
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

SOFTWARE ARCHITECTURE FOR DISTRIBUTED
REAL-TIME EMBEDDED SYSTEMS

by

Jose Carlos Alves de Almeida

September 1998

Thesis Advisor:
Co-Advisor:

Man-Tak Shing
Michael Holden

Approved for public release; distribution is unlimited.

DTCC QUALITY INSPECTED 4

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington; VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1998

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
SOFTWARE ARCHITECTURE FOR DISTRIBUTED REAL-TIME EMBEDDED
SYSTEMS
6. AUTHOR(S)
Almeida, Jose Carlos Alves de

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U. S. Government.
12a. DISTRffiUTlON / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRD3UTION CODE

13. ABSTRACT (maximum 200 words)
Real-time embedded systems have particularly strict requirements on accuracy, safety and reliability. A central question in the

design of such systems is how to support concurrent processing without adversely affecting the timing requirements of the system.
Concurrent processing is essential because the only way to successfully meet some tight real-time constraints is to use multiple
processors.

This thesis focuses on the distributed scheduling problem. It proposes a distributed scheduling algorithm to allocate and
schedule a set of tasks onto a collection of processors linked by a network. It further proposes a distributed software architecture
for CAPS (Computer Aided Prototyping System) generated prototypes based on GLADE (GNAT Library for Ada Distributed
Execution). •

The new distributed CAPS architecture is applied to several prototype examples. The results show that it is possible to build
distributed real-time embedded systems under the distributed scheduling model, where sets of tasks run independently on each
processor, using GLADE.

14. SUBJECT TERMS
Real-Time Embedded Systems, Distributed Systems, Real-Time Scheduling, Software
Architecture, Computer Aided Prototyping.

15. NUMBER OF
PAGES
171

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-9)
Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited.

SOFTWARE ARCHITECTURE FOR DISTRIBUTED REAL-TIME EMBEDDED
SYSTEMS

Jose Carlos Alves de Almeida
Lieutenant, Brazilian Navy

B.S., Brazilian Naval Academy, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1998

Author:
Jose Carlos Alves de Almeida

Approved by:

Dan Boger,
Department of Computei^Science

in

IV

ABSTRACT

Real-time embedded systems have particularly strict requirements on accuracy,

safety and reliability. A central question in the design of such systems is how to support

concurrent processing without adversely affecting the timing requirements of the system.

Concurrent processing is essential because the only way to successfully meet some tight

real-time constraints is to use multiple processors.

This thesis focuses on the distributed scheduling problem. It proposes a

distributed scheduling algorithm to allocate and schedule a set of tasks onto a collection

of processors linked by a network. It further proposes a distributed software architecture

for CAPS (Computer Aided Prototyping System) generated prototypes based on GLADE

(GNAT Library for Ada Distributed Execution).

The new CAPS architecture is applied to several prototype examples. The results

show that it is possible to build distributed real-time embedded systems under the

distributed scheduling model, where sets of tasks run independently on each processor,

using GLADE.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. REAL-TIME EMBEDDED SYSTEMS , 1
B. REAL-TIME SCHEDULING 4

1. Preemptive Scheduling '■ '--5
2. Dynamic Scheduling 5
3. Static Scheduling 5

C. CONCURRENCY ASPECTS IN REAL-TIME EMBEDDED SYSTEMS 7
D. COMPUTER AIDED PROTOTYPING SYSTEMS 8

II. DISTRIBUTED SYSTEMS OVERVIEW 11

A. DISTRIBUTED SYSTEMS CHARACTERISTICS 11
1. Resource Sharing 11
2. Openness 13
3. Concurrency 13
4. Scalability : 14
5. Fault Tolerance ; 14
6. Transparency , 15

B. ARCHITECTURAL ISSUES 16
1. Different Clocks 16
2. CPU Speed 17
3. Memory : 17
4. The Communication Media 17

C. DESIGN ISSUES 17
1. Synchronization .- 18
2. Naming .: ..•••• • : 21
3. Communication : 23

a. Client-Server Communication Model 24
b. Group Multicast Communication Model 25

D. REMOTE PROCEDURE CALL 26
1. Remote Procedure Call Characteristics 27
2. Design Issues 28

a. Interface Definition Language 29
b. Exception Handling 29
c. Delivery Guarantees 29
d. Transparency 30

3. Implementation...'. - : 31
a. Interface Processing. 31
b. Communication Handling 33
c. Binding 33

4. Asynchronous Remote Procedure Call 33

III. BACKGROUND KNOWLEDGE 35

A. REAL-TIME SYSTEMS MODEL 35
1. Real-Time Semantics of PSDL 36

a. Operators 36
b. Data Streams • - 37
c. State Streams 37
d. Types 38
e. Exceptions 38
f. Timers... 38

2. Control Constraints '• 38
a. Periodic and Sporadic Operators 39
b. Data Triggers 39
c. Execution Guards 40
d. Output Guards 40
e. Exception Guards : 40

vii

3. Timing Constraints 41
4. Synchronization in PSDL 45
5. Mutual Exclusion 4g
6. Hardware Models 46

B. REAL-TIME SCHEDULING ANALYSIS ZZZZZZZZZZZZZZZZ.46
1. Real-Time Scheduling Model . ; 47
2. Non-Preemptive Tasks Scheduling 49

a. The Maximum Execution Time Theorem 49
b. The Finish-Within Theorem 5$
c. The Minimum Period Theorems 5/
d. The Load Factor Theorem 52
e. The Harmonic Block Theorem §2

3. Coping with Sporadic Tasks 53
C. DISTRIBUTED SCHEDULING . ZZZZZZZZ.56

1. Dealing with the Synchronization Problem 57
2. Additional Restrictions Imposed on the Timing Constraints 60

IV. THE ALLOCATION AND SCHEDULING PROBLEM 63

A. INTRODUCTION 63
B. APPROACHING THE SCHEDULING PROBLEM 65
C. THE DISTRIBUTED SCHEDULING PROBLEM 66

1. Building the Distributed Schedule 68
2. Verifying the Feasibility of the Schedule : 75

V. SOFTWARE ARCHITECTURE DESIGN 83

A. INTRODUCTION 83

1. Partitions ; •; . 83
2: Categorization of Library Units : ...84
3. Remote Subprograms Calls , 85
4. Partition Communication Subsystem 86
5. The Package Streams .-. 88

B. ANALYSIS OF GLADE AND ITS CONFIGURATION LANGUAGE ZZZZZZZZo
1. Configuring a Distributed Application 91
2. How Gnatdist Works 92
3. The Configuration Language 92

a. Remote Shell. 95
b. Filtering gj

4. Foreign Code .' 98
5. Debugging •. 99
6. Restrictions 100

C. THE ADA 95 DISTRIBUTED ARCHITECTURE ZZZZZZZZZZZZZZZ. 101

VI. PROTOTYPE OF THE SOFTWARE ARCHITECTURE 103

A. THE CURRENT UNIPROCESSOR ARCHITECTURE 103
B. THE PROPOSED DISTRIBUTED ARCHITECTURE 107

1. Package RemoteStreams 110
2. The New Package Drivers HI
3. 'The Tasks Static Schedule and Dynamic'Schedule, ; ; ill
4. The Configuration File 112
5. The Architecture of the Distributed Implementation 113

VH. CONCLUSIONS AND RESULTS 115

A. SUMMARY OF THE THESIS 115
1. Implementation 116

B. EXPERIMENTAL RESULTS ZZZZZZZZZZ. Z 117
C. CONCLUSIONS AND FUTURE WORK ; .ZZZZ. 119

Vlli

1. Possible CAPS Modifications 120

LIST OF REFERENCES 121

APPENDIX A. SPECIFICATION OF THE DISTRIBUTED AUTOPILOT ATOMIC
OPERATORS 125

APPENDIX B. DISTRIBUTED AUTOPILOT STREAMS INSTANTIATIONS 129

APPENDIX C. DISTRD3UTED AUTOPILOT REMOTE STREAMS 131

APPENDIX D. DISTRIBUTED AUTOPILOT DRIVERS 133

APPENDIX E. DISTRD3UTED AUTOPILOT STATIC SCHEDULERS ■. 145

APPENDIX F. CONFIGURATION FILE 151

INITIAL DISTRIBUTION LIST 153

IX

LIST OF FIGURES

Figure 1.1. Ten Real-Time Tasks to be Executed on Two Processors (Tanenbaum, 1995)6
Figure 1.2. Two Possible Schedules for the Tasks of Figure 1.1 7
Figure 2.1. Client-Server Model 12
Figure 2.2. Synchronous Mode of Communication.... 21
Figure 2.3. Primitives for Explicit and Implicit Addressing of Processes 23
Figure 2.4. Client-Server Communication 25
Figure 2.5. Multicasting to a Process Group 26
Figure 2.6. Stub Procedures (Coulouris, Dollimore and Kindberg, 1996) 32
Figure 3.1. Sporadic Timing Constraints 43
Figure 3.2. Periodic Time Constraints 44
Figure 3.3. Scheduling Taxonomy 47
Figure 3.4. Theorem 1 for Case 2 of the Sporadic Task Set 50
Figure 3.5. The Minimum Period Sliding Window 51
Figure 3.6. The Transient and Cyclic Schedules 53
Figure 3.7. The Sporadic Conversion when MCP < MRT - MET 54
Figure 3.8. The Sporadic Conversion when MCP > MRT - MET 55
Figure 3.9. Reason for No Synch When PERPr0d > PER«™ for Uniprocessor Case 57
Figure 3.10. Reason for No Synch when PERprod < PER«,'™ for Distributed Case 58
Figure 3.11. Reason for No Synch when PERpr0d ^ PER«™ for Distributed Case 59
Figure 3.12. The Consumer-Producer Paradigm:. 60
Figure 3.13. New Timing Constraints for the Sporadic Operator 61

. Figure 4.1. Graphs Used by the CAPS Scheduler 68
Figure 4.2. Adapt Schedule to the Distributed Model Algorithm..... 73
Figure 4.3. Extend Partial Schedule Algorithm 75
Figure 4.4. Evaluating the Cost of a Distributed Schedule 76
Figure 4.5. The Distributed Scheduling Algorithm 79
Figure 4.6. Partial Schedule 80
Figure 4.7 (a). Static Schedule for Processor Pi 81
Figure 4.7 (b). Static Schedule for Processor P2.... '..... 81
Figure 5.1 Specification of Package System.RPC (Ada, 1995) 87
Figure 5.2. Specification of Package Ada.Streams (Ada, 1995) 89
Figure 5.3. Stream Attributes (Ada, 1995) 90
Figure 5.4. Configuration File (ACT Europe) 93
Figure 5.5. Encapsulation of a C Routine 99
Figure 5.6. The Ada 95 Distributed Architecture 101
Figure 6.1. Temperature Control PSDL Graph .' 104
Figure 6.2. Partial View of Temp_Controller.a 105
Figure 6.3. CAPS Supervisory Program Structure '. 106
Figure 6.4. Autopilot Prototype 108
Figure 6.5. The Autopilot Global Precedence Graph 109
Figure 6.6. Output of the Distributed Scheduling Algorithm 109
Figure 6.7. Specification of Package Autopilot_l_REMOTE_STREAMS Ill
Figure 6.8. The Configuration File for the Distributed Autopilot Prototype 113
Figure 6.9. Architecture of the Distributed Autopilot Implementation 114

xi

Figure 7.1. Latency for Interprocessor Communications 118

Xll

LIST OF TABLES

Table 3.1. PSDL Timing Constraints 41
Table 4.1. Summary of Notations 66

xiu

XIV

ACKNOWLEDGMENT

I would like to express my gratitude to my beloved wife, Danielle, who firmly and
patiently stimulated me, as well as, inspired me with courage and hope throughout the
whole period I was preparing and, later, writing this thesis. Next, I would like to thank
my mother Wilma for her devotion, love and support throughout my life.

To my thesis advisor, Professor Man-Tak Shing, I would like to thank him for all
of his assistance, guidance and support throughout the thesis process. I would also like to
thank my thesis co-advisor, Commander Michael Holden, US.N, for his support.

In addition, I would like to thank the staff of the Computer Science Department,
especially Valerie Brooks and Jean Brennan for their support.

Finally, I would like to thank God for helping me to advance one more step in my
life and my career.

xv

I. INTRODUCTION

This thesis deals with the area of computer-aided real-time systems development.

Here we investigate the capabilities of distributed real-time systems support in Ada 95

and the issues involved in automating software development for such systems. We

divided this work into seven chapters. This chapter presents the basic concepts involving

real-time embedded systems, introduces the reader to the real-time scheduling problem

and explains the importance of computer-aided prototyping systems. In Chapter II, we

present a distributed system overview. Chapter II is considered very important because it

explains the basic concepts behind the implementation of the Ada 95 Distributed Systems

Annex and will help the reader to get a better understanding of the following chapters.

In Chapter III, we .explore the characteristics of the Prototyping System

Description Language (PSDL) real-time model and discuss a number of issues related to

the distributed system model. Chapter IV is an extension of the previous chapter. There

we discuss the distributed scheduling problem and propose a technique to allocate and

schedule tasks running on a network of processors in a distributed system.

In Chapter V, we discuss the Ada 95 Distributed Systems Annex and present the

Gnat Library for Ada Distributed Execution (GLADE), the GNAT implementation of

Annex E (Ada, 1995).

Chapter VI presents the current CAPS (Computer Aided Prototyping Systems)

.uniprocessor architecture and the proposed distributed implementation. In Chapter VII,

we conclude this work.

In this thesis, our concern is to identify the requirements for distributed real-time

embedded systems and discuss the merits of a number of approaches. Of these, the

design and development of an Ada 95 software architecture for distributed real-time

embedded systems and automatic generation tools for such architecture is the most

significant.

A. REAL-TIME EMBEDDED SYSTEMS

For most programs, correctness depends only on the logical sequence in which

instructions are executed, not when they are executed. In contrast, real-time systems

interact with the external world in a way that involves time. When a stimulus appears,

1

the system must respond to it in a certain way and before a certain deadline. If it delivers

the correct answer but after the deadline, the system is regarded as having failed

(Tanenbaum, 1995).

A real-time system is a system that must satisfy explicit (bounded) response time

constraints or risk severe consequences, including failure (Laplante, 1993). Failure

means that the system can not satisfy the requirements specified in the formal system

specification. Real-time embedded systems are those used to control specialized

hardware in which the computer system is installed. For example, the microprocessor

system used in the cruise control system of many automobiles is an embedded system.

Similarly, the software used to control the inertial guidance system of a space shuttle or

the operation of an assembly line in an industrial plant is embedded because it operates in

a highly specialized hardware environment.

A space shuttle must process accelerometer data within a certain period of time,

which depends on the specification of the space shuttle. Failure to do so could result in a

false position or velocity indication and cause the space shuttle, at best, to go off-course;

or at the worst to crash. For a steam generator low water problem, failure to respond

swiftly could result in severe damage to the equipment and loss of life. The examples

mentioned earlier satisfy the criteria for a real-time system. In short, a system does not

have to process data in microseconds to be considered real-time, it must simply have

response times that are constrained and thus predictable (Laplante, 1993). One of the

most important properties of any real-time system is that its behavior be predictable. It

should be clear at design time that the system can meet all of its deadlines, even in the

worst case condition.

Real-time embedded systems support various aspects of modern life. The

increased power of microprocessors and steadily falling prices have made digital control

systems technically attractive and highly cost-effective. Television sets, cars, instruments

and telecommunication equipment are controlled by microprocessors and the related

software, which is embedded into the product itself. The user does not see or feel this

software. The only indication of its existence is the large set of operations provided by

the product.

Real-time systems are classified as either hard real-time systems or soft real-time

systems. In hard real-time systems an early and late response are both treated as an error

and may cause damage or loss of life or property. Hard time constraints appear often in

control applications, such as sophisticated fly-by-wire systems in aircraft, arm controllers

in industrial robots, or anti-lock braking systems in cars.

In soft real-time systems, a late response is normally acceptable. Examples of

soft real-time systems are communications equipment, such as digital telephone

exchanges. Performance issues are critical in real-time systems. In the case of soft real-

time systems, performance considerations are related to the capability to adequately

handle the external load on the system. In hard real-time systems, performance

requirements mean the ability to meet all specified deadlines (Awad* Kuusela and

Ziegler, 1996).

As noted, all practical systems represent at least soft real-time systems. Since we

are most interested in hard real-time systems, we will use the term "real-time system" to

mean hard real-time system without loss of generality.

Typically, a real-time system has to perform several different tasks. Some of

these tasks are periodic, that is, they are executed at regular time intervals. Other tasks

are aperiodic, that is, the need to execute a task may occur at any arbitrary point in time.

A real-time system that is able to react to aperiodic request within time limits is called

reactive. Most embedded real-time systems are reactive, that is, they have to be able to

react to new events, even if the system is still processing earlier tasks. Thus, competing

requests are processed concurrently.

In addition to time constraints, a task can have other constraints such as

(Stankovic and Ramamritham, 1988):

1. Resource constraints - the resources required during the execution of the task
2. Precedence constraints - that specify a partial (perhaps total) ordering on the

execution of tasks
3. Concurrency constraints - that describe which tasks can run concurrently, to

share a resource, for example
4. Placement constraints - whether a given task is to run in a specific processor
5. Criticalness - the relative value to the system that is associated with some

specific task when it meets its deadline
6. Preemptiveness - determining whether a task can be interrupted by other tasks

and resume execution afterwards

7. Communication requirements - issues of inter-task communications and
synchronization protocols such as acceptable delays.

Since embedded systems are connected to the surrounding real world, processor

overload may occur. In an overload situation, the performance degradation of the system

should take place gracefully. During the shortage of resources caused by an overload

situation, some tasks will have to wait for processing.

Tasks are classified as critical, essential, and nonessential. Critical tasks have

deadlines that must be met. Essential tasks also have deadlines, but failure to meet them

will not cause severe problems. Nonessential tasks are allowed to wait without any

specified time limit. Task scheduling in hard real-time systems can be either static or

dynamic. In static scheduling, it is assumed that all information about the task is known

a priori, and the schedule is usually generated off-line. In dynamic scheduling, although

all information about the tasks may be known a priori, they are allowed to be

dynamically invoked, and the schedule is calculated "on the fly." There has been a great

deal of debate about the appropriateness of dynamic scheduled algorithms for hard real-

time systems. Many people are in favor of static scheduling because it seems reasonable

to assume that for safety-critical applications all the schedulability should be guaranteed

before execution (Audsley and Burns, 1993).

B. REAL-TIME SCHEDULING

Real-time systems are frequently programmed as a collection of short tasks, each

with a well-defined function and a well-bounded execution time. The response to a given

stimulus may require multiple tasks to be run, generally with constraints on their

execution order. In addition, a decision has to be made about which tasks to run on

which processors (Tanenbaum, 1995).

Scheduling can be centralized, with one machine collecting all the information

and making all the decisions, or it can be decentralized, with each processor making its

own decisions. In the centralized case, the assignment of tasks to processors can be made

at the same time, whereas in the decentralized case assigning tasks to processors is

distinct from deciding which of the tasks assigned to a given processor to run first. A key

question that all real-time system designers face is whether or not it is even possible to

meet all the constraints.

Real-time scheduling algorithms can be characterized by the following

parameters:

1. Preemptive versus non-preemptive scheduling.
2. Dynamic versus static.
3. Centralized versus decentralized.

1. Preemptive Scheduling

Preemptive scheduling allows a task to be suspended temporarily when a higher

priority task arrives, resuming it later when no higher priority task is available to run.

Non-preemptive scheduling runs each task to completion. Once a task is started, it

continues to hold the processor until it is done.

2. Dynamic Scheduling

Dynamic algorithms make their scheduling decisions during execution. When an

event is detected, a dynamic preemptive algorithm decides on the fly whether to run the

first task associated with the event or to continue running the current task. When the

current task finishes, a choice is made among the ready tasks.

The classic scheduling algorithm. is the Rate Monotonie Algorithm (Liu and

Layland, 1973). It was designed for preemptively scheduling periodic tasks on a single

processor. Each task is assigned a priority equal to its execution frequency. The higher

the execution frequency, the higher the priority. At run time, the scheduler always selects

the highest priority task to run, preempting the current task if it is needed.

A second preemptive dynamic algorithm is Earliest Deadline First. Whenever an

event is detected, the scheduler adds it to the list of waiting tasks, which is kept sorted by

the deadline, with the task with the closest deadline first. Then the scheduler chooses the

first task in the list, the one closest to its deadline. Liu and Leyland (1973) proved that

the Earliest Deadline First algorithm is optimal for any set of independent periodic tasks.

3. Static Scheduling

Static scheduling is done before the system starts operating. The input consists of

a list of all tasks and the times that each must run. The goal is to find an assignment of

tasks to processors and for each processor, a static schedule giving the order in which the

tasks are to be run. In theory, the scheduling algorithm can run an exhaustive search to

find the optimal solution, but the search time is exponential to the number of tasks

(Ullman, 1976).

Let us assume that every time an event is detected, a task is started on processor

A. This task, in turn, can start up additional tasks on both processor A or processor B,

and so on until the last task is executed, as illustrated in Figure 1.1, We consider that a

task can not start until a message from another task has arrived. The scheduler analyzes

the graph of Figure 1.1, using as input the information about the running times of all the

tasks, and then applies some heuristics to find a good schedule. Two potential schedules

are given in Figure 1.2 a) and b). Messages between tasks on different processors are

depicted as arrows; messages between tasks on the same machine are handled internally

and are not shown.

Stimulus

Processor A

Processor B

Response

Figure 1.1. Ten Real-Time Tasks to be Executed 6n Two Processors (Tanenbaum,
1995)

Of the schedules illustrated, the one in Figure 1.2 (b) is a better choice because it

allows task 5 to run early, thus making it possible for task 8 to start earlier. If task 5 is

delayed significantly, as in Figure 1.2 (a), then tasks 8 and 9 are. delayed, which also

means that 6 and eventually 10 are delayed, too.

Stimulus Stimulus

Response ' ► Response

(a) (b)

Figure 1.2. Two Possible Schedules for the Tasks of Figure 1.1

When we take communication into account, the problem of scheduling the same

tasks would change due to the delay introduced by the communication subsystem.

Starting a task would require a delay that was not present before. The important thing to

notice about this example is that the run time behavior is completely deterministic and

known even before the program starts executing. As long as communication and

processor errors do not occur, the system will always meet its real-time deadlines.

The choice of dynamic or static scheduling is an important one and has far-

reaching consequences for the system. Static scheduling must be carefully planned in

advance, with considerable effort going into choose the various parameters. Dynamic

scheduling does not require as much advance work, since scheduling decisions are made

on the fly, during execution (Tanenbaum, 1995).

C. CONCURRENCY ASPECTS IN REAL-TIME EMBEDDED SYSTEMS

Concurrency aspects always occur in real-time embedded systems. The reason is

that concurrency is an inherent feature of real-time applications, and must be included in

every modeling effort. External events may occur at any point in time, even

simultaneously, and they must be queued and handled within preset time limitations

(Awad, Kuusela and Ziegler, 1996).

A central question in the design of real-time embedded systems is how to support

concurrent processing without affecting the timing requirements. Concurrent processing

is essential because the only way to make some tight real-time constraints feasible is to

use multiple processors.

Concurrency is a powerful concept that solves some problems of real-time

systems. On the other hand, it creates new problems regarding the consistency of data,

because the same data can be simultaneously accessed by two concurrent requests on the

same object. Also, we have to deal with other problems inherent to distributed systems:

synchronization, resource management, and communication with external systems and

processes. In the following chapters, we will see how to handle concurrency in

distributed real-time embedded systems.

D. COMPUTER AIDED PROTOTYPING SYSTEMS

Rapid prototyping can be used to reduce the risks of producing systems that do

not meet the customers needs (Luqi, 1993). A prototype is an executable pilot version of

a proposed software system. Prototypes are used to gain information that can guide

analysis and design, and can support automatic generation of production code.

Real-time and embedded systems have particularly strict requirements on

accuracy, safety and reliability, and are usually subject to timing constraints that must be

met even under the worst possible operating conditions. Since feasible requirements for

large embedded systems are difficult to formulate, understand and meet without extensive

prototyping, computer aid is the key to rapid construction, evaluation and evolution of

such prototypes.

The Computer Aided Prototyping Systems (CAPS) can be used to prototype large,

parallel, real-time and distributed systems because the requirements for such software

systems are difficult to assess. CAPS is a set of software tools, which provide a means to

validate functional requirements and verify design specifications early in the

development of the software system. It implements the rapid prototyping concept via a

high-level prototyping language called PSDL. This language is designed for prototyping

real-time and large software systems, and supports conceptual modeling of such systems

(Luqi, 1993).

The prototyping language PSDL supports a modeling strategy based on data flow

graphs augmented with non-procedural timing and control constraints. The real-time

aspects of PSDL are described in Chapter III.

10

II. DISTRIBUTED SYSTEMS OVERVIEW

A. DISTRIBUTED SYSTEMS CHARACTERISTICS

A distributed system consists of a collection of autonomous computers linked by a

computer network and equipped with distributed systems software. Distributed systems

software enables computers to coordinate their activities and to share the resources of the

system: hardware, software and data. From the point of view of users, the distributed

system should act as a single, integrated computing facility even though they are aware

that distinct machines connected by a communication subsystem are being used.

The definition above corresponds to a type of distributed system known as

loosely-coupled systems, where the shared resources needed to provide an integrated

computing service are provided by some of the computers in the network and are

accessed by system software that runs on all of the computers, using the network to

coordinate their work and to transfer data between them.

The other type, known as tightly-coupled systems, exploit multiple processing

units, often sharing a single memory or address space, to achieve high performance in a

computer system that is otherwise centralized.

In this thesis, we are concerned with the architecture and design of general

purpose distributed systems, and we will use the term "distributed systems" to mean

loosely-coupled systems.

Six key characteristics are primarily responsible for the usefulness of distributed

systems. They are not automatic consequences of distribution. System and application

software must be carefully designed in order to ensure that their desired usefulness is

attained.

1. Resource Sharing

The term resource may be defined as the range of things that can be shared

usefully in a distributed system. This includes hardware components such as storage

devices, printers, and software-defined entities such as files, databases and other data

objects. Resources in a distributed system are physically encapsulated within one of the

computers and can only be accessed from other computers by communication. For

effective sharing each resource must be managed by a program that offers a

11

communication interface enabling the resource to be accessed, manipulated, and updated

reliably and consistently (Coulouris, Dollimore and Kindberg, 1996).

Each type of resource requires specific management policies, but there are also

common requirements. These include the provision of a naming scheme for each class of

resource that enables individual resources to be accessed from any location, the mapping

of resource names to communication addresses, and the coordination of concurrent

accesses that change the state of the shared resources in order to ensure their consistency.

We can imagine a distributed system as a system composed of a set of resource

managers and a set of resource using programs. The resource users communicate with

the resource managers to access the shared resources of the system. This perspective

leads to the development of an interesting model for distributed systems, the client-server

model. Figure 2.1 illustrates the client-server model.

Resource user:

Resource manager:

Client process:

Server process:

Figure 2.1. Client-Server Model

There is a set of server processes, each acting as a resource manager for a

collection of resources of a given type, and a set of client processes, each executing a task

that requires access to some shared resources. Resource managers may themselves need

to access shared resources managed by other processes, so some processes are both client

and server processes. In the client-sever model, all shared resources are held and

managed by server processes. Client processes send a message to the server processes

requesting access to one of their resources when they are needed. If the request is a valid

12

one, then the server executes the request and sends back a reply to the client that contains

the result of the requested processing.

The client-server model provides an effective general-purpose approach to

sharing of information and resources in distributed systems. The model can be

implemented in a variety of different hardware and software environments. The

computers used to run the client and server processes can be of many types and there is

no need to distinguish between them. It is even possible for both the client and server

processes to be run on the same computer. Moreover, some processes are both client and

server processes. That is, a server process may use the services of another server,

appearing as a client to the latter (Sinha, 1997). It should be clear that server processes

are not centralized providers of the resources they manage. Also, a distinction is made

between the services that are provided to clients and the servers that provide them. A

service is considered to be an abstract entity that may be provided by several server

processes running on separate computers and cooperating via the network.

2. Openness

The openness of a computer system is the characteristic that determines whether

the system can be extended in various ways. For example, adding additional resources

like processors, communication interfaces, or the addition of software extensions such as

operating system features, communications protocols, and resource-sharing services. The

openness of a distributed system is determined primarily by the degree to which new

resource sharing services can be added without disruption to or duplication of existing

services.

3. Concurrency

When several processes exist in a single computer, we say that they are executed

concurrently. This is achieved by interleaving the execution of portions of each process.

In distributed systems there are many computers, each' with one or more central

processors. If there are N computers in a distributed system with one processor each,

then up to N processes can run in parallel, assuming that each process is located in a

different computer. Concurrency and parallel execution arise naturally in distributed

systems from the separate activities of users, the independence of resources, and the

location of server processes in separate computers. The separation of these activities

13

enables processing to proceed in parallel in separate computers. Concurrent accesses and

updates to shared resources must be synchronized (Coulouris, Dollimore and Kindberg,

1996).

4. Scalability

Distributed systems operate effectively and efficiently at many different scales.

The range of computers in a distributed system extends from the smallest practicable

distributed system consisting of two workstations and a file server to hundreds of

workstations and many file servers connected via a local-area network (LAN). The

system and application software should not need to change when the scale of the system

increases. However, further research is required in this area to accommodate the very

large-scale systems and applications that will probably emerge as inter-networking

increases and high performance networks appear.

5. Fault Tolerance

When faults occur in hardware or software, programs may produce incorrect

results or may stop before completing the intended computation. The design of fäult-

tolerant computer systems is based on two approaches, both of which must be deployed

to handle each fault:

1. Hardware redundancy;
2. Software recovery.

To produce systems that are tolerant to hardware failures, we should implement

them using redundant components for the critical services. For example, we could

implement the file service of a distributed system as a group of file servers that closely

cooperate with each other to manage the files of the system and work in such a manner

that the system will continue to operate even if only one file server is up and working.

Software recovery involves the design of software so that the state of permanent

data (files and other material stored in permanent storage) can be recovered when a fault

is detected. Some of the commonly used techniques for implementing this method in a

distributed system are as follows:

1. Atomic transactions: an atomic transaction is a computation consisting of a
collection of operations that take place indivisibly in the presence of failures
and concurrent computations. That is, either all of the operations are
performed successfully or none of their effects prevails, and other processes

14

executing concurrently can not modify or observe intermediate states of the
computation.

2. Stateless servers: the client-server model is frequently used in distributed
systems to service user requests. In this model, a server, may be implemented
by using either the "stateful" or "stateless" service paradigm. The distinction
between them is whether or not the history of the serviced requests affects the
execution of the next service request. The stateful approach depends on the
history of the serviced requests, but the stateless does not depend on it. In the
event of a failure, the stateless service paradigm makes crash recovery easier
because no client information is required to be maintained by the server.

3. Acknowledgments and time-out based retransmissions of messages: in a
distributed system, events such as a node crash or a communication link
failure may interrupt a communication that was in progress between two
processes, resulting in the loss of a message. Therefore, a reliable"
interprocess communication mechanism must have ways to detect lost
messages so that they can be retransmitted.

As expected, the implementation of these techniques should be carefully

examined. According to Sinha (1997), the mechanisms described above may be

employed to create a very reliable distributed system. However, the main drawback of

increased system reliability is the potential reduction of execution time efficiency from

the extra overhead involved in these techniques.

6. Transparency

Transparency is defined as the concealment from the user and the application

programmer of the separation of components in a distributed system, so that the system is

perceived as a whole rather than a collection of independent components. The

implications of transparency are a major influence on the design of the system software

(Coulouris, Dollimore and Kindberg, 1996).

The separation of components is an inherent property of distributed systems.

Therefore, a communication subsystem and explicit system management and integration

techniques is needed. Nevertheless, the distributed system should allow users to access

remote resources in the same way as local resources. That is, the user interface, which

takes Ihe form of a set of system calls, should not distinguish between local and remote

resources. It should also be the responsibility of the distributed system to locate the

resources and to arrange for servicing user requests in a user-transparent form.

The International Standards Organization's Reference Model for Open Distributed

Processing - (International Standards Organization, 1992) identifies eight forms of

15

transparency. We use the term "object" to denote the entities to which distribution

transparency is applied:

1. Access transparency enables local and remote objects .to be accessed using
identical operations.

2. Location transparency enables objects to be accessed without knowledge of
their location.

3. Concurrency transparency enables several processes to operate concurrently
using shared information objects without interference between them.

4. Replication transparency enables multiple instances of objects to be used to
increase reliability and performance without knowledge of the replicas by
users or application programs.

5. Failure transparency enables the concealment of faults, allowing users and
application programs to complete their tasks despite the failure of hardware or
software components.

6. Migration transparency allows the movement of objects within a system
without affecting the operation of users or application programs.

7. Performance transparency allows the system to be configured to improve
performance as loads vary.

8. Scaling transparency allows the system and applications to expand in scale
without change to the system structure or the application algorithms.

B. ARCHITECTURAL ISSUES

In a distributed environment, it is likely to encounter a heterogeneous network of

computers with different clock speeds, CPUs, memory systems, etc. It is therefore

important to realize how these attributes can affect the overall performance and

functionality of the system. The following section will introduce some of the problems

that can affect the design of distributed systems, especially distributed real-time systems,

so that the reader may be aware of their existence and importance.

1. Different Clocks

A distributed system consists of several nodes, each with its own clock, running at

its own speed. The precision of a clock is directly related to its granularity, the minimum

number of ticks it can handle, and the quality of its time reference, which is usually based

on a crystal that oscillates at well-defined frequencies. Therefore, the first limit imposed

by the clock is the minimum acceptable oscillation period. This is not, in practice, an

actual limitation, since typical clocks range from tens to hundreds of megahertz,

providing nanosecond minimum allowable periods.

The real problem is that clocks can drift, causing a variety of synchronization

problems. Maintaining an accurate global clock is one of the most challenging tasks in

16

the distributed system arena. Usually this is achieved at the cost of substantial overhead

in communications.

2. CPU Speed

A distributed system consists of a collection of distinct processes that are spatially

separated and run concurrently in multiple processors. Due to the multiplicity of

processors, distributed systems are expected to have better performance than single-

processor centralized systems. However, when different processors are present, the net

result is a different execution time for the same piece of code on each processor. Since

the maximum execution time is the most basic timing property for real-time systems and

is also taken into account when scheduling the processes, this factor can increase the

complexity of the scheduling problem when designing distributed real-time systems.

3. Memory

Again, due to the heterogeneity of distributed systems, the designer of a

distributed real-time system should consider issues like cache size, paging, number of

pipelining stages, etc., which can affect the overall throughput of the system, and

consequently the timing requirements of the application.

4. The Communication Media

This is one of the most important factors when dealing with distributed systems,

and can greatly affect final timing requirements for the application. Note also that the

timing requirements are affected not only by the actual transmission delay, but also by

the operating systems invoked on behalf of the application.

C. DESIGN ISSUES

In Section A, we discussed the key characteristics of distributed systems. In this

section, we focus on the system architectures that are used to meet those requirements

and the technical issues that must be addressed in their design. The designer of

distributed systems or applications must consider a number of issues, such as software

structure and software engineering techniques. However, we shall restrict our discussion

to design issues that specifically affect the implementation of real-time embedded

systems in a distributed system, namely interprocess communication.

When we say that two computers of a distributed system are communicating with

each other, we mean that two processes, one running on each computer, are in

17

communication with each other. In a distributed system, processes executing in different

computers often need to communicate with each other to achieve some common goal.

Therefore, the system should provide interprocess communication. (IPC) mechanisms to

facilitate such communication activities.

We can enumerate some of the desirable features of a good message-passing

system:

1. Simplicity: a message passing system should be simple and easy to use. It
should be possible for a programmer to designate the different modules of a
distributed application to send and receive messages between them in the
simplest as possible without the need to worry about system or network
aspects not relevant at the application level.

2. Uniform semantics: in a distributed system the semantics of remote
communications should be as close as possible to those of local
communications.

3. Efficiency: efficiency is usually a critical issue for a message-passing system.
If the message-passing system is not efficient, interprocess communication
may become so expensive that application designers will try to avoid them.

4. Reliability: a reliable IPC protocol can cope with failure problems and
guarantees the delivery of a message.

Sinha identifies the following important issues to be considered in the design of

an IPC protocol for a message-passing system (Sinha, 1997):

1. Who is the sender?
2. Who is the receiver?
3. Is there one receiver or many receivers?
4. Does the sender needs to wait for a reply?
5. What should be done if a catastrophic event such as a node crash or a

communication link failure occurs during the course of communication?
6. What should be done if the receiver is not ready to accept the message?
7. If there are several outstanding messages for a receiver, can it choose the

order in which to service the outstanding messages?

These issues are addressed by the semantics of the set of communication

primitives provided by the IPC protocol, as we shall see below.

1. Synchronization

A central issue in the communication structure is the synchronization imposed on

the communicating processes by the communication primitives. The semantics used for

synchronization may be broadly classified as blocking and nonblocking types. A

primitive is said to have nonblocking semantics if its invocation does not block the

execution of its invoker; otherwise, a primitive is said to be of the blocking type. The

18

synchronization imposed on the communicating process depends on the type of semantics

used for the send and receive primitives.

In the case of a blocking send primitive, after execution of the send statement the

sending process is blocked until it receives a reply from the receiver that the message has

been received. For a nonblocking send primitive, after execution of the send statement,

the sending process is allowed to proceed with its execution as soon as the message has

been copied to a buffer.

In the case of a blocking receive primitive, after execution of the receive

statement, the receiving process is blocked until it receives a message. For a nonblocking

receive primitive, the receiving process proceeds with its execution after execution of the

receive statement, which returns control almost immediately just after telling the kernel

where the message buffer is.

An important issue in a nonblocking receive primitive is how the receiving

process know that the message has arrived in the message buffer. One of the following

two methods is commonly used for this purpose:

1. Polling: in this method, a test primitive is provided to allow the receiver to
check the buffer status. The receiver uses this primitive to periodically poll
the kernel to check if the message is already available in the buffer.

2. Interrupt: in this method, when the message has been placed in the buffer and
is ready for use by the receiver, a software interrupt is used to notify the
receiving process. This method permits the receiving process to continue with
its execution without having to issue unsuccessful test requests. Although this
method is highly efficient and allows maximum parallelism, its main
drawback is that user-level interrupts make programming difficult
(Tanenbaum, 1995).

In a blocking send primitive, the sending process could be blocked forever in a

situation where the receiving process has crashed or the sent message has been lost on the

network due to a communication failure. To prevent this situation, blocking send

primitives often use a timeout value that specifies an interval of time after which the send

operation is terminated with an error status. A timeout value may also be associated with

a blocking receive primitive to prevent the receiving process from getting blocked

indefinitely when the send process has crashed or the expected message has been lost on

the network due to a communication failure. When both the send and receive primitives

of a communication between two processes use blocking semantics, the communication

19

is said to be synchronous, otherwise it is asynchronous. That is, for synchronous

communication, the sender and the receiver must be synchronized to exchange a

message. Figure 2.2 illustrates this mode of communication.

In synchronous communications, the sending process sends a message to the

receiving process, then waits for a reply. After executing the receive statement, the

receiver remains blocked until it receives the message. On receiving the message, the

receiver sends a reply to the sender. The sender resumes execution only after receiving

this reply.

Compared to asynchronous communication, synchronous communication is

simple and easy to implement. It also contributes to reliability because it assures the

sending process that its message has been accepted before the sending process resumes

execution. As a result, if the message gets lost or is undelivered, no backward error

recovery is necessary for the sending process to establish a consistent state and resume

execution (Shatz, 1984). However, the main disadvantage of synchronous

communication is that it limits concurrency and is subject to communication deadlocks..

20

Sender's Receiver's
execution execution

Receive (message);
• execution suspended

(waiting for a message)
Send (message);

execution suspended Message

Execution resumed

Send (reply)

Execution resumed
Reply

 Blocked state

i^Accuimg buuc

Figure 2.2. Synchronous Mode of Communication

A flexible message-passing system usually provides both blocking and

nonblocking primitives for send and receive so that users can choose the most suitable

one to match the specific needs of their application.

2. Naming

Distributed systems are based on the sharing of resources and on the transparency

of their distribution. The names assigned to resources or objects must have global

meanings that are independent of the location of the object, and they must be supported

by a name interpretation system that can translate names in order to enable programs to

access named resources. A design issue is to design naming schemes that will scale to an

appropriate degree and in which names are translated efficiently to meet appropriate

goals for performance (Coulouris, Dollimore and Kindberg, 1996).

A process that requires access to a resource, which it does not manage, must

possess a name or a identifier for it. The term "name" refers to names that are interpreted

by users or by programs and the term "identifier" refers to names that are interpreted or

used only by programs. We say that a name is resolved when it is translated into a form

in which it can be used to invoke an action on the resource or object to which it refers. In

distributed systems, a resolved name is generally a communication identifier together

with other attributes that may be useful for communication. The form of a

21

communication identifier depends on the kinds of identifier interpretation provided in the

communication system that is in use. For example, in Internet communication a

communication identifier must contain two parts: a host identifier (also called an IP

address, the numeric address of a computer, for example 131.120.001.013) and a port

number identifying a particular communication port among those located at the host.

The resolution of names may involve several translation steps. At each step, a

name or identifier is mapped to a lower-level identifier that can be used to specify a

resource when communicating with some software component. At some stage in this

sequence of translations a communication identifier is produced that is acceptable to the

communication subsystem that is in use, and this' can be used to transmit a request to a

resource manager. The communication subsystem may have to perform further

translations to produce network addresses and routing information that are acceptable to

lower-level network software layers (Coulouris, Dollimore and Kindberg, 1996).

In distributed systems a communication subsystem usually supports two types of

process addressing:

1. Explicit addressing: the communication primitive explicitly names the process
with which communication is desired as a parameter. Primitives "send" and
"receive" in figure 2.3 require explicit process addressing.

2. Implicit addressing: a process willing to communicate does not explicitly
name a process for cornmunication. Primitives "send_any" and "receive_any"
in figure 2.3 support implicit process addressing. In the first primitive, the
sender names a service instead of a process. According to Sinha (1997), this
type of primitive is useful in client-server communications when the client is
not concerned with which particular server, out of ä set of servers providing
the service desired by the client, actually services its request. On the other
hand, in primitive receive_any, the receiver is willing to accept a message
from any sender. This type of primitive is again useful in client-server
communications when the server is meant to service requests of all clients that
are authorized to use its service.

22

- Send a message to the process identified by processjd.
send (process_id, message)

- Receive a message from the process identified by processjd.
receive (process_id, message)

- Send a message to any process that provides the service of
type service jd.

send_any (service_id, message)

- Receive a message from any process and return the process
identifier process jd of the process from -which the message
was received.

receive_any (process_id, message)

Figure 2.3. Primitives for Explicit and Implicit Addressing of Processes

3. Communication

The components of a distributed system are both logically and physically

separated, however they must communicate in order to interact and perform tasks. We

shall assume that all of the components that require or provide access to resources in

distributed systems are implemented as processes. This is true for the client-server model

outlined above. In client-server systems, a client process must interact with a server

process whenever it requires access to a resource that it does not control.

As we saw previously, communication between processes involves operations in

the sending and receiving processes that result in the transfer of data from the

environment of the sending process to the environment of the receiving process, and the

synchronization of the receiving activity with the sending activity, so that the sending or

receiving process is blocked until the other process makes an action that frees it. To

transfer data from one process to the other, the communicating processes must share a

communication channel where synchronization is implicit in the operation of all

programming primitives for communication.

The basic programming constructs take the form of programming primitives send

and receive. Each message-passing action involves the transmission by the sending

process of a set of data-values through a specified communication mechanism — a

channel or a port ~ and the acceptance by the receiving process of the message. As

23

explained previously, the mechanism may be synchronous, or blocking, meaning that the

sender waits after transmitting a message until the receiver has performed a receive

operation and sent a reply; or it may be asynchronous or non-blocking meaning that the

message is placed in a queue of messages waiting for the receiver to accept them and the

sending process can continue execution almost immediately. Receive normally blocks

the receiving process when no message in currently available.

The practical implementation of messages passing between processes located in

different computers requires the use of a communication network for the transmission of

data and for communication of synchronization signals. Distributed systems can be

designed entirely in terms of message-passing, but there are certain patterns of

communication that occur so frequently and are so useful that they can be regarded as an

essential part of the support for the design and construction of distributed systems

(Coulouris, Dollimore and Kindberg, 1996).

The two patterns of communication most commonly used are the client-server

communication model for communication between pairs of processes and the group

multicast communication model for communication between groups of cooperating

processes. The performance of the communication subsystems used for interprocess

communication is critical for the performance of distributed systems. High performance

distributed systems require optimized implementations of these two patterns of

communication.

a. Client-Server Communication Model

The client-server communication model is oriented towards service

provision. Communication between client and server processes consists of the following:

1. Transmission of a request from a client process to a server process;
2. Execution of the request by the server;
3. Transmission of a reply to the client.

Figure 2.4 illustrates the client-server communication-model. The server

process must become aware of the request message sent by the client process as soon as it '

arrives, and the activity issuing the request in the client process must be blocked, after the

transmission of the message, until the reply from the server has been, received.

24

Client Server

Send (message);
execution suspended ■—^___^ Request

Receive (message);
execution resumed

Receive (reply)
Execution resumed

Reply

Send (reply);
execution suspended

 Blocked state
Executing state

Figure 2.4. Client-Server Communication

According to Coulouris, Dollimore and Kindberg (1996), the client-server

pattern of communication can be implemented in terms of the basic message-passing

operations send and receive outlined above, but it is commonly presented at the language

level as a remote procedure call (RPC) construct, which we will see in the next section.

Note that a process is a client or a server only for purposes of a particular

communication. A server can request the services of another server, and so can be a

client of other processes. Similarly, a client can be a server to other processes.

b. Group Multicast Communication Model

In the group multicast pattern of communication, processes interact by

message passing, but in this case, the target of a message is not a single process but a

group of processes. There are multiple receivers for a message sent by a single sender.

Figure 2.5 illustrates this pattern of communication. Group multicast communication is

useful for several practical applications, as shown by the following examples:

1. Locating an object: a client multicasts a message containing the name of a file
directory to a group of file server processes. Only the one, which holds the
relevant directory, replies to the request.

2. Fault tolerance: a client multicasts its request to a group of server processes all
of which process the request identically. A group of two or more servers can
continuously provide the service, even if one of their members crashes.

25

l receive J

Figure 2.5. Multicasting to a Process Group

D. REMOTE PROCEDURE CALL

The general message-passing model of interprocess communication (IPC) was

presented in the previous section. The IPC part of a distributed application can often be

adequately and efficiently handled by using an IPC protocol based on the message-

passing model. However, an independently developed IPC protocol is tailored

specifically to one application and does not provide a foundation on which to build a

variety of distributed applications. Therefore, there is a need for a general IPC protocol

that can be used for designing several distributed applications (Sinha, 1997).

Bierrel and Nelson (1984) introduced a different way to approach the client-server

model. They suggested that-programs should be allowed to call procedures located in

other machines. When a process on machine A calls a procedure on machine B, the

calling process on A is suspended, and execution of the called procedure takes place on

B. Information can be transported from the client to the server process in the parameters

and can come back in the procedure result. No message passing or I/O is visible to the

programmer. This method is known as Remote Procedure Call (RPC).

Although this idea sounds simple, there are subtle problems. Because the calling

and called procedures run on different machines, they execute in different address spaces,

which causes complications. Parameters and results also have to be passed, which may

be complicated, especially if the machines are not identical. Finally, both machines can

26

crash, and each of the possible failures causes different problems. Still, most of these can

be dealt with, and RPC is a widely used technique that underlies many distributed

operating systems (Tanenbaum, 1995).

In general, a service manages a set of resources on behalf of its clients. Clients

can access them only by calling the procedures supplied by the service. The servers

providing a service receive requests from the clients and execute the requested

procedures.

At the RPC level, a service may be viewed as a module with an interface that

exports a set of procedures appropriate for operating on some data abstraction as a

resource. The ability to combine a group of procedures and variables in a module and to

export only selected procedure names was introduced in programming languages such as

Modula-2 and Ada as a method for structuring programs. The procedures exported by a

module are generally defined to provide a complete set Of operations on a given type of

resource (Coulouris, Dollimore and Kindberg, 1996).

From the perspective of the client programs, a service provides the same facilities

as software module, enabling clients to import its procedures. Normally, a server process

runs indefinitely and its operations may be invoked by many clients. This enables the

resources that it manages to be shared between clients.

1. Remote Procedure Call Characteristics

The aim of a remote procedure calling mechanism is to maintain as far as possible

the semantics of conventional procedure calls in an implementation environment that

differs radically from that of conventional procedure calling. The main aspects of the

semantics of the RPC are as follows:

1. The definition of a remote procedure specifies input and output parameters.
Input parameters are passed to the server by sending values of the arguments
in the request message and copying them into variables that are passed as
parameters to a procedure in the server's execution environment. Output
parameters are returned to the client in the reply message and they are used to
replace the values of the corresponding variables in the calling environment.

2. Input parameters provide a direct correlation to parameters passed by value in
conventional procedure calls. However, to implement parameter passing by
reference, further information is needed, indicating whether each such
parameter is used for input, output, or for both input and output. The need to
specify these alternatives is one of the reasons why an interface definition
language is an essential component of any RPC system.

27

3. A remote procedure is executed in a different execution environment from its
caller and therefore can not access variables in the calling environment, such
as the global variables declared by the caller.

4. It is meaningless for a process to pass addresses of memory locations or their
equivalent in messages to other processes. Thus, the arguments and results of
remote procedures can not include data structures that contain pointers to
memory locations.

According to Coulouris, Dollimore and Kindberg (1996), the last restriction is

less serious than it might appear to be. There is generally no need to transmit complex

data structures in their entirety between servers and clients. If the need does arise to

transmit data structures containing pointers, the structure must be "flattened" before they

can be transmitted in messages. The process that manages a particular data structure is

responsible for flattening and expanding it. Thus, a tree structured list might be flattened

by converting it to a bracketed expression.

A service is accessed by means of calls to the remote procedures that it offers.

Because of the differences between local and remote procedures and because a service

should be defined at a level appropriate for the widest possible use, the RPC interface is

not necessarily the most convenient for client programs. For this reason, and because

there are some tasks that must be performed by a client (such as the location of a suitable

server), the use of services by application programs is often supported by a user package.

This package is a library of conventional procedures that presents a convenient

procedural interface for use by application programs. The actual remote procedure call to

servers is embedded within the user package.

2. Design Issues

RPC systems fall into two classes. In the first class, the RPC mechanism is

integrated with a particular programming language that includes a notation for defining

interfaces. In the second class, a special-purpose interface definition language is used for

describing the interfaces between clients and servers.

As an example, the Argus language developed by Liskov at MIT is designed for

the construction of distributed programs. Remote procedure calls are integrated into the

language (Liskov, 1988). Argus provides guardians: modules that are used to provide

services and intended to be accessed by remote procedure call. The procedures in a

28

guardian are called handlers and a call to a handler is automatically treated as a remote

call.

The second class includes Sun RPC, on which the Sun Network File System is

based. The separate interface language approach has an advantage: it is not tied to a

particular language environment. Although in practice, almost all examples of this

approach are used in a C programming environment (Coulouris, Dollimore and Kindberg,

1996).

a. Interface Definition Language

An RPC interface definition specifies those characteristics of the

procedures provided by a server that are visible to the server's clients. The characteristics

that must be defined include the names of the procedures and the type of their parameters.

Each parameter should also be defined as input, output, or in some cases both, to enable

the RPC system to identify which values should be marshalled into the request and reply

messages. An interface specifies a service name that is used by clients and servers to

refer to the service that is offered by the collection of procedures.

b. Exception Handling

Any remote procedure call may fail when it cannot contact a server,

whether the server is down or just busy. Therefore, remote procedure, calls must be able

to report error types that are due to distribution (such as time-outs), as well as, those that

relate to procedure execution. Because any RPC may fail, an RPC system requires an

effective exception handling mechanism for reporting such failures to the caller.

c. Delivery Guarantees

Request-reply protocols can be implemented in different ways to provide

different delivery guarantees. The main choices are (Coulouris, Dollimore and Kindberg,

1996):

1. Retry request message: whether to transmit the request message until either a
reply is received or the server is assumed to have failed;

2. Duplicate filtering: when retransmissions are used, whether to filter out
duplicates at the server;

3. Retransmissions of replies: whether to keep a history of reply messages to
enable lost replies to be retransmitted without re-executing the server
operations.

29

The combination of these choices leads to a variety of possible semantics

for the reliability of remote procedure calls as seen by the caller. The semantics are as

follows:

1. Maybe call semantics: If for any reason a reply message has not been received
after a time-out and there are no retries, the clients can not tell whether remote
procedures have been called or not. This choice is not generally acceptable.

2. At-least-once call semantics: Retransmission of request messages without
filtering of duplicates. In cases when the request message is retransmitted, the
server may receive and execute it more than once. This choice may be
acceptable only if a server can be designed with idempotent operations in all
of its remote procedures.

3. At-most-once call semantics: Filtering of duplicates and retransmission of
replies without re-executing operations. Some operations can have the wrong
effect if they are performed more than once.

The at-most-once call semantics is the one usually chosen in RPC

implementation. Bierrel and Nelson (1984) guarantee in Cedar RPC that if the server

does not crash and the client receives the result of a call, then the procedure has been

executed exactly once. Otherwise, an exception is reported and the procedure will have

been called either once or not at all.

d. Transparency

Remote procedure calls should be as much like local procedure calls as

possible. However, RPCs are more vulnerable to failure than local calls, since they

involve a network, another computer and another process. Also, they consume much

more time than local calls. Therefore, it can be argued that programs that make use of

remote procedures must handle errors that cannot occur in local procedure calls.

The choice as to whether RPCs should be transparent is also available to

the designers of interface languages. In the transparent case, the client calls remote

procedures in the normal way for the language in use. In the non-transparent case, the

client uses a special notation for calling remote procedures with the advantage that this

notation may provide the ability to express requirements for distributed programming.

For example, to specify a call semantics or to handle exceptions (Coulouris, Dollimore

and Kindberg, 1996).

Liskov and Scheifler (1982) say that although the RPC system should hide

low-level details of message passing from the user, the possibility of long delay or failure

should not be hidden from the caller. The caller should be able to cope with failures

30

according to the demands of the application possibly by terminating an RPC, and in that

case, it should have no effect.

3. Implementation

To achieve the goal of semantic transparency, the implementation of an RPC

mechanism is based on the concept of stubs, which provide a perfectly normal (local)

procedure call abstraction. It involves the transfer of arguments from the client process

to the server process and the transfer of results from the server process to the client

process. These arguments and results are basically language-level data structures, which

are transferred in the form of message data between the two computers involved in the

call.

The transfer of message data between the two computers requires encoding and

decoding of the message data. The encoding process involves the conversion of program

objects into a stream form that is suitable for transmission. This is known as marshalling.

Unmarshalling is the reconstruction of program objects from the message data that was

received in the stream form. According to Coulouris, "Dollimore and Kindberg (1996),

the software that supports remote procedure calling has three main tasks, as noted below.

a. Interface Processing

An interface definition may be used as a basis for constructing extra

software components of the client and server programs that enable remote procedure

calling. These components are illustrated on Figure 2.6. Both client and server assign

the same unique procedure identifier to each procedure in the interface and the procedure

identifier is included in request messages.

A RPC system will provide a means of building a complete client program

by providing a stub procedure to stand in for each remote procedure that is called by the

client program. The purpose of a client stub procedure is to convert a local procedure

call to a remote procedure call to the server. The types of the arguments and results in

the client stub must conform to those expected by the remote procedure. This is achieved

by the use of a common interface definition. The task of a client stub procedure is to

marshall the arguments and to pack them up with the procedure identifier into a message,

send the message to the server, await the reply message, unmarshall it and return the

results.

31

Client computer

Client Process

Server computer

Server Process

Client

Receive
request

Unmarshall
arguments

Select
procedure

Execute
procedure

Return

Commun}
cationmodu

Client stub
procedure

Communication
/module::;:^.''^z

Dispatcher

Server
procedure

Server stub":

Figure 2.6. Stub Procedures (Coulouris, Dollimore and Kindberg, 1996)

To build the server program, the RPC system will provide a dispatcher and

a set of server stub procedures. The dispatcher uses the procedure identifier in the

request message to select one of the server stub procedures and pass on the arguments.

The task of a server stub procedure is to unmarshall the arguments, call the appropriate

service procedure, and, when it returns, to marshall the output arguments (or in case of

failure an error report) into a reply message.

An interface compiler processes interface definitions written in an

interface definition language. Interface compilers are designed to produce components

that can be combined with client and server programs without making any changes to the

existing compiler. An interface compiler normally performs the following tasks

(Coulouris, Dollimore and Kindberg, 1996):

1. Generate a client stub procedure to correspond to each procedure signature in
the interface.

2. Generate a server stub procedure to correspond to each procedure signature in
the interface.

3. Use the signatures of the procedures in the interface to generate appropriate
marshalling and unmarshalling operations in each stub procedure.

32

4. Generate procedure headings for each procedure in the service from the
interface definition. The programmer of the service supplies the bodies of
these procedures.

b. Communication Handling

The task of the communication handling module is to deal with

communication between the client and server programs by using a form of request-reply

communication, as described in the previous sections. The communication handling

module is provided in forms suitable for linking with client and server programs.

c. Binding

An interface definition specifies a textual service for use by clients and

servers to refer to a service. However, client request messages must be addressed to a

server port.

Binding means specifying a map from a name to a particular object,

usually identified by a communication identifier. The binding of a" service name to the

communication identifier of a specified server port is evaluated each time a client

program is run. The form of communication identifier depends on the environment. For

example, in a UNIX environment, it will be a socket address containing the internet

address of a computer and a port number.

In a distributed system, a binder is a separate service that maintains a table

containing maps from service names to server ports. A binder is intended to be used by

servers to make their port identifiers known to potential clients, and by clients to obtain

the addresses of the servers.

When a server process starts executing, it sends a message to the binder

requesting it to register its service name and service port. If a server process terminates,

it should send a message to the binder requesting it to withdraw its entry from the

mappings. When a client process starts, it sends a message to the binder requesting it to

look up the identifier of the server port of a named service. The client program sends all

its request messages to this server port until the server fails to reply, at which point the

client may contact the binder and attempt to get a new binding.

4. Asynchronous Remote Procedure Call

Remote procedure calls that do not receive replies are termed asynchronous. In

an asynchronous RPC, the communication handler sends the request message and returns

33

control to the client program immediately, instead of blocking the client. In the

synchronous case, the client marshalls the arguments, calls the send operation and then

waits until the reply from the server arrives. Then it receives, unmarshalls and processes

the results. After this, the client is able to continue its execution. In the asynchronous

case, the client marshalls the arguments, calls the send operation and then immediately

continues its execution. This arrangement allows the client and the server to work in

parallel.

34

III. BACKGROUND KNOWLEDGE

A. REAL-TIME SYSTEMS MODEL

Real-time system is a technical term with a specific meaning. The requirements

of real-time systems include timing constraints that must be met in the worst case for

systems to be considered correct.

According to Luqi (1993), models for hard real-time systems are used to:

1. Support automated analysis to determine whether specified real-time
constraints can be met by a given design for a given hardware configuration.

2. Help the designer construct a design that will meet a set of hard real-time
constraints, if such a design exists.

3. Form a basis for the development of programming languages for hard real-
time programming, for which it is possible to effectively determine whether a
given program will always meet a given set of deadlines.

Models of real-time systems are essential for requirements analysis, specification

and design of systems with real-time constraints. A coherent framework for classifying

real-time constraints can be used to organize complex sets of timing requirements and to

guide the process of discovering the timing requirements associated with an embedded

software system.

There are a number of approaches to modeling real-time systems. This research is

based on the model defined in the Prototype System Description Language (PSDL)

(Luqi, Berzins and Yeh, 1988). PSDL is a language designed for clarifying the

requirements of complex embedded systems, and for determining properties of proposed

designs for such systems via prototype execution and static analysis. The language was

designed to simplify the description of such systems and to support prototyping. PSDL is

also the basis for a computer-aided prototyping system that speeds up the prototyping

process by exploiting reusable software components and providing execution support for

high level constructs appropriate for describing large real-time systems in terms of an

appropriate set of abstractions (Luqi, 1993).

PSDL simplifies the design of systems with real-time constraints by presenting a

high-level description in terms of networks of independent operators to the designer. The

language provides simple and efficient synchronization and exception handling

primitives.

35

PSDL has been designed both to ensure that the requirements are feasible and to

provide the best service possible to the users of the proposed software. Also, PSDL

provides a description of a proposed design that can be smoothly transformed into a final

implementation after the requirements have been validated and the design has been

verified.

1. Real-Time Semantics of PSDL

PSDL is based on a computational model containing OPERATORS that

communicate via DATA STREAMS, where each stream carries values of a fixed abstract

data type (ADT). There are several ADTs already built into PSDL; the

PSDL_EXCEPTION is one of them. Modularity is supported through the use of

independent operators that can only gain access to other operators via data streams

(Cordeiro, 1995).

The PSDL computational model treats software systems as networks of operators

communicating via data streams. A PSDL decomposition is represented as an augmented

directed graph (Luqi, Berzins and Yeh, 1988):

G = (V, E, T(v), C(v)), where:

- V is a set of vertices (vertices represent operators in the network);

- E is a set of edges (edges represent data streams in the network);

- T(v) is the set of timing constraints for each operator ve'V;

- C(v) is the set of control constraints for each operator v s V.

The graph (V, E) in a PSDL decomposition determines the possible interaction

between the operators. The timing and control constraints determine the conditions under

which the operators are activated.

a. Operators

Every PSDL operator is a state machine. Functional operators are

machines with only a single state. When an operator fires, it reads one data value from

each of its input streams, undergoes ä state transition, and writes at most one data value

into each of its output streams. The action of a PSDL operator is local, since its output

values can depend only on the current set of input values and the current state of the

operator. State transitions and input/output operations on data streams can occur only

36

when the operator fires. The firing of an operator can be triggered by the arrival of a

specified subset of its input data values or by a periodic temporal event.

A PSDL operator can be either atomic or composite. Operators that are

decomposed into lower levels are called composite operators, and they represent

networks of components. This decomposition is always functional. An operator that is

not decomposed is called atomic.

b. Data Streams

A data stream is a communication link connecting two sets of operators,

the producers and the consumers. A PSDL data stream carries instances of an abstract

data type associated with the stream, which can be a special pre-defined type representing

exceptions. There are two different kinds of data streams: data flow streams and sampled

streams.

Data flow streams are similar to FIFO queues with a length of one. Any

value placed into the queue must be read by another operator before any other data value

may be placed into the queue or it will overflow. Values read from the queue are

removed from the queue arid, if any attempt is made to read from an empty queue, it will

underflow. Sampled streams represent a continuous source of data, of which the most

recent value is meaningful. The most recently written value in a sampled stream must be

available at all times and may be read many times or overwritten by more recent data

before it is read. Some values may never be read, because they are replaced before the

stream is sampled. In summary, it could be said that a data flow stream guarantees that

none of the data values are lost or replicated, while a sampled stream does not make such

a guarantee (Cordeiro, 1995).

c. State Streams

A State Stream can be either a data flow stream or a sampled stream,

depending on the triggering condition of the consumer operator, but state streams must

have been assigned an initial value for the stream.

An operator is a state machine if it has one or more state streams. The

data flow diagram of a composite state machine operator has cycles, which represent the

feedback loops that update the state variables. Every feedback loop must be broken by a

37

State stream. State streams must also be used when connecting time-critical and non

time-critical operators.

d. Types

All PSDL data types are immutable, so that there can be no implicit

communication by means of side effects. Both mutable types and global variables have

been excluded from PSDL to help prevent coupling problems. The PSDL data types

include the immutable subset of the built-in types of Ada user defined abstract types, the

special types TIMER and EXCEPTION, and the types that can be built using the

immutable type constructors of PSDL .

e. Exceptions

PSDL exceptions are values of a built-in abstract data type called

EXCEPTION. This type has operations for creating an exception with a given name, for

detecting whether a value is an exception with a given name, and for detecting whether a

value is normal, which means that it belongs to some data type other than EXCEPTION.

Values of type EXCEPTION can be transmitted along data streams just like values of the

normal type associated with the stream.

f. Timers

Timers are software stopwatches that are used to record the length of time

between events, or the length of time the system spends on a given state. This facility is

needed to express relatively sophisticated aspects of real-time systems, such as timeouts

and minimum refresh rates. They are governed by the PSDL control constraints START

TIMER, STOP TIMER and RESET TIMER.

2. Control Constraints

The control abstractions of PSDL are represented as enhanced data flow diagrams

augmented by a set of control constraints. The order of execution is only partially

specified, and is determined from the data flow relations given in the enhanced data flow

diagrams, but also affected by the types of data triggers among operators.

The control aspects of a PSDL operator are specified implicitly via control

constraints, rather than giving an explicit control algorithm. There are several aspects to

be specified, such as whether the operator is PERIODIC or SPORADIC, the triggering

condition, and output guards.

38

a. Periodic and Sporadic Operators

PSDL supports both periodic and sporadic operators. Periodic operators

are triggered by the scheduler at approximately regular time intervals, so that they start

execution somewhere after the beginning of each period, and complete by some deadline,

which defaults to the end of the period. Sporadic operators are triggered by the arrival of

new data values, possibly at irregular time intervals.

b. Data Triggers

Any PSDL operator can have a data trigger. There are two types of data

triggers in PSDL as illustrated by the following examples:

OPERATOR p TRIGGERED BY ALL x, y, z

OPERATOR q TRIGGERED BY SOME a, b

In the first example the operator p is ready to fire whenever new data

values have arrived on all of the three streams x, y, and z, although there may be other

streams arriving at the operator p, in which case the data values do not need to be new.

The data streams associated with x, y, and z are data flow streams. This kind of trigger

-should be used when the items in a stream represent discrete events like, for example,

transactions on a bank account, rather than samples from a continuous source of data

(e.g., reading from a sensor). Also, it can be used to guarantee that the output of the

operator is always based on fresh data for all the inputs in the triggering set.

The most important design consideration when " TRIGGERED BY ALL"

is used is management of the firing frequencies of the producer and consumer operators.

The period of the consumer operator must be smaller than or equal to the period of the

producer, or stream buffer overflow errors will result. There is no problem if the period

of the consumer operator is less than the period of the producer, since the actual firing

rate of the two operators will be the same because data streams are tested for new

information prior to the actual firing of the consumer.

In the second example, the operator q fires whenever new data arrives on

at least one of the inputs a and b. This kind of activation condition guarantees that the

output of the operator q is based on the most recent data value from at least one of its

critical inputs a and b mentioned in the activation condition for q. This kind of trigger

can be used to keep software estimates of sensor data up to date.

39

Every operator must have a period or a data trigger, or both. If a periodic

operator has a data trigger, the operator is conditionally executed with the data trigger

serving as input guard.

c. Execution Guards

The firing of a PSDL operator can be controlled by an execution guard.

Execution guards provide conditional execution of operators based on conditional

statements, which are evaluated prior to the firing of the associated operator. Execution

guards can depend on data from any incoming data stream and they can be combined

with the "TRIGGER BY ALL" and "TRIGGER BY SOME" data triggers mentioned

above. Even if an execution guard is not satisfied, the data values are read and consumed

from all the input streams, without firing the operator. Two examples of operation with

triggering condition are shown below:

OPERATOR r TRIGGERED BY SOME x, y IF x = NORMAL AND y >10.0

OPERATOR s TRIGGERED IF x = NORMAL

d. Output Guards

Output guards do not affect the firing of an operator, which will fire

regardless of whether or not its output is written to an output data stream. An output

guard provides conditional transmission of computed results. An example is shown

below:

OPERATOR t OUTPUT z IF z > 20 AND z < max

The example shows an operator with an output guard, which depends on

the input value max and the output value z. The condition of an output guard may

depend on the output values of the operator, on the values read from the input streams,

and on values of timers.

e. Exception Guards

Exception guards provide conditional raising of exceptions. Exceptions

are transmitted on all of the output streams of the operator that raised the exception. For

example:

OPERATOR f EXCEPTION e IF x > 50

This control constraint transmits the exception value named e on all of the

output streams of f that are of type EXCEPTION instead of the values actually computed

40

by f whenever the input value x is greater than 50. Exception guards can be used to

check assumptions about validity of inputs, outputs, or states.

3. Timing Constraints

PSDL operators can be subjected to timing constraints, which are specified by

giving bounds on the duration of various kinds of time intervals. Operators can be time-

critical and non time-critical, depending on whether or not they are assigned a value for

the maximum execution time (MET) by designer. If an operator is time-critical, it can be

further subdivided into periodic or sporadic operator subtypes. Periodic operators are

explicitly assigned a frequency (PERIOD) of execution, meaning that they will fire

within regular periods, exactly once, but not necessarily at regular intervals of time.

Sporadic operators are not explicitly assigned a period, but they fire whenever the data

trigger is satisfied. However, sporadic operators have a minimum interval of time

between successive firings (Cordeiro, 1995).

Timing constraints are an essential part of specifying real-time systems. Table 3.1

summarizes the timing constraints supported by PSDL.

Constraint Symbol Applies to Constrains Default

Max. execution time MET Time critical op. CPU time -

Period PER Periodic op. Activation, next activation -

Finish within FW Periodic op. Activation, completion PER

Max. response time MRT Sporadic op. Activation, completion Heuristic

Min. calling period MCP Sporadic op. Activation, next activation MRT-MET

Latency L Streams Write, next read 0

Min. period MP Streams Write, next write 0

Table 3.1. PSDL Timing Constraints

The MET is the maximum amount of serial CPU time required to execute an

operator under worst-case conditions. Note that for atomic operators the MET complies

with the above definition. For the composite operator, however, the MET is the

maximum CPU time needed along any single thread of control. The static scheduler

must ensure that at least this much CPU time is allocated to an operator between each

activation time and its deadline. This CPU time need not be all in one contiguous

interval and it need not be all on the same processor, in which case any inter-processor

communication delays must be considered.

41

When decomposing a complex operator into a network of simpler operators, the

designer of a real-time system must consider timing requirements as well as functional

requirements. The time available for the execution of the components of a composite

time-critical operator is constrained by different necessary conditions for feasibility,

depending on the type of target hardware for the proposed system. For the uniprocessor

case, the sum of the maximum execution times of the components in a proposed

decomposition must be less than or equal to the MET of the composite operator.

Whereas for the multiprocessor case, the sum of the maximum execution times of the

components along every path from an external input to an external output in a proposed

decomposition must be less than or equal to the MET of the composite operator.

The MRT defines an upper bound on the time between the arrival of new data that

satisfies the data triggering condition of a sporadic operator and the time when the last

value is written onto the output stream. The MRT applies only to sporadic operators

(Cordeiro, 1995).

The MCP also applies to sporadic operators and represents a lower bound on the

time between two consecutive triggerings of a sporadic operator. This lower bound

defines the maximum input rate under which the sporadic operator must meet its

deadline. Thus, the MCP characterizes the worst-case operating conditions under which

a proposed design is guaranteed to meet its real-time constraints. The scheduling delay

for a sporadic operator is the interval of time between the satisfaction of consumer

operator's triggering conditions and the corresponding reading of the input values by the

consumer. In general, a sporadic operator is triggered by new data values on a subset of

the input streams. The sporadic operator is activated when the last new values of the data

trigger set become available for reading by the operator. On distributed architectures,

there may be some intervening communication delay if the operator that wrote the value

is allocated to a different processor than the sporadic operator that reads the value (Luqi,

1993).

The timing constraints for a sporadic operator are illustrated in Figure 3.1. As we

will see later, sporadic events are handled by polling in CAPS, where sporadic operators

are converted into equivalent periodic ones, whose period is called the triggering period

(TP).

42

New data
arrival jp TP

New data
arrival .

SI

ÄMETrv

£-

Scheduling
delay

MRT

MCP

Figure 3.1. Sporadic Timing Constraints

Periodic operators are triggered by temporal events, which must occur at regular

intervals. For each operator, these activation times are determined by the specified

period (PER), which is the time interval between two successive activations. The

differences between sporadic operators and periodic operators are that the period of a

periodic operator is fixed and the activation events are defined based on the absolute

time, instead of the arrival of input data. Note, however, that there is a distinction

between activation time and the actual start time of a periodic operator as shown in

Figure 3.2.

Finish within (FW) defines an upper bound on the time interval between each

activation and completion of firing. The difference between the activation time and its

deadline is called the scheduling interval (SI) and it is equal to FW.

43

Temporal
Event

Temporal
Event

<-

Activation
time

SI

Scheduling
delay

: :MEf':

FW

<- PER

Figure 3.2. Periodic Time Constraints

Scheduling intervals of a periodic operator can be viewed as a fixed window of a

size equal to FW, evenly separated by the period PER, and whose absolute position on

the time axis is determined by the start time t of its first execution. For the first instance

this time may vary within the closed interval [0, PER] of the operator, and is called the

phase of the operator. Scheduling intervals for sporadic operators will be discussed in the

next section.

To express the behavior of distributed systems, PSDL provides two timing

constraints, Latency (LAT) and the Minimum Output Period (MOP). The latency of a

stream is an upper bound on the time from when a data value is written into the stream to

the time when the data value can be read from the stream. Latency models networks or

telecommunication links, it specifies an upper bound on the allowable time spent by a

stream in the network. This information should be used by the scheduler to simulate the

worst case behavior for the delay in the network.

The minimum output period is a lower bound on the duration of the interval

between two successive write events on the stream. The purpose of the Latency and

MOP constraints is to declare communication constraints that arise from hardware

limitations imposed by external constraints on how the software functions must be

allocated to different physical nodes of a distributed system. The effect of these

constraints on static scheduling is that data can not be read from a stream until a delay

44

equal to the latency has elapsed, and data can not be written into a stream until the

minimum period has elapsed.

4. Synchronization in PSDL

As we saw above, there are two kinds of streams in PSDL: sampled streams and

data flow streams. However, within sampled streams there are two semantically different

subtypes of stream, depending on the triggering condition of the consumer operator. If

the consumer operator is not triggered by any data, then specific data value can be lost or

overwritten, or even read over and over again by the consumer, without any problem.

According to Cordeiro (1995), this type of behavior is very useful when reading sensor

data. In most cases, the sensor will be able to generate data in much higher rate than the

consumer will read it, but the most recent data is of primary interest.

The second type of sampled stream exists when the consumer operator is

TRIGGERED BY SOME data value. In this case, the consumer should always read the

new data from one of the streams specified in the TRIGGERED BY SOME clause.

Although buffer overflow or underflow is not an issue, due to the way sample streams are

defined, the only way to avoid loss of data in this case is to enforce the condition that

PERproducer ^ PERconsumer, and, consequently, the synchronization problem will have to be

handled accordingly (Cordeiro, 1995).

In the case of data flow streams, the consumer is TRIGGERED BY ALL. The

streams specified in the TRIGGERED BY ALL clause should be examined, and if all of

them have new data in their buffer,- they should be consumed, firing the consumer

operator. The TRIGGERED BY ALL condition can be thought of as being a logical

AND among streams declared in this clause. Again, in this case, there is a need to

enforce PERpr0ducer ^ PERconsumer so that no data is lost, and once again the

synchronization problem must be handled explicitly. The basic semantic difference

between the TRIGGERED BY ALL data flow streams and the TRIGGERED BY SOME

sampled streams is that if the data is not consumed and a new data arrives, in the former

it will raise a buffer overflow exception, while in the latter the data will be simply

overwritten.

45

5. Mutual Exclusion

Since updates to state variables must be serialized to preserve the integrity of the

data, any pair of operators that belong to a common cycle in the expanded data flow

graph must not be scheduled concurrently. If two such operators are allocated to

different processors of a distributed system, then the scheduler must provide sufficient

time between the completion of one such operator and the start time of the next to

account for possible interprocessor communication delays (Luqi and Shing, 1996).

6. Hardware Models

The semantics of PSDL are independent of the hardware model, but scheduling

and the feasibility of realizing the declared real-time constraints depend on the

architecture and characteristics of the hardware system on which the proposed system

will run (Luqi and Shing, 1996). The hardware models associated with PSDL can be

characterized by the number of processors N, a vector of processor speed Si, a matrix of

interprocessor delays Dy and a matrix of inverse link speeds (seconds per bits) Ty, where

Du = 0, Ty = 0, and 1 < i,j <N.

According to the target architecture, we could have the following special cases:

1. Single processor: N - 1,
2. Identical processors: S; = s,
3. Unlimited bandwidth: Ty = 0, and
4. Homogeneous network: Dy = d for j * i.

For distributed systems we could derive the latency for the transmission of a data value b

bits long from processor i to processor j as following:

L = Dij + (bxTij)

B. REAL-TIME SCHEDULING ANALYSIS

According to Baker (1974), scheduling is the allocation of resources over time to

perform a collection of tasks. This, rather than a general .definition conveys the basic

idea of scheduling theory, which is a collection of principles, models, techniques and

logical conclusions that provide insight into the scheduling function.

This section is adapted from Cordeiro (1995) and is included here for the

convenience of the reader. To have a better understanding of the context in which

scheduling issues are found we present in Figure 3.3 a proposed taxonomy for the

46

scheduling function. This taxonomy is an enhancement done by Cordeiro (1995) ofthat

proposed by Cheng, Stankovic and Ramamritham (1987).

As shown in the figure, classical scheduling and real-time scheduling are distinct

areas. Most of the problem areas in classical scheduling make use of objective functions,

such as minimizing flowtime, minimizing mean tardiness, and minimizing completion

time (makespan), which does not convey much of the important information needed by

real-time systems. Nevertheless, some of these results can provide very fruitful insights

into real-time scheduling problems.

Scheduling

T
Classical

1
Real-Time

Single Machine Hard Soft

Parallel Machine

Flow Stop

Static
1

Dynamic

Job Stop
Preemptable Non

Preemptable
Preemptable

J_
Non

Preemotable

Figure 3.3. Scheduling Taxonomy

1. Real-Time Scheduling Model

An instance of a prototype T can be thought of as union of three disjoint finite

sets, namely the set P of periodic operators, the set S of sporadic operators, and the set N

of non-time critical operators. Each periodic operator o; is completely specified by the

tuple (MET, PER, FW) where MET is the maximum execution time used by each

instance of operator o;, PER is the period, and FW is the length of its scheduling interval.

Likewise, each sporadic operator is completely specified by the tuple (MET, MCP,
op

MRT) , where MCP is the minimum period between two consecutive instances of the

operator o;, and MRT is the upper bound on the time between the triggering of the

operator Oj by new data arrival in the data trigger set, and the completion of writing to all

of its output streams. The superscript SP is used in the sporadic case, only to distinguish

from the tuple of the periodic operator. Given any static schedule for a prototype T, we

47

shall use st(oj,k), ct(oi;k) and d(oijk) to denote the actual starting time, completion time and

deadline of the kft instance of operator o; in the schedule. In any feasible schedule, we

must have

0 < st(ou) < PER(oi), d(ou) = PER(Oj) + MET(OJ),

activation_time(oi;k) = st(ou) + (k -1) x PER(OJ)

and

d(oj;k) = activationjime^k) + FW(OJ) for k > 1

for every periodic operator o;, where st(oi,i) is called the phase of operator o; as defined

in the previous section.

By definition, every periodic operator must start and finish execution within its

period of activation. In addition, the following restriction is imposed on the model:

MET < FW < PER

Clearly, this inequality is needed; otherwise, there is no way to execute such an operator

within the specified amount of time (FW). Note that there may be a case where PER <

MET; such processor demand can only be satisfied using pipelining in a multiprocessor

environment (Luqi, 1993, and Luqi, Shing, and Brockett, 1993).

For the sporadic operator, all of the above assumptions are also applicable, since

they will be converted into equivalent periodic operators, but the following restriction is

imposed to the model:

MET < MRT, MET < MCP

Sporadic operators are activated by the arrival of new data on the input streams specified

in the operator's control constraints. The activation time is the earliest time the triggering

data is available for reading by the operator. For producer and consumer operators

running on different processors, this is the time data is written by the producer plus the

interprocessor communication delay, known as latency. Scheduling for sporadic

operators is based on the following constraints.

deadline^*) = actvation_tirhe(o;;yt) + MRT(o*)

activation_time(o,;jt+1) > activation_time(o,jyt) + MCP(o;)

A prototype T is said to be schedulable if there exists a schedule such that the

completion time for the execution of instance k of operator ot, ct(oj,k), is less than or equal

to its corresponding deadline d(oi,k), for all k and oi5 and the precedence constraints of the

48

prototype is satisfied. The precedence constraint between operator Oj and Oj, is written o;

< Oj, where < denotes a partial ordering on the execution of tasks o; and Oj, and is satisfied

if

V instances oi;k, oj;k (k -1) x PER(oi) + st(ou) < (k -1) x PER(OJ) + st(oj;i)

and

(k -1) x PER(OJ) + st(oj;i) + A < k x PER(OJ) + st(ou)

where (k -1) x PER(OJ) = (k -1) x PER(OJ) and A equals the maximum time to read input

by operator Oj (Cordeiro, 1995).

Both periodic and sporadic operators are non-preemptable, which means that once

they start execution they will run to completion. The non time-critical operators can be

preempted. No idle time is inserted into the static schedule, unless there are no operators

ready to execute. All timing information is assumed to be an integral multiple of a basic

unit of time.

2. Non-Preemptive Tasks Scheduling

The purpose of this subsection is to present a series of theorems on schedulability

for a set of independent, nori-pfeemptive, periodic task sets. The objective is to provide

the necessary background to build a framework upon which the later sections in this

chapter will be based.

These theorems will help us to better understand the conditions for schedulability

of non-preemptive tasks. For proofs of the theorems and further reading the reader is

directed to the work of Cordeiro (1995).

a. The Maximum Execution Time Theorem

Theorem 1:

"For an independent periodic task set P, if 3 some tasks X and Y e P, such

that METX > PERy then P is not schedulable in the uniprocessor case by any non-

preemptive algorithm. Furthermore, if X = Y then neither the preemptive nor the non-

preemptive algorithms can find a feasible schedule." (Cordeiro, 1995)

This theorem is also valid for a sporadic task set when METX > MCPy for

X = Y, the trivial case. However, for X * Y the situation is slightly more complex and

there are two cases to consider. The first is when MRTy < MCPy; this is clearly not

49

schedulable. The second case is MRTy > MCPy; the set is not schedulable if METX +

METy > MRTy. Figure 3.4 illustrates this case.

Figure 3.4. Theorem 1 for Case 2 of the Sporadic Task Set

Corollary (for the distributed case):

"For an independent periodic task set P, if 3 some tasks X and Y e P, such

that METX > PERy, then in order for P to be schedulable in the multiprocessor case, tasks

X and Y must be placed in different processors, and if X = Y, then it must be pipelined."

(Cordeiro, 1995)

The conditions imposed on a task X for it to be pipelineable, as well äs,

detailed description of pipelining in this context can be found in the work of Luqi (1993)

and Luqi, Shing and Brockett (1993).

b. The Finish- Within Theorem

Theorem 2:

"For an independent periodic task set P if 3 some indivisible task X € P

such that METX > FWX then P is not schedulable under any scheduling algorithm, not

even in a multiprocessor environment." (Cordeiro, 1995)

Note that this theorem can be extended to cover the sporadic case when

METX > MRTX. It is also applicable to the case where we have precedence constraints in

the set P.

50

c. The Minimum Period Theorems

Theorem 3:

'For a periodic task set P, if V tasks X € P, FWX > PERX and £ METX <
x=l

PERZ where PERZ denotes the minimum period in P, then P is schedulable." (Cordeiro,

1995)

The minimum period is certainly a divisor of the least common multiple of

the periods (LCM), and, as such, it can span the entire LCM within an integral number of

steps. It is a kind of sliding bin-packing where a sliding window of size equal to the

minimum period is present and always large enough to fit all tasks present in that

window. Depending on the periods, not all instances may be active simultaneously in

that specific window. Figure 3.5 below shows the minimum period sliding window for a

set of four tasks with the following timing constraints: taskl (-, 300, -), task2 (-, 200, -),

task3 (-, 400, -) and task4 (-, 600, -). This theorem is valid even when precedence

constraints are taken into consideration.

I" M i l 1 LCM

200 400 600 800 1000 1200

t__L_J__l 1........1 i
Minimum

Period

Figure 3.5. The Minimum Period Sliding Window

Theorem 4:

'For a periodic task set P, if V tasks X € P,]£ METX < FWZ, where FWZ
*=i

denotes the minimum FW in P, then P is schedulable." (Cordeiro, 1995)

The same idea of sliding bin-packing applies here. Now, however, the

size of the bin must be decreased. The "bin" now should be understood to be the least

value among all periods and FW from the tasks in P.

51

d. The Load Factor Theorem

Theorem 5:

"For a periodic task set P, if]T -> k, where k is the number of
x=\ PERX

available processors, then the set is not schedulable." (Liu and Layland, 1973)

Theorem 5 defines a necessary condition for the schedulability of a

periodic task set, and it basically stipulates that if the summation of all individual load

factors (METX/PERX) is bigger than the number of available processors, then the set is not

schedulable (Liu and Layland, 1973). We should note that theorem 5 is valid to both

preemptive and non-preemptive algorithms (Zhu, Lewis and Colin, 1994).

e. The Harmonic Block Theorem

Theorem 8:

"If 3 an infinite feasible schedule S without any inserted idle time for a

periodic task set P with precedence constraints, such that the first instance of every task,

Tj in P must start by time PER,, then there exists an infinite feasible schedule S'

consisting of a transient portion of length at most LCM, followed by a cyclic portion of

length LCM that repeats forever." (Cordeiro, 1995)

The Harmonic Block (HB) is the least common multiple (LCM) of the

periods of a periodic task set, as illustrated in Figure 3.6. It is the interval upon which the

task set will be tested for schedulability. If a feasible schedule can be found within 2 x

HB and if latencies are not allowed in the schedule, then it is possible to say that the same

pattern can be repeated forever.

52

OP,(190, 600, 600) < OP2(20, 200,200)

LCM 2xLCM

200
F O f

400 t/ 600 800

^ Transient Schedule ^

1000 1200

Cyclic Schedule

Figure 3.6. The Transient and Cyclic Schedules

It is a well known and accepted result that the LCM of the periods of a

periodic task set provides a finite interval of time for which a cyclic schedule can be

calculated, if one exists, and repeated forever (Mok, 1983). As we can see in Figure 3.6,

it is not necessary for all task instances to start in the interval [0,LCM] and complete

execution by time LCM for a cyclic feasible schedule to exist. It seems very reasonable

to allow the first instance of a periodic task to start within its period of activation, but

finish up to the end of the period plus its computational time. Actually, this would be

very desirable if it could somehow improve the already difficult problem of non-

preemptive scheduling.

3. Coping with Sporadic Tasks

Generally speaking, a sporadic task is defined as an aperiodic task that has a

minimum duration between two consecutive activations. If that was not so, neither the

static nor the dynamic approach could be used to guarantee schedulability.

If interrupts are used to detect the occurrence of aperiodic events at run-time, then

a dynamic approach should be used. However, in the static scheduling framework, where

all the task requests must be known a priori so that a fixed and static schedule can be

generated, the only way to handle aperiodic, unanticipated sporadic task is to use a

periodic process that functions as a polling device. Its main role is to check for arrival of

sporadic tasks and to serve them during its allocated time slot. However, due to the

random nature of aperiodic processes, we may not be able to handle a concentrated set of

arrivals or even worse, not catch them all with the sporadic server approach. To

53

overcome this difficulty, several bandwidth preserving algorithms have been proposed.

Among them could be mentioned the Priority Exchange, Deferrable Server and the

Sporadic Server (Audsley and Burns, 1993).

In short, we need to guarantee that all time-critical sporadic operators will be

serviced in a timely fashion, even in the worst case situation. The solution, considering

the model we have been studying, is to use polling and assign one sporadic server for

each time critical sporadic operator.

The next step is to convert the sporadic operator into a periodic one so that all the

original timing constraints from the sporadic operator are still satisfied. Each sporadic

operator will be assigned a triggering period (TP). The term triggering period will be

used for the period of the converted sporadic operator and the usual term FW for its finish

within. As shown in Figures 3.7 and 3.8, two cases can occur.

The first case is when MCP < MRT - MET and the equivalent periodic operator

must have TP < MCP to satisfy the original time constraints. Also, it must enforce FW =

MRT - TP, so that in the critical case (shown in Figure 3.7) the data that was missed by

the previous triggering period can be consumed by the next TP and still finish within the

original MRT.

Case A
MCP < MRT - MET

TP < MCP
FW < MRT - TP

New
Data

New
Data SI

A
-=5"

Triggering Period
«£- -3»

<-

FW

->
MCP

<r- ->
MRT

Figure 3.7. The Sporadic Conversion when MCP < MRT - MET

54

CaseB
MCP > MRT - MET

TP < MRT - MET
FW = MRT - TP

New
Data

SI New
Data

A

<Sr-

A

Triggering Period FW

MRT

MCP

Figure 3.8. The Sporadic Conversion when MCP > MRT - MET

The second case, shown in Figure 3.8, occurs when MRT - MET < MCP. This

more constrained situation forces a further reduction in the triggering period. Thus, the

new TP should be TP < MRT - MET and the FW should be equal to MRT - TP. In

general, the triggering period should be

MET < TP < min(MRT - MET, MCP)

and

FW = min(TP,MRT-TP).

Nevertheless, in order to minimize the impact on the load factor of the prototype, it is

desirable that the TP be as large as possible, meaning that

TP = min(MRT - MET, MCP).

Also, the MRT for a sporadic operator must be upper bounded by twice its MCP and

lower bounded by twice its MET, as follows.

2 x MET < MRT < 2 x MCP

The worst case situation is when MRT assumes its lowest possible value, which is 2 x

MET. The triggering period TP will then reflect its lowest possible value, which is MET,

with FW still being equal to MET.

According to Cordeiro (1995), when implementing this conversion it is strongly

recommended that a careful analysis of the task graph be made to determine reasonable

55

bounds for the period of the transformed sporadic operator. At first glance, an obvious

upper bound is the value of its MCP. However, for lower-bounds this choice is not so

clear. Nonetheless, it is assumed that after this pre-processing there will be an interval of

possible values for the period of the transformed sporadic task. These bounds provide us

with some margin for making the conversion so that the final harmonic block of the

entire set does not increase significantly.

C. DISTRIBUTED SCHEDULING

In general, two different approaches to handling distributed computation can be

identified. In the first, the distributed system is coordinated by a single system clock,

which synchronizes all tasks so that computation progresses in a lock-step fashion, and

communication between tasks can only occur at specific times. In the second approach,

tasks are synchronized only when necessary, and do so by executing appropriate hand-

shake protocols. The former approach requires less inter-processor communication, but

is rigid, and relies on a global clock whose implementation is another very difficult

problem to solve. Although more flexible, the latter approach dramatically increases the

complexity of the synchronization problem and may be very costly in terms of

communication, since many acknowledge signals must be exchanged in order to maintain

proper synchronization. The use of rigorous and more constrained time requirements

allows for the establishment of a weak form of synchronization among the tasks of the

distributed system and represents an alternative in the middle (Mok, 1983).

According to Cordeiro (1995), the ideal real-time distributed system should have

the following goals:

L Be able to support groups of tasks running asynchronously in different
processors;

2. Eliminate the need for enforcement of any kind of synchronization required
by communication; and

3. All the deadlines and other requirements (such as loss of data, etc.) should be
met.

A good alternative to achieve the ideal system is investigating ways of restricting

or relaxing the timing requirements to increase the chances of finding a feasible schedule.

In other words, the objective would be to change timing constraints so that no

synchronization would be needed, and consequently decrease substantially the

complexity of the distributed scheduling problem.

56

1. Dealing with the Synchronization Problem

When dealing with the synchronization problem, Cordeiro (1995) studied the

synchronization in PSDL and addressed several issues based on the real-time semantics

of PSDL. He evaluated the different triggering conditions, stream types and operator

types for PSDL graphs with no cycles, and his conclusion was that we need to enforce the

condition that PERpr0ducer ^ PERconsumer so that no data is lost and, consequently, the

synchronization problem will have to be handled accordingly. Also, he showed that even

in the uniprocessor case, with the period of the consumer being smaller than the period of

the producer (see Figure 3.9), synchronization is not always a good alternative. Figure

3.9 shows an example where no feasible schedule exists if synchronization is enforced,

but one does exist otherwise. Three outcomes are possible if the synchronization is not

required:

1. If the consumer operator is TRIGGERED BY ALL x,y , the proposed
schedule is valid but x and y will be consumed one instance later,

2. If the consumer operator is TRIGGERED BY SOME x, y , then the schedule
is always valid, because x and y do not need to be consumed together,

3. If there is no trigger, then the relative order is not important.

(50, 500, 500)

(50, 500, 500)
(10, 100, 10)

with synchronization

m n n n m
0 100 200 300 400 500 600 700

lip p
without synchronization

n n a
0 100 200 300 400 500 600 700

Figure 3.9. Reason for No Synch When PERpr0d > PERons for Uniprocessor Case

The only case in which PERproducer < PERconsumer can be allowed is when there is

no trigger at all. In this situation, synchronization is not needed, since it would place an

additional burden on the scheduler and would not solve the problem of losing data. The

57

only advantage of having synchronization in this case is the fixed pattern for losing data.

Furthermore, without explicit synchronization, the most that could happen (as seen in

Figure 3.10), is that the consumer operator would read either the previous or the next

instance of the data output by the producer. In other words, the operator would read the

data one period apart at most.

OP1
(Procl)

OP2
(Proc 2)

Periodic

OPl^
NT

Periodic

OP2>

m

(70,200, 70)

lost

m

(70, 500, 200)

lost lost

V 200 400 \

m m i
600 800 1000 \ 1200

1 1
V

1

1
500 1000

Figure 3.10. Reason for No Synch when PERprod < PER™™ for Distributed Case

When PERproducer ^ PERconsumer, synchronization also does not solve the problem.

It is possible to have two instances of the producer operator being scheduled one after the

other, and this causes an overflow or loss of data depending on the triggering condition.

This case is illustrated in Figure 3.11.

58

Periodic

DF

(70, 500, 500)

Periodic

(70,200,200)

OVERFLOW

OP1
(Procl)

OP2
(Proc 2)

^ I W.

synch
500 1000

1 sync] synch

m
200 400 600 800 1000 1200

Figure 3.11. Reason for No Synch when PERpr0d ^ PERcons for Distributed Case

As we can see, after scheduling each producer of a data flow or triggered by some

sampled stream, the consumer of that data flow or sampled stream should be scheduled

before the next instance of the producer. In a uniprocessor case, or even in a shared

memory multiprocessor model, this approach is acceptable and easy to implement and

guarantee. However, in a distributed case the lack of a master clock might cause a

normally feasible schedule to become infeasible.

This assertion may be illustrated with a simple example. Assume a schedule for a

two-processor system that meets all deadlines and synchronization requirements among

their tasks, and that no buffer overflow occurs with respect to the data flow streams.

Now, if clock drift occurs in processor 2, so that one of its consumers get shifted more

than twice the period of its correspondent data flow producer, the consumer is guaranteed

to lose data, and the schedule will fail (Cordeiro, 1995). Therefore, a new approach must

be developed for the distributed case. Ideally, several sets of communicating processes

would run independently in each processor, but with the guarantee that no data would be

lost and no deadline missed (Cordeiro, 1995).

Since missing deadlines are always attached to data not being generated or

consumed in the proper timing, we need to guarantee that all data being generated is

consumed in a timely fashion. Then, the very first condition that must be satisfied is that

PERproducer ^ PERconsumer, so that no data is lost.

59

2. Additional Restrictions Imposed on the Timing Constraints

In the previous subsection, we saw that for the distributed case synchronization is

not needed. Obviously, there is a price to eliminate synchronization and that is a more

stringent set of timing constraints for tasks.

Cordeiro (1995) shows that even with a faster consumer it is possible to have up

to three occurrences of the slower producer between two consecutive instances of the

consumer. Therefore, there can exist at most three instances of produced data waiting to

be consumed at any instance of time. Also, based on this statement, we can say that any

produced data will be consumed within at most two periods of the consumer, as

demonstrated in Figure 3.12.

Producer A

1 m

Consumer B

Figure 3.12. The Consumer-Producer Paradigm

It can be seen that the worst case that can occur is to have data from a producer

consumed after 2 x PER^umer - METconsumer units of time. Currently, in PSDL, contrary

from the sporadic case, there is no upper bound on the time input data for a periodic

operator should be consumed. Therefore, if the consumer is a periodic operator that

receives data from network streams, not using synchronization will not impose any

additional constraints on timing requirements.

In the sporadic case, however, the explicit upper-bound for consuming the

incoming data is MRT, which is assumed to be greater than or equal to the latency plus

the MET of the consumer operator for the incoming data. Therefore, an additional

60

restriction on the triggering period of a sporadic operator must be imposed when it has

any data coming from network streams. Figure 3.13 shows the new timing constraints we

should consider for the sporadic operator.

Producer A

LAT
Consumer B

PER«
-?><-

PERB

MRT«

Figure 3.13. New Timing Constraints for the Sporadic Operator

From Figure 3.13, we have the following:

2 x TPB + LATMAX < MRTB

or

TPB< MRTB LATMAX

2 2

which is the new upper-bound for the triggering period of a sporadic, operator.' We also

know, from the previous section, that TP > MET. Hence,

METB < TPB < MRTB LATMAX

2 2

which is the new formula for calculating the triggering period of a periodic operator

under the no synchronization assumption (Cordeiro, 1995).

61

62

IV. THE ALLOCATION AND SCHEDULING PROBLEM

A. INTRODUCTION

The task allocation and scheduling problem is one of the basic issues of building

real-time applications on a distributed computing system (DCS). A DCS is typically

modeled as a collection of processes interconnected by a communication network. For

real-time applications, the allocation of tasks over the distributed system is intended to

fully utilize the available processors, and the scheduling is needed to meet their timing

constraints (Cheng and Agrawala, 1995).

A statically scheduled real-time system is composed of a number of real-time

tasks dispatched according to the static schedule. Analysis is done a priori to determine

the worst case condition, and the system is only deployed if the timing requirements are

met. In this thesis, one of our objectives is to apply this approach to distributed real-time

embedded systems. One of the most important problems with a priori analysis for real-

time distributed systems has been complications introduced by communications costs: the

delay for messages sent between processors must be accurately bounded.

In Chapter III, we saw a distributed scheduling analysis and how it is used to

determine the conditions to guarantee that no deadlines are missed. In addition, we saw

the additional restrictions imposed on the timing constraints due to the delay introduced

by interprocessor communications under the no synchronization assumption. In this

chapter, we focus on the scheduling problem in the Prototyping System Description

Language (PSDL), which is a high-level prototyping language designed specifically to

support conceptual modeling of real-time embedded systems.

The major difference between single processor'and multiple processor scheduling

is that, in addition to deciding which order to execute tasks, the multiple processor

scheduling algorithms must decide which processor the task should run on. Therefore,

we propose a technique to deal with the allocation problem.

As shall be shown, task allocation dramatically complicates the already complex

problem of distributed software design, because in assigning m processes onto n

processors, there are nm different possible assignments. Optimal allocation is a problem

of exponential complexity, and was proven to be NP-complete by Mok (Mok, 1983).

63

The key to process allocation is to establish an allocation model in terms of a cost

function and additional constraints that match the application requirements as far as

logical and timing correctness. The goal is to minimize the cost function under the

constraints. Most of the cost functions found in available literature deal with

performance. Others, such as those relating to reliability and fault tolerance, are only

now emerging (Shatz and Wang, 1989).

The most widely used performance cost functions are:

1. Interprocessor communication cost (IPC) which is a function of the amount of
data transferred, the network topology and link capacity;

2. Load balancing, which is a measure of how uniformly the workload is
distributed among the processors. A good load balance will maximize system
stability, which is the capability of busy hosts to receive bursty arrivals of
processes without compromising their deadlines;

3. Completion time, the total execution time including interprocessor
communication incurred by that processor.

The most frequent constraints found in typical real-time system are processor

hardware limitations, dependence of some processes on certain processors, and number

of available processors. The choice of a cost function obviously depends on the

application, on the underlying hardware, and on several other characteristics (Cordeiro,

1995). Although distributed processing seems very attractive, one should be aware of the

saturation effect that is sometimes forgotten by many developers. The basic consequence

of this effect is that, contrary to expectations, the throughput does not increase linearly as

the number of processors is increased. Actually, at some point (which can be as few as

three or four processors) throughput starts to decrease (Chu, Holloway, Lan and Efe,

1980 and Jenny, 1977). The decrease in throughput is due to excessive interprocessor

communication. Basically, the different approaches to solving the allocation problem all

fall into one of three major classifications: graph theoretic, mathematical programming,

or heuristics methods, which are by no means mutually exclusive.

The first of these represents the processes to be allocated as nodes in a graph,

where each edge has a weight that is proportional to its inter-module communication cost

(IMC), with the following remarks: an IMC of zero means that no communication takes

place between those two modules and an IMC of infinity means that they should be

assigned to the same processor. If a minimal-cut algorithm is performed on the graph,

one ends up with the minimum allocation cost for those modules between two processors.

64

In general, however, an extension of this method to an arbitrary number of processors

requires an n-dimensional min-cut flow algorithm, which quickly becomes

computationally intractable (Cordeiro, 1995).

The mathematical programming approach uses, in most cases, the non-linear

integer programming technique, where the above problem is formulated as a set of

equations. It is very flexible in the sense that additional constraints can be included in the

model very easily, moreover, this approach fails to accurately represent real-time

constraints and precedence relations among tasks, because both factors introduce queuing

delays into the system in a complex manner (Cordeiro, 1995).

Finally, heuristic methods (investigating practical ways of finding a solution),

unlike the first two, try to find sub-optimal solutions for the assignment problem, which

are generally faster, more extendible and simpler.

B. APPRO ACHING THE SCHEDULING PROBLEM

One of the major tasks when dealing with the scheduling problem is to determine

whether the timing constraints of a given specification can be satisfied by some real-time

systems. As we said above, analysis should be done a priori in order to determine the

worst case condition. Therefore, we choose to demonstrate the schedulability of a

prototype via generation of a static schedule that enforces all real-time constraints under

the worst case conditions. Here we assume that each operator runs on the same processor

from activation to completion. Thus, the CPU time is in one contiguous interval. We

make this assumption to simplify the scheduling problem and, to keep interprocessor

communication overhead at a minimum. All of the other timing constraints are bound on

the duration of the time intervals defined by pairs of events.

Real-time systems typically consist of a mixture of periodic and sporadic tasks,

each with an associated deadline and precedence constraints. Failure to meet critical task

deadlines may lead to catastrophic failure of the system, requiring off-line analysis of

allocation and processor scheduling to guarantee task deadlines (Tindell, Burns and

Wellings, 1992). In this approach, the scheduler converts all sporadic time critical

operators into equivalent periodic operators, as was shown in Chapter III. It is desirable

to set the equivalent period as large as possible in order to minimize the impact on the

load factor of the prototype. On the other hand, this increases the possibility of getting a

65

set of periods with a very large LCM (Least Common Multiple) after the conversion.

According to Luqi and Shing (1996), prototypes with a large LCM are less likely to be

schedulable. Hence a heuristic algorithm was developed to exploit the fact that a very

small change in periods, while only affecting the load factor slightly, may be sufficient to

dispose of some prime factors of the LCM, reducing it significantly. For further

examination of this problem see Cordeiro (Cordeiro, 1995).

Based on what was explained above, we should assume that all the critical

operators are periodic for the rest of the chapter. A set O of non-preemptive periodic

operators with precedence relationship is schedulable if there exists a static schedule such

that the start and completion time of every operator instance satisfies the timing and

scheduling constraints. It is a well-known and accepted result that the least common

multiple (LCM) of their periods provides a finite interval of time, for which a cyclic

schedule can be calculated, if one exists, and repeated forever (Luqi and Shing, 1996).

Based on the Harmonic Block Theorem that was shown in Chapter III, we can say that it

suffices to compute the cyclic schedule within the interval [0, 2 x LCM]. In Table 4.2

shows a summary of notations that will help the reader to get a better understanding of

the scheduling problem.

Notation

act(oijk)

St(Oi,k)

Ct(Oi,k)

d(c-i,k)

tardinessfai^)

ready(oi;k)

Meaning

The beginning of the km period of the operator o;

The actual starting time of Oj,k

The completion time of o^k

The deadline (latest completion time) of Oj,k

The amount of time by which Oj,k misses its deadline

The earliest time when Oj can actually fires in the km period

Table 4.1. Summary of Notations

C. THE DISTRIBUTED SCHEDULING PROBLEM

Given a set of operators and a set of identical processors in a distributed system, a

static schedule is a function that maps each instance of the operators that must start

within [0, 2 x LCM] to a triple (Pid, st, ct), where Pid is the label of the processor that

66

executes the operator instance, st is the exact execution start time for the operator

instance, and ct = st + MET, the time by which the operator instance must complete its

execution. The reader should remember that here we assume that all of the instances of a

given operator should be executed on the same processor.

A static schedule is said to be legal if the relative ordering of the operator-

instances in the schedule satisfies the precedence constraints imposed by the prototype.

A static schedule is said to be feasible if the schedule is legal and every operator-instance,

when executed according to the schedule, meets its deadline. The cost of a schedule is

defined here to be the maximum tardiness over all instances of the operators in G'.

Hence, any legal schedule with zero cost is a feasible schedule.

The distributed static scheduling problem is to decide if there is a feasible

schedule for the given scheduling constraint graph on a set of N processors. We already

know that the static scheduling problem is NP-hard, so it is not likely to have efficient

algorithms for solving the general static scheduling problem. Hence, we propose to

construct an allocation model in terms of the interprocess communication cost, load

balancing and timing correctness, so that the overall real-time constraints are matched.

Figure 4.1 shows the three kinds of graphs that are used by the CAPS scheduler to

build the schedule. The global precedence graph G' can be obtained from the expanded

dataflow graph G by removing.all edges in G which represent state variables and then

taking the transitive closure of the resultant graph. Given the global precedence graph,

the scheduling constraint graph CG is defined by considering all task instances that must

start execution in the interval [0, 2 x LCM], according to the algorithm for construction

of the scheduling constraint graph presented by Luqi and Shing (1996).

Note that the scheduler does not construct the scheduling constraint graph

explicitly. It computes the precedence constraints described by CG dynamically as it

builds the static schedule based on the global precedence graph G' of the prototype (Luqi

and Shing, 1996).

67

P(o,) = 60 P(o2) = 30 P(o3) = 20 i v ►,o41
IDUMMY; V

 ■

GhrKHhrKH)

o4

P(o4) = 60

a) The Expanded Data flow Graph

b) The Global Precedence Graph c) The Scheduling Constraint Graph

Figure 4.1. Graphs Used by the CAPS Scheduler

The scheduling constraint graph contains all task instances that must start within

the interval [05 2 x LCM]. While defining CG, the scheduler is able to calculate the

earliest time when operator-instance Oj can actually fire in the k* period, ready (oi;k), and

the deadline (latest completion time) of oijk, d(oi;k). These notations are defined in (Luqi

and Shing, 1996).

1. Building the Distributed Schedule

Before starting to explain how the distributed schedule is built, we must mention

the limitations of the algorithm we propose here. It only handles expanded dataflow

graphs that contain cycles, if those cycles can be confined in each one of the available

processors. Note that cycles in an expanded dataflow graph usually imply feedback loops

of the state machines, where all operators in the loop are executed in locked steps and the

input of each operator depends on the output of its previous firing. While the circular

precedence constraints introduced by the cycles are broken by state streams in the cycle,

the successive firing of the operators in the loop have to be synchronized to make sure

that an operatoor acts upon the "feedbacks" (i.e. new input data) resulted from the

68

previous firing. While such synchronization is implied via the sequential execution of the

operators in the static schedule for the uniprocessor case, explicit synchronization is

needed for the distributed case where the operators in the feedback- loop are assigned to

different processors across the network, due to the long delays introduced by

interprocessor communications. Another limitation is about operators connected by

sampled steams running on different processors. We cannot always guarantee that a new

data sent over the network will be consumed at the appropriate time by the consumer

operator due to the lack of a global clock. For example, a drift in the clock of the

processor on which the consumer operator is running may cause the consumer operator to

lose the new data and, consequently, create dependency problems. To avoid these kinds

of problems and make sure that underflow exceptions will not be raised we should use

state streams to dissociate producer and consumer operators running on different

processors.

The scheduling technique we propose here is based on ordered doubly linked list

(DLL) structures. Although linked-list operations such as traverse or insert in order

require 0(N) time because they usually involve visiting each element in sequence, we can

have considerable advantage in terms of flexibility. It is relatively easy to add new

information by creating a new element and inserting it between two existing elements.

Moreover, many of the operations in this model consist of grabbing information from the

last element in the list, which requires 0(1) time. However, the greatest advantage of

using ordered doubly linked lists is that, when we finish the algorithm, the assignment of

operators to processors and the static schedule are ready. There is no need to search the

scheduling constraint graph. In addition, the tool that performs the automatic generation

of code can easily access the information it needs, such as number of processors,

interprocessor communications, allocation of operators to the available processors, etc.

We keep a doubly linked list for each processor and a separate list for the

incoming communication network for each processor. Because operations on linked lists

such as traverse and insert are expensive, initially each element in the list of a processor

represents a time slot assigned to the first instance of an operator to be executed on that

processor. Later, after a feasible partial schedule is found, these lists are extended, so

that each element represents a time slot assigned to some instance of an operator. The

69

elements in each list of a processor P are ordered in increasing order of start time. Also,

each element has the following fields:

1. Operator ID i
2. Operator-instance k
3. Activation time act
4. Start time st
5. Completion time ct
6. Deadline d
7. Number of instances that start within [0, 2 x LCM] nj

For the communication network list, each element represents an incoming

communication arriving at the corresponding processor and the list is ordered in

increasing order of latency. Each element of a communication network list has the

following fields:

1. Producer o,
2. Consumer Oj
3. Latency L(OJ -» Oj)

We know that distributing tasks to as many processors as possible tends to

increase the communication delay, which decreases the chances for the scheduler to find

a feasible schedule. So, there is a trade-off between the advantages of maximizing

parallelism (maximize the number of operators executing in parallel) and minimizing

communication delay. Although maximum parallelism seems to be good at the

beginning, it increases interprocessor communication demand and, consequently, the

overall communication delay. Therefore, our objective here is to keep a reasonable

number of processors, but still take advantage of concurrent execution.

A set of periodic operators in a prototype is not schedulable if the load factor of

the protoype is greater than the number of available processors. In other words, the

number of available processors should be, at least equal to |~2 MET(x)/PER(x)] over all

periodic operators x. For example, if the load factor is equal to 1.8, then for the protoype

to be schedulable we need at least |"l.8T= 2 processors. However, a high load factor may

affect the schedulability of the prototype. Therefore, to increase the efficiency of the

algorithm we set the value maxjoadjactor, which is the maximum allowed load factor

for each processor.

Assume maxjoadjactor = 0.7 in the example above. Now, for the prototype to

be schedulable we need \2J0.i] = 3 processors. Therefore, considering the explanation

70

above, we decide to keep the number n of processors equal to max(z, w) where z is the

minimum number of processors required by the prototype when considering the load

factor and maxjoadjactor, and w is the number of operators with no incoming edge.

Given the global precedence graph G' of the prototype, the partial distributed

static schedule is built as following:

1. Calculate n = max(z, w). Then create n linked lists, which represent the n
processors, and n linked lists representing the communication network.

2. For each operator with no incoming edge o; in G, 1 < i < w, create a copy of
the operator and insert it into the list corresponding to processor Pi, where i =
(1, 2, ..., w). The operator is assigned st = 0 when inserted into the first
position in the list for processor Pj.

3. For each list corresponding to a processor Pj, 1 < i < w, remove the'children of
the first operator Oj in G and insert them into the Ready_Set. Next, while
Ready_Set is not empty, remove the operator with the earliest start time and
calculate the load factor for the processor Pj. If load factor <
maxjoadjactor, then insert the operator in the list If load factor >
maxjoadjactor, then start to fill the list for the next available processor

At this point, we have allocated each operator in the prototype to a processor and

built the partial schedule. Now we should adapt the partial schedule to the distributed

model, that is,.modify the start time and completion-time of all the operators to include

the delay introduced by each interprocessor communication. For any two vertices o; and

Oj in G, if edge Oj —> Oj exists in G and Oj is located on a different processor than Oj, then

pick up the edge o, -» Oj with the greatest latency L(Oi -» Oj) in G, calculate the latency L

for that specific interprocessor communication and, in the case L > L(OJ —» Oj), assign the

value of L to L(o; -> Oj). Now, if ct(oj) + max[L(Oj -» Oj)] > st(oj), then we must update

the start time and completion time of operator oj so that.

st(oj) = ct(oj) + max[L(oj -» Oj)]

and

ct(Oj) = st(oj) + METj

•In addition, the start time of all'operators on the same processor with a lower

precedence constraint than Oj that are affected by the communication delay should be

updated accordingly, so that the precedence and mutual exclusion constraints are satisfied

as originally required. Finally, create a new element to be inserted into the

71

communication network list corresponding to the processor where Oj is located. Figure

4.2 shows the algorithm used to adapt the schedule to the distributed model.

72

Procedure Adapt_Schedule_ToJDistributed_Model
(Partial_Schedule, Communication_Network) is

Begin
Max_Latency := 0;
For i in 1 to Number of Vertex in G' loop

For j in 1 to Number of Vertex in G' loop
Ifi/=jthen

If Processor_Id(i) /= Processor_Id(j) then
For each edge Oj —» Oj in G' loop

If edge Oj -> Oj is present in G then
If Latency(Oj -> Oj) > Max_latency then

Max_latency := Latency(o; -» Oj);
End if;

End if;
End loop;
If (IPC_Latency := Calculate_IPC_Latency(oj —» Oj)) > MaxJLatency then

Max_Latency := IPC_Latency;
End if;
ProducerJPtr := Find_Operator(i, Partial_Schedule(Processor_ID(i)));
Consumer_Ptr := Find_Operator(j, Partial_Schedule(Processor_ID(j)));
If (ProducerJPtr.ct + Max_Latency) > Consumer_Ptr.st then

Consumer_Ptr.st := Producer_Ptr.ct + Max_Latency;
Consumer_Ptr.ct := Consumer_Ptr.st + MET(j);
Lower_Precedence_Op := Consumer_Ptr.Next;
While Lower_Precedence_Op /= Null loop

If Lo wer_Precedence_Op. st
< Lower_Precedence_Op.Previous.ct then

Lower_Precedence_Op.st :=
Lower_Precedence_Op.Previous.ct;

LowerJPrecedence^Op.et := Lower_Precedence_Op.st +
MET(Lower_Precedence_Op.i);

End if;
Lower_Precedence_Op := Lower_Precedence_Op.Next;

End loop;
End if;
Net_Communication := New_Net_Element(i, j, Max_latency);
Insert_in_Order

(Net_Communication, Communication_Network(ProcessorID(j)));
End if;

End if;
End loop;

End loop;
End;

Figure 4.2. Adapt Schedule to the Distributed Model Algorithm

73

The reader should remember that, according to the analysis for the distributed

scheduling we saw in Chapter III, to guarantee that no data is lost, the period of operator

Oj must be greater than or equal to the period of operator Oj. So, a warning must be

displayed by the scheduler in case this condition is not satisfied.

It should have been noticed that the scheduler uses the earliest-starting-time-first

algorithm to build the schedule. It removes the vertex with the earliest start time among

all the vertices v in the Ready_Set and inserts it to a list. According to Luqi and Shing

(1996), the earliest-starting-time-first algorithm is very effective in finding a feasible

solution for prototypes with load factor 0.7 or below, so 0.7 is a good reference for the

value of maxjoadj'actor for each processor. ■

The major difference between distributed scheduling and multiprocessor

scheduling is the delay introduced by interprocessor communications. The latency for

the transmission of a data value b bits long from processor Pj to Pj is considered to be

zero in a shared memory, multiple processor configuration. On the other hand, the

latency is Dy + (bx Ty) for the distributed configuration, where:

1. Dy is the interprocessor delay, and
2. Ty is the inverse of the link speed (seconds per bit).

Another difference is that the scheduler initially allocates only the first instance of

the operators to processors. Later, after a feasible partial schedule is found, the partial

schedule is extended (see Figure 4.3), so that the elements in the list for each processor

represent the operator-instances that start execution within [0, 2 x LCM]. Because of this

fact, we need to come up with a way to extend the schedule, which is done as following:

1. When a new element is inserted into the list for each processor, we calculate
the number n; of instances of the operator Oj that start within the interval [0, 2

T PX41 u 2* LCM x LCM], where n; = :
PERj '

2. After a feasible partial schedule is found, we should traverse each list and for
each element insert m - 1 new elements in the list, so that all of the operator-
instances which start execution within [0, 2 x LCM] have a corresponding
element in the list.

74

Function Extend_Partial_Schedule(Partial_Shedule) is
Begin

For j in 1 to Number_of_Processors(Partial_Schedule) loop
CurrentOperatorJPtr := Partial_Schedule(j).Head;
Last_Operator_Ptr := Partial_Schedule(j).Tail;
While Current_Operator_Ptr /= Last_Operator_Ptr.Next loop

For count in 1 to Current_Operator_Ptr.nj - 1 loop
New_Operator_Instance_Ptr := Create_New_Element;
New_Operator_Instance_Ptr.i := Current_Operator_Ptr.i;
New_Operator_Instance_Ptr.k := 1 + Current_Operator_Ptr.k;
New_Operator_Instance_Ptr.act := Current_Operator_Ptr.st +

count x PER(New_Operator_Instance_Ptr.i);
New_Operator_Instance_Ptr.d := New_Operator_Instance_Ptr.act +

FW(New_Operator_Instance_Ptr.i);
Insert_in_Order(New_Operator_Instance_Ptr, Partial_Schedule(j));
— Insert new element to the list in increasing order of start time.
~ The actual st and ct of the new operator instance is calculated after it is
~ inserted in the list, according to the ct of the previous operator, such
— that the mutual exclusion constraint is satisfied. Also, we must ensure
— that the start time of the next operator is greater than or equal to ct of
— the new element.

End loop;
Current_Operator_Ptr := Current_Operator_Ptr.Next;

End loop;
End loop;
Return(Partial_Schedule);

End;

Figure 4.3. Extend Partial Schedule Algorithm

2. Verifying the Feasibility of the Schedule

As we saw above, the scheduler first builds a partial schedule by allocating just

the first instance of each operator to the available processors. Then, it adapts the

schedule to the distributed model, which means that all of the operators affected by

communication delay due to interprocessor communication (more specifically, the

consumer operator and probably other operators with lower precedence constraints) must

have their start times updated. By updating the start time of those operators affected by

communication delay, the scheduler guarantees that the consumer operator is able to read

the data sent by the incoming interprocessor communication and the precedence,

constraints are still satisfied.

75

Next, we must verify if the partial schedule is feasible, that is, we must verify that

every operator executed according to the schedule will meet its deadline. We do this by

evaluating the cost of the partial schedule. If the partial schedule satisfies the precedence

constraints imposed by G' and its cost is zero, then the partial schedule is feasible. Figure

4.4 shows the algorithm used to evaluate the cost of the distributed schedule. After

evaluating the cost of the partial schedule, we check the value returned by function

Evaluate_Cost, and if cost is equal to zero, then a feasible partial schedule was found.

Now, the partial schedule is ready to be extended.

Function Evaluate_Cost(Schedule; Number_of_Processors)
Begin

Expected_Lower_Bound := 0;
For j in 1 to Number_of_Proeessors loop

Lower_Bound(j) := max{0, ct(oik) - d(oijk) | for all operator-instances oi>k in the
list for processor Pj in the Schedule}

If Lower_Bound(j) > 0 then
return(i);

End if;
End loop;
return(Expected_Lower_Bound);

End;

Figure 4.4. Evaluating the Cost of a Distributed Schedule

As we can see in Figure 4.4, the algorithm checks each processor to determine if

there is any operator that does not meet its deadline. If there is an operator missing its

deadline, the function Evaluate_Cost returns the identification ofthat processor. Next, the

distributed scheduling algorithm outputs message "Schedule Not found" and exits.

After a feasible partial schedule is found, the schedule is extended as explained in

the previous subsection. The activation time of each new element inserted in the list is

calculated as following:

act(oijk) = st(ou) + (k -1) x PER(oi)

According to the PSDL mutual exclusion constraint (see Section A.5 in Chapter III), the

execution time of operator-instances running on the same processor cannot overlap.

Therefore, after inserting a new operator in the list ordered by start time, we must check

if its activation time is greater than or equal to the completion time of the overlapping

operator. If it is not, the start time of the new operator will be assigned the value ct of the

76

previous operator. Also, we must ensure that completion time of the new operator is less

than or equal to the start time of the next operator in the list. If it is not, then we must

update the start time and completion time of all the affected operators in the list. Finally,

we should verify the feasibility of the extended schedule by evaluating the cost of the

schedule. If the value returned by function Evaluate_Cost is equal to zero, a feasible

schedule was found. Figure 4.5 below shows the distributed scheduling algorithm.

77

The Distributed_Scheduling Algorithm
Begin

Max_Load_factor := 0.7;
z := Minimal_Number_Of_Processors;
w := Number_Of_Operators_With_No_Incoming_Edge;
Number_Of_Processors := max(z, w);
Partial_Schedule(l..Number_Of_Processors);
Communication_Network(1. .Number_Of_Processors);
Ready_Set={ };
For each operator with no incoming edge in G' loop

v := Operator_With_No_Incoming_Edge;
Add_Item_To_Set(v, Ready_Set);

End loop;
count := 1;
While Not_Empty(Ready_Set) loop

v := Remove_Item_With_Earliest_Start_Time(Ready_Set);
operator_instance(v) := 1;
st(v) := 0;
ct(v) := st(v) + MET(v);
d(v) : deadline(v);
Add_Item_To_Schedule(v, Partial_Schedule(count));
count := count + 1;

End loop;
For i in 1 to Number_Of_Processors loop

v := First_Element(Partial_Schedule(i));
For each child u of v remaining in G' loop

Remove_Child_And_Add_To_Set(u, Ready_Set);
End loop;
count := i;
While Not_Empty(Ready_Set) loop

If Load_Factor(Partial_Schedule(count)) < Max_Load_Factor then
v := Remove_Item_With_Earliest_Start_Time(Ready_Set);
operator_instance(v) := 1;
st(v) := max{Last_Stop_time(Partial_Schedule(count)), ready(v)};
ct(v) := st(v) + MET(v);
d(v) := deadline(v);
AddJtemJTo_Schedule(v, PartialJSchedule(count));

Else
count = count + 1; .

End if;
End loop;

End loop;
Adapt_Schedule_To_Distributed_Model

(Partial_Schedule, Communication_Network);

78

If (Evaluate_Cost(Partial_Schedule, Number_Of_Processors) > 0 then
Output "Schedule Not Found";

Else
Extended_Schedule := Extend_Partial_Schedule(Partial_Schedule);
If (Evaluate_Cost(Extended_Schedule, Number_Of_Processors) = 0) then

Output "Schedule Found";
Else

Output "Schedule Not Found";
End if;

End if;
End;

Figure 4.5. The Distributed Scheduling Algorithm

The following example illustrates how the algorithm shown in Figure 4.5 works.

Consider the expanded dataflow graph in Figure 4.1 (a) and assume that the operators in

G have the following timing constraints: oi(50, 600, 600), o2(70, 300, 300), o3(50, 200,

200) and 04(50, 600, 600). Also, assume that all the latencies are equal to zero. Given

the expanded dataflow graph G, the PSDL scheduler builds the global precedence graph

G' and the scheduling constraint graph CG as shown in Figure 4.1 (b) and (c),

respectively, and defines the ready time and deadline for each operator-instance that

starts execution within the interval [0,1200].

Following the distributed scheduling algorithm above, the number of processors is

calculated according to the load factor of the prototype and the number of operators

without an incoming edge. In this case, the values are 0.65 and 2, respectively. Thus,

considering maxjoadjactor equal to 0.7, the minimal number of processors is two.

Therefore, the number of processors for the distributed model is two as well. Next, the

partial schedule is built, and looks like Figure 4.6.

79

r

i=l;n; = 2;
k= l;act = 0;
st = 0;
ct = 50;
d = 650;

i = 2;ni = 4;
k= l;act = 0;
st = 50
ct = 120;
d = 370;

i = 3; n; = 6;
k= l;act = 0;
st = 120;
ct=170;
d = 250;

J
X

p2

i = 4;ni = 2;
k= l;act = 0;
st = 0;
ct = 50;
d = 650;

—

| _

_L A

Figure 4.6. Partial Schedule

The partial schedule is now adapted to the distributed model and the feasibility of

the schedule is verified. Note that during the adapting phase the scheduler creates a new

element in the communication network list for processor Pl9 which corresponds to the

interprocessor communication between operator o4 in P2, and operator o3 in Pi.

Assuming that the latency L for the interprocessor communication from o4 to o3 is equal

to 50 ms, then the value of L(o4 -> o3) becomes 50. Since ct(o4) + L(o4 -» o3) is less than

st(o3), the start time of operator o3 is not changed when adapting the partial schedule. As

we can see in Figure 4.6, the cost of the partial schedule is zero because no operator

misses its deadline, even under the distributed model.

Next, the partial schedule is extended, so that all the operator-instances in the

prototype which start execution within the interval [0, 1200] have a corresponding

element in the schedule. As we can see in Figures 4.7 (a) and (b), the scheduler found a

feasible distributed schedule.

80

Operator-Instance Start Time Completion Time Deadline Tardiness

Ol,l 0 50 650 0

02,1 50 120 370 0

03,1 120 170 250 0

02,2 350 420 650 0

03,2 420 470 520 0

03,3 550 600 720 0

Ol,2 600 650 1200 0

02,3 650 720 950 0

03,4 750 800 920 0 '

02,4 950 1020 1250 0

03,5 1020 1070 1120 0

03,6 1150 1200 1320 0

Figure 4.7 (a). Static Schedule for Processor Pi

Operator-Instance Start Time Completion Time Deadline Tardiness

■04,i 0 50 650 0

04,2 600 650 1200 0

Figure 4.7 (b). Static Schedule for Processor P2

81

82

V. SOFTWARE ARCHITECTURE DESIGN

A. INTRODUCTION

The Ada 95 programming language contains a distributed systems annex that

defines facilities for supporting the implementation of distributed systems using multiple

partitions working cooperatively as part of a single Ada program (Ada, 1995). The

Distributed Systems annex of the Ada 95 Language Reference Manual (Ada, 1995)

defines a distributed system as an interconnection of one or more processing nodes (a

system resource that has both computational and. storage capabilities), and zero or more

storage nodes (a system resource that has only storage capabilities, with the storage

addressable by one or more processing nodes). The process of mapping the partition of a

program to the nodes in a distributed application is called configuring the partitions of the

program.

In this chapter, we will discuss the characteristics and capabilities of Ada 95

distributed systems and present the software GLADE (GNAT Library for Ada

Distributed Execution). GLADE is an implementation of the Distributed Systems annex

for the GNAT compiler. GLADE has been developed by Ada Core Technologies and a

research team from Ecole National Superior de Telecommunication (Paris and Brittany,

France). A complete reference can be found in GLADE User Manual (ACT Europe).

1. Partitions

According to the Ada 95 Language Reference Manual (Ada, 1995), the partitions

of a distributed program are classified as either active or passive. An active partition is a

program or part of a program that can be invoked from outside the Ada implementation.

For example, a partition might be an executable file generated by the system linker. The

user can explicitly assign library units to a partition. The compilation units included in a

partition are those of the explicitly assigned library units, as well as other compilation

units needed by those library units. An active partition shall be configured on a

processing node. The user can optionally designate one subprogram as the main

subprogram for the partition. A main subprogram, if specified, shall be a subprogram.

A passive partition is a partition that has no control threads of its own, whose

library units are all pre-elaborated, and whose data and subprograms are accessible to one

83

or more active partitions. A library unit is pre-elaborated if a pragma Pre-elaborate

applies to the library unit. If a library unit is pre-elaborated, then its declaration and body

(if any) are elaborated prior to all elaborated library items of the partition. A passive

partition shall be configured either on a storage node or on a processing node. The

configuration of the partitions of a program onto a distributed system shall be consistent

with the possibility for data references or calls between the partitions implied by their

semantic dependencies. Any reference to data or call of a subprogram across partitions is

called a remote access (Ada, 1995).

2. Categorization of Library Units

Library units can be categorized according to the role they play in a distributed

program. Certain restrictions are associated with each category to ensure that the

semantics of a distributed program remain close to the semantics for a nondistributed

program. A categorization pragma is a library unit pragma that restricts the declarations,

child units, or semantic dependencies of the library unit to which it applies. A

categorized library unit is a library unit to which a categorization pragma applies. The

■following pragmas are examples of categorization pragmas: Shared_Passive,

Remote_Types, and Remote_Call_Interface. A normal library unit is one to which no

categorization pragma applies.

According to the Distributed Systems annex of the Ada 95 Language Reference

Manual (Ada, 1995), the following defines each categorized library unit by categorization

pragma:

1. Shared Passive Library Unit
A shared library unit is used for managing global data shared between active
partitions. The restrictions on shared passive library units prevent the data or
tasks of one active partition from being accessible to another active partition
through references implicit in objects declared in the shared passive library
unit.

2. Remote Types Library Unit
A remote types library unit supports the definition of types intended for use in
communication between active partitions.

3. Remote Call Interface Library Unit
A remote call interface library unit can be used as an interface for remote
procedure calls (RPCs) between active partitions.

84

3. Remote Subprograms Calls

A remote subprogram call is a subprogram call that invokes the execution of a

subprogram in another partition. The partition that originates the remote subprogram call

is the calling partition, and the partition that executes the corresponding subprogram call

is the called partition. Some remote procedure calls are allowed to return prior to the

completion of program execution. These are called asynchronous remote procedure calls.

(Ada, 1995)

There are three different ways of performing a remote subprogram call:

1. As a direct call on a (remote) subprogram explicitly declared in a remote call
interface;

2. As an indirect call through a value of a remote access-to-subprogram type;
3. As a dispatching call with a controlling operand designated by a value of a

remote access-to-class-wide type.

The first way of calling corresponds to a static binding between the calling and the called

partition. The latter two ways correspond to a dynamic binding between the calling and

the called partition.

A remote call interface library unit defines the remote subprograms or remote

access types used for remote subprogram calls. For the execution of a remote

subprogram call, subprogram parameters (and later the results, if any) are passed using a

stream-oriented representation which is suitable for transmission between partitions.

This action is called marshalling. Unmarshalling is the reverse action of reconstructing

the parameters or results from the stream-oriented representation. Marshalling is

performed initially as part of the remote subprogram call in the calling partition;

unmarshalling is done in the called partition, results (if any) are marshalled in the called

partition, and finally unmarshalling is done in the calling partition. (Ada, 1995)

A calling stub is the sequence of code that replaces the subprogram body of a

remotely called subprogram in the calling partition. A receiving stub is the sequence of

code that receives a remote subprogram call on the called partition and invokes the

appropriate subprogram body. The task executing a remote subprogram call blocks until

the subprogram in the called partition returns, unless the call is asynchronous. For an

asynchronous remote procedure call, the calling task can become ready before the

procedure in the called partition returns.

85

If a construct containing a remote procedure call is aborted, the remote

subprogram call is cancelled. If an exception is propagated by a remotely called

subprogram, and the call is not an asynchronous call, the corresponding exception is

raised again at the point of the remote subprogram call. For an asynchronous call, if the

remote procedure call returns prior to the completion of the remotely called subprogram,

any exception is lost. The exception CommunicationJError is raised if a remote call

cannot be completed due to difficulties in communicating with the called partition.

4. Partition Communication Subsystem

The Partition Communication Subsystem (PCS) provides facilities for supporting

communication between the active partitions of a distributed program. The package

System.RPC is a language-defined interface to the PCS. An implementation conforming

to Annex E of the Ada Language Reference Manual shall use the RPC interface to

implement remote subprogram calls (Ada, 1995). Figure 5.1 shows the specification for

the package System.RPC.

86

with Ada.streams;
package System.RPC is

type Partition_ID is range 0..implementation-defined;
Communication_Error: exception
type Params_Stream_type (

Initial_Size : Ada. Streams. Stream_Element_Count) is new
Ada.Streams.Root_Stream_Type with private;

procedure Read (Stream : in out Params_Stream_Type;
Item : out Ada. Streams. Stream_Element_Array;
Last: out Ada.Streams.Stream_Element_Offset);

procedure Write (Stream : in out Params_Stream_Type;
Item : in Ada. Streams. Stream_Element_Array);

— Synchronous call
procedure Do_RPC (Partition : in PartitionID;

Params : access Params_Stream_Ttype;
Result : access Params_Stream_Ttype);

— Asynchronous call . ,
procedure Do_APC (Partition : in Partition_ID;

Params : access Params_Stream_Ttype);

—The handler for incoming RPCs
type RPC_Receiver is access procedure (Params : access Params_Stream_type;

Result : access Params_Stream_type);

procedure Establish_RPC_Receiver (Partition : in Partition_ID;
Receiver: in RPC_Receiver);

private
— not specified by the language

end System.RPC;

Figure 5.1 Specification of Package System.RPC (Ada, 1995)

As we can see in Figure 5.1, a value of the type Partition_ID is used to identify a

partition. During the execution of a remote procedure call, subprogram parameters (and

later results, if any) are passed using a stream-oriented representation which is suitable

for transmission between partitions. As we saw above, the annex calls this action

marshalling. Unmarshalling is the reverse action of reconstructing the parameters or

results from the stream-oriented representation.

87

According to the Distributed Systems annex of the Ada 95 Language Reference

Manual (Ada, 1995), an object of the type Params_Stream_Type is used for identifying

the particular remote subprogram that is being called, as well as marshalling and

unmarshalling the parameters or result of a remote subprogram call as part of sending

them between partitions. The Read and Write procedures override the corresponding

abstract operations for the type Params_Stream_Type.

Both synchronous and asynchronous communications are supported by package

System.RPC and are implemented by the procedures Do_RPC and Do_APC,

respectively. Both procedures send a message to the active partition identified by the

Partition parameter. After sending a message, Do_RPC blocks the calling task until.a

reply message comes back from the called partition or some error is detected by the

underlying communication system. In this case, Communication_Error is raised at the

point of the call to Do_RPC. Do_APC operates in the same way as DoRPC, except that

it is allowed to return immediately after sending a message.

Finally, if the partition includes a Remote_Call_Interface (RCI) library unit, the

procedure Establish_RPC_Receiver is called once, immediately after elaborating the

library units of an active partition but prior to invoking the main subprogram. The

receiver parameter. designates an implementation-provided procedure called the

RPC_Receiver, which will, handle all RPCs received by the partition.

Establish_RPC_Receiver saves a reference to the RPC_Receiver. When a message is

received at the called partition, the RPCReceiver is called with the Params stream

containing the message. When the RPCJteceiver returns, the contents of the stream

designated by result is placed in a message and sent back to the calling partition. The

implementation of the RPC_Receiver shall be reentrant, thereby allowing concurrent

calls on it from the PCS to service concurrent remote subprogram calls into the partition.

(Ada, 1995)

5. The Package Streams

A Stream is a sequence of elements comprising values from possibly different

types and allowing sequential access to these values. A stream type is a type in the class

whose root type is Streams.Root_Stream_Type. (Ada, 1995)

88

The types in this class represent different kinds of streams. The pre-defined

stream-oriented attributes like T'Read and T'Write makes dispatching calls on the Read

and Write procedures of the Root_Stream_Type. Figure 5.2 shows the specification of

package Ada.Streams.

Package Ada. Streams is
pragma Pure (stream);
type Root_Stream_Type is abstract tagged limited private;
type Stream-Element is mod implementation-defined;
type Stream_Element_Offset is range implementation defined;
subtype Stream_Element_Count is

Stream_Element_Offset range O..Stream_Element_Offset'Last;
type Stream_Element_Array is

array (Stream_Element_Offset range o) of Stream_Element;

procedure Read (Stream : in out Root_Stream_Type;
Item : out Stream_Element_Array;
Last : out Stream_Element_Offset) is abstract;

procedure Write (Stream : in out Root_Stream_Type;
Item : in Stream_Element_Array) is abstract;

private
—not defined by the language

end Ada. Streams;

Figure 5.2. Specification of Package Ada.Streams (Ada, 1995)

The read operation transfers Item'Length stream elements from the specified

stream to fill the array Item. The index of the last stream element transferred is returned

in Last. Last is less than Item'Last only if the end of the stream is reached. The Write

operation appends Item to the specified stream. There are also the stream-oriented

attributes Read, Write, Output, and Input that convert values to a stream of elements and

reconstruct values from a stream. For every subtype S of a specific type T, some

attributes are defined, which denotes a procedure or a function call. Figure 5.3 presents

those attributes.

89

procedure S'Write (Stream : access Ada.Streams.Root_Stream_Type'Class;
Item : in T);

- S'Write writes the value of Item to Stream

procedure S'Read (Stream : access Ada.Streams.Root_Stream_Type'Class;
Item : out T);

- S'Read reads the value of Item from Stream

procedure S'Output (Stream : access Ada.Streams.Root_Stream_Type'Class;
Item : in T);

- S'Output writes the value of Item to Steram, including any bounds or
~ discriminants

function S'Input (Stream : access Ada.Streams.Root_Stream_Type'Class)
return T;

- S'Input reads and returns the value of Item from stream, using any bounds
- or discriminants written by a corresponding S'Output

Figure 5.3. Stream Attributes (Ada, 1995)

B. ANALYSIS OF GLADE AND ITS CONFIGURATION LANGUAGE

Ada 95 is the first general-purpose language to provide a standard distributed

programming paradigm. By combining the distributed and object-oriented features of

Ada 95, it is possible to create an application where objects are physically distributed

over a network of machines without having to interface to any low-level communication

layer. Likewise, by combining the distributed and real-time capabilities of Ada 95, it is

■possible to design applications which meet real-time constraints in a distributed

environment (ACT Europe).

GLADE release 1.03p for GNAT 3.1 Op distribution contains different

components organized in separate directories:

1. Garlic: a PCS (Partition Communication Subsystem) which is a high level
communication layer that provides several classical services available in a
distributed system (partition identification management, name services,
distributed termination, etc.) and that accommodates several network
protocols and communication subsystems;

2. Dist: a partitioning tool called "gnatdist" and its configuration language which
allow you to divide your program into a number of independent partitions and
specify the machine where the individual partitions are to execute;

3. Ada: a subset of GNAT sources necessary to build GLADE.

GLADE is a complete environment for developing distributed applications that includes:

90

1. a complete PCS (Partition Communication System);
2. a simple partition description language and tool;
3. utilities to build and start distributed applications.

The caller and receiver stubs needed by the PCS are generated by the GNAT compiler

using special flags. The partitioning tool is responsible for calling GNAT with the

appropriate flags.

An Ada 95 distributed application comprises a number of partitions which can be

executed concurrently on the same machine or, can be distributed on a network of

machines. The way in which partitions communicate was described in the previous

section. A partition is a set of compilation units which are linked together to produce an

executable binary. A distributed program comprises two or more communicating

partitions. The distributed systems annex does not describe how a distributed application

should be configured. It is left to the user to define the partitions in his program and on

which machine they should be executed.

1. Configuring a Distributed Application

The tool gnatdist and its configuration language have been purposely designed to

allow partitioning a program and to specify the machines where the individual partitions

are to execute on. Gnatdist reads a configuration file and builds several executables, one

for each partition. It also launches the different partitions and passes arguments specific

to each partition.

The GLADE User Manual (ACT Europe) describes the following steps that

should be followed to configure a distributed application:

1. Write a non-distributed Ada application. Use the categorization pragmas
Remote_Call_Interface and Remote_Types to specify the packages that can be
called remotely (the Shared_Passive categorization pragma is not yet
implemented).

2. When this non-distributed application is working, write a configuration file
that maps your categorized packages onto partitions. Do not forget to specify
the main procedure of your distributed application as explained below.

3. Type'gnatdist configuration-file'. The gnatdist command line options are:
gnatdist [switches] configuration-file [list of partitions]

The switches of gnatdist are, for the time being, exactly the same as for
gnatmake. By default gnatdist outputs a configuration report and the actions
performed. The switch -n allows gnatdist to skip the first stage of
recompilation of the non-distributed application.

4. Start the distributed application by invoking the start-up shell script or Ada
program (depending on the "pragma Starter" option, as will be shown later).

91

All configuration files should end with the '.cfg' suffix. There may be several

configuration files for the same distributed application to permit the use of different

distributed configurations tailored to the computing environment. .

2. How Gnatdist Works

According to the GLADE User Manual (ACT Europe), the tool gnatdist works as

following:

1. When building a distributed application, each compilation unit in the program
is compiled into an object module (as in a non-distributed application). This
is achieved by calling gnatmake on the sources of the various partitions.
Using the -n switch skips this step.

2. Stubs are generated and compiled into object modules (a stub is the software
that allows a partition running on machine A to communicate with a partition
running on machine B). Several time stamp checks are performed to avoid
useless recompilation.

3. Gnatdist performs a number of consistency checks. For instance, it checks to
see that all packages marked as remote call interfaces (RCI) are mapped into
partitions. It also checks to see that an RCI package is mapped onto only one
partition.

4. Finally, the executables for each partition in the program are created. The
• code to launch partitions is embedded in the main partition, except if another

option has been specified (pragma Starter). In this case, a shell script (or
nothing) is generated to start the partition on the appropriate machines. This
is especially useful when one wants to write client/server applications where
the number of instances of the partition is unknown.

3. The Configuration Language

The configuration language is "Ada-like." Because of its simplicity, it is

described by means of an example. As the capabilities of GLADE will evolve, so will

this configuration language. Every keyword and construct defined in the configuration

language has been used in the following sample configuration file, as shown in Figure

5.4. After having created the following configuration file you would typically type:

gnatdist my_config.cfg

If you wish to build only certain partitions, then list the partitions to build on the gnatdist

command line as follows.

gnatdist my_config. cfg partition_2 partition_3

92

Configuration my_config is
PartitionJ: Partition := ();
Procedure Master_Procedure is in Partition_l;

Partition_2, Partition_3: Partition;

for Partition_2'Host use "foo.bar.com";

function Best_Node (Partition_Name: String) return String;
pragma Import (shell, Best_Node, "best-node");
for Partition_3'Host use Best_Node;
Partition_4: Partition := (RCI_B5);

for Partition'Storage_Dir use "bin";

procedure Another_Main;
for Partition_3'Main use Another_Main;

for Partition_4'Command_Line use "-v";

pragma Starter (Method => Ada);

pragma Boot_Server
(Protocol_Name => "tcp". Protocol_Data => " 'hostname': 'unused-port'");

pragma Version (False);

Channel_l: Channel := (PartitionJ, Partition_4);
Channel_2: Channel := (Partition_2, Partition^);

for Channel_lTilter use"ZIP";
for Channel_2Tilter use "My_own_Filter;
for Partition_3'Filter use "ZIP";

pragma Registration_Filter ("Some_Filter");

begin
Partition_2 := (RCI_B2, RCI_B4, Normal);
Partition_3 := (RCI_B3);

end my_config;

Figure 5.4. Configuration File (ACT Europe)

93

According to the GLADE User Manual (ACT Europe), the following explains

each line of code in file my_config.cfg, showed in Figure 5.4.

Configuration MyjConfig is

The name of the file prefix must be the same as the name of the configuration unit

in this example "my_config.cfg." The file suffix must be .cfg. For a given distributed

application you can have as many configuration files as you wish.

Partition _1: Partition := ();
procedure Master ^Procedure is in Partition_l;

Partition 1 contains no RCI package. However, it will contain the main procedure

of the distributed application, called "Master_Procedure" in this example. If the line

"procedure MasterJProcedure is in Partition^" was missing Partition 1 would be

completely empty. This is forbidden; a partition has to contain at least one library unit.

Gnatdist produces an executable with the name of Master_Procedure, which will start the

various partitions in the background on their host machines. The main partition is

launched in the foreground. Note that by killing this main procedure the whole

distributed application is halted, (ACT Europe).

Partition_2, Partition_3: Partition;

for Partition2'Host use "foo. bar.com ";

Declares two partitions called Partition_2 and Partition^ and specifies the host

on which to run partition 2.

function Best_Node (Partition_Name: String) return String;

pragma Import (Shell, Best_Node, "best-node ");

for Partition_3'Host use Best_Node;

Use the value returned by a program to figure out at execution time the name of

the host on which partition 3 should execute. For instance, execute the shell script "best-

node" which takes the partition name as a parameter and returns a string giving the name

of the machine on which partition_3 should be launched.

PartitionJ: Partition := (RCI_B5);

Partition 4 contains one RCI package RCI_B5. No host is specified for this

partition. The startup script will ask for it interactively when it is executed.

forPartition'StorageJDir use "bin";

94

Specify the directory in which the executables in each partition will be stored and

the directory in which all the partition executables will be stored, respectivelly. Default

is the current directory.

procedure Another_Main;
for Partition_3'Main use Another_Main;

Specify the partition main subprogram to use in a given partition.

For Partition_4'Command_Line use "-v";

Specify the additional arguments to pass in the command line when a given

partition is launched.

pragma Starter (Method => Ada);

Specify the kind of startup method you would like. There are 3 possibilities:

Shell, Ada and None. Specifying "Shell" builds a shell script. All the partitions will be

launched from a shell script. If "Ada" is chosen, then the main Ada procedure itself is

used to launch the various partitions. If method "None" is chosen, then no launch

method is used and you have to start each partition manually. If no starter is given, then

an "Ada" starter will be used. In this example, Partition_2, Partition_3 and Partition_4

will be started from Partition_l (i.e. from the Ada procedure MasterJProcedure).

Pragma Boot_Server
(ProtocolName => "tcp", Protocol data => "'hostname': 'unused-port'");

Specify the use of a particular boot server. It is especially useful when the default

port 5555 used by GARLIC is already assigned.

pragma Version (False); '

It is a bounded error to elaborate a partition of a distributed program containing a

compilation unit that depends on a different version of the declaration of RCI library unit

than that included in the partition to which the RCI library was assigned. When the

pragma Version is set to false, no consistency check is performed (ACT Europe).

Channel_1: Channel.= (Partition_1, Partition_4);
Channel_2: Channel.= (Partition_2, Partition_3); .

for Channel_1 'Filter use "ZIP ";

Declare two channels (other channels between partitions remain unknown), and

use transparent compression/decompression for the argument and results of any remote

calls on channel "Channel_l," i.e. between "Partition^" and "Partition_4."

95

for Channel_2"Filter use "My_Own_Filter";

for Partition J 'Filter use "ZIP ";

Use filter "My_Own_Filter" on "Channel_2." This filter must be implemented in

a package "System.Garlic.Filters.My_Own_Filter." For all data exchanged with

"Partition_3", except "Partition_2", use the filter "ZIP" (i.e. for both arriving remote calls

as well as for calls made by this partition). Only for calls on "Channel_2" (i.e. for

communication between "Partition_2" and "Partition_3") is the filter "My_Own_Filter"

used.

pragma Registration JFilter ("Some_Filter ");

"Some_Filter" will be used to exchange a filter's parameters between two

partitions. "Some_Filter" itself must be an algorithm that does not need its own

parameters to be filtered again. On all other channels (i.e. for remote calls between

partitions where no channel was declared), filtering is not used.

Begin

The configuration body is optional. You may have fully described your

configuration in the declaration part.

PartitionJ := (RCIJB2, RCI_B4, Normal);

Partition J := (RCIJS3);

Partition 2 contains two RCI packages RCI_B2 and RCI_B4 and a normal

package. A normal package is not categorized. Partition 3 contains one RCI package

RCI_B3.

a. Remote Shell

To start a partition, the main partition executable executes a remote shell.

Thus, you must ensure that you are authorized to execute a remote shell on the remote

machine. In this case, a first step would be to add into your $(HOME)/.rhosts file a line

like:

<remote-machine> <your-userrtame>

If you are not authorized at all, you can bypass this problem. According to

GLADE User Manual (ACT Europe), all you have to do is:

1. Open a session on each machine listed on your configuration file.
2. If MAIN_PART is the partition that includes the main procedure and if you

want to start MAIN_PART on host MAIN_HOST, then:

96

a) Choose a TCP port number PORT_NUM (gnatdist default is 5555 when
using a shell starter, randomly chosen when using an Ada starter).

b) Then for each partition PART, start manually the corresponding
executable on the corresponding host as follows:
% PART [--nolaunch] [--slave] ~boot_server tcp://MAIN_HOST:.
PORT_NUM
The —nolaunch parameter must be included for the main partition, it
means that this partition is not in charge of launching others. The —slave
parameter must be included for other partitions, meaning that in no case
the name server is located on them.

3. If you want to kill the distributed application before it terminates, kill
MAIN_PART.

b. Filtering

GLADE contains a transparent extensible filtering mechanism allowing

the user to define various data transformations to be performed on the arguments and

return the values of remote calls. One possible application would be to compress all data

before sending it and then decompress it on the receiving partition. As default, no

filtering is performed by GLADE, but the compression filter is available. Therefore, you

can configure your distributed application in order to use this filter.

The configuration language not only knows about partitions, it also knows

about the connections between them. Such a connection is called "Channel" and

represents a bi-directional link between two partitions. In order to define filtering, one

must first declare the channels between the partitions of an application:

AjChcmnel: Channel := (Partition_1, Partition_2);

This gives the link between partitions "Partition_l" and "Partition_2" the name

"A_Channel". It is not possible to declare more than one channel between the same two

partitions.

Now that this channel is known, the data transformation that is to be

applied on all data sent through it can be defined:

ForAjChannel'Filter use "ZIP";

This specifies that all data sent over this channel should be transformed by the filter

named "ZIP." There should be a filter with this name, implemented in the package

"System.Garlic.Filters.Zip."

Some filtering algorithms require that some parameters must be sent to the

receiver first to enable it to correctly un-filter the data. In this case, it may be necessary

97

to filter these parameters again. For such purposes, it is possible to install a global filter

for all partitions, which then will be used to filter the parameters of other filters. This

filter is called the "registration filter." It can be set by a pragma, as shown below.

pragma RegistrationJFilter ("Filter_Name");

It may also be useful to specify that a partition uses a certain filter for all remote calls,

regardless of the channel (i.e. regardless of the partition that will receive the remote call).

This can be specified using the attribute 'Filter on a partition:

for PartitionJ 'Filter use "ZIP ";

or even

for PartitionFilter use "ZIP";

The latter set the default filter for all partitions of the application, the former only sets the

default filter for the partition "PartitionJ." We may specify the attribute 'Filter using

either the latter or the former specification.

Gnatdist takes care of consistency checking of a filter definition. By

default, no filtering is done. Filtering is only active if specified explicitly in the

configuration file (ACT Europe).

As has been briefly mentioned above, a filter with a name "NAME" must

be implemented in a package called "System.Garlic.Filters.Name." You may write your

own filters, which must implement their filtering of data in the primitive operations of a

type derived from the type "System.Garlic.FilterJType." Your filter package must then

register an instance of your newly derived type with GLADE by calling

"System.Garlic.Filters.Register." From that on, your filter is ready to be used.

4. Foreign Code

GLADE allows the user to make calls to a foreign code, for example a C routine,

from inside a partition in a distributed program. In this case, the foreign routine should

be encapsulated by an Ada procedure or function. Also, foreign library units, as well as

the compilation units needed by those library units, should be explicitly assigned using

pragma Linker_Options. Figure 5.5 below illustrates the encapsulation of a C unit called

cooler_display.c.

98

package Gui_Pkg is

— explictly assign the foreign libraries
pragma Linker_Options ("cooler_display.c");
pragma Linker_Options ("other libraries to link with");

~ encapsulate the foreign routines
procedure InitializePanels;
pragma Import (C, InitializePanels, "InitializePanels");

procedure Display (i: in integer);
pragma Import (C, Display, "Cooler_Display");

end Gui_Pkg;

Figure 5.5. Encapsulation of a G Routine

5. Debugging

GLADE has a facility for trace/replay based debugging. If trace mode is turned

on, GLADE will record all messages received by a partition into a trace file. The trace

file can then be used to replay the execution of the partition in isolation.

To get a partition to generate a trace file, it has to be passed the command line

argument "--trace." This is most easily done by using the "for Partition'Command_Line

use..." construct described above in the configuration file to add "--trace" to the

command lines of the partitions whose executions are to be replayed. When the

application has been built, starting it using the starter as usual will result in a trace file

being generated..

By default, the file name of the trace file is the name of the partition's executable

with a trailing ".trace." This can be changed with the "—trace_file othername" command

line argument. Note that since the remote partitions are launched with rsh under Unix,

the current directory during execution will be the user's home directory. This is no

problem when using the default trace file name, because the executable's name will

include the absolute path. When using the "~trace_file" option, on the other hand, if you

do not want the trace file to be created/read in the home directory, the absolute path will

have to be included in the desired name. (ACT Europe)

To replay a partition whose execution has been previously traced, the command

line argument "--replay" is required. In addition, the special boot server location

99

"replay://" has to be specified, i.e. by using the "--boot_server replay://" command line

argument. For example, to replay a traced execution of a partition that has an executable

named PAR you would start it with the command:

% PART [--nolaunch] [--slave] -replay ~boot_server replay://

possibly under the control of a debugger, such as gdb.

Since the exact contents of the messages received is recorded, differences in input

from external sources (such as standard input) during replay will most likely give

unexpected results. Also, replay of applications whose behavior is inherently non-

deterministic will be problematic. It is important that the same executable is used for

replay as when the trace file was generated, otherwise strange behavior can be expected.

(ACT Europe)

6. Restrictions

Currently the following restrictions apply to GLADE:

1. Static remote procedures, asynchronous remote procedures^ remote access to
class wide types and asynchronous transfer of control with remote procedures
are implemented;

2. Remote access to subprogram have not yet been implemented;
3. Pragma ALL_Calls_Remote, shared passive packages and generic RCI

packages has not yet been implemented;
4. Language-defined exceptions propagate well through different partitions.

For the time being, gnatdist is only able to build distributed applications for a pool of

homogeneous or heterogeneous machines using TCP/IP as a common network protocol

(ACT Europe).

Besides the restrictions above, our experiments show that there is a problem when

we try to execute an I/O command in a remote partition when using method Ada to

automatically launch the partition. This problem seems to happen because the partition is

launched and executed in the background of the remote machine, therefore we cannot see

any I/O command. This is especially bad when we assign a user interface unit to the

remote partition. For example, if a distributed program fails to initialize a panel in a

remote machine, then the whole program will be blocked when trying to send the data to

be displayed on the panel.

100

C. THE ADA 95 DISTRIBUTED ARCHITECTURE

Figure 5.6 below illustrates the Ada 95 distributed architecture. It shows a non-

distributed application with three modules called A, B and C. Module A makes calls to

modules B and C, and passes some arguments, which are received by B and C and used

in their computation.

Processor 1

Configuration
File

Main
Procedure

MOD A

MODB MOD(

Partition 1
Processor 1

Main
Procedure

MOD A Processor^

^>

RPC

Non-distributed
application

Partition 3

Partition 2

RCI 2

MODB

a RCI 3

MODC

Processor 3

Figure 5.6. The Ada 95 Distributed Architecture

After testing the non-distributed application, the user creates a configuration file

to configure the partitions of the program. In this case, We have three partitions:

Partition^, Partition_2 and Partition_3. As we can see in Figure 5.6, module A is

assigned to Partition_l, module B to Partition_2 and module C to Partition_3. The

partitions are mapped to processor 1, processor 2, and processor 3, respectively.

Partition_l is the main partition. It contains the main procedure, which will start the

various partitions.

To receive the remote calls, the partitions Partition_2 and Partition_3 contain a

categorized unit called RCI_2 and RCI_3, respectively, which have the categorization

pragma Remote_Call_Interface. The interesting point of this distributed architecture is

that since GLADE supports the asynchronous mode of communication, it is possible to

have modules A, B and C working in parallel, but on different machines.

101

102

VI. PROTOTYPE OF THE SOFTWARE ARCHITECTURE

In this chapter, we discuss the characteristics of the Computer Aided Prototyping

System (CAPS) and explain the current CAPS architecture for the uniprocessor

implementation. Then, we propose an architecture for a distributed implementation

based on the GNAT Library for Ada Distributed Execution (GLADE). As we saw in the

previous chapter, with GLADE it is possible to create a uniform Ada 95 distributed

system without having to interface to any low-level communication layer. By combining

the distributed and real-time capabilities of Ada 95, it is possible to design prototypes

which meet real-time constraints in a distributed environment.

A. THE CURRENT UNIPROCESSOR ARCHITECTURE

CAPS uses the prototype system description language (PSDL) to integrate a set of

tools, including an execution support system and a syntax-directed editor with graphic

capabilities, which are linked together by a user interface. PSDL provides two kinds of

basic building blocks for prototypes: data types and operators. According to Luqi (1988),

these constructs are sufficient to specify a prototype's design and structure.

Software Systems are modeled as networks of operators communicating via data

streams. The networks are represented as dataflow diagrams with a bubble for each

operator and an arrow for each data stream. PSDL provides graphical notation for

dataflow diagrams enhanced with nonprocedural control and timing constraints. Control

constraints manage the output and the firing of an- operator, while timing constraints

define the execution time, periodicity and deadline of a time-critical operator. Figure 6.1

shows an example, the Temperature Control PSDL graph.

103

heater

sensor
175 ms

evaluate_temp
200 ms

temperature

cooler

Figure 6.1. Temperature Control PSDL Graph

The PSDL execution-support system contains a translator, a static scheduler, and

a dynamic scheduler. The translator automatically generates code. Its main functions are

to implement data streams and control constraints. The static scheduler allocates time

slots for operators with real-time constraints, that is, time-critical operators. If the

allocation succeeds, all operators are guaranteed to meet their deadlines even with worst-

case execution times. The dynamic scheduler invokes operators without real-time

constraints in the time slots not used by time-critical operators.

More specifically, the translator converts the PSDL program defined by the user

into compilable Ada units. During this process, it creates the following major packages:

exceptions, instantiations, timers, streams, and drivers, all preceded by the name of the

prototype followed by an underscore. Ultimately, each of these will become part of the

prototype supervisory Ada program (Cordeiro, 1995). A partial view of the supervisory

program for the Temperature Control prototype is shown in Figure 6.2.

104

Package TEMP_CONTROLLER_EXCEPTIONS is
— PSDL exception type declarations
type PSDL_EXCEPTION is (UNDECLARED_ADA_EXCEPTION);

end TEMP_CONTROLLER_EXCEPTIONS;

package TEMP_CONTROLLER_INSTANTIATIONS is
— Ada Generic package instantiations

end TEMP_CONTROLLER_INSTANTIATIONS;

~ with/use clauses for CAPS library packages,
with PSDL_STREAMS; use PSDL_STREAMS;
package TEMP_CONTROLLER_STREAMS is

— local streams instantiations
package DS_TEMPERATURE_EVALUATE_TEMP is new

PSDL_STREAMS.SAMPLED_BUFFER(FLOAT);
package DS_HEAT_SIGNAL_HEATER is new

PSDL_STREAMS.SAMPLED_BUFFER(BOOLEAN);
package DS_COOL_SIGNAL_COOLER is new

PSDL_STREAMS.SAMPLED_BUFFER(BOOLEAN);
— State stream instantiations

end TEMP_CONTROLLER_STREAMS;

package TEMP_CONTROLLER_DRIVERS is
procedure SENSOR_DRIVER;
procedure HEATER_DRIVER;
procedure COOLER_DRIVER;
procedure EVALUATE_TEMP_DRTVER;

end TEMP CONTROLLER DRIVERS;

Figure 6.2. Partial View of TempControIIer.a

The first three of these packages contain all of the user declared exceptions,

generic packages and timer instantiations defined in the PSDL program. The package

streams contain the instantiations of all the streams used by the prototype, which are

implemented as Ada generic packages that contain protected buffer objects with

operations READ, WRITE and NEW_ELEMENT. The package PSDL_STREAMS

contains all stream types supported by PSDL. Finally, the package drivers contain all of

the data declarations, the data trigger checks that control whether a stream should be read,

the execution trigger checks that decide whether an operator should be fired, and the

output guard checks, which decide whether a computed result should be written to the

output streams (see Section A.2 of Chapter III for details).

105

In addition to these packages generated by the translator, there are another two

packages generated by the scheduler. When consolidated by one of the CAPS scripts,

they will form a prototype supervisory program, receiving the name of the prototype

followed by an ".a" extension, which stands for Ada program (Cordeiro, 1995). Figure

6.3 shows the structure of the CAPS supervisory program.

Exceptions Declarations
Generic Instantiations
Timer Instantiations
Data Streams Instantiations
Operator Drivers

CAPS
Support Packages

while true loop
call non-time-critical operator drivers;

end loop;

Dynamic Schedule

while true loop
call time-critical operator drivers;

end loop;
Static Schedule

procedure prototype_name is
begin

init_hardware_model;
start_static_schedule;
start_dynamic_schedule

end prototype_name;

Main Program

Figure 6.3. CAPS Supervisory Program Structure

The scheduler generates the static scheduler task that is responsible for calling all

time-critical operators, according to the static schedule. The time-critical operators will

be called in a non-preemptive way, so that each instance of an operator will execute to

completion. The scheduler also generates the dynamic scheduler task that is responsible

106

for calling all non-time-critical operators of the prototype. They run in a pre-defined

order established by the dynamic schedule whenever there is idle time in the static

schedule. The dynamic scheduler task has lower priority than the.static scheduler task,

so non-time-critical operators can be preempted by time-critical ones.

B. THE PROPOSED DISTRIBUTED ARCHITECTURE

One of our objectives when designing this new distributed architecture was to

minimize the changes in the current CAPS architecture. CAPS models software systems

as networks of operators communicating via data streams, which is by itself very close to

the concept of distributed systems. Hence, the CAPS model is very suitable to be

implemented in a distributed architecture. It does not matter where the operators are

located in the system, only that the system should be able to transmit data in an

appropriate way and to handle the real-time constraints.

According to Cordeiro (1995), in the uniprocessor case, the translator had no

information about the output of the scheduler. For the distributed case, however, this

information is crucial, since it will have to generate different Ada units for each of the

processors involved in the prototype. Once the scheduler has defined the different

partitions and the operators that belong to each partition, the translator will have to be

called, so that it can generate as many supervisory files as the number of partitions.

In this implementation, due to a restriction in GLADE that does not recognize the

extension ".a," we split the packages in the supervisory files into distinct modules, and

use a naming convention for the different files the name of the prototype followed by the

partition number and the name of the package, e.g., autopilot_l_drivers,

autopilot_l_static_schedulers, and so on. Note that in GLADE the different files should

receive the name of the corresponding package. Also, we recommend that only lower

case letters be used in the file names to avoid problems with the UNIX file system.

For example, the prototype for an Autopilot is illustrated in Figure 6.4 and the

corresponding global precedence graph in Figure 6.5 below. Note that the Autopilot

PSDL graph contains cycles and we will show in Section B of Chapter VII that such

prototypes will work in the distributed environment as long as we assign the operators in

each cycle to the same processor.

107

display_2
(70,600,600)

actual course

altimeter
(50,600,600)

actual altitude

correct_
altitude
(75,600,600)

compass
(50,600,600)

actual course

elevator
(75,600,600)

desired altitude"

correct_
elevator_status "*/ \ course

*\ o4) (75,600,600)

display_1
(100,600,600)

Figure 6.4. Autopilot Prototype

Applying the distributed scheduling algorithm we proposed in Chapter IV to the

Autopilot prototype, the scheduler first defines the number of available processors (in this

case two processors) and then allocates each operator in the prototype to a processor.

The output of the distributed scheduling algorithm with a maxjoadjizctor of 0.7 is

illustrated in Figure 6.6.

108

Figure 6.5. The Autopilot Global Precedence Graph

J

°s,i y W °8,1]—

■>/ °4,i y

w 07,1 y

(°i,2 y

*A ^ V

(°7,2 y

Pi fc./ n-. ■. \ .

\

t-f o3)2 W-

p2
^ / /\. - \

IY o8>2 w.

Figure 6.6. Output of the Distributed Scheduling Algorithm

109

According to Cordeiro (1995), the following information should be passed by the

scheduler to the translator, so it can perform its job.

1. Number of partitions and a list with the operator name belonging to each
partition

2. Mapping from partitions to processors

As we can see in Figure 6.6, the output of the scheduler contains the necessary

information to satisfy the first item in the list above. To satisfy the second item, it is

sufficient to provide the translator with the name of the available processors in the

network. We recommend that this information come from the CAPS user interface.

Once all this information is available to the translator, it should generate all necessary

packages for each partition, exactly as it did for the uniprocessor implementation, except

for the following differences that we explain below.

1. Package RemoteStreams

For the uniprocessor case, the package PSDL_Streams contains all of the types of

streams available in PSDL. However, for the distributed case where operators

communicate via network, we need a special kind of stream, i.e., the remote stream.

Remote streams do not need to be represented in the prototype and can be transparent to

the user. They are implemented by a package called remote_streams that contains the

categorization pragma Remote_Call_Interface. This package is used as an interface for

Remote Procedure Calls (RPC) between partitions. For each partition that receives one

or more interprocessor communications, the translator should generate a corresponding

package remote_streams that handles all incoming communications. Following the

naming convention we are using here, this file should be named according to the partition

to which it belongs, e.g., the autopilot_l_Remote_Streams and the autopilot_2_Remote_

Streams shown in Figure 6.9.

Because GLADE currently does not support generic remote call interface

packages and, the declaration of pragma Remote_Call_Interface should precede any other

declaration in the package, the remote_streams can be neither instantiated nor part of

package PSDL_Streams like the other types of streams. Note that an operator calls

package remote_streams only when it needs to write to a stream that is external to its

partition. It works like a bridge connecting two partitions. After receiving the data from

a remote producer operator the corresponding write procedure will be invoked to write

110

the data in the corresponding output stream (refer to Figure 6.7 for the specification of the

remote_streams package).

In this implementation we consider that all operators read from local streams. It

is very important to notice that here we assume that a stream is instantiated in the same

processor or partition of its consumer operator. Therefore, it is irrelevant where the data

comes from.

Finally, for this implementation to conform with the distributed scheduling model

without synchronization, the translator should be smart enough to change any data flow

stream that receives data from the network into sampled stream, so that no overflow or

underflow exceptions will be raised for interprocessor communications. Figure 6J

shows the specification of the new package remote_streams for partition 1 of the

Autopilot distributed prototype.

with RUDDER_STATUS_TYPE_PKG; use RUDDER_STATUS_TYPE_PKG;
package Autopilot_l_REMOTE_STREAMS is

-- use the categorization pragma to create an interface for RPCs
pragma Remote_Call_Interface;

— write the rudder status data to the rudder_status stream
procedure Write_Rudder_Status_Display_l

. (Rudder_Status : in RUDDER_STATUS_TYPE);

— define the IPCs as asynchronous RPCs
pragma Asynchronous (Write_Rudder_Status_Display_l);

end Autopilot_l_REMOTE_STREAMS;

Figure 6.7. Specification of Package Autopilot_l_REMOTE_STREAMS

2. The New Package Drivers

The new package drivers should contain only the driver procedures related to the

operators belonging to that partition. All reads will be local streams. However, if it is

necessary to write to an external operator, the translator should replace the usual write

operation by the corresponding write procedure of the remote stream package

3. The Tasks Static Schedule and Dynamic Schedule

The output of the distributed scheduling algorithm contains the schedule for each

one of the processors or partitions in the distributed system. Therefore, the new task

111

Static Schedule should call only the time-critical operators belonging to that partition.

Likewise, the task Dynamic Schedule should call only those operators that are not time-

critical, and that belong to that partition. Note that this implementation conforms to the

distributed scheduling model without synchronization, where, ideally, sets of

communicating processes would run independently in each processor.

4. The Configuration File

The process of mapping the partitions of the program to the nodes in a distributed

system is called configuring the partitions. With GLADE, a configuration file (as we saw

in Chapter V) should be created to configure the partitions. So, in addition to generating

the six major packages (exceptions, instantiations, timers, streams, remote_streams and

drivers), the translator has the new job of generating the configuration file for the

distributed implementation. Figure 6.8 illustrates the configuration file for the Autopilot

distributed prototype.

112

Configuration Autopilot is
pragma version (False);
pragma Starter (None);
~ The partitions will be launched manually

pragma Boot_Server ("top", "sun53 : 3333");

partitionl : Partition := (PSDL_Streams, autopilot_l_exceptions,
autopilot_l_instantiations, autopilot_l_timers,
coirect_altitude_PKG, altimeter_PKG, gui_PKG,
display_l_PKG, altitude_command_type_PKG,
control_elevator_PKG, rudder_status_type_PKG,
elevator_status_type_PKG, course_command_type_PKG,
autopilot_l_drivers, autopilot_l_dynamic_schedulers,
autopilot_l_static_ schedulers, autopilot_l_start_drivers,
autopilot_l_streams, autopilot_l_remote_streams);

partition2 : Partition := (PSDL_Streams, autopilot_2_exceptions,
autopilot_2_timers, rudderjstatus_type_PKG,
autopilot_2_instantiations, compass_PKG,
correct_course_PKG, control_rudder_PKG,
course_command_type_PKG, display_2_PKG,
autopilot_2_drivers, autopilot_2_dynamic_schedulers,
autopilot_2_static_ schedulers, autopilot_2_start_drivers,
autopilot_2_streams, gui_pkg);

procedure Start_Autopilot is in partitionl;
— procedure Start_Autopilot will start the execution of the Autopilot execution

~ procedure Start_Partition2 is the driver procedure for partition2
procedure Start_Partition2;
for partition2'Main use Start_Partition2;

channeM : Channel :— (partitionl, partition2);

end Autopilot;

Figure 6.8. The Configuration File for the Distributed Autopilot Prototype

5. The Architecture of the Distributed Implementation

Figure 6.9 illustrates the distributed implementation of the Autopilot prototype

shown above. Note that when an operator writes to an external operator, the driver

procedure calls package Remote_Streams instead of the normal Streams.

113

'Autopilotl
Dynamic
Scheduler

Processor
1

Processor
2

AutopiIot_2
Dynamic
Scheduler

Autopilot_l_Static_Scheduler Autopilot_l_Streams

procedure AltimeterDriver

procedure Correct_Altitude_Driver

procedure Control_Elevator Driver

procedure Display_l_Driver

O

c

Actual_AItitude

Actual_AItitude

Delta_Altitude

Altitude_Command

Rudder_Status

Elevator_Status

Desired Altitude

procedure Compass_Driver

procedure Correct_Course_Driver

procedure Control_Rudder Driver

procedure Display_2_Driver

>

<C

Autopilot_2_Static_Scheduler

ActualCourse

Actual_Course

Course_Command

DeltaCourse

Desired Course

Autopilot_2_Streams

Figure 6.9. Architecture of the Distributed Autopilot Implementation

114

VII. CONCLUSIONS AND RESULTS

A. SUMMARY OF THE THESIS

This thesis deals with the area of computer-aided real-time distributed embedded

systems development. The Prototyping System Description Language (PSDL) is a

language designed for clarifying the requirements of complex embedded systems. It

simplifies the design of systems with real-time constraints by presenting a high level

description in terms of networks of independent operators to the designer. PSDL is based

on a computational model containing operators that communicate via data streams, where

each stream carries values of a fixed abstract data type. The PSDL computational model

is represented as an augmented graph.

One of the most important properties of any real-time system is that its behavior

be predictable. It should be clear at design time that the system can meet its deadlines,

even in the worst case condition. In order to satisfy this requirement static scheduling is

done before the system starts operating. The input'consists of a list of all operators and

their time constraints. The output consists of an assignment of operators to the available

processors, and for each processor, a static schedule giving the order and times the

operators are to be executed.

For the uniprocessor case, the scheduler simply analyzes the PSDL graph and the

timing constraints of each operator to build the schedule. For the distributed case,

however, the scheduler has, also, to allocate each operator to a processor and take

communication into account. The problem of scheduling the same operators onto a set of

processors changes due to the delay itroduced by the communication network.

The motivation to build the distributed schedule is based on the fact that

concurrent processing is essential because the only way to make some real-time

constraints feasible is to use multiple processors.

In Chapter IV, we propose a distributed scheduling algorithm to deal with the

allocation and scheduling problem. The distributed scheduling algorithm is based on the

distributed scheduling model with no explicit synchronization (Cordeiro, 1995), where

each set of operators allocated to a particular processor can be treated as a totally

independent set.

115

The technique we propose uses ordered doubly linked list structures to represent

processors and the communication network. Each element of a processor represents an

operator instance. For the communication network list, each element represents an

incoming communication arriving at the corresponding processor.

Basically, the distributed scheduling algorithm allocates the operators defined in

the PSDL graph to the available processors. Then, it searches the edges existing in the

graph and checks if there is any interprocessor communication due to the allocation of

operators to different processors. If necessary, the algorithm updates the start time and

completion time of the operators affected by the delay introduced by that interprocessor

communication. Finally, the algorithm verifies if the schedule is feasible, that is, if the

completion times of all operator instances are less than their deadlines, and the

precedence constraints are satisfied.

1. Implementation

In this thesis, we investigate the capabilities of distributed real-time systems

support in Ada 95. The most significant objective is the design and development of an

Ada 95 software architecture for distributed real-time embedded systems and automatic

generation tools for such architecture.

The Ada 95 Distributed Systems annex (Ada, 1995) defines facilities for

supporting the implementation of distributed systems using multiple partitions working

cooperatively as part of a single Ada program. In Chapter V we present GLADE (GNAT

Library for Ada Distributed Execution), an implementation of the Distributed Systems

Annex for the GNAT compiler. By combining the distributed and real-time capabilities

of Ada 95, it is possible to design systems which meet real-time constraints.

In Chapter VI, we discuss the characteristics of CAPS (Computer Aided

Prototyping Systems), which uses the PSDL language to integrate a set of tools, including

an execution support system and editor with graphic capabilities, to prototype large and

complex real-time systems. We further propose a distributed architecture for the CAPS

generated control code.

The CAPS execution support contains a translator, a static scheduler and a

dynamic scheduler. The static and dynamic schedulers are generated by the CAPS

scheduler. The translator converts the PSDL program defined by the user into compilable

116

Ada units, the static scheduler invokes time-critical operators and the dynamic scheduler

invokes operators without real-time constraints.

In the uniprocessor case the translator does not need any information about the

output of scheduler. For the distributed case, however, the translator needs this

information in order to generate different Ada units for each of the processors involved in

the prototype. The following information should be passed to the translator.

1. Number of partitions and a list with the operator name belonging to each
partition

2. Mapping from partitions to processors

The output of the distributed scheduling algorithm we proposed in Chapter IV can

provide the information about the number of partitions and the operators belonging to

each partition (see Figure 6.6). The name of the processors available on the network

should be inserted directly by the user through the CAPS interface.

Once these informations are available to the translator, it should generate all

necessary packages for each partition. The major difference is that besides the usual

packages, the translator must generate two other units: the1 configuration file and the

package remote_streams. The configuration file is created to configure the partitions (see

Figure 6.8), that is, to map partitions to the available processors.

Package remote_streams is a unit that has the declaration of the categorization

pragma Remote_Call_Interface (see Figure 6.7), and should be created in each partition

that receives an interprocessor communication. When an operator needs to write data to a

stream that is external to its partition, and only in this case, it calls' package

remote_streams. After receiving the data from the remote producer operator, the

corresponding write procedure will be invoked to write the data in the corresponding

output stream.

B. EXPERIMENTAL RESULTS

We have conducted two different experiments in wich the capabilities of-

distributed real-time systems support in Ada 95 was evaluated. The first experiment

investigates the latency for transmission of a data value from processor i to processor j in

a homogeneous network (refer to Section A.6 in Chapter III). In the experiment we

calculated the average of the latency for transmission of different data types, using Ada

native and user defined types. Figure 7.1 shows the results of the experiment.

117

Data Type

Integer

Float

Array (size 100) of integer

Array (size 100) of float

Record w/ two arrays (size 100)

Array (size 1000) of integer

Array (size 1000) of float

Record w/ two arrays (size 1000)

Size (bits)

16

32

100 x 16

100 x 32

100 x 16+100x32

1000x16

1000 x 32

1000 x 16+1000x32

Latency (seconds)

1.792744

1.815710

1.785339

1.784241

1.785088

1.792962

1.7855356

1.792626

Figure 7.1. Latency for Interprocessor Communications

To perform the experiment, we used GLADE release l.'03p to build a distributed

application running on top of Sun OS release 4.1.3 on SPARC Station 2 machines,

connected by a 100Mbps FDDI network. As we can see in Figure 7.1, the latencies for

interprocessor communication are too big. In addition, increasing the size of the data does

. not increase the latency. It seems that the problem is the delay introduced !by the

communication subsystem and not by the network itself. Further experiments using other

platforms are needed, because few practical real-time systems can meet their deadlines

with such big communication delays. According to the GLADE User Manual (ACT

Europe), GLADE release 1.03p is fully supported by Sparc/Solaris, PC/Linux and

Alpha/Decunix.

In the second experiment, several prototypes were implemented based on the

proposed CAPS distributed architecture implementation discussed in Chapter VI. The

results indicate that we cannot apply the distributed scheduling algorithm proposed in

Chapter IV to any PSDL graph! If the user wants to build a prototype that works under

the distributed implementation, it should be carefully designed to fit the model. The

reason is that we cannot have cycles crossing the network. Cycles are dangerous because

they require explicit synchronization, which would make scheduling impossible.

In the uniprocessor case, cycles can be broken by state streams because there are

no implicit precedence constraints associated with state streams. Although state streams

do not imply any precedence constraints, we still have to consider the interprocessor

118

communication delay to send data and to receive the feedback loop in the distributed

case.

In one of our experiments, we applied the algorithm described in Chapter IV to

the Autopilot prototype (designed for the uniprocessor model), and implemented a

distributed prototyping according to the architecture proposed in Chapter VI. The initial

version of the distributed Autopilot prototype contained cycles crossing the network. The

prototype worked poorly and was very unstable, could not always keep the desired course

and altitude. We redesigned the original prototype to fit the distributed model (see Figure

6.4) and the new version of the Autopilot prototype worked well. Except for the long

delay to display the information about the rudder status due to the large interprocessor

communication between operator control_rudder and display_l. The source code for this

new implementation can be found in the Appendices.

C. CONCLUSIONS AND FUTURE WORK
This thesis proposes a distributed scheduling algorithm and a distributed

implementation for the current CAPS architecture based on GLADE. The practical

effeciveness of the proposed distributed scheduling algorithm can only be tested in

realistic settings. Thus, the idea proposed here should be implemented and tested on a

large sample of prototypes. Because we already know that there is no optimal solution for

the distributed scheduling problem, further research is necessary to improve the algorithm

and find new ideas to deal with the problem.

The new CAPS architecture was implemented and applied to several example

prototypes. Preliminary results from current experiments showed that it is possible to

build distributed real-time embedded systems under the distributed scheduling model,

where sets of tasks run independently on each processor, using GLADE. We also learned

about limitations of this new technology. One limiting factor is the presence of cycles

crossing the network. Prototypes intended to be used in a distributed environment should

be specially designed, so that cycles are confined within each processor.

Another limiting factor is the large latency for interprocessor communications.

Our experiments showed that the communication subsystem, not the network itself, is

responsible for increasing the latency. Further experiments using other platforms should

be conducted in order to find better results.

119

1. Possible CAPS Modifications

As a result of the ideas proposed in this thesis, few modifications to CAPS are

required. The most significant modification is related to the translator. In the distributed

scheduling model the translator should receive information about the number of partitions

and operators belonging to each partition from the scheduler, in order to generate the

necessary files for each processor. In addition, it should receive information about the

names of the available processors in the network from the CAPS user interface, in order

to map each partition to a processor. Hence, the CAPS user interface should be modified

to allow user to enter the processor names.

Also, the CAPS user interface should be modified to allow user to enter the value

maxjoadjactor (refer to Building the Distributed Schedule in Chapter IV, Section C),

which is used by the scheduler to set the maximum allowed load factor for each

processor.

120

LIST OF REFERENCES

ACT Europe, undated. Glade User Manual, Paris and Brittany: Ada Core Technologies.
http://www.gnat.com

Ada. 1995. The Language Reference Manual. Intermetrics, Inc.

Audsley, N. and A. Burns. 1983. Real-Time System Scheduling. Technical Paper,
University of York, UK.

Awad, Maher, Juha Kuusela and Jürgen Ziegler. 1996. Object-Oriented Technology For
Real-Time Systems: A Practical Approach Using OMT And Fusion, Upper Saddle River,
NJ: Prentice-Hall, Inc.

Baker, K. 1974. Introduction to Sequencing and Scheduling, New York: John Wiley and
Sons, Inc.

Bierrel, A. D. and B. J Nelson. 1984. "Implementing Remote Procedure Calls," ACM
Trans. Computer Systems 2: 39-59.

Blazewicz, J. 1976. "Scheduling Dependent Tasks with Different Arrival Times to Meet
Deadlines." In Proceedings of the International Workshop on Modeling and Performance
Evaluation of Computer Systems, Amsterdam: North-Holland.

Cheng, S. C, J. A. Stankovic, and K. Ramamritham. 1987. Scheduling Algorithms for
Hard Real-Time Systems - A Brief Survey, COINS Technical Report 87-55, June 10.

Cheng, S. T., and A. K. Agrawala. 1993. Scheduling of Periodic Tasks with Relative
Timing Constraints (Technical Report CS-TR-3392), College Park, MD: Department of
Computer Science, University of Maryland.

Cheng, S. T., and A. K. Agrawala. 1995. Allocation and Scheduling of Real-Time
Periodic Tasks with Relative Timing Constraints (Technical Report CS-TR-3402),
College Park, MD: Department of Computer Science, University of Maryland.

Chu, W. W., L. Y. Holloway, M. T. Lan and K. Efe, 1980. "Task Allocation in
Distributed Data Processing," Computer 13(11): 57-69.

Cordeiro, Mauricio de Menezes. 1995. "Distributed Hard Real-Time Scheduling for a'
Software Prototyping Environment." Ph.D. Dissertation, Department of Computer
Science. Monterey, CA: United States Naval Postgraduate School.

Coulouris, G., Dollimore, J. and Kindberg, T. 1996. Distributed Systems: Concepts and
Design, Reading, MA: Addison-Wesley.

121

Garey, M. R. and D. S. Johnson. 1977. "Two-processors Scheduling with Start-times and
Deadlines," SIAM Journal on Computing 6: 416-426.

International Standards Organization. 1992. Basic Reference Model of Open Distributed
Processing, Part 1: Overview and Guide to Use (ISO/IEC JTC1/SC212/WG7 CD 10746-
1), International Standards Organization.

Jeffay, K., D. Stanat, and C. Martel. 1991. "On Non-Preemptive Scheduling of Periodic
and Sporadic Tasks." In Proceedings of Real-Time Systems Symposium, December.

Jenny, C. J. 1977. "Process Partioning in Distributed Systems." In Digest of Papers
National Telecommunications Conference.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi. 1983. "Optimization by Simulated
Annealing," Science 220 (May 1983): 671-680.

Lageweg, B. J, J. K. Lenstra and A.H.G. Rinnooy Kan. 1976. Minimizing Maximum
Lateness on One Machine: Computational Experience and Some Applications, Statistica
Neerlandica 30: 25-41.

Laplante, Phillip A. 1993. Real-Time Systems Design and Analysis:. An Engineer's
Handbook. New York: IEEE Press.

Lawler, E. L. 1973. "Optimal Sequencing of a Single Machine Subject to Precedence
Constraints," Management Science, 19: 544-546.

Lin, F. T., and C. C. Hsu. 1991. "Task Assignment Problems in Distributed Computing
Systems by Simulated Annealing," Journal of the Chinese Institute of Engineers 14(5V
537-550. •

Liskov, B. 1988. "Distributed Programming in Argus," Communications of the
Association for Computing Machinery (ACM) 31(3): 300-12.

Liskov, B., and Scheifler, R. W. 1982. "Guardians and Actions: Linguistic Support for
Robust, Distributed Programs," Association for Computing Machinery (ACM)
Transactions on Programming Languages and Systems 5(3): 381-404.

Liu, C. L., and J. W. Layland. 1973. "Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment," Journal of the Association for Computing Machinery
(ACM)' 20(1): 46-61.

Luqi. 1989. "Handling Timing Constraints in Rapid Prototyping." In Proceedings of the
Twenty-Second Annual Hawaii International Conference on System Science, Kailua-
Kona, HI: Computer Society Press, January.

122

Luqi. 1992. "Computer-Aided Prototyping for a Command-and-Control System Using
CAPS," IEEE Software, January.

Luqi. 1993. "Real-Time Constraints in a Rapid Prototyping Language," Computer
Language 18 (2): 77-103.

Luqi and M. Shing. 1996. "Real-Time Scheduling for Software Prototyping," Journal of
Systems Integration 6: 41-72.

Luqi, M. Shing, and J. Brocket! 1993. "Real-Time Scheduling in System Prototyping."
In Proceedings of the Fourth International Workshop on Rapid System Prototyping.
Research Triangle Park, NC, June.

Luqi, V. Berzins and R. T. Yeh. 1988. "A Prototyping Language for Real-time
Software," IEEE Transactions on Software Engineering 14(10): 1409-1423.

Mok, A. K. 1983. "Fundamental Design Problems of Distributed Systems for the Hard-
Real-Time Environment." Ph.D. Dissertation, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology.

Ramamritham, Krithi. 1990. "Allocation and Scheduling of Complex Periodic Tasks." In
Proceedings of the 10th International Conference on Distributed Computing Systems,
Paris, FR.

Shatz, S. M. 1984. "Communication Mechanisms for Programming Distributed
Systems," IEEE Computer, June: 21-28.

Shatz, S. M. and J. Wang. 1988. Tutorial: Distributed Software Engineering.
Washington, DC: IEEE Computer Society Press.

Sinha, Pradeep K. 1997. Distributed Operating Systems. New York: IEEE Press.

Stankovic J. A., and K. Ramamritham. 1988. Tutorial on Hard Real-Time Systems.
Washington, DC: IEEE Computer Society Press.

Tanenbaum, A. S. 1995. Distributed Operating Systems. Englewood Cliffs, NJ: Prentice-
Hall.

Tindell, K. W., A. Burns, and A. J. Wellings. 1992. "Allocating Hard Real-Time Tasks:
An NP-Hard Problem Made Easy," Real-Time Systems 4(2): 145-165.

Ullman, J. D. 1976. "Complexity of Sequence Problem." In Computer and Job-Shop
Scheduling Theory, ed. E. G. Coffman, New York: John Wiley and Sons.

Zhu, J., T. G. Lewis and J. Colin. Scheduling Hard Real-Time Constrained Tasks on One
Processor, To be published.

123

124

APPENDIX A. SPECIFICATION OF THE DISTRIBUTED

AUTOPILOT ATOMIC OPERATORS

- Unit : autopilot.altimeter
— Prototype : CAPS autopilot
- Date : June 94
— Author : JimBrockett
— Compiler : GLADE 1.03p/Gnat 3.1 Op
— Description : altimeter Ada implementation
— Notes : Adapted to the distributed implementation by Jose Carlos Almeida
— September 1998

package altimeter_PKG is

MAXIMUM_ALTITUDE : Integer := 35000;
MINIMUM_ALTITUDE : Integer := 0;

procedure altimeter(actual_altitude : out Integer;
delta_altitude : in Integer);

end altimeter_PKG;

■Unit : autopilot.correct_altitude
■Prototype : CAPS autopilot
• Date : June '94
■ Author : Jim Brockett
• Compiler : GLADE 1.03p/Gnat 3.1 Op
■ Description : correct_altitude Ada implementation
• Notes : Adapted to the distributed implementation by Jose Carlos Almeida September 1998

with altitude_command_type_PKG; use altitude_command_type_PKG;

package correct_altitude_PKG is

procedure correct_altitude(actual_altitude : in Integer;
desired_altitude : in Integer;
altitude_command: out altitude_command_type);

end correct altitude PKG;

125

■Unit : autopilot.control_elevator
■Prototype : CAPS autopilot
■Date : June '94
■Author : JimBrockett
■Compiler : GLADE 1.03p/Gnat3.1 Op
■ Description : control_elevator Ada implementation
• Notes : Adapted to the distributed implementation by Jose Carlos Almeida

September 1998
This unit was created for the distributed Autopilot prototype by spliting the original
operator control_surfaces in the uniprocessor implementation

with altitude_command_type_PKG; use altitude_command_type_PKG;
with elevator_status_type_PKG; use elevator_status_type_PKG;

package control_elevator_PKG is

procedure control_elevator(altitude_command : in altitude_command_type;
elevator_status : out elevator_status_type;
delta_altitude : out INTEGER);

end control elevator PKG;

-Unit : autopilot.display_l
-Prototype : CAPS autopilot
-Date : September 1998
- Author : Jose Carlos Almeida
■Compiler : GLADE 1.03p/Gnat3.1 Op
■ Description : Display and input data Ada implementation
■ Notes : This unit was created for the distributed Autopilot implementation

- Add "with" and "use" statements for user-defined types used by operator display_l
with elevator_status_type_PKG; use elevator_status_type_PKG;
with rudder_status_type_PKG; use rudder_status_type_PKG;

package display_l_PKG is

procedure display_l(actual_altitude : in INTEGER;
elevator_status : in elevator_status_type;
rudder_status : in rudder_status_type;
desired_altitude: out INTEGER);

end display_l_PKG;

126

— Unit : autopilotcompass
— Prototype : CAPS autopilot
— Date : June '94
-Author : JimBrockett
-Compiler : GLADE 1.03p/Gnat3.1 Op
— Description : compass Ada implementation
~ Notes : Adapted to the distributed implementation by Jose Carlos Almeida

September 1998

package compass_PKG is

procedure compass(delta_course : in Integer;
actual_course: out Integer);

end compass_PKG;

— Unit : autopilot.correct_course
-Prototype : CAPS autopilot
— Date : June '94
— Author : Jim Brockett
-Compiler : GLADE 1.03p/Gnat3.1 Op
— Description : correct_course Ada implementation
— Notes : Adapted to the distributed implementation by Jose Carlos Almeida

September 1998

with coursecommandtypePKG; use course_command_type_PKG;

package correct_course_PKG is

procedure correct_course(desired_course : in Integer;
actualcourse : in Integer;
course_command: out course_command_type);

end correct_course_PKG;

127

■Unit : autopilot.controljrudder
■Prototype : CAPS autopilot
■Date : June'94
■Author : JimBrockett
■Compiler : GLADE 1.03p/Gnat3.1 Op
■Description : control_rudder Ada implementation
■ Notes : Adapted to the distributed implementation by Jose Carlos Almeida

September 1998
This unit was created for the distributed Autopilot prototype by spliting the original
operator control_surfaces in the uniprocessor implementation

with course_command_type_PKG; use course_command_type_PKG;
with rudder_status_type_PKG; use rudder_status_type_PKG;

package control_rudder_PKG is

procedure control_rudder(course_command : in course_command_type;
rudder_status : out rudder_status_type;
delta_course : out INTEGER);

end control_rudder_PKG;

■Unit : autopilot.display_2
■Prototype : CAPS autopilot
•Date : September 1998
• Author : Jose Carlos Almeida
■Compiler : GLADE 1.03p/Gnat3.1 Op
■Description : display and input data Ada implementation
• Notes : This unit was created for the distributed Autopilot implementation

- Add "with" and "use" statements for user-defined types used by operator display_2
with elevator_status_type_PKG; use elevator_status_type_PKG;
with rudder_status_type_PKG; use rudder_status_type_PKG;

package display_2_PKG is

procedure display_2(actual_course : in INTEGER;
desired_course : out INTEGER);

end display_2_PKG;

128

APPENDIX B. DISTRIBUTED AUTOPILOT STREAMS INSTANTIATIONS

- Unit
- Prototype
- Date
- Author
- Compiler
- Description
- Notes

autopilot_l_streams
CAPS autopilot
June 94
Jim Brockett
GLADE 1.03p/Gnat3.10p
Distributed Autopilot streams instantiations
Adapted to the distributed implementation by Jose Carlos Almeida
September 1998

-Streams declarations for Partition 1

— with/use clauses for atomic type packages
with ELEVATOR_STATUS_TYPE_PKG; use ELEVATOR_STATUS_TYPE_PKG;
with RUDDER_STATUS_TYPE_PKG; use RUDDER_STATUS_TYPE_PKG;
with ALTITUDE_COMMAND_TYPE_PKG; use ALTITUDE_COMMAND_TYPE_PKG;

— with/use clauses for generated packages.
with AUTOPILOT_EXCEPTIONS; use AUTOPILOTJSXCEPTIONS;
with AUTOPILOT_l_INSTANTIATIONS; use AUTOPILOT_l_INSTANTIATIONS;

— with/use clauses for CAPS library packages,
with PSDL_STREAMS; use PSDL_STREAMS;.

package AUTOPILOT_l_STREAMS is

— Local stream instantiations

package DS_ACTUAL_ALTITUDE_DISPLAY_1 is new
PSDL_STREAMS.SAMPLED_BUFFER(INTEGER);

package DS_ACTUAL_ALTITUDE_CORRECT_ALTITUDE is new
PSDL_STREAMS.FIFO_BUFFER(INTEGER);

package DS_ALTITUDE_COMMAND_CONTROL_ELEVATOR is new
PSDL_STREAMS.SAMPLED_BUFFER(ALTITUDE_COMMAND_TYPE);

package DS_ELEVATOR_STATUS_DISPLAY_l is new
PSDL_STREAMS.SAMPLED_BUFFER(ELEVATOR_STATUS_TYPE);

— State stream instantiations package

package DS_DESIRED_ALTITUDE_CORRECT_ALTITUDE is new
PSDL_STREAMS.STATE_VARIABLE(INTEGER, 0);

package DS_DELTA_ALTITUDE_ALTIMETER is new
PSDL_STREAMS.STATE_VARIABLE(INTEGER:0);

package DS_RUDDER_STATUS_DISPLAY_1 is new
PSDL_STREAMS.STATE_VARIABLE(RUDDER_STATUS_TYPE, straight);

end AUTOPILOT_l_STREAMS;

129

--Unit : autopilot_2_streams
-Prototype : CAPS autopilot
-Date : June94
-Author : JimBrockett
- Compiler : GLADE 1.03p/Gnat 3.1 Op
- Description : Distributed Autopilot streams instantiations
- Notes : Adapted to the distributed implementation by Jose Carlos Almeida

September 1998

-Streams declarations for Partition 2

- with/use clauses for atomic type packages
with COURSE_COMMAND_TYPE_PKG; use COURSE_COMMAND_TYPE_PKG;
with ALTITUDE_COMMAND_TYPE_PKG; use ALTITUDE_COMMAND_TYPE_PKG;

- with/use clauses for generated packages.
with AUTOPILOTEXCEPTIONS; use AUTOPILOTEXCEPTIONS;
with AUTOPILOT_2_INSTANTIATIONS; use AUTOPILOT_2_INSTANTIATIONS;

- with/use clauses for CAPS library packages,
with PSDL_STREAMS; use PSDL_STREAMS;

package AUTOPILOT_2_STREAMS is

- Local stream instantiations

package DS_ACTUAL_COURSE_CORRECT_COURSE is new
PSDL_STREAMS.FIFO_BUFFER(INTEGER);

package DS_ACTUAL_COURSE_DISPLAY_2 is new
PSDL_STREAMS.FIFO_BUFFER(INTEGER);

package DS_COURSE_COMMAND_CONTROL_RUDDER is new
PSDL_STREAMS.SAMPLED_BUFFER(COURSE_COMMAND_TYPE);

- State stream instantiations

package DS_DELTA_COURSE_COMPASS is new
PSDL_STREAMS.STATE_VARIABLE(INTEGER 0);

package DS_DESIRED_COURSE_CORRECT_COURSE is new
PSDL_STREAMS.STATE_VARIABLE(INTEGER, 0);

end AUTOPILOT_2_STREAMS;

130

APPENDIX C. DISTRIBUTED AUTOPILOT REMOTE STREAMS

— Unit : autopilot_l_remote_streams
— Prototype : CAPS autopilot
-Date : September 1998
— Author : Jose Carlos Almeida
— Compiler : GLADE 1.03p/Gnat 3.1 Op
— Description : Remote Call Interface for partition 1 in the distributed autopilot prototype
— Notes : This package is called whenever remote operators in partititon 2 need to communicate

with operators in partition 1

with rudder_status_type_pkg; use rudder_status_type_pkg;

package AutoPilot_l_REMOTE_STREAMS is

pragma Remote_Call_Interface;

procedure Write_Rudder_Status_Display_l(Rudder_Status: in rudder_status_type);

- Allow interprocessor comunication using asynchronous RPCs
pragma Asynchronous(Write_Rudder_Status_Display_l);

end AutoPilot_l_REMOTE_STREAMS;

— Unit : autopilot_l_remote_streams
-Prototype : CAPS autopilot
-Date : September 1998
— Author : Jose Carlos Almeida
— Compiler : GLADE 1.03p/Gnat 3.1 Op
— Description : Remote Call Interface for partition 1 in the distributed autopilot prototype
— Notes : This package is called whenever remote operators in partititon 2 need to communicate

with operators in partition 1

with AUTOPILOT_l_STREAMS; use AUTOPILOT j_STREAMS;
with Autopilot_l_Start_Drivers; use AutopiIot_l_Start_Drivers;

package body AutoPilot_l_REMOTE_STREAMS is

procedure Write_Rudder_Status_Display_l(Rudder_Status: in rudder_status_type) is

begin

■ - Write Rudder_Status to the corresponding producer operator output stream
WRITE_RUDDER_STATUS(Rudder_Status);

end Write_Rudder_Status_Display_l;

end AutoPilot_l_REMOTE_STREAMS;

131

132

APPENDIX D. DISTRIBUTED AUTOPILOT DRIVERS

--Unit : autopilot_l_drivers
-Prototype : CAPS autopilot
— Date : June 94
— Author : Jim Brockett
~ Compiler : GLADE 1.03p/Gnat 3.1 Op
— Description : This package reads the input streams, invoke the corresponding operators and writes

data to the corresponding output stream
— Notes : Adapted to the distributed implementation by Jose Carlos Almeida September 1998

package AUTOPILOT_l_DPJVERS is
procedure ALTIMETER.DPJVER;
procedure CORRECT_ALTITUDE_DRIVER;
procedure CONTROL_ELEVATOR_DRIVER;
procedure DISPLAY_1_DRIVER;

end AUTOPILOT_l_DRIVERS;

■Unit
- Prototype
■Date
■ Author
■ Compiler
■ Description

• Notes

autopilotldrivers
CAPS autopilot
June 94
Jim Brockett . '
GLADE 1.03p/Gnat 3.1 Op
This package reads the input streams, invoke the corresponding operators and writes
data to the corresponding output stream in partition 1

: Adapted to the distributed implementation by Jose Carlos Almeida September 1998

— with/use clauses for atomic components.
with RUDDER_STATUS_TYPE_PKG; use RUDDER_STATUS_TYPE_PKG;
with ALTITUDE_COMMAND_TYPE_PKG; use ALTITUDE_COMMAND_TYPE_PKG;
with ELEVATOR_STATUS_TYPE_PKG; use ELEVATOR_STATUS_TYPE_PKG;
with ALTIMETER_PKG; use ALTIMETER_PKG;
with CORRECT_ALTITUDE_PKG; use CORRECT_ALTJTUDE_PKG;
with CONTROL_ELEVATOR_PKG; use CONTROL_ELEVATOR_PKG;
with DISPLAY_1_PKG; use DISPLAY_1_PKG;

— with/use clauses for generated packages.
with AUTOPILOTJEXCEPTIONS; use AUTOPILOTJEXCEPTIONS;
with AUTOPILOT_l_STREAMS; use AUTOPILOT_l_STREAMS;
with AUTOPILOT_l_TIMERS; use AUTOPILOT_l_TIMERS;
with AUTOPILOTJ JNSTANTIATIONS; use AUTOPILOT_l_INSTANTIATIONS;

— with/use clauses for CAPS library packages,
with DS_DEBUG_PKG; use DS_DEBUG_PKG;
with PSDL_STREAMS; use PSDL_STREAMS;
with PSDLJTIMERS;

— with/use clauses for RCI packages

133

package body AUTOPILOT_l_DRIVERS is

procedure ALTIMETERJDRIVER is
LV_DELTA_ALTITUDE : INTEGER;
LV_ACTUAL_ALTITUDE: INTEGER;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION©: PSDL_EXCEPTION;
begin
- Data trigger checks.

- Data stream reads,
begin

DS_DELTA_ALTITUDE_ALTIMETER.BUFFER.READ(LV_DELTA_ALTITUDE);
exception
when BUFFERJJNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("DELTA_ALTITUDE_ALTIMETER", "ALTIMETER");
end;

- Execution trigger condition check,
if True then
begin
ALTIMETER(
DELTA_ALTITUDE => LV_DELTA_ALTITUDE,
ACTUAL_ALTITUDE => LV_ACTUAL_ALTITUDE);
exception
when others => ■

DS_DEBUG.UNDECLARED_EXCEPTION(" ALTIMETER");
EXCEPTIONJHAS JDCCURRED := true;
EXCEPTIONJD := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

- Exception Constraint translations.

- Other constraint option translations.

-Unconditional output translations,
if not EXCEPTION_HAS_OCCURRED then
begin

DS_ACTUAL>LTITUDE_DISPLAY_1.BUFFER.WRITE(LV_ACTUAL_ALTITUDE);
exception
when BUFFEROVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("ACTUAL_ALTITUDE_DISPLAY", "ALTIMETER");
end;
begin '■'.'•

DS_ACTUAL_ALTITUDE_CORRECT_ALTITUDE.BUFFER. WRITE
(LV_ACTUAL_ALTITUDE);

exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("ACTUAL_ALTITUDE_CORRECT_ALTITUDE",
"ALTIMETER");

end;
end if;

134

— PSDL Exception handler,
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(

"ALTIMETER",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end ALTIMETER DRIVER:

-procedure CORRECT_ALTITUDE_DRIVER

procedure CORRECT_ALTITUDE_DRIVER is
LV_ACTUAL_ALTITUDE : INTEGER;
LV_DESIRED_ALTITUDE: INTEGER;
LV_ALTITUDE_COMMAND :

ALTITUDE_COMMAND_TYPE_PKG.ALTITUDE_COMMAND_TYPE;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION©: PSDL_EXCEPTION;
begin

— Data trigger checks.
if not (DS_ACTUAL_ALTITUDE_CORRECT_ALTITUDE.BUFFER.NEW_DATA) then
return;

end if;

— Data stream reads,
begin .
DS_ACTUAL_ALTITUDE_CORP^CT_ALTITUDE.BUFFER.READ(LV_ACTUAL_ALTITUDE);
exception
when BUFFERJJNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("ACTUAL_ALTITUDE_CORRECT_ALTITUDE',,
"CORRECT_ALTITUDE");

end;
begin

DS_DESIRED_ALTITUDE_CORREeT_ALTITUDE.BUFFER.READ
(LV_DESIRED_ALTITUDE);

exception
when BUFFER_UNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("DESIRED_ALTITUDE_CORRECT_ALTITUDE,^
"CORRECT_ALTITUDE");

end;

— Execution trigger condition check,
if True then
begin

CORRECT_ALTITUDE(
ACTUAL_ALTITUDE => LV_ACTUAL_ALTITUDE,
DESIRED_ALTITUDE => LV_DESIRED_ALTITUDE,
ALTITUDE_COMMAND => LV_ALTITUDE_COMMAND);
exception
when others =>
DS_DEBUG.UNDECLARED_EXCEPTION("CORRECT_ALTITUDE");
EXCEPTION_HAS_OCCURRED :=true;
EXCEPTIONJD := UNDECLARED_ADA_EXCEPTION;

end;
else return;

135

. end if;

- Exception Constraint translations.

- Other constraint option translations.

-Unconditional output translations,
if not EXCEPTION_HAS_OCCURRED then
begin

DS_ALTITUDE_COMMAND_CONTROL_ELEVATOR.BUFFER. WRITE
(LV_ALTITUDE_COMMAND);

exception
when BUFFEROVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("ALTITUDE_COMMAND_CONTROL_ELEVATOR",
"CORRECT_ALTITUDE");

end;
end if;

- PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(

"CORRECT_ALTITUDE",
PSDL_EXCEPTIONIMAGE(EXCEPTION_ID));

end if;
end CORRECT ALTITUDE DRIVER;

- procedure CONTROL_ELEVATOR_DRIVER

procedure CONTROL_ELEVATOR_DRIVER is
LV_ALTITUDE_COMMAND:

ALTITUDE_COMMAND_TYPE_PKG.ALTITUDE_COMMAND_TYPE-
LV_ELEVATOR_STATUS : ELEVATOR_STATUS_TYPE_PKG.ELEVATOR'STATUS TYPE-
LV_DELTA_ALTITUDE: INTEGER;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION©: PSDL_EXCEPTION;
begin

— Data trigger checks.

— Data stream reads.

begin

DS_ALTITUDE_COMMAND_CONTROL_ELEVATOR.BUFFER.READ
(LV_ALTITUDE_COMMAND);

exception
when BUFFERJJNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("ALTITUDE_COMMAND_CONTROL_ELEVATOR",
"CONTROL_ELEVATOR");

end;

— Execution trigger condition check,
if True then
begin

136

CONTROL_ELEVATOR(
ALTITUDE_COMMAND => LV_ALTITUDE_COMMAND,
ELEVATOR_STATUS => LV_ELEVATOR_STATUS,
DELTA_ALTITUDE => LV_DELTA_ALTITUDE);
exception
when others =>

DS_DEBUG.UNDECLARED_EXCEPTION("CONTROL_ELEVATOR");
EXCEPTIONHASJDCCURRED :=true;
EXCEPTIONJD := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

- Exception Constraint translations.

- Other constraint option translations.

- Unconditional output translations.

if not EXCEPTIONHASJDCCURRED then
begin

DS_ELEVATOR_STATUS_DISPLAY_l .BUFFER. WRITE(LV_ELEVATOR_STATUS);
exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("ELEVATOR_STATUS_DISPLAY",
"CONTROL_SURFACES,,);

end;
end if;

if not EXCEPTIONHASJDCCURRED then
begin

DS_DELTA_ALTITUDE_ALTIMETER.BUFFER.WRITE(LV_DELTA_ALTITUDE);
exception
when BUFFERJDVERFLOW =>
DS_DEBUG.BUFFERJDVERFLOW("DELTA_ALTITUDE_ALTIMETER",

"CONTROLJSURF ACES");
end;

end if;

- PSDL Exception handler.
if EXCEPTIONJiASJDCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(

"CONTROLJELEVATOR", SDL_EXCEPTION'IMAGE(EXCEPTIONJD));
end if;

end CONTROL ELEVATOR DRIVER;

-* procedure DISPLAYJ JDRIVER

procedure DISPLAYJ JDRIVER is
LV_ACTUAL_ALTITUDE : INTEGER;
LVELEVATORJSTATUS : ELEVATOR_STATUS_TYPE_PKG.ELEVATOR_STATUS_TYPE;
LVRUDDERJSTATUS : RUDDER_STATUS_TYPEJiKG.RUDDER_STATUS_TYPE;
LV DESIRED ALTITUDE : INTEGER;

EXCEPTIONHASJDCCURRED: BOOLEAN := FALSE;

137

EXCEPTION©: PSDL.EXCEPTION;
begin
- Data trigger checks.

- Data stream reads,
begin

DS_ACTUAL_ALTITUDE_DISPLAY_1.BUFFER.READ(LV_ACTUAL_ALTITUDE);
exception
when BUFFERJJNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("ACTUAL_ALTITUDE_DISPLAY_l", "DISPLAY_1");

end;
begin

DS_ELEVATOR_STATUS_DISPLAY_l.BUFFER.READ(LV_ELEVATOR_STATUS);
exception
when BUFFERJJNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("ELEVATOR_STATUS_DISPLAY_l", "DISPLAYJ");
end;
begin

DS_RUDDER_STATUS_DISPLAY_1.BUFFER.READ(LV_RUDDER_STATUS);
exception
when BUFFERJJNDERFLOW =>
DS_DEBUG.BUFFER_UNDERFLOW("RUDDER_STATUS_DISPLAYJ ", "DISPLAYJ");

end;

- Execution trigger condition check,
if True then
begin • ' ■ .
DISPLAYJ(
ACTUAL_ALTITUDE => LV_ACTUAL_ALTITUDE,
ELEVATOR_STATUS => LV_ELEVATOR_STATUS,
RUDDERJ5TATUS => LV_RUDDER_STATUS,
DESIRED_ALTITUDE => LV_DESIRED_ALTITUDE);

exception
when others =>
DS_DEBUG.UNDECLARED_EXCEPTION("DISPLAYJ");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTIONJD := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

- Exception Constraint translations.

- Other constraint option translations.

-Unconditional output translations,
if not EXCEPTION JIASJDCCURRED then
begin

DS_DESIRED_ALTITUDE_CORRECT_ALTITUDE.BUFFER. WRITE
(LVJ)ESIRED_ALTITUDE);

exception
when BUFFERJDVERFLOW =>

DSJDEBUG.BUFFER_OVERFLOW("DESIRED_ALTITUDE_CORRECT_ALTITUDE",
"DISPLAYJ");

end;

138

end if;

- PSDL Exception handler,
if EXCEPTION_HAS_OCCURRED then

DS_DEBUG.UNHANDLED_EXCEPTION(
"DISPLAYJ", PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end DISPLAY_1_DRIVER;

end AUTOPILOT_l_DPJVERS;

--Unit : autopilot_2_drivers
— Prototype : CAPS autopilot .
-Date : June94
— Author : Jim Brockett
-Compiler : GLADE 1.03p/Gnat3.1 Op
— Description : This package reads the input streams, invoke the corresponding operators and writes

data to the corresponding output stream
— Notes : Adapted to the distributed implementation by Jose Carlos Almeida September 1998

package AUTOPILOT_2_DRIVERS is

procedure COMPASS_DRIVER;
procedure CORRECT_COURSE_DRIVER;
procedure CONTROLjmDDER_DRIVER;
procedure DISPLAY_2_DRIVER;

end AUTOPILOT 2 DRIVERS;

— Unit : autopilot_2_drivers
-Prototype : CAPS autopilot
— Date : June 94
— Author : Jim Brockett
-Compiler : GLADE 1.03p/Gnat3.1 Op
— Description : This package reads the input streams, invokes the corresponding operators and writes

data to the corresponding output stream
— Notes : Adapted to the distributed implementation by Jose Carlos Almeida September 1998

— with/use clauses for atomic components.
with COURSE_COMMAND_TYPE_PKG; use COURSE_COMMAND_TYPE_PKG;
with RUDDER_STATUS_TYPE_PKG; use RUDDER_STATUS_TYPE_PKG;
with CORRECT_COURSE_PKG; use CORRECT_COURSE_PKG;
with CONTROL_RUDDER_PKG; use CONTROL_RUDDER_PKG;
with COMPASS_PKG; use COMPASS_PKG;
with DISPLAY_2_PKG; use DISPLAY_2_PKG;

— with/use clauses for generated packages.
with AUTOPILOTJEXCEPTIONS; use AUTOPILOT_EXCEPTIONS;
with AUTOPILOT_2_STREAMS; use AUTOPILOT_2_STREAMS;
with AUTOPILOT_2_TIMERS; use AUTOPILOT_2_TIMERS;
with AUTOPILOT_2_INSTANTIATIONS; use AUTOPILOT_2_INSTANTIATIONS;

— with/use clauses for CAPS library packages.

139

with DS_DEBUG_PKG; use DS_DEBUG_PKG;
with PSDL_STREAMS; use PSDL_STREAMS;
with PSDLJTIMERS;

- with/use clauses for RCI packages
with AutoPilot_l_REMOTE_STREAMS; use AutoPilot_l_REMOTE_STREAMS;

package body AUTOPILOT_2_DRIVERS is

procedure COMPASS_DRIVER is
LV_DELTA_COURSE: INTEGER;
LV_ACTUAL_COURSE: INTEGER;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION©: PSDL_EXCEPTION;
begin
- Data trigger checks.

- Data stream reads,
begin

DS_DELTA_COURSE_COMPASS.BUFFER.READ(LV_DELTA_COURSE);
exception
when BUFFERJJNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("DELTA_COURSE_COMPASS", "COMPASS");
end;

- Execution trigger condition check,
if True then
begin

COMPASS(
DELTA_COURSE => LV_DELTA_COURSE,
ACTUAL_COURSE => LV_ACTUAL_COURSE);

exception
when others =>

DS_DEBUG.UNDECLARED_EXCEPTION("COMPASS");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTIONJD := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

- Exception Constraint translations.

- Other constraint option translations.

- Unconditional output translations.
if not EXCEPTIONJHASJDCCURRED then
begin

DS_ACTUAL_COURSE_CORRECT_COURSE.BUFFERWRITE(LV_ACTUAL_COURSE);
exception
when BUFFERJDVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("ACTUAL_COURSE_CORRECT_COURSE",
"COMPASS");

end;
begin

DS_ACTUAL_COURSE_DISPLAY_2.BUFFER.WRITE(LV_ACTUAL_COURSE);

140

exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("ACTUAL_COURSE_DISPLAY_2", "COMPASS");
end;

end if;

— PSDL Exception handler,
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(

"COMPASS",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end COMPASS_DRIVER;

- procedure CORRECT_COURSE_DRIVER

procedure CORRECT_COURSE_DRIVER is
LV_DESIRED_COURSE: INTEGER;
LV_ACTUAL_COURSE: INTEGER;
LV_COURSElCOMMAND: COURSE_COMMAND_TYPE_PKG.COURSE_COMMAND_TYPE;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTION_ID: PSDL_EXCEPTION;

begin
— Data trigger checks.
if not (DS_ACTUAL_COURSE_CORRECT_COURSE.BUFFER.NEW_DATA) then
return;

end if;

— Data stream reads,
begin

DS_DESIRED_COURSE_CORRECT_COURSE.BUFFER.READ(LV_DESIRED_COURSE);
exception
when BUFFERJJNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("DESIRED_COURSE_CORRECT_COURSE",
"CORRECT_COURSE.");

end;
begin

DS_ACTUAL_COURSE_CORRECT_COURSE.BUFFER.READ(LV_ACTUAL_COURSE);
exception
when BUFFERJJNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("ACTUAL_COURSE_CORRECT_COURSE",
"CORRECT_COURSE");

end;

— Execution trigger condition check,
if True then
begin

CORRECT_COURSE(
DESIRED_COURSE => LV_DESIRED_COURSE,
ACTUAL_COURSE => LV_ACTUAL_COURSE,
COURSE_COMMAND => LV_COURSE_COMMAND);

exception
when others =>

DS_DEBUG.UNDECLARED_EXCEPTION("CORRECT_COURSE");

141

EXCEPTION_HAS_OCCURRED :=true;
EXCEPTIONJD := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

- Exception Constraint translations.

- Other constraint option translations.

- Unconditional output translations.
if not EXCEPTION_HAS_OCCURRED then
begin

DS_COURSE_COMMAND_CONTROL_RUDDER.BUFFER. WRITE
(LV_COURSE_COMMAND);

exception
when BUFFER_OVERFLOW =>
DS_DEBUG.BUFFER_OVERFLOW("COURSE_COMMAND_CONTROL_RUDDER",

"CORRECTCOURSE");
end;

end if;

- PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(

"CORRECTCOURSE",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end CORRECT COURSE DRIVER;

■ procedure CONTROL_RUDDER_DPJVER

procedure CONTROL_RUDDER_DRIVER is
LV_COURSE_COMMAND : COURSE_COMMAND_TYPE_PKG.COURSE_COMMAND_TYPE;
LV_RUDDER_STATUS : RUDDER_STATUS_TYPE_PKG.RUDDER_STATUS_TYPE-
LV_DELTA_COURSE : INTEGER;

EXCEPTIONHASJDCCURRED: BOOLEAN := FALSE;
EXCEPTIONJD: PSDL_EXCEPTION;

begin
— Data trigger checks.

— Data stream reads,
begin

DS_COURSE_COMMAND_CONTROL_RUDDER.BUFFER.READ(LV_COURSE_COMMAND);
exception
when BUFFERJJNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("COURSE_COMMAND_CONTROL_SURFACES",
"CONTROL_SURFACES");

end;

— Execution trigger condition check,
■if True then

begin

142

CONTROL_RUDDER(
COURSE_COMMAND => LV_COURSE_COMMAND,
RUDDER_STATUS => LV_RUDDER_STATUS,
DELTA_COURSE => LV_DELTA_COURSE);

exception
when others =>

DS_DEBUG.UNDECLARED_EXCEPTION("CONTROL_RUDDER");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTIONJD := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

— Exception Constraint translations.

— Other constraint option translations.

— Unconditional output translations.
if not EXCEPTION_HAS_OCCURRED then
begin

— need interprocessor communication
- write LV_RUDDER_STATUS to AutopilotlRemmoteStreams
Write_Rudder_Status_Display_l(LV_RUDDER_STATUS);

end;
end if;

if not EXCEPTION_HAS_OCCURRED then
begin

DS_DELTA_COURSE_COMPASS.BUFFER.WRITE(LV_DELTA_COURSE);
exception
when BUFFER_OVERFLOW =>

DS_DEBUG.BUFFER_OVERFLOW("DELTA_COURSE_COMPASS",
"CONTROL_RUDDER");

end;
end if;

— PSDL Exception handler.
if EXCEPTIONJHASJDCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(

"CONTROL_RUDDER",
PSDLJEXCEPTION'IMAGE(EXCEPTIONJD));

end if;
end CONTROL RUDDER DRIVER;

- procedure DISPLAY_2_DRIVER

procedure DISPLAY_2_DRIVER is
LV_ACTUAL_COURSE : INTEGER;
LV_DESIRED_COURSE : INTEGER;

EXCEPTION_HAS_OCCURRED: BOOLEAN := FALSE;
EXCEPTIONJD: PSDL_EXCEPTION;

begin
- Data trigger checks.

143

— Data stream reads,
begin

DS_ACTUAL_C0URSE_DISPLAY_2.BUFFER.READ(LV_ACTUAL_C0URSE);
exception
when BUFFERJJNDERFLOW =>

DS_DEBUG.BUFFER_UNDERFLOW("ACTUAL_COURSE_DISPLAY_2", "DISPLAY2");
end;

— Execution trigger condition check,
if True then
begin
DISPLAY_2(

ACTUAL_COURSE => LV_ACTUAL_COURSE,
DESIRED_COURSE => LV_DESIRED_COURSE);

exception
when others =>

DS_DEBUG.UNDECLARED_EXCEPTION("DISPLAY_2");
EXCEPTION_HAS_OCCURRED := true;
EXCEPTIONJD := UNDECLARED_ADA_EXCEPTION;

end;
else return;
end if;

— Exception Constraint translations.

— Other constraint option translations.

-Unconditional output translations,
if not EXCEPTIONHASJDCCURRED then
begin

DS_DESIRED_COURSE_CORRECT_COURSE.BUFFER.WRITE(LV_DESIRED_COURSE);
exception
when BUFFER_OVERFLOW-=>
DS_DEBUG.BUFFER_OVERFLOW("DESIRED_COURSE_CORRECT_COURSE",

"DISPLAYJ2");
end;

end if;

— PSDL Exception handler.
if EXCEPTION_HAS_OCCURRED then
DS_DEBUG.UNHANDLED_EXCEPTION(

"DISPLAY_2",
PSDL_EXCEPTION'IMAGE(EXCEPTION_ID));

end if;
end DISPLAY_2_DRIVER;

end AUTOPILOT_2_DRIVERS;

144

APPENDIX E. DISTRIBUTED AUTOPILOT STATIC SCHEDULERS

-Unit : autopilot_l_static_schedulers
-Prototype : CAPS autopilot
— Date : June 94
— Author : Jim Brockett
— Compiler : GLADE 1.03p/Gnat 3.1 Op
— Description : This package invokes the drivers of the time critical operators in partition 1
— Notes : Adapted to the distributed implementation by Jose Carlos Almeida September 1998

package autopilot_l_STATIC_SCHEDULERS is
procedure START_STATIC_SCHEDULE;

end autopilot_l_STATIC_SCHEDULERS;

--Unit : autopilot_l_static_schedulers
— Prototype : CAPS autopilot
— Date : June 94
— Author : Jim Brockett
-Compiler : GLADE 1.03p/Gnat3.1 Op
— Description : This package invokes the drivers of the time critical operators in partition 1
— Notes : Adapted to the distributed implementation by Jose Carlos Almeida September 1998

with autopilotlDPJVERS; use autopilot_l_DRIVERS;
withPRIORlfY_DEFINITIONS; use PRIORITY_DEFINITIONS;
with PSDL_TIMERS; use PSDLJTIMERS;
withTEXTJO; useTEXTJO;

package body autopilot_l_STATIC_SCHEDULERS is

task type STATIC_SCHEDULE_TYPE is
pragma priority (STATIC_SCHEDULE_PRIORITY);
entry START;

end STATIC_SCHEDULE_TYPE;
for STATIC_SCHEDULE_TYPE'STORAGE_SIZE use 200_000;
STATIC_SCHEDULE: STATIC_SCHEDULE_TYPE;

task body STATIC_SCHEDULE_TYPE is
PERIOD: duration;
altimeter_START_TIMEl : duration;
altimeter_STOP_TIMEl : duration;
correct_altitude_START_TIME3 : duration;
correct_altitude_STOP_TIME3 : duration;
control_elevator_START_TIME5 : duration;
control_elevator_STOP_TIME5 : duration;
display_l_START_TIME6 : duration;
display_l_STOP_TIME6 : duration;
schedulejimer : TIMER := NEW_TIMER;
begin

accept START;
PERIOD := TARGET_TO_HOST(duration(5.00000000000000E-01));
aItimeter_START_TIMEl := TARGET_TO_HOST(duration(O.OOOOOOOOOOOOOOE+OO));
altimeter_STOP_TIMEl := TARGET_TO_HOST(duration(5.00000000000000E-02));

145

correct_altitude_START_TIME3 := TARGET_TO_HOST(duration(5.00000000000000E-02));
correctjiltitude_ST0P_TIME3 := TARGET_TO_HOST(duration(1.25000000000000E-01));
control_elevator_START_TIME5 := TARGET_TO_HOST(duration(1.250000000000000E-01));
control_elevator_STOP_TIME5 := TARGET_TO_HOST(duration(2.00000000000000E-01));
display_l_START_TIME6 := TARGET_TO_HOST(duration(2.00000000000000E-01));
display_l_ST0P_TIME6 := TARGET_TO_HOST(duration(3 .OOOOOOOOOOOOOOE-01));
START(schedule_timer);
loop
delay(altimeter_START_TIMEl - HOSTJDURATION(scheduleJimer));

altimeterDRIVER;

if HOST_DURATION(schedule_timer) > altimeter_STOP_TIMEl then
PUT_LINE("timing error from operator altimeter");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS

(HOST_DURATION(schedule_timer) - altimeter_STOP_TIMEl);
end if;

delay(correct_altitude_START_TIME3 - HOST_DURATION(schedule_timer));

correctaltitudeJDRTVER;

if HOST_DURATION(schedule_timer) > correct_altitude_STOP_TIME3 then
PUT_LINE("timing error from operator correct_altitude"); .
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS

(HOST_DURATION(schedule_timer) - correct_altitude_STOP_TIME3);
end if;

delay(control_elevator_START_TIME5-HOST_DURATION(schedule_timer));

controlelevatorJDRTVER;

if HOST_DURATION(schedule_timer) > control_elevator_STOP_TIME5 then
PUT_LrNE("timing error from operator control_elevator");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS

(HOST_DURATION(schedule_timer) - control_elevator_STOP_TIME5);
end if;

delay(display_l_START_TIME6 - HOST_DURATION(schedule_timer));

display_l_DRTVER;

if HOST_DURATION(schedule_timer) > display_l_STOP_TIME6 then
PUT_LINE("timing error from operator display_l");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS

(HOSTJDURATION(schedulejimer) - display_l_STOP_TIME6);
end if;

delay(PERIOD - HOST_DURATION(schedule_timer));
RESET(schedule_timer);

end loop;
end STATIC_SCHEDULE_TYPE;

procedure START_STATIC_SCHEDULE is
begin

146

STATIC_SCHEDULE.START;
end START_STATIC_SCHEDULE;

end autopilot_l_STATIC_SCHEDULERS;

--Unit : autopilot_2_static_schedulers
--Prototype : CAPS autopilot
— Date : June 94
— Author : JimBrockett
~ Compiler : GLADE 1.03p/Gnat 3.1 Op
— Description : This package invokes the drivers of the time critical operators in partition 2
— Notes : Adapted to the distributed implementation by Jose Carlos Almeida September 1998

package autopilot_2_STATIC_SCHEDULERS is
procedure START_STATIC_SCHEDULE;
procedure STOP_STATIC_SCHEDULE;

end autopilot_2_STATIC_SCHEDULERS; .

■Unit
■ Prototype
•Date
• Author
■ Compiler
■ Description
• Notes

autopilot_2_static_schedulers
CAPS autopilot
June 94
Jim Brockett
GLADE 1.03p/Gnat 3.1 Op
This package invokes the drivers of the time critical operators in partition 2
Adapted to the distributed implementation by Jose Carlos Almeida September 1998

with autopilot_2_DRIVERS; use autopilot_2_DRIVERS;
with PRIORITY_DEFINITIONS; use PRIORITY_DEFINITIONS;
with PSDL_TIMERS; use PSDLJTIMERS;
with TEXTJO; use TEXTJO;

package body autopilot_2_STATIC_SCHEDULERS is

task type STATIC_SCHEDULE_TYPE is
pragma priority (STATIC_SCHEDULE_PRIORITY);
entry START;

end STATIC_SCHEDULE_TYPE;
for STATIC_SCHEDULE_TYPE'STORAGE_SIZE use 200_000;
STATIC_SCHEDULE: STATIC_SCHEDULE_TYPE;

done : boolean :•= false;
procedure STOP_STATIC_SCHEDULE is

begin
done := true;

end STOP_STATIC_SCHEDULE;

task body STATIC_SCHEDULE_TYPE is
PERIOD : duration;
compass_START_TIMEl : duration;
compass_STOP_TIMEl : duration;

• correct_course_START_TIME3 : duration;
correct_course_STOP_TIME3 : duration;
control rudder START TIME5 : duration;

147

control_rudder_STOP_TIME5 : duration;
display_2_START_TIME6 : duration;
display_2_STOP_TIME6: duration;
schedulejimer: TIMER := NEWJTIMER;

begin
accept START;
PERIOD := TARGET_TO_HOST(duration(5.00000000000000E-01));
compass_START_TIMEl := TARGET_TO_HOST(duration(0.0O00000OO000OOE+0O));
compass_STOP_TIMEl := TARGET_TO_HOST(duration(5.00000000000000E-02));
correct_course_START_TIME3 := TARGET_TO_HOST(duration(5.00000000000000E-02))-
correct_course_STOP_TIME3 := TARGET_TO_HOST(duration(1.25000000000000E-01))- '
display_2_START_TIME6 := TARGET_TO_HOST(duration(1.25000000000000E-01))•
display_2_STOP_TIME6 := TARGET_TO_HOST(duration(1.95000000000000E-01)); '
control_rudder_START_TIME5 := TARGET_TO_HOST(duration(1.95000000000000E-01))-
control_rudder_STOP_TIME5 := TARGET_TO_HOST(duration(2.70000000000000E-01)); '
START(schedule_timer);
loop
delay(compass_START_TIMEl - HOST_DURATION(schedule_timer));

compassDRIVER;

if HOST_DURATION(schedule_timer) > compass_STOP_TTMEl then
PUT_LINE("timing error from operator compass");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS(HOST_DURATION

(schedulejimer) - compass_28_34_STOP TIME1);
end if;
exit when done; .

delay(correct_course_START_TIME3 - HOSTJ0URATION(scheduleJimer));

correctcourseJDRIVER;

if HOST_DURATION(schedule timer) > correct_course_STOP_TIME3 then
PUT_LINE("timing error from operator correct course")-
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS

(HOSTJDURATION(schedule Jimer) - correct course 31 37 STOP TIME3V end if; - _ _ _ _ /,

exit when done;

delay(display_2_START_TIME6 - HOST_DURATION(schedule_timer));

display_2_DRIVER;

if HOST_DURATION(scheduIe_timer) > display_2_STOP_TIME6 then
PUT_LINE("timing error from operator display_2");
SUBTRACT_HOST_TIME_FROM_ALL_TIMERS

(HOST_DURATION(schedule_timer) - display_2 STOP TIME6);
end if;
exit when done;

delay(control_rudder_START_TIME5 - HOST_DURATION(schedule_timer));

control_rudder_DRIVER;

if HOST_DURATION(schedule_timer) > control_rudder_STOP_TIME5 then
PUT_LINE("timing error from operator controljrudder");

148

SUBTRACT_HOST_TIME_FROM_ALL_TIMERS
(HOST_DURATION(schedule_timer) - control_rudder_29_35_STOP_TIME5);

end if;
exit when done;

delay(PERIOD - HOST_DURATION(schedule_timer));
RESET(scheduleJimer);

end loop;
end STATIC_SCHEDULE_TYPE;

procedure START_STATIC_SCHEDULE is
begin

StATIC_SCHEDULE.START;
end START_STATIC_SCHEDULE;

endautopilot_2_STATIC_SCHEDULERS;

149

150

APPENDIX F. CONFIGURATION FILE

■Unit
■ Prototype
■Date
■ Author
■ Compiler
■ Description
• Notes

autopilot.cfg
CAPS autopilot
September 1998
Jose Carlos Almeida
GLADE 1.03p/Gnat 3.1 Op
This file configures the partitions in the distributed autopilot prototype
The partitions will be launched manually by the user

configuration Autopilot is

pragma Version (False);
- Comes from a GNAT compiler limitation.

pragma Starter (None);
- The partitions will be launched manually

pragma Boot_Server ("tcp", "sun53:3333");
- Specify the use of a particular boot_server

Partition 1 : Partition := (psdl_streams, altimeter_PKG,
correct_altitude_PKG, display_l_PKG,
altitude_command_type_PKG,
control_elevator_PKG,
rudderstatustypeJPKG,
elevator_status_type_PKG,
course_command_type_PKG,
autopilot_l_drivers,
autopilot_l_dynamic_schedulers,
autopilot_l _remote_streams,
autopilot_l^start_drivers,
autopilot_l_static_schedulers,
autopilot_l_streams, gui_pkg);

Partition2 : Partition := (psdl_streams, compassPKG,
correct_course_PKG, controlrudderPKG,
altitudecommandtypePKG,
display_2_PKG,
rudder_status_type_PKG,
elevator_status_type_PKG,
course_xommand_type_PKG,
autopilot_2_drivers,
autopilot_2_dynamic_schedulers,
autopilot_2_start_drivers,
autopilot_2_static_schedulers,
autopilot_2_streams, gui_pkg);

151

procedure Stait_Autopilot is in Partition 1;
- procedure Start_Autopilot will start the Autopilot execution

procedure Start_Partition2;
for partition2'Main use Start_Partition2;
- procedure Start_Partition2 is the driver procedure for partiton2

ChanneM : Channel := (Partition 1, Partition2);

end Autopilot;

152

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center.
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5000

3. Chaiman, Department of Computer Science.
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5000

4. Professor Man-Tak Shing,
Code CS/Sh
Naval Postgraduate School
Monterey, CA 93943-5000

5. Commander M.J. Holden, USN,.
Code CS/Hm
Naval Postgraduate School
Monterey, CA 93943-5000

6. Diretoria de Ensino da Marinha.
A/C Brazilian Naval Commission
5130 MacArthur Blvd., N. W.
Washington, DC 20016-3344

7. Centro de Anälises de Sistemas Navais.
A/C Brazilian Naval Commission
5130 MacArthur Blvd., N. W.
Washington, DC 20016-3344

8. Commander Mauricio de Menezes Cordeiro.
Instituto de Pesquisas da Marinha
A/C Brazilian Naval Commission
5130 MacArthur Blvd., N. W.
Washington, DC 20016-3344

153

9. Lieutenant Jose Carlos Alves de Almeida.
Centro de Anälises de Sistema Navais
A/C Brazilian Naval Commission
5130 MacArthur Blvd., N. W.
Washington, DC 20016-3344

154

