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Abstract 

A face identification algorithm is presented that automatically processes 
an unknown image by locating and identifying the face. The heart of 
the algorithm is the use of pursuit filters. A matching pursuit filter is an 
adapted wavelet expansion, where the expansion is adapted to both the 
data and the pattern recognition problem being addressed. For identifica- 
tion, the filters find the features that differentiate among faces, whereas for 
detection, the filters encode the similarities among faces. The filters are de- 
signed through a simultaneous decomposition of a training set into a two- 
dimensional wavelet expansion. This yields a representation that is explic- 
itly two-dimensional and encodes information locally. 

The algorithm uses coarse to fine processing to locate a small set of key fa- 
cial features, which are restricted to the nose and eye regions of the face. 
The result is an algorithm that is robust to variations in facial expression, 
hair style, and the surrounding environment. Based on the locations of 
the facial features, the identification module searches the database for the 
identity of the unknown face using matching pursuit filters to make the 
identification. 

The algorithm was demonstrated on three sets of images. The first set was 
images from the FERET database. The second set was infrared and visible 
images of the same people. (These two sets allowed the examination of 
algorithm performance on infrared and visible images individually, and on 
fused data from both modalities.) The third set of images was mugshot data 
from a law enforcement application. 
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1.    Introduction 

There are many applications in modern society for a successful face identi- 
fication system: nonintrusive identification and verification for credit cards 
and ATM machines, nonintrusive access control to buildings and restricted 
areas, and monitoring of ports of entry for terrorists and smugglers. For 
the designer of pattern recognition algorithms, face recognition is a very 
challenging problem. The goal is to develop an algorithm that can differ- 
entiate among a population of three-dimensional curved objects that all 
have the same basic shape, from databases whose sizes vary from a cou- 
ple of hundred individuals to over one million. Further, the face itself is 
a dynamically varying object: facial expressions, makeup, facial hair, and 
hairstyle all change over time. The conditions under which facial imagery 
is collected also contribute to the difficulty of developing face recognition 
algorithms. The lighting, background, pose of the face, scale, and param- 
eters of the acquisition are all variables in facial imagery collected under 
real-world scenarios. A key to successfully developing a general face iden- 
tification system is to systematically solve a sequence of subproblems of 
increasing complexity One critical subproblem is the development of an 
algorithm that can identify faces from a database of frontal facial imagery. 

In this report, I describe an algorithm to perform the above task that is 
based on matching pursuit filters, a small set of facial features, and a sim- 
ple geometric model of the face. The set of features consists of the nose 
and eye regions of the face and the interior of the face at a reduced scale. 
Since the nose and eye regions are the most stable and least varying parts 
of the face, restricting attention to these features increases the robustness 
of the algorithm with respect to variations in facial expressions, hair style, 
and background. The interior of the face is included so that information is 
encoded on the overall shape of the face. The geometric model describes 
the spatial relationship between the facial features: e.g., the eyes are above 
the nose, and the left eye is to the left of the right eye. The knowledge of 
the spatial relationship guides the search for facial features and ensures a 
realistic arrangement of features during identification. 

Face recognition is substantially different from classical pattern recogni- 
tion problems, such as character recognition. In character recognition there 
are a limited number of classes (usually less than 50), with a large num- 
ber of training examples in each class, whereas in face recognition, there 



are a large number of faces, or classes, and only a few training examples 
per face. In our case, there is only one training example per person, and 
the size of the gallery exceeds 300 individuals. (A gallery is a collection 
of images of known individuals; an image of an unknown face presented 
to the algorithm is called a probe.) Because of the size of the gallery, it is 
neither practical nor desirable to handcraft a representation that charac- 
terizes faces. Therefore, to be able to identify faces from large galleries, we 
need a method to automatically find features that distinguish one face from 
another. 

The neural network community is pursuing techniques that automatically 
select features that distinguish among classes of objects. A few relevant 
techniques are feed-forward networks [1], principal component analysis 
[2], projection pursuit [3-5], factorial analysis [6,7], dynamic link architec- 
tures [8], and entropy-based wavelet encoding of images [9]. These tech- 
niques either originated in the neural network community (feed-forward 
networks, factorial analysis, and dynamic link architecture), or have found 
applications within neural networks (principal component analysis and 
projection pursuit). The work of a number of these authors [5-9] is moti- 
vated by theories of the human visual system. The goal of these approaches 
is to find representations that are data driven. 

The heart of our face recognition algorithm is a new tool for creating ef- 
ficient and compact models, called the matching pursuit filter technique, 
which is an adaptive wavelet expansion. A wavelet expansion of an im- 
age is adaptive if the choice of the wavelet basis depends on the image(s). 
The main innovation of a matching pursuit filter is that it is a wavelet 
expansion that is both data- and problem-adaptive; i.e., the expansion is 
adapted to both the data and the pattern recognition problem being ad- 
dressed. This contrasts with most adaptive schemes, where the representa- 
tion is a function of the data, but not a function of the problem to be solved. 
In a problem-driven expansion such as a matching pursuit filter, a filter that 
detects faces is designed to encode the similarities of all faces in the training 
set, whereas the filter that identifies faces automatically encodes the differ- 
ences among the faces in the training set. 

In image compression and signal analysis, adaptive wavelets have been 
used to decompose an individual image or signal [9-12]. In these works 
an algorithm selects the wavelets by minimizing a cost function: the error 
between the reconstructed image and the original image. Because a single 
image or signal is being decomposed, it is possible to find the optimal basis. 
The matching pursuit technique of Mallat and Zhang [11] uses a greedy al- 
gorithm to decompose an individual one-dimensional signal. In this work 
I generalize Mallat and Zhang's matching pursuit algorithm to simultane- 
ously decompose multiple images for application to pattern recognition. 



In the applications presented here, the matching pursuit filter design algo- 
rithm simultaneously decomposes all the images in the training set; thus 
it is not computationally feasible to optimize a global cost function. In- 
stead, the algorithm selects the basis elements by using a greedy algorithm. 
In each iteration of the greedy algorithm, the algorithm chooses the next 
wavelet in the expansion by minimizing a cost function. For matching pur- 
suit filters, the cost function incorporates the decision-making criterion of 
the associated pattern recognition problem. 

The use of matching pursuit filters is a nonparametric technique for find- 
ing the differences among faces. Two related parametric techniques, which 
are cases of projection pursuit, are principal component analysis and Fisher 
discriminant analysis [13]. (Principal component analysis has been applied 
to face recognition [14-16] and to object recognition and detection [17,18]; 
discriminant analysis has been applied to face recognition [19-21].) Fisher 
discriminant analysis gives the optimal linear discriminant among classes 
(faces) when the distribution of each class is Gaussian. When there is only 
one example per class, discriminant analysis reduces to a variant of prin- 
cipal component analysis, which produces the optimal linear compression 
for least square error. 

With one example per face, the assumption behind principal component 
analysis is that compression correlates with the differences among faces. In 
contrast, matching pursuit filters explicitly find these differences. (In this 
report, I concentrate on the case where there is one example per face.) For 
multiple examples per face, the matching pursuit expansion cost function 
could be modified to incorporate such information. Theoretically, differ- 
ences in performance are determined by how well the distribution of the 
images of the face is modeled by a Gaussian distribution. The closer to a 
Gaussian distribution, the better the performance of Fisher discriminant 
analysis. For one example per face, I compare the performance of matching 
pursuit filters and principal component analysis in two experiments (sect. 
4.3 and 4.4). 

To exploit the spatial structure in images, matching pursuit filters explicitly 
model the two-dimensional structure of objects: the images are treated as 
functions in two variables, and the wavelet basis is constructed from two- 
dimensional directional filters. Because wavelets are local filters, one can 
directly see how the model relates to the training examples. As a result, the 
spatial arrangement of the wavelet basis has a tangible meaning in rela- 
tion to objects in the training set. Figure 1 shows the reconstructions of four 
faces from an identification filter. By examining the reconstructions of the 
faces, one sees how the filter encodes facial differences. The reconstructions 
are not faithful to the original images, because the filter design algorithm 
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selects a basis that differentiates among faces, not a basis that minimizes the 
reconstruction error. In matching pursuit filters, the explicit representation 
of the image by two-dimensional wavelets captures both local and global 
features. This contrasts with discriminant analysis and principal compo- 
nent analysis, where images are treated as vectors, and the representation 
is global. 

In computer vision, artificial intelligence, and neuroscience, approaches to 
finding representations of objects from data are active areas of research. The 
dynamic link architecture of Lades et al. [8] is a general object recognition 
technique that represents objects by projecting an image onto a rectangu- 
lar array of Gabor jets. Wiskott et al. [22] have specialized the architecture 
for face recognition. The work of Rao and Ballard on iconic representation 
[23,24] takes a similar approach, except that images are projected onto a jet 
of directional derivatives of Gaussian densities. In dynamic link architec- 
ture and iconic representation, the basis (filters) that represents an object 



is chosen by the algorithm designer. In the work of Viola [25], a basis is 
iteratively constructed from subwindows in a set of training images. The 
selection criterion for basis vectors is their orthogonality to basis vectors 
already chosen, not their power to separate classes. 

Two measures of success for a face recognition algorithm are the ability to 
recognize faces from a large gallery and the ability to automatically process 
probes. In the algorithm represented here, images are automatically proc- 
essed with a two-stage system. The first stage locates the face and a small 
set of facial features. The second stage identifies the face given the location 
from the first stage. In this report, I demonstrate algorithm performance by 
identifying faces from two large galleries (sect. 4.2 and"4.4). The first is a 
gallery of 311 individuals, with one image per person; the images are from 
the FERET database [26]. The second is a gallery of 2175 individuals, with 
images from mugshot data. 

This approach contrasts with the majority of algorithms described in the 
literature, for which results are given on small galleries (<50 individuals) 
with many images per person in the gallery (>5 images). Since these algo- 
rithms also require that the face be in a predetermined position, the first 
stage is not needed. 

Only a handful of algorithms have been tested on galleries of more than 150 
individuals and have the ability to process images automatically [22,27-30]. 
Swets and Weng [31] tested their algorithm on FERET and other images, 
but their algorithm is not fully automatic. Cox et al. [32] identified faces 
from a database of 685 images, but required that an operator manually lo- 
cate 35 points on each face. 

One area of recent interest is recognizing faces in infrared (IR) imagery. 
This interest is driven by the ability of IR cameras to acquire images of 
faces in the dark. This report also presents results from ä study comparing 
algorithm performance on visible versus IR images for face recognition. 



2.   Matching Pursuit Filters 

The original matching pursuit idea of Mallat and Zhang [11] uses a greedy 
heuristic to iteratively construct a best-adapted decomposition of a func- ««! 
tion / on U. The algorithm works by choosing at each iteration i the wave- j 
let g in the dictionary V that has maximal projections onto the residue of /. 
The best-adapted decomposition is selected by the following greedy strat- 
egy. Let R°f = /; then g{ is chosen such that 

\(Rif,gl)\ = max\(Rif,gi)\, (1) 
g£T> 

where 
Ri+1f = Kf-(Rif,9i)gi 

fori>l. 

The algorithm selects each wavelet in the expansion by maximizing the 
right-hand term in equation (1). This equation allows for an expansion 
based on a single function and minimizes the reconstruction error. To ex- 
tend the technique to pattern recognition, we replace the right-hand side 
with a function Cg, which (1) allows for the simultaneous expansion of 
multiple templates (functions), and (2) incorporates knowledge of the pat- 
tern recognition problem being addressed. The extension from functions 
/ on U to functions (templates) t on *R2 is straightforward: a dictionary of 
two-dimensional wavelets is used. 

2.1    Matching Pursuit Filters for Detection 

Matching pursuit filters have two components. The first component is how 
the face or a facial feature is represented—for example, all noses. For match- 
ing pursuit filters, all noses are represented by a given basis. The second 
component is the representation of a particular nose. I first discuss the en- 
coding of an instance of a nose for a given basis, and then show how the 
basis is selected. 

A particular nose (or in the more general case, an instance of an object) is 
represented as an n-dimensional vector (a0,... ,a„_i), called a coefficient 
vector. One computes the coefficient values a; by projecting the image of a 
nose onto a basis {g0,..., gn-\\, which need not be orthogonal. Because the 
basis is not necessarily orthogonal, an iterative projection algorithm calcu- 
lates the coefficients. If the basis is orthogonal, then the algorithm reduces 



to the standard projection method. The projection algorithm adjusts for the 
nonorthogonality by using residual images. If t is an image or template, 
then RH is the residual image during iteration i, where R°t — t. The coeffi- 
cient Oj is the projection of the residual image Rl onto the basis element gi, 
or mathematically, 

ai = (R%gi), (2) 

where (•, •} is the inner product between two functions. The residual image 
is updated after each iteration by 

tft = ff-H - ai-M-!, (3) 

for« > 1. 

After the nth iteration, an image t is decomposed into a sum of residual 
images: 

n-l 

t = J2 (#* - Ri+1t) + Rnt- (4) 
i=0 

Rearranging equation (3) and substituting into equation (4) yields 

n-\ 

i=0 

and the approximation of the original image after n iterations is given by 

71-1 

t = ^ai9i- (5) 
i=0 

The approximation need not be very accurate, because only enough infor- 
mation is encoded to allow detection. By examining the reconstruction t, 
one sees which features or details distinguish noses from non-noses. In con- 
trast, reconstructions from adapted wavelet expansions based on an image 
compression admissibility criterion will have a greater fidelity to the origi- 
nal image(s). 

The goal of the detection algorithm is to determine whether an observed 
pattern belongs to a particular class: i.e., is this a nose? For this determina- 
tion to be made, there must be a way of measuring the similarity between 
two objects or patterns. With matching pursuit filters, one compares the 
coefficient vectors from two objects, where the coefficient vectors are gen- 
erated by the same basis. The similarity measure between two objects is 
the angle between their coefficient vectors. This measure is invariant under 
linear changes in the contrast of the image. Furthermore, if the basis is com- 
posed of wavelets, then the similarity measure is also invariant to the illu- 
mination level in the image. An L2 function t is a wavelet if / i(x) dx = 0; 



this requirement is referred to as the wavelet condition [33]. More precisely, 
the similarity measure is invariant to linear changes in illumination. 

The second part of representing noses is choosing an appropriate basis. 
In the ideal basis, all noses would have the same coefficient vector, and 
all occurrences of this coefficient vector would be a nose. Unfortunately, 
this does not occur. An alternative criterion is to select a basis where the 
coefficient vectors that represent noses cluster. The vector that is the cluster 
center is referred to as a proto-nose (or, in general, a proto-object). This vector, 
or coefficient vector, represents an average nose. The matching pursuit filter 
design algorithm searches for such a representation. 

The matching pursuit filter is trained on m different examples of noses. Let 
{ti,...,tm} be m examples of noses, where ti contains one example of a 
nose. The noses are aligned in the templates so that the center of the nose 
is the origin. For objects other than noses, the examples are aligned about 
a common point. Using these examples, the algorithm selects the basis ele- 
ments from a dictionary V. 

In the work described here, a dictionary is composed of two-dimensional 
directional wavelets. These wavelets were chosen because they encode in- 
formation locally at different scales and orientations. The basis elements 
in the dictionary do not span the space of possible images. The dictionary 
excludes high-frequency wavelets to reduce the effect of high-frequency 
noise. It also excludes low-frequency wavelets, for computational consider- 
ations and to avoid encoding information in the background. The wavelets 
in these dictionaries can be centered at any place in the region containing a 
nose in the training set (fig. 2). 

For face recognition, the algorithm uses a dictionary derived from the sec- 
ond partial derivatives of Gaussian densities and their Hilbert transforms, 
which were selected because they are directional edge detectors. The wave- 
lets do not need to be self-inverting because I am not interested in recon- 

Figure 2. A matching 
pursuit filter scanning an 
image. Center of filter is O, 
which moves as image is 
scanned. This filter has five 
basis elements, go, g\, 52, 
<73, and 54. Centers of 
wavelets gi relative to O 
are marked by "+" signs. 
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structing the images. (I do not address the issue of what an "optimal" dic- 
tionary is for a particular problem. This difficult problem is beyond the 
scope of this report.) 

A greedy algorithm selects the basis elements. In iteration i, the basis func- 
tion gi is selected. The choice of gi is a function of the residual images RHi 
and coefficients alj from previous iterations, i.e., j < i. Let the coefficient 
a1- = (RHi.gj), that is, the jth coefficient for template I. The set of coeffi- 
cients generated through the ith iteration is denoted by A* = Ui(al

0— , a\), 
i > 0, and A_i = 0. 

Each iteration of the basis selection algorithm consists of three steps. (Pseudo- 
code for the basis selection algorithm is given in fig. 3.) In the first step, the 
basis function <?; is selected. In the second step, the coefficient vectors for 
each template t\ are updated. In the third step, the residual images are up- 
dated by i?l+1i; = Rlti — a\gt. The ith basis function is selected by the 
following optimization procedure: 

gi = &vgmmCg(RHi,..., RHm, Ai^i), 
gev 

where Cg measures how well the coefficient vectors cluster when the zth 
basis function is g. The function Cg is evaluated for each g <E V, and the 
g that minimizes Cg is selected as the basis element gi. (Pseudo-code for 
evaluating Cg is presented in fig. 4.) In the current implementation of Cg 

for a given g, the cluster is the mean of (al
0,..., a

l
i_1, (RH/.g)), 1 < I < m. 

Once the cluster vector is determined, Cg computes the average distance 
from the coefficient vectors to the cluster vector. This distance is a measure 
of scatter (variance) of the coefficient vectors about the cluster vector. If the 
dispersion is small, then g is a good candidate for <&; on the other hand, if 
the dispersion is large, then g is a poor choice. The technique extends to 
k proto-noses or cluster vectors. In this case, Cg generates k clusters and 

Figure 3. Pseudo-code for ~   po,  _ . . 
basis selection algorithm. 2. do .' = O'to • < number of iterationS/ n. 

\*number of iterations = number of desired basis elements.*\ 
3: Compute Cg for each wavelet in the dictionary; 
4: Select the ith basis element, 

gt is the wavelet that minimizes Cg; 
5: Update coefficients for each template, 

a\ = (RHi,gi); 
6: Update the residue images for each template, 

1V+H, = RHi - al
igi; 

7: Increment the iteration counter, 
i = ?'+l; 

8: end do 



Figure 4. Pseudo-code for ig ^ wavdet foj. whkh c ig fo bg evaluated 

dlsi     rfdSctwflters IteraH°n L 

° ' (QO, ••■ ,a'_i) are the coefficients computed through iteration i — 1 
to represent template U. 

1: Compute the centroid of (ad,.. .,a\_l, (RHi,g)); 
Let fj, be the centroid. 

2: Compute the mean distance U between /J and (ad,..., a[_1, (R'ti, g)), 
U = 1/M£ || M- («{,,..., <*!-„<#*«, 5» II 

3: Return t/ as the value of Cs; 

measures the spread of the coefficient vectors from the cluster vectors. The 
clusters are found with a fc-means algorithm. Figure 5 illustrates the design 
of a detection filter. Figures 5(a) to (d) are the training set, and 5(e) is the 
nose in 5(b), reconstructed by equation (5) with 30 coefficients. 

The algorithm is iterated until n basis elements are selected. The choice of 
the number of basis elements depends on the performance level desired 
and is usually determined experimentally. If n is too small, then the false- 
alarm rate is too high; if n is too large, the filter will not generalize to noses 
outside the training set. 

The output from the matching pursuit filter design algorithm is an ordered 
list of n basis elements and a list of n coefficients. The combination of both 
lists is a matching pursuit filter. If the filter design algorithm generates k 
proto-noses, the matching pursuit filter consists of the basis elements and 
the k coefficient lists (coefficient vectors). The location of the basis elements 
encodes the geometric structure of an object (fig. 2). The centers of the basis 
elements gi are usually not aligned. This is illustrated in figure 1, where a 
filter represents an object (nose) that is larger than the support of an indi- 
vidual basis element. 

A matching pursuit filter detects a nose by scanning a nose detection fil- 
ter across an image (fig. 2), which results in a response image T. The re- 
sponse at pixel {u\, u^) measures the similarity between the region centered 
at («i, «2) and the proto-nose. One criterion detects the center of the nose 
at the maximum response in J7. An alternative method reports all points 
above a threshold as the center of the nose. The algorithm computes the 
response at a pixel (ui, M2) by comparing the proto-nose coefficient vector 
with an image coefficient vector &(ui, «2). There is an image coefficient vec- 
tor a(ui, u2) for each pixel. (Fig. 6 is a pseudo-code description of the filter 
detection algorithm.) 

10 



Figure 5. Design of 
detection filters: (a) to (d) 
Training set. (e) Nose in (b) 
reconstructed by 
equation (5). 

(a) (b) 

(c) (d) 

% 1 
(e) 

Figure 6. Pseudo-code for 
scanning an image with a 
detection filter. 

X(u\,u2) : input image. 
A = (ao, • • ■, öJI-I) : coefficient vector that represents proto-nose. 
^r(«i,M2) : response image. 

1: do for all pixels (ui, u2) in image 1; 
2: Compute image coefficient vector a(«i, w2) using equation (6), 

a(ui,M2) = (a0(ui,u2),... ,an-i(ui,u2)); 
3: Compute filter response at pixel (ui, U2), 

Jr(u1,u2) = de(A,a(ui,u2)); 
4: end do; 
5: Search T for the location the nose(s); 

The algorithm computes the image coefficient vector a(/ui, u2) by expand- 
ing the image about the pixel (u1: u2). This expansion is accomplished by 

11 



2.2   Identification 

translation of the basis elements gi by (m, u2), and projection of the image 
on the translated basis elements. Let a,i(ui,u2) be the ith coefficient of 
a(ui, W2); then 

ai{uuu2) = (Rll,gi(- + uir + u2)). (6) 

After the image coefficient vectors have been determined, the next step 
computes the response image. Let A = (ao, • • •, an-i) be the cluster vec- 
tor that represents the proto-nose; then T(ui,u2) = dg(A, a(ui,u2)), where 
de(-, •) is the cosine of the angle between two vectors; i.e., the response is 
the cosine of the angle between A and a(«i, u2). The last step searches T 
for noses. In some applications, the matching pursuit filter consists of more 
than one cluster coefficient vector. In this case, the response of the filter at 
each pixel is the maximum value of dg taken over all cluster vectors. 

In detection problems such as those discussed in this work, we are interested 
in locating a face or facial feature, whereas in identification we are inter- 
ested in distinguishing among faces. The filters are designed from images 
in the gallery, and the filters are used to identify unknown faces in probes. 
The generalization to more complex cases is straightforward; these include 
problems such as character recognition, where there is more than one train- 
ing example per class. The overall strategy for designing matching pursuit 
filters for identification is the same as for detection, except that a different 
criterion is used to select the basis. 

For detection, the matching pursuit filter design procedure selects a basis 
in which the coefficient vectors clustered, and only one coefficient vector 
A represents a class of objects. For detection, A is compared to image co- 
efficient vectors. Because there is a single class, only one coefficient vector 
is needed. However, for identification, to distinguish among all the people 
in the database, there is a coefficient vector for each individual. Person I is 
represented by coefficient vector A1 = {al

0l..., a!n-i}. To measure the sim- 
ilarity between an unknown face and individual I, we compare coefficient 
vectors a(«i, u2) and A;. 

A face centered at {ui,u2) is identified as person I if the distance between 
a(ui,u2) and A' is minimized. To decrease the likelihood that faces are 
misidentified, the matching pursuit design algorithm searches for a basis 
that separates the A' coefficient vectors. The algorithm for selecting the ith 
basis element for identification has the same three steps as for detection, 
but with a different function Cg. For identification, 

Cg(RHu ... ,RHm, Ai_i) = - ]Tmaxd0(fc, I) + A£ ||(ag,.. .,a£_2, (i?"1**, </»|| 

12 

k   *k k 



selects the üh basis function. The function de(k, I) equals the cosine of the 
angle between (ag,..., ak_2, (&-%, g)) and («(,,..., a{_2, (A*-1*/, <?))• The 
coefficient vector (a§,..., ak_2) represents person /c after the i - 1th itera- 
tion. If g were selected for gir then (a§,..., a£_2, (i2i_1**, 5» would rep- 
resent person fc after iteration i The first term in Cg forces the coefficient 
vectors to separate, and the second term searches for sets of coefficient vec- 
tors with the largest average magnitude. The parameter A sets the relative 
importance of the two terms. If the second term is not included, the filter 
becomes too sensitive to patterns in the background. Displayed in figure 1 
are the reconstructions of four faces from an identification filter using equa- 
tion (5). For identification, the output from the matching pursuit filter de- 
sign algorithm is a list of n basis elements and a coefficient vector for each 
person in the training set. The procedure for identifying faces in images is 
a variant of the method that detects noses (fig. 7). As before, a{ui,u2) is the 
image coefficient vector centered at (ui , u2) ■ For detection, a single response 
image T was computed; however, for identification, a response Tk is com- 
puted for each coefficient vector Ak, where .Ffe(ui> "2) = dd(A

k, a(«i, it2))- 
The estimated identity of the person in the image is k, which is found by a 
search for the maximum response over all the Tk images. More precisely, 
the face in the image is identified as the person k such that 

^(üi,^) =   max   ,Ffc(ui>u2), 
k,{u\.V,2) 

where (Si, u2) is the estimated center of the face in the image. 

The extension to distinguishing among multiple classes with more than one 
example is straightforward. It is a combination of the detection and iden- 
tification modes of designing matching pursuit filters. Each class is repre- 
sented as a proto-object or cluster vector. The function Cg selects a basis that 
separates the cluster vectors while simultaneously forming clusters for like 
objects or classes. 

Figure 7. Pseudo-code for 1{m > U2). input image 

scanning an image with an Afc = (ag,..., a*_i): coefficient vector that represents person k. 
identification filter. (Goal is ^^ _ ^ . response of image j to A*. 

to estimate k.) £ . estimated identity 0f person in the image. 

1: Compute a(ui, M2) for each pixel in 1; 
2: Compute JFA"(wi,M2), 

Tk{u\,U2) = de(A'\a(Mi,M2)); 
3: Identify the person in image I; 

Find k and («1,^2), 

where Tk($1,112) = rnaxfe,(uliU2) T («1,112) 

The algorithm reports that the identity of the person in image 1 

is k and the face is centered at (wi, «2). 
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3.   The Face Identification System 

The face identification system consists of three modules. The first is an off- 
line preprocessing module that designs the matching pursuit filters. The 
module designs two sets of filters: one for detecting and locating facial fea- 
tures and the other for identifying faces. This module also creates the initial 
gallery. The second module updates the gallery by adding or deleting in- 
dividuals from the gallery. The third module is the on-line portion of the 
algorithm that takes as input images of unknown faces and returns their 
identity. This module consists of two stages. The first stage detects the face 
in the image and locates a small set of facial features. The locations of these 
facial features are fed to the second stage, which identifies the face. The 
identity is determined by comparison of the facial features of the unknown 
face with representations stored in the gallery. Figure 8 shows the system 
organization of the modules. 

The face recognition algorithm is currently designed to identify people 
from full face frontal images using a small set of facial features (fig. 9). In 
the algorithm, a feature is a region of the image that contains a prominent 
facial feature. (For example, the left eye feature is the region of the face that 
contains the left eye.) The features are the tip and bridge of the nose, both 
eyes, and the interior of the face. The interior of the face feature is down- 
sampled by a factor of four. 

Figure 8. System 
organization. 
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Figure 9. Facial features 
used: A is interior of face, 
B is tip of nose, C and D 
are left and right eyes, E is 
bridge of nose. 
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The nose and eyes were selected because they are the least variable fa- 
cial features. Using these features increases the robustness of the algorithm 
with respect to variations in facial expression, facial hair, hair style, and 
the image background. The interior of the face feature encodes the overall 
shape and organization of the face. 

The heart of the face identification system is'the matching pursuit filters, 
which detect the face, locate facial features, and identify the face. The fil- 
ters are used in both stages of the on-line module (the first stage detects 
and locates facial features, and the second stage identifies faces). The set of 
filters in the identification stage consists of five filters—one for each of the 
facial features (tip and bridge of the nose, left and right eyes, and interior 
of the face). There are four filters in the detection stage—tip of the nose, 
left and right eyes, and interior of the face. The location of the bridge of the 
nose is estimated as being mid-way between the eyes. 

The preprocessing module designs both sets of matching pursuit filters. 
The training set for designing the filters is taken from the gallery. (For ex- 
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ample, the nose filters are trained from noses in images in the gallery.) The 
location of the feature in the gallery image is marked by a human operator. 
In the current implementation, only three points are marked, and accuracy 
is not critical. The points selected are the center of the eyes and the tip of 
the nose. The center of the eyes marks the location of the eye features; the 
tip of the nose marks the center of the interior of the face and the tip of 
the nose features. The center of the bridge of the nose is the average of the 
pixels marked as the center of the eyes. 

In theory, the filters should be designed from all images in the gallery; how- 
ever, for computational reasons this is not practical. In practice, filters are 
designed from a subset of the faces in the gallery. For the identification fil- 
ters, the remaining faces are added to the gallery by the update procedure. 
The examples used to design the feature detection filters are limited to a 
subset of the images in the gallery, and the filters are not modified when 
the gallery is updated. 

The gallery can be updated by either the deletion or addition of a person. 
The system adds a person to the gallery by computing the coefficient vector 
for each feature. The coefficient vector is computed by each feature being 
projected onto the appropriate wavelet expansion by equations (2) and (3). 
The new coefficient vectors are then added to the gallery. The locations of 
the features in new gallery images are marked by a human operator. The 
system deletes people from the gallery by removing their coefficient vectors 
from the gallery. 

3.1    Feature Location 

The feature location stage estimates the locations of the eyes, tip and bridge 
of nose, and center of the interior of the face. The first feature located is the 
interior of the face. In this stage, the module finds the face in the image 
by running the interior face filter on a decimated version of the probe im- 
age. The next set of features located is the eyes and the tip of the nose. The 
search for these facial features is guided by a priori knowledge of the ge- 
ometry of the face and the estimated location of the center of the face: e.g., 
the right eye is to the right and above the center of the face. For locating 
these features, the full-size probe image is used. The estimated center of 
the bridge of the nose is midway between the estimated centers of the eyes. 
The locations are then passed to the identification stage. To avoid introduc- 
ing a one-point failure in the algorithm, the feature-location stage passes 
multiple locations. 

The first step in the feature location stage searches for the most likely loca- 
tions of the face by running the interior face filter over the level 0 image (the 
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coarsest level image). The top TV responses to the filter are reported as the 
most likely locations of the face. To avoid the situation where the hypoth- 
esized locations are neighbors, the algorithm uses the side condition that 
the locations must be a certain distance apart. Figure 10 contains pseudo- 
code for the face detection and feature location algorithm with TV = 1. The 
value of TV selected is a trade-off between the performance and speed of 
the algorithm. As TV increases, the probability of correctly locating the face 
increases, as does the time to identify a face in a probe image. In the current 
implementation, TV = 3. 

The system uses the level 1 image to locate the remaining features by run- 
ning the appropriate filter over a small region of the image. The feature is 
located at the maximum response of the filter in that region. The location 
and size of the region is based on the hypothesized location of the face, es- 
timated error margins of the coarse-level processing, and the geometry of 
the face. For example, say the algorithm is searching for the left eye after 
the coarse level reports a detection. The coarse-level detector reports a pixel 
(ui, «2) that is the estimated location of the center of the face, which corre- 
sponds to the tip of the nose. From the gallery, it is known that the average 
translation from the tip of the nose to the center of the left eye is (£1,^2) 
and that a good error region is a p\ by P2 pixel box. If the error estimate for 
the coarse-level processing is an r\ by r<i pixel box, the left eye region is a 
Pi + ri byp2 + r2 pixel box centered at (u\ + <i, «2 + ^2)- The feature location 
algorithm reports the top TV locations for each feature along with an error 
box for that feature. 

Figure 10. Pseudo-code for 
face detection and feature 
location algorithm. 

Io : level 0 image (decimated); 
Ji : level 1 image (original); 
(£1, £2): average translation between the nose and left eye; 
(—£1, £2) : average translation between the nose and right eye; 
R : pi x p2 box; 

1: Search To image for the center of the face, 
use face detection matching pursuit filter, 
report that the center of face is pixel («1, «2); 

2: Search box R centered at (u\, «2) in Ii for the tip of the nose, 
use the nose detection filter; 

3: Search box R centered at (ui + £1,112 + £2) in T\ for the left eye, 
use the left eye detection filter; 

4: Search box R centered at (ui — £1, «2 + £2) in T\ for the right eye, 
use the right eye detection filter; 

5: Report the bridge of nose as being mid-way between the eyes; 
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3.2   Identification of Individuals 

The second stage of the on-line module identifies the face in the probe by 
comparing the coefficient vectors generated from the probe with the coeffi- 
cient vectors stored in the gallery. Each face in the gallery is represented by 
five coefficient vectors, one for each feature. The system identifies a face in 
a probe by comparing coefficient vectors from the probe with the coefficient 
vectors of all the faces in the gallery. All faces in the gallery are compared 
with the probe, and a similarity score is produced for each comparison. The 
probe is identified as the face from the gallery with the highest similarity 
score. 

The input to the identification stage is a set of hypothesized locations for 
each feature. The hypothesized location for feature j is region Rj, 1 > j > 5 
(one for each feature). If more than one set of feature locations is reported, 
then the algorithm is repeated for each of the feature sets, with the best 
match taken as the answer. The algorithm proceeds by computing the ex- 
pansion for each pixel in region Rj-, the resulting sets of coefficient vectors 
will be denoted by aj{ui, «2)- 

The gallery consists of M individuals, and each individual is represented 
by N coefficient vectors. Let Au denote coefficient vector j of person i. The 
next step in the identification module is to find the best match between 
feature j of person i and the estimated locations of feature j in the probe 
image. This is done for each feature of each person. Let d^ denote the score 
of the best match between feature j of person i and the region Rj. The score 
dij is computed as 

dij =     max    dg (Au, a?'{u\, U2)) ■ 

For each person in the gallery, a total score is computed that represents the 
degree of similarity with the face in the probe image. The total score is a 
weighted sum of the best matches for the features of person i. Let 

j 

be the score for the match between the unknown face and person i in the 
gallery, where Wj is the weight given to feature j. In this implementation, 
the weight for the interior of the face is 0.5, and the weights for the remain- 
ing features are 1.0. The unknown face is identified as the person with the 
maximum dj. The system detects faces that are not in the gallery by set- 
ting a threshold 6. If the score of the best match is below 6, then the face is 
reported as not being in the gallery. 
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Figure 11 contains pseudo-code for the identification algorithm presented 
in this section. For clarity, the pseudo-code uses only two features, the face 
and the nose. 

Figure 11. Pseudo-code for ^ . region hypothesized to contain the face; 
identification algorithm. ^^ . region hypothesized to contain the nose; 

A?     : face coefficient vector for person k; 
Anose : nose coefficient vector for person k; 

l:dok= 1 to k : number of images in database; 
2: Search fiface for maximum response to Aface; (figure 6) 

Let Sface be the maximum response; 
3: Search Rnose for maximum response to An0se; 

Let Snose be the maximum response; 
4: Let sk = Sface + sftose, 

where s^ is the total score for person k; 
5: end do; 
6: Identify the unknown face as the person with the highest total score; 
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4.    Experiments 

To demonstrate the ability of this algorithm to recognize faces, I conducted 
four sets of experiments. The first decomposes and reconstructs a single 
nose; the second identifies faces from a large database; the third compares 
the performance of face recognition on infrared and visible imagery; and 
the fourth identifies faces from a database of mugshots from a law enforce- 
ment agency. 

Matching pursuit filters were constructed from dictionaries of wavelets. 
The primary dictionary was composed of separable steerable filters [34], 
namely, the second partial derivatives of the Gaussian density and their 
Hilbert transforms. These filters were chosen because they are computa- 
tionally less expensive than nonseparable filters. The primary dictionary 
was used in all four experiments. In the first experiment I also used a dic- 
tionary of Gabor wavelets (for computational ease, only the odd and even 
phase Gabor wavelets were used). Neither dictionary spanned the space 
of all possible images. Both dictionaries contained wavelets at four scales 
uniformly sampled in angular domain. 

4.1    Decomposition of One Instance 

The purpose of matching pursuit filters is to produce a representation 
that is tuned to a particular pattern recognition problem. However, if the 
training set consists of a single image, the filter design algorithm finds a 
compression-based representation. The first experiment demonstrated this 
by decomposing and reconstructing a single nose (fig. 12). Two different 
decompositions were computed from the two different dictionaries (the 
steerable filters and Gabor wavelets). Figure 12 shows the results of this 
experiment. Figure 12(a) is the original nose; figure 12(b) is the nose recon- 
structed from the first 75 terms of the separable steerable filter dictionary; 
and figure 12(c) is the nose reconstructed from the first 75 terms of a Ga- 
bor wavelet dictionary. This reduction of one example to a compression 
algorithm is what one would expect from the original work of Mallat and 
Zhang [11]. 

4.2   Face Recognition from FERET Images 

The second experiment was the main experiment, where the face recogni- 
tion algorithm was run on a gallery of 311 individuals with one image per 
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Figure 12. Decomposition 
of one image, (a) Original 
image, (b) Reconstruction 
using steerable filters, 
(c) Reconstruction using 
Gabor filters. 
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person. The images were from the FERET database of facial images [35]. 
Figure 13 shows images from the FERET database used in the experiment. 
The fa images were in the gallery, and the fb images were probes. The train- 
ing set for the identification filters consisted of images of 58 individuals, 
one image per person. Matching pursuit filters were constructed for each 
of the five facial features, and each filter had 30 coefficients (and is the same 
for all identification experiments). The algorithm computes the coefficient 
vectors for the remaining 253 people using the expansion from the identi- 
fication filters. This procedure demonstrates that the filters generalize and 
that they do not need to be redesigned when a new person is added to the 
database. This is a critical concern for real-world applications. 

The face recognition algorithm was run in two modes. The first mode tested 
the identification portion of the face recognition algorithm by providing 
the eye and nose coordinates to the algorithm. The second mode tested the 
complete face recognition algorithm by having the algorithm locate and 
identify the face. For both runs of the algorithm, the percentage of faces 
correctly identified in the top 1, 2, 3, and 4 matches is reported (table 1). 
The performance of the algorithm in both modes is virtually identical, in- 
dicating that in terms of system performance, the feature location algorithm 
is working nearly perfectly. 
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Figure 13. Face images 
from FERET database; fa 
images were placed in 
gallery and fb images were 
probes. 

fa fa fa 

Table 1. Percentage of 
correctly identified faces 
for a database of 311 
individuals. 

Correctly identified faces (%) 

Identification Location & 
Top match only identification 

1 95.4 95.2 

2 97.4 97.4 

3 98.1 98.1 

4 98.4 98.4 

In the current implementation of the system, there are five features: the 
eyes, tip and bridge of the nose, and interior of the face. If a face is occluded 
or the hair style is changed, the number of usable features can decrease. To 
measure the effect of such changes on performance, I ran the algorithm us- 
ing progressively fewer features. The first feature to be removed was the 
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interior of the face, because if one of the other features were corrupted, 
the interior of the face would also be corrupted. To isolate this effect from 
errors in locating facial features, I located the features in the probe set man- 
ually. Table 2 reports the results of this experiment and the combination of 
features tested. 

4.3   Face Recognition from Infrared and Visible Imagery 

An area of growing interest is identifying faces from different modalities, 
in particular from infrared imagery. (For example, Wilder et al. [36] were 
among the first to address this issue in a comparison of the relative perform- 
ance of three face recognition algorithms on infrared and visible images.) 
In this experiment, Wilder et al. measured recognition performance of three 
algorithms on both IR and visible images; these algorithms were matching 
pursuit filters, gray scale projection [37], and principal component analysis 
[14]. The goal of this study was not to compare performance between algo- 
rithms, but to measure their relative performance on the two modalities. 

For the study, infrared and visible images of 101 subjects were collected. 
The infrared images were acquired with a Texas Instruments SMRTII un- 
cooled sensor, which detects radiated heat. The visible images were col- 
lected with a CIDTEC 2250 CID camera. Figure 14 shows infrared and vis- 
ible images of a subject. For an accurate measure of recognition perform- 
ance, the images were scaled and rotated into a standard position. In both 
modalities, all algorithms were run on two sets of images. The results are 
reported in table 3. For each run, the table reports the percentage of correct 
answers in the top 1 and 2 matches. 

Table 2. Performance as 
number of facial features is 
reduced. 

Correctly identified faces (%) 

Eye and Left eye & Eye & 

Top match All features nose nose bridge 

1 95.4 91.6 91.6 90.7 

2 97.4 93.4 94.5 92.3 

3 98.1 95.8 96.1 93.6 

4 98.4 96.8 96.8 93.9 

Left & right Tip of nose Left eye Nose Face 

eyes & left eye only only only 

1 87.1 89.4 81.4 80.1 78.5 

2 88.7 91.3 85.5 84.6 82.0 

3 88.7 93.2 86.8 85.9 85.2 

4 88.7 93.4 88.4 87.1 87.5 
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Figure 14. Images of same 
person in (a) infrared and 
(b) visible. 

Table 3. Comparison of 
recognition of infrared and 
visible images in a 
database of 101 
individuals. 

Correctly identified faces (%) 

Gray scale 
projection 

Image set 
Top 

match 
Top 2 

matches 

Eigenface 

Top 
match 

Top 2 
matches 

Matching pursuit 
filters 

Top 
match 

Top 2 
matches 

Infrared set 1 91 94 86 92 89 94 
Infrared set 2 90 93 86 89 94 96 
Visible set 1 84 91 86 93 94 96 
Visible set 2 83 90 89 94 96 98 

If one has images of a person in two modalities, the simplest method of 
improving performance is to fuse the result from each modality. Each of the 
algorithms in this experiment produces a numeric score of the similarity 
between an unknown face and each image in the gallery. The identity is 
then determined by the best similarity score between the probe and gallery 
images. In this experiment, I fuse the two modalities by linear pooling of 
the similarity scores from the individual modalities. This was done for both 
image sets 1 and 2 (see table 3), with the results in table 4. In all cases, fusing 
the results improves performance to the saturation point. This suggests that 
a future area of research is studying methods of fusing infrared and visible 
imagery. 
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Table 4. Face recognition 
when data from infrared 
and visible images are 
fused (database of 101 

Image set 

1 

2 

Correctly identified faces (%) 

Gray scale 
projection Eigenface 

Matching pursuit 
filters 

individuals). Top         Top 2 
match     matches 

Top         Top 2 
match    matches 

Top         Top 2 
match    matches 

98             99            97             99             99            99 

97             98            96             99             98            99 

4.4    Mugshot Gallery 

One potential application for a face identification algorithm is the elec- 
tronic mugbook. In an electronic mugbook, the gallery consists of digital 
mugshots of known people, and a probe is a digital mugshot of an individ- 
ual to be identified. In this experiment, I ran the algorithm mugshot data 
provided by a law enforcement agency. 

In the experiment, the gallery and probe sets were made up from dig- 
ital mugshots of 2175 persons with two frontal images per person (side 
mugshots were not collected). The gallery was made up of one image from 
each pair, for 2175 persons; the probe set consisted of the other paired im- 
age, for 2126 individuals. The two images of each person were taken within 
a few minutes of each other; however, the subjects were not necessarily 
cooperative. 

To obtain a performance baseline, I ran the dataset on an eigenface imple- 
mentation. In this implementation, the images were placed in a standard 
position and masked; the pixel values inside the mask were then processed 
by a histogram equalization algorithm. The eigenfaces were trained on a 
subset of 500 images, and the faces were represented by the first 200 eigen- 
vectors. For identification, the L\ metric was used to measure the similarity 
between faces. 

Two versions of the matching pursuit filter algorithm were run. In the first 
version, the similarity measure between coefficient vectors was the angle 
between vectors; in the second, the L\ metric was the similarity measure. 
To assess the ability of matching pursuit filters to generalize across datasets, 
I used the expansions from the visible images in the IR/visible experiment 
(sect. 4.3). 

The results are presented in figure 15 on a cumulative match plot. The x- 
axis is the rank of the ordering of the gallery from a match with a probe. 
The y-axis is the fraction of the probes correctly identified. The plot re- 
ports the fraction of the probes for which the correct answer is in the top 
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Figure 15. Performance of 
MPF and eigenfaces on 
mugshot gallery. Gallery 
size = 2175, probe set size 
= 2126. 
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n matches. For example, for the Lx version of the matching pursuit algo- 
rithm, the correct match between a probe and gallery is in the top 10 for 
0.95 of the probes. The results show that matching pursuit performs better 
than eigenfaces, and that the LY metric is better for matching pursuit than 
the angle between coefficient vectors. This experiment shows that matching 
pursuit filters can generalize across data sets and to larger datasets. 
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5.    Conclusion 

I describe a face identification algorithm that automatically locates facial 
features and identifies the located faces. The algorithm is based on a new 
class of filters called matching pursuit filters, which are wavelet expansions 
that are both data and problem adaptive. This means that matching pursuit 
filters are explicitly designed to solve the pattern recognition problems en- 
countered in face recognition: locating faces and distinguishing between 
faces. Thus, two sets of filters were constructed: one set for the detection of 
facial features and one set for the identification of faces. 

The algorithm was run on images from the FERET database and an associ- 
ated database of visible and infrared images. The results of the visible and 
infrared study show that the performance of algorithms based on matching 
pursuit filters is comparable for both modalities. When the results of both 
modalities are fused, performance saturates (>97 percent correct identifi- 
cation). A larger database of infrared and visible images is required for an 
accurate assessment of the capabilities of multi-modal algorithms. 

A number of algorithms in the literature report performance figures from 
tests run on the FERET database. Within this group, I restrict comparison 
to those algorithms that automatically process probe images. Each of these 
algorithms uses different training and tests, so the results quoted only pro- 
vide an indirect comparison among the algorithms. The algorithm given 
here does better than the benchmark algorithm of Gutta et al. [28] (83 per- 
cent on a gallery of 200) and the correlation-based algorithm of Gordon [27] 
(72 percent on a gallery of 194). The performance of the algorithm described 
here is comparable to that of the eigenspace algorithm of Moghaddam and 
Pentland [30] (99.4 percent on a gallery of 150) and the dynamic link archi- 
tecture algorithm of Wiskott et al. [22] (97.3 percent on a gallery of 300). 

The eigenspace algorithm represents a face with 50 to 100 coefficients and 
represents the face in a global encoding, so that the algorithm is faster than 
it would be if local encoding were used. It is not, however, possible to ex- 
plicitly account for local deformations. In contrast, dynamic link architec- 
ture explicitly handles local deformations with an elastic graph, but it re- 
quires ~4000 coefficients to represent a face. The method presented here is 
a compromise between these two methods. Each person is represented by 
150 coefficients (30 coefficients for each of the five features). 
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In the present algorithm, the face is modeled as five geometric regions, 
which gives the algorithm the flexibility to adjust to deformations and vari- 
ations in faces. I show this by measuring performance as the number of 
features is decreased. With all five features, the identification rate is 95.4 
percent; with only one feature, it decreases to around 80 percent. The degra- 
dation in performance is graceful, with the greatest drop occurring when 
the number of features is reduced from two to one. 

I have successfully demonstrated the performance of this algorithm in a 
number of experiments (on a gallery of 311, with infrared versus visible 
images, on a gallery of 2175 mugshots, and as the number of features de- 
creases). This success shows that face identification algorithms based on 
matching pursuit filters are viable and can serve as a basis for a practical 
face identification system. 

28 



Acknowledgments 

Portions of the work in this report are taken from my PhD dissertation. I 
thank the Operations Research program at RUTCOR, Rutgers University, 
for the program's support of a nontraditional operations research disserta- 
tion. Furthermore, I gratefully thank my thesis adviser, Yehuda Vardi, for 
his time, guidance, support, and many helpful conversations. Prof. Vardi's 
National Science Foundation Grant is acknowledged. Portions of this work 
were done under the FERET program, and the facial images are from the 
FERET database. 

29 



References 

1. S. Haykin. Neural Networks: A Comprehensive Foundation. MacMillan 
1994. 

2. T. Sänger. Optimal unsupervised learning in a single-layer linear feed- 
forward neural network. Neural Networks 5:459-473,1989. 

3. T. E. Flick, L. K. Jones, R. G. Priest, and C. Herman. Pattern recognition 
using projection pursuit. Pattern Recognition 23(12):1367-1376,1990. 

4. J.-N. Hwang, H. Li, M. Maechler, D. Martin, and J. Schimert. Projec- 
tion pursuit learning networks for regression. Eng. Applic. Artif. Intell 
5(3), 1992. 

5. N. Intrator. Combining exploratory projection pursuit and projection 
pursuit regression with application to neural networks. Neural Corn- 
put. 5:443-455,1993. 

6. J. Atick and A. N. Redlich. Convergent algorithm for sensory recep- 
tive field development. Neural Comput. 5:45-60,1993. 

7. A. N. Redlich. Redundancy reduction as a strategy for unsupervised 
learning. Neural Comput. 5:289-304,1993. 

8. M. Lades, J. Vorbruggen, J. Buhmann, J. Lange, C. von der Malsburg, 
R. Wurtz, and W. Konen. Distortion invariant object recognition in the 
dynamic link architecture. IEEE Trans. Comput. 42:300-311,1993. 

9. J. G. Daugman. Complete discrete 2-D Gabor transform by neural net- 
works for image analysis and compression. IEEE Trans. Acoust. Speech 
Signal Process. 36(7):1169-1179, July 1988. 

10. R. R. Coifman and M. V. Wickerhauser. Entropy-based algorithms for 
best basis selection. IEEE Trans. Info. Theory 38(2):713-718,1992. 

11. S. Mallat and Z. Zhang. Matching pursuit with time-frequency dictio- 
naries. IEEE Trans. Signal Process. 41(12):3397-3415, December 1993. 

12. K. Ramchandran and M. Vetterli. Best wavelet packet bases in a rate- 
distortion sense. IEEE Trans. Image Process. 2(2):160-175,1993. 

30 



13. K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic 
Press, Orlando, FL, 1972. 

14. M. Turk and A. Pentland. Eigenfaces for recognition. /. Cognitive Neu- 
rosci. 3(l):71-86,1991. 

15. A. Pentland, B. Moghaddam, and T. Starner. View-based and modular 
eigenspaces for face recognition. In Proc. Computer Vision and Pattern 
Recognition '94, pp 84-91,1994. 

16. B. Moghaddam and A. Pentland. Probabilistic visual learning for ob- 
ject detection. In Proc. Int. Conf. Computer Vision, pp-786-793,1995. 

17. H. Murase and S. K. Nayar. Image spotting of 3D objects using the 
parametric eigenspace representation. In Proc. 9th Scandinavian Conf. 
on Image Analysis, pp 325-332,1995. 

18. H. Murase and S. K. Nayar. Visual learning and recognition of 3D 
objects from appearance. Int.}. Compnt. Vision 14(l):5-24,1995. 

19. P. Belhumeur, J. Hespanha, and D. Kriegman. Eigenfaces vs Fisher- 
faces: Recognition using class specific linear projection. In Proc. 4th 
European Conf. Computer Vision, pp 45-58,1996. 

20. K. Etemad and R. Chellappa. Discriminant analysis for recognition of 
human face images. /. Opt. Soc. Am. A, August 1997. 

21. D. Swets and J. Weng. Using discriminant eigenfeatures for image re- 
trieval. IEEE Trans. PAMI 18(8):831-836,1996. 

22. L. Wiskott, J.-M. Fellous, N. Kruger, and C. von der Malsburg. Face 
recognition and gender determination. In Int. Workshop on Automatic 
Face and Gesture Recognition, M. Bichsel, editor, pp 92-97,1995. 

23. R.P.N. Rao and D. H. Ballard. An active vision architecture based on 
iconic representation. Artif. Intell. 78:461-505,1995. 

24. R.P.N. Rao and D. H. Ballard. Object indexing using an iconic sparse 
distributed memory. In Proc. Int. Conf. Computer Vision, pp 24-31,1995. 

25. P. Viola. Feature-based recognition of objects. In Proc. AAAI Fall Sym- 
posium on Learning and Computer Vision, pp 60-64,1993. 

26. P. J. Phillips, H. Wechsler, J. Huang, and P. Rauss. The FERET database 
and evaluation procedure for face-recognition algorithms. Image Vi- 
sion Comput. J., to appear, 1997. 

31 



27. G. G. Gordon. Face recognition from frontal and profile views. In Int. 
Workshop on Automatic Face and Gesture Recognition, M. Bichsel, editor, 
pp 47-52,1995. 

28. S. Gutta, J. Huang, D. Singh, I. Shah, B. Takacs, and H. Wechsler. 
Benchmark studies on face recognition. In Int. Workshop on Automatic 
Face and Gesture Recognition, M. Bichsel, editor, pp 227-231,1995. 

29. T. Maurer and C. von der Malsburg. Single-view based recognition of 
faces rotated in depth. In Int. Workshop on Automatic Face and Gesture 
Recognition, M. Bichsel, editor, pp 248-253,1995. 

30. B. Moghaddam and A. Pentland. Face recognition using view-based 
and modular eigenspaces. In Proc. SPIE Conf. Automatic Systems for the 
Identification and Inspection of Humans, SPIE 2277, pp 12-21,1994. 

31. D. Swets and J. Weng. Discriminant analysis and eigenspace partition 
tree for face and object recognition from views. In 2nd Int. Conf. Auto- 
matic Face and Gesture Recognition, pp 192-197,1996. 

32. I. Cox, J. Ghosen, and P. Yianilos. Feature-based face recognition using 
mixture-distance. In Proc. Computer Vision and Pattern Recognition '96, 
pp 209-216,1996. 

33. M. Vetterli and J. Kovacevic. Wavelets and Subband Coding. Prentice 
Hall PTR, 1995. 

34. W. T. Freeman and E. H. Adelson. The design of steerable filters. IEEE 
Trans. PAMI 13(9):891-906,1991. 

35. P. Rauss, P. J. Phillips, A. T. DePersia, and M. Hamilton. Face recog- 
nition technology program overview and results. In 25th AIPR Work- 
shop: Emerging Applications of Computer Vision, SPIE 2962, pp 253-263, 
1996. 

36. J. Wilder, P. J. Phillips, C. Jiang, and S. Wiener. Comparison of visible 
and infrared imagery for face recognition. In 2nd Int. Conf. Automatic 
Face and Gesture Recognition, pp 182-187,1996. 

37. J. Wilder. Face recognition using transform coding of gray scale pro- 
jections and the neural tree network. In Artificial Neural Networks with 
Applications in Speech and Vision, R. J. Mammone, editor, pp 520-536, 
Chapman Hall, 1994. 

32 



Distribution 

Admnstr 
Defns Techl Info Ctr 
Attn DTIC-OCP 
8725 John J Kingman Rd Ste 0944 
FT Belvoir VA 22060-6218 

Ofc of the Secy of Defns 
Attn ODDRE (R&AT) S Gontarek 
The Pentagon 
Washington DC 20301-3080 

US Army Train & Doctrine Cmd 
Battle Lab Integration & Techl Dirctrt 
AttnATCD-B JA Klevecz 
FT Monroe VA 23651-5850 

CECOM 
Attn PM GPS COL S Young 
FT Monmouth NJ 07703 

DARPA 
AttnB Kaspar 
3701 N Fairfax Dr 
Arlington VA 22203-1714 

Dept of the Army (OASA) RDA 
AttnSARD-PT R Saunders 
103 Army 
Washington DC 20301-0103 

Dir of Assessment and Eval 
Attn SARD-ZD H K Fallin Jr 
103 Army Pentagon Rm 2E673 
Washington DC 20310-0163 

Hdqtrs Dept of the Army 
AttnDAMO-FDQ D Schmidt 
400 Army Pentagon 
Washington DC 20310-0460 

MICOM RDEC 
AttnAMSMI-RD WC McCorkle 
Redstone Arsenal AL 35898-5240 

OSD 
Attn OUSD(A&T)/ODDDR&E(R) RJTrew 
AttnOUSD(A&T)/ODDDR&E(R) S Ahmadi 
The Pentagon 
Washington DC 20301-7100 

US Army Edgewood Rsrch, Dev, & Engrg Ctr 
AttnSCBRD-TD J Vervier 
Aberdeen Proving Ground MD 21010-5423 

US Army Info Sys Engrg Cmd 
Attn ASQB-OTD F Jenia 
FT Huachuca AZ 85613-5300 

US Army Materiel Sys Analysis Agency 
Attn AMXSY-D J McCarthy 
Aberdeen Proving Ground MD 21005-5071 

US Army Natick Rsrch, Dev, & Engrg Ctr 
Acting Techl Dir 
AttnSSCNC-T P Brandler 
Natick MA 01760-5002 

US Army Rsrch Ofc 
4300 S Miami Blvd 
Research Triangle Park NC 27709 

US Army Simulation, Train, & Instrmntn Cmd 
AttnJ Stahl 
12350 Research Parkway 
Orlando FL 32826-3726 

US Army Tank-Automotive Cmd Rsrch, Dev, 
& Engrg Ctr 

Attn AMSTA-TA J Chapin 
Warren MI 48397-5000 

US Army Tank-Automtv & Armaments Cmd 
Attn AMSTA-AR-TD C Spinelli 
Bldgl 
Picatinny Arsenal NJ 07806-5000 

US Army Test & Eval Cmd 
AttnRG Pollard III 
Aberdeen Proving Ground MD 21005-5055 

US Military Academy 
Dept of Mathematical Sei 
Attn MDN-A MAJ MD Phillips 
West Point NY 10996 

Ofc of the Dir Rsrch and Engrg 
AttnR Menz 
Pentagon Rm 3E1089 
Washington DC 20301-3080 

33 



Distribution (cont'd) 

ARL Electromag Group 
Attn Campus Mail Code F0250 A Tucker 
University of Texas 
Austin TX 78712 

MA Instit of Techlgy 
Brain Sei Dept & A. I. Lab 
AttnE25-218 T Poggio 
45 Carleton Stret 
Cambridge MA 02142 

MIT Dept Program Media Arts & Sei 
Attn A Pentland 
77 Massachusetts Ave 
Cambridge MA 2139 

Univ of Maryland Dept of Elec Engrg 
AttnR Chellappa 
Rm 2365 A V Williams Bldg 
College Park MD 20742-3285 

Dir for MANPRINT 
Ofc of the Deputy Chief of Staff for Personnel 
AttnJ Hiller 
The Pentagon Rm 2C733 
Washington DC 20310-0300 

ERIM 
AttnC Dwan 
AttnJ Ackenhusen 
1975 Green Rd 
Ann Arbor MI 48105 

Hicks & Associates, Inc 
Attn G. Singley III 
1710 Goodrich Dr. Ste 1300 
McLean VA 22102 

Natl Institute of Justice Techlgy Dev 
Attn AT DePersia 
633 Indiana Ave NW 
Washington DC 20531 

National Institute for Standards & Technology 
Attn J Phillips 
Bldg 225 RmA216 
Gaithersburg, MD 20899 

SAIC 
AttnF Shields 
4001 N Fairfax Dr Ste 300 
Arlington VA 22203 

US Army Rsrch Lab 
Attn AMSRL-CI-LL Tech Lib (3 copies) 
Attn AMSRL-D J Lyons 
Attn AMSRL-DD J Rocchio 
Attn AMSRL-CS-AL-TA Mail & Records 

Mgmt 
Attn AMSRL-CS-AL-TP Techl Pub (3 copies) 
AttnAMSRL-IS P Emmerman 
Attn AMSRL-IS-CI P David 
Attn AMSRL-IS-CS J D Gantt 
Attn AMSRL-SE J M Miller 
Attn AMSRL-SE-E J Pellegrino 
Attn AMSRL-SE-SE D Nguyen 
Attn AMSRL-SE-SE L Bennett 
Attn AMSRL-SE-SE M Vrabel 
Attn AMSRL-SE-SE N Nasrabadi 
Attn AMSRL-SE-SE P Rauss     • 
Attn AMSRL-SE-SE S Der 
Attn AMSRL-SE-SI T Kipp 
Adelphi MD 20783-1197 

34 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information Is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.  

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

October 1998 
3. REPORT TYPE AND DATES COVERED 

Interim, 6/1/97 to 6/30/97 

4. TITLE AND SUBTITLE Matching Pursuit Filters Applied to Face Identification 

6.AUTHOR(S)   p. Jonathon Phillips (now with the National Institute of 
Standards and Technology, jonathon@nist.gov) 

ARL POC: Matthew Thielke 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
Attn: AMSRL-SE-SE 
2800 Powder Mill Road 
Adelphi, MD 20783-1197 

email:   mthielke@arl.mil 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

DoD Counterdrug Technology Development Program Office 
Naval Surface Warfare Center, Dahlgren Division B07 
17320 Dahlgren Road 
Dahlgren, VA 22448-5100 

5. FUNDING NUMBERS 

DA PR: — 

PE:   62120A 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

ARL-TR-1487 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

ARL PR:   7NMAMM 

AMS code: 622120.H16 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

unlimited. 
Approved for public release; distribution 12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

A face identification algorithm is presented that automatically processes an unknown image by locating and 
identifying the face. The heart of the algorithm is the use of pursuit filters.  A matching pursuit filter is an adapted 
wavelet expansion, where the expansion is adapted to both the data and the pattern recognition problem being 
addressed. For identification, the filters find the features that differentiate among faces, whereas for detection, 
the filters encode the similarities among faces. The filters are designed through a simultaneous decomposition of 
a training set into a two-dimensional wavelet expansion. This yields a representation that is explicitly 
two-dimensional and encodes information locally. 

The algorithm uses coarse to fine processing to locate a small set of key facial features, which are restricted to 
the nose and eye regions of the face. The result is an algorithm that is robust to variations infacial expression, hair 
style, and the surrounding environment. Based on the locations of the facial features, the identification module 
searches the database for the identity of the unknown face using matching pursuit filters to make the 
identification. 

The algorithm was demonstrated on three sets of images. The first set was images from the FERET database. The 
second set was infrared and visible images of the same people. (These two sets allowed the examination of 
algorithm performance on infrared and visible images individually, and on fused data from both modalities.) The 
third set of images was mugshot data from a law enforcement application. 

14. SUBJECT TERMS 

Face recognition, FERET, wavelets, adaptive expansion 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

15. NUMBER OF PAGES 

42 
16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 

35 


