
Aft-OlO-5^ 

19981112 034 

Performance Characteristics of a Java 
Object Request Broker 

David Miron and Samuel Taylor 

DSTO-TR-0696 

] | APPROVED FOR PUBLIC RELEASE 

©   Commonwealth of Australia 

DEPARTMENT, OF    DEFENCE 

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 



Performance Characteristics of a Java Object 
Request Broker 

David Miron and 
Samuel Taylor* 

Information Technology Division 
Electronics and Surveillance Research Laboratory 

*Advanced Computational Systems 
Australian National University 

DSTO-TR-0696 

ABSTRACT 

The efficiency of the Common Object Request Broker Architecture (CORBA) for the transfer of 
large files over a network is of particular interest to the Imagery Management and 
Dissemination Group (IM AD). The IM AD group will be using Java and CORBA for such 
transfers. This report studies the performance of a Java Object Request Broker (ORB) for the 
transfer of large files over such networks. This performance analysis is done using the 
Visigenics ORB Visibroker and involves the measurement of throughput and latency. These 
measurements are then compared with the results obtained when using socket to socket 
connections. The results show that the throughput of an ORB for large file transfer approaches 
that of sockets on low bandwidth networks. However on high bandwidth networks the 
throughput using the ORB is significantly less than that using sockets. It is also shown that the 
latency incurred by the ORB is much greater than that incurred using sockets. 

RELEASE LIMITATION 
Approved for public release 

DEPARTMENT   OF   DEFENCE 
 ♦  

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 

»TCO QÜAUTT INSPECTED 4 



Published by 

DSTO Electronics and Surveillance Research Laboratory 
PO Box 1500 
Salisbury South Australia 5108 

Telephone: (08) 8259 5555 
Fax: (08)8259 6567 
© Commonwealth of Australia 1998 
AR-010-589 
June 1998 

APPROVED FOR PUBLIC RELEASE 



DSTO-TR-0696 

Performance Characteristics of a Java Object 
Request Broker 

Executive Summary 

The results of this report show that for Common Object Request Broker Architecture 
(CORBA) the transfer rate achievable for large files through the Object Request Broker 
(ORB) approaches that achievable through sockets over low speed networks. 
However, for high-speed networks the transfer rate through the ORB is somewhat 
poorer than those using sockets. Further the latency incurred by the ORB is 
significantly greater than the latency incurred using sockets. Therefore the sending of 
small frequent messages through the ORB should be avoided. It is also found that the 
Java "Just in Time Compiler" give some benefits in performance and large block sizes 
should be used for data transfer. Further the results show that the use of Java for the 
development of servers is not an issue, as it is the ORB that is impeding performance. 



DSTO-TR-0696 

Authors 

Mr. D. J. Miron 
Information Technology Division 

David is a Research Scientist employed in the Intelligence Systems 
Group. His current ivork is in tlie EXC3ITE project where lie is 
working in CORBA. Davids interest are in Parallel and 
Distributed high performance computing. David has a PhD in 
Computer Science from the Australian National University. He 
also has a Masters of Applied Science from Monah University and 
a Bachelor of Applied Science 'Mathematics' from the Royal 
Melbourne Institute of Technology. 

Mr. S. Taylor 
Information Technology Division 

Sam is a PhD student with the CRC for Advanced Computational 
Systems at the Australian National University. Sam worked in 
the IMAD project at DSTO Fernhill Canberra during a 
secondment from the Australian National University. His 
current research interests are in design patterns and visualisation 



DSTO-TR-0696 

Contents 

1. INTRODUCTION 1 

2. DETAILS OF THE EXPERIMENTS 2 
2.1 Test Programs 2 
2.2 Test Environments 3 

3. RESULTS. 4 
3.1 Transfer Rates over 10Mbps Ethernet 4 
3.2 Transfer Rates over lOOmbps Fast Ethernet 5 
3.3 Transfer Rates over 155Mbps ATM 6 
3.4 Application Level Latency 7 
3.5 Summary of Results 8 

4. RELATED WORK AND FUTURE WORK 9 

5. CONCLUSIONS 9 

REFERENCES 10 



DSTO-TR-0696 

1. Introduction 

The Common Object Request Broker Architecture (CORBA) [1] provides an 
environment for developing and deploying object-based distributed applications. 
There is an important class of distributed applications which require high bandwidth 
data transfer and only limited presentation layer services. Examples include scientific 
computations, image processing and multimedia streaming applications and the 
Experimental Command Communication Control and Intelligence Test Environment 
(EXC3ITE)[2]. 

CORBA objects are accessed through public interfaces specified in an Interface 
Definition Language (IDL)[1]. This is known as the Static Invocation Interface (SII). 
While this report focuses on the SII it is noted that CORBA also supports a Dynamic 
Invocation Interface (DII) which allows objects to discover and use interfaces 
dynamically, and does not use IDL. 

The CORBA IDL allows developers to specify their interfaces using a rich set of data 
types and structures. An IDL compiler produces stub and skeleton classes which are 
used on the client and server hosts to marshall and unmarshall the rich IDL types for 
network transmission. These stub and skeleton classes provide presentation layer 
services for an ORB. Although the transparency of these presentation layer services is 
one of the more powerful aspects of CORBA, they can incur a significant performance 
overhead. Previous work has demonstrated that for such applications, the overhead 
of CORBA presentation layer services may unacceptably restrict the bandwidth of data 
transfer [3,4]. 

Java[5] is a popular programming language for implementing portable, object-oriented 
applications. Java ORBs allow developers to write full-fledged CORBA applications in 
Java. Although the performance characteristics for C++ ORBs have already been 
examined[3, 6, 7], the performance of Java ORBs has not been considered in as much 
detail. This report investigates the suitability of Java ORBs for bulk data transfer over 
various network configurations and computer types. 

The focus of this report is on transferring raw byte data using SII. This data is 
essentially typeless and should not require any presentation layer services. However, 
previous work has demonstrated that many ORBs actually perform presentation layer 
formatting of such data. The transfer of large volumes of typeless data represents a 
"best case" for an efficient ORB. It is anticipated that significantly poorer performance 
will result for richly typed data. 

This report has essentially two aims. The first is to measure the performance of Java 
ORBs for bulk transfers of typeless data over a range of different networks. The 
second is to determine whether the Java Virtual Machine (JVM) [5] represents a 
bottleneck for bulk data transfer, and to measure the effects of JVM optimisations such 
as just-in-time (JIT) compilation. 



DSTO-TR-0696 

The structure of this report is as follows. Section 2 describes the test environment used 
in our experiments. It includes details of the networks, hosts and ORB used as well as 
a brief description of the test application. Section 3 presents the results of our 
experiments and discusses some of the implications of these results. Section 4 
identifies related work and suggests areas of future research. Finally in Section 5 our 
conclusions are presented. 

2. Details of the Experiments 

This section discusses the details of the experiments used for the collection of results. 

2.1 Test Programs 

The results presented in Section 3 were produced using a simple data transfer 
application. This application was designed to produce two sets of measurements: 

1. Bulk transfer rates between applications for a range of transfer block sizes. 
2. Application to application latency times for a minimal packet. 

The application consists of separate client and server processes. The bulk transfer rates 
were calculated by transferring large amounts of data - typically tens or hundreds of 
megabytes - from server to client. Rather than attempt to transfer the entire amount in 
one go, the application transfers data as a series of smaller blocks. The results 
presented in Section 3 demonstrate that varying the size of these blocks has extremely 
significant effect on transfer rates. 

The latency times were calculated by transmitting a minimal packet back and forth 
between client and server, until the packet made a specified number of trips. The total 
transmission time was then divided by the number of trips to produce an average 
latency time. It should be noted that the latency measure includes not only 
transmission cost, but also the cost of context switching packet transmission since 
packet transmission usually involves a context switch. 

Two separate versions of the application were developed. The first used the basic Java 
socket primitive to transfer ciata, and essentially provides a peak transfer rate for Java 
applications on each network. The second implementation used VisiBroker for Java 
3.0[8] - a Java ORB developed by Visigenic - to provide the communication 
mechanisms. VisiBroker is a pure Java ORB which runs on any platform that supports 
version 1.1.2 of the Java Developers Kit (JDK). Technically VisiBroker is not "100% 
Pure Java" because it includes an optional System Agent which is implemented in 
native code. The test application used only the portable elements of the ORB. 



DSTO-TR-0696 

The VisiBroker ORB was chosen for two principal reasons. Firstly, VisiBroker for C++ 
was the basis of much earlier work into CORBA transfer rates [3, 9]. Secondly, the 
VisiBroker ORB is included in all Java-enabled versions of Netscape Navigator 4.0 and 
so can lay reasonable claim to being the most ubiquitous Java ORB. 

2.2 Test Environments 

The principal aim of our work was to measure the bulk data transfer performance of 
Java ORBs in a variety of machine and network environments. In keeping with this 
aim the test programs were run in three separate test environments, each designed to 
represent different levels of host and network performance. In the two lower 
performance environments, different machine architectures were used to provide a 
notion of client- and server-grade machines. However, although the machines were 
characterised as being either client-grade or server-grade, the bandwidth 
measurements were performed in both directions. Where applicable the tests were 
repeated with and without JIT compilation, to try to identify any improvement in 
performance. 

In addition to the network tests in each environment, we performed loopback tests for 
each machine. In the loopback tests the client and server processes run on the same 
machine, and communicate through the localhost interface. Packets pass down 
through the TCP layer, are caught at the IP layer, and never reach the physical 
network. In effect, the client and server processes use the TCP/IP stack as an inter- 
process communication mechanism. The value of these tests is that the localhost 
interface represents an extremely high speed, low latency network. This approach, 
while providing a valuable indication of the peak transfer rates at the application level, 
is not without limitations. The limitations involve issues of buffer management 
within the TCP/IP stack which may unfairly affect localhost performance. Context 
switching would also appear to be an issue on uniprocessor machines. However, in 
practice the loopback tests incur no more context switching overhead than the network 
tests. 

VisiBroker supports a number of optimised data transfer mechanisms which may be 
used when client and server applications are run on the same machine. For example, If 
client and server are run as separate threads within the same process VisiBroker uses 
the standard Java local method invocation mechanism. If client and server are run as 
separate processes on the same host, VisiBroker uses a shared memory buffer to 
transfer data between client and server. 

It is anticipated that use of these mechanisms would provide extremely significant 
improvements in performance. However, for the purposes of the loopback tests they 
were disabled, since our aim was to determine the performance constraints of the 
actual network interface at the IP level. 



DSTO-TR-0696 

3. Results 

This section presents our experimental results, produced in three different test 
environments. For each environment loopback and network transfer rates are 
presented. The loopback results represent the best possible transfer rate for each 
machine, and provide a valuable contrast with the network rates. The latency times 
for each machine are also presented. 

3.1 Transfer Rates over 10Mbps Ethernet 

The first test environment was designed to represent a modest, low performance local 
area network. The physical network was a 10 megabits switched ethernet. Two 
different machine architectures were used to try to represent a typical client and 
server. The client-grade machine was a Dell OptiPlex GL+ 5100 desktop PC running 
Windows 95 on a 100MHz Pentium with 32 MB RAM. The server-grade machine was 
a Sun SparcStation 10 running Solaris 2.5 on dual 40MHz SuperSparc processors with 
164MB RAM. Both machines used the Sun implementation of JDK1.1.4. The PC also 
used the Sun Java Performance Pack - an experimental JIT compiler which provides 
modest performance gains over the interpreted Java Virtual Machine (JVM). No JIT 
compiler was used on the SparcStation since none was supported at the time of testing. 

Figure 1 presents the loopback transfer rates for the socket and ORB implementations 
of the test application running on the PC. Figure 2 presents the loopback transfer rates 
for the same application on the SparcStation. Note that the scale on the vertical axis of 
Figure 2 is a factor of 10 greater than that of Figure 1. This indicates that even in 
loopback mode the PC can sustain only a modest transfer rate. Clearly, on both 
machines the performance of the socket implementation was significantly higher than 
that of the ORB implementation, for all block sizes. The performance through the ORB 
was extremely poor for small block sizes, but improved for larger block sizes, with 
peak throughput achieved using blocks of 256K. On the low bandwidth PC the peak 
ORB performance was approximately 61% of the peak socket performance. However, 
on the higher bandwidth SparcStation the peak ORB performance was only 17% of the 
socket. 

Figure 1 suggests that the effects of the JIT compiler used on the PC are slight. The 
socket code demonstrated a modest improvement in peak performance of 
approximately 7%. This is not unexpected as the socket implementation spends most 
of its time making system calls, and consequently the overhead of the interpreter is 
limited. For small block sizes the ORB implementation displayed a similar, modest 
improvement.    However, for block sizes of 32K or more the performance of the 



DSTO-TR-0696 

interpreter and the JIT compiler were similar. This suggests that performance of the 
JVM is not the significant bottleneck within the ORB. 

Figure 3 presents the network transfer rates for the test application when data is sent 
from the PC to the SparcStation across the 10Mbps ethernet. Figure 4 presents the 
network transfer rates from the SparcStation to the PC. In both tests the JIT compiler 
was used on the PC. These two figures tell a similar story to the loopback results. 
Performance through the ORB was poor for small block sizes, but improved steadily 
and again peaked at 256K blocks. When the PC was the server the peak ORB rate was 
82% of the peak socket rate and when the SparcStation was the server the peak ORB 
rate was 66% of the peak socket rate. However, transfer rates through the ORB are 
almost identical in either direction. 

The principal result from these tests is that for low bandwidth networks, the 
performance of the ORB approaches that of raw sockets for appropriate block sizes. 
However, the SparcStation loopback measurements suggest that ORB performance 
falls away in higher bandwidth environments. The effects of JIT compilation are 
modest, and suggest that the JVM is not the principal bottleneck to ORB performance. 

3.2 Transfer Rates over lOOmbps Fast Ethernet 

The second test environment was designed to represent a higher performance local 
area network. The physical network was a 100 megabits switched fast ethernet. 
Again, two different machine architectures were used which represent more powerful 
client and server machines. The client-grade machine was a Silicon Graphics 02, 
running IRIX 6.3 on a single 180MHz MIPS R5000 with 64 MB RAM. The server-grade 
machine was a Sun Enterprise E3000 running Solaris 2.5.1 on dual 250MHz UltraSparc 
processors with 512MB RAM. The E3000 ran the Sun implementation of the JDK1.1.4 
using an interpreted JVM. The 02 used the Silicon Graphics implementation of the 
JDK1.1.2. This implementation of the JVM is novel because in addition to the standard 
interpreter it supports both a JIT compiler, and a native code translator. The native 
code translator is particularly interesting because it annotates each Java class file with 
optimised MIPS translations of the standard byte code. It does this by creating "fat" 
class files which contain two implementations of each method; one in portable JVM 
byte code and the other in optimised MIPS code. This approach promises significant 
performance gains over traditional JIT compilers, and is ideal for statically scoped class 
libraries such as an ORB. It is typically used in conjunction with a JIT compiler, which 
is used to optimise dynamically downloaded classes. 

Figure 5 presents the loopback transfer rates on the 02 using the interpreted JVM, the 
JIT compiler and MIPS code translation. Figure 6 presents the loopback transfer rates 
of the E3000 using the interpreted JVM. Note that the scale of the vertical axis of 
Figure 6 is five times that of Figure 5. Once again the performance of the socket 
implementation was significantly better than that of the ORB implementation. On the 



DSTO-TR-0696 

02 the peak ORB performance was 22% of the peak socket performance and on the 
E3000 the ORB managed only 18% of the peak socket rate. As with the previous tests, 
the peak ORB rate was achieved with 256K blocks. The JVM optimisations supported 
on the 02 provided modest increases in the peak transfer rates of both 
implementations. Just-in-time compilation resulted in 7% better throughput for the 
socket implementation, and 11% better throughput for the ORB. MIPS translation was 
even more effective for the ORB, resulting in 16% better throughput than the 
interpreter. 

Figure 7 presents the network transfer rates from the 02 to the E3000 for both 
implementations, while Figure 8 presents the rates from the E3000 to the 02. For 
transfers from the 02 to the E3000 the peak ORB performance was 51 % that of the peak 
socket performance. For transfers from the E3000 to the 02 the ORB managed only 
39% of the peak socket rate. This supports the result from the previous section, that 
ORB performance falls away on high bandwidth networks. 

The most significant result to emerge from these tests is illustrated by the highly 
irregular shape of the ORB curve in Figure 7. Performance of the ORB was extremely 
sensitive to the block size, with small variations in the block size producing wildly 
different transfer rates. This behaviour is due to Nagle's algorithm[10] which is used 
by TCP stacks to buffer and aggregate very small packets. Nagle's algorithm is an 
effective mechanism to prevent the flooding of wide area networks with very small 
packets. However, when used on high-speed, low latency networks it can have a 
disastrous effect on throughput of some applications. For such applications, the only 
solution is to disable Nagle's algorithm. 

Although the JDK1.1 Socket class provides the two new methods 
"java.net.Socket.getTcpNoDelayO" and "java.net.Socket.setTcpNoDelay()" to control 
Nagle's algorithm, the results presented in Figure 7 indicate that the sockets used by 
the ORB implementation are affected by Nagle's algorithm. SGI claims that their 
implementation of JDK correctly implements the new socket methods [18] which 
implies that the Visigenic ORB does not disable Nagle's algorithm on its sockets. The 
end result of this is that the performance of user level programs suffers tremendously. 

3.3 Transfer Rates over 155Mbps ATM 

The third test environment was designed to represent a very high performance 
network or a server cluster. The physical network was a 155 megabits ATM network 
switched through a Digital Gigaswitch/ATM. The client and server machines were 
both Digital AlphaStation 600s running Digital Unix 4.0c on 266MHz Alpha AXP-5 
processors with 128MB RAM. Both machines used the Digital implementation of the 
JDK1.1.3 which includes a JIT-compiler and native thread support. While standard 
Java threads are typically provided at the application level the Digital JVM uses native 
Digital Unix threads which are provided through a hybrid user/kernel mechanism. 



DSTO-TR-0696 

This  gives a more robust threads architecture, which is of particular value  to 
sophisticated server processes. 

Figure 9 presents the loopback transfer rates for the AlphaStations using the standard 
interpreter and JIT compiler. Figure 10 presents the network transfer rates for the 
AlphaStations. As in the previous tests the socket implementation comprehensively 
outperformed the ORB implementation. Peak ORB throughput was only 21% of the 
peak socket throughput in loopback tests, and 32% in network tests. Figure 10 
illustrates the effect of Nagle's algorithm on transfer rates. The effect is even more 
pronounced on a high speed network - with 8K blocks the ORB transfer rate was only 
40K/sec. However, when Nagle's algorithm is disabled the ORB displays the same 
transfer characteristics seen on other networks. 

Although the JIT compiler provided a modest gain for some block sizes, the overall 
effect was negligible. This should not be viewed as a failing of the JIT compiler. 
Rather, it indicates that on a strong workstation even an interpreted JVM is more than 
able to saturate a high speed network. For example, the socket implementation 
running on an interpreted JVM was able to maintain a transfer rate of 16393K/sec - 
which corresponds to approximately 96% of the theoretical peak performance of a 
155Mbps ATM network. 

3.4 Application Level Latency 

In addition to the bulk data transfer bandwidth, we measured the application level 
latency times for each test environment. ORBs typically impose a number of software 
layers between a network primitive and an application. These layers are responsible 
for such things as demultiplexing objects and methods and unmarshalling parameters. 
Application level latency provides a measure of these overheads, and represents the 
time required for a minimal packet to pass through the ORB layers on both the client 
and server. 

Figure 11 presents the latency times for the socket and ORB implementations of our 
test application in all the test configurations. The results in Figure 11 were produced 
using the most optimised JVM available on each platform. JIT compilation was used on 
the PC and the AlphaStations, MIPS translation was used on the 02, and the standard 
interpreter was used on the SparcStation and E3000. Not surprisingly the latency times 
of the ORB implementation are significantly higher than those of the socket 
implementation. On average the ORB was approximately 4.6 times slower than the 
socket. In relative terms the ORB performed better for the higher latency network 
connections than for the very low latency loopback tests, which suggests that network 
latency alone is not the bottleneck. 

Figure 12 presents the network latency times for the ORB implementation using the 
various different virtual machines available on each platform.  Figure 13 presents the 



DSTO-TR-0696 

ORB loopback latency times for the three machines which supported optimised virtual 
machines. Both figures demonstrate that JIT compilation provided a modest 
improvement in latency times, and native code translation failed to provide anything 
more significant. The best case for an optimised virtual machine was for the native 
code translation used on the 02, which provided approximately 24% lower latency 
than the interpreter for both loopback and network tests. 

The conclusion from these tests is that optimised JVMs provide only modest 
improvements in the latency times of ORBs. This result conflicts with earlier work into 
the latency times of Java ORBs[9], which concluded that JIT compilation can 
significantly reduce the latency incurred by an ORB. We attribute this difference to 
advances in the performance of both interpreted and JIT compiled Java Virtual 
Machines, and the relative costs of method invocation. Java method invocation is 
known to be expensive, since Java's inheritance semantics imply that Java methods are 
all equivalent to C++ pure virtual methods. There is little that either JIT compilers or 
native code translators can do to optimise method invocation. In effect it is as 
expensive to a JIT compiler as it is to an interpreter. Since ORB skeletons tend to 
comprise lengthy call chains the overhead of method invocation is a significant part of 
the ORB latency. Consequently, as the performance of interpreted JVMs has improved 
the scope for optimisation by JIT compilation has decreased. 

3.5  Summary of Results 

We have attempted to characterise the performance of Java ORBs in terms of bulk data 
transfer rates, and application level latency times. In so doing, we follow a pattern 
established in earlier work on the performance of C++ ORBs[3, 4]. Comparing our 
results with this previous work, leads us to conclude that the performance 
characteristics of Java ORBs are essentially the same as those of C++ ORBs. In both 
cases performance of the ORBs is acceptable over low bandwidth networks, but 
extremely poor over medium and high bandwidth networks. 

Our tests with just-in-time compilers and native code translators lead us to conclude 
that they provide only modest improvements in the transfer rates and latency times. 
We attribute this to the fact that in both the socket and ORB code the performance of 
the Java Virtual Machine is not a bottleneck. Essentially the overhead of the 
interpreter is minor, and so there is only limited scope for optimisation through use of 
native code. There is certainly scope for optimising the ORB code, but this can only 
occur at the algorithmic level. 

That the JVM is not a bottleneck is in itself a significant result. Java has been widely 
advocated as a language for developing CORBA clients, but few have advocated 
developing servers in Java. This result suggests that for applications where data 
transfer is the predominant limit, there is no reason not to develop both client and 
server processes in Java. 



DSTO-TR-0696 

Transfer rates through the ORB were very sensitive to the size of the blocks 
transferred. Although it is likely that optimal block size is a function of the network 
and machines, in our tests 256K blocks consistently achieved peak performance. We 
conclude that in general large blocks perform better than small blocks, but that optimal 
block size should be determined empirically. 

Sensitive as the ORB was to block size, it was even more sensitive to Nagle's 
algorithm. When Nagle's algorithm was used slight changes in block size had wildly 
different effects on ORB transfer rates. The JDK1.1 provides methods which may be 
used to disable Nagle's algorithm on a per-socket basis. 

4. Related Work and Future Work 

The results presented here are based on the performance of only one ORB. In future 
work we hope to perform a more comprehensive evaluation of Java ORBs, including 
OrbixWeb[ll] and JacORB[12]. We would also like to measure the overhead incurred 
by an ORB when transferring rich data types. There are significant differences in the 
way CORBA IDL is mapped to Java and C++, which may affect the presentation layer 
overheads associated with transferring such data. Therefore it may be valuable to 
perform a direct comparison between C++ and Java ORBs for richly typed data. Since 
CORBA is only one of a number of distributed technologies available to Java 
developers we would like to evaluate the performance of Java RMI[13] and Java 
DCOM[14]. 

Significant work is being done to improve the performance of C++ ORBs. In particular 
there is a substantial push to develop real-time, high performance and parallel 
ORBs[15-17]. Much of this work is focused on optimising the HOP protocol, 
performing more intelligent buffer management and providing more efficient method 
dispatch mechanisms. Clearly there is significant scope for applying this work to Java 
ORBs. 

5. Conclusions 

We have measured the data transfer rates, and latency times of a Java ORB in a range 
of different environments. We conclude that Java ORBs perform reasonably well over 
low-bandwidth networks, but poorly over medium and high bandwidth networks. 
This result supports earlier research into the performance of C++ ORBs, and suggests 
that commercial implementations of CORBA are not designed for high performance 
environments. We have identified that transfer rates for Java ORBs are sensitive to 
block size. More significantly we have identified that ORB transfer rates may be badly 
affected   by   Nagle's   algorithm.      Just-in-time   compilers,   and   other   optimised 



DSTO-TR-0696 

implementations of the Java Virtual Machine, appear to provide only modest 
improvements in the transfer rates of Java ORBs. However, we believe that the ORB 
architecture, rather than the JVM is the principal bottleneck. We conclude that Java 
ORBs are performance competitive with C++ ORBs, but that in a high performance 
environment neither can compete with specialised socket code. 

References 

I] OMG, CORBA: The Common Object Request Broker: Architecture and Specification, 
Revision 2.0: Object Modelling Group, 1995. 

2] Defence Science and Technology Organisation, "An Experimental C3I Capability 
and Techology Demonstrator: Phase One.," . 

3] A. Gokhale and D. C. Schmidt, "Measuring Performance of Communication 
Middleware on High-Speed Networks," in SIGCOMM'96. Stanford University, 
1996. 

4] A. Gokhale and D. C. Schmidt, "Evaluating Latency and Scalability of CORBA over 
High-Speed ATM Networks," in International Conference on Distributed Computing 
Systems. Baltimore Maryland, 1997. 

5] J. Gosling, B. Joy, and G. Steele, The Java Language Specification: Addison Wesley, 
1997. 

6] A.  Gokhale and D.  C. Schmidt,  "The Performance of the CORBA Dynamic 
Invocation  Interface  and  Dynamic Skeleton Interface over  High-Speed  ATM 
Networks," in GLOBECOM'96. London, 1996. 

7] A. Gokhale and D. C. Schmidt, "Evaluating the Performance of Demultiplexing 
Strategies for Real-time CORBA," in GLOBECOM'97. Phoenix, AZ, 1997. 

8] VisiBroker, VisBroker for Java:    Reference Manual Version 3.0: Visigenic Software 
Incorporated, 1997. 

9] R. Orfali and D. Harkey, Client/Server Programming with Java and CORBA: John 
Wiley and Sons Inc, 1997. 

10] W. R. Stevens, Unix Netxoork programming: Prentice Hall, 1990. 
II] OrbixWeb, OrbixWeb Reference Guide: IONA Technologies Ltd, 1996. 
12] G. Brose, "JACORB: Implementation and Design of a Java ORB," presented at 

PDAIS'97,1997. 
13] Java RMI, RMI: Java Remote Method Invocation - Distributed Computing for Java: Sun 

Microsystems, 1997. 
14] D. Box, Understanding COM: Addison Wesley, 1997. 
15] K. Keahey and D. Gannon, "PARDIS: A Parallel Approach to CORBA," presented 

at  Proceedings  of IEEE  6th  International Symposium on  High  Performance 
Computing, Portland, OR, 1997. 

16] V. F. Wolfe, L. C. DiPippo, R. Ginis, M. Squarito, S. Wohlever, I. Zykh, and R. 
Johnston, "Real-Time CORBA," in IEEE Real-Time Applications Symposium, 1996. 

17] D. C. Schmidt, D. L. Levine, and S. Mungee, "The Design of the TAO Real-Time 
Object Request Broker," Computer Communications Journal, 1997. 

18] A. Vincent, Personal Communication, 1998. 

10 



DSTO-TR-0696 

block size (k) 

Figure 1: Loopback transfer rates for the PC 

4000 

3000 

block size (k) 

Figure 2: Loopback transfer rates for the Sun SparcStation 10 

11 



DSTO-TR-0696 

_   500 
u fl) 
in 
2 
0) 
E    400 

<£ 
t» 
c 
£ *   inn 

32 64 128 256 512 1024 2048 

block size (k) 

Figure 3: Network transfer rates from the PC to the SparcStation 10 over Wmbps etJiernet 

——~*——~-— 

900 

800 ' 

//   ^^^^*-^-^_^ ..      .......  

700 

600 

500 

-            -. 

     

o 
u 
Ifl 

Of 

->- *^- 
^" 

lu 

E 400 

300     -  -           

200 
•        ■■■ 

100 i —♦—socket, JIT compiler    | -  - 

| —•—visigenic, JIT compiler] 

32 64 

block size (k) 

512 1024 2048 

Figure 4: Network transfer rates from tlie SparcStation 10 to tlte PC over Wmbps ethernet 

12 



DSTO-TR-0696 

2048 

block size (k) 

Figure 5: Loopback transfer rates for tlie Silicon Graphics 02 

32 64 

block size (k) 

Figure 6: Loopback transfer rates for the Sun Enterprise E3000 

13 



DSTO-TR-0696 

-socket, MIPS translation 

-socket, interpreter 

-visigenic, MIPS translation 

block size (k) 

Figure 7: Nehvork transfer rates from the SGI 02 to the E3000 over lOOmbps Fast EtJiernet. 

-socket, MIPS translation 

- socket, interpreter 

-visigenic, MIPS translation 

block size (k) 

Figure 8: Network transfer rates from the E3000 to the SGI 02 over lOOmbps Fast Ethernet. 

14 



DSTO-TR-0696 

16 32 128 256 512 1024 2048 

block size (k) 

Figure 9: Loopback transfer rates for the Digital AlphaStation 600 

S. 10000 

- socket, JIT compiler 
-visigenic, JIT compiler, Nagle disabled 
-visigenic, JIT compiler, Nagle enabled 

32 64 

block size (k) 

Figure 10: Network transfer rates betxoeen tioo Digital AlphaStations over 155mbps ATM 

15 



DSTO-TR-0696 

PC, Sparc! 0, 02, E3000, Alpha, Sparc 10 02 to E3000to Alpha to 

loopback loopback loopback loopback loopback to PC, 
10mbps 
ethernet 

E3000, 
ICOmbps 
ethernet 

02, 
100mbps 
ethernet 

Alpha, 
155mbps 

ATM 

Figure 11: Latency times for the test machines and network configurations 

g   2.500 

  
■ native 

■ JIT 

D interpreter 

.. -. .        _ _.. 

_...__.   . _ _     

1 "   -   -1 

- - ■ 1 
SparcIO to PC, 10mbps ethernet       02 to E3000,100mbps ethernet        E30OO to 02, lOOmbps ethemet Alpha to Alpha, 155mbps ATM 

Figure 12: The effect of JVM optimisations on network latency for the ORB implementation 

16 



DSTO-TR-0696 

4.000 

2.000 

■ native 
■ JIT 
D interpreter 

   

 1  1 
PC SGI 02 Digital AlphaSlation 600 

Figure 13 : The effect of JVM optimisations on loopback latency for the ORB implementation 

17 



DSTO-TR-0696 

18 



DSTO-TR-0696 

DISTRIBUTION LIST 

Performance Characteristics of a Java Object Request Broker 
(DSTO-TR-0696) 

Mr David Miron (DSTO) 
Mr Sam Taylor (ACSys) 

AUSTRALIA 

DEFENCE ORGANISATION 

Task sponsor: 
DGIO 

Number of Copies 

S&T Program 
Chief Defence Scientist 
FAS Science Policy 
AS Science Corporate Management 
Director General Science Policy Development 
Counsellor, Defence Science, London 
Counsellor, Defence Science, Washington 
Scientific Adviser to MRDC Thailand 
Director General Scientific Advisers and Trials 
Scientific Adviser - Policy and Command 
Navy Scientific Adviser 

Scientific Adviser - Army 

Air Force Scientific Adviser 
Director Trials 

1 shared copy 

Doc Control Sheet 
Doc Control Sheet 
Doc Control Sheet 

1 shared copy 

1 copy of Doc Control Sheet 
and 1 distribution list 

Doc Control Sheet 
and 1 distribution list 

1 
1 

Aeronautical & Maritime Research Laboratory 
Director 

Electronics and Surveillance Research Laboratory 
Director 1 
Chief Information Technology Division 1 
Research Leader Command & Control and Intelligence Systems 1 
Research Leader Military Computing Systems 1 
Research Leader Command, Control and Communications 1 
Executive Officer, Information Technology Division Doc Control Sheet 
Head, Information Architectures Group 1 
Head, Information Warfare Studies Group Doc Control Sheet 
Head, Software Systems Engineering Group Doc Control Sheet 
Head, Year 2000 Project Doc Control Sheet 
Head, Trusted Computer Systems Group Doc Control Sheet 
Head, Advanced Computer Capabilities Group Doc Control Sheet 
Head, Computer Systems Architecture Group Doc Control Sheet 



DSTO-TR-0696 

Head, Systems Simulation and Assessment Group Doc Control Sheet 
Head, CCIS Interoperability Lab Doc Control Sheet 
Head Command Support Systems Group 1 
Head, C3I Operational Analysis Group Doc Control Sheet 
Head Information Management and Fusion Group 1 
Head, Human Systems Integration Group Doc Control Sheet 
Head, C2 Australian Theatre 1 
Head, Intelligence Systems Group 1 
Task Manager Dr Paul Whitbread 1 
Authors:     Mr David Miron (DSTO) 1 

Mr Sam Taylor (ACSys) 1 
Publications and Publicity Officer, ITD 1 

DSTO Library and Archives 
Library Fishermens Bend 1 
Library Maribyrnong 1 
Library Salisbury 2 
Australian Archives 1 
Library, MOD, Pyrmont Doc Control Sheet 

Capability Development Division 
Director General Maritime Development Doc Control Sheet 
Director General Land Development Doc Control Sheet 
Director General C3I Development Doc Control Sheet 

Army 
ABCA Office, G-l-34, Russell Offices, Canberra 4 

Intelligence Program 
DGSTA Defence Intelligence Organisation 1 

Corporate Support Program (libraries) 
OIC TRS Defence Regional Library, Canberra 1 
Officer in Charge, Document Exchange Centre (DEC) Doc Cont Sheet & 

Distribution List 
US Defence Technical Information Center, 2 
UK Defence Research Information Centre, 2 
Canada Defence Scientific Information Service, 1 
NZ Defence Information Centre, 1 
National Library of Australia, 1 

Universities and Colleges 
Australian Defence Force Academy 1 

Library 1 
Head of Aerospace and Mechanical Engineering 1 

Deakin University, Serials Section (M list)), Deakin University Library, 
Geelong, 3217 1 

Senior Librarian, Hargrave Library, Monash University 1 
Librarian, Flinders University 1 



DSTO-TR-0696 

Other Organisations 
NASA (Canberra) 1 
AGPS 1 
State Library of South Australia 1 
Parliamentary Library, South Australia 1 

OUTSIDE AUSTRALIA 

Abstracting and Information Organisations 
INSPEC: Acquisitions Section Institution of Electrical Engineers 1 
Library, Chemical Abstracts Reference Service 1 
Engineering Societies Library, US 1 
Materials Information, Cambridge Scientific Abstracts 1 
Documents Librarian, The Center for Research Libraries, US 1 

Information Exchange Agreement Partners 
Acquisitions Unit, Science Reference and Information Service, UK 1 
Library - Exchange Desk, National Institute of Standards and 

Technology, US 1 

SPARES 10 

Total number of copies:        55 



Page classification: UNCLASSIFIED 

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 
DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF 

DOCUMENT) 

2. TITLE 

Performance Characteristics of a Java Object Request Broker 

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS 
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT 
CLASSIFICATION) 

Document 
Title 
Abstract 

(U) 
(U) 
(U) 

4. AUTHOR(S) 

David Miron and 
Samuel Taylor 

5. CORPORATE AUTHOR 

Electronics and Surveillance Research Laboratory 
PO Box 1500 
Salisbury SA 5108 

6a. DSTO NUMBER 
DSTO-TR-0696 

6b. AR NUMBER 
AR-010-589 

6c. TYPE OF REPORT 
Technical Report 

7. DOCUMENT DATE 
June 1998 

8. FILE NUMBER 
N9505/15/108 

9. TASK NUMBER 
DEF 95/074 

10. TASK SPONSOR 
DGIO 

11. NO. OF PAGES 
17 

12. NO. OF 
REFERENCES 

18 

13. DOWNGRADING/DELIMITING INSTRUCTIONS 

not applicable 

14. RELEASE AUTHORITY 

Chief, Information Technology Division 

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT 

Approved for public release 

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE, 
DEFT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600  
16. DELIBERATE ANNOUNCEMENT 

No Limitations 

17. CASUAL ANNOUNCEMENT Yes 
18. DEFTEST DESCRIPTORS 

CORBA (Computer architecture) 
Object-oriented system architecture 
Java 
Data transfer 

19. ABSTRACT 
The efficiency of the Common Object Request Broker Architecture (CORBA) for the transfer of large files over a 
network is of particular interest to the Imagery Management and Dissemination Group (IM AD). The IM AD group 
will be using Java and CORBA for such transfers. This report studies the performance of a Java Object Request 
Broker (ORB) for the transfer of large files over such networks. This performance analysis is done using the 
Visigenics ORB Visibroker and involves the measurement of throughput and latency. These measurements are then 
compared with the results obtained when using socket to socket connections. The results show that the throughput 
of an ORB for large file transfer approaches that of sockets on low bandwidth networks. However on high 
bandwidth networks the throughput using the ORB is significantly less than that using sockets. It is also shown that 
the latency incurred by the ORB is much greater than that incurred using sockets. 

Page classification: UNCLASSIFIED 


