
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

THESIS 

SOFTWARE ARCHITECTURE FOR DISTRIBUTED 
REAL-TIME EMBEDDED SYSTEMS 

by 

Jose Carlos Alves de Almeida 

September 1998 

Thesis Advisor: 
Co-Advisor: 

Man-Tak Shing 
Michael Holden 

Approved for public release; distribution is unlimited. 

DTCC QUALITY INSPECTED 4 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington; VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2.  REPORT DATE 
September 1998 

3. REPORT TYPE AND DATES COVERED 
Master's Thesis 

4. TITLE AND SUBTITLE 
SOFTWARE ARCHITECTURE FOR DISTRIBUTED REAL-TIME EMBEDDED 
SYSTEMS 
6.  AUTHOR(S) 
Almeida, Jose Carlos Alves de 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA 93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / 
MONITORING 

AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the 
Department of Defense or the U. S. Government. 
12a. DISTRffiUTlON / AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRD3UTION CODE 

13. ABSTRACT (maximum 200 words) 
Real-time embedded systems have particularly strict requirements on accuracy, safety and reliability. A central question in the 

design of such systems is how to support concurrent processing without adversely affecting the timing requirements of the system. 
Concurrent processing is essential because the only way to successfully meet some tight real-time constraints is to use multiple 
processors. 

This thesis focuses on the distributed scheduling problem. It proposes a distributed scheduling algorithm to allocate and 
schedule a set of tasks onto a collection of processors linked by a network. It further proposes a distributed software architecture 
for CAPS (Computer Aided Prototyping System) generated prototypes based on GLADE (GNAT Library for Ada Distributed 
Execution). • 

The new distributed CAPS architecture is applied to several prototype examples. The results show that it is possible to build 
distributed real-time embedded systems under the distributed scheduling model, where sets of tasks run independently on each 
processor, using GLADE. 

14. SUBJECT TERMS 
Real-Time Embedded Systems, Distributed Systems, Real-Time Scheduling, Software 
Architecture, Computer Aided Prototyping. 

15. NUMBER OF 
PAGES 
171 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 
Unclassified 

18. SECURITY CLASSIFICATION OF 
THIS PAGE 
Unclassified 

19. SECURITY CLASSIFICATION OF 
ABSTRACT 
Unclassified 

20. LIMITATION 
OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-9) 
Prescribed by ANSI Std. 239-18 



11 



Approved for public release; distribution is unlimited. 

SOFTWARE ARCHITECTURE FOR DISTRIBUTED REAL-TIME EMBEDDED 
SYSTEMS 

Jose Carlos Alves de Almeida 
Lieutenant, Brazilian Navy 

B.S., Brazilian Naval Academy, 1986 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN COMPUTER SCIENCE 

from the 

NAVAL POSTGRADUATE SCHOOL 
September 1998 

Author: 
Jose Carlos Alves de Almeida 

Approved by: 

Dan Boger, 
Department of Computei^Science 

in 



IV 



ABSTRACT 

Real-time embedded systems have particularly strict requirements on accuracy, 

safety and reliability. A central question in the design of such systems is how to support 

concurrent processing without adversely affecting the timing requirements of the system. 

Concurrent processing is essential because the only way to successfully meet some tight 

real-time constraints is to use multiple processors. 

This thesis focuses on the distributed scheduling problem. It proposes a 

distributed scheduling algorithm to allocate and schedule a set of tasks onto a collection 

of processors linked by a network. It further proposes a distributed software architecture 

for CAPS (Computer Aided Prototyping System) generated prototypes based on GLADE 

(GNAT Library for Ada Distributed Execution). 

The new CAPS architecture is applied to several prototype examples. The results 

show that it is possible to build distributed real-time embedded systems under the 

distributed scheduling model, where sets of tasks run independently on each processor, 

using GLADE. 
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I.       INTRODUCTION 

This thesis deals with the area of computer-aided real-time systems development. 

Here we investigate the capabilities of distributed real-time systems support in Ada 95 

and the issues involved in automating software development for such systems. We 

divided this work into seven chapters. This chapter presents the basic concepts involving 

real-time embedded systems, introduces the reader to the real-time scheduling problem 

and explains the importance of computer-aided prototyping systems. In Chapter II, we 

present a distributed system overview. Chapter II is considered very important because it 

explains the basic concepts behind the implementation of the Ada 95 Distributed Systems 

Annex and will help the reader to get a better understanding of the following chapters. 

In Chapter III, we .explore the characteristics of the Prototyping System 

Description Language (PSDL) real-time model and discuss a number of issues related to 

the distributed system model. Chapter IV is an extension of the previous chapter. There 

we discuss the distributed scheduling problem and propose a technique to allocate and 

schedule tasks running on a network of processors in a distributed system. 

In Chapter V, we discuss the Ada 95 Distributed Systems Annex and present the 

Gnat Library for Ada Distributed Execution (GLADE), the GNAT implementation of 

Annex E (Ada, 1995). 

Chapter VI presents the current CAPS (Computer Aided Prototyping Systems) 

.uniprocessor architecture and the proposed distributed implementation. In Chapter VII, 

we conclude this work. 

In this thesis, our concern is to identify the requirements for distributed real-time 

embedded systems and discuss the merits of a number of approaches. Of these, the 

design and development of an Ada 95 software architecture for distributed real-time 

embedded systems and automatic generation tools for such architecture is the most 

significant. 

A.        REAL-TIME EMBEDDED SYSTEMS 

For most programs, correctness depends only on the logical sequence in which 

instructions are executed, not when they are executed. In contrast, real-time systems 

interact with the external world in a way that involves time.  When a stimulus appears, 
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the system must respond to it in a certain way and before a certain deadline. If it delivers 

the correct answer but after the deadline, the system is regarded as having failed 

(Tanenbaum, 1995). 

A real-time system is a system that must satisfy explicit (bounded) response time 

constraints or risk severe consequences, including failure (Laplante, 1993). Failure 

means that the system can not satisfy the requirements specified in the formal system 

specification. Real-time embedded systems are those used to control specialized 

hardware in which the computer system is installed. For example, the microprocessor 

system used in the cruise control system of many automobiles is an embedded system. 

Similarly, the software used to control the inertial guidance system of a space shuttle or 

the operation of an assembly line in an industrial plant is embedded because it operates in 

a highly specialized hardware environment. 

A space shuttle must process accelerometer data within a certain period of time, 

which depends on the specification of the space shuttle. Failure to do so could result in a 

false position or velocity indication and cause the space shuttle, at best, to go off-course; 

or at the worst to crash. For a steam generator low water problem, failure to respond 

swiftly could result in severe damage to the equipment and loss of life. The examples 

mentioned earlier satisfy the criteria for a real-time system. In short, a system does not 

have to process data in microseconds to be considered real-time, it must simply have 

response times that are constrained and thus predictable (Laplante, 1993). One of the 

most important properties of any real-time system is that its behavior be predictable. It 

should be clear at design time that the system can meet all of its deadlines, even in the 

worst case condition. 

Real-time embedded systems support various aspects of modern life. The 

increased power of microprocessors and steadily falling prices have made digital control 

systems technically attractive and highly cost-effective. Television sets, cars, instruments 

and telecommunication equipment are controlled by microprocessors and the related 

software, which is embedded into the product itself. The user does not see or feel this 

software. The only indication of its existence is the large set of operations provided by 

the product. 



Real-time systems are classified as either hard real-time systems or soft real-time 

systems. In hard real-time systems an early and late response are both treated as an error 

and may cause damage or loss of life or property. Hard time constraints appear often in 

control applications, such as sophisticated fly-by-wire systems in aircraft, arm controllers 

in industrial robots, or anti-lock braking systems in cars. 

In soft real-time systems, a late response is normally acceptable. Examples of 

soft real-time systems are communications equipment, such as digital telephone 

exchanges. Performance issues are critical in real-time systems. In the case of soft real- 

time systems, performance considerations are related to the capability to adequately 

handle the external load on the system. In hard real-time systems, performance 

requirements mean the ability to meet all specified deadlines (Awad* Kuusela and 

Ziegler, 1996). 

As noted, all practical systems represent at least soft real-time systems. Since we 

are most interested in hard real-time systems, we will use the term "real-time system" to 

mean hard real-time system without loss of generality. 

Typically, a real-time system has to perform several different tasks. Some of 

these tasks are periodic, that is, they are executed at regular time intervals. Other tasks 

are aperiodic, that is, the need to execute a task may occur at any arbitrary point in time. 

A real-time system that is able to react to aperiodic request within time limits is called 

reactive. Most embedded real-time systems are reactive, that is, they have to be able to 

react to new events, even if the system is still processing earlier tasks. Thus, competing 

requests are processed concurrently. 

In addition to time constraints, a task can have other constraints such as 

(Stankovic and Ramamritham, 1988): 

1. Resource constraints - the resources required during the execution of the task 
2. Precedence constraints - that specify a partial (perhaps total) ordering on the 

execution of tasks 
3. Concurrency constraints - that describe which tasks can run concurrently, to 

share a resource, for example 
4. Placement constraints - whether a given task is to run in a specific processor 
5. Criticalness - the relative value to the system that is associated with some 

specific task when it meets its deadline 
6. Preemptiveness - determining whether a task can be interrupted by other tasks 

and resume execution afterwards 



7.   Communication requirements - issues of inter-task communications and 
synchronization protocols such as acceptable delays. 

Since embedded systems are connected to the surrounding real world, processor 

overload may occur. In an overload situation, the performance degradation of the system 

should take place gracefully. During the shortage of resources caused by an overload 

situation, some tasks will have to wait for processing. 

Tasks are classified as critical, essential, and nonessential. Critical tasks have 

deadlines that must be met. Essential tasks also have deadlines, but failure to meet them 

will not cause severe problems. Nonessential tasks are allowed to wait without any 

specified time limit. Task scheduling in hard real-time systems can be either static or 

dynamic. In static scheduling, it is assumed that all information about the task is known 

a priori, and the schedule is usually generated off-line. In dynamic scheduling, although 

all information about the tasks may be known a priori, they are allowed to be 

dynamically invoked, and the schedule is calculated "on the fly." There has been a great 

deal of debate about the appropriateness of dynamic scheduled algorithms for hard real- 

time systems. Many people are in favor of static scheduling because it seems reasonable 

to assume that for safety-critical applications all the schedulability should be guaranteed 

before execution (Audsley and Burns, 1993). 

B.        REAL-TIME SCHEDULING 

Real-time systems are frequently programmed as a collection of short tasks, each 

with a well-defined function and a well-bounded execution time. The response to a given 

stimulus may require multiple tasks to be run, generally with constraints on their 

execution order. In addition, a decision has to be made about which tasks to run on 

which processors (Tanenbaum, 1995). 

Scheduling can be centralized, with one machine collecting all the information 

and making all the decisions, or it can be decentralized, with each processor making its 

own decisions. In the centralized case, the assignment of tasks to processors can be made 

at the same time, whereas in the decentralized case assigning tasks to processors is 

distinct from deciding which of the tasks assigned to a given processor to run first. A key 

question that all real-time system designers face is whether or not it is even possible to 

meet all the constraints. 



Real-time scheduling algorithms can be characterized by the following 

parameters: 

1. Preemptive versus non-preemptive scheduling. 
2. Dynamic versus static. 
3. Centralized versus decentralized. 

1. Preemptive Scheduling 

Preemptive scheduling allows a task to be suspended temporarily when a higher 

priority task arrives, resuming it later when no higher priority task is available to run. 

Non-preemptive scheduling runs each task to completion. Once a task is started, it 

continues to hold the processor until it is done. 

2. Dynamic Scheduling 

Dynamic algorithms make their scheduling decisions during execution. When an 

event is detected, a dynamic preemptive algorithm decides on the fly whether to run the 

first task associated with the event or to continue running the current task. When the 

current task finishes, a choice is made among the ready tasks. 

The classic scheduling algorithm. is the Rate Monotonie Algorithm (Liu and 

Layland, 1973). It was designed for preemptively scheduling periodic tasks on a single 

processor. Each task is assigned a priority equal to its execution frequency. The higher 

the execution frequency, the higher the priority. At run time, the scheduler always selects 

the highest priority task to run, preempting the current task if it is needed. 

A second preemptive dynamic algorithm is Earliest Deadline First. Whenever an 

event is detected, the scheduler adds it to the list of waiting tasks, which is kept sorted by 

the deadline, with the task with the closest deadline first. Then the scheduler chooses the 

first task in the list, the one closest to its deadline. Liu and Leyland (1973) proved that 

the Earliest Deadline First algorithm is optimal for any set of independent periodic tasks. 

3. Static Scheduling 

Static scheduling is done before the system starts operating. The input consists of 

a list of all tasks and the times that each must run. The goal is to find an assignment of 

tasks to processors and for each processor, a static schedule giving the order in which the 

tasks are to be run. In theory, the scheduling algorithm can run an exhaustive search to 

find the optimal solution, but the search time is exponential to the number of tasks 

(Ullman, 1976). 



Let us assume that every time an event is detected, a task is started on processor 

A. This task, in turn, can start up additional tasks on both processor A or processor B, 

and so on until the last task is executed, as illustrated in Figure 1.1, We consider that a 

task can not start until a message from another task has arrived. The scheduler analyzes 

the graph of Figure 1.1, using as input the information about the running times of all the 

tasks, and then applies some heuristics to find a good schedule. Two potential schedules 

are given in Figure 1.2 a) and b). Messages between tasks on different processors are 

depicted as arrows; messages between tasks on the same machine are handled internally 

and are not shown. 

Stimulus 

Processor A 

Processor B 

Response 

Figure 1.1. Ten Real-Time Tasks to be Executed 6n Two Processors (Tanenbaum, 
1995) 



Of the schedules illustrated, the one in Figure 1.2 (b) is a better choice because it 

allows task 5 to run early, thus making it possible for task 8 to start earlier. If task 5 is 

delayed significantly, as in Figure 1.2 (a), then tasks 8 and 9 are. delayed, which also 

means that 6 and eventually 10 are delayed, too. 

Stimulus Stimulus 

Response    ' ► Response 

(a) (b) 

Figure 1.2. Two Possible Schedules for the Tasks of Figure 1.1 

When we take communication into account, the problem of scheduling the same 

tasks would change due to the delay introduced by the communication subsystem. 

Starting a task would require a delay that was not present before. The important thing to 

notice about this example is that the run time behavior is completely deterministic and 

known even before the program starts executing. As long as communication and 

processor errors do not occur, the system will always meet its real-time deadlines. 

The choice of dynamic or static scheduling is an important one and has far- 

reaching consequences for the system. Static scheduling must be carefully planned in 

advance, with considerable effort going into choose the various parameters. Dynamic 

scheduling does not require as much advance work, since scheduling decisions are made 

on the fly, during execution (Tanenbaum, 1995). 

C.        CONCURRENCY ASPECTS IN REAL-TIME EMBEDDED SYSTEMS 

Concurrency aspects always occur in real-time embedded systems. The reason is 

that concurrency is an inherent feature of real-time applications, and must be included in 

every modeling effort. External events may occur at any point in time, even 

simultaneously, and they must be queued and handled within preset time limitations 

(Awad, Kuusela and Ziegler, 1996). 



A central question in the design of real-time embedded systems is how to support 

concurrent processing without affecting the timing requirements. Concurrent processing 

is essential because the only way to make some tight real-time constraints feasible is to 

use multiple processors. 

Concurrency is a powerful concept that solves some problems of real-time 

systems. On the other hand, it creates new problems regarding the consistency of data, 

because the same data can be simultaneously accessed by two concurrent requests on the 

same object. Also, we have to deal with other problems inherent to distributed systems: 

synchronization, resource management, and communication with external systems and 

processes. In the following chapters, we will see how to handle concurrency in 

distributed real-time embedded systems. 

D.       COMPUTER AIDED PROTOTYPING SYSTEMS 

Rapid prototyping can be used to reduce the risks of producing systems that do 

not meet the customers needs (Luqi, 1993). A prototype is an executable pilot version of 

a proposed software system. Prototypes are used to gain information that can guide 

analysis and design, and can support automatic generation of production code. 

Real-time and embedded systems have particularly strict requirements on 

accuracy, safety and reliability, and are usually subject to timing constraints that must be 

met even under the worst possible operating conditions. Since feasible requirements for 

large embedded systems are difficult to formulate, understand and meet without extensive 

prototyping, computer aid is the key to rapid construction, evaluation and evolution of 

such prototypes. 

The Computer Aided Prototyping Systems (CAPS) can be used to prototype large, 

parallel, real-time and distributed systems because the requirements for such software 

systems are difficult to assess. CAPS is a set of software tools, which provide a means to 

validate functional requirements and verify design specifications early in the 

development of the software system. It implements the rapid prototyping concept via a 

high-level prototyping language called PSDL. This language is designed for prototyping 

real-time and large software systems, and supports conceptual modeling of such systems 

(Luqi, 1993). 



The prototyping language PSDL supports a modeling strategy based on data flow 

graphs augmented with non-procedural timing and control constraints. The real-time 

aspects of PSDL are described in Chapter III. 
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II.     DISTRIBUTED SYSTEMS OVERVIEW 

A.       DISTRIBUTED SYSTEMS CHARACTERISTICS 

A distributed system consists of a collection of autonomous computers linked by a 

computer network and equipped with distributed systems software. Distributed systems 

software enables computers to coordinate their activities and to share the resources of the 

system: hardware, software and data. From the point of view of users, the distributed 

system should act as a single, integrated computing facility even though they are aware 

that distinct machines connected by a communication subsystem are being used. 

The definition above corresponds to a type of distributed system known as 

loosely-coupled systems, where the shared resources needed to provide an integrated 

computing service are provided by some of the computers in the network and are 

accessed by system software that runs on all of the computers, using the network to 

coordinate their work and to transfer data between them. 

The other type, known as tightly-coupled systems, exploit multiple processing 

units, often sharing a single memory or address space, to achieve high performance in a 

computer system that is otherwise centralized. 

In this thesis, we are concerned with the architecture and design of general 

purpose distributed systems, and we will use the term "distributed systems" to mean 

loosely-coupled systems. 

Six key characteristics are primarily responsible for the usefulness of distributed 

systems. They are not automatic consequences of distribution. System and application 

software must be carefully designed in order to ensure that their desired usefulness is 

attained. 

1. Resource Sharing 

The term resource may be defined as the range of things that can be shared 

usefully in a distributed system. This includes hardware components such as storage 

devices, printers, and software-defined entities such as files, databases and other data 

objects. Resources in a distributed system are physically encapsulated within one of the 

computers and can only be accessed from other computers by communication. For 

effective  sharing  each  resource  must  be  managed  by   a program  that  offers   a 
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communication interface enabling the resource to be accessed, manipulated, and updated 

reliably and consistently (Coulouris, Dollimore and Kindberg, 1996). 

Each type of resource requires specific management policies, but there are also 

common requirements. These include the provision of a naming scheme for each class of 

resource that enables individual resources to be accessed from any location, the mapping 

of resource names to communication addresses, and the coordination of concurrent 

accesses that change the state of the shared resources in order to ensure their consistency. 

We can imagine a distributed system as a system composed of a set of resource 

managers and a set of resource using programs. The resource users communicate with 

the resource managers to access the shared resources of the system. This perspective 

leads to the development of an interesting model for distributed systems, the client-server 

model. Figure 2.1 illustrates the client-server model. 

Resource user: 

Resource manager: 

Client process: 

Server process: 

Figure 2.1. Client-Server Model 

There is a set of server processes, each acting as a resource manager for a 

collection of resources of a given type, and a set of client processes, each executing a task 

that requires access to some shared resources. Resource managers may themselves need 

to access shared resources managed by other processes, so some processes are both client 

and server processes. In the client-sever model, all shared resources are held and 

managed by server processes. Client processes send a message to the server processes 

requesting access to one of their resources when they are needed. If the request is a valid 
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one, then the server executes the request and sends back a reply to the client that contains 

the result of the requested processing. 

The client-server model provides an effective general-purpose approach to 

sharing of information and resources in distributed systems. The model can be 

implemented in a variety of different hardware and software environments. The 

computers used to run the client and server processes can be of many types and there is 

no need to distinguish between them. It is even possible for both the client and server 

processes to be run on the same computer. Moreover, some processes are both client and 

server processes. That is, a server process may use the services of another server, 

appearing as a client to the latter (Sinha, 1997). It should be clear that server processes 

are not centralized providers of the resources they manage. Also, a distinction is made 

between the services that are provided to clients and the servers that provide them. A 

service is considered to be an abstract entity that may be provided by several server 

processes running on separate computers and cooperating via the network. 

2. Openness 

The openness of a computer system is the characteristic that determines whether 

the system can be extended in various ways. For example, adding additional resources 

like processors, communication interfaces, or the addition of software extensions such as 

operating system features, communications protocols, and resource-sharing services. The 

openness of a distributed system is determined primarily by the degree to which new 

resource sharing services can be added without disruption to or duplication of existing 

services. 

3. Concurrency 

When several processes exist in a single computer, we say that they are executed 

concurrently. This is achieved by interleaving the execution of portions of each process. 

In distributed systems there are many computers, each' with one or more central 

processors. If there are N computers in a distributed system with one processor each, 

then up to N processes can run in parallel, assuming that each process is located in a 

different computer. Concurrency and parallel execution arise naturally in distributed 

systems from the separate activities of users, the independence of resources, and the 

location of server processes in separate computers.   The separation of these activities 
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enables processing to proceed in parallel in separate computers. Concurrent accesses and 

updates to shared resources must be synchronized (Coulouris, Dollimore and Kindberg, 

1996). 

4. Scalability 

Distributed systems operate effectively and efficiently at many different scales. 

The range of computers in a distributed system extends from the smallest practicable 

distributed system consisting of two workstations and a file server to hundreds of 

workstations and many file servers connected via a local-area network (LAN). The 

system and application software should not need to change when the scale of the system 

increases. However, further research is required in this area to accommodate the very 

large-scale systems and applications that will probably emerge as inter-networking 

increases and high performance networks appear. 

5. Fault Tolerance 

When faults occur in hardware or software, programs may produce incorrect 

results or may stop before completing the intended computation. The design of fäult- 

tolerant computer systems is based on two approaches, both of which must be deployed 

to handle each fault: 

1. Hardware redundancy; 
2. Software recovery. 

To produce systems that are tolerant to hardware failures, we should implement 

them using redundant components for the critical services. For example, we could 

implement the file service of a distributed system as a group of file servers that closely 

cooperate with each other to manage the files of the system and work in such a manner 

that the system will continue to operate even if only one file server is up and working. 

Software recovery involves the design of software so that the state of permanent 

data (files and other material stored in permanent storage) can be recovered when a fault 

is detected.  Some of the commonly used techniques for implementing this method in a 

distributed system are as follows: 

1. Atomic transactions: an atomic transaction is a computation consisting of a 
collection of operations that take place indivisibly in the presence of failures 
and concurrent computations. That is, either all of the operations are 
performed successfully or none of their effects prevails, and other processes 
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executing concurrently can not modify or observe intermediate states of the 
computation. 

2. Stateless servers: the client-server model is frequently used in distributed 
systems to service user requests. In this model, a server, may be implemented 
by using either the "stateful" or "stateless" service paradigm. The distinction 
between them is whether or not the history of the serviced requests affects the 
execution of the next service request. The stateful approach depends on the 
history of the serviced requests, but the stateless does not depend on it. In the 
event of a failure, the stateless service paradigm makes crash recovery easier 
because no client information is required to be maintained by the server. 

3. Acknowledgments and time-out based retransmissions of messages: in a 
distributed system, events such as a node crash or a communication link 
failure may interrupt a communication that was in progress between two 
processes, resulting in the loss of a message. Therefore, a reliable" 
interprocess communication mechanism must have ways to detect lost 
messages so that they can be retransmitted. 

As expected, the implementation of these techniques should be carefully 

examined. According to Sinha (1997), the mechanisms described above may be 

employed to create a very reliable distributed system. However, the main drawback of 

increased system reliability is the potential reduction of execution time efficiency from 

the extra overhead involved in these techniques. 

6. Transparency 

Transparency is defined as the concealment from the user and the application 

programmer of the separation of components in a distributed system, so that the system is 

perceived as a whole rather than a collection of independent components. The 

implications of transparency are a major influence on the design of the system software 

(Coulouris, Dollimore and Kindberg, 1996). 

The separation of components is an inherent property of distributed systems. 

Therefore, a communication subsystem and explicit system management and integration 

techniques is needed. Nevertheless, the distributed system should allow users to access 

remote resources in the same way as local resources. That is, the user interface, which 

takes Ihe form of a set of system calls, should not distinguish between local and remote 

resources. It should also be the responsibility of the distributed system to locate the 

resources and to arrange for servicing user requests in a user-transparent form. 

The International Standards Organization's Reference Model for Open Distributed 

Processing - (International  Standards  Organization,   1992)  identifies  eight forms  of 

15 



transparency.   We use the term "object" to denote the entities to which distribution 

transparency is applied: 

1. Access transparency enables local and remote objects .to be accessed using 
identical operations. 

2. Location transparency enables objects to be accessed without knowledge of 
their location. 

3. Concurrency transparency enables several processes to operate concurrently 
using shared information objects without interference between them. 

4. Replication transparency enables multiple instances of objects to be used to 
increase reliability and performance without knowledge of the replicas by 
users or application programs. 

5. Failure transparency enables the concealment of faults, allowing users and 
application programs to complete their tasks despite the failure of hardware or 
software components. 

6. Migration transparency allows the movement of objects within a system 
without affecting the operation of users or application programs. 

7. Performance transparency allows the system to be configured to improve 
performance as loads vary. 

8. Scaling transparency allows the system and applications to expand in scale 
without change to the system structure or the application algorithms. 

B.        ARCHITECTURAL ISSUES 

In a distributed environment, it is likely to encounter a heterogeneous network of 

computers with different clock speeds, CPUs, memory systems, etc. It is therefore 

important to realize how these attributes can affect the overall performance and 

functionality of the system. The following section will introduce some of the problems 

that can affect the design of distributed systems, especially distributed real-time systems, 

so that the reader may be aware of their existence and importance. 

1.        Different Clocks 

A distributed system consists of several nodes, each with its own clock, running at 

its own speed. The precision of a clock is directly related to its granularity, the minimum 

number of ticks it can handle, and the quality of its time reference, which is usually based 

on a crystal that oscillates at well-defined frequencies. Therefore, the first limit imposed 

by the clock is the minimum acceptable oscillation period. This is not, in practice, an 

actual limitation, since typical clocks range from tens to hundreds of megahertz, 

providing nanosecond minimum allowable periods. 

The real problem is that clocks can drift, causing a variety of synchronization 

problems.  Maintaining an accurate global clock is one of the most challenging tasks in 
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the distributed system arena. Usually this is achieved at the cost of substantial overhead 

in communications. 

2. CPU Speed 

A distributed system consists of a collection of distinct processes that are spatially 

separated and run concurrently in multiple processors. Due to the multiplicity of 

processors, distributed systems are expected to have better performance than single- 

processor centralized systems. However, when different processors are present, the net 

result is a different execution time for the same piece of code on each processor. Since 

the maximum execution time is the most basic timing property for real-time systems and 

is also taken into account when scheduling the processes, this factor can increase the 

complexity of the scheduling problem when designing distributed real-time systems. 

3. Memory 

Again, due to the heterogeneity of distributed systems, the designer of a 

distributed real-time system should consider issues like cache size, paging, number of 

pipelining stages, etc., which can affect the overall throughput of the system, and 

consequently the timing requirements of the application. 

4. The Communication Media 

This is one of the most important factors when dealing with distributed systems, 

and can greatly affect final timing requirements for the application. Note also that the 

timing requirements are affected not only by the actual transmission delay, but also by 

the operating systems invoked on behalf of the application. 

C.       DESIGN ISSUES 

In Section A, we discussed the key characteristics of distributed systems. In this 

section, we focus on the system architectures that are used to meet those requirements 

and the technical issues that must be addressed in their design. The designer of 

distributed systems or applications must consider a number of issues, such as software 

structure and software engineering techniques. However, we shall restrict our discussion 

to design issues that specifically affect the implementation of real-time embedded 

systems in a distributed system, namely interprocess communication. 

When we say that two computers of a distributed system are communicating with 

each other, we mean that two processes, one running on each computer, are in 
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communication with each other. In a distributed system, processes executing in different 

computers often need to communicate with each other to achieve some common goal. 

Therefore, the system should provide interprocess communication. (IPC) mechanisms to 

facilitate such communication activities. 

We can enumerate some of the desirable features of a good message-passing 

system: 

1. Simplicity: a message passing system should be simple and easy to use. It 
should be possible for a programmer to designate the different modules of a 
distributed application to send and receive messages between them in the 
simplest as possible without the need to worry about system or network 
aspects not relevant at the application level. 

2. Uniform semantics: in a distributed system the semantics of remote 
communications should be as close as possible to those of local 
communications. 

3. Efficiency: efficiency is usually a critical issue for a message-passing system. 
If the message-passing system is not efficient, interprocess communication 
may become so expensive that application designers will try to avoid them. 

4. Reliability: a reliable IPC protocol can cope with failure problems and 
guarantees the delivery of a message. 

Sinha identifies the following important issues to be considered in the design of 

an IPC protocol for a message-passing system (Sinha, 1997): 

1. Who is the sender? 
2. Who is the receiver? 
3. Is there one receiver or many receivers? 
4. Does the sender needs to wait for a reply? 
5. What should be done if a catastrophic event such as a node crash or a 

communication link failure occurs during the course of communication? 
6. What should be done if the receiver is not ready to accept the message? 
7. If there are several outstanding messages for a receiver, can it choose the 

order in which to service the outstanding messages? 

These issues are addressed by the semantics of the set of communication 

primitives provided by the IPC protocol, as we shall see below. 

1. Synchronization 

A central issue in the communication structure is the synchronization imposed on 

the communicating processes by the communication primitives. The semantics used for 

synchronization may be broadly classified as blocking and nonblocking types. A 

primitive is said to have nonblocking semantics if its invocation does not block the 

execution of its invoker; otherwise, a primitive is said to be of the blocking type.  The 
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synchronization imposed on the communicating process depends on the type of semantics 

used for the send and receive primitives. 

In the case of a blocking send primitive, after execution of the send statement the 

sending process is blocked until it receives a reply from the receiver that the message has 

been received. For a nonblocking send primitive, after execution of the send statement, 

the sending process is allowed to proceed with its execution as soon as the message has 

been copied to a buffer. 

In the case of a blocking receive primitive, after execution of the receive 

statement, the receiving process is blocked until it receives a message. For a nonblocking 

receive primitive, the receiving process proceeds with its execution after execution of the 

receive statement, which returns control almost immediately just after telling the kernel 

where the message buffer is. 

An important issue in a nonblocking receive primitive is how the receiving 

process know that the message has arrived in the message buffer. One of the following 

two methods is commonly used for this purpose: 

1. Polling: in this method, a test primitive is provided to allow the receiver to 
check the buffer status. The receiver uses this primitive to periodically poll 
the kernel to check if the message is already available in the buffer. 

2. Interrupt: in this method, when the message has been placed in the buffer and 
is ready for use by the receiver, a software interrupt is used to notify the 
receiving process. This method permits the receiving process to continue with 
its execution without having to issue unsuccessful test requests. Although this 
method is highly efficient and allows maximum parallelism, its main 
drawback is that user-level interrupts make programming difficult 
(Tanenbaum, 1995). 

In a blocking send primitive, the sending process could be blocked forever in a 

situation where the receiving process has crashed or the sent message has been lost on the 

network due to a communication failure.    To prevent this situation, blocking send 

primitives often use a timeout value that specifies an interval of time after which the send 

operation is terminated with an error status. A timeout value may also be associated with 

a blocking receive primitive to prevent the receiving process from getting blocked 

indefinitely when the send process has crashed or the expected message has been lost on 

the network due to a communication failure. When both the send and receive primitives 

of a communication between two processes use blocking semantics, the communication 
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is said to be synchronous, otherwise it is asynchronous. That is, for synchronous 

communication, the sender and the receiver must be synchronized to exchange a 

message. Figure 2.2 illustrates this mode of communication. 

In synchronous communications, the sending process sends a message to the 

receiving process, then waits for a reply. After executing the receive statement, the 

receiver remains blocked until it receives the message. On receiving the message, the 

receiver sends a reply to the sender. The sender resumes execution only after receiving 

this reply. 

Compared to asynchronous communication, synchronous communication is 

simple and easy to implement. It also contributes to reliability because it assures the 

sending process that its message has been accepted before the sending process resumes 

execution. As a result, if the message gets lost or is undelivered, no backward error 

recovery is necessary for the sending process to establish a consistent state and resume 

execution (Shatz, 1984). However, the main disadvantage of synchronous 

communication is that it limits concurrency and is subject to communication deadlocks.. 

20 



Sender's Receiver's 
execution execution 

Receive (message); 
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Execution resumed 

Send (reply) 
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Reply 

     Blocked state 
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Figure 2.2. Synchronous Mode of Communication 

A flexible message-passing system usually provides both blocking and 

nonblocking primitives for send and receive so that users can choose the most suitable 

one to match the specific needs of their application. 

2.        Naming 

Distributed systems are based on the sharing of resources and on the transparency 

of their distribution. The names assigned to resources or objects must have global 

meanings that are independent of the location of the object, and they must be supported 

by a name interpretation system that can translate names in order to enable programs to 

access named resources. A design issue is to design naming schemes that will scale to an 

appropriate degree and in which names are translated efficiently to meet appropriate 

goals for performance (Coulouris, Dollimore and Kindberg, 1996). 

A process that requires access to a resource, which it does not manage, must 

possess a name or a identifier for it. The term "name" refers to names that are interpreted 

by users or by programs and the term "identifier" refers to names that are interpreted or 

used only by programs. We say that a name is resolved when it is translated into a form 

in which it can be used to invoke an action on the resource or object to which it refers. In 

distributed systems, a resolved name is generally a communication identifier together 

with other  attributes  that  may  be  useful  for  communication.     The  form  of a 
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communication identifier depends on the kinds of identifier interpretation provided in the 

communication system that is in use. For example, in Internet communication a 

communication identifier must contain two parts: a host identifier (also called an IP 

address, the numeric address of a computer, for example 131.120.001.013) and a port 

number identifying a particular communication port among those located at the host. 

The resolution of names may involve several translation steps. At each step, a 

name or identifier is mapped to a lower-level identifier that can be used to specify a 

resource when communicating with some software component. At some stage in this 

sequence of translations a communication identifier is produced that is acceptable to the 

communication subsystem that is in use, and this' can be used to transmit a request to a 

resource manager. The communication subsystem may have to perform further 

translations to produce network addresses and routing information that are acceptable to 

lower-level network software layers (Coulouris, Dollimore and Kindberg, 1996). 

In distributed systems a communication subsystem usually supports two types of 

process addressing: 

1. Explicit addressing: the communication primitive explicitly names the process 
with which communication is desired as a parameter. Primitives "send" and 
"receive" in figure 2.3 require explicit process addressing. 

2. Implicit addressing: a process willing to communicate does not explicitly 
name a process for cornmunication. Primitives "send_any" and "receive_any" 
in figure 2.3 support implicit process addressing. In the first primitive, the 
sender names a service instead of a process. According to Sinha (1997), this 
type of primitive is useful in client-server communications when the client is 
not concerned with which particular server, out of ä set of servers providing 
the service desired by the client, actually services its request. On the other 
hand, in primitive receive_any, the receiver is willing to accept a message 
from any sender. This type of primitive is again useful in client-server 
communications when the server is meant to service requests of all clients that 
are authorized to use its service. 
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- Send a message to the process identified by processjd. 
send (process_id, message) 

- Receive a message from the process identified by processjd. 
receive (process_id, message) 

- Send a message to any process that provides the service of 
type service jd. 

send_any (service_id, message) 

- Receive a message from any process and return the process 
identifier process jd of the process from -which the message 
was received. 

receive_any (process_id, message) 

Figure 2.3. Primitives for Explicit and Implicit Addressing of Processes 

3.        Communication 

The components of a distributed system are both logically and physically 

separated, however they must communicate in order to interact and perform tasks. We 

shall assume that all of the components that require or provide access to resources in 

distributed systems are implemented as processes. This is true for the client-server model 

outlined above. In client-server systems, a client process must interact with a server 

process whenever it requires access to a resource that it does not control. 

As we saw previously, communication between processes involves operations in 

the sending and receiving processes that result in the transfer of data from the 

environment of the sending process to the environment of the receiving process, and the 

synchronization of the receiving activity with the sending activity, so that the sending or 

receiving process is blocked until the other process makes an action that frees it. To 

transfer data from one process to the other, the communicating processes must share a 

communication channel where synchronization is implicit in the operation of all 

programming primitives for communication. 

The basic programming constructs take the form of programming primitives send 

and receive. Each message-passing action involves the transmission by the sending 

process of a set of data-values through a specified communication mechanism — a 

channel or a port ~ and the acceptance by the receiving process of the message.   As 
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explained previously, the mechanism may be synchronous, or blocking, meaning that the 

sender waits after transmitting a message until the receiver has performed a receive 

operation and sent a reply; or it may be asynchronous or non-blocking meaning that the 

message is placed in a queue of messages waiting for the receiver to accept them and the 

sending process can continue execution almost immediately. Receive normally blocks 

the receiving process when no message in currently available. 

The practical implementation of messages passing between processes located in 

different computers requires the use of a communication network for the transmission of 

data and for communication of synchronization signals. Distributed systems can be 

designed entirely in terms of message-passing, but there are certain patterns of 

communication that occur so frequently and are so useful that they can be regarded as an 

essential part of the support for the design and construction of distributed systems 

(Coulouris, Dollimore and Kindberg, 1996). 

The two patterns of communication most commonly used are the client-server 

communication model for communication between pairs of processes and the group 

multicast communication model for communication between groups of cooperating 

processes. The performance of the communication subsystems used for interprocess 

communication is critical for the performance of distributed systems. High performance 

distributed systems require optimized implementations of these two patterns of 

communication. 

a.        Client-Server Communication Model 

The client-server communication model is  oriented towards  service 

provision. Communication between client and server processes consists of the following: 

1. Transmission of a request from a client process to a server process; 
2. Execution of the request by the server; 
3. Transmission of a reply to the client. 

Figure 2.4 illustrates the client-server communication-model.  The server 

process must become aware of the request message sent by the client process as soon as it ' 

arrives, and the activity issuing the request in the client process must be blocked, after the 

transmission of the message, until the reply from the server has been, received. 
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Receive (message); 
execution resumed 

Receive (reply) 
Execution resumed 

Reply 

Send (reply); 
execution suspended 

      Blocked state 
Executing state 

Figure 2.4. Client-Server Communication 

According to Coulouris, Dollimore and Kindberg (1996), the client-server 

pattern of communication can be implemented in terms of the basic message-passing 

operations send and receive outlined above, but it is commonly presented at the language 

level as a remote procedure call (RPC) construct, which we will see in the next section. 

Note that a process is a client or a server only for purposes of a particular 

communication. A server can request the services of another server, and so can be a 

client of other processes. Similarly, a client can be a server to other processes. 

b. Group Multicast Communication Model 

In the group multicast pattern of communication, processes interact by 

message passing, but in this case, the target of a message is not a single process but a 

group of processes. There are multiple receivers for a message sent by a single sender. 

Figure 2.5 illustrates this pattern of communication. Group multicast communication is 

useful for several practical applications, as shown by the following examples: 

1. Locating an object: a client multicasts a message containing the name of a file 
directory to a group of file server processes. Only the one, which holds the 
relevant directory, replies to the request. 

2. Fault tolerance: a client multicasts its request to a group of server processes all 
of which process the request identically. A group of two or more servers can 
continuously provide the service, even if one of their members crashes. 
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Figure 2.5. Multicasting to a Process Group 

D.       REMOTE PROCEDURE CALL 

The general message-passing model of interprocess communication (IPC) was 

presented in the previous section. The IPC part of a distributed application can often be 

adequately and efficiently handled by using an IPC protocol based on the message- 

passing model. However, an independently developed IPC protocol is tailored 

specifically to one application and does not provide a foundation on which to build a 

variety of distributed applications. Therefore, there is a need for a general IPC protocol 

that can be used for designing several distributed applications (Sinha, 1997). 

Bierrel and Nelson (1984) introduced a different way to approach the client-server 

model. They suggested that-programs should be allowed to call procedures located in 

other machines. When a process on machine A calls a procedure on machine B, the 

calling process on A is suspended, and execution of the called procedure takes place on 

B. Information can be transported from the client to the server process in the parameters 

and can come back in the procedure result. No message passing or I/O is visible to the 

programmer. This method is known as Remote Procedure Call (RPC). 

Although this idea sounds simple, there are subtle problems. Because the calling 

and called procedures run on different machines, they execute in different address spaces, 

which causes complications. Parameters and results also have to be passed, which may 

be complicated, especially if the machines are not identical.  Finally, both machines can 
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crash, and each of the possible failures causes different problems. Still, most of these can 

be dealt with, and RPC is a widely used technique that underlies many distributed 

operating systems (Tanenbaum, 1995). 

In general, a service manages a set of resources on behalf of its clients. Clients 

can access them only by calling the procedures supplied by the service. The servers 

providing a service receive requests from the clients and execute the requested 

procedures. 

At the RPC level, a service may be viewed as a module with an interface that 

exports a set of procedures appropriate for operating on some data abstraction as a 

resource. The ability to combine a group of procedures and variables in a module and to 

export only selected procedure names was introduced in programming languages such as 

Modula-2 and Ada as a method for structuring programs. The procedures exported by a 

module are generally defined to provide a complete set Of operations on a given type of 

resource (Coulouris, Dollimore and Kindberg, 1996). 

From the perspective of the client programs, a service provides the same facilities 

as software module, enabling clients to import its procedures. Normally, a server process 

runs indefinitely and its operations may be invoked by many clients. This enables the 

resources that it manages to be shared between clients. 

1. Remote Procedure Call Characteristics 

The aim of a remote procedure calling mechanism is to maintain as far as possible 

the semantics of conventional procedure calls in an implementation environment that 

differs radically from that of conventional procedure calling. The main aspects of the 

semantics of the RPC are as follows: 

1. The definition of a remote procedure specifies input and output parameters. 
Input parameters are passed to the server by sending values of the arguments 
in the request message and copying them into variables that are passed as 
parameters to a procedure in the server's execution environment. Output 
parameters are returned to the client in the reply message and they are used to 
replace the values of the corresponding variables in the calling environment. 

2. Input parameters provide a direct correlation to parameters passed by value in 
conventional procedure calls. However, to implement parameter passing by 
reference, further information is needed, indicating whether each such 
parameter is used for input, output, or for both input and output. The need to 
specify these alternatives is one of the reasons why an interface definition 
language is an essential component of any RPC system. 
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3. A remote procedure is executed in a different execution environment from its 
caller and therefore can not access variables in the calling environment, such 
as the global variables declared by the caller. 

4. It is meaningless for a process to pass addresses of memory locations or their 
equivalent in messages to other processes. Thus, the arguments and results of 
remote procedures can not include data structures that contain pointers to 
memory locations. 

According to Coulouris, Dollimore and Kindberg (1996), the last restriction is 

less serious than it might appear to be. There is generally no need to transmit complex 

data structures in their entirety between servers and clients. If the need does arise to 

transmit data structures containing pointers, the structure must be "flattened" before they 

can be transmitted in messages. The process that manages a particular data structure is 

responsible for flattening and expanding it. Thus, a tree structured list might be flattened 

by converting it to a bracketed expression. 

A service is accessed by means of calls to the remote procedures that it offers. 

Because of the differences between local and remote procedures and because a service 

should be defined at a level appropriate for the widest possible use, the RPC interface is 

not necessarily the most convenient for client programs. For this reason, and because 

there are some tasks that must be performed by a client (such as the location of a suitable 

server), the use of services by application programs is often supported by a user package. 

This package is a library of conventional procedures that presents a convenient 

procedural interface for use by application programs. The actual remote procedure call to 

servers is embedded within the user package. 

2. Design Issues 

RPC systems fall into two classes. In the first class, the RPC mechanism is 

integrated with a particular programming language that includes a notation for defining 

interfaces. In the second class, a special-purpose interface definition language is used for 

describing the interfaces between clients and servers. 

As an example, the Argus language developed by Liskov at MIT is designed for 

the construction of distributed programs. Remote procedure calls are integrated into the 

language (Liskov, 1988). Argus provides guardians: modules that are used to provide 

services and intended to be accessed by remote procedure call.   The procedures in a 
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guardian are called handlers and a call to a handler is automatically treated as a remote 

call. 

The second class includes Sun RPC, on which the Sun Network File System is 

based. The separate interface language approach has an advantage: it is not tied to a 

particular language environment. Although in practice, almost all examples of this 

approach are used in a C programming environment (Coulouris, Dollimore and Kindberg, 

1996). 

a. Interface Definition Language 

An RPC interface definition specifies those characteristics of the 

procedures provided by a server that are visible to the server's clients. The characteristics 

that must be defined include the names of the procedures and the type of their parameters. 

Each parameter should also be defined as input, output, or in some cases both, to enable 

the RPC system to identify which values should be marshalled into the request and reply 

messages. An interface specifies a service name that is used by clients and servers to 

refer to the service that is offered by the collection of procedures. 

b. Exception Handling 

Any remote procedure call may fail when it cannot contact a server, 

whether the server is down or just busy. Therefore, remote procedure, calls must be able 

to report error types that are due to distribution (such as time-outs), as well as, those that 

relate to procedure execution. Because any RPC may fail, an RPC system requires an 

effective exception handling mechanism for reporting such failures to the caller. 

c. Delivery Guarantees 

Request-reply protocols can be implemented in different ways to provide 

different delivery guarantees. The main choices are (Coulouris, Dollimore and Kindberg, 

1996): 

1. Retry request message: whether to transmit the request message until either a 
reply is received or the server is assumed to have failed; 

2. Duplicate filtering: when retransmissions are used, whether to filter out 
duplicates at the server; 

3. Retransmissions of replies: whether to keep a history of reply messages to 
enable lost replies to be retransmitted without re-executing the server 
operations. 
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The combination of these choices leads to a variety of possible semantics 

for the reliability of remote procedure calls as seen by the caller. The semantics are as 

follows: 

1. Maybe call semantics: If for any reason a reply message has not been received 
after a time-out and there are no retries, the clients can not tell whether remote 
procedures have been called or not. This choice is not generally acceptable. 

2. At-least-once call semantics: Retransmission of request messages without 
filtering of duplicates. In cases when the request message is retransmitted, the 
server may receive and execute it more than once. This choice may be 
acceptable only if a server can be designed with idempotent operations in all 
of its remote procedures. 

3. At-most-once call semantics: Filtering of duplicates and retransmission of 
replies without re-executing operations. Some operations can have the wrong 
effect if they are performed more than once. 

The at-most-once call semantics is the one usually chosen in RPC 

implementation. Bierrel and Nelson (1984) guarantee in Cedar RPC that if the server 

does not crash and the client receives the result of a call, then the procedure has been 

executed exactly once. Otherwise, an exception is reported and the procedure will have 

been called either once or not at all. 

d. Transparency 

Remote procedure calls should be as much like local procedure calls as 

possible. However, RPCs are more vulnerable to failure than local calls, since they 

involve a network, another computer and another process. Also, they consume much 

more time than local calls. Therefore, it can be argued that programs that make use of 

remote procedures must handle errors that cannot occur in local procedure calls. 

The choice as to whether RPCs should be transparent is also available to 

the designers of interface languages. In the transparent case, the client calls remote 

procedures in the normal way for the language in use. In the non-transparent case, the 

client uses a special notation for calling remote procedures with the advantage that this 

notation may provide the ability to express requirements for distributed programming. 

For example, to specify a call semantics or to handle exceptions (Coulouris, Dollimore 

and Kindberg, 1996). 

Liskov and Scheifler (1982) say that although the RPC system should hide 

low-level details of message passing from the user, the possibility of long delay or failure 

should not be hidden from the caller.   The caller should be able to cope with failures 
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according to the demands of the application possibly by terminating an RPC, and in that 

case, it should have no effect. 

3. Implementation 

To achieve the goal of semantic transparency, the implementation of an RPC 

mechanism is based on the concept of stubs, which provide a perfectly normal (local) 

procedure call abstraction. It involves the transfer of arguments from the client process 

to the server process and the transfer of results from the server process to the client 

process. These arguments and results are basically language-level data structures, which 

are transferred in the form of message data between the two computers involved in the 

call. 

The transfer of message data between the two computers requires encoding and 

decoding of the message data. The encoding process involves the conversion of program 

objects into a stream form that is suitable for transmission. This is known as marshalling. 

Unmarshalling is the reconstruction of program objects from the message data that was 

received in the stream form. According to Coulouris, "Dollimore and Kindberg (1996), 

the software that supports remote procedure calling has three main tasks, as noted below. 

a.        Interface Processing 

An interface definition may be used as a basis for constructing extra 

software components of the client and server programs that enable remote procedure 

calling. These components are illustrated on Figure 2.6. Both client and server assign 

the same unique procedure identifier to each procedure in the interface and the procedure 

identifier is included in request messages. 

A RPC system will provide a means of building a complete client program 

by providing a stub procedure to stand in for each remote procedure that is called by the 

client program. The purpose of a client stub procedure is to convert a local procedure 

call to a remote procedure call to the server. The types of the arguments and results in 

the client stub must conform to those expected by the remote procedure. This is achieved 

by the use of a common interface definition. The task of a client stub procedure is to 

marshall the arguments and to pack them up with the procedure identifier into a message, 

send the message to the server, await the reply message, unmarshall it and return the 

results. 
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Figure 2.6. Stub Procedures (Coulouris, Dollimore and Kindberg, 1996) 

To build the server program, the RPC system will provide a dispatcher and 

a set of server stub procedures. The dispatcher uses the procedure identifier in the 

request message to select one of the server stub procedures and pass on the arguments. 

The task of a server stub procedure is to unmarshall the arguments, call the appropriate 

service procedure, and, when it returns, to marshall the output arguments (or in case of 

failure an error report) into a reply message. 

An interface compiler processes interface definitions written in an 

interface definition language. Interface compilers are designed to produce components 

that can be combined with client and server programs without making any changes to the 

existing compiler. An interface compiler normally performs the following tasks 

(Coulouris, Dollimore and Kindberg, 1996): 

1. Generate a client stub procedure to correspond to each procedure signature in 
the interface. 

2. Generate a server stub procedure to correspond to each procedure signature in 
the interface. 

3. Use the signatures of the procedures in the interface to generate appropriate 
marshalling and unmarshalling operations in each stub procedure. 
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4. Generate procedure headings for each procedure in the service from the 
interface definition. The programmer of the service supplies the bodies of 
these procedures. 

b. Communication Handling 

The task of the communication handling module is to deal with 

communication between the client and server programs by using a form of request-reply 

communication, as described in the previous sections. The communication handling 

module is provided in forms suitable for linking with client and server programs. 

c. Binding 

An interface definition specifies a textual service for use by clients and 

servers to refer to a service. However, client request messages must be addressed to a 

server port. 

Binding means specifying a map from a name to a particular object, 

usually identified by a communication identifier. The binding of a" service name to the 

communication identifier of a specified server port is evaluated each time a client 

program is run. The form of communication identifier depends on the environment. For 

example, in a UNIX environment, it will be a socket address containing the internet 

address of a computer and a port number. 

In a distributed system, a binder is a separate service that maintains a table 

containing maps from service names to server ports. A binder is intended to be used by 

servers to make their port identifiers known to potential clients, and by clients to obtain 

the addresses of the servers. 

When a server process starts executing, it sends a message to the binder 

requesting it to register its service name and service port. If a server process terminates, 

it should send a message to the binder requesting it to withdraw its entry from the 

mappings. When a client process starts, it sends a message to the binder requesting it to 

look up the identifier of the server port of a named service. The client program sends all 

its request messages to this server port until the server fails to reply, at which point the 

client may contact the binder and attempt to get a new binding. 

4. Asynchronous Remote Procedure Call 

Remote procedure calls that do not receive replies are termed asynchronous.  In 

an asynchronous RPC, the communication handler sends the request message and returns 
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control to the client program immediately, instead of blocking the client. In the 

synchronous case, the client marshalls the arguments, calls the send operation and then 

waits until the reply from the server arrives. Then it receives, unmarshalls and processes 

the results. After this, the client is able to continue its execution. In the asynchronous 

case, the client marshalls the arguments, calls the send operation and then immediately 

continues its execution. This arrangement allows the client and the server to work in 

parallel. 
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III.    BACKGROUND KNOWLEDGE 

A.       REAL-TIME SYSTEMS MODEL 

Real-time system is a technical term with a specific meaning. The requirements 

of real-time systems include timing constraints that must be met in the worst case for 

systems to be considered correct. 

According to Luqi (1993), models for hard real-time systems are used to: 

1. Support automated analysis to determine whether specified real-time 
constraints can be met by a given design for a given hardware configuration. 

2. Help the designer construct a design that will meet a set of hard real-time 
constraints, if such a design exists. 

3. Form a basis for the development of programming languages for hard real- 
time programming, for which it is possible to effectively determine whether a 
given program will always meet a given set of deadlines. 

Models of real-time systems are essential for requirements analysis, specification 

and design of systems with real-time constraints. A coherent framework for classifying 

real-time constraints can be used to organize complex sets of timing requirements and to 

guide the process of discovering the timing requirements associated with an embedded 

software system. 

There are a number of approaches to modeling real-time systems. This research is 

based on the model defined in the Prototype System Description Language (PSDL) 

(Luqi, Berzins and Yeh, 1988). PSDL is a language designed for clarifying the 

requirements of complex embedded systems, and for determining properties of proposed 

designs for such systems via prototype execution and static analysis. The language was 

designed to simplify the description of such systems and to support prototyping. PSDL is 

also the basis for a computer-aided prototyping system that speeds up the prototyping 

process by exploiting reusable software components and providing execution support for 

high level constructs appropriate for describing large real-time systems in terms of an 

appropriate set of abstractions (Luqi, 1993). 

PSDL simplifies the design of systems with real-time constraints by presenting a 

high-level description in terms of networks of independent operators to the designer. The 

language provides simple and efficient synchronization and exception handling 

primitives. 
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PSDL has been designed both to ensure that the requirements are feasible and to 

provide the best service possible to the users of the proposed software. Also, PSDL 

provides a description of a proposed design that can be smoothly transformed into a final 

implementation after the requirements have been validated and the design has been 

verified. 

1.        Real-Time Semantics of PSDL 

PSDL is based on a computational model containing OPERATORS that 

communicate via DATA STREAMS, where each stream carries values of a fixed abstract 

data type (ADT). There are several ADTs already built into PSDL; the 

PSDL_EXCEPTION is one of them. Modularity is supported through the use of 

independent operators that can only gain access to other operators via data streams 

(Cordeiro, 1995). 

The PSDL computational model treats software systems as networks of operators 

communicating via data streams. A PSDL decomposition is represented as an augmented 

directed graph (Luqi, Berzins and Yeh, 1988): 

G = (V, E, T(v), C(v)), where: 

- V is a set of vertices (vertices represent operators in the network); 

- E is a set of edges (edges represent data streams in the network); 

- T(v) is the set of timing constraints for each operator ve'V; 

- C(v) is the set of control constraints for each operator v s V. 

The graph (V, E) in a PSDL decomposition determines the possible interaction 

between the operators. The timing and control constraints determine the conditions under 

which the operators are activated. 

a. Operators 

Every PSDL operator is a state machine. Functional operators are 

machines with only a single state. When an operator fires, it reads one data value from 

each of its input streams, undergoes ä state transition, and writes at most one data value 

into each of its output streams. The action of a PSDL operator is local, since its output 

values can depend only on the current set of input values and the current state of the 

operator.   State transitions and input/output operations on data streams can occur only 
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when the operator fires.   The firing of an operator can be triggered by the arrival of a 

specified subset of its input data values or by a periodic temporal event. 

A PSDL operator can be either atomic or composite. Operators that are 

decomposed into lower levels are called composite operators, and they represent 

networks of components. This decomposition is always functional. An operator that is 

not decomposed is called atomic. 

b. Data Streams 

A data stream is a communication link connecting two sets of operators, 

the producers and the consumers. A PSDL data stream carries instances of an abstract 

data type associated with the stream, which can be a special pre-defined type representing 

exceptions. There are two different kinds of data streams: data flow streams and sampled 

streams. 

Data flow streams are similar to FIFO queues with a length of one. Any 

value placed into the queue must be read by another operator before any other data value 

may be placed into the queue or it will overflow. Values read from the queue are 

removed from the queue arid, if any attempt is made to read from an empty queue, it will 

underflow. Sampled streams represent a continuous source of data, of which the most 

recent value is meaningful. The most recently written value in a sampled stream must be 

available at all times and may be read many times or overwritten by more recent data 

before it is read. Some values may never be read, because they are replaced before the 

stream is sampled. In summary, it could be said that a data flow stream guarantees that 

none of the data values are lost or replicated, while a sampled stream does not make such 

a guarantee (Cordeiro, 1995). 

c. State Streams 

A State Stream can be either a data flow stream or a sampled stream, 

depending on the triggering condition of the consumer operator, but state streams must 

have been assigned an initial value for the stream. 

An operator is a state machine if it has one or more state streams. The 

data flow diagram of a composite state machine operator has cycles, which represent the 

feedback loops that update the state variables. Every feedback loop must be broken by a 
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State stream.   State streams must also be used when connecting time-critical and non 

time-critical operators. 

d. Types 

All PSDL data types are immutable, so that there can be no implicit 

communication by means of side effects. Both mutable types and global variables have 

been excluded from PSDL to help prevent coupling problems. The PSDL data types 

include the immutable subset of the built-in types of Ada user defined abstract types, the 

special types TIMER and EXCEPTION, and the types that can be built using the 

immutable type constructors of PSDL . 

e. Exceptions 

PSDL exceptions are values of a built-in abstract data type called 

EXCEPTION. This type has operations for creating an exception with a given name, for 

detecting whether a value is an exception with a given name, and for detecting whether a 

value is normal, which means that it belongs to some data type other than EXCEPTION. 

Values of type EXCEPTION can be transmitted along data streams just like values of the 

normal type associated with the stream. 

f. Timers 

Timers are software stopwatches that are used to record the length of time 

between events, or the length of time the system spends on a given state. This facility is 

needed to express relatively sophisticated aspects of real-time systems, such as timeouts 

and minimum refresh rates. They are governed by the PSDL control constraints START 

TIMER, STOP TIMER and RESET TIMER. 

2. Control Constraints 

The control abstractions of PSDL are represented as enhanced data flow diagrams 

augmented by a set of control constraints. The order of execution is only partially 

specified, and is determined from the data flow relations given in the enhanced data flow 

diagrams, but also affected by the types of data triggers among operators. 

The control aspects of a PSDL operator are specified implicitly via control 

constraints, rather than giving an explicit control algorithm. There are several aspects to 

be specified, such as whether the operator is PERIODIC or SPORADIC, the triggering 

condition, and output guards. 
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a. Periodic and Sporadic Operators 

PSDL supports both periodic and sporadic operators. Periodic operators 

are triggered by the scheduler at approximately regular time intervals, so that they start 

execution somewhere after the beginning of each period, and complete by some deadline, 

which defaults to the end of the period. Sporadic operators are triggered by the arrival of 

new data values, possibly at irregular time intervals. 

b. Data Triggers 

Any PSDL operator can have a data trigger. There are two types of data 

triggers in PSDL as illustrated by the following examples: 

OPERATOR p TRIGGERED BY ALL x, y, z 

OPERATOR q TRIGGERED BY SOME a, b 

In the first example the operator p is ready to fire whenever new data 

values have arrived on all of the three streams x, y, and z, although there may be other 

streams arriving at the operator p, in which case the data values do not need to be new. 

The data streams associated with x, y, and z are data flow streams. This kind of trigger 

-should be used when the items in a stream represent discrete events like, for example, 

transactions on a bank account, rather than samples from a continuous source of data 

(e.g., reading from a sensor). Also, it can be used to guarantee that the output of the 

operator is always based on fresh data for all the inputs in the triggering set. 

The most important design consideration when " TRIGGERED BY ALL" 

is used is management of the firing frequencies of the producer and consumer operators. 

The period of the consumer operator must be smaller than or equal to the period of the 

producer, or stream buffer overflow errors will result. There is no problem if the period 

of the consumer operator is less than the period of the producer, since the actual firing 

rate of the two operators will be the same because data streams are tested for new 

information prior to the actual firing of the consumer. 

In the second example, the operator q fires whenever new data arrives on 

at least one of the inputs a and b. This kind of activation condition guarantees that the 

output of the operator q is based on the most recent data value from at least one of its 

critical inputs a and b mentioned in the activation condition for q. This kind of trigger 

can be used to keep software estimates of sensor data up to date. 
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Every operator must have a period or a data trigger, or both. If a periodic 

operator has a data trigger, the operator is conditionally executed with the data trigger 

serving as input guard. 

c. Execution Guards 

The firing of a PSDL operator can be controlled by an execution guard. 

Execution guards provide conditional execution of operators based on conditional 

statements, which are evaluated prior to the firing of the associated operator. Execution 

guards can depend on data from any incoming data stream and they can be combined 

with the "TRIGGER BY ALL" and "TRIGGER BY SOME" data triggers mentioned 

above. Even if an execution guard is not satisfied, the data values are read and consumed 

from all the input streams, without firing the operator. Two examples of operation with 

triggering condition are shown below: 

OPERATOR r TRIGGERED BY SOME x, y IF x = NORMAL AND y >10.0 

OPERATOR s TRIGGERED IF x = NORMAL 

d. Output Guards 

Output guards do not affect the firing of an operator, which will fire 

regardless of whether or not its output is written to an output data stream. An output 

guard provides conditional transmission of computed results. An example is shown 

below: 

OPERATOR t OUTPUT z IF z > 20 AND z < max 

The example shows an operator with an output guard, which depends on 

the input value max and the output value z. The condition of an output guard may 

depend on the output values of the operator, on the values read from the input streams, 

and on values of timers. 

e. Exception Guards 

Exception guards provide conditional raising of exceptions. Exceptions 

are transmitted on all of the output streams of the operator that raised the exception. For 

example: 

OPERATOR f EXCEPTION e IF x > 50 

This control constraint transmits the exception value named e on all of the 

output streams of f that are of type EXCEPTION instead of the values actually computed 
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by f whenever the input value x is greater than 50. Exception guards can be used to 

check assumptions about validity of inputs, outputs, or states. 

3.        Timing Constraints 

PSDL operators can be subjected to timing constraints, which are specified by 

giving bounds on the duration of various kinds of time intervals. Operators can be time- 

critical and non time-critical, depending on whether or not they are assigned a value for 

the maximum execution time (MET) by designer. If an operator is time-critical, it can be 

further subdivided into periodic or sporadic operator subtypes. Periodic operators are 

explicitly assigned a frequency (PERIOD) of execution, meaning that they will fire 

within regular periods, exactly once, but not necessarily at regular intervals of time. 

Sporadic operators are not explicitly assigned a period, but they fire whenever the data 

trigger is satisfied. However, sporadic operators have a minimum interval of time 

between successive firings (Cordeiro, 1995). 

Timing constraints are an essential part of specifying real-time systems. Table 3.1 

summarizes the timing constraints supported by PSDL. 

Constraint Symbol Applies to Constrains Default 

Max. execution time MET Time critical op. CPU time - 

Period PER Periodic op. Activation, next activation - 

Finish within FW Periodic op. Activation, completion PER 

Max. response time MRT Sporadic op. Activation, completion Heuristic 

Min. calling period MCP Sporadic op. Activation, next activation MRT-MET 

Latency L Streams Write, next read 0 

Min. period MP Streams Write, next write 0 

Table 3.1. PSDL Timing Constraints 

The MET is the maximum amount of serial CPU time required to execute an 

operator under worst-case conditions. Note that for atomic operators the MET complies 

with the above definition. For the composite operator, however, the MET is the 

maximum CPU time needed along any single thread of control. The static scheduler 

must ensure that at least this much CPU time is allocated to an operator between each 

activation time and its deadline. This CPU time need not be all in one contiguous 

interval and it need not be all on the same processor, in which case any inter-processor 

communication delays must be considered. 
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When decomposing a complex operator into a network of simpler operators, the 

designer of a real-time system must consider timing requirements as well as functional 

requirements. The time available for the execution of the components of a composite 

time-critical operator is constrained by different necessary conditions for feasibility, 

depending on the type of target hardware for the proposed system. For the uniprocessor 

case, the sum of the maximum execution times of the components in a proposed 

decomposition must be less than or equal to the MET of the composite operator. 

Whereas for the multiprocessor case, the sum of the maximum execution times of the 

components along every path from an external input to an external output in a proposed 

decomposition must be less than or equal to the MET of the composite operator. 

The MRT defines an upper bound on the time between the arrival of new data that 

satisfies the data triggering condition of a sporadic operator and the time when the last 

value is written onto the output stream. The MRT applies only to sporadic operators 

(Cordeiro, 1995). 

The MCP also applies to sporadic operators and represents a lower bound on the 

time between two consecutive triggerings of a sporadic operator. This lower bound 

defines the maximum input rate under which the sporadic operator must meet its 

deadline. Thus, the MCP characterizes the worst-case operating conditions under which 

a proposed design is guaranteed to meet its real-time constraints. The scheduling delay 

for a sporadic operator is the interval of time between the satisfaction of consumer 

operator's triggering conditions and the corresponding reading of the input values by the 

consumer. In general, a sporadic operator is triggered by new data values on a subset of 

the input streams. The sporadic operator is activated when the last new values of the data 

trigger set become available for reading by the operator. On distributed architectures, 

there may be some intervening communication delay if the operator that wrote the value 

is allocated to a different processor than the sporadic operator that reads the value (Luqi, 

1993). 

The timing constraints for a sporadic operator are illustrated in Figure 3.1. As we 

will see later, sporadic events are handled by polling in CAPS, where sporadic operators 

are converted into equivalent periodic ones, whose period is called the triggering period 

(TP). 
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Figure 3.1. Sporadic Timing Constraints 

Periodic operators are triggered by temporal events, which must occur at regular 

intervals. For each operator, these activation times are determined by the specified 

period (PER), which is the time interval between two successive activations. The 

differences between sporadic operators and periodic operators are that the period of a 

periodic operator is fixed and the activation events are defined based on the absolute 

time, instead of the arrival of input data. Note, however, that there is a distinction 

between activation time and the actual start time of a periodic operator as shown in 

Figure 3.2. 

Finish within (FW) defines an upper bound on the time interval between each 

activation and completion of firing. The difference between the activation time and its 

deadline is called the scheduling interval (SI) and it is equal to FW. 
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Figure 3.2. Periodic Time Constraints 

Scheduling intervals of a periodic operator can be viewed as a fixed window of a 

size equal to FW, evenly separated by the period PER, and whose absolute position on 

the time axis is determined by the start time t of its first execution. For the first instance 

this time may vary within the closed interval [0, PER] of the operator, and is called the 

phase of the operator. Scheduling intervals for sporadic operators will be discussed in the 

next section. 

To express the behavior of distributed systems, PSDL provides two timing 

constraints, Latency (LAT) and the Minimum Output Period (MOP). The latency of a 

stream is an upper bound on the time from when a data value is written into the stream to 

the time when the data value can be read from the stream. Latency models networks or 

telecommunication links, it specifies an upper bound on the allowable time spent by a 

stream in the network. This information should be used by the scheduler to simulate the 

worst case behavior for the delay in the network. 

The minimum output period is a lower bound on the duration of the interval 

between two successive write events on the stream. The purpose of the Latency and 

MOP constraints is to declare communication constraints that arise from hardware 

limitations imposed by external constraints on how the software functions must be 

allocated to different physical nodes of a distributed system. The effect of these 

constraints on static scheduling is that data can not be read from a stream until a delay 
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equal to the latency has elapsed, and data can not be written into a stream until the 

minimum period has elapsed. 

4.        Synchronization in PSDL 

As we saw above, there are two kinds of streams in PSDL: sampled streams and 

data flow streams. However, within sampled streams there are two semantically different 

subtypes of stream, depending on the triggering condition of the consumer operator. If 

the consumer operator is not triggered by any data, then specific data value can be lost or 

overwritten, or even read over and over again by the consumer, without any problem. 

According to Cordeiro (1995), this type of behavior is very useful when reading sensor 

data. In most cases, the sensor will be able to generate data in much higher rate than the 

consumer will read it, but the most recent data is of primary interest. 

The second type of sampled stream exists when the consumer operator is 

TRIGGERED BY SOME data value. In this case, the consumer should always read the 

new data from one of the streams specified in the TRIGGERED BY SOME clause. 

Although buffer overflow or underflow is not an issue, due to the way sample streams are 

defined, the only way to avoid loss of data in this case is to enforce the condition that 

PERproducer ^ PERconsumer, and, consequently, the synchronization problem will have to be 

handled accordingly (Cordeiro, 1995). 

In the case of data flow streams, the consumer is TRIGGERED BY ALL. The 

streams specified in the TRIGGERED BY ALL clause should be examined, and if all of 

them have new data in their buffer,- they should be consumed, firing the consumer 

operator. The TRIGGERED BY ALL condition can be thought of as being a logical 

AND among streams declared in this clause. Again, in this case, there is a need to 

enforce PERpr0ducer ^ PERconsumer so that no data is lost, and once again the 

synchronization problem must be handled explicitly. The basic semantic difference 

between the TRIGGERED BY ALL data flow streams and the TRIGGERED BY SOME 

sampled streams is that if the data is not consumed and a new data arrives, in the former 

it will raise a buffer overflow exception, while in the latter the data will be simply 

overwritten. 
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5. Mutual Exclusion 

Since updates to state variables must be serialized to preserve the integrity of the 

data, any pair of operators that belong to a common cycle in the expanded data flow 

graph must not be scheduled concurrently. If two such operators are allocated to 

different processors of a distributed system, then the scheduler must provide sufficient 

time between the completion of one such operator and the start time of the next to 

account for possible interprocessor communication delays (Luqi and Shing, 1996). 

6. Hardware Models 

The semantics of PSDL are independent of the hardware model, but scheduling 

and the feasibility of realizing the declared real-time constraints depend on the 

architecture and characteristics of the hardware system on which the proposed system 

will run (Luqi and Shing, 1996). The hardware models associated with PSDL can be 

characterized by the number of processors N, a vector of processor speed Si, a matrix of 

interprocessor delays Dy and a matrix of inverse link speeds (seconds per bits) Ty, where 

Du = 0, Ty = 0, and 1 < i,j <N. 

According to the target architecture, we could have the following special cases: 

1. Single processor: N - 1, 
2. Identical processors: S; = s, 
3. Unlimited bandwidth: Ty = 0, and 
4. Homogeneous network: Dy = d for j * i. 

For distributed systems we could derive the latency for the transmission of a data value b 

bits long from processor i to processor j as following: 

L = Dij + (bxTij) 

B.        REAL-TIME SCHEDULING ANALYSIS 

According to Baker (1974), scheduling is the allocation of resources over time to 

perform a collection of tasks. This, rather than a general .definition conveys the basic 

idea of scheduling theory, which is a collection of principles, models, techniques and 

logical conclusions that provide insight into the scheduling function. 

This section is adapted from Cordeiro (1995) and is included here for the 

convenience of the reader. To have a better understanding of the context in which 

scheduling issues are found we present in Figure 3.3 a proposed taxonomy for the 
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scheduling function. This taxonomy is an enhancement done by Cordeiro (1995) ofthat 

proposed by Cheng, Stankovic and Ramamritham (1987). 

As shown in the figure, classical scheduling and real-time scheduling are distinct 

areas. Most of the problem areas in classical scheduling make use of objective functions, 

such as minimizing flowtime, minimizing mean tardiness, and minimizing completion 

time (makespan), which does not convey much of the important information needed by 

real-time systems. Nevertheless, some of these results can provide very fruitful insights 

into real-time scheduling problems. 

Scheduling 

_T_ 
Classical 

1 
Real-Time 

Single Machine Hard Soft 

Parallel Machine 

Flow Stop 

Static 
1 

Dynamic 

Job Stop 
Preemptable Non 

Preemptable 
Preemptable 

J_ 
Non 

Preemotable 

Figure 3.3. Scheduling Taxonomy 

1.        Real-Time Scheduling Model 

An instance of a prototype T can be thought of as union of three disjoint finite 

sets, namely the set P of periodic operators, the set S of sporadic operators, and the set N 

of non-time critical operators. Each periodic operator o; is completely specified by the 

tuple (MET, PER, FW) where MET is the maximum execution time used by each 

instance of operator o;, PER is the period, and FW is the length of its scheduling interval. 

Likewise, each sporadic operator is completely specified by the tuple (MET, MCP, 
op 

MRT) , where MCP is the minimum period between two consecutive instances of the 

operator o;, and MRT is the upper bound on the time between the triggering of the 

operator Oj by new data arrival in the data trigger set, and the completion of writing to all 

of its output streams. The superscript SP is used in the sporadic case, only to distinguish 

from the tuple of the periodic operator.  Given any static schedule for a prototype T, we 
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shall use st(oj,k), ct(oi;k) and d(oijk) to denote the actual starting time, completion time and 

deadline of the kft instance of operator o; in the schedule. In any feasible schedule, we 

must have 

0 < st(ou) < PER(oi), d(ou) = PER(Oj) + MET(OJ), 

activation_time(oi;k) = st(ou) + (k -1) x PER(OJ) 

and 

d(oj;k) = activationjime^k) + FW(OJ) for k > 1 

for every periodic operator o;, where st(oi,i) is called the phase of operator o; as defined 

in the previous section. 

By definition, every periodic operator must start and finish execution within its 

period of activation. In addition, the following restriction is imposed on the model: 

MET < FW < PER 

Clearly, this inequality is needed; otherwise, there is no way to execute such an operator 

within the specified amount of time (FW). Note that there may be a case where PER < 

MET; such processor demand can only be satisfied using pipelining in a multiprocessor 

environment (Luqi, 1993, and Luqi, Shing, and Brockett, 1993). 

For the sporadic operator, all of the above assumptions are also applicable, since 

they will be converted into equivalent periodic operators, but the following restriction is 

imposed to the model: 

MET < MRT, MET < MCP 

Sporadic operators are activated by the arrival of new data on the input streams specified 

in the operator's control constraints. The activation time is the earliest time the triggering 

data is available for reading by the operator. For producer and consumer operators 

running on different processors, this is the time data is written by the producer plus the 

interprocessor communication delay, known as latency. Scheduling for sporadic 

operators is based on the following constraints. 

deadline^*) = actvation_tirhe(o;;yt) + MRT(o*) 

activation_time(o,;jt+1) > activation_time(o,jyt) + MCP(o;) 

A prototype T is said to be schedulable if there exists a schedule such that the 

completion time for the execution of instance k of operator ot, ct(oj,k), is less than or equal 

to its corresponding deadline d(oi,k), for all k and oi5 and the precedence constraints of the 
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prototype is satisfied. The precedence constraint between operator Oj and Oj, is written o; 

< Oj, where < denotes a partial ordering on the execution of tasks o; and Oj, and is satisfied 

if 

V instances oi;k, oj;k (k -1) x PER(oi) + st(ou) < (k -1) x PER(OJ) + st(oj;i) 

and 

(k -1) x PER(OJ) + st(oj;i) + A < k x PER(OJ) + st(ou) 

where (k -1) x PER(OJ) = (k -1) x PER(OJ) and A equals the maximum time to read input 

by operator Oj (Cordeiro, 1995). 

Both periodic and sporadic operators are non-preemptable, which means that once 

they start execution they will run to completion. The non time-critical operators can be 

preempted. No idle time is inserted into the static schedule, unless there are no operators 

ready to execute. All timing information is assumed to be an integral multiple of a basic 

unit of time. 

2.        Non-Preemptive Tasks Scheduling 

The purpose of this subsection is to present a series of theorems on schedulability 

for a set of independent, nori-pfeemptive, periodic task sets. The objective is to provide 

the necessary background to build a framework upon which the later sections in this 

chapter will be based. 

These theorems will help us to better understand the conditions for schedulability 

of non-preemptive tasks. For proofs of the theorems and further reading the reader is 

directed to the work of Cordeiro (1995). 

a. The Maximum Execution Time Theorem 

Theorem 1: 

"For an independent periodic task set P, if 3 some tasks X and Y e P, such 

that METX > PERy then P is not schedulable in the uniprocessor case by any non- 

preemptive algorithm. Furthermore, if X = Y then neither the preemptive nor the non- 

preemptive algorithms can find a feasible schedule." (Cordeiro, 1995) 

This theorem is also valid for a sporadic task set when METX > MCPy for 

X = Y, the trivial case. However, for X * Y the situation is slightly more complex and 

there are two cases to consider.   The first is when MRTy < MCPy; this is clearly not 
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schedulable.   The second case is MRTy > MCPy; the set is not schedulable if METX + 

METy > MRTy. Figure 3.4 illustrates this case. 

Figure 3.4. Theorem 1 for Case 2 of the Sporadic Task Set 

Corollary (for the distributed case): 

"For an independent periodic task set P, if 3 some tasks X and Y e P, such 

that METX > PERy, then in order for P to be schedulable in the multiprocessor case, tasks 

X and Y must be placed in different processors, and if X = Y, then it must be pipelined." 

(Cordeiro, 1995) 

The conditions imposed on a task X for it to be pipelineable, as well äs, 

detailed description of pipelining in this context can be found in the work of Luqi (1993) 

and Luqi, Shing and Brockett (1993). 

b. The Finish- Within Theorem 

Theorem 2: 

"For an independent periodic task set P if 3 some indivisible task X € P 

such that METX > FWX then P is not schedulable under any scheduling algorithm, not 

even in a multiprocessor environment." (Cordeiro, 1995) 

Note that this theorem can be extended to cover the sporadic case when 

METX > MRTX. It is also applicable to the case where we have precedence constraints in 

the set P. 
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c. The Minimum Period Theorems 

Theorem 3: 

'For a periodic task set P, if V tasks X € P, FWX > PERX and £  METX < 
x=l 

PERZ where PERZ denotes the minimum period in P, then P is schedulable." (Cordeiro, 

1995) 

The minimum period is certainly a divisor of the least common multiple of 

the periods (LCM), and, as such, it can span the entire LCM within an integral number of 

steps. It is a kind of sliding bin-packing where a sliding window of size equal to the 

minimum period is present and always large enough to fit all tasks present in that 

window. Depending on the periods, not all instances may be active simultaneously in 

that specific window. Figure 3.5 below shows the minimum period sliding window for a 

set of four tasks with the following timing constraints: taskl (-, 300, -), task2 (-, 200, -), 

task3 (-, 400, -) and task4 (-, 600, -). This theorem is valid even when precedence 

constraints are taken into consideration. 

I" M i l 1 LCM 

200 400 600 800    1000 1200 

t__L_J__l 1........1 i 
Minimum 

Period 

Figure 3.5. The Minimum Period Sliding Window 

Theorem 4: 

'For a periodic task set P, if V tasks X € P, ]£ METX < FWZ, where FWZ 
*=i 

denotes the minimum FW in P, then P is schedulable." (Cordeiro, 1995) 

The same idea of sliding bin-packing applies here. Now, however, the 

size of the bin must be decreased. The "bin" now should be understood to be the least 

value among all periods and FW from the tasks in P. 
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d. The Load Factor Theorem 

Theorem 5: 

"For a periodic task set P, if ]T -> k, where k is the number of 
x=\ PERX 

available processors, then the set is not schedulable." (Liu and Layland, 1973) 

Theorem 5 defines a necessary condition for the schedulability of a 

periodic task set, and it basically stipulates that if the summation of all individual load 

factors (METX/PERX) is bigger than the number of available processors, then the set is not 

schedulable (Liu and Layland, 1973).   We should note that theorem 5 is valid to both 

preemptive and non-preemptive algorithms (Zhu, Lewis and Colin, 1994). 

e. The Harmonic Block Theorem 

Theorem 8: 

"If 3 an infinite feasible schedule S without any inserted idle time for a 

periodic task set P with precedence constraints, such that the first instance of every task, 

Tj in P must start by time PER,, then there exists an infinite feasible schedule S' 

consisting of a transient portion of length at most LCM, followed by a cyclic portion of 

length LCM that repeats forever." (Cordeiro, 1995) 

The Harmonic Block (HB) is the least common multiple (LCM) of the 

periods of a periodic task set, as illustrated in Figure 3.6. It is the interval upon which the 

task set will be tested for schedulability. If a feasible schedule can be found within 2 x 

HB and if latencies are not allowed in the schedule, then it is possible to say that the same 

pattern can be repeated forever. 
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Figure 3.6. The Transient and Cyclic Schedules 

It is a well known and accepted result that the LCM of the periods of a 

periodic task set provides a finite interval of time for which a cyclic schedule can be 

calculated, if one exists, and repeated forever (Mok, 1983). As we can see in Figure 3.6, 

it is not necessary for all task instances to start in the interval [0,LCM] and complete 

execution by time LCM for a cyclic feasible schedule to exist. It seems very reasonable 

to allow the first instance of a periodic task to start within its period of activation, but 

finish up to the end of the period plus its computational time. Actually, this would be 

very desirable if it could somehow improve the already difficult problem of non- 

preemptive scheduling. 

3.        Coping with Sporadic Tasks 

Generally speaking, a sporadic task is defined as an aperiodic task that has a 

minimum duration between two consecutive activations. If that was not so, neither the 

static nor the dynamic approach could be used to guarantee schedulability. 

If interrupts are used to detect the occurrence of aperiodic events at run-time, then 

a dynamic approach should be used. However, in the static scheduling framework, where 

all the task requests must be known a priori so that a fixed and static schedule can be 

generated, the only way to handle aperiodic, unanticipated sporadic task is to use a 

periodic process that functions as a polling device. Its main role is to check for arrival of 

sporadic tasks and to serve them during its allocated time slot. However, due to the 

random nature of aperiodic processes, we may not be able to handle a concentrated set of 

arrivals or even worse, not catch them all with the sporadic server approach.    To 
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overcome this difficulty, several bandwidth preserving algorithms have been proposed. 

Among them could be mentioned the Priority Exchange, Deferrable Server and the 

Sporadic Server (Audsley and Burns, 1993). 

In short, we need to guarantee that all time-critical sporadic operators will be 

serviced in a timely fashion, even in the worst case situation. The solution, considering 

the model we have been studying, is to use polling and assign one sporadic server for 

each time critical sporadic operator. 

The next step is to convert the sporadic operator into a periodic one so that all the 

original timing constraints from the sporadic operator are still satisfied. Each sporadic 

operator will be assigned a triggering period (TP). The term triggering period will be 

used for the period of the converted sporadic operator and the usual term FW for its finish 

within. As shown in Figures 3.7 and 3.8, two cases can occur. 

The first case is when MCP < MRT - MET and the equivalent periodic operator 

must have TP < MCP to satisfy the original time constraints. Also, it must enforce FW = 

MRT - TP, so that in the critical case (shown in Figure 3.7) the data that was missed by 

the previous triggering period can be consumed by the next TP and still finish within the 

original MRT. 

Case A 
MCP < MRT - MET 

TP < MCP 
FW < MRT - TP 

New 
Data 

New 
Data SI 

A 
-=5" 

Triggering Period 
«£- -3» 

<- 

FW 

-> 
MCP 

<r- -> 
MRT 

Figure 3.7. The Sporadic Conversion when MCP < MRT - MET 
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CaseB 
MCP > MRT - MET 

TP < MRT - MET 
FW = MRT - TP 

New 
Data 

SI New 
Data 

A 

<Sr- 

A 

Triggering Period FW 

MRT 

MCP 

Figure 3.8. The Sporadic Conversion when MCP > MRT - MET 

The second case, shown in Figure 3.8, occurs when MRT - MET < MCP. This 

more constrained situation forces a further reduction in the triggering period. Thus, the 

new TP should be TP < MRT - MET and the FW should be equal to MRT - TP. In 

general, the triggering period should be 

MET < TP < min(MRT - MET, MCP) 

and 

FW = min(TP,MRT-TP). 

Nevertheless, in order to minimize the impact on the load factor of the prototype, it is 

desirable that the TP be as large as possible, meaning that 

TP = min(MRT - MET, MCP). 

Also, the MRT for a sporadic operator must be upper bounded by twice its MCP and 

lower bounded by twice its MET, as follows. 

2 x MET < MRT < 2 x MCP 

The worst case situation is when MRT assumes its lowest possible value, which is 2 x 

MET. The triggering period TP will then reflect its lowest possible value, which is MET, 

with FW still being equal to MET. 

According to Cordeiro (1995), when implementing this conversion it is strongly 

recommended that a careful analysis of the task graph be made to determine reasonable 
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bounds for the period of the transformed sporadic operator. At first glance, an obvious 

upper bound is the value of its MCP. However, for lower-bounds this choice is not so 

clear. Nonetheless, it is assumed that after this pre-processing there will be an interval of 

possible values for the period of the transformed sporadic task. These bounds provide us 

with some margin for making the conversion so that the final harmonic block of the 

entire set does not increase significantly. 

C.       DISTRIBUTED SCHEDULING 

In general, two different approaches to handling distributed computation can be 

identified. In the first, the distributed system is coordinated by a single system clock, 

which synchronizes all tasks so that computation progresses in a lock-step fashion, and 

communication between tasks can only occur at specific times. In the second approach, 

tasks are synchronized only when necessary, and do so by executing appropriate hand- 

shake protocols. The former approach requires less inter-processor communication, but 

is rigid, and relies on a global clock whose implementation is another very difficult 

problem to solve. Although more flexible, the latter approach dramatically increases the 

complexity of the synchronization problem and may be very costly in terms of 

communication, since many acknowledge signals must be exchanged in order to maintain 

proper synchronization. The use of rigorous and more constrained time requirements 

allows for the establishment of a weak form of synchronization among the tasks of the 

distributed system and represents an alternative in the middle (Mok, 1983). 

According to Cordeiro (1995), the ideal real-time distributed system should have 

the following goals: 

L   Be able to support groups of tasks running asynchronously in different 
processors; 

2. Eliminate the need for enforcement of any kind of synchronization required 
by communication; and 

3. All the deadlines and other requirements (such as loss of data, etc.) should be 
met. 

A good alternative to achieve the ideal system is investigating ways of restricting 

or relaxing the timing requirements to increase the chances of finding a feasible schedule. 

In other words, the objective would be to change timing constraints so that no 

synchronization   would   be   needed,   and   consequently   decrease   substantially   the 

complexity of the distributed scheduling problem. 
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1.        Dealing with the Synchronization Problem 

When dealing with the synchronization problem, Cordeiro (1995) studied the 

synchronization in PSDL and addressed several issues based on the real-time semantics 

of PSDL. He evaluated the different triggering conditions, stream types and operator 

types for PSDL graphs with no cycles, and his conclusion was that we need to enforce the 

condition that PERpr0ducer ^ PERconsumer so that no data is lost and, consequently, the 

synchronization problem will have to be handled accordingly. Also, he showed that even 

in the uniprocessor case, with the period of the consumer being smaller than the period of 

the producer (see Figure 3.9), synchronization is not always a good alternative. Figure 

3.9 shows an example where no feasible schedule exists if synchronization is enforced, 

but one does exist otherwise. Three outcomes are possible if the synchronization is not 

required: 

1. If the consumer operator is TRIGGERED BY ALL x,y , the proposed 
schedule is valid but x and y will be consumed one instance later, 

2. If the consumer operator is TRIGGERED BY SOME x, y , then the schedule 
is always valid, because x and y do not need to be consumed together, 

3. If there is no trigger, then the relative order is not important. 

(50, 500, 500) 

(50, 500, 500) 
(10, 100, 10) 

with synchronization 

m  n   n   n m 
0   100 200   300 400 500  600  700 

lip     p 
without synchronization 

n    n a 
0   100  200   300 400 500   600   700 

Figure 3.9. Reason for No Synch When PERpr0d > PERons for Uniprocessor Case 

The only case in which PERproducer < PERconsumer can be allowed is when there is 

no trigger at all. In this situation, synchronization is not needed, since it would place an 

additional burden on the scheduler and would not solve the problem of losing data. The 
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only advantage of having synchronization in this case is the fixed pattern for losing data. 

Furthermore, without explicit synchronization, the most that could happen (as seen in 

Figure 3.10), is that the consumer operator would read either the previous or the next 

instance of the data output by the producer. In other words, the operator would read the 

data one period apart at most. 
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Periodic 
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m 
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lost       lost 

V   200       400  \ 

m m i 
600      800       1000 \   1200 

1 1 
V 

1 

1 
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Figure 3.10. Reason for No Synch when PERprod < PER™™ for Distributed Case 

When PERproducer ^ PERconsumer, synchronization also does not solve the problem. 

It is possible to have two instances of the producer operator being scheduled one after the 

other, and this causes an overflow or loss of data depending on the triggering condition. 

This case is illustrated in Figure 3.11. 
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Figure 3.11. Reason for No Synch when PERpr0d ^ PERcons for Distributed Case 

As we can see, after scheduling each producer of a data flow or triggered by some 

sampled stream, the consumer of that data flow or sampled stream should be scheduled 

before the next instance of the producer. In a uniprocessor case, or even in a shared 

memory multiprocessor model, this approach is acceptable and easy to implement and 

guarantee. However, in a distributed case the lack of a master clock might cause a 

normally feasible schedule to become infeasible. 

This assertion may be illustrated with a simple example. Assume a schedule for a 

two-processor system that meets all deadlines and synchronization requirements among 

their tasks, and that no buffer overflow occurs with respect to the data flow streams. 

Now, if clock drift occurs in processor 2, so that one of its consumers get shifted more 

than twice the period of its correspondent data flow producer, the consumer is guaranteed 

to lose data, and the schedule will fail (Cordeiro, 1995). Therefore, a new approach must 

be developed for the distributed case. Ideally, several sets of communicating processes 

would run independently in each processor, but with the guarantee that no data would be 

lost and no deadline missed (Cordeiro, 1995). 

Since missing deadlines are always attached to data not being generated or 

consumed in the proper timing, we need to guarantee that all data being generated is 

consumed in a timely fashion. Then, the very first condition that must be satisfied is that 

PERproducer ^ PERconsumer, so that no data is lost. 
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2.        Additional Restrictions Imposed on the Timing Constraints 

In the previous subsection, we saw that for the distributed case synchronization is 

not needed. Obviously, there is a price to eliminate synchronization and that is a more 

stringent set of timing constraints for tasks. 

Cordeiro (1995) shows that even with a faster consumer it is possible to have up 

to three occurrences of the slower producer between two consecutive instances of the 

consumer. Therefore, there can exist at most three instances of produced data waiting to 

be consumed at any instance of time. Also, based on this statement, we can say that any 

produced data will be consumed within at most two periods of the consumer, as 

demonstrated in Figure 3.12. 

Producer A 

1 m 

Consumer B 

Figure 3.12. The Consumer-Producer Paradigm 

It can be seen that the worst case that can occur is to have data from a producer 

consumed after 2 x PER^umer - METconsumer units of time. Currently, in PSDL, contrary 

from the sporadic case, there is no upper bound on the time input data for a periodic 

operator should be consumed. Therefore, if the consumer is a periodic operator that 

receives data from network streams, not using synchronization will not impose any 

additional constraints on timing requirements. 

In the sporadic case, however, the explicit upper-bound for consuming the 

incoming data is MRT, which is assumed to be greater than or equal to the latency plus 

the MET of the consumer operator for the incoming data.    Therefore, an additional 
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restriction on the triggering period of a sporadic operator must be imposed when it has 

any data coming from network streams. Figure 3.13 shows the new timing constraints we 

should consider for the sporadic operator. 

Producer A 

LAT 
Consumer B 

PER« 
-?><- 

PERB 

MRT« 

Figure 3.13. New Timing Constraints for the Sporadic Operator 

From Figure 3.13, we have the following: 

2 x TPB + LATMAX < MRTB 

or 

TPB< MRTB      LATMAX 

2 2 

which is the new upper-bound for the triggering period of a sporadic, operator.' We also 

know, from the previous section, that TP > MET. Hence, 

METB < TPB < MRTB      LATMAX 

2 2 

which is the new formula for calculating the triggering period of a periodic operator 

under the no synchronization assumption (Cordeiro, 1995). 
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IV.    THE ALLOCATION AND SCHEDULING PROBLEM 

A.       INTRODUCTION 

The task allocation and scheduling problem is one of the basic issues of building 

real-time applications on a distributed computing system (DCS). A DCS is typically 

modeled as a collection of processes interconnected by a communication network. For 

real-time applications, the allocation of tasks over the distributed system is intended to 

fully utilize the available processors, and the scheduling is needed to meet their timing 

constraints (Cheng and Agrawala, 1995). 

A statically scheduled real-time system is composed of a number of real-time 

tasks dispatched according to the static schedule. Analysis is done a priori to determine 

the worst case condition, and the system is only deployed if the timing requirements are 

met. In this thesis, one of our objectives is to apply this approach to distributed real-time 

embedded systems. One of the most important problems with a priori analysis for real- 

time distributed systems has been complications introduced by communications costs: the 

delay for messages sent between processors must be accurately bounded. 

In Chapter III, we saw a distributed scheduling analysis and how it is used to 

determine the conditions to guarantee that no deadlines are missed. In addition, we saw 

the additional restrictions imposed on the timing constraints due to the delay introduced 

by interprocessor communications under the no synchronization assumption. In this 

chapter, we focus on the scheduling problem in the Prototyping System Description 

Language (PSDL), which is a high-level prototyping language designed specifically to 

support conceptual modeling of real-time embedded systems. 

The major difference between single processor'and multiple processor scheduling 

is that, in addition to deciding which order to execute tasks, the multiple processor 

scheduling algorithms must decide which processor the task should run on. Therefore, 

we propose a technique to deal with the allocation problem. 

As shall be shown, task allocation dramatically complicates the already complex 

problem of distributed software design, because in assigning m processes onto n 

processors, there are nm different possible assignments. Optimal allocation is a problem 

of exponential complexity, and was proven to be NP-complete by Mok (Mok, 1983). 
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The key to process allocation is to establish an allocation model in terms of a cost 

function and additional constraints that match the application requirements as far as 

logical and timing correctness. The goal is to minimize the cost function under the 

constraints. Most of the cost functions found in available literature deal with 

performance. Others, such as those relating to reliability and fault tolerance, are only 

now emerging (Shatz and Wang, 1989). 

The most widely used performance cost functions are: 

1. Interprocessor communication cost (IPC) which is a function of the amount of 
data transferred, the network topology and link capacity; 

2. Load balancing, which is a measure of how uniformly the workload is 
distributed among the processors. A good load balance will maximize system 
stability, which is the capability of busy hosts to receive bursty arrivals of 
processes without compromising their deadlines; 

3. Completion time, the total execution time including interprocessor 
communication incurred by that processor. 

The most frequent constraints found in typical real-time system are processor 

hardware limitations, dependence of some processes on certain processors, and number 

of available processors. The choice of a cost function obviously depends on the 

application, on the underlying hardware, and on several other characteristics (Cordeiro, 

1995). Although distributed processing seems very attractive, one should be aware of the 

saturation effect that is sometimes forgotten by many developers. The basic consequence 

of this effect is that, contrary to expectations, the throughput does not increase linearly as 

the number of processors is increased. Actually, at some point (which can be as few as 

three or four processors) throughput starts to decrease (Chu, Holloway, Lan and Efe, 

1980 and Jenny, 1977). The decrease in throughput is due to excessive interprocessor 

communication. Basically, the different approaches to solving the allocation problem all 

fall into one of three major classifications: graph theoretic, mathematical programming, 

or heuristics methods, which are by no means mutually exclusive. 

The first of these represents the processes to be allocated as nodes in a graph, 

where each edge has a weight that is proportional to its inter-module communication cost 

(IMC), with the following remarks: an IMC of zero means that no communication takes 

place between those two modules and an IMC of infinity means that they should be 

assigned to the same processor. If a minimal-cut algorithm is performed on the graph, 

one ends up with the minimum allocation cost for those modules between two processors. 
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In general, however, an extension of this method to an arbitrary number of processors 

requires an n-dimensional min-cut flow algorithm, which quickly becomes 

computationally intractable (Cordeiro, 1995). 

The mathematical programming approach uses, in most cases, the non-linear 

integer programming technique, where the above problem is formulated as a set of 

equations. It is very flexible in the sense that additional constraints can be included in the 

model very easily, moreover, this approach fails to accurately represent real-time 

constraints and precedence relations among tasks, because both factors introduce queuing 

delays into the system in a complex manner (Cordeiro, 1995). 

Finally, heuristic methods (investigating practical ways of finding a solution), 

unlike the first two, try to find sub-optimal solutions for the assignment problem, which 

are generally faster, more extendible and simpler. 

B.       APPRO ACHING THE SCHEDULING PROBLEM 

One of the major tasks when dealing with the scheduling problem is to determine 

whether the timing constraints of a given specification can be satisfied by some real-time 

systems. As we said above, analysis should be done a priori in order to determine the 

worst case condition. Therefore, we choose to demonstrate the schedulability of a 

prototype via generation of a static schedule that enforces all real-time constraints under 

the worst case conditions. Here we assume that each operator runs on the same processor 

from activation to completion. Thus, the CPU time is in one contiguous interval. We 

make this assumption to simplify the scheduling problem and, to keep interprocessor 

communication overhead at a minimum. All of the other timing constraints are bound on 

the duration of the time intervals defined by pairs of events. 

Real-time systems typically consist of a mixture of periodic and sporadic tasks, 

each with an associated deadline and precedence constraints. Failure to meet critical task 

deadlines may lead to catastrophic failure of the system, requiring off-line analysis of 

allocation and processor scheduling to guarantee task deadlines (Tindell, Burns and 

Wellings, 1992). In this approach, the scheduler converts all sporadic time critical 

operators into equivalent periodic operators, as was shown in Chapter III. It is desirable 

to set the equivalent period as large as possible in order to minimize the impact on the 

load factor of the prototype. On the other hand, this increases the possibility of getting a 
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set of periods with a very large LCM (Least Common Multiple) after the conversion. 

According to Luqi and Shing (1996), prototypes with a large LCM are less likely to be 

schedulable. Hence a heuristic algorithm was developed to exploit the fact that a very 

small change in periods, while only affecting the load factor slightly, may be sufficient to 

dispose of some prime factors of the LCM, reducing it significantly. For further 

examination of this problem see Cordeiro (Cordeiro, 1995). 

Based on what was explained above, we should assume that all the critical 

operators are periodic for the rest of the chapter. A set O of non-preemptive periodic 

operators with precedence relationship is schedulable if there exists a static schedule such 

that the start and completion time of every operator instance satisfies the timing and 

scheduling constraints. It is a well-known and accepted result that the least common 

multiple (LCM) of their periods provides a finite interval of time, for which a cyclic 

schedule can be calculated, if one exists, and repeated forever (Luqi and Shing, 1996). 

Based on the Harmonic Block Theorem that was shown in Chapter III, we can say that it 

suffices to compute the cyclic schedule within the interval [0, 2 x LCM]. In Table 4.2 

shows a summary of notations that will help the reader to get a better understanding of 

the scheduling problem. 

Notation 

act(oijk) 

St(Oi,k) 

Ct(Oi,k) 

d(c-i,k) 

tardinessfai^) 

ready(oi;k) 

Meaning 

The beginning of the km period of the operator o; 

The actual starting time of Oj,k 

The completion time of o^k 

The deadline (latest completion time) of Oj,k 

The amount of time by which Oj,k misses its deadline 

The earliest time when Oj can actually fires in the km period 

Table 4.1. Summary of Notations 

C.        THE DISTRIBUTED SCHEDULING PROBLEM 

Given a set of operators and a set of identical processors in a distributed system, a 

static schedule is a function that maps each instance of the operators that must start 

within [0, 2 x LCM] to a triple (Pid, st, ct), where Pid is the label of the processor that 
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executes the operator instance, st is the exact execution start time for the operator 

instance, and ct = st + MET, the time by which the operator instance must complete its 

execution. The reader should remember that here we assume that all of the instances of a 

given operator should be executed on the same processor. 

A static schedule is said to be legal if the relative ordering of the operator- 

instances in the schedule satisfies the precedence constraints imposed by the prototype. 

A static schedule is said to be feasible if the schedule is legal and every operator-instance, 

when executed according to the schedule, meets its deadline. The cost of a schedule is 

defined here to be the maximum tardiness over all instances of the operators in G'. 

Hence, any legal schedule with zero cost is a feasible schedule. 

The distributed static scheduling problem is to decide if there is a feasible 

schedule for the given scheduling constraint graph on a set of N processors. We already 

know that the static scheduling problem is NP-hard, so it is not likely to have efficient 

algorithms for solving the general static scheduling problem. Hence, we propose to 

construct an allocation model in terms of the interprocess communication cost, load 

balancing and timing correctness, so that the overall real-time constraints are matched. 

Figure 4.1 shows the three kinds of graphs that are used by the CAPS scheduler to 

build the schedule. The global precedence graph G' can be obtained from the expanded 

dataflow graph G by removing.all edges in G which represent state variables and then 

taking the transitive closure of the resultant graph. Given the global precedence graph, 

the scheduling constraint graph CG is defined by considering all task instances that must 

start execution in the interval [0, 2 x LCM], according to the algorithm for construction 

of the scheduling constraint graph presented by Luqi and Shing (1996). 

Note that the scheduler does not construct the scheduling constraint graph 

explicitly. It computes the precedence constraints described by CG dynamically as it 

builds the static schedule based on the global precedence graph G' of the prototype (Luqi 

and Shing, 1996). 
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a) The Expanded Data flow Graph 

b) The Global Precedence Graph c) The Scheduling Constraint Graph 

Figure 4.1. Graphs Used by the CAPS Scheduler 

The scheduling constraint graph contains all task instances that must start within 

the interval [05 2 x LCM]. While defining CG, the scheduler is able to calculate the 

earliest time when operator-instance Oj can actually fire in the k* period, ready (oi;k), and 

the deadline (latest completion time) of oijk, d(oi;k). These notations are defined in (Luqi 

and Shing, 1996). 

1. Building the Distributed Schedule 

Before starting to explain how the distributed schedule is built, we must mention 

the limitations of the algorithm we propose here. It only handles expanded dataflow 

graphs that contain cycles, if those cycles can be confined in each one of the available 

processors. Note that cycles in an expanded dataflow graph usually imply feedback loops 

of the state machines, where all operators in the loop are executed in locked steps and the 

input of each operator depends on the output of its previous firing. While the circular 

precedence constraints introduced by the cycles are broken by state streams in the cycle, 

the successive firing of the operators in the loop have to be synchronized to make sure 

that an operatoor acts upon the "feedbacks" (i.e. new input data) resulted from the 
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previous firing. While such synchronization is implied via the sequential execution of the 

operators in the static schedule for the uniprocessor case, explicit synchronization is 

needed for the distributed case where the operators in the feedback- loop are assigned to 

different processors across the network, due to the long delays introduced by 

interprocessor communications. Another limitation is about operators connected by 

sampled steams running on different processors. We cannot always guarantee that a new 

data sent over the network will be consumed at the appropriate time by the consumer 

operator due to the lack of a global clock. For example, a drift in the clock of the 

processor on which the consumer operator is running may cause the consumer operator to 

lose the new data and, consequently, create dependency problems. To avoid these kinds 

of problems and make sure that underflow exceptions will not be raised we should use 

state streams to dissociate producer and consumer operators running on different 

processors. 

The scheduling technique we propose here is based on ordered doubly linked list 

(DLL) structures. Although linked-list operations such as traverse or insert in order 

require 0(N) time because they usually involve visiting each element in sequence, we can 

have considerable advantage in terms of flexibility. It is relatively easy to add new 

information by creating a new element and inserting it between two existing elements. 

Moreover, many of the operations in this model consist of grabbing information from the 

last element in the list, which requires 0(1) time. However, the greatest advantage of 

using ordered doubly linked lists is that, when we finish the algorithm, the assignment of 

operators to processors and the static schedule are ready. There is no need to search the 

scheduling constraint graph. In addition, the tool that performs the automatic generation 

of code can easily access the information it needs, such as number of processors, 

interprocessor communications, allocation of operators to the available processors, etc. 

We keep a doubly linked list for each processor and a separate list for the 

incoming communication network for each processor. Because operations on linked lists 

such as traverse and insert are expensive, initially each element in the list of a processor 

represents a time slot assigned to the first instance of an operator to be executed on that 

processor. Later, after a feasible partial schedule is found, these lists are extended, so 

that each element represents a time slot assigned to some instance of an operator. The 
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elements in each list of a processor P are ordered in increasing order of start time.   Also, 

each element has the following fields: 

1. Operator ID i 
2. Operator-instance k 
3. Activation time act 
4. Start time st 
5. Completion time ct 
6. Deadline d 
7. Number of instances that start within [0, 2 x LCM] nj 

For the communication network list, each element represents an incoming 

communication arriving at the corresponding processor and the list is ordered in 

increasing order of latency. Each element of a communication network list has the 

following fields: 

1. Producer o, 
2. Consumer Oj 
3. Latency L(OJ -» Oj) 

We know that distributing tasks to as many processors as possible tends to 

increase the communication delay, which decreases the chances for the scheduler to find 

a feasible schedule. So, there is a trade-off between the advantages of maximizing 

parallelism (maximize the number of operators executing in parallel) and minimizing 

communication delay. Although maximum parallelism seems to be good at the 

beginning, it increases interprocessor communication demand and, consequently, the 

overall communication delay. Therefore, our objective here is to keep a reasonable 

number of processors, but still take advantage of concurrent execution. 

A set of periodic operators in a prototype is not schedulable if the load factor of 

the protoype is greater than the number of available processors. In other words, the 

number of available processors should be, at least equal to |~2 MET(x)/PER(x)] over all 

periodic operators x. For example, if the load factor is equal to 1.8, then for the protoype 

to be schedulable we need at least |"l.8T= 2 processors. However, a high load factor may 

affect the schedulability of the prototype. Therefore, to increase the efficiency of the 

algorithm we set the value maxjoadjactor, which is the maximum allowed load factor 

for each processor. 

Assume maxjoadjactor = 0.7 in the example above. Now, for the prototype to 

be schedulable we need \2J0.i] = 3 processors.   Therefore, considering the explanation 
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above, we decide to keep the number n of processors equal to max(z, w) where z is the 

minimum number of processors required by the prototype when considering the load 

factor and maxjoadjactor, and w is the number of operators with no incoming edge. 

Given the global precedence graph G' of the prototype, the partial distributed 

static schedule is built as following: 

1. Calculate n = max(z, w). Then create n linked lists, which represent the n 
processors, and n linked lists representing the communication network. 

2. For each operator with no incoming edge o; in G, 1 < i < w, create a copy of 
the operator and insert it into the list corresponding to processor Pi, where i = 
(1, 2, ..., w). The operator is assigned st = 0 when inserted into the first 
position in the list for processor Pj. 

3. For each list corresponding to a processor Pj, 1 < i < w, remove the'children of 
the first operator Oj in G and insert them into the Ready_Set. Next, while 
Ready_Set is not empty, remove the operator with the earliest start time and 
calculate the load factor for the processor Pj. If load factor < 
maxjoadjactor, then insert the operator in the list If load factor > 
maxjoadjactor, then start to fill the list for the next available processor 

At this point, we have allocated each operator in the prototype to a processor and 

built the partial schedule.  Now we should adapt the partial schedule to the distributed 

model, that is,.modify the start time and completion-time of all the operators to include 

the delay introduced by each interprocessor communication. For any two vertices o; and 

Oj in G, if edge Oj —> Oj exists in G and Oj is located on a different processor than Oj, then 

pick up the edge o, -» Oj with the greatest latency L(Oi -» Oj) in G, calculate the latency L 

for that specific interprocessor communication and, in the case L > L(OJ —» Oj), assign the 

value of L to L(o; -> Oj). Now, if ct(oj) + max[L(Oj -» Oj)] > st(oj), then we must update 

the start time and completion time of operator oj so that. 

st(oj) = ct(oj) + max[L(oj -» Oj)] 

and 

ct(Oj) = st(oj) + METj 

•In addition, the start time of all'operators on the same processor with a lower 

precedence constraint than Oj that are affected by the communication delay should be 

updated accordingly, so that the precedence and mutual exclusion constraints are satisfied 

as  originally  required.     Finally,  create  a new  element to  be  inserted  into  the 
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communication network list corresponding to the processor where Oj is located. Figure 

4.2 shows the algorithm used to adapt the schedule to the distributed model. 
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Procedure Adapt_Schedule_ToJDistributed_Model 
(Partial_Schedule, Communication_Network) is 

Begin 
Max_Latency := 0; 
For i in 1 to Number of Vertex in G' loop 

For j in 1 to Number of Vertex in G' loop 
Ifi/=jthen 

If Processor_Id(i) /= Processor_Id(j) then 
For each edge Oj —» Oj in G' loop 

If edge Oj -> Oj is present in G then 
If Latency(Oj -> Oj) > Max_latency then 

Max_latency := Latency(o; -» Oj); 
End if; 

End if; 
End loop; 
If (IPC_Latency := Calculate_IPC_Latency(oj —» Oj)) > MaxJLatency then 

Max_Latency := IPC_Latency; 
End if; 
ProducerJPtr := Find_Operator(i, Partial_Schedule(Processor_ID(i))); 
Consumer_Ptr := Find_Operator(j, Partial_Schedule(Processor_ID(j))); 
If (ProducerJPtr.ct + Max_Latency) > Consumer_Ptr.st then 

Consumer_Ptr.st := Producer_Ptr.ct + Max_Latency; 
Consumer_Ptr.ct := Consumer_Ptr.st + MET(j); 
Lower_Precedence_Op := Consumer_Ptr.Next; 
While Lower_Precedence_Op /= Null loop 

If Lo wer_Precedence_Op. st 
< Lower_Precedence_Op.Previous.ct then 

Lower_Precedence_Op.st := 
Lower_Precedence_Op.Previous.ct; 

LowerJPrecedence^Op.et := Lower_Precedence_Op.st + 
MET(Lower_Precedence_Op.i); 

End if; 
Lower_Precedence_Op := Lower_Precedence_Op.Next; 

End loop; 
End if; 
Net_Communication := New_Net_Element(i, j, Max_latency); 
Insert_in_Order 

(Net_Communication, Communication_Network(ProcessorID(j))); 
End if; 

End if; 
End loop; 

End loop; 
End; 

Figure 4.2. Adapt Schedule to the Distributed Model Algorithm 
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The reader should remember that, according to the analysis for the distributed 

scheduling we saw in Chapter III, to guarantee that no data is lost, the period of operator 

Oj must be greater than or equal to the period of operator Oj. So, a warning must be 

displayed by the scheduler in case this condition is not satisfied. 

It should have been noticed that the scheduler uses the earliest-starting-time-first 

algorithm to build the schedule. It removes the vertex with the earliest start time among 

all the vertices v in the Ready_Set and inserts it to a list. According to Luqi and Shing 

(1996), the earliest-starting-time-first algorithm is very effective in finding a feasible 

solution for prototypes with load factor 0.7 or below, so 0.7 is a good reference for the 

value of maxjoadj'actor for each processor. ■ 

The major difference between distributed scheduling and multiprocessor 

scheduling is the delay introduced by interprocessor communications. The latency for 

the transmission of a data value b bits long from processor Pj to Pj is considered to be 

zero in a shared memory, multiple processor configuration. On the other hand, the 

latency is Dy + (bx Ty) for the distributed configuration, where: 

1. Dy is the interprocessor delay, and 
2. Ty is the inverse of the link speed (seconds per bit). 

Another difference is that the scheduler initially allocates only the first instance of 

the operators to processors. Later, after a feasible partial schedule is found, the partial 

schedule is extended (see Figure 4.3), so that the elements in the list for each processor 

represent the operator-instances that start execution within [0, 2 x LCM]. Because of this 

fact, we need to come up with a way to extend the schedule, which is done as following: 

1. When a new element is inserted into the list for each processor, we calculate 
the number n; of instances of the operator Oj that start within the interval [0, 2 

T PX41    u 2* LCM x LCM], where n; = : 
PERj    ' 

2. After a feasible partial schedule is found, we should traverse each list and for 
each element insert m - 1 new elements in the list, so that all of the operator- 
instances which start execution within [0, 2 x LCM] have a corresponding 
element in the list. 
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Function Extend_Partial_Schedule(Partial_Shedule) is 
Begin 

For j in 1 to Number_of_Processors(Partial_Schedule) loop 
CurrentOperatorJPtr := Partial_Schedule(j).Head; 
Last_Operator_Ptr := Partial_Schedule(j).Tail; 
While Current_Operator_Ptr /= Last_Operator_Ptr.Next loop 

For count in 1 to Current_Operator_Ptr.nj - 1 loop 
New_Operator_Instance_Ptr := Create_New_Element; 
New_Operator_Instance_Ptr.i := Current_Operator_Ptr.i; 
New_Operator_Instance_Ptr.k := 1 + Current_Operator_Ptr.k; 
New_Operator_Instance_Ptr.act := Current_Operator_Ptr.st + 

count x PER(New_Operator_Instance_Ptr.i); 
New_Operator_Instance_Ptr.d := New_Operator_Instance_Ptr.act + 

FW(New_Operator_Instance_Ptr.i); 
Insert_in_Order(New_Operator_Instance_Ptr, Partial_Schedule(j)); 
— Insert new element to the list in increasing order of start time. 
~ The actual st and ct of the new operator instance is calculated after it is 
~ inserted in the list, according to the ct of the previous operator, such 
— that the mutual exclusion constraint is satisfied. Also, we must ensure 
— that the start time of the next operator is greater than or equal to ct of 
— the new element. 

End loop; 
Current_Operator_Ptr := Current_Operator_Ptr.Next; 

End loop; 
End loop; 
Return(Partial_Schedule); 

End; 

Figure 4.3. Extend Partial Schedule Algorithm 

2. Verifying the Feasibility of the Schedule 

As we saw above, the scheduler first builds a partial schedule by allocating just 

the first instance of each operator to the available processors. Then, it adapts the 

schedule to the distributed model, which means that all of the operators affected by 

communication delay due to interprocessor communication (more specifically, the 

consumer operator and probably other operators with lower precedence constraints) must 

have their start times updated. By updating the start time of those operators affected by 

communication delay, the scheduler guarantees that the consumer operator is able to read 

the data sent by the incoming interprocessor communication and the precedence, 

constraints are still satisfied. 
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Next, we must verify if the partial schedule is feasible, that is, we must verify that 

every operator executed according to the schedule will meet its deadline. We do this by 

evaluating the cost of the partial schedule. If the partial schedule satisfies the precedence 

constraints imposed by G' and its cost is zero, then the partial schedule is feasible. Figure 

4.4 shows the algorithm used to evaluate the cost of the distributed schedule. After 

evaluating the cost of the partial schedule, we check the value returned by function 

Evaluate_Cost, and if cost is equal to zero, then a feasible partial schedule was found. 

Now, the partial schedule is ready to be extended. 

Function Evaluate_Cost(Schedule; Number_of_Processors) 
Begin 

Expected_Lower_Bound := 0; 
For j in 1 to Number_of_Proeessors loop 

Lower_Bound(j) := max{0, ct(oik) - d(oijk) | for all operator-instances oi>k in the 
list for processor Pj in the Schedule} 

If Lower_Bound(j) > 0 then 
return(i); 

End if; 
End loop; 
return(Expected_Lower_Bound); 

End; 

Figure 4.4. Evaluating the Cost of a Distributed Schedule 

As we can see in Figure 4.4, the algorithm checks each processor to determine if 

there is any operator that does not meet its deadline. If there is an operator missing its 

deadline, the function Evaluate_Cost returns the identification ofthat processor. Next, the 

distributed scheduling algorithm outputs message "Schedule Not found" and exits. 

After a feasible partial schedule is found, the schedule is extended as explained in 

the previous subsection. The activation time of each new element inserted in the list is 

calculated as following: 

act(oijk) = st(ou) + (k -1) x PER(oi) 

According to the PSDL mutual exclusion constraint (see Section A.5 in Chapter III), the 

execution time of operator-instances running on the same processor cannot overlap. 

Therefore, after inserting a new operator in the list ordered by start time, we must check 

if its activation time is greater than or equal to the completion time of the overlapping 

operator. If it is not, the start time of the new operator will be assigned the value ct of the 
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previous operator. Also, we must ensure that completion time of the new operator is less 

than or equal to the start time of the next operator in the list. If it is not, then we must 

update the start time and completion time of all the affected operators in the list. Finally, 

we should verify the feasibility of the extended schedule by evaluating the cost of the 

schedule. If the value returned by function Evaluate_Cost is equal to zero, a feasible 

schedule was found. Figure 4.5 below shows the distributed scheduling algorithm. 
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The Distributed_Scheduling Algorithm 
Begin 

Max_Load_factor := 0.7; 
z := Minimal_Number_Of_Processors; 
w := Number_Of_Operators_With_No_Incoming_Edge; 
Number_Of_Processors := max(z, w); 
Partial_Schedule(l..Number_Of_Processors); 
Communication_Network( 1. .Number_Of_Processors); 
Ready_Set={ }; 
For each operator with no incoming edge in G' loop 

v := Operator_With_No_Incoming_Edge; 
Add_Item_To_Set(v, Ready_Set); 

End loop; 
count := 1; 
While Not_Empty(Ready_Set) loop 

v := Remove_Item_With_Earliest_Start_Time(Ready_Set); 
operator_instance(v) := 1; 
st(v) := 0; 
ct(v) := st(v) + MET(v); 
d(v) : deadline(v); 
Add_Item_To_Schedule(v, Partial_Schedule(count)); 
count := count + 1; 

End loop; 
For i in 1 to Number_Of_Processors loop 

v := First_Element(Partial_Schedule(i)); 
For each child u of v remaining in G' loop 

Remove_Child_And_Add_To_Set(u, Ready_Set); 
End loop; 
count := i; 
While Not_Empty(Ready_Set) loop 

If Load_Factor(Partial_Schedule(count)) < Max_Load_Factor then 
v := Remove_Item_With_Earliest_Start_Time(Ready_Set); 
operator_instance(v) := 1; 
st(v) := max{Last_Stop_time(Partial_Schedule(count)), ready(v)}; 
ct(v) := st(v) + MET(v); 
d(v) := deadline(v); 
AddJtemJTo_Schedule(v, PartialJSchedule(count)); 

Else 
count = count + 1; . 

End if; 
End loop; 

End loop; 
Adapt_Schedule_To_Distributed_Model 

(Partial_Schedule, Communication_Network); 
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If (Evaluate_Cost(Partial_Schedule, Number_Of_Processors) > 0 then 
Output "Schedule Not Found"; 

Else 
Extended_Schedule := Extend_Partial_Schedule(Partial_Schedule); 
If (Evaluate_Cost(Extended_Schedule, Number_Of_Processors) = 0) then 

Output "Schedule Found"; 
Else 

Output "Schedule Not Found"; 
End if; 

End if; 
End; 

Figure 4.5. The Distributed Scheduling Algorithm 

The following example illustrates how the algorithm shown in Figure 4.5 works. 

Consider the expanded dataflow graph in Figure 4.1 (a) and assume that the operators in 

G have the following timing constraints: oi(50, 600, 600), o2(70, 300, 300), o3(50, 200, 

200) and 04(50, 600, 600). Also, assume that all the latencies are equal to zero. Given 

the expanded dataflow graph G, the PSDL scheduler builds the global precedence graph 

G' and the scheduling constraint graph CG as shown in Figure 4.1 (b) and (c), 

respectively, and defines the ready time and deadline for each operator-instance that 

starts execution within the interval [0,1200]. 

Following the distributed scheduling algorithm above, the number of processors is 

calculated according to the load factor of the prototype and the number of operators 

without an incoming edge. In this case, the values are 0.65 and 2, respectively. Thus, 

considering maxjoadjactor equal to 0.7, the minimal number of processors is two. 

Therefore, the number of processors for the distributed model is two as well. Next, the 

partial schedule is built, and looks like Figure 4.6. 
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Figure 4.6. Partial Schedule 

The partial schedule is now adapted to the distributed model and the feasibility of 

the schedule is verified. Note that during the adapting phase the scheduler creates a new 

element in the communication network list for processor Pl9 which corresponds to the 

interprocessor communication between operator o4 in P2, and operator o3 in Pi. 

Assuming that the latency L for the interprocessor communication from o4 to o3 is equal 

to 50 ms, then the value of L(o4 -> o3) becomes 50. Since ct(o4) + L(o4 -» o3) is less than 

st(o3), the start time of operator o3 is not changed when adapting the partial schedule. As 

we can see in Figure 4.6, the cost of the partial schedule is zero because no operator 

misses its deadline, even under the distributed model. 

Next, the partial schedule is extended, so that all the operator-instances in the 

prototype which start execution within the interval [0, 1200] have a corresponding 

element in the schedule. As we can see in Figures 4.7 (a) and (b), the scheduler found a 

feasible distributed schedule. 
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Operator-Instance Start Time Completion Time Deadline Tardiness 

Ol,l 0 50 650 0 

02,1 50 120 370 0 

03,1 120 170 250 0 

02,2 350 420 650 0 

03,2 420 470 520 0 

03,3 550 600 720 0 

Ol,2 600 650 1200 0 

02,3 650 720 950 0 

03,4 750 800 920 0   ' 

02,4 950 1020 1250 0 

03,5 1020 1070 1120 0 

03,6 1150 1200 1320 0 

Figure 4.7 (a). Static Schedule for Processor Pi 

Operator-Instance Start Time Completion Time Deadline Tardiness 

■04,i 0 50 650 0 

04,2 600 650 1200 0 

Figure 4.7 (b). Static Schedule for Processor P2 
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V.      SOFTWARE ARCHITECTURE DESIGN 

A.       INTRODUCTION 

The Ada 95 programming language contains a distributed systems annex that 

defines facilities for supporting the implementation of distributed systems using multiple 

partitions working cooperatively as part of a single Ada program (Ada, 1995). The 

Distributed Systems annex of the Ada 95 Language Reference Manual (Ada, 1995) 

defines a distributed system as an interconnection of one or more processing nodes (a 

system resource that has both computational and. storage capabilities), and zero or more 

storage nodes (a system resource that has only storage capabilities, with the storage 

addressable by one or more processing nodes). The process of mapping the partition of a 

program to the nodes in a distributed application is called configuring the partitions of the 

program. 

In this chapter, we will discuss the characteristics and capabilities of Ada 95 

distributed systems and present the software GLADE (GNAT Library for Ada 

Distributed Execution). GLADE is an implementation of the Distributed Systems annex 

for the GNAT compiler. GLADE has been developed by Ada Core Technologies and a 

research team from Ecole National Superior de Telecommunication (Paris and Brittany, 

France). A complete reference can be found in GLADE User Manual (ACT Europe). 

1. Partitions 

According to the Ada 95 Language Reference Manual (Ada, 1995), the partitions 

of a distributed program are classified as either active or passive. An active partition is a 

program or part of a program that can be invoked from outside the Ada implementation. 

For example, a partition might be an executable file generated by the system linker. The 

user can explicitly assign library units to a partition. The compilation units included in a 

partition are those of the explicitly assigned library units, as well as other compilation 

units needed by those library units. An active partition shall be configured on a 

processing node. The user can optionally designate one subprogram as the main 

subprogram for the partition. A main subprogram, if specified, shall be a subprogram. 

A passive partition is a partition that has no control threads of its own, whose 

library units are all pre-elaborated, and whose data and subprograms are accessible to one 
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or more active partitions. A library unit is pre-elaborated if a pragma Pre-elaborate 

applies to the library unit. If a library unit is pre-elaborated, then its declaration and body 

(if any) are elaborated prior to all elaborated library items of the partition. A passive 

partition shall be configured either on a storage node or on a processing node. The 

configuration of the partitions of a program onto a distributed system shall be consistent 

with the possibility for data references or calls between the partitions implied by their 

semantic dependencies. Any reference to data or call of a subprogram across partitions is 

called a remote access (Ada, 1995). 

2.        Categorization of Library Units 

Library units can be categorized according to the role they play in a distributed 

program. Certain restrictions are associated with each category to ensure that the 

semantics of a distributed program remain close to the semantics for a nondistributed 

program. A categorization pragma is a library unit pragma that restricts the declarations, 

child units, or semantic dependencies of the library unit to which it applies. A 

categorized library unit is a library unit to which a categorization pragma applies. The 

■following pragmas are examples of categorization pragmas: Shared_Passive, 

Remote_Types, and Remote_Call_Interface. A normal library unit is one to which no 

categorization pragma applies. 

According to the Distributed Systems annex of the Ada 95 Language Reference 

Manual (Ada, 1995), the following defines each categorized library unit by categorization 

pragma: 

1. Shared Passive Library Unit 
A shared library unit is used for managing global data shared between active 
partitions. The restrictions on shared passive library units prevent the data or 
tasks of one active partition from being accessible to another active partition 
through references implicit in objects declared in the shared passive library 
unit. 

2. Remote Types Library Unit 
A remote types library unit supports the definition of types intended for use in 
communication between active partitions. 

3. Remote Call Interface Library Unit 
A remote call interface library unit can be used as an interface for remote 
procedure calls (RPCs) between active partitions. 
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3. Remote Subprograms Calls 

A remote subprogram call is a subprogram call that invokes the execution of a 

subprogram in another partition. The partition that originates the remote subprogram call 

is the calling partition, and the partition that executes the corresponding subprogram call 

is the called partition. Some remote procedure calls are allowed to return prior to the 

completion of program execution. These are called asynchronous remote procedure calls. 

(Ada, 1995) 

There are three different ways of performing a remote subprogram call: 

1. As a direct call on a (remote) subprogram explicitly declared in a remote call 
interface; 

2. As an indirect call through a value of a remote access-to-subprogram type; 
3. As a dispatching call with a controlling operand designated by a value of a 

remote access-to-class-wide type. 

The first way of calling corresponds to a static binding between the calling and the called 

partition. The latter two ways correspond to a dynamic binding between the calling and 

the called partition. 

A remote call interface library unit defines the remote subprograms or remote 

access types used for remote subprogram calls. For the execution of a remote 

subprogram call, subprogram parameters (and later the results, if any) are passed using a 

stream-oriented representation which is suitable for transmission between partitions. 

This action is called marshalling. Unmarshalling is the reverse action of reconstructing 

the parameters or results from the stream-oriented representation. Marshalling is 

performed initially as part of the remote subprogram call in the calling partition; 

unmarshalling is done in the called partition, results (if any) are marshalled in the called 

partition, and finally unmarshalling is done in the calling partition. (Ada, 1995) 

A calling stub is the sequence of code that replaces the subprogram body of a 

remotely called subprogram in the calling partition. A receiving stub is the sequence of 

code that receives a remote subprogram call on the called partition and invokes the 

appropriate subprogram body. The task executing a remote subprogram call blocks until 

the subprogram in the called partition returns, unless the call is asynchronous. For an 

asynchronous remote procedure call, the calling task can become ready before the 

procedure in the called partition returns. 
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If a construct containing a remote procedure call is aborted, the remote 

subprogram call is cancelled. If an exception is propagated by a remotely called 

subprogram, and the call is not an asynchronous call, the corresponding exception is 

raised again at the point of the remote subprogram call. For an asynchronous call, if the 

remote procedure call returns prior to the completion of the remotely called subprogram, 

any exception is lost. The exception CommunicationJError is raised if a remote call 

cannot be completed due to difficulties in communicating with the called partition. 

4.        Partition Communication Subsystem 

The Partition Communication Subsystem (PCS) provides facilities for supporting 

communication between the active partitions of a distributed program. The package 

System.RPC is a language-defined interface to the PCS. An implementation conforming 

to Annex E of the Ada Language Reference Manual shall use the RPC interface to 

implement remote subprogram calls (Ada, 1995). Figure 5.1 shows the specification for 

the package System.RPC. 
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with Ada.streams; 
package System.RPC is 

type Partition_ID is range 0..implementation-defined; 
Communication_Error: exception 
type Params_Stream_type ( 

Initial_Size : Ada. Streams. Stream_Element_Count) is new 
Ada.Streams.Root_Stream_Type with private; 

procedure Read (Stream : in out Params_Stream_Type; 
Item : out Ada. Streams. Stream_Element_Array; 
Last: out Ada.Streams.Stream_Element_Offset); 

procedure Write (Stream : in out Params_Stream_Type; 
Item      : in Ada. Streams. Stream_Element_Array); 

— Synchronous call 
procedure Do_RPC (Partition : in PartitionID; 

Params   : access Params_Stream_Ttype; 
Result    : access Params_Stream_Ttype); 

— Asynchronous call    .    , 
procedure Do_APC (Partition : in Partition_ID; 

Params    : access Params_Stream_Ttype); 

—The handler for incoming RPCs 
type RPC_Receiver is access procedure (Params : access Params_Stream_type; 

Result   : access Params_Stream_type); 

procedure Establish_RPC_Receiver (Partition : in Partition_ID; 
Receiver: in RPC_Receiver); 

private 
— not specified by the language 

end System.RPC; 

Figure 5.1 Specification of Package System.RPC (Ada, 1995) 

As we can see in Figure 5.1, a value of the type Partition_ID is used to identify a 

partition. During the execution of a remote procedure call, subprogram parameters (and 

later results, if any) are passed using a stream-oriented representation which is suitable 

for transmission between partitions. As we saw above, the annex calls this action 

marshalling. Unmarshalling is the reverse action of reconstructing the parameters or 

results from the stream-oriented representation. 
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According to the Distributed Systems annex of the Ada 95 Language Reference 

Manual (Ada, 1995), an object of the type Params_Stream_Type is used for identifying 

the particular remote subprogram that is being called, as well as marshalling and 

unmarshalling the parameters or result of a remote subprogram call as part of sending 

them between partitions. The Read and Write procedures override the corresponding 

abstract operations for the type Params_Stream_Type. 

Both synchronous and asynchronous communications are supported by package 

System.RPC and are implemented by the procedures Do_RPC and Do_APC, 

respectively. Both procedures send a message to the active partition identified by the 

Partition parameter. After sending a message, Do_RPC blocks the calling task until.a 

reply message comes back from the called partition or some error is detected by the 

underlying communication system. In this case, Communication_Error is raised at the 

point of the call to Do_RPC. Do_APC operates in the same way as DoRPC, except that 

it is allowed to return immediately after sending a message. 

Finally, if the partition includes a Remote_Call_Interface (RCI) library unit, the 

procedure Establish_RPC_Receiver is called once, immediately after elaborating the 

library units of an active partition but prior to invoking the main subprogram. The 

receiver parameter. designates an implementation-provided procedure called the 

RPC_Receiver, which will, handle all RPCs received by the partition. 

Establish_RPC_Receiver saves a reference to the RPC_Receiver. When a message is 

received at the called partition, the RPCReceiver is called with the Params stream 

containing the message. When the RPCJteceiver returns, the contents of the stream 

designated by result is placed in a message and sent back to the calling partition. The 

implementation of the RPC_Receiver shall be reentrant, thereby allowing concurrent 

calls on it from the PCS to service concurrent remote subprogram calls into the partition. 

(Ada, 1995) 

5.        The Package Streams 

A Stream is a sequence of elements comprising values from possibly different 

types and allowing sequential access to these values. A stream type is a type in the class 

whose root type is Streams.Root_Stream_Type. (Ada, 1995) 
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The types in this class represent different kinds of streams. The pre-defined 

stream-oriented attributes like T'Read and T'Write makes dispatching calls on the Read 

and Write procedures of the Root_Stream_Type. Figure 5.2 shows the specification of 

package Ada.Streams. 

Package Ada. Streams is 
pragma Pure (stream); 
type Root_Stream_Type is abstract tagged limited private; 
type Stream-Element is mod implementation-defined; 
type Stream_Element_Offset is range implementation defined; 
subtype Stream_Element_Count is 

Stream_Element_Offset range O..Stream_Element_Offset'Last; 
type Stream_Element_Array is 

array (Stream_Element_Offset range o) of Stream_Element; 

procedure Read (Stream : in out Root_Stream_Type; 
Item   : out Stream_Element_Array; 
Last    : out Stream_Element_Offset) is abstract; 

procedure Write (Stream : in out Root_Stream_Type; 
Item     : in Stream_Element_Array) is abstract; 

private 
—not defined by the language 

end Ada. Streams; 

Figure 5.2. Specification of Package Ada.Streams (Ada, 1995) 

The read operation transfers Item'Length stream elements from the specified 

stream to fill the array Item. The index of the last stream element transferred is returned 

in Last. Last is less than Item'Last only if the end of the stream is reached. The Write 

operation appends Item to the specified stream. There are also the stream-oriented 

attributes Read, Write, Output, and Input that convert values to a stream of elements and 

reconstruct values from a stream. For every subtype S of a specific type T, some 

attributes are defined, which denotes a procedure or a function call. Figure 5.3 presents 

those attributes. 
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procedure S'Write (Stream : access Ada.Streams.Root_Stream_Type'Class; 
Item    : in T); 

- S'Write writes the value of Item to Stream 

procedure S'Read (Stream : access Ada.Streams.Root_Stream_Type'Class; 
Item    : out T); 

- S'Read reads the value of Item from Stream 

procedure S'Output (Stream : access Ada.Streams.Root_Stream_Type'Class; 
Item   : in T); 

- S'Output writes the value of Item to Steram, including any bounds or 
~ discriminants 

function S'Input (Stream : access Ada.Streams.Root_Stream_Type'Class) 
return T; 

- S'Input reads and returns the value of Item from stream, using any bounds 
- or discriminants written by a corresponding S'Output 

Figure 5.3. Stream Attributes (Ada, 1995) 

B.        ANALYSIS OF GLADE AND ITS CONFIGURATION LANGUAGE 

Ada 95 is the first general-purpose language to provide a standard distributed 

programming paradigm. By combining the distributed and object-oriented features of 

Ada 95, it is possible to create an application where objects are physically distributed 

over a network of machines without having to interface to any low-level communication 

layer. Likewise, by combining the distributed and real-time capabilities of Ada 95, it is 

■possible to design applications which meet real-time constraints in a distributed 

environment (ACT Europe). 

GLADE release 1.03p for GNAT 3.1 Op distribution contains different 

components organized in separate directories: 

1. Garlic: a PCS (Partition Communication Subsystem) which is a high level 
communication layer that provides several classical services available in a 
distributed system (partition identification management, name services, 
distributed termination, etc.) and that accommodates several network 
protocols and communication subsystems; 

2. Dist: a partitioning tool called "gnatdist" and its configuration language which 
allow you to divide your program into a number of independent partitions and 
specify the machine where the individual partitions are to execute; 

3. Ada: a subset of GNAT sources necessary to build GLADE. 

GLADE is a complete environment for developing distributed applications that includes: 
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1. a complete PCS (Partition Communication System); 
2. a simple partition description language and tool; 
3. utilities to build and start distributed applications. 

The caller and receiver stubs needed by the PCS are generated by the GNAT compiler 

using special flags. The partitioning tool is responsible for calling GNAT with the 

appropriate flags. 

An Ada 95 distributed application comprises a number of partitions which can be 

executed concurrently on the same machine or, can be distributed on a network of 

machines. The way in which partitions communicate was described in the previous 

section. A partition is a set of compilation units which are linked together to produce an 

executable binary. A distributed program comprises two or more communicating 

partitions. The distributed systems annex does not describe how a distributed application 

should be configured. It is left to the user to define the partitions in his program and on 

which machine they should be executed. 

1. Configuring a Distributed Application 

The tool gnatdist and its configuration language have been purposely designed to 

allow partitioning a program and to specify the machines where the individual partitions 

are to execute on. Gnatdist reads a configuration file and builds several executables, one 

for each partition. It also launches the different partitions and passes arguments specific 

to each partition. 

The GLADE User Manual (ACT Europe) describes the following steps that 

should be followed to configure a distributed application: 

1. Write a non-distributed Ada application. Use the categorization pragmas 
Remote_Call_Interface and Remote_Types to specify the packages that can be 
called remotely (the Shared_Passive categorization pragma is not yet 
implemented). 

2. When this non-distributed application is working, write a configuration file 
that maps your categorized packages onto partitions. Do not forget to specify 
the main procedure of your distributed application as explained below. 

3. Type'gnatdist configuration-file'. The gnatdist command line options are: 
gnatdist [switches] configuration-file [list of partitions] 

The switches of gnatdist are, for the time being, exactly the same as for 
gnatmake.  By default gnatdist outputs a configuration report and the actions 
performed.     The  switch -n allows gnatdist to  skip the first stage of 
recompilation of the non-distributed application. 

4. Start the distributed application by invoking the start-up shell script or Ada 
program (depending on the "pragma Starter" option, as will be shown later). 
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All configuration files should end with the '.cfg' suffix. There may be several 

configuration files for the same distributed application to permit the use of different 

distributed configurations tailored to the computing environment.   . 

2.        How Gnatdist Works 

According to the GLADE User Manual (ACT Europe), the tool gnatdist works as 

following: 

1. When building a distributed application, each compilation unit in the program 
is compiled into an object module (as in a non-distributed application). This 
is achieved by calling gnatmake on the sources of the various partitions. 
Using the -n switch skips this step. 

2. Stubs are generated and compiled into object modules (a stub is the software 
that allows a partition running on machine A to communicate with a partition 
running on machine B). Several time stamp checks are performed to avoid 
useless recompilation. 

3. Gnatdist performs a number of consistency checks. For instance, it checks to 
see that all packages marked as remote call interfaces (RCI) are mapped into 
partitions. It also checks to see that an RCI package is mapped onto only one 
partition. 

4. Finally, the executables for each partition in the program are created.   The 
•   code to launch partitions is embedded in the main partition, except if another 

option has been specified (pragma Starter). In this case, a shell script (or 
nothing) is generated to start the partition on the appropriate machines. This 
is especially useful when one wants to write client/server applications where 
the number of instances of the partition is unknown. 

3.        The Configuration Language 

The configuration language is "Ada-like." Because of its simplicity, it is 

described by means of an example. As the capabilities of GLADE will evolve, so will 

this configuration language. Every keyword and construct defined in the configuration 

language has been used in the following sample configuration file, as shown in Figure 

5.4. After having created the following configuration file you would typically type: 

gnatdist my_config.cfg 

If you wish to build only certain partitions, then list the partitions to build on the gnatdist 

command line as follows. 

gnatdist my_config. cfg partition_2 partition_3 
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Configuration my_config is 
PartitionJ: Partition := ( ); 
Procedure Master_Procedure is in Partition_l; 

Partition_2, Partition_3: Partition; 

for Partition_2'Host use "foo.bar.com"; 

function Best_Node (Partition_Name: String) return String; 
pragma Import (shell, Best_Node, "best-node"); 
for Partition_3'Host use Best_Node; 
Partition_4: Partition := (RCI_B5); 

for Partition'Storage_Dir use "bin"; 

procedure Another_Main; 
for Partition_3'Main use Another_Main; 

for Partition_4'Command_Line use "-v"; 

pragma Starter (Method => Ada); 

pragma Boot_Server 
(Protocol_Name => "tcp". Protocol_Data => " 'hostname': 'unused-port'"); 

pragma Version (False); 

Channel_l: Channel := (PartitionJ, Partition_4); 
Channel_2: Channel := (Partition_2, Partition^); 

for Channel_lTilter use"ZIP"; 
for Channel_2Tilter use "My_own_Filter; 
for Partition_3'Filter use "ZIP"; 

pragma Registration_Filter ("Some_Filter"); 

begin 
Partition_2 := (RCI_B2, RCI_B4, Normal); 
Partition_3 := (RCI_B3); 

end my_config; 

Figure 5.4. Configuration File (ACT Europe) 
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According to the GLADE User Manual (ACT Europe), the following explains 

each line of code in file my_config.cfg, showed in Figure 5.4. 

Configuration MyjConfig is 

The name of the file prefix must be the same as the name of the configuration unit 

in this example "my_config.cfg."  The file suffix must be .cfg.   For a given distributed 

application you can have as many configuration files as you wish. 

Partition _1: Partition := (); 
procedure Master ^Procedure is in Partition_l; 

Partition 1 contains no RCI package. However, it will contain the main procedure 

of the distributed application, called "Master_Procedure" in this example. If the line 

"procedure MasterJProcedure is in Partition^" was missing Partition 1 would be 

completely empty. This is forbidden; a partition has to contain at least one library unit. 

Gnatdist produces an executable with the name of Master_Procedure, which will start the 

various partitions in the background on their host machines. The main partition is 

launched in the foreground. Note that by killing this main procedure the whole 

distributed application is halted, (ACT Europe). 

Partition_2, Partition_3: Partition; 

for Partition2'Host use "foo. bar.com "; 

Declares two partitions called Partition_2 and Partition^ and specifies the host 

on which to run partition 2. 

function Best_Node (Partition_Name: String) return String; 

pragma Import (Shell, Best_Node, "best-node "); 

for Partition_3'Host use Best_Node; 

Use the value returned by a program to figure out at execution time the name of 

the host on which partition 3 should execute. For instance, execute the shell script "best- 

node" which takes the partition name as a parameter and returns a string giving the name 

of the machine on which partition_3 should be launched. 

PartitionJ: Partition := (RCI_B5); 

Partition 4 contains one RCI package RCI_B5. No host is specified for this 

partition. The startup script will ask for it interactively when it is executed. 

forPartition'StorageJDir use "bin"; 

94 



Specify the directory in which the executables in each partition will be stored and 

the directory in which all the partition executables will be stored, respectivelly. Default 

is the current directory. 

procedure Another_Main; 
for Partition_3'Main use Another_Main; 

Specify the partition main subprogram to use in a given partition. 

For Partition_4'Command_Line use "-v"; 

Specify the additional arguments to pass in the command line when a given 

partition is launched. 

pragma Starter (Method => Ada); 

Specify the kind of startup method you would like.   There are 3 possibilities: 

Shell, Ada and None.  Specifying "Shell" builds a shell script. All the partitions will be 

launched from a shell script.  If "Ada" is chosen, then the main Ada procedure itself is 

used to launch the various partitions.   If method "None" is chosen, then no launch 

method is used and you have to start each partition manually. If no starter is given, then 

an "Ada" starter will be used.  In this example, Partition_2, Partition_3 and Partition_4 

will be started from Partition_l (i.e. from the Ada procedure MasterJProcedure). 

Pragma Boot_Server 
(ProtocolName => "tcp", Protocol data => "'hostname': 'unused-port'"); 

Specify the use of a particular boot server. It is especially useful when the default 

port 5555 used by GARLIC is already assigned. 

pragma Version (False); ' 

It is a bounded error to elaborate a partition of a distributed program containing a 

compilation unit that depends on a different version of the declaration of RCI library unit 

than that included in the partition to which the RCI library was assigned.   When the 

pragma Version is set to false, no consistency check is performed (ACT Europe). 

Channel_1: Channel.= (Partition_1, Partition_4); 
Channel_2: Channel.= (Partition_2, Partition_3);  . 

for Channel_1 'Filter use "ZIP "; 

Declare two channels (other channels between partitions remain unknown), and 

use transparent compression/decompression for the argument and results of any remote 

calls on channel "Channel_l," i.e. between "Partition^" and "Partition_4." 
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for Channel_2"Filter use "My_Own_Filter"; 

for Partition J 'Filter use "ZIP "; 

Use filter "My_Own_Filter" on "Channel_2." This filter must be implemented in 

a package "System.Garlic.Filters.My_Own_Filter." For all data exchanged with 

"Partition_3", except "Partition_2", use the filter "ZIP" (i.e. for both arriving remote calls 

as well as for calls made by this partition). Only for calls on "Channel_2" (i.e. for 

communication between "Partition_2" and "Partition_3") is the filter "My_Own_Filter" 

used. 

pragma Registration JFilter ("Some_Filter "); 

"Some_Filter" will be used to exchange a filter's parameters between two 

partitions. "Some_Filter" itself must be an algorithm that does not need its own 

parameters to be filtered again. On all other channels (i.e. for remote calls between 

partitions where no channel was declared), filtering is not used. 

Begin 

The configuration body is optional. You may have fully described your 

configuration in the declaration part. 

PartitionJ := (RCIJB2, RCI_B4, Normal); 

Partition J := (RCIJS3); 

Partition 2 contains two RCI packages RCI_B2 and RCI_B4 and a normal 

package. A normal package is not categorized. Partition 3 contains one RCI package 

RCI_B3. 

a.        Remote Shell 

To start a partition, the main partition executable executes a remote shell. 

Thus, you must ensure that you are authorized to execute a remote shell on the remote 

machine. In this case, a first step would be to add into your $(HOME)/.rhosts file a line 

like: 

<remote-machine> <your-userrtame> 

If you are not authorized at all, you can bypass this problem. According to 

GLADE User Manual (ACT Europe), all you have to do is: 

1. Open a session on each machine listed on your configuration file. 
2. If MAIN_PART is the partition that includes the main procedure and if you 

want to start MAIN_PART on host MAIN_HOST, then: 
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a) Choose a TCP port number PORT_NUM (gnatdist default is 5555 when 
using a shell starter, randomly chosen when using an Ada starter). 

b) Then   for  each  partition   PART,   start  manually   the   corresponding 
executable on the corresponding host as follows: 
%   PART   [--nolaunch]    [--slave]   ~boot_server   tcp://MAIN_HOST:. 
PORT_NUM 
The —nolaunch parameter must be included for the main partition, it 
means that this partition is not in charge of launching others. The —slave 
parameter must be included for other partitions, meaning that in no case 
the name server is located on them. 

3. If you want to kill the distributed application before it terminates, kill 
MAIN_PART. 

b.        Filtering 

GLADE contains a transparent extensible filtering mechanism allowing 

the user to define various data transformations to be performed on the arguments and 

return the values of remote calls. One possible application would be to compress all data 

before sending it and then decompress it on the receiving partition. As default, no 

filtering is performed by GLADE, but the compression filter is available. Therefore, you 

can configure your distributed application in order to use this filter. 

The configuration language not only knows about partitions, it also knows 

about the connections between them. Such a connection is called "Channel" and 

represents a bi-directional link between two partitions. In order to define filtering, one 

must first declare the channels between the partitions of an application: 

AjChcmnel: Channel := (Partition_1, Partition_2); 

This gives the link between partitions "Partition_l" and "Partition_2" the name 

"A_Channel". It is not possible to declare more than one channel between the same two 

partitions. 

Now that this channel is known, the data transformation that is to be 

applied on all data sent through it can be defined: 

ForAjChannel'Filter use "ZIP"; 

This specifies that all data sent over this channel should be transformed by the filter 

named "ZIP."   There should be a filter with this name, implemented in the package 

"System.Garlic.Filters.Zip." 

Some filtering algorithms require that some parameters must be sent to the 

receiver first to enable it to correctly un-filter the data. In this case, it may be necessary 
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to filter these parameters again. For such purposes, it is possible to install a global filter 

for all partitions, which then will be used to filter the parameters of other filters. This 

filter is called the "registration filter." It can be set by a pragma, as shown below. 

pragma RegistrationJFilter ("Filter_Name"); 

It may also be useful to specify that a partition uses a certain filter for all remote calls, 

regardless of the channel (i.e. regardless of the partition that will receive the remote call). 

This can be specified using the attribute 'Filter on a partition: 

for PartitionJ 'Filter use "ZIP "; 

or even 

for PartitionFilter use "ZIP"; 

The latter set the default filter for all partitions of the application, the former only sets the 

default filter for the partition "PartitionJ." We may specify the attribute 'Filter using 

either the latter or the former specification. 

Gnatdist takes care of consistency checking of a filter definition. By 

default, no filtering is done. Filtering is only active if specified explicitly in the 

configuration file (ACT Europe). 

As has been briefly mentioned above, a filter with a name "NAME" must 

be implemented in a package called "System.Garlic.Filters.Name." You may write your 

own filters, which must implement their filtering of data in the primitive operations of a 

type derived from the type "System.Garlic.FilterJType." Your filter package must then 

register an instance of your newly derived type with GLADE by calling 

"System.Garlic.Filters.Register." From that on, your filter is ready to be used. 

4.        Foreign Code 

GLADE allows the user to make calls to a foreign code, for example a C routine, 

from inside a partition in a distributed program. In this case, the foreign routine should 

be encapsulated by an Ada procedure or function. Also, foreign library units, as well as 

the compilation units needed by those library units, should be explicitly assigned using 

pragma Linker_Options. Figure 5.5 below illustrates the encapsulation of a C unit called 

cooler_display.c. 
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package Gui_Pkg is 

— explictly assign the foreign libraries 
pragma Linker_Options ("cooler_display.c"); 
pragma Linker_Options ("other libraries to link with"); 

~ encapsulate the foreign routines 
procedure InitializePanels; 
pragma Import (C, InitializePanels, "InitializePanels"); 

procedure Display (i: in integer); 
pragma Import (C, Display, "Cooler_Display"); 

end Gui_Pkg; 

Figure 5.5. Encapsulation of a G Routine 

5. Debugging 

GLADE has a facility for trace/replay based debugging. If trace mode is turned 

on, GLADE will record all messages received by a partition into a trace file. The trace 

file can then be used to replay the execution of the partition in isolation. 

To get a partition to generate a trace file, it has to be passed the command line 

argument "--trace." This is most easily done by using the "for Partition'Command_Line 

use..." construct described above in the configuration file to add "--trace" to the 

command lines of the partitions whose executions are to be replayed. When the 

application has been built, starting it using the starter as usual will result in a trace file 

being generated.. 

By default, the file name of the trace file is the name of the partition's executable 

with a trailing ".trace." This can be changed with the "—trace_file othername" command 

line argument. Note that since the remote partitions are launched with rsh under Unix, 

the current directory during execution will be the user's home directory. This is no 

problem when using the default trace file name, because the executable's name will 

include the absolute path. When using the "~trace_file" option, on the other hand, if you 

do not want the trace file to be created/read in the home directory, the absolute path will 

have to be included in the desired name. (ACT Europe) 

To replay a partition whose execution has been previously traced, the command 

line argument "--replay" is required.    In addition, the special boot server location 
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"replay://" has to be specified, i.e. by using the "--boot_server replay://" command line 

argument. For example, to replay a traced execution of a partition that has an executable 

named PAR    you would start it with the command: 

% PART [--nolaunch] [--slave] -replay ~boot_server replay:// 

possibly under the control of a debugger, such as gdb. 

Since the exact contents of the messages received is recorded, differences in input 

from external sources (such as standard input) during replay will most likely give 

unexpected results. Also, replay of applications whose behavior is inherently non- 

deterministic will be problematic. It is important that the same executable is used for 

replay as when the trace file was generated, otherwise strange behavior can be expected. 

(ACT Europe) 

6.        Restrictions 

Currently the following restrictions apply to GLADE: 

1. Static remote procedures, asynchronous remote procedures^ remote access to 
class wide types and asynchronous transfer of control with remote procedures 
are implemented; 

2. Remote access to subprogram have not yet been implemented; 
3. Pragma ALL_Calls_Remote, shared passive packages and generic RCI 

packages has not yet been implemented; 
4. Language-defined exceptions propagate well through different partitions. 

For the time being, gnatdist is only able to build distributed applications for a pool of 

homogeneous or heterogeneous machines using TCP/IP as a common network protocol 

(ACT Europe). 

Besides the restrictions above, our experiments show that there is a problem when 

we try to execute an I/O command in a remote partition when using method Ada to 

automatically launch the partition. This problem seems to happen because the partition is 

launched and executed in the background of the remote machine, therefore we cannot see 

any I/O command. This is especially bad when we assign a user interface unit to the 

remote partition. For example, if a distributed program fails to initialize a panel in a 

remote machine, then the whole program will be blocked when trying to send the data to 

be displayed on the panel. 
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C.       THE ADA 95 DISTRIBUTED ARCHITECTURE 

Figure 5.6 below illustrates the Ada 95 distributed architecture. It shows a non- 

distributed application with three modules called A, B and C. Module A makes calls to 

modules B and C, and passes some arguments, which are received by B and C and used 

in their computation. 

Processor 1 

Configuration 
File 

Main 
Procedure 

MOD A 

MODB MOD( 

Partition 1 
Processor 1 

Main 
Procedure 

MOD A Processor^ 

^> 

RPC 

Non-distributed 
application 

Partition 3 

Partition 2 

RCI 2 

MODB 

a RCI 3 

MODC 

Processor 3 

Figure 5.6. The Ada 95 Distributed Architecture 

After testing the non-distributed application, the user creates a configuration file 

to configure the partitions of the program. In this case, We have three partitions: 

Partition^, Partition_2 and Partition_3. As we can see in Figure 5.6, module A is 

assigned to Partition_l, module B to Partition_2 and module C to Partition_3. The 

partitions are mapped to processor 1, processor 2, and processor 3, respectively. 

Partition_l is the main partition. It contains the main procedure, which will start the 

various partitions. 

To receive the remote calls, the partitions Partition_2 and Partition_3 contain a 

categorized unit called RCI_2 and RCI_3, respectively, which have the categorization 

pragma Remote_Call_Interface. The interesting point of this distributed architecture is 

that since GLADE supports the asynchronous mode of communication, it is possible to 

have modules A, B and C working in parallel, but on different machines. 
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VI. PROTOTYPE OF THE SOFTWARE ARCHITECTURE 

In this chapter, we discuss the characteristics of the Computer Aided Prototyping 

System (CAPS) and explain the current CAPS architecture for the uniprocessor 

implementation. Then, we propose an architecture for a distributed implementation 

based on the GNAT Library for Ada Distributed Execution (GLADE). As we saw in the 

previous chapter, with GLADE it is possible to create a uniform Ada 95 distributed 

system without having to interface to any low-level communication layer. By combining 

the distributed and real-time capabilities of Ada 95, it is possible to design prototypes 

which meet real-time constraints in a distributed environment. 

A.        THE CURRENT UNIPROCESSOR ARCHITECTURE 

CAPS uses the prototype system description language (PSDL) to integrate a set of 

tools, including an execution support system and a syntax-directed editor with graphic 

capabilities, which are linked together by a user interface. PSDL provides two kinds of 

basic building blocks for prototypes: data types and operators. According to Luqi (1988), 

these constructs are sufficient to specify a prototype's design and structure. 

Software Systems are modeled as networks of operators communicating via data 

streams. The networks are represented as dataflow diagrams with a bubble for each 

operator and an arrow for each data stream. PSDL provides graphical notation for 

dataflow diagrams enhanced with nonprocedural control and timing constraints. Control 

constraints manage the output and the firing of an- operator, while timing constraints 

define the execution time, periodicity and deadline of a time-critical operator. Figure 6.1 

shows an example, the Temperature Control PSDL graph. 

103 



heater 

sensor 
175 ms 

evaluate_temp 
200 ms 

temperature 

cooler 

Figure 6.1. Temperature Control PSDL Graph 

The PSDL execution-support system contains a translator, a static scheduler, and 

a dynamic scheduler. The translator automatically generates code. Its main functions are 

to implement data streams and control constraints. The static scheduler allocates time 

slots for operators with real-time constraints, that is, time-critical operators. If the 

allocation succeeds, all operators are guaranteed to meet their deadlines even with worst- 

case execution times. The dynamic scheduler invokes operators without real-time 

constraints in the time slots not used by time-critical operators. 

More specifically, the translator converts the PSDL program defined by the user 

into compilable Ada units. During this process, it creates the following major packages: 

exceptions, instantiations, timers, streams, and drivers, all preceded by the name of the 

prototype followed by an underscore. Ultimately, each of these will become part of the 

prototype supervisory Ada program (Cordeiro, 1995). A partial view of the supervisory 

program for the Temperature Control prototype is shown in Figure 6.2. 
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Package TEMP_CONTROLLER_EXCEPTIONS is 
— PSDL exception type declarations 
type PSDL_EXCEPTION is (UNDECLARED_ADA_EXCEPTION); 

end TEMP_CONTROLLER_EXCEPTIONS; 

package TEMP_CONTROLLER_INSTANTIATIONS is 
— Ada Generic package instantiations 

end TEMP_CONTROLLER_INSTANTIATIONS; 

~ with/use clauses for CAPS library packages, 
with PSDL_STREAMS; use PSDL_STREAMS; 
package TEMP_CONTROLLER_STREAMS is 

— local streams instantiations 
package DS_TEMPERATURE_EVALUATE_TEMP is new 

PSDL_STREAMS.SAMPLED_BUFFER(FLOAT); 
package DS_HEAT_SIGNAL_HEATER is new 

PSDL_STREAMS.SAMPLED_BUFFER(BOOLEAN); 
package DS_COOL_SIGNAL_COOLER is new 

PSDL_STREAMS.SAMPLED_BUFFER(BOOLEAN); 
— State stream instantiations 

end TEMP_CONTROLLER_STREAMS; 

package TEMP_CONTROLLER_DRIVERS is 
procedure SENSOR_DRIVER; 
procedure HEATER_DRIVER; 
procedure COOLER_DRIVER; 
procedure EVALUATE_TEMP_DRTVER; 

end TEMP CONTROLLER DRIVERS; 

Figure 6.2. Partial View of TempControIIer.a 

The first three of these packages contain all of the user declared exceptions, 

generic packages and timer instantiations defined in the PSDL program. The package 

streams contain the instantiations of all the streams used by the prototype, which are 

implemented as Ada generic packages that contain protected buffer objects with 

operations READ, WRITE and NEW_ELEMENT. The package PSDL_STREAMS 

contains all stream types supported by PSDL. Finally, the package drivers contain all of 

the data declarations, the data trigger checks that control whether a stream should be read, 

the execution trigger checks that decide whether an operator should be fired, and the 

output guard checks, which decide whether a computed result should be written to the 

output streams (see Section A.2 of Chapter III for details). 
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In addition to these packages generated by the translator, there are another two 

packages generated by the scheduler. When consolidated by one of the CAPS scripts, 

they will form a prototype supervisory program, receiving the name of the prototype 

followed by an ".a" extension, which stands for Ada program (Cordeiro, 1995). Figure 

6.3 shows the structure of the CAPS supervisory program. 

Exceptions Declarations 
Generic Instantiations 
Timer Instantiations 
Data Streams Instantiations 
Operator Drivers 

CAPS 
Support Packages 

while true loop 
call non-time-critical operator drivers; 

end loop; 

Dynamic Schedule 

while true loop 
call time-critical operator drivers; 

end loop; 
Static Schedule 

procedure prototype_name is 
begin 

init_hardware_model; 
start_static_schedule; 
start_dynamic_schedule 

end prototype_name; 

Main Program 

Figure 6.3. CAPS Supervisory Program Structure 

The scheduler generates the static scheduler task that is responsible for calling all 

time-critical operators, according to the static schedule. The time-critical operators will 

be called in a non-preemptive way, so that each instance of an operator will execute to 

completion. The scheduler also generates the dynamic scheduler task that is responsible 
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for calling all non-time-critical operators of the prototype. They run in a pre-defined 

order established by the dynamic schedule whenever there is idle time in the static 

schedule. The dynamic scheduler task has lower priority than the.static scheduler task, 

so non-time-critical operators can be preempted by time-critical ones. 

B.        THE PROPOSED DISTRIBUTED ARCHITECTURE 

One of our objectives when designing this new distributed architecture was to 

minimize the changes in the current CAPS architecture. CAPS models software systems 

as networks of operators communicating via data streams, which is by itself very close to 

the concept of distributed systems. Hence, the CAPS model is very suitable to be 

implemented in a distributed architecture. It does not matter where the operators are 

located in the system, only that the system should be able to transmit data in an 

appropriate way and to handle the real-time constraints. 

According to Cordeiro (1995), in the uniprocessor case, the translator had no 

information about the output of the scheduler. For the distributed case, however, this 

information is crucial, since it will have to generate different Ada units for each of the 

processors involved in the prototype. Once the scheduler has defined the different 

partitions and the operators that belong to each partition, the translator will have to be 

called, so that it can generate as many supervisory files as the number of partitions. 

In this implementation, due to a restriction in GLADE that does not recognize the 

extension ".a," we split the packages in the supervisory files into distinct modules, and 

use a naming convention for the different files the name of the prototype followed by the 

partition number and the name of the package, e.g., autopilot_l_drivers, 

autopilot_l_static_schedulers, and so on. Note that in GLADE the different files should 

receive the name of the corresponding package. Also, we recommend that only lower 

case letters be used in the file names to avoid problems with the UNIX file system. 

For example, the prototype for an Autopilot is illustrated in Figure 6.4 and the 

corresponding global precedence graph in Figure 6.5 below. Note that the Autopilot 

PSDL graph contains cycles and we will show in Section B of Chapter VII that such 

prototypes will work in the distributed environment as long as we assign the operators in 

each cycle to the same processor. 
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Figure 6.4. Autopilot Prototype 

Applying the distributed scheduling algorithm we proposed in Chapter IV to the 

Autopilot prototype, the scheduler first defines the number of available processors (in this 

case two processors) and then allocates each operator in the prototype to a processor. 

The output of the distributed scheduling algorithm with a maxjoadjizctor of 0.7 is 

illustrated in Figure 6.6. 
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Figure 6.5. The Autopilot Global Precedence Graph 
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Figure 6.6. Output of the Distributed Scheduling Algorithm 
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According to Cordeiro (1995), the following information should be passed by the 

scheduler to the translator, so it can perform its job. 

1. Number of partitions and a list with the operator name belonging to each 
partition 

2. Mapping from partitions to processors 

As we can see in Figure 6.6, the output of the scheduler contains the necessary 

information to satisfy the first item in the list above. To satisfy the second item, it is 

sufficient to provide the translator with the name of the available processors in the 

network. We recommend that this information come from the CAPS user interface. 

Once all this information is available to the translator, it should generate all necessary 

packages for each partition, exactly as it did for the uniprocessor implementation, except 

for the following differences that we explain below. 

1.        Package RemoteStreams 

For the uniprocessor case, the package PSDL_Streams contains all of the types of 

streams available in PSDL. However, for the distributed case where operators 

communicate via network, we need a special kind of stream, i.e., the remote stream. 

Remote streams do not need to be represented in the prototype and can be transparent to 

the user. They are implemented by a package called remote_streams that contains the 

categorization pragma Remote_Call_Interface. This package is used as an interface for 

Remote Procedure Calls (RPC) between partitions. For each partition that receives one 

or more interprocessor communications, the translator should generate a corresponding 

package remote_streams that handles all incoming communications. Following the 

naming convention we are using here, this file should be named according to the partition 

to which it belongs, e.g., the autopilot_l_Remote_Streams and the autopilot_2_Remote_ 

Streams shown in Figure 6.9. 

Because GLADE currently does not support generic remote call interface 

packages and, the declaration of pragma Remote_Call_Interface should precede any other 

declaration in the package, the remote_streams can be neither instantiated nor part of 

package PSDL_Streams like the other types of streams. Note that an operator calls 

package remote_streams only when it needs to write to a stream that is external to its 

partition. It works like a bridge connecting two partitions. After receiving the data from 

a remote producer operator the corresponding write procedure will be invoked to write 
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the data in the corresponding output stream (refer to Figure 6.7 for the specification of the 

remote_streams package). 

In this implementation we consider that all operators read from local streams. It 

is very important to notice that here we assume that a stream is instantiated in the same 

processor or partition of its consumer operator. Therefore, it is irrelevant where the data 

comes from. 

Finally, for this implementation to conform with the distributed scheduling model 

without synchronization, the translator should be smart enough to change any data flow 

stream that receives data from the network into sampled stream, so that no overflow or 

underflow exceptions will be raised for interprocessor communications. Figure 6J 

shows the specification of the new package remote_streams for partition 1 of the 

Autopilot distributed prototype. 

with RUDDER_STATUS_TYPE_PKG; use RUDDER_STATUS_TYPE_PKG; 
package Autopilot_l_REMOTE_STREAMS is 

-- use the categorization pragma to create an interface for RPCs 
pragma Remote_Call_Interface; 

— write the rudder status data to the rudder_status stream 
procedure Write_Rudder_Status_Display_l 

.     (Rudder_Status : in RUDDER_STATUS_TYPE); 

— define the IPCs as asynchronous RPCs 
pragma Asynchronous (Write_Rudder_Status_Display_l); 

end Autopilot_l_REMOTE_STREAMS; 

Figure 6.7. Specification of Package Autopilot_l_REMOTE_STREAMS 

2. The New Package Drivers 

The new package drivers should contain only the driver procedures related to the 

operators belonging to that partition. All reads will be local streams. However, if it is 

necessary to write to an external operator, the translator should replace the usual write 

operation by the corresponding write procedure of the remote stream package 

3. The Tasks Static Schedule and Dynamic Schedule 

The output of the distributed scheduling algorithm contains the schedule for each 

one of the processors or partitions in the distributed system.   Therefore, the new task 

111 



Static Schedule should call only the time-critical operators belonging to that partition. 

Likewise, the task Dynamic Schedule should call only those operators that are not time- 

critical, and that belong to that partition. Note that this implementation conforms to the 

distributed scheduling model without synchronization, where, ideally, sets of 

communicating processes would run independently in each processor. 

4.        The Configuration File 

The process of mapping the partitions of the program to the nodes in a distributed 

system is called configuring the partitions. With GLADE, a configuration file (as we saw 

in Chapter V) should be created to configure the partitions. So, in addition to generating 

the six major packages (exceptions, instantiations, timers, streams, remote_streams and 

drivers), the translator has the new job of generating the configuration file for the 

distributed implementation. Figure 6.8 illustrates the configuration file for the Autopilot 

distributed prototype. 
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Configuration Autopilot is 
pragma version (False); 
pragma Starter (None); 
~ The partitions will be launched manually 

pragma Boot_Server ("top", "sun53 : 3333"); 

partitionl : Partition := (PSDL_Streams, autopilot_l_exceptions, 
autopilot_l_instantiations, autopilot_l_timers, 
coirect_altitude_PKG, altimeter_PKG, gui_PKG, 
display_l_PKG, altitude_command_type_PKG, 
control_elevator_PKG, rudder_status_type_PKG, 
elevator_status_type_PKG, course_command_type_PKG, 
autopilot_l_drivers, autopilot_l_dynamic_schedulers, 
autopilot_l_static_ schedulers, autopilot_l_start_drivers, 
autopilot_l_streams, autopilot_l_remote_streams); 

partition2 : Partition := (PSDL_Streams, autopilot_2_exceptions, 
autopilot_2_timers, rudderjstatus_type_PKG, 
autopilot_2_instantiations, compass_PKG, 
correct_course_PKG, control_rudder_PKG, 
course_command_type_PKG, display_2_PKG, 
autopilot_2_drivers, autopilot_2_dynamic_schedulers, 
autopilot_2_static_ schedulers, autopilot_2_start_drivers, 
autopilot_2_streams, gui_pkg); 

procedure Start_Autopilot is in partitionl; 
— procedure Start_Autopilot will start the execution of the Autopilot execution 

~ procedure Start_Partition2 is the driver procedure for partition2 
procedure Start_Partition2; 
for partition2'Main use Start_Partition2; 

channeM : Channel :— (partitionl, partition2); 

end Autopilot; 

Figure 6.8. The Configuration File for the Distributed Autopilot Prototype 

5. The Architecture of the Distributed Implementation 

Figure 6.9 illustrates the distributed implementation of the Autopilot prototype 

shown above. Note that when an operator writes to an external operator, the driver 

procedure calls package Remote_Streams instead of the normal Streams. 
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Figure 6.9. Architecture of the Distributed Autopilot Implementation 
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VII.   CONCLUSIONS AND RESULTS 

A.       SUMMARY OF THE THESIS 

This thesis deals with the area of computer-aided real-time distributed embedded 

systems development. The Prototyping System Description Language (PSDL) is a 

language designed for clarifying the requirements of complex embedded systems. It 

simplifies the design of systems with real-time constraints by presenting a high level 

description in terms of networks of independent operators to the designer. PSDL is based 

on a computational model containing operators that communicate via data streams, where 

each stream carries values of a fixed abstract data type. The PSDL computational model 

is represented as an augmented graph. 

One of the most important properties of any real-time system is that its behavior 

be predictable. It should be clear at design time that the system can meet its deadlines, 

even in the worst case condition. In order to satisfy this requirement static scheduling is 

done before the system starts operating. The input'consists of a list of all operators and 

their time constraints. The output consists of an assignment of operators to the available 

processors, and for each processor, a static schedule giving the order and times the 

operators are to be executed. 

For the uniprocessor case, the scheduler simply analyzes the PSDL graph and the 

timing constraints of each operator to build the schedule. For the distributed case, 

however, the scheduler has, also, to allocate each operator to a processor and take 

communication into account. The problem of scheduling the same operators onto a set of 

processors changes due to the delay itroduced by the communication network. 

The motivation to build the distributed schedule is based on the fact that 

concurrent processing is essential because the only way to make some real-time 

constraints feasible is to use multiple processors. 

In Chapter IV, we propose a distributed scheduling algorithm to deal with the 

allocation and scheduling problem. The distributed scheduling algorithm is based on the 

distributed scheduling model with no explicit synchronization (Cordeiro, 1995), where 

each set of operators allocated to a particular processor can be treated as a totally 

independent set. 

115 



The technique we propose uses ordered doubly linked list structures to represent 

processors and the communication network. Each element of a processor represents an 

operator instance. For the communication network list, each element represents an 

incoming communication arriving at the corresponding processor. 

Basically, the distributed scheduling algorithm allocates the operators defined in 

the PSDL graph to the available processors. Then, it searches the edges existing in the 

graph and checks if there is any interprocessor communication due to the allocation of 

operators to different processors. If necessary, the algorithm updates the start time and 

completion time of the operators affected by the delay introduced by that interprocessor 

communication. Finally, the algorithm verifies if the schedule is feasible, that is, if the 

completion times of all operator instances are less than their deadlines, and the 

precedence constraints are satisfied. 

1.        Implementation 

In this thesis, we investigate the capabilities of distributed real-time systems 

support in Ada 95. The most significant objective is the design and development of an 

Ada 95 software architecture for distributed real-time embedded systems and automatic 

generation tools for such architecture. 

The Ada 95 Distributed Systems annex (Ada, 1995) defines facilities for 

supporting the implementation of distributed systems using multiple partitions working 

cooperatively as part of a single Ada program. In Chapter V we present GLADE (GNAT 

Library for Ada Distributed Execution), an implementation of the Distributed Systems 

Annex for the GNAT compiler. By combining the distributed and real-time capabilities 

of Ada 95, it is possible to design systems which meet real-time constraints. 

In Chapter VI, we discuss the characteristics of CAPS (Computer Aided 

Prototyping Systems), which uses the PSDL language to integrate a set of tools, including 

an execution support system and editor with graphic capabilities, to prototype large and 

complex real-time systems. We further propose a distributed architecture for the CAPS 

generated control code. 

The CAPS execution support contains a translator, a static scheduler and a 

dynamic scheduler. The static and dynamic schedulers are generated by the CAPS 

scheduler. The translator converts the PSDL program defined by the user into compilable 
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Ada units, the static scheduler invokes time-critical operators and the dynamic scheduler 

invokes operators without real-time constraints. 

In the uniprocessor case the translator does not need any information about the 

output of scheduler. For the distributed case, however, the translator needs this 

information in order to generate different Ada units for each of the processors involved in 

the prototype. The following information should be passed to the translator. 

1. Number of partitions and a list with the operator name belonging to each 
partition 

2. Mapping from partitions to processors 

The output of the distributed scheduling algorithm we proposed in Chapter IV can 

provide the information about the number of partitions and the operators belonging to 

each partition (see Figure 6.6). The name of the processors available on the network 

should be inserted directly by the user through the CAPS interface. 

Once these informations are available to the translator, it should generate all 

necessary packages for each partition. The major difference is that besides the usual 

packages, the translator must generate two other units: the1 configuration file and the 

package remote_streams. The configuration file is created to configure the partitions (see 

Figure 6.8), that is, to map partitions to the available processors. 

Package remote_streams is a unit that has the declaration of the categorization 

pragma Remote_Call_Interface (see Figure 6.7), and should be created in each partition 

that receives an interprocessor communication. When an operator needs to write data to a 

stream that is external to its partition, and only in this case, it calls' package 

remote_streams. After receiving the data from the remote producer operator, the 

corresponding write procedure will be invoked to write the data in the corresponding 

output stream. 

B.        EXPERIMENTAL RESULTS 

We have conducted two different experiments in wich the capabilities of- 

distributed real-time systems support in Ada 95 was evaluated. The first experiment 

investigates the latency for transmission of a data value from processor i to processor j in 

a homogeneous network (refer to Section A.6 in Chapter III). In the experiment we 

calculated the average of the latency for transmission of different data types, using Ada 

native and user defined types. Figure 7.1 shows the results of the experiment. 
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Data Type 

Integer 

Float 

Array (size 100) of integer 

Array (size 100) of float 

Record w/ two arrays (size 100) 

Array (size 1000) of integer 

Array (size 1000) of float 

Record w/ two arrays (size 1000) 

Size (bits) 

16 

32 

100 x 16 

100 x 32 

100 x 16+100x32 

1000x16 

1000 x 32 

1000 x 16+1000x32 

Latency (seconds) 

1.792744 

1.815710 

1.785339 

1.784241 

1.785088 

1.792962 

1.7855356 

1.792626 

Figure 7.1. Latency for Interprocessor Communications 

To perform the experiment, we used GLADE release l.'03p to build a distributed 

application running on top of Sun OS release 4.1.3 on SPARC Station 2 machines, 

connected by a 100Mbps FDDI network. As we can see in Figure 7.1, the latencies for 

interprocessor communication are too big. In addition, increasing the size of the data does 

. not increase the latency. It seems that the problem is the delay introduced !by the 

communication subsystem and not by the network itself. Further experiments using other 

platforms are needed, because few practical real-time systems can meet their deadlines 

with such big communication delays. According to the GLADE User Manual (ACT 

Europe), GLADE release 1.03p is fully supported by Sparc/Solaris, PC/Linux and 

Alpha/Decunix. 

In the second experiment, several prototypes were implemented based on the 

proposed CAPS distributed architecture implementation discussed in Chapter VI. The 

results indicate that we cannot apply the distributed scheduling algorithm proposed in 

Chapter IV to any PSDL graph! If the user wants to build a prototype that works under 

the distributed implementation, it should be carefully designed to fit the model. The 

reason is that we cannot have cycles crossing the network. Cycles are dangerous because 

they require explicit synchronization, which would make scheduling impossible. 

In the uniprocessor case, cycles can be broken by state streams because there are 

no implicit precedence constraints associated with state streams. Although state streams 

do not imply any precedence constraints, we still have to consider the interprocessor 
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communication delay to send data and to receive the feedback loop in the distributed 

case. 

In one of our experiments, we applied the algorithm described in Chapter IV to 

the Autopilot prototype (designed for the uniprocessor model), and implemented a 

distributed prototyping according to the architecture proposed in Chapter VI. The initial 

version of the distributed Autopilot prototype contained cycles crossing the network. The 

prototype worked poorly and was very unstable, could not always keep the desired course 

and altitude. We redesigned the original prototype to fit the distributed model (see Figure 

6.4) and the new version of the Autopilot prototype worked well. Except for the long 

delay to display the information about the rudder status due to the large interprocessor 

communication between operator control_rudder and display_l. The source code for this 

new implementation can be found in the Appendices. 

C.   CONCLUSIONS AND FUTURE WORK 
This thesis proposes a distributed scheduling algorithm and a distributed 

implementation for the current CAPS architecture based on GLADE. The practical 

effeciveness of the proposed distributed scheduling algorithm can only be tested in 

realistic settings. Thus, the idea proposed here should be implemented and tested on a 

large sample of prototypes. Because we already know that there is no optimal solution for 

the distributed scheduling problem, further research is necessary to improve the algorithm 

and find new ideas to deal with the problem. 

The new CAPS architecture was implemented and applied to several example 

prototypes. Preliminary results from current experiments showed that it is possible to 

build distributed real-time embedded systems under the distributed scheduling model, 

where sets of tasks run independently on each processor, using GLADE. We also learned 

about limitations of this new technology. One limiting factor is the presence of cycles 

crossing the network. Prototypes intended to be used in a distributed environment should 

be specially designed, so that cycles are confined within each processor. 

Another limiting factor is the large latency for interprocessor communications. 

Our experiments showed that the communication subsystem, not the network itself, is 

responsible for increasing the latency. Further experiments using other platforms should 

be conducted in order to find better results. 
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1.        Possible CAPS Modifications 

As a result of the ideas proposed in this thesis, few modifications to CAPS are 

required. The most significant modification is related to the translator. In the distributed 

scheduling model the translator should receive information about the number of partitions 

and operators belonging to each partition from the scheduler, in order to generate the 

necessary files for each processor. In addition, it should receive information about the 

names of the available processors in the network from the CAPS user interface, in order 

to map each partition to a processor. Hence, the CAPS user interface should be modified 

to allow user to enter the processor names. 

Also, the CAPS user interface should be modified to allow user to enter the value 

maxjoadjactor (refer to Building the Distributed Schedule in Chapter IV, Section C), 

which is used by the scheduler to set the maximum allowed load factor for each 

processor. 
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APPENDIX A. SPECIFICATION OF THE DISTRIBUTED 

AUTOPILOT ATOMIC OPERATORS 

- Unit : autopilot.altimeter 
— Prototype : CAPS autopilot 
- Date : June 94 
— Author : JimBrockett 
— Compiler : GLADE 1.03p/Gnat 3.1 Op 
— Description : altimeter Ada implementation 
— Notes : Adapted to the distributed implementation by Jose Carlos Almeida 
— September 1998 

package altimeter_PKG is 

MAXIMUM_ALTITUDE : Integer := 35000; 
MINIMUM_ALTITUDE : Integer := 0; 

procedure altimeter(actual_altitude : out Integer; 
delta_altitude : in Integer); 

end altimeter_PKG; 

■Unit : autopilot.correct_altitude 
■Prototype : CAPS autopilot 
• Date : June '94 
■ Author : Jim Brockett 
• Compiler : GLADE 1.03p/Gnat 3.1 Op 
■ Description : correct_altitude Ada implementation 
• Notes : Adapted to the distributed implementation by Jose Carlos Almeida September 1998 

with altitude_command_type_PKG; use altitude_command_type_PKG; 

package correct_altitude_PKG is 

procedure correct_altitude(actual_altitude : in Integer; 
desired_altitude : in Integer; 
altitude_command: out altitude_command_type); 

end correct altitude PKG; 
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■Unit : autopilot.control_elevator 
■Prototype : CAPS autopilot 
■Date : June '94 
■Author : JimBrockett 
■Compiler : GLADE 1.03p/Gnat3.1 Op 
■ Description      : control_elevator Ada implementation 
• Notes : Adapted to the distributed implementation by Jose Carlos Almeida 

September 1998 
This unit was created for the distributed Autopilot prototype by spliting the original 
operator control_surfaces in the uniprocessor implementation 

with altitude_command_type_PKG; use altitude_command_type_PKG; 
with elevator_status_type_PKG; use elevator_status_type_PKG; 

package control_elevator_PKG is 

procedure control_elevator(altitude_command : in altitude_command_type; 
elevator_status : out elevator_status_type; 
delta_altitude   : out INTEGER); 

end control elevator PKG; 

-Unit : autopilot.display_l 
-Prototype : CAPS autopilot 
-Date : September 1998 
- Author : Jose Carlos Almeida 
■Compiler : GLADE 1.03p/Gnat3.1 Op 
■ Description : Display and input data Ada implementation 
■ Notes : This unit was created for the distributed Autopilot implementation 

- Add "with" and "use" statements for user-defined types used by operator display_l 
with elevator_status_type_PKG; use elevator_status_type_PKG; 
with rudder_status_type_PKG; use rudder_status_type_PKG; 

package display_l_PKG is 

procedure display_l(actual_altitude : in INTEGER; 
elevator_status : in elevator_status_type; 
rudder_status    : in rudder_status_type; 
desired_altitude: out INTEGER); 

end display_l_PKG; 
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— Unit : autopilotcompass 
— Prototype : CAPS autopilot 
— Date : June '94 
-Author : JimBrockett 
-Compiler : GLADE 1.03p/Gnat3.1 Op 
— Description : compass Ada implementation 
~ Notes : Adapted to the distributed implementation by Jose Carlos Almeida 

September 1998 

package compass_PKG is 

procedure compass(delta_course : in Integer; 
actual_course: out Integer); 

end compass_PKG; 

— Unit : autopilot.correct_course 
-Prototype : CAPS autopilot 
— Date : June '94 
— Author : Jim Brockett 
-Compiler : GLADE 1.03p/Gnat3.1 Op 
— Description : correct_course Ada implementation 
— Notes : Adapted to the distributed implementation by Jose Carlos Almeida 

September 1998 

with coursecommandtypePKG; use course_command_type_PKG; 

package correct_course_PKG is 

procedure correct_course(desired_course : in Integer; 
actualcourse : in Integer; 
course_command: out course_command_type); 

end correct_course_PKG; 
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■Unit : autopilot.controljrudder 
■Prototype : CAPS autopilot 
■Date : June'94 
■Author : JimBrockett 
■Compiler : GLADE 1.03p/Gnat3.1 Op 
■Description      : control_rudder Ada implementation 
■ Notes : Adapted to the distributed implementation by Jose Carlos Almeida 

September 1998 
This unit was created for the distributed Autopilot prototype by spliting the original 
operator control_surfaces in the uniprocessor implementation 

with course_command_type_PKG; use course_command_type_PKG; 
with rudder_status_type_PKG; use rudder_status_type_PKG; 

package control_rudder_PKG is 

procedure control_rudder(course_command   : in course_command_type; 
rudder_status   : out rudder_status_type; 
delta_course    : out INTEGER); 

end control_rudder_PKG; 

■Unit : autopilot.display_2 
■Prototype : CAPS autopilot 
•Date : September 1998 
• Author : Jose Carlos Almeida 
■Compiler : GLADE 1.03p/Gnat3.1 Op 
■Description : display and input data Ada implementation 
• Notes : This unit was created for the distributed Autopilot implementation 

- Add "with" and "use" statements for user-defined types used by operator display_2 
with elevator_status_type_PKG; use elevator_status_type_PKG; 
with rudder_status_type_PKG; use rudder_status_type_PKG; 

package display_2_PKG is 

procedure display_2(actual_course    : in INTEGER; 
desired_course   : out INTEGER); 

end display_2_PKG; 
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APPENDIX B. DISTRIBUTED AUTOPILOT STREAMS INSTANTIATIONS 

- Unit 
- Prototype 
- Date 
- Author 
- Compiler 
- Description 
- Notes 

autopilot_l_streams 
CAPS autopilot 
June 94 
Jim Brockett 
GLADE 1.03p/Gnat3.10p 
Distributed Autopilot streams instantiations 
Adapted to the distributed implementation by Jose Carlos Almeida 
September 1998 

-Streams declarations for Partition 1 

— with/use clauses for atomic type packages 
with ELEVATOR_STATUS_TYPE_PKG; use ELEVATOR_STATUS_TYPE_PKG; 
with RUDDER_STATUS_TYPE_PKG; use RUDDER_STATUS_TYPE_PKG; 
with ALTITUDE_COMMAND_TYPE_PKG; use ALTITUDE_COMMAND_TYPE_PKG; 

— with/use clauses for generated packages. 
with AUTOPILOT_EXCEPTIONS; use AUTOPILOTJSXCEPTIONS; 
with AUTOPILOT_l_INSTANTIATIONS; use AUTOPILOT_l_INSTANTIATIONS; 

— with/use clauses for CAPS library packages, 
with PSDL_STREAMS; use PSDL_STREAMS;. 

package AUTOPILOT_l_STREAMS is 

— Local stream instantiations 

package DS_ACTUAL_ALTITUDE_DISPLAY_1 is new 
PSDL_STREAMS.SAMPLED_BUFFER(INTEGER); 

package DS_ACTUAL_ALTITUDE_CORRECT_ALTITUDE is new 
PSDL_STREAMS.FIFO_BUFFER(INTEGER); 

package DS_ALTITUDE_COMMAND_CONTROL_ELEVATOR is new 
PSDL_STREAMS.SAMPLED_BUFFER(ALTITUDE_COMMAND_TYPE); 

package DS_ELEVATOR_STATUS_DISPLAY_l is new 
PSDL_STREAMS.SAMPLED_BUFFER(ELEVATOR_STATUS_TYPE); 

— State stream instantiations package 

package DS_DESIRED_ALTITUDE_CORRECT_ALTITUDE is new 
PSDL_STREAMS.STATE_VARIABLE(INTEGER, 0); 

package DS_DELTA_ALTITUDE_ALTIMETER is new 
PSDL_STREAMS.STATE_VARIABLE(INTEGER:0); 

package DS_RUDDER_STATUS_DISPLAY_1 is new 
PSDL_STREAMS.STATE_VARIABLE(RUDDER_STATUS_TYPE, straight); 

end AUTOPILOT_l_STREAMS; 
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--Unit : autopilot_2_streams 
-Prototype : CAPS autopilot 
-Date : June94 
-Author : JimBrockett 
- Compiler : GLADE 1.03p/Gnat 3.1 Op 
- Description : Distributed Autopilot streams instantiations 
- Notes : Adapted to the distributed implementation by Jose Carlos Almeida 

September 1998 

-Streams declarations for Partition 2 

- with/use clauses for atomic type packages 
with COURSE_COMMAND_TYPE_PKG; use COURSE_COMMAND_TYPE_PKG; 
with ALTITUDE_COMMAND_TYPE_PKG; use ALTITUDE_COMMAND_TYPE_PKG; 

- with/use clauses for generated packages. 
with AUTOPILOTEXCEPTIONS; use AUTOPILOTEXCEPTIONS; 
with AUTOPILOT_2_INSTANTIATIONS; use AUTOPILOT_2_INSTANTIATIONS; 

- with/use clauses for CAPS library packages, 
with PSDL_STREAMS; use PSDL_STREAMS; 

package AUTOPILOT_2_STREAMS is 

- Local stream instantiations 

package DS_ACTUAL_COURSE_CORRECT_COURSE is new 
PSDL_STREAMS.FIFO_BUFFER(INTEGER); 

package DS_ACTUAL_COURSE_DISPLAY_2 is new 
PSDL_STREAMS.FIFO_BUFFER(INTEGER); 

package DS_COURSE_COMMAND_CONTROL_RUDDER is new 
PSDL_STREAMS.SAMPLED_BUFFER(COURSE_COMMAND_TYPE); 

- State stream instantiations 

package DS_DELTA_COURSE_COMPASS is new 
PSDL_STREAMS.STATE_VARIABLE(INTEGER 0); 

package DS_DESIRED_COURSE_CORRECT_COURSE is new 
PSDL_STREAMS.STATE_VARIABLE(INTEGER, 0); 

end AUTOPILOT_2_STREAMS; 
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APPENDIX C. DISTRIBUTED AUTOPILOT REMOTE STREAMS 

— Unit : autopilot_l_remote_streams 
— Prototype : CAPS autopilot 
-Date : September 1998 
— Author : Jose Carlos Almeida 
— Compiler : GLADE 1.03p/Gnat 3.1 Op 
— Description : Remote Call Interface for partition 1 in the distributed autopilot prototype 
— Notes : This package is called whenever remote operators in partititon 2 need to communicate 

with operators in partition 1 

with rudder_status_type_pkg; use rudder_status_type_pkg; 

package AutoPilot_l_REMOTE_STREAMS is 

pragma Remote_Call_Interface; 

procedure Write_Rudder_Status_Display_l(Rudder_Status: in rudder_status_type); 

- Allow interprocessor comunication using asynchronous RPCs 
pragma Asynchronous(Write_Rudder_Status_Display_l); 

end AutoPilot_l_REMOTE_STREAMS; 

— Unit : autopilot_l_remote_streams 
-Prototype         : CAPS autopilot 
-Date : September 1998 
— Author : Jose Carlos Almeida 
— Compiler : GLADE 1.03p/Gnat 3.1 Op 
— Description : Remote Call Interface for partition 1 in the distributed autopilot prototype 
— Notes : This package is called whenever remote operators in partititon 2 need to communicate 

with operators in partition 1 

with AUTOPILOT_l_STREAMS; use AUTOPILOT j_STREAMS; 
with Autopilot_l_Start_Drivers; use AutopiIot_l_Start_Drivers; 

package body AutoPilot_l_REMOTE_STREAMS is 

procedure Write_Rudder_Status_Display_l(Rudder_Status: in rudder_status_type) is 

begin 

■ - Write Rudder_Status to the corresponding producer operator output stream 
WRITE_RUDDER_STATUS(Rudder_Status); 

end Write_Rudder_Status_Display_l; 

end AutoPilot_l_REMOTE_STREAMS; 
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APPENDIX D. DISTRIBUTED AUTOPILOT DRIVERS 

--Unit : autopilot_l_drivers 
-Prototype : CAPS autopilot 
— Date : June 94 
— Author : Jim Brockett 
~ Compiler : GLADE 1.03p/Gnat 3.1 Op 
— Description : This package reads the input streams, invoke the corresponding operators and writes 

data to the corresponding output stream 
— Notes : Adapted to the distributed implementation by Jose Carlos Almeida September 1998 

package AUTOPILOT_l_DPJVERS is 
procedure ALTIMETER.DPJVER; 
procedure CORRECT_ALTITUDE_DRIVER; 
procedure CONTROL_ELEVATOR_DRIVER; 
procedure DISPLAY_1_DRIVER; 

end AUTOPILOT_l_DRIVERS; 

■Unit 
- Prototype 
■Date 
■ Author 
■ Compiler 
■ Description 

• Notes 

autopilotldrivers 
CAPS autopilot 
June 94 
Jim Brockett .    ' 
GLADE 1.03p/Gnat 3.1 Op 
This package reads the input streams, invoke the corresponding operators and writes 
data to the corresponding output stream in partition 1 

: Adapted to the distributed implementation by Jose Carlos Almeida September 1998 

— with/use clauses for atomic components. 
with RUDDER_STATUS_TYPE_PKG; use RUDDER_STATUS_TYPE_PKG; 
with ALTITUDE_COMMAND_TYPE_PKG; use ALTITUDE_COMMAND_TYPE_PKG; 
with ELEVATOR_STATUS_TYPE_PKG; use ELEVATOR_STATUS_TYPE_PKG; 
with ALTIMETER_PKG; use ALTIMETER_PKG; 
with CORRECT_ALTITUDE_PKG; use CORRECT_ALTJTUDE_PKG; 
with CONTROL_ELEVATOR_PKG; use CONTROL_ELEVATOR_PKG; 
with DISPLAY_1_PKG; use DISPLAY_1_PKG; 

— with/use clauses for generated packages. 
with AUTOPILOTJEXCEPTIONS; use AUTOPILOTJEXCEPTIONS; 
with AUTOPILOT_l_STREAMS; use AUTOPILOT_l_STREAMS; 
with AUTOPILOT_l_TIMERS; use AUTOPILOT_l_TIMERS; 
with AUTOPILOTJ JNSTANTIATIONS; use AUTOPILOT_l_INSTANTIATIONS; 

— with/use clauses for CAPS library packages, 
with DS_DEBUG_PKG; use DS_DEBUG_PKG; 
with PSDL_STREAMS; use PSDL_STREAMS; 
with PSDLJTIMERS; 

— with/use clauses for RCI packages 
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package body AUTOPILOT_l_DRIVERS is 

procedure ALTIMETERJDRIVER is 
LV_DELTA_ALTITUDE : INTEGER; 
LV_ACTUAL_ALTITUDE: INTEGER; 

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE; 
EXCEPTION©: PSDL_EXCEPTION; 
begin 
- Data trigger checks. 

- Data stream reads, 
begin 

DS_DELTA_ALTITUDE_ALTIMETER.BUFFER.READ(LV_DELTA_ALTITUDE); 
exception 
when BUFFERJJNDERFLOW => 

DS_DEBUG.BUFFER_UNDERFLOW("DELTA_ALTITUDE_ALTIMETER", "ALTIMETER"); 
end; 

- Execution trigger condition check, 
if True then 
begin 
ALTIMETER( 
DELTA_ALTITUDE => LV_DELTA_ALTITUDE, 
ACTUAL_ALTITUDE => LV_ACTUAL_ALTITUDE); 
exception 
when others => ■ 

DS_DEBUG.UNDECLARED_EXCEPTION(" ALTIMETER"); 
EXCEPTIONJHAS JDCCURRED := true; 
EXCEPTIONJD := UNDECLARED_ADA_EXCEPTION; 

end; 
else return; 
end if; 

- Exception Constraint translations. 

- Other constraint option translations. 

-Unconditional output translations, 
if not EXCEPTION_HAS_OCCURRED then 
begin 

DS_ACTUAL>LTITUDE_DISPLAY_1.BUFFER.WRITE(LV_ACTUAL_ALTITUDE); 
exception 
when BUFFEROVERFLOW => 

DS_DEBUG.BUFFER_OVERFLOW("ACTUAL_ALTITUDE_DISPLAY", "ALTIMETER"); 
end; 
begin '■'.'• 

DS_ACTUAL_ALTITUDE_CORRECT_ALTITUDE.BUFFER. WRITE 
(LV_ACTUAL_ALTITUDE); 

exception 
when BUFFER_OVERFLOW => 

DS_DEBUG.BUFFER_OVERFLOW("ACTUAL_ALTITUDE_CORRECT_ALTITUDE", 
"ALTIMETER"); 

end; 
end if; 
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— PSDL Exception handler, 
if EXCEPTION_HAS_OCCURRED then 
DS_DEBUG.UNHANDLED_EXCEPTION( 

"ALTIMETER", 
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID)); 

end if; 
end ALTIMETER DRIVER: 

-procedure CORRECT_ALTITUDE_DRIVER 

procedure CORRECT_ALTITUDE_DRIVER is 
LV_ACTUAL_ALTITUDE : INTEGER; 
LV_DESIRED_ALTITUDE: INTEGER; 
LV_ALTITUDE_COMMAND : 

ALTITUDE_COMMAND_TYPE_PKG.ALTITUDE_COMMAND_TYPE; 

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE; 
EXCEPTION©: PSDL_EXCEPTION; 
begin 

— Data trigger checks. 
if not (DS_ACTUAL_ALTITUDE_CORRECT_ALTITUDE.BUFFER.NEW_DATA) then 
return; 

end if; 

— Data stream reads, 
begin . 
DS_ACTUAL_ALTITUDE_CORP^CT_ALTITUDE.BUFFER.READ(LV_ACTUAL_ALTITUDE); 
exception 
when BUFFERJJNDERFLOW => 

DS_DEBUG.BUFFER_UNDERFLOW("ACTUAL_ALTITUDE_CORRECT_ALTITUDE',, 
"CORRECT_ALTITUDE"); 

end; 
begin 

DS_DESIRED_ALTITUDE_CORREeT_ALTITUDE.BUFFER.READ 
(LV_DESIRED_ALTITUDE); 

exception 
when BUFFER_UNDERFLOW => 

DS_DEBUG.BUFFER_UNDERFLOW("DESIRED_ALTITUDE_CORRECT_ALTITUDE,^ 
"CORRECT_ALTITUDE"); 

end; 

— Execution trigger condition check, 
if True then 
begin 

CORRECT_ALTITUDE( 
ACTUAL_ALTITUDE => LV_ACTUAL_ALTITUDE, 
DESIRED_ALTITUDE => LV_DESIRED_ALTITUDE, 
ALTITUDE_COMMAND => LV_ALTITUDE_COMMAND); 
exception 
when others => 
DS_DEBUG.UNDECLARED_EXCEPTION("CORRECT_ALTITUDE"); 
EXCEPTION_HAS_OCCURRED :=true; 
EXCEPTIONJD := UNDECLARED_ADA_EXCEPTION; 

end; 
else return; 
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.   end if; 

- Exception Constraint translations. 

- Other constraint option translations. 

-Unconditional output translations, 
if not EXCEPTION_HAS_OCCURRED then 
begin 

DS_ALTITUDE_COMMAND_CONTROL_ELEVATOR.BUFFER. WRITE 
(LV_ALTITUDE_COMMAND); 

exception 
when BUFFEROVERFLOW => 

DS_DEBUG.BUFFER_OVERFLOW("ALTITUDE_COMMAND_CONTROL_ELEVATOR", 
"CORRECT_ALTITUDE"); 

end; 
end if; 

- PSDL Exception handler. 
if EXCEPTION_HAS_OCCURRED then 
DS_DEBUG.UNHANDLED_EXCEPTION( 

"CORRECT_ALTITUDE", 
PSDL_EXCEPTIONIMAGE(EXCEPTION_ID)); 

end if; 
end CORRECT ALTITUDE DRIVER; 

- procedure CONTROL_ELEVATOR_DRIVER 

procedure CONTROL_ELEVATOR_DRIVER is 
LV_ALTITUDE_COMMAND: 

ALTITUDE_COMMAND_TYPE_PKG.ALTITUDE_COMMAND_TYPE- 
LV_ELEVATOR_STATUS : ELEVATOR_STATUS_TYPE_PKG.ELEVATOR'STATUS TYPE- 
LV_DELTA_ALTITUDE: INTEGER; 

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE; 
EXCEPTION©: PSDL_EXCEPTION; 
begin 

— Data trigger checks. 

— Data stream reads. 

begin 

DS_ALTITUDE_COMMAND_CONTROL_ELEVATOR.BUFFER.READ 
(LV_ALTITUDE_COMMAND); 

exception 
when BUFFERJJNDERFLOW => 

DS_DEBUG.BUFFER_UNDERFLOW("ALTITUDE_COMMAND_CONTROL_ELEVATOR", 
"CONTROL_ELEVATOR"); 

end; 

— Execution trigger condition check, 
if True then 
begin 
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CONTROL_ELEVATOR( 
ALTITUDE_COMMAND => LV_ALTITUDE_COMMAND, 
ELEVATOR_STATUS => LV_ELEVATOR_STATUS, 
DELTA_ALTITUDE => LV_DELTA_ALTITUDE); 
exception 
when others => 

DS_DEBUG.UNDECLARED_EXCEPTION("CONTROL_ELEVATOR"); 
EXCEPTIONHASJDCCURRED :=true; 
EXCEPTIONJD := UNDECLARED_ADA_EXCEPTION; 

end; 
else return; 
end if; 

- Exception Constraint translations. 

- Other constraint option translations. 

- Unconditional output translations. 

if not EXCEPTIONHASJDCCURRED then 
begin 

DS_ELEVATOR_STATUS_DISPLAY_l .BUFFER. WRITE(LV_ELEVATOR_STATUS); 
exception 
when BUFFER_OVERFLOW => 

DS_DEBUG.BUFFER_OVERFLOW("ELEVATOR_STATUS_DISPLAY", 
"CONTROL_SURFACES,,); 

end; 
end if; 

if not EXCEPTIONHASJDCCURRED then 
begin 

DS_DELTA_ALTITUDE_ALTIMETER.BUFFER.WRITE(LV_DELTA_ALTITUDE); 
exception 
when BUFFERJDVERFLOW => 
DS_DEBUG.BUFFERJDVERFLOW("DELTA_ALTITUDE_ALTIMETER", 

"CONTROLJSURF ACES"); 
end; 

end if; 

- PSDL Exception handler. 
if EXCEPTIONJiASJDCCURRED then 
DS_DEBUG.UNHANDLED_EXCEPTION( 

"CONTROLJELEVATOR", SDL_EXCEPTION'IMAGE(EXCEPTIONJD)); 
end if; 

end CONTROL ELEVATOR DRIVER; 

-* procedure DISPLAYJ JDRIVER 

procedure DISPLAYJ JDRIVER is 
LV_ACTUAL_ALTITUDE : INTEGER; 
LVELEVATORJSTATUS : ELEVATOR_STATUS_TYPE_PKG.ELEVATOR_STATUS_TYPE; 
LVRUDDERJSTATUS : RUDDER_STATUS_TYPEJiKG.RUDDER_STATUS_TYPE; 
LV DESIRED ALTITUDE : INTEGER; 

EXCEPTIONHASJDCCURRED: BOOLEAN := FALSE; 
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EXCEPTION©: PSDL.EXCEPTION; 
begin 
- Data trigger checks. 

- Data stream reads, 
begin 

DS_ACTUAL_ALTITUDE_DISPLAY_1.BUFFER.READ(LV_ACTUAL_ALTITUDE); 
exception 
when BUFFERJJNDERFLOW => 
DS_DEBUG.BUFFER_UNDERFLOW("ACTUAL_ALTITUDE_DISPLAY_l", "DISPLAY_1"); 

end; 
begin 

DS_ELEVATOR_STATUS_DISPLAY_l.BUFFER.READ(LV_ELEVATOR_STATUS); 
exception 
when BUFFERJJNDERFLOW => 

DS_DEBUG.BUFFER_UNDERFLOW("ELEVATOR_STATUS_DISPLAY_l", "DISPLAYJ"); 
end; 
begin 

DS_RUDDER_STATUS_DISPLAY_1.BUFFER.READ(LV_RUDDER_STATUS); 
exception 
when BUFFERJJNDERFLOW => 
DS_DEBUG.BUFFER_UNDERFLOW("RUDDER_STATUS_DISPLAYJ ", "DISPLAYJ"); 

end; 

- Execution trigger condition check, 
if True then 
begin •  '  ■       . 
DISPLAYJ( 
ACTUAL_ALTITUDE => LV_ACTUAL_ALTITUDE, 
ELEVATOR_STATUS => LV_ELEVATOR_STATUS, 
RUDDERJ5TATUS => LV_RUDDER_STATUS, 
DESIRED_ALTITUDE => LV_DESIRED_ALTITUDE); 

exception 
when others => 
DS_DEBUG.UNDECLARED_EXCEPTION("DISPLAYJ"); 
EXCEPTION_HAS_OCCURRED := true; 
EXCEPTIONJD := UNDECLARED_ADA_EXCEPTION; 

end; 
else return; 
end if; 

- Exception Constraint translations. 

- Other constraint option translations. 

-Unconditional output translations, 
if not EXCEPTION JIASJDCCURRED then 
begin 

DS_DESIRED_ALTITUDE_CORRECT_ALTITUDE.BUFFER. WRITE 
(LVJ)ESIRED_ALTITUDE); 

exception 
when BUFFERJDVERFLOW => 

DSJDEBUG.BUFFER_OVERFLOW("DESIRED_ALTITUDE_CORRECT_ALTITUDE", 
"DISPLAYJ"); 

end; 
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end if; 

- PSDL Exception handler, 
if EXCEPTION_HAS_OCCURRED then 

DS_DEBUG.UNHANDLED_EXCEPTION( 
"DISPLAYJ", PSDL_EXCEPTION'IMAGE(EXCEPTION_ID)); 

end if; 
end DISPLAY_1_DRIVER; 

end AUTOPILOT_l_DPJVERS; 

--Unit : autopilot_2_drivers 
— Prototype : CAPS autopilot   . 
-Date : June94 
— Author : Jim Brockett 
-Compiler : GLADE 1.03p/Gnat3.1 Op 
— Description : This package reads the input streams, invoke the corresponding operators and writes 

data to the corresponding output stream 
— Notes : Adapted to the distributed implementation by Jose Carlos Almeida September 1998 

package AUTOPILOT_2_DRIVERS is 

procedure COMPASS_DRIVER; 
procedure CORRECT_COURSE_DRIVER; 
procedure CONTROLjmDDER_DRIVER; 
procedure DISPLAY_2_DRIVER; 

end AUTOPILOT 2 DRIVERS; 

— Unit : autopilot_2_drivers 
-Prototype : CAPS autopilot 
— Date : June 94 
— Author : Jim Brockett 
-Compiler : GLADE 1.03p/Gnat3.1 Op 
— Description : This package reads the input streams, invokes the corresponding operators and writes 

data to the corresponding output stream 
— Notes : Adapted to the distributed implementation by Jose Carlos Almeida September 1998 

— with/use clauses for atomic components. 
with COURSE_COMMAND_TYPE_PKG; use COURSE_COMMAND_TYPE_PKG; 
with RUDDER_STATUS_TYPE_PKG; use RUDDER_STATUS_TYPE_PKG; 
with CORRECT_COURSE_PKG; use CORRECT_COURSE_PKG; 
with CONTROL_RUDDER_PKG; use CONTROL_RUDDER_PKG; 
with COMPASS_PKG; use COMPASS_PKG; 
with DISPLAY_2_PKG; use DISPLAY_2_PKG; 

— with/use clauses for generated packages. 
with AUTOPILOTJEXCEPTIONS; use AUTOPILOT_EXCEPTIONS; 
with AUTOPILOT_2_STREAMS; use AUTOPILOT_2_STREAMS; 
with AUTOPILOT_2_TIMERS; use AUTOPILOT_2_TIMERS; 
with AUTOPILOT_2_INSTANTIATIONS; use AUTOPILOT_2_INSTANTIATIONS; 

— with/use clauses for CAPS library packages. 
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with DS_DEBUG_PKG; use DS_DEBUG_PKG; 
with PSDL_STREAMS; use PSDL_STREAMS; 
with PSDLJTIMERS; 

- with/use clauses for RCI packages 
with AutoPilot_l_REMOTE_STREAMS; use AutoPilot_l_REMOTE_STREAMS; 

package body AUTOPILOT_2_DRIVERS is 

procedure COMPASS_DRIVER is 
LV_DELTA_COURSE: INTEGER; 
LV_ACTUAL_COURSE: INTEGER; 

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE; 
EXCEPTION©: PSDL_EXCEPTION; 
begin 
- Data trigger checks. 

- Data stream reads, 
begin 

DS_DELTA_COURSE_COMPASS.BUFFER.READ(LV_DELTA_COURSE); 
exception 
when BUFFERJJNDERFLOW => 

DS_DEBUG.BUFFER_UNDERFLOW("DELTA_COURSE_COMPASS", "COMPASS"); 
end; 

- Execution trigger condition check, 
if True then 
begin 

COMPASS( 
DELTA_COURSE => LV_DELTA_COURSE, 
ACTUAL_COURSE => LV_ACTUAL_COURSE); 

exception 
when others => 

DS_DEBUG.UNDECLARED_EXCEPTION("COMPASS"); 
EXCEPTION_HAS_OCCURRED := true; 
EXCEPTIONJD := UNDECLARED_ADA_EXCEPTION; 

end; 
else return; 
end if; 

- Exception Constraint translations. 

- Other constraint option translations. 

- Unconditional output translations. 
if not EXCEPTIONJHASJDCCURRED then 
begin 

DS_ACTUAL_COURSE_CORRECT_COURSE.BUFFERWRITE(LV_ACTUAL_COURSE); 
exception 
when BUFFERJDVERFLOW => 

DS_DEBUG.BUFFER_OVERFLOW("ACTUAL_COURSE_CORRECT_COURSE", 
"COMPASS"); 

end; 
begin 

DS_ACTUAL_COURSE_DISPLAY_2.BUFFER.WRITE(LV_ACTUAL_COURSE); 
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exception 
when BUFFER_OVERFLOW => 

DS_DEBUG.BUFFER_OVERFLOW("ACTUAL_COURSE_DISPLAY_2", "COMPASS"); 
end; 

end if; 

— PSDL Exception handler, 
if EXCEPTION_HAS_OCCURRED then 
DS_DEBUG.UNHANDLED_EXCEPTION( 

"COMPASS", 
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID)); 

end if; 
end COMPASS_DRIVER; 

- procedure CORRECT_COURSE_DRIVER 

procedure CORRECT_COURSE_DRIVER is 
LV_DESIRED_COURSE: INTEGER; 
LV_ACTUAL_COURSE: INTEGER; 
LV_COURSElCOMMAND: COURSE_COMMAND_TYPE_PKG.COURSE_COMMAND_TYPE; 

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE; 
EXCEPTION_ID: PSDL_EXCEPTION; 

begin 
— Data trigger checks. 
if not (DS_ACTUAL_COURSE_CORRECT_COURSE.BUFFER.NEW_DATA) then 
return; 

end if; 

— Data stream reads, 
begin 

DS_DESIRED_COURSE_CORRECT_COURSE.BUFFER.READ(LV_DESIRED_COURSE); 
exception 
when BUFFERJJNDERFLOW => 

DS_DEBUG.BUFFER_UNDERFLOW("DESIRED_COURSE_CORRECT_COURSE", 
"CORRECT_COURSE."); 

end; 
begin 

DS_ACTUAL_COURSE_CORRECT_COURSE.BUFFER.READ(LV_ACTUAL_COURSE); 
exception 
when BUFFERJJNDERFLOW => 

DS_DEBUG.BUFFER_UNDERFLOW("ACTUAL_COURSE_CORRECT_COURSE", 
"CORRECT_COURSE"); 

end; 

— Execution trigger condition check, 
if True then 
begin 

CORRECT_COURSE( 
DESIRED_COURSE => LV_DESIRED_COURSE, 
ACTUAL_COURSE => LV_ACTUAL_COURSE, 
COURSE_COMMAND => LV_COURSE_COMMAND); 

exception 
when others => 

DS_DEBUG.UNDECLARED_EXCEPTION("CORRECT_COURSE"); 
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EXCEPTION_HAS_OCCURRED :=true; 
EXCEPTIONJD := UNDECLARED_ADA_EXCEPTION; 

end; 
else return; 
end if; 

- Exception Constraint translations. 

- Other constraint option translations. 

- Unconditional output translations. 
if not EXCEPTION_HAS_OCCURRED then 
begin 

DS_COURSE_COMMAND_CONTROL_RUDDER.BUFFER. WRITE 
(LV_COURSE_COMMAND); 

exception 
when BUFFER_OVERFLOW => 
DS_DEBUG.BUFFER_OVERFLOW("COURSE_COMMAND_CONTROL_RUDDER", 

"CORRECTCOURSE"); 
end; 

end if; 

- PSDL Exception handler. 
if EXCEPTION_HAS_OCCURRED then 
DS_DEBUG.UNHANDLED_EXCEPTION( 

"CORRECTCOURSE", 
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID)); 

end if; 
end CORRECT COURSE DRIVER; 

■ procedure CONTROL_RUDDER_DPJVER 

procedure CONTROL_RUDDER_DRIVER is 
LV_COURSE_COMMAND : COURSE_COMMAND_TYPE_PKG.COURSE_COMMAND_TYPE; 
LV_RUDDER_STATUS : RUDDER_STATUS_TYPE_PKG.RUDDER_STATUS_TYPE- 
LV_DELTA_COURSE : INTEGER; 

EXCEPTIONHASJDCCURRED: BOOLEAN := FALSE; 
EXCEPTIONJD: PSDL_EXCEPTION; 

begin 
— Data trigger checks. 

— Data stream reads, 
begin 

DS_COURSE_COMMAND_CONTROL_RUDDER.BUFFER.READ(LV_COURSE_COMMAND); 
exception 
when BUFFERJJNDERFLOW => 

DS_DEBUG.BUFFER_UNDERFLOW("COURSE_COMMAND_CONTROL_SURFACES", 
"CONTROL_SURFACES"); 

end; 

— Execution trigger condition check, 
■if True then 

begin 
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CONTROL_RUDDER( 
COURSE_COMMAND => LV_COURSE_COMMAND, 
RUDDER_STATUS => LV_RUDDER_STATUS, 
DELTA_COURSE => LV_DELTA_COURSE); 

exception 
when others => 

DS_DEBUG.UNDECLARED_EXCEPTION("CONTROL_RUDDER"); 
EXCEPTION_HAS_OCCURRED := true; 
EXCEPTIONJD := UNDECLARED_ADA_EXCEPTION; 

end; 
else return; 
end if; 

— Exception Constraint translations. 

— Other constraint option translations. 

— Unconditional output translations. 
if not EXCEPTION_HAS_OCCURRED then 
begin 

— need interprocessor communication 
- write LV_RUDDER_STATUS to AutopilotlRemmoteStreams 
Write_Rudder_Status_Display_l(LV_RUDDER_STATUS); 

end; 
end if; 

if not EXCEPTION_HAS_OCCURRED then 
begin 

DS_DELTA_COURSE_COMPASS.BUFFER.WRITE(LV_DELTA_COURSE); 
exception 
when BUFFER_OVERFLOW => 

DS_DEBUG.BUFFER_OVERFLOW("DELTA_COURSE_COMPASS", 
"CONTROL_RUDDER"); 

end; 
end if; 

— PSDL Exception handler. 
if EXCEPTIONJHASJDCCURRED then 
DS_DEBUG.UNHANDLED_EXCEPTION( 

"CONTROL_RUDDER", 
PSDLJEXCEPTION'IMAGE(EXCEPTIONJD)); 

end if; 
end CONTROL RUDDER DRIVER; 

- procedure DISPLAY_2_DRIVER 

procedure DISPLAY_2_DRIVER is 
LV_ACTUAL_COURSE   : INTEGER; 
LV_DESIRED_COURSE : INTEGER; 

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE; 
EXCEPTIONJD: PSDL_EXCEPTION; 

begin 
- Data trigger checks. 
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— Data stream reads, 
begin 

DS_ACTUAL_C0URSE_DISPLAY_2.BUFFER.READ(LV_ACTUAL_C0URSE); 
exception 
when BUFFERJJNDERFLOW => 

DS_DEBUG.BUFFER_UNDERFLOW("ACTUAL_COURSE_DISPLAY_2", "DISPLAY2"); 
end; 

— Execution trigger condition check, 
if True then 
begin 
DISPLAY_2( 

ACTUAL_COURSE => LV_ACTUAL_COURSE, 
DESIRED_COURSE => LV_DESIRED_COURSE); 

exception 
when others => 

DS_DEBUG.UNDECLARED_EXCEPTION("DISPLAY_2"); 
EXCEPTION_HAS_OCCURRED := true; 
EXCEPTIONJD := UNDECLARED_ADA_EXCEPTION; 

end; 
else return; 
end if; 

— Exception Constraint translations. 

— Other constraint option translations. 

-Unconditional output translations, 
if not EXCEPTIONHASJDCCURRED then 
begin 

DS_DESIRED_COURSE_CORRECT_COURSE.BUFFER.WRITE(LV_DESIRED_COURSE); 
exception 
when BUFFER_OVERFLOW-=> 
DS_DEBUG.BUFFER_OVERFLOW("DESIRED_COURSE_CORRECT_COURSE", 

"DISPLAYJ2"); 
end; 

end if; 

— PSDL Exception handler. 
if EXCEPTION_HAS_OCCURRED then 
DS_DEBUG.UNHANDLED_EXCEPTION( 

"DISPLAY_2", 
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID)); 

end if; 
end DISPLAY_2_DRIVER; 

end AUTOPILOT_2_DRIVERS; 
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APPENDIX E. DISTRIBUTED AUTOPILOT STATIC SCHEDULERS 

-Unit : autopilot_l_static_schedulers 
-Prototype : CAPS autopilot 
— Date : June 94 
— Author : Jim Brockett 
— Compiler : GLADE 1.03p/Gnat 3.1 Op 
— Description : This package invokes the drivers of the time critical operators in partition 1 
— Notes : Adapted to the distributed implementation by Jose Carlos Almeida September 1998 

package autopilot_l_STATIC_SCHEDULERS is 
procedure START_STATIC_SCHEDULE; 

end autopilot_l_STATIC_SCHEDULERS; 

--Unit : autopilot_l_static_schedulers 
— Prototype : CAPS autopilot 
— Date : June 94 
— Author : Jim Brockett 
-Compiler : GLADE 1.03p/Gnat3.1 Op 
— Description : This package invokes the drivers of the time critical operators in partition 1 
— Notes : Adapted to the distributed implementation by Jose Carlos Almeida September 1998 

with autopilotlDPJVERS; use autopilot_l_DRIVERS; 
withPRIORlfY_DEFINITIONS; use PRIORITY_DEFINITIONS; 
with PSDL_TIMERS; use PSDLJTIMERS; 
withTEXTJO; useTEXTJO; 

package body autopilot_l_STATIC_SCHEDULERS is 

task type STATIC_SCHEDULE_TYPE is 
pragma priority (STATIC_SCHEDULE_PRIORITY); 
entry START; 

end STATIC_SCHEDULE_TYPE; 
for STATIC_SCHEDULE_TYPE'STORAGE_SIZE use 200_000; 
STATIC_SCHEDULE: STATIC_SCHEDULE_TYPE; 

task body STATIC_SCHEDULE_TYPE is 
PERIOD: duration; 
altimeter_START_TIMEl : duration; 
altimeter_STOP_TIMEl : duration; 
correct_altitude_START_TIME3 : duration; 
correct_altitude_STOP_TIME3 : duration; 
control_elevator_START_TIME5 : duration; 
control_elevator_STOP_TIME5 : duration; 
display_l_START_TIME6 : duration; 
display_l_STOP_TIME6 : duration; 
schedulejimer : TIMER := NEW_TIMER; 
begin 

accept START; 
PERIOD := TARGET_TO_HOST(duration( 5.00000000000000E-01)); 
aItimeter_START_TIMEl := TARGET_TO_HOST(duration( O.OOOOOOOOOOOOOOE+OO)); 
altimeter_STOP_TIMEl := TARGET_TO_HOST(duration( 5.00000000000000E-02)); 
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correct_altitude_START_TIME3 := TARGET_TO_HOST(duration( 5.00000000000000E-02)); 
correctjiltitude_ST0P_TIME3 := TARGET_TO_HOST(duration( 1.25000000000000E-01)); 
control_elevator_START_TIME5 := TARGET_TO_HOST(duration( 1.250000000000000E-01)); 
control_elevator_STOP_TIME5 := TARGET_TO_HOST(duration( 2.00000000000000E-01)); 
display_l_START_TIME6 := TARGET_TO_HOST(duration( 2.00000000000000E-01)); 
display_l_ST0P_TIME6 := TARGET_TO_HOST(duration( 3 .OOOOOOOOOOOOOOE-01)); 
START(schedule_timer); 
loop 
delay(altimeter_START_TIMEl - HOSTJDURATION(scheduleJimer)); 

altimeterDRIVER; 

if HOST_DURATION(schedule_timer) > altimeter_STOP_TIMEl then 
PUT_LINE("timing error from operator altimeter"); 
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS 

(HOST_DURATION(schedule_timer) - altimeter_STOP_TIMEl); 
end if; 

delay(correct_altitude_START_TIME3 - HOST_DURATION(schedule_timer)); 

correctaltitudeJDRTVER; 

if HOST_DURATION(schedule_timer) > correct_altitude_STOP_TIME3 then 
PUT_LINE("timing error from operator correct_altitude");   . 
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS 

(HOST_DURATION(schedule_timer) - correct_altitude_STOP_TIME3); 
end if; 

delay(control_elevator_START_TIME5-HOST_DURATION(schedule_timer)); 

controlelevatorJDRTVER; 

if HOST_DURATION(schedule_timer) > control_elevator_STOP_TIME5 then 
PUT_LrNE("timing error from operator control_elevator"); 
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS 

(HOST_DURATION(schedule_timer) - control_elevator_STOP_TIME5); 
end if; 

delay(display_l_START_TIME6 - HOST_DURATION(schedule_timer)); 

display_l_DRTVER; 

if HOST_DURATION(schedule_timer) > display_l_STOP_TIME6 then 
PUT_LINE("timing error from operator display_l"); 
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS 

(HOSTJDURATION(schedulejimer) - display_l_STOP_TIME6); 
end if; 

delay(PERIOD - HOST_DURATION(schedule_timer)); 
RESET(schedule_timer); 

end loop; 
end STATIC_SCHEDULE_TYPE; 

procedure START_STATIC_SCHEDULE is 
begin 
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STATIC_SCHEDULE.START; 
end START_STATIC_SCHEDULE; 

end autopilot_l_STATIC_SCHEDULERS; 

--Unit : autopilot_2_static_schedulers 
--Prototype : CAPS autopilot 
— Date : June 94 
— Author : JimBrockett 
~ Compiler : GLADE 1.03p/Gnat 3.1 Op 
— Description : This package invokes the drivers of the time critical operators in partition 2 
— Notes : Adapted to the distributed implementation by Jose Carlos Almeida September 1998 

package autopilot_2_STATIC_SCHEDULERS is 
procedure START_STATIC_SCHEDULE; 
procedure STOP_STATIC_SCHEDULE; 

end autopilot_2_STATIC_SCHEDULERS; . 

■Unit 
■ Prototype 
•Date 
• Author 
■ Compiler 
■ Description 
• Notes 

autopilot_2_static_schedulers 
CAPS autopilot 
June 94 
Jim Brockett 
GLADE 1.03p/Gnat 3.1 Op 
This package invokes the drivers of the time critical operators in partition 2 
Adapted to the distributed implementation by Jose Carlos Almeida September 1998 

with autopilot_2_DRIVERS; use autopilot_2_DRIVERS; 
with PRIORITY_DEFINITIONS; use PRIORITY_DEFINITIONS; 
with PSDL_TIMERS; use PSDLJTIMERS; 
with TEXTJO; use TEXTJO; 

package body autopilot_2_STATIC_SCHEDULERS is 

task type STATIC_SCHEDULE_TYPE is 
pragma priority (STATIC_SCHEDULE_PRIORITY); 
entry START; 

end STATIC_SCHEDULE_TYPE; 
for STATIC_SCHEDULE_TYPE'STORAGE_SIZE use 200_000; 
STATIC_SCHEDULE: STATIC_SCHEDULE_TYPE; 

done : boolean :•= false; 
procedure STOP_STATIC_SCHEDULE is 

begin 
done := true; 

end STOP_STATIC_SCHEDULE; 

task body STATIC_SCHEDULE_TYPE is 
PERIOD : duration; 
compass_START_TIMEl : duration; 
compass_STOP_TIMEl : duration; 

• correct_course_START_TIME3 : duration; 
correct_course_STOP_TIME3 : duration; 
control rudder START TIME5 : duration; 
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control_rudder_STOP_TIME5 : duration; 
display_2_START_TIME6 : duration; 
display_2_STOP_TIME6: duration; 
schedulejimer: TIMER := NEWJTIMER; 

begin 
accept START; 
PERIOD := TARGET_TO_HOST(duration( 5.00000000000000E-01)); 
compass_START_TIMEl := TARGET_TO_HOST(duration( 0.0O00000OO000OOE+0O)); 
compass_STOP_TIMEl := TARGET_TO_HOST(duration( 5.00000000000000E-02)); 
correct_course_START_TIME3 := TARGET_TO_HOST(duration( 5.00000000000000E-02))- 
correct_course_STOP_TIME3 := TARGET_TO_HOST(duration( 1.25000000000000E-01))- ' 
display_2_START_TIME6 := TARGET_TO_HOST(duration( 1.25000000000000E-01 ))• 
display_2_STOP_TIME6 := TARGET_TO_HOST(duration( 1.95000000000000E-01)); ' 
control_rudder_START_TIME5 := TARGET_TO_HOST(duration( 1.95000000000000E-01))- 
control_rudder_STOP_TIME5 := TARGET_TO_HOST(duration( 2.70000000000000E-01)); ' 
START(schedule_timer); 
loop 
delay(compass_START_TIMEl - HOST_DURATION(schedule_timer)); 

compassDRIVER; 

if HOST_DURATION(schedule_timer) > compass_STOP_TTMEl then 
PUT_LINE("timing error from operator compass"); 
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION 

(schedulejimer) - compass_28_34_STOP TIME1); 
end if; 
exit when done; . 

delay(correct_course_START_TIME3 - HOSTJ0URATION(scheduleJimer)); 

correctcourseJDRIVER; 

if HOST_DURATION(schedule timer) > correct_course_STOP_TIME3 then 
PUT_LINE("timing error from operator correct course")- 
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS 

(HOSTJDURATION(schedule Jimer) - correct course 31 37 STOP TIME3V end if; - _   _   _        _ /, 

exit when done; 

delay(display_2_START_TIME6 - HOST_DURATION(schedule_timer)); 

display_2_DRIVER; 

if HOST_DURATION(scheduIe_timer) > display_2_STOP_TIME6 then 
PUT_LINE("timing error from operator display_2"); 
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS 

(HOST_DURATION(schedule_timer) - display_2 STOP TIME6); 
end if; 
exit when done; 

delay(control_rudder_START_TIME5 - HOST_DURATION(schedule_timer)); 

control_rudder_DRIVER; 

if HOST_DURATION(schedule_timer) > control_rudder_STOP_TIME5 then 
PUT_LINE("timing error from operator controljrudder"); 
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SUBTRACT_HOST_TIME_FROM_ALL_TIMERS 
(HOST_DURATION(schedule_timer) - control_rudder_29_35_STOP_TIME5); 

end if; 
exit when done; 

delay(PERIOD - HOST_DURATION(schedule_timer)); 
RESET(scheduleJimer); 

end loop; 
end STATIC_SCHEDULE_TYPE; 

procedure START_STATIC_SCHEDULE is 
begin 

StATIC_SCHEDULE.START; 
end START_STATIC_SCHEDULE; 

endautopilot_2_STATIC_SCHEDULERS; 
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APPENDIX F. CONFIGURATION FILE 

■Unit 
■ Prototype 
■Date 
■ Author 
■ Compiler 
■ Description 
• Notes 

autopilot.cfg 
CAPS autopilot 
September 1998 
Jose Carlos Almeida 
GLADE 1.03p/Gnat 3.1 Op 
This file configures the partitions in the distributed autopilot prototype 
The partitions will be launched manually by the user 

configuration Autopilot is 

pragma Version (False); 
- Comes from a GNAT compiler limitation. 

pragma Starter (None); 
- The partitions will be launched manually 

pragma Boot_Server ("tcp", "sun53:3333"); 
- Specify the use of a particular boot_server 

Partition 1 : Partition := (psdl_streams, altimeter_PKG, 
correct_altitude_PKG, display_l_PKG, 
altitude_command_type_PKG, 
control_elevator_PKG, 
rudderstatustypeJPKG, 
elevator_status_type_PKG, 
course_command_type_PKG, 
autopilot_l_drivers, 
autopilot_l_dynamic_schedulers, 
autopilot_l _remote_streams, 
autopilot_l^start_drivers, 
autopilot_l_static_schedulers, 
autopilot_l_streams, gui_pkg); 

Partition2 : Partition := (psdl_streams, compassPKG, 
correct_course_PKG, controlrudderPKG, 
altitudecommandtypePKG, 
display_2_PKG, 
rudder_status_type_PKG, 
elevator_status_type_PKG, 
course_xommand_type_PKG, 
autopilot_2_drivers, 
autopilot_2_dynamic_schedulers, 
autopilot_2_start_drivers, 
autopilot_2_static_schedulers, 
autopilot_2_streams, gui_pkg); 
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procedure Stait_Autopilot is in Partition 1; 
- procedure Start_Autopilot will start the Autopilot execution 

procedure Start_Partition2; 
for partition2'Main use Start_Partition2; 
- procedure Start_Partition2 is the driver procedure for partiton2 

ChanneM : Channel := (Partition 1, Partition2); 

end Autopilot; 
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