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ABSTRACT 

During its 1998 deployment the USS INDEPENDENCE (CV 62) and Carrier Air 

Wing Five operated under the control of Commander, Task Force 50 (CTF-50). To 

balance resources and readiness, CTF-50 asked the following question: "How many days 

can the USS INDEPENDENCE go without "off ship" logistics support before the number 

of Mission Capable aircraft can be expected to fall below Chief of Naval Operations 

readiness goals?" This thesis develops a Markov chain model to answer this question. 

Explanatory variables for this model include sorties flown, cannibalization rate and 

frequency of "off ship" logistics support. Using data from INDEPENDENCE, this thesis 

analyzes aviation readiness by estimating the number of F/A-18 aircraft capable of 

performing at least one of its intended missions. 

Both non-linear Markov models and Generalized Linear Models are employed to 

estimate the effect of the operating environment on the number of mission capable 

aircraft available. The analysis demonstrates how the Markov approach captures the 

cyclic nature of aircraft operations and maintenance. Specifically, it is shown that 

INDEPENDENCE can expect to operate five to eight days without "off ship" logistics 

support before F/A-18 MC rates fall below CNO readiness goals. Recommendations for 

further studies are included. 
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EXECUTIVE SUMMARY 

Keeping a carrier air wing "Mission Capable" requires" a complex integrated 

logistics support system composed of various functions which include both supply and 

maintenance support elements. While most aircraft can be repaired without "off ship" 

assistance, occasionally components fail and the maintenance organization is unable to 

repair the aircraft because it lacks the appropriate onboard spare. In these cases, the 

material is requisitioned from an "off ship" source and shipped to a shore based logistics 

site located near the operating area of the carrier. The material is then delivered to the 

ship through a process known as Carrier Onboard Delivery (COD).. 

USS INDEPENDENCE (CV 62) and Carrier Air Wing Five operated under the 

control of Commander, Task Force 50 (CTF- 50) during its 1998 deployment to the 

Persian Gulf. In an effort to balance operational tempo with available resources, CTF-50 

hypothesized that reducing the frequency of COD flights, would result in achieving 

resource conservation. At the same time, reducing the number of CODs would have an 

adverse impact on the air-strike readiness. Without CODs, the maintenance communities 

will have to wait longer for critical "off ship" requisitions. To balance resources and 

readiness, CTF-50 asked the following question: How many days can INDEPENDENCE 

go without a COD before the number of available Mission Capable (MC) / Full Mission 

Capable (FMC) aircraft can be expected to fall below Chief of Naval Operations (CNO) 

readiness goals? CTF-50 and INDEPENDENCE asked the Naval Postgraduate School 

(NPS) to provide assistance in analyzing the effect of changes in the frequency of COD 
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service on carrier based aircraft readiness. This thesis develops a non-linear model based 

on a modified Markov chain to support its findings. 

The Markov approach finds a significant link between the frequency of COD 

service and cannibalization opportunity and the rate at which aircraft are repaired. 

Additionally, it shows a significant link between aircraft utilization rate and the rate an 

aircraft fails. Finally, the model estimates that INDEPENDENCE can expect to go five to 

eight days without "off ship" logistics support before aircraft readiness falls below the 

CNO goal. 

While the model includes a term to capture cannibalization, its effect is not as 

large as expected. That is, cannibalization did not significantly reduce the effect of a 

long-term COD deprivation. The effect modeled here can most likely be attributed to 

increased pressure on maintenance personnel to maintain MC rates above CNO goals as 

the number of NMC aircraft increases. In a wartime scenario, or a period where a 

prolonged outage of "off ship" logistic support is anticipated, cannibalizations would 

increase and maintenance personnel would be more aggressive in the repair effort, which 

would likely extend the number of days readiness rates would remain above CNO goals. 

Areas for further research include refinement of the data collection to provide 

better model predictions, simulation of the Markov model to improve the estimates of 

carrier based aviation readiness during a prolonged deprivation of "off ship" logistics 

support, and application of the Markov model to a second deployed carrier to demonstrate 

the portability of the Markov approach. 
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I. INTRODUCTION 

Keeping a carrier air wing "Mission Capable" requires "a complex integrated 

logistics support system composed of various functions which include both supply 

support and maintenance support. These logistics support functions can be classified as 

either "on ship" or "off ship" elements. "On ship" elements include organizational 

maintenance personnel, Aviation Intermediate Maintenance Department (AIMD) and an 

extensive inventory of spares, tools and test equipment. "Off ship" elements include 

depot level maintenance activities, stock points, and transportation assets. 

Because carriers operate forward deployed, the carrier air wing must be able to 

operate for extended periods of time without support from shore based activities. While 

most aircraft can be repaired without "off ship" support, there are times when 

components fail, and the maintenance organization is unable to repair the aircraft because 

it lacks an appropriate onboard spare. In these cases, the material is requisitioned from 

"off ship" logistics activities and shipped to a shore based logistics site located near the 

operating area of the carrier. The material is then delivered to the ship through a process 

known as Carrier Onboard Delivery (COD). 

A.   BACKGROUND 

USS INDEPENDENCE (CV 62) and Carrier Air Wing Five operated under the 

control of Commander, Task Force 50 (CTF- 50) during its 1998 deployment to the 

Persian Gulf. In an effort to balance operational tempo with available resources, CTF-50 

hypothesized that reducing the frequency of COD flights, would result in achieving 



resource conservation. At the same time, reducing the number of CODs would have an 

adverse impact on the air-strike readiness. Without CODs, the maintenance communities 

will have to wait longer for critical "off ship" requisitions. To balance resources and 

readiness, CTF-50 asked the following question: How many days can INDEPENDENCE 

go without a COD before the number of available Mission Capable (MC) / Full Mission 

Capable (FMC) aircraft can be expected to fall below Chief of Naval Operations (CNO) 

readiness goals of 78% MC and 61% FMC, OPNAVINST 4790.2F (1995). 

One measure of an Air Wing's overall readiness is indicated by its Mission 

Capable (MC) Rate. MC is defined as the sum of Partial Mission Capable (PMC) and 

Full Mission Capable (FMC) aircraft. In simple terms, an aircraft is considered Full 

Mission Capable (FMC) if it can perform all of its intended missions and Partial Mission 

Capable (PMC) if it can perform at least one of its intended missions. The rate is the 

percentage of aircraft onboard that are MC. When an aircraft is neither PMC nor FMC it 

is defined to be Not Mission Capable (NMC). This thesis uses changes in the estimated 

MC rates to judge the effect of changes in "off ship" logistics support on aircraft 

readiness. 

B.   RESEARCH METHODOLOGY 

Identifying potential variables and collecting appropriate data is the first step in 

determining the potential impact of a loss of "off ship" logistics support on MC/FMC 

rates. Working closely with INDEPENDENCE, over 180 observable operational and 

support characteristics were identified and recorded. Operational characteristics included 



items such as MC/FMC counts and rates, flying hours, sorties flown, date of last COD, 

and scheduled date of next COD. The support characteristics include supply 

effectiveness, range and depth of repair parts, and the number of components "awaiting 

repair due to parts" (AWP). The data consists of observations collected onboard 

INDEPENDENCE while operating in the Persian Gulf from February 1998 to June 1998. 

Observations were recorded in a Microsoft Excel spreadsheet and electronically 

transmitted to NPS for analysis. 

There are several potential methods available for predicting MC rates. One 

approach is to use classic regression where the number of MC aircraft is modeled as a 

function of several explanatory variables, each representing some aspect of the operating 

environment. This is the approach that most of the previous analysis efforts use. For 

example, Makcel (1987) deals in detail with "logit regression" modeling of aircraft 

MC/FMC rates. More recently, a set of studies on aircraft readiness were performed by 

the Center for Naval Analyses (CNA) and is given in Francis and Oi (1998), and two 

works by Junor, et al. (1997, 1998). All three works deal with forecasting monthly 

MC/FMC rates for all Navy-wide fighter and attack aircraft. Francis and Oi (1998) 

examine the volatility observed in MC/FMC rates concluding that the observed variance 

is not unlike that observed in some economic time series. Junor (1997, 1998) looks at the 

use of classic regression model for forecasting aircraft readiness. Moore (1998) extends 

Junor to Generalized Linear Models and Tree Diagrams. Both Junor and Moore conclude 

that the significant explanatory variables found using classic regression techniques are 

helpful in predicting the effect their policy changes may have on long-term aviation 



readiness. However, they also conclude their usefulness in forecasting month to month 

aviation readiness is limited. 

During the course of a deployment, aircraft cycle between MC and NMC. Junor 

(1997) proposes modeling these cycles with a modified Markov chain. In a Markov chain 

the movement from one state to another is governed by transition probabilities. Junor 

was able to model the behavior of FMC rates by making the transition probabilities 

dependent on measures of personnel readiness, sorties flown per aircraft and supply 

support. 

This thesis uses a combination of both linear and non-linear models in examining 

operational and logistics support environment on readiness. A linear Markov model with 

stationary (constant) transition probabilities is used to confirm that the Markov modeling 

approach is sensible. Then, a sequence of non-linear Markov models with variable 

transition probabilities are fit which lead to the selection of the Markov model used in the 

analysis portion of this thesis. Finally, a sequence of Generalized Linear Models (GLM) 

is used as a reference to evaluate the performance of the Markov models. Empirical 

findings indicate that the Markov models fit and provide forecasts that are significantly 

better than the GLM. 

C.   SCOPE AND LIMITATIONS 

This thesis is limited to the study of carrier based aviation readiness for 

INDEPENDENCE'S 1998 deployment to the Persian Gulf. The work focuses on the 33 

F/A-18 fighter attack aircraft assigned to the INDEPENDENCE to validate the Markov 



model approach. F/A-18's were chosen because they comprise a significant portion of 

the embarked aircraft and make up over 50% of the Air Wing's strike capability. 

Current reporting requirements concentrate on aggregate counts by squadron. 

That is, the data collected consists of aggregate counts of MC/FMC aircraft by aircraft 

type (i.e., F/A-18, F-14, etc). Additionally, support characteristics like range and depth 

of spare parts on board and the number of "off ship" requisitions are aggregate measures 

without regard for aircraft type. For this thesis, it was decided early in the process to use 

aggregate measures to build a forecasting model in order to be consistent with current 

reporting practices. 

One of the goals of this thesis is to provide forecasts for the number of aircraft an 

operational commander can expect to launch in support of operations. The number of 

MC aircraft was chosen because it meets this goal and simplifies the model significantly. 

Even if the model were modified to predict the numbers of FMC and PMC aircraft 

separately, the model would not be able to predict the capabilities individual PMC aircraft 

may have. Additionally, it is reasonable to assume that the onboard mission planners 

could support strike requirements generated from the estimate of the MC count by 

matching the specific capabilities of individual PMC to roles in the mission. 

D.   THESIS ORGANIZATION 

This thesis is organized along the general lines of the model development. This 

involves three basic steps: (1) specifying plausible equations and probability distributions 

(models) to describe the main features of the underlying process that govern the MC 



rates; (2) using the data to estimate parameters (coefficients) for models and deciding 

which is the most plausible and best fitting; and (3) using the resulting fitted model to 

forecast MC rates under a variety of conditions. 

Chapter II develops the use of Markov chain models in a readiness application. 

First, a simple Markov chain model is developed without explanatory variables to 

establish the underlying concepts and the approach's intuitive appeal. Then, a section is 

dedicated to methods for incorporating explanatory variables into the model. 

Chapter HI discusses the fitting of a sequence of Non-linear Markov models and a 

family of Generalized Linear Models (GLM) to estimate the effect of changes in the 

frequency of COD service on the expected number of MC aircraft. Empirical results 

observed during the fitting process are presented and a comparison of Markov models and 

GLM is discussed. 

Chapter IV uses the Markov model built in Chapter III to estimate the effects of 

different operating and support environment on MC counts. The Markov model is also 

used to forecast aircraft readiness during a prolonged absence of "off ship" logistics 

support. 

Chapter V presents conclusions and recommendations, and identifies areas for 

further research. 



II.  MODEL DESCRIPTION 

The first step in forecasting the number of days INDEPENDENCE can go without 

COD service before MC rate falls below the CNO goal is to model the number of Mission 

Capable (FMC and PMC) aircraft on a particular day as a function of the number of MC 

aircraft on the previous day along with any other explanatory variables which capture the 

current operating conditions on the ship. These explanatory variables can include sorties 

flown (SF), "off ship" logistics support, or range and depth of onboard repair parts. 

One approach is to use classic regression where the number of MC aircraft is the 

response variable and the number of MC aircraft for the previous day, number of sorties 

flown, etc. are explanatory variables. This approach, however, fails to capture the 

structure of the underlying process. This chapter explains how the use of a modified 

Markov chain can add realism to the model that is absent in classic regression. This 

model was first proposed by Junor, et al. (1997) in a similar study, which sought to 

forecast Navy-wide readiness for fighter and attack aircraft on a month to month basis. 

A.   CONCEPTUAL MODEL 

At the beginning of the flying day or 1200 local, whichever occurs first, the 

number of MC aircraft is determined and reported. In the simplest terms, the material 

condition of an aircraft can be defined by one of two qualitative states, MC or NMC. 

Thus, the material condition of an individual aircraft can be modeled as a binary random 

variable, i.e., it assumes the value of one if the aircraft is MC or zero if the aircraft is 

NMC. 



For simplicity consider that at noon each day technicians observe a series of 

Bernoulli trials (coin flips) which determine the state of each aircraft. For the aircraft that 

started the operating period in a MC state there is a probability, Pi, that the coin will turn 

up heads, meaning the aircraft will remain MC (a success), and a corresponding 

probability (1-Pi) that the aircraft will fail and transition from MC to NMC. Similarly a 

probability P2 can be used to govern the "successful" repair of an NMC aircraft, meaning 

it transitions from NMC to MC. After testing each plane, the technicians report the 

number of successful trials, which translates to the number of MC planes onboard. 

The simplest Markov model assumes that the probability an aircraft remains MC 

is Pi and the probability an NMC aircraft transitions to MC is P2, and both are constant. 

In other words, the technician uses the same coin each day. By considering operational or 

support factors, one can envision a model in which Pi or P2 could be adjusted to capture 

the environment the aircraft operated in during the previous period. For example, if the 

number of sorties flown today was high, Pi could be adjusted down; this makes it more 

likely that an aircraft would fail and transition to the NMC state during the period. 

B.   MARKOV MODEL BASICS 

Let MCt be the number of MC aircraft at time t, where t represents an integer 

number of days, and let N be the number of aircraft onboard. Since the 

INDEPENDENCE deploys with a fixed number of aircraft, N is constant. Then, {MCt, t 

= 0,1,2,...} is a stochastic process which takes on the possible values {0,1,2,...,N}. If 



MQ = i, then the process is said to be in state i at time t. Suppose that whenever the 

process is in state i, there is a fixed probability Py that the next state will be j with 

Pij=P[MCt+i=j\MCt=i\. (1) 

Such a stochastic process is called a Markov chain. One benefit of using a Markov chain 

for this application is the distribution of any future state MQ+i depends only on the 

present state MQ. (Ross, 1993) 

Since probabilities P; j are non-negative and the process has to transition into some 

state it follows that 

PSJ > 0, i, j > 0    and JTPhJ = 1, i = 0,1,2,.. JV. (2) 
y=o 

Now let P denote the matrix of one step transition probabilities, such that 

P = 

P       P 

M,0 M,2 

P P rN,0       rN,\ 

[0,N 

N.N 

(3) 

For example, consider the four-state Markov chain depicted in Figure 1 with N = 3 

aircraft. When MQ is 1, there is one MC aircraft and two NMC aircraft. There are two 

possible manners in which the process can get from state 1 to state 2, either, repair one of 

the two NCM aircraft while the one MC aircraft remains MC, or repair both NCM aircraft 

while the MC aircraft fails and transitions from MC to NMC. It is evident how quickly 

the number of calculations required to compute individual -Py increase as the number of 

aircraft is increased. In this thesis, the 33 F/A-18 aircraft assigned to INDEPENDENCE 



are considered. The result is a 34 by 34 matrix P where each row defines the conditional 

distribution for MC,+] given MQ= i. 

_ - _-^' 2 of 2 Repaired 

• 
/ 

/ 
/ 

\ 
\ 

/ 1 of 2 Repaired     \ 

G )0 r0 6 
7 0 of 1 Fails 

1 of 1 Fails 
Figure 1: Transition Paths from State 1 to State 2 

Because the Markov chain described here is irreducible and ergodic, there exist 

limiting probabilities, denoted rij, that the process will be in state j = 0,1,2,...,N at some 

future time. The Ilj are independent of the starting state i and can be shown to equal the 

long run proportion of time the process will be in state j. These limiting probabilities 

define the unconditional distribution of MC,. (Ross, 1993) 

From an operational standpoint, commanders are interested in short-term forecasts 

for the expected number of MC aircraft available. In the long-term, policy makers are 

interested in estimating the impact policy changes will have on overall aircraft readiness. 

These Markov models allow the examination of both short-term and the long-term effects 

of changes in operational or logistics support factors on aircraft readiness. 
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C.        BASIC  MARKOV MODEL 

This section develops a Markov approach to modeling aircraft readiness and 

demonstrates how this approach accounts for the observed behavior of the actual data. 

Aircraft readiness can be modeled directly as a Markov process by generating a P matrix 

consisting of P^'s which are functions of Pi and P2. Rather than focus on these transition 

probabilities for this model, it is simpler to describe the model in terms of the expected 

values. Concentrating on the expected values has the additional advantage that it is more 

readily interpretable for operators. The work in this section follows Junor (1997). 

Given MQ for day t, the number of MC aircraft for the next day MQ+i is a 

random variable, which is the sum of two Binomial random variables. Let Xt+i represent 

the number of aircraft that started the period t in an MC state and remained that way (i.e., 

did not break), and let Yt+i, represent the number of aircraft that transition from NMC to 

MC during time t (i.e., are repaired). Given MQ, X,+i is modeled as a Binomial random 

variable with MCt trials and probability Pi and Yt+i is modeled as a Binomial random 

variable with N-MQ trials and probability P2. This model assumes that the outcome for 

each aircraft is independent of the outcome for any other aircraft on a given day. Li 

addition, if the repair for NMC aircraft is independent of the event that an MC aircraft 

remains MC, Xt+i and Yt+i, conditioned on MQ, can also be modeled as independent. 

The relationship between the variables is expressed as 

.    MCt+l = Fr+1 + Xnl , (4)     , 
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where Xt+i given MCt is Binomial(MCt, Pi) and Yt+] given MQ is Binomial(N-MCt, P2). 

Then the expected value of MCt+i, given MCt is 

E[MCt+1 \MCl] = Pl*MC,+P2*(N-MCt). (5) 

Equation (5) gives the mean of the conditional distribution for MCt+i, which is 

used to forecast for the number of MC aircraft in the next period. While this value is 

important to planners in the short term, the mean of the unconditional distribution for 

MCt will provide more insight into the effect that changes in Pi and P2 have on long-term 

MC rates. The unconditional mean represents the stationary or equilibrium value about 

which the process would vary regardless of the starting point. Let MCSS represent the 

mean of the random variable MCt. Then by defining MCSS = E[MCt+i] = E[MCt+2]... and 

substituting, Equation (5) can be manipulated to read 

MCSS= 2 . (6) 
"     1-P1+P2 

Of course the conditional distribution at a given t may be quite different than the mean of 

the unconditional steady state distribution, but this is perfectly consistent with a process 

being stationary (Chatfield, 1975). This unconditional steady state mean is used to 

evaluate long-term impact of changes on aircraft readiness. 

D.   SERIAL CORRELATION 

Observations of a random variable recorded with respect to time are called a time, 

series. For example, MCt is a time series. One phenomenon frequently observed in time 

series random variables is known as serial correlation.    That is the tendency of 

12 



observations to run on one side of the mean or the other. Serial correlation, however, is 

not limited to successive observations of a random variable. Monthly retail sales figures, 

for example, often exhibit correlation in a seasonal pattern with period twelve. The 

number of periods between correlated observations is referred to as the lag. Serial 

correlation presents a problem for classic regression models as the observations of a 

random variable are assumed to be independent. (Hamilton, 1992) 

Autocorrelation is a measure of the serial correlation present in a time series. 

Figure 2 is an autocorrelation plot of F/A-18 and F-14 MC counts observed by 

INDEPENDENCE. The autocorrelation function of S-Plus provides an estimate of the 

amount of correlation between observations of a random variable at various lags. The 

horizontal band about zero provides an interval such that falling outside implies rejecting 

the null hypothesis (at the 5% level) that the true autocorrelation is zero in a two tailed 

test. The plots indicate that serial correlation is present in both F/A-18 and F-14 MC 

counts. 

Series: F18 

Irr. r i  i r. . ,     ,-i ,   ,       1   . 

Series: F14 

T  i   ,   , 

Figure 2: Autocorrelation Plot of F/A 18 and F-14 MC Counts 
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Although autocorrelation presents a problem in classic regression, time series 

regression accounts for autocorrelation by including lagged values of the dependent 

variable as an explanatory variable. Starting with Equation (5) define a = P2-P1. Then 

E[MCt+l \MCt] = MCss -a (MC, -MCSS), (7) 

where Equation (4) is in the form of a first order autoregressive process denoted AR(1), 

which is sometimes referred to as the Markov process (Chatfield, 1996). 

Three consequences of the Markov modeling approach are now apparent: (1) a 

link has been established between the actual underlying process governing aircraft MC 

rates and a Markov chain; (2) estimates of the probabilities P! and P2 can be obtained 

using Equation (5) as a regression equation; and (3) the model accounts for the 

autocorrelation observed in actual MC counts in a way classic regression cannot. 

E.   INCORPORATING EXPLANATORY VARIABLES 

The Markov model introduced in Section C does not account for changes in the 

operational environment. These changes such as frequency of COD service, number of 

sorties flown etc., affect the entering and exiting probabilities Pi and P2. The expected 

value of MCt+i is a function of the entering and exiting probabilities, Pi and P2. Rather 

than modeling the expected number of MC,+i as a direct function of the explanatory 

variables, we will treat Pi and P2 as functions of the explanatory variables. 

The form of the relationship between Pi, P2 and the explanatory variables must 

consider that Pi and P2 are probabilities. Probabilities can only range between zero and 

one.   A simple linear relationship would allow Pi or P2 to take on values outside this 
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range. To overcome this problem, a more complicated non-linear (logistic) relationship is 

chosen. Specifically, let xi, x2,..., xp represent p explanatory variables such as, sorties 

flown, "off ship" logistic support, flight hours, etc. Then 

/>' = (1+^-^)
aDd ' (8) 

to+fa*l+-+tpXp 

P =_£  (9) 2     n+e^+^Xl+'"+^x") 

where ßo, ..., ßp and fo, ..., §\ are parameters or coefficients of the explanatory variables 

and 0 < P1JP2 < 1 for all possible values of the explanatory variables. Note that intercepts 

(ßo, <fc)) are included to allow Pi or P2 to equal a value other than 0.5 in cases where all the 

explanatory variables included in the function for a particular transition probability are 

zero. 

In classic regression, the dependent variable, in this case MQ+i, is modeled using 

a single linear combination consisting of coefficients and explanatory variables, which 

weigh the effect of operational and/or support characteristics to produce forecasts. In the 

Markov approach, which combines Equations (3), (8) and (9), the dependent variable is 

modeled as the sum of two distinct functions that include linear combinations of the 

explanatory variables. This allows the impact of a single operational or support element- 

to affect either the failure rate or repair rate of aircraft. It also introduces greater realism 

to the model that classic regression techniques are unable to provide. 
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III. FITTING MARKOV CHAIN MODELS 

Chapter II develops the general form of the equations used in Markov models and 

explains how these equations capture the main features of the underlying process. This 

chapter describes how the data collected onboard INDEPENDENCE is used to estimate 

or fit the parameters (coefficients) for the Markov models. 

Additionally, a family of Generalized Linear Models (GLM) is fit to serve as a 

baseline for the Markov models. Empirical results observed during the fitting process are 

presented and a comparison of Markov models and GLM is discussed. 

A. ESTIMATION DETAILS 

The equation for the Markov model with explanatory variables developed in 

Chapter II is non-linear in the parameters. The parameters for these non-linear models are 

estimated using the non-linear least-squares (nls) function provided with the statistical 

software package S-Plus. The nls algorithm uses iterative Gauss-Newton approach to 

find the parameter estimates that minimize the residual sum of squares (RSS). Detailed 

information on the nls algorithm is available in the STPLUS Guide to Statistics (1997). 

B. MODEL SELECTION CRITERION 

The fit of competing models is evaluated by comparing the residual standard error 

(RSE) of each model: 

RSE = J^-, (10) 
\n-K 
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where n is the sample size, K is the number of estimated parameters and RSS is the 

residual sum of squares. The residual standard error measures the scatter or spread of the 

data around a regression line - hence the goodness of fit (e.g., Hamilton (1992)). 

Additionally, RSE provides a measuring stick to judge the improvement in fit made by 

adding more parameters to a model. 

In classic linear regression where the dependent variables are normally distributed, 

exact tests and confidence intervals are available to check the significance of individual 

parameters. Low significance implies that the particular explanatory variable has little or 

no predictive value in the model and therefore should be removed. 

In the case of non-linear models or cases where the dependent variables are not 

normally distributed, approximate tests or confidence intervals are used to check the 

significance of individual parameters. As recommended by Venables and Ripley (1994), 

the "profile t" function in S-Plus is used to compute an approximate 90% confidence 

interval for each parameter estimate in the non-linear model. Confidence intervals that 

include zero imply that zero is a plausible value for the parameter and the explanatory 

variable should be eliminated from the model. Further details of the "profile t" function 

and the associated function to generate confidence intervals are available in S-Plus 4 

Guide to Statistics (1997). 

C.   THE FITTING PROCESS 

As a starting point, MCt+i given MCt is modeled as a function of MQ with 

parameters Pi and P2: 
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E[MC^\MCt] = P,*MCt+P2*(N-MCt). (11) 

Since this equation is linear, the parameters can be estimated using standard linear 

regression techniques. This model is chosen as a starting point to generate initial values 

for the intercepts of the more complicated non-linear models that follow. Close initial 

estimates for parameter in non-linear models improve the prospects for a successful fit. 

The initial estimates for the intercepts can be found by solving for ßo and §o in Equations 

(8) and (9), respectively. 

Since Pi and P2 are constant in this model a single Py matrix describes the 

conditional distributions for MC,+i given MQ. Following the idea of a goodness-of-fit- 

test the model's conditional distribution can be compared with a discrete conditional 

distribution estimated empirically from the observed MC counts. From the 

INDEPENDENCE the proportion of observations for MQ+i given MCt is 28 and MQ+i 

given MCt is 29 are determined empirically. The given states (MCt of 28 or 29) are 

selected to provide a sample of sufficient size to present results. Figure 3 shows the 

conditional distributions estimated from the Markov model with small circles and the 

observed proportions with horizontal lines. The shape of the observed proportions 

matches the shape of the conditional distribution of the Markov model. 

Notice the shape of the observed data does not exhibit the variance predicted by 

the Markov model. The Markov model is the sum of the two Binomials. The variance 

of the sum of two Binomial random variables is the sum of the variances of the 

individual Binomial random variables (Larson, 1994) and is given by 
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VAR[MCt+,\MCt] = MCt*Pl(l-Pi) + (N-MC,)*P2(l-P2). (12) 

Using Equation (12), the estimated variance for MC,+i given MQ is 28 and MCt+i given 

MQ is 29 are 3.13 and 3.12, respectively. The observed variances are 1.16 and 1.67, 

based on 10 and 21 observations. This condition of observing a variance smaller than 

the estimate is called underdispersion and is not often found in practice. For the 

purposes of forecasting, underdispersion does not represent a problem for the predicted 

•values, but.it does mean that standard methods for calculating prediction intervals and 

confidence intervals will be conservative (too wide). 
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Figure 3: Conditional Distributions for the Markov Model 
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1.   Stationary Transition Probabilities 

Having fit a Markov model with a linear form. The linear parameters Pi and P2 in 

Equation (11) are replaced with the non-linear functions for Pi and P2, Equations (8) and 

(9) respectively. This model estimates P\ and P2 for Pi and P2 as functions of ßo and fa. 

Here, P, is 92.60%, which is reasonable for the probability that an aircraft remains MC. 

However, P2 is 58.04%, which is higher than expected. 

The summary of the model fit is presented in Table 1. A generalized likelihood 

ratio test is used to test the null hypothesis: E[MC,+il MQ] is constant against the 

Markov model. The generalized ratio test gives a p-value of 0.0000 (The test statistic is 

30.36 which under the null hypothesis has an approximate %2 with one degree of freedom 

distribution). Thus, we reject the null hypothesis and conclude the Markov model 

significantly improves the fit. 

Variable Name 

ßo (Pi Intercept) 

Parameter 
Estimate 
2.5280 

Standard 
Error 

0.1886 

90% CI 
LL            UL 

2.2450       2.8955 

(|>o(P2, Intercept) 0.3233  ' 0.4166 -0.3611       1.0972 

Residual Sum of 
Squares (RSS) 

Residual Standard 
Error (RSE) 

78.9952 

1.0623 
/ 

Degrees of 
Freedom (n-k) 

70 

Table 1: Markov Model with Stationary Transition Probabilities 
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Notice the confidence interval for intercept term, ^0, includes zero, indicating the 

actual parameter may be zero. It was found that including an intercept term, fo, in the 

function for P2 did not significantly improve the fit of the more complicated linear 

models that follow. Therefore, the remaining models described do not include an 

intercept term in the function for P2. 

2.   "Off Ship" Logistic or COD Support 

As mentioned in Chapter 1, the goal of the thesis is to examine the impact of "off 

ship" logistics support on the MC rates for F/A-18 aircraft. It is a logical assumption that 

the availability of COD support affects the probability of repair, P2. Several explanatory 

variables are used in trying to measure the impact of COD support. Most consist of some 

type of counter. Two are explained below. 

The variable "logdays" attempts to capture the quantity of material that may be on 

a particular COD in terms of "days of material". Material flows into theater of operation 

each day the carrier is deployed. This material is staged for the next COD flight to the 

ship. The value of "logdays" is zero (i.e, no "off ship" logistics support) for any day 

without COD service. For each day a COD flight occurs it is assumed all material staged 

for the ship is sent to the ship. Therefore it is reasonable to represent the quantity of 

material on the COD by the number of days of logistics support backed up ashore. For 

example, "logdayst" is one if there was a COD flight yesterday and two if the last flight 

was two days ago and so on. 
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A second variable, called simply "codt" is used to model the number of days since 

the last COD arrived onboard. When the ship receives a COD, the explanatory variable 

"codt" is zero. The value of "cod" is increased by one for each day without COD service. 

Three models are fit with these two variables; one model with each explanatory 

variable by itself, and a third with both. The model with the variable "cod" included in 

the function for P2 with parameter <j)i fits the best. The model summary for the best model 

is provided in Table 2. 

Variable Name Parameter Standard 90% CI 
Estimate Error LL UL 

ß0 (Pi Intercept) 2.7464 0.0721 2.6268 2.8873 

<j>! (P2, cod,) -0.6811 0.3188   • -1.3290 -0.2359 

Residual Sum of 
Squares 

Residual Standard 
Error 

72.2807 

1.00195 

Degrees of 
Freedom 

72 

Table 2: Markov Model with COD support 

As mentioned earlier, the status of aircraft is determined at the start of the flying 

day or 1200 local. The COD often arrives well after the start of flight operations. From 

discussions with the Aviation Supply Officer onboard INDEPENDENCE, MC rates may 

not be accurate. This is due to the fact that if a part is scheduled to arrive on today's 

COD, the maintenance organization may actually classify a NMC plane as MC, 

anticipating a quick turnaround from the receipt of the part to returning the plane to a MC 

status. This practice was not a fixed policy on the ship and was determined on a case by 

case basis onboard.   Since no records were kept of which days early credit for repair 

23 



actions was taken, the model was fit with both codt and codt+i, and it was found that the 

unlagged value, a COD today affects tomorrow's MC rate, was the better predictor. 

However, since daily COD support is the norm, there is little difference in the sequence 

of observed values and how they affect the fit of the model. It is recommended that 

future models check both lags during the model building process. 

3.   Aircraft Utilization Rate 

The probability of an MC aircraft being MC at the end of the operating period (24 

hours) changes with the utilization rate for the aircraft. Utilization rate is a general term 

to denote the service conditions the aircraft was exposed to in the previous 24 hours. The 

two obvious choices for incorporating this effect of aircraft utilization are sorties flown 

(SF) and flight hours (FH). A sortie is one flying cycle for the aircraft and involves a 

takeoff and landing, both of which can be classified as shock events. It is assumed that 

the more takeoff and landings an aircraft is exposed to the more likely it is to fail. Many 

of the systems onboard an aircraft are only used when the aircraft is flying. It is assumed 

that failures occur either when the systems are started before flight operations or when the 

aircraft is flying. The longer the system is in use, the more likely it is to experience a 

failure. Two explanatory variables are defined, SF per MC aircraft and FH per MC 

aircraft. They are denoted SF, and FHt, respectively. 

Overall it was found that models with SFt+i preformed better than those including 

FH,+i. A model including both SFt+i and FHt+i did not perform well due to the high 

correlation between the variables. Another model with a random variable equal to the 

sum of SFt+i and FHt+i was fit in an effort to overcome the high correlation observed in 
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the two explanatory variables. However, this model did not significantly improve the fit. 

A summary of the fit is provided in Table 3. 

Variable Name Parameter Standard 90% Cl 
Estimate Error LL UL 

ßo (Pi Intercept) 2.9746 0.2143 2.6558 3.3924 

ßi (Pi SFt+,) -0.1712 0.1430 -0.4385 0.0527 

<|>i (P2, cod,) -0.6996 0.3233 -1.3803 -0.2551 

Residual Sum of 70.6477 
Squares (RSS) 

Residual Standard 0.9975 
Error (RSE) 

Degrees of 71 
Freedom (n-k) 

Table 3: Markov Model with COD support and SF 

4.   Incorporating Cannibalization 

Cannibalization is the practice of removing "good" components from one NMC 

aircraft to return another NMC aircraft to a MC status. While cannibalization can 

improve readiness, it is frowned upon in practice. Each NMC aircraft represents an 

opportunity to cannibalize good parts to repair other NMC aircraft. To capture the 

cannibalization opportunity explanatory variable CANNt is added to the function for P2 

where CANN, is equal to the number of NMC aircraft on a given day. The fit of this 

model is described in detail in the next section. 

Another hypothesis examines the possibility that the number of aircraft that start 

the day in a NMC status affects the number of aircraft that fail during the day. The idea 

behind the effect is twofold: cannibalizations may be used to return an aircraft to a MC 

status before it is reported as NMC, or as the readiness approaches the goal, maintenance 
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personnel are more aggressive in the repair effort. However, inclusion of the explanatory 

variable CANNt in the function for Pi did not improve the fit. 

D.        THE  FINAL MODEL 

The final criteria are rather judgmental on the part of the author: "Does the model 

capture the underlying process?" Deciding this involves checking the parameter 

estimates to ensure changes in the explanatory variables have the expected impact. 

The model selected captures three aspects of the underlying process: aircraft 

operating environment estimated by the number of sorties flown, "off ship" logistics 

support estimated by the number of days since the last "off ship" support, and 

cannibalization opportunities estimated by the number of down aircraft. The final model 

is 

£[A/C„,IMC,]=    j   exp(2.8686-0.2075*Sf„,)   1 
[ (1 + exp(2.8686 - 0.2075 * 5F,+1)) J 

f   exp(-0.6924 * COD, + 0.0856 *CANN,)   ]„„„, 
< — - '-t—^NMC,    . (13) 
[ (1 + exp(-0.6924 * COD, + 0.0856 * CANN,)) J 

Table 3 lists the model statistics including the 90% confidence levels for the parameters. 

26 



Variable Name Parameter Standard 90% CI 
Estimate Error LL UL 

ß0 (Pi Intercept) 2.8686 0.1970 2.5733 3.2458 

ßi (Pi SF) -0.2075 0.1261 -0.4392 -0.0058 

<(», (P2, cod) -0.6924 0.2697 -1.221Ö -0.2989 

«t>2 (P2. CANN) 0.0856 0.0476 0.0139 0.1711 

Residual Sum of 66.7639 
Squares (RSS) 

Residual Standard 0.9739 
Error (RSE) 
Degrees of 70 

Freedom (n-k) 
Table 4: Final Markov Model 

The extra parameter and the explanatory variable CANNt improves the fit over the 

previous model and more importantly it captures the aspect of the underlying process set 

out as a goal for this thesis. A detailed interpretation of the model and parameter 

estimates is provided in Chapter IV. 

E.        GENERALIZED LINEAR MODEL 

A family of Generalized Linear Models (GLM) is also fit to the F/A-18 MC 

counts to provide a baseline for comparison with the Markov model. The models are fit 

using the GLM function provided with S-Plus, with a Poisson response variable (MQ) 

and a log linear link function so that log(E[MCt+ilMCt]) are modeled as linear in the 

explanatory variables. While the response variable (MCt) is clearly not Poisson (mean 

does not equal the variance) it captures the counting aspect of the data and fits better than 

the alternative distributions available. Further details of the fitting algorithms are 

available in the S-Plus Guide to Statistics (1997). The fitting process follows the 

standard modeling techniques for GLMs (i.e., McCullagh and Neider (1983)). The GLM 
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in Table 5 is fit with the same explanatory variables fit during the Markov modeling 

process. 

Variable Name Parameter 
Estimate 

Standard 
Error 

T value 

ßo (Intercept) 2.9667 0.5363 5.5320 

ßi(MQ) 0.0147 0.01814 0.8122 

ß2(SFt+1) -0.0003 0.0002 -0.4311 

ß3 (codt) -0.0193 0.0066 -0.2466 

Table 5: GLM with MC„ SFt+] and cod, 

A generalized likelihood ratio test is used to test the null hypothesis: 

E[MC,+1IMC,] = /?0 (14) 

against the alternative model *    - 

E[MC,+1 IMC,] = ß0+ ftMCt+ ß2SFt+1+ ß3codt. (15) 

The generalized ratio test gives a p-value of 0.1994 (The test statistic is 1.0029 which 

under the null hypothesis has an approximate j2 with three degrees of freedom 

distribution). Thus, we fail to reject the null hypothesis and conclude that the alternate 

model with explanatory variables MQ+i, SFt+i, and codt does not significantly improve 

the fit over the null model. Parameter estimates for the alternative are given in Table 5. 

Difficulty in finding significant classic regression models that provide good forecasts is 

also found in both Junor (1998) and Moore (1998). For this data set, the Markov model 

not only performs better than classic regression models it is the only formulation tested 

that worked with the data provided. 
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IV.  FORECASTING WITH MARKOV MODELS 

This chapter begins with an interpretation of the parameter estimates for the 

Markov model and examines the effect of changes in the explanatory variables have on 

forecasted readiness. The Markov model is used to successfully forecast the final twelve 

days of the INDEPENDENCE'S deployment. Finally, the Markov model is used to assess 

the effect of a prolonged deprivation of COD service on F/A-18 readiness. 

A.   REVIEW OF PARAMETER ESTIMATES 

Sorties flown are included as an explanatory variable in the function for Pi. In 

Table 6, the impact of changing aircraft utilization rates is examined. Specifically, this 

involves varying the number of sorties flown per MC aircraft. As expected, as the 

number of SF increases, the probability that MC aircraft remain MC decreases. The final 

column examines the impact of the number of SF on MCSS, the long run mean of the 

unconditional distribution of MCt+i. 

Value of "SFt+I" Pi MCSS 

0.0 0.9463 91.59 

1.0 0.9347 89.95 
2.0 0.9209 88.08 

3.0 0.9044 85.95 

Table 6: Impact of SF 

In the final Markov model the function for P2 includes two explanatory variables, 

codt and CANNt. To isolate the effect changes in one of the explanatory variables has on 
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P2, the other is held constant at the value observed most often in the INDEPENDENCE 

data set. 

Table 7 presents the change in the P2 while the value of codt is varied and the 

value of CANNt is held constant at four, which is approximately the average number of 

NMC aircraft observed on a day-by-day basis. COD support has a significant negative 

impact on the probability an aircraft is repaired. To provide a more intuitive measure of 

what a change in the probability of repairing an aircraft has, consider an individual 

aircraft. By definition each day at 1200 local NMC aircraft are subject to a Bernouli trial. 

The number of Bernoulli .trials that must be conducted before the first success (a 

transition from NMC to MC) is a Negative Binomial random variable with parameter P2 

and an expected value of 1/ P2 (Larson, 1994). Since the status of aircraft is determined 

only once each day there is a one to one conversion from the expected number of trials to 

the number of days a NMC aircraft can be expected to remain NMC. The model predicts 

that small increases in the average number of days between CODs will have a significant 

effect on aircraft repair turn around time. 

Days since last COD P2 Days to Repair 
0 0.5846 1.71 
1 0.4135 2.14 
2 0.2610 3.83 
3 0.1502 6.65 

Table 7: Impact of COD support   ' 

Table 8 examines the impact of the cannibalization opportunity represented by 

number of NMC aircraft. In this table, COD support is assumed and the value of codt is 
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held constant at zero, implying "daily COD support". It is clear the availability of COD 

support outweighs the cannibalization opportunities presented by additional down 

aircraft. During the deployment, INDEPENDENCE never went more than four days 

without COD service. Frequent access to "off ship" logistics support reduces the need to 

cannibalize aircraft to maintain readiness above CNO goals. If the frequency of COD 

service is reduced, or COD service is interrupted for a prolonged period of time, it can be 

anticipated that the number of cannibalizations would increase and the magnitude of the 

parameter for codt would increase as well. 

Number of NMC aircraft P2 Days to Repair 
3 0.5637 1.77 
4 0.5845 1.71 
5 0.6052 1.65 
6 0.6253 1.59 

Table 8: Cannibalization 

This Markov model does not capture onboard supply support elements. Much of 

this has to do with its one day forecast horizon. It can be argued that the aggregate 

measures normally monitored for onboard supply position do not change significantly 

overnight making inclusion of such variables of- little use in short-term forecasting. 

However, a Markov model with longer planning horizons may be able to incorporate 

these measures. Inclusion of aggregate supply measures may never provide the resolution 

modelers seek in readiness models. It is more likely that the lack of specific components 

has a much greater predictive capacity than general measures such as range and depth of 

onboard spares. 
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One of the problems identified earlier in the INDEPENDENCE F/A-18 readiness 

data is underdispersion. Because the data is underdispersed there is not enough 

explainable variation to allow inclusion of as many explanatory variables as desired. One 

possible explanation for the underdispersion is the fact that not every MC aircraft flies on 

a given day. While some of the aircraft that do not fly transition to NMC as a result of 

discrepancies discovered during routine preventive maintenance, it is likely that some of 

the aircraft are not "tested" for failure at all. Thus, the parameter N in the Binomial 

distribution is too large, which leads the model to expect more variance than is present. 

B.   FORECASTING 

The last twelve MC observations are retained to check the forecasting ability of 

the Markov model. Figure 4 starts with the MC counts for the 120 days 

INDEPENDENCE was in the Persian Gulf. The gaps in the counts are inport periods 

when MC counts are only recorded on Wednesdays. Fitted values are provided for the 

period used to estimate model parameters. Notice that fitted values start one day after the 

ship returns to sea because the model needs MQ to predict MQ+i. If the model were 

implemented onboard ship the MQ would be known the day before the ship pulled out 

and fitted or forecasted values could be produced for those days. 

Finally one-step forecasts from the Markov model are plotted against the observed 

counts for the last twelve days of the deployment. Overall the model performs very well, 

and the RSS for the 12 forecasts is less than 0.5 aircraft per day. 

32 



F/A-18 Markov Model 

c 
3 
O 
,0, 

2 u 
w 

CD 

u 

-MC count 

o   Fitted 

n   Forecast 

<0* <$>    JP   «*>    A*   O,*   J.*   A*    JS>    ,*    J     *sf    V*     &   ,***   J?A   ***   **   'j^ 
& j? ^   <? ** N«r tf* tf* os   <J   •?   *   « «s>* <?* <•>* ** #* 

Date 

Figure 4: Fitted and Forecast MC Counts for the Markov Model 

Of note on Figure 4, is May 10th. On that day the number of mission capable 

aircraft fell from 29 to 23. This change exceeds all others and warrants a closer 

examination. A review of the explanatory variables indicates nothing unusual about the 

day. However, discussion with INDEPENDENCE revealed the following: F/A-18 

aircraft have sophisticated equipment that monitors the stress level placed on the aircraft 

during takeoff, flight, and landing. If certain stress levels are exceeded, the aircraft is 

subjected to a series of conditional inspections that must be completed before it can be 

returned to service. On May 9, three F/A-18 aircraft experienced what is called "hard 

landing," that is, their sensors detected the aircraft impacted the deck too hard during 

landing. All three aircraft were reported NMC on May 10th while technicians completed 

the conditional inspections. 
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C.   PREDICTING THE IMPACT OF A LOSS OF «OFF SHIP" LOGISTICS 
SUPPORT 

Carrier Air Wings enjoy "off ship" logistics support an average of every 1.2 days 

while deployed. INDEPENDENCE averaged "off ship" logistics support every 1.38, 

with the longest period of independent operations being four days. 

Forecast F/A18 Readiness 
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Figure 5: Forecasts for Prolonged Period of COD deprivation 

To predict F/A-18 readiness in the absence of "off ship" logistics support, MCSS is 

used to display the expected change in the unconditional mean of the process. The 

variable codt = 0,1,2,...,15 was used with two flying profiles, 15 and 58 sorties per day to 

represent both low and high aircraft utilization rates.  The variable CANNt was updated 

each day using the expected value from the previous day.  Here the model predicts that 

the MCSS rate falls below the CNO goal in five to eight days depending on aircraft 
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utilization   rate.      This   result   is   in   line   with   the   intuition   of  personnel   on 

INDEPENDENCE. 

In the model, the impact of a prolonged deprivation of COD service virtually 

precludes repair of NCM aircraft after six days. This is not the case in practice, as aircraft 

would continue to be repaired at some reduced rate. One possible extension of the model 

would be to subdivide NMC aircraft into two categories: NMC supply (NMCS), i.e., an 

aircraft is down awaiting parts from an "off ship" source; and NMC maintenance 

(NMCM), i.e., an aircraft is down awaiting the attention of maintenance personnel. 

Because this model combines these two classifications, the explanatory variable COD 

affects the rate at which aircraft are returned from both NMCM and NMCS. In practice, 

cannibalization and innovative maintenance would allow more aircraft to be repaired 

onboard during the COD outage than is currently reflected in the model. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

CTF-50 and INDEPENDENCE asked NPS to provide assistance in analyzing the 

effect of changes in the frequency of COD service on carrier based aircraft readiness. 

This thesis develops a non-linear model based on a modified Markov chain, which adds 

realism to the model that classic regression cannot. Empirical results indicate that 

significant parameters found with a Markov approach provide better forecasts than those 

obtained using classic regression techniques. 

The Markov approach indicates a significant link between the frequency of COD 

service and cannibalization opportunity to the probability an aircraft is repaired. 

Additionally, it shows a significant link between aircraft utilization rate and the 

probability an aircraft fails. By appealing to stochastic queuing theory, aircraft mean time 

between reported failures and mean time to repair could be estimated. 

The model estimates that INDEPENDENCE can expect to go five to eight days 

without "off ship" logistics support before F/A-18 readiness falls below the CNO goal. 

The number of days is sensitive to aircraft utilization rate with higher utilization rates 

reducing the estimated number of days. 

While the model includes a term to capture cannibalization, its effect is not as 

large as expected. That is, cannibalization did not significantly reduce the effect of a 

long-term COD deprivation. The effect modeled here can most likely be attributed to 

increased pressure on maintenance personnel to maintain MC rates above CNO goals as 

the number of NMC aircraft increases!   In a wartime scenario, or a period where a 
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prolonged outage of "off ship" logistic support is anticipated, cannibalizations would 

increase and maintenance personnel would be more aggressive in the repair effort, which 

would likely extend the number of days readiness rates would remain above CNO goals. 

Areas for further research include refinement of the data collection to improve 

model predictions. This could include expansion of the basic Markov model to treat 

aircraft down for maintenance (NMCM) differently than aircraft down for parts (NMCS) 

which may well lead to more accurate estimates of aircraft readiness. Another potential 

area is the use of the Markov framework to simulate the effects of prolonged deprivation 

of "off ship" logistics support on carrier based aviation readiness. One interesting side 

effect of using a Markov model is the fact that the parameter estimates are easily 

transformed into transition probabilities; this lends itself to simulation. 

The ability to transmit data over the Internet from the carrier to shore based 

activities enables near real time analysis of readiness. Establishing this data link enables 

shore based analysts to augment onboard analysis efforts thereby giving the deployed 

decision maker better information on which to make management decisions. 
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