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ABSTRACT 

Sophisticated simulation models provide powerful tools with which to study the 
development and outcomes of highly interactive scenarios involving multiple players. 
The effectiveness of such outcomes, however, is strongly dependent on the set of tactics 
available to the players involved. Game Theory provides a framework in which 
optimal tactics can be developed in adversarial domains. Rather than constructing 
complete mathematical solutions, this report investigates how broad analysis within 
the scope of Game Theory can be used to provide insight into an operational scenario. 
When such an insight is gained into the general properties of an optimal solution the 
knowledge acquired can be applied as inputs to relevant simulation models. In this 
way simulation tools can be more effectively brought to bear on complex real world 
problems. This approach is investigated through the analysis of a simple tactical 
scenario. 
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Application of Game Theory to Tactical 
Development in Simulation Studies 

Executive Summary 

Computer based simulation is a powerful means by which complicated war gaming at 
all levels can be studied. Indeed, as the physical attributes and technologies of sensors 
and weapon systems can all be incorporated within such simulations, a faithful 
representation of a given scenario can be provided to the researcher. However, while 
simulation provides useful results for given inputs it is less suited to the study of 
optimal employment of the platforms and systems. While it is certainly possible to test 
changes in tactical application within the simulation framework there is no systematic 
way that optimal tactics can be developed, nor indeed is any real notion of what 
constitutes v optimal' provided. 

It is thus of interest to investigate what means are available to complement simulation 
studies and provide a framework for detemiining optimal application of sensors and 
platforms. Such a framework is provided by the theory of Games. This is a 
mathematical theory of broad scope which has been actively pursued in military 
operational analysis for many years. Its sphere of application lies in determining 
optimal strategies for interacting players, with, perhaps, mutually opposed goals. 
While many fascinating results and insights can be gained from its exclusive 
application it suffers from the usual shortcomings that all purely mathematical 
approaches must when dealing with real world problems: the complication of 
accurately accommodating the many parameters inherent to sensors and platforms as 
well as the vagueness that can accompany incomplete and fuzzy information sources. 

Rather than mathematically model such attributes and information structures in detail, 
it is generally possible to construct simpler mathematical representations, particularly 
when operational level results are of primary interest. Such simplified representations 
allow Game Theory techniques to be realistically brought to bear on meaningful 
tactical problems. In this way, insight can be provided to the researcher on possible 
novel tactical applications of sensor technologies and platforms, suggesting tactics 
which can be tested with more detailed simulation tools. That optimal solutions to 
adversarial problems can be provided through a Game theoretic analysis gives the 
researcher greater confidence that the ultimate outcome will be close to the optimal 
solution that can be achieved. 

In this report the application of broad concepts from Game Theory to this goal is 
discussed. To illustrate its possible application a simple engagement scenario between 
a fighter type aircraft and a surveillance aircraft is investigated. The important sensor 
contribution to this tactical picture is incorporated by introducing a simple 
representation of the differing degrees of situational awareness between the 
adversaries, mimicking what may actually occur between such aircraft in close combat. 
The extension of such ideas to more realistic situations is also addressed. 
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1. Introduction 

The capabilities of modern computer hardware and software have made detailed 
simulation an indispensable component of military modelling and operational analysis. 
However, while crucial to gaining insight into tactical outcomes, such simulations are 
poorly suited to the development of novel tactics. While it is certainly possible to test 
changes in tactical application within the simulation framework there is no systematic 
way that optimal tactics can be developed, nor indeed is any real notion of what 
constitutes v optimal' provided. 

In this regard, analysis external to a simulation is warranted in order that the space of 
possible tactical choices is fully explored. This can be a daunting task, which can be 
further frustrated by an unwarranted bias towards existing tactical doctrine. To 
investigate counter-intuitive tactics an objective procedure needs to be followed. Game 
Theory provides such an objective framework. 

Rather than attempt to apply the mathematics of Game Theory in detail to the many 
degrees of freedom of platforms and sensors, a complementary approach with 
simulation which best utilises the strengths of each appears to provide the most 
promising path. By considering simplified operational level models of platforms and 
sensors, Game Theory analysis can be realistically brought to bear on meaningful 
tactical problems. In this way, insight can be provided to the researcher on possible 
novel tactical applications, suggesting tactics which can be tested with more detailed 
simulation tools. That optimal solutions to adversarial problems can be provided 
through a Game theoretic analysis gives the researcher greater confidence that the 
ultimate outcome will be close to the optimal solution that can be achieved. 

In this report the application of broad Game Theory analysis to simulation modelling 
will be explored. To help motivate such an approach a particular military application 
will be investigated. While other flavours of Game Theory will be discussed this 
example will make use of Differential Games as expounded by Isaacs [1]. A pursuit and 
evasion game representing an agile pursuer P, such as a fighter aircraft, and a slower 
evader E, such as a surveillance aircraft, is considered. An extension on traditional 
Game Theory analysis is made in that the two participants are endowed with differing 
sensor capabilities. That is, there is an explicit asymmetry in the data gathering abilities 
of the participants, with E being the superior. Such accords with what could be 
expected in a real life engagement of this kind. In this way the application of Game 
theory to simulation studies incorporating platforms and sensors is considered with the 
aim of investigating, at a broad level, the possible novel tactics which could result. 

In modern military operations, considerations on situational awareness require 
confronting the significant technological capabilities of surveillance and weapons 
systems as well as issues surrounding data fusion, command and control and human 
factors. Clearly, this is a daunting, if interesting, task. Consequently, in this report a, 
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somewhat contrived, simpler game will be considered to illustrate the possible utility 
that Game theory may play in this arena, with interest focussed on a within visual 
range encounter1. 

2. Concepts from Differential Game Theory 

2.1 The General Theory of Differential Games 

The theory of games has been part of military operational analysis almost from its 
inception [2]. Essentially, Game Theory is concerned with detenrtining the optimal 
choice of strategy, from a given set of strategies, for players competing to optimise 
some pay-off. In this sense, Game Theory is often analytically more difficult than 
standard operational analysis, where consideration must now be given to the 
simultaneous optimisation of strategy choice for several interacting participants, the 
optimal choice of strategy for any given participant being intirnately related to the 
strategy choice of others. This is to be contrasted with the theory of one person 
dynamic optimisation germane to operational analysis, where optimal outcomes are 
determined against constant backgrounds. To apply Game Theory, use is often made of 
the game matrix to set out the pay-offs for particular strategy choices of the players. 
The application of the game matrix is useful for formulating problems, particularly 
when the strategy spaces are discrete and small in number. 

Use of a game matrix is a particular instance of a game represented in strategic form, 
that is the players, the strategy spaces and the pay-offs are all specified and the players 
choose their actions simultaneously. To incorporate a dynamic element application 
must be made of extensive form games which dictate the order in which players move 
and the information available to players at each move. In this way strategies become 
contingent plans rather than un-contingent actions [3]. Differential Game Theory treats 
games in which players have lengthy sequences of such contingent strategy choices, 
being either discrete or continuous. 

Differential Game Theory arose from the study of pursuit and evasion problems 
between players moving under simple kinematic laws, where generically the pursuer is 
denoted as P and the evader as E. Restricted to the case of single player games, such 
analysis recovers the concepts of operational analysis and control theory. Indeed, the 
same general structure employed in differential games can be found in the theory of 
control. Principally, this consists in firstly determining what constitutes the state and 
control variables. The game plays out in the space defined by the state variables, 2, 
while the control variables can be manipulated by the players to achieve certain state 
values. The choice of values for the control variables thus constitutes the choice of 
strategy. 

Since the scenario investigated here is a tactical one, rather than touching on the broader characteristics of warfare, the 
question of preferences and utilities is avoided and the problem will remain one of a zero-sum-game [4]. 
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For zero sum2 differential games, the general mathematical framework and method of 
solution has been fully described by Isaacs3 [1]. The solution technique encompasses 
two essential elements: (i) a local solution which utilises the machinery of differential 
equations and (ii) a determination of the singular surfaces which delineate these local 
regions. The possible types of such singular surfaces is numerous and to date defies 
any systematic categorisation. In addition, the nature and location of such surfaces 
which occur in a given game must be determined from the characteristics of that 
particular game since no general theory of such entities exists. 

The local solution technique, however, is amenable to a general treatment and centres 
on the concept of the value of the game, denoted as V. For two player zero sum games 
the value of the game is the pay-off achieved by one player, and the loss incurred by 
the other, at the end of the game when the players play optimally. Consistent with 
games of pursuit, where time until capture could be the pay-off, P seeks to minimise 
the value and E to maximise it. The pay-off may change with time over the duration of 
the game and may include a contribution from the point in state space where the game 
terminates. The points in state space where the game terminates constitute a surface in 
the playing space known as the terminal surface, ß. Denoting by <|> the control 
variables of P and vj/ those of E the value of the game can be represented as [1]: 

]G(x,ty,y)dt + H 

where x represents the state space variables, G varies over the paths followed by P 
and E in state space and H is the contribution to the pay-off where the game 
terminates on ß. Note that the value will generally be a function of the current state 
variables V = V(x) since the current state of any given game could correspond to the 
initial state of a different game for which the value would generally be different. It can 
be shown that V{x) satisfies a first order partial differential equation, known as the 
main equation [1]: 

minmax 
<f>      v     j 

I[^W.V) + GW,V) = 0 

where Vj and f} are the partial derivatives of the value and kinematic equations with 

respect to the state variables, respectively. From this it is possible to extract the full set 
of ordinary differential equations required for a solution. 

That is, what one player gains in pay-off the other loses 

It is interesting to note that to prove that the particular solutions produced by this methodology are indeed optimal is 
often laborious and more difficult than the production of the original solution. 
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2.2 Differential Games of Kind and the Barrier Concept 

The forgoing discussion is primarily associated with games of degree. That is, there is 
available a quantity, the value, which the opponents wish to minimise or maximise. 
Such assumes that the value of the game actually exists, for example that capture by P 
of E actually occurs. The question of whether a particular event will or will not occur 
comes under the aegis of games of kind. Such games can be subsumed into the general 
mathematical framework of differential games by assigning numerical values for the 
value in each case: +1 if the event occurs and -1 otherwise. 

Since now there is only a simple fixed pay-off, optimal strategies are may no longer be 
unique. For example, E need only just escape rather than, say, escape in the least time 
since the pay-off remains the same. To avoid addressing all such possibilities 
application is made of the barrier concept. A barrier is a particular kind of singular 
surface in the state space which, at the terminal surface, separates the region where the 
event occurs, such as capture, and does not occur, such as escape. In this sense meeting 
the terminal surface along the barrier corresponds to a neutral outcome, and thus a 
pay-off of 0. Should P and E begin a game on this surface, sub-optimal play by either 
will allow the other to either force capture or escape. Consequently, the strategy 
selections along the barrier are unique and calculable. 

Application of the barrier concept allows for a detailed appraisal of a given game 
without the need for articulating the specific solution for all starting positions for a 
given pay-off function. This has been utilised to investigate fighter combat problems 
and draw out the essential dynamics of within visual range engagements. Such an 
approach will be adopted here, where an extension will be made to also accommodate 
differing degrees of situational awareness between the players. 

3. A Particular Tactical Application 

3.1 The Tactical Scenario 

Consider an engagement between a fighter type aircraft and a surveillance aircraft. In a 
Beyond Visual Range (BVR) encounter it would be anticipated that the novel 
application of the sensor and weapon systems will play the dominant role in deciding 
the engagement. This is an issue of paramount interest and possibly amenable to the 
application of Game Theory, albeit incorporating some advanced concepts. Rather than 
address such issues, appeal is here made to some more traditional aspects of 
differential games by considering a Within Visual Range (WVR) encounter as a means 
of demonstrating the possible utility of Game Theory to broad high level analysis. 

Scenarios of this kind have already been investigated operationally by the US Navy [5]. 
That such a situation could arise follows from some of the operational constraints that 
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surveillance aircraft must sometimes work under. For example, it may be paramount 
that a particular area remain under surveillance for broader strategic reasons. Of 
course, it is unlikely that any aircraft could survive an undetected BVR attack or an 
attack by two or more fighter aircraft. The type of situation, then, in which the 
application of imaginative WVR tactics could be beneficial is when a fighter aircraft 
opportunistically encounters a surveillance aircraft and attempts to undertake a lone 
attack, confident that a slower patrol aircraft would be no match [5]. That such 
confidence may be misplaced centres on the differing sensor performance. Surveillance 
aircraft can have impressive all round visual capability and, unlike fighter aircraft, the 
aircrew to constantly occupy the observation stations and the on-board command and 
control to assimilate and act on the information provided [5]. 

The actual pursuit-evasion to be investigated here is presumed to occur within a two 
dimensional plane. Clearly this introduces a great deal of mathematical simplification 
but is also not far removed from how an actual scenario may play out. It is likely that E 
would fly close to the ground (or sea level) since this will cause ground or ocean 
returns to degrade Fs radar performance should P attack from above. Further, owing 
to Fs greater speed an attack from above will also entail the possibility that P may 
collide with the surface if sufficient distance is lacking after a firing solution is made. In 
this way a two dimensional scenario may be quickly forced on the participants, as also 
is the dependence on vision as the primary sensor. 

While fighter aircraft have a definite manoeuvring advantage they generally have short 
low altitude endurance and a limited range. It is thus possible that E need only evade 
for a short time to survive an encounter. There can thus be some intrinsic constraints 
on Fs behaviour. In the situation addressed here a guns only attack will be considered. 
This could arise if an opportunistic encounter occurred after the primary mission of the 
fighter had been completed and its missile store depleted. 

To operationally model the differing visual capabilities of the aircraft the visual 
detection range will be represented by a "cookie cutter" range around the aircraft, as 
depicted in Figure 1. Within that range, complete information on the adversary's state 
is known while outside the cookie cutter range there is no available information. The 
visual sensor superiority of the surveillance aircraft will then be represented by that 
aircraft having a greater effective visual range. 
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Figure 1. Aircraft with accompanying visual sensor range ivithin xohich complete information 
on the adversary is available. (Not to scale). 

This defines the notion of incomplete information to be applied in this report. It is 
important to note that this differs from other definitions of incomplete information or 
uncertainty in that there is no fuzziness in the information (ie. no measurement errors 
and no notion of obtaining partial information), no cost in obtaining the information 
and no delay time in receiving it. All these issues would need to be addressed if a 
broader appraisal of the sensor capability, for example in a BVR scenario, was being 
undertaken. 

3.2 The Two Car Game 

While three dimensional air combat problems, usually focussing on fighter vs fighter 
encounters, have been investigated [6], the planar game first investigated by Isaacs [1], 
known as the Two Car Game, remains as a useful differential game in which to study 
many interesting scenarios. In this game the participants move with fixed speeds and 
specified maximum turn rates. This allows simple modelling of the differing turn 
capabilities of the players but obviously does not account for the frequent accelerations 
and decelerations which would be encountered in reality. The coplanar geometry is 
represented in Figure 2, where application will be made of the reduced coordinate set 
relative to the pursuer, P. 
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Figure 2. Relative geometry for the Two Car Game, here 0 is the relative heading. 

Here, L represents the all aspect weapons range, or in game theoretic terms the capture 
radius, and defines the terminal surface, ß. Most applications of the Two Car Game to 
the air combat problem have focussed on the necessary requirements to ensure capture 
of E by P [7, 8, 9] by applying the barrier concept of Isaacs [1]. At the terminal surface, 
the points separating capture (E can be forced inside the all aspect weapons range) and 
escape (P cannot force E inside the all aspect weapons range) will clearly correspond to 
the points on the terminal surface, &, where the radial velocity of E with respect to P is 
zero4. At these points the barrier will make contact with the terminal surface. Indeed, 
these points give the boundary conditions from which the barrier surface can be 
constructed. Given the symmetry of the terminal surface, the locus of these points will 
correspond to two complementary sets on either side of the capture region (note that 
we are dealing with a three dimensional state space comprising x,vand 0 so that a 
locus of points will be expected as 0 varies). It is if the barrier surfaces which arise 
from these initial (or more correctly terminal) conditions meet that the barrier will 
delineate regions of state space in which capture can always be ensured or frustrated. 
Even if no closed barrier surface is found, so that capture is always possible, important 
information on the general tactical scenario can still be inferred. 

As demonstrated by Cockayne [10] if P has a greater speed and lateral acceleration it is 
possible for P to achieve capture even with a zero capture radius - ie. point capture is 
possible. For the tactical situation considered in this paper both these requirements are 
met so that closed barriers would not be anticipated. Thus it should always be possible 
for P to capture E, albeit with some manoeuvring. 

However, our tactical situation has changed in that complete information on the state 
of the game is possible only within the visual detection range. For sufficiently small 

4 
At g, the barrier separates the useable from the non-useable part of the terminal surface, these being defined by the 

regions on ß where the radial distance is instantaneously decreasing or increasing under optimal play by E and P 
respectively. 
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visual ranges it may become necessary for P to allow E to escape from within visual 
range to set up a possible capture. This can be demonstrated by explicit consideration 
of the barrier for a specific set of parameters. In the reduced coordinate set there are 
three state variables, the position (x,y) of E relative to P and the relative heading of E 

with respect to P, 0. The corresponding platform parameters will be set as: 
w =205m/s, w(,=103m/s,Ä/>=800m and /?£=360m, corresponding to P and E's speed 

and minimum turn radius respectively. This choice of values gives E a slight advantage 
in angular turn rate [5]. Applying Isaacs' solution [1] it is possible to extract the barrier 
cross sections for particular choices of relative heading, being careful to correctly 
account for the singular behaviours on the barrier surfaces (ie. contributions from paths 
in which E utilises a straight run as part of its optimal strategy on the barrier). Taking a 
700m visual range5 and 100m capture radius for P and plotting the barrier cross 
sections out to the maximum visual range gives the results: 

C.R. 

0 degrees 90 degrees 180 degrees 

Figure 3. Barrier cross sections from the terminal surface, ß, to the limit ofP's visual range at 
0 = 0, 90 and 180 degrees respectively. Here, P is travelling up the page with the 
region, defined by the barriers and the visual range, xoithin which P can ensure 
capture ofE under any opposition from E shoion as the Capture Region, C.R. 

It is important to note that for any given pursuit the relative heading will be 
continuously varying throughout the encounter. As such, the paths on the barrier 
surface will vary in x,v and 0 . The barrier cross sections, therefore, do not correspond 
to paths which would be followed but rather, each point on a given cross section 
corresponds to a particular path with a given (x,y) for that particular 0. The 
interesting behaviour at 0 = 90 degrees is the result of that barrier having 
contributions from paths for which some part of that path's history involves a singular 
surface and consequently application of a straight run by E in addition to turning hard 
left or right, the later being the only contributions for the other cross sections given in 
Figure 3. 

It is worth noting that small visual ranges often occur due to environmental effects such as haze. 
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From Figure 3 it follows that if E should come within Fs visual range and P can keep E 
immediately ahead, then capture can be assured without P having to manoeuvre in 
such a way as to allow E to venture outside Fs visual range. Otherwise, a swerve type 
manoeuvre by P may be required if E is to be captured, allowing E to move beyond Fs 
visual range; a definite disadvantage for P. That is, rather than, say, P being able to 
turn hard right to bring E into contact with that part of the capture region where 
capture can be forced upon E (the useable part of the capture region) it may be 
necessary for P to first turn left and travel aiuay from E before making a right hand turn 
back toward E. That such a manoeuvre could be required follows from the nature of 
the barrier surface. To achieve capture, P must get E around the barrier and not simply 
to the barrier. To force this situation P may need to undertake this swerve operation. 

From E's perspective, it is clearly advantageous, given that straying into Fs visual 
range is unavoidable, to enter Fs sensor range towards the rear of P. Furthermore, 
independent of where the visual range is first encroached, it also appears 
advantageous for E to seek a relative heading of around 180 degrees as this constricts 
the barriers. Given that E could, in such a situation, ensure encroachment outside the 
direct capture region defined by the barriers, and given that P knows that it cannot 
capture E without losing sensor contact, it becomes of interest to know to what degree 
E can exploit the visual range asymmetry. To this end, it is first necessary to determine 
to what degree escape from Fs visual range can be made problematic. 

3.3 The Escape Game 

In this sub-game, P strives to maintain E within visual range. Reciprocally, it is 
presumed that it is advantageous for E to escape from Fs visual range. Such is 
consistent with the strictures of a zero-sum-game. With these goals in mind the roles of 
P and E are reversed, ie. E strives for termination and P seeks to frustrate it. 
Furthermore, the state space, S is now the interior region of Fs visual range and the 
terminal surface defined by the limits of this visual range. The kinematic equations are 
as in the pursuit game and are given by: 

dx        wp 
- = -—^+W£sin0 

dy     wp 
— = —— X(j) - wp + wF cos© 
at      Kp 

d®        Wp        wE 

~d7=-j;*+j;X¥ 

where <j> and V|/ are P and E's control respectively, and -1 < §,\\r < 1. The essence of 
the game is contained in the Main Equation, which, with E and Fs roles reversed, 
becomes: 
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Wp . WF 
minmax[-(() — A + wE(vx sin0 + v cos©) +—-v0\|/ -wpv ] = 0 

v      ■ "P 
RD 

tx x y        '    RE P £■ 

where A = vxy - vyx + v0 and vx, vv and ve are the components of the normal vector 

to the barrier surface. Interpreted as a game with terminal pay-off, this normal vector is 
proportional to the gradient of the value of the game. The choice of control variables 
which minimise and maximise the Main Equation are: 

<j> =-sgn^4 = -a, v|/ =-sgnve=-cr2 

where compatibility with Isaacs' original treatment of the Two Car Game has been 
retained [1]. Parameterising the terminal surface as: 

x- .ftsins, 

y = Rcoss 

© = s2 

(where R =700m in our case) the boundary of the useable part of the terminal surface 
follows as in [1] and is given by: 

wp — wE coss2 wE sins2 sin5> =± w C0S5' =±   V 

where W = yjwp +w2
E -2wpwEcoss2 . Unlike [1] the useable part of the terminal 

surface is defined by the region where, under optimal play by both participants, the 
radial distance, r, is increasing. Furthermore, the choice of normal vector at the 
terminal surface must account for the state space now being defined by the region 
interior to that defined by the visual range of P. Consequently, the normal vector 
components at the terminal surface are chosen to be: 

v^ = -sins, v^ = -C0S5, v0 = 0 

The remainder of the analysis follows as in [1]. Indeed, it follows that on the boundary 
of the useable part of the terminal surface O", = +1, so that P should execute a hard 
right (left) on the right (left) barrier. The choice of optimal control for E is also 
recovered, as are the nature of the Universal and Dispersal curves. 

It is thus possible to consider the escape barrier cross sections as was done for the 
pursuit game. It is found that a solution within the state space exists only for small 
values of relative bearing. The case at a relative bearing of 0 degrees is shown in Figure 
4: 

10 



DSTO-TR-0706 

Figure 4. Barrier cross sections for the pursuit-evasion and escape games at 0 = 0 degrees. The 
useable part for the escape game is given by the lower region bounded by the evasive 
barriers. Again, P is travelling up the page. 

Cross sections determined at relative bearings of 90 and 180 degrees do not yield 
escape barriers within the playing space. Consequently, some more careful 
manoeuvring by E to escape from the visual range of P is required only for small 
relative headings. At other headings there is no impediment to reaching the escape 
zone, remembering that the escape zone itself will alter with heading. Once again, it is 
advantageous for E to seek larger relative headings. In any case, it will always be 
possible for E to escape from the visual range of P. 

3.4 Strategy Beyond P's Sensor Range 

How should E play in order to frustrate ultimate capture after inevitably escaping from 
Fs sensor range? There is by no means a simple nor definitive answer to this question 
since reliance must now be placed upon models of inference and incomplete 
information which are far less subject to objective logical prescriptions. For this reason 
there exists a plethora of possible models of rational reasoning at various levels of 
sophistication and, it would be anticipated, many possible solutions. 

As indicated above, the notion of incomplete information adopted in this paper is very 
simple. It would be anticipated that in more sophisticated models (such as with BVR 
modelling) that the information structures involved in the analysis would be more 
involved and subtle. For this reason the specific case of Bayesian analysis will be 
employed. A more involved analysis does not appear warranted by the sophistication 
of the information structure under consideration. Nevertheless, the general philosophy 
of our analytical approach prevails; the derived results should provide some insight 
into the general structure of the problem and provide direction toward possible 
solutions to be explored through simulation6. 

A possible general framework for information management and decision making is to make use of the construction of 
a pignistic probability function (pignis being "bet" in Latin) over a set of beliefs entertained at a credal level [12]. That is, 
probability functions are used to quantify beliefs only when a decision is made, allowing beliefs to be maintained 
without any revealing behaviour manifestations. At the credal (i.e. credibility) level, beliefs can be quantified by other 
models which have been proposed in the past as superior candidates to a simple Bayesian analysis, such as Dempster- 
Shafer models. Maintaining a probability function for decisions also insures no "coherency" problems. The important 
point is that a probability function can be constructed for any credibility function quantifying beliefs at the credal level 
[12]. In this way, different belief models can be explored for a given problem and the most appropriate utilised within 
one general framework. 

11 
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To explore the possible strategies for E consideration will be given to a specific case 
from which some general inferences will be extracted, extending use of the "Method of 
the Explicit Policy" as espoused by Isaacs [1]. As mentioned above, a unique solution 
for E is not anticipated. Nevertheless, by incorporating the structure derived from the 
Game Theory analysis it should be possible to explore some novel, perhaps optimal, 
strategies for E which need not be obvious otherwise. 

Consider the initial situation for the encounter depicted in Figure 5 

Figure 5. Initial configuration for pursuit-evasion game. 

As demonstrated in the above analysis, for P to bring E into contact with the useable 
part of the terminal surface P must undertake a swerve type manoeuvre7. As with the 
homicidal chauffer game8 [1], optimal play by E entails first following P before 
diverting for a getaway. Such a tactic forces a larger swerve upon P, increasing the time 
until ultimate capture. For the situation here, a similar tactic would maintain E within 
Fs sensor range for an extended period of time. It would appear more advantageous 
for E to deny situational awareness to P and instead optimally play to deny this (it will 
be assumed that E can maintain visual contact at all times for simplicity). For the 
situation depicted in Figure 5. this would imply that E should turn hard right, while for 
P this would allow a smaller swerve to be used. 

For particular starting positions of E relative to P there will always exist strategies for E 
which allow E to just skirt around Fs visual sensor range. Indeed, particular solutions 
will always exist for specific starting positions. However, it is of interest to know what 
general ideas can be extracted, particularly if constraints are imposed. Furthermore, it 
is of interest to know which strategies reduce the risk of capture should P undertake an 
unexpected course of action. 

With E playing optimally to escape from Fs sensor range, P loses sensor contact with E 
very early in the engagement. P must thus make some decision as to E's initial 
subsequent tactics based upon prior beliefs. Rather than consider the continuum of 
possible choices that E may make of its control variable, consideration will be given to 

7 This is not necessarily true for all starring positions behind the barrier. If E is sufficiently rearward of P then P could 
bring E in to the useable part of the capture region by simply turning hard right, although situational awareness would 
still be lost. 
8 This game is a simpler version of the Two Car Game in which a swerve manoeuvre also occurs. 
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the following three possibilities: E maintains a hard right turn, E initiates a hard left 
turn or E flees by first utilising a hard right turn and then continuing without turning. 
Reduction to this subset greatly simplifies analysis and is not far removed from Game 
Theory type solutions which invariably utilise a choice of control variables at the 
extremes of their range, except perhaps on singular surfaces for which no application 
of a control degree of freedom is a common optimal application. Taking P to believe 
that E will not employ novel tactics (as assumed in actual trials [5]) the fleeing solution 
would be expected to feature most prominently in Fs prior belief of E's course of 
action. To this end, a conservative choice of prior probabilities could be 1/4,1/4 and 
1/2 respectively. Presuming P to follow the course of maximum likelihood, and 
presuming E flees, the ensuing engagement would appear as in Figure 6: 

Figure 6. Possible form of engagement ifE attempts to flee from P. When E enters P's sensor 
range (as indicated) it presents a small relative bearing angle, exposing itself to an 
open set of barriers. Note that the diagram is not to scale. 

Clearly, it would be advantageous for E, given that it maintains complete information, 
to undertake a further, or continue with, a hard right hand turn to avoid Fs sensor 
envelope. An initial hard left turn also may have been a viable option, although for 
certain starting positions it runs the risk that E may venture back into Fs sensor range, 
so betraying the tactic. In particular, should P choose not to simply follow the path of 
maximum believed likelihood but instead mix strategies in accordance with the prior 
probabilities [1] there would be a reasonable chance that P would indeed pursue E 
under the belief that the left hand turn option had been followed. For E, it would not be 
possible to decide which option had been chosen by P until P began to emerge from the 
swerve manoeuvre. These considerations lead into the realm of adversarial planning, 
which would need to be employed in a more detailed analysis [11]. 

Taking E to have instead used the hard right hand turn option and P acting under the 
belief of E fleeing, upon P not intercepting E at the appropriate time simple Bayesian 
updating would give equal prominence to the posterior belief that E had initially 
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chosen the hard right or left option (for the initial prior probabilities chosen). Should P 
choose the subsequent course of action correctly, and should E have subsequently 
chosen some fleeing option then: 
(i) E may quickly stray beyond its pre-assigned task area. 
(ii) There is a heightened chance that, without evasive manoeuvring , P may regain 
sensor contact from the rear of E. 
This later observation is crucial since from the Game Theory analysis it is known that 
the pursuit barrier allows for easiest capture for small relative bearing angles. 

Given that P does choose a viable course of action, E remains restricted in its field of 
operation and that E wishes to forestall a possible encounter from the rear, a course of 
action which presents itself is for E to deliberately enter Fs sensor range as near to a 
head on approach as circumstances and avoidance of capture will allow. Such a tactic 
takes advantage of the constriction of the barriers for near head on relative bearings. 
Once within Fs sensor range another swerve type manoeuvre would be forced upon P, 
which could be exacerbated by E turning toward P, more akin to the homicidal 
chauffer game. In any case a similar cycle would repeat itself in which a similar 
strategy could be employed by E, or P may not, on a second attempt, make such 
fruitful decisions. The crucial point is that such a tactic leaves less to chance, that is less 
to Fs lack of appropriate choice and more in control of E. Simply fleeing from P, with 
an area constraint and particularly if P has made a fortuitous early manoeuvre, runs 
the risk that capture may occur from the rear owing to Fs greater agility. A possible 
engagement could look like that depicted in Figure 7: 

Figure 7. Representation of an engagement wltere E deliberately re-enters P's sensor range at a 
near to liead on relative bearing. Note that here E has turned through a complete 
circle before moving towards P. (Not to scale) 
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While intrinsically unexpected a tactic of this kind makes use of the knowledge that, as 
fighter aircraft have limited range, two to three passes may be all that P can manage 
before having to disengage. This would appear to be an even more limiting constraint 
on P than the area constraint imposed on E since it also precludes P from learning the 
detailed tactics being undertaken by E in time to formulate a more successful strategy. 
It is worth noting that should P have mixed strategies and continued on a hard right 
turn that E, with complete information, could still turn in time to meet P in a similar 
manner. 

Interestingly, the tactic of flying towards P has strong parallels with unorthodox tactics 
already trialed [5]. It was observed that exploiting the rapid rate of approach of E to P 
set up by such a tactic can deny P sufficient time to establish a firing solution on E. This 
could be incorporated in a Game Theory model by constraining the useable part of the 
terminal surface to allow capture only from the rear. Such could lead to some further 
interesting tactical development, even in the complete information game. 

4. Extensions to more Interesting Scenarios 

In addition to the general analysis conducted here, there is great scope to apply Game 
theoretic ideas to specific sub-problems of more direct interest. Indeed, the application 
of sub-games is a path often taken in developing Game Theory solutions to detailed 
problems. For instance, one area of current development involves a fighter combat 
problem with interest focussed on developments after a missile has been fired. The 
players reduce to a missile (the pursuer) and the evading aircraft9 ie. the pursuing 
aircraft no longer plays a role in this part of the game. By incorporating the kinematic 
attributes of the missile, an objective study can be carried out on optimal evasive tactics 
which can then be further refined by particular simulation tools such as SWARMM10 or 
Battle Model11. By restricting to such sub-games, the problems remain tractable to 
broad mathematical analysis. 

Another interesting area for Game theoretic analysis is provided by the application of 
sensor technologies in BVR encounters. Rather than the simple "cookie cutter" 
approach adopted here, application could be made of the considerable literature which 
already exists on incomplete information games [3]. Specifically, for extensive form 
games the information content available to players can be accurately modelled and 
particular models of inference brought to bare to mimic decision making and planning. 
In this way, more accurate analysis could be applied to the optimal application of 
sensor technologies. For example, it would be interesting to optimise the cooperative 
application of radar and electronic support measures by investigating the trade-off 

9 
This work is under development with David Mcllroy of Air Operations Division. 

10 SWARMM, Smart Whole Air Mission Model: An agent-oriented simulation system developed by Air Operations 
Division and used for simulating the dynamics of whole air missions. 
11 Battle Model is the next generation mission level simulation environment under development at Air Operations 
Division, providing for flexible integration of sensor and agent models, including those originally residing in 
SWARMM. 
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between gathering intelligence and denying situational awareness to an adversary. 
This could lead to some very interesting and non-intuitive sensor employment 
strategies. 

5. Conclusion 

It is often presupposed that a mathematical analysis of combat problems is 
burdensome and complicated. However, as demonstrated here, the degree of 
mathematical difficulty need only correspond to the depth one wishes to pursue the 
analysis. In Game Theory terms, the greatest mathematical subtleties are usually 
concerned with determining the pay-off. However, as with our example, no such 
determination was needed since sufficient information on the dynamics of the problem 
was provided by restricting to a game of kind. 

While the application of the barrier concept is not novel, the inclusion of situational 
awareness as an intimate part of such broad analysis can provide for new directions in 
research with practical consequences to tactical development in simulation studies. 

6. References 

[1] R. Isaacs, Differential Games, Wiley, New York, 1965. 

[2] J. Von Neumann and O. Morgenstern, The Theory of Games and Economic 
Behaviour, Princeton University Press, Princeton 1944. 

[3] Drew Fudenberg and Jean Tirole, Game Theory, MIT Press, 1993. 

[4] See the introduction to Carl Von Clausewitz, On War, by Anatol Rapoport, Penguin 
Books, 1982. 

[5] Lieutenant M. T. Ackerman (USN), Nobody's Hapless Lumbering Grape, United 
States Naval Institute Proceedings, Jan. 1988, p 101. 

[6] See some of the articles in Nezu Trends in Dynamic Games and Applications, 
Annals of the International Society of Dynamic Games 3, Birkhauser, 1995. 

[7] J. V. Breakwell and A. W. Merz, Minimum Required Capture Radius in a Coplanar 
Model of the Aerial Combat Problem, AIAA Journal 15, p 1089,1977. 

[8] H. J. Kelley and L. Lefton, Estimation of Weapon-Radius vs Maneuverability 
Tradeoff for Air-to-Air Combat, AIAA Journal 15, p 145,1977. 

[9] G. J. Olsder and J. V. Breakwell, Role Determination in an Aerial Dogfight, Int. 
Journal of Game Theory 3, p 47,1975. 

16 



DSTO-TR-0706 

[10] E. Cockayne, Plane Pursuit loith Curvature Constraints, SIAM J. Appl. Math 15, p 
1511,1967. 

[11] P. E. Lehrter and Shui Hu, Adversarial Planning as Uncertainty Management, 
IJCAI-91. 

[12] P. Smets, Constructing the Pignistic Probability Function in a Context of Uncertainty, 
Uncertainty in Artificial Intelligence 5, p 29,1990. 

17 



DISTRIBUTION LIST 

Application of Game Theory to Tactical Development in Simulation Studies 
Brian Hanlon 

AUSTRALIA 

DEFENCE ORGANISATION 

Task Sponsor DSTO 

S&T Program 
Chief Defence Scientist ] 
FAS Science Policy r shared copy 
AS Science Corporate Management -I 
Director General Science Policy Development 
Counsellor Defence Science, London (Doc Data Sheet) 
Counsellor Defence Science, Washington (Doc Data Sheet) 
Scientific Adviser to MRDC Thailand (Doc Data Sheet) 
Director General Scientific Advisers and Trials/Scientific Adviser Policy and 

Command (shared copy) 
Navy Scientific Adviser (Doc Data Sheet and distribution list only) 
Scientific Adviser - Army (Doc Data Sheet and distribution list only) 
Air Force Scientific Adviser 
Director Trials 

Aeronautical and Maritime Research Laboratory 
Director 

Chief of Air Operations Division 
Research Leader: Air Operations Analysis 
Head Mission and Campaign Analysis 
Head Operations & Performance Analysis 
Task Manager: Simon Goss 
Author: Brian Hanlon (2 copies) 

DSTO Library 
Library Fishermens Bend 
Library Maribyrnong 
Library Salisbury (2 copies) 
Australian Archives 
Library, MOD, Pyrmont (Doc Data sheet only) 

Capability Development Division 
Director General Maritime Development (Doc Data Sheet only) 
Director General Land Development (Doc Data Sheet only) 
Director General C3I Development (Doc Data Sheet only) 

Army 
ABCA Office, G-l-34, Russell Offices, Canberra (4 copies) 
SO (Science), DJFHQ(L), MILPO Enoggera, Queensland 4051 (Doc Data Sheet 

only) 



NAPOC QWG Engineer NBCD c/- DENGRS-A, HQ Engineer Centre Liverpool 
Military Area, NSW 2174 (Doc Data Sheet only) 

Intelligence Program 
DGSTA Defence Intelligence Organisation 

Corporate Support Program (libraries) 
OIC TRS, Defence Regional Library, Canberra 
Officer in Charge, Document Exchange Centre (DEC), 1 copy 
*US Defence Technical Information Center, 2 copies 
*UK Defence Research Information Centre, 2 copies 
*Canada Defence Scientific Information Service, 1 copy 
*NZ Defence Information Centre, 1 copy 
National Library of Australia, 1 copy 

UNIVERSITIES AND COLLEGES 
Australian Defence Force Academy 

Library 
Head of Aerospace and Mechanical Engineering 

Deakin University, Serials Section (M list), Deakin University Library, Geelong, 
3217 

Senior Librarian, Hargrave Library, Monash University 
Librarian, Flinders University 

OTHER ORGANISATIONS 
NASA (Canberra) 
AGPS 

OUTSIDE AUSTRALIA 

ABSTRACTING AND INFORMATION ORGANISATIONS 
INSPEC: Acquisitions Section Institution of Electrical Engineers 
Library, Chemical Abstracts Reference Service 
Engineering Societies Library, US 
Materials Information, Cambridge Scientific Abstracts, US 
Documents Librarian, The Center for Research Libraries, US 

INFORMATION EXCHANGE AGREEMENT PARTNERS 
Acquisitions Unit, Science Reference and Information Service, UK 
Library - Exchange Desk, National Institute of Standards and Technology, US 

SPARES (10 copies) 

Total number of copies: 56 



Page classification: UNCLASSIFIED 

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION 
DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF 

DOCUMENT) 

2. TITLE 

Application of Game Theory to Tactical Development in 
Simulation Studies 

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS 
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT 
CLASSIFICATION) 

Document 
Title 
Abstract 

(U) 

(U) 
(U) 

4. AUTHOR(S) 

Brian Hanlon 

5. CORPORATE AUTHOR 

Aeronautical and Maritime Research Laboratory 
PO Box 4331 
Melbourne Vic 3001 Australia 

6a. DSTO NUMBER 
DSTO-TR-0706 

6b. AR NUMBER 
AR-010-606 

6c. TYPE OF REPORT 
Technical Report 

7. DOCUMENT DATE 
August 1998 

8. FILE NUMBER 
Ml/9/539 

9. TASK NUMBER 
DST 97/166 

10. TASK SPONSOR 
DSTO 

11. NO. OF PAGES 
18 

12. NO. OF 
REFERENCES 
12 

13.DOWNGRADING/DELIMITINGINSTRUCTIONS 

none 

14. RELEASE AUTHORITY 

Chief, Air Operations Division 

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT 

Approved for public release 

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE, 
DEFT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600  
16. DELIBERATE ANNOUNCEMENT 

No Limitations 

17. CASUAL ANNOUNCEMENT Yes 
18. DEFTEST DESCRIPTORS 

Game theory, War games, Air combat simulation, Tactics 

19. ABSTRACT 

Sophisticated simulation models provide powerful tools with which to study the development and 
outcomes of highly interactive scenarios involving multiple players. The effectiveness of such outcomes, 
however, is strongly dependent on the set of tactics available to the players involved. Game Theory 
provides a framework in which optimal tactics can be developed in adversarial domains. Rather than 
constructing complete mathematical solutions, this report investigates how broad analysis within the 
scope of Game Theory can be used to provide insight into an operational scenario. When such an insight 
is gained into the general properties of an optimal solution the knowledge acquired can be applied as 
inputs to relevant simulation models. In this way simulation tools can be more effectively brought to bear 
on complex real world problems. This approach is investigated through the analysis of a simple tactical 
scenario. 

Page classification: UNCLASSIFIED 


