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Abstract 

The capabilities of a linear decoupled Kaiman filter and two extended Kaiman filters were 
examined when tracking an object as it enters the atmosphere. The filters were given identical 
radar range and elevation data. The first extended filter estimates the position, velocity, and 
inverse ballistic coefficient; the second estimates position, velocity and the ballistic coefficient. 
The linear filter estimates position, velocity and acceleration and derives the ballistic coefficient 
from those estimates. The paper will show that the performance of the linear filter is inferior to 
that of the extended filters, while the performances of the extended filters are nearly identical. 

Introduction 

An accurate estimation of a tactical ballistic mis- 
sile's ballistic coefficient is important for the guidance 
system of a pursuing interceptor, and for the launch 
logic used to place the interceptor on a collision trian- 
gle. The ballistic coefficient estimate is used both for 
the prediction of the expected intercept point, and for 
acceleration estimates in predictive guidance laws. In- 
accurate estimates of a target's ballistic coefficient can 
cause the interceptor to waste a great deal of accelera- 
tion to compensate for intercept point ---ediction error. 
Inaccuracies in the estimate of the ballistic coefficient 
may also lead to missile acceleration saturation because 
the interceptor will be chasing an apparent target ma- 
neuver. 

Three different filters are compared in this study. 
The first is a six-state, linear Kaiman filter (r, v, ä). 
The other two are five-state extended Kaiman filters 
(f, v, |), (r, v, ß). Three cases will be examined: 
a constant ballistic coefficient case, a case with the 
ballistic coefficient decreasing linearly with time, and 
a case with the ballistic coefficient changing step-wise 
with time. The error in the estimate of the ballistic 
coefficient will be the sole measure of performance. 

The only external forces acting upon the body will 
be drag and flat earth gravity; the drag force is driven 
by the ballistic coefficient.   Hence, the motion of the 
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body is restricted to a plane. 
The paper will show that the extended niters out- 

perform the linear filter in every case examined. This 
difference is due to the nature of the endo-atmospheric 
dynamics. It will be shown that, despite the differences 
in the two extended filters, they yield similar results. 
It appears that the error in the estimate of ß is a func- 
tion of the plant dynamics only. Varying the states of 
the algorithm estimating a non-linear system does not 
affect performance in this example. 

Filter Overview 

The three filter designs are described in this sec- 
tion. The first is a linear decoupled filter which es- 
timates position, velocity, and acceleration. The esti- 
mated ballistic coefficient is computed using the state 
estimates. The first extended filter uses position and 
velocity in each direction, and the inverse ballistic co- 
efficient, a. The second extended filter also estimates 
position and velocity, but it estimates the ballistic co- 
efficient ß directly instead of a. 

For all three filters the propagation of the state 
covariance is done with the following1: 

Pk+i = #(tk+i,tk)Pk#
T(tk+1,tk) + Qk.    (1) 

where Pk+i is the propagated state covariance, P\ is 
the last updated state covariance, $(tk+i!*fc) is tne 

state transition matrix, and Qfc is the plant noise. The 
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particulars of the state transition matrices and plant 
noise vary from filter to filter. 

For all three filters, the update equations for state 
and state covariance are: 

xk+i = x + K ( zk+i - H xk+i ) (2) 

Pk+1 = (I - KH)Pk+1 (I - KH)T + KRKT,     (3) 

and the equation for the Kaiman gain are: 

K = PHT[HPHT + R]"1. (4) 

The measurement is the position as measured by 
the radar, 

zk+i = Hxk + i^, (5) 

where z^+i is the latest measurement, x/t is the true 
position of the object, H is the matrix relating the mea- 
surement to the state where: 

H = 

and Vk is the measurement noise 

10    0    0   0   0 
0    10    0   0   0 (6) 

Linear Decoupled Filter 
The linear decoupled Kaiman filter has been used 

in many fielded systems. The filter gains for the lin- 
ear decoupled Kaiman filter can be computed indepen- 
dently of the state estimate. The state equation upon 
which the filter is based is given by 
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where w is white noise represents the predicted jerk or 
agility in the dynamics, and ge is the flat earth gravity 
term. The states are decoupled, therefore each dimen- 
sion is independent of the others. The position, veloc- 
ity, and acceleration are then assumed to be subject to 
the following discrete-time dynamics, propagating from 
the current time tk to tk+i: 

*(*fc+i,*fe) = 

I   Ail kAtn 
0     I Ail 
0     0 I 

(8) 

where I = 
1   0 
0    1 

and:   Ai = tk+i - tk- 

Therefore the propagation of the state becomes: 

xk+1 = #(tk+1,tk)xk + Gkuk (9) 

where Xfc+i is the propagated state estimate, ifc is the 
estimated state at the time of the last update.   The 

second term, Gkuk, is added to the state propagation 
as a means of treating the acceleration due to gravity 
as a bias. This was done in order to improve the per- 
formance of the linear filter. This bias term is defined 
as: 

0 

0 
A4 
0 
0 

Gkuk = (10) 

The measurement noise is zero mean and Gaussian 
where 

EM 0 (11) 

and 
R = B[vvT). (12) 

For the linear filter, the measurement covariance is: 

R -[ 
t7r

2cos29 + R2sin* 
0 

0 
SsirPe + B?cos29a2e   J ' 

(13) 

and R is the range from the radar to the target, 8 is 
the elevation angle to the target, and aa is the angular 
error in the measurement, and ar is the range error in 
the measurment. 

The plant noise covariance matrix, Q, is a function 
of u, the uncertainty in the dynamics equations. u> is 
assumed to be zero mean and Gaussian therefore: 

and 

E[w] = 0 

Q = E[wuT]. 

(14) 

(15) 

The process noise for the linear filter assumes a white 
noise jerk model. The resulting plant noise covariance 
is: 

Q = 

At5T 
20, 
Mil 
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AT j 
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Art 

(16) 

where e is predicted error in the constant acceleration 
assumption2. In the cases studied we are assuming e is 
(5 ge)

2/Attot where ge is flat earth gravity and Attot is 
the total expected simulation time. 

Figure 1 shows the acceleration history of a body 
with constant ballistic coefficient as it enters the atmo- 
sphere. The value for e used in the study is based upon 
the average number of g's pulled during the object entry 
into the atmosphere, or approximately 5g's. 
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Acceleration Profile For Constant Value Case 

Figure 1: Acceleration History for Constant ß 

In order to back out ß from the estimated state 
one needs to start with the definition of the ballistic 
coefficient: 

ß = !L£* (IT) 
m 

where S is the area of the body, d is the coefficient of 
drag of the body, and m is the mass of the body. Re- 
calling that, ä, the acceleration, acting upon the body 
is assumed to be only the sum of the accelerations due 
to drag and gravity: 

a     = 
D 
m +    I- (18) 

taking the definition of the drag force and gravitational 
acceleration and expanding them out in Eq.(17) yields: 

-\pV*SCd 
m 

+ 0 
~9e 

(19) 

where —v is the drag direction, ge is the flat earth grav- 
ity, V is object speed and p is the exponential atmo- 
spheric density where: 

ciec2 

Eq.(18) can in turn be rewritten as: 

d     =     — — v   where   d = 
x 

V + 9e 

(20) 

(21) 

where q is the dynamic pressure. Taking the vector 
magnitude of each side of the equation and solving for 
the ballistic coefficient yields: 

ß = 
y/x* + (y + ge)i 

(22) 

Figure 2: Free Body Diagram for Extended Filter Dy- 
namics 

Extended Kaiman Filters 
The two extended niters used in this study each 

have five s.tates. The states of the the first filter and the 
corresponding differential equations governing them, 
based upon the dynamics shown in the free body dia- 
gram in Figure 2, are as follows: 

x = 

X 

y 
X 

y 
a 

and x = 

X 

y 
aqcosj 

ge - aqsinj 
w 

(23) 

where 7 is the flight path angle, and a is the inverse 
ballistic coefficient. 

For the second filter the states and differential 
equations are: 

x = 

X 

y 
X 

y 

ß 

and    x = 

x 

y 
qcosi 
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_    qsin-y 

tie ß 
W 

(24) 

For both extended filters, the computation of the state 
transition matrices, *(t*+ii*fc)i is done by computing 
the partial derivatives of the state via a central differ- 
ence method: 

dx(tk+i) 
*(**+! i*fe) = (25) 

dx(tk) 

Unlike the linear filter, $ is only used in the solution 
to the Ricatti equation, Eq.(l), to propagate the state 
covariance. The state itself is propagated using the 
differential equations in Eq.(22) and Eq.(23). 

For both extended filters, the measurement covari- 
ance is: 

ay2cos29 + R2sin26<re
2 

(oy2 — R2ae2)sin9cos9 
(oy2 - R2ae

2)sin9cos9 
trT

2sin26 + R2cos29tr2
e 

(26) 
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The plant noise covariance Q has the following form: 

7,2At4T     T£A£T       0 
4     l 2*0 

Q a^I   ^At2!     J 
00 00 «At 

(27) 

where K is the predicted error due the constant ballistic 
coefficient assumption. The corresponding plant noise, 
T], applied to the position and velocity components of 
the plant noise covariance, is based upon a piecewise- 
constant-acceleration-model assumption2. 

For the first extended filter, the predicted error 
due to the ballistic coefficient was computed using 

K = 
fi - J-V2 

(a - a0) A^2 

At, tot At; tot 
(28) 

where ß is the true ballistic coefficient and ßo is the 
initial estimate of the true ballistic coefficient. 

Similarly, for the second extended filter the pre- 
dicted error due to the ballistic coefficient was com- 
puted using 

(ß-ßo)2 

K   = 
At, 

(29) 
tot 

The true ß for the cases run was approximately 2500 
kg/m2, and the initial estimate was 4000 kg/m2. The 
predicted total run-time of the simulation, Attot, was 
set at 40 seconds. 

Results 

For all three cases, the body starts at an altitude 
of 30.48km (100 kft) with a speed of 1.8288 km/s (6000 
ft/s) at a flight path angle of 45°. The atmospheric 
density constants, ci and C2 from Eq.(18), are 1.7523 

Trajectory For Constant Value Case 

Figure 3: Trajectory for Constant ß Profile 

kg/m3 and 6705.6 m respectively. For completeness, 
Figure 3 shows the trajectory used for the constant ß 
profile case. 

The sensor is located at sea-level, 27km downrange 
from the trajectory starting point. The sensor angular 
error is 2 mrad, the range error is 10 m. The plant noise 
parameter, e, for the Unear filter is 5g's. The plant noise 
parameter, r), for both of the extended filters is O.lg's. 
The plant noise parameter, K, for the first extended 
filter is 56,250 kg/m2. The plant noise for the second 
extended filter is 5.6250xl0-10 m2/kg. 

Constant Value — Linear Filter 
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Figure 4: Estimation of ß For Constant Profile 

Comparison of Estimate & Truth 

■ 

/'[ 

 Estimate 
-- Truth 

: 

• ' M 
&lk   1 ■ 

/ / 

'IT 
/  1 \1 

: 
/    I 

* v 

I 25 X 
Time (sec) 

Figure 5: Linear filter estimation of the object's accel- 
eraion in the Y direction. 

For the first set of simulation cases the ballistic 
coefficient is assumed to be constant. Figure 4 shows 
that, after an initial transient period, the linear Kaiman 
filter is able to estimate the ballistic coefficient. How- 
ever, the estimate is extremely noisy and it is certainly 
not clear that the linear filter is behaving as well as it 
could. 

In principal the linear filter is only suppose to es- 
timate position, velocity and acceleration of the target. 
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Comparison of Estimate & Truth Comparison of Estimate & Truth 
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Figure 6: Predicted and actual error in the acceleration   FiSure 8: Predicted and actual error in the a estimate 
estimate in the Y direction for the Linear Filter. for the first extended filter. 

In order to see if the linear filter was performing prop- 
erly these estimates were examined in more detail. For 
example, Figure 5 indicates that the altitude portion of 
the acceleration is tracked extremely accurately (so is 
the downrange portion of acceleration). Although the 
estimate is somewhat noisy there is no apparent lag 
between the actual and estimated acceleration. 

Figure 6 presents the error in the estimate of the al- 
titude portion of target acceleration. Superimposed on 
the figure are the theoretical estimates, obtained from 
the Ricatti equations, of the error in the acceleration 
estimate. Since the single flight results are within the 
theoretical bounds approximately 68% of the time we 
can say that the filter is behaving correctly. In fact, 
we can see from Figure 6 that we can estimate target 
acceleration to within 1 g. 

Why then is the linear filter estimate of the targets 
ballistic coefficient so bad when the acceleration esti- 
mates are so good? A careful examination of Eq. 22 
from where the linear filter estimates the ballistic coef- 

Constant Value — 1st Extended Filter 
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Figure 7: Estimation of ß For Constant Profile 

ficient based on the state estimates reveals that there is 
a division by acceleration. Since the acceleration esti- 
mate is somewhat noisy (see Fig. 5), dividing by accel- 
eration will multiply the noise and degrade the ballistic 
coefficient estimate. 

Figure 7 shows that the first extended Kaiman fil- 
ter (with a as a state) does an excellent job of estimat- 
ing the target's ballistic coefficient. After a brief tran- 
sient period the estimate is virtually exact with only 
slight jitteriness. These estimates are superior to those 
of the linear filter. Figure 8 displays single flight re- 
sults for the error in the estimate of a. Superimposed 
on the figure are the theoretical results from the Ri- 
catti equations. Since the single flight results are within 
the theoretical bounds it appears that filter is behaving 
properly. 

Constant Value — 2nd Extended Filter 

Time (sec) 

Figure 9: Estimation of ß For Constant Profile 

Figure 9 shows that the second extended Kaiman 
filter (with ß as a state) also does an excellent job of 
estimating the constant ballistic coefficient. These re- 
sults are approximately the same as the first extended 
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Comparison of Estimate & Truth Ramp Function — 1st Extended Filter 

Figure 10: Predicted and actual error in the ß estimate 
for the second extended filter. 

Kaiman filter and a great deal better than those of the 
linear Kaiman filter. Figure 10 displays single flight re- 
sults for the error in the estimate of ß. Superimposed 
on the figure are the theoretical results from the Ri- 
catti equations. Since the single flight results are within 
the theoretical bounds it appears that filter is behav- 
ing properly. We can also see that theory predicts that 
we should be able to estimate the ballistic coefficient to 
within 400 kg/m2. 

Ramp Function — Linear Filter 

Figure 12: Estimation of ß For A Ramped Profile 

Ramp Function — 2nd Extended Filter 

Figure 11: Estimation of ß For A Ramped Profile 

Next, the three filters were compared in terms of 
their ability to estimate the ballistic coefficient when 
the actual ballistic coefficient changed linearly with time. 
Figure 11 shows that the linear filter is able to estimate 
the time-varying ballistic coefficient but that it's esti- 
mates are still fairly noisy. Even though both extended 
Kaiman filters did not assume the ballistic coefficient 
was time-varying they accounted for that possibility by 
including process noise on the ballistic coefficient state. 
Figures 12 and 13 indicate that the time-varying bal- 
listic coefficient can be estimated quite well and that 
both extended Kaiman filters are superior to the linear 

Figure 13: Estimation of ß For A Ramped Profile 

Kaiman filter.  However, the performance of both ex- 
tended Kaiman filters are approximately the same. 

When a ballistic target reenters the atmosphere 
it can break up due to large loadings. If it breaks in 
half the ballistic coefficient will change by a factor of 
two. Therefore the filter's response to a step change in 
the target's ballistic coefficient can be important. Fig- 
ure 14 shows that the linear filter is able to track the 
step change in the ballistic coefficient - but in it's usu- 
ally noisy manner. Figures 15 and 16 show that both 
extended Kaiman filters do an excellent job of tracking 
the step change. Both filters have a transient period ini- 
tially and then, to a lesser degree, afterwards when the 
step change occurs. Again, the extended filter results 
are superior to the linear filter results and equivalent 
to each other. 

If a radar can devote all its resources to track- 
ing one object then high update rates (small At's) can 
be achieved. However, if many objects must be tracked 
then one may have to use a lower data rate (large Ai's). 
For this set of experiments it was assumed that the bal- 

6 
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Step Function — Linear Filter 

Figure 14: Estimation of ß For A Profile With A Step 

Step Function — 1st Extended Filter 

Figure 15: Estimation of ß For A Profile With A Step 

listic coefficient had a step change and that the filter 
sampling time increased from .1 s to 1 s. Figure 17 in- 
dicates that there is no degradation in the linear filter's 
ability to estimate the ballistic coefficient (compare to 
Fig. 14). In fact, the filter's estimates are less noisy 
because the sampling time is larger. The reason for the 
lack of filter degradation is that the fundamental ma- 
trix, used by the linear Kaiman filter, is exact. Both ex- 
tended Kaiman filter's also have a good approximation 
to the fundamental matrix, (See Eq. 25), and Figs. 18 
and 19 also show very little degradation in filter perfor- 
mance with the increase in the sampling time. Again we 
can say that both extended Kaiman filters yield similar 
results and that both are superior to the linear Kaiman 
filter. 

Step Function — 2nd Extended Filter 

Figure 16: Estimation of ß For A Profile With A Step 

2nd Extended Filter w/Lower Update Rate 
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Figure 17: Estimation of ß with a lower measurement 
rate. 
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Figure 18: Estimation of ß with a lower measurement 
rate. 
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2nd Extended Filter w/Lower Update Rate 2nd Extended Filler w/Coarser Angular Measurement 

Figure 19: 
rate. 

Estimation of ß with a lower measurement   Figure 21: Estimation of ß with a larger angular error. 

1st Extended Filter w/Coarser Angular Measurement 

Figure 20: Estimation of ß with a larger angular error. 

At this point the linear Kaiman filter is ruled out 
and for the final experiment we investigate how both ex- 
tended Kaiman filters perform when the measurement 
noise is made larger. For this example the measurement 
noise is increased from 2 mrad to 10 mrad. We can see 
from Figures 20 and 21 that the performance of both 
extended Kaiman filters to a step change in the ballis- 
tic coefficient is excellent and not much different than 
when the measurement noise was smaller (see Figs. 15 
and 16). Although there was more measurement noise 
in this case the filter performance was not noticably 
changed. 

Conclusions 

A linear and two extended Kaiman filters tracked 
an object as it reentered the atmosphere. Estimates 
of the ballistic coefficient were computed by all filters. 
The errors in these estimates were then computed and 
compared. 

The performance of the linear filter was substan- 
tially poorer than that of the extended filter when esti- 
mating the ballistic coefficient of an endo-atmospheric 
trajectory. Both extended Kalaman Filters had sim- 
ilar performance so that one could conclude that the 
choice of state (ß or a) was not important for this ap- 
plication. The choice of state did not impact the filter 
performance. 
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