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ABSTRACT 

The aim of 'data visualisation' is to display a body of information in a 
way which allows accurate and effortless human comprehension and analysis. 
Accordingly, the development of data visualisation techniques should be con- 
strained by an understanding of both human perception and cognition. This 
report develops and examines a psychological framework for the development 
of data visualisation techniques based on the notion of similarity structure 
modelling. Through a series of case studies, a range of established approaches 
to data visualisation is reviewed and evaluated within this framework, and a 
number of suggestions for the development of new techniques is made. 
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Psychological Approaches To Data Visualisation 

EXECUTIVE SUMMARY 

In many defence-related contexts, human analysts must make decisions based on their 
understanding of large volumes of 'raw' information. For example, when intelligence ana- 
lysts compile reports for dissemination, they must be able to search through and integrate 
repositories of information which have arrived from a variety of different sources. The 
performance of analysts on these sorts of tasks is strongly influenced by the quality of 
their understanding of the raw data. A broad and accurate understanding allows unusual 
events to be detected, changes or trends to be identified, and selective focus to be placed 
on those sub-sections of the information which are the most relevant for detailed analysis. 
Without such a high-level understanding, however, it is difficult to extract key pieces of 
information efficiently, or to integrate disparate collections of information into a coherent 
whole. Clearly, the effectiveness of the techniques which analysts use to develop their un- 
derstanding of available information has an important influence upon the quality of their 
analyses. 

Perhaps the most popular and powerful approach for examining large volumes of dis- 
parate information comes in the form of techniques generically described as 'data visu- 
alisation' techniques. These techniques aim to present data to a human using graphical 
displays, in ways which both accurately communicate information, and require minimal 
effort for comprehension. This report argues that the development of data visualisation 
techniques should be guided by an understanding of human perception and cognition. In 
this way, data visualisation can become an effective interface between a body of raw in- 
formation and a human analyst. Indeed, the ultimate goal of data visualisation should be 
to establish a 'communication channel' between data held in artificial systems, and the 
humans who must deal with this information. 

This report presents and demonstrates a psychological framework for developing data 
visualisation techniques. The framework is based on two fundamental assumptions: 

• information is more meaningful to a human if it is represented in a way which is 
compatible with human mental representation, and 

• information is more accurately conveyed to a human if it is presented in a way which 
is compatible with human visual processes. 

The first of these observations can only be satisfied by developing an understanding of 
human cognition, while the second requires an understanding of human perception. 

Against this psychological background, a model of human mental representation is 
described which allows almost any set of raw data to be converted into a representation 
compatible with human cognition. A variety of pre-processing methods for creating these 
sorts of mental models are detailed, and various types of representations which may be 
developed from them are described. In particular, a series of four different, but often 
complementary, approaches - covering spatial, featural, structural and transformational 
representations - are examined, and practical techniques for their generation are outlined. 

in 
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The application of these different representational approaches is then examined through 
a series of nine case studies. The data sets involved in these studies range significantly in 
nature. For example, the case studies explore visualising the meaning of text documents, 
the patterns of confusion of Morse code signals, the voting patterns of politicians, and the 
perception of relationships between nations. Particular emphasis is placed on the way in 
which the psychological representations of the data sets may be presented, so that they 
are able to be immediately and accurately perceived by an observer. A number of display 
techniques are canvassed in these case studies, and each is subjected to critical appraisal. 

Finally, on the basis of the established psychological framework, a number of sugges- 
tions are made for developing improved data visualisation techniques. Particular attention 
is given to the need to develop techniques for generating new types of representations, 
with some discussion of the ways in which these representations might appropriately be 
displayed. These suggestions arise from observed shortcomings in the various displays and 
representations presented in the case studies, and provide an agenda for future research. 

IV 
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1    The Psychological Basis Of Data Visualisation 

'Data visualisation' techniques aim to present data to a human in a way which both 
accurately communicates information, and requires minimal effort for comprehension. For 
this reason, graphical depictions employed in data visualisation should be constrained by 
an understanding of the human visual system. Any information presented as a visual 
display is subject to the biasses and idiosyncracies of perceptual processing, and it is only 
by understanding these processes that visualisation techniques can be developed which do 
not distort the information intended to be conveyed. 

Data visualisation techniques also aim to make possible human manipulation and anal- 
ysis of a body of information. Accordingly, the structure of the information conveyed needs 
to be compatible with the representational requirements and preferences of human cog- 
nitive processes. This is one reason why data modelling techniques employed in data 
visualisation should also be constrained by an understanding of human memory and cog- 
nitive representation. 

A second reason is that the strong interaction and inter-dependence between perception 
and cognition suggests that visual perception is sensitive to the structural organisation 
of human memory. Theories such as 'Psychophysical Complementarity' [1, 2, 3, 4] and 
'Psychological Essentialism' [5, 6] argue that "selective pressures of biological evolution ... 
have shaped, in higher organisms, a perceptual mechanism whereby objects are represented 
in a way which preserves the information most essential for survival - information about the 
inherent properties of objects" [2]. The implication is that the veridical visual presentation 
of a body of information is best achieved by data visualisation techniques which represent 
that domain in a way which models human cognitive representation. 

For both of these reasons, a principled psychological approach to data visualisation 
must be concerned first with the cognitive representation of information, and then with 
the effect of perceptual processes upon the communication of this information. It is sur- 
prising, therefore, that the development of data visualisation techniques is not routinely 
approached from a cognitive modelling perspective. While it is common [7, 8, 9, 10, 11] to 
find the need for "better integration with perceptual psychology" [11] acknowledged, the 
need to structure information according to the representational dictates of human memory, 
with some notable exceptions [12, 13], is rarely advocated. 

This means, unfortunately, that many data visualisation techniques perform little or 
no manipulation of a body of data before an attempt at its graphical depiction is made. 
Sometimes this absence of pre-processing is defended on the basis of 'letting the data 
speak for itself, rather than imposing structure through the application of data modelling. 
However, this rationale, although well-intentioned, is fundamentally flawed. Humans are 
compulsively active and idiosyncratic constructors and interpreters of the information they 
receive. "We are not simply passive receptors, we actively organize and make sense of the 
world, and when we do so we are at the mercy of the wiring of our eyes and brains" 
[13]. If a data visualisation technique does not perform some form of cognitive modelling, 
then the human cognitive system will undertake the task of restructuring the presented 
information itself. In either case, the information undergoes substantial reorganisation. 
Put simply, if one wishes to 'let the data speak for itself, the last thing one should do is 
show it to a human. 
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Perception 

Representation Cognition 

Figure 1: The perceptual and cognitive basis of data visualisation. By ensuring compat- 
ibility between representation in the artificial system and human cognition, and between 
visualisation in the artificial system and human perception, an effective means of conveying 
information between the two systems may be established. 

To the extent, however, that cognitive data modelling and perceptually compatible 
displays are provided, a data visualisation technique comes to approximate a seamless 
and transparent interface between a body of information and the human cognitive sys- 
tem. In this sense, the development of formal quantitative data models, derived from 
more general theories of human perception and cognition, allows for the specification of 
a representational 'protocol' by which artificial information processing systems and the 
human cognitive system may be coupled. As shown in Figure 1, the ultimate goal of data 
visualisation is to establish a channel between knowledge representation in an artificial 
system and human cognitive representation, as mediated by the perception of structured 
data displays. 

Clearly, the integration of humans and artificial systems in this way offers enormous 
promise in terms of the comprehension, manipulation, and analysis of large volumes of 
data. The information processing capabilities of cognitive processes and artificially intel- 
ligent mechanisms are largely complementary, and their integration and interaction may 
well have the potential to provide capabilities which are currently exhibited by neither. 
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2    Cognitive Representation 

The prevalent psychological view [14, 15, 16, 17, 18] is that human cognitive repre- 
sentation takes the form of a mental 'conceptual' structure, containing a large number of 
concepts which correspond to categories, or natural kinds, of objects in the world. This 
conceptual structure provides an organisational basis for human memory which fulfills 
at least two adaptive functions. First, the specification of a relatively small number of 
concepts serves to make manageable the enormously vast and complicated stream of in- 
formation continually available to humans. Secondly, the concepts themselves create or 
preserve meaning by encompassing a group of objects which, in some sense, are capable of 
unitary and coherent description. In this way, the formation of human conceptual struc- 
ture amounts to the formation of an adaptive and efficient modelling of the structure of the 
world. These two guiding principles have been aptly described as, respectively, the promo- 
tion of "cognitive economy" [16], and the maintenance of "reflections of the environment 
in memory" [19]. 

Not surprisingly, at an epistemological level, the nature of conceptual structures re- 
mains an unresolved issue subject to ongoing philosophical investigation and debate [20, 
21, 22, 23, 24]. A well established and useful framework, however, considers conceptual 
structures in terms of their 'horizontal' and 'vertical' dimensions [16]. The horizontal 
dimension of a conceptual structure refers to the internal structure of mental concepts 
in that structure. It addresses the mechanisms by which concepts become coherent and 
unitary entities, and the way in which information is partitioned by the creation of these 
concepts. There are a number of competing formal approaches for modelling the internal 
structure of concepts, including the set-theoretic [25, 26], prototype [27], exemplar [28, 29] 
and explanation-based [30, 18] approaches, which have been described and critically com- 
pared in a relatively recent review [15]. 

The vertical dimension of a conceptual structure refers to the relationship between dif- 
ferent concepts within a structure. It addresses the mechanisms by which an architectural 
taxonomy of concepts is created and maintained, serving to interconnect concepts which 
exist at different levels of abstraction. More abstract concepts are those which are more 
general, in the sense that they encompass a larger number of stimuli, while less abstract 
concepts are more selective and focussed. An important psychological notion in this re- 
gard is that of the 'basic' conceptual level [31], which may be conceived as 'natural' or 
'optimal' balance between the efficiencies of general abstract concepts and the inherent 
meaning of specific concepts [32]. For example, of the concepts labelled by the words 'fur- 
niture', 'chair' and 'bar-stool', it is that indicated by the word 'chair' which is considered 
to exist at the basic level, while 'furniture' is regarded as a 'super-ordinate' concept, and 
'bar-stool' is regarded as a 'sub-ordinate' concept. It is the meaningful interconnection 
of super-ordinate, sub-ordinate and basic level concepts, on the basis of their generality 
and common stimuli, which results in a mental conceptual structure1. An attempt at the 
schematic depiction of such a structure is made in Figure 2, where concepts of different 
levels of abstraction are shown as spheres of different sizes, and the various conceptual 
interconnections across levels of abstraction are shown by connecting lines. 

xIt is interesting to note that the notions of horizontal and vertical dimensions of a conceptual struc- 
ture correspond almost precisely to the notions of 'is-a' and 'part-of hierarchies in complex systems, as 
developed in object-oriented approaches to data modelling [33]. 



DSTO-RR-0135 

Superordinate 
Level 

Basic Level 

Subordinate 
Level 

Figure 2: A schematic depiction of a conceptual structure. 

2.1    Similarity Structure Modelling 

In terms of quantitative psychological modelling, the dominant approach has been to 
build representations of conceptual structures using the similarity relationships existing 
between stimuli in a domain of interest. As early as the 1950s, a large and influential body 
of research proceeded on the basis that "similarity was the central problem of psychology" 
[34], and a recent overview maintains that "similarity plays an indispensable foundational 
role in theories of cognition" [35]. 

The emphasis on psychological similarity in modelling cognitive representation may be 
seen to stem from its relationship to the cognitive process of generalisation. In one sense, 
psychological similarity is simply an operational measure of the strength or likelihood of 
generalisation, which may be defined as the (not necessarily overt) act of treating two 
stimuli as if they were the same, despite the ability to discriminate between them. Thus, 
the process of generalisation may suggest that a red berry is poisonous because of a 
previous unpleasant gustatory experience with a red berry of a discernibly different hue. 
In this way, generalisation allows information learned in the past to be brought to bear on 
present concerns. Generalisation also provides the mechanism for conceptual coherence, 
in the sense that objects which, like the berries, are adaptively treated as the same are 
precisely those which should belong to the same mental concept. 

Indeed, it has been argued compellingly [4] that generalisation is the most fundamental 
cognitive process, since all psychological processes must be considered in the context of an 
understanding of their operation under altered conditions, and this understanding must, 
itself, ultimately be founded upon an understanding of the process of generalisation. To 
the extent that generalisation is the fundamental psychological phenomenon, it seems 
likely that cognitive representation is structured in a way which reflects and facilitates 



DSTO-RR-0135 

the operation of this process. Accordingly, it is reasonable to assert that measures of 
the psychological similarity of a set of stimuli contain much of the information needed 
to model a human conceptual structure of those stimuli. Certainly, such an approach is 
implicit in some established data visualisation approaches [36], and is consonant with the 
general constraint on graphical depiction identified by Kosslyn: "Use a graph only if the 
point is to illustrate relations" [13]. 

2.2    Generating Similarity Measures 

In practice, similarity measures within a given stimulus domain are typically generated 
by considering the similarity of all possible pairs of stimuli, and are usually normalised to 
lie between 0 and 1. Depending upon the form and scale of the 'raw' data which constitutes 
the body of information under investigation, there are a variety of established means for 
generating indices of pairwise similarity. 

Lists Of Properties 

Most commonly, raw data takes the form of a series of values across m properties 
for a set of stimuli, which may be denoted by Xj = (xn,...,Xim) for the ith stimulus. 
In this case, any monotonically decreasing function, fmon (•), of a weighted Minkowskian 
distance between Xj and Xj provides a measure of similarity between the ith. and jth 
stimuli. Accordingly, the similarity measure, S;J, is given by: 

fn Yswk\xik-Xjk\r 

.fc=l 

(1) 

where Wk is the weight of the kth property, and r is a parameter which determines which 
of the family of Minkowskian distance metrics is employed. Other distance metrics, not 
subsumed by this general family, such as the Mahalanobis, Canberra, Bray-Curtis and 
Bhattacharyya distances have also been employed to derive similarity measures in this 
way [37]. 

Of course, to use metrics of this type when some of the properties have nominal or 
ordinal levels of data scaling, it is necessary to define uni-dimensional 'distances' between 
each possible pair of values for these properties. For example, if a property details an indi- 
vidual's nationality, it is necessary to provide some contextually meaningful quantitative 
measure of the difference between each possible pair of nationalities. Although it is usually 
possible to provide sensible definitions of this type, they typically are highly domain and 
property dependent. 

When all of the properties have a ratio level of scaling, however, an alternative means 
of deriving indices of similarity is through measures of angular separation: 

*>ij — Jn 

( m \ 
X/fc=l xikxjk 

[EfcLi xik T,k=i xjk\ 
(2) 
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or correlation: 

Y%=i{xik-Xi){xjk-Xj) 
i ■ 
2 

(3) 

Finally, in the special case that each of the properties X& is a binary variable, a 
large number of methods for generating similarity measures have been proposed, and are 
detailed in [37]. 

Measures Of Association 

Probability values represent a second general form of 'raw' data amenable to conversion 
into pairwise similarity measures. Such probabilities may describe the likelihood of confu- 
sion of pairs of stimuli, their probability of co-occurrence, their frequency of substitution, 
or any of a range of plausible indicators of general association. 

Given a matrix of pairwise probabilities, denoted pij, arising from any of these ap- 
proaches, it is often convenient simply to treat each as a measure of psychological similar- 
ity. A more psychologically principled [38] approach to generating these measures is given 
by the relation: 

IPijPji 
PiiPjj 

(4) 

while a third option, which may have some practical advantages in terms of robustness 
[39], takes the form: 

= Pij+Pji^ (5) 

Pii + Pjj 

3    Modelling Similarity Structures 

The goal of similarity structure modelling is to transform a 'first-order' matrix S = [sij], 
which details only how generalization operates locally between objects, into a coherent 
global account of the way in which generalization dictates the conceptual structure of the 
entire domain. In effect, similarity structure modelling imposes a theoretical framework 
upon a collection of 'raw' similarity measures in an attempt to reveal an 'implicit' or 
'latent' underlying conceptual structure. Accordingly, broadly different approaches to 
modelling similarity structures may be defined in terms of the theoretical representational 
frameworks, and associated models of psychological similarity, they adopt. Following 
[35], at least four such approaches may be identified: spatial, featural, structural, and 
transformational. 
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3.1    Spatial Representations 

The spatial approach to cognitive modelling represents stimuli as points in a multidi- 
mensional coordinate space. Therefore, if the space is of (pre-determined) dimensionality 
m, each stimulus is associated with a vector of the form p^ = (pn, ...,pim). Using these 
vectors, the similarity between the ith and jth stimuli is modelled as a monotonically 
decreasing function of the distance between their representative points in the space, dij, 
as follows: 

Sij — Jmon [dij) \P) 

In this way, stimuli which are more similar are afforded spatial representations which 
are closer together, while dissimilar stimulus pairs are placed further apart. However, 
it is worth noting that this approach, because of its spatial nature, is bound by the 
metric axioms of minimality (dij > da = 0 where i ^ j), symmetry (dij = dß), and 
the triangle inequality (dij < dik + djk)- Although it has been argued that violations 
of these axioms observed in empirically gathered psychological similarity data can be 
accounted for in a cognitive modelling context [40], it remains true that, in practice, 
it is often helpful to ensure that the minimality and symmetry axioms, in particular, are 
satisfied. Minimality may be achieved by simply ensuring that each (distinct) stimulus has 
a maximal self-similarity of 1, and asymmetric similarity matrices are frequently [41, 42] 
rendered symmetric by averaging each pair of transpose elements in S. 

It is also common to restrict the distance metrics of interest to the family of un- 
weighted2 Minkowskian r-metrics3, given by 

dij £|Ptfc-Pjfc|r 

Lfc=l 
(7) 

with a particular emphasis having been placed on the r = 1 (City-Block) and r = 2 
(Euclidean) cases because of their relationship, respectively, to so-called 'separable' and 
'integral' stimulus domains [45, 46]. Integral stimuli are those, such as colours, which are 
relatively unanalyzable, in the sense that they are not readily perceived in terms of their 
component dimensions. Separable stimuli, in contrast, are those in which a number of 
component dimensions can be considered independently, such as a set of geometric stimuli 
varying in size and shape. Empirically, integral stimulus dimensions may be identified by 
testing for filtering interference, whereby performance in attending to one dimension is 
affected by the other, and redundancy gains, whereby performance on one dimension is 
facilitated by redundant information on the other. For both separable and integral stimulus 
domains, Shepard and others [47, 4, 46, 48, 49] have presented compelling theoretical and 
empirical evidence that the monotonically decreasing function which relates similarity to 
distance is invariant, and is closely approximated by an exponential decay function. 

2Weighted metrics are used in individual differences applications of multidimensional scaling, but are 
not appropriate here, since the goal is to produce a spatial representation of a single similarity structure. 

3Although multidimensional scaling techniques have been developed [43, 44] which operate in spaces 
not accommodated by the Minkowskian family of metrics. 
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More generally, it has been argued [46] that the distinction between separable and 
integral stimuli may represent endpoints of a continuum rather than a dichotomy. In par- 
ticular, some stimulus dimensions satisfy the filtering interference but not the redundancy 
gains criterion for integrality, and are sometimes termed 'configural' dimensions. It seems 
likely that domains containing stimuli of this type may be modelled appropriately using 
Minkowski r-metrics with an r value between 1 and 2. Although values of r greater than 2 
are sometimes considered [50, 46], it is difficult to provide a psychological interpretation, 
in terms of component structure, for stimuli modelled in this way. Pure integrality at r = 2 
would seem to constitute a psychological upper limit on the degree to which underlying 
stimulus dimensions may be combined. In contrast, the adoption of metrics with r < 1 
has been given a psychological justification [51, 47, 46] in terms of modelling stimuli with 
component dimensions which 'compete' for attention. It seems reasonable, therefore, to 
conclude that there is some psychological impetus for restricting the family of Minkowski 
r-metrics considered in cognitive modelling to the range 0 < r < 2. 

Interestingly, some computational corroboration of this assertion may be found in 
evidence that, for every metric with r > 2, there is another 'quasi-equivalent' metric with 
r < 2 which is capable of accommodating a spatial representation with essentially the 
same level of error [52, 53]. In this sense, the introduction of metrics with r > 2 does not 
afford representational possibilities not available using 0 < r < 2. It is, however, necessary 
to restrict attention further to the interval 1 < r < 2 to preserve the metric structure of 
a multidimensional scaling representation, in the sense of satisfying the metric axioms. 

In practice, the generation of spatial representations from a given matrix of similar- 
ity measures is most often achieved using the family of statistical techniques which may 
be described by the generic label 'multidimensional scaling' [54, 37, 55, 50, 56, 57, 58]. 
Most multidimensional scaling techniques employ gradient-descent or other optimisation 
principles to derive locations for each stimulus in a space of given dimensionality. Recent 
developments [59] in measuring the complexity of these representations allow for an ap- 
propriate dimensionality to be selected on the basis of the precision of the similarity data, 
and also provide some guidance in the selection of a distance metric. 

Recently, multidimensional scaling techniques have been extended and refined by a 
series of neural network models such as SAMANN [60], Curvilinear Component Analy- 
sis [61], Neuroscale [62], and others [63]. The main contribution of these techniques is 
to introduce the possibility of learning domain specific non-linear transformations which 
map 'raw' descriptions of stimuli into appropriate positions within the derived spatial 
representation4. The Neuroscale approach has the added ability of being able to form rep- 
resentations which balance structural preservation, through satisfying pairwise similarity 
relationships, with information regarding the categorical membership of the stimuli, as 
supplied by a human user. Curvilinear Component Analysis also explicitly incorporates 
an analytical dependence upon a human user, with the suggestion being made that "this 
human control gives 'more revealing' results than ones obtained by automatic methods 
[in the sense that]   this kind of representation helps to understand the structure of the 

4The neural network formalism employed by these models, while sometimes convenient, is hardly nec- 
essary, and amounts to what is sometimes derided as "statistics for amateurs" [64]. This is an unfortunate 
state of affairs, since the connectionist philosophy [65] for which the neural network formalism was de- 
veloped affords representational possibilities [66, 67] which might significantly improve data visualisation 
techniques. 
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data set and therefore to select appropriate techniques for further automatic processing" 
[61]. 

Another set of neural network techniques sometimes applied to data visualisation in- 
clude the 'Self-Organizing Map' [68, 69, 70, 71], the 'Elastic Net' [72, 73], and the 'Gen- 
erative Topographic Map' [74], all of which derive representations based upon the notion 
of preserving a quantized neighborhood topology. The effect of quantization, however, 
is to limit the resolution of the spatial representations of stimulus domains, without any 
obvious compensating benefit in terms of data modelling flexibility, efficiency or accuracy 
[75]. Indeed, in some sense, the basis for these techniques appears to be more physiological 
than psychological and, with the exception of the 'Semantic Map' [76], they have not been 
applied to the modelling of human conceptual structures. 

3.2    Featural Representations 

Under the featural approach to cognitive modelling, stimuli are represented in terms 
the presence or absence of a set of discrete features or properties. If m such features 
are identified, each stimulus may again be associated with a vector of the form fj = 
(/ii> —,fim)- The nature of the feature set, however, means that the fa values assume 
one of an enumerable set of values. Using this type of representation, the general 'contrast' 
model [77] assumes that the similarity between the ith and jth stimuli takes the form 

Sij = Ofrrum (f. H fj) - a/mm (fj - fj) - ßfmcm (fj ~ f») , (8) 

where 9, a and ß are positive weighting parameters, fj n fj denotes the features common 
to the zth and jth stimuli, and fj - f, denotes the features present in the zth, but not the 
jth, stimulus. In this way, the similarity of a pair of stimuli is modelled in terms of a 
comparison of the number of features both have in common with the number of features 
evident in one only. 

Additive clustering models [78, 79, 80, 81, 82, 83] constitute perhaps the simplest, and 
certainly the most thoroughly developed, specific realisation of the general contrast model. 
Under this approach, it is assumed that the domain features are binary in nature, so that 

,   _ I   1   if object i has feature k ,„•. 
fik ~ \ 0   otherwise ' W 

which allows the similarity between the ith and jth stimuli to be modelled as the sum of 
the weights of the features common to both, as follows: 

Sij = ^Wkfikfjk, (10) 
fe 

where Wk is the saliency weight of the kth cluster. 
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It is generally recognized that the binary nature of the feature variables makes the 
derivation of additive clustering representations a difficult optimization problem and, ac- 
cordingly, a wide variety of extraction techniques have been proposed, including mathe- 
matical programming [78], qualitative factor analytic [81] and probabilistic expectation- 
maximization [83] approaches. While all of these techniques have shortcomings, it is 
probably fair to suggest that they generally achieve sufficiently good minima to derive 
models of substantial theoretical and practical utility. 

Importantly, all of these approaches view the relationship between the given set of 
stimuli and the derived features as being entirely unconstrained. Unlike partitional clus- 
tering approaches, which place each object in only one cluster, additive clustering allows 
each object to belong to any number of clusters. Furthermore, unlike hierarchical cluster- 
ing, the additive clustering approach places no constraints upon the set of objects which 
may be encompassed. 

This state of affairs is summarised by Figure 3, which a shows (a) partitional, (b) 
hierarchical, and (c) additive clustering of a set of points, and their corresponding rep- 
resentational interpretation. The partitional approach effectively forms a collection of 
disjoint sets, or equivalence classes, of the points, and the hierarchical approach, because 
of its strictly nested nature, corresponds to the construction of a tree, in which the points 
are placed at terminal nodes. The additive clustering approach, however, amounts to the 
derivation of a set of binary features or properties, and the description of each of the points 
in terms of these features. 

Although it seems likely that this flexibility is one of the keys to the success of the 
additive clustering approach [82], it also introduces the possibility of constructing over- 
parameterised and unconstrained models of cognitive representation. In this regard, recent 
developments [84] in measuring the relative complexity of different additive clustering 
models allow for the derivation of models with only the level of complexity warranted by 
the precision of the similarity data. 

In principle, these theoretical results also allow constraints to be placed upon additive 
clustering models so that, where appropriate, they take the form of inherently simpler 
partitional or hierarchical cluster structures. The development of practical feature extrac- 
tion techniques which implement such constraints should be a priority for future research, 
since it would allow a general method for deriving binary valued features under an addi- 
tive similarity model. In the meantime, however, there are a wide variety of specialised 
techniques for generating both partitioned featural representations, such as fc-means clus- 
tering, and various tree-based similarity structures, such as additive trees and ultra-metric 

trees [85, 86, 87]. 

3.3    Structural Representations 

The structural approach to modelling mental representation is more general than ei- 
ther the spatial or featural approaches, and is "well suited for comparing things that are 
richly structured rather than just being a collection of coordinates or features" [35]. Un- 
der this approach, stimuli are represented in terms of generic memory structures, such as 
frames [88], scripts [89] and schemata [90, 67]. Using these types of sophisticated mem- 
ory structures, complicated similarity relationships between stimuli - particularly those 
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Figure 3: Typical cluster structures, and their corresponding representational interpreta- 
tions for (a) partitional, (b) hierarchical, and (c) additive clustering approaches. 

11 



DSTO-RR-0135 

arising from the correspondence or matching of functional parts - may be accommodated 
within a formal representation. Given this capability, it is not surprising that the quanti- 
tative psychological modelling of the important cognitive process of analogical reasoning5 

employs structural representations [93]. 

Unfortunately, the richness of structural models of mental representation makes their 
abstraction from measures of pairwise similarity, at best, a difficult problem or, more 
usually, renders it an under-determined problem. Accordingly, the structural approach 
does not have techniques such as multidimensional scaling and additive clustering for 
deriving conceptual structures from measures of similarity. Rather, structured domain 
ontologies are usually developed by alternative, sometimes unspecified, means, and these 
representations are simply assumed in subsequent cognitive modelling. As has previously 
been argued [94], this practice raises doubts that "a poor representation will often doom 
the model to failure, and an excessively generous representation may essentially solve the 
problem in advance" [95], and also limits the applicability of the structural representational 
approach to data visualisation. One of the primary motivations for the development of 
data visualisation techniques is to facilitate exploratory data analysis where, by definition, 
no detailed understanding of a body of information is available. Even if, in the context 
of domain specific analysis, some schematic representational template may be formalised, 
the immaturity of techniques for modelling stimuli within this framework on the basis 
of similarity judgments renders the general application of the structural representational 
approach infeasible at present. 

3.4    Transformational Representations 

The transformational approach to cognitive modelling is based upon the general the- 
oretical notion that "it is not objects, but their transformations which are primary" [96]. 
Whereas the spatial, featural and structural approaches may be identified with a passive, 
object-oriented epistemology focussed on the representation of things, the transformational 
view enacts an epistemology based on the representation of active processes. Under this 
latter view, as articulated by Vickers' proposed 'Erlanger' program for psychology [97, 98], 
mental representations correspond to the parameters of some form of reconstructive pro- 
cess, and conceptual structures arise from a consideration of the geometric and topological 
invariants of these processes. Theoretical and empirical support for the transformational 
approach may be found in studies of 'apparent motion', including particularly those in- 
volving mental rotation [99, 96, 100, 48], studies of'representational momentum' [101], and 
various other the symmetry-based [102] and group-theoretic [103] psychological models. 

In terms of similarity structure modelling, the transformational approach assumes 
that the psychological similarity of two stimuli is given by some monotonically decreasing 
function of the number of cognitive 'operations' required to transform one stimulus so as 
to be identical to the other. If each stimulus is given general vector representation of the 
form ri = (rji,...,rim), the similarity between the zth and jth stimuli may be expressed 
as: 

5Hofstadter has made a compelling case for the pivotal role played by analogical reasoning in under- 
pinning 'intelligent' human behaviour [91, 92]. 
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where ||r,, rj||T denotes the number of representational transformations, drawn from a set 
T, applied in converting rj into rj. 

As with the structural approach, there is no established set of techniques for abstracting 
transformational representations from an arbitrary matrix of pairwise similarities. While 
the recently developed technique known as "Trajectory Mapping' [104] develops transfor- 
mational representations of stimulus domains, it requires information not provided in a 
standard matrix of pairwise similarities. In particular, Trajectory Mapping operates upon 
sequences of transformations of stimuli, as completed by a human. In some circumstances, 
it may be appropriate to conceive of 'raw' data in the form of pairwise probabilities as 
transitional probability measures. It is more difficult to conceive of reasonable ways in 
which such sequences could be generated from 'raw' data in the form of lists of proper- 
ties or features. Indeed, in one sense, the input required by Trajectory Mapping directly 
provides - merely in an over-specified way - the transformational representation which is 
sought, and it is simply the removal of these redundancies which is accomplished by the 
technique itself. 

The motivating framework of Trajectory Mapping, however, that of recovering the 
featural parameterizations used to traverse a non-homogenous conceptual space, provides 
some guidance as to how transformational representations may be abstracted from similar- 
ity structures. Using featural extraction techniques such as those associated with additive 
clustering, it seems natural and reasonable to associate featural manipulation with the 
transformations in the set T. In other words, a transformational trajectory between two 
stimuli may be established if those stimuli differ by, say, one feature only. More generally, 
a host of graph theoretic measures can be applied to the featural characterisation of a 
similarity structure, since the discrete form of this representation permits the definition 
of various types of similarity-based connectivity between stimuli. 

4    Visualisation Case Studies 

4.1    Iris Measurements 

The first case study involves the (in)famous 'Iris' database [105], which details the sepal 
length, sepal width, petal length and petal width of a total of 150 irises. 50 of the irises 
are identified as 'iris-setosa', 50 as 'iris-versicolor', and 50 as 'iris-virginica'. This stimulus 
domain provides an example of 'raw' data in the form of a quantitative list of properties. 
In this case, each iris is defined by a four-dimensional, continuous valued vector of the 
height and width measurements made of its sepal and petal. 

'Raw' Glyph Visualisation 

It is possible to provide a graphical depiction of each of these four-dimensional vectors 
of 'raw' data, using the family of display methods generically known as 'glyphs' [10]. In 
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(a) (b) (c) (d) 

Figure 4: Various glyph constructs: (a) 'Fortson' glyph, in which values are represented by 
the shading of the bars, (b) 'Chernoff' face, in which values are represented by caricatured 
facial characteristics, (c) 'Star' glyph, in which values are represented by the length of 
rays, (d) 'Profile' glyph, in which values are represented by a plotted data series. 

essence, glyphs provide a means of displaying items of multivariate data by defining an 
association between scalar components of an item and various perceptual features. For 
any given item, a corresponding glyph is constructed simply be displaying the perceptual 
amalgam of these features in accordance with the data of that item. 

An enormous variety of glyph constructs have been proposed for data visualisation, four 
of which are reproduced in Figure 4. It seems clear that glyph construction is effectively 
limited only by one's imagination6 and, indeed, general techniques for the construction of 
arbitrary mappings between data properties and sets of pre-determined perceptual features 
have been developed [106]. With the exception of 'Chernoff faces' [107], however, glyph 
visualisations are rarely related to, constrained by, or evaluated against, the cognitive pro- 
cesses required for their apprehension. As shown in Figure 4, the Chernoff face approach 
depicts items as caricatured faces, using the values of different item properties to control 
such perceptual features as the width between the eyes, the length of the nose, and so 
on. A cognitive advantage is claimed for this form of depiction on the basis of heightened 
human sensitivity to perceptual differences in facial structure and expression, presumably 
as a result of evolutionary adaptation. The obvious difficulty with this line of reasoning 
is that any benefit in 'cognitive resolution' attained in this manner is counteracted by an 
entrenched and unconscious contamination of the affective aspect of comprehending facial 
depictions. As found empirically [108], Chernoff faces come with a plethora of emotional 
and social baggage which is difficult to quantify, but has the ability to affect the way in 
which information they are intended to convey is actually perceived and conceived. 

A range of affectively neutral glyph constructs, such as the 'fortson', 'star' and 'profile' 
glyphs shown in Figure 4, have been proposed, and maintain some interest in the context 
of data visualisation. It is difficult, if not impossible, to provide a definitive evaluation of 
the relative merits of different glyph approaches, given the lack of constraints upon their 
construction and the absence of rigorous empirical comparison. However, the observation 
that lengths and directions of short line segments are perceived somewhat more accurately 
than gray scale colouring [109] tends to favour 'star-like' approaches over 'fortson-like' ap- 
proaches. It also seems clear that the use of colour rather than a gray scale is fraught with 

6or graphics libraries, whichever is the smaller. 
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Figure 5: Nine examples of 'loopy' glyphs, arranged on a 3 x 3 grid. 

peril [110], if not because of our incomplete theoretical understanding of the complicated 
and subtle way in which colour is perceived [111, 48], or because of the significant conflict 
and contradiction evident in empirical evaluations [13, 112], then certainly because of the 
strong likelihood of important and uncontrollable individual differences across humans. 

While some suggestions have been made regarding the appropriate designation of data 
components to the rays of star glyphs [109], usually on the basis of expected or observed 
correlations between data components, these approaches are generally relatively immature. 
This is unfortunate, since many of the profile-like glyph constructs, including the 'parallel- 
coordinates' approach to displaying multivariate data, have significant dependency upon 
the ordering of data components. Indeed, this dependency is so severe as to transcend 
issues of perceptual or cognitive effect, since the ordering dictates the actual presence or 
absence of physical markings. 

Of course, these markings could be used to advantage, as demonstrated by the 'loopy' 
glyphs [113] shown in Figure 5. These 9 glyphs, arranged on a 3 x 3 grid, are generated 
by enclosing a subset of an underlying 4x4 grid of circles. As is evident from Figure 
5, a wide variety of different perceptual forms are created on the basis of which circles 
are included in the subset. A natural application of these glyphs arises in relation to the 
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featural representational approach, by which sets of binary features could be associated 
with each of the circles. In particular, if criteria existed for assigning related sets of features 
to local neighbourhoods of circles, their co-occurrence would result in perceptually simple 
'blocks' being evident in the glyphs. In this way, the perceptual organisation of displays 
such as Figure 5 would reflect higher-order conceptual groupings evident in a stimulus 
domain. Clearly, this is a desirable state of affairs, and highlights the need to develop 
more sophisticated methods for ordering the components of glyph displays. 

Meanwhile, however, it is probably prudent to adopt the approach of star-like glyphs, 
in which the relative perceptual proximity of all rays places some limits on the effects of 
arbitrary assignment. In any case, star glyphs have been favourably compared to profile 
glyphs because of their visual 'impact' [109], and some summative empirical comparisons 
have also found star glyphs to be superior to more conventional graphing techniques, such 
as bar graphs [114]. 

Despite these advantages over fortson-like and profile-like constructs, the star-like ap- 
proach retains several shortcomings. Findings suggesting the inaccuracy of human per- 
ception of area, as formulated in terms of Stevens' classic psychophysical power law [115], 
for example, impose what have been described as "moderately severe limitations" [116] 
upon the ability of a star glyph to convey quantitatively precise information. In addition, 
the perceptual judgment of the length of a ray varies according to the orientation of that 
ray [117], with horizontal and vertical rays, in particular, being more accurately perceived 
than oblique rays. The first of these deficiencies is readily countered simply by removing 
the lines which form enclosed areas by connecting the rays. This modification reduces the 
star glyph to what is sometimes termed a 'ray' glyph, and provides a useful representative 
example of the general glyph approach. 

To this end, Figure 6 presents the raw iris data using the ray glyph scheme. Each glyph 
on the 15 x 10 grid correspond to one iris, and, within each glyph, each iris measurement is 
represented by the length of a ray. This visualisation of the entire iris data set demonstrates 
several general points relating to glyph visualisations. First, contrary to the conclusion 
drawn by [118], it seems clear that this approach has some capability in terms of the 
number of stimuli and stimulus dimensions which can be displayed at any one time. Figure 
6 graphically presents every measurement of every iris in the stimulus domain. Of course, 
the depiction of perceptually discernible quantitative information is limited by the detail 
required by individual glyphs, but it remains true that the glyph based approach fares 
reasonably well in this regard. 

Unfortunately, however, it also seems clear that the glyph approach may result in 
the construction of displays which require considerable cognitive effort for comprehension. 
While Figure 6 may faithfully present the information about the various iris measurements, 
the partitioning of the stimulus set into the three iris types is not a trivial process, and 
is certainly not an 'automatic' or 'unavoidable' consequence of the visualisation. One 
hindrance in this regard is the lack of meaningful spatial organisation of the display. Given 
the widely asserted primacy of spatial proximity as a bearer of perceptual information 
[119, 109], the arbitrary placement of the glyphs on the grid limits the possibility of 
readily conveying a coherent global structure. There appears to be some considerable 
weight to the conclusion that, although using the glyph approach to visualisation "is 
sometimes an effective way to pack much information into a single display, readers typically 
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Figure 6: Ray glyph visualisation of the Iris domain. 

need considerable practice before being able to decode such displays easily" [13] and, 
subsequently, that these techniques are "better suited for informal clustering and spotting 
peculiar points" [109]. 

Spatial Visualisation 

The spatial approach to similarity structure modelling is, by its very nature, ideally 
suited to spatial graphical depiction. To allow the derivation of such a representation, a 
matrix of pairwise similarity measures was generated from the vectors of raw iris mea- 
surements, using the unweighted Euclidean version of Equation 1 and an exponential 
decay functional form. After subjecting this similarity matrix to multidimensional scal- 
ing, which essentially amounts to an exercise in topological preservation across spaces 
with different dimensionalities, a complexity analysis [59] indicated the appropriateness of 
a two-dimensional representation which explained 98.3% of the variance of the raw data7. 

This two-dimensional representation is shown in Figure 7, with each iris shown by a la- 
bel indicating its type. The clustered structure of the stimulus domain is readily perceived, 
with the iris-setosa being spatially separated, and the iris-versicolor and iris-virginica oc- 
cupying essentially disjoint regions of the remaining cluster. While it is true that if the 
various labels were not displayed - as was the case for the glyph visualisation in Figure 

7In general, the variance explained by a set of approximations {£;} to a set of true values {xi} is given 
by 1 - J2i (£i _ xi)  I Uli (xi ~ ^)2j where x is the average of the set of true values. 
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Figure 7: Spatial visualisation of the Iris data. Iris-setosa stimuli are shown with the letter 
's', iris-versicolor with 'v', and iris-virginica with 'g'. 

6 - the distinction between the iris-versicolor and iris-virginica would not be immediately 
perceptually obvious, this is a property of the data, rather than the visualisation. An 
inspection of the original physical measurements indicates that, although there is a reli- 
able difference taken across the two classes as a whole, the division is not clear-cut at the 
boundary. 

Figure 7 faithfully conveys this state of affairs because it is underpinned by an ac- 
curate representational characterisation of the raw information, and this representation 
is itself amenable to straightforward graphical depiction. It is important to note that 
it is the appropriateness of a two-dimensional spatial representation which facilitates the 
unproblematic transfer from spatial representation to spatial visualisation. Most data visu- 
alisation techniques deal with media, such as printed pages or computer screens, which are 
inherently two-dimensional, and it is simple to equate representational and presentational 
dimensions. In fact, this relationship is so natural and immediate that it is easy to forget 
the distinction between the abstract representation and its graphical depiction. Attempt- 
ing to produce veridical presentations of spatial representations of higher dimensionality, 
however, is much less straightforward. The next three case studies further examine the 
data visualisation capabilities of the spatial approach when two dimensions prove to be 
sufficient, before stimulus domains which are not satisfactorily characterised in this way 
are tackled. 
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Figure 8: Visualisation of the two-dimensional spatial representation for the Congressional 
voting domain. Senators are labelled by their surnames, and Republican or Democratic 
party affiliations. 

4.2    Congressional Voting 

The congressional voting case study involves data detailing the voting patterns of 15 
senators from New Jersey on 19 environmental bills [120]. Co-occurrence was employed 
as a measure of similarity simply by counting the number of times each pair of senators 
voted the same way across all of the bills. 

Spatial Visualisation 

A multidimensional scaling analysis of the similarity matrix found a two-dimensional 
spatial representation, explaining 89.3% of the variance of the data, to be appropriate, 
and is shown in Figure 8. This visualisation suggests that the voting patterns of the 
Democrats are more uniform, or disciplined, than those of the republicans. It also readily 
reveals what might be regarded as the 'renegade' voting behaviour of the Republican 
named Rinaldo. Clearly, this senator's spatial representation asserts an alignment with 
what are generally Democratic voting patterns. A close examination of the actual voting 
details bears out these conclusions. Furthermore, both the Democrat named Thompson, 
and the Republican named Sandman are visually perceived as 'outliers' which, again with 
reference to the raw voting data, can be seen to be caused by their relatively greater rates 
of abstention from voting. 
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Figure 9: Morse Code numeral visualisation.   The actual code of each stimulus, in terms 
of dots and dashes, is appended to the numeral label. 

4.3    Morse Code 

The third case study examines confusion data involving the identification of Morse 
code numbers [121], which were treated as indices of psychological similarity without 
modification. 

Spatial Visualisation 

A multidimensional scaling analysis was conducted on this stimulus domain which 
again revealed the appropriateness of a two-dimensional representation, explaining 90.1% 
of the variance in the data. In this case, however, strong evidence was found for the 
adoption of the City-Block distance metric in accordance with the presumably separable 
structure of the stimulus domain. Accordingly, it is to be expected that the associated 
spatial visualisation, shown in Figure 9, presents axes which are amenable to psychological 
interpretation. 

Indeed, it is reasonably easy to infer from Figure 9 that human performance in per- 
ceiving a Morse code numeral may be explained in terms of whether it begins with a dot 
or dash, and the relative proportion of dots and dashes across the whole code sequence. 
Since the spatial proximity of the stimuli conveys their relative likelihoods of confusion, 
the dispersion of the numerals along the horizontal axis indicates that codes with the same 
proportion of dots and dashes are more often confused. Meanwhile, dispersion along the 

20 



DSTO-RR-0135 

vertical axis shows that codes started with a dot are confused with other beginning with 
a dot, and that the same situation holds for initial dashes. 

4.4    Document Semantics 

The next case study involves a textual domain containing 82 documents collected 
from the Internet, as previously explored in [122]. A total of 53 of these were papers 
from the 1995 Neural Information Processing Systems conference [123], 21 were media 
releases associated with the Olympic Games to be held in Sydney in the year 2000, and 
the remaining 8 papers were match reports involving the 1997 Australian cricket tour of 
England. 

Each document was subject to the well-established 'n-gram' orthographic approach 
to analyzing the semantic or contextual structure of textual information [124] which, in 
essence creates a 'document vector' containing the relative frequency of all occurring se- 
quences of n characters within the text. More specifically, a 5-gram analysis was conducted 
in which only 27 characters - the 26 Roman letters and the space character - were con- 
sidered. 

Spatial Visualisation 

Following [124], pairwise indices of document similarity were generated by measuring 
the (interior) angle between the associated document vectors. The resultant similarity 
matrix was then subjected to a multidimensional scaling analysis, which provided some 
evidence for the appropriateness of a two-dimensional Euclidean representation8. The 
resultant spatial visualisation is shown in Figure 10, in which the documents derived from 
the three different sources are clearly separated into three clusters. 

It is tempting to conjecture that further semantic information is available in this dis- 
play, given that the relative diversity of each cluster accords well with intuition. In par- 
ticular, the fact that the media releases involve a broader range of issues than the other 
two narrow specialist domains is reflected by the relative spatial diversity of its associated 
cluster9. 

What this case study does demonstrate, together with the iris measurement study, is 
the capability of spatial data visualisation to display relatively large stimulus domains. 
In Figure 7 and Figure 10, detailed relational information concerning 150 and 82 stimuli, 
respectively, is conveyed without sacrificing clarity. Furthermore, using simple points to 
represent stimuli would allow perhaps an order of magnitude increase in the number of 
stimuli which could be depicted in this way.  Encouragingly, it has been found that the 

The strict application of Bayesian complexity measures to determine dimensionality and metric struc- 
ture is somewhat problematic in this case, because the precision of the similarity data is difficult to quantify. 
Therefore, to some extent, the ends - in the form of Figure 10 - have been used to justify the means. The 
spatial representation accounts for only 61.4% the variance of the data, but nevertheless seems to capture 
the most important components of this variation. 

9One might even be tempted to conclude that cricket writing is one-dimensional on the basis of Figure 
10, although this may be an artefact of the match reports in question largely being concerned with English 
victories. 
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Figure 10: Spatial visualisation of the document domain. Documents drawn from the 
academic conference are depicted as squares, documents drawn from the 2000 Olympics 
media releases are shown as circles, and documents drawn from the Ashes cricket reports 
are shown as triangles. 

comprehension of spatial data displays can become more accurate as the number of repre- 
sentative points is increased [125], and that the time taken to achieve this understanding 
is, at worst, only slightly affected by increases in the number of points [126]. 

4.5    Zoo Animals 

The next case study involves the 'Zoo' database [127], which was modified10 to give 
information regarding the presence or absence of 14 binary features (labelled 'hair', 'feath- 
ers', 'eggs', 'milk', 'airborne', 'aquatic', 'predator', 'toothed', 'backbone', 'breathes', 'ven- 
omous', 'fins', 'tail', and 'domestic') across 99 animals. Of the 42 unique featural descrip- 
tions amongst the set of 99 animals, one of each was selected at random for retention in 
the final stimulus set. 

10The 'animal' labeled 'girl' in the original database was discarded, as was a surplus copy of the animal 
'frog'. In addition, the non-binary features 'legs', 'name' and 'type' were removed, as was the binary valued 
'catsize'. 
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Figure 11: Ray glyph visualisation of 'raw' featural representation of the zoo domain. 

Featural Visualisation 

Although the featural descriptions of the animals are 'raw' in the sense that they have 
not been explicitly derived through similarity structure modelling, they differ from the raw 
measurements of the iris domain in the sense that they have some psychological plausibility 
as mental representations. Indeed, meaningful constituent features such as 'aquatic' and 
'venomous' are precisely the type of representation one would hope to derive in an additive 
clustering model of a zoo animal similarity structure. To examine the effect of this mental 
credibility upon glyph-based visualisation, Figure 11 presents a ray glyph visualisation of 
the zoo domain, using the same format as Figure 6 applied to the raw iris data. 

As with the iris domain, the comprehension of the glyph visualisation seems effortful, 
but not impossible. It seems likely that, with experience, the presentation of stimuli 
in a structured glyph display, if underpinned by a meaningful cognitive representation, 
could be effective in conveying information to a human. It has been suggested [128] that 
periods of exposure allow the cognitive construction of 'prototypes' or 'schemata' capable 
of instantiating the anticipatory priming required for effortless comprehension, a notion 
for which there is some confirmatory empirical evidence [129,130]. Indeed, the immaturity 
of guidelines for the construction of a sufficiently 'rich' perceptual combination of features 
is of concern in this regard. For example, it is worth noting the lack of consideration 
given to rotational symmetries in Figure 11. The importance of symmetry in determining 
perceptual, and perhaps cognitive, similarity is one with a long history [131, 45], and 
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an accepted currency [102, 103, 48] within psychology. That the method of ray glyph 
construction ignores this possibility seems likely to result in animals such as 'seawasp' and 
'tortoise' which are featurally different, but happen to have glyph presentations which are 
almost equivalent under rotation, as being perceived and conceived as more similar than 
is intended or warranted. 

Spatial Visualisation 

To allow the derivation of a spatial representation of the zoo domain, measures of 
similarity between each pair of animals were again generated according to Equation 1 
using an exponential decay functional form, as applied to an unweighted distance metric. 
It should be noted that, in this case, the binary nature of the featural properties means 
that the derived target distances are the same across the entire family of Minkowskian 
metrics. Indeed, the metric space might be more naturally characterised as a Hamming 
space. In any case, after applying multidimensional scaling within Euclidean spaces, a 
three-dimensional spatial representation, again explaining more than 89.7% of the variance 
of the data, was found to be appropriate. Effectively, therefore, the multidimensional 
scaling process involves 'topological' preservation across spaces differing in both their 
dimensionality and their metric structure. 

A perspective visualisation obtained by projecting the three representational dimen- 
sions onto the two presentational dimensions is shown in Figure 12, and seems to be 
reasonably effective. There is, however, some cause for concern in relation to data visuali- 
sation techniques which employ this type of perspective display. While there are a number 
of visual cues, such as the vertical 'reference' or 'drop' lines used in Figure 12, which can 
be exploited to convey depth effectively on a two-dimensional medium, their relative im- 
poverishment has resulted in the stricture "do not use three-dimensional perspective to 
communicate precise information" [13] being generally accepted. For this reason, there 
is a considerable body of research examining the various biasses induced by perspective 
displays [132, 133]. 

More esoterically, a recurring theme in the work of artists such as M.C. Escher is 
that of the "conflict between the flat and the spatial" [134], with the basic message being 
that "no matter how cleverly you try to simulate three dimensions in two, you are always 
missing some essence of three-dimensionality" [91]. It is not easy to be definitive with 
regard to the extent to which this in-principle deficiency must be weighed against the 
practical attempts of perspective displays to convey useful and meaningful information. 
The observation that, "although three-dimensional graphs are rarely as confusing as Escher 
drawings, they sometimes lead in that direction" [13], suggests that this conflict should 
be recognised and minimised, rather than avoided. The conclusion that "three dimensions 
can be depicted well enough on a two-dimensional surface - but the process is not perfect" 
[13] is probably a balanced one. 

Some confirmation of the relative merits of attempting to portray three dimensional 
spatial structures through perspective projections is gained by examining alternative ap- 
proaches, in which other display features are used to present a third representational 
dimension. A variety of static features, such as length, angle, size, colour, texture, shape 
and gray-scale shading, have been suggested for this purpose. Accordingly, Figures 13, 14 
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Figure 12:  Visualisation of three-dimensional spatial similarity structure of the zoo ani- 
mals. 

and 15 employ, respectively, size, orientation, and gray-scale to convey the third spatial 
dimensional of the zoo domain representation. 

Intuitively, it seems reasonable to claim that, although Figures 13, 14 and 15 are 
amenable to interpretation, they require cognitive effort which is at least as great as that 
demanded by the perspective display in Figure 12. This appears to be particularly true 
of the orientational approach, which is difficult to interpret. The relatively better results 
given by the use of size and shading seems likely to be because they constitute natural 
visual cues for the conveyance of depth, fulfilling much the same role as the drop lines 
in the perspective display. This means, in turn, that both size and shading could be 
incorporated into a perspective display, in which case the perspective approach is likely to 
be superior to all three of the presented alternatives. 

Of course, the issue of the relative merits of various perceptual features for conveying 
additional spatial dimensions is amenable to principled psychological investigation. Estab- 
lishing base-rates for the accuracy with which various features are perceptually perceived 
and cognitively judged should impact upon the development of data visualisation tech- 
niques. To this end, based on a mixture of theoretical notions and empirical findings, a 
crude ordering of the efficacy of various features in conveying quantitative variation has 
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Figure 13: Visualisation of spatial structure shown in Figure 12, using two spatial dimen- 

sions and a size dimension. 

been suggested [135] which gives spatial location as the most effective, followed by length, 
orientation, size, volume, density, colour saturation, and colour hue. Unfortunately, further 
examination of relevant studies in this area tends to affirm the less prescriptive conclusion 
that "the accuracy of simple judgments of amount is not the only factor you should con- 
sider when deciding how to display data" [13]. In particular, the representational effects of 
different features have been shown to be susceptible to practice effects [136], task demands 
[130, 137], and the perceptual features by which they are surrounded in a multi-faceted 
display [138]. There is, therefore, considerable scope for ongoing theoretical and empirical 
evaluation of data visualisation techniques in the context of exploratory data analysis, and 
perhaps even in terms of specific target domains of interest. 

Transformational Visualisation 

The featural representation on which the zoo domain is founded allows an exploration 
of the 'featural connectivity' notion arising from the transformational approach to cog- 
nitive representation. Figure 16 simply presents the best fitting two-dimensional spatial 
representation of the animals obtained from the previous multidimensional scaling analy- 
sis, and introduces connecting lines to join those animals which differ by only one feature. 
In this way, a transformational representation of the stimulus domain, which is essentially 
a graph - or set of connected graphs - can be presented visually. 

There are a number of established techniques, reviewed in [139], which present graph- 
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Figure 14: Visualisation of spatial structure shown in Figure 12, using two spatial dimen- 
sions and an orientation dimension. 

structures on the basis of a series of 'aesthetic principles', rather than imposing the graph 
upon a spatial representation. Many of these 'principles' seem to have been proposed 
on an ad hoc basis, but nonetheless often appear to be reasonable, and might even be 
amenable to be being placed on a more psychologically satisfactory foundation through 
a consideration of Gestalt principles of perceptual organisation [140]. For example, the 
notion that connecting lines should preferably not be drawn to intersect seems related 
to the Gestalt principle of good continuation. However, graph layouts produced by the 
multi-objective optimisation of a conglomerate of these aesthetic strictures are generally 
far from appealing, particularly when applied to real rather than highly artificial similarity 
structures, and little or no evidence has been provided that they actually facilitate the 
communication of information. Certainly, aesthetic graph layout techniques have not 
been considered in terms of their cognitive representational implications. Presumably, 
this state of affairs arises because different aesthetic principles sometimes conflict, and 
their relative perceptual saliencies are poorly understood, with the result that attempts 
at their simultaneous satisfaction often results in none, rather than some or all, of all the 
principles being evident in a display. 

Perhaps the one instance in which aesthetic graph layout techniques are of some value 
is when suitable spatial representations of a domain are difficult to derive because of an 
impoverished similarity structure. In particular, binary measures of pairwise similarity are 
unlikely to be able to be satisfactorily represented in low-dimensional coordinate spaces, 
and induce idiosyncratic behaviour from several multidimensional scaling techniques [141]. 
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Figure 15: Visualisation of spatial structure shown in Figure 12 using two spatial dimen- 
sions and a gray-scale dimension. 

Although, in principle, it should always be possible to provide more detailed measures 
of pairwise similarity, some experimental methodologies, particularly in the context of 
social 'networks', tend to limit themselves to simple binary observational measures of 
relationships. Unless further assumptions are made about the nature of these relationships, 
and more detailed similarity indices are derived on this basis [54], aesthetic graph layout 
approaches may be superior to those employed in Figure 16 for displaying transformational 
representations of the domain. 

4.6    English Letters 

Empirical confusion probabilities for the 26 uppercase English letters, as reported in 
[142] form the basis of the next case study. Basically, these measures reflect confusions 
made in terms of the perceived visual structure of the letters. As with the Morse code 
stimuli, these probabilities are themselves treated as measures of psychological similarity. 

Spatial Visualisation 

A multidimensional scaling analysis of this similarity structure found justification, 
even when relatively severe assumptions regarding the precision of the data were made, 
for the inclusion of at least five spatial representational dimensions, accounting for 67.4% 
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Figure 16:   Visualisation of a feature based transformational representation for the zoo 
domain. 

of the variance in the data. Figure 17 attempts to display the best fitting five dimensional 
representations using two spatial dimensions, orientation, size and gray-scale shading. If 
any meaningful information regarding the structure of the letter domain is conveyed by 
this approach, then it is certainly only gleaned by the effortful application of considered 
(and serial) cognitive processes. Figure 17 does not immediately convey the information 
presumably contained within the derived spatial representation, and serves to highlight 
the deficiencies of this approach first observed in relation to the zoo domain. 

An alternative means of displaying high-dimensional spatial representations of this 
type is through producing exhaustive planar projections of the coordinate space [87], to 
form what is sometimes11 referred to as a 'draftsperson's plot'. Figure 18 presents all 
5 x 4 -T- 2 = 10 unique combinations of the five-dimensional spatial representation for the 
letter domain. This visualisation is, because of its inherently fragmented nature, entirely 
unsuited to the apprehension of a global domain structure, and does not even seem to be 
superior to Figure 17 in terms of the accurate communication of more local information. 

However, the exhaustive planar projective approach is likely to provide a very effec- 
tive means of visualising high-dimensional spatial representations which are appropriately 
assumed to be psychologically separable. As noted in relation to the Morse code domain, 
asserting the operation of separability through the application of the City-Block distance 
metric results in the derivation of spatial representations with interpretable axes. In 
this case, the planar projection approach displays the relationship between stimuli within 

11 after gender neutering 
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Figure 17: Visualisation of five-dimensional spatial representation of letter domain, using 
two spatial dimensions, orientation, size and gray-scale shading. 

the domain in terms of their derived values on pairs of psychologically meaningful latent 
variables. A concrete example of this possibility is provided by the depiction of a four- 
dimensional similarity structure [87] for a set of 16 phonemes, based on their patterns of 
auditory confusion, which is presented in terms of meaningful stimulus dimensions. 

4.7    Arabic Numerals 

The seventh case study involves measures of the 'abstract conceptual similarity' of the 
ten Arabic numerals, '0'...'9', as judged by human subjects, having been pooled across 
three conditions of stimulus presentation [143]. 

Featural Visualisation 

It is commonly asserted [83, 144] that this type of measure of pairwise similarity is 
better modelled by the featural than the spatial approach. Accordingly, the results of a 

30 



DSTO-RR-0135 

Figure 18: Visualisation of five-dimensional spatial representation of letter domain, show- 
ing all ten planar projections. 

previous application of an additive clustering technique to this similarity structure were 
employed [83]. These took the form of a set of 8 derived clusters or features, each with an 
associated saliency weight, which, together with an additive similarity constant, explained 
90.9% of the variance of the data. 

Neither the iris domain nor the zoo domain, previously depicted using the ray glyph 
approach, could claim the principled featural basis provided by this analysis of the numeral 
domain. The glyph visualisation of the iris domain was based simply on raw measurements, 
while the zoo domain's featural representation was both subjectively pre-abstracted, and 
not augmented with featural weightings. Accordingly, Figure 19 presents a ray glyph 
display based on the featural properties and saliencies for the ten numeral stimuli. 

Once again, it is difficult to comprehend the abstract conceptual relationship between 
the numerals which should be conveyed by this visualisation. With some effort, it might 
be possible to notice that the numerals 2, 4 and 8 share an important feature, that the 
numeral 0 is somewhat different from the other numerals, that the numerals 1 and 8 are 
quite different from each other, and so on. However, the extraction of this information is 
an effortful process which requires an often myopic local focus, and the global structure 
of the domain does not seem to be conveyed by the visualisation. Certainly, no sense of 
the natural cardinal ordering of the stimuli is conveyed by Figure 19. 

An established alternative means of displaying a featural representational model [78, 
82] is to overlay the derived features upon a two-dimensional spatial presentation of the 
domain. Figure 20 attempts to do precisely this, using the best fitting two-dimensional 

31 



DSTO-RR-0135 

^ ><x >x 

L 

Figure 19: Ray glyph visualisation of additive clustering similarity structure for the Arabic 
numerals domain. 

solution, explaining 60.1% of the variance of the data, as obtained from a multidimensional 
scaling analysis. The featural clusters are depicted as closed convex shapes which encom- 
pass the representative points of the stimuli they contain. It is relatively easy to gain an 
understanding of the conceptual structure of the numerals using this display by focussing 
upon each of the clusters, and the underlying spatial configuration conveys aspects, such 
as cardinality, of the global structure of the domain. While Figure 20 does not provide an 
indication of the saliencies of each cluster, this has previously been accomplished simply 
by labelling each boundary [82], and could more naturally be achieved by using weighted 
lines. 

A serious difficulty with this approach to presenting featural representations, however, 
resides in the strong possibility of having to resort to concave encompassing shapes to 
impose certain cluster structures upon given spatial configurations. Indeed, this is true 
of Figure 20, which does not display one of the derived additive clusters, containing the 
numerals 3, 4, 5, 6 and 7. It is simply not possible to draw a convex encompassing 
boundary for these stimuli given the fixed spatial representation, and there is no obvious 
way to modify the underlying configuration to overcome this difficulty. Unfortunately, 
there are also significant psychological barriers to the introduction of concave bounds, 
related to their perceptual comprehension in terms of the action of dynamic processes [102]. 
The use of different encompassing shapes in Figure 20 might be taken as introducing some 
unintended emphasis on different clusters, and this effect seems likely to magnify by orders 
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Figure 20: Incomplete visualisation of additive clustering similarity structure of the Arabic 
numerals using ellipses. 

of magnitude if the convexity constraint is relaxed. Ideally, of course, it should be possible 
to use these perceptual and cognitive biasses to communicate the relative weightings of 
the various clusters, but the current immaturity of understanding in this area prevents the 
development of principled techniques. In the meantime, therefore, it may be prudent to 
avoid the depiction of featural cognitive representations using the encompassment scheme 
shown in Figure 20. 

As a worlcable alternative, Figure 21 presents the derived featural representation of 
the numeral domain using a novel visualisation approach called 'prototype webs'. In this 
presentation, as in minimal spanning trees, each cluster is indicated by a 'web' which 
connects each of the representative points of the stimuli it encompasses. These connecting 
lines meet at a 'Steiner' point located at the spatial centre of the cluster, which may be 
regarded as the representational location of the conceptual 'prototype', as in the prototype 
models of graded conceptual structure discussed earlier. In addition, the relative widths of 
the connecting lines for each cluster corresponds to the derived saliency of the associated 
cognitive feature. 

The ease with which this visualisation may be comprehended is probably comparable to 
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Figure 21: Visualisation of additive clustering similarity structure of the Arabic numerals 

using 'prototype webs'. 

that shown in Figure 20, in that aspects of the conceptual structure of the domain may be 
appreciated through the focussed examination of the individual webs, and the advantages 
of employing an underlying spatial representation are retained. Given this approximate 
equivalency, the prototype web approach has the advantage of allowing perceptually similar 
graphical structures to indicate essentially arbitrary cluster structures. 

4.8    Drug Use 

The eighth case study considers correlational measures of psychoactive drugs obtained 
from data which indicated the frequency, on a five point scale, of the use of 13 drugs 
across 1634 students [145]. Each pairwise correlation between the various drugs was sim- 
ply treated as constituting a measure of the similarity of those drugs, in the context of 

frequency of use. 

Featural Visualisation 

An additive clustering analysis of this similarity structure employing an 'extraction 
and regularisation' approach [80] generated seven clusters which, when augmented by an 
additive constant, accounted for 92.6% of the variance of the data. Figure 22 presents a 
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Figure 22: Visualisation of additive clustering similarity structure of the drug use domain 
using 'prototype webs'. 

prototype web visualisation of the resultant featural representation of the domain12. Once 
again, the underlying spatial representation provides some guidance regarding the overall 
patterns of drug use, and detailed examination of the featural clusters gives an indication 
of the conceptual associations between specific subsets of the drugs. 

Transformational Visualisation 

The focussed context of drug usage from which the similarity data for this domain are 
generated suggests that a transformational representation may be revealing. Since each 
cluster tends to associate a group of drugs which have the same frequency of use, the 
pattern of change of drug use should be implicit within the featural representation. By 
adopting the same transformational approach as was employed for the zoo domain, so that 
drugs which differ by only one featural cluster are connected, it seems possible that the 
'trajectories' by which drug use behaviour changes may be identified. 

Figure 23 provides a visualisation of this transformational representation, and seems 
to indicate not only a separation between legal and illegal drugs, but also a pattern of mi- 
gration from 'softer' illegal drugs, such as marijuana and hashish, to 'harder' illegal drugs, 
such as cocaine and heroin. This is a particularly effective and useful means of represent- 
ing and presenting this domain, and suggests that the development of more sophisticated 

2Note that the drug labelled 'medication' refers to the abuse of medically prescribed drugs. 
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Figure 23: Visualisation of transformations for the drug use similarity structure. 

techniques for developing transformational representations of similarity structures is war- 
ranted. 

4.9    Nations 

The final case study examines a set of similarity ratings for 17 nations, collected from 
557 adults in the mid-to-late 1960s [146]. Based on a series of geographic, demographic, 
economic and political criteria, the nations considered were Argentina, Brazil, Congo, 
Cuba, Egypt, France, India, Indonesia, Japan, Nigeria, Phillipines, Poland, Red China, 
Russia, Spain, United States of America, and Yugoslavia. For each of these nations, sub- 
jects were required to judge which 3 of the remaining 16 in the list were the most similar to 
that nation. The relative frequency, across subjects, with which one nation was identified 
with another provides a measure of the similarity between those nations. It should be 
clear, however, that this method of construction allows the possibility of assymetric sim- 
ilarity measures. For example, while 'Indonesia' might prompt geographically motivated 
responses such as 'Japan' and 'Red China', the prompt 'Japan' might result economic 
responses such as the 'United States of America', whereas 'Red China' might prompt 
politically motivated responses such as 'Cuba'. 
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Figure 24-' Assymetric spatial visualisation of the nations similarity structure. Each nation 
is labelled by its first four letters. 

Assymetric Spatial Visualisation 

Rather than removing this assymetry by, as discussed earlier, considering only a 
transpose-averaged similarity matrix, Figure 24 attempts to incorporate the patterns of 
assymetry in a spatial display. Figure 24 augments a presentation of the best-fitting two 
dimensional spatial representation, determined in relation to the symmetric matrix and 
explaining only 66.1% of the variance in this data, with a series of 'to' and 'from' arrows 
and stems indicating deviations from symmetry. The relative lengths of these arrows and 
stems are proportional to the magnitude of the deviation from symmetry, as measured 
by the difference between transpose elements in the similarity matrix. For example, the 
large arrow originating from 'Cuba' and terminating at 'Brazil' indicates that the prompt 
'Cuba' resulted in 'Brazil' being listed considerably more often than 'Cuba' itself was listed 
when the prompt given was 'Brazil'. 

Figure 24 appears to maintain the advantages of spatial displays, in that 'communist', 
'third-world' and other clusters are immediately perceived, and the incorporation of arrows 
and stems seems to convey additional information. For example, the status of 'Russia' 
as a super-power (rather than, say 'Yugoslavia' or 'Poland') is evident from its indicated 
desire to be more similar to the 'United States' or 'France'. Similarly, the tension between 
rating 'Cuba' using political and geographical contexts is evident by considering both 
its location amongst communist nations, and its assymetric relationship to other South 
American countries such as 'Argentina' and 'Brazil'. 
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Despite the obvious potential of presenting assymetric similarity structures, however, 
the depiction technique shown in Figure 24 constitutes a first attempt at a general method. 
A range of other visual approaches to conveying assymetry, such as representative geo- 
metric shapes with matching intrusions and extrusions, also seem worthy of investigation, 
and their comparison would be a worthwhile topic for further research. 

4.10    Summary 

Before commencing a general discussion, it is probably worth summarising some impor- 
tant points arising from the series of case studies just presented. First, the wide variety of 
means by which measures of pairwise similarity were generated in the case studies should 
be emphasised. Lists of properties were converted into appropriate measures in several of 
the cases studies, using Euclidean (iris) and other (zoo) distance metrics, measures based 
on angular difference (documents), and correlational measures (drug use). Indications 
of pairwise similarity were also generated from several measures of association, including 
counts of commonality (senators), raw confusion probabilities (Morse code and English let- 
ters), and pooled ratings of similarity (numerals and nations) collected by various means. 
While there remain a number of well established techniques which have not been covered, 
the more general point that measures of pairwise similarity are readily generated from a 
wide variety of raw data seems well made. In particular, both the possibility of measur- 
ing psychological similarity using artificial semantic extraction techniques such as n-gram 
analysis, and using human judgments such as ratings, have been demonstrated by the case 
studies. 

Secondly, some observations should be made regarding the amount of data involved 
in the case studies, and the implications for the scalability of the visualisation techniques 
employed. Two of the case studies - the iris measurement and document semantic studies - 
involved the depiction of something in the order of 100 stimuli, and the ability of the spatial 
approach to handle significantly increases in the number of stimuli has already been noted. 
More subtly, however, it needs to be appreciated that many of the case studies manage 
to consider significant volumes of data, but require the depiction of relatively few stimuli 
to convey this body of information. For example the transformational visualisation of the 
drug domain presented in Figure 23 is based on 1634 evaluations of frequency of use for 
13 drugs, a total of over 20,000 raw data points. The correlational approach by which the 
analysis proceeded provides exactly the sort of essence-extracting parsimony that should 
be achieved by data modelling, and facilitates a final representational structure which is 
amenable to a simple visualisation. A similar argument could be mounted with respect 
to the document semantics case study, which is based on more than a megabyte of 'raw' 
ASCII text. The key to the depiction of the clustered structure of the documents shown in 
Figure 10 is the generation of a similarity structure which accommodates the development 
of a simple representational model. 

5    Future Prospects 

When a multidimensional scaling analysis of a given similarity structure indicates that 
a two-dimensional representation is appropriate, as in the iris, senator, Morse code and 
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Figure 25: Percentage of variance explained, as a function of the dimensionality of the 
representational space, for the letter domain. 

document case studies, the generation of visualisations of the type shown in Figure 7, 
8, 9 and 10 is natural, obvious, and straightforward. This is because the fundamental 
requirement for effortless and accurate data visualisation - that of canonically aligning a 
perceptual presentation with an underlying cognitive representation - has been satisfied. 

When a two-dimensional spatial representation is inadequate, achieving the necessary 
match between presentation and representation is more difficult. In fact, there are two 
possibilities under which it may not be possible to accommodate a similarity structure in 
two spatial dimensions. It is worth examining both of these possibilities in turn. 

5.1    High-Dimensional Spatial Representations 

Some similarity structures, such as those involved in the zoo and letter domains, need 
to be modelled by spatial representations containing more than two dimensions. Figure 25 
demonstrates this in relation to the letter stimuli by showing the percentage of variance 
explained by the best fitting multidimensional configuration as a function of assumed 
dimensionality of the representational space. In cases such as this, the underlying cognitive 
representational structure is homogenous - that is, all of the representational dimensions 
are of the same type - but the usual requirement of depiction in an inherently two- 
dimensional medium introduces difficulties. 

Various established means of visualisation these high-dimensional representations ex- 
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amined in the case studies, such as the use of glyphs, the introduction of additional per- 
ceptual features, or the construction of exhaustive planar projections, do not appear to be 
particularly effective. The incorporation of size (Figure 13) and gray-scale shading (Figure 
15) to convey the third spatial dimension of the zoo representation proved to be moder- 
ately effective, but their use appears capable of being subsumed within the special cases 
of visualising three-dimensional spatial representations using perspective displays (Figure 
12). The use of orientation (Figure 14) for three-dimensional structures, or of any combi- 
nation of perceptual features for higher-dimensional structures (Figure 17) seems to result 
in displays which defy comprehension. Other than three-dimensional representations, the 
only other potentially effective visualisation technique found was that of exhaustive planar 
projections for separable domains. 

One possibility worth exploring involves constructing spatial representations which 
combine subspaces with different metric structures. The use of perceptual features such 
as size and shading to convey depth is made quantitatively precise through reference to 
the surface of the two-dimensional medium on which the display is produced and hence, 
by implication, through reference to the location of the eyes of the observer. Incorpo- 
rating size or shading in a perspective display, therefore, requires some calculations to 
gauge the 'distance' from the projected three-dimensional representational point to its 
two-dimensional presentational location, but this distance is independent of the metric 
structure of the representational space. In other words, under this approach, the pre- 
sentational size or shading value ascribed to a display is not naturally aligned with the 
representational value it is intended to convey. 

Presumably, one of the reasons why displays such as Figure 13 and Figure 15 are effec- 
tive is because, serendipitously, they do align presentational and representational values. 
Both of these visualisations may be regarded as 'fiat' perspective projections, in which 
a three-dimensional structure is viewed from directly above. This means that the third 
dimension, perceptually encoded by shape or shading, is orthogonal to the presentational 
medium and is, therefore, effectively a uni-dimensional augmentation of the remaining two 
Euclidean spatial dimensions. This uni-dimensionality, in turn, implies that the metric 
structure associated with the additional representational dimension is irrelevant, since all 
Minkowskian distances are the same in one dimension. Therefore, the perceptual relation- 
ship between the size or shading used to convey one dimension and the spatial separation 
used to convey the other two does not matter, since the metric structure of the underlying 
representation is equally accommodating of all possibilities. 

Once higher-dimensional spaces are considered, however, the perceptual relationship 
between display dimensions should impact upon the metric structure of a derived repre- 
sentation. There seems little doubt that the two perceptual dimensions of spatial separa- 
tion are integral, and therefore require an underlying Euclidean representation. However, 
perceptual features such as size, shape, colour, texture, shading and so on are almost 
certainly separable with respect to spatial separation, but may bear separable, configu- 
ral, integral, or other relationships to each other. A broadly reliable determination of 
these relationships, although not trivial, seems possible, and would provide a series of 
strong representational constraints from which new multidimensional scaling techniques 
for data visualisation could be developed. The output of these techniques would be high- 
dimensional spatial representations in which the metric relationships between the various 
dimensions were aligned with the perceptual relationships between the features subse- 
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Figure 26: Percentage of variance explained, as a function of the dimensionality of the 
representational space, for the Arabic numeral domain. 

quently used to convey those dimensions. The pursuit of the constraints and techniques 
needed to realise this possibility is obviously a priority for future research. 

5.2    Integrated Similarity Structures 

On the other hand, some similarity structures, which are not appropriately modelled by 
two-dimensional spatial representations, such as those involved in the Arabic numerals and 
drug use case studies, arise because the data cannot be sufficiently well accommodated by 
any number of spatial dimensions. An example is provided by the Arabic numeral domain 
which Figure 26 suggests can only have about 60% of the variance can be explained by 
a coordinate space representation of any dimensionality. That is, there appears to be an 
asymptotic level of variance explained which is, presumably, too low to allow the adoption 
of a solely spatial representation. Unlike the problem with visualising high-dimensional 
spatial representations, the difficulty here is not one of aligning a presentation with a 
representation. The problem here is one of developing an adequate representation in the 
first place. 

The obvious means of addressing this problem is to model the given similarity structure 
using a combination of representational approaches. There is no fundamental reason why 
models of cognitive representations of stimulus domain must be restricted to either a spa- 
tial, or featural, or any other simple approach. Indeed, one of the central concerns of the 
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structural representational approach is to insist upon the specification of richly structured 
models of mental representation. The integration of spatial and featural approaches to 
cognitive representation would seem to constitute a first step towards providing this sort 
of structure, and certainly offers the promise of being able to combine the representational 
strengths of both. Whereas, in terms of Figure 2, spatial representations are particularly 
well suited to modelling the internal structure of mental concepts, featural representa- 
tions are necessary to capture the interconnectedness of different concepts across levels of 
abstraction [48, 144]. 

In this light, it is probably not a coincidence that some of the most effective visu- 
alisations presented in the case studies are those which incorporate more than one rep- 
resentational model of the domain. These include Figures 16 and 23, which overlay a 
feature-based transformational representation upon a spatial representation, and Figures 
20, 21 and 22 which overlay an additive clustering featural representation upon a spatial 

representation. 

What is being proposed, however, significantly extends the integration of representa- 
tional approaches provided by these visualisations, in the sense that these combinations 
are currently only enacted at a presentational, rather than representational, level. The fea- 
tural representation of the Arabic numeral stimuli, for example, is derived by an additive 
clustering technique which operates completely independently from the multidimensional 
scaling technique by which the spatial representation is generated. The introduction of 
an integrative inter-dependence between different representational approaches amounts to 
a fundamentally different, and considerably more sophisticated, type of representational 
structure, and seems closer to the schematic memory mechanisms which are probably 
necessary to model human cognition. Exactly what approach should be taken by tech- 
niques for developing these types of representations is difficult to determine, although it is 
reasonable to speculate that there needs to be close interaction between the various rep- 
resentational subcomponents of a schematic structure as they seek to model the similarity 
relationships existing within a domain. 

The possibility of developing integrated representational structures also raises issues 
related to the correspondence between the perceptual apprehension of similarity in visual 
displays, and the underlying similarity model employed in a representation. The spa- 
tial and featural approaches, for example, differ not only in the types of representations 
they typically employ - continuous for spatial, and discrete (often binary) for featural 
- but also in the way in which pairwise measures of similarity are generated from these 
relationships. Formally, these similarity models are given by Equation 7 for the spatial 
approach, Equation 8 for the general featural approach and Equation 10 for its additive 
clustering specialisation. It is evident that these models are fundamentally different, in 
that the spatial model employs a global approach, in which the modification of one repre- 
sentation affects the similarity of the corresponding stimulus to every other, whereas the 
featural model is more local, in the sense that ascribing a feature to a stimulus affects its 
relationship only to the stimuli already having that feature. 

The implication of this distinction is that the way in which similarity between presen- 
tational components is perceived in a display must be understood, and aligned with the 
underlying similarity models. For example, the local properties of the featural similarity 
model seem to correspond to what could be termed 'associational' perceptual similarity, 
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which might be achieved by using sufficiently quantized versions of display features such 
as size, shape, colour, and so on. It also seems possible that some presentational features 
might 'compete' for attention, which could perhaps be addressed through the introduction 
of semi-metric spatial representations using Minkowskian r parameters less than 1, as dis- 
cussed earlier. Clearly, however, there is the need for the development of an empirically 
consolidated theoretical understanding of these perceptual relationships in the context 
of data visualisation, before integrated representational structures of the type being pro- 
posed could be presented effectively. The pursuit of such an understanding constitutes yet 
another avenue for future research. 

5.3    Conclusion 

Both the possibility of veridically displaying high-dimensional spatial representations, 
and the possibility of generating and displaying integrated similarity structures present 
major theoretical challenges. The derivation of spatial representations with subspaces 
operating under different metrics may not be straightforward, and measures of the com- 
plexity of such representations also promise to be difficult to determine. Furthermore, 
even if both of these hurdles are overcome, extensive empirical investigation would be 
required to align presentational features with representational dimensions. Meanwhile, 
the derivation of integrated similarity structures requires the development of entirely new 
approaches to similarity structure modelling. As with any new theoretical enterprise, it is 
difficult to predict the rate at which progress might be made. 

It remains true, however, that any progress on either of these two fronts would sig- 
nificantly enhance the ability to present many domains of interest. While the various 
representational modelling and visualisation techniques examined in this report often pro- 
vide a reasonable capability for comprehending disparate bodies of raw information, they 
all are often subject to clear and fundamental shortcomings. For this reason, partial solu- 
tions to the problem of increasing the effectiveness of perceptual displays, and the problem 
of increasing the sophistication of underlying representations would, no doubt, improve 
the capabilities of a variety of data visualisation techniques. 

Given the goal of data visualisation advocated in this report - that of creating a 
representational and presentational linkage between artificial information systems and hu- 
man analysts - some degree of shortcoming in any implemented technique is probably 
inevitable. What is being sought is effectively a comprehensive understanding of all of 
human perception and cognition. Whether or not such an understanding is ultimately at- 
tainable, approaching data visualisation from the perspective of cognitive and perceptual 
modelling does ensure that useful theoretical and practical questions are addressed. In 
this regard, the justification and challenge of psychological approaches to data visualisa- 
tion is perhaps best summarised by Kosslyn: "principles of perception and memory are 
a two-edged sword. If they are ignored, a display can be uninterpretable; if respected, it 
can be read at a glance" [13]. 
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