making the technology described in this
paper more broadly available. Contact the author if you
are interested in getting direct access to the ADM or the
frameworks from which it was built.

References

[Bo94] Booch, G., Object-Oriented Analysis and Design
with Applications, 2nd edition, Benjamin/Cummings
Publishing Company, 1994, p. 5.

[Br87] Brooks, F., "No Silver Bullet: Essence and
Accidents of Software Engineering," IEEE Computer vol.
20(4), April 1987.

[Cu88] Curtis, B., Krasner, H., Iscoe, N., "A Field Study
of the Software Design Process for Large Systems,"
Communications of the ACM, Vol. 31(11), November 1988.

[De92] DeBellis, M., Miriyala, K., Bhat, S., Sasso, W.,
and Rambow, O., "Final Report: Knowledge-Based Software
Assistant Concept Demonstration System," CDRL A007,
Government contract F30602-89-C-0160.

[Fi92] Fischer, Lemke, Mastaglio, Morch, "Critics: An
Emerging Approach to Knowledge-Based Human Computer
Interaction," International Journal of Man-Machine Studies,
35(5), pp. 695-721, 1991.

[Gr83] Green, Luckham, Balzer, Cheatham, and Rich,
"Report on a Knowledge-Based Software Assistant," RADC
TR 83-195, Rome Laboratory, 1983.

[Hu89] Huff, K. "Plan-based intelligent Assistance: An
Approach to Supporting the Software Development Process,"
doctoral dissertation, Dept. of Computer Science and
Information Science, Univ. of Massachusetts, Sept. 1989.

[Jo91] Johnson, W.L., Feather, M., "Using Evolution
Transformations to Construct Specifications," in Automating
Software Design, edited by Lowry and McCartney, AAAI
Press, 1991.

[Jo92] Johnson, W.L., Feather, M., Harris, D.,
"Representation and Presentation of Requirement Knowledge,"
IEEE Transactions on Software Engineering, Vol. 18(10),
October 1992.

[Jo93] Johnson, W.L., Benner, K.M., and Harris, D.R.,
"ARIES: Developing Formal Specifications from Informal
Requirements,", IEEE Expert, Sept. 1993.

[Ka88] Kaiser, et al, " Intelligent Assistance for Software
Development and Maintenance," IEEE Software, May, 1988.

[Ra92] Ramesh, B., "Supporting Systems Development by

Capturing Deliberations During Requirements
Engineering," IEEE Transactions on Software
Engineering, Vol. 18(6), June 1992.

[Ru96] Rumbaugh, J., "Layered Additive Models:
Design a process of recording decisions", Journal of
Object Oriented Programming, Mar/Apr 1996.

[Sm93] Smith, D.R., Parra, E.A., "Transformational
Approach to Transportation Scheduling", In proceedings
of the 8lh Annual Knowledge-Based Software Engineering
Conference, Chicago, IL, Sept 20-23,

37

Appendix 2

RASE: an Integrated Requirements Acquisition

Support Environment

Junhui Luo and Kevin M. Benner

Center for Strategie Technology Research
Andersen Consulting
3773 Willow Road

Northbrook, IL 60062 USA
+1847 714 2453

{luo,kbenner} @cstar.ac.com

ABSTRACT

This paper describes the capabilities of the
Requirements Acquisition Support Environment
(RASE). RASE supports the capture of informal
requirements; the negotiation and consolidation of
conflicting requirements; and the transformation of
informal information into formal descriptions.
Informal hypertext documents, requirements
discussions, consolidated term dictionaries, and
formal object oriented models are the results of these
activities. In the context of both these processes and
these work objects, RASE provides structured
traceability links between work objects, as well as to
their respective evolution history and rationale. The
uniqueness and strength of RASE lies in the
integration of a broad set of capabilities not found in
any other single tool. Other tools have had limited
impact on the requirements task because they have
been too focused on only small number of activities
rather than the broad set of activities necessary during
requirements acquisition.

Keywords

Requirements acquisition, design rationale, structured
discussion, evolution transformation, traceability.

INTRODUCTION

Traditional software engineering approaches treated
systems requirements as a set of document—typically
textual documents with diagrams. Little help was
provided to maintain consistency between document
nor to link these documents to down stream

development work objects. Some approaches used
only natural languages with informal semantics, some
used semi-formal notations. These approaches
tended to suffer from the following essential
problems.

First, requirements do not exist as distinct things
ready to be collected. In fact, requirements for
complex systems need to be constructed as the result
of an engineering process. Second, most human
information exchange activities happen in the context
of a large number of unsaid assumptions. As a result,
direct capture of requirements and requirements
discussion may fail to capture such information.
Third, requirements rationale (i.e., why these
requirements) needs to be captured, along with the
requirements themselves. Fourth, requirements
information is voluminous and must be properly
structured to be useful for subsequent life-cycle
activities.

In recent years there have been a number of research
efforts to address the above problems, but these
individual efforts have had limited impact on the
requirements task because they have been too focused
on one activity rather than the broad set of activities
necessary during requirements acquisition. We
contend that a requirements acquisition support
environment must address all of these activities in
order to be effective at alleviating the problems of
today's software development projects. The
uniqueness and strength of RASE lies in the synergy
it creates by integrating a variety of requirements
activities.

38

We have taken a transformational approach toward
the requirements engineering process. The idea bears
similarity to Johnson' and Feather's work [3] in the
specification area. We view the requirements
engineering process as the process of eliciting initial
informal information and gradually transforming the
informal information into formal representations. As
being commonly observed [1, 4, 10], during this
process we expect conflicting requirements to emerge
and to be the subject of discussion until a common
position is achieved. We provide multiple models to
cover the full spectrum of informal and formal
information representations. RASE provides a tool
for the manipulation and viewing of each
representation:

• Hyper text documents enhanced with multimedia
objects, e.g., video, audio, and graphics are used
to capture raw requirements information. A
structured hypertext composition / navigation
tool is used to provide traceability among
requirements elements.

• A tool supporting the REMAP [1] model is
provided for structured requirements and design
discussions. Each discussion element, e.g., an
issue or a position, in the REMAP tool is itself a
hyper-document and thus can be linked to other
design artifacts.

• RASE also has a Term Dictionary tool that is
used to capture important project concepts and
terms. The Term Dictionary tool is also built on
top of the hyper document tool. Therefore, term
definitions in the Term Dictionary can be hyper-
linked to their uses and related design elements.

• Integration of these capabilities with other design
and development tools in our environment, such
as the Specification Language Diagrammer,
supports full traceability and design rationale
capture of life-cycle artifacts.

The rest of this paper is organized as follows. The
next section describes the problems in requirements
engineering that RASE addresses. The following
section will describe the capabilities of RASE in
detail. Next we briefly mention some implementation
information of RASE. Finally, we conclude by
comparing our work with related works, summarizing
our contribution and pointing out future directions.

PROBLEM STATEMENT

First, requirements do not exist as distinct things
ready to be collected. In fact, requirements for
complex systems need to be constructed as the result
of an engineering process. There are various reasons
that this is so. Initial requirements may only exist in
people's mind as vague ideas, they may not be well
thought of, can conflict with each other, and are
incomplete. Or individuals with different social or
organizational background may have different and
conflicting project goals, and they may make various
implicit assumptions that they assume to be true and
do not actively communicate these default
assumptions. Before proceeding to subsequent phases
of development, these vague ideas need to be
articulated, conflicts need to be resolved, a consistent
set of requirements need to be arrived at, and the
requirements need to be prioritized. Models,
processes, and tools are necessary to assist in this
process. Lack of such guidance and help results in
ineffective and inefficient requirements acquisition
activities.

Second, research in social sciences has demonstrated
that many important human information exchange
activities happen in the context of a large number of
unsaid assumptions. In order to communicate,
participants may need to make enormous amount of
implicit assumptions about the social, organizational,
and domain context where a conversation takes place.
Such assumptions are necessary for participants to
interpret and make sense of what is being spoken or
written. Therefore, it may not be sufficient to just
capture requirement statements alone, but also the
underlying implicit assumptions and context required
to understand and interpret each requirement
statement.

Third, because requirements information can be
voluminous, often times requirements documents
become write-only. It is hard for project personnel to
locate relevant information when the documents lack
structure appropriate to support design and
development activities and when there is minimal tool
support.

Fourth, today's software systems are so complex that
no individual understands an entire system. In fact,
understanding of the system itself is often not
sufficient. But rather, history and rationale about why
things are the way they are also need to be
understood. This understanding is critical when
further decisions need to be made, or when an

39

existing system needs to be changed to meet new
requirements. This kind of critical systems knowledge
is often only understood by a few key project
members and is kept in their mind or informal notes,
rather than formally captured and made generally
accessible. As time passes, these team members'
memory may become vague. When they leave the
project team, this knowledge is lost.

These problems compound. The net result is poor
requirements quality, and consequently poor product
quality. Of course, they can also lead to schedule and
cost overrun, project failure or cancellation.

Our answer to these problems is to provide computer
support for the broad set of requirements acquisition
activities.

Using computer to capture the enormous amount of
knowledge and contextual information of a software
system greatly alleviates the burden on the human's
part. Properly structured contextual information of
the right granularity that is hyper-linked to life-cycle
artifacts provides developers with convenient access
to information that is relevant.

RASE CORE FUNCTIONALITY

RASE takes a transformational approach toward
requirements gathering. As we mentioned earlier, we
view the requirements engineering process as the
process of eliciting initial informal information and
gradually transforming the informal information into
formal representations. During this process we expect
conflicting requirements to emerge and to be the
subject of discussion until a common position is
achieved. Two essential problems associated with
today's large scale software development projects are
related to the issues of complexity and automation.
RASE addresses the complexity issue by providing
notations and tools for properly structuring
information; and addresses the automation issue by
supporting high level semantic operations on
information to relieve humans from performing
mundane, tedious, but well-understood operations
thus reducing the likelihood of errors that humans
may make when performing such operations.

In this section we will describe in detail the
capabilities provided by RASE.

The RASE Requirements Acquisition Process
Model

Initial systems requirements arc gathered from
multiple sources. They can be from previous systems
operations manuals, interviews and meetings with
user and other stakeholders, etc.. They arc often
expressed using written natural languages, drawings,
or verbal communications. As a starting point, this
information needs to be captured. RASE captures this
information via hypertext documents which support
textual, graphical, audio and video representations.

As the initial requirements arc gathered from multiple
stakeholders, they arc usually ambiguous,
inconsistent, and incomplete. They need to be
analyzed and consolidated. One way to accomplish
this is by adding formality to the representation. For
examples, requirements ambiguity or inconsistency
may stem from the fact that terminology is only
loosely defined. These problems may be the result of
different people using different terms to name the
same concept, or using the same term to name
different concepts. These problems can be addressed
by defining a unified and standard terminology.
Requirements can also be disambiguatcd by using
formal notations, e.g., formal specification languages.

The requirements engineering community has long
realized that this informal to formal transformation
task is a complex process. It is widely agreed that in
order to fully understand the outcome of this process,
the rationale and the process history must be
captured, along with the actual transformation. This
rationale is usually the result of a multi-party
discussion and negotiation process. [1, 2, 4, 10]
proposed models and tools for structuring and
capturing such processes.

RASE is designed specifically to support this view of
requirements engineering. RASE provides a number
of integrated tools to cover the spectrum of informal
to formal systems descriptions, mechanisms for
assisting the transition from informal to formal
description, and mechanisms for capturing the
rationale and history of the transitioning process. In
the following, we will first describe each of the
component RASE tools in more detail, then we will
describe how the tools work together to provide the
synergy for assisting the requirements capturing
process, especially the transition from informal to
formal description, capturing requirements rationale,
and creating traccability links between requirements
objects.

40

Components of RASE

As we mentioned earlier, RASE consists of three
integrated tools: the hyper document editor / browser,
the REMAP discussion tool, and the Term Dictionary
tool.

The Hyper Document Editor and Browser

The hyper document editor / browser supports
capturing of informal information in English. The
editor supports WYSIWYG style composition and
point-and-click style navigation of hypertext. Figure 1
is a screen image of the hyper document editor /
browser's user interface.

Dacanent Ed» Node Insert MjectU* antat Büofcmaric te* OperaBonS

Back fwwartj ftW FM Hypenpace «stay

{Truck Model: Requirements Specification

il. Executive Summary
{This document specifies the requirements for the truck model
(from perspectives of truck manufacturers, dealers, and owners,
The truck model must satisfy these requirements to support
j day-to-day operations of these stakeholders.

|2. The Manufacturer View
This section describes the requirements of the truck model from
{truck manufacturer's perspective. The manufacturer's model must
| specify all truck parts and their relationships, complete part
j information, typical problems, their symptoms and fixes, all truck

;i instances and their owners, etc..

H-J

»Message

Figure 8: The hyper document editor / browser tool

Each hyper document is organized into a hierarchy of
hyper nodes. The node hierarchy reflects the natural
organization of a document into chapters, sections,
subsections, etc.. Each hyper node contains text that
may have embedded hyper-links. A hyper-link is a
substring of the text in a node that is object-linked to
another work object in the ADM repository, e.g., a
piece of text in the same or another hyper document,
a class, attribute, relationship or operation in a formal
specification. A hyper node can also contain
references to multimedia objects, i.e., pictures, audio
or video files. These multimedia elements can be
enacted via mouse-clicking, a la popular Web
browsers.

Each hyper node can be assigned a string-valued type.
An analyst can use this feature to mark a node as a
requirement, an issue, etc.. As we will see later, this
feature will also allow the exporting of marked node
contents to other types of representations, for
example, a REMAP discussion.

Organization of a hyper document into a hyper node
hierarchy allows information management at a finer
granularity. Hyper nodes are treated as first class
objects in ADM. The editor / browser provides query
engines that operate based on the node structure. For
example, an analyst can specify a query to find all
hyper nodes that are marked as requirement in a
document. Nodes also provide unit of sharing. A new
hyper document can be assembled from existing
nodes in other documents.

Bookmarks can be created to mark any position inside
the text of any node. Bookmarks provide the analyst
with an easy way to remember important places in a
document as well as serving as object-link target. For
instance, an object link can be created that traverses
from the concept "Elevator" in a formal specification
to a bookmark in a hyper document where a textual
description of an elevator can be found.

The hyper document editor tool also supports an
outline view of a hyper document. In an outline view,
only header (numbering and title) information of
hyper nodes is shown. The hyper node hierarchy can
be conveniently (re-)arranged in an outline view. The
editor supports standard word processor functions
such as text style change, cutVcopy/paste, import /
export, and print.

The REMAP Discussion Tool

REMAP [1] is an extension of the IBIS (Issue-Based
Information System) [10] model. Figure 2 shows the
REMAP discussion schema. The IBIS model is
embedded as a sub-schema (indicated in dotted box).
In the REMAP model, requirements acquisition task
is viewed as a structured discussion and deliberation
process. Given initial input requirements, issues
concerning their fulfillment are raised. Positions that
are possible resolutions of the issues are then
proposed and arguments are generated that either
support or object to positions. Eventually decisions
are made that select certain proposed positions to
resolve all issues. Finally, based on the decisions,
refined or consolidated requirements are generated as
output of the discussion process. The model enforces
a structure on discussions, categorizes discussion

41

elements according to the role that they play, and
identifies the semantic relationship among discussion
elements. By following this model, the requirements
acquisition process can be conducted more effectively
and efficiently. For details of the REMAP model,
refer to [1].

IBIS

INITIAL
REQUIREMENT

GENERALIZES" ,-^r
SPECIALIZES L—-

ESTEDBV^^J^^

^^^RESP(

GENERATES

ISSUE

POSITION

RESPONDS TO

■*

GENERAUZES/
SPECIALIZES r*"

REPIACES'OAJESTIONS'
IS SUGGESTED BY

SUPPORTS'
OBJECTS TO

*
S SUGGESTED BY

ARGUMENT

-°^r

ASSUMPTION

DECISION
IMPLIES'
LEADS TCv'

1'GENERATES

CONSTRAINT

CONSOLIDATED;
REQUIREMENT

Figure 9. The REMAP model

The ADM REMAP discussion tool supports the
REMAP model. The tool allows on-line multi-user
requirements discussions. Elements of discussions are
recorded in the database and arc linked with relevant
work objects. Figure 3 shows a screen image of the
user interface of the ADM REMAP tool. The top part
of the window graphically displays the structure of a
discussion. Different types of discussion elements are
shown using differently shaped and colored icons.
Semantics of links between discussion elements are
indicated using different colors. The bottom part of
the window displays details of a discussion element.
The details include the type of the discussion element
(e.g., an issue or a position), a short name, the author
(automatically captured by the tool), date created, and
a detailed description. The detailed description field
uses the same hypertext widget that the hyper
document editor uses. Therefore, text in the detailed
description field can contain hyperlinks to other
ADM work objects, as well as multimedia objects. A
user can use the palette items on the left side of the
window to create discussion elements (issue, position,
argument, etc.) and typed links. Each discussion
element can also be assigned an owner. An owner can
be different from the person who created the element.
The owner of an issue is responsible for seeing the
issue being eventually resolved.

By capturing such design deliberation process data in

the same environment where the end products (work
objects) arc kept, important rationale and contextual
information are kept and can be linked with the end
products. By providing a spectrum of granularity of
information (discussion elements, hyper node
hierarchy), such links can be maintained at
appropriate level as desired. This is important
because the key to the understanding of a requirement
or a piece of design is being able to locate its relevant
contextual information, and only the relevant
information. In the later section on evolution
transformations, we will also describe how such
traceability links can be automatically created.

fl> Qb.eC TeK" V** Lay} • A-nrmer;'

tfc «r!w>
JLL *

3L >•

/

2i Mr

JL . -.'""' '.,i- ' as — JKE
±

^ l"" !,♦! LI M

/ /

<&*, &"* n.«M

,-■' /

Ct«i: REQUIREMENT

SWfiM'

-cut'. (■»r.ti.jmjL requi!

H

Figure 10. The REMAP tool user interface

Such deliberation discussion processes arc part of the
information refinement and transformation process.
Inputs to a discussion are raw information, outputs
from a discussion arc processed information. In the
case of a requirements discussion, inputs can be
initial requirements from multiple stakeholders,
which may contain ambiguities and conflicts with one
another. After the stakeholders negotiate their initial
requirements using the REMAP model and tool, the
outputs from the discussion will be consolidated
requirements that have resolved the ambiguities and
conflicts.

The Term Dictionary Tool

In this section we describe the third tool in RASE, the
Term Dictionary tool that provides a place where
unified terminology can be defined.

It has long been recognized that as a large software
project progresses through its phrases, it is important
to keep track of the important terms that stakeholders

42

use to describe concepts relevant to the project. These
concepts range from those in the original application
domain (e.g., Inventory), to those created in the
various phases of the project as results of the
requirements engineering, design, and development
activities (e.g., Inventory Control Module, User
Interface Framework). There can be an enormous
amount of such concepts and terms in a large project.
These concepts and terms emerge and evolve as the
project progresses. At the beginning of the
requirements gathering stage, various concepts
related to the system to be built are usually only
vague ideas in people's mind. People use terms that
are not well-defined to talk about the system. They
may use the same term at different times to mean
different things, or use different terms to mean the
same thing. In a large scale project involving multiple
stakeholders, individuals from different organizations
are very likely to use different terms to describe the
system to be built because they have different
organizational and cultural background and the
system to be built plays different roles in their
respective organizations. But obviously it is essential
that all stakeholders must come to talk in a unified
"language" before they can achieve consensus on
what is to be built. Data dictionaries in traditional
CASE tools provided a facility for capturing data
items in a project. However, in a real life large scale
software project, there is strong evidence and
tendency that these data dictionaries are not actively
maintained, resulting in out-of-date, incomplete, and
inconsistent data definition items. Thus data
dictionaries in traditional CASE tools fell short of
supporting the active maintenance of important
project terms.

The RASE Term Dictionary tool addresses these
problems by leveraging and synergizing the ADM
hypertext engine and the Object-Linking mechanism
to make the term maintenance effort easy. The Term
Dictionary uses the hypertext engine as its front-end,
thus allows the definition of a term to be hyper-linked
with its uses through out the project database.

Figure 4 shows the user interface of the Term
Dictionary tool. The Term Dictionary tool is built on
top of the hyper document editor. Terms are
alphabetically ordered in the dictionary. Through user
interface menus a user can define and modify terms
and their definitions. Because the term definition field
is a hypertext widget, the term definition can be
hyper-linked to places where the term is used, or
linked to other related work objects. This pervasive
use of typed object links makes it possible to ensure

consistency of term usage across a project. This
powerful object-linking capability distinguishes the
RASE Term Dictionary tool from data dictionaries in
traditional CASE tools.

He Edit ObfectUnk Operations

i'. I-: i: II t I 1. H I .1 f. I H N U H li H o 1 U V V! X V -'

IftOfcL

iniMn-Hih-hy. Trtilmv

ADM: Hie Advanced Development Model Project of the
».«lull»; llaaml Si.lMstr rnrin>wim Hi.i-ain

Description*).

Usage references: DocumentNamel, DocumentName?

Next Entry:

Figure 11. The Term Dictionary tool user interface

The Term Dictionary tool assists the transition from
informal information to formal descriptions. As
requirements discussions are conducted, stakeholders
will converge on using the same set of terms to make
sure that they are all talking in the same language.
These unified common terms are then captured in the
Term Dictionary so people can start to use formally
define terms instead of unconstrained natural
language. We will describe the role that the Term
Dictionary plays in the transition of informal
information from hyper documents to formal
specification language constructs in the next section
on evolution transformations.

EXTENDED RASE CAPABILITIES

We mentioned earlier that one of the innovative
aspects of RASE is the synergy it creates by
integrating multiple technologies. In this section we
describe RASE operations that work across tool
boundaries. These operations involve work objects
that are managed by different tools or require the
collaboration of multiple tools. We will describe how
the synergy created by the integration of multiple
tools makes RASE capable of directly supporting
requirements activities which was not possible with
individual technologies.

Critics

Critics can be thought as automatic agents that

43

analyze a design [7], inform users of the status or
possible anomalies of work objects. Critics can be
used to evaluate software designs against design
guidelines, verify their compliance with design styles,
and identify potential problems, etc.. RASE supports
critics that work in the requirements domain.
Currently RASE has a number of critics that analyze
REMAP discussion structures.

When a critic has identified a situation that needs the
user's attention, it creates a critic resolution task (or
CRT for short) and post it on the user's personal
agenda. A CRT is both a description of the problem
that the critic discovered and a list of alternative
resolutions which can resolve the problem. The user
has the choice to select one of the resolutions, ignore
the CRT, or fix the problem manually. Selecting a
resolution results in invoking a evolution
transformation which automatically or interactively
corrects the problem. Ignoring the problem leaves the
CRT on the user's agenda as a reminder of a problem
which needs to be addressed eventually. Finally, the
user may decide that none of the suggested
resolutions are appropriate and make some other
change to resolve the problem. In this case, the critic
is responsible for monitoring the work object and
removing the CRT from the user's agenda once the
problem is resolved.

The following are examples of RASE critics:

Identify Unresolved Issues

An unresolved issue in a REMAP discussion is one
for which a decision has not been made. When the
RASE critic "Identify unresolved issues" finds such
an issue, it creates a CRT. There arc two explanations
for this problem. One is that people have not started
discussing the issue yet. The other is that the issue has
actually already been identified and resolved
elsewhere. Because of the two common explanations,
there are also two possible resolutions for the
problem. One is to create a decision to resolve the
issue, the other is to combine the issue with another
one.

We list a few more RASE critics here and briefly
mention their function without going into details.

Generate Notification

This critic sends notifications to users when events of
interest happen. For example, when a new position is
created that responds to an issue, this critic sends a

notification to the owner of the issue.

Check Ownership

This critic checks if all issues in a discussion have
been assigned an owner. That all issues have owners
is important to ensure that relevant discussions will be
started and that the issues will be resolved.

Evolution Transformations

In the KBSA community, the notion of evolution
transformation (ET) traditionally referred to high
level editing operations that maintained the semantic
integrity of a specification [3]. For instance, the
operation that changes a variable name and updates
all references to the variable is an ET. Another
example could be one that promotes a relationship
between two classes in an object-oriented design to a
class by its own right, and properly updates all
references to the original relationship. ET's arc not
necessarily semantics-preserving, since application of
ET's in general evolves the specification from higher
level abstraction to lower level details, resolves
ambiguities, eliminates incompleteness, etc.. ET's
have the advantage of being at the high level and
maintaining semantic integrity, e.g., using ET's can
eliminate human errors such as forgetting to update
references to a renamed variable.

We have extended the notion of ET's to apply to all
types of ADM first class objects, instead of just
formal specification objects. In this section, we
describe several interesting RASE ET's that work in
the requirements domain. The RASE ET's provide
very high level, usually cross-tool operations on
requirements objects to transform less formal
concepts to more formal ones.

The following is an example of an ET:

Promote Term Definition

RASE provides two ET's that work together
to automate the process of identifying terms
from hypcr-documents, capturing rationale
of why terms were nominated, inserting them
into the term dictionary, and creating
traceability links between the original
phrases in hyper-documents, rationale
information, and definitions in term
dictionary.

Consider the case when an analyst examines a

44

requirements hyper-document, she finds that a phrase
in the document defines an important concept and
therefore should be formally defined in the Term
Dictionary. She can highlight the phrase, say "truck
manufacturer" in the hyper-document, and invoke the
first ET, "Propose new term", from a user interface
menu. This ET will: 1) create a new issue in the
REMAP discussion that is dedicated to the
nomination of terms, automatically giving the new
issue an appropriate default name; 2) create a CRT on
the analyst's agenda, the CRT will have one
associated possible resolution. This resolution is
another ET. This second ET is to create a default
position and a default decision responding to the
newly created issue that call for the inclusion of the
term in the term dictionary. This ET will also create a
new term definition entry in the term dictionary,
create a hyperlink from the original phrase to the term
definition, a use reference hyperlink from the term
definition to the phrase in the hyper document, and
another object link between the decision and the
definition. The analyst may or may not choose to
resolve the CRT using the suggested resolution. If she
does not, a full multi-party REMAP discussion can be
started on whether the term should be included in the
term dictionary, starting from the issue that has
already been created. However, if she does choose to
use the suggested resolution, aforementioned
position, decision REMAP nodes, the term definition
entry, and the object links will be automatically
created.

The advantage of using this critic and associated CRT
is that

• it ensures that the term created has traceability
links back to the rationale information in the
REMAP discussion, as well as relevant
information in the hyper document where the
term was identified;

• the process is automated and frees the user from
remembering to generate relevant traceability
elements.

This example illustrates how RASE ET's and critics
together accomplish high level semantic operations
which can be tedious to perform manually.

We briefly describe a few more ET's here without
going into details.

Promote Term to Specification Language Concept

There are also two RASE ET's that work together to
promote a term in the Term Dictionary to a concept in
the formal specification language, e.g., a class,
relation, attribute or operation. These ET's work in a
similar fashion as the previous two. They create
specification language objects as well as related
rationale objects and traceability links. These and the
previous ET's are examples of how RASE supports
transformation of initially informal information to
descriptions of different degrees of formality.

Create Use Reference Hyper Links

This ET, when given a user selected term in the term
dictionary, finds all uses of the term in specified
hyper documents and creates hyper links from the
term definition to the places where it is used.

Export Information to a REMAP Discussion

We mentioned earlier that hyper nodes in a hyper
document can be given types such as issue or
assumption. This ET exports all hyper nodes that are
so marked to a REMAP discussion, automatically
creating REMAP nodes of the corresponding types
and creates traceability links between the hyper nodes
and the REMAP nodes. This is useful because initial
systems requirements are usually captured in textual
format. As an analyst reviews a document, she may
categorize different hyper nodes into types. The raw
information in the hyper document need to be
discussed before consolidated requirements are
obtained and this ET prepares the inputs to the
discussion.

Term Evolution

This ET finds all uses of an old term in specified
hyper documents and changes them to the new term.
This is convenient when a concept is given a new
name and when there have already been documents
using the old term. The use reference hyper links will
be maintained after the operation.

IMPLEMENTATION INFORMATION

RASE is being built as part of the Knowledge-Based
Software Assistant (KBSA) / Advanced Development

45

Model (ADM) Project' [17]. The KBSA/ADM
Project is building an integrated object-oriented
design and development environment that provides
automated assistance to individuals and teams
spanning the entire life-cycle of large software
projects. In the current phase of KBSA/ADM, we arc
building a field-prototype environment that is able to
support a 4 to 5 person team to develop systems of
about 50 KLOC in size for real life applications. The
ADM environment currently consists of three
components: RASE, ALE (ARGO Language
Environment), and IPSE (Integrated Performance
Support Environment). These components address
complimentary aspects of software development.
RASE supports capturing of informal information,
i.e., information in the form of free format hypertext
and multimedia elements, structured discussions, and
terms important to the project. ALE supports the
formal specification and design of systems by
providing a high level object-oriented specification
language ARGO with rich semantic modeling
constructs. ALE provides graphical manipulation of
ARGO specifications using OMT-likc notation. IPSE
supports project task management at both the project
team level and individual developer level. At the team
level, it supports project planning and decomposition
by integrating and exchanging data with Microsoft
Project™. At the individual level, it supports personal
agenda management by informing the developer the
project tasks that she is assigned to perform and
allowing direct enactment of these project tasks from
the agenda.

System Information

Currently the ADM tool set works on SUN
SPARCstations™ under Solaris™ 2.4 environment.
The tool set uses a commercial object-oriented
database system, ObjcctStore™ from Object Design
Inc. to store software life-cycle artifacts, e.g.,
requirements and design documents, ARGO packages
and specifications. ObjcctStore provides persistency
and versioning of stored objects. User interface of all
ADM tools are built on top of the commercial
graphical user interface library Galaxy/C++™ from
Visix Software. The ADM tools also use
PowerBroker™ for inter-process communication.

' The KBSA/ADM Project is sponsored by US Air
Force Rome Laboratories under contract number
#F30602-93-C-0015.

The ADM Technical Architecture

The ADM technical architecture provides common
infrastructural capabilities that are reusable across all
ADM tools. Three such capabilities that worth
particular mentioning are model-view framework,
object linking and remote messaging. These
capabilities are key to the realization of the functional
capabilities of RASE.

The model-view framework provides basic
capabilities for building views (i.e., graphical user
interface windows) based on the models (i.e.,
contents stored in persistent database). The model-
view framework automatically synchronizes all views
with the model when contents of the model change.
All ADM Tool views are always consistently
reflecting the contents of the (persistent) model. As a
user invokes operations from the user interface to
change design artifacts, changes arc directly made to
objects in the model and views are automatically
updated. Therefore, there is no separate operation
such as save in ADM to save what the user sees in
views to the database.

Object-linking provides the capability for any ADM
work object to refer to another ADM work object,
whether the two objects are managed by the same tool
or different tools. The object-linking mechanism
makes it possible to create and traverse such cross-
tool object links. An ADM tool user can select any
two work objects via the graphical user interface
windows and link them. When the user traverses an
object link via the user interface, the object-linking
infrastructure automatically displays the target object
of the link in the original view in which the link was
originally formed, invoking another ADM tool if
necessary.

Remote Messaging provides a mechanism for inter-
process communication. It also defines a hierarchy of
standard remote message types. Object-linking uses
remote messaging to create and traverse cross-tool
object links.

RELATED WORK

As we mentioned, RASE integrated and extended a
number of requirements technologies and created
capabilities which were not possible with the
individual technologies. These constituent
technologies include hypertext (e.g., Garg and
Scacchi [5]), structured discussions (e.g., gIBIS of
Conklin and Begcman [10], REMAP of Ramcsh and

46

Dhar [1], Win-Win model of Boehm et. al. [4]),
design critics of Fischer et. al. [7], and evolution
transformations from the KBSA community [15,3].

Although all structured discussion approaches share
similarities, they differ in their emphasis and scope.
gIBIS [10] is a simple conversation model that
identifies conversation elements as issues, positions
and arguments. REMAP [1] extends the gIBIS
approach to include the context (inputs and results) of
discussion. The Win-Win model and system [4] has a
great emphasis on the reconciliation of different
viewpoints of multiple stakeholders. It views the
requirements process as the negotiation of different
stakeholders to reconcile their individual win
conditions and requirements as some type of
combinations of different win conditions. Depending
on the nature of a project and its environmental
conditions, one model may work better than others.
One model that works better in one project may not
be the most suitable in another.

The Nature (Novel Approaches to Theories
Underlying Requirements Engineering) project
applied AI techniques to requirements engineering. It
focused on reconciling heterogeneous representations
of requirements.

CONCLUSIONS AND FUTURE DIRECTIONS

RASE has integrated a multiplicity of technologies to
address problems related to requirements acquisition
activities. These technologies include hypertext and
multimedia [12, 8], structured discussion [1, 2, 4, 10],
evolution transformation [3], and design critics [7].
RASE supports

• capturing of information in informal form from
multimedia elements (e.g., audio or video
recordings of client meetings) to natural language
text;

• multi-party structured discussions following the
IBIS/REMAP model;

• capturing of important terms;

• evolution transformation of informal information
to formal representations;

• maintenance of traceability links among
requirements objects and their rationale.

The uniqueness and contribution of RASE is not in

these individual technologies, but rather, in the
synergy it creates:

• RASE offers a spectrum of notations of varying
formality (free style natural language, unified
terminology, object models). Analysts can use
the notation that is most appropriate at a
particular stage of development.

• RASE defines model-spanning evolution
transformations that evolve requirements from
informal to formal.

• RASE maintains traceability information and
evolution history of requirements objects as they
are transformed.

This synergy allows RASE to overcome problems of
using individual technologies and solve problems
which was not previously possible with individual
technologies.

Even though in this paper we discussed the RASE
technologies in the context of requirements
acquisition, they can and in fact should be used in
other life-cycle stages as well. Natural language
documents are used to describe initial requirements,
consolidated requirements, designs, and
implementation notes. As Ramesh and Dhar pointed
out in [1], the REMAP model is useful for any work
that involves a deliberation process. The inputs to a
REMAP discussion can be initial requirements and
the outputs be consolidated requirements, the inputs
can be the consolidated set of requirements and the
outputs be designs, or the inputs can be designs and
outputs be implementations. Term Dictionary can be
used to capture terms used in the design and
implementation stages as well as the requirements
acquisition stage. Therefore, with RASE, all life cycle
work objects (requirements, designs or
implementations), their rationale, project tasks that
create these objects, and objects links between these
objects and tasks form a web of information that is
interconnected with semantically-typed links. This
web of information provides a mechanism for
integrating, organizing, indexing, and retrieving the
enormous amount of information that is captured and
generated during requirements, design, and
development activities. This interconnection provides
contextual and rationale information that is important
to the understanding of individual pieces of work, as
we pointed out in the problem statement section.

RASE has shown the potential of integration by

47

integrating a number of existing requirements
technologies. By no means is RASE as it is now able
to cover all aspects of requirements engineering. For
example, although the REMAP technology help
identify individual requirements, it does not provide a
framework for evaluating and prioritizing them.
Therefore, integration with QFD [11] and trade-off
analysis (e.g., [13]) types of technology would further
extend its coverage and power. Another direction for
future work is to support customizable discussion
models. As wc pointed out previously, no single
discussion model is the best under all situations.
Supporting a structured discussion tool where the
discussion model is parameterized and instantiated by
a project would offer this flexibility.

ACKNOWLEDGMENTS

Steve Sparks contributed many important ideas to the
RASE vision. George Ding and Reuben George
implemented many features of RASE. The authors
would like to thank Chris Faris, the ADM project
manager, for his support of this work. They also
thank all other ADM team members, particularly
Enaganti B. Naidu and Ilango Radhakrishnan of the
Technical Architecture team, for providing the
technical infrastructures that made the
implementation of RASE possible. The authors also
would like to thank Ming-June Lee who offered
valuable inputs and help during the preparation
process of this paper.

REFERENCES

1. Ramesh, Balasubramaniam and Vasant Dhar,
Supporting systems development by capturing
deliberations during requirements engineering.
IEEE Trans, on Software Engineering, Vol. 18,
pp. 498-510, Jun. 1992.

2. Potts, Colin, Kenji Takahashi, and Annie I.
Anton, Inquiry-Based Requirements Analysis,
IEEE Software, March 1994, pp. 21-32.

3. Johnson, W.L., Fcather,M., "Using Evolution
Transformations to Construct Specifications", in
Automating Software Design, edited by Lovvry
and McCartney, AAAI Press, 1991.

4. Bochm, B.W., P. Bose, E. Horowitz, and M.J. Lee.
"Software Requirements Negotiation and
Renegotiation Aids: A Theory-W Based Spiral
Approach." In Proceedings 17th International
Conference on Software Engineering, pages 243-

253. ACM Press, April 1995.

5. Garg, P. and W. Scacchi, "On Designing
Intelligent Hypertext Systems for Information
Management in Software Engineering,"
Hypcrtext'87, 1987.

6. Nuscibch, B. J. Kramer, and A. Finkclstein. "A
Framework for Expressing the Relationships
between Multiple Views in Requirements
Specification." IEEE Transactions on Software
Engineering. 20:760-773, October 1994.

7. Fischer, G. et al., "Supporting Software Designers
with Integrated Domain-Oriented Design
Environment." IEEE Transactions on Software
Engineering, pages 511-522, June 1992.

8. Takahashi, K. et al. "Hypermedia Support for
Collaboration in Requirements Analysis". In
Proceedings Second International Conference on
Requirements Engineering, pages 31-40. IEEE
Computer Society Press, April 1996.

9. Pohl, K. ct al. "Applying AI Techniques to
Requirements Engineering: The NATURE
Prototype ." In Proceedings ICSE-Workshop on
Research Issues in the Intersection Between
Software Engineering and Artificial Intelligence,
May 1994.

10. Conklin, Jeff, and Michael L. Begcman, gIBIS: A
Hypertext Tool for Exploratory Policy
Discussion. ACM Transactions on Office
Information Systems 6(4), pp. 303-331, October
1988.

11. Akao, Yoji, Quality Function Deployment:
Integrating Customer Requirements into Product
Design. Productivity Press, Cambridge, MA,
1990.

12. Christel, M., Wood, D., & Stevens, S. Applying
Multimedia Technology to Requirements
Engineering. In: Proceedings of the Sixth Annual
Software Technology Conference. Salt Lake City,
UT: Software Technology Support Center, April,
1994 (CD-ROM proceedings).

13. Bochm, Barry, Software Engineering Economics,
Chapters 5-9, pp. 57-163, Prentice Hall, 1981.

14. Knuth. D.E., "Literate Programming," The
Computer Journal, Vol. 27, No. 2, pp. 97-111,

48

1984.

15. Green, C, D. Luckam, R. Balzer, T. Cheatham,
and C. Rieh, "Report on a Knowledge Based
Software Assistant,", Technical Report
KES.U.83.2, Kestrel Institute, June 1983.

16. Leite, Julio Cesar S P. "A Survey on
Requirements Analysis", Advanced Software
Engineering Project Technical Report RTP-071,
University of California at Irvine, Department of
Information and Computer Science, June 1987.

17. Benner, K.M., "Addressing Complexity,
Coordination, and Automation in Software
Development with the KBSA/ADM," In proceedings
of The 11th Knowledge-Based Software Engineering
Conference, Syracuse, New York, September 25-28,
1996.

49

Appendix 3
Evaluation of a

Knowledge Based Software Assistant
Advanced Development Model

Session Vbw
e'

KB5A - Architecture
(Session View Paradigan)

Figure 12

50

James Fawcett, Ph.D., Principle Investigator,
Benjamin Brunk, Kiran Ganesh, Udayan Parvate

Department of Electrical Engineering and Computer Science

Syracuse University
31 May 1997

51

Table of Contents

1.0 Executive Summary 54

2.0 Evaluation Strategy 55

3.0 KBSA Technology 58

3.1 KBSA Vision .59

3.2 Scope of Work 51

3.3 Past KBSA Efforts 62

3.4 References 62

4.0 Using the ADM to Assist Development 63

4.1 Summary of Goals of Proposal 53

4.2 An Introduction to the ADM 64

4.3 Functional Description of the ADM 67

5.0 ADM Logical Models 86

5.1 Software Development Model 86

5.2 Project Model 87

5.3 Communication Model 87

5.4 Collaboration Model 89

5.5 Product Model QQ

5.6 Repository and Versioning Control 91

5.7 Substrate Model 93

6.0 ADM Architecture - Physical Models 96

6.1 Individual Tool Architecture 96

6.2 ADM Frameworks 97

7.0 Adding a New Tool to the ADM 103

7.1 The PART Functional Model 103

7.2 Conceptual Model for PART 105

7.3 PART Basic Types]06

52

Table of Contents (Continued)

7.4 Part Knowledge Structure — 110

7.5 Problems Encountered 116

7.6 Results and Conclusions 117

8.0 RABS Maintenance Activity 119

8.1 RABS Overview —- 119

8.2 RABS Logical Model 119

8.3 RABS Architecture 120

8.4 RABS Design and Implementation 120

8.5 Use and Evaluation of ADM Tools 125

8.6 Results and Conclusions of RABS Activity 134

9.0 Final Conclusions 136

App-A Part Design Document 140

App-B Glossary of Terms 163

53

1.0 Executive Summary

This report documents the results of an evaluation of the Knowledge Based Software Assistant Advanced

Development Model (KBSA/ADM), developed by the CSTAR branch of Andersen Consulting Company.

The evaluation was conducted in the period beginning 1 January 1997 and ending 31 May 1997.

Andersen funded the work as a subcontract to their prime contract with Rome Development Laboratory.

The ADM is a multi-user tool designed to support the collaborative development of software, using an

incremental, iterative, and evolutionary design process. The goals of this development were to:

provide a suite of intelligent, process driven, integrated software development tools

develop a construction and integration framework in which tools may be built and integrated

The goals of our analysis were to:

understand ADM conceptual models and architecture

use the ADM in a valid context

extend the ADM by adding a new tool

provide a critical analysis of the ADM with respect to each of these activities

submit a final report (this document) detailing our findings

We want to acknowledge the vigorous support we received from Andersen personnel during the

course of this study. This included training and design sessions, held in Syracuse, weekly

teleconferences during the busiest part of our analysis process, extended use of equipment, and

responses to salvos of our questions.

We, at Syracuse University, charted the course for this investigation, developed its methods, carried

out its activities, and drew our own conclusions in an atmosphere of open inquiry.

54

The results of the study are compiled in summary paragraphs in Sections 7.0 and 8.0, and all of Section

9.0. Here is a synopsis of these findings:

The ADM provides a flexible tool substrate with smoothly integrated repository and

communication services.

It contains an extensible tool layer which provides software assistant functionality.

Individual tools are part of a federation with all the support services necessary to inter-

communicate and cooperate to achieve a common goal. All are governed by a session layer

supporting project management and user view consistency.

Use of a session manager to implement the model-view-controller paradigm and coordination

through integrated process support to manage task enactment is a major success for the

ADM. It supports the process model advocated by the ADM without intruding on the users'

focus on their activities.

The ADM has a pleasing user interface, smoothly integrating its tools into its support model.

Some of the individual tools are weak, not achieving their software assistant objects very

well. In one case technology used in the ADM has been superceded by commercially

available tools.

The ADM is an advanced development model. It could not be used effectively in a

production environment without significant polishing and substitution of some of its tools for

better-developed functionality.

It has provided a proof of concept for the management of collaborative work and capturing

of requirements, assumptions, and design decisions in an iterative development environment.

We especially like the concept of object linking and the use of an object oriented database to

capture complex relationships between the large number of products in even a moderately

sized development project. This could be enormously useful for management and tracking

of an evolving product baseline in complex software development projects.

55

2.0 Evaluation Strategy

In our evaluation proposal we said:

"Our intent is to test, evaluate, and report on the effectiveness of the KBSA paradigm and implementation

to support software development and promote productivity and product quality. We will focus on the

robustness, effectiveness, and applicability of the ADM implementation to support several types of software

development. We will also evaluate the potential of its concept and architecture to provide a framework for

building tools supporting all phases of the software development process."

The goals of the evaluation and strategy we adopted to accomplish them are:

Understand the ADM conceptual models and architecture:

We devoted the first six weeks of this six month study to learn the Advanced Development

Model paradigm, architecture, and as much of the implementation as practical for this brief

analysis. For this activity we incorporated two Solaris workstations and an NT machine into the

Syracuse University network system, configured to support ADM processing. Andersen

personnel conducted an intensive 3 day training session and provided us with documentation for

the ADM and its tools. During this period we explored the ADM tools, trying to understand the

goal and functional capabilities of each.

Use the ADM in a valid context:

To achieve this goal we selected a software maintenance activity conducted on a modestly

complex software product most of the team was familiar with. The product is a Repository and

Build Manager System (RABS) developed in CSE784 - Software Studio class in the Fall of 1996.

Two of the team members had participated in its development. We knew this software system

was operational, well organized and documented. We identified nine latent errors in its

implementation that needed to be eliminated for the product to be generally useful. In addition

there were some modest changes in functionality we wanted to implement.

Our team fit the ADM paradigm, e.g., four developers, each skilled in the process and

implementation of software, and working in a collaborative environment toward common goals.

Our strategy was to follow the ADM development process, using each of the ADM tools

according to its design intent to conduct this maintenance activity. The results of this phase are

56

documented in Section 8. of this report.

Extend the ADM by adding a new tool:

One important issue concerning the ADM implementation is just how difficult is it to add a new

tool to the ADM tool federation? We decided to attempt to add a new tool to the ADM which

extends the ADM's model of the software development process. This we felt would test not only

the ADM implementation but also test the flexibility of its architecture and conceptual models.

We call the new tool Project Archival and Report Tool (PART). PART introduces a new

knowledge structure intended to capture and manage each of the products of a developing

software baseline, e.g., requirements, design, and test documentation, and code for the

developing product as well as test and qualification drivers. The archive provides the structure

to manage product components, information about each of the components, and critical analysis

and problem resolution information. The tool is intended to support build processes for both

software and documentation from component pieces which closely reflect the organizational

structure of the development team and software architecture.

Provide critical analysis of the ADM with respect to each of its activities:

Our analysis divided the ADM into its layered structure, partitioned along the lines of its major

tools and frameworks. For each of these we developed, with the help of the Andersen team, a

model of the tool or framework based on the activities it is intended to support. We then

attempted to exercise that element the way it was supposed to be used. We recorded our

observations and compared the results with both the component's model and our own perception

of its utility in a software development process.

These observations and conclusions are recorded in Section 7. for PART addition, in Section 8.

for the RABS maintenance activity, and in Section 9. for overall ADM functionality.

Submit a final report detailing our findings:

This report is the culmination of the evaluation effort.

57

3. KBSA Technology

The KBSA program is an effort to provide automated assistance to individuals and teams of software

developers spanning the entire life cycle of large software projects. A variety of research efforts have

made significant progress towards realizing and refining the vision for this program since the first time it

was outlined in [GR83].

Knowledge Based Software Engineering is another name for applying AI to software problems,

emphasizing the fact that creating software is a knowledge-intensive activity. There are four primary

reasons why software engineering is an interesting area for AI research [SE92]. They are:

1. Writing large software systems is a complex activity that requires a great deal of individual and

organizational intelligence.

2. An explosion of tools and techniques, such as CASE tools, object-oriented programming

methodologies, fourth generation languages, visual languages, and a variety of new software

development environments have been devised to support development of large complex software

systems. Yet managing the development of very large systems remains a difficult and sometimes

treacherous endeavor.

3. Software problems combine issues that have been studied in isolation, such as human interface

problems, computer supported cooperative work, basic AI representation issues, knowledge

retrieval, reuse problems and visualization

It is the amount and scope of relevant knowledge required for development that makes the implementation

of software so difficult. Creating a large software system requires a knowledge of the domain, the final

implementation platform (of both hardware and software), the current software process, the details of all

interdependent components, and personnel resources. The KBSA approach assumes that making more

knowledge available to individual programmers, teams and managers will accelerate the timely production

of high-quality software.

58

3.1 KBSA Vision, according to Rome Laboratory

According to the KBSA vision outlined in [GR83], the following requirements must be satisfied by an

ideal KBSA tool:

• All software life-cycle activities must be machine mediated and supported

• Development assistance must formalize this process which will enable maintenance to be

performed by altering the specification and replaying the previous development process.

• Specification validation cycles must get the specification correct and to get the end-users to

completely state their requirements before implementation is produced.

• Project Management must be supported

• Product management must be supported: Assistance to be provided for generating Requirements,

Performance, Testing, Help Documentation etc.

The KBSA tool architecture must consist of different frameworks, with an activity coordinator that

controls various knowledge-base managers. Related life-cycle activities must be grouped and coordinated.

Agents and messaging to be used here if helpful.

The different facets of KBSA tool are

1. Requirements

• Need for a formal requirements language

• Requirements editor to create/modify requirements definitions

• Requirements testing

2. Specification validation

• Specification needs to be executable

• Possible methods of testing for correctness of a specification are prototyping, static validation,

dynamic validation

• Specification paraphrasing

3. Development

• Need for a wide spectrum language to encompass design of a system in all stages from

formal specification through optimized implementation

• Interactive mechanical development

59

4. Performance

• Data structure analysis and advice

• Subroutine and Module decomposition advice

5. Testing

• Test Case Maintenance Assistant: accept changes in test data, to schedule the running of

relevant tests automatically when units undergo change.

• Testing activity to be distributed over validation and development activities and will cease to

exist as a separate phase.

6. Reusability/Functional Compatibility/Portability

• A portability assistant to match components interfaces (imports and exports) which will point

out a set of constraints to which a running program on an installation must conform and will

walk-through them accepting responses on the way.

Other supporting technology areas are identified as

7. Wide spectrum program design languages (PDL)

8. Extended formal semantics

9. General inference systems

10. Domain specific inferential systems

11. Specialized inferential systems

12. Integration technology

13. Databases

• Administrative: Agents and their relationships

• Software: A set of modules known for a particular instance of KBSA development environ-

ment

• Knowledge Base: Acquired by and available to various facets of KBSA

14. Toolsets

• Editors, Compilers, Program Transformation aids, Debuggers, Tools for analysis, query,

project management, message handling, database management etc.

15. User Interfaces

16. Activities Coordination

60

3.2 Scope of Work

Even though a fully integrated environment (as described above) is the ultimate goal, any current KBSA

research project must carefully address some selected parts of this process. A KBSA effort must answer

the following crucial questions [SE92]:

• What part of the software process is targeted?

• What knowledge is applicable, and how can it be represented, acquired, and maintained?

• How can we present this knowledge to developers, teams and managers to improve quality, cost

and timeliness of software development?

Producing a large software system is a complex, multi-step process, and it results in a wealth of artifacts

such as

User requirements

System specifications

Code generation

Testing Scenarios

Documentation

Once the relevant knowledge is represented in the system, maintaining that knowledge base is as critical

as maintaining the code base or document base itself. The presentation and integration of knowledge

based approach into the everyday working world of software engineers is a critical challenge for the

KBSA community [SE92].

61

3.3 Past KBSA Efforts (in chronological order)

The following are some of the outcomes from several past efforts by various research groups:

1. Project Management Assistant, by Kestrel Institute (1984-1986)

2. Knowledge Based Requirements Assistant (KBRA), by Sanders Associates (1985)

3. Knowledge Based Specification Assistant (KBSA), by University of Southern California Information

Science Institute (USC ISI)

4. ARIES system, by USC ISI with Lockheed Sanders (1988)

5. Performance Optimization Assistant, by Kestrel Institute (1988)

6. KBSA framework with combination of Common Lisp Object system/Logilisp, KBSA User Interface

Environment (KUIE), Configuration and Change Management Model (CMM), by Honeywell System

Research Center (1986)

7. Development Assistant based on KIDS, by Kestrel Institute (1988)

8. Transaction Graphs and Artifact Configuration Management System for unified formalism in

coordinating and managing products & processes using the KBSA paradigm, by Software Options

(1988)

9. KBSA concept demo, by Andersen Consulting (1988-1992)

10. KBSA/ADM initial operational capability by integrating previous efforts of KBSA technologies to

form a working environment, by Andersen Consulting (1992)

3.4 References

[GR83] C. Green, D. Luckham, R. Balzer, T. Cheatham and C. Rich, Report on a Knowledge Based

Software Assistant, RADC-TR-83-195, August 1983

[SE92] Peter G. Selfridge, Knowledge Based Software Engineering, IEEE Expert, December 1992

In addition, proceedings from the following conferences have provided valuable information:

• SEKE: Software Engineering & Knowledge Engineering Conference

• KBSE: Knowledge Based Software Engineering Conference

• AAAI Workshops on Automating Software Design

• Workshop on Applying AI to Software Problems

62

4. Using the ADM to Assist Development

4.1. Summary of Goals of the Rome Laboratory Proposal

The goal of the KBSA/ADM effort is to develop an operational Model that has the ability to fuse concepts

and techniques of prior efforts to enable use and evaluation of the KBSA's new life-cycle methodology.

4.1.1. Technical requirements

The requirements are grouped into the following:

• Functional/non-functional requirements

• Software Management Requirements

• Demonstration and Assessment requirements

4.1.2. Functional/non-functional requirements

The KBSA/ADM should provide intelligent assistance and automation throughout the software life cycle.

Major concerns are completeness, quality and maturity of technology and products to be used or produced

and the overall usability of the ADM by prospective KBSA users.

Functional requirements include providing total software life cycle support from the initial delineation of

user requirements through post deployment support. It should also provide machine mediation,

communication, coordination, monitoring, analysis, documentation, and automated assistance for the

activities of requirements acquisition and design creation, discovery, modification, explanation, and

implementation.

4.1.3. Non functional requirements

• Support for simultaneous and interactive use by a development team consisting of 1-4

people.

• Informative and user-friendly interaction

• Support for application developments of 50,000 or more lines of code.

• The use of prevailing standards

• Extensible and modular design of the ADM as an open system, enabling it to continue to

evolve following delivery and to integrate with other software development tools

63

4.1.4. Software Management Requirements

A process should be established for managing the design, development, and review of the ADM. Most

important are the use of the management methods and capabilities that minimize the risk and maximize

project visibility for both contractor and government managers.

4.1.5. Demonstration and assessment requirements

Demonstration of the ADM by example application development shall be sufficient to exercise and

illustrate all facets of the KBSA ADM life cycle, including the reuse of design knowledge and impact on

the post deployment support. Test and evaluation shall be conducted to assess the reliability, functionality

capacity and limitations of the ADM and the KBSA process. The tests should collect sufficient data to

allow extrapolations and projections regarding the extensibility of the KBSA technology. Testing should

be based on experimental design methods to assure statistically adequate and sufficient coverage of the

evaluation domain

4.2. An Introduction to Andersen Consultings ADM

4.2.1 Introduction

The previous section described the Rome Laboratory's vision for providing automated assistance to

individuals and teams of software developers spanning the entire life cycle of large software projects.

This section describes the specific objectives of the Advanced Development Model (ADM) developed by

Andersen Consulting towards the fulfillment of these goals.

Issues that the ADM claims to address

There are various problems associated with building and evolving large scale software systems. Some of

the problems fall under the headings of complexity, collaboration and automation. The problems under

each of these categories can be briefly summarized as follows:

64

Managing Complexity

The complexity of a large software project arises from four critical elements: (1) The complexity of the

problem domain (2) the difficulty of managing the development process (3) The flexibility possible

through software and (4) The problems of characterizing the behavior of discrete systems. Because of

this, only a small number of developers understand the entire system. This understanding is very critical

for finding and resolving inconsistent requirements, developing a coherent design, factoring the total

system into manageable pieces for development and evolving the system when requirements change in

unanticipated ways. Critical design decisions, assumptions and rationale are seldom documented and

indexed.

Automation

In software development, inevitably there are a large number of routine tasks, which are well understood,

but tedious to perform (which could result in additional avoidable errors due to their routine nature). In a

small project one lives with these inconveniences, but in a large project the costs for performing these

small tasks and fixing the resulting avoidable errors compound quickly. Automating routine tasks can

reduce the number of errors made and in doing so, shorten development time.

Coordination

As teams get larger, coordination becomes more essential, but harder to achieve. No matter how well a

system is structured, communication among teams and within teams is necessary. The difficulty in these

communications is disseminating knowledge in a timely and understandable manner to interested parties.

A big part of enabling coordination is establishing for developers the proper context in which to

understand the work products so that they can use and evolve them properly. The following table

summarizes how the ADM proposes to address each of the three issues. The following section describes

these mechanisms in greater detail.

65

Manage Complexity

1. Support for Appropriate Notations

2. Mechanisms to Maintain

consistency between

interdependent work products

3. Mechanisms to Capture

Contextual Knowledge about why

work products are the way they

are

• Design History

• Design Discussions

• Hyperlinks

4. Explicit support for Project Task

Decomposition and Enactment

Automate What's Understood

1. Evolution Transformations

2. Process Enactment

3. Critics

4. Code Generation

Support Coordination

1. Repository Management

2. Task Management

3. Structured Multi-party

Discussions

TABLE 1 - How ADM Proposes to Address Each of the Three Issues

66

4.3. A Functional Description of the ADM

This effort as two driving goals: (1) to provide a suite of integrated software development tools (2) to

provide a tool construction framework in which tools may be built and integrated.

The ADM is made up of three principal environments, as shown in the figure below:

ALE
ARGO Language

Environment

IPSE
Integrated Support Process

Environment

• What: Support • What: • What: Creates

graphical and Management and manages

textual viewing and automation informal
and evolving of of developers documents,
specifications • How: typical to

• Critics evaluate Personalized requirements

the quality of agendas, and acquisition &

specs and automation of analysis

suggest those agendas • Captures design
improvements • Supports information,

• When the spec project-wide stores as

is complete, hypertext

RASE
Requirement Acquisition

Support Environment

Structure of the KBSA/ADM tool

The following sections describe the use of these three tools in greater detail.

4.3.1. ALE

ARGO language environment (ALE) supports graphical and textual viewing and evolving of object

oriented specifications. When a specification is complete ALE can generate C + + code for a system,

subsystem, or component.

67

4.3.1.1 Packages and Specifications

In the operational prototype ALE is a tool which introduces two new topic types:

Package Topic

Specification Topic

A specification is a container for packages. Simple specifications show which packages are in the current

specification. The only relationship between packages is the import relationship.

A package is a container for classes. Packages show how related classes are grouped together, and allow

for one level of grouping related classes together.

The following are the concepts from Object Oriented design which are supported while defining a

graphical representation with an OMT diagram:

• An abstract class is a high-level method for grouping related classes together. Although the

abstract class may contain default attributes and methods from which other classes are derived,

instances of this class do not actually exist.

• An attribute describes a particular characteristic of an object.

• A class is a group of objects with similar properties and attributes, and common behavior,

relationships to other objects, and semantics. Use a class diagram to show the relationships

between classes.

• Classes can inherit attributes and methods from other classes based on a relationship. There are

two commonly used types of inheritance: public and private. Public inheritance means that other

packages can access the class methods and attributes of the package. Private inheritance means

that only the current package can access the class methods and attributes of the package.

• In the ALE diagrammer, you can draw lines between the classes and packages that show

inheritance.

• A package is a conceptual grouping of classes. The package provides a level of abstraction by

grouping classes together. A package diagram view shows a specification topic. A class diagram

view shows a package topic.

• A relationship shows that two or more objects have common characteristics. This is a parent-

child relationship. In KBSA, the relation is a pointer kept in one object that points to the other

object. In ALE, you can also designate a composition relationship. A composition relationship

shows aggregation of objects. For example, when an object is composed of several objects of

other types, the combined parts represent the composite object.

• A specification is the top abstraction level that describes a design model and its packages. Use a

package diagram view to show a specification.

68

4.3.1.2 Critics

The concept of critics enables the tool to evaluate the quality of the specification and suggest ways to

improve it. ADM code generation translates an ARGO specification into C + + code.

There is a knowledge based assistant function that automatically generates tasks for you when something

is missing from your class structure. For example, if you delete a class and do not delete a corresponding

relationship, the ALE critic sends a message to the KBSA Session Manager. The Session Manager then

adds a resolution to your plan that requires you to either delete the dangling relationship or add the class

back into the design. Currently there are three critics:

• Content critic

• task Completion critic

• Cohesion and Coupling critic

The content critic evaluates the package for its correctness. In addition, it generates some possible

resolutions and informs the user through IPSE resolution mechanisms. Currently there is no framework

support for developing critics in the KBSA/ADM environment.

4.3.1.3 Tool Usage1

1. Define Packages and their relationships

To create a package diagram in the Session Manager window

• From the Topic menu, select Create.

• From the cascading menu, select Specification.

• Type a name for the topic in the Topic Name field and click OK.

• From the View menu, select Create.

• From the cascading menu, select Package Diagram.

• Type a name for your view in the View Name field.

To create a package

• Click the package tool in the tool palette (white square).

• Pressing and holding the left mouse button, drag the mouse down and to the right. Release

the mouse button.

• In the Package Name field of the Package Editor window, type a package name.

1 This material is extracted from KBSA help files.

69

• Click OK.

To delete a package

• Select the package you want to delete.

• From the Edit menu, select Delete.

To modify a package

• Select the package you want to modify.

• From the Edit menu, select Update.... The Package Editor window appears.

• Type a new package name or edit the structured comment.

• Click OK.

To view the contents of an imported package

• Select the package.

• From the Specification menu, select Package Textview. The ARGO syntax for the selected

packages and any current link errors appear.

To show an inheritance relationship between packages

• Click the inheritance tool in the tool palette (black triangle is private inheritance and other is

public inheritance).

• Press and hold the left mouse button over the source package.

• Drag the mouse over the target package, then release the button. A line showing the

inheritance relationship is formed between the two packages.

1. Defining Classes and their Relationships

To create or open a class diagram

• Double-click on a package icon. The Class Diagram Editor opens.

To create a class

• Select the class tool in the tool palette (solid white square is regular class and white square

with a dotted line is abstract class).

• Pressing and holding the left mouse button, drag the mouse down and to the right. Release

the mouse button.

• In the Class Name field of the Class Editor window, type a class name. You can also

designate whether you want the class to be public, private, or protected.

70

• Click OK.

To delete a class

• Select the class you want to delete.

• From the Edit menu, select Delete.

To modify a class

• Double-click the class you want to modify. The Class Editor window appears.

• Change settings as required.

• Click OK.

Define Class relationships and Inheritance

To draw an inheritance relationship

• Click the inheritance tool in the tool palette (shaded triangle with a line).

• Press and hold the left mouse button over the first class.

• Drag the mouse over the second class, then release the mouse button. A line showing the

inheritance relationship appears between the two classes.

To define a relationship

• Click one of the relationship tools in the tool palette (rectangle is regular relationship and

other is composite relationship).

• Press and hold the left mouse button over the first package.

• Drag the mouse over the second package and release the mouse button. The Relationship

Editor window appears.

• Specify the relationship name.

• Click OK. A line showing the inheritance relationship appears between the two packages.

To delete an inheritance relationship

• Select the inheritance you want to delete.

• From the Edit menu, select Delete.

71

To delete a relationship

• Select the relationship you want to delete.

• From the Edit menu, select Delete.

3 Add attribute objects to a class

To create an attribute for a class

• Double-click on the class. The Class Editor window appears.

• Click an attribute object button at the bottom of the window to open the appropriate dialog.

To delete an attribute

• Double-click the class. The Class Editor window appears. Attribute objects are listed on the

right.

• Select the attribute you want to delete.

• Press Delete.

To modify an attribute

• Double-click the class. The Class Editor window appears. Attributes are listed on the right.

• Double-click the attribute you want to modify. The Modify Attribute window appears.

• Change settings as required.

• Click OK.

Link objects in the KBSA repository

To display the object link dialog

• Position the mouse pointer over a class or package. Press and hold the right mouse button.

• From the popup menu, select View Object Links. The Object Link window displays the links

for the class or package you selected.

72

To define an object link

• Select the class or package from which you are linking.

• From the ObjectLink menu, select SetAsSource.

• Open the view that contains the object you want to link to the class or package.

• Select the object you want to link. For example, if you want to link Hypertext in the Hyper

Document Editor, highlight the text you want to link.

• From the ObjectLink menu in the current view, select SetAsTarget.

• From the ObjectLink menu in either view, select FormLink.

Generate Code

To generate C + + code

• In the Package Diagrammer, select the Specification menu.

• From the Specification menu, select Generate. The Save As window appears.

• In the Save as: field, type your C + + file name, giving it either a .cpp (source code) or .hpp

(header/declarations) extension.

• Click OK. Your files are now saved in the directory you specified.

import predefined concepts

To import a package

• From the Specification menu, select Import....

• Select a package from the repository. The imported package appears on your package

diagram.

4.3.2. IPSE

IPSE, the Integrated Process Support Environment, provides the collaborative underpinnings for the

ADM environment. Its fundamental goal is to provide process driven support for a software development

team. IPSE's meta model includes the concepts of task, plan, resource, deliverable, dependency, and

resolution. It addresses the problems of planning and executing complex interdependent activities

(iterative and incremental) and provides the infrastructure to allow collaboration across groups of

developers to take place. The collaboration model takes the form of managing work objects amongst

developers, and providing communication and coordination between team members across time and

73

space. In addition, IPSE also provides a means of preserving corporate knowledge by updating

development histories for work objects, updating dependencies between objects, and by supplying ongoing

project assessment.

4.3.2.1 IPSE Interaction with MS Project

IPSE utilizes the commercial off-the-shelf (COTS) tool Microsoft Project® (MSP) in order to provide

traditional project management views and for creation of the project work plan. A project is a structured

relationship of tasks assigned to resources. Resources complete tasks by creating deliverables, referred to

in KBSA as topics. The Microsoft Project work plan is exported through the MSP-KBSA interface into

IPSE, which decomposes the work plan information into tasks, resolutions and deliverables and then

assigns resources in the ADM to the tasks. Each task is assigned to a single user (resource) in the work

plan. Each task has a distinct resolution associated with it as well as one or more deliverables. A task

may have an input consisting of a previous task. This imposes an execution order on the two tasks (e.g. a

task may not be enacted unless its input task is completed), or it may have a deliverable as its input (in

which case the deliverable must exist in order to enact the task).

Tasks, resolutions, and deliverables are linked together with Microsoft Project. Each task in the work

plan has a single proposed resolution. This resolution indicates the topics the user needs to create to

complete the task. In Microsoft Project, the manager can add a resolution to provide the resource with

information about the task and its deliverables. Thus a resolution is some information which guides the

user towards the completion of a task. Completing a task involves creating a topic (deliverable) for it,

consisting of either a specification, discussion or hyperdocument. A deliverable is an object the task

resource completes during a task. A deliverable can serve the following functions in relationship to a

task:

• Input-Deliverables that provide information for completing a task.

• Update-Deliverables created earlier in the project that are modified by a task.

• Output-Deliverables that are produced during the completion of a task.

If you add, delete, or modify tasks or deliverables in a work plan, input and output relationships are

preserved. However, the relationship between deliverables and the tasks that update them must be

manually changed. Updating the index number of the task in the deliverable information does this.

Additional deliverables may be added to a task from within the ADM environment.

Linkages between tasks and deliverables are what define the execution order of the tasks in the project

74

plan. The project work plan also defines time limits for tasks and this information is maintained in the

task information structure within IPSE. If a task is past due, or if another user wishes to enact a task

whose input is not yet in progress or completed, the ADM's automatic tracking mechanism notifies the

"offending" user via SAM to enact the task that is blocking the flow of the project.

Microsoft Project provides a view of the project plan in the form of a spreadsheet type view as well as a

graphical Gantt chart view. The project manager can use these views to get a clear idea of the current

status of a project. Microsoft project cannot inform a manager that a user is unable to enact a task of

theirs because it is dependent upon another task or deliverable as its input that has not yet been completed.

This is because there is no coupling between IPSE and Microsoft Project after the work plan is exported

via the MSP-KBSA interface. However, Microsoft Project does give a very clear overview of the entire

project and the task dependencies are clearly visible in the Gantt chart view.

Another thing that the Microsoft Project work plan provides is methodological support. The methodology

provided with KBSA provides an organized, repeatable process for building information systems. The

methodology contains eight major phases of project development, called task packages. Each task package

contains one or more tasks. A task is an activity that must be completed in sequence or conjunction with

other tasks in the package. Each task may result in one or more deliverables.

The methodology is part of the Microsoft Project file ACODMESR.MPT. It forms the basis of project

work plans developed for use with KBSA. ACODMESR is the Andersen Consulting base methodology,

but any methodology can be invented and utilized. IPSE does not use any of the methodology

information, it is merely stored within its structure.

4.3.2.2 The MSP-KBSA Interface

The MSP-KBSA Interface manages the relationship between KBSA's IPSE and Microsoft Project. It

provides the following options:

• Start Project - opens a new project in Microsoft Project using the KBSA template.

• Open Project - connects you to the domain name service/communication manager on UNIX and

lists the sessions currently running from which you can select a target for your export or import.

• Close Project - closes the current project.

• Put Project - builds project information into a list message and exports it to the selected session.

• Get Project - retrieves a project from an active session and imports it into Microsoft Project.

• Exit - closes Microsoft Project.

• Help - opens the KBSA Project Management help.

75

• Methodology - opens the Methodology help.

4.3.2.3 Project Management in the KBSA SAM2

Once you have exported a project into the KBSA environment, you can use KBSA to alter the project plan

in certain ways without importing the project back into Microsoft Project. Specifically, you can add or

remove deliverables to or from tasks. You can also add deliverables to the project that are not directly

linked to tasks. Note that only deliverables associated with tasks in the work plan can be imported back

into Microsoft Project.

In addition, keep in mind that the export process merges resource information, rather than overwriting it.

KBSA retains resource assignments from the original project export, regardless of whether these resource

assignments have been changed in Microsoft Project. For example, you could import a project from

KBSA into Microsoft Project and change the resource for a task from Paul to Jane. When you export the

project back to KBSA, both Paul and Jane are resources for the task.

4.3.2.4 Creating a work plan

1. On the MSP-KBSA Interface, click Start MSP. Microsoft Project opens and creates a new

project using the KBSA template.

2. Open the project in which you store your base methodology. The default file name is

ACODMESR.MPT.

3. Save the project using a new name. Use the extension .MPP.

4. Delete tasks, deliverables and resolutions that are not relevant to your project.

5. Add any tasks, deliverables and resolutions that are needed for your project.

6. Rename tasks and deliverables as desired for your project.

7. Save the project.

8. Export the work plan to KBSA/ADM.

2 This material was also extracted from the KBSA help files.

76

4.3.3. RASE

RASE creates and manages informal documents common to requirements acquisition and analysis. It also

provides a semi-structured representation based on nodes and links, in which one can capture a multi-

party discussion. It provides a platform to represent both loosely structured documents as well as

structured discussions. The deliverable topic types supported by RASE are:

4.3.3.1 HYPERDOCS

A hyper-document (hyperdoc) is a KBSA document type that describes some aspect of a project and may

have links to other KBSA objects. A link is a way to connect two pieces of information. The Hyperdoc

Editor is a KBSA tool for creating these hyperdocs.

Hyperdocs organize information using common text processing. They also provide the ability to link to

other design deliverables in the repository. This allows the user to create lattices of documents and

deliverables that can be browsed in a meaningful way. With the Hyperdoc Editor, the user can capture

information that is not easy to represent in a parametric format. So in addition to capturing the structured

design information with KBSA tools such as ALE, the user can use the Hyperdoc Editor to manage and

manipulate unstructured information.

Hyperdoc Styles
Styles are predefined standards for displaying text. One can use style to both visually format and organize

information. When applying styles to text in a document, the information can be organized into structured

nodes. Nodes are composed of a node title (denoted by a style selection), and a body.

View Modes
When one first creates a hyperdoc, one must select whether he/she wants to create a normal hyper

document view or an outline hyper document view. A Normal View is where one types the bulk of the

information. The Outline View is similar to outline view in Microsoft Word. In outline view, one can

arrange or rearrange the structure of a document. Only the node name can be edited in the outline view.

Display Modes
There are two display modes in the Hyper Document Editor, namely the Edit Mode, and Browse Mode.

The Edit Mode is where you can type text, change styles, create object links, form bookmarks, and export

77

•

•

to discussion nodes. The Browse Mode is for navigating a hypertext document by following hyperlinks.

Hyperlinks can be used only in Browse Mode.

Tool Usage3

1. To create a document

From the Topic menu in the KBSA Session Manager window, select Create.

From the Create list, select Hyper Document.

Type a name for your topic in the Create Topic window and press OK.

From the View menu in the KBSA window, select Create.

From the Create list, select Hyper Document Normal View or Hyper Document Outline.

Type a name for the new hyperdoc in the Create View window and press OK.

2. To open a document

• In the KBSA Session Manager window, select the topic in which you want to create a document.

• From the View menu, select Create.

• From the Create list, select Hyper Document Normal View or Hyper Document Outline.

• Type the document name in the Create View window and press OK.

3. To Save a Document:

Click the Save button

4. To Change Text Style:

Place the cursor on a line of text or a blank line.

• Select the style you want to apply in the Style list.

You can choose body or heading numbers that are less than or equal to the immediately preceding

heading number, or the heading number that is greater than the immediately preceding heading

number by one.

5. To Change the Text Font:

Select the text you want to change.

From the Format menu, select Font.

Select the font and size in the Font Chooser window.

3 ibid

78

Organizing a Document
To view a document in a different display mode: From the Display menu, select either Edit Mode or

Browse Mode. To create a bookmark: Select the text you want to mark, and then from the Bookmark

menu, select Create Bookmark. The bookmark text turns green. To see a list of bookmarks, select

Bookmark List from the Bookmark menu. Select an item in the list to go to the bookmark.

Object Links
To create a hyperlink

• Select the text you want to link.

• From the ObjectLink menu, select SetSource.

• Open the view that contains the object you want to link.

• From the ObjectLink menu, select SetTarget.

• From the ObjectLink menu (in either view), select FormLink.

When the link is formed, the text in the HyperDocument Editor turns blue. To use object linking

shortcuts, click and hold the right mouse button, then select the operation you want to perform. To view

the link list, press and hold the right mouse button in a HyperDocument Editor view. The link list

appears. To create a node and link in the Discussion Editor:

• Select the text you want to link.

• From the Operations menu, select the kind of node you want to create in the Discussion Editor.

• In the Discussion List window, select the discussion you want to link to (or type a new name and

click the Create button).

• Click the Continue button. The discussion opens, and your new node is in it. The new node is

already linked to the hyperdocument. You can perform this operation only if the document is in

Edit mode.

To display the Object Linking Shortcut menu

• Press and hold the right mouse button.

• Select the object linking operation you want to perform.

To display the shortcut menu, select the dotted line at the top of the operation list. This places the shortcut

menu on your window until you close it.

4.3.3.2.

79

REMAP Discussions

A discussion is a way for stakeholders on a project to resolve complex design issues. System designers

and customers can contribute their expertise and assumptions to a discussion to help find answers to these

design issues. The KBSA Discussion Editor is a tool used to help document and illustrate discussions that

take place. It helps the development team track assumptions and understand why certain decisions were

made throughout the project.

A discussion in the Discussion Editor can contain the following nodes, or pieces, of a conversation:

1. Argument: An argument is one of the nodes in a discussion. Each issue's position can have one or

more arguments. An argument can support or contradict a position. Arguments are based on or

depend on assumptions.

2. Assumption: An assumption node is information that a stakeholder believes to be true about an issue.

Assumptions are what arguments are based on or depend on.

3. Decision: A decision node is the result of the discussion and resolves an issue in a discussion. A

Decision Node in the KBSA can record such information as how to resolve an issue, standards, or

quality checks.

4. Issue: Issue discussion nodes represent key issues in the design problem. They are considerations that

you need to address when you design your system. Each issue can have many positions. Each issue is

the root of the tree or hierarchy. In a hierarchy, the children of an issue are positions, and the

children of positions are arguments.

5. Position: A position node is a proposed solution to an issue. A discussion can contain multiple

positions, and one position can respond to an issue or set of issues. Each position can have one or

more arguments, which either support the position or object to it.

The Discussion Editor also shows relationships between these discussion nodes. Relationships show how

the nodes are connected to each other. For example, a relationship would show which issue a given

position responds to. Relationships are illustrated in the Discussion Editor with colored lines connecting

the nodes. This illustration shows how parts of a discussion are related and which factors contribute to the

final decisions. Each different colored line represents a different kind of relationship. You can display the

legend to remind you of the meaning of the colors at any time. When you select the pointer button (or

select button), you can then click on a link and its type is displayed.

80

Tool Usage4

To create a new discussion

• From the Topic menu in the KBSA window, select Create. A cascading list appears.

• From the cascading list, select Discussion.

• Type a name for your topic in the Create Topic window and press OK.

• From the View menu in the KBSA window, click Create. A cascading list appears.

• From the cascading list, select Discussion View.

• Type a name for the new view in the Create View window & press OK.

• If your discussion topic already exists, select the topic and skip 1-3.

To change the size of the view: From the Display menu, select Zoom In or Zoom Out repeatedly until the

discussion is the desired size.

To delete a discussion view

• In the main KBSA window, select the discussion view you want to delete.

• From the View menu, select Delete. This procedure deletes only the view and not the topic.

To change the view layout

To automatically position the nodes: From the Layout menu, select Arrange Layout. The nodes are

automatically arranged, depending on the orientation and layout type selected. To turn off automatic node

placement: From the Layout menu, select Disable Layout. You can now place the nodes anywhere on the

discussion. To select a layout type: From the Layout menu, select Layout Type.

To change orientation

• From the Layout menu, select Orientation.

• Select the direction you would like the view to display (top to bottom, bottom to top, right to left,

or left to right).

ibid.

81

Defining Nodes

To create a node
• Click the button for the node you want to create. For example, you can click the Argument

button to create a new argument. A new node appears near the center of the window.

• Double-click on the new node to open the Node Information window.

• Type information about this node in the Node Information fields.

To quickly add a node and relationship to your view, position the cursor directly over the node, press and

hold the right mouse button, and select the relationship and node you want to add to your view. For

example, you can create an argument node, then quickly create a qualifying assumption using the right

mouse button.

To delete a node
• Click on the node you want to delete.

• From the Edit menu, select Delete (Or press Ctrl + D).

To name a node
• Select the node you want to name.

• Type the node name in the name field at the bottom of the window.

To view node information in a larger space, double-click on the node or click the Show Info button. To

modify the name, description, or status of a node:

• Select the node you want to modify.

• Make your modifications in the information fields at the bottom of the window.

To get more information about the node than appears at the bottom of the window, double-click on the

node or click the Show Info button.

To display the shortcut menu
• Press and hold the right mouse button in the Discussion window (but not over a node).

• Select the node you want to create from the Shortcut menu.

82

To permanently display this menu on your window, select the dotted line at the top of the list.

83

DEFINING RELATIONSHIPS

To create a relationship
• Click the Link button (this is the button with a straight line on it).

• Press and hold the left mouse button over the first node in the relationship.

• Drag the cursor to the destination node, then release the mouse button.

To quickly add a node and relationship to your view, position the cursor directly over the node, press and

hold the right mouse button, and select the relationship and node you want to add to your view. For

example, you can create an argument node, then quickly create a qualifying assumption using the right

mouse button.

To delete a relationship
• Click the Pointer button.

• Click the relationship you want to delete. From the Edit menu, select Delete (or press Ctrl-D).

To modify a relationship
• Click the Pointer button.

• Select the relationship you want to modify.

• From the Edit menu, select Delete.

• Create a new relationship.

To display the legend
From the Display menu, select Legend. This legend shows the possible relationships, and also the

relationships you can use with the nodes. You can also see what kind of relationship each color

represents. To see the possible nodes and relationships available from a node, position the cursor directly

over the node, press and hold the right mouse button, and select the relationship and node you want to add

to your view. For example, you can create an argument node, then quickly create a qualifying assumption

using the right mouse button.

84

OBJECT LINKING

To display the object link dialog for a node
• Position the mouse pointer over a node, then press and hold the right mouse button. A floating

menu appears.

• Select Show Object Links. The Object Link window displays the links for the node you selected.

To display the object link dialog for a topic
• Position the mouse pointer anywhere on the Discussion Editor, but not over a node.

• Press and hold the right mouse button.

• Select Show Object Links. The Object Link window displays the links relevant to the topic.

To define an object link
• Click the node you are linking from in the Discussion Editor.

• From the ObjectLink menu, select SetAsSource.

• Open the view that contains the object you want to link to your node.

• Select the object you want to link. For example, if you want to link Hypertext in the Hyper

Document Editor, use the mouse to highlight the text you want to link.

• From the ObjectLink menu in the current view, select SetAsTarget.

• From the ObjectLink menu in either view, select FormLink.

To verify that the link was formed, press and hold your right mouse button over the node in the

Discussion Editor window, then select Show Object Links. The Object Links window shows a list of all

linked objects for that node.

85

5. ADM Logical Models

5.1 Software Development Model

5.1.1 Overview

The ADM is intended to support the design of software products as a process of evolving models. The

ADM approaches the development of a software product as a process of gathering information and

evolving models into a final form. For example, a requirements model leads to the creation of one or

more specification models, and then to various implementation models, culminating with a final product

"model." This process is similar to the way a sculptor chisels away at a block of marble while taking

pictures of his work at various stages of refinement, until the statue is completed. Each new model

represents a refinement of the previous model, and the final model is the resulting product of the

development.

Earlier models are all retained within the ADM database, giving rise to the concept of a "version." Each

model captures design decisions made at that particular stage in the life cycle of that model. Breaking

development into models allows the developer to focus on concerns and express critical design decisions

as they apply to that stage of development only. Thus it is clearer to someone reviewing the project why

certain decisions were made -- they can see the logic behind decisions made within the context of the

stage of development.

The ADM implements the model paradigm by providing tools capable of capturing the work done during

particular stages. Hypertext documents and REMAP discussions, as well as ALE specifications and

finally ALE packages (source code) are used to save pertinent design information for each model. Each

time a Hypertext document, REMAP discussion or ALE specification is edited, a new version is created

and represents a new, more refined model of the overall development effort.

5.1.2 Software Design Methodologies

When working on large software projects, it is important to adhere to some kind of design methodology

which defines, for everyone involved, what procedures, practices and conventions will be followed.

There are many different methodologies in existence, and one can easily create one's own methodology if

a pre-existing one isn't suitable. A methodology provides a road map that the project should follow from

start to finish, helping to define tasks that need to be accomplished, order the tasks in some logical

hierarchy, and define clear milestones along the way.

86

The KBSA/ADM is flexible in the methodologies it supports. The ALE tool does rely on the (Rumbaugh)

OMT diagramming method, associated with object oriented design, but there is no reason why some new

tool might not be created which can support some other diagramming method. Methodologies are very

important in the creation of a Microsoft Project work plan. Work plans define project tasks and resources

(refer to the next section on the project model) which form the underlying project management structure

for the ADM.

5.2 Project Model

The project model of the ADM centers on managing resources (users) and decomposing tasks among the

resources. The goal of the project model is to tie together a communication infrastructure, versioning,

and the supporting tools and make them work as part of one single collaborative environment.

A project in the KBSA/ADM consists of one or more users who create one or more sessions. Each

session contains some number of tasks for the user to work on and complete. The ADM can manage

more than one project, but no information is shared between projects, they are separate entities within the

ObjectStore database.

Each project may have a different number of users with different names. Within a single project, all the

products are visible between users. The "root" user is Super. It is Super's job to create a project and

open an initial session, allowing a Microsoft Project work plan to be exported to it. Super is also in

charge of creating and managing the other users on the project. Each user (possibly including Super) is

assigned a number of tasks in the Microsoft Project work plan. These tasks dictate the work that each

user will perform. Each task has a single resolution and one or more deliverables associated with it.

5.3 Communication Model

5.3.1. Overview

The ADM facilities are constructed as a collection of cooperating process. A central process, called the

Session and Agenda Manager (SAM) manages the inter-tool communication. The responsibilities of SAM

are:

87

Manage the session-view paradigm

Provide ADM login capability

Provide support for topic creation, check-in, check-out and deletion

Support tool registration and unregistration

Support and manage collaboration within a team of developers

5.3.2. Messages

SAM interacts with each tool to perform some operations. Therefore, each tool is required to support

some basic remote messages to make it compatible with the existing environment. These messages are:

1. Tool Level Messages

Registration

Unregistration

Suicide

2. Topic Level Messages

Create Topic

Delete Topic

Pre Check-in Topic

Pre Check-out Topic

3. View Level Messages

Create View

Delete View

Open View

Close View

4. Object-Link Level Messages

Source

Target

Form

Traverse

In addition to the above, each tool can define its own specific remote messages if needed.

88

The ADM supports both synchronous and asynchronous communication across tools. There are three

levels of inter-tool communication in the ADM. These are the transportation, network and the physical

levels.

5.3.3. Message Structure

In the ADM, each tool is connected to SAM. When a tool needs to send a message to another tool or

SAM itself, it always sends it to the connected SAM first. SAM is responsible for routing the message to

appropriate destinations. Each message consists of the following three basic fields:

1. Return Address (The source tool address, from where the message originated. The synchronous

reply messages are initialized using this address)

2. Send Address (The name of the destination. This needs to be set for the tool specific messages

by the source process of the message)

3. Next Hop Address (The connected process address through which the message needs to be

routed. If the message is originating from a tool, this field is always set to SAM. If this message

originates from SAM, then this is the same as the address of the destination tool itself.)

The messages can be modified to add more fields as and when required. The inter-tool communication is

provided through a message-passing scheme. The return and hop addresses are set automatically as a part

of the message constructor itself.

This is a very good design, as all the components involved are loosely coupled. Each component allows

for extension while maintaining the consistency with existing features. New features can be added to the

tool suite by adding new tools.

5.4 Collaboration Model

The ADM collaboration model is based on the notion that textual models allow us to describe concepts,

goals and issues in great detail. The power of the written language allows us to capture large amounts of

project information - how decisions were arrived at, in what context, design discussions etc. Therefore,

the ADM has the capability to structure, organize and manage this information.

ADM supports two types of collaboration models:

1. Loosely Structured Descriptions (using HyperDocs): As an example, consider the creation of an A-

level specification document. Inputs to this task include transcripts of discussions with the client, user

89

manuals, functional descriptions of legacy code, white papers etc. The hyperdocument provides the

capability to create and manage various hypertext based text documents. One strong feature of the

hyperdocument is that it supports hyperlinks between heterogeneous design artifacts - a document can

have links to discussion objects, code specification objects etc.

2. Structured Descriptions (using REMAP-based discussions): The objective of a REMAP discussion

is to capture requirements and design discussions. Using REMAP, a user is able to replay the design

history of a component and understand why and when different decisions were made. The REMAP allows

a user to link issues, positions, arguments, assumptions, decisions etc. Typically, a discussion is

associated with one or more work products. Controversial issues are recorded in the discussion and then

related via object links to the pertinent portions of the deliverables. This way the user will be able to

easily traverse and understand the design issues behind the various deliverable components associated with

the project.

5.5 Product Model (ALE)

The product consists of the set of deliverables for all the tasks for a project after it is imported in the

KBSA/ADM domain. Since KBSA/ADM supports the development of an object oriented system, it has

the following features as a part of its product model:

• Well defined semantics

• Builds upon the common OO language models

• Consists of many OO editing transformations

It uses the underlying ARGO, which is an object oriented specification language consisting of concepts

like class, attributes, relation, operation, and package. From this meta-model ALE defines several visual

presentations including a class diagram, a package diagram and an ARGO view.

ARGO also consists of a data model including :

• Ability to maintain referential integrity on relationships

• Enforcement of cardinality constraints on attributes and relations

• Creation of appropriate destructors and copy constructors to realize desired semantics of composition

relations

• Creation of initializers for all properties

Currently code generation is limited to generating header (.hpp) files and allowing the user to define

90

function bodies in the ALE environment which are then exported into a corresponding implementation

(.cpp) file, both of which are outside the KBSA/ADM environment i.e. appear in a UNIX file system

directory. This is because of the observation that code generation at unit level is cheap and of lesser value

than being able to capture and describe all of the project processes to be covered at a higher level.

Object links facilitate coarse-grained impact analysis when requirements change and thus are in a better

position to manage when and where to change the implementation.

5.6 Repository and Versioning Model

the role of the KBSA/ADM repository is to provide centralized persistence to design artifacts. The

repository is built upon Object Design's ObjectStore OODBMS that provides a virtual memory model for

object persistence.

The repository is organized into a two-tiered workspace:

• Project

• Session

The project workspace is a global workspace where objects are persisted and accessible to all users. The

session workspace is a local workspace associated with a specific user.

The basic unit of versioning within the repository is a topic. The topic contains First Class Objects (FCO)

or topics that are the smallest object that can be manipulated in the KBSA/ADM. Users of KBSA/ADM

check-in and check-out topics (design objects) from the project workspace into their session workspace

for transformation. The repository enforces a single writer, multiple reader protocol.

5.6.1 Topics definition

A topic is a deliverable you create in the course of completing a task. You use them to complete the

deliverables assigned to the task in the methodology. For example, a business case may be created using

various types of topics such discussions or specifications.

When you execute a task resolution, KBSA creates all topics you need to complete during this task. You

can also create topics directly using options on the topics menu in SAM, and add them to a particular

task. These added topics do not appear in the Microsoft Project work plan when the project manager

imports it.

KBSA stores topics in the project repository, from which you check in and check out the topics you want

to complete. Topics you create during a session do not exist in the project until you check them in to the

91

repository. Until you check a topic into the repository, other users cannot access it. You can have topics

from different sessions open at the same time.

In KBSA there are four types of topics:

• Specification - a model consisting of multiple, related packages. You document a specification using

the package diagram view.

• Package - a collection of classes and their relationships. A package is documented using class

diagrams.

• Discussion - a record of a meeting, conversation, or other communication in which issues and

arguments relevant to your project are discussed. You document discussions using the Discussion

view.

• Hypertext document - a free-form text file with links to related documents or diagrams.

5.6.2 Topic Versions

A version of a topic is a record of a topic as it existed when you checked it in to the project repository.

When you create a topic, KBSA automatically assigns it the version number 1. Each time you check a

topic out of the repository, KBSA increments the version number by 1.

You can check out only one version of a topic in one session. However, you can check out different

versions of a topic in different sessions. This allows you to compare current versions of a topic with

earlier iterations.

You can check out the most recent version of a topic in write or read only mode. You can check out prior

versions in read only mode. You can only check out a topic in write mode in one session at a time.

You can have multiple views for a topic. For example, you can open two different discussion views for

the same topic. Items you add to one view (a new argument, for example) appear simultaneously in the

other view. However, layout changes made in one session are not reflected in other views. This allows

you to compare different layouts of the same material. You can have different views of the same topic

open at the same time. You can also have views from different sessions open at the same time.

When you check a topic into the repository, KBSA does not preserve views. When a new version of a

work product is created, the ADM uses the agenda mechanism of IPSE to inform all developers using the

older versions that the work product currently in their sessions is no longer the latest version. The

notification appears as a critic resolution task and offers as a resolution to check-in the current work

product and check-out the latest version. By using the agenda mechanism, the ADM gives a user the

92

flexibility of knowing as soon as possible that they are working with an older version, but allows the

developer to delay integration of the new version until ready.

The versioning system facilitates exploration of the design space by allowing alternative versions of a

work product to be created. Object links are used to connect the discussion to the appropriate portions of

the designs (in either version). In this way differences between the versions can be highlighted and

explained. When one version is selected over another the rationale behind the decisions can be captured as

the conclusion of the discussion.

5.7 Substrate Model

5.7.1. How the tools work together

The tools work together based on the session view paradigm, which provides users with a perception of

the ADM as a seamless development environment, rather than a set of loosely coupled independent tools.

The three key layers in the overall ADM session-view architecture are shown in the figure below:

93

The three layers are:

1. Session View Layer: This shows the user views, which are grouped into sessions, based on some

logical grouping of the user's tasks.

2. Tool Layer: This contains SAM, the various ADM tools, the Requirements Acquisition Support

Environment (RASE).

3. Repository Layer: This consists of the back end facilities for managing the persistent design objects.

All tools are required to register with SAM when they start up. The tools let SAM know about the topic

types and the view types that they support. The SAM menus are dynamically configured at run-time to

reflect this information; thus, SAM is easily extended to support any new topic type.

After this, SAM presents the user with a view of his/her session. The session is a logical grouping of

some of the tasks that the user has to perform. In this session, most of the tasks have output deliverables.

These deliverables are topics, and the operations that have to be performed on the topics can be broadly

divided into three parts: (1) Topic Creation and Deletion (2) View Creation and Deletion (3) Check-

In/Check-Out. SAM doesn't know how to create and manage these topics and their views. So, items (1)

and (2) are managed solely by the tool that supports the topic. All SAM does is provide the tool with the

requisite topic and view level messages, as described in detail in section 5.3.2. However, it is SAM that

manages (3). Obviously, all topic check-in and check-out are best done by a single, central agent. During

check-in and check-out, SAM provides the tools with pre and post messages, which lets them know of

SAM's intentions to check in or check out topics; the tools can perform some specific actions (if they

need to) when they receive these messages.

5.7.2. Addition of new tools and topics

One of the principal goals of the KBSA/ADM project is to provide an open-ended architecture that

enables the user to customize the environment and extend it. This section briefly describes the activities

involved in adding a new tool to the ADM environment:

1. Defining the tool functionality: What exactly does the new tool do? Is it going to introduce new

topic types into the ADM environment? Adding a new topic is not always necessary, as it is possible

to add new functionality without adding new topics. One can present the information in the existing

database itself in some new form, or one can add a tool that adds some product management

capabilities to the ADM etc. Whatever the case may be, defining the tool functionality is the first step

in adding a new tool to the existing tool suite.

94

2. Defining the User Interface: The next step is to design the tool interface. This doesn't mean

drawing the UI in terms of GUI components alone; it means one has to carefully think about how the

user will interact with the software, what messages are to be generated for each of those interactions,

and how to respond to each of those messages.

3. Providing persistency: The ADM environment gives the user lots of functions for providing

persistency in the database. The developer of a new tool has to decide what objects he needs to make

persistent. The views are best designed if they are compliant with the ADM's model-view concept;

this concept says that the views for topics are always dynamically generated, and are not persistent.

Only the topics themselves are persistent.

4. Enabling the inter-tool communication: Once the tool is working in its standalone mode, the

developer can add inter-tool communication facilities to it, using the frameworks provided. Here, the

developer has to ensure that the tool registers itself with the environment during start-up, responds to

all the required messages from the other tools etc. This is the phase that really links the tool into the

ADM environment.

The specific details on how to achieve each of these steps are outlined in the following section on

individual tool architecture.

95

6. ADM Architecture - Physical Models

6.1. Individual Tool Architecture

Each ADM tool is built on top of a number of object oriented frameworks. A framework is a set of

collaborating classes to provide a domain specific capability. The main advantages of the frameworks

include software re-usability (higher productivity, better portability, and higher reliability). Also, uniform

interface standards are easily enforced this way. The structure of an individual ADM tool is shown below:

Each tool has three basic layers, and each layer has some frameworks associated with it. The three layers

96

are:

1. Presentation Layer: This GUI layer is responsible for the visualization and manipulation of work

objects on the screen

2. Message Layer: This layer handles all the inter-tool communication, and provides loose-coupling

between the various tools in the suite.

3. Repository Layer: This layer is concerned with the persistency and version management of the

various work objects. It also provides the object linking capabilities among the objects.

The logical model for a tool (as outlined in section 5) is realized by the suitable interaction and data flow

between these three layers.

6.2. ADM Frameworks

The process for creating an ADM compatible tool requires that the developer define the tool's purpose, its

set of work objects, and the features it needs to support. The tool developer selects frameworks from

what the ADM provides, and specializes and integrates them to meet the tool's requirements. Thus, the

efforts of the developer are mainly focused on integrating the various frameworks, rather than developing

the features from scratch.

6.2.1. Presentation Layer Frameworks

6.2.1.1 Galaxy

The ADM uses several presentation layer frameworks. The most important of these is Galaxy, a

commercial platform independent framework for developing GUI applications provided by Visix Software

Inc. Galaxy is used in the ADM to provide all of the GUI services such as the SAM window and the

various tool interfaces. The Galaxy/C + + library consists of managers. A manager is a collection of

collaborating C + + classes for providing a specific capability. Different managers include: dialog

manager, menu manager, button manager, list manager, text manager, memory manager, etc. Using

Galaxy takes a lot of work out of designing the user interfaces because it comes with VRE, a visual

resource editor which reduces the amount of time involved in designing the various user interfaces and

making changes to them during development. The resources (dialogs, message boxes, icons, etc.) are

created in vre and saved in a separate file. The program that utilizes the resources accesses the .vre file

to get to them, they are not compiled into the binary executable of the program. This does two things:

1. It keeps the size of the executable program smaller by loading GUI components dynamically at

runtime

97

2. It allows dialogs to be modified during development without necessarily having to recompile the

code each time

One drawback of Galaxy is that there is a very high learning curve involved in using it since it is a very

extensive and flexible API, capable of supporting many complex activities and it has an enormous number

of different functions and features. However, only a small subset of the Galaxy functionality has actually

been used in the KBSA/ADM, which somewhat mitigates that high learning curve.

6.2.1.2 AGL

AGL stands for Aesthetic Graph Layout. This framework provides automatic graph layout capabilities

such as node positioning, moving and resizing, edge routing, nested graphs, and multiple layouts.

Andersen Consulting created this framework and encapsulated within GEF (the Graph Editor Framework

- refer to section 6.2.1.4) to provide transparent API of diagrammatic interface programming constructs

for use in tool development. The results of this framework are clearly visible when creating REMAP

discussions or when designing ALE package and class diagrams.

6.2.1.3 Scribbles

Scribbles is another framework created by Andersen and encapsulated within GEF (§6.2.1.4). Scribbles

provides the capability to manage (create and control) the graphical entities such as rectangles and lines.

It extends the pre-existing Galaxy graphical features, providing an API, that along with AGL, makes up

the backbone of GEF.

6.2.1.4 GEF

GEF, the Graph Editor Framework provides a powerful and customizable diagrammatic interface. GEF

supports automatic visualization capabilities:

• Customizing dialogs with default menu items, buttons, and interactors

• Multiple automatic layout types: Tree, hierarchy, network, and manual layout

• Nested diagrams, automatic node positioning, and link routing

• Popup menu support at every object level

• Automatic decoration and identification on the diagram objects

• Enforcement of standardization in diagrammatic user interface

98

The success of the GEF framework can be experienced through using ALE to create package and class

diagrams, and in the REMAP discussion editor while creating discussions. Many of the menu items in

both of these tools rely heavily on GEF functionality.

6.2.2. Message Layer Frameworks

The two frameworks available for developing the message layer of the tool are:

1. Extended Model View Framework (XMVF) is a model-view controller framework, similar to those

found in SmallTalk applications. The key objectives of this framework are:

• To establish and maintain relationships between the ADM views and back end model objects

(topics)

• To provide a consistent mechanism for defining messages between the views and the model of

the system, while hiding the details of transaction control and management.

XMVF implements an ObjectStore independent meta-model of topics and first class objects on top of

ObjectStore's concepts of osconfiguration and object. In cooperation with object-linking, it also

implements notions of relationship within a topic (using persistent pointers) and across topics (via object

links). XMVF also provides the basic communication infrastructure to perform actions on these objects

from views and deliver these changes to the views in a synchronized manner.

XMVF satisfies the following requirements:

1. Provide a KBSA-specific meta-model for user objects managed by the KBSA Repository that is

fitted to the user model for KBSA and that is not directly dependent on the database

implementation.

2. Provide object uniqueness that is stronger than address uniqueness in pointers

3. Interface with the actual database to deal with transaction handling, so that it is transparent to the

tool developer

4. Provide a common platform for requesting, executing and reporting the results of actions against

the contents of the repository

5. Provide a basic Observer pattern within the repository as a tool for tool developers.

2. Remote Operations (RO): RO provides tool-to-tool communication across a network, and is

99

responsible for the following functionality:

• Connectivity to existing tools through ports

• Synchronous and Asynchronous communication protocols

• Message-based communication

• Spawning and terminating tool processes.

There are different kinds of remote operations, such as IPSE Tool Commands, Stored Task Execution,

Proxy Synchronization, Remote Stand-Alone Task Execution, SubTask Execution, COTS Tool Integration

and Object Linking. The connectivity framework provided by RO hides from the user all the details of

socket programming.

6.2.3. Repository Layer Frameworks

The Role of the KBSA/ADM is to provide centralized persistence to design artifacts. Persistence and

Versioning management layer is built on top of the existing OODBMS ObjectStore and has the following

features :

• Version Management of objects both in projects and sessions.

• Supports full check-in/check-out facility

• provides utilities to create databases, projects, users and sessions

ObjectStore
database

^

Global
Workspace

^y

Private
Workspace

corresponds to

corresponds to

corresponds to

KBSA/ADM
repository

<7

Project

$~

Session

100

Objectstore to PVM Concept

As shown in the figure above the Objectstore database corresponds to the KBSA/ADM repository which

is chosen to be a file based repository.

The global workspace concept from Objectstore maps to the project in the KBSA/ADM domain. The

project consists of a set of of KBSA/ADM tasks and topics. So topics and tasks within that project are not

"visible" to other projects. Sessions are created by a user with the SAM component of the KBSA/ADM.

The private workspace represented by the session contains project tasks and topics checked out from the

Project, to topics created by the user and not yet checked into the project.

6.2.3.1 Concept

The PVM capabilities within the KBSA/ADM wrap around the corresponding capabilities of Objectstore

as follows:

• Ability to persist objects

• Use and management of user and shared work space

• Version control

• Transaction and messaging support

The first three objectives are achieved automatically via built-in Objectstore functionality. Transaction

management and messaging support is customized for the KBSA/ADM application domain which enables

successful decoupling of the tool developer's need to understand Objectstore technical details including

the details of the transaction management. All the routine transaction semantics (start, commit/rollback)

are hidden from the tool developer.

The concept of the request is introduced at the XMVF layer level which ties in with the PVM layer

closely. Each request has a corresponding doltß method that performs the actual request. However it is

not directly invoked by the tool developer but called by the XMVF layer's execute() method which

handles all the transaction setup and invokes the same.

The typical process of KBSA/ADM transaction management can be described as :

1. Communication between a tool and the repository occurs through the PVM layer using "request"

2. Requests are created using tool specific attribute values and then "executed"

101

3. The "execute" method initiates Objectstore transactions, invokes the corresponding doIt() method,

and post-processes after the doIt() returns. Tool developers need only concern themselves with these

pre- and post-transaction conditions relative to the processing of the specific messages.

6.2.3.2 PVM Requests

There are two types of requests :

• Requests which are exclusively for the KBSA/ADM technical architecture components

• Requests which are available for sub-classing by tool developers

Some of the typical requests that will be used by a tool developer are

• PVDELETETOPICREQUEST

• PVCHECKOUTREQUEST

• PVCHECKOUTFORWRITEREQUEST

• PVCHECK OUTFORREADREQUEST

102

7.0 Adding a New Tool to the ADM

The ADM environment currently has tools for planning and controlling the execution of a project's tasks,

generating project design documentation such as Hyperdocs and REMAP discussions. It also has a facility

for specifying code components, resulting in the generation of header files. A real-world software

development process definitely needs these project planning, and topic-development tools. In addition, it

also needs some facilities for managing the entire software development product baseline, such as:

• Support for module and test plan topic types

• Support for managing and browsing software products

• Support for spawning documents: Manuals, test plans, reviews etc.

• Support for the Software Integration process: Code builds and document builds.

One important issue concerning the ADM implementation is just how difficult is it to add a new tool to

the ADM federation? We decided to attempt to add a new tool to the ADM that extends the ADM's

model of the software development process to include the facilities mentioned above. We call this new

tool the Project Archival and Report Tool (PART).

7.1 The PART Functional Model

PART introduces the concept of a Project Knowledge Structure (PKS) in an attempt to satisfy the above

requirements. A PKS is essentially the MS-project plan, augmented with some additional information.

Hence, it contains information such as the list of tasks, their inter-dependencies, the resources allocated to

the tasks, and their deliverables. A PKS is shown in Figure 1. Each box in that figure corresponds to the

notion of a task in the ADM. Hence, the tree represents inter-dependencies of the tasks between

themselves. PART will display a graphical representation of the PKS in its window. The PKS can be

shown either for the entire project (global view), or for a single session within the project (distributed

view). This is discussed in more detail in a following section.

What is the idea behind showing the PKS to the user? The intention is to provide a graphical interface to

the project itself-the user can browse a project's tasks and deliverables in an easy and convenient

manner. PART concept also supports visitors and builders; visitors allow the user to browse the PKS

according to some search pattern, and the builders allow the users to generate documents and build code.

Visitors present different kinds of views to different kinds of users. For example, a general's tour visitor

might be targeted towards someone in the higher management, who wants to see only the broad divisions

103

of the project and the major design issues, without getting into the details. A team leader visitor might be

designed such that it presents a lot of details about a particular process within a project.

A build refers to a process by which deliverables are selectively extracted from the repository to form a

meaningful collection. With this facility, developers will be able to generate execution images for

modules, manual pages for all sub-modules for a process, and test plans for a multi-module component.

PART includes two new topic types to support these goals. Specifically, PART supports a module topic

type and a testplan topic type, and the associated views for them. A module topic represents a software

module with a header file and an implementation file, and a testplan topic represents a software test plan.

ProjectComp
(system)

ExGcutiveComp
(process)

ExecutiveComp
(process)

TopLevelComp
(module)

TopLevelComp
(module)

ExecutiveComp
(process)

ExecutiveComp
(process)

TopLevelComp
(module)

LowestLevelComp
(module)

LowestLevelComp
(module)

LowerLevelComp
(module)

*-•
LowerLevelComp

(module)
LowerLevelCor

(module)
np LowerLe

(mo
vefComp
dule)

Figure 13: Project Knowledge Structure

104

7.2 Conceptual Model for PART

The aim of the conceptual model is to illustrate the relation between the ADM's notions of tasks and

deliverables to PART'S notion of components and products.

The following diagram shows the connection between the ADM world and the PART world:

ADM Task

' ' 1 '
Module HperDoc Testplan

T

Task Component

review product help

Test Component

review product help

Module Component

review product

Design Component

review product help

Figure 14: Conceptual Model

The dotted lines in the above figure show the runtime pointers made from the component structure to the

actual topics created by the ADM.

During our design efforts we tried to focus in on what functionality PART should encompass and what its

boundaries are. Some of the assumptions made are:

• PART visitors are able to traverse the whole database file

• A Module topic always consists of one header file (.hpp) and one implementation file (.cpp),

105

stored in the database

• PART does not support any kind of role mechanism (e.g. the hierarchy of Project leader, team

leaders, developers) but this would be a natural and useful extension.

• A Testplan topic is associated with a single module.

• The component structure is based on the notion that a user will want to check out the topics that

are created or modified by a task. Update deliverables and output deliverables are considered to

be equivalent for the purposes of the component structure. Input deliverables are considered

only for building up the task dependency hierarchy; beyond that, the component structure does

not deal with input deliverables.

7.3 PART Basic Types

7.3.1 Introduction to Module and Testplan Topics

The Module and TestPlan topics are two new topics that are designed to store, as part of the ADM

database for a project, the source code and the unit test plan for a software component product. The

Module topic consists of a header file and an implementation file (.hpp and .cpp files). The view for a

module topic allows the developer to specify the names of the two files, and examine both files

concurrently. The current interface is read only - if the developer intends to do work on these files they

must be extracted from the database (by saving them to a directory) and then edited outside of the ADM

environment. When the developer finishes editing the files, he then opens them in the ADM module view

dialog and saves them in the database.

The TestPlan topic dialog allows the user to enter information relating to the testing of a component. This

information is then saved in the database and can be referenced or updated whenever necessary.

Screen views of the dialogs for these topics are shown in the next section.

106

7.3.2 Screenshots

PART Test Plan View

Test Ran Type:

Module Name:

Module Developer

Test Plan Developer.

Test Case: Expected Results:

Date:

Actual Result:

Test Data Source:

View for the Test Plan Topic

107

s: PART Module View

File

Header File:

>4_J

Implementation File:

View for PART'S Module Topic

7.3.3 Implementation Strategy

The steps we have followed to implement PART is as follows:

• Conduct discussions to clarify our notions of a testplan and module topic

• Formulate views for the new topics

• Write code for tool Registration, Unregistration, Suicide

108

• Write code to create a new testplan topic from SMTOPICTYPE with no data members in it

• Write code to handle messages for

Create

Delete

Checkin

Checkout

• Use Galaxy to create a view for the testplan topic

• Write code to display the view. At this stage, the view doesn't depend on what is in the testplan

topic; it is a static view.

• Use Galaxy to design a view for the Module topic

• Write the code to provide all the basic functionality for the module topic also (create, check-in,

checkout, delete, display a different static view)

• Write code to make the view dependent on the topic data itself

Advantages of using the ADM environment for tool development

The ADM environment provides the tool developer with many convenient features, which are otherwise

time-consuming to develop. Some of these features that the developer gets for "free" are:

Topic Level Features: Persistent Topic Creation and Management support, check-in and

check-out facilities with version control, view creation and management support, object

linking etc.

Tool-to-Tool communication

Multiple session handling capabilities

Multiple user handling capabilities

These features can be incorporated into the new tool with small effort by making use of the various ADM

frameworks.

109

7.4 PART Project Knowledge Structure

7.4.1 Introduction

The PART dialog presents the user with a graphical representation of the task hierarchy, and the status of

each of the task-how many of the deliverables have been created already, arid how many are being

currently modified. PART also invokes the views for these various topics, and thus serves as an object

browser for the project tasks. In this sense, the PART dialog is not a view according to the model-view

framework. There is no model behind the PART dialog, all it does is represent the collection of

information in a graphical way.

7.4.2 Object Model

7.4.2.1 Component Structure

The OMT diagram on the next page specifies the classes involved and their relationships for implementing

the project knowledge structure. The Task Component is an aggregation for the whole Project Knowledge

Structure. This maintains a list of pointers to objects of type Component, each of which can either be a

TestComp, ReqmtComp, DesignComp, ModuleComp or a TaskComponent itself, which gives the structure

the ability to add an additional level to the Project Knowledge Structure. Thus TestComp, ReqmtComp,

DesignComp, and ModuleComp are the leaf nodes of the Project Knowledge Structure.

Each Component owns three objects, which are review, product and help. The product object contains

the object identifier productOId to its persistent topic object. The review component contains any review

comments for the topic under product and the help class contains help text for the same topic.

110

review

product

help

oT -o
■o

Component

A

/
TestComp

/
ReqmtComp

/
DesignComp

/
ModuleComp

/
TaskComponent o

7.4.2.2 Persistent Component Structure

The structure described above takes care of the recursive nature of the PKS. We require PKS to be

persistent and versionable, since it contains references to persistent topic object from the KBSA

framework. We integrate this Component structure with the KBSA PVM layer.

7.4.3 Visitors

Visitors implement the functionality of code-build and document-build for PKS. Code-build is meant for

« Visitor

i L i L

BFS_Visitor DFS Visitor

topics that are referenced by the ModuleComp objects at various levels of the PKS.

The OMT diagram, above, describes the design of the object model for the builder/visitor concept. We

currently define two types of visitors characterized by their search pattern: Breadth First Search Visitor

and Depth First Search Visitor, each of which is a Visitor object. The builder has access to a visitor

111

object, which can be instantiated and linked to the data member of the builder at run-time. The visitor

functionality will be invoked with the help of menu-items in the Global PKS window view.

Sample Build process description for Test-Plan build with a Depth first visitor strategy for the product

information with destination as a file:

- The user can specify graphically (with the help of mouse clicks) the branch(es) to be traversed from

the PKS. By default the whole forest will be considered as selected. The Component structure will

be traversed as follows:

For each tree root:

- For all the TestComponent objects in the list data member of the Task Component object,

node:

get the oid of the topic from the product data-member

- get the relevant information stored in the topic with the help of topic object's member

methods

Append to a temporary file

- Visit the next node in the tree according to the classic Depth first tree traversal

: Copy the temporary file to the file the name of which was obtained from the user

7.4.4 More Screen Designs

The Visit menu item will allow one selection to be made from each of the following grouping: BFS/DFS,

CODE/TEST/DOCS, PRODUCT/HELP/REVIEW. Once the user has made the selection he can use the

Build menu item to select the destination of the build. This will consist of either a temporary file

generated as Hyperdocument and shown on the screen or exporting the built information to a user

specified file, determined with the help of a File browser window.

112

The following dialog shows checkboxes. From BFS and DFS, only one can be selected at a time. From

CODE, TEST and DOCS, only one can be selected at a time:

Visit Build

BFS 0
To Screen o

CODE 0 DFS 0 To File o Product 0 TEST
<>

Help <> DOCS 0
Review

PART Dialog Choices

113

The screen design below shows the PART navigation screen. This is intended to give the tool user an

overall view of the project for purposes of extracting information or initiating a code or document build.

B PART nn
View Build Visitor Help

1

PART Main Dialog

114

7.4.5. Implementation Strategy

This section deals with the actual implementation phases of PART including observations about the ADM

made during the process.

7.4.5.1 Design and Phase I

The design phase lasted several weeks. The result of this phase, a detailed design document, can be

found in Appendix A. The previous subsections have summarized only the functionality-related aspects of

that design document in order to give the reader a flavor for PART'S functionality without detailing

implementation issues.

We used the majority of the design time gaining an in-depth understanding of the KBSA/ADM

architecture at the code level in order to get an idea of the different integration strategies for PART. The

major functionality of PART, the PKS navigator, is not a KBSA topic in the strictest sense since it

attempts to navigate the IPSE structure and view an entire project. This type of functionality transcends

the usual tool functionality supported by the ADM. Thus, in order to design such a tool, we had to get

advice from the Andersen team. Mainly this advice consisted of us trying to find out what functionality

the ADM can and can not support. We also had to make some compromises on our design due to the

time constraints, mainly a scaling back of proposed user-interface functionality.

The implementation of Phase I lasted three days. We used design document we wrote as a guide and

began creating a tool that would provide the desired functionality. Bhaskar Naidu from the Andersen

team assisted us on site. During this phase we achieved two important milestones. First, we were able to

create the underlying message handling structure for PART, the most important piece. Second, we

successfully implemented two new topics, the Module topic and the TestPlan topic. This phase of the

implementation went quite smoothly. We found that the ADM can accept new topic types quite easily.

We were able to complete everything except the actual user-interface functionality for the dialogs that we

designed - we did not finish the code that controls the passing of user entered information from the dialog

to the database and vice versa. We considered this functionality to be less critical since we knew that it

was easy to add. Our efforts concentrated more on trying to see how difficult adding a new tool would

be, not on getting all the particulars of the user interface completed. This phase was hampered by some

equipment failure. Had it not been for that, we would have succeeded in making both topics fully

functional.

115

7.4.5.2 Phase II

Following the Technical Interchange Meeting held at Syracuse University in early May, Bhaskar returned

for two days to help us continue the implementation of PART. This second phase focused on creating the

interface and functionality for the Project Knowledge Structure viewer. The PKS viewer is really just

another new topic, added to the two existing ones, plus some additional functionality not normally

associated with the role of a topic. We were able to build on to the software created during phase I. We

added a dialog that displays the PKS for the user and added some of the functionality for displaying a tree

structure with linked rectangles (signfying tasks and their dependencies). There was not enough time to

make the PKS viewer fully functional. The work done serves as a proof of concept: None of the visitor

or display (i.e. double-clicking on a task to view a deliverable or other information) features were

realized. Only tasks added via the SAM menu appear in the PKS navigator dialog, the integration with

IPSE proved to be non-trivial. In order to have full functionality for PART integration with IPSE would

be necessary.

7.5 Problems Encountered

We met with mixed success in implementing PART. This mixed success had more to do with time

constraints than it did with problems integrating the tool into the ADM. We successfully created two new

topic types, and had some success with getting the user interfaces working fully. The module topic got to

the point of being able to read in the text of a source file from the UNIX file system and display the

contents of the file in one of the windows of the topic's dialog. Although we did not get to the point of

adding all the desired functionality for our two new topics that we wanted, we were successful in writing

all the code for the underlying operations that a topic or tool must handle. That means that about nine

tenths of our implementation of the topics got completed, and if time had permitted, there is no reason

why they could not have been finished. In addition, we were able to complete some of the project

navigation functionality for PART, including a demonstration/proof of concept PKS view of tasks added

from within SAM.

It took us a long time to fully define our concept of what PART could do and should do. It also took us

time to fully understand the architecture of the ADM. As a result, we could not complete the actual

implementation, but were satisfied that the PART tool could be fully implemented, with a few person

weeks of effort. Through our efforts, we learned about the inner workings of the ADM, especially about

how tools register themselves and communicate with SAM, and what messages are passed between

116

processes. This deep understanding of the ADM can only be reached by those who actually write code

for a new tool and attempt to integrate it. So although the functionality of PART was less than we had

hoped for, the process was of value to the overall evaluation of the ADM. This experience gave us

insight into the framework structures that compose the ADM, as well as the relative ease with which a

new tool can be integrated.

7.6 Results and Conclusions

Overall, our efforts toward designing and implementing PART met with positive results. The following

checklist of goals illustrates our progress:

Phase I

Design of Part Completed

Code for tool registration, unregistration, and

suicide

Completed

Code for TestPlan topic 50% complete

Code for Module topic More than 50% complete

Topic creation, deletion, check-in, check-out Completed

Use VRE to create dialogs for the new topics Completed

Phase II

Code for PKS topic - started in Phase I Complete

Use VRE to create PKS navigator dialog Complete

Code for enabling visitors Just begun

Code that ties PART to IPSE to replect an exported

work plan

Not attempted

Code to support user interface features such as

double-clicking to display help, review, and

Not attempted

117

There is a learning curve involved in adding a tool to the ADM, but there are no huge hindrances

involved in the process. During phase I we were able to create the interfaces for two new topics and

implement most of the functionality for both except for the views. In phase II, we made a lot of progress

in getting the PKS navigator up and running with demonstrable functionality.

In the process of our implementation we found that all of the hooks for fully integrating a new tool exist.

There is no reason why such a tool could not be every bit as integrated into the ADM as ALE and RASE

are. This ease of extendibility above all is the really important point to elicit when discussing what the

KBSA/ADM provides. It means that the ADM can be easily extended to add nearly any kind of CASE

tool that might be desirable to have. PART itself is one example of such a tool.

118

8. RABS Maintenance Activity

This section is divided into two fairly long parts. The first describes a Repository and Build System

(RABS) used as a vehicle for evaluation of the ADM. The second part describes our use of the ADM for

maintenance activities on RABS and conclusions about the effectiveness of each of the ADM's supported

tools.

8.1. RABS Overview

We wanted to evaluate the ADM by actually using it in the way it was intended to be used-on an actual

software project. Although it might have been more consistent with the ADM development model to start

a new software design project from scratch, we did not have enough time to begin one that would be a

non-trivial exercise of the ADM. Our compromise was to perform a maintenance activity upon a pre-

existing software system. The project we chose, Repository and Build System (RABS), needed some

further refinement before it could be released for public consumption. This refinement consisted of fixing

several bugs and adding some new functionality to the system. This maintenance activity was deemed

small enough to be successfully completed in the time available, as well as complex enough to benefit

from the kind of project management that the ADM provides. A description of the RABS architecture

proceeds, followed by a detailed account of our evaluation strategy and the results of the evaluation.

8.2. RABS Logical Model

RABS consists of more than 20,000 lines of source code, not counting compiler library. It was developed
in six intense weeks in the Fall of 1996 as a class project for the Software Studio course, part of the
Computer Engineering Program at Syracuse University.

RABS is a tool designed to help developers manage a source code repository. It has facilities for:

1. Viewing the repository directory structure

2. Searching for components (each component is a list of files) by name or keyword

3. View code manual pages, maintenance pages, and source code

4. Insert, delete, update, and extract components and individual files

Its primary goal is to store and extract, for reuse, software components, each of which may consist of many
source code files. Components may be accessed by name and may be extracted and compiled as entities. A
user may view a list of all components in the repository, may search for a component by name or keyword,
or view individual files to understand their interfaces and implementations. Finally, the user can ask that a
set of components be compiled and linked to form an execution image.

119

8.3. RABS Architecture

The RABS has two separate executables -- the repository manager and the build manager. Each of these
uses the services of modules:

1. Database subsystem

2. Directory subsystem

3. Viewer subsystem

The repository manager supports both tiled text window and command line interfaces. Its primary

responsibility is to save multiple versions of files and components and disclose information about them to

a software developer. The build manager also supports both tiled text window and command line

interfaces and also supports scripts for controlling complex software builds. A script describes the

components and files used to create one or more execution images and the command strings necessary to

activate a compiler with whatever options are appropriate for a specific build. Scripts can be commented

to maintain an audit trail for the build. For example, with two commands the build manager can unpack a

script and source code and build both itself and the repository manager.

8.4 RABS Design and Implementation

Database Management System

The DBMS supports the management of linked fixed length records to store a file of arbitrary size. The

software provides for insertion, update, deletion, and extraction of a file designated by a numerical key.

Each file is divided into a series of fixed length records with some linking and directory information included

in a header. The tasks for this subsystem are outlined as follows:

• Add file in database

• Delete file from database

• Extract file from database

• Ensure identical files

120

Database Directory Component

Provides a two-tiered directory structure. The top level is a lexicographically sorted listing of each of the

components in the database. The second tier lists each of the files that make up a component (build files and

documentation files), also in lexicographic order. This component provides a list in lexicographic order of

all files in the database matching a pattern. Each file in each component is associated with a numerical key

pointing to its records in the database. Directory software provides the capability to search by component

name, file name, or keyword for a matching component.

The specific tasks for this subsystem are each assigned a command line option which gives it the functionality

of manipulating the file and/or components in the database in a via a text based GUI or from the command

line.

The storage of all the files is done in a single database file, which enable the user to be able to easily move

the database file(s) around the operating system, make backups, etc. When inactive, the database is stored in

the following format:

File header Database File Index File Comp Index Viewer Config

The index file is a temporary file generated when the RABS session is in progress. It is written at the end of

the database file when the RABS system exits whether or not execution completed successfully. The index

file must always be latest version and consistent with the database file, since the records in the database file

are accessed through references in the index file.

User Interface Design and Implementation
The RABS user interface consists of a text mode windowed interface featuring pull-down menus and

multiple overlapping windows. This interface is based on an existing textwins module elaborated on by

the team working on the Text-window User Interface (TUI) for the repository manager and the build

manager during the Fall 1996 semester.

Both the repository manager and the build manager can also be accessed via an extensive array of

command line arguments. All the functionality of RABS can be accessed via either method. In addition,

RABS accepts the use of manifest files that can further automate the use of the command line.

121

Manager Design and Implementation
The RABS Manager component consists of two parts, Repository Manager and Build Manager. The

Repository Manager provides users with an interface into the repository database; users can run RABS

with command line arguments or with the graphical user interface to access and maintain a database. The

repository executive of the Repository Manager provides high-level application oriented services for

repository command line processing and repository GUI to manage the repository database.

db_command

db_result

Repository Manager Data Flow Diagram

The repository executive module performs the following processing activities:

• accepts execcommands from its client

• translates execcommands into dbcommands and sends them to the repository database

server

• receives dbresults from repository database server

• translates dbresults into exec_results and sends them to the client

• reports error messages when an error occurs in the database.

122

The inputs to the repository manager are:

• exec_command: a request from the command line processing or the GUI (it can be any kind

of database access request)

• dbresults: a result from the database server, which contains an error code and/or references

to a file or component objects

The outputs are:

• db_command: request to the database server

• execresults: the result for the client, which contains an error code and/or references to file

or component objects

There are two other modules, a repository cmd_line processing module and repository GUI module. The

first one extracts tokens from the command line, interprets them as commands and their arguments, and

sends the commands with the arguments to the repository executive to execute them. The repository GUI

provides a friendly user interface to manage repository databases. It accepts users' keyboard and mouse

input, controls all activities, sends commands to the repository executive, and displays results to user's

terminal screen.

The Build Manager provides users with an interface to extract software components and files from the

repository database. Users can either make access the build manager with command line arguments or

the graphical user interface.

123

cmd_line_args

db_command

db_result

Build Manager Data Flow Diagram

The Build Executive provides build services for build command line processing and a build GUI to build

an application from a repository database. The processing activities of the Build Executive are:

• accept build commands from the client

• translate buildcommands into dbcommands and send them to the repository database

server

• receive db_results from the repository database server

• translate db_results into buildresults and send them to the client

• report error messages when an error occurs in the database

The inputs to the Build Manager are:

• buildcommand: a request from the command line processing or the GUI

• db_result: the result from the database server, which contains an error code and/or reference

to file or component objects.

124

The outputs of the Build Manager are:

• dbcommand: a request to the database server

• buildresult: the result to the client, which contains an error code and/or reference to a file

or component objects.

Similar to the Repository Manager, there are two modules that provide the command line and GUI inputs

to the Build Manager as well.

8.5 Use and Evaluation of ADM tools

We intended to use the ADM model to support maintenance activities on RABS by building a plan using
MS-project, devising a strategy for maintenance, arguing through requirements and design issues and tactics
using RASE discussions and hypertext documents, and generating physical code structure using graphical
descriptions of code relationships with ALE.

8.5.1 Our Evaluation Strategy

The requirements of the RABS maintenance activity involve identifying the cause of, and designing,

implementing and testing fixes for a total of nine latent errors identified to be serious problems for RABS.

Our strategy was to follow the ADM development process, using each of the ADM tools according to its

design intent to conduct this maintenance activity. This involved the following steps:

1. create a project plan

2. export the plan from the NT server into the KBSA environment

3. create inputs required by the plan, e.g. hyperdoc list of latent errors

4. conduct analysis meetings to completely understand the RABS design and potential sources

for observed errors. Capture results and conclusions using the REMAP facilities.

5. each member of the evaluation team (three active evaluators) work to develop resolutions for

each of their deliverable products, e.g., identify source of latent error, develop a potential

fix, discuss with team, implement using ALE, test, and finally document the resolution using

hyperdoc.

8.5.2 Project Plan Development and Import (exercises SAM and IPSE)

We explored the SAM and IPSE models of the KBSA/ADM to a large extent. The start of any project on

the UNIX platform requires that you first import the project work plan into the KBSA database on the

UNIX platform (and thus use IPSE environment). This process is a routine task performed whenever a

new project is created for the ADM.

125

The KBSA/ADM on the UNIX platform imports the project work plan from Microsoft Project, operating

on the NT server, with the help of bridge software written by the Andersen Consulting team. Once the

project plan is imported, the root ADM user (Super) creates users (resources) corresponding to the

resources assigned to tasks in Microsoft Project. When this task is accomplished, the team members

working on the project are capable of logging in to the ADM, creating sessions, and adding their tasks.

From there they go on to complete the project.

8.5.2.1 SAM

Basic purposes of the tool and its advantages

• Support other tools in providing the tool-to-tool communication.

• Provide session management features, e.g. managing views, multiple sessions, and allocation of task

to session.

The main objective should be to provide seamless support to the end user in conducting work smoothly

via the session-view paradigm. SAM should hide the fact that there are actually three separate tools

interacting with each other to get a project done - SAM should empower the end-user with a concept of a

KBSA environment rather than a set of tools. It should be intuitive and easy for the end-user to

understand their requirements (such as tasks, their composition and execution) in terms of a software

development methodology such as views rather than tools.

The next important goal is to be able to restore the session context when the user logs out and logs back

again. This will help in avoiding the initial setup time required to have the SAM environment ready with

all the relevant topics checked out and available to the end-user without any redundant actions.

SAM Status

We have explored the current version of the SAM tool extensively and have determined that it does have

the effect of binding and managing all the existing tools. The integration is so seamless that the end-user

is oblivious to the fact that there are actually three separate tools.

The session-view paradigm is successful in making it transparent to the end-user which tool supports

which views and so on. Also, because of our efforts developing the PART tool, we came away with a

broader understanding of the capability of the ADM to support a user defined tool and its session-view

126

paradigm.

The idea of sessions is excellent. It captures the last state of the end-user's work environment and

presents it to him in exactly the same manner when he logs back in later. We feel this was a good design

decision and has helped avoid the extra steps needed to restore the environment, had this feature not been

supported.

Overall, we thought that SAM was very well implemented. The only complaints we had about SAM

were minor:

• The "description" in the Task details dialogue does not scroll, which might prevent the end-user from

fully understanding what he/she is expected to do in the process of resolving the task

• Multiple task selection while adding the tasks to the session would speed that process.

• Inability to login as a different user without the need to shutdown KBSA and start it up again was

occasionally frustrating.

In summary, SAM smoothly integrates model-view-controller activities, supports addition of new topic

types, can add deliverables, and supports multiple sessions so users can organize their work by allocating

their existing tasks to specific sessions. Tool registration and messaging structure make it realatively easy

to add a new topic type and new tools.

8.5.2.2 IPSE

Basic Purpose of the Tool and its Advantages

The IPSE tool is supposed to handle planning and performance activities, managing work objects,

updating development history for work objects and thus can handles the following tasks:

• Planning

• Enactment

• Assessment

It should control the task in its entirety by manipulating the details of a task object and allow basic

activities such as create/delete/view information/change state etc.

127

The IPSE should also be responsible for "task enactment", which includes the following activities:

1. Perform evaluation transformations

2. Launch tools

3. gather resource and work objects

4. Upon success, update the state/version in memory and database

Another important responsibility of IPSE is to support the tool integration strategy:

• Represent and communicate with all tools internally via tool proxy

• Support for COTS (Commercial Off the Shelf) tool integration

The second issue is important, as the current implementation of KBSA uses MS-project, which stores the

project plan and exports it to the KBSA/ADM (IPSE) which populates the database structure with an

image of the current project plan.

IPSE has the means of guiding the end-user when he/she has made some obvious mistake or diverted from

the guidelines for a particular project through the use of critic resolution tasks. The levels of intelligence

in these suggestions are situation dependent.

IPSE status

The IPSE in KBSA/ADM was well exercised since the first activity required to start a project is to create

a project plan in MS-project and export it to the KBSA/ADM environment using the bridge software. On

the KBSA/ADM side IPSE becomes active and creates necessary objects, e.g., project, resource, task,

and deliverable in the ObjectStore database and thus SAM is able to get its required information upon

launching of the KBSA/ADM tool on the UNIX platform. This export is proof of the support available for

a COTS tool in the KBSA/ADM environment.

Some observations regarding IPSE are:

1. We believe it needs to support more than one resource to a single task in MS-project and the

corresponding export to KBSA/ADM environment. A resource is the developer identified to resolve

a task, and only the resource has the right levels of access to do that resolution. Often, however,

several developers need to collaborate on the resolution of a single task.

2. It needs to support deletion/modification of tasks and re-exporting them to KBSA/ADM. We

understand the large development effort involved for realizing this on the KBSA/ADM side, but it is

128

a feature that is undeniably important for complex projects.

3. It should have the capability to edit task titles once they are in ADM (e.g a spelling mistake while

defining the task in MS-Project should be correctable from within the ADM)

The IPSE task enactment is a well-implemented feature of the system. It reduces burdens on the end-user

to select, checkout and open views on the related input topics and create and open new views for the

deliverables. IPSE enacts the task and automatically opens all the relevant views and makes the

environment ready for the end-user to start resolving the task at hand.

IPSE currently provides manifestations of an assistant in KBSA, which are called Critics. These critics

are analysts which both check models for desired properties and suggest alternatives by adding a task for

the user which is called a critic resolution task. IPSE Critic expertise is in the early development phase,

evidenced by the fact that the ADM only supports three such critics, namely: Content critic, task

completion critic, and a cohesion critic; all of which are limited in complexity.

Our vision of an ideal "critic" capability for IPSE is as follows:

• Different projects in different organizations have their own style of documentation or standards and

guidelines for documentation and code development. IPSE critics should have the capability of

"plugging in" a style grammar from the user when the project was created.

• The above suggestion requires some minimal support for a public interface (API) for adding,

removing, substituting and verifying the style/standard module for a particular project.

• A set of templates of critic styles can be developed and allow the user to select one of them (if it suits

the end-user) or allow the user to " plug in" their own using the API.

In summary, IPSE provides effective management of project structure, association of tasks with sessions,

and the addition of new deliverables. It supports the model-view-controller model dynamically by

sending messages to users when a checked out product changes. IPSE coordinates with the ADM's

persistence mechanisms so that the user always opens the latest version of a topic. Its greatest asset is

that it quietly does its business without intruding on the user's view of his/her work. Its greatest

weakness is that new tasks and inputs to tasks can not be added after a project plan is exported from the

NT server.

129

8.5.3. Use of Hyperdocs and REMAP Discussions (RASE)

An attempt was made to use RASE to create and manage informal documents and specifications related to

the RABS project. RASE supports two different views for its components, hyperdocs and REMAP

discussions.

8.5.3.1. Hyperdocs

Basic Tool Concept and Advantages

The motivation behind using the hyperdoc editor is to create a loosely structured document, with links that

enable the user to traverse to various other project deliverables that are related to it. This is a very useful

way of meaningfully linking together many tightly and loosely related project components. Software

requirements documents can be linked to the discussions on the module designs and to test descriptions.

Design discussions can be linked to the code specifications that follow, etc. Thus, the features expected

of a tool that supports hyperdocuments are twofold: (1) An editor that supports basic document writing

and (2) A mechanism for linking the hyperdocument with the various project deliverables.

ADM Hyperdoc Status and Some Comments

We've tested the ADM hyperdoc facilities in the RABS project by creating various kinds of documents:

Bug lists, prioritized buglists, bug definition documents, bug-fix design documents, test reports, etc. We

tested the object linking mechanism by linking the requirements documents to design discussions, code

specifications to requirements and test documents etc.

The KBSA/ADM environment provides an excellent linking mechanism between heterogeneous objects,

called object linking. This framework is an easily extendible one, and it provides the client with the

capability to add a link between the various topics present in the ADM environment. Since the topics are

versionable, there is a question of which version of the topic should the link point to. The objectlink

mechanism solves this problem by automatically pointing to the latest version of the topic. The objectlink

mechanism is put to good use in the ADM hyperdocument tool. We've found the "hyper" aspect of the

hyperdocument tool to be based on an excellent design, and it works very nicely. The links can be made

bi-directional as well. A suggestion for future work might be to make the hyperdocument compatible with

the current standard for hypertext, namely HTML.

Moving to the "document" aspect of ADM hyperdocuments, The document editor itself serves the

130

purpose of a proof-of-concept. Many more features such as redo/undo, different font sizes, text

justification and alignment etc. have to be added to make this editor accepted in a professional

environment. Moreover, since people are already familiar with many commercial document editors, the

keyword macros and functions have to be modeled closely on such products to make the ADM editor

easily accepted among software professionals. Another suggestion for future work: To improve the

usability of the tool, functionality needs to be added to the various (currently disabled) menu options such

as "insert picture" etc.

In summary, Hyperdoc supports the import and export of standard text files, creation of object links, and
can export selected text to a REMAP discussion or ale class diagram. Its implementation is not as advanced
as commercially available tools that handle basic hypertext functionality.

8.5.3.2. Discussions

Basic Tool Concepts and Advantages

It makes a lot of sense to include a tool that captures discussions in a project management tool.

Discussions provide an excellent means for capturing design history, implementation strategies and how

they were arrived at, and maintenance histories of various products associated with a deliverable. The

embedded object linking mechanism makes this tool even more powerful, since it can also link to it the

various other deliverable associated with the project (just like the hyperdocs).

AMD Discussions Status and Some Comments

We tested the ADM discussion topics by trying to use it to capture a couple of design discussions that we

had at SU, (RABS overview meeting, RABS bug fix prioritizing meeting etc.), and the weekly conference

calls that we had between Syracuse University team and Andersen Consulting.

The various discussion nodes provided in the editor (such as Issue, Position, etc.) are well thought out,

and adequately capture the different kinds of situations in a real world discussion. The tool usage is

intuitive and the object links work very well.

The current implementation of the discussion tool is based on the ADM's extended model view

framework (XMVF) concept. The views on the discussions are not saved; they are generated

dynamically every time the user requests it. This has the advantage that the views need not be stored in

the database (minimizing the database size). But it has the disadvantage that the user cannot layout the

discussion in a particular format on the screen and expect it to appear that way when a view is created on

131

it later. This problem can be solved to a some extent by editing the document in the manual mode, which

allows one to place the nodes wherever needed, but the routing between the nodes is automatic, and

messes up the document. The user must be given an option to turn off the automatic placement and

routing mechanism.

To make this tool acceptable in a professional environment, it must provide some additional support in

creating discussions. This could be modeled along the lines of wizards in MS-Windows. Right now, it

serves as an electronic blackboard, and it is up to the user's imagination to capture the thread of

discussions.

In summary, REMAP discussions can capture a discussion using the REMAP editor, and can create
arbitrary links between requirements, positions, assumptions, decisions, arguments, and issues. Its model is
based on a very good idea - creating navigable threads through important discussions and clearly
documenting assumptions and conclusions. Our only significant dissatisfaction with REMAP is its auto-
routing feature which, for complex discussions, results in link networks that are hard to read and trace.

8.5.4 Specification Development (ALE)

We believe the ALE model intends to support Bertrand Meyer's "design by contract" using pre and post

condition constructs5. It generates C + + code from graphical Object Modeling Technique (OMT)

diagrams, introduced by Rumbaugh in "Object Oriented Modeling and Design". The goal of the ALE

model is to directly support implementation by specification. This is very ambitious and especially

difficult for a language as complex and context dependent as C + +.

8.5.4.1 Discussion

Our attempts at evaluating ALE have been somewhat frustrating and disappointing. Since working on

RABS is a maintenance activity and the code for it already exists, the evaluation method we came up with

was to choose two header files with at least one class definition apiece from one of the modules and see

how closely we could re-create them using ALE. The module chosen was the viewer, mainly because it

had two modules with class definitions that seemed ideal for our purposes.

On the first try, ALE would not cooperate at all. The names of the two header files had changed, and

neither SAM nor ALE provided any means of altering the names once the project plan had been imported.

If we wished to change them, we would have had to start over from scratch with a fresh project work plan

These constructs were introduced by Meyers in his Eiffel programming language. It appears that ALE
intends to extend this capability to the C++ language.

132

and a new database, losing a significant amount of work in the process.

Since that route was out of the question, we decided to just ignore the names of the modules and try to

create them with the wrong names. We got as far as being able to create a package definition using the

ALE package editor. The process is to draw a package rectangle in the edit window and give it a name,

then double click on the highlighted rectangle. After doing this the class editor appears (it is very similar

to the package editor in appearance). Once the class editor is running, you are supposed to create a

rectangle in the edit window and when you do so, a dialog appears which then allows you to give the class

a name and create its data structures. During our first attempt at this, the dialog in which to name the

class would not work at all. The only button that was not grayed out was the cancel button. Upon

canceling that dialog, the rectangle drawn in the edit window disappears. Try as we might, we could find

no way to create a class.

Several days later we made a second attempt at it. This time, we were able to successfully create a class.

The ADM seemed to be working better that day (possibly because only one client was running at the time,

whereas the previous attempt we had both workstations running the ADM concurrently). This second

attempt resulted in a successful code generation. However, the code we generated turned out to look

nothing like the original header file for the RABS modules viewer.hpp and bufmgr.hpp. ALE made all of

the functions virtual, and concatenated the package name onto the name of the class, its constructor and

destructor, and all of the member functions.

A number of other things annoyed us while using ALE:

1. If you create a package or link two packages, then try to delete the package or the link, the

ADM crashes

2. Many of the dialogs and menu items were non-functional, which caused a lot of confusion

3. Some of the functional menu items and dialogs in the package and class editors became non-

functional at times, then work again after restarting the editor

4. The class creation dialog is not very intuitive, it took us a long time to figure out how to use

it.

5. We noted many "ObjectStore Exception" and "Deadlock" error and warning messages while

trying to use ALE, some of these caused the ADM to crash.

8.5.4.2 Conclusions regarding ALE

Most of the problems we encountered relate to user interface bugs and not necessarily to any serious flaws

in the design of ALE. Unfortunately, these bugs hindered our evaluation of the tool to the point of nearly

abandoning the effort. We believe the tool concept to be sound, and the frameworks used in its creation

133

are good. Our suggestions for improving ALE are as follows:

• Fix the bugs noted above

• Improve the user interface for the class creation dialog

• Remove or make active all the menu options and items that aren't currently activated

The ability to create OMT diagrams is very useful for a CASE tool. Our final suggestion relative to ALE

is that the ADM should definitely include a tool that provides diagrammatic capabilities. But this tool

needs to be a fully-featured OMT diagrammer and be used to guide developers in creating code, but allow

an option to bypass code creation.

In summary, the ALE structure supports Bertrand Meyer's "design by contract" paradigm and high level,
specification grammar driven, implementation based on the use of OMT diagramming tools. ALE can
create packages and classes, populate the classes with members, create inheritance and aggregation
relationships, and generate code. We think this is a great idea, but the implementation was not effective.
The user interface was not very intuitive, it's hard to make classes take the specific form you want because
it has to be done through ARGO, and the ALE critic provides only a subset of warnings already available in
C++ compilers.

8.6. Overall Results and Conclusions of the RABS Maintenance Activity

We were successful in some ways and unsuccessful in others6.

+ The entire maintenance activity was a well-organized effort between four people. Everyone knew

exactly what everyone else was working on and there was no overlapping of tasks.

+ We were able to capture meeting minutes using REMAP and referred back to them, proving that

discussions are useful.

+ The bug-list hyperdoc was helpful. Each time a new bug was fixed the list was updated, giving

everyone a clear picture of the project status. Other hyperdocs captured resolutions of the tasks

associated with each bug.

+ The results of the maintenance activity are now clearly documented and archived within the ADM

database for future reference.

+ Using the KBSA/ADM helped us organize our work in stark detail. The process we followed is

reasonably well documented as a result of our adherence to the project plan.

- Tasks such as actually fixing a bug, which involved no interaction with the ADM to resolve, found us

drifting away from the methodology that we had laid down.

- We often found ourselves working on source code on the NT machine then moving to the UNIX

6 Positive results are indicated by plus symbols and difficulties by negative symbols.

134

workstation to use the ADM to create our deliverables. A windows NT based version of the ADM

would remove a lot of the clumsiness we encountered moving between platforms to get our work

done.

+ We think object linking is a very good idea. Any reasonably complex software development has

many quite complex dependencies between deliverables, e.g., specifications, plans, and reports for

requirements and design and implementation and test. Use of an object repository and the ability to

make visual and navigable links between the objects stored there could be invaluable in organizing,

tracking, and controlling developing software baselines. The implementation of object linking in the

ADM is not perfect, but good enough to demonstrate how valuable that capability can be.

- We felt the ADM needed a stronger role model than SUPER versus all others. Roles would allow

deliverables to be modified by some individuals and not others based on their role type, e.g.

architect, team leader, team member.

- The Specification against intent strategy did not work well. Use of ALE was minimal. We had

trouble due to bugs in ALE. Also, it did not fit as well with maintenance activities since the code

already existed.

+ We believe the Specification against intent idea is appropriate and useful and could work well with

refinement of the ADM. We use a similar (but weaker) strategy in our software design classes at

Syracuse University to generate modules with documentation pages based on a module construction

grammar. It would also be very useful to invert that strategy and use C + + as an architectural

description language - in a sense making the software generate its own high level documentation by

creating OMT diagrams directly from its source code.

135

9. Final Conclusions

There is a lot to like about the Knowledge-Based Software Assistant Advanced Development Model. We

favor its goals, like the architecture and implementation of some of its tools, and believe it provides proof

of concept for some very useful ideas. There were specific implementation details that did not work well

along with many that worked very well. There are parts of the ADM implementation that use interesting

new and still evolving technologies like CORBA and other parts that use technologies like hypertext that

are now better implemented in commercial products.

In Section 7. we summarized our conclusions from the PART study, and in Section 8. we summarized

conclusions drawn from the RABS maintenance activity. In the next few pages we draw together over-all

conclusions about the ADM's technology demonstrations and make suggestions for extensions.

ADM Architecture
The ADM architecture seems to us to be ideal for this kind of application. It is well organized, flexible

and extendible. Its tool federation concept is an important feature of the architecture and works well, as

demonstrated by our ability to add a new tool that extends the ADM's model of the software development

process. Furthermore, we like its component structure. The inclusion of an object-oriented database

seems especially important, allowing the capture of complex relationships and information about an

evolving software project. Use of a session manager (SAM) to implement the model-view-controller

paradigm and coordination through integrated process support (IPSE) to manage task enactment is a major

success for the ADM. It supports the process model advocated by the ADM without intruding on the

users' focus on their activities.

We like the concept of critics and believe a strong implementation would be very useful for assisting the

software development process. Development under detailed process specifications like DoD-2167A

requires a lot of cultural and technical knowledge that can be aided by the use of well thought out critics.

Critics could also be very useful to support the reuse of large complex class frameworks which require a

lot of knowledge about their Application Program Interfaces (APIs) and about the details of their

implementing languages. The ADM's implementation of critics is a step in that direction but needs a lot

of work to be useful in the senses described here.

The ADM's client server architecture uses a fat UNIX server to house the repository and very thin UNIX

clients to support collaborative multi-user work flow. We observed a lot of network traffic when a user

logs into one of the thin clients, and suspect that a more even distribution of processing would benefit

ADM performance. We see this as an implementation issue for production equipment, not a specific

136

criticism of the ADM. The architecture clearly supports collaborative work in a team-based environment

through task control and version control.

Object Linking
The object linking mechanism is a very important feature of the ADM and its value has been

demonstrated in the activities carried out in this evaluation. Software development for even modestly

complex projects involve a very large number of issues, decisions, concepts, and products. Establishing

associations among them and being able to trace the associations seems to us to be critically important,

and lacking in any development environments we have used before.

The ADM implementation is not particularly robust. We have often crashed the ADM complex while

navigating links. Furthermore the use of multiple links to bring up simultaneous views into specific

products did not work effectively in an earlier version, crashing frequently, and seems to have been

replaced by a serialized sequence which works but is clumsier to use7.

ADM Tools
We discussed the ADM tools SAM, IPSE, and RASE extensively in Section 8. Please refer to the
conclusions of that section to find our evaluations of these components.

Frameworks
Implementation of the ADM functionality appears8 to be based on a CORBA backbone tying together

commercial tools:

ObjectStore - object oriented database repository

Galaxy - graphical user interface framework

MS Project - project planner accessed through bridge from CORBA to OLE

These tools are augmented with an extensive set of C + + frameworks used to translate the tools'

functionality into specific ADM activities.

7 These observations are based on a very brief look at the latest version, installed 15 days before the end of
our evaluation contract, so we don't have a reliable picture of this functionality.
8 We have only glimpses into the internal software structure necessary for our PART tool addition. We
enjoyed extensive support from Andersen for this activity and so our knowledge of the frameworks is very
incomplete.

137

ADM frameworks offer:

1. Persistent topic creation and management support, check-in and check-out facilities with version

control.

2. View creation and management support.

3. Object linking support.

4. Tool to tool communication

5. Multiple session and multiple user handling

Galaxy is supported by the frameworks GEF, AGL, and Scibbles that extend and augment Galaxy to

provide graphical representations of OMT diagrams and object links. XMVF provides content security

and audit trails for all products managed by the ADM. PVM provides check-in, check-out functionality

and manages version control, using the mechanisms inherent in ObjectStore. RO hides socket level

programming and defines a message structure for the ADM. Other frameworks provide functionality for

the tools SAM, IPSE, and RASE.

We were impressed with the utility and functionality of the Andersen developed frameworks. Our

experiences introducing the PART tool, described in Section 7., convinced us of the value of these

components. Our one outstanding criticism is that there is virtually no documentation to support design

activities using them. This means that a potential adopter of the ADM technology would have to reinvent

them or do a lot of reverse engineering to use them successfully.

Extensions
We believe there are interesting opportunities for extension of the ADM facilities that could be very

useful in a production software development environment. These suggestions are based on both our

evaluation experiences with the ADM and from our own professional experience doing software

development under DoD-2167A, and standards imposed by a variety of NATO contracts9 „9

1. Support use of multiple resources for a single task.

2. Provide a flexible, role-based planning mechanism, perhaps using a complete implementation of the

PART tool that supports the notion of Project Manager, Architect, Team Leader, and Team Member,

each having their own accessibility rules.

3. Provide support for a template-based user defined critic mechanism in addition to more useful default

The Principle Investigator worked as a software developer, system engineer, and software manager for
many years, including work on a system involving several million lines of source code, created by a team of
hundreds of developers on both coasts of the United States. The system has been fully operational and met
its functional and performance requirements.

138

critics.

4. Provide syntactical support for DoD-2167A DIDs and project defined style guides. A grammar-

driven assembly of documentation, supported by wizards with specific DID knowledge could be

extremely useful.

5. Support development of qualification tests by grammar-driven analysis of requirements captured in a

structured database based on the ADM's repository.

6. Provide the capability to baseline products on a project wide basis for off-line storage, purging

intermediate versions from the object database.

7. Allow versioning on a selected basis determined by the "Super User".

8. Incorporating signature analysis, as Dr. S.K.Chin is developing with his team at Syracuse University.

This could solve some thorny problems in project management and during Functional Configuration

Audit (FCA) and Physical Configuration Audit (PCA). Signature analysis could provide the control

necessary for authorizing requirements changes, approval of formal reviews and resolutions of action

items, and changes to a formal baseline.

9. Directly support software reuse by incorporating a RABS like repository structure in the ADM.

139

Appendix A: PART Design Document

Functional Model for PART

The ADM environment currently has tools for generating project design documentation such as

Hyperdocs and REMAP discussions. It also has a facility for specifying code components, resulting in the

generation of header files. A real-world software development process definitely needs the above project

planning, and topic-development support. In addition, it also needs some facilities for managing the entire

software development process, such as:

• Support for module and testplan topic types

• Support for managing and browsing software products

• Support for spawning documents: manuals, testplans, reviews etc.

• Support for the Software Integration process: code builds

This motivates us to introduce the Project Archival and Report Tool (PART).

PART introduces the concept of a Project Knowledge Structure (PKS) in an attempt to satisfy the above

requirements. A PKS is essentially the MS-project plan, augmented with some additional information.

Hence, it contains information such as the list of tasks, their inter-dependencies, the resources allocated to

the tasks, their deliverables etc. A PKS is shown in Figure 1. Each box in that figure corresponds to the

notion of a task in the ADM world. Hence, the tree represents the inter-dependencies of the tasks between

themselves. PART will display a graphical representation of the PKS in its window, The PKS can be

shown either for the entire project (global view), or for a single session within the project (distributed

view). This is discussed in more detail in a following section.

What's the idea behind showing the PKS to the user? The intention is to provide a graphical interface to

the project itself - the user can browse a project's tasks and deliverables in an easy and convenient

manner. PART also supports visitors and builders towards this end; visitors allow the user to browse the

PKS according to some search pattern, where as the builders allow the users to generate documents and

build code.

Visitors present different kinds of views to different kinds of users; for example, a general's tour visitor

might be targeted towards someone in the higher management, who wants to see only the broad divisions

of the project and the major design issues, without getting into the details. A team leader visitor might be

designed such that it presents a lot of details about a particular process within a project..

140

A build refers to a process by which deliverables are selectively pulled out of a repository to form a

meaningful collection. With this facility, developers will be able to generate execution images for

modules, manual pages for the sub-modules for a process, test plans for a multi-module component etc.

PART will need to add a couple of new topic types to support these goals. Specifically, PART will

support a module topic type and a testplan topic type, and the associated views for them. A module

topic represents a software module with a header file and an implementation file, and a testplan topic

represents a software testplan.

ProjectComp
(system)

ExecutiveComp
(process)

ExecutiveComp
(process)

ExecutiveComp
(process)

ExecutiveComp
(process)

TopLevelComp
(module)

TopLevelComp
(module)

TopLevelComp
(module)

LowerLevelComp
(module)

LowerLevelComp
(module)

LowerLevelComp
(module)

LowerLevelComp
(module)

LowestLevelComp
(module)

LowestLevelComp
(module)

Figure 1: Project Knowledge Structure

141

Conceptual Model for PART

The aim of the conceptual model is to illustrate the relation between the ADM's notions of tasks,

deliverables etc. to PART'S notion of components, products etc.

The following diagram shows the connection between the ADM world and the PART world.

HparOoc

4-

T««tptan

Ta*k Component

rsvMtw product h«lp

T«»t Component

help

Modul* Component

product

Design Component

product help

ADM Domain PART Domain

Figure 2: Conceptual Model

The dotted lines in the above figure show the runtime pointers made from the component structure to the

actual topics created by the ADM.

During our design efforts we tried to focus in on what functionality PART should encompass and what its

boundaries are. Some of the assumptions made are:

• PART is able to traverse the whole database file

• The Module topic always consists of one header file (.hpp) and one implementation file (.cpp),

142

• PART does not support any kind of role mechanism (e.g. the hierarchy of Project leader, team

leaders, developers)

• A Testplan topic is associated with a single module etc.

• The component structure is based on the notion that a user will want to check out the topics that

are created or modified by a task. So, update deliverables and output deliverables are considered

to be equivalent for the purposes of the component structure. Input deliverables are considered

only for building up the task dependency hierarchy; other than that, the component structure does

not deal with input deliverables.

PART Basic Types

Introduction to Module and Testplan Topics

The Module and TestPlan topics are two new topics that are designed to store, as part of the ADM

database for a project, the source code and the unit test plan for a software component product. The

Module topic consists of a header file and an implementation file (.hpp and .cpp files). The view for a

module topic allows the developer to specify the names of the two files, and examine both files

concurrently. The current interface is read only-if the developer intends to do work on these files they

must be extracted from the database (by saving them to a directory) and then edited outside of the ADM

environment. When the developer finishes editing the files, he then opens them in the ADM module view

dialog and saves them in the database.

The TestPlan topic dialog allows the user to enter information relating to the testing of a component. This

information is then saved in the database and can be referenced or updated whenever necessary.

Refer to section 7.3.2 for screen shots of the dialogs for these topics.

143

Object Model for the new topic types

The following OMT diagrams give the details of how the various classes in PART are related to each

other.

Like any other tool, PART'S MessageProcessor is derived from the ROMessageProcessor.

RO_Message_Processor

PARTROMessage_
Processor

PART RO Message Processing

The following diagram shows the structure of the PARTVIEWINFO class, which contains the

information about a PART view. Namely the object creation request classes, and the topic classes

themselves.

PART.VIEW INFO

RWCString _SessionName;
RWCString „ViewName;
RWCString _ViewType;
RWCString JTopicType;
RWCString _TopicName;
RWCString _TopicVersion;
int „TopicMode;
vdialog *_partView;
RWCString _Viewld;
RE_OldReference<RE_OldedObject>
_SessionOldRef;
RE_OldReference<RE_OldedObject>
_TopicOldRef;

PART VIEW INFO Class

144

The following diagrams show the classes required to create new TestPlan and Module topic objects.

Namely the object creations request classes, and the topics themselves.

SM_CREATE_TOPIC_
OBJECT_REQUEST

PART_CREATE_TEST_
PLAN_TOPIC_

OBJECT_REQUEST

long partVersionNumber;

RE_OldReference
<RE_OldedObject>
partTopicOld;

PART_CREATE_
MODULE_TOPIC_

OBJECT_REQUEST

long
partVersionNumber;

RE_OldReference
<RE_OldedObject>
partTopicOld;

SM_TOPIC_OBJECT

PART_TEST_PLAN_TOPIC
OBJECT

RWCString _moduleName;

PART_MODULE_
TOPIC_OBJECT

RWCString JieaderFileText;
RWCString JmplFileText;
RWCString JieaderFileName;
RWCString _implFileName;

MV_View

PART_MODULE_
VIEW

PART_VIEWJNFO
*moduleViewlnfo;

vdialog

PART_TESTPLAN_
VIEW

PART_VIEW_INFO
*testPlanViewlnfo;

PART Module and TestPlan Topic OMT Diagrams

145

PV_REQUEST

PART_MODULE_
UPDATE_REQUEST

RE_OldReference<RE_OldedObject>
partTopicOld;

RE_0ldReference<RE_0lded0bject>
partSessionOld;

RWCString _headerFileName;
RWCString JmplFileName;
RWCString _headerFileText;
RWCString _implFileText;

MV Notification

PART_MODULE__
UPDATE^

NOTIFICATION

RE_OldReference
<RE_OldedObject>
partTopicOld;

RE_OldReference
<RE_OldedObject>
partSessionOld;

RWCString JieaderFileName;
RWCString JmplFileName;
RWCString JieaderFileText;
RWCString JmplFileText;

vcommandSelector

PARTJVIODULE.
VIEW_MENU_

SELECTOR

int lssue(vdict "context);

PVJ=tEQUEST

PART_MODULE_V!EW_
INITIALIZE REQUEST

PARTJV!ODULE_VIEW
* moduleView;

Supporting objects for the PART Module Topic

The MENU_SELECTOR class above is for galaxy event handling for the Module topic's view, and the

UPDATE request is used to change the information in the persistent Module topic. Whenever a change is

made to persistent Module topic, a NOTIFICATION object is used to send that information to any view

that might be open at that time.

146

Dynamic Model for PART'S topic creation

The function selected for the following event trace diagram is Create Module Topic. The Component

structure described in the Object model will be instantiated and the project knowledge structure skeleton

will be formed just after the project plan gets imported into KBSA. Now when a user in the process of

enacting a task assigned to him/her creates a Module Topic or Test Topic, the following events will take

place and the relevant frameworks will respond and carry out the desired functionality.

Events take place in the following sequence

• User selects the Topic- > Create- > Module menu sequence.

• SAM RO will send a CreateTopicmessage to the PART tool since this topic will have been registered

with the SAM when PART gets instantiated.

• PART RO message handler will be active after PART main goes into its event Loop, and will receive

the message.

• Message Handler for CreateTopicMessage will determine the exact topic type amongst the topics that

PART supports(Test, Module) and generate a PVM request Create_Module_Topic_Request or

Create_Test_Topic_Request as per the topic type

• PVM request gets executed at PVM layer which connects to Objectstore and creates a persistent

Module Topic

• After successful execution of the request, a return message is created which is sent back to SAM RO

• SAM sends a PostCreateTopicmessage to the TOOL RO

• RO message handler will create Link_PART_topic_Request and executes it, which goes to the PVM

layer and is responsible for searching through the component structure for the Topic Name/Topic

Type combination and on finding the placeholder for the particular topic and attach the object id of

the topic type which is available from the request object to the product-oid data member for the

searched Component

147

er

CO

9? .£2
X 3. &

CD <x>

CO «J:

148

Screen Shots

—1 PART Test Plan View ' J

Test Han Type:

1
Date: 1

Module Name: 1
Module Developer 1
Test Plan Developer.

Test Case: Expected Results: Actual Result:

|

1

1 fest Data Source:
1

,

View for the Test Plan Topic

149

PART Module View

Ble

Header File:

M—I
Implementation

hl—J

View for PART'S Module Topic

Implementation Strategy

The strategy we have followed towards implementing PART is as follows:

• Discussions to clarify our notions of a testplan and module topic

• Formulated the views for the new topics

• Wrote code for tool Registration, Unregistration, Suicide

150

• Wrote code to create a new testplan topic from SM_TOPIC_TYPE with no data members in it

• Wrote code to handle messages for

Create

Delete

Checkin

Checkout

• Used Galaxy to create a view for the testplan topic

• Wrote code to display the view. At this stage, the view doesn't depend on what is in the testplan

topic; it is a static view.

• Used Galaxy to design a view for the Module topic

• Wrote the code to provide all the basic functionality for the module topic also

(create,checkin,checkout,delete,display a different static view)

• Wrote code to make the view dependent on the topic data itself

Created a relation between the view class and viewinfo list

Created request PARTMODULEUPDATEREQUEST

Defined doIt() for the request

Defined a notification PARTMODULEUPDATENTF

Identified the event loops for GUI, understood how the menu gesture is

trapped as an event

Defined the viewers execute() loop, where the notification arrives

Advantages of using the ADM environment for tool development

The ADM environment provides the tool developer with many convenient features, which are otherwise

rather time-consuming to develop. Some of these features that the developer 'gets for free' are

(1) Topic Level Features: Persistent Topic Creation and Management support,

Check-In and Check-Out facilities with Version control, View creation and management

support, Object Linking etc.

(2) Tool-to-Tool Communication

(3) Multiple Session handling capabilities

(4) Multiple User handling capabilities

These features can be easily incorporated into the new tool with minimum effort by making use of the

various ADM frameworks.

151

PART Project Knowledge Structure

Introduction

The PART dialog presents the user with a graphical representation of the task hierarchy, and the status of

each of the task - how many of the deliverables have been created already, how many are being currently

modified etc. PART also invokes the views for these various topics, and thus serves as an object browser

for the project tasks. In this sense, the PART dialog is not a view according to the model-view

framework. There is no model behind the PART dialog; all it does is represent the collection of

information in a graphical way.

Object Model

Component Structure

The OMT diagram on the next page specifies the classes involved and their relationships for implementing

the project knowledge structure. The Task Component is an aggregation for the whole Project Knowledge

Structure. This maintains a list of pointers to objects of type Component, each of which can be either a

TestComp, ReqmtComp, DesignComp, ModuleComp or a TaskComponent itself, which gives the structure

ability to add an additional level to the Project Knowledge Structure. Thus TestComp, ReqmtComp,

DesignComp, and ModuleComp are the leaf nodes of the Project Knowledge Structure.

Each Component owns three objects, which are review, product and help. The product object contains the

object identifier productOId to the concerned persistent topic object. The review class is to contain any

review comments for the topic under product and the help class contains the help text for the same topic.

The help and review objects can be instantiations of the RWCString class.

152

/ / / / /

TestComp ReqmtComp DesignComp ModuleComp TaskComponent o-

Persistent Component Structure

The structure described above takes care of the recursive nature of the PKS. We require the PKS to be

persistent and versionable, since it is going to contain references to persistent topic object from the KBSA

framework. We propose here the integration of this Component structure with the KBSA PVM layer.

To make the component structure persistent we have introduced the Part_Plan class which is analogous to

the project_plan class that IPSE makes persistent. The PartPlan is a SM_Topic_Object, since this will

make the PART_Plan persistent, as well as versionable. The Component structure classes will also

become persistent but they are not needed to be versionable. This is the reason that the Component class

is derived from the KBSA_FCO class; to make it persistent but not versionable. The PART_Plan class

will have reference to the TaskComponent object which can be more than one, in case the PKS has more

than one root node. Each such Task Component class will then have its own PKS tree.

153

KBSA_FCO

i k iL

SM_Topic_Object
i Component i L

11

DesgnComp ReqmtComp TestComp ModuleComp ~

Object Instantiations

The object instantiations for creating the component structure inside PART is shown on the next page.

154

Project Plan

Task 2

Module

Task 1

X
HyperDoc

TestPlan

HyperDoc

X

Task 3

Module TestPlan

Object Instantiations for this Project Plan

review product help

DesignComp2

1 r

HyperDoc2

ModuleCompI

Modulel Testplanl

One important question to be addressed is question when does PART attach the new topics to component

structure. This depends on whether the project view presented is a global one, or a distributed one. Here

is a comparison of these two approaches:

155

Distributed Approach: The information regarding a project is always updated and is maintained

at the session level, and not the project level. The component plan is updated each time a new

topic is created; PART doesn't wait until it is checked in to the database. The background

activities will increase and hence the performance will suffer, but at any instant of time, the

latest status of the project will be available; this is irrespective of whether any topics are checked

in or out in any of the active sessions. (Important messages will be CreateTopicMessage,

TopicCheckln, TopicCheckout, etc)

Centralized Approach: The information/status is maintained at the project level, which means if

there is an active session with a checked out topic, the information/status at the project level for

that topic will show an earlier version ofthat topic. This approach improves visitor performance,

since it need not bother about the active sessions. The disadvantage is that, to get the latest

project status, the project manager has to ensure that all the topics have been checked in and

there is no active session alive which might have checked out important topics.

1. We propose the distributed approach that is followed, then the topics need to be hooked into the

component structure as they are created. So PART must respond to the

POSTTOPICCREATEMESSAGE, and obtain the Old for the new topic. At this instant the

Component_plan is already built. When the topic_create_message or topic_checkin_message or

topic_checkout_message arrives, it is required that the Componentjplan be checked in to the session

in the background. With the help of the topic information from the message structure the

component_ structure tree is searched for the topicjiame and the topictype combined as the key to

locate the placeholder for that topic in the PKS. Once the node is located the latest Object-id for that

topic will be linked to the oid data member of the product data member of the Component.Thus at

any time the latest topic-ois is pointed to by the componentstructure. This is possible because PART

already has the task hierarchy and the names/types of the associated deliverables.

2. There are some possible inconsistencies that can occur in this situation. For example, consider the

product data member of the component structure. It was set to point to a particular topic in the

database, and for some reason the user deletes that topic at a later stage. What happens to the pointer

now? Similarly, if the product data member was pointing to a particular version of the topic. A new

version of the same topic was created at a later stage; does the pointer automatically update itself or

still point to the old version. (For this situation, ADM's object linking capability can be used to make

it always point to the latest version).

156

c
'co

<
Q_

>
0_ -

i
4= x:

LL 05 -o >
2 03 CO
X _

Q. °
cr
o 1-

03 o
E
o

CL 111 IL o
o 5 3

o
2

1
OC -i r —Z 1 r **■ — l r-2- J L- — ^—

i k < *, l ^3
Q.

1
Q.

o a. Ü
lil . i LLI

l- —y
o ü o

o IT HI CC
Q_ -D a. oc H1 1 r ° i

LLI
L —«0 ' Lir — J <-0)

O . i Q_
Q_

1 o:

>
HI <
03
D.

0.

Ifi
3 CD
4= -c
CO T3 _^£
O §■
CL 3

E
o

-e-

LLI
CO
Q_

>
Q_

CO
H

-H-
LU
>
LLI

-ee-
LLI
X

c

o
oc

111
Ü
•«<■ ■
CO
03
HI

g

I-

03
O
a.

CD
O)
CO
03
03

3 «-^
CD

OC

<u LL
60 >
ex 2
CO X

c ^

s
C8

<
CO

2
>
D_

BJ

H T3
41

O c
U CO co s 2
u C

E 4> > « 1)
s u >> JÜ
Öl H

157

Visitors

BFS_Visitor DFS Visitor

The idea is to have the functionality of code-build and document build for the PKS. The code-build is

meant for topics that are referenced by the ModuleComp objects at various levels of the PKS.

The above OMT diagram describes the design of the object model for the builder/visitor concept. We

currently define two types of visitors characterized by their search pattern: Breadth First Search Visitor

and Depth first search Visitor, each of which is a Visitor object. The builder has access to a visitor

object, which can be instantiated and linked to the data member of the builder at run-time. The visitor

functionality will be invoked with the help of menu-items in the Global PKS window view.

Sample Build process description for Test-Plan build with a Depth first visitor strategy for the product

information with destination as a file:

The user can specify graphically (with the help of mouse clicks, the branch(es) to be traversed from

the PKS. By default the whole forest will be considered as selected. The Component structure will

be traversed as follows :

For each tree root

For all the TestComponent objects in the list datamember of the Task Component object,

node

get the oid of the topic from the product data-member

get the relevant information stored in the topic with the help of topic object's member

methods

Append to a temporary file

Visit the next node in the tree according to the classic Depth first tree traversal

- Copy the temporary file to the file the name of which was obtained from the user

158

Screen Shots

The design of the menus is shown in the following screen design: (All the sub-menuitems will be radio-

buttons)

The Visit menu item will allow one selection to be made from each of the following grouping: BFS/DFS,

CODE/TEST/DOCS, PRODUCT/HELP/REVIEW. Once the user has made the selection he/she can use

the Build menu item to select the destination of the build, which will consist of either a temporary file

generated as HyperDoc and shown on the screen or exporting the built information to a specified file the

name of which can be asked to the user with the help of a File browser window.

The following dialog shows checkboxes; from BFS and DFS, only one can be selected at a time. From

CODE, TEST and DOCS, only one can be selected at a time, etc.

Visit Build

BFS 0
To Screen o

CODE
<> DFS 0 To File o Product 0 TEST
<>

Help
<> DOCS 0

Review

PART Dialog Choices

159

H PART reo
View Build Visitor Help

PART Main Dialog

160

Implementation Strategy

How is the PKS structure built up during run-time? There are two key issues to be considered here.

First of all, PART should know the hierarchy (the task dependency tree) even before any topics are checked
into the database. This is because, PART might be required by the user to present a view into the project
status even before any topics are checked in. There are a couple of ways in which the task dependency
information can be obtained from IPSE:

(1) IPSE can broadcast a message as soon as the import from MS-Project is performed. Say, IPSE
sends IPSEJPOST_PROJECT_PLANJMPORT, a message that lets PART (and other tools)
know that a new project plan has been imported. At this stage, there are two
alternatives: either IPSE can broadcast the project plan information, or PART can
specifically request IPSE to send the plan to it alone by sending
PART_PROJET_PLAN_REQUEST.

The latter choice prevents data being sent to everyone unnecessarily. IPSE responds to the
PART_PROJECT_PLAN_REQUEST by sending PART a new message called
IPSE_PROJECT_PLAN_INFO.

(2) A second method avoids a lot of overhead and unnecessary transmission of data. Here, it is
assumed that the PART dialog holds only session level information. So, the task dependencies for
the entire project need not be transmitted. PART has to know only which tasks are present in a
particular session. This information is created when the user adds tasks to a fresh session. Once the
task addition process is complete, IPSE can send that information to PART in a way similar to the
one described above. For the purposes of this document, this second approach is followed.

At this stage, PART contains all the relevant information regarding the project plan, such as the tasks, their
dependencies, and their deliverables. PART reads task information from the message, and creates instances
of the component object to reconstruct the IPSE plan in the form of a component plan; this will be only for
the tasks in a particular session though. When this is created for the first time, the product data members of
all the components will obviously be empty. Topics can be added to the structure as and when they are
created (See 2 below). A view can be created based on the task dependency hierarchy

161

alone; for links to the actual topics can be provided for those that have been already created, and view

should contain empty slots for all the topics that have not been checked in yet. Each time a new project

plan is imported into the ADM, a new version of the component structure is created in the database.

How to start up the PART dialog?

There are a few different ways to start up the PART dialog. (1) One way is to add a new item to the SAM

menu called PART, and then trap that menu selection event inside SAM's Galaxy event loop. SAM then

fires up PART'S main dialog inside this event loop. This requires a change (though a minor one) in the

SAM source code to include this new menu item. (2) The second method is to try and keep the tools as

loosely coupled as possible. One can fire up the main PART dialog as a part of the tool registration

process itself. Thus, when the user starts up the KBSA environment, the PART dialog also will be popped

up. Initially the window might be empty, if there is no session information available.

Implementation Priorities

The implementation of the component structure is best done in the following manner, as it leaves us in a

logical state of completion at the end of each step.

L Develop component structure based on user actions to create, check-in, and check-out topic etc.

2. Create a dialog showing the component structure

3. Enable one visitor

4. Respond to the process of adding tasks to sessions, and build the component structure based on that

5. Project-level activities and other items, such as validation issues, maintaining consistencies etc.

162

Appendix B: Glossary of Terms

AGL - Aesthetic Graph Layout
One of the sub-frameworks within GEF, this API provides routing routines for the links between nodes.

ALE - Argo Language Environment
The ADM tool associated with creating packages and specifications and generating source code.

Argo Language
A formal specification language for high-level software design. This language can be translated directly
into source code. Argo is a more formalized version of C + + . In Argo the declaration syntax is
simplified, a module construct is added, and Meyer's notation of "Design by Contract" is explicitly
supported.

Code Generation
Translation of an Argo specification in C + + source code.

COTS Tool
Commercial Off The Shelf Software Tool (i.e. Microsoft Project, ObjectStore).

Critics
A manifestation of the assistant metaphor in KBSA. Critics are analyzers which both check models for

desired properties and give suggestions on how to fix the model should a desired property not be satisfied.

Deliverable
The result of a task being resolved. A task may have one or more deliverables (see Task Resolution)

Evolution Transformations
Editing operations that make complete semantic changes to a model. Their intent is to formalize as a
single operation stereotypical editing operations which are made up of several other editing operations.

Galaxy
Visix Software's X-Window programming API and tool set.

GEF - Graph Editor Framework
A framework created by Andersen which provides a tool set API for creating diagrams for applications

like ALE and REMAP.

Hyperdocument
A text document having the ability to present the user with hyperlinks to other information. When clicked
on, these links display other topics.

163

Hypertext Editor
The ADM tool used for creating and viewing hyperdocuments.

IPSE - Integrated Process Support Environment
The structure which stores the exported project plan in the KBSA/ADM environment. IPSE is the
infrastructure which supports the collaborative model in the KBSA/ADM.

KBSA/ADM - Knowledge Based Software Assistant / Advanced
Development Model
The software system being evaluated.

Methodology
A blue-print or outline of a work process. You can use the methodology to help you plan your tasks in
Microsoft project. Included are task packages, or general steps to follow when creating your application.

Microsoft Project
A software tool for managing projects.

Object Link (PL)
A logical link formed between two or more entities. For example, a hyperdocument can be linked to a
position within a REMAP discussion.

ObjectStore
The object oriented database which provides the storage mechanism for the KBSA/ADM.

ODMESR
The Andersen Consulting Object Development Methodology, Early Support Release. ODMESR is a
methodology created by Andersen in order to provide standardized practices in software design
throughout the corporation.

OODBMS - Object Oriented Database Management System
Persistent storage for objects.

PART - Project Archival and Report Tool
The tool designed and partially implemented by the Syracuse University KBSA team with Andersen.

PKS - Project Knowledge Structure
The information presented in the main PART dialog window.

164

Project
A collection of topics that are put together for some development purpose. These topics are tasks,
resources and the methodological deliverables.

Project Work plan or Project Plan
See Work plan

PVM - Persistence and Version Management
A framework developed above ObjectStore whose purpose is to define the KBSA/ADM repository and
provide version management, check-in/check-out capabilities, and utilities to create databases, projects
users and sessions.

RASE - Requirements Acquisition and Support Environment
This is the ADM tool which provides both REMAP and hyperdocument facilities.

REMAP
Discussion editor used to capture design decisions and the rationale behind the decisions.

Resolution
The solution or completion of a task. Tasks and resolutions have a 1:1 relationship.

Resources
People assigned to tasks in the ADM via designation in a Microsoft Project work plan.

RO - Remote Operations
This is the CORBA implementation used in the ADM. It provides connectivity to an existing tool through
ports, synchronous and asynchronous communication protocols, message based communication through
abstract data types, and spawning and termination of tool processes.

SAM - Session and Agenda Manager
This is the main dialog of KBSA/ADM.

Scribbles
One of the sub-frameworks within GEF. Provides the capability to manage (create, control, etc.) the
graphical entities such as rectangles and lines. It is an extension to the Galaxy graphical features.

Session
A scope of the work of a user. Allows the user to organize their work in ways convenient and meaningful
to them. The user only works on work objects through sessions.

165

Super

The "root" user of the ADM. This user is capable of adding other users and is in charge of importing a
project work plan to the ADM.

Task
A description of work that needs to be performed.

Task Package
A logical grouping of related tasks in a Microsoft Project work plan.

Task Resolution
see Resolution

Topic
A product of one of the KBSA/ADM tools. Original topics include: Hyperdocuments, REMAP
discussions, and ALE Specifications. New topic types can be invented and added to the ADM. The SU
team created topics such as Module and TestPlan for example.

User
see Resources

VRE - Visual Resource Editor
The Galaxy tool for creating X-Window dialogs.

Work plan
The result of using Microsoft Project, a file with a .mpp extension that lists tasks, resolutions, and
deliverables and links them. The finished workplan is exported to the ADM and provides the
collaborative underpinnings of the system.

XMVF - Extended Model View Framework
A modified model-view-controller framework often found in SmallTalk applications. Its objectives are to
establish and maintain relationships between KBSA/ADM views and back-end object models and to
provide a consistent mechanism for defining messages between the views and the model of the system.

»U.S. GOVERNMENT POINTING OFFICE 1993-M0-13O-81047

166

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

