
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

A PROTOCOL FOR BUILDING A NETWORK ACCESS
CONTROLLER (NAC) FOR "IP OVER ATM"

by

Ioannis Kondoulis

September 1998

Thesis Advisor:
Second Reader:

Geoffrey Xie
Cynthia Irvine

Approved for public release; distribution is unlimited.

DTXC QUALITY INSPECTED 4

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1998

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

A PROTOCOL FOR BUILDING A NETWORK ACCESS CONTROLLER (NAC) FOR
"IP OVER ATM"

6. AUTHOR(S)
Lt Ioannis Kondoulis, Hellenic Navy

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School

Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES ~~

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The implementation of label swapping packet-forwarding technology increases the vulnerability to insider attacks. These
attacks refer to unauthorized access from within an enclave to the outside network. In this thesis we propose a protocol to counter this
category of attacks. The proposed protocol provides a means for fast packet authentication. High speed is achieved by the use of a
trailer, which allows packet filtering at Layer 2, and the use of cheap and fast message digest algorithms. To overcome the
weaknesses of a 128-bit message digest algorithm, each key is designed to have a very short cryptoperiod. Such fast rekeying is
implemeted by key caching (the host has a table of keys). Initial performance measurements indicated that it is possible to use our
protocol while maintaining very high data throughput. Specifically, our protocol implements an authentication module, called
Network Access Controller (NAC). The NAC's modular nature allows it to be easily integrated with a variety of routing technologic;
and other security mechanisms while remaining totally independent of them.

14. SUBJECT TERMS

protocol, Network Access Controller (NAC), Internet Protocol (IP) .Asynchronous Transfer Mode
(ATM)

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI-CATION
OF ABSTRACT
Unclassified

NSN 7540-01-280-5500

15. NUMBER OF
PAGES 231

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

11

Approved for public release; distribution is unlimited

A PROTOCOL FOR BUILDING A NETWORK ACCESS CONTROLLER
(NAC) FOR "IP OVER ATM"

Ioannis Kondoulis
Lieutenant, Hellenic Navy

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1998

Author:

Approved by:

Geoffrey Xie, Thesis Advisor

Cynthia Irvine, Second reader

Department of Computer Science

m

IV

ABSTRACT

The implementation of label swapping packet-forwarding technology

increases the vulnerability to insider attacks. These attacks refer to unauthorized

access from within an enclave to the outside network. In this thesis we propose a

protocol to counter this category of attacks. The proposed protocol provides a

means for fast packet authentication. High speed is achieved by the use of a

trailer, which allows packet filtering at Layer 2, and the use of cheap and fast

message digest algorithms. To overcome the weaknesses of a 128-bit message

digest algorithm, each key is designed to have a very short cryptoperiod. Such fast

rekeying is implemeted by key caching (the host has a table of keys). Initial

performance measurements indicated that it is possible to use our protocol while

maintaining very high data throughput. Specifically, our protocol implements an

authentication module, called Network Access Controller (NAC). The NAC's

modular nature allows it to be easily integrated with a variety of routing

technologies and other security mechanisms while remaining totally independent

of them.

DISCLAIMER

The reader is cautioned that computer programs developed in this
research may not have been exercised for all cases of interest. While every
effort has been made, within the time available, to ensure that the programs
are free of computational and logic errors, they cannot be considered
validated. Any application of these programs without additional verification is
at risk of the user.

VI

TABLE OF CONTENTS

I. INTRODUCTION j

A. BACKROUND \
1. Networking \

a. Packet forwarding and "Tag Switching" 1
b. Asynchronous Transfer Mode 3

2. Network Security 5
B. SCOPE OF THE THESIS 7
C. ORGANIZATION '"7
D. MAJOR CONTRIBUTIONS OF THIS THESIS 8

II. NETWORK SECURITY 9

A. SCREENING ROUTERS AND FIREWALLS 9
B. MESSAGE AUTHENTICATION FUNCTIONS 11

1. Network Attacks 11
2. Authentication Functions 12

a. Message encryption 12
b. Cryptographic checksum 14
c. One-way Hash Functions 16

C. SUMMARY 18

III. HIGH SPEED NETWORKS 19

A. IP OVER ATM 19
1. IP encapsulation in AAL5 20
2. Classical IP over ATM 22
3. LAN Emulation (LANE) 24

B. TAG SWITCHING 25
1. Forwarding Component 26
2. Control Component 28
3. Tag Switching with ATM 28
4. Summary 29

D. SUMMARY 30

IV. THE PROTOCOL 31

A. INSIDER ATTACKS 31
B. THE PROTOCOL 34

1. Protocol Overview 34

Vll

2. List of assumptions 37
3. Protocol Phases 39

a. Initialization phase: 39
b. Connecting to the NAC 40
c. Key-table preparation and exchange 40
d. Packet formatting at the host 41
e. Packet verification at the NAC: 41

4. Protocol Components 42
a. Packet Trailer 42
b. Key-Table 43

5. Tag-key management 44

V. PROTOCOL PERFORMANCE EVALUATION 47

A. MD5 PERFORMANCE 47
B. MAC COMPARISON 48

VI. CONCLUSIONS AND FUTURE WORK 53

A. CONCLUSIONS 53
B. FUTURE WORK 54

APPENDIX A. DESIGN SPECIFICATION OF SIMULATION PROTOTYPE 57

APPENDIX B. THE OBJECT MODEL 77

APPENDIX C. SIMULATION SOURCE CODE 79

APPENDIX D. DOCUMENTATION FOR MD5 PERFORMANCE TEST CODE 193

APPENDIX E. MD5 PERFORMANCE TEST CODE 197

APPENDIX F. DOCUMENTATION FOR MAC COMPARISON PERFORMANCE
TEST CODE 205

APPENDIX G. MAC COMPARISON PERFORMANCE CODE 209

LIST OF REFERENCES 215

Vlll

INITIAL DISTRIBUTION LIST 217

ix

LIST OF FIGURES

Figure 1. ATM cell format 3

Figure 2. A firewall protecting an enclave. After (Hare, 1996) 5

Figure 3. IP over ATM model 20

Figure 4. The OSI Model and the ATM Protocol Model. After (Kercheval, 1998) 21

Figure 5. Tag Information Base (TIB) format 27

Figure 6. System Model for the Network Access Controller (NAC) 35

Figure 7. The packet trailer 43

Figure 8. MD5 performance on a Pentium 133 MHz 49

Figure 9. MD5 performance on a Pentium 200 MHz 50

Figure 10. Performance when MACs match 50

Figure 11. Performance when MACs do not match 51

XI

Xll

I. INTRODUCTION

This thesis explores how the implementation of "Tag Switching" - a technology

described in Internet RFC 2105 (Rekhter, 1997) - for Internet Protocol (IP) over

Asynchronous Transfer Mode (ATM) networks can increase the risk of an insider-attack.

We present a protocol that counters this kind of attacks using a security "gateway"

termed Network Access Controller (NAC). We also present a prototype simulation of the

protocol in C++ for demonstration purposes. Further, we evaluated the performance (in

terms of overhead) of the protocol.

A. BACKROUND

1. Networking

a. Packet forwarding and "Tag Switching"

The explosive growth of the Internet has created the demand for higher

bandwidth and, consequently, for faster and more effective routing and packet forwarding

techniques. Specifically, today's routers are processor-based thus, computation takes

place at them. In order to decide how to forward a packet they use the Network Layer

(Layer-3 of the OSI model) information contained in a packet's header and in

conjunction with a routing table. A good analogy of such routing in real life would be a

company transporting goods (messages) by trucks (packets). Each truck has a final

destination IP address and at each crossroad (router) its driver reports its destination (the

packet header being parsed) and asks a traffic coordinator (routing process) for

directions. The traffic coordinator has a table of destinations and the corresponding

directions for leaving the crossroad (routing table). He looks up the table and directs the

driver to the right road (routing decision).

The routing table at a router must be updated periodically to reflect

topological changes or road fluctuations in the network. Each packet's header has to be

parsed by the routing process. All these functions are currently implemented by

specialized software. In summary, Layer-3 processing is complex, computationally costly

(time consuming) and the equipment required is expensive. Nevertheless, it has been the

choice because it is very flexible and very functional as shown by Internet's exponential

growth.

Switching, on the other hand, is faster and less complex than routing, and

the equipment (switches) are cheaper. It has been reported that for the same throughput,

routing costs 20 times as much as switching (Newman, 1998). Switches use the Data-

Link Layer (Layer-2 of the OSI model) information contained in a packet's header in

order to forward the packet to its destination according to fixed rules. This functionality

is implemented, usually, in hardware. An analogy of switching with the real world can be

found again using the transportation company paradigm. A racecar leaves the company's

headquarters and finds the best way to the destination (signalling). The racecar carries a

paintbrush that paints the road with a fluorescent color. The truck drivers now need not

know their destination; they only have to follow the paint. The only problem with Layer-

2 switching is that it is not as flexible and functional as Network Layer routing because

any change in the route would require repainting the entire road from the beginning.

Recently a number of new technologies have emerged that combine the

Layer-2 switching with the Layer-3 routing for performance, flexibility and functionality.

They include Cisco's Tag Switching (Rekhter, 1997), Ipsilon's IP switching (Newman,

1998) and 3Com's Fast IP (Seaman, 1997). Although there is not yet a standard, all of

these technologies follow the so-called label-swapping paradigm for packet forwarding.

This paradigm can be described simply as follows: A label or "tag" (i.e., an integer) is

assigned to a packet1 according to the flow2 to which it belongs. Packet forwarding is

based solely on this label. The implementation of Tag Switching and Fast IP is

independent of the lower network layers3 (Layers 1 and 2 of the OSI model). Therefore,

they are flexible and adaptable.

1 The label is carried by the packet as part of its header.

2 A sequence of packets with common attributes e.g., those carrying data for a video stream or a multimedia file.

3 Only IP switching is closely coupled with ATM.

b. Asynchronous Transfer Mode

The Asynchronous Transfer Mode (ATM) protocol is a connection-

oriented protocol for computer communication, analogous to the telephony. It is designed

to carry data at extremely high speeds (e.g., 622Mb/s). ATM uses fixed size (53 byte)

packets called cells (Figure 1), which travel in virtual channel connections (VCCs),

established between senders and receivers. In ATM, the cells that travel in one VCC

constitute a flow. The setup and teardown of a VCC are performed by signalling

functions. The term virtual is used because a single physical medium (e.g., fiber optic)

can be utilized to accommodate the traffic of many Virtual Channels (VCs). Once a VCC

has been established, the switching of the cells inside an ATM switch is done in

hardware.

The Virtual Channel Identifier (VCI), an integer stored in each cell's

four-byte header is used by switches to forward cells to the right VCs. Each cell's

incoming VCI will be translated into a new one (the outgoing VCI) inside each switch.

Each switch maintains a table that maps the incoming VCIs to entries containing two

elements: a new VCI and the appropriate output port. These tables are updated during the

connection setup' phase. It is obvious that ATM switching follows the label swapping

forwarding paradigm.

GFC/VPI VPI

VPI VCI

VCI

VCI PT CLP

HEC

48 bytes DATA

y, header
5 bytes

GFC: Generic Flow Control
VPI: Virtual Path Identifier
VCI: Virtual Channel Identifier
CLP: Cell Loss Priority
PT: Payload Type
HEC: Header Error Control

Figure 1. ATM cell format

A signalling function. Signalling functions are responsible for setting up, maintaining and tearing down a
connection and use permanent or semi-permanent VCs dedicated to signalling.

Another attractive feature of ATM is that the users can request quality of

service (QoS) for a VCC. Four ATM service classes provide different levels of QoS. They

are:

• Constant Bit Rate (CBR): guaranteed transmission rate for applications that

need it, e.g., 12 Mb/s for a videoconferencing VC.

• Variable Bit Rate (VBR) {real-time and non-real-time versions): a standard

transmission rate (SCR) is assigned to a connection. This rate can

momentarily rise to the peak transmission rate (PCR) in order to

accommodate the needs in bandwidth of bursty transmissions. Real time (RT)

version is required when an application needs to maintain a timing

relationship between two users e.g., in voice applications. Non-Real Time

(NRT) can be used when information retrieval at a later time will not cause

any problem e.g., store and forward video.

• Available Bit Rate (ABR): low cell loss' but the available bit rate fluctuates,

depending on the network resource availability.

• Unspecified Bit Rate (UBR): these cells are the first ones lost when

congestion occurs.

Although ATM is being heavily promoted, especially by the

telecommunications community, its deployment has been slow mainly because of the

existence and success of the IP. It is clear today that the ATM technology will not totally

replace IP. However, the advantages of ATM - high speed and QoS - led to the

development of techniques that combine IP and ATM. These are the Classical IP over

ATM described in RFC 1577 (Laubach, 1994) and the LAN emulation (LANE)(AF-

LANE 0084.000,1997).

1 Cell loss can happen when congestion occurs, e.g., when cells arrive at a switch at higher rates than the ones that
the switch can forward them, this results in buffer overflow and consequently in cell loss.

2. Network Security

The Internet is often called "the network of networks". InterConnectivity at this

scale has created the need to protect an organization's network against malicious or

accidental behaviors. The same argument holds for a subnet connected to a corporate

intranet and for a site connected to a subnet. In order to safeguard a network or a network

segment, a security policy must be set for the network. After setting the policy, the

administrator(s) must choose tools that help enforce the security policy. These tools

include boundary controllers, encryption (and hashing) algorithms, access control and

authentication mechanisms.

A firewall isolates an internal network segment from the outside world and allows

access only to authorized traffic (Figure 2). Additionally, it controls access from the

internal network to the Internet (or an intranet).

Firewall

Enclave Network

Figure 2. A firewall protecting an enclave. After (Hare, 1996).

Below are two examples from (Hare, 1996) that demonstrate this functionality.

They are implemented in the freely available firewall program TCP Wrapper.

• Example 1: the entry in Xhe/etc/hosts. allow file:

fingerd, telnetd: 144.19.74.1, 144.20

allows host 144.19.74.1 and all hosts on class B network 144.20.0.0 to access

telnet and finger services.

• Example 2: the entry in the /etc/hosts.deny file:

Fingerd, telnetd: .hacker.org

denies access to telnet and finger services to all hosts in the domain

HACKER.ORG.

Encryption algorithms can be used as parts of protocols that can support

confidentiality, integrity, authentication, non-repudiation of information travelling

between computers. There are many of them. Two widely used ones (Schneier, 1996) are:

• DES (Data Encryption Standard) is the most popular. It uses the same key for

encryption and decryption {symmetric algorithm). The common key is secret.

The algorithm transforms data into an unmeaningful series of bits. If the key

becomes available to an attacker then the algorithm is compromised (broken).

•- RSA (named after its creators - Rivest, Shamir and Adleman) is the most

popular public key algorithm. The only secret key is the private key, which is

known only to its owner. The public key is available to others. Data encrypted

by a user's private key can be decrypted only by the same user's public key

and data encrypted by a user's public key can be decrypted only by the same

user's private key.

Message digest' algorithms can be used to provide message authentication and

data integrity. The whole message is mapped by the keyed one-way hashing function to a

(usually) small hash value or message digest or message authentication code (MAC).

This value serves the role of the signature for the particular message. The most widely

known message digest algorithms are the ones of the MD family (MD4 (Rivest, 1990),

MD5 (Rivest, 1992)) written by Ron Rivest (RSA) and the Secure Hash Algorithm

(SHA). The SHA is part of Digital Signature Standard (DSS)(NIST, 1994) which is a

protocol used for creating digital signatures.

Known also as keyed one-way hashfiinctions.

Finally, the authentication and key-exchange mechanisms, usually implemented

by centralized authentication servers, allow access to resources only to authorized users.

Two popular authentication services are:

• Kerberos which uses conventional encryption and

• X.509-based key exchange, which is part of the Privacy Enhanced Mail (PEM)

protocol and uses public key encryption (RSA is recommended as its

underlying public key encryption algorithm).

A more detailed discussion around Network Security follows in Chapter II of this

thesis.

B. SCOPE OF THE THESIS

This thesis examines the vulnerabilities introduced to a network by the

implementation of Tag Switching. In particular we have focused on security problems

related to unauthorized access from the internal network (enclave) to the outside world.

We call them insider attacks.

Specifically we propose a protocol that will guard against this category of attacks

and we evaluate the performance of the protocol. Further, a prototype simulation of the

protocol in C++ is presented.

C. ORGANIZATION

The thesis is organized as follows: Chapter II gives an overview of network

security issues related to firewalls and message authentication. Chapter III discusses high

speed networking issues, in particular IP over ATM and Tag Switching. Chapter IV

presents insider attacks (the problem) and our protocol (the proposed solution), including

our assumptions. Chapter V presents the performance evaluation of the protocol. Chapter

VI presents the conclusions we reached and describes future work that could follow this

thesis.

Note that in Chapters II and III, we focus on the aspects of network security and

high-speed networking that are related to the thesis. Both chapters are presented for

background information. The simulation source code and the software engineering notes

about the code are included as Appendixes. We have also included as an Appendix the

measuring code that was used for the performance evaluation of the protocol.

D. MAJOR CONTRIBUTIONS OF THIS THESIS

There are three major contributions of this thesis.

• It examines the vulnerabilities of newly proposed packet forwarding

technologies that use the label-swapping paradigm - in particular Tag

Switching.

• It proposes a flexible1 solution (protocol) that can be implemented in a

straightforward manner.

• It provides an initial evaluation of how the implementation of the protocol

affects the performance of Tag Switching when it is used for IP over ATM.

1 Can be adapted to any label swapping technology.

II. NETWORK SECURITY

A. SCREENING ROUTERS AND FIREWALLS

A fundamental measure for home security is locking the door. However, one must

be able to examine each person that knocks on the door and allow him/her to enter when

it is desired. The same action should take place at the perimeter of a network segment

(site, enclave or intranet). In the network case, arriving packets are checked (and not

persons). These packets may arrive from the rest of the network, intranet and finally from

the Internet. Additionally we want to control the access from inside the enclave to the

outside world. Such functionality is known as access control, and it is implemented by

devices generally known as, firewalls. The use of firewalls is a common practice today.

A Discretionary Control Mechanism (DAC) may be in force as part of the

security policy of an enclave. In the context of such a mechanism, the security officer of

the enclave may decide to prohibit a user access to the outside world. For example, the

ISSO may have granted Bob access privilege to the outside world, but has not done so

with Alice. In this case, the packets that Alice is sending must be denied access to the

external network.

A definition of a. firewall is "a collection of components that are placed between

two networks that create controlled isolation" (Cheswick, 1994). It may be inappropriate

to use the term firewall for a variety of products and architectures. Nonetheless, it is now

a general term in the literature. "Firewall" also has become a synonym for Internet

Firewall, because it has been common for firewalls to be used as isolating devices

between corporate or other types of networks and the Internet. In fact, firewalls can exist

between any two networks.

The existence of a firewall increases the security of a network because by using a

firewall one can enforce aspects of the network's security policy. When and how access

to a resource (host, network or service) is allowed depends, and directly reflects, this

security policy. Detailed information on network security policy can be found in chapter

3 of (Hare, 1996). We must emphasize here that firewalls control the access to resources

in both directions: from the outside world into the network and from the network to the

outside world.

The following three main techniques are used in firewalls1:

• Packet filtering occurs when the firewall decides to forward or to block a

packet based on some rules. The packet header is parsed and according to the

type of the protocol and/or the values in the fields of the packet header e.g.,

the source or destination address, the packet is allowed to proceed or not. The

firewall therefore can control the type of network traffic and the type of

services available in a network segment. The term screening routers or packet

filter routers are used for the devices2 that perform this screening task. Since

each set of fields in the packet header is added to the packet by a layer of the

- OSI Reference Model, we can identify exactly at which level the filtering

functions takes place. Usually screening routers perform their screening

functions at the network (a.k.a. Layer 3) and the transport layers (a.k.a. Layer

4) of the OSI Reference Model. Sometimes, however, filtering can happen at

the data link (a.k.a. Layer 2) or even at the physical (a.k.a. Layer 1) layers.

(Hare, 1996)

• Circuit gateways are used to establish, for authorized users, a channel of

communication between two network segments (networks, subnets, sites). The

main concern is who is using an application and not what information is

passed by the network application. Circuit gateways are similar to packet

filters. Additionally they use the services of an out-of-bound authentication

scheme that provides the information needed for authenticating a user.(Atkins,

1997)

• Application proxies are used when it is important to control the content of the

data to an application. An example of such a proxy is one used to limit FTP

1 Details for all of the techniques can be found in (Atkins, 1997).

2 They are commercial routers that are capable of screening packets.

10

users so that they can only get files from the Internet, but never push local

files to the Internet. The problem with application proxies is that they are

application specific and therefore, difficult to write and maintain. Application

proxies can be combined together with circuit gateways in firewall products.

(Atkins, 1997)

We are interested in combining the packet filtering and circuit gateways

techniques in our design of the NAC.

B. MESSAGE AUTHENTICATION FUNCTIONS

Computer networks are vulnerable to a number of attacks. We describe some of

these attacks in order to give a perspective of the potential threats to a network. Message

authentication is one of the effective measures against a broad spectrum of network

attacks. We describe three classes of message authentication in this section.

1. Network Attacks

Stallings describes the possible attacks in computer networks (Stallings, 1995):

• Disclosure: the contents of a message become available to an unauthorized to

know person or process

• Traffic analysis: a pattern of traffic between the communicating entities is

identified. Information such as frequency and duration of connections1,

number and size of messages can be deduced.

• Masquerade: an malicious source creates and inserts messages into the

network. These messages may be purported to come from an authorized

entity, they may be faulty acknowledgements of messages etc.

• Content modification: the contents of a message are changed, deleted or

modified.

In connection oriented communications such as ATM.

11

• Sequence modification: the sequence of messages is altered. New messages

may be inserted, messages can be deleted or simply reordered.

• Timing modification: Messages may be delayed or replayed. An individual

message (e.g., datagram), an entire session or a sequence of messages

belonging to a previous, valid session can be replayed or delayed.

• Repudiation: a source denies that it ever sent a message or a destination denies

that it ever received a message.

2. Authentication Functions

Message authentication can counter masquerade, content modification, sequence

modification and timing modification. Repudiation is specifically countered by digital

signatures. (Stallings, 1995)

Message authentication mechanisms consist of two parts:

• Authentication function: produces an authenticator (a value that authenticates

the message) known also as Message Authentication Code (MAC).

• Authentication protocol: the sequence of actions that verifies the authenticity

of the message. (Stallings, 1995)

The first part of a message authentication mechanism, the authentication function,

can be further classified in the following three classes:

a. Message encryption

The ciphertext of the whole message is used as its authenticator. There are

two different ways to authenticate a message: using a conventional (symmetric)

encryption method and using a public-key encryption method.

When a conventional encryption scheme is going to be used, if a message

M has to be exchanged between two parties S (source) and D (destination) and the shared

secret key is K, then the following scenario takes place:

• S encrypts M using K and produces the encrypted message: EK(M).

12

• S sends E K (M) to D.

• D decrypts E K (M) using K and gets message M: D K (E K (M)) = M.

If the key is known only to S and D, then D can be confident that message

M came from S. However, the degree of authentication is limited. The key K could have

been compromised or the encrypted message could have been a replay. Additionally

when D is an automated system, and not an intelligent person, and message M is a stream

of bits, it is very difficult for D to judge for M if it is an acceptable stream of bits or not.

A video or an audio stream falls into this category. Any alteration could not be detected

by an automated system. The result of this weakness of automated systems in the

previous example would be that D, falsely, may assume that any E K (M) has come from

S. Therefore, additional formatting of the method and additional redundancy is needed

for using it in automated systems. (Stallings, 1995)

In a public-key encryption scheme if the message M is encrypted with the

public key of D, denoted KpuD, no authentication can be provided. The obvious reason is

that any one that knows KPuD (since it is public, and therefore, available to every one)

could have send the message E KPUD (M) to D. Authentication can only be provided when

the sender S uses his private key, denoted KPrS, to encrypt M. The result is E KPrs (M)

and it can be decrypted by anyone that has S's public key KPuS. This may affect the

confidentiality of message M but D now can be certain that S is the sender of M.

We can eliminate the disadvantages and get only the benefits from the two

public-key encryption scenarios that we mentioned if we use - paying the additional cost

in performance and complexity - the following, double public-key encryption, scenario:

• S encrypts M using KPrS and produces the encrypted message:

EKPrs(M).

• S encrypts E Kprs (M) using KPuD and produces the encrypted message: E KPUD

(EKPrs(M)).

• S sends E KPUD(E KPFS(M)) to D.

13

• D decrypts E KpuD (E KP:S (M)) using KPrD and gets message E Kprs (M): D

KPrD(E KPUD(E KPrs(M))) = E KPrS (M). (this step provides

confidentiality).

• D decrypts E Kprs (M) using KPuS and gets message M: D KPUS (E KPrs (M)) =

M. (this step provides authentication).

It is obvious that similar problems exist here, as with the shared key

encryption scheme. Again, it is difficult for an automated D to reject a series of bits M as

unmeaningful and replays can take place as well as it was possible in the conventional

encryption scheme. Therefore, some refinement of the method is needed here, as well as

in the conventional encryption scheme, in order to use it as an authentication scheme.

b. Cryptographic checksum

The sender S (source) and receiver D (destination) must share a secret key

K (similarly to a conventional encryption scheme). S applies an encryption-like algorithm

to the message M using the common key K. This algorithm produces a small, fixed

length set of bits known as a cryptographic checksum or message authentication code

(MAC). The MAC is then appended to the message M and both are sent to D. D

recalculates the MAC (applying the same algorithm) for the received message, using its

copy of the key K. The message is authenticated if the received MAC and the calculated

MAC are the same. D can also be certain that M has not been modified (otherwise, the

calculated MAC would not be the same with the MAC received). The obvious

vulnerability of the method is when the secret key K has been compromised.

The method does not provide confidentiality. In the case that the

communicating parties need confidentiality, as well as authentication, the message should

be encrypted (it is recommended that MAC is calculated for the plain text M and not after

the encryption (Stallings, 1995)).

The difference between the algorithm that is used for the MAC calculation

and that of a conventional encryption function is that the former does not need to be

reversible (it is a one-way encryption function) as it must be for decryption. This makes it

14

harder to break than encryption. Additionally the result is a compact representation of the

message. (Stallings, 1995)

(Davies, 1989) suggests the use of MAC in the following three cases:

• Authenticating control messages in a network. Each control messages is

broadcast with its MAC. A network node, playing the role of the

authentication monitor, that has the secret key, authenticates the message or

alerts all the recipients that the message is fake.

• When a heavy load of incoming messages floods the receiver D. We cannot

afford the resources to decrypt all of them. An authentication scheme that

performs selective MAC checking on a random basis can be used.

• For executable programs, an attached MAC could be used for assuring their

integrity.

(Stallings, 1995) adds three more rationales to the above:

• When secrecy is not required but it is still important for messages to be

authenticated. An example is the Simple Network Management Protocol

version 2 (SNMPv2). In SNMPv2, the functions of confidentiality and

authentication are separated. The incoming messages may not need to be

secret, nevertheless, they have to be authenticated, especially when they

change parameters at the managed system.

• Separation of confidentiality and authentication functions allows for flexibility

in the architecture. The designer may choose in which layer of the OSI model

to apply the one or the other. A possible decision could be to apply

authentication (MAC) at the application layer (Layer 7) and confidentiality

(using encryption) at the transport layer (Layer 4).

• When we want to protect the integrity of the contents of a message after it is

decrypted. A MAC for that message can ensure that its contents have not been

fraudulently modified.

15

c. One-way Hash Functions

This is a variation of the previous method. A public function, H, is used to

map each message M, regardless of its length, into a hash value or hash code h, of fixed

length m

h = H(M), where h is of length m

The whole point of the one way hash function is to provide a "fingerprint"

of M that is unique (Schneier, 1996). The hash code is a function of every bit of the

message. This provides an error detection capability since a change in only one bit of the

message would result in a change the hash value (Stallings, 1995).

The characteristics of hash functions that make them one-way are (Merkle,

1979):

•" Given M, it is easy to compute H.

• Given H, it is hard to compute M such that H(M) = h.

• Given M, it is hard to find another message, M\ such that H(M) = H(M').

(collision resistance1)

A keyed variation of one-way hash functions a.k.a. messages digest

functions can be used for message authentication. The actual ideas for the usage of keyed

hash function are old, some of the proposed methods2 append3 (Tsudik, 1992) (Galvin,

1991) oxprepend4 (Galvin, 1991) or even do both {envelope method), a secret key (or

two) to the message before the one-way hash function is applied. The benefit of using

message digest functions instead of the previous two methods of authentication, given the

hypothesis that confidentiality is not required, is that they are less computationally

intensive than encryption, therefore, they are faster. Additionally there are several other

1 Collision resistance is a very important property of hash-function however it is beyond the scope of this thesis to
discuss issues related to that (strong, weak, etc.).

2 Appearing in SNMPv2.

3 Secret Suffix Method.

4 Secret Prefix Method.

16

reasons indicating that encryption should be avoided - even when it is available in

hardware implementation - whenever possible. (Tsudik, 1992) points out them:

• Encryption software is slow, even for a small amount of data.

• Encryption hardware is not extremely expensive but the cost adds up as each

node in the network must be equipped with this hardware.

• The overhead to initialize encryption hardware for small blocks of data is very

high, mainly because encryption hardware is usually optimized for large data

blocks.

• Encryption algorithms are subjected to U.S. export control.

• Some of the algorithms are patented, like the RSA public-key algorithm, and

there is an additional cost for licensing them.

Two of the most popular - and fast - one-way hash functions are the MD4

(Rivest, 1990) and its improvement, the MD5 (Rivest, 1992). Both were designed by Ron

Rivest, and they produce a 128-bit message digest of the input message. Another famous

algorithm is SHA (Secure Hash Function). It was introduced by NIS, along with NSA for

use in DSS (Digital Signature Standard)(NIST, 1994). It produces a 160-bits but it is

based on principles similar to the MD algorithms. According to (Schneier, 1996) there

are no known cryptographic attacks against SHA and because it produces a 160-bit hash

value it is more resistant to brute-force attacks than 128-bit hash functions.

An interesting variation of keyed hash functions is proposed in (Preneel,

1995). The authors first expose the vulnerabilities of previous proposals of keyed hash

functions and then they propose to include a key at the beginning, at the end and in every

iteration of the algorithm in order to strengthen it. The new algorithm is called MDx-

MAC and the authors claim for the proposed method that:

• It maintains the benefits of keyed one-way hash function usage (minimum

implementation effort - maximum confidence).

• The performance would be close to that of a one-way hash function.

17

• The required resources (memory etc.) for its implementation would be similar

to that of a one-way hash function.

• It is generic (can be used with any algorithm with the same principles as

MD4).

C. SUMMARY

In this chapter, we discussed computer security issues that are of interest as a

background for this thesis. We are interested in particular in two categories of firewalls:

packet filtering firewalls and circuit gateways, and in message authentication using keyed

hash functions. The next chapter discusses networking issues of interest.

18

III. HIGH SPEED NETWORKS

A. IP OVER ATM

ATM has been chosen by International Telecommunication Union (ITU-T

Recommendation 1.121) as the basis for the Broadband Integrated Services Digital

Network (B-ISDN). An Integrated Services network is one that can be used to carry all

types of traffic: data, voice, video etc. "Broadband" means simply high link speed (up to

Gigabits per second)1. ATM networks are being installed in both research2and

commercial environments3.

The Internet Protocol (IP) is the foundation protocol for the most widely used

packet-switched network, the Internet. The popularity of IP is ever growing with the

growth of the Internet.

It is becoming increasingly important to interconnect IP and ATM networks. The

easiest way to do so is for IP to treat ATM as a link-level (Layer-2 of the OSI model)

technology (like Ethernet or FDDI), ignoring the routing and quality-of-service aspects of

ATM. This approach is called IP over ATM (Figure 3), and it is still an area of active

research. Additionally there is not a universally accepted method for IP over ATM.

(Keshav, 1997)

It is beyond the scope of this thesis to examine in depth the different proposals of

implementing IP over ATM. However, we think it would be useful, as background, to

briefly describe the following:

• The method of IP encapsulation in ATM Adaptation Layer 5(AAL5),

• Cell loss detection Classical IP over ATM (CIP), and

The term comes from the cable television: baseband is a single signal used for video, the band of frequencies
can be chosen from the base of the spectrum; when many of these signals are modulated and fed into a cable a broad
band of frequencies are used for all the channels(Kercheval, 1998)

2 University of Southern California- Advanced Biotechnical Consortium (USC-ABC).

Texaco, McDonalds, Chrysler.

19

LAN Emulation (LANE).

L Internet

I ATM

TCP/UDP

IP

AAL

ATM

Figure 3. IP over ATM model.

1. IP encapsulation in AAL5

The ATM Adaptation Layer lies on top of the ATM layer Figure 4. AAL adds

functionality to the ATM layer, making it more suitable for higher layer protocols or

applications. AAL corresponds to the network layer (Layer-3) of the OSI model1 (Figure

4). Five different AAL versions were developed in order to accommodate the diversity of

existing applications. AAL5 is the latest version and possibly, the only one that will be

used by future ATM networks. AAL5 provides:

• A mapping of the high-layer data into a cell-stream.

• Cell loss detection.

The higher-layer data are grouped into packets that may have a maximum size of

64 Kbytes. These packets are called frames. The AAL5 functionality is achieved in three

sublayers:

• The Segmentation and Reassembly (SAR) sublayer distributes the higher-

layer data into cells at the sender and reassembles the data at the receiver. It

lies directly on top of the ATM layer.

1 There are arguments that AAL is a datalink layer (Layer-2) however, AAL is a network layer because it provides
end-to-end connectivity (even though it does not provide addressing and routing) and it provides a view to the transport
layer (Layer-4 of the OSI model) similar to that of a transport layer over IP (Keshav, 1997).

20

The Service Specific Convergence Sublayer (SSCS) which lies below the

higher-layers. The SSCS is a "shim" layer that fits the upper layer protocols to

the AAL. Different applications from higher-layers (e.g., IP, TCP, UDP)

send/receive their Protocol Data Units (PDUs) (a.k.a. packets), which

"converge" at SSCS.

The Common Part Convergence Sublayer (CPCS) is the middle layer of the

AAL (between SAR and SSCS). The CPCS performs functions common to all

protocols.

/ Management Plane / Application

Layer management
Presentation

riane managt 5ment

/„-__.,«„_ / A
Session

/ »-oniroi riane / user nane

Higher Layers Higher Layers Transport

Network
ATM Adaptation Layer

r
Data Link ATM Layer

/
Physical Physical Layer

Figure 4. The OSI Model and the ATM Protocol Model. After (Kercheval, 1998)

Below we discuss the two steps required for IP over ATM using the AAL5:

• Encapsulation of IP datagrams in AAL5 frames: each IP datagram is put in the

data field of an AAL5 frame. The IETF requires an additional encapsulation

layer to add an 8-byte header to identify which protocol uses the frame. This

layer is interposed between the IP layer and the AAL5 layer.(Keshav, 1997)

• Translation of the IP destination address to an A TM destination address.

There are two major approaches: classical IP over ATM and LAN emulation.

They are described in the next two subsections.

21

2. Classical IP over ATM

IP (Ipv4) uses 4-byte addresses. ATM uses variable length Network Service

Access Point (NSAP) addresses. A protocol similar to Address Resolution Protocol

(ARP)1 could be used for translating an IP address to an ATM one. A problem is that

ARP assumes that the LAN supports broadcast, whereas an ATM LAN does not2. A

solution would be to have an ATM host to play the ARP server role. The ARP server

translates IP addresses to ATM addresses using a table that contains addresses mappings

(from IP to ATM and vice versa) for all the LAN members. When an ATM host wants to

send an IP packet to another host in the same LAN, it queries to the ARP server sending

its own ATM address and the IP address it wants resolved. The ARP replies with a

message containing the address translation. (Keshav, 1997)

The above scheme, when applied to very large ATM networks with thousands of

IP/ATM hosts, would create a lot of overhead traffic every time a broadcast (which is

common for Internet Protocols) was sent. The classical IP over ATM model partitions the

larger ATM network into a set of IP subnets called logical IP subnets, or LISs, to reduce

this traffic. A broadcast from a host can only reach the other hosts on the same LIS. This

solution, however, introduces the following problem. A host has no way of knowing if

there is a direct ATM path to a host in another LIS. Therefore, in the case where a host in

another LIS has to be contacted, the sender must first set up a VC to an IP router. The

router accepts the packet and uses IP routing to decide its destination. If the packet is

destined to another LIS in the same ATM network, the router opens a VC to the

destination (host or another router) and forwards the packet. If the packet destination is

not reachable using ATM, the packet is forwarded using normal IP routing. (Keshav,

1997)

The problem with the previous approach is that even if a direct ATM path exists

between two hosts, if the hosts belong to different LISs then they are obliged to go

1 ARP is used to translate IP addresses to datalink Medium Access Control (MAC) addresses.

2 An ATM LAN is a nonbroadcast multiple access (NBMA) LAN.(Keshav, 1997)

22

through a router every time they wish to establish contact with each other. Katz proposed

the Next Hop Resolution Protocol in order to address this problem (Katz, 1996). A Next

Hop Server (NHS) stores IP to ATM address translations for all the hosts (that have

registered with it) in the ATM network. The registered hosts are considered part of a

logical group called nonbroadcast multiple access (NBMA) subnetwork (similar to a LIS).

If the IP address can be resolved by the NH server, the destination is contacted over an all

ATM path, and IP routing is bypassed (this method of routing is called cut-through

routing). Otherwise, the packet is forwarded to the local IP router for transmission (as it

was done before). (Keshav, 1997)

An additional problem that IP over ATM must address is the translation of

multicast IP addresses (a.k.a. Class D addresses). The problem is caused by the fact that

ATM is a nonbroadcast technology. A Class D address must be translated to a set of

ATM addresses. The process must be dynamic to accommodate changes to the multicast

group. The problem can be solved by having an ATM switch create point-to-multipoint

connections1. Two such techniques have been developed:

• The Class D address is associated with a multicast server that coordinates the

multicast. The server maintains single connections with all the receivers

(point-to-multipoint connection). The sender(s) send packets to the server.

The server sends the packets to the receivers.

• Each sender maintains a separate point-to-multipoint connection to every

receiver in the group. The multicast connection is therefore achieved by a set

of point-to-multipoint connections.

In both techniques the translation of a Class D address to a set of ATM addresses

is provided by a multicast address resolution server (MARS) (Armitage, 1995b). A

MARS is an extension of an ARP server with the additional capability to maintain a

point-to-multipoint connection - called cluster control VC - to every ATM destination in

the LIS. The cluster control VC is used to update the mapping from a Class D address to

A virtual circuit that sends cells from a single source to multiple destinations.

23

a set of ATM addresses as receivers join and leave the multicast group. More details can

be found in (Armitage, 1995a).

3. LAN Emulation (LANE)

Continuing with our background information discussion, we will discuss LANE.

LAN emulation is the ATM Forum's attempt to make ATM interoperate with the so-

called "legacy" networks that include Ethernet and Token Ring (even FDDI). The

emulated LAN, however, must be one or the other. A router must be deployed if we want

to communication between two emulated LANs. (Kercheval, 1998)

As we have discussed in the previous section, IP over ATM allows IP traffic to be

sent to any destination on the ATM LAN or elsewhere simply by translating IP addresses

to ATM ones using an ARP server. Classical IP over ATM restricted the destination to be

in the same LAN (either a host or a router). It is obvious that if this is the case, the

address translation can be done under the data link layer (Layer-2 of the OSI model). The

advantage of translating an address under the data link layer is that the address translation

is not IP specific. In this case the address translation scheme can be used to carry

protocols other than IP over ATM. (Keshav, 1997)

Alternatively, address translation can be achieved by inserting an extra layer,

called LAN emulation client (LEC), between the data link (MAC) layer and the AAL5

(Truong, 1995). When the LEC layer receives a packet carrying a MAC address, it first

checks to see if the MAC address is unicast or multicast. If it is multicast, the packet is

sent to a broadcast server, which sends a copy of the packet to every host on the LAN.

(LANE v2 (AF-LANE, 1997) supports enhanced multicast, a form of multicast where not

all hosts must receive multicast traffic.) If it is unicast, the ARP cache is checked to see if

it already has a translation from the MAC address to an existing VC. If no VC exists, the

LEC sends an ARP message to a LAN emulation server (LES), requesting resolution of

the address. (The LES stores the translation of every MAC address in the LAN.) The

ARP responds to the LEC with an ATM address and the LEC uses it to set up a VC. (The

LANE endpoint must be capable of ATM signalling (Keshav, 1997).)

24

Since LEC and LES operate at the data link layer, any network layer protocol can

use LANE without modification. ATM, therefore, can replace Ethernet or Token Ring in

a straightforward manner (Keshav, 1997). In LANE v2, LECs can request for a particular

class of quality of service (QoS)1 when they set up the VC2. That was not possible in vl

where all traffic was treated as belonging in the Unspecified Bit Rate (UBR) class.

Detailed information about LANE can be found in (AF-LANE, 1997).

B. TAG SWITCHING

The following is a summary of (Rekhter, 1997), which contains an overview of

Cisco Systems' Tag Switching architecture. Tag Switching is a novel approach to Layer-

3 (network layer) packet forwarding. The claimed features of the Tag Switching

technology are the following:

• The use of the simple label swapping forwarding paradigm improves the

forwarding performance.

• A tag3 can be associated with a wide range of forwarding granularities so the

same forwarding paradigm can be used to support a variety of routing

functions. For example, in one case a tag can be used for destination-based

routing (the tag is associated with a point-to-point connection), while in

another case a tag can be used for multicast (the tag is associated with a point-

to-multipoint connection).

• The simplicity of the forwarding paradigm, the wide range of flow

aggregation granularities and the fact that the forwarding paradigm remains

the same enables a tag switching system to gracefully evolve to accommodate

emerging requirements.

You can have Available Bit Rate (ABR).
2

A signalling function.

A tag is defining a flow.

25

Next, we describe the two main components of Tag Switching architecture: the

forwarding component and the control component.

1. Forwarding Component

When a packet with a tag is received by a tag switch, the switch uses the tag as an

index in its Tag Information Base (TIB) (Figure 4). The TIB contains entries that consist

of an incoming tag, and one or more sub-entries1 of the form [outgoing tag, outgoing

interface, outgoing link level information]. The switch looks in the TIB to find an entry

that has an incoming tag equal to the tag carried in the packet. If the tag is found, for each

sub-entry the switch replaces the tag in the packet with the outgoing tag, the link level

information (e.g., MAC address) with the outgoing link level information and forwards

the packet to the outgoing interface. The following are the important characteristics of the

forwarding component:

• The forwarding decision is based on the exact match algorithm using a fixed

length, short tag as an index. Therefore the forwarding procedure is simple

and allows high forwarding performance (more packets per second).

Additionally the simplicity of the forwarding component allows for its

implementation in hardware.

• The forwarding decision is independent of the tag's granularity so the same

forwarding paradigm can be used to support different routing functions. A

good example demonstrating this is the way that the algorithm is used for

unicast and multicast. In unicast, an entry in the TIB would only have a single

[outgoing tag, outgoing interface, outgoing link level information] sub-entry.

In multicast, an entry would have one or more sub-entries and the outgoing

link information would include a multicast MAC address.

In the case of multicast one incoming tag must be associated with many outgoing tags thus we have more than

26

Incoming

Tag

Outgoing

Tag

Outgoing Outgoing

Interface MAC address

tagli tagl portl MAC1

tag2j tag2 port2 MAC2

tag3j tag3 port3 MAC3

tag4 port4 MAC4

tag4j tag5 port5 MAC5

tag6 port6 MAC6

Figure 5. Tag Information Base (TIB) format.

• The forwarding paradigm is independent of the routing functionality therefore

any new routing functions can be readily.

• The tag-forwarding component is independent from the network layer (Layer-

3) and it can be used with various Layer-3 protocols.

A decision has to be made by the designers of a tag-switching network regarding

the tag encapsulation in a packet e.g., where to put the tag information. So far, the

following possibilities have been proposed:

• A small tag header may be inserted between the Layer-2 and the Layer-3

headers.

• Encapsulation in the Layer-2 header.

• Encapsulation in the Layer-3 (network layer) header (e.g. using the Flow

Label field in IPv6).

The flexibility of tag encapsulation allows the implementation of tag switching over a

variety of different links, like point-to-point links, multi-access links, and ATM.

one sub-entries.

27

2. Control Component

In tag switching it is important to be able to identify Layer-3 routes by looking at

a tag. This binding is essential. In different forwarding granularities a tag may support

unicast (the tag identifies one route) or multicast (the tag identifies more than one routes).

The control component is responsible for the creation of the tag-route bindings and for

the distribution of the tag binding information among tag switches. The control

component is modular with different modules supporting different routing functions. The

benefit of this modular design is that when new routing functions emerge, tag switching

will be able to support them by adding new modules.

Further details of how the control component is supposed to support the routing

functions of destination-basedrouting, hierarchy of routing knowledge, multicast and

flexible routing can be found in (Rekhter, 1997).

3. Tag Switching with ATM

Since both the tag switching forwarding paradigm and ATM cell forwarding is

based on label swapping, tag switching technology can readily be applied to ATM

switches by implementing the control component of tag switching.

The tag can be carried in the VCI field of the cell. If two levels of tagging are

needed, then the VPI field could be used as well1.

The switch should be able to participate as a peer in network layer routing

protocols in order to be able to get the necessary control information for tag bindings.

Routing protocols (e.g., OSPF for interior routing, BGP for exterior routing) are used for

exchanging information about the network topology - both interior and exterior. This

information must be stored in the switch so that it is able to successfully perform the

bindings between tags and routes. Additionally, the switch may need to allocate more

than one tag for the same route. This is required to avoid packet interleaving when

packets arrive from different upstream tag switches that are destined for the same next

hop.

1 One level of tagging (the VCI field) is adequate for most applications

28

Therefore, the minimum requirements for an ATM switch to support tag

switching are: capability to support network layer routing protocols and ability to

implement the tag switching control component. An additional requirement may be

support for some form of network layer forwarding.

The benefits of implementing tag switching on ATM switches are:

• It would greatly simplify the integration of ATM switches and routers because

an ATM switch would appear as another router to an adjacent router. This fact

could provide a more scalable alternative to the overlay model.

• It removes the necessity for ATM addressing, routing and signalling schemes

since now the forwarding process is topology-driven and not flow based.

• It maintains the ATM switch's ability to support traditional ATM. The tag

switching control component and the ATM control plane (the corresponding

ATM control component e.g., PNNI1) would operate in a non-interactive

manner2.

4. Summary

The following characteristics of tag switching make it an interesting proposal:

• It is not constrained by a particular network layer protocol - it is a

multiprotocol solution.

• The simplicity of the forwarding component facilitates high performance

forwarding.

• The forwarding component can be implemented in high performance

hardware such as ATM switches.

1 Public/Private Network to Network Interface is the collection of signalling functions for setting up, maintaining,
and closing a connection. Another such collection is the User to Network Interface (UNI) that refers to the signalling
functions between a single workstation and the network.

To achieve this we need to configure and partition appropriately the switch's resources so that each technology
(tag switching and ATM) has enough resources available (like VPI/VCI space etc.).

29

• Tag switches have no impact on routers since they use the same routing

protocols.

• The control component is flexible and may support a variety of forwarding

functions (e.g., destination-based routing, multicast etc.).

• A tag can be associated with a wide range of forwarding granularities, which

in turn allows for scalability and functionally rich routing.

• The combination of a wide range of forwarding granularities and the ability to

evolve the control component independently of the forwarding component

make tag switching a technology that enables graceful introduction of new

routing functionality. This is very important in a rapidly evolving computer

networking environment.

D. SUMMARY

In this chapter, we discussed computer networking issues that are of interest as a

background for this thesis. We are interesting in particular in high-speed networks and IP

over ATM technologies. We also discussed a novel routing technology, Tag Switching

(Rekhter, 1997). In the next chapter, we will examine the problems that this technology

introduces and we will present our protocol to address those problems.

30

IV. THE PROTOCOL

In this chapter, we examine the vulnerabilities introduced by the implementation

of the forwarding component of tag switching. In particular, we describe how the security

policy of an enclave can be violated by unauthorized access from inside the enclave to

the outside world. We further propose a security protocol. The protocol can be applied as

a module of the control component in a Network Access Controller (NAC) to minimize

these vulnerabilities.

A. INSIDER ATTACKS

Tag switching - and more specifically the label swapping forwarding paradigm -

introduces security vulnerabilities that have not been fully examined. For example

(Rekhter, 1997) does not discuss any security issues.

In this section, we will try to identify a category of vulnerabilities related to the

unauthorized use of network resources by an insider. We will examine how an enclave

insider (with physical access to systems in the enclave), who has no authorization to send

traffic outside the enclave, can exploit the label swapping forwarding paradigm to violate

the access restriction imposed upon him/her. This, in turn, will violate the security policy

of the enclave.

We focus attention on the forwarding component of tag switching. We do not try

to examine the control component because it may differ greatly from implementation to

implementation and it may evolve through time. On the other hand, the forwarding

component - label swapping - is advertised to be a constant aspect of tag switching.

Therefore, we are interested in making the forwarding component more secure.

In this context, we examine which of the attacks described in Chapter II, Section

B, can be performed by an insider. We describe the principles on which possible attacks

could be based rather than the exact techniques that can be used by an attacker. We

believe that several case studies would be required to describe the latter, and they are

beyond the scope of this thesis. Additionally, since it is virtually impossible to

31

exhaustively examine all the techniques that a resourceful attacker can come up with, we

have decided to take a more generic approach.

Before looking at the possible attacks, we list our assumptions for the enclave:

• There are users in the enclave that do not have access privilege to the outside

network and their packets are not allowed to leave the enclave. A situation

like this may arise when the enclave enforces an access control mechanism as

part of its security policy. The information security officer may decide to

grant access privileges to a user and may decide to deny this privilege to

another. For example, user Bob has been granted access privilege but user

Alice has not. Therefore, Bob is authorized to send traffic out of the enclave

but Alice is not authorized to do so and the packets that Alice is sending must

" be denied access to the external network.

• A link encryption scheme is not used (however an end to end scheme may be

used). Therefore, the header of a packet goes in the open (but the contents of

the packet maybe encrypted).

• The potential internal attacker has spoofing capabilities i.e., (s)he can read the

header of any packet.

By examining the traffic in the network, the attacker can see the tags used in the

packets sent out of the enclave by authorized users. He or she then can take two possible

initial actions to compromise the security policy of the enclave:

• Steal and reuse a valid tag to send unauthorized traffic without notice.

• Alter tags to cause packets to be forwarded to the wrong destination without

being detected.

Since the tag is the only routing information used by the forwarding component, a

tag switch, upon receiving a packet with a known tag, would forward the packet without

further checking1.

1 The tag switch looks up the Table Information Base (TIB) to find the incoming tag. Since the tag is valid, an

32

The remaining difficulty an attacker has to overcome is to ensure that the

outgoing packets are going to be received by an intended partner in the outside. This can

be achieved (comparatively simply) if the partner uses a sniffer program that picks up

packets that leave the enclave. We will not examine how the attackers orchestrate this

final stage of the attack. Our focus is how the internal attacker can manage to send

packets out of the enclave. By denying this capability, we do not allow the attack to

proceed to the final stage.

We consider the following three broad categories of insider attacks. We describe

how each of them can be executed by an attacker when the label swapping forwarding

paradigm is used in an enclave.

• Disclosure: Alice can steal a tag from Bob and start sending packets outside

" the enclave. This constitutes a direct violation of the DAC policy of the

enclave. Additionally, another user authorized to access the network, could

copy packets from the traffic sent by Bob, replace the tag with a new valid

tag, and then resend them anywhere he or she wishes. Only end-to-end

encryption would prevent the actual disclosure of data in the latter case1.

• Masquerade: An unauthorized user can use a stolen tag to insert packets to the

network. Additionally, higher layer computer communications protocols

would not detect when the attacker steals and reuses the entire IP header. This

kind of attack is also known as cut-and-paste attacks.

• Timing modification: An attacker can delay or replay packets - belonging to a

legitimate user. For a replay of packets whose tags have expired in the

switch's TIB, the attacker must steal a new, valid tag and use it for every

packet intended to be replayed. The "faked" flow may not have to belong to

the original source of the packets. In the case where the attacker needs to

replay packets as a flow from a different host, then other parts of the header

entry exists. It simply replaces the incoming tag with an outgoing tag and adds a data link header to the packet. Then
the packet is forwarded to the interface(s) designated in the sub-entry(s) of the incoming tag entry in the TIB.

1 Covert channels are also a problem but they are beyond the context of this thesis.

33

have to be changed in order to "fool" the higher layers of the communications

protocol.

B. THE PROTOCOL

1. Protocol Overview

In order to counter the kind of attacks described in the previous section, we

propose the implementation of a protocol that will authenticate every packet that arrives

at the tag switch. In this way only authorized packets i.e., packets that come from users

with external access privilege, will be forwarded to the outside network. We also want

the packet authentication and filtering scheme not to significantly affect the high-speed

element of tag switching.

Our protocol requires authorized users to append a fixed-length trailer to every

packet. This trailer will contain all the necessary information required for the

authentication of the packet. The decision to use a trailer was motivated by the following

two facts:

• We wanted to avoid parsing the variable-length IP header, which is

computationally expensive.

• It is simple to extract a fixed number of bits from the end of a packet.

Our protocol will allow a firewall-like device, called Network Access Controller

(NAC), to control the access from an enclave network to the outside. The NAC will play

the role of a security "gateway" to the network. The NAC can be implemented at the first

tag switch reached by packets on their way out of the enclave or may be a dedicated host

at the edge of the enclave. A model for the protocol is shown in Figure 5. The

implementation of the NAC will not affect or alter the tag switching technology. It will

only add an intermediate authentication stage before the forwarding component of the

first tag switch.

34

Contro I co nponent

Forward ng co npc nent

Tag Switch

Enclave

■ Figure 6. System Model for the Network Access Controller (NAC).

The protocol provides a session-based solution1. A session is a period of time that

a user-host pair has access to the network through the NAC. A session terminates either

when the host completes sending its traffic or when the NAC times-out the host,

requesting reestablishment of the session. The time-out enhances security because it

prevents an idle session from being hijacked. The reestablishment of a session does not

necessarily mean interruption of the data transmission channel because session

reestablishment can happen asynchronously, out-of-band. There will be, in the worst

case, only a momentary decrease in throughput. A session may consist of several flows.

For example, data flows, voice flows, and video flows may coexist during a single

session.

The protocol uses the services of an Authentication Authority to authorize the

access to the NAC (and subsequently access to the outside). The protocol also uses the

services of a Key Distribution Authority that will provide a session key for each user

session with the NAC. The Authentication Authority also provides a ticket to the user-

host initializing this session. The ticket is used by the NAC to verify that the access is

It has to be repeated when a session is established or reestablished. This will become clear in our later discussion
of the various phases of the protocol.

35

legitimate. A detailed description of the verification process is presented in the next

section. The NAC creates a key-table (an indexed table of keys) for the session. The table

contains a sufficient number of keys for the entire duration of the session. A detailed

description of the key-table is presented in the next section. A copy of the table is stored

in the NAC and another copy is encrypted with the session key and then sent to the user-

host. Only the intended user-host has the session key required to decrypt the table.

Before each packet leaves the host a fixed-length MAC for the packet is

calculated and appended to the packet. Specifically, when the packet is formatted by the

user-host, an appropriate key is chosen from the table (key-table). The key index of the

selected key (index of the key in the key-table) denoted by ki is inserted into the second1

word of the trailer (Figure 6). Then MAC is calculated using a one-way hash function on

the composite message that consists of the original packet, the first two words of the

trailer and the selected 32-bit key. We have made the MAC 128-bits long because we use

MD-5 as the default one-way hash function, however, it is easy to change it to match the

message digest size of other hash functions. Note that the key is used in the calculation of

the MAC; however, it is not included in the packet that is sent. Only the original packet

and the MAC trailer will be sent. The original packet payload can be encrypted before

MAC computation if high degree of confidentiality is desired. The receiver will decrypt

the payload after removing the trailer.

When receiving the packet, the NAC strips the original packet from the trailer and

reads the key index (the second word of the trailer) and the MAC (the last 4 words). The

next step for the NAC is to check if this is an authorized packet. The NAC looks up the

key-table using the key index to find a key2. The key should be the same as the key used

by the user-host for the MAC calculation. The obtained key is appended to the received

packet and the MAC is recalculated at the NAC. If the calculated MAC is the same as the

one received in the trailer then NAC knows the packet is authorized and will forward it.

1 The first word is not used currently by the protocol but it is reserved for future use (version information etc.).

2 If no key is found the packet will be chopped.

36

Otherwise the packet is unauthorized and the NAC rejects it. The packet is also rejected if

the key is not found in the key-table.

2. List of assumptions

Our design of the NAC protocol is based on the following assumptions:

• The protocol is independent of the network layer technology that is going to

be used. However, for simplicity we assume that Ipv6 is used.

• The protocol is independent of the link layer technology that is going to be

used. However, we assume that tag switching is going to be implemented over

ATM. This will allow us to view the tag as an indicator to the VCI that a flow

is using. This notion of a tag is easy to understand and is practical.

• The key indexes in one key-table cannot have duplicates so that each key

index corresponds to one and only one key. Therefore, we have a "limitation"

of a total of 232 key indexes or a total of 232 keys in one table. While the large

size appears to be overkill, the 32 bit-field allows for optimized indexing

schemes. Following the VPI/VCI paradigm of ATM, we could use the first 16

bits to identify the flows or hosts (host ids) and the rest of them to identify the

keys used for MAC calculation. We will not examine this optimized version,

instead we will focus on the basic indexing scheme where all 32 bits are used

as key indexes1.

• An Authentication Server is available in the enclave. Any authentication

server can be used for our protocol. We currently assume that the enclave uses

the services of Kerberos 5. Kerberos 5 is very popular and already in use in

many sites and will be included in Microsoft Windows NTv.5.

• A Key Distribution server is available within the enclave. We choose

Kerberos 5 to play this role as well for the same reasons. Additionally,

This scheme is very simple, however, we must keep in mind that it may create a very big aggregate key-table in
the NAC (depending on the number of hosts with active flows in the enclave).

37

Kerberos 5 allows a choice of encryption algorithms (e.g., a client may ask for

triple DES, or IDEA and Kerberos 5 will supply the corresponding session

key).

As we mentioned in the previous section the NAC may be the first tag switch

or a firewall-like host playing the role of the security gateway1. In the latter

case the NAC will simply filter and forward packets to the first tag switch.

Without loss of generality we assume that the NAC is the first tag switch and

that our protocol is going to be implemented on the NAC.

The security overhead must be kept to a minimum. For this reason, we do not

use link encryption for the packets because it is computationally costly.

Instead, we have chosen to use a cheap, keyed one-way hash function to

calculate the MAC for each packet. (The motivation for using this method of

authentication was described in Chapter II.)

The protocol can use any keyed one-way hash function to compute the MAC.

We have selected keyed MD5 in order to demonstrate packet filtering can be

done with a minimum security overhead. Our protocol overcomes the

weakness of the MD5 algorithm - even the keyed version has been shown to

be weak (Preneel, 1995) - with the use of short lived keys (e.g., the key has

only a limited lifetime, denoted To, and it is "never" used again) and periodic

key-table refreshing (we renew the key-table at regular intervals).

The key-table exchange can be conducted out-of-band and, therefore, we

assume that it does not add any significant overhead to the in-band data

transmission.

Periodically the NAC times-out a session, requesting a new authentication

ticket from the user. This sequence of events can take place out-of-band. In

1 The NAC does not necessarily introduce a single point of failure. In a distributed environment, we may have
more than one NAC to implement our protocol. This will allow redundancy and load balancing in the enclave. The
number of NACs an enclave needs is a network design decision.

38

fact, the user may not even notice that at all, except in the case when he will

be prompted to enter a password.

• The user, after logging in at a host inside the enclave, is considered as a single

entity, called the user-host pair. This is important because we are interested in

being able to authenticate both the user and the machine. It is beyond the

scope of this thesis to examine how this can be achieved.

3. Protocol Phases

We describe in detail five phases of our protocol. The description contains step-

by-step actions that take place when the protocol is applied.

a. Initialization phase:

• The user logs in at a host inside the enclave

• The host requests authentication for the user-host pair from the

Authentication Server (Kerberos 5)

• The user requests a session key from the Key Distribution Authority (Kerberos

5) in order to contact the Network Access Controller (NAC). In the request,

the host specifies the conventional1 encryption algorithm to be used (e.g.,

IDEA2).

• The Authentication Server authenticates the user-host and the Key

Distribution Authority prepares a session key. A reply is sent back to the user-

host pair that includes this session key and a ticket. The reply is encrypted

with the algorithm of choice and with a secret key that is shared by the user

and the Authentication Server. The ticket is a Kerberos ticket3 that contains

A public key algorithm can be used in the case that instead of Kerberos we chose to use X.509-based
authentication (ChapterI.A.2).

2
DES or triple-DES can also be used.

We are interested only for these key components of the key and not the exact form of it. More details for
Kerberos can be found in RFC 1510(Kohl, 1993).

39

the session key, the identity of the client (host), the lifetime of the key and a

timestamp (for validity checking). The ticket is encrypted with the NAC's

secret key. The host is going to send it to the NAC when it requests to

initialize a session. The NAC uses the ticket to verify that the user-host is

authorized by the Kerberos to access the outside network.

b. Connecting to the NAC

• The NAC receives the ticket from the host that wants to send traffic (packets).

• The NAC decrypts the ticket using its secret key (the one that is shared only

with Kerberos)

• The timestamp and the lifetime of the ticket are checked so that the NAC can

decide if the ticket is valid or not.

• If the ticket is not valid the NAC disregards the request (and may audit the

attempt for security purposes).

• If the ticket is valid, the session key and the host id are extracted from the

ticket by the NAC.

c. Key-table preparation and exchange

• NAC creates a key-table (we describe the format and functionality of the key-

table in the next section) that will be shared by the host. In order to simplify

the protocol description, we will assume that the host requested activation of a

single flow, therefore, the key-table is going to be used for only one flow.

• The new key-table is stored into a database of keys that the NAC maintains

for all hosts.

• A copy of the key-table is encrypted with the session key and is sent back to

the host.

40

• The host decrypts the key-table; now both the host and the NAC share the

same secret key-table.

d. Packet formatting at the host

• Every time a host wants to send a packet to the outside, it chooses a key from

the key table. The process of choosing a key and related rekeying issues will

be examined and described in detail in the next section. The ki is stored in the

key index field (second word) of the trailer.

• The selected key is temporarily appended to the set {packet, ki) (first phase of

the Secret Suffix Method).

• MD5 is applied to the whole (packet, ki, key) and a 128 bit MAC is obtained

(second phase of the Secret Suffix Method).

• The created MAC is inserted into the last four words of the trailer (Figure 6).

• The composite message (packet, trailer) is then sent to the NAC.

e. Packet verification at the NAC:

• The message (packet, trailer) arrives at the NAC.

• The trailer is stripped from the packet, the ki is read, and the MAC is buffered.

• NAC looks up the aggregate table in order to retrieve the key that corresponds

to the key index read from the trailer. (If the key index is not found the packet

is rejected.)

• NAC repeats the Secret Suffix Method using the retrieved key and applying

MD5 (repeating the same actions as the host) and creates a MAC.

• NAC compares the created MAC with the received MAC.

• If the MACs are not the same, the packet is rejected, otherwise, the packet is

forwarded to the tag switching forwarding component.

41

It is clear from the above that our protocol is independent from tag switching, and

therefore, can be applied to any label swapping forwarding architecture. Recall that we

do not explore how routes are established in the tag switch because this is part of the

control component functionality and beyond the scope of this thesis.

4. Protocol Components

In the following section, we describe the protocol components that were discussed

in previous sections and we examine their functionality.

a. Packet Trailer

The packet trailer is a fixed length field appended to the end of each

packet. The format of the trailer is shown in Figure 6. The length of the trailer is fixed,

196 bits (24 bytes). The first 32 bits (first word) allow extensibility (e.g., to allow storage

of version number or other information) and are not currently used by our protocol. The

second word (next 32 bits) is the ki. We see two straightforward ways for the use of the

ki:

• The ki is used only for indexing keys in the key-table. This would require the

NAC to be able to aggregate all the key-tables that are in use by different

hosts in the enclave. Every time a packet arrives at the NAC the whole pool of

keys (the aggregate table) must be searched in order to find the corresponding

key. It is obvious that in this case the key indexes must be unique. The NAC

must keep track of which have been assigned and which have been

deallocated (not used any more). The later increases the complexity of the

NAC, which is something that we try to avoid. Additionally, if the number of

hosts is large, then we can expect the aggregate table to be large. Searching it

may incur large delay in the authentication process.

. The ki also identifies the host that has created the packet. In this case the first

part (e.g., first 16 bits) of the ki may play the role of a host identifier and the

second part indexes the key in the table for that host. The NAC has to

maintain a data structure, which will be a set of entries that will be indexed by

42

a host identifier. Each entry will be a key-table. In this way, there is no need

to aggregate the allocated key-tables.

in
o>
>•
.0
rt
CM
II
<n -a
i_
0
5
to

Key index

MAC

MAC

MAC

MAC

D 31

Figure 7. The packet trailer.

In this thesis, as we mentioned, we consider the former indexing scheme

however, it is obvious that in both indexing schemes the authentication process is totally

decoupled with the forwarding process (NAC is independent from tag switching).

b. Key-Table

The key-table is a container data structure that contains (ki, key) pairs. The

number of entries (pairs) can be decided by the designer. As we mentioned, the table

could be an aggregate table for all hosts or it could be an array of tables each of which is

specific to a host, indexed by the host_id.

The keys must be randomly selected. The key indexes can be randomly

selected too but it is not necessary. The key may be arbitrary long (given that the key-

table allows dynamic memory allocation for the key storage). Key generation is not a

trivial problem. However, any good random number generator could be used for

generating keys.

Another parameter that has to be considered is the lifetime of the key-table.

This is a design issue. The key-table should be refreshed more frequently if high security

is desired. Refreshing the key-table may take place out-of-band, therefore, it does not

43

affect the data throughput for the current session. However there is the synchronization

problem for the activation of the new table. The host and the NAC have to work together

in order to have a seamless transition from the old key-table to the new. A three-way

handshake - similar to the one used for establishing a connection in TCP - between the

host and the NAC can be performed for this purpose.

5. Tag-key management

We had to address how the host could select a new key. We refer to it as the

rekeyingproblem. Our initial approach was to make the choice of a key random (from the

key-table) for each packet. The motivation was that we wanted the lifetime of a key to be

the same as the lifetime of a packet and therefore, the lifetime of a packet (comparatively

short) would be the time available to an attacker to break the message digest algorithm.

However, this would be true only if our key-table had at least as many entries as

the number of packets that a host intends to send. Additionally, a mechanism would be

needed to prevent the reuse of a key. In reality, since a key-table has limited length, then

it would be impractical not to reuse keys. Key reuse increases the vulnerability to an

attack.

Given the above premise (that we have to reuse keys more than once), we

examined how long a key is exposed to an attacker with random key selections. In our

analysis, we assumed the following:

• The lifetime of the key-table denoted T, is the same as the lifetime of the flow

(e.g., the table remains the same throughout the transmission).

• The number of entries in the key-table is n.

• The flow for the current session consists of k packets.

It is obvious that if we use random key selections we allow the whole period 7 to

the attacker to break the message digest algorithm. This happens because if a key is

selected randomly a new packet may carry any of the key indexes (and subsequently any

key) available in the table. Therefore, in this case the time of vulnerability is T.

44

Given that a key is selected for each packet, we deduced that statistically each hi

is going to be used k/n times. This fact led us to the following observation. If we use the

same key, repeatedly, k/n times (e.g., put the same ki in k/n packets) and then discard it

we end up using each key index only for T/n time instead of T. We decide therefore to

use a rekeying timer T0= T/n. It is obvious that this approach shrinks the time window

that the attacker has available to break the message digest algorithm from Tto T/n. The

selection of the next ki can be done sequentially1 from the remaining unused key indexes

in the table2. The only additional action is that every used key index must be marked as

unavailable in the table or must be totally removed.

Practically, the calculation of T/n may not be feasible, so the designer may choose

to use a fixed value of T0 and whenever the key table is exhausted the key-table could be

refreshed. The rekeying parameter T0 is important to our protocol as it widens or narrows

the window of vulnerability to the message digest algorithm.

Since the key was produced by a random process, sequential selection of the next entry is acceptable.

We can take advantage of this to optimize the lookup process of the key-table. The NAC could only look up the
current and the next entries in the table and not the whole table for matching the key index.

45

46

V. PROTOCOL PERFORMANCE EVALUATION

Our protocol introduces delays when it is applied to a network. The major delay is

caused by the message digest algorithm (MD5) that we use on every packet. This step is

required to create MACs and authenticate packets based on them. Another delay is

incurred by the comparison of the recomputed MAC and the received one. Other delays

such as the table lookup for key retrieval are very small1 compared to the MAC

calculation and the MAC comparison.

.Any message digest algorithm can be used for MAC generation. We have selected

keyed MD5 because MD5 is popular, fast and easy to implement.

A. MD5 PERFORMANCE

Measuring the performance of MD5 is not a new problem. (Bosselaers, 1996)

contains some results and a proposal for improving MD5's performance. According to

(Bosselaers, 1996) the speed of MD5 (C code for x86 architectures) is 59.7 Mbits/sec on

a 90 MHz Pentium. In order to improve the speed the authors rewrote the code in an

assembly language and used the following optimizations2:

• Keep the code and data in the Pentium's on-chip caches.

• Organize the assembly code to take full advantage of the Pentium's two five-

stage pipelines.

The above optimizations increased the throughput of MD5 to 113.7 Mbits/sec.

The authors however, mention that "these figures refer to the performance of the hash

function's basic building block: the compression function". If one wants to calculate the

performance for hashing a message of arbitrary length, he/she has to take into account an

additional iteration due to the padding block. (Bosselaers, 1996)

We perform our own measurements for two reasons:

These operations can be optimized to minimize delay. We do not discuss the optimization details because they
are beyond the scope of this thesis.

More details on the optimizations can be found in (Bosselaers, 1996).

47

• To verify their results under a different environment without optimizations.

• To understand how different versions of MD5 are expected to perform.

We measured the throughput of an unoptimized version of MD5 implementation

that has used the original MD5 code written in C by Ron Rivest (Rivest, 1992). We

downloaded the source code from the Internet (ftp.funet.fi/pub/crypt/hash/mds/md5/). We

compiled the code1 using the Borland C++ 5.02 compiler. The measuring source code is

included in Appendix E and the documentation of our2 code is included in Appendix D.

We measured the performance on two machines: a 133 MHz Pentium with 256 Kbytes of

Level 1 cache and 48 Mbytes of RAM and a 200 MHz Pentium with 256 Kbytes of Level

1 cache and 48 Mbytes of RAM. During the experiment, we did not take any special

measures to optimize the hardware and the software environment of the machines. The

OS in the 133 Pentium was Microsoft Windows 95 and in the 200 Pentium was Windows

NT 4.0. On both machines, the load was normal.

We applied MD5 to a series of messages of different sizes. The message sizes

ranged from 512 bytes to 64 Kbytes. The results for Pentium 133 are shown in Figure 7

and the results for Pentium 200 appear in Figure 8. The measured throughput on the

Pentium 133 machine was 35 Mbits/sec, regardless of the message size. On the Pentium

200 machine, the throughput was 60 Mbits/sec. Therefore, our results are in agreement

with the performance of MD5 measured in (Bosselaers, 1996).

B. MAC COMPARISON

Another cause of overhead is the comparison of the received MAC taken from the

trailer and the MAC that is recalculated by the NAC. Measurements of the comparison

process showed that the overhead was negligible when compared to the one incurred by

MD5. We tried two different comparison methods. The first method compares the 128-bit

1 We had to clean the in order to be able to compile it with Borland C++ 5.02.

2 We had to write a driver and a set of utility functions to interface with the MD5 code.

48

MAC byte by byte. The second method breaks the 128-bit MAC in four 4-byte words and

casts each of them to integers. This results in two groups of four integers. We then

subtract each integer from its corresponding peer. If all the (four) subtractions turn out to

be 0 then the MACs have to be the same. The results of the two methods are shown in

Figure 9 and Figure 10. The documentation and the code are included in Appendixes F

and G respectively.

When we compared the two methods for performance, we noticed the following:

• If the MACs are the same, the for-loop that compares the MACs byte-by-byte

has to be executed in full. In this case, our measurements show that the byte-

by-byte method takes twice the time as the integer method.

• If the MACs are different then the two methods take approximately the same

time.

Based on the results, we recommend the use of the integer method for MAC

comparison. Note that the delay incurred by the MAC comparison is much smaller than

the delay caused by the MD5 calculation; therefore, we can argue that both methods are

acceptable.

o
a>
to
to

15

3 a
£
UJ
3
O

36
35.5

35
34.5

34
33.5

33
32.5

32
31.5

MD5 on Pentium 133

35.56 35.60 35.50

33.61

33.06

35.21 35.23

ML

ft"- *

*•>■'•■

34.76

tm

US* m

0.5 2 4 8 16

message size (Kbytes)

32 64

Figure 8. MD5 performance on a Pentium 133 MHz

49

o
(!)
W
W *-»

JQ

3 a
£
D)
3
O

66

64

62

60

58

56

54

52

ISS« Iff?
S&$nl

Ppffe

0.5

MD5 on Pentium 200 MHz

57-14 56.74

IM

61.54

63.87

§11

5ä

Usse

62.68

F, *—•
■ :^*

62.35

2 4 8 16
message size (Kbytes)

58.63

56.18

32

Figure 9. MD5 performance on a Pentium 200 MHz

64

MAC Comparison Performance (for same MACs)

i iterations

■ ByteXORing method
d integer method

Figure 10. Performance when MACs match.

50

MAC Comparison Performance(for different MACs)

120

t0am^ 100
(0
u
0)
CD 80
o
c
re 60
c

**■■»

>. 40 re
0)
•a 20

□ Byte XORing method
■ integer method

Figure 11. Performance when MACs do not match.

51

52

VI. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

In this thesis we examined how the implementation of Tag Switching or other

label swapping, packet-forwarding, fast-routing technologies increase the vulnerability of

an enclave to insider-attacks (Chapter IV). This category of attacks is related to

unauthorized access from inside an enclave to the outside network. We proposed a

protocol to counter this category of attacks. We emphasize that we do not provide

protection against all kinds of attacks.

The proposed protocol provides the means for fast packet authentication. The high

speed is.achieved by the following:

• Use of the trailer, which allows filtering at Layer 2.

• Use of a cheap and fast message digest algorithm (keyed MD5).

• We use key caching (the host has a table of keys) to allow fast rekeying.

To overcome the weaknesses of the keyed MD5 algorithm we use a limited key

lifetime To and periodic rekeying. Additionally, we use key caching, viz. we provide the

host with a key-table, to allow fast rekeying1. The performance measurements indicated

that it is possible to use our protocol in high-speed networks without unacceptable delays.

The protocol implements a Network Access Controller (NAC). The NAC can be

regarded as an authentication module. It can be an intermediate stage between the enclave

hosts and the forwarding module of a gateway. If a packet does not make it through the

NAC, it will not reach the forwarding module. This can be useful to counter denial of

service attacks. The modular nature of the NAC increases its flexibility since it can be

easily combined with a variety of routing technologies and other security devices while

totally independent of them. The only requirements for the NAC implementation are an

Otherwise rekeying could incur unacceptable delays

53

•

Authentication Authority and a Key Distribution Authority, which are usually in place for

a concerned network.

B. FUTURE WORK

A formal verification of the protocol is required. A prototype implementation in a

distributed environment could follow. For the latter, we recommend the following

phases:

Modify the simulation code to use the services of a real Kerberos during the

simulation. We recommend this to be done in a Windows NT environment.

Make the code portable to UNIX machines. In the code, we used C++

Standard Template Library (STL) containers like maps and vectors. When we

were writing the code, Sun's libraries for C++ were not totally compatible

with STL. However, this may change in the near future. There are

commercially available STLs for Sun machines.

A Java implementation might be considered. Java has many attractive features

that may benefit a prototype implementation of the protocol1. Java code is

platform-independent, mobile and multi-thread enabled.

Choose a communication mechanism like sockets to pass information back

and forth between the different entities in the network, e.g., the host and the

NAC. In an initial phase, communication could be simulated over IP. Our

code simulates the communication channel using files for information

exchange. Specifically, each entity (object) that wants to send a key-table

creates a file and saves the key-table in the file. The receiving entity opens the

file to retrieve the key-table.

Slower performance must be expected with Java.

54

• Create daemons that will implement the NAC and will provide its services

whenever a request arrives. The nacclass of our code can be used with little

modification for this purpose.

• Simulate the Tag S witching forwarding component in software. This can be

done if we have an ATM Network Interface Card (NIC) in the machine that

implements the NAC. The packet after being authorized by the NAC could be

forwarded to a preexisting VC to another machine that could acknowledge its

receipt. This will simulate how a tag switch would behave over an ATM link.

Knowledge of the ATM Application Programming Interface (API) will be

required so that the NIC could be programmed to forward traffic to the

preexisting VC.

Another issue that remains to be investigated is the trade-offs between various

design parameters. Specifically, experiments can be conducted to evaluate the trade-offs

between:

• The lifetime of a key To and security.

• The lifetime of a key To and the number of keys n.

• The key length and the lifetime of a key To.

55

56

APPENDIX A. DESIGN SPECIFICATION OF SIMULATION PROTOTYPE

1. Description

The simulation program models our protocol. The program will simulate what

was described in Chapter IV of this thesis. The platform for the software will be a

Pentium-based PC running Microsoft Windows NT 4.0 OS. The language for the

simulation is C++ and the Borland C++ 5.02 compiler was used. The object model of the

prototype is shown in Appendix B. Future work on this prototype may consist of the

phases that were mentioned in Chapter VI.

The program will do the following:

• First it will create a host object, a Kerberos object and a NAC object

•- The host object will be registered with Kerberos.

• The host object will request for a session key and a ticket from Kerberos.

• Kerberos will create them (the ticket will be deposited in

KEY_TICKET_FILE so the host object will be able to retrieve it).

• The host object requests the start of a session with NAC. It sends the the name

of the TICKET_FILE to the NAC. After the NAC verifies it it prepares a

tableclass object (the key-table) and deposits it into the TABLEFILE.

• The host retrieves the table from the TABLE_FILE and starts instantiating

Ip_packetclass objects. The packets are formatted in accordance with our

protocol using a key from the tablE. The message digest for the set (packet,

trailer) is calculated using MD5. The data part of the packet object is retrieved

from the contents on the MESSAGE_FILE (this file must pre-exist for the

simulation to run; its name must be included in the constants.h file).

• The host requests authentication of each packet by the NAC, following the

steps of the protocol. If the NAC authenticates the packet, the program

displays that this packet was authenticated.

57

2. Layers

The file constants, h contains most of the system parameters that are used in the

simulation. The filenames that are included are required for passing information between

objects. The message that is going to be included as the packet content must be in a file,

the name of this file must be assigned to MESSAGE_FILE in the constants.h. Without

this file the simulation will not run.

The following classes were created (indentation indicates the hierarchy between

the modules). We use the expressions host, Kerberos, NAC when we refer to the

simulated modules.

Hostclass: models the functionality of a host.

HostJicket_class: models the message that a host sends to NAC to

establish a session. Prerequisite: the host has been authorized by

Kerberos to do so and a valid ticket has been obtained.

Nacclass: models the functionality of a NAC.

Tableclass: models the functionality of a key-table.

Hostjablevector. models the database of tables that NAC must maintain.

Hostjable_class: models each entry of the previous database.

Kerberosclass: models the functionality of a Kerberos module.

Host Jcey vector, models the database that Kerberos maintains for

hosts and their keys.

Host Jcey_class: models the entries of the previous database. Each

entry contains the host_id and the secret key that the host

shares with Kerberos.

Key_ticket_class: models the reply of Kerberos to a host that requests

to communicate with NAC. It contains a session key and a

ticket (intended for NAC).

ticketclass: models the ticket that Kerberos prepares. The ticket

authorizes a host to further establish a session with NAC.

Ip_packetclass: models the functionality of an IP packet.

58

We also used the following third party code:

MD5: RSA Data Security, Inc. MD5 Message-Digest Algorithm (C code). We

just cleaned up the code in order to compile and run it with Borland C++

5.02 compiler.

Finally, we also wrote the following auxiliary code:

Fileutih: provides services, needed by other modules, related to files and buffers.

Hashutils: Services used for interfacing the MD5 package functionality. We

modified a demo driver program for MD5. This driver was originally

written by Andy Brown (1994, asb@cs.hott.ac.uk). The code was included

in the MD5 code that we downloaded from the Internet.

3. Modules

3.1 Hostclass

3.1.1 DESCRIPTION: the class simulates the functionality of a host inside an enclave

that wants to get authorization for starting a session with NAC from a Kerberos

server. The host needs to obtain a ticket and a session key, establish contact with

NAC, obtain a key table and start sending ip_packets. The ipjpacket will be

formatted in accordance with the protocol we proposed in Chapter IV. We

consider the user as part of the hostclass.

3.1.2 DATA:

hostjd: an integer, that indicates the identity of the host. A real host id or an IP

address could be used in more refined prototypes.

Hostjcey: a string that is the secret key that a host shares with Kerberos.

Userjd: a string that identifies the user to Kerberos. The login name could be

used.

ki_key_table: a tableclass object that will be used for getting ki_key

pairs for packet formatting. In more refined prototypes a container

object (an array or a vector) could be used to contain more than

one tableclass objects according to the needs (how many

59

flows need to be active simultaneously) of the host.

Keyjicketjile: the name of the file that contains the session key and the ticket

returned from Kerberos. We chose to read them from a file

because it is easy to understand and implement. In a more refined

implementation we could receive this information from a communication

channel established between the host and Kerberos (e.g., a socket buffer or

something similar). The simulated ticket is exposed, however this kind of

ticket exchange is used only for this simulation.

TicketJile: the name of the file containing the ticket that the host will

send to NAC.

Sessionjcey: this key is going to be used for the ki_key table exchange

between the host and the NAC. In a more refined implementation the

ki_key table needs to be encrypted with an encryption algorithm using this

key.

3.1.3 FUNCTIONS:

Request_authentication

Input: kerberosclass & (a reference to a kerberos module)

Output: the data member key_ticket_file is defined.

Return value: boolean

Description: The host requests from Kerberos authentication by calling the

kerberosclass' function that provides this service. Postcondition: the host

has the name of the file that contains a session key and a ticket. If the

authentication process fails then the return value is False.

Sendjicket

Input: none

Output: HOSTJTICKETJFILE contains a host_ticket_class object.

Return value: char*

Description: The host creates a file containing the information that is

necessary to NAC for host authentication. Postcondition: the

60

HOST_TICKET_FILE contains the host_id and a ticket (a

host_ticket_class object). The name of this file is returned.

Getjable

Input: const char* TABLE_FILE_NAME

Output: the ki_key_table data member of the host is defined.

Return value: none

Description: The host opens the TABLE_FILE_NAME file and gets the

ki_key_table that was prepared by NAC. The host now has a copy of the

key table available.

Create jnessage

Input: char* message_file

Output: an ip_packetclass object is instantiated.

Return value: ip_packetclass

Description: creates and returns an ip_packetclass object. The

ipjpacketclass object is formatted by applying our protocol and using a

ki_key pair chosen from the ki_key table. The MESSAGE_FILE name is

included in the ip_packetclass object to simplify the process of reading the

packet data. BE CAREFUL not to forget to create a message file and put

its name in the constants.h file before starting the simulation. A new key is

chosen every T_ZERO time.

Get_session_key

Input: none

Output: the date members session_key and ticket_file are defined.

Return value: none

Description: extracts the session key and the name of TICKET_FILE from

key_ticket_class object that Kerberos created.

Postcondition: the data members session_key and ticket_file get values.

61

3.2 Host ticket class

3.2.1 DESCRIPTION: the class creates objects that contain the host_id and the name of

the TICKET_FILE that contains the host's ticket. The objects are created by

hosts. NAC uses them for host authorization.

3.2.2 DATA:

hostjd: an integer, that identifies the host.

Ticket Jile: a string, that is the name of the TICKET_FILE.

3.2.3 FUNCTIONS:

Hostjdis

Input: none

Output: none

Return value: int

Description: The hostid data member is returned.

TicketJile _is

Input: none

Output: none

Return value: char*

Description: The ticket_file data member is returned.

3.3 Nacclass

3.3.1 DESCRIPTION: the class simulates the functionality of a Network Access

Controller (NAC). NAC checks that a host (a user-host pair) requesting a session is

authorized by Kerberos to do so. The NAC gets the ticket that Kerberos created

when the host asked for authorization and extracts the ticket and the session key.

NAC then creates a tableclass object (the ki_key table) for the session with the host.

Stores the ki_key table in a database and sends a copy back to the host. In a more

elaborate simulation, this copy must be encrypted with the session key. When the

host starts sending ip_packets, the NAC must play its role in accordance with the

protocol described in Chapter IV. Therefore, NAC "strips" the trailer from the

ip_packetclass object, reads the ki and calculates the MAC for that ip_packet. If the

62

calculated MAC is the same with the one that was received in the packet trailer, then

the packet is authenticated and can be forwarded.

3.3.2 DATA:

hosts Jables_db: the database of hosts and their tables. It is a host_table_vector

object (a detailed description follows).

3.3.3 FUNCTIONS:

Preparejable

Input: char*

Output: a tableclass object is instantiated and deposited in TABLE_FILE.

Return value: char*

Description: The name of the TICKET_FILE that contains the ticket of a

host must be passed in as input. If the ticket is valid, NAC instantiates a

tableclass ofbject and deposits it in the TABLE_FILE. The function

returns the name of the TABLE_FILE. In the opposite case, the string

"invalid_ticket" is returned. (Note: this can crash the program, if a

function tries to open a file with name "invalid_ticket".)

A uthenticate _packet

Input: ip_packetclass

Output: none

Return value: boolean

Description: an ip_packetclass object is passed in by value (a local copy of

the object is created). The ki is read from the trailer and the MAC is

calculated. If the calculated MAC is the same with the MAC that is stored

in the ip_packetclass object trailer the function returns True, otherwise

False.

3.4 Tableclass

3.4.1 DESCRIPTION: the class simulates the functionality of key table.The table is

created by the Network Access Contoller (NAC) and is sent to a host. We chose

to use the Standard Template Library map container for the key-table data

63

structure. The map contains (ki, key) pairs. The "first" (the index) of each pair is

the ki and the "second" (the value) is the key. We chose the key to be an integer

value created by the "srand ()" function of C++, as seed we use the host_id. This

approach is suitable for demo only. In a more refined prototype, a more robust

random number generator should be used. A key_generator could also be used.

Additionally, keys could be chosen to be other than integers. The length of the

class is defined by the constant NUM_PAIRS. The constant is defined in the

constants.h file and we defined it to be 10. The kis are integers as well. We use

integers in the range [1- NUM_PAIRS]. The kis could be chosen randomly

without affecting the map implementation, but this is not necessary.

3.4.2 DATA:

kijceyjable: a map of NUM_PAIRS ki_key pairs (pairs of integers).

3.4.3 FUNCTIONS:

Get_next_ki

Input: none

Output: none

Return value: int

Description: the next ki in sequence in the key-table is chosen and

returned to the caller.

Get_next_key

Input: int

Output: none

Return value: int

Description: a ki is passed in and the corresponding key is returned.

Initialize Jhejceyjpool

Input: int

Output: the tableclass is populated with NUM_PAIRS (ki, key) pairs.

Return value: none

64

Description: a host_id is passed in. This is used as seed and the values of

the keys are randomly generated by the srand function. Postcondition: the

ki_key table for that host is initialized.

Look_up_tableJbr_key

Input: int

Output: none

Return value: int

Description: a ki is passed in and the ruction looks up the map for the

corresponding key that is returned.(Note: the program will crash if a non-

existing tag is passed as an argument.)

3.5 Host table vector

3.5.1 DESCRIPTION: the class simulates the database of tables that is maintained by

NAC. NAC uses this object to keep track of hosts and tables. We chose the

Standard Template Library vector container to implement the database. The main

reason was the flexibility of vectors (a detailed description follows). We can

dynamically add more entries and remove old ones without caring for memory

management. The Vector elements are host_table_class objects (we explain their

functionality in detail later). In this simulation, a host uses only one table. This

can change easily in prototypes that are more refined, where a host can be

associated with more than one table.

3.5.2 DATA:

HostsJables: the database, a vector of host_table_class objects.

3.5.3 FUNCTIONS:

Add_host_table

Input: a host_table_class object

Output: the database gets a new tableclass object.

Return value: none

Description: a copy or the host_table_class object is inserted in the vector.

Remove host table

65

Input: int

Output: a tableclass object is removed from the database.

Return value: none

Description: a host_id is passed in and the corresponding entry in the

vector (the host_table_class object) is removed.

Is_host_authorized

Input: int

Output: none

Return value: boolean

Description: a host_id is passed in and the (vector) database is searched to

find if an entry exists for this host. If a host_table_class object is found

with the same hostid the function returns True, otherwise False.

Keyjbrjiostjci

Input: int, int

Output: none

Return value: int

Description: a host_id and a ki are passed in. The function first finds in the

database the corresponding to the host table , and then fetches the

key indexed by ki. This key is rerurned.(Note: the program will

crash if no entry exists in the database for the host_id or if a non-existing

ki is passed as a second argument.)

3.6 Host table class

3.6.1 DESCRIPTION: the class objects contain a host_id and a pointer to a tableclass

object. Objects of this class are used as entries in the host_class_vector database

maintained by NAC.

3.6.2 DATA:

Hostjd: an integer that identifies the host.

Tableptr. a tableclass * pointing to the ki_key table that NAC created

for the host.

66

3.6.3 FUNCTIONS:

Host_id_is

Input: non

Output: none

Return value: int

Description: returns the data member host_id, an int.

Table Js

Input: none

Output: none

Return value: tableclass *

Description: returns a handle (pointer) to the tableclass object pointed by

the tableptr data member.

3.7 Kerberosclass

3.7.1 DESCRIPTION: the class simulates the Kerberos server. It has two databases,

one for users (a user vector) and one for hosts and keys (host_key vector). A user

or a host can register with Kerberos (enter the database) or can request

authentication to begin a session with NAC. In the latter case, the Kerberos will

look if the host or the user exist in its databases. If their userjd and the host_key

entries are found, then a session key and a ticket are prepared. The session key in

our case is stubbed to "sesskey". The ticket is a ticketclass object. The

functionality of tickets has been simplified and we don't include timestamps (that

real tickets have).

3.7.2 DATA:

HostJcey database: host_key_vector object, a database.

User^database: a vector of char* (user ids).

3.7.3 FUNCTIONS:

Register_host

Input: int, char*

Output: the host_key_database gets a new entry.

67

Return value: none

Description: an int (host_id) and a char* (key) is passed in and an

entry is created in the Kerberos database. Postcondition: the host is

now registered in Kerberos. Additionally,Kerberos has a

commonly known key with the host.

Remove _host

Input: int

Output: an entry from the host_key_vector is removed.

Return value: none

Description: a host_id is passed in and the corresponding entry in the

database is removed.

Registeruser

Input: char*

Output: the user database gets a new entry.

Return value: none

Description: a char* userid is passed in and an entry is created in the

Kerberos user database. Postcondition: the user is now registered in

Kerberos.

Remove user

Input: char*

Output: an entry is removed from the user database.

Return value: none

Description: a userjd is passed in and the corresponding entry in the

database is removed.

Request permission

Input: char*, int

Output: none

Return value: boolean

68

Description: a user (char*) at a host (int) are passed in and the vector

database is searched to find them. If entries for both exist, then return

True, otherwise False.

Send_key_ticket

Input: int

Output: the KEY_TICKET_FILE contains the session_key and the

TICKET_FILE name.

Return value: const char*

Description: the KEY_TICKET_FILE is created. The file contains the

session key and the name of the TICKET_FILE. The function returns the

name of the file.

Create_session_key

Input: none

Output: none

Return value: char*

Description: returns the string "sesskey".

CreateJicket

Input: int, char*

Output: a ticketclass object is instantiated.

Return value: ticketclass

Description: a ticketclass object is instantiated and returned

3.8 Hostkeyvector

3.8.1 DESCRIPTION: the class simulates the database of hosts and their corresponding

keys that Kerberos maintains. Kerberos uses this object to keep track of the hosts

and their keys. We chose the Standard Template Library vector container to

implement the database. The vector elements are host_key_class objects (a

detailed description follows). This simulates the database of secret keys that a real

Kerberos server maintains.

3.8.2 DATA:

69

Hosts Jceyes: the database, a vector of host_key_class objects.

3.8.3 FUNCTIONS:

Addjiost

Input: int, char*

Output: a host_key_object is instantiated. The database host_key_vector

gets a new entry.

Return value: none

Description: an int host_id and a char* (secret) key is passed in and the

function creates a host_key_class object and adds it as an entry in the

database. Postcondition: Kerberos has a secret key for this host.

Remove _host_key

Input: int

Output: an entry is removed from the host_key_vector (the database)

Return value: none

Description: a host_id is passed in and the corresponding entry in the

vector (host_key_class object) is removed.

Is_hostRegistered

Input: int

Output: none

Return value: boolean

Description: a host_id is passed in and the database is searched to find if

an entry exists for this host (subsequently, if a secret key is shared by

Kerberos and the host). If a host_key_class object is found the function

returns True, otherwise False.

3.9 Host key_class

3.9.1 DESCRIPTION: the class objects contain an int host_id and a char* host_key.

The host_key is supposed to be a secret key known only to the host and the

Kerberos. Objects of this class are used as entries in the host_key_vector database

maintained by Kerberos.

70

3.9.2 DATA:

Hostjd: an integer that identifies the host.

Hostjcey: a char* that is the secret key known to Kerberos and the

host.

3.9.3 FUNCTIONS:

Host_id_is

Input: none

Output: none

Return value: int

Description: returns the data member host_id, an int.

keyjs

Input: none

Output: none

Return value: char *

Description: returns the data member hostjkey, a string

3.10 Keyticketclass

3.10.1 DESCRIPTION: the class objects contain a session key and the name of the file

that contains the ticket. Objects of this class are created by Kerberos and are sent

to the host.

3.10.2 DATA:

Sessionjcey: a char* (the string "sesskey")

TicketJile: a char *(the filename).

3.10.3 FUNCTIONS:

Sessionjcey_is

Input: none

Output: none

Return value: int

Description: returns the data member sessionjcey, a string.

71

ticket_file_is

Input: none

Output: none

Return value: char *

Description: returns the data member ticket_file, a string.

3.11 Ticketclass

3.11.1 DESCRIPTION: the class objects contain a session key and a host_id (of the host

that requested a session). Objects of this class are created by Kerberos and are

sent to the host. The host in turn is going to send them to the NAC. (In a more

refined prototype, real life Kerberos tickets can be used).

3.11.2 DATA:

Host id: an int

Sessionjcey: a char *(the string "sesskey").

3.11.3 FUNCTIONS:

Sessionjceyis

Input: none

Output: none

Return value: int

Description: returns the data member sessionjcey, a string.

Host_id_is

Input: none

Output: none

Return value: int

Description: returns the data member host_id, an int.

3.12 Ip packetclass

3.12.1 DESCRIPTION: the class objects simulate ip_packets. Objects of this class are

created by hostclass objects and are sent to the NAC for authentication.

3.12.2 DATA:

Ki: an int, the key_index of the key that was used for MAC calculation for this

72

packet.

Host id: an int that identifies the host.

filename: a char*, the name of the MESSAGE_FILE that contains the data that we

want to send with this packet.

Mac: a unsigned char*, the message digest.

Note that the ki and the MAC consist the trailer of the packet.

3.12.3 FUNCTIONS:

macjs

Input: none

Output: none

Return value: unsigned char*

Description: returns the data member mac, an unsighned char*.

kijs

Input: none

Output: none

Return value: int

Description: returns the data member key_index, an int.

filenamejs

Input: none

Output: none

Return value: char*

Description: returns the data member filename, a string. This file contains

the data that we want to send with this packet.

hostjs

Input: none

Output: none

Return value: int

Description: returns the data member host_id, an int. It is the id of the host

that created this packet.

73

3.13 Fileutils

3.13.1 DESCRIPTION: the file contains auxilliary functions for copying files to files

and copying files to string streams buffers.

3.13.2 DATArnone

3.13.3 FUNCTIONS:

filecopy

Input: char* fromfile

Output: char* tofile

Return value: none

Description: two filenames are passed in and the first file contents are

copied and ovewrite the contents of the second file.

Copytobuffer

Input: char* fromfile, char* tobuffer, int key_index, int key

Output: none

Return value: char*

Description: a file name is passed in and its contents are dumped in the

tobuffer string. Additionally the key_index and the key integers are

appended to the string. This is protocol specific and a simulates the

appending of a packet trailer.

3.14 Hashutils

3.14.1 DESCRIPTION: function that allow usage of the MD5 package are written here.

The original code as it was mentioned before freely available in the Internet. The

code is written in C and it was modified accordingly to accommodate the needs of

our simulation.

3.14.2 DATA: n/a

3.14.3 FUNCTIONS:

MD5File

Input: char*

Output: none

74

Return value: unsigned char* (the 16 byte digest)

Description: a string, the name of a file that we want to calculate its

contents MD5 is passed in. The message digest is calculated and returned

MD5String

Input: char*

Output: none

Return value: unsigned char*

Description: a string that we want to calculate its MD5 is passed in. The

message digest is calculated and returned

MD5Print

Input: unsigned char*

Output: none

Return value: none

Description: the message digest is passed in, the function prints it as series

of hex numbers.

MD5TestString

Input: char*

Output: none

Return value: none

Description: a string, that we want to calculate its MD5 is passed in. The

message digest is calculated but it is not returned. This function is used

only in the performance measurements of MD5.

compareDigest

Input: unsigned char*, unsigned char*

Output: none

Return value: boolean

Description: two message digests are passed in and are compared. The

method of comparison here is byte by byte XORing. The function returns

"true" if the message digests are the same. "False" otherwise.

75

Compare2Digest

Input: unsigned char*, unsigned char*

Output: none

Return value: boolean

Description: two message digests are passed in and are compared. The

method of comparison here is the so called integer methode. We cast

every four bytes of the 16 byte digest to integers and we subtract the

corresponding ones. If all the results are 0 then the digests are the same.

The function returns "true" if the message digests are the same. "False"

otherwise.

76

APPENDIX B. THE OBJECT MODEL

(ki, key) pairs

Get_next_key

Get table

tableclass

epare Table

Ip_packetclass

Create_message

Get session ke

hostclass
Add host table

Key_ticket_class

Send ticket

RequestNauthentication
Send_key_ticket

Host ticket class NAC

class

Hosttable
vector

Is hosr authorized /

ticketclass
kerberosclass

Requ :st_permissioj

Registeruse;

useer vector

gisterhost

Hostkeyvector

Add host

Host_table
class

Host_key_class

77

78

APPENDIX C. SIMULATION SOURCE CODE
//**

//**

// File: constants.h

// Name : Ioannis Kondoulis

//

// Operating Enviroment: Windows NT 4.0

// compiler: Borland C++ for Windows, ver. 5.02

//Date: 17 Sep 1998

// Description: Definitions and consts used throughout the project

// This file contains the necessary file names that the simulation uses as "communication

// means. They have to exist for the simulation program to run.

// Assumptions:none

//

// Warnings: none

//
//**

#ifndef constants H

#define constants H

const char* TABLE_FILE = "keytable.dat";

const char* TICKET FILE = "ticket.dat";

const char* KEY_TICKET_FILE = "keytick.dat";

const char* MESSAGE_FILE = "message.dat";

const char* FILE_TO_HASH = "hmessage.dat";

const char* HOST_TICKET_FILE = "hosttick.dat";

//for this implementation we choose a table of 10 pairs

const int NUM_PAIRS = 10;

// TZERO is the cryptoperiod for the key here we choose 5 msecs

const int TZERO = 5;

const int MAX_MESSAGE_SIZE = 1024;

#endif

79

//**

// File: driver.cpp

// Name : Ioannis Kondoulis

//

// Operating Enviroment: Windows NT 4.0

// compiler: Borland C++ for Windows, ver. 5.02

//Date: 17 Sep 1998

// Description: This is the driver program that executes the simulation.

// Assumptions:none

//

// Warnings: none

//

//

#include "hostclass.h"

#include "kerberosclass.h"

#include "nacclass.h"

#include <iostream>

#include "constants.h"

void banner();

int main()

{
bool host_authenticated;

banner();

//the players

kerberosclass kerberos;

hostclass host(1 ,"hostkey","ioannis");

nacclass nac;

//programmer registers the host with kerberos(hardcoding)

80

kerberos.register_host(1, "hostkey");

kerberos.register_user("ioannis");

//the host requests authentication from kerberos

host_authenticated = host.request_authentication(kerberos);

//host "sends" ticket to nac

char* ticketfile = host.send_ticket();

//nac prepares the key table

char* tablefile = nac.prepare_table(ticketfile);

//the host gets the table

host.get_table(tablefile);

//the host sends the ip_packets to nac

//the nac is called to authenticate each packet

cout« "Press any key to start sending packets, "«endl;

for(inti=0;i<10;i++){

cin.get();

ip_packetclass packet= host.create_message("message.dat");

cout« "Press any key to send the next packet.\n"«endl;

if (nac.authenticate_packet(packet)){

cout«"Packet " « (i+1) «" has been authenticated by NAC."«endl;

//delete for memory economy

packet.~ip_packetclass();

}

else{

cout«"NAC could not authenticate the packet."«endl;

//delet for memory economy

packet.~ip_packetclassO;

}

}

81

COUt«"* ********************************** ****\n"

«"** Press any key to <exit> **\n"

<-<u**!ic ********************************** **\n"«endl-

cin.get();

retum(O);

}//end main

void banner()

{ "
cftl]t«"* *** **************"«endi

«»* *"«endl

«"* SIMULATION PROGRAM FOR THE NAC PROTOCOL *"«endl

«"* Author: Ioannis Kondoulis *"«endl

«-* *"«endl

«"* DISCLAIMER: this program is for demostration ONLY! *"«endl

«"* for any other use the author does not have any * "«endl

«"* responsibility. *"«endl

«-* *"«endl

<<n**"«endl"

cout«"PROGRAM LIMITATIONS: The program will create and register only one \n"

«" simulated user. The simulated user will create and send 10\n"

«" packets to the NAC. After its packet is authenticated it will \n"

«" be displayed on the screen with a prompt to hit a key to \n"

«" send the next packet. The program is not robust and its behaviour \n"

«" is not guaranteed for sending more than these packets, to do so further \n"

«" work and testing is needed. \n"

«endl;

return;

}

//end driver, cpp

82

#ifiidef_fileutils_H_

#define fileutils H

^**

II**

//File:fileutils.h

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

// Date: 19 September 1998

// Descriptiomthe file contains a file copy function

//

// Assumptions: the max values do not exceed the consts declared here

//

// Warnings:be careful when you pass paths V means ignore the next need to

// use two "//" for the path to be valid

// TO DO doublecheck the above!!

//

//

#include <iostream>

//#include <string>

//#include <stdlib>

#include <strstream>

#include <fstream>

//used for file names

const short MAX_STRING_SIZE = 40;

//for each line in the file

const short MAX_LINE_SIZE=256;

//if you want to restrict the lines of the file ADD

83

//no more of so many lines in a file

//const short MAX_NUM_LINES=512;

//the copy function expects two filenames

void filecopy(char* fromfile, char* tofile);

//the copy to a buffer function expects a filename, a pointer to a string

//and the key that will be appended to the buffer contents

char* copytobuffer(char* fromfile, char* tobuffer,int keyindex, int key);

#endif

//end fileutils.h file

84

//************************************* ************************+***++#*+^.)[.)!****

//** ************************* + + **+^++!|CJ(.

// File: fileutils.cpp

//Name: Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Descriptiomthe file copy function

//

// Assumptions: the same as in fileutils.h file

//

// Warnings: When the driver is modified to create more than 10 packets the program breaks in the

// cppytobuffer function in the marked BREAKPOINT. The driver works fine as it is now,

// if you want to modify it you must increase the robustness of the code, especially memory

// management issues and include exception handling mechanisms.
//********************* ************ ***

//

#include "fileutils.h"

II-

//function: filecopy(char* fromfile, char* tofile)

//return value: none

//parameters: char* fromfile, char* tofile

//purpose: copies line by line the contents of fromfile to tofile

// The do while executed at least once so it can read the eof of an

// empty file

//.

//

void filecopy(char* fromfile, char* tofile)

{

char* strLinePtr;

char* tempLinePtr;

//CASE IF YOU READ THE fromfile FILENAME FROM STD INPUT

85

//no need for now

//char* tempname;

//tempname = new char[MAX_STRING_SIZE];

//cin»tempname;

//fromfile = new char[strlen(tempname)+l];

//strcpy(fromfile,tempname);

//CASE IF YOU READ THE tofile FILENAME FROM STD INPUT

//no need for now

//cin»tempname;

//tofile = new char[strlen(tempname)+l];

//strcpy(tofile,tempname);

//free the tempname memory

//deleteQtempname;

//copy the contents of fromfile to tofile

//open the two files appropriately

fstream in(fromfile, ios::in);

fstream out(tofile, ios::out);

//allocate temporary memory for contents of each line (buffer)

tempLinePtr = new char[MAX_LINE_SIZE];

do {//read each line

in.getline(tempLinePtr,MAX_LINE_SIZE!
,\n');

//allocate exactly so many memory as needed tor this line

strLinePtr = new char[strlen(tempLinePtr)+l];

//copy the buffer to this line

strcpy(strLinePtr, tempLinePtr);

//put the line in the tofile

out«strLinePtr«endl;

//continue until you reach the eof

}while(!in.eof());

//close the two file streams when done with the copying

in.close();

out.close();

86

//free the memory that was allocated to the buffer

delete[] tempLinePtr;

return;

}

//—-

//function: copytobuffer(char* fromfile, char* tobuffer)

//return value: char*, pointer to the buffer with the file contents

//parameters: char* fromfile, char* tobuffer

//purpose: copies line by line the contents of fromfile to tobuffer

// The do while executed at least once so it can read the eof of an

// empty file

//. _

//

char* copytobuffer(char* fromfile, char* tobuffer,int key_index, int key)

{

char* strLinePtr;

char* tempLinePtr;

//THE OBJECT sout DYNAMICALLY ALLOCATES MEMORY FOR BUFFERING

ostrstream sout;

//copy the contents of fromfile to tobuffer

//open the file appropriately

fstream in(fromfile, ios::in);

do {//read each line

//allocate temporary memory for the contents of each line

tempLinePtr = new char[MAX_LINE_SIZE];

in.getline(tempLinePtr,MAX_LINE_SIZE,'\n');

//allocate exactly so many memory as needed tor this line

87

strLinePtr = new char[strlen(tempLinePtr)+l];

//copy the buffer to this line

strcpy(strLinePtr, tempLinePtr);

//deallocate memory

delete [] tempLinePtr;

if(in.eof()){

//deallocate memory and break

delete[] strLinePtr;

break;

}

// Breakpoint (if you modify the driver to create more than 10 packets)

//put the line in the ostrstream object

sout« strLinePtr « endl;

//deallocate the memory because the object dynamically

// allocates memory itself

delete[] strLinePtr;

//continue until you reach the eof

}while(!in.eof());

//close the file stream when done with the copying

in.close();

sout«key_index«key «ends;

//point char* tobuffer to the contents of the ostrstream object

char*tempbuf=sout.str();

tobuffer = new char [strlen(tempbuf)+l];

//tobuffer = sout.str();

strcpy(tobuffer,tempbuf);

return tobuffer;

}

//end fileutils.cpp

88

#ifhdef global H

#define global_H_

/* GLOBAL.H - RSAREF types and constants

*/

/* PROTOTYPES should be set to one if and only if the compiler supports

function argument prototyping.

The following makes PROTOTYPES default to 0 if it has not already

been defined with C compiler flags.

*/

/*

#imdef PROTOTYPES

#defme PROTOTYPES 0

#endif

*/

/* POINTER defines a generic pointer type */

typedef unsigned char *POINTER;

/* UINT2 defines a two byte word */

typedef unsigned short int UINT2;

/* UINT4 defines a four byte word */

#if defined(alpha)

typedef unsigned int UINT4;

#else

typedef unsigned long int UINT4;

#endif

/* PROTOJLIST is defined depending on how PROTOTYPES is defined above.

If using PROTOTYPES, then PROTO_LIST returns the list, otherwise it

returns an empty list.

*/

89

/*#if PROTOTYPES

#define PROTOJLIST(list) list

#else

#define PROTO_LIST(list) ()

#endif

*/

#endif

90

#ifhdef hashutils H

#define hashutils H

//*************************** *** ********

^/**

// File : hashutils.h

// Author : Ioannis Kondoulis

//

// Operating Enviroment: Windows NT 4.0

// compiler: Borland C++ for Windows, ver. 5.02

//Date: 17Sepl998

// Description: This is an interface for the MD5 functions that can be

// that can be found in MD5.C file. The code here is not all mine.

// I. wrote the two comparison functions. The rest I modified from a

// driver program that was written by Andy Brown and I downloaded

// from the web.

//

// Assumptions:none

//

// Warnings: n/a

//
11**

#include "md5.h"

#include "global.h"

#defme TEST_BLOCK_LEN 1000

#defme TEST_BLOCK_COUNT 1000

#defme MD 5

#defineNULL0

typedef int boolean;

91

#define true 1

#define false 0

/*prototypes*/

unsigned char* MD5File (char*);

unsigned char* MD5String (char*);

void MD5TestString (char*);

void MD5Print (unsigned char*);

boolean compareDigest (unsigned char*, unsigned char*);

boolean compare2Digest (unsigned char*, unsigned char*);

#endif

92

//**

// File: hashutils.c

// Author : Ioannis Kondoulis

//// Operating Enviroment: Windows NT 4.0

// compiler: Borland C++ for Windows, ver. 5.02

//Date: 17 Sep 1998

// Description: This is an interface for the MD5 functions that can be

// that can be found in MD5.c file. The code here is not all mine.

// I wrote the two comparison functions. The rest I modified from a

// driver program that was written by Andy Brown and I downloaded

// from the web.

//

// Assumptions :none

//

// Warnings: the 5 warnings that you will get are mainly due to the use

// of C code that makes the compiler complain.

// They do not affect the program execution.

//

//** ********a******a******** ** **** **

//

#include "hashutils.h"

#include <stdio.h>

#include <string.h>

unsigned char* MD5File (filename)

char *filename;

{

FILE *file;

MD5_CTX context;

int len;

unsigned char buffer[1024], digest[16];

unsigned char* new_digest = maIloc(sizeof(digest));

inti;

93

if ((file = fopen (filename, "rb")) = NULL)

printf ("%s can't be opened\n", filename);

else {

MD5Init (&context);

while (len = fread (buffer, 1, 1024, file))

MD5Update (&context, buffer, len);

MD5Final (digest, &context);

fclose (file);

printf ("MD%d (%s) = ", MD, filename);

MD5Print (digest);

printf ("\n");

}

for(i=0;i<=16;i++)

new_digest[i] = digest[i];

/♦CAUTION: uncomment for debugging purposes only

printf ("\n");

MD5Print (new_digest);

printf ("\n");

*/

return new_digest;

}//end MD5File

/* Digests the standard input and prints the result.

*/

/* Prints a message digest in hexadecimal.

*/

void MD5Print (digest)

unsigned char digest[16];

{

unsigned int i;

for(i = 0;i<16;i++)

94

printf("%02x",digest[i]);

}//end MD5Print

boolean compareDigest (unsigned char* si, unsigned char* s2)

{

int i;

boolean same = true;

for(i = 0;i<16;i++){

if((sl[i])-(s2[i])){

same = false;

break;

}

}

return same;

}

boolean compare2Digest (unsigned char* si, unsigned char* s2)

{

int i;

boolean same = true;

/* convert each Message Digest to four 4-byte integers

CAUTION: THIS PART MAY NOT BE PORTABLE

*/

/*ff all the differeces are equal to 0 then the digests are the same

*/

for(i=0;i<16;){

if(sl[i]-s2[i]){

same = false;

break;

}

i+=4;

95

return same;

}

/* Digests a string and prints the result.

*/

unsigned char* MD5 String (string)

char *string;

{

MD5_CTX context;

unsigned char digest[16];

unsigned int len = strlen (string);

unsigned char* new_digest = malloc(sizeof(digest));

int i;

MD5Init (&context);

MD5Update (&context, string, len);

MD5Final (digest, &context);

/♦CAUTION: uncomment for debugging purposes only

printf ("MD%d (\"%s\") = ", MD, string);

MD5Print (digest);

*/

for(i=0;i<=16;i++)

new_digest[i] = digest[i];

/♦CAUTION: uncomment for debugging purposes only

printf ("\n");

MD5Print (new_digest);

printf ("\n");

*/

return new_digest;

}//end MD5String

/* Digests a string, it is used only for testing the performance.

96

void MD5TestString (string)

char * string;

{

MD5_CTX context;

unsigned char digest[16];

unsigned int len = strlen (string);

MD5Init (&context);

MD5Update (&context, string, len);

MD5Final (digest, &context);

}//end MD5TestString

97

#iftidef host_key_cIass_H_

#defme host_key_class_H

//**^

//***^

// File: host_key_class.h

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Description:This is the class that contains the host_id and the hostkey

// The objects are used by the kerberos as entries in a database.

// They are created by kerberos whenever a host requests to

// register with kerberos.

// The registration function will be simulated for this demo.

// The key exchange process is not of interest to us (we have to

// assume that somehow the kerberos and the host are aware of the

// host's key) therefore we will hardcode (we will assign) the key

// for a particular host at a certain point during the simulation

// and we are also inform the kerberos for the hosts key (the

// programmer takes the place of secure key distributor)

// The necessary functions to access the data are also

// provided.

//

// Assumptions: the overloaded operators «, » are used

// only by authorized users

//:

//

//

#include <iostream>

class host_key_class {

//friend classes

98

friend class kerberosclass;

friend class host_key_vector;

//overloading i/o operators

friend ostream& operator«(ostream& out, const host_key_class& MY_HK);

friend istream& operator»(istream& in, host_key_cIass& my_hk);

public:

//constructor

host_key_class();

//another constructor

host_key_class(int host, char* key);

//destructor

~host_key_class();

private:

//DATA

//for each host we assume there exists a key known to kerberos

//and to the host only

int host_id;

char* hostkey;

//service to kerberos

int host_id_is() const{retura hostid;}

char* key_is()const {return host_key;}

};//end host_key_class

#endif

//end host_key_class.h file

99

#ifhdef__hashutils_H_

#define hashutils_H

//* ***

//**

// File : hashutils.h

// Author : Ioannis Kondoulis

//

// Operating Enviroment: Windows NT 4.0

// compiler: Borland C++ for Windows, ver. 5.02

//Date: 17Sepl998

// Description: This is an interface for the MD5 functions that can be

// that can be found in MD5.C file. The code here is not all mine.

// L wrote the two comparison functions. The rest I modified from a

// driver program that was written by Andy Brown and I downloaded

// from the web.

//

// Assumptionsmone

//

// Warnings: n/a

//
//**

//

include "md5.h"

#include "global.h"

#define TEST_BLOCK_LEN 1000

#define TEST_BLOCK_COUNT 1000

#define MD 5

#define NULL 0

typedef int boolean;

#define true 1

#define false 0

100

/*prototypes*/

unsigned char* MD5File (char*);

unsigned char* MD5String (char*);

void MD5TestString (char*);

void MD5Print (unsigned char*);

boolean compareDigest (unsigned char*, unsigned char*);

boolean compare2Digest (unsigned char*, unsigned char*);

#endif

101

#ifhdef host_key_vector_H_

#define host_key_vector_H_

u^^^^^t************************ ***

*/******+***

// File : host_key_vector.h

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Description:This is the database of host_key_class objects. This class is

// used by the kerberos module for keeping track of the hosts and

// their keys.

// The STL::vector data structure was chosen to contain

// host_key_class objects. The vector dynamically extends to

// accomodate each additional entry and automatically deallocates

// memory when we remove an object.

// The choice was made for simplicity for the demo purposes

// In a more elaborate implementation a more sophisticated database

// might be used.

// The member functions are private so only the kerberos can get

// their services.

// Assumptions:for each host we assume there exists a key known to kerberos

// and to the host only

//

// Warnings

//
11**

//

#include <vector>

#include <stdlib>

#include "host_key_class.h"

using namespace std;

102

//a vector is used for the host_key_class object database

typedef vector<host_key_class> host_database;

class host_key_vector {

//friend class

friend class kerberosclass;

//overloading i/o operators

friend ostream& operator«(ostream& out, const host_key_vector& MY_HKV);

//does not make sense to input to a vector so no » is overloaded

public:

//constructor

host_key_vector();

//destructor

~host_key_vector();

private:

//data

host_database hosts_keys;

//member functions for friends

//services to the kerberos module

void add_host (int host, char* key);

void remove_host(int host);

bool is_host_registered (int host);

} ;//end host_key_vector class

#endif

//end host_key_vector.h file

103

;;**

// File: host_key_vector.h

// Name : Ioannis Kondoulis

//

Jl Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Description: the same as in host_key_vector.h

// Assumptions: none

//

//

//

//

#include "host_key_vector.h"

//_

//function: default constructor

//return value: a host_key_vector

//parameters: none

//purpose: creates a host_key_vector object that is empty

//.

//

host_key_vector: :host_key_vector() {};

//.

//function: destructor

//return value: none

//parameters: none

//purpose: destroys "this" hostjkeyvector object

//

7/

host_key_vector: :~host_key_vector() {};

104

//

//function: add_host(int host,char* key)

//return value: none

//parameters: int host, char* key

//purpose: This function is a service to the kerberos object.

// first we create a host_key_class object that will be the

// new entry to the database (vector),then we use the STL::vector

// member function "push_back(class T)" that adds this new entry to the vector

//

//.

//

void host_key_vector::add_host(inthost,char* key)

{

//create new object

host_key_classnew_host(host,key);

hosts_keys.push_back(new_host);

return;

}//end add host(int host,char* key)

//.

//function: remove_host(int host)

//return value: none

//parameters: int host

//purpose: This function is a service to the kerberos object.

// here only the host (host_id) is required in order to find the

// corresponding entry (host_key object) and remove it. A vector

// iterator is used to traverse the vector object, find the entry and

// remove it. Multiple entries are removed also. We use the STL::vector

// member function "erase(iterator i)" that removes the object pointed

// by i from the vector object.

//

//.

//

void host_key_vector::remove_host(int host)

{

105

//traverse the vector

for (host_database::iterator i= hosts_keys.begin();

i!=hosts_keys.end(); i++){

//if you find the host

if (i->host_id_is() == host)

hosts_keys.erase(i);

}

return;

}//end remove_host(int host)

//

//function: is_host_registered(int host)

//return value: boolean

//parameters: int host

//purpose: This function is a service to the kerberos object.

// here only the host (host_id) is required in order to find if

// a corresponding entry (host_key object) exists.A vector

// iterator is used to traverse the vector object.Only one appearance is

// enough to make the return value "true". True means that there exists

// a host_key entry in the kerberos' database

//

//

bool host_key_vector::is_host_registered(int host)

{

//local variable

bool host_registered = false;

//traverse the vector

for (host_database::iterator i= hosts_keys.begin();

i!=hosts_keys.end(); i++) {//safer than int i etc

//if you find the host_id

if (i->host_id_is() == host){

host_registered = true;

//once is enough

break;

}//end if

106

}//endfor

return host_registered;

}//end is_host_registered(int host)

II-

//function: ostream& operator«(ostream& out, const host_key_vector& MY_HKV)

//return value:ostream&

//parameters: ostream out,hostJcey_vector& MY_HKV

//purpose: a user defined class has to define how « behaves.

// In our case if the host_key_vector object passed in by ref

// does not contain anything then we only inform the user that

// the object is empty

// otherwise we display all the host_id and the host_key pairs

// contained in the vector.

//.

//

ostream& operator«(ostream& out, const host_key_vector& MY_HKV)

{

if (MY_HKV.hosts_keys.size()<= 0){

//the vector is empty

out« "<host_key_database is empty>"«endl;

}

else {//traverse the vector

for (host_database::iterator i = const_cast<host_key_class *>

(MY_HKV.hosts_keys.begin());

i!=MY_HKV.hosts_keys.end(); i++){

//if you find the user entry

out«(*i)«endl;

}//endfor

}//end if

return out;

}//end operator«(ostream& out, const host_key_vector& MY_HKV)

107

//end host_key_vector.cpp file

108

#ifhdef host_table_class_H_

#define host table class H

//**

//**

// File: host_table_class.h

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// DescriptiomThis is the class that contains the host_id and a pointer to the

// tableclass object that was created by the nacclass object for

// that host

// The objects are used by the nacclass object (nac) as entries

// in a database(vector) so that the nac can keep track of what

// table that host has been allocated for further usage.

// They are created by nacclass whenever a host requests a table

// after the ticket of the host has been checked and has been found

// correct.

// The necessary functions to access the data are also

// provided.

//

//Assumptions: none

//

//
//**

// ■

#include "tableclass.h"

class host_table_class{

//friend classes

friend class nacclass;

friend class host_table_vector;

public:

109

//default constructor

host_table_class();

//another constructor

explicit host_table_class(int host_id,

// TO DO CHECK THE CONSTNESS OF THE POINTER

tableclass * const TABLEPTR);

//destructor

~host_table_class();

private:

//data

int host_id;

tableclass * tableptr;

//member functions for friends

int host_id_is()const {return host_id;}

tableclass* table_is()const {return tableptr;}

};//end host_table_class

#endif

//end host table class.h file

110

// File : host_table_class.cpp

// Name : loannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Descriptiomsame as in host_table_class.h

//

// Assumptions:same as in host_table_class.h

//

//

//**** ************************ **

//

#include "host table class.h"

//-

//function: default constructor

//return value: a host_table_class object

//parameters: none

//purpose: the initial values are entered in order to be able to check the

// existance of a host_id and a tableptr.The host_table_class object

// is initialized with host_id:-1 and no tableptr(by default it is nulled).

//.

//

host_table_class: :host_table_classO:host_id(-1){}

//-

//function: another constructor

//return value: a host_table_class object

//parameters: hit host_id, tableclass* TABLEPTR

//purpose: the host_id and the TABLEPTR are entered to the created

// object. The object is going to be added to the host_table_vector database

// object for further usage by the nac.

Ill

//

//

host_table_class::host_table_class(int hostid,

tableclass * const TABLEPTR):

host_id(host_id),tableptr(TABLEPTR) {}

//.

//function: destructor

//return value: none

//parameters: none

//purpose: destroys "this" host_table_class object

//

//

host_table_class: :~host_table_dass() {}

//end host_table_class.cpp file

112

#ifhdef host_table_vector_H__

#define hosttable vector H

//*************************************** ***************************************

Z/**^^^.,.^

// File : host_table_vector.h

//Name: Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

// Date: 19 September 1998

// Description:This is the database of host_table_class objects. This class is

// used by the nac module for keeping track of the hosts and the

// kijkey tables they are assigned

// The STL::vector data structure was chosen to contain

// host_table_class objects. The vector dynamically extends to

// accomodate each additional entry and automatically deallocates

// memory when we remove an object.

// The choice was made for simplicity for the demo purposes

// In a more elaborate implementation a more sophisticated database

// might be used.

// The member functions are private so only the nac can get

// their services.

// Assumptions: none

//

// Warnings

//
//**

//

#include <vector>

#include <stdlib>

#include "host_table_class.h"

#include "tableclass.h"

#include <iostream>

113

using namespace std;

//a vector is used for the host_table_class object database

typedef vector<host_table_class>

host_table_database;

class host_table_vector {

//friend class

friend class nacclass;

public:

//constructor

host_table_vector();

//destructor

~host_table_vector();

//for debugging purposes

void print_vector();

int table_size_is()const{return hosts_tables.size();}

private:

//data

host_table_database hosts_tables;

//member functions for friends

//services to the nac module

void add_host_table(host_table_class host_table);

void remove_host_table(int host);

bool is_host_authorized(int host);

int key_for_host_ki(int host, int ki);

} ;//end host_key_vector class

#endif

//end host table vector.h file

114

//**

y/**

// File: host_table_vector.h

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Description:the same as in host_table_vector.h

// Assumptions: none

//

// Warnings

//

//***+

//

#include "host table vector.h"

II-

//function: default constructor

//return value: a host_table_vector

//parameters: none

//purpose: creates a host_table_vector object that is empty

//.

//

host_table_vector: :host_table_vector() {}

Il-

l/function: destructor

//return value: none

//parameters: none

//purpose: destroys "this" host_table_vector object

//.

//

host_table_vector: :~host_table_vector() { }

115

//.

//function: add_host(host_tabIe_cIass host_table)

//return value: none

//parameters: host_table_class hostjable

//purpose: This function is a service to the nacclass object.

// the host_table_c!ass object that will be the

// new entry to the database (vector),is passed in by value.

// Then we use the STL::vector member function "push_back(class T)"

// that adds this new entry to the vector

//

//.

//

void host_table_vector: :add_host_table(host_table_class host_table)

{

hosts_tables.push_back(host_table);

return;

}//end add_host_table(host_table_class hostjable)

//.

//function: remove_host(int host)

//return value: none

//parameters: int host

//purpose: This function is a service to the nacclass object.

// here only the host (host_id) is required in order to find the

// corresponding entry (host_key object) and remove it. A vector

// iterator is used to traverse the vector object, find the entry and

// remove it. Multiple entries are removed also. We use the STL::vector

// member function "erase(iterator i)" that removes the object pointed

// by i from the vector object.

//

//. :

//

void host_tabIe_vector::remove_host_table(int host)

{

//traverse the vector

116

for (host_table_database::iterator i= hosts_tables.begin();

i!=hosts_tables.end(); i++){

//if you find the host

if (i->host_id_is() == host){

hosts_tables.erase(i);

}//endif

}//end for

return;

}//end remove_host_table(int host)

//-

//function: is_host_authorized(int host)

//return value: boolean

//parameters: int host

//purpose: This function is a service to the nac object.

// here only the host (host_id) is required in order to find if

// a corresponding entry (host_key object) exists.A vector

// iterator is used to traverse the vector object.Only one appearance is

// enough to make the return value "true". True means that there exists

// a host_table entry in the nac's database, therefore the host is

// authorized to send traffic
//.

//

bool host_table_vector::is_host_authorized(int host)

{

//local variable

bool host_exists = false;

//traverse the vector

for (host_tabIe_database: iterator i= hosts_tables.begin();

i!=hosts_tables.end(); i++) {//safer than int i etc

//if you find the host_id

if (i->host_id_is() == host){

host_exists = true;

//once is enough

117

break;

}//endif

}//endfor

return host_exists;

}//end is_host_authorized(int host)

//.

//function: key_for_host_ki(int host, int ki)

//return value: int, the key

//parameters: int host, int ki

//purpose: This function is a service to the nac object.

// here only the host (hostid) is required in order to find if

// a corresponding entry (hostkey object) exists.A vector

// iterator is used to traverse the vector object. The entry for host

// is found and a handler to the tableclass object of this entry is

// returned. The function now uses the service of the tableclass object

// look_up_table_for_key(ki) in order to find the key value that it

// returns.

//

//

int host_table_vector::key_for_host_ki(int host, int ki)

{

//local handler to the table

tableclass *tableptr;

//traverse the vector and look for that host entry

for (host_table_database::iterator i= hosts_tables.begin();

i!=hosts_tables.end(); i++){//safer than int i etc

//alternatively IF int i had been used to traverse

//we could use:

//if (hosts_tables.operator[](i).host_id_is() = host){

// tableptr = hosts_tables.operator[](i).table_is();

if (i->host_id_is() == host){

//a local hanler to the table of the host

tableptr = i ->table_is();

break;

118

}//end if

}//end for

//use the service provided by the tableclass to the friends

return (tableptr -> Iook_up_table_for_key(ki));

}//end key_for_host_ki

//

//function: print_vector()

//return value: none

//parameters: none

//purpose: FOR DEBUGGING PURPOSES ONLY.

//

//

void hostjtable_vector: :print_vector()

{

for (host_table_database::iterator i= hosts_tabIes.begin();

i!=hosts_tables.end(); i-H-){//safer

cout«"for host:"« i->host_id_isO

« " ki_key table is:" «endl;

i->table_isO->print_tableO;

}//end for

return;

}//end print_vector

//end host_table_vector.cpp file

119

#ifhdef host_ticket_class_H

#define host_ticket_class_H

z/^^^^^^^^^^^^^^^t**

// File : host_ticket_class.h

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Description:This is the class that contains the host_id and the name of

// the file that contains the ticket. The objects are created by

// the host class and are sent to the nac for further authorization

// (getting a tableclass)so the host can start sending traffic//

// to the nac. The necessary functions to access the data are also

// provided.

//

// Assumptions: The file that contains the ticket is encrypted with the

// encryption method chosen for the protocol (IDEA in our case)

//

//

//
i/*** ***********************************

//

#include <iostream>

class host_ticket_class {

friend class nacclass;

//overloading of operators

friend ostream& operator«(ostream&, const host_ticket_class&);

friend istream& operator»(isrream&, host_ticket_class&);

public:

//default constructor

host_ticket_class();

120

//another constructor

explicit host_ticket_class(int host_id,

char* ticket_file);

//destructor

~host_ticket_class();

private:

//data

int host_id;

char* ticket_file;

//member functions

//for friends

int host_Jd_is()const {return(host_id);}

char* ticket_file_is()const{return(ticket_file);}

};//end host_ticket_class

#endif

//end host ticket class.hfile

121

//Jit***

/;***^

// File : host_ticket_class.cpp

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Description:same as in host_ticket_class.h

//

// Assumptions: same as in host_ticket_class.h

//

//

//

//

#include "host_ticket_class.h"

//

//function: default constructor

//return value: a host_ticket_class object

//parameters: none

//purpose: the initial values are entered in order to be able to check the

// existance of a host-id and a file name.The host_ticket_class object

// is initialized with host_id:-l and file name : "notexists".

//

//

host_ticket_class::host_ticket_class ():

host_id(-l),ticket_file("notexists"){}

//

//function: another constructor

//return value: a host_ticket_class object

//parameters: int host_id, char* ticketfile

//purpose: the hostid and the ticketfile name are entered to the created

122

// object by the host. The object is going to be sent to the nac for further

// usage.

//.

//

host_ticket_class::host_ticket_class (inthost_id, char* ticket_file):

host_id(host_id),ticket_file(ticket_file) {}

II-

//function: destructor

//return value: none

//parameters: none

//purpose: destroys "this" host_ticket_class object

II.

//

host_ticket_class: :~host_ticket_class() {}

II-

//function: ostream& operator«(ostream& out, const host_ticket_class& MY_HT)

//return value:ostream&

//parameters: ostream out,host_ticket_class& MY_HT

//purpose: a user defined class has to define how « behaves.

// In our case if the host_ticket_class object passed in by ref

// has not been initialized (host_id and ticket_file are

// not valid) then we only inform the user that the object does not

// exist, otherwise we display the host_id and the ticket file name.

//

//remark: even one unitialized value would lead to an invalid object

//.

//

ostream& operator«(ostream& out, const host_ticket_class& MY_HT)

{

if ((MY_HT.host_id <0)&&

(MY_HT.ticket_file == "notexists")){

//for some reason the key ticket object is not there

out« "<host_ticket object does not exist>"«endl;

123

}

else if (MY_HT.host_id < 0){

//for some reason the key ticket object's session_key is not there

out«"<host_ticket object.host_id does not exist> "« endl;

}

else if (MY_HT.ticket_file="notexists") {

//for some reason the key_ticket object's ticketfile is not there

out«"<host_ticket object.ticketfile does not exist> "« endl;

}

else {//everything exists

out« MY_HT.host_id«endl;

out« MY_HT.ticket_file«endl;

}//end if

return out;

}//end operator«(ostream& out, const host_ticket_class& MY_HT)

//

//function: istream& operator»(istream& in, host_ticket_class& my_ht)

//return value :istream&

//parameters: istream& in,host_ticket_class my_ht

//purpose: a user defined class has to define how » behaves.

// Here we input the two values to the host_ticket_class object

// on the RHS

//

//

istream& operator»(istream& in, host_ticket_class& my_ht)

{

in »my_ht.host_id;

in »my_ht.ticket_file;

return in;

}//end operator»(istream& in, host_ticket_class& my_ht)

//end file host_ticket_class.cpp

124

#ifiidef hostclass H

#define hostclass H
//a*** ************************************

//****************** ** **************

// File : hostclass.h

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Description: the hostclass simulates the functionality of a host that wants

// to get authorization from kerberos, obtain a ticket and a session

// key, contact nac, obtain a key-table and start sending

// ip__packets formatted in accordance we the protocol we propose.

// The hostclass object data consist of a hostid, hostkey and a

// user_id. So we consider the user is part of this entity (object).

// The functionality is devided to three parts: the kerberos part

// the nac part and ipjpacket part.

//

// Assumptions: none

//

// Warnings: n/a

//
//**

//

#include "ip_packetclass.h"

#include "tableclass.h"

#include "ticketclass.h"

#include "host_ticket_class.h"

#include "key_ticket_class.h"

#include "kerberosclass.h"

#include "constants.h"

#include "fileutils.h"

#include <iostream>

#include <fstream>

125

#include <string>

//names of the files are specified in the constants.h

//we use files to deposit and retrieve information easily

extern const char* MESSAGE_FILE ;

extern const char* HOST_TICKET_FILE ;

class hostc!ass{

public:

//constructors destructors

//user defined constructor

explicit hostclass(int host_id,

char* host_key,

char* userjd);

//destructor

~hostclass();

//member functions

//

//functionality with kerberos

//

//the host requests authentication from the kerberos module

//passing the host_id, host_key and userjd to the appropriate kerb function

//postcondition: now the host has the name of the file that contains

// the sessionjcey and the ticket. The file and the ticket should be

// encrypted. We do not use encryption in this simulation.

//.

//

bool request_authentication(kerberosclass &kerberos);

//.

//functionality with nac

//

126

//-

//the file with the info for the nac: host_id and ticket is created and

//the function returns the file name

//postcondition : HOST_TICKET_FILE contains the information intended for NAC.

//

//

char* send_ticket();

//-

//NAC prepares a file containing a key-table, this filename is the argument

//of this function

//postcondition: the host extracts the table of kikeys from the file

// and the table object in the host is instantiated.

//. .

//

void hostclass::get_table(const char* TABLE_FILE_NAME);

II-

//functionality with ip_packet

//

//the message_file name is passed in, the host prepares an ip_packetclass

//object and returns it

//postcondition: a new ip_packetclass object is created.

//.

//

ip_packetclass create_message(char* message_file);

private:

//data members

//basic

int host_id;

char* host_key;

char* user_id;

//additional

127

tableclass ki_key_table;

char* key_ticket_file;

char* ticket_file;

char* session_key;

//.

//auxilliary function

//postcondition: data members session_key and ticket file are defined.

//.

void get_session_key();

} ;//end hostclass

#endif

//end file hostclass.h

128

// File: hostclass.cpp

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Descriptiomsame as in hostclass.h

//

// Assumptions

//

// Warnings

//
//****************** ***„;J|!1|1 + + + # + Nt + + 1|t!(.
//

#include "hostclass.h"

extern "C"{

#include "hashutils.h"

#include "md5.h"

}

#include <time>

//-■

//function: constructor

//return value: a hostclass object

//parameters: int host_id,char* host_key,char* user_id

//purpose: creates a hostclass object with the values of the parameters

// passed in.
//

//

hostclass: :hostclass(inthost_id,char* host_key,char* userid):

host_id (host_id),

host_key(host_key),

user_id (user_id){}

129

//.

//function: destructor

//return value: none

//parameters: none

//purpose: destroys "this" hostclass object.

//

//

hostclass: :~hostclass() {}

//member functions

//.

//functionality with kerberos

//

//

//.

//function: request_authentication(kerberosclass &kerberos)

//return value: bool

//parameters: kerberosclass &kerberos

//purpose: the host requests authentication from the kerberos module

// passing the hostid, host_key and user_id to the appropriate

// kerberos function. Returns true if an entry exists in the

// kerberos databases for both the user and the host.

//postcondition: the host obtains the file that contains the sessionkey and

// the ticketfile name and extracts the session key using the auxilliary

// function "get_session_key".

//

//remarks: here we assume that the driver program will allow

// for a reference to a kerberos object

//.

//

bool hostclass::request_authentication(kerberosclass &kerberos)

{

//at the beginning

bool authenticated = false;

//use kerberos functionality

130

if(kerberos.request_permission(user_id,host_id)){

//get the encrypted file with the sessionkey and the ticketfile name

key_ticket_file =

const_cast<char*>(kerberos.send_key_ticket(host_id));

authenticated = true;

}//endif

//so the host can proceed and extract the session key

get_session_keyO;

return authenticated;

}//end request_authentication(kerberosclass &kerberos)

ti-

ll function.: get_session_key()

//return value: none

//parameters: none

//purpose: a utility function that reads from the file that kerberos

// created the session_key and the encrypted ticketfile name

//.

//

void hostclass: :get_session_key()

{

//a local variable to read in from the file

key_ticket_class key_ticket;

//first need to decrypt the file,use host's key(NOT IMPLEMENTED)

//decrypt(key_ticket_file, "hostkey");

//open the file to get a value (for input)

fstream in (key_ticket_file, ios::in);

//use overloaded »

in » keyjicket;

//instantiate this hostclass object's data members

session_key = key_ticket.session_key_is();

ticket_file = key_ticket.ticket_file_is();

131

in.closeO;

return;

}//get_session_key()

//

//functionality with nac

//

//

//.

//function: send_ticket()

//return value: none

//parameters: none

//purpose:the host creates a host_ticket_class object (contains the host_id

// and the ticketfile name) opens a file and dumps the object

// in the file. The function returns the name of this file.

//

//

char* hostclass::send_ticket()

{
//the host opens a file and puts inside the hostid

//and the name of the ticketfile

host_ticket_classhost_ticket(host_id,ticket_file);

//open the file for output

fstream out(HOST_TICKETJFILE, ios::out);

//use overloaded «

out«host_ticket;

//for safety

out.close();

return const_cast<char*>(HOST_TICKET_FILE);

}//end send_ticket

132

//.

//function: get_table(const char* TABLE_FILE_NAME)

//return value: none

//parameters: const char* TABLE_FILE_NAME

//purpose :the host opens a file that was created by the nac and contains the

// ki- key table.

//postcondition: the tableclass object data member is instantiated.

//.

//

voidhostclass::get_table(const char* TABLE_FILE_NAME)

{

//the file should be decrypted using the session key (NOT IMPLEMENTED)

//decrypt(TABLE_FILE_NAME,"sesskey")

//open the file input

fstream in(TABLE_FILE_NAME, ios::in);

//read in the table, use overloade »

in » ki_key_table;

return;

}//end get_table(const char* TABLE_FILE_NAME)

//.

//functionality with ip_packet

//.

//

//.

//function: create_message(char* message_flle)

//return value: none

//parameters: char* message_file

//purpose:the host prepares an ip_packetclass object. First, we get the new

// ki and the next key from the key-table.Then we copy the message file

// to buffer, append the key and hash the whole file

// thus creating the MAC.

//Postcondition: The new ipjpacketclass object is created and returned.

133

//

//.

//

ipjpacketclass hostclass::create_message(char* message_file)

{

//a pointer to a buffer to be used for MD5(buffer)

char* message_buffer;

char* temp_buffer= new char[MAX_MESSAGE_SIZE];

static int new_ki;

static int indicator=0;

static time_t start_time;

time_t current_time;

if (indicator=0){//its the first time

start_time=time(0);

new_ki = ki_key_table.get_next_ki();

indicator=l;

}

current_time=time(0);

//the next ki and key are being requested for the message

//use table functionality

if ((current_time-start_time)>T_ZERO) {

cout«"**The old key's cryptoperiod has expired.A new key is valid**\n"

«endl;

new_ki = ki_key_table.get_next_kiO;

//reset the timer

start_time=time(0);

}

int next_key= ki_key_table.get_next_key(new_ki);

//the messagefile contents are put in a buffer and

//the key is appended to it

134

//this is done in order to keep the message_file clean

temp_buffer = copytobuffer(message_file,temp_buffer,new_ki,next_key);

message_buffer = new char [strlen(temp_buffer)+l];

strcpy (message_buffer, temp_buffer);

deletef] temp_buffer;

// md5 is CALLED FOR THE BUFFER

unsigned char* mac = MD5 String (message_buffer);

//create a new ip packet

ip_packetclass * messageptr = new ip_packetclass(host_id,

message_file,new_ki,mac);

return *messageptr;

}//end create_message

//end file hostclass.cpp

135

#ifndef ip_packetdass_H_

#define ip_packetclass_H

//**

//**

// File : ip_packetclass.h

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Description: the ip_packetclass objects (ip_packets) are used by the

// hostclass and the nacclass.

// The hostclass prepares them and the nacclass

// authenticates them. The information contained in each ip_packet

// (data) is the host_id of the host that prepared the packet,

// the ki of the packet, the filename of the message data,and

// the mac(message authentication code) the hash value of the

// message+key.

//

// Assumptions

//

// Warnings

//
//**

//

#include <iostream>

class ip_packetclass{

//friend class

friend class nacclass;

public:

//constractors destructors

//default constractor

ip_packetclass();

136

//another constructor

explicit ipjpacketclass(int id,char* data_file,int ki,unsigned char* mac);

//copy constructor

//NOT NECESSARY FOR THE MOMENT

//ip_packetclass (const ip_packetclass &);

//destructor

~ip_packetclass();

private:

//data

int ki;

int host_id;

//the filename that contains the message

char *filename;

//128 bits

unsigned char* mac;

//member functions for friends

unsigned char* mac_is()const{return mac;}

int ki_is()const{return ki;}

char* filename_is()const{return filename;}

int host_is()const {return host_id;}

};//end ip_packet class

#endif

//end file ip_packetclass.h

137

//**

// File : ip_packetclass.cpp

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Description: same as in the header file

//

// Assumptions: none

//

//

//
n^^t^t***

#include "ip_packetclass.h"

//.

//function: default constructor

//return value: an ip_packetclass object

//parameters: none

//purpose: the initial values are entered in order to be able to check the

//existance of the packet

//

//

ip_packetclass:: ip jpacketclass():host_id(-1),

filename("no_file_exists"),

ki(-l),

mac('\0'){}

//

//function: another constructor

//return value: a ipjpacketclass object

//parameters: int id (hostid), char* data file, int ki, char* mac

138

//purpose: an ip_packetclass object with initial values

// the parameters passed has been created by a hostclass object

//.

//

ip_packetclass::ipjpacketclass(intid, char* data_file,

int ki,unsigned char* mac):

filename(data_file), ki(ki), host_id (id), mac (mac){}

II-

//function: destructor

//return value: none

//parameters: none

//purpose: destroys "this" ip_packetclass object

//. .

//

ip_packetclass: :~ipjpacketclassO {}

//end file ip_packetclass.cpp

139

//**

// File: ipjpacketclass.cpp

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Description: same as in the header file

//

// Assumptions: none

//

//

//

#include "ip_packetclass.h"

//.

//function: default constructor

//return value: an ip_packetclass object

//parameters: none

//purpose: the initial values are entered in order to be able to check the

//existance of the packet

//

//

ip_packetclass::ip_packetclass():host_id(-l),

filename("no_file_exists"),

ki(-l),

mac(*\0'){}

//.

//function: another constructor

//return value: a ip_packetclass object

//parameters: int id (hostid), char* data file, int ki, char* mac

//purpose: an ip_packetclass object with initial values

140

// the parameters passed has been created by a hostclass object

//.

//

ip_packetclass::ip_packetclass(int id, char* data_file,

int ki,unsigned char* mac):

filename(data_file), ki(ki), host_id (id), mac (mac){}

//-■

//function: destructor

//return value: none

//parameters: none

//purpose: destroys "this" ip_packetclass object

//.

//

ip_packetclass: :~ipjpacketclassO {}

//end file ip_packetclass.cpp

141

H** ************************

n** ************************

// File : kerberosclass.cpp

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Description: the same as in kerberosclass.h file

//

// Assumptions

//

// Warnings: they are inherited from the STL vector, they do not cause

// any problem.

//
n**

#include "kerberosclass.h"

//.

//function: default constructor

//return value: a kerberosclass object

//parameters: none

//purpose: creates a kerberosclass object with two empty databases

// one for users and one for host_key_class objects

//.

//

kerberosclass: :kerberosclass(){}

//.

//function: destructor

//return value: none

//parameters: none

//purpose: destroys "this" kerberosclass object

//.

//

142

kerberosclass::~kerberosclass(){};

//member functions
//

//function: register_host(int host_id,char* host_key)

//return value: none

//parameters: int host_id, char* host_key

//purpose: it adds an entry to the host_key database of kerberos; therefore, it

// registers a host

//remarks: as we mentioned in the header file description the programmer has to

// take care of the registration process in the driver of the simulation.

// The programmer plays the role of the secure key distribution mean

// between the kerberos and the host. The vector object's functionality

// is used to add the entry to the database
//.

//

void kerberosclass::register_host(int host_id,

char* host_key)

{ //use vector's functionality

host_key_database.add_host(host_id,host_key);

return;

}//end registerjiost

II-

//function: remove_host(int host_id)

//return value: none

//parameters: int host_id

//purpose: it removes an entry from the host_key database of kerberos
//.

//

void kerberosclass::remove_host(int host_id)

{ //use vector's functionality

host_key_database.remove_host(host_id);

return;

}//end remove_host

143

//

//function: register_user (char* user_id)

//return value: none

//parameters: char* userjd

//purpose: it adds an entry (actually a char*) to the user database of kerberos;

// therefore, it registers a user

//remarks: as we mentioned in the header file description, the programmer has to

// take care of the user registration process in the driver of the

// simulation.

// The user registers in a "naive" way with kerberos using the user id.

// We decided this only for simplification purposes for the

// simulation. The vector object's member function "push_back(class T)"

// is used to add the entry to the database

// .

//

void kerberosclass::register_user (char* userjd)

{ //use the vector functionality

user_database.push_back(user_id);

return ;

}//end registeruser

//_

//function: remove_user (char* userjd)

//return value: none

//parameters: char* userjd

//purpose: it removes an entry (actually a char*) from the user database of

// kerberos. An iterator is used to traverse the database and the member

// function of vector "erase(iterator i) is used to remove the vector

// entry pointed by i.

//

//

void kerberosclass::remove_user (char* userjd)

{
//traverse the vector

for (uservector:: iterator i= user_database.begin();

144

i!=user_database.end(); i++){

//if you find the user entry

if((*i)=user_id){

userdatabase.erase(i);

}//endif

}//endfor

return;

}//end remove_user

II-

//function: request_permission(char* user_id,int host_id)

//return value: bool

//parameters: char* user_id,int host_id

//purpose: simulates the kerberos authentication process.

// A user_id, at a host_id, requests permission to access the nacclass

// object for further packet forwarding. If the host is registered and

// the user is registered then the return value is "true" (the host has

// permission).Otherwise "false".

//.

//

bool kerberosclass::request_permission(char* userid,

int host_id)

{

bool user_exists = false;

bool permission_granted = false;

//first lookup the database of hosts

//use the object's member function

bool hostexists = host_key_database.is_host_registered(host_id);

//then lookup the database of users

//traverse the user database (vector) with an iterator

for (userjvector:: iterator i= user_database.begin();

i!=user_database.end(); i++){

//if you find the user registered

145

if (strcmp((*i), user_id)==0){

user_exists = true;

}//end if

}//end for

//only if both are registered

if (hostexists && user_exists){

permission_granted = true;

}//endif

return permission_granted;

}//end request_permission

//.

//function: create_session_key()

//return value: char*

//parameters: none

//purpose: to create the session key the host needs to communicate with the nac.

// In a more elaborate prototype a key_generator should be used.

// Here we stub the key to the string: "sesskey".

//.

//

char* kerberosclass::create_session_key()

{
return ("sesskey");

}//end create_session_key()

//.

//function: create_ticket(int host_id, char* sessionkey)

//return value: a ticketclass object

//parameters: int host_id,char* sessionkey

//purpose: the host needs a ticket to be accepted by the nac.

// Normally a ticket would have more information like a timestamp.

// We simplify the ticket to be only the host_id and

// a sessionjcey. A ticketclass object is created and returned.

//

146

//-

//

ticketclass kerberosclass::create_ticket(int host_id,

char* session_key)

{

//create a ticketClass object

ticketclass current_ticket (hostid, session_key);

return (current_ticket);

}//end create_ticket(int host_id, char* session_key)

II-

//function: send_key_ticket(int host_id)

//return value: const char* (a file name)

//parameters: int host_id

//purpose: the kerberos creates a session key and a ticket for the host.

// It then puts the ticket to file (TICKET_FILE).(This file should be

// encrypted with the selected encryption method using the

// KEY OF THE NAC that Kerberos knows, we don't do it here).

// The name of the file and the session key are used to create

// a keyjicketclass object that is put to a file (KEYTICKETFILE.

// (This file should be encrypted with the selected encryption method

// but using the KEY OF THE HOST that Kerberos knows, again we skip

// this step). The name of the file is returned (to the host).
//.

//

const char* kerberosclass::send_key_ticket(int hostid)

{

//create a session key

char* sessionjkey = create_session_key();

//and a ticket to be send to nac

ticketclass ticket = create_ticket(host_id ,session_key);

//open a file to put the ticket

147

fstream t_out(TICKET_FILE, ios::out);

//now put the created ticket in this file

//use the overloaded operator

t_out«ticket;

//for safety

t_out.close();

//apply encryption to the file, use NAC's key (NOT IMPLEMENTED):

//encrypt(TICKET_FILE,"nackey")

//create the key_ticket_class to be returned

//contains the sessionjcey and the ticket_file name

key_ticket_classkey_ticket(session_key,const_cast<char*>(TICKET_FILE));

//open a file to put the key_ticket_class object

fstream kt_out(KEY_TICKET_FILE, ios::out);

//use the overloaded operator

kt_out«key_ticket;

//apply encryption to the file use HOSTs key (NOT IMPLEMENTED):

//encrypt (TICKET_FILE,"hostkeyM)

//for safety

kt_out.close();

//return the name of the file that contains all

return (KEY_TICKET_FILE);

}//end send_key_ticket(int hostid)

//

//FUNCTIONS USED FOR DEBUGGING PURPOSES

//

//

148

//.

//function: print_users()

//.

//

void kerberosclass::print_users ()

{

//traverse the vector

for (user_vector:: iterator i = user_database.begin();

i!=user_database.end(); i++){

//if you find the user entry

cout«(*i)«endl;

}//endfor

return;

}//end print_users

//-

//function: print_hosts_keys()

//.

//

void kerberosclass: :print_hosts_keys()

{

cout«host_key_database;

return;

}//end print_hosts_keys

//end file kerberosclass.cpp

149

#ifhdef key_ticket_class_H

#define key_ticket_class_H

A/**

//**

// File : key_ticket_class.h

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Description:This is the class that contains the session key and the name of

// the file that contains the ticket. The objects are created by

// the kerberos class and are sent to the host that

// requested for authentication and a session key to send traffic

// to the nac. The necessary functions to access the data are also

// provided.

//

// Assumptions: The file that contains the ticket is encrypted with the

// encryption method chosen for the protocol (IDEA in our case)

//

//

//
//**

//

#include <iostream>

class key_ticket_class {

//overloading of operators

friend ostream& operator«(ostream&, const key_ticket_class&);

friend istream& operator»(istream&, key_ticket_class&);

public:

//default constructor

key_ticket_class();

150

//another constructor

explicit key_ticket_class(char* sessiönjcey,

char* ticket_file);

//destructor

~key_ticket_class();

//member functions

char* session_key_is()const{return (session_key);}

char* ticket_file_is()const {return (ticket_file);}

private:

//data

char* session_key;

char* ticket_file;

};//end key_ticket_class

#endif

151

//**

// File : key_ticket_class.cpp

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

// Date: 19 September 1998

// Descriptiomsame as in key_ticket_class.h file

// Assumptions:same as in key_ticket_class.h file

//

//

//

//

#include "key_ticket_class.h"

II-

//function: default constructor

//return value: a key_ticket_class object

//parameters: none

//purpose: the initial values are entered in order to be able to check the

// existance of a key and a file name.The key_ticket_class object is

// initialized with "notexists" strings

//.

//

key_ticket_class::key_ticket_class():

session_key("notexists"),ticket_file("notexists"){}

//

//function: another constructor

//return value: a key_ticket_class object

152

//parameters: char* sessionkey, char* ticket_file

//purpose: the session_key and the ticket_file name are entered to the created

// object by kerberos. The object is going to be sent to the host for further

// usage.

//

//

key_ticket_class::key_ticket_class (char* sessionjcey, char* ticket_file):

session_key(session_key),ticket_file(ticket_file) {}

II-

//function: destructor

//return value: none

//parameters: none

//purpose: destroys "this" key_ticket_class object

//. _

//

key_ticket_class: :~key_ticket_class() {}

II-

//function: ostream& operator«(ostream& out, const key_ticket_class& MY_KT)

//return value :ostream&

//parameters: ostream out,key_ticket_class MYKT

//purpose: a user defined class has to define how « behaves.

// In our case if the key_ticket_class object passed in by ref

// has not been initialized (session_key and ticket_file strings are

// not valid) then we only inform the user that the object does not

// exist, otherwise we display the two strings.

//

//remark: even one unitialized value would lead to an invalid object

//

//

ostream& operator«(ostream& out, const key_ticket_class& MY_KT)

{

if ((MY_KT.session_key = "notexists")&&

153

(MY_KT.ticket_file == "notexists")){

//for some reason the key_ticket object is not there

out « "<key_ticket object does not exist>"«endl;

}

else if (MY_KT.session_key = "notexists"){

//for some reason the key_ticket object's session_key is not there

out«"<key_ticket object.sessionkey does not exist> "« endl;

}

else if (MY_KT.ticket_file="notexists"){

//for some reason the key_ticket object's ticketfile is not there

out«"<key_ticket object.ticket_file does not exist> "« endl;

}

else {//everything exists

.out« MY_KT.session_key«endl;

out« MY_KT.ticket_file«endl;

}//end if

return out;

}//end operator«(ostream& out, const key_ticket_class& MY_KT)

//

//function: istream& operator»(istream& in, key_ticket_class& my_kt)

//return value :istream&

//parameters: istream& in,key_ticket_class my_kt

//purpose: a user defined class has to define how » behaves.

// Here we input the two values to the key_ticket_class object

// on the RHS

//. -,

//

istream& operator»(istream& in, key_ticket_class& my_kt)

{

in »my_kt.session_key;

in »my_kt.ticket_file;

return in;

}//end operator»(istream& in, key_ticket_class& my_kt)

154

//end file key_ticket_class.cpp

155

#ifhdef_md5_H_

#define md5_H

/* MD5.H - header file for MD5C.C

*/

/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All

rights reserved.

License to copy and use this software is granted provided that it

is identified as the "RSA Data Security, Inc. MD5 Message-Digest

Algorithm" in all material mentioning or referencing this software

or this function.

License is. also granted to make and use derivative works provided

that such works are identified as "derived from the RSA Data

Security, Inc. MD5 Message-Digest Algorithm" in all material

mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either

the merchantability of this software or the suitability of this

software for any particular purpose. It is provided "as is"

without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this

documentation and/or software.

*/

#include "global.h"

/* MD5 context. */

typedef struct {

UINT4 state[4]; /* state (ABCD) */

UINT4 count[2]; /* number of bits, modulo 2*64 (lsb first) */

unsigned char buffer[64]; /* input buffer */

} MD5_CTX;

void MD5Init /*PROTO_LIST*/ (MD5_CTX *);

156

void MD5Update /*PROTO_LIST*/

(MD5_CTX *, unsigned char *, unsigned int);

void MD5Final /*PROTO_LIST*/ (unsigned char [16], MD5_CTX *);

#endif

157

/* MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm

*/

/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All

rights reserved.

License to copy and use this software is granted provided that it

is identified as the "RSA Data Security, Inc. MD5 Message-Digest

Algorithm" in all material mentioning or referencing this software

or this function.

License is also granted to make and use derivative works provided

that such works are identified as "derived from the RSA Data

Security, Inc. MD5 Message-Digest Algorithm" in all material

mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either

the merchantability of this software or the suitability of this

software for any particular purpose. It is provided "as is"

without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this

documentation and/or software.

*/

#include "global.h"

#include "md5.h"

#include <memory.h>

/* Constants for MD5Transform routine.

*/

#defineS117

#define S12 12

#define S13 17

158

#defmeS14 22

#defmeS215

#define S22 9

#define S23 14

#defme S24 20

#defineS314

#defineS32 11

#define S33 16

#define S34 23

#defme S41 6

#defineS42 10

#defineS43 15

#defineS44 21

static void MD5Transform /*PROTO_LIST*/ (UINT4 [4], unsigned char [64]);

static void Encode /*PROTO_LIST*/

(unsigned char *, UINT4 *, unsigned int);

static void Decode /*PROTOJLIST*/

(UINT4 *, unsigned char *, unsigned int);

static void MD5_memcpy /*PROTO_LIST*/ (POINTER, POINTER unsigned int);

static void MD5_memset /*PROTO_LIST*/ (POINTER int, unsigned int);

static unsigned char PADDING[64] = {

0x80, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

};

/* F, G, H and I are basic MD5 functions.

*/

#defme F(x, y, z) (((x) & (y)) | ((~x) & (z)))

#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))

#defme H(x, y, z) ((x) A (y) A (z))

#defineI(x,y,z)((y)A((x)|(~z)))

159

/* ROTATE_LEFT rotates x left n bits.

*/

#define ROTATE_LEFT(x, n) (((x) «(n)) | ((x)» (32-(n))))

/* FF, GG, HH, and II transformations for rounds 1,2, 3, and 4.

Rotation is separate from addition to prevent recomputation.

*/

#define FF(a, b, c, d, x, s, ac) {\

(a) += F ((b), (c), (d)) + (x) + (UINT4)(ac); \

(a) = ROTATE_LEFT ((a), (s)); \

(a)+=(b);\

}

#define GG(a, b, c, d, x, s, ac) {\

(a) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \

(a) = ROTATE_LEFT ((a), (s)); \

(a)+=(b);\

}

#define HH(a, b, c, d, x, s, ac) {\

(a) += H ((b), (c), (d)) + (x) + (UINT4)(ac); \

(a) = ROTATE_LEFT ((a), (s)); \

(a)+=(b);\

}

#define II(a, b, c, d, x, s, ac) {\

(a) += I ((b), (c), (d)) + (x) + (UINT4)(ac); \

(a) = ROTATE_LEFT ((a), (s)); \

(a)+=(b);\

}

/* MD5 initialization. Begins an MD5 operation, writing a new context.

*/

void MD5Init (context)

MD5_CTX »context; /* context */

{

context->count[0] = context->count[l] = 0;

/* Load magic initialization constants.

160

*/

context->state[0] = 0x67452301;

context->state[l] = 0xefcdab89;

context->state[2] = 0x98badcfe;

context->state[3] = 0x10325476;

}

/* MD5 block update operation. Continues an MD5 message-digest

operation, processing another message block, and updating the

context.

*/

void MD5Update (context, input, inputLen)

MD5_CTX »context; /* context */

unsigned char * input; /* input block */

unsigned int inputLen; /* length of input block */

{

unsigned int i, index, partLen;

/* Compute number of bytes mod 64 */

index = (unsigned int)((context->count[0] » 3) & 0x3F);

/* Update number of bits */

if ((context->count[0] += ((UINT4)inputLen « 3))

< ((UINT4)inputLen « 3))

context->count[1]++;

context->count[l] += ((UINT4)inputLen » 29);

partLen = 64 - index;

/* Transform as many times as possible.

*/

if (inputLen >= partLen) {

MD5_memcpy

((POINTER)&context->buffer[index], (POINTER)input, partLen);

MD5Transform (context->state, context->buffer);

161

for (i = partLen; i + 63 < inputLen; i += 64)

MD5Transform (context->state, &input[i]);

index = 0;

}
else

i = 0;

/* Buffer remaining input */

MD5_memcpy

((POINTER)&context->buffer[index],(POrNTER)&input[i],

inputLen-i);

}

/* MD5 finalization. Ends an MD5 message-digest operation, writing the

the message digest and zeroizing the context.

*/

void MD5Final (digest, context)

unsigned char digest[16]; /* message digest */

MD5_CTX »context; /* context */

{
unsigned char bits [8];

unsigned int index, padLen;

/* Save number of bits */

Encode (bits, context->count, 8);

/* Pad out to 56 mod 64.

*/

index = (unsigned int)((context->count[0] » 3) & 0x3f);

padLen = (index < 56) ? (56 - index) : (120 - index);

MD5Update (context, PADDING, padLen);

/* Append length (before padding) */

162

MD5Update (context, bits, 8);

/* Store state in digest */

Encode (digest, context->state, 16);

/* Zeroize sensitive information.

*/

MD5_memset ((POINTER)context, 0, sizeof (»context));

}

/* MD5 basic transformation. Transforms state based on block.

*/

static void MD5Transform (state, block)

UINT4 state[4];

unsigned char bIock[64];

{

U1NT4 a = state[0], b = state[l], c = state[2], d = state[3], x[16];

Decode (x, block, 64);

/* Round 1 */

FF (a, b, c, d, x[0], SI 1, 0xd76aa478); /* 1 */

FF (d, a, b, c, x[1], S12, 0xe8c7b756); /* 2 */

FF (c, d, a, b, x[2], SI3, 0x242070db); /* 3 */

FF (b, c, d, a, x[3], S14, Oxclbdceee); /* 4 */

FF (a, b, c, d, x[4], SI 1, 0xf57c0faf); /* 5 */

FF (d, a, b, c, x[5], S12, 0x4787c62a); /* 6 */

FF (c, d, a, b, x[6], S13, 0xa8304613); /* 7 */

FF (b, c, d, a, x[7], S14, 0xfd469501); /* 8 */

FF (a, b, c, d, x[8], SI 1, 0x698098d8); /* 9 */

FF (d, a, b, c, x[9], S12, 0x8b44f7af); /* 10 */

FF (c, d, a, b, x[10], S13, 0xffff5bbl); /* 11 */

FF (b, c, d, a, x[ll], S14, 0x895cd7be); /* 12 */

FF (a, b, c, d, x[12], SI 1, 0x6b901122); /* 13 */

FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */

FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */

163

FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */

/* Round 2 */

GG (a, b, c, d, x

GG (d, a, b, c, x

GG (c, d, a, b, xj

GG (b, c, d, a, x

GG (a, b, c, d, x

GG (d, a, b, c, x

GG (c, d, a, b, x

GG (b, c, d, a, x

GG (a, b, c, d, x

GG (d, a, b, c, x

GG (c, d, a, b, x

GG (b, c, d, a, x

GG (a, b, c, d, x

GG (d, a, b, c, x

GG (c, d, a, b, x

GG (b, c, d, a, x

/* Round 3 */

HH (a, b, c, d, x

HH (d, a, b, c, x

HH (c, d, a, b, x

HH (b, c, d, a, x

HH (a, b, c, d, x

HH (d, a, b, c, x

HH (c, d, a, b, x

HH (b, c, d, a, x

HH (a, b, c, d, x

HH (d, a, b, c, x

HH (c, d, a, b, x

HH (b, c, d, a, x

HH (a, b, c, d, x

HH (d, a, b, c, x

1], S21,0xf61e2562);/* 17*/

6], S22, 0xc040b340); /* 18*/

11], S23, 0x265e5a51);/* 19*/

0], S24, 0xe9b6c7aa); /* 20 */

5],S21,0xd62fl05d);/*21*/

10], S22, 0x2441453);/* 22*/

15], S23,0xd8ale681);/*23*/

4], S24, 0xe7d3fbc8); /* 24 */

9], S21,0x21elcde6);/*25*/

14], S22, 0xc33707d6); /* 26 */

3], S23, 0xf4d50d87); /* 27 */

8], S24, 0x455al4ed); /* 28 */

13], S21,0xa9e3e905);/*29*/

2], S22, 0xfcefa3f8); /* 30 */

7], S23,0x676fö2d9);/*31 */

12], S24, 0x8d2a4c8a); /* 32 */

5], S31,0xfffa3942);/*33*/

8], S32,0x8771f681);/*34*/

11], S33,0x6d9d6122);/*35*/

14], S34, 0xfde5380c); /* 36 */

1], S31,0xa4beea44);/*37*/

4], S32, 0x4bdecfa9); /* 38 */

7], S33, 0xf6bb4b60); /* 39 */

10], S34, 0xbebfbc70); /* 40 */

13], S31,0x289b7ec6);/*41 */

0], S32,0xeaal27fa);/*42*/

3], S33, 0xd4eß085); /* 43 */

6], S34, 0x4881d05);/*44*/

9],S31,0xd9d4d039);/*45*/

12], S32, 0xe6db99e5); /* 46 */

164

HH (c, d, a, b, x[15], S33, 0xlfa27cf8); /* 47 */

HH (b, c, d, a, x[2], S34, Oxc4ac5665); /* 48 */

/* Round 4 */

II (a, b, c, d, x[0], S41, 0xf4292244); /* 49 */

II (d, a, b, c, x[7], S42, 0x432aff97); /* 50 */

II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */

II (b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */

II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */

II (d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */

II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */

II (b, c, d, a, x[1], S44,0x85845ddl); /* 56 */

II (a, b, c, d, x[8], S41,0x6fa87e4f); /* 57 */

II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */

II (c, d, a, b, x[6], S43, 0xa3014314); /* 59 */

II (b, c, d, a, x[13], S44, 0x4e081 lal); /* 60 */

II (a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */

II (d, a, b, c, x[l 1], S42, 0xbd3af235); /* 62 */

II (c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */

II (b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */

state[0] += a:

state[l]+=b

state[2] += c

state[3] += d

/* Zeroize sensitive information.

*/

MD5_memset ((POINTER)x, 0, sizeof (x));

}

/* Encodes input (UINT4) into output (unsigned char). Assumes len is

a multiple of 4.

*/

static void Encode (output, input, len)

165

unsigned char *output;

UINT4 * input;

unsigned int len;

{

unsigned int i, j;

for(i = 0,j = 0;j<len;i++,j+=4){

outputQ] = (unsigned char)(input[i] & Oxff);

output[j+l] = (unsigned char)((input[i] » 8) & Oxff);

output[j+2] = (unsigned char)((input[i] » 16) & Oxff);

output[j+3] = (unsigned char)((input[i] » 24) & Oxff);

}

}

/* Decodes input (unsigned char) into output (UINT4). Assumes len is

a multiple of 4.

*/

static void Decode (output, input, len)

UINT4 * output;

unsigned char * input;

unsigned int len;

{

unsigned int i,j;

for(i = 0,j = 0;j<len;i++,j+=4)

outputp] = ((UINT4)input[j]) I (((UINT4)input[j+l]) « 8) |

(((UINT4)input[j+2]) « 16) | (((UINT4)input|j+3]) « 24);

}

/* Note: Replace "for loop" with standard memcpy if possible.

*/

static void MD5_memcpy (output, input, len)

POINTER output;

POINTER input;

166

unsigned int len;

{

/*

unsigned int i;

for (i = 0; i < len; i++)

output[i] = input[i];

*/

memcpy(output,input,len);

}

/* Note: Replace "for loop" with standard memset if possible.

*/

static void MD5_memset (output, value, len)

POINTER output;

int value;

unsigned int len;

{

/*

unsigned int i;

for (i = 0; i < len; i++)

((char *)output)[i] = (char)value;

*/

memset(output,value,len);

}

167

#ifhdef nacclassH

#define nacclassJH

//**

//**

// File : nacclass.h

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Description: the nacclass simulates the functionality of our firewall-like

// network access controller and demos the protocol that we propose

// Nac has the functionality to check if a host is authorized by

// kerberos to send packets by examining the host's ticket. It then

// creates a tableclass object (tagkey table), puts a copy in a

// file encrypts it with the session_key that was retrieved from the

// ticket and returns the filename of the (encrypted) file to the

// host.Nacclass object puts the host_id and the tableclass object

// in the hosts_tables_db database for further usage.

// The nac authenticates the ip_packets that arrive.First a mac is

// calculated for the message of the ip_packet. The mac is

// calculated after the (ip_packet's) ki corresponding key is

// appended to the message. By comparing the two macs (calculated

// and the one contained in the ip_packet) the nac decides if the

// ip_packet is authorized for forwarding.

//

// Assumptions: none

//

//

//
//**

//

#include "ip_packetclass.h"

#include "tableclass.h"

168

#include "ticketclass.h"

#include "host_table_vector.h"

#include "constants.h"

#include "host_table_class.h"

#include "host_key_class.h"

#include "host_ticket_class.h"

#include "fileutils.h"

#include <iostream>

#include <fstream>

extern const char* TABLE_FILE;

extern const char* HOSTTICKETJFILE;

class nacclass{

public:

//constractors destructors

//default constractor

nacclass();

//destructor

~nacclass();

//member functions

// .

//a host asks for a table by sending the filename of the(encrypted) file that

//contains the ticket

//postcondition: the filename of the (encrypted) file that contains the

// tableclass object is returned

II.

char* prepare_table(const char*);

//.

//a packet arrives and needs to be authenticated

//postcondition: if the mac of the packet is the same with the mac that nac

169

// calculates for the packet the packet is authenticated and

// "true" is returned. Otherwise "false"

//_

bool authenticate_packet(ip_packetclass ip jacket);

private:

//data

//the database vector of hosts and tables

host_table_vectorhosts_tables_db;

//auxilliary functions

//for the authentication

//NOT NEEDED TAKE OUT AT CLEANUP

char* generate_mac();

bool compare_macs(char* in_mac ,char* calculated_mac);

//add to database of hosts and tables

void add_host_table (int host, tableclass* tableptr);

};//endnac class

#endif

//end file nacclass.h

170

//**

//**

// File: nacclass.cpp

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

// Date: 19 September 1998

// Description: the same as in nacclass.h file

//

// Assumptions

//

// Warnings

//

/I********************** **

//

#include "nacclass.h"

extern "C"{

#include "hashutils.h"

#include "md5.h"

}

#include <stdio.h>

//.

//function: default constructor

//return value: a nacclass object

//parameters: none

//purpose: an empty database of hosts_tables is created

//-

//

nacclass: :nacclass() {}

//.

//function: destructor

//return value: none

//parameters: none

171

//purpose: destroys "this" nacclass object

//

//

nacclass: :~nacclass() {}

//member functions

//

//function: prepare_table(const char* HOST_TICKET_FILE)

//return value: char*

//parameters: const char* HOST_TICKET_FILE

//purpose: a host asks for a table by sending the file name of the file that

// contains the host_ticket_class object

// the nacclass object (nac) reads the host_id and the ticketfile name

// from the HOST_TICKET_FILE file. NAC decrypts the ticketfile and gets

// the host_id and the session_key(as they were encrypted by kerberos).

// If the host_id send by the host is the same with the host_id that was

// retrieved from the ticket: NAC prepares a new tableclass object, adds

// an entry for the host to the hosts_tables database, puts the table to

// a file, encrypts it with the session_key (retrieved from the ticket)

// and returns the filename of the encrypted file to the host. Otherwise

// if the host is not verified by the ticket the string "invalid ticket"

// is returned.

//

//

char* nacclass: :prepare_table(const char* HOST_TICKET_FILE)

{
char* retname = "invalid ticket";

//FIRST need to read from the file the host_id and

//the ticket_file name

host_ticket_class host_ticket;

ticketclass host_key;

//open the file for input

fstream in(HOST_TICKET_FILE, ios::in);

172

//get the host_ticket_class object

in » host_ticket;

//get the data from the host_ticket_class object

int host_id = host_ticket.host_id_is();

char* ticket_file = host_ticket.ticket_file_is();

//no need this stream anymore

in.close();

//decrypt the ticket file using the nackey

//decrypt (ticket_file,"nackey");

//from the decrypted file

//open it for input

fstream t_in(ticket_file, ios::in);

//read the host id and the sessionkey in the host_key_class object

t_in » host_key;

//from the host_key_class object

//get the data needed to verify the host

int ticket_host_id = host_key.host_id_is();

//use it if encryption is integrated

//char* session_key = host_key.session_key_is();

//only if host is verified by the ticket

if (host_id = ticket_host_id){

//dynamically allocate space for a tableclass object

tableclass* new_table_ptr= new tableclassO;

//initialize the key table

new_table_ptr -> initiaIize_the_key_pool(host_id);

//update the database with the new entry

add_host_table(host_id,new_table_ptr);

173

//prepare the table file to be sent to the host

fstream out(TABLE_FILE, ios::out);

out«(* new_table jptr);

out.close();

//encrypt the file using the "session key"

//encrypt(TABLE_FILE, session_key);

//this file name prepare to return

retname = const_cast<char*>(TABLE_FILE);

}//endif

return retname;

}//end prepare_table

II-

//function: authenticate_packet(ip_packetclass ipjpacket)

//return value: bool

//parameters: ip_packetclass ip_packet

//purpose: nac extracts the filename that contains the (actual)message

// The contents of this file are copied to the a stream buffer

// The ki and the host_id are retrieved from the ip_packetclass object

// using the ipjpacketclass functionality. Nac checks to see if the host

// that created the ip_packet is authorized to send packets (if an entry

// exists for this host in the hostsjablesdb). If this is "true" (a

// table exists for the host) the key for the relevant ki is retrieved

// and the ki and the key is APPENDED to the stream buffer file.

// MD5 is called for the FILE_TO_HASH and the 128 bit (16 byte) mac is

// calculated. If the calculated mac is the same with the ip_packet mac

// the ip_packet is authenticated to go and the function returns "true"

// otherwise "false".

//
//

//

bool nacclass::authenticate_packet(ip_packetclass ip_packet)

174

{

bool authenticated = false;

//the message data is in this file

char* message_file = ip_packet.filename_is();

//a pointer to a buffer that will carry the contents of the message

char* temp_buffer = new char[MAX_MESSAGE_SIZE];

char* messagejxiffer;

int ki = ip_packet.ki_is();

int host_id= ip_packet.host_is();

int key = 0;

if(hosts_tables_db.is_host_authorized(host_id)){

key = hosts_tables_db.

key_for_host_ki(host_id,ki);

}//end if

//the key has to be appended in the next line to the message

temp_buffer = copytobuffer(message_file,temp_buffer,ki,key);

message_buffer = new char [strlen(temp_buffer)+l];

strcpy (message_buffer, temp_buffer);

delete[] temp_buffer;

//md5 HAS TO BE CALLED FOR THE WHOLE THING

unsigned char* mac = MD5String(message_buffer);

if (compare2Digest(mac,ip_packet.mac_is())) {

authenticated = true;

}

return authenticated;

}//end authenticate_packet(ip_packetclass ip_packet)

//

//function: add_host_table (int host, tableclass * tableptr)

//return value: none

175

//parameters: int host, tableclass * tableptr

//purpose: it adds an entry to the hosts_tables_db database of nac.

// First a host_table_class object is created then the function uses

// the functionality of the host_table_vector to add the new entry to

// the hosts_tables_db.

//.

//

void nacclass::add_host_table (int host, tableclass * tableptr)

{

host_table_classnew_host_table(host,tableptr);

hosts_tables_db.add_host_table(new_host_table);

return;

}//

//end file nacclass.cpp

176

#ifiidef tableclass H

#define tableclass H
//****** **************** **!|I:(c*** + !|t* + !(;)|t +

//***************************^

// File: tableclass.h

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Description:The table of (key_index,key) pairs created by nac and sent

// to the host. The STL::map data structure was chosen to contain

// the pairs of ki and key. The map"key" (first of the pair) is

// the ki and the value (second of the pair) is the key. We chose

// the key to be an integer value created by the srand function of

// C++ with seed the host_id (for uniqueness of the random values).

// This is a "naive" approach and was chosen for simplicity for demo

// purposes. In a more serious implementation a key_generator must

// be used and the key maybe chosen to be other than an integer

// (a string maybe).

// The class contains a map of NUMPAIRS = 10 ki-key pairs and

// the necessary functions to get the data. The auxilliary

// functions are private so only the nac can get the data.

// TO DO: CONSIDER USING RANDOM kis ALSO,DOES NOT AFFECT THE MAP,

// NOT NECESSARY

//

// Assumptions: we assume only authorized users will use the « and » operator

// that we defined

//

// Warnings

//

#include <stdlib>

#include <map>

#include <iostream>

177

#include "constants.h"

using namespace std;

//a map is used for the tagjcey pairs

typedef map<int ,int ,less<int> > table_ofki_key_pairs;

classtableclass{

//friend

//we want nac to access private part

friend class nacclass;

//and the database of the nac

friend class host_table_vector;

//i/o stream operators overloading

friend ostream& operator«(ostream &, tableclass&);

friend istream& operator»(istream &, tableclass&);

public:

//constractors destructors

//default constractor

tableclass();

//copy constructor

tableclass (const tableclass &);

//destructor

~tableclass();

//member functions

//a host asks for the next ki_key pair from the table

int get_next_ki ();

178

int get_next_key(int ki)const;

//not really needed, I put it for Debuging

void print_table();

private:

//DATA

//astd::map

table_of_ki_key_pairski_key_table;

//initialize the tag key pool

//use as seed the host_id for uniqueness

void tableclass::initialize_the_key_pool(int host_id);

//service intented for the NAC to look_up the table to find a key

int look_up_table_for_key(int ki)const;

};//end table class

#endif

//end file tableclass.h

179

//**

//**

// File : tableclass.cpp

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Description: same as in the header file

//

// Assumptions:we assume only authorized users will use the « and » operator

// that we defined

//

// Warnings

//
//**

//

#include "tableclass.h"

//

//function: default constructor

//return value: a tableclass object

//parameters: none

//purpose: the initial values are entered in order to be able to check the

//existance of a key .the table is initialized with 0's

//.

//

tableclass: :tableclass()

{

//just create a zeroized object

for (int i = 1; i<= NUM_PA1RS; i++){

ki_key_table[i]=0;

}

} //end constructor

180

//.

//function: copy constructor

//return value: a tableclass object

//parameters: NEW_TABLE, a const tableclass object passed by reference;

//purpose: the creation of a table object with the same values as

// the NEW_TABLE object

//WARNING: if you change the ki allocation from sequential to random

// with the use of a kigenerator this WOULD NOT WORK instead

// you should use iterators to copy the NEWJTABLE object to the

// newly created table

//.

//

tableclass: :tableclass (const tableclass &NEW_TABLE)

{

for (int i = 1; i<= NUM_PAIRS; i++){

ki_key_table[i] = NEW_TABLE.ki_key_table[i];

}

}//end copy constructor

II-

//function: destructor

//return value: none

//parameters: none

//purpose: destroys "this" table class object

//

//

tableclass: :~tableclass() {}

//member functions

//.

//function: initialize_the_key_pool(int host_id)

//return value: none

//parameters: int host_id, to be used as seed

//purpose: This function is a service to the nac.

// The key values are created using the srand function in C++ and then

181

// they are entered to the map. The "key" to the map is the ki.

//remarks: as we mentioned in the header file description a key generator

// should be chosen for a more elaborate approach. Also here the kis

// are sequential from 1 to NUM_PAIR.It may look more elegant to

// use a ki_generator for that purpose also. These more elaborate

// solutions would not affect the functionality of our object. We chose

// the simple approach for this demo.

//

//

void tableclass::initialize_the_key_pool(int host_id)

{

//initializing the map

//use the host to seed rand for recognition purposes

srand(static_cast<unsigned int>(host_id));

for (int i = 1; i<= NUM_PAIRS; i++){

ki_key_table[i]= rand();

}

return;

}//end initialize_the_key_pool(int host_id)

//_

//function: get_next_ki

//return value: int,the next ki

//parameters: none

//purpose: service provided to a host,

// the host asks for the next ki from the table, the next ki in the map

// is chosen.

//WARNING:

//.

//

inttableclass::get_next_ki ()

{

//pick the next ki for the next series of packets

182

static int current_ki = 0;

current_ki++;//start from 1

//the mod forces current_ki to be in the range or 0-(NUM_PAIRS-l)

//so +1 corrects it to 1 - NUM_PAIRS

if (current_ki%(NUM_PAIRS+l) = 0){//the whole range was covered

//reset the counter

current_ki=l;

}

return current_ki;

}//end get_next_ki()

//-

//function: get_next_key(int ki)

//return value: int,the next key

//parameters: none

//purpose: service provided to a host,

// the host asks for the next key from the table for a given ki

// the logic simply follows from the above
//.

//

int tableclass::get_next_key(int ki)const

{

return ki_key_table[ki];

}//end get_next_key

II-

//function: look_up_table_for_key(int ki)

//return value: int, the key corresponding to this ki

//parameters: intki

//purpose: services provided to the NAC

// friend class nacclass to the table object requests to find

// the key for the passed in ki entry

183

//

//

int tabIeclass::look_up_tabIe_for_key(int ki)const

{
return ki_key_table[ki];

}//end look_up_table_for_key(int ki)

//

//function: print_table()

//return value: none

//parameters: none

//purpose: FOR DEBUG PURPOSES (NOT ACTUALLY NEEDED)

//

//

void tableclass::print_table()

{

if (ki_key_table.size() > 0){

cout« "ki key" «endl;

for (table_of_ki_key_pairs:: iterator i = ki_key_table.begin();

i !=ki_key_table.end();i++){

cout« (*i).first<<" "« (*i).second«endl;

}//end for

}
else cout«" The table does not exist."«endl;

return;

}//end print_table

II-

//function: ostream& operator«(ostream & out, tableclass& MY_TABLE)

//return value:ostream&

//parameters: ostream out,tableclass MYTABLE

//purpose: a user defined class has to define how « behaves.

// In our case if the table size passed in by ref has 0 size

// then we only inform the user that the

// table does not exist, otherwise we display the two values

184

// of each pair in the map using an iterator.

//warning: DOES NOT HAVE to change when the kis are not in the range

// 1 -NUMJPAIRS but are selected randomly

// ALSO no need to change anything if we change the key type,as

// long as « works for that type (native; we must take care of it

// if we use a user defined type)

//remark: MY_TABLE here is not const as it should because the compiler does not

// allow the iterators to be declared

//.

//

ostream& operator«(ostream & out, tableclass& MY_TABLE)

{

if (MY_TABLE.ki_key_table.sizeO <= 0){

//for some reason the table is not there

out«"<table does not exist> "« endl;

}

else{

for(table_of_ki_key_pairs::iterator i =

MY_TABLE.ki_key_table.begin();

i != MY_TABLE.ki_key_table.end();i++){

//line by line for easing sequential file readout

out« (*i).first«endl;

out« (*i).second«endl;

}//end for

}//endif

return(out);

}//end «() overloading

//_ .

//function: istream& operator»(istream & in, tableclass& my_table)

//return value:istream&

//parameters: istream in,tableclass mytable

//purpose: a user defined class has to define how » behaves.

// Here we input the table pairs to the tableclass object on the RHS

//warning: DOES NOT HAVE to change when the kis are not in the range

185

// 1-NUM_PAIRS but are selected randomly

// ALSO no need to change anything if we change the key type,as

// long as » works for that type (native); we must take care of it

// if we use a user defined type

//

//

istream& operator»(istream & in, tableclass& mytable)

{
for (table_of_ki_key_pairs: iterator i =

my_table.ki_key_table.begin();

i != my_table.ki_key_table.end();i++){

in» (*i).first;

in» (*i).second ;

}
return(in);

}//end »() overloading

//end file tableclass.cpp

186

#ifiidef ticketclass H

#define ticketclass H

//********* ********************** ***

//***,,.*;,.

// File: ticketclass.h

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Description:This is the ticket created by kerberos and send by the host

// to the nac. The class contains the host_id and the session_key

// as well as the necessary functions to get the data.The auxilliary

// functions are private so only the nac can get the data. No other

// class can access the ticket data.

//

// Assumptions: only authorized users can use the operators « and »

//

//

//
//**

//

#include <iostream>

class ticketclass {

//friend

//we want nac to access private part

friend class nacclass;

//i/o stream operator overloading

friend ostream& operator«(ostream &,const ticketclass&);

friend istream& operator»(istream &,ticketclass&);

public:

//default constructor

187

ticketclassO;

//for a session with the nac the host must use the ticket

// and the session key created by the kerberos

//another constructor

explicit ticketclass (int host_id , char* session_key);

//copy const

ticketclass (const ticketclass &);

//destructor

~ticketclass();

private:

//DATA

int host_id;

char* sessionjcey;

//AUXILIARY FUNCTIONS

//made private to be used by friend nac class

//to get the info needed

int host_id_is()const;

char* session_key_is()const;

};//end ticketclass

#endif

//end file ticketclass.h

188

//**,,.,,..,,,,.,,.*

//fr***

// File : ticketclass.cpp

// Name : Ioannis Kondoulis

//

// Operating Enviroment: MS Windows NT 4.0

// compiler: Borland C++ for Windows, ver 5.0

//Date: 19 September 1998

// Description: same as in the header file

//

// Assumptions: we assume only authorized users will use the « and » operator

// that we defined

//

//
//********* ** „.„. %%#

#include "ticketclass.h"

#include <iostream>

//-

//function: default constructor

//return value: a ticket class object

//parameters: none

//purpose: the initial values are entered in order to be able to check the

//existanceofakey

//.

//

ticketclass: :ticketclass():host_id(- l),session_key("no_key") {}

II-

//function: another constructor

//return value: a ticket class object

//parameters: host_id, session_key

//purposes ticket object for host:host_id

189

// the session_key value has been created by a kerberos object

//

//

ticketclass::ticketclass (int host_id,char* session_key):

host_id(host_id),session_key(session_key) {}

//.

//function: copy constructor

//return value: a ticket class object

//parameters: new_ticket, a ticket class object passed by reference;

//purpose: the creation of a ticket object with the same values as

// the new_ticket object

//

//

ticketclass::ticketclass(const ticketclass & new_ticket)

{
hostid = new_ticket.host_id;

session_key = new_ticket.session_key;

}

//-

//function: destructor

//return value: none

//parameters: none

//purpose: destroys "this" ticket class object

//.

//

ticketclass: :~ticketclass() {}

//AUXILLIARY functions

//

//function: host_id_is

//return value: the hostid(int) of this object

190

//parameters: none

//purpose: friend class (nac class) to the ticket object can read for which

// host this ticket is. The function can read the value but cannot

// change it (const)

//. .

//

int ticketclass::host_id_is()const

{

return host_id;

}//end host_id_is

//-■

//function: session_key_is

//return value: the session_key (int) of this object

//parameters: none

//purpose: friend class (nac class) to the ticket object can read the

// session_key included in this ticket.The function can read the

// value but cannot change it (const)

//.

//

char* ticketclass::session_key_is()const

{

return session_key;

}//end session_key_is

II-

//function: ostream& operator«(ostream & out, const ticketclass& MY_TICKET)

//return value:ostream&

//parameters: ostream & out,ticketclass& MY_TICKET

//purpose: a user defined class has to define how « behaves.

// In our case if the host_id=-1 then we only inform the user that the

// ticket does not exist (because it is not properly initialized)

// otherwise we display the two values.)
//.

//

191

ostream& operator«(ostream & out, const ticketclass& MY_TICKET)

{

if (MY_TICKET.host_id <0){

//no ticket has been assigned

out«"<ticket does not exist> "« endl;

}

else {

out« MY_TICKET.host_id «endl;

out« MY_TICKET.session_key«endl;

}

retum(out);

}//end «0 overloading

//.

//function: istream& operator»(istream & in, ticketclass& myjicket)

//return value:istream&

//parameters: istream & in,ticketclass& my_ticket

//purpose: a user defined class has to define how » behaves.

// Here we input the ticket values to ticketclass object on the RHS

//

//

istream& operator»(istream & in, ticketclass& my_ticket)

{

in » my_ticket.host_id ;

in » my_ticket.session_key;

return(in);

}//end »() overloading

//end file ticketclass.cpp

192

APPENDIX D. DOCUMENTATION FOR MD5 PERFORMANCE TEST CODE

1. Description

The program measures the throughput of the MD5 message digest algorithm. The

program uses the services of the "buffercreate.h" file. Main() creates a series of eight

messages with sizes 512 bytes, 1,2,4, 8,16,32 and 64 Kbytes and applies MD5 on

them. To calculate an average value for the throughput we calculate the MD5 of each of

these messages 1000 times.

2. Layers

The main uses three function to measure the throughput:

Create_buffer. receives the ostrstream object (by reference) and a float that

is the size of the message that we want to be created and it floods the

object with the char "a" up to the size that was passed in as the second

argument.

Calculate Jime: receives an string (char*) and calculates how long it takes (in

msecs) to apply MD5 on it 1000 times. It returns the calculated time.

calculate Jhroughput: the time that took to apply MD5 1000 times on a string and

the size of the string and calculates the throughput. The result is in

Mbits/sec

3. Modules

3.1 main

3.1.1 DESCRIPTION: The main() declares eight char*s and eight ostrstream output

objects. The objects are declared without arguments therefore they dynamically allocate

as many memory is required for the data that are going to be output to them. They stop

allocating memory only when we "freeze" them using the .str() member function. Then

the messages (buffers) are filled by calling the create_buffer() function and are frozen.

For each of them we calculate the time that it takes for executing 1000 the MD5String()

function and the throughput.

3.1.2 DATA: eight char*, eight ostrstreams

193

3.1.3 FUNCTIONS:

Calculate Jime

Input: char*

Output: none

Return value: clockj

Description: a string, is passed in and MD5 is applied 1000 on it. The time

for all the itterations is calculated and returned. We try to calculate pure

MD5 throughput thats why after we finish with MD5 we calculate the time

that was spend as loop overhead and we subtract it (We itterate the loop

1000 times without doing anything)

Calculate Jhro ughput

Input: clock_t, float

Output: none

Return value: float

Description: performs only the calculation of the throughput solving the

equation.

3.2 buffercreate

3.2.1 DESCRIPTION: The file contains only one function that creates strings (buffers)

of the requested size.

3.2.2. DATA: none

3.2.3. FUNCTIONS:

Createjbuffer

Input: ostrstream &, float

Output: none

Return value: clock_t

Description: an ostrstream object is passed in by reference, and a float.

The float is the size in Kbytes of the string that we want the object to

contain at the end of the function execution. We output character "a" so

194

many times as the size parameter dictates in the ostrstream object. Then

we convert it to a string and we return a reference to this string.

195

196

APPENDIX E. MD5 PERFORMANCE TEST CODE
#ifhdef buffercreate_H_

#define buffercreate_H_

//************************************^^

Z/**^^

// File : buffercreate.cpp

// Author : Ioannis Kondoulis

//

// Operating Enviroment: Windows NT 4.0

// compiler: Borland C++ for Windows, ver. 5.02

//Date: 17 Sep 1998

// Description: This is an auxilliary file that provides the neccesary function

// that allows the creation of messages in streambuffers for the

// testing program of MD5. the size of the message that we need to

// created is passed as a parameter and a reference to a string

// stream object. Postcondition the strstream object contains a

// buffer of the sizethat was requested.

//

//

// Assumptions:none

//

// Warnings: none

//

//**

//

#include <fstream>

#include <iostream>

#include <strstream>

ostrstream& createbuffer (ostrstream «fesout, float size);

//void create_file (char* name, float size);

#endif

197

//**

// File : buffercreate.cpp

// Author : Ioannis Kondoulis

//

// Operating Enviroment: Windows NT 4.0

// compiler: Borland C++ for Windows, ver. 5.02

//Date: 17Sepl998

// Description: This is an auxilliary file that provides the neccesary function

// that allows the creation of messages in streambuffers for the

// testing program of MD5

//

//

// Assumptions:none

//

// Warnings: none

//

//

#include "buffercreate.h"

ostrstream& create_buffer (ostrstream &sout, float size)

{

int buffersize = static_cast<int>(size * 1024);

unsigned char fill = 'a';

for (int i=0 ;i< buffersize;i++)

sout« fill;

return sout;

}

198

//**

//*************** ***££+])t

// File : throughputtestxpp

// Author : Ioannis Kondoulis

//

// Operating Enviroment: Windows NT 4.0

// compiler: Borland C++ for Windows, ver. 5.02

//Date: 17 Sep 1998

// Description: This is the measuring code for the MD5 throughput.The driver

// creates a series of(eight) messages (in buffers) and calculates

// the throughput of MD5 for every one of them.

// The average throughput is also calculated.

//

// Assumptionsmone

//

// Warnings: none
^*************************++***J|C++++*****+++++^%+++++++++^#+^+^%^#++++++++^++:).:).

//

#include <string.h>

extern "C"{

#include <stdio.h>

#include "hashutils.h"

}

#include <time.h>

#include <dos.h>

#include "buffercreate.h"

clock_t calculate_time (char* inbuffer);

float calculate_throughput(clock_t time, float bufsize);

int main()

{

float tempthroughput;

float avgthroughput=0;

199

//the messages

char* buffer512 ;

char* bufferlK

char* buffer2K:

char* buffer4K:

char* buffer8K:

char* bufferl6K;

char* buffer32K;

char* buffer64K;

//create objects that will get the created buffers and will "freeze" them

ostrstream s05out;

ostrstream si out;

ostrstream s2out;

ostrstream s4out;

ostrstream s8out;

ostrstream slöout;

ostrstream s32out;

ostrstream s64out;

cout« "\n The program is creating the messages,"

« "512 bytes up to 64 Kbytes.";

//fill the buffers up to the requested size and then "freeze" them (to avoid

//any accidental modification of their size. Assign their contents to strings

buffer512 = create_buffer (s05out,0.5).str();

cout«".";

bufferlK = createbuffer (slout,l).str();

cout«".";

buffer2K = createbuffer (s2out,2).str();

cout«".";

buffer4K = createjmffer (s4out,4).str();

cout«".";

buffer8K = create_buffer (s8out,8).str();

cout«".";

bufferl6K = create_buffer (sl6out,16).str();

200

cout«".";

buffer32K = create_buffer (s32out,32).str();

cout«".";

buffer64K = create_buffer (s64out,64).str0;

cout«"."«endl;

tempthroughput = calculate_throughput (calculate_time(buffer512),0.5);

printf ("\n CALCULATED THROUGHPUT FOR BUFFER 512 = %f [Mbits/sec]\n",

(double)(tempthroughput));

avgthroughput += tempthroughput;

tempthroughput = calculate_throughput (calculate_time(bufferlK),l);

printf ("\n CALCULATED THROUGHPUT FOR BUFFER IK = %f [Mbits/sec] \n",

(double)(tempthroughput));

avgthroughput += tempthroughput;

tempthroughput = calculate_throughput (calculate_time(buffer2K),2);

printf ("\n CALCULATED THROUGHPUT FOR BUFFER 2K = %f [Mbits/sec] \n",

(double)(tempthroughput));

avgthroughput += tempthroughput;

tempthroughput = calculate_throughput (ca!culate_time(buffer4K),4);

printf ("\n CALCULATED THROUGHPUT FOR BUFFER 4K = %f [Mbits/sec] \n",

(double)(tempthroughput));

avgthroughput += tempthroughput;

tempthroughput = calculate_throughput (calculatetime (buffer8K),8);

printf ("\n CALCULATED THROUGHPUT FOR BUFFER 8K = %f [Mbits/sec] \n",

(double)(tempthroughput));

avgthroughput += tempthroughput;

tempthroughput = calculate_throughput (calculate_tirne(bufferl6K),16);

printf ("\n CALCULATED THROUGHPUT FOR BUFFER 16K = %f [Mbits/sec] \n",

(double)(tempthroughput));

avgthroughput += tempthroughput;

201

tempthroughput = calculate_throughput (calculate_time(buffer32K),32);

printf ("\n CALCULATED THROUGHPUT FOR BUFFER 32K = %f [Mbits/sec] \n",

(double)(tempthroughput));

avgthroughput += tempthroughput;

tempthroughput = calculate_throughput (calculate_time(buffer64K),64);

printf ("\n CALCULATED THROUGHPUT FOR BUFFER 64K = %f [Mbits/sec] \n",

(double)(tempthroughput));

avgthroughput += tempthroughput;

//calculate the average throughput, divide by the number of messages

avgthroughput = avgthroughput/8;

printf ("\n CALCULATED AVERAGE THROUGHPUT = %f [Mbits/sec] \n",

avgthroughput);

printf ("\n Press any key to <exit>");

getchar();

return (0);

}//end main

//

//function: calculatetime

//input: char* inbuffer

//output: clock_t

//Remarks: we calculate the MD5 performance on the string that we received

// as a parameter. We calculate it 1000 times for accuracy purposes.

//

clock_t calculatetime (char* inbuffer)

{

clockt startl_clock;

dock_t stoplclock;

clock_t start2_clock;

clockt stop2_clock;

202

clockj return_time;

//calculate time for 1000 iterations

startl_clock = clockO;

for(int i = 0 ; i < 1000; i++)

MD5TestString (inbuffer);

stopl_clock = clock();

//calculate the overhead that is irrelevant with MD5

start2_clock = clock();

for(inti = 0;i<1000;i++)

stop2_clock = clock();

//and subtract it to find the MD performance

returnjime = (stopl_clock-startl_clock)-(stop2_clock-start2_clock);

return return time;

II-

//function: calculatejhroughput

//input: clock_t time, float bufsize

//output: clock_t

//Remarks: we calculate the MD5 throughput for a given bufsize.

// The bufsize is Kbytes so we calculate bits by

// multiplying by 8* 1024.The time that we receive is for 1000 MD5

// applications on the message and the time is in

// milliseconds therefore the whole result is Mbits/sec.

//-

float calculate_throughput(clock_t time, float bufsize)

{

return ((8*bufsize*1024)/(time));

}

//end throughputtest.cpp file

203

204

APPENDIX F. DOCUMENTATION FOR MAC COMPARISON

PERFORMANCE TEST CODE

1. Description

The program measures the comparitive performance of the two MAC comparison

functions.

2. Layers

The main uses four functions to calculate the performance:

CalculateJimejame: defines two same strings, applies MD5 on both and

calculates how long it takes to execute a comparison of the two message digests one

million times. It uses the byte XORing method (it is described in Appendix A).

Calculate2time_same: defines two same strings, applies MD5 on both and

calculates how long it takes to execute a comparison of the two message digests one

million times. It uses the integer method (it is described in Appendix A).

Calculate Jimejiifferent: defines two different strings, applies MD5 on both and

calculates how long it takes to execute a comparison of the two message digests one

million times. It uses the byte XORing method (it is described in Appendix A).

Calculate2Jimejiifferent: defines two different strings, applies MD5 on both and

calculates how long it takes to execute a comparison of the two message digests one

million times. It uses the integer method (it is described in Appendix A).

4. Modules

3.1 main

3.1.1 DESCRIPTION: The main just makes the calls to the different functions that

execute the comparisons and calculate the execution time and displays the resulst to the

user explaining what it does.

3.1.4 DATA: four type clock_t variables (to accommodate the results of the functions)

3.1.5 FUNCTIONS:

CalculateJime_same

Input: none

205

Output: none

Return value: clock_t

Description: the function declares and defines two same strings and

calculates their message digests. The 16 byte digests are compared using

the byte XORing method (byte by byte XOR ing). The comparison is

repeated 1000000 times for averaging the result. The time is calculated

and returned.

Calculate2_time_same

Input: none

Output: none

Return value: clock_t

Description: the function declares and defines two same strings and

calculates their message digests. The 16 byte digests are compared using

the integer method (cast to four integers and subtract). The comparison is

repeated 1000000 times for averaging the result. The time is calculated

and returned.

Calculate _time_different

Input: none

Output: none

Return value: clock_t

Description: the function declares and defines two different strings and

calculates their message digests. The 16 byte digests are compared using

the byte XORing method. The comparison is repeated 1000000 times for

averaging the result. The time is calculated and returned.

Calculate2_time_different

Input: none

Output: none

Return value: clock t

206

Description: the function declares and defines two different strings and

calculates their message digests. The 16 byte digests are compared using

the integer method. The comparison is repeated 1000000 times for

avereging the result. The time is calculated and returned.

207

208

APPENDIX G. MAC COMPARISON PERFORMANCE CODE
//************ **

//**

// File: MAComparetest.cpp

// Name : Ioannis Kondoulis

//

// Operating Enviroment: Windows NT 4.0

// compiler: Borland C++ for Windows, ver. 5.02

//Date: 17 Sep 1998

// Description: This is a test program that measures the performance of the two

// functions that compare 128 bit MACs.The functions themselves are

// included in the file hashutils.c that interfaces the MD5 code.

// It uses the clockj for the measurement of time. Because the time

// for the comparison is very small we execute it one million times

// in order to measure it. The result we get is in [msec].

// Assumptions :none

//

// Warnings: none

//
//**

//

#include <string.h>

extern "C"{

#include <stdio.h>

#include "hashutils.h"

}

#include <time.h>

#include <dos.h>

clockj calculate_time_same ();

clockj calculate2Jime_same ();

clockj calculateJime_different();

clockj calculate2time_different();

209

int main()

{

cout« " In the following measurements the two strings are the SAME,"

«endl«"therefore,their message digests are the same.\n"«endl;

cout«"Using the byte XORing method for MAC comparison.W

«"We execute 10 itterations,results in [nanosecs].\n"«endl;

clockt tempclock;

for(inti=0;i<10;i++){

tempclock = calculate_time_same();

cout«tempclock«'';

}

cout«endl;

cout«"\n Using the integer method for MAC comparisonAn"

«"We execute 10 itterations.results in [nanosecs].\n"«endl;

clock_t tempclock2;

for(inti=0;i<10;i++){

tempclock2 = calculate2_time_same0;

cout«tempclock2«'';

}

cout«endI«endl;

cout« " In the following measurements the two strings are the DIFFERENT,'

«endl«"therefore,their message digests are different.\n"«endl;

cout«"Using the byte XORing method for MAC comparison.\n"

«"We execute 10 itterations,results in [nanosecs].\n"«endl;

clock_t tempclock3;

for (int i =0; i <10; i++){

tempclock3 = calculate_time_different(3;

cout«tempclock3«'';

}

cout«endl;

210

cout«"\n Using the integer method for MAC comparison.Vn"

«"We execute 10 itterations,results in [nanosecs].\n"«endl;

clock_t tempclock4;

for (int i =0; i <10; i++){

tempclock4 = calculate2_time_different();

cout«tempclock4«'';

}

cout«endl«endl;

cout« "Press any key to <exit>";

getchar();

return(O);

}//end main

clock_t calculate_time_same ()

{

clock_t start l_clock;

clock_t stop 1 clock;

clock_t start2_clock;

clock_t stop2_clock;

clock_t return_time;

unsigned char* tempcharl;

unsigned char* tempchar2;

tempcharl = MD5String ("Mary had a little lamp");

tempchar2 = MD5 String ("Mary had a little lamp");

startl_clock = clockO;

for(int i = 0 ; i < 1000000; i++){

compareDigest(tempchar 1 ,tempchar2);

}

stopl_clock = clock();

211

start2_clock = clockO;

for(int i = 0 ; i < 1000000; i++){

//do nothing

}

stop2_clock = clock();

return_time = (stopl_clock-startl_clock)-(stop2_clock-start2_clock);

return return time;

clock_t calculate2_time_same ()

{

clock_t startl_clock;

clockt stop 1 clock;

clock_t start2_clock;

clock_t stop2_clock;

clock_t return_time;

unsigned char* tempcharl;

unsigned char* tempchar2;

tempcharl = MD5String ("Mary had a little lamp");

tempchar2 = MD5String ("Mary had a little lamp");

start l_clock = clock();

for(int i = 0 ; i < 1000000; i++){

compare2Digest(tempcharl,tempchar2);

}

stopl_clock = clock();

start2_clock = clock();

for(int i = 0 ; i < 1000000; i++){

//do nothing

}

212

stop2_clock = clockO;

returnjime = (stopl_clock-startl_clock)-(stop2_clock-start2_clock);

return return_time;

}

clock_t calculate_time_different 0

{

clock_t start l_clock;

clock_t stopl_clock;

clock t start2_clock;

clockJ stop2_clock;

clock_t return_time;

unsigned char* tempcharl;

unsigned char* tempchar2;

tempcharl = MD5String ("Mary had a little lamp");

tempchar2 = MD5String ("Mary had a black dog");

startl_clock = clockO;

for(int i = 0 ; i < 1000000; i++){

compareDigest(tempcharl,tempchar2);

}

stopl_clock = clockO;

start2_clock = clock();

for(int i = 0 ; i < 1000000; i++){

//do nothing

}

stop2_clock = clockO;

returnjime = (stopl_clock-startl_clock)-(stop2_clock-start2_clock);

return return_time;

}

213

clock_t calculate2_time_different ()

{

clock_t startl_clock;

clock_t stopl_clock;

clock_t start2_clock;

clock_t stop2_clock;

clock_t return_time;

unsigned char* tempcharl;

unsigned char* tempchar2;

tempcharl = MD5String ("Mary had a little lamp");

tempchar2 = MD5String ("Mary had a black dog");

startl_clock = clock();

for(int i = 0 ; i < 1000000; i++){

compare2Digest(tempcharl,tempchar2);

}

stopl_clock = clock();

start2_clock = clock();

for(int i = 0 ; i < 1000000; i++){

//do nothing

}

stop2_clock = clock();

return_time = (stopl_clock-startl_clock)-(stop2_clock-start2_clock);

return return_time;

}

//end MAComparetest.cpp file

214

LIST OF REFERENCES

AF-LANE, LAN Emulation over ATM Ver.2 - LUNI Specification, ATM Forum, 1997.

Armitage, J. G., Support for Multicast over UNI3.1-based ATM Networks, Internet Draft
1995a. '

Armitage, J. G., "Multicast and Multiprotocol Support for ATM based Internets." ACM
SIGCOMM Computer Communication Review, vol. 25, no. 2,1995b.

Atkins, D., Puis, P., Hare, C, Kelley, R, Nachenberg, C, Nelson, B. A., Phillips, P.,
Ritchey, T., Sheldon, T., Snyder, J., Internet Security, Professional Reference,
Indianapolis, IN, New Riders, 1997.

Bosselaers, A., Covaerts, R., Vandewalle, J., Fast Hashing on the Pentium, Crypto '96,
Springer-Verlag, 1996.

Cheswick, W., Beilovin, S., Firewalls and Internet Security, Reading, MA, Addison
Welsey Publishing Company,Inc, 1994.

Davies, D. P., W., Security for Computer Networks, New York, Wiley, 1989.

Galvin, M. J., McCloghrie, K., Davin, R. J., Secure Management of SNMP Networks,
Integrated Network Management II, North Holland, 1991.

Hare, C, Karanjit, S., Internet Firewalls and Network Security, Indianapolis,IN, New
Riders Publishing, 1996.

Katz, D., Piscitello, D., Cole, B. Luciani, V., NBMA Next Hop Resolution Protocol
(NHRP)., Internet draft, IETF, 1996.

Kercheval, B., TCP/IP over ATM, New Jersey, Prentice-Hall, 1998.

Keshav, S., An Engineering Approach to Computer Networking, Reading, MA, Addixon-
Wesley, 1997.

Kohl, J. C. N., B., The Kerberos Network Authentication Service (Ver. 5), RFC 1510
IETF, 1993.

Laubach, M., Classical IP and ARP over ATM, RFC 1577, IETF, 1994.

Merkle, C. R., Secrecy, Authentication and Public Key Systems, Ph.D dissertation,
Stanford University, 1979.

Newman, P., Minshall, G., Lyon,T., "IP Switching -ATM Under IP." IEEE/ACM
Transactions on Networking, vol. 6, no. 2, pp. 117-128, 1998.

215

NIST, N. I. o. S. a. T., Digital Signature Standard, NIST FIPS PUB 186, U.S. Department
of Commerce, 1994.

Preneel, B., van Oorschot, P., MDx-MAC and Buliding Fast MACs from Hash
Functions, Crypto *95, Springer-Verlag LNCS, 1995.

Rekhter, Y. D., B. Katz, D. Rosen, E. Swallow, G., Cisco Systems' Tag Switching
Architecture Overview, RFC 2105, N. W. Group, Cisco Systems, Inc., 1997.

Rivest, L. R., The MD4 Message Digest Algorithm, RFC 1186, 1990.

Rivest, L. R., The MD5 Message Digest Algorithm, RFC 1321,1992.

Schneier, B., Applied Cryptography, New York, Wiley, 1996.

Seaman, M., Smarter and Faster IP Connections, BYTE, pp. 47 - 48,1997.

Stalling?, W., Network and Internetwork Security, New Jersey, Prentice-Hall, Inc, 1995.

Truong, H., Ellington, W., Le Boudec, I, Meier, A., Pace, J., LAN Emulation on an
ATM Network, IEEE Communications Magazine, vol. 33, pp. 70-85,1995.

Tsudik, G., "Message Authetication with One-Way Hash Functions.", ACM Computer
Communications Review, vol. 22, no. 5, pp. 29-38, 1992.

Xie, G., Irvine, C, Darroca, G., Kondoulis, I.,"LLPF: An Architecture for Link Layer
Packet Filtering", Unpublished manuscript, Department of Computer Science, Naval
Postgraduate School, September 1998.

216

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Road, Ste. 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 DyerRd.
Monterey, California 93943-5101

Dr. Geoffrey Xie
Code CS/Xi
Naval Postgraduate School
Monterey, California 93943-5101

4. Dr. Cynthia Irvine
Code CS/Ir
Naval Postgraduate School
Monterey, California 93943-5101

5. Dr. G.M. Lundy
Code CS/Ln
Naval Postgraduate School
Monterey, California 93943-5101

6. Director, Marine Corps Research Center.
MCCDC,Code: C40RC
2040 Broadway Street
Quantico, Virginia 22134-5107

7. Don Brutzman, Code UW/Br
Undersea Warfare Department
Naval Postgraduate School
Monterey, California 93943-5000

Dan Boger
Chairperson, Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

217

9. Dr. Blaine Burnham
National Security Agency
Research and Development Building
R23
9800 Savage Road
Fort Meade, MD 20755-6000

10. CAPTDanGalik
Space and Naval Warfare Systems Command
PMW 161
Building OT-1, Room 1024
4301 Pacific Highway
San Diego, CA 92110-3127

11. Commander, Naval Security Group Command.
Naval Security Group Headquarters
9800 Savage Road
Suite 6585
Fort Meade, MD 20755-6585
ATTN: Mr. James Shearer

12. Mr. George Bieber
Defense Information Systems Agency
Center for Information Systems Security
5113 Leesburg Pike, Suite 400
Falls Church, VA 22041-3230

13. CDR Chris Perry
N643
Presidential Tower 1
2511 South Jefferson Davis Highway
Arlington, VA 22202

14. Joseph O'Kane
National Security Agency
Research and Development Building
R23
9800 Savage Road
Fort Meade, MD 20755-6000

15. Ioannis Kondoulis
36A Velvendous St Kipseli
ATHENS 11363
GREECE

218

