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ABSTRACT 

Tracking Theater Ballistic Missiles (TBMs) 
during boost phase is becoming a requirement 
for some engagement strategies. The require- 
ment for boost phase tracking can be based on 
the needs of an early launch doctrine or can be 
motivated by the availability of a cue provided 
by an airborne search and track infrared/laser 
system. The standard filters such as a — ß or 
a — ß — 7, require that the target being tracked 
have, respectively, constant velocity or constant 
acceleration. If a TBM does not have constant 
acceleration during boost, an a — ß or an 
a — ß — 7 filter may not provide valid estimates 
of the TBM's position and velocity and, as a re- 
sult, may not be able to maintain track. TBM 
boost profiles assuming a constant thrust and 
a constant rate of fuel consump :.on show a hy- 
perbolically increasing acceleration. This paper 
presents and analyses a Kaiman filter designed 

over 8<7 at burn-out, a standard a — ß filter or 
a — ß — 7 filter may not be applicable. Zarchant 1 
discusses TBM boost phase velocity and accel- 
eration characteristics. The two main assump- 
tions in Zarchan are that the thrust and fuel con- 
sumption rate are constant. In this paper sim- 
ulated TBM trajectories are examined to show 
that these assumptions are indeed valid. These 
assumptions are used in the filter design pre- 
sented in this paper. Other assumptions used in 
the filter design are that during boost the thrust 
is much greater than gravity and the angle of 
attack is approximately zero. 

The proposed filter has five states; position 
and velocity states for each dimension in the 
pitch plane and one state for total acceleration. 
Throughout this study it is assumed that the 
observables are limited to missile position. It 
will be shown that a TBM with constant thrust 
and fuel-consumption-rate has a hyperbolic ac- 
celeration profile. It is well known that an a — ß 

to track a missile experiencing hyperbolically in-    filter has zero steady state estimation error when 
tracking a target with zero acceleration, constant 
error when tracking a target with constant ac- 
celeration and that the a-ß filter diverges when 
tracking a target with ramp acceleration. Like- 
wise, an a — ß — 7 filter diverges when tracking a 
target with parabolic acceleration. Hence, these 

This paper presents a Kaiman filter design    filters are not appropriate for tracking a TBM 

zreasing acceleration during boost phase. For 
purposes of comparison, the tracking results of 
Ana — ß filter are provided for a general class of 
TBMs representative of the threat set. 

I. Introduction 

capable of tracking a missile during boost phase. 
Boost phase tracking is becoming increasingly 
important based on requirements of an early 
launch doctrine, the availability of a timely non- 
organic cue, or the requirement for missile typ- 
ing. Since the acceleration of a TBM in boost 
is rapidly increasing, from one g at launch to 

approved for public release, distribution is unlimited 
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in the boost phase. In this paper, the proposed 
full Kaiman filter will be presented as well as the 
steady-state version. 
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II. Derivation of Kaiman Filter Dynamics 

Let WTOT be the total weight of the TBM 
at the launch, with the launch time being t0 = 
0. Let W denote the constant fuel-consumption- 
rate of the TBM (a negative constant). Then, 
the weight of the TBM at time t is 

W =W -t + WTOT ■ 

F = ma, we have 

F T -II. 
W m W-t + WTOT 

9 

*..„.( 1     ^ 

t + WTOT 

W   ) 

(1) 

where the specific impulse, Si, and specific weight, 
Swi are defined by 

and 

Si = 

Sw — 

-T 

W ' 

WTOT 

W 
T is booster thrust - the dominant force by as- 
sumption. The constant thrust assumption im- 
plies that Si is a positive constant and Sw is a 
negative constant. Both have units of seconds. 
From (1), the acceleration of the TBM is hyper- 
bolic. Clearly, |5/| > \Sw\- 

(Evaluating (1) at t = 0 results in 

-T 
a0 

W 
■9- 

W 
WTOT     WTOT 

•9 M> TOT 

which is the correct initial acceleration.) 
Integrating (1) gives 

v{t) = -Si-g-\n(-(t + Sw)) 

+ 5/ • g ■ ln(-SW) -I- «o . (2) 

Integrating (2) gives 

p(t) = -sI.g.((t+sw)M-(t+Sw))-(t+sw)) 

+(5/ • g • ln(-SV) + v0) ■ t 

+ Si-g • (Sw • ln(-Sw) - Sw) + Po 

From (1) 

a-(t + Sw) = -Si ■ g . 

Differentiating, 

ä -(t + Sw) + a = 0 ; 

hence, from (1) 

(3) 

—a —a 
a= 

(t + Sw)      Si-g     Si 

(4) 

(5) 

Also, substituting (1) into (4) results in 

.__     Si-g     _     1     / Si-g \2 , 
a    (t + Sw)2     Si-g\t + Sw)    '      [ ) 

Equations (5) and (6) actually provide three dif- 
ferent forms for a. The time-invariant form given 
in (5) will be used as one of the filter plant state 
equations. 

Next, specific weight and impulse are com- 
puted in terms of the TBM kinematic variables, 
p, v and a (and a). From (4), 

and 

Sw = -(l + t) 

a-(t + Sw)       a2 

(7) 

Si = _»^T^ = JL_ (8) 
9 a -g 

Equations (7) and (8) may be applied to TBM 
data to validate the constant thrust assumption. 
Filter Plant State Equations 

- One Dimensional Case 
Filtering in one dimension is the simplest case, 

and will be used for comparison with the a — ß 
filter. For motion in the TBM pitch plane, the 
one dimension is along the trajectory. The fil- 
ter states are position, velocity and acceleration. 
The state equation is 

x 
v 

v 
a 

g ■ Si 
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The state vector is X = (x, v, a)'. The measure- 
ment (output) equation is 

z = x . 

(The process and measurement noise terms do 
not appear in these equations. They will be in- 
cluded after discretizing and linearizing.) Dis- 
cretizing gives 

Zfc+i   =   xk + At ■ vk 

Vk+i    =   vk + At- ak 

Ofc+l    =    O-k + At 
4 

9- Si 

We follow the formulas for the extended Kaiman 
filter given in Anderson and Moored, section 
8.2. The time update equations are 

Xk+i\k   =   %k\k + At • vk\k 
Vk+i\k   =   vk\k + At • ak\k 

Ofc+l|fc    =    <*>k\k + &t •        c 

for the state, and for the covariance 

Sfc+i|fc = -FfcSfcifc-Fjfc + Qk ■ 

a%k    (=KXk^ 

(9) 

(10) 

The matrices Fk and Qk will be defined subse- 
quently. The measurement update equations are 

Xk\k = Xk\k-\ + Lk\zk - xk\k-i]       (11) 

%k\k = ^k\k-i — '%k\k-iHk[HkTlk\k-\Hk + rk]~ 

• H'kY,k\k-\ (12) 

where 

Lk = Ek\k-iHk[H'kJ:k\k-iHk + rk]~l ,      (13) 

(note that ' denotes transpose) 

Fk = 

1   At o       1 
0    1 At 

0    0 dh 
da 

X=%k\k   . 

At 
1 

0 
At 

0    0    (1 + 2 • At • 
g -Si 

0-k\k) 

and 
H'k = [\   0   0] 

It should be noted that (H'k,Fk) is completely 
observable. The measurement noise term is rk. 
It is dependent on the radar. The 3x3 matrix Qk 
is derived from the process noise. Process noise 
for position and velocity could be set to zero. 
The process noise for the acceleration is set to 
account for the deviation of Si from a constant 
value. In this case, the process noise is 

A = [o o  pM**)).AS, nk 

= [0   0 
v   g ■ Sj   > 

ASi ] ■ nk     (14) 

where the maximum acceleration üMAX is used 
to make the process noise and the state indepen- 
dent; {rik} is unit covariance white noise. The 
Q matrix is 

Qk = E\pk-p'k} 

0 
0 

0 
0 

0 
0 

0   0 
'At-a2

MAxy 

v    g- Si     , 
AS] 

Analysis of simulated TBM data suggests that 
some TBMs have a specific impulse, Si, which 
deviates from a constant value more than other 
TBMs. ASi would be chosen large enough to 
cover any TBM. The ultimate values for all of 
the noise terms would depend on the residual 
(there is only one since the output a scalar). The 
filter would give estimates for all three states. 
On line estimation of Si is a topic for future 
study. 
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Filter Plant State Equations 
- Two Dimensional Case 
In this section, the two dimensional case of 

the above filter is developed. The two dimen- 
sions are altitude, z, and down range, x, as de- 
fined by the pitch plane of the TBM. It is as- 
sumed during boost that the TBM angle of at- 
tack is zero. This assumption will simplify the 
two-dimensional formulation. The flight path 
angle is denoted by 7; hence, 

7 = tan-1(^) 
vx 

where vx =x and vz —z. From the assumption, 

vx 
ax = ÜTOT • COs(7) = ÜTOT 

az = aTOT ■ sin(7) = CLTOT • 

\lvl + v. 

y/vl + v, 

where CLTOT is the total acceleration. The state 
equations are 

X =   vx 

z =   vz 

vx =   CLTOT • cos(7) 

Vz =    O-TOT * sin(7) 

äx 
aTOT 

g- Si 
• 

The state vector is five dimensional in this case: 

X = ^X, Z, VXj vx a-ror)' • 

Repeating the above steps, discretizing the con- 
tinuous time state equations gives 

Xk+i = Xk + At- vXtk 
Zk+i = Zk + At- vz<k 

vx,k+i — v*,k + At • aTOT,k • cos(7fc) 
Vz,k+i = vz,k + At • aToT,k • sin(7fc) 

ÖTOT.fc+l    =    0-T,k + At 
aTOT,k 

g-Si 

Next,   follow  the  formulas for  the  extended 
Kaiman filter given in Anderson and Moored 

in section 8.2. The time update equations are 

Xk+i\k = %k\k + At ■ vXik\k 
h+i\k = *k\k + At ■ vZik\k 

vx,k+i\k = vx,k\k + At ■ aTOT,k\k • cos{lk\k) 
vz<k+i\k = VZ)k\k + At ■ aTOT,k\k • sin(7it|fc) 

^ ~. A        
aTOT k\k 

aroT.Jt+iifc   =   a-TOTMk + At • £— 
g- Si 

= f2ü{Xk\k) ■ 

The linear expansion for the third, forth and fifth 
components of /2D about Xk\k, is respectively 

0/$ 
dv. 

= 1+At-a 'aTOT,k\k' 

X—%k\k 
<y

vx,k\k'^vz^k 

Vx,k\k 

0/$ 
dvz 

X=Xk\k 

0£,fc|fc + »£fc|fc)3/2, 

" A'aT0TMk {Ww+^lt)
3'2, 

a/S 
ddTOT 

= At ■ cos(jk\k) 
x=x k\k 

er® 
dvx 

— At-ÜTOT, Mk- 
x=x k\k 

dvt 
= l+At-a 

—Vx,k\k ' vz,k\k 

^l,k\k + ^,fc|fc)       , 

1 
GTOT,fc|fc" 

x-xk\k K\l^l,k\k + V2
z,k\k 

Vz,k\k 

(vlk\k + v2
z<k\k)3/2, 

em 
da TOT 

= At • sin(7fc|fc) 
x=Xk\k 

and 

dfP 2D 

da ■TOT x=x k\k 

1+2.AY«TO^\ 

\ g-Si J 

In this case the 5x5 state transition matrix, Fk, 
defined by row where 
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row one is 

row two is 

row three is 

(0,0, 

row four is 

(0,0, 

(1,0, A«, 0,0), 

(0,l,0,At,0), 

df& 2D 

dvx 

df& 2D 

X=X 
dvz 

k\k x=x k\k 

At ■ cos(7jfc|jfc)) , 

dfP 2D 

dvx 

dff> 2D 

'  dv2 x=Xk\k 

At ■ sin(7fc|fc)) 

X— %k\k 

and row five is 

(0,0,0,0, 
d/v 2D 

ddTOT 
)• 

■X— %k\k 

The measurement matrix is 

H'k 

10   0   0   0 
0   10   0   0 

III. Numerical Examples 

A few numerical examples are presented to 
demonstrate the performance of the Kaiman fil- 
ter and to compare it to an a — ß filter. The 
examples are all for the one-dimensional case, 
which proves adequate for filter performance as- 
sessment. The displacement dimension is slant 
range. Velocity and acceleration are total veloc- 
ity and acceleration. The following details con- 
cerning the a — ß filter may be found in Gray- 
Murray^ . The a — ß filter equations are 

Xk+l\k+l 

Vk+l+k+l 

(1-a)   (1-oO/T 
-ß/T       l-ß 

%k\k 

Vk\k 

+ a 
ß/T • Zk+l 

(Since everything in this section is discrete time 
with no connection to continuous time, it will be 
convenient to use T as the time variable instead 
of A*.) 

a and ß are related as follows 

j0 = 2.(2-a)-4->/(l-a) (15) 

and 
/?2/(i - <o = (rva

2)/,; (16) 

For comparison and to calculate a and ß, let the 
one a radar accuracy be 2 mrad and the range 
from the radar to the target be 250 km. This 
results in crr — 500 meters. TBM acceleration 
ranges from about \g before launch to a max- 
imum of about 8<7 at burnout, see Figure 1(a). 
Hence, aa = 80 m/sec2. The computed a and ß 
for various values of T (must satisfy both (15) 
and (16)) 

TABLE 1. 

T (sec) a ß 
0.25 0.132 0.009 
1.0 0.431 0.121 
2.0 0.673 0.366 

For a larger value of T, the a — ß filter weighs 
the most recent data more heavily. 

Four data sets (numbered 0-3) will be pro- 
cessed by the Kaiman filter and the a — ß fil- 
ter. Data set 0 is a constant thrust trajectory 
and data sets 1-3 are simulated TBM trajecto- 
ries. The total acceleration profiles from launch 
to burnout are given in Figure 1(a). 

Next, compute the noise intensities for the 
constant thrust filter. The measurement noise 
is the same as in the case of the a—ß filter, i.e. 
crr = 500 meters. From (14), the process noise 
intensity is 

q = 
T • a MAX) 

*    9 • Sj    > 
AST (17) 

From Figures 1(b) and 1(c), Si = 160 sec, AS/ = 

40 sec and Sw — —120 sec, and as before, CLMAX 

UNCLASSIFIED 



UNCLASSIFIED 

80 m/sec2. Using these values in (17), the pro- 
cess noise intensities for various values of T are 
given in Table 2. 

TABLE 2. 

T(sec) 0.25 1.0 2.0 
q(m/sec2) 0.24 0.98 1.96 

The errors at burn out for data set 0 given 
by the a — ß filter and the Kaiman filter, assum- 
ing varying data measurement rates and no mea- 
surement noise, are given in Table 3. ("ERR" 
denotes measured position minus estimated po- 
sition, or residual.) 

TABLE 3. 

T(sec) a - ß ERR (m) K.F. ERR (m) 
0.25 389 0.53 

1 315 1.55 
2 237 2.08 

The error for the a — ß filter decreases with 
increasing T. It would be expected that the op- 
posite would be the case since more data should 
give a better estimate. However, it is believed 
that a — ß filter behaves in this fashion because 
of the TBM's hyperbolically increasing acceler- 
ation and the fact that as T increases the fil- 
ter weights more recent data more heavily, i.e. 
a increases in magnitude. This situation in all 
likelihood would not happen in the presence of 
measurement noise. For example, when using 
a = 0.132 on the T = 1 data, the resulting er- 
ror is 4414 meters, and when use a = 0.431 on 
the T = 2 data the resulting error is 1100 me- 
ters. This deliberate mismatch of a and T sim- 
ulates data dropout, which in essence is a form 
of measurement noise. Another reason may be 
the inaccurate modeling of the system dynamics 
of the a — ß filter. Figures 2 through 5 give the 
results for the 4 data sets. In each of these fig- 
ures, the solid line represents T = 0.25 sec, the 
dashed line represents T = 1.0 sec and the dot- 
ted line represents T = 2.0 sec.  Again, "ERR" 

means measured position minus estimated po- 
sition. Figure 6 considers TBM data set 3 as 
does Figure 5. However, in Figure 6 the filtering 
starts 51.3 sec after launch, when this TBM is 
at 10km altitude. 
Kaiman Filter - Steady State Case 

The steady state Kaiman filter occurs when 
the so-called "Kaiman gain", (13), is a constant. 
An appropriate gain may be computed and used 
even when (13) is not a constant. The result- 
ing filter would be an approximation of the op- 
timal Kaiman filter. Needed is a solution to 
E = 2>k\k-i — Sfc|fc to (10) and (12). This so- 
lution may be computed recursively using (10) 
and (12). Since acceleration appears in these 
equations and the actual acceleration varies dra- 
matically during boost, a nominal acceleration, 
o-NOMi must be selected. A different nominal 
acceleration is used for each measurement rate. 
Using data set 3, the error at burn out for the 
three measurement rates is given in Table 4. 

TABLE 4. 

T(sec) 0.25 1 2 
«ATOM 8-s 8-9 3.2 -g 

ERR (m) 16.7 18.1 18.6 

Unique to the case of the two second update 
rate, the error here actually oscillates between 
±30 meters throughout the entire boost phase. 
For these three cases, a multi-gain approach us- 
ing a small number of gains may be developed 
to give better results without going all the way 
to the full Kaiman filter. 

rV. Conclusions 

This paper presents a Kaiman filter which 
has potential application to tracking TBMs dur- 
ing boost. The main assumptions of the filter 
are that the TBM has both a constant thrust 
and fuel consumption rate during boost. The 
filter is evaluated and compared to an a — ß fil- 
ter by processing data from a hypothetical TBM 
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which fulfills these assumptions and with a gen- 
eral class of computer generated TBM trajec- 
tories representative of the threat set. The re- 
sults show that while the a — ß filter does not 
perform adequately, the constant thrust Kaiman 
filter does. An easy to implement steady state 
version of the same Kaiman filter is presented. 
This version has adequate albeit poorer perfor- 
mance that the full Kaiman implementation. 
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