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ABSTRACT 

This report presents testing and improvements to a protocol, rsync, for the 
synchronisation of similar data files in different locations. When copying a file A at 
location a to a remote location ß it is often the case that A has much in common with 
some data file B already stored at ß. In this situation rsync may be used to effectively 
send File A from a to ß in such a way that much less data than that contained in A is 
transmitted. Moreover this is achieved without requiring both files to be located at 
either a or ß. This paper provides new checksum functions that offer significant 
improvements over the existing functions, and proposes that checksum sizes be 
adaptive based on a verified model of the required checksum size. 
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Checksum Testing of Remote Synchronisation 
Tool 

Executive Summary 

This report presents testing and improvements to a protocol, rsync, for the 
synchronisation of similar data files in different locations. Implementation of the 
recommendations provided here can result in bandwidth savings of at least 50% for 
large files, as well as giving significant reductions in computer effort, resulting in 
smaller delays. 

When copying a file A at location a to a remote location ß it is often the case that A has 
much in common with some data file B already stored at ß. In this situation rsync may 
be used to effectively send File A from a to ß in such a way that much less data than 
that contained in A is transmitted. Moreover, this is achieved without requiring both 
files to be located at either a or ß. 

Rsync may be particularly useful in synchronising databases that have had significant 
disconnections or outages, resulting in failure of the existing synchronisation scheme. 
In this situation rsync may be used to efficiently synchronise databases without any 
version control or common reference point. Another major application of rsync is in 
maintaining Web pages which are regularly being changed at the server and have to 
be synchronised with the clients. Thus the changes to client files are identified and 
only the updates to files are sent from the server. This is achieved without the need for 
the server to maintain any records of client files or to store old versions. 

The data efficiencies that rsync offers make it an attractive choice for communications 
channels of limited bandwidth, which occur in many forms of military 
communications. 

The specific contribution of this report is to provide new checksum functions that offer 
significant improvements over the existing functions, some of which are shown to 
have close to ideal properties. We also propose that checksum sizes be adaptive, 
depending on the file size, and verify a model of the required checksum size. 
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1. Introduction 

When copying a File A at location a to a remote location ß it is often the case that A has 
much in common with some data File B already stored at ß. In this situation the rsync 
protocol [5] may be used to effectively send File A from a to ß in such a way that much 
less data than that contained in A is transmitted. Moreover this is achieved without 
requiring both files to be located at either a or ß. This is particularly useful if the 
communication channel is of limited bandwidth, which occurs in many forms of 
military communications. 

At the heart of the rsync protocol are checksums which are used to uniquely identify 
blocks of data, and so identify the similarities and differences between A and B. This 
report analyses the strength of the checksums provided with rsync, and investigates 
new checksum designs with improved strength. The analysis suggests that the 
bandwidth requirement of rsync may be considerably reduced without a significant 
risk of failure due to checksum collisions. The potential use of the rsync algorithm is in 
synchronising distributed information systems. In particular it may be used to 
synchronise databases that have had significant disconnections, resulting in failure of 
the existing synchronising scheme, or Web pages which are regularly being changed at 
the server and have to be in synchronisation with the clients. 

2. How Rsync works 

The algorithm may be better understood with reference to Figurel (see [5] for more 
details): 

Source: 
File A 

(current 
version) 

Computer a 

© 

© 

JL 

Destination: 
FileB 

(old version) 

Computer ß 

Figure 1 - Information flow during rsync operation. 

The aim is to update File B (the old version) with File A (the current version). There are 
three important transactions that occur during the execution of the algorithm, as 
shown by the arrows in Figure 1. 
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• Step 1: a notifies ß that an rsync operation is to be initiated from File A to File B. 
• Step 2: ß partitions File B into non-overlapping blocks each of size b bytes. For each 

of these blocks a simple 32 bit checksum and a much stronger 128 bit checksum 
(MD5 see [2], [3]) is calculated. These checksums are consolidated into a table and 
sent back to a. 

• Step 3: a scans through File A and calculates checksums for all blocks of length b 
bytes at all offset positions. These checksums are used to determine blocks of data 
in File B(in any position) that match blocks in File A. 32 bit checksums are 
calculated and checked first, if a match is found within the received table then the 
128 bit checksum is calculated and checked to be surer that the blocks actually 
match. 

• Step 4: a sends ß a sequence of instructions for constructing a copy of A. Each 
instruction is either a reference to a block of data or literal data. Literal data is sent 
only for those blocks of A which are different to any of the blocks in B. 

The computationally intensive component of the algorithm is Step 3, since checksums 
are calculated and matches within a table sought for every byte offset in File A. In 
order to make the computations feasible, checksums that are simple to compute, and in 
particular can be updated quickly at each new offset, are used. 

3. Rolling Checksums 

Consider a block of bytes Xk ,.., X. If it is possible to efficiently calculate the checksum 
for the block of bytes Xk+i ,..,XM given the checksum for the buffer X* ,.., X and the 
values of the bytes Xt and Xi+i then we say that the checksum has the rolling property. 
Let P mod [Q] denote the member of the residue class P modulo Q that lies in the range 
0 to Q-l. In the original paper [5], a simple rolling checksum S(krl) was used, namely: 

S(k,l) = T(k,l) + 2}6U(k,l)where 

T(k,l)=   £x,. ]mod[2,6],tf(JU) = f £(/-i + l)X, ]mod[216]. 

The rolling property of S(k,l) follows since 

T(k + l,l + ]) = (T(k,l)-Xk + XM)mod[2i6l 

U(k +1, / +1) = (U(k, I)-(I- k + l)Xk+T(k + l,l + l)) mod [216]. 

We present two families of 16 bit rolling checksums, each with four functions, Cl, C2, 
C3, C4, and Dl, D2, D3, D4. We analyse their strength, and compare with that of T and 
U. A similar analysis of all 6 concatenated pairs of Cl,.. .,C4 and Dl, Dl, D3, D4, with S 
is performed to see how well the 16 bit checksums combine. The two families of 
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functions are examples of the trade-off between simplicity and speed as against 
checksum strength. The C family of functions are simpler and quicker to compute, but 
as we shall show the D functions are stronger and combine better. 

Define Cl, C2, C3, C4 on the data block X*,... Xi with b=l-k+l elements by 

C\{k,I) = X, + 2X,_, + 22X,_2+...+2"-1 Xk mod[216 -1]. 

Then 

C\{k + \,l + \) = XM +2X,+22X,„l+...+2h-1XM mod[2,6-l] 

= 2C\(k,l) + XM-2hXk+i mod[2'6 -1]. 

Similarly define 

C2(k,l)=X, +8ZM +82X,_2+...+8fc-% mod[216 -1], 

C3(k,l)=X, +32XM +322Xl_2+...+32h-1Xk mod[216 -1], 

C4(k,l)- X, +128XM + 1282X/_2+...+128*-% mod[216 -1]. 
Then, 

C2(k +1, / +1) = 8C2(ifc, /) + XM - Sh Xk+l mod[216 -1], 

C3(k +1, / +1) = 32C2(k, I) + XM - 32fe Xk+l mod[216 -1], 

C4(k +1, / +1) = \2%C2{k,I) + XM -128* Xk+] mod[216 -1]. 

By choosing b to be a multiple of 16 we have 8bs32b=128b=l mod [216-1]. Multiplication 
by a power of 2 may be evaluated efficiently using the left shift operation «. Thus for 
b a multiple of 16, 

C\(k + l,l + l) = (Cl(k,l)<< l) + XM - Xk+l mod[216 -1], 

C2(^ + l,/ + l) = (C2(Ä:,/)«3)+X/+1-X,+1mod[2,6-l], 

C3(k+ 1,1 + 1) = (C3(k,l)« 5)+XM - Xk+l mod[216 -1], 

CA{k +1,1 +1) = (C4(k,l)« 7) + XM - Xk+l mod[216 -1]. 

To evaluate the modulus function efficiently we show how a 32 bit non-negative 
integer x may be evaluated mod 216-1 (see [1] and [4] for previous uses of these 
methods). This can then be used as the basis of evaluating any expression mod 2U-1. 
Let y and z be the top and bottom 16 bits of x, respectively. Thus 
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x = (y *216 + z), where 0 < y,z < 216 -1 

= (y(2"-\) + y + z) 

= (j + z)mod(216-l). 

To update the Cl function set, 

x = (Cl(k,l)«1) + XM +65535- XM. 

If x=y*2™+z then since Cl<216-2 and X&?-1 it follows that 0<y<3. Thus 0<y+z<216 and 
so x mod[2u-l] is very likely to be simply y+z. Similarly for C2, C3 and C4 we have 
0<y+z<2™+6, 2^+30, and 2^+226 respectively. 

Define the second family of functions as 

D\(k, l)=X,+ 3XM + 32 Z;_2+.. .+36"1 Xk mod[216 -1], 

D2(^, l) = X,+ 5XM + 52 Z,_2+.. .+5"-1 Xk mod[216 - 3], 

D3(k,l)=X,+ 7XW + 72 ^.2+.. .+7*-' X, mod[216 - 5], 

D4(k,l)=Xl+\lXl_x+\l2Xl_2+...+\lh-xXk mod[216 -7]. 

The corresponding rolling updates may then be evaluated as 

D\{k +1, / +1) = 3D1(*. /) + XM - 3" XM mod[216 -1], 

D2(k +1,1 +1) = 5Dl(fc, /) + XM - 5" XM mod[2'6 - 3], 

D3(k +1, / +1) = 7Dl(k, I) + XM -1" XM mod[216 - 5], 

D4(k +1,/ +1) = 17Z)l(ife,/) + XM -17* X,+1 mod[216 - 7]. 

Multiplication by 3, 5, 7, and 17 can be done with a shift and an add or subtract 
operation (eg 17x=(x«4)+x). The powers are fixed for a given b and so can be pre- 
calculated. To evaluate the modulus functions, let y and z be the top and bottom 16 bits 
of x, respectively. Thus 

x = (y * 216 + z), where 0 < y, z < 216 -1. 

= (y(2i6-i) + iy + z) 

= (iy + z)mod(2i6-i). 

Here again, multiplication by i may be performed with a shift and add as above. To 
update Dl, set 
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x = 3Dl(k, I) + XM + (216 -1)(28 -1) - 3" Xk+1 mod[216 -1], 

= 3Dl(Jt, /) + XM +16711425 - 3* XM mod[216 -1]. 

It follows that 0<3y+z<216+769. Similarly for D2, D3, and D4 we have iy+z<2^+1293, 
216+1825 and 216+4605, respectively. Thus x mod[216-i] is likely to be simply iy+z, and if 
not then x mod[216-i]=iy+z-(216-i). 

Thus a single multiplication, together with elementary operations (add, subtract, shift, 
assign) are used in updating each of the rolling functions. 

4. Checksum Analysis 

To test the strength of checksum functions we construct a theoretical model for 
evaluating the probability of checksum collisions (matching checksums corresponding 
to different data blocks). 

In the operation of rsync, once a has received the list of checksums of the blocks of File 
B, it must search File A for any blocks at any offset that match the checksum of some 
block of B. The 32 bit rolling checksum for a block of length b is computed for each 
byte offset in File A. This is then compared against the table to find any matches. Once 
a match has been found, a then sends ß the corresponding reference to the data in A. 

Since File A and B are assumed to be largely similar, and it is in this case that the 
checksums are more likely to fail we shall assume that A and B are the same file. Thus 
we shall examine the ability of the checksums to differentiate between boundary 
blocks and offset blocks within a given file. Let Y be the total number of data bytes in 
the file, so the number of blocks in the file is Y/b. The total number of shifts less those 
that lie on the block boundaries is Y-Y/b. Let the expected number of checksum 
matches in which the blocks are different(or False Alarms) be FA. Let n be the number 
of bits in the checksum. Assuming that the incidence of boundary blocks that match 
some non-boundary block is small in comparison to False Alarms, and that the 
checksum has ideal statistical properties in differentiating between different blocks we 
have, 

Conversely, if we are comparing the strength of different checksum functions, the 
number of False Alarms FA can be computed for particular files and the effective bit 
strength n of the checksum calculated from the above. 
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5. Simulations 

Checksums were tested with three different files. The first consists of pseudorandom 
data, the second consists of the data corresponding to a large map, the third is a large 
tar file generated from a directory of Powerpoint files. 

Over the pseudorandom data, the effective bit strengths of all 16 bit checksums are 
close to ideal (16 bits), with the exception of function T. This may be explained by 
noting that T is a sum of 8 bit integers modulo 216 and so each added integer is likely to 
change only the lower 8 bits of the checksum. Indeed one would expect that at least 
512 bytes need to added together to reach 216, and so bring the modulus into effect. 

There is some variation of checksum strengths over the structured data tests. In 
general however all the functions perform well with the exception of T. 

In pairwise combinations there are significant differences in the measured strengths of 
the 32-bit checksums formed, ranging from 26.8 to 32.1. In general the function S is the 
weakest function, the C combinations somewhat stronger and the D combinations the 
strongest of all. In fact the D combination checksums have a strength that is 
consistently close to ideal (32) over the test data (from 31.8 to 32.1). 

16 Bit Checksums, Random Data File, Block 
Size R=400 bytes, 1000 Blocks in File 

Checksums False 
Alarms, FA 

Effective 
bit strength 

T 84343 12.2 
U 6102 16.0 
Cl 5935 16.0 
C2 6225 16.0 
C3 6160 16.0 
C4 6106 16.0 
Dl 6068 16.0 
D2 6018 16.0 
D3 5955 16.0 
D4 6036 16.0 

Table 1. Analysis of 16 bit checksum functions for random data 
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16 Bit Checksums, Map Data File, Block 
Size R=400 bytes, 1000 Blocks in File 

Checksums False 
Alarms, FA 

Effective 
bit strength 

T 32071 13.6 
U 6121 16.0 
Cl 6187 16.0 
C2 5925 16.0 
C3 6073 16.0 
C4 6184 16.0 
Dl 6223 16.0 
D2 6209 16.0 
D3 6061 16.0 
D4 6108 16.0 

Table 2. Analysis of 16 bit checksum functions for structured data (map file) 

32 Bit Check 
Size R=400 

sums, Map Data File, Block 
bytes, 50000 Blocks in File 

Checksums False 
Alarms, FA 

Effective 
bit strength 

S=TIU 7007 27.1 

C1IC2 705 30.4 
C1IC3 3608 28.0 
C1IC4 688 30.4 
C2IC3 676 30.4 
C2IC4 3537 28.1 
C3IC4 723 30.4 

D1ID2 236 32.0 
D1ID3 213 32.1 
D1ID4 247 31.9 
D2ID3 238 32.0 
D2ID4 270 31.8 
D3ID4 224 32.1 

Table 3. Analysis ofpairwise combinations of 16 bit checksum functions for structured data 
(mapfile) 
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16 Bit Checksums, PowerPo 
Block Size R=400 bytes, 1000 

int Tar File, 
31ocks in File 

Checksums False 
Alarms, FA 

Effective 
bit strength 

T 27052 13.9 
U 8072 15.6       1 
Cl 10098 15.2 
C2 7133 15.7 
C3 5388 16.2 
C4 12069 15.0 
Dl 6547 15.9 
D2 6712 15.9 
D3 5817 16.1 
D4 8999 15.4 

Table 4. Analysis ofpairwise combinations of 16 bit checksum functions for structured data 
(PowerPoint tar file) 

32 Bit Check 
Block Size R=^ 

.sums, PowerPoint Tar File, 
00 bytes, 50000 Blocks in File 

Checksums False 
Alarms, FA 

Effective 
bit strength 

S=TIU 8752 26.8 
C1IC2 2193 28.8 
C1IC3 2291 28.7 
C1IC4 2152 28.8 
C2IC3 2167 28.8 
C2IC4 2271 28.7 
C3IC4 2167 28.8 
D1ID2 209 32.0 
D1ID3 211 32.1 
D1ID4 248 31.9 
D2ID3 210 32.0 
D2ID4 249 31.8 
D3ID4 225 32.0 

Table 5. Analysis ofpairwise combinations of 16 bit checksum functions for structured data 
(PowerPoint tar file) 
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Adapting the design of the checksums given here to take advantage of computers with 
larger word sizes, it would seem plausible that the functions modified by increasing 
the moduli should provide correspondingly strong checksums. Thus for 64 bit word 
size for example, simply replace the moduli 216, 216-1, 216-3,... by 232,232-l, 232-3,.... 

6. Adaptive Checksum Size 

From equation (1) we may make predictions about adequate checksum sizes with the 
use of checksums with consistent properties. This may be used to minimise the size of 
the table generated in Step 2 of rsync and the corresponding bandwidth requirement, 
while keeping the probability of a False Alarm relatively low. To support this 
approach, Step 3 of rsync should also involve the sending of a single strong checksum 
(say 128 bits) over the entire File A (noted in [2]). This will flag ß that rsync has failed, 
and the protocol needs to be repeated with some small file changes. 

As the number of False Alarms indicated by (1) increases with the square of the file 
size, clearly the size of adequate checksums will vary accordingly. Let p denote the 
probability of at least one False Alarm occurring in rsync. Then using (1) and assuming 
that Files A and B are approximately the same size b we may bound p by 

tJ
xH) 

"- r ' (2) 

For small values of the right hand side of (2) both p and FA approximate the 
probability of exactly one False Alarm. 

Using Y-Y/b=Y, we may estimate the number of checkbits CB (in a checksum with 
ideal properties) required to meet such P as 

CB«2log2(Y) + log2(l/bp). (3) 

For example if p=10T6, b=1000, then CB(Y) may be approximated from (3) as CB(104 or 
10 Kbyte)=36.5, CB(106 or 1 Mbyte)=49.8, CB(10» or 100 Mbytes)=63.1, CB(10w or 10 
Gbytes)=76.4. 

Thus the length of checksums required to provide a given level of confidence varies 
significantly with the file size. We therefore suggest that the checksum sizes be 
dynamically chosen for each rsync transaction based on equation (3). This will 
significantly reduce the data transmitted in Step 2 of the rsync protocol. 

Another important factor in the computational efficiency of rsync is the use of non- 
rolling checksums (such as MD5) as a backup check in Step 3, since each such backup 
check requires MD5 to be calculated from scratch over the entire block. This is 
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important for large files since the incidence of 32 bit mismatches rises with the size of 
the file. For this reason stronger rolling checksums will also reduce the computational 
effort in Step 3 of rsync, especially for large files. 

7. Conclusions 

A methodology is given with which the checksums provided with the rsync protocol 
have been tested and compared to new checksum functions given in this report. The 
new checksums are shown to be stronger than those used in rsync, moreover a 
particular family of new checksums has a strength that is consistently close to ideal 
over the test data. These checksums may be updated for each byte offset with just one 
multiplication and elementary operations (add, subtract, assign, and shift). Based on 
these new checksums we suggest that rsync should dynamically determine checksum 
sizes depending on the file size. This will significantly reduce the bandwidth 
requirement of the rsync protocol while controlling the chance that the protocol will 
fail because of checksum collisions (and need to be repeated). 
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