
r

Aft-OiO-4S"7

Checksum Testing of Remote
Synchronisation Tool

Richard Taylor, Rittwikjana and
Mark Grigg

DSTO-TR-0627

r>o

] 1 APPROVED FOR PUBLIC RELEASE

I © Commonwealth of Australia

DEPARTMEN T OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

Checksum Testing of Remote Synchronisation Tool

Richard Taylor, Rittwik Jana and Mark Grigg

DSTO
Electronics and Surveillance Research Laboratory

DSTO-TR-0627

ABSTRACT

This report presents testing and improvements to a protocol, rsync, for the
synchronisation of similar data files in different locations. When copying a file A at
location a to a remote location ß it is often the case that A has much in common with
some data file B already stored at ß. In this situation rsync may be used to effectively
send File A from a to ß in such a way that much less data than that contained in A is
transmitted. Moreover this is achieved without requiring both files to be located at
either a or ß. This paper provides new checksum functions that offer significant
improvements over the existing functions, and proposes that checksum sizes be
adaptive based on a verified model of the required checksum size.

RELEASE LIMITATION

Approved for public release

DEPARTMENT OF DEFENCE
 u
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DTIC QUALITY INSPECTED 4^

Published by

DSTO Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury South Australia 5108

Telephone: (08) 8259 5555
Fax: (08)8259 6567
© Commonwealth of Australia 1998
AR-010-457
March 1998

APPROVED FOR PUBLIC RELEASE

Checksum Testing of Remote Synchronisation
Tool

Executive Summary

This report presents testing and improvements to a protocol, rsync, for the
synchronisation of similar data files in different locations. Implementation of the
recommendations provided here can result in bandwidth savings of at least 50% for
large files, as well as giving significant reductions in computer effort, resulting in
smaller delays.

When copying a file A at location a to a remote location ß it is often the case that A has
much in common with some data file B already stored at ß. In this situation rsync may
be used to effectively send File A from a to ß in such a way that much less data than
that contained in A is transmitted. Moreover, this is achieved without requiring both
files to be located at either a or ß.

Rsync may be particularly useful in synchronising databases that have had significant
disconnections or outages, resulting in failure of the existing synchronisation scheme.
In this situation rsync may be used to efficiently synchronise databases without any
version control or common reference point. Another major application of rsync is in
maintaining Web pages which are regularly being changed at the server and have to
be synchronised with the clients. Thus the changes to client files are identified and
only the updates to files are sent from the server. This is achieved without the need for
the server to maintain any records of client files or to store old versions.

The data efficiencies that rsync offers make it an attractive choice for communications
channels of limited bandwidth, which occur in many forms of military
communications.

The specific contribution of this report is to provide new checksum functions that offer
significant improvements over the existing functions, some of which are shown to
have close to ideal properties. We also propose that checksum sizes be adaptive,
depending on the file size, and verify a model of the required checksum size.

Authors

Richard Taylor
Communications Division

Richard Taylor is the Head of the Network Integration Group
of the Defence Science and Technology Organisation's
(DSTO) Communications Division. A PhD in Mathematics
from the University of Melbourne, Richard has worked at the
Telecom Research Laboratories in Victoria, and has over 9
years experience in the fields of communication reliability
and security.

Rittwik Jana
Information Technology Division

Rittwik Jana is a Professional Officer with the Intelligence
Systems Group of the Defence Science and Technology
Organisation's (DSTO) Information Technology Division. His
main research interests include transmission of imagery over low
bandwidth communication channels. He is currently pursuing a
PhD in telcommunications at the Australian National University.

Mark Grigg
Information Technology Division

Mark Grigg has a B.Eng (Electronics) and a B.App.Sci. (Physics)
from RMIT, and a PhD in Physics from the University of
Melbourne. He joined DSTO in 1994 as a Research Scientist with
the Intelligence Systems Group in ITD. His current research
interests lie in the areas of digital image coding, signal processing,
and the application of Web based technologies to the access and
dissemination of information.

Contents

1. INTRODUCTION 1

2. HOW RSYNC WORKS 1

3. ROLLING CHECKSUMS 2

4. CHECKSUM ANALYSIS 5

5. SIMULATIONS 6

6. ADAPTIVE CHECKSUM SIZE 9

7. CONCLUSIONS 10

PREFERENCES 10

DSTO-TR-0627

1. Introduction

When copying a File A at location a to a remote location ß it is often the case that A has
much in common with some data File B already stored at ß. In this situation the rsync
protocol [5] may be used to effectively send File A from a to ß in such a way that much
less data than that contained in A is transmitted. Moreover this is achieved without
requiring both files to be located at either a or ß. This is particularly useful if the
communication channel is of limited bandwidth, which occurs in many forms of
military communications.

At the heart of the rsync protocol are checksums which are used to uniquely identify
blocks of data, and so identify the similarities and differences between A and B. This
report analyses the strength of the checksums provided with rsync, and investigates
new checksum designs with improved strength. The analysis suggests that the
bandwidth requirement of rsync may be considerably reduced without a significant
risk of failure due to checksum collisions. The potential use of the rsync algorithm is in
synchronising distributed information systems. In particular it may be used to
synchronise databases that have had significant disconnections, resulting in failure of
the existing synchronising scheme, or Web pages which are regularly being changed at
the server and have to be in synchronisation with the clients.

2. How Rsync works

The algorithm may be better understood with reference to Figurel (see [5] for more
details):

Source:
File A

(current
version)

Computer a

©

©

JL

Destination:
FileB

(old version)

Computer ß

Figure 1 - Information flow during rsync operation.

The aim is to update File B (the old version) with File A (the current version). There are
three important transactions that occur during the execution of the algorithm, as
shown by the arrows in Figure 1.

DSTO-TR-0627

• Step 1: a notifies ß that an rsync operation is to be initiated from File A to File B.
• Step 2: ß partitions File B into non-overlapping blocks each of size b bytes. For each

of these blocks a simple 32 bit checksum and a much stronger 128 bit checksum
(MD5 see [2], [3]) is calculated. These checksums are consolidated into a table and
sent back to a.

• Step 3: a scans through File A and calculates checksums for all blocks of length b
bytes at all offset positions. These checksums are used to determine blocks of data
in File B(in any position) that match blocks in File A. 32 bit checksums are
calculated and checked first, if a match is found within the received table then the
128 bit checksum is calculated and checked to be surer that the blocks actually
match.

• Step 4: a sends ß a sequence of instructions for constructing a copy of A. Each
instruction is either a reference to a block of data or literal data. Literal data is sent
only for those blocks of A which are different to any of the blocks in B.

The computationally intensive component of the algorithm is Step 3, since checksums
are calculated and matches within a table sought for every byte offset in File A. In
order to make the computations feasible, checksums that are simple to compute, and in
particular can be updated quickly at each new offset, are used.

3. Rolling Checksums

Consider a block of bytes Xk ,.., X. If it is possible to efficiently calculate the checksum
for the block of bytes Xk+i ,..,XM given the checksum for the buffer X* ,.., X and the
values of the bytes Xt and Xi+i then we say that the checksum has the rolling property.
Let P mod [Q] denote the member of the residue class P modulo Q that lies in the range
0 to Q-l. In the original paper [5], a simple rolling checksum S(krl) was used, namely:

S(k,l) = T(k,l) + 2}6U(k,l)where

T(k,l)= £x,.]mod[2,6],tf(JU) = f £(/-i + l)X,]mod[216].

The rolling property of S(k,l) follows since

T(k + l,l +]) = (T(k,l)-Xk + XM)mod[2i6l

U(k +1, / +1) = (U(k, I)-(I- k + l)Xk+T(k + l,l + l)) mod [216].

We present two families of 16 bit rolling checksums, each with four functions, Cl, C2,
C3, C4, and Dl, D2, D3, D4. We analyse their strength, and compare with that of T and
U. A similar analysis of all 6 concatenated pairs of Cl,.. .,C4 and Dl, Dl, D3, D4, with S
is performed to see how well the 16 bit checksums combine. The two families of

DSTO-TR-0627

functions are examples of the trade-off between simplicity and speed as against
checksum strength. The C family of functions are simpler and quicker to compute, but
as we shall show the D functions are stronger and combine better.

Define Cl, C2, C3, C4 on the data block X*,... Xi with b=l-k+l elements by

C\{k,I) = X, + 2X,_, + 22X,_2+...+2"-1 Xk mod[216 -1].

Then

C\{k + \,l + \) = XM +2X,+22X,„l+...+2h-1XM mod[2,6-l]

= 2C\(k,l) + XM-2hXk+i mod[2'6 -1].

Similarly define

C2(k,l)=X, +8ZM +82X,_2+...+8fc-% mod[216 -1],

C3(k,l)=X, +32XM +322Xl_2+...+32h-1Xk mod[216 -1],

C4(k,l)- X, +128XM + 1282X/_2+...+128*-% mod[216 -1].
Then,

C2(k +1, / +1) = 8C2(ifc, /) + XM - Sh Xk+l mod[216 -1],

C3(k +1, / +1) = 32C2(k, I) + XM - 32fe Xk+l mod[216 -1],

C4(k +1, / +1) = \2%C2{k,I) + XM -128* Xk+] mod[216 -1].

By choosing b to be a multiple of 16 we have 8bs32b=128b=l mod [216-1]. Multiplication
by a power of 2 may be evaluated efficiently using the left shift operation «. Thus for
b a multiple of 16,

C\(k + l,l + l) = (Cl(k,l)<< l) + XM - Xk+l mod[216 -1],

C2(^ + l,/ + l) = (C2(Ä:,/)«3)+X/+1-X,+1mod[2,6-l],

C3(k+ 1,1 + 1) = (C3(k,l)« 5)+XM - Xk+l mod[216 -1],

CA{k +1,1 +1) = (C4(k,l)« 7) + XM - Xk+l mod[216 -1].

To evaluate the modulus function efficiently we show how a 32 bit non-negative
integer x may be evaluated mod 216-1 (see [1] and [4] for previous uses of these
methods). This can then be used as the basis of evaluating any expression mod 2U-1.
Let y and z be the top and bottom 16 bits of x, respectively. Thus

DSTO-TR-0627

x = (y *216 + z), where 0 < y,z < 216 -1

= (y(2"-\) + y + z)

= (j + z)mod(216-l).

To update the Cl function set,

x = (Cl(k,l)«1) + XM +65535- XM.

If x=y*2™+z then since Cl<216-2 and X&?-1 it follows that 0<y<3. Thus 0<y+z<216 and
so x mod[2u-l] is very likely to be simply y+z. Similarly for C2, C3 and C4 we have
0<y+z<2™+6, 2^+30, and 2^+226 respectively.

Define the second family of functions as

D\(k, l)=X,+ 3XM + 32 Z;_2+.. .+36"1 Xk mod[216 -1],

D2(^, l) = X,+ 5XM + 52 Z,_2+.. .+5"-1 Xk mod[216 - 3],

D3(k,l)=X,+ 7XW + 72 ^.2+.. .+7*-' X, mod[216 - 5],

D4(k,l)=Xl+\lXl_x+\l2Xl_2+...+\lh-xXk mod[216 -7].

The corresponding rolling updates may then be evaluated as

D\{k +1, / +1) = 3D1(*. /) + XM - 3" XM mod[216 -1],

D2(k +1,1 +1) = 5Dl(fc, /) + XM - 5" XM mod[2'6 - 3],

D3(k +1, / +1) = 7Dl(k, I) + XM -1" XM mod[216 - 5],

D4(k +1,/ +1) = 17Z)l(ife,/) + XM -17* X,+1 mod[216 - 7].

Multiplication by 3, 5, 7, and 17 can be done with a shift and an add or subtract
operation (eg 17x=(x«4)+x). The powers are fixed for a given b and so can be pre-
calculated. To evaluate the modulus functions, let y and z be the top and bottom 16 bits
of x, respectively. Thus

x = (y * 216 + z), where 0 < y, z < 216 -1.

= (y(2i6-i) + iy + z)

= (iy + z)mod(2i6-i).

Here again, multiplication by i may be performed with a shift and add as above. To
update Dl, set

DSTO-TR-0627

x = 3Dl(k, I) + XM + (216 -1)(28 -1) - 3" Xk+1 mod[216 -1],

= 3Dl(Jt, /) + XM +16711425 - 3* XM mod[216 -1].

It follows that 0<3y+z<216+769. Similarly for D2, D3, and D4 we have iy+z<2^+1293,
216+1825 and 216+4605, respectively. Thus x mod[216-i] is likely to be simply iy+z, and if
not then x mod[216-i]=iy+z-(216-i).

Thus a single multiplication, together with elementary operations (add, subtract, shift,
assign) are used in updating each of the rolling functions.

4. Checksum Analysis

To test the strength of checksum functions we construct a theoretical model for
evaluating the probability of checksum collisions (matching checksums corresponding
to different data blocks).

In the operation of rsync, once a has received the list of checksums of the blocks of File
B, it must search File A for any blocks at any offset that match the checksum of some
block of B. The 32 bit rolling checksum for a block of length b is computed for each
byte offset in File A. This is then compared against the table to find any matches. Once
a match has been found, a then sends ß the corresponding reference to the data in A.

Since File A and B are assumed to be largely similar, and it is in this case that the
checksums are more likely to fail we shall assume that A and B are the same file. Thus
we shall examine the ability of the checksums to differentiate between boundary
blocks and offset blocks within a given file. Let Y be the total number of data bytes in
the file, so the number of blocks in the file is Y/b. The total number of shifts less those
that lie on the block boundaries is Y-Y/b. Let the expected number of checksum
matches in which the blocks are different(or False Alarms) be FA. Let n be the number
of bits in the checksum. Assuming that the incidence of boundary blocks that match
some non-boundary block is small in comparison to False Alarms, and that the
checksum has ideal statistical properties in differentiating between different blocks we
have,

Conversely, if we are comparing the strength of different checksum functions, the
number of False Alarms FA can be computed for particular files and the effective bit
strength n of the checksum calculated from the above.

DSTO-TR-0627

5. Simulations

Checksums were tested with three different files. The first consists of pseudorandom
data, the second consists of the data corresponding to a large map, the third is a large
tar file generated from a directory of Powerpoint files.

Over the pseudorandom data, the effective bit strengths of all 16 bit checksums are
close to ideal (16 bits), with the exception of function T. This may be explained by
noting that T is a sum of 8 bit integers modulo 216 and so each added integer is likely to
change only the lower 8 bits of the checksum. Indeed one would expect that at least
512 bytes need to added together to reach 216, and so bring the modulus into effect.

There is some variation of checksum strengths over the structured data tests. In
general however all the functions perform well with the exception of T.

In pairwise combinations there are significant differences in the measured strengths of
the 32-bit checksums formed, ranging from 26.8 to 32.1. In general the function S is the
weakest function, the C combinations somewhat stronger and the D combinations the
strongest of all. In fact the D combination checksums have a strength that is
consistently close to ideal (32) over the test data (from 31.8 to 32.1).

16 Bit Checksums, Random Data File, Block
Size R=400 bytes, 1000 Blocks in File

Checksums False
Alarms, FA

Effective
bit strength

T 84343 12.2
U 6102 16.0
Cl 5935 16.0
C2 6225 16.0
C3 6160 16.0
C4 6106 16.0
Dl 6068 16.0
D2 6018 16.0
D3 5955 16.0
D4 6036 16.0

Table 1. Analysis of 16 bit checksum functions for random data

DSTO-TR-0627

16 Bit Checksums, Map Data File, Block
Size R=400 bytes, 1000 Blocks in File

Checksums False
Alarms, FA

Effective
bit strength

T 32071 13.6
U 6121 16.0
Cl 6187 16.0
C2 5925 16.0
C3 6073 16.0
C4 6184 16.0
Dl 6223 16.0
D2 6209 16.0
D3 6061 16.0
D4 6108 16.0

Table 2. Analysis of 16 bit checksum functions for structured data (map file)

32 Bit Check
Size R=400

sums, Map Data File, Block
bytes, 50000 Blocks in File

Checksums False
Alarms, FA

Effective
bit strength

S=TIU 7007 27.1

C1IC2 705 30.4
C1IC3 3608 28.0
C1IC4 688 30.4
C2IC3 676 30.4
C2IC4 3537 28.1
C3IC4 723 30.4

D1ID2 236 32.0
D1ID3 213 32.1
D1ID4 247 31.9
D2ID3 238 32.0
D2ID4 270 31.8
D3ID4 224 32.1

Table 3. Analysis ofpairwise combinations of 16 bit checksum functions for structured data
(mapfile)

DSTO-TR-0627

16 Bit Checksums, PowerPo
Block Size R=400 bytes, 1000

int Tar File,
31ocks in File

Checksums False
Alarms, FA

Effective
bit strength

T 27052 13.9
U 8072 15.6 1
Cl 10098 15.2
C2 7133 15.7
C3 5388 16.2
C4 12069 15.0
Dl 6547 15.9
D2 6712 15.9
D3 5817 16.1
D4 8999 15.4

Table 4. Analysis ofpairwise combinations of 16 bit checksum functions for structured data
(PowerPoint tar file)

32 Bit Check
Block Size R=^

.sums, PowerPoint Tar File,
00 bytes, 50000 Blocks in File

Checksums False
Alarms, FA

Effective
bit strength

S=TIU 8752 26.8
C1IC2 2193 28.8
C1IC3 2291 28.7
C1IC4 2152 28.8
C2IC3 2167 28.8
C2IC4 2271 28.7
C3IC4 2167 28.8
D1ID2 209 32.0
D1ID3 211 32.1
D1ID4 248 31.9
D2ID3 210 32.0
D2ID4 249 31.8
D3ID4 225 32.0

Table 5. Analysis ofpairwise combinations of 16 bit checksum functions for structured data
(PowerPoint tar file)

DSTO-TR-0627

Adapting the design of the checksums given here to take advantage of computers with
larger word sizes, it would seem plausible that the functions modified by increasing
the moduli should provide correspondingly strong checksums. Thus for 64 bit word
size for example, simply replace the moduli 216, 216-1, 216-3,... by 232,232-l, 232-3,....

6. Adaptive Checksum Size

From equation (1) we may make predictions about adequate checksum sizes with the
use of checksums with consistent properties. This may be used to minimise the size of
the table generated in Step 2 of rsync and the corresponding bandwidth requirement,
while keeping the probability of a False Alarm relatively low. To support this
approach, Step 3 of rsync should also involve the sending of a single strong checksum
(say 128 bits) over the entire File A (noted in [2]). This will flag ß that rsync has failed,
and the protocol needs to be repeated with some small file changes.

As the number of False Alarms indicated by (1) increases with the square of the file
size, clearly the size of adequate checksums will vary accordingly. Let p denote the
probability of at least one False Alarm occurring in rsync. Then using (1) and assuming
that Files A and B are approximately the same size b we may bound p by

tJ
xH)

"- r ' (2)

For small values of the right hand side of (2) both p and FA approximate the
probability of exactly one False Alarm.

Using Y-Y/b=Y, we may estimate the number of checkbits CB (in a checksum with
ideal properties) required to meet such P as

CB«2log2(Y) + log2(l/bp). (3)

For example if p=10T6, b=1000, then CB(Y) may be approximated from (3) as CB(104 or
10 Kbyte)=36.5, CB(106 or 1 Mbyte)=49.8, CB(10» or 100 Mbytes)=63.1, CB(10w or 10
Gbytes)=76.4.

Thus the length of checksums required to provide a given level of confidence varies
significantly with the file size. We therefore suggest that the checksum sizes be
dynamically chosen for each rsync transaction based on equation (3). This will
significantly reduce the data transmitted in Step 2 of the rsync protocol.

Another important factor in the computational efficiency of rsync is the use of non-
rolling checksums (such as MD5) as a backup check in Step 3, since each such backup
check requires MD5 to be calculated from scratch over the entire block. This is

DSTO-TR-0627

important for large files since the incidence of 32 bit mismatches rises with the size of
the file. For this reason stronger rolling checksums will also reduce the computational
effort in Step 3 of rsync, especially for large files.

7. Conclusions

A methodology is given with which the checksums provided with the rsync protocol
have been tested and compared to new checksum functions given in this report. The
new checksums are shown to be stronger than those used in rsync, moreover a
particular family of new checksums has a strength that is consistently close to ideal
over the test data. These checksums may be updated for each byte offset with just one
multiplication and elementary operations (add, subtract, assign, and shift). Based on
these new checksums we suggest that rsync should dynamically determine checksum
sizes depending on the file size. This will significantly reduce the bandwidth
requirement of the rsync protocol while controlling the chance that the protocol will
fail because of checksum collisions (and need to be repeated).

8. References

[1] H. J. Knobloch, "A Smartcard Implementation of the Fiat-Shamir Identification
Scheme. Advances in Cryptology- EUROCRYPT'88, Proceedings, Springer-Verlag
(1989) pp. 87-96.

[2] R. L. Rivest, "The MD5 Message Digest Algorithm", RFC 1321, April 1992.

[3] B. Schneier, "One Way Hash Functions", Dr. Dobbs Journal, v. 16, no. 9, pp. 148-
151, September 1991.

[4] R. Taylor, "An Integrity Check Value Algorithm for Stream Ciphers",
Advances in Cryptology - CRYPTO' 93, Proceedings, Lecture Notes in
Computer Science 773, Springer-Verlag 1994, pp. 40-48.

[5] Tridgell, A. and Mackerras P, "The rsync algorithm", Joint Computer Science
Technical Report Series, TR-CS-96-05, Department of Computer Science, The
Australian National University, June 1996.

[6] Tridgell, A. and Mackerras P, Private communication.

10

DISTRIBUTION LIST

Checksum Testing of Remote Synchronisation Tool

Richard Taylor, Rittwik Jana and Mark Grigg

AUSTRALIA

DEFENCE ORGANISATION

Task Sponsor
Director General C3I Development

S&T Program
Chief Defence Scientist "1
FAS Science Policy r shared copy
AS Science Corporate Management J
Director General Science Policy Development
Counsellor Defence Science, London (Doc Data Sheet)
Counsellor Defence Science, Washington (Doc Data Sheet)
Scientific Adviser to MRDC Thailand (Doc Data Sheet)
Director General Scientific Advisers and Trials/Scientific Adviser Policy and

Command (shared copy)
Navy Scientific Adviser (Doc Data Sheet and distribution list only)
Scientific Adviser - Army (Doc Data Sheet and distribution list only)
Air Force Scientific Adviser
Director Trials

Aeronautical and Maritime Research Laboratory
Director

Electronics and Surveillance Research Laboratory
Director

Chief, Information Technology Division
Chief, Communications Division
Research Leader Military Information Networks
Head Network Integration
Co-Author(s): R. Jana, M. Grigg

DSTO Library
Library Fishermens Bend
Library Maribyrnong
Library Salisbury (2 copies)
Australian Archives
Library, MOD, Pyrmont (Doc Data sheet)

Capability Development Division
DGMD (Doc Data Sheet)

DGLD (Doc Data Sheet)

d. Navy
SO (Science) - MHQ

e. Army
ABCA Office, G-l-34, Russell Offices, Canberra (4 copies)
SO (Science) - LHQ, 3 Bde, 1 Bde, HQ Training Command

f. Air Force
SO (Science) - AHQ

g. Intelligence Program
Defence Intelligence Organisation
DDI, Defence Signals Directorate (Doc Data Sheet only)

h. Acquisition and Logistics Program
PD JCSE
PDJISE
PD AUSTACSS

i. Corporate Support Program (libraries)
OIC TRS, Defence Regional Library, Canberra
Officer in Charge, Document Exchange Centre (DEC) (Doc Data Sheet only)
DEC requires the following copies of public release reports to meet exchange

agreements under their management:
*US Defence Technical Information Centre, 2 copies
*UK Defence Research Information Center, 2 copies
"Canada Defence Scientific Information Service, 1 copy
*NZ Defence Information Centre, 1 copy
National Library of Australia, 1 copy

2. UNIVERSITIES AND COLLEGES

Australian National University Library
Australian Defence Force Academy

Library
Head of Aerospace and Mechanical Engineering

Deakin University, Serials Section (M list), Deakin University Library
Senior Librarian, Hargrave Library, Monash University
Librarian, Flinders University

3. OTHER ORGANISATIONS

NASA (Canberra)
AGPS
State Library of South Australia
Parliamentary Library, South Australia

OUTSIDE AUSTRALIA

ABSTRACTING AND INFORMATION ORGANISATIONS
INSPEC: Acquisitions Section Institution of Electrical Engineers
Library, Chemical Abstracts Reference Service
Engineering Societies Library, US
Materials Information, Cambridge Scientific Abstracts, US
Documents Librarian, The Center for Research Libraries, US

INFORMATION EXCHANGE AGREEMENT PARTNERS
Acquisitions Unit, Science Reference and Information Service, UK
Library - Exchange Desk, National Institute of Standards and Technology, US

SPARES (6 copies)

Total number of copies: 60

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF

DOCUMENT)

2. TITLE

Checksum Testing of Remote Synchronisation Tool

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

Document (U)
Title (U)
Abstract (U)

4. AUTHOR(S)

Richard Taylor, Rittwik Jana and Mark Grigg

5. CORPORATE AUTHOR

Electronics and Surveillance Research Laboratory
PO Box 1500
Salisbury SA 5108

6a. DSTO NUMBER
DSTO-TR-0627

6b. AR NUMBER
AR-010-457

6c. TYPE OF REPORT
Technical Report

7. DOCUMENT DATE
March 1998

8. FILE NUMBER 9. TASK NUMBER
ADF96/295

10. TASK SPONSOR
DGC3ID

11. NO. OF PAGES
12

12. NO. OF
REFERENCES
6

13. DOWNGRADING/DELIMITING INSTRUCTIONS 14. RELEASE AUTHORITY

Chief, Communications Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED UMTTATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE,
DEFT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CASUAL ANNOUNCEMENT Yes
18. DEFTEST DESCRIPTORS

Data synchronisation, Computing tools, Communications

19. ABSTRACT

This report presents testing and improvements to a protocol, rsync, for the synchronisation of similar
data files in different locations. When copying a file A at location a to a remote location ß it is often the
case that A has much in common with some data file B already stored at ß. In this situation rsync may be
used to effectively send File A from a to ß in such a way that much less data than that contained in A is
transmitted. Moreover this is achieved without requiring both files to be located at either a or ß. This
paper provides new checksum functions that offer significant improvements over the existing functions,
and proposes that checksum sizes be adaptive based on a verified model of the required checksum size.

Page classification: UNCLASSIFIED

