M-010-55 4

Functions for Writing and Reading
Time History Data

Geoff Brian

- DSTO-GD-0183

9¢0 0LL1360L

APPROVED FOR PUBLIC RELEASE

© Commonwealth of Australia

DEPARTME'NT’OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

Functions for Writing and Reading Time History
Data

Geoff Brian

‘ Air Operations Division
Aeronautical and Maritime Research Laboratory

DSTO-GD-0183

ABSTRACT

The manipulation of time history data is one of the most common activities conducted
when analysing aircraft flight behaviour and performance, and as a result there exists
a multitude of data formats individualised for specific applications. Air Operations
Division (AOD), of the Defence Science and Technology Organisation, have chosen to
support two time history data formats defined by NASA Dryden Flight Research
Center for development of flight behaviour and performance applications. A suite of
functions for writing and reading the selected NASA time history data formats have
been developed at AOD. These functions may be incorporated into analysis
applications to reduce development time for new software, and to improve the sharing
of data between applications.

RELEASE LIMITATION

Approved for public release .

DEPARTMENT OF DEFENCE
¢

- DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DTIC QUALITY IN. SPECTED &

AGFG9-02-014¢6

Published by

DSTO Aeronautical and Maritime Research Laboratory
PO Box 4331
Melbourne Victoria 3001

Telephone: (03) 9626 8111

Fax: (03) 9626 8999

© Commonwealth of Australia 1998
AR No. AR-010-558 4

June 1998

APPROVED FOR PUBLIC RELEASE

DSTO-GD-0183

Functions for Writing and Reading Time
History Data

Executive Summary

Aircraft behaviour analysis and performance estimation applications utilise time
history data for control parameters, such as pilot stick movements, and the recording
of aircraft responses and trajectory data. The manipulation of time history data has
become one of the most common activities conducted when analysing aircraft
behaviour, and as a result there exist a multitude of distinct data formats designed for
specific applications.

With the establishment of aircraft flight behaviour research and aircraft performance
estimation in Air Operations Division (AOD), experience was gained with applications
for the analysis of flight trial data developed by NASA. Together with these
applications, NASA defined a number of formats for the storage of time history data
which were efficient at minimising file sizes and included features permitting fast
access to data. AOD chose to support two of the time history data formats defined by
NASA when developing flight behaviour and performance estimation applications.
The two formats were an ASCII character format which presented data in a readable
form, and a compressed binary format designed to minimise file size and maximise
data access speed.

A suite of functions for writing and reading the selected NASA time history data
formats have been developed in AOD. These functions permit applications to
manipulate data files of either format, and access data with reference to a signal name.
Consequently, prior knowledge of the format and order of data storage in a file is not
required. In addition, the functions permit compressed binary data files to be
independent of computer type and operating system. The suite of functions for writing
and reading time history data has reduced development time for new aircraft
behaviour and performance applications in AOD, and improved the sharing of data
between applications.

DSTO-GD-0183

Authors

Geoffrey J. Brian
Air Operations Division

Geoff Brian commenced employment at the Aeronautical and
Maritime Research Laboratory in 1989, after graduating from the
University of New South Wales with a degree in Aeronautical
Engineering, Honours Class 1. During this time he has been
involved with the analysis of flight data for the development of a
comprehensive flight dynamic model of the F-111C aircraft; the
creation of applications for the estimation of aircraft performance;
and involvement with a performance flight trial of a F-111C aircraft
fitted with Pratt & Whitney TF30-P-109 engines. Mr. Brian was
attached to the Royal Australian Air Force - Aircraft Research and
Development Unit in 1992, where he was involved with a
performance flight trial of an air-to-air refuelling capable Boeing
707 aircraft. Mr. Brian is currently the manager of aircraft
performance estimation activities at AMRL.

DSTO-GD-0183

Contents
1. INTRODUCTION w1
2. DATA FILE FORMATS .1
3. FUNCTIONS FOR WRITING 4
3.1 OpenW : Open a File for Writing.
3.1.1 Example of the OpenW function..........cceeeevemnincinsniinesen s 5
3.2 FWrite : Write Data to a File. 5
3.2.1 Example of the FWrite funCtion ...ttt scieetessensaenes 5
3.3 CloseW : Close a Write File... 6
3.3.1 Example of the CloseW fUNCHON.........ccvrurererrsnnsnnncisnerssessssssssessssssssessssassens 6
4. FUNCTIONS FOR READING .7
4.1 OpenR : Open a File for Reading. 7
4.1.1 Example of the OpenR fUNCHONcvmreterrereeretrtctteei s 7
4.2 RSigs : Return Signals Avaliable in the Read File. .8
4.2.1 Example of the RSigs function.......cciecvincirinctiniisniisesressisiesinesesenns 8
4.3 SigsR : Set Signals to be Read. .9
4.3.1 Example of the SigsR function......c.eveeeeneieneeieectectreetencssesnnaenenes 9
4.4 ChansR : Set Channels to be Read. 10
4.4.1 Example of the ChansR fUncCtioN..........cceiiieiecinicicicsnensnnes 10
4.5 FRead : Read Data from a File. 11
4.5.1 Example of the FRead functioncoceevcveieieineveniisiiricsenenseissesssesensnnes 11
4.6 FSeek : Read Data Corresponding to a Nominated Time. 12
4.6.1 Example of the FSeek funConc.ccvvivernererenrrcceees s 12
4.7 RewR : Rewind a Read File. 13
4.7.1 Example of the REWR function..........cieeeteenetnenniicncncrsencscsnssnsssessneees 13
4.8 CloseR : Close a Read File. 14
4.8.1 Example of the CloseR fUnCtoONcccimreerrreirencisiininesnsseeensessisssssssees 14
5.INCORPORATING TIME HISTORY FUNCTIONS IN AN APPLICATION........ 15
6. CONCLUSION .17
7. REFERENCES .18
APPENDIX A : ASCII FORMAT .. 19
APPENDIX B : COMPRESSED BINARY FORMAT 21
APPENDIX C : SAMPLE FORTRAN 77 PROGRAM .27
APPENDIX D : SOURCE CODE FILES FOR TIME HISTORY FUNCTIONS............ 29
APPENDIXE : INCLUDE FILES FOR TIME HISTORY FUNCTIONSccccvvunne 67

Appendices D & E have been reproduced on Microfiche

DSTO-GD-0183

Nomenclature
AOD Air Operation Division
ASCII American Standard Code for Information Interchange
DSTO Defence Science and Technology Organisation
NASA National Aeronautics and Space Administration

Timestamp Encoded time stamp

DSTO-GD-0183

1. Introduction

Applications which analyse aircraft behaviour often utilise time history data for
control parameters, such as pilot stick movements, and the recording of aircraft
responses and trajectory data. A multitude of distinct data formats have been
defined for use with different applications, restricting easy sharing of data, and
leading to a proliferation of data format conversion applications.

Through collaborative activities with NASA, AOD have gained experience using
applications for the analysis of flight trial data and aircraft behaviour. AOD have
extensively used NASA applications for the manipulation of time history data [1};
aircraft aerodynamic parameter estimation [2]; and plotting [3]. Together with these
applications, NASA have defined a number of formats for the storage of time history
data. AOD chose to support two of the NASA time history data formats when
developing flight behaviour and performance estimation applications. The two
formats were an ASCII character format presenting data in a readable form, and a
compressed binary format which was designed to minimise the file size and
maximise data access speed. A detailed description of the two formats is presented.

A suite of functions for writing and reading the selected NASA time history data
formats have been developed at AOD. These functions permit applications to
manipulate data files of either format without prior knowledge of the format type.
Knowledge of the order of data storage in a file is not required as data may be
accessed with reference to a signal name. Also, the functions permit compressed
binary data files to be independent of computer type and operating system. Each of
the functions for writing and reading time history data are described, together with
examples of how the functions are invoked from within an application.

2. Data File Formats

AOD have chosen to support two of the time history formats defined by NASA
when developing applications for analysing aircraft behaviour and performance
estimation. The ASCII format was chosen since information is presented in a
readable form, as shown in figure 1. This format contains a header section detailing
the number of channels of data stored in a file and the signal name for each channel.
Time history data for each channel, and the corresponding time are stored in the data
section. A detailed description of the ASCII format is presented in Appendix A.

DSTO-GD-0183

Header Section

: nChans 24 .
! names axagm ayagn azagm pm .
. qm rm altftm >amachm vtasm v
. alpham betam pdotm qgdotm rdotm .
. thetam phim delhm delam delxrm E
. delspm stklnm stkltm rpm delctm :
: data001 :

...

0.12870000000000 0.11150000000000 -.43300000000000E-010.78400000000000
-1.8417000000000 0.38580000000000 0.12810000000000 0.38900000000000E-01
~.43080000000000 -.41720000000000 0.53000000000000E-020.26340000000000
0.00000000000000E+00

: 0.000 0.14350000000000 ~-.40000000000000E-01 1.0876000000000
: =.19700000000000E-01-.20000000000000E-03-.10000000000000E-02 5489.0560000000 :
: 0.78980000000000 864.48690000000 2.8617000000000 0.24040000000000 '
: -.10890000000000 -.94300000000000E-010.13030000000000 0.96010000000000
5-1.7540000000000 0.37470000000000 0.13920000000000 -.11870000000000 ,
' -.45250000000000 -.42620000000000 0.00000000000000E+000.26340000000000 N
1 0.00000000000000E+00 H
H 0.017 0.17140000000000 ~.21300000000000E~01 1.0742000000000 .
: -.16900000000000E-01~.20000000000000E-03~.10000000000000E-02 5486.6080000000 .
1 0.78970000000000 864.45960000000 2.9411000000000 0.24040000000000 .
: -.17800000000000E~01-.51200000000000E-01~.35800000000000E-010.78400000000000 :
: -1.8417000000000 0.37470000000000 0.13920000000000 -.62000000000000E-02
! -.43080000000000 -.41720000000000 0.00000000000000E+000.26340000000000 :
: 0.00000000000000E+00 :
: 0.033 0.14960000000000 -.13100000000000E-01 1.0528000000000 !
: -.14200000000000E-01-.20000000000000E~-03-.10000000000000E-02 5486.6080000000 |
: 0.78970000000000 864.45960000000 2.9411000000000 0.24040000000000 :
L3

Figure 1: Sample ASCII Time History File.

The compressed binary format was chosen because it minimises file size and
supports fast random access to the data. Information detailing the file format, the
number of channels of data stored in the file, signal names for each channel and
comments pertaining to the data stored in the file, are contained in a header section as
shown in Figure 2. An index section contains information which is used to increase
the access speed of the file when reading data. Time history data and the
corresponding time, encoded as a time stamp (Timesamp), are stored in the file
following the header and index sections. A detailed description of the compressed
binary format is presented in Appendix B.

Applications using the functions developed at AOD are capable of manipulating
files of either the ASCII or compressed binary time history format without prior
knowledge of the particular file format. Data may be accessed with reference to a
signal name, and therefore no prior knowledge of the order of data storage is
required. The functions also permit the compressed binary files to be independent of
the machine type and operating system on which they were created. Consequently,
data may be easily shared between applications without compromising the size of
time history files.

DSTO-GD-0183

endhead

Timegamp |

D TiMstamp |

Da Timeamp

Timegamp |

Timestamp |
al

Timegmp

Da

Data Sample position \

Data Sample \

Figure 2 : Compressed Time History File Format

DSTO-GD-0183

3. Functions for Writing

The set of functions for writing time history files using the formats detailed in
Section 2 are described in this section. The set includes a function for opening a new
file to receive time history data (OpenW), a function for writing data to the file
(FWrite), and a function to close the file (CloseW). An example of how each function
may be invoked is presented using C programming language conventions [5],
although the functions may be accessed by applications written using other
programming languages. A sample application in FORTRAN 77 is presented in
Appendix C.

3.1 OpenW : Open a File for Writing.

This function is used to open and initialise files for writing time history data. It has
the following prototypet definition:

int OpenW(int *, char *, int *, char ¥, char *);

and is invoked using the statement:

OpenW(&tUnit_no, name, &nChans, Sigs, format)

The parameters enclosed in brackets are defined as:
¢ Unit_no : An identifier affiliated with the file specified by the name parameter.
name :The name of the file being opened.
nChans : The number of channels of data to be written to the file.
Sigs : A list of signal names for each channel of data.
format :The format style to be used when writing data to the file.

The format variable has an ~entry of either ascl if an ASCII file is to be written, or
cmp3 for a compressed binary file.

A header section is written to the newly opened file detailing the number of
channels of data in the file, and the signal names for each data channel. A value of
“1” is returned by the function if it successfully opens a file, otherwise “0” is
returned. This function will fail if the format for the file is invalid, the file identifier
is being used for another write file, or the file is already open.

t The prototype definition is a C programming convention where the number and type of
arguments passed through to a function (enclosed in brackets) are defined. The type of the
value returned by the function is also defined.

+ A ‘&’ symbol preceding a parameter name, such as Unit_no, implies that the memory
address of the data is be passed to the function, as opposed to the value of the data. Within
the function, the parameter will be referenced as a pointer to the data.

DSTO-GD-0183

3.1.1 Example of the OpenW function

int Unit_no, nChans;

char *Sigs;

Unit_no = 1;

nChans = 20;

Sigs :: points to a list of signal names.

if ((OpenW(&Unit_no, "test.txt", &nChans, Sigs, “ascl")) == FALSE)
printf ("Error Opening File for writing®);

else
{eees}

3.2 FWrite : Write Data to a File.

This function is used to write data, for a discrete time, to a file which has previously
been opened using the OpenW function. It has the following prototype definition:

void FWrite(int *, double *, double *);
and is invoked using the statement:
FWrite(&Unit_no, &time, &data);

The parameters enclosed in brackets are defined as:
e Unit_no : The file identifier specified in the call to OpenW.
e time :The time corresponding to the data being written.
e data :An array containing the channel data.

Data for each channel are written to the file, denoted by Unit_no, using the format
specified during the call to the OpenW function.

3.2.1 Example of the FWrite function

int Unit_no;

int nChans;

char *Sigs;
double time;
double Data_R[100];

Unit_no = 1;
nChansg = 20;
sigs :: points to a list of signal names.

if ((OpenW(&Unit_no, "test.txt", &nChans, Sigs, "ascl")) == FALSE)
printf("Error Opening File for writing");
else
{
<loop to write data >
{
time = ??7?7?;
Data_R :: points to a list of channel data.
FWrite(&Unit_no, &time, &Data_R);
}

}

DSTO-GD-0183

3.3 CloseW : Close a Write File

This function is used to close a time history data file that has previously been opened
for writing. It has the following prototype definition:

void CloseW(int *);
and is invoked using the statement:
CloseW(&Unit_no);

The parameter enclosed in brackets is the file identifier specified in the call to
OpenW.

3.3.1 Example of the CloseW function

int Unit_no;
int nChans;
char *Sigs;

Unit_no = 1;
nChans = 20;
8igs :: points to a list of signal names.

if ((OpenW(&Unit_no, "test.txt", &nChans, Sigs, "ascl")) == FALSE)
printf("Erroxr Opening File for writing"):;

else
{

CloseW(&Unit_no);
}

DSTO-GD-0183

4. Functions for Reading

The set of functions for reading time history files, corresponding to the formats
detailed in Section 2, are described in this section. The set includes a function to open
an existing time history file (OpenR), a function to retrieve the list of signal names
for data in the file (RSigs), functions to specify what data is to be read from the file
(SigsR & ChansR), functions to sequentially or randomly retrieve data from the file
(FRead & FSeek), a function to rewind the file (RewR), and a function to close the file
(CloseR). An example of how each function may be invoked is presented using C
programming language conventions, although the functions may be accessed by
applications written using other programming languages.

4.1 OpenR : Open a File for Reading.

This function is used to open and initialise files from which time history data will be
read. It has the following prototype definition:

int OpenR(int *, char *, int *);
and is invoked using the statement:
OpenR(&Unit_no, name, &nChans);

The parameters enclosed in brackets are defined as:
¢ Unit_no : An identifier affiliated with the file specified by the name parameter.
¢ name :Thename of the file being opened.
e nChans : The number of data channels available in the file.

This function will read the header section of the file which has been opened. The
number of data channels available in the file is returned through the variable
nChans. A list of the signal names for each data channel is stored in memory and
can be accessed using the function RSigs. A value of “1” is returned by the function
if it successfully opens a file, otherwise “0” is returned. This function will fail if the
file does not exist, the file is already open, the file data format is invalid, or the file
identifier is being used by another read file.

4.1.1 Example of the OpenR function

int Unit_no;
int nChang;

Unit_no = 1;

if ((OpenR(&Unit_no, "test.txt", &nChans)) == FALSE)
printf ("Error Opening File for reading");
else

{....}

DSTO-GD-0183

4.2 RSigs: Return Signals Avaliable in the Read File.

This function is used to return a list of the signals names for data available in a time

history file which has previously been opened using the OpenR function. The signal

name list is compiled from data stored in memory when the file was opened. The

RSigs function has the following prototype definition: :
void RSigs(int *Unit_no, char *Sigs);

and is invoked using the statement:

RSigs(&Unit_no, Sigs);

The parameters enclosed in brackets are defined as:
e Unit_no : The file identifier specified in the call to OpenR.
e Sigs : A pointer to an array which accepts the signal name list.

4.2.1 Example of the RSigs function

int 2
int Unit_no;
int nChans;

char *Chan_R, *TmpSigs:
Unit no = 1;

if ((OpenR(&Unit_no, 'test.txt',‘&nchans)) == FALSE)
printf ("Error Opening File for reading®);
else

{
Chan_R = (char *)malloc(nChans*20*sizeof (char));
RSigs(&Unit_no, Chan_R);

TmpSigs = Chan R;

for (j=0; j<nChans; ++j)
{
printf(*Signals :: %s\n", TmpSigs);
TmpSigs = next_word(TmpSigs);

}

/* Free Memory allocated for signal list after finished with */
free(Chan R);

}

DSTO-GD-0183

4.3 SigsR : Set Signals to be Read.

This function is used to set which channels of data will be read from the time history
file by specifying the channel signal names. The selected signal names are cross-
referenced with information stored in memory detailing the column number for each
channel of data. A list of column numbers for data to be read is constructed and
stored in memory for future use by the FRead or FSeek functions. The SigsR
function has the following prototype function:

void SigsR(int *, char *, int *);
and is invoked using the statement:
SigsR(&Unit_no, Sigs, &nSigs);

The parameters enclosed in brackets are defined as:
e Unit_no : The file identifier specified in the call to OpenR.
e Sigs : A pointer to a signal name list of data to be read from the file.
e nSigs :The number of data channels to be read from the data file.

4.3.1 Example of the SigsR function

int Unit_no;

int nChans;

int nSigs;

double time;

double Data_R[100];

char *SigsRead = "zero\Othree\Oeight\Onineteen\0";

Unit_no

=1
nSigs =4

we W

if ((OpenR(&Unit_no, "test.txt", &nChans)) == FALSE)
printf ("Error Opening File for reading”):;
else
{
/* Selecting the data to be read from the file by signal name */
SigsR(&Unit_no, SigsRead, &nSigs);

while ((FRead(&Unit_no, &time, &Data_R)) != FALSE)
time :: correspond to the time of the data record.
Data_R :: points to a list of channel data.

DSTO-GD-0183

4.4 ChansR : Set Channels to be Read.

This function is used to set which channels of data will be read from the time history
file by specifying the data column number. A list of column numbers for data to be
read is constructed and stored in memory for future use by the FRead or FSeek
functions. The ChansR function has the following prototype function:

void ChansR(int *, int *, int *);
and is invoked using the statement:
ChansR(&Unit_no, &chans, &nSigs);

The parameters enclosed in brackets are defined as:
¢ Unit_no : The file identifier specified in the call to OpenR.
e chans :A pointer to a column number list of data to be read from the file.
e nSigs :The number of data channels to be read from the data file.

4.4.1 Example of the ChansR function

int Unit_no;

int nChans;

‘int nsSigs;

int Data_IXI[4] = {1,4,6,12};
double time;

_double Data_R{[100]:

Unit_no = 1;
nSigs = 4;

if ((OpenR(&Unit_no, "test.txt”, &nChang)) == FALSE)
printf("Error Opening File for reading");
else
{ .
/* Selecting the data to be read from the file by column number */
ChansR(&Unit_no, &Data_I, &nSigs);

while ((FRead(&Unit_no, &time, &Data R)) != FALSE)
time :: correspond to the time of the data record.
Data R :: points to a list of channel data.

10

DSTO-GD-0183

4.5 FRead : Read Data from a File.

This function is used to read data, for a discrete time, from a file which has
previously been opened using the OpenR function. The first time FRead is invoked,
data associated with the first time entry will be read from the file. Further calls will
read data associated with successive time entries. FRead may be invoked without
previously calling SigsR or ChansR to select which channels of data to read, since
the OpenR function creates a default column number list consisting of all the
available channels of data. The FRead function has the following prototype
definition:

int FRead(int *, double *, double *);
and is invoked using the statement:
FRead(&Unit_no, &time, &data);

The parameters enclosed in brackets are defined as:
¢ Unit_no : The file identifier specified in the call to OpenR.
e time :The time corresponding to the data which was read from the file.
e data :An array which accepts the channel data.

Channel data read from the file are returned through the variable data, and the
corresponding time returned through the variable time. A value of “1” is returned
by the function if it successfully reads data from the file, otherwise “0” is returned.
The function will fail if the end of the file has been reached.

4.5.1 Example of the FRead function

int Unit_no;

int nChans;
double time;

double Data R[100];

Unit_no = 1;

if ((OpenR(&Unit_no, "test.txt", &nChans)) == FALSE)
printf ("Error Opening File for reading");

else :
{
while ((FRead(&Unit_no, &time, &Data_R)) != FALSE)
time :: correspond to the time of the data record.
Data R :: points to a list of channel data.

11

DSTO-GD-0183

4.6 FSeek : Read Data Corresponding to a Nominated Time.

This function reads data corresponding to a nominated time. It has the following
prototype definition:

int FSeek(int *, double *, double *, double ¥);
and is invoked using the statement:
FSeek(&Unit_no, &tSeek, &time, &data);

The parameters enclosed in brackets are defined as:
e Unit_no : The file identifier specified in the call to OpenR.
e tSeek :The nominated time at which data to is to be read from the file.
e time :The time corresponding to the data which was read from the file.
e data :Anarray which accepts the channel data.

During execution of this function the file position indicator is repositioned such that
the information returned through the variable data corresponds to a time equal to or
greater than the nominated time tSeek. The time corresponding to data that was
read from the file is returned through the variable time. A value of “1” is returned
by the function if it successful reads data from the file, otherwise “0” is returned. The
function will fail if the time tSeek does not occur between the start and end times for
data stored in the file.

4.6.1 Example of the FSeek funcfion

int Unit_no;
int nChans;
double time, tSeek;
double Data_RI[100];

Unit_no = 1;
tSeek = 20.0;

if ((OpenR(&Unit_no, "test.txt", &nChang)) == FALSE)
printf ("Error Opening File for reading"):;
" else
{
1f ((FSeek(&Unit_no, &tSeek, &time, &Data_R)) |= FALSE)
{
while ((FRead(&Unit_no, &time, &Data_R)) != FALSE)
time :: correspond to the time of the data record.
Data_R :: points to a list of channel data.

12

DSTO-GD-0183

4.7 RewR : Rewind a Read File.

This function is used to reset the file such that the next data record read from the file

will be that beginning the data section. It has the following prototype definition:
void RewR(int *);
and is invoked using the statement:

RewR(&Unit_no);

The parameter enclosed in brackets is the file identifier specified in the call to

OpenR.

4.7.1 Example of the RewR function

int Unit_no;

int nChans;
double time;

double Data_R[100];

Unit_ no = 1;

if ((OpenR(&Unit_no, "test.txt", &nChans)) == FALSE)
printf("Error Opening File for reading");
else
{
while ((FRead(&Unit_no, &time, &Data_R)) != FALSE)
{
time :: correspond to the time of the data record.
Data R :: points to a list of channel data.

ce e

}

/* Rewind to start of Data Section */
RewR (&Unit_no):
if ((FRead(&Unit_no, &time, &Data_R)) != FALSE)
{
}
}

13

DSTO-GD-0183

4.8 CloseR : Close a Read File.

This function is used to close a time history data file that has previously been opened
for reading. It has the following prototype definition:

void CloseR(int *);

and is invoked using the statement:

CloseR(&Unit_no);

The parameter enclosed in brackets is the file identifier specified in the call to
OpenR.

4.8.1 Example of the CloseR function

14

int Unit_no;
int nChans;

Unit_no = 1;

if ((OpenR(&Unit_no, "test.txt", &nChans)) == FALSE)
printf ("Error Opening File for reading"):;

else
{

CloseR(&Unit_no);
}

DSTO-GD-0183

5. Incorporating Time History Functions in an
Application

To permit access to time history data using the functions described in sections 3 and
4, files containing source code for the functions must be bound into the application.
Table 1 lists the files containing source code for the time history functions, together
with a description of the contents of each file. The time history functions have been
developed using the C programming language, and listings of the files are presented
in Appendix D. A list of associated include files for the source code is also shown in
Table 1, and a listing of each include file is presented in Appendix E.

Table 1: Source Code Files for Time History Functions

Source Code Files

File_1.c Contains top level interface functions for writing and reading time
history data files

File_2.c Contains format dependent functions for writing and reading time
history data files.

File_3.c Contains functions for manipulation of stored data relating to each
time history data file. .

File 4.c Miscellaneous functions.

File_5.c : Contains functions to access binary data format files.

Included Header Files

common.h

errstrn.h

fmttype.h

extrout.h

file_2.h

file_3.h

file_4h

file 5.h

macro.h

macroerr.h

os_comp.h

Information stored in the files 0s_comp.h and extrout.h, is used by the time history
functions to interface correctly with an application’s source code. The os_comp.h file
contains identifiers denoting the language chosen for the development of the
application and the operating system under which the application is being
developed. The extrout.h file contains prototype definitions of the time history
functions discussed in Sections 3 and 4.

15

DSTO-GD-0183

For an application written using the C programming language to interface with the
time history functions, the two files are required to be included into the application’s
source code. This may be achieved by inserting the following lines:

#include <os_comp.h>
#include <extrout.h>

Other programming languages may use different techniques for interfacing with
external functions. Information on these techniques may be found in references on
the programming languages being used for application development.

There are many ways in which the files containing source code for the time history
functions may be bound into an application. These depend on the operating system
under which the application is being developed, the programming language which
is being used to developed the application, and any application development
software tools that may be used, e.g. Microsoft™ Developer Studio. One possible
method for incorporating the time history source code files is described with the
assistance of the simple Makefile presented in Figure 3.

Simple Makefile to compile application testapp.c
which incorporates time history functions

Compiling Flags
.SUFFIXES: .c.0 .¢c .0
cC - cc

Directory Locations
Time History Include Files

THINC = . /common/include/timeh
Time History Source Code Files
THSRC = ./common/source/timeh

Compile source code to create object files
${CC} -I${THINC} -c ${THSRC}/file_1l.c
${CC} -IS${THINC) -c ${THSRC}/file_2.c
${CC) -IS${THINC)} -c ${THSRC}/file_3.c
${CC} -IS${THINC} -c ${THSRC}/file 4.c
${CC} ~I${THINC} -c ${THSRC}/file S.c

${ccy) -Is{iHINC} -c ${THSRC}/te§tapp.c

Bind object files to create executable file testapp.exe
${CC} testapp.o file_1l.o0 file_2.0 file_ 3.0 file_4.0 file 5.0 -o testapp

End of simple Makefile

Figure 3 : Example Makefile for including time history functions in an application

In this example the include files, listed in Table 1, are assumed to reside in the
directory assigned to the THINC variable. Source code files for the time history
functions are assumed to reside in the directory assigned to the THSRC variable.
Upon execution of the Makefile, the time history source code files, and the
application, are compiled to create object files using the C language compiler cc. The
object files are then bound to create an executable file for the application.

Information on more efficient compilation techniques may be found in references on
the programming languages being used for application development.

16

DSTO-GD-0183

6. Conclusion

A suite of functions for writing and reading time history data have been developed
by AOD. These functions support an ASCII character time history data format, as
well as a compressed binary format. The ASCII format presents data in a readable
form, while the compressed binary format has been designed to minimise file size
and maximise the access speed to data. Both of these formats were defined by NASA
for development of flight behaviour and aircraft performance applications.

The functions discussed in this report permit applications to manipulate time history
data of either format, and access data with reference to a signal name. In addition,
the functions permit time history data files to be independent of computer type and
operating system. The suite of functions for writing and reading time history data
may be incorporated into analysis applications to reduce development time for new
software, and improve the sharing of data between applications.

17

DSTO-GD-0183

7. References

[1] Maine R.E. (1987), Manual for GetData Version 3.1 - A FORTRAN Utility
Program for Time History Data., NASA Technical Memorandum 88288, Edwards,
_California.

[2] Murray].E., Maine R.E. (1987), pEst Version 2.1 User’s Manual., NASA Technical
Memorandum 88280, Edwards, California.

[3] Vernon T., (1992), Xplot - A Utility for Plotting X-Y Data User Manual /
Command Reference., PRC Inc, NASA Ames Dryden Flight Research Center,
Edwards, California.

[4] X3.4-1977 : American National Standard Code for Information Exchange

[5] Kelley A. and Pohl 1. (1984), A Book on C - Programming in C (2nd Ed.), The
Benjamin/Cummings Publishing Company, Inc., California. ISBN 0-8053-0060-0

[6] IEEE Std 754-1985 (R1990) IEEE Standard for Binary Floating-Point Arithmetic
(ANSI) [1-55937-653-8] [SH10116-NYF]

18

DSTO-GD-0183

Appendix A : ASCII Format

The ASCII format presents time history data in a readable form. Descriptive
information and time history data stored in a file is organised into records each
having a length of 80 characters. The file contains a header section and a data
section. Figure 1 illustrates the format of a ASCII time history data file.

Header Section

The header section contains a series of records storing information relating to the
format of the file, the number of channels of data stored in the file, and the signal
name for each channel of data. Information stored in the header section is preceded
by a tag identifying the data which follows. All character data are left justified
within their fields, while numerical data in the header are right justified. A
description of each record follows.

Format Record

The first header record identifies the format of data stored in the file, and is used to
automate the management of different file formats. The tag for this record is
‘format’, which is followed by the format description ‘asc 1. The identifier .1’
represents the version of the ASCII format definition used for storing data in a file;
however, this information is not used when accessing time history files.

Columns Field Format Value

1-8 Character format

9-16 Character asc,1 { The symbol “_” represents a space }
17-18 . Character 1

Number of Channels Record

The number of channels of data that are available in a file is specified in the second
header record. The tag for this record is ‘nChans’, which is followed by the number
of channels. :

Columns Field Format Value

1-8 Character nChans

9-16 Integer Number of channels
Signal Name Record(s)

The third header record initiates the list of signal names for the channels of data
stored in the file. Signal names are limited to 16 characters in length, and the list
continues across as many records as required to document all names. The format of
the first signal name record differs from following records as it contains the tag
‘names’ as well as the first 4 signals names. Following signal name records each
contain 5 names per record, except for the last record which may contain less.

19

DSTO-GD-0183

Columns Field Format Value

1-8 Character names {1st Record}
9-16 Blank

17-32 Character Name of signal 1

33-48 Character Name of signal 2

49-64 Character Name of signal 3

65-80 Character Name of signal 4

1-16 Character Name of signal {Other Records}
17-32 Character Name of signal

33-48 Character Name of signal

49-64 Character Name of signal

65-80 Character Name of signal

Data Header Record

This record is used to indicate the end of the header section. The tag used to define
this record is ‘data001’, and no data is associated with this record.

Data Section

The remainder of the file contains data for each channel. The data are stored as
floating point numbers using a format field width of 20 characters, with a maximum
of 14 decimal places. Data, for each discrete time, are stored in the same order as the
signal names, using as many records as required to document all channels. The first
record for each discrete time differs from the following records as it contains the
time corresponding to the data sample in the first field of 20 characters, and is
followed by 3 data entries. Following records each contam 4 data entries, except for
the last record which may contain less.

20

DSTO-GD-0183

Appendix B : Compressed Binary Format

The compressed file format has been designed to minimise file size and permit fast
access to data in time history files. The following conventions are used for
information stored in a compressed file.

o Character data are encoded using the ASCII 8 bit character set standard, [4].

» 8, 16, 24 and 32 bit integer data are encoded with the most significant byte
stored first. This is followed by the lesser significant bytes, with the least
significant byte last. Negative integers are encoded using Two’s Complement
integer notation which is defined in [5].

s Floating point data are encoded using the IEEE Standard 754-1985, [6], with the
most significant byte stored first, followed by lesser significant bytes, and the
least significant byte last. 24, 32 and 64 bit floating point data are stored in the
compressed time history files, with the 24 bit floating point data representing
32 bit floating point data with the least significant byte removed.

The file contains a header section, an index section, and a data section. Each section
is comprised of a series of blocks, with a block consisting of a numbers$ of consecutive
bytes of information. The first byte in a block indicates whether information
contained within that block relates to the header section, the index section or the
data section of a file. The next three bytes contain the number of the next block
 completely filled with information for the section denoted by the first byte. A block
with binary zero entries for these three bytes is the last block for that section type.
Blocks which are not completely filled with information are padded using binary
zero entries for each unused byte. Figure 2 illustrates the form of the compressed
format time history data file.

Header Section

The header section contains information detailing the file format, the number of
blocks of information stored in the file, the number of channels of data stored in the
file, signal names for each channel of data, optional titles, and the start time and end
time for data stored in the file. The length and the type of information stored for a
particular entry in the header section are encoded in the first three bytes of that
entry. All character data are left justified in their fields, while numerical data is
stored using an equivalent binary format. A description of each header record
follows.

§ The default size of a block is 2048 bytes. The block size, in bytes, is stored in the blocks entry
of the header section.

21

DSTO-GD-0183

Format Entry

The first entry identifies the format of data stored in the file, and is used to automate
the management of different file formats. The tag for this entry is ‘format’, and is
followed by the format description ‘cmp 3’. The identifier “.1’ represents the version
of the compressed binary format definition used for storing data in a file; however,
this information is not used when accessing time history files.

Bytes Field Format Value

12 Integer Length of Entry (27)

3 Integer Entry Type

4-11 Character format

12-19 Character cmp 3 { Thesymbol " represents a space }
20-27 Character 1

Blocks

The second entry stores the block number for the start of the index and data sections
of the file. Additionally, information is stored detailing the number of blocks for the
index section; the number of blocks for the data section; the position within the file
of the end of the header section; and the position within the file of the last data
sample. The tag for this entry is ‘blocks’, and is followed by the block information.

Bytes Field Format Value

1-2 Integer Length of Entry (39)

3 Integer Entry Type

4-11 Character blocks

12-15 Integer Block size (normally 2048 Bytes)

16-19 Integer Number of blocks (inc. header, index and data)
20-23 Integer File position pointer for end of header

24-27 Integer Block number for start of index section

28-31 Integer Number of blocks in the index section (norm. 1)
32-35 Integer Block number for start of data section

36-39 Integer File position pointer for last data entry
Number of Channels Entry

The third entry specifies the number of channels of data that are available within the
file. The tag for this entry is ‘nChans’, and is followed by the number of channels.

Bytes Field Format Value

1-2 Integer Length of Entry (15)
3 Integer Entry Type

4-11 Character nChans

12-15 Integer Number of channels

22

DSTO-GD-0183

Time Key

The time for a sample of data is encoded in a data file, and is referred to as the time
stamp (Timesmp). The forth entry contains information that is used to decode
Timestamp using the following relationship:

time = (Timesump - keyOffset)*timeScale - baseTime

To minimise the size of a compressed time history file, data is normally stored for
only those channels which have changed between sequential time intervals.
However, data are also stored for all channels at a frequency indicated by
information contained in the variable fulllnt. The tag for this entry is ‘timekey’, and
is followed by the decoding information.

Bytes Field Format Value

1-2 Integer Length of Entry (35)
3 Integer Entry Type

4-11 Character timekey

12-19 Floating Point baseTime

20-27 Floating Point timeScale

28-31 Integer keyOffset

32-35 - Integer fullnt

Signal Names

The signal name for each channel of data stored in a file is documented in the fifth
entry. The length of each signal name is limited to 16 characters, with the names
stored sequentially. The tag for this entry is ‘names’, and is followed by the signals
names. _

Bytes Field Format Value

1-2 Integer Length of Entry (11 + (16 x nChans))
3 Integer Entry Type .

4-11 Character names

12-27 Character Name of signal 1

28-43 Character Name of signal 2

Optional Titles

Comments may be stored in the data file, but are limited in length to 1024 characters.
The tag for each comment entry is ‘titles’, and is followed by the comment character
string.

Bytes Field Format Value

1-2 Integer Length of Entry

3 Integer Entry Type -

4-11 Character titles

12-2 Character Character string for comment

23

DSTO-GD-0183

Time Summary

This entry stores time information for the first data sample in a file and the last data
sample. In addition, this entry contains a count of the total number of data samples
stored in a file. The tag for this entry is ‘times’, and is followed by the time summary
information.

Bytes Field Format Value

1-2 Integer Length of Entry (31)

3 Integer . Entry Type

4-11 Character times

12-19 Float Timesump for first data sample
20-27 Float Timestamp for last data sample
28-31 Integer "~ Number of data samples in a file
End of Header

This is the final entry in the header section of a data file. It contains the tag
‘endhead’.

Bytes Field Format Value

12 Integer Length of Entry (11)
3 Integer Entry Type

4-11 Character endhead

Index Section

This section contains information on the location of data within a file. The
information is used to increase the speed for random access to data by providing the
location of data in the file and the corresponding Timestmp. Timesamp and data
location are stored for each discrete time if there are less than 255 time samples in a
file. Otherwise, Timesmp and data location corresponding to every ith discrete time
are stored, with 7 equal to the next whole number greater than the total number of
time samples divided by 255.

Bytes Field Format Value

1 Integer Number of entries in the index section
2-5 Integer Index entry 1 Timestamp

6-9 Integer Index entry 1 data location

10-13 Integer Index entry 2 Timestamp

14-17 Integer Index entry 2 data location

Data Section

The remainder of the file contains Timestamp information and data for each discrete
time. The number of bytes of information stored for a discrete time is encoded in the
two bytes preceding the Timeswump. A single byte flag identifying the form used to
store data follows the Times.mp. The flag has a value of “0” for the last entry in the
data section. The flag has a value of “1” when data for all channels is stored for a

24

DSTO-GD-0183

discrete time, and the flag has a value of “2” when a partial list of data is stored.
Information identifying the channel numbers of data stored for a discrete time will
follow the flag if it has a value of “2”. Data is encoded as 24 bit floating point
numbers with each channel stored sequentially.

Bytes Field Format Value

1-2 Integer Length of Entry

3-6 Integer Timestamp for discrete time
7 Integer Storage flag

8-10 Float _ Data for channel

alternatively, for a storage flag = 2

Bytes Field Format Value

1-2 Integer Length of Entry

3-6 Integer Timestmp for discrete time
7 Integer Storage flag

8-(8+n) n x Byte Channel information

(8+n)-(8+n+3) Float Data for channel

where n equals the next whole number greater than the total number of channels
divided by 8.

25

DSTO-GD-0183

26

DSTO-GD-0183

Appendix C : Sample FORTRAN 77 Program

The examples used to illustrate the time history functions in sections three and four,
have been presented using C programming language conventions. The functions
may also be accessed from applications written other programming languages, for
example FORTRAN 77. A sample FORTRAN 77 program which opens an existing
time history file for reading and writes data to a second file, using the documented
functions, is presented in this appendix.

The os_comp.h file contains identifiers denoting the development language and
operating system. These are used by the time history functions to interface correctly
with the application. A listing of the os_comp.h file for use with the sample
FORTRAN 77 program is presented in this appendix.

Sample FORTRAN 77 Program

C**********************************'A'**
c* Test Program *
c***
¢ Variable Declaration required for reading a data file

logical OpenR, OpenW, Fread, FSeek

parameter (nSigs = 4, MAX _chan = 100)

integer j

integer nChans, Unit_no
integer Data_I(nSigs)
real*s time

real*8 Data_R{(MAX_chan)

character*16 Chan_R(MAX_ chan)

character*16 SigsRead(nSigs)

data Data_I/3,5,10,15/

data SigsRead/’azagm’, ‘qgm’, ‘alpham’, ‘thetam’/

Unit_no =1

c***

c Open an existing file for reading
if (.not.OpenR(Unit_no, ’‘inFile.dat’, nChans)) then
write(6,*) ‘Error Opening Read File’
else

Listing the signals available in a file
call RSigs(Unit_no, Chan_R)
do j = 1,nChans
write(6,*) ’'Signals :: *, Chan_R(j)
enddo

a

¢ Selecting the signals to be read from the file by signal name
call SigsR{Unit_no, SigsRead, nSigs)

¢ Selecting the signals to be read from the file by channel number
c call ChansR(Unit_no, Data_I, nSigs)

if (.not.OpenW(Unit_no, ‘outFile.dat’, nSigs, SigsRead, ‘ascl’))
. then
write(6,*) ’'Error Opening Write File’
else e

¢ Reading nominated time points from the data file
tSeek = 2.5
if {.not.FSeek(Unit_no, tSeek, time, Data_R)) then
‘write(6,*) 'Error reading data from getdata file’

else
write(6,*) 'tSeek, time :: ’, tSeek, time
do
write(6,’(a8,g20.14)’) 'Data :: ‘, Data_R(j)
enddo
endif

27

DSTO-GD-0183

c Rewinding the file to the start of tha data block
c call RewR(Unit_no);

¢ Reading the complete data file
100 if (FRead(Unit_no, time, Data_R)) then
call FWrite(Unit_no, time,

do

write(6, ' (a8,g20.14)")

enddo
goto 100
endif

c End of OpenW Statement
endif

¢ End of OpenR Statement
endif

Data_R)

‘Data :: ‘, Data_R({(Jj)

c Closing the Reading and Writing Data files

call CloseR(Unit_no)
call CloseW(Unit_no)

c***

write(6,*) ‘Program Completed’

C***

OS_Comp.h File

/**/

/* TimeHist :: os_comp.h */
/* Library of Routines to read and write time history data format files */
/* */
/* Application programming language and Operating System identifiers */

/**/

#ifndef __get_os_comp_h
#define _ get_os_comp_h

/* Select the appropriate
CMP3*/

/*#define __WIN32_0S*/ /*
#define __UNIX_0S /*
/*#define _ _WIN16_0S8*/ /*

0S switch

Compilation
Compilation
Compilation

/* Select the appropriate Machine Type

/*#define __I386*/
#define __RS6000
/*#define ___PPC*/

/* Select the appropriate complitation
/*#define __C*/ /* Compilation for
/*#define __CPP*/ /* Compilation for
#define _ _FORTRAN /* Compilation for
#endif /* __get_os_comp_h */

:: No selection implies PC - DOS :: Do Not Use

for WINDOWS 0SS */
for UNIX 0S8 */
for WINDOWS 3.1* OS :: Do Not Use CMP3 */

tr ¥/

language :: Default C */
CPP programs */

CPP programs */

FORTRAN programs */

/**/

28

DISTRIBUTION LIST

Functions for Writing and Reading time History Data

Geoff Brian
AUSTRALIA

DEFENCE ORGANISATION
Task Sponsor
COPS HQAC
S&T Program

Chief Defence Scientist)

FAS Science Policy t shared copy

AS Science Corporate Management

Director General Science Policy Development

Counsellor Defence Science, London (Doc Data Sheet)

Counsellor Defence Science, Washington (Doc Data Sheet)

Scientific Adviser to MRDC Thailand (Doc Data Sheet)

Director General Scientific Advisers and Trials/Scientific Adviser Policy and
Command (shared copy) '

Navy Scientific Adviser (Doc Data Sheet and distribution list only)

Scientific Adviser - Army (Doc Data Sheet and distribution list only)

Air Force Scientific Adviser

Director Trials

Aeronautical and Maritime Research Laboratory
Director

Chief of Air Operations Division

Research Leader - Avionics and Flight Mechanics
Research Leader - Air Operational Analysis
Research Leader - Simulation & Human Factors
Head, Air to Surface Operations

Author: Mr G.J. Brian

Mr].S. Drobik

Mr B.A. Woodyatt
Mr A.D. Snowden
Mr K.L. Bramley

DSTO Library
Library Fishermens Bend
Library Maribyrnong

Library Salisbury (2 copies)
Australian Archives
Library, MOD, Pyrmont (Doc Data sheet only)

Capability Development Division
Director General Maritime Development (Doc Data Sheet only)
Director General Land Development (Doc Data Sheet only)
Director General C3I Development (Doc Data Sheet only)

Navy
SO (Science), Director of Naval Warfare, Maritime Headquarters Annex,

- Garden Island, NSW 2000 (Doc Data Sheet and distribution list only)

Army
ABCA Office, G-1-34, Russell Offices, Canberra (4 copies)
SO (Science), DJFHQ(L), MILPO Enoggera, Queensland 4051 (Doc Data Sheet
only)
NAPOC QWG Engineer NBCD c¢/- DENGRS-A, HQ Engineer Centre Liverpool
Military Area, NSW 2174 (Doc Data Sheet only)

Air Force
ARDU
STK2
ASCENG
Library

Intelligence Program
DGSTA Defence Intelligence Organisation
SO1-AW Defence Intelligence Organisation

Corporate Support Program (libraries)
OIC TRS, Defence Regional Library, Canberra
Officer in Charge, Document Exchange Centre (DEC), (Doc Data Sheet and
distribution list only)
*US Defence Technical Information Center, 2 copies
*UK Defence Research Information Centre, 2 copies
*Canada Defence Scientific Information Service, 1 copy
*NZ Defence Information Centre, 1 copy
National Library of Australia, 1 copy

UNIVERSITIES AND COLLEGES
Australian Defence Force Academy
Library
Head of Aerospace and Mechanical Engineering

OTHER ORGANISATIONS
NASA (Canberra)
AGPS

OUTSIDE AUSTRALIA

ABSTRACTING AND INFORMATION ORGANISATIONS
INSPEC: Acquisitions Section Institution of Electrical Engineers
Library, Chemical Abstracts Reference Service
Engineering Societies Library, US
Materials Information, Cambridge Scientific Abstracts, US
Documents Librarian, The Center for Research Libraries, US

INFORMATION EXCHANGE AGREEMENT PARTNERS
Acquisitions Unit, Science Reference and Information Service, UK
Library - Exchange Desk, National Institute of Standards and Technology, US
National Aerospace Laboratory, Japan '
National Aerospace Laboratory, Netherlands

SPARES (13 copies)

Total number of copies: 65

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF
DOCUMENT)
2. TITLE 3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
Functions for Writing and Reading Time History Data CLASSIFICATION)
Document (8)]
Title (9)]
Abstract (8)]
4. AUTHOR(S) 5. CORPORATE AUTHOR
Geoff Brian Aeronautical and Maritime Research Laboratory
PO Box 4331
Melbourne Vic 3001
6a. DSTO NUMBER 6b. AR NUMBER éc. TYPE OF REPORT 7. DOCUMENT DATE
DSTO-GD-0183 AR-010-55% 4. General Document June 1998
8. FILE NUMBER 9. TASK NUMBER 10. TASK SPONSOR 11. NO. OF PAGES 12. NO. OF
M1/9/336 A70-092 COPSHQAC 88 REFERENCES
6
13. DOWNGRADING/DELIMITING INSTRUCTIONS 14. RELEASE AUTHORITY

Chief, Air Operations Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE CENTRE, DIS NETWORK OFFICE,
DEPT OF DEFENCE, CAMPBELL PARK OFFICES, CANBERRA ACT 2600

16. DELIBERATE ANNOUNCEMENT
No limitations

17. CASUAL ANNOUNCEMENT Yes

18. DEFTEST DESCRIPTORS

data transmission, functions, flight characteristics

19. ABSTRACT

The manipulation of time history data is one of the most common activities conducted when analysing
aircraft flight behaviour and performance, and as a result there exists a multitude of data formats
individualised for specific applications. Air Operations Division (AOD), of the Defence Science and
Technology Organisation, have chosen to support two time history data formats defined by NASA
Dryden Flight Research Center for development of flight behaviour and performance applications. A
suite of functions for writing and reading the selected NASA time history data formats have been
developed at AOD. These functions may be incorporated into analysis applications to reduce
development time for new software, and to improve the sharing of data between applications.

Page classification: UNCLASSIFIED

