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Executive Summary 

Characteristics of ground clutter in stationary and airborne radar systems is studied herein. 

Both the monostatic and bistatic configuration are considered. The focus is on how the 

clutter characteristics are affected by the manner in which observation is performed. The 

factors considered include the transmitted waveform, pulse compression, radar platform 

motion, antenna pattern, and system geometry. 

The analysis starts with a brief review of the space-time processing. This review also 

shows the manner in which clutter estimation is involved in the space-time processing. The 

basic model for the clutter analysis is then presented. It is followed by the derivation of the 

clutter autocorrelation function for three cases, namely, clutter observed from a stationary 

monostatic radar, from an airborne monostatic radar, and from an airborne bistatic radar. 

It should be pointed out that, in this study, no consideration is given to the variation 

in clutter strength due to the different incidence and observation angles. However, this 

problem cannot be solved until a constant Gamma model is developed, and verified through 

experiment, for the out-of-plane clutter in bistatic configuration. The assumption about the 

scatterer spectrum may also be relaxed to allow for the derivation of clutter process from 

basic principles, especially for the derivation of non-Gaussian clutter. 

The goal of this effort is two-fold. First, through the analysis of the effects of the system 

parameters on the clutter characteristics, criteria for secondary data selection and for signal 

design in space-time processing can be developed. Another application of this analysis is that 

it provides as a basis for the development of the space-time processing for bistatic/multistatic 

radars. A preliminary study is presented in this report to show how the multistatic case 

departs from its monostatic counterpart. The procedure for further development is also 

discussed. 
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Chapter 1 

Introduction 

Detection of slowly moving objects close to the ground or sea surface by means of an airborne 

radar is seriously impaired by clutter returns. These returns exhibit Doppler shift which 

varies with the velocity of the radar platform and the direction of the antenna beam. In 

addition, even absolutely stationary clutter has a Doppler spectrum due to the fact that 

reflections of scatterers from different parts of the beam have different Doppler shifts. 

Clutter cancellation is effectively achieved by filtering out the portion of the Doppler 

spectrum occupied by the clutter return. However, the target may also be eliminated in 

the process if Doppler is the only condition used to distinguish the clutter and the target, 

since the sidelobe clutter may overlap the target. This problem is encountered by the tradi- 

tional Moving Target Indicator (MTI). In contrast, adaptive space-time processing further 

distinguishes the clutter and the target return in the angle dimension by employing arrays 

of sensors. Thus, by assigning appropriate weights to the sensors, the notch of the clutter 

cancellation filter is placed along the line where the clutter lies in the angle-velocity plane. 

To select the weights to the sensors, it was shown that the weights which maximize the 

signal-to-clutter-plus-noise ratio (SCNR) are related to the clutter covariance. In practice, 

however, the clutter covariance is substituted with its estimate when forming the weights, 

since this quantity is generally not known a priori. This estimate is obtained from clutter 

samples in real-time. As a result, space-time processing greatly improves the output signal- 

to-noise ratio with minimal a priori information about the changing environment. 

Numerous research efforts from both the radar and the sonar communities have been 
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devoted to the analysis of space-time processing. Development of this scheme still lacks in 

two areas, however. First, there are few studies for the bistatic/multistatic systems in the 

open literature. This type of system configuration consists of one or multiple transmitters 

and receivers that are separated in space. The advantage is the decreased vulnerability 

over its monostatic counterpart; nevertheless, the increased complexity in system geometry 

introduces difficulties for effective realization and analysis. 

Another area of the space-time processing scheme that requires further investigation is 

how the performance is affected by the clutter statistical estimation. This question is of 

concern especially when spatial averaging is involved in the clutter estimation, since clutter 

from different locations may not have the same spectrum. 

In this research effort we consider the aforementioned two problems, but the emphasis is 

on the study of the problems associated with clutter estimation. To set the stage for later 

development, we give in the following a brief review of how the space-time processing was 

derived for the monostatic system. In Section 2 we describe the assumptions and method- 

ology used in analyzing the clutter statistical characteristics. In Chapter 2, we study the 

clutter characteristics as observed from a stationary monostatic system, an airborne mono- 

static system, and an airborne bistatic system. In Chapter 3, we examine how the Doppler 

spread in the ground clutter affects the clutter spectrum and clutter correlation function. 

A preliminary study of space-time adaptive processing for bistatic/multistatic is given in 

Chapter 4. Chapter 5 discusses the results. 

1.1    Space-time processing in monostatic radar system 

In this section we briefly review the manner in which space-time processing was derived for 

the monostatic radar system. The treatment follows closely to that given in [1]. 

Filtering of the received signal to improve the signal-to-clutter-plus-noise ratio is essential 

to the detection of a moving target close to the ground or sea. However, schemes which 

involve processing only in the time or the frequency domain are ineffective; they may remove 

both the clutter and the target when the sidelobe clutter exhibits the same Doppler as the 



target. This situation is illustrated in Figure 1.1, where v and V are the speed of the radar 

platform and of the target, respectively, (p and 0 are the azimuth and the depression angles, 

respectively, and A is the wavelength. For simplicity, we assume the depression angle is small. 

In most cases, the clutter and the target can be further distinguished in the angular 

dimension, as depicted in Figure 1.2. This figure shows that the added degree of freedom 

in clutter processing enables one to avoid the problem of rejecting both the clutter and the 

target. Clearly, the angular information can be obtained when an array of sensors is used. 

Suppose that the echo from a target is received by a set of N sensors. Let each sensor 

yield A' temporal samples of the received signal such that a total of L = N x A' samples are 

obtained at the receiver. Further assume that the sampling is performed at the I/Q channel 

output. Denote the entire sample data set by the column vector s = [si s2 • • • SL]
T

, where 

Sk.k = 1.2. •••,£ is the kih signal sample and the superscript T denotes the transpose 

operation.   Similarly, denote the noise vector by nc = [n\ n? • • • ni]T.   Further, let M ne 

denote the noise covariance matrix. The detection of the presence of a target is by putting 

the received vector through a filter with weights w — [w\ ir2 • • • wi]T. 

The output signal-to-noise ratio of the filter is given by 

|2 

(1.1) 
\wHs 

wHMncw 

where H denotes the Hermitian operation. Using the Schwarz inequality, it can be shown 

[1] that <P is maximized by 

w = kM-^s (1.2) 

where k is a constant not equal to zero. It can also be shown [1] that the weights given by 

(1.2) maximize the detection probability, at a given false alarm rate, in a Gaussian noise 

environment. 

Realization of (1.2) requires the knowledge of Mnc. Since M„c is seldom known a priori, 

it needs to be estimated. Denote the estimate of Mnc by M„c. Thus, the weights to the 



Frequency 

Figure 1.1: Clutter Doppler spectrum for airborne monostatic radar. 
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Figure 1.2: Clutter in the angle-Doppler space 



sensors are actually calculated from 

w = kMn
Xs (1.3) 

There are two methods commonly used for the estimation of the clutter covariance matrix. 

One is to use the sample covariance matrix, which is the maximum likelihood estimate for 

the Gaussian clutter. Another approach is the maximum entropy method (MEM), which 

involves the estimation of the clutter power spectrum. With either method, spatial averaging 

across several range cells is generally to increase the available samples, under the assumption 

that the clutter is homogeneous in a close neighborhood. However, clutter samples obtained 

from different range cells correspond to clutter return from different range, while clutter 

returns from different range may not have the same Doppler spectrum due to the factors 

previously described. The geometry effects on the matched filter output due to a point target 

was analyzed in [2]. In the next chapter we will consider the factors that affect the clutter 

statistical characteristics. 

Another part of the realization of (1.2) is the choice of s. This choice has the effect of 

canceling out the undesired interference and is called a steering signal. To illustrate the use 

of steering signals, consider the following. Assume the array is linear with sensor element 

spacing /. Then, the relative phase of the fcth sensor due to a signal arriving at an angle ip 

with respect to the array normal is given by 

6k = Mk-l)ls.n(pk = 1^N (14) 

The above relationship indicates that signal arriving in different directions induces different 

relative phases among the sensors . This feature is exploited by adjusting the phases of 8 

to tune out the undesired interference. In Chapter 5 we present a preliminary study of how 

the above analysis can be extended to the multistatic case. 

1.2    Basic model for clutter analysis 

In this section we discuss the assumptions and methodology commonly adopted in the lit- 

erature on the analysis of clutter. This consideration provides us with a basis for the devel- 



opment of a statistical description of the clutter, to be used in our study of the estimation 

performance and the effects on the space-time processing. 

The most adopted assumption about clutter is that the clutter is a collection of indepen- 

dent point scatterers. The number and reflectivity of the scatterers are then modeled as 

random numbers. The appropriate assignment of the underlying probability distribution for 

different types of terrain have been the subject of many research efforts. The occurrence of 

a scatterer in time is generally assumed to be governed by Poisson process, e.g., in [3], This 

assumption leads to Gaussian clutter by further assuming that the number of scatterers is 

large. Other models for the number of the scatterers were also proposed in the literature. 

In particular, a recent paper [4] shows that clutter of Spherically Inraiant family can be 

obtained by using Poisson mixture distribution. 

There are system factors which affect clutter characteristics. Clearly, the ground area 

illuminated depends on the transmitting and receiving apertures and the system geometry. 

The size of a resolution cell also determines how many scatterers contribute to the clutter 

return [-5]. Furthermore, the clutter spectrum is a function of the relative motion between 

the scatterers and the radar platform. Finally, there is the effect of the relative position of 

the scatterers and the radar platform, which affects the strength of the reflections, as well as 

the location and shape of the clutter spectrum. A rather thorough treatment on the effects 

of these factors can be found in Middleton's work [6]-[10]. 

Our analysis will differ from the previous work in two aspects: we will include pulse 

compression and give an explicit description of the geometry relationships. In modern radars, 

pulse compression is used to improve the resolution capability. Pulse compression is achieved 

through raising the bandwidth of the signal by modulation, at transmission, and matched 

filtering, at reception. As a result, the samples available, i.e., the output of each range 

resolution cell, are the result of matched filtering. Thus, it is of interest to know how 

the estimated clutter characteristics are subjected to change due to matched filtering, as 

compared to using samples from sampling the received signal directly. 

Another issue which is generally overlooked is an explicit derivation of the geometry re- 

lationships.  Rather than giving a set of equations to describe the geometry, we will solve 



them explicitly and discuss the implications.   This will lend some insight as how system 

performance varies with geometry. 

Specifically, we will assume that the transmitted signal is a periodic pulse sequence. Re- 

flection from the ground is modeled as a doubly-spread return [11]. This is a modification 

to Klemm's approach used in [12], where the clutter from one range cell is modeled as a 

Doppler-spread return. One recent work adopted a similar approach [13]. The clutter re- 

turn is assumed to be the superposition of reflections from a number of independent point 

scatterers. At any instant, the region from where the scatterers contribute to the clatter 

return corresponds to the extension of one range resolution cell, which is obtained from pulse 

compression. The spatial distribution of the scatterers is governed by a probability density 

function. The number, n, and the reflectivity, g, of the scatterers are modeled as random 

numbers. The strength of the reflections also depend on the antenna transmit pattern GT 

and receive pattern GR, the transmitted waveform s(t), and the distance the signal traveled. 

We further have the following assumptions. First, the terrain is assumed to be flat [14]. 

The range of depression angle of interest is assumed small such that the range resolution 

is determined by the signal pulse duration [15]. Range ambiguities are not considered at 

present analysis. The probability density function describing the location of the scatterers 

does not change within the observation interval. The fluctuation of the reflectivity of the 

scatterers during the observation interval can be modeled as a wide-sense stationary process. 

The analysis will concentrate on how the clutter characteristics vary across range cells, i.e., 

a quantified description of the change across range cells. We will identify how the observed 

clutter characteristics are subject to change due to the transmitted waveform, the manner in 

which the received signal is processed, platform motion, different shapes of antenna pattern, 

and system geometry. Finally, the analysis will cover both the monostatic and bistatic radar 

svstems. 



Chapter 2 

Observation of Clutter Characteristics 

In this chapter we will study how the clutter characteristics vary as a function of the system 

parameters, including the transmitted signal, pulse compression, radar platform motion, 

antenna pattern, and system geometry. The analysis starts with an examination of the clutter 

characteristics when observed from a stationary monostatic radar platform, and arrives at the 

generalized case where the radar platform is airborne and bistatic. The derivation is based on 

the point-scattering model, by which the clutter return is written as a linear superposition 

of the reflections from point scatterers. The secondary scattering effect is assumed to be 

negligible; the occurrence of the scatterers is then assumed to be governed by the spatial 

Poisson process. 

2.1     Clutter observed from a stationary monostatic sys- 
tem 

In the following we analyze the clutter characteristics when it is observed from a monostatic 

radar which is monostatic and is mounted on top of a stationary tower. The derivation is 

based on the point-scattering model where the clutter return is written as a linear superpo- 

sition of the reflections from point scatterers distributed on the ground. 

In this system, position of a point on the ground can be specified, relative to the radar 

site, by giving the height h of the platform and the azimuth angle <p and distance R of the 



point. The projection of R on the ground is called the ground distance Rg, 

Rg = VR2 - /i2. (2.1) 

For convenience, we assume that the distance is measured in terms of the wave propagation 

time. The depression angle 9, measured from the local horizontal of the platform, positive 

downward, can be obtained from 

9 = cos"1 %. (2.2) 
R 

The scenario considered and the relationships of the parameters are illustrated in Figure 2.1. 

The clutter return is assumed to be a linear superposition of the reflections from point 

scatterers distributed throughout the illuminated area. Denote by DT the region swept 

by the transmitted pulse from the minimum to the maximum detection range. Using the 

subscript k to denote the quantities attributed to the fcth scatterer, the total reflection from 

the scatterers in Dr can be written as 

Nd   - 
rdt) = E IfrGrto, Ok)GR(<pk, 6k)s(t - 2Ä0, (2-3) 

where X<t is the total number of scatterers in DT. Let td be the signal round-trip travel time 

to some point in the range resolution cell Dc under consideration: also, denote the correlation 

operation by <£. The clutter return observed in Dc is given by 

"c(M = { E %G
T{^Ok)GR{ipk,6k)S(t - 2Rk) J ® s(t - U). (2.4) 

Denoting the auto-correlation function of s(t) by />,(•)> 

P,(T)= I" s(t)s*(t-T)dt, (2.5) 
J—oo 

the expression (2.4) can be written as 

Nd 

*c{U) = E %kGT(<Pk,Ok)GR{<pk,Ok)p.(U -2Rk). (2.6) 
k=0Kk 

The clutter correlation is defined as 

Mnc(tut2) = E[nc(t1)n:(t2)). (2.7) 

10 



Figure 2.1: Geometry relationships for a stationary monostationary radar 
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The evaluation of (2.7) requires the joint probability distribution of the number, the location, 

and the reflectivity of the scatterers. For this purpose, we have the following assumptions. 

First, the occurrence of the scatterers is assumed to be governed by a spatial Poisson process 

[16].[17]. Due to the fact that an illuminated area usually consists of a number of regions 

having different scattering nature, e.g., patches of sand, vegetation, and artificial objects, 

we assume that the illuminated area can be divided into Nr such regions and the intensity 

function of the Poisson process, fic(R3^), can be written as 

Hc(R3,<f) = Hci   tot{R]n<p)eAiyi = l,---,Nr, (2.8) 

where ,4, is the i'th region in DT. It follows that the scatterers in each region are uniformly 

distributed when conditioned on a fixed number of scatterers [16], with the mean value 

//C1|.4,|. where \A{\ is the size of A>. Further, we assume that the scatterers are statistically 

independent of each other, the number of the scatterers is independent of the scatterer 

reflectivity and, in each A„ there is a correlation function /»,.,-(•) describing the fluctuation 

of the reflectivity of the scatterers, i.e., 

EM'i)tf(*2)] = P,,-(«2-ti)*u, (2-9) 

for the A-th and /th scatterers in A,. 

There is one more issue to be addressed before we can substitute (2.6) into (2.7) to evaluate 

the clutter correlation. The problem arises when the time axis of n{tx) and n(t2) has different 

origins. For example, this is the case when n(rx) and n{t2) are obtained from different pulses 

of a transmitted pulse train. Let the difference in time origins be Td, with n(t2) having a 

later time origin. Then, denoting by Dv and DRg the domains of the depression angle and 

the ground distance of the scatterers, respectively, and by Nc the number of A, that fall 

within Dc. we have 

Mne(t1,*a) = E^.-P,.ä(*2-*i)/D    /      \GTM)GRM)\
7 

,•_! JLf<f.i JURg.' 

~^Ps(t2 -Td- 2R)P;{U - 2R)dRgd<p. (2.10) 
K 
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In the above expression, the integration with respect to Rg can be changed to with respect 

to R by using (2.2), i.e., 

dRg = sec 9dR. (2.11) 

Also, the integration interval Dc can be extended to infinity, since the product ps(t2 -Td — 

2R)p"s{tl - 2R) is negligible outside of Dc; then, 

Unc(tut2) = I>c.7W(«2 - '») /      /    \GT(<PJ)GR(Y:9)\
2 

sec# 
-ßT^Ca ~ ^ ~ 2i?K(<i - 2R)dRd<p. (2.12) 

Assume that the approximation of the factor secO/R4 with a constant sec On/Rjj, 

0D = cos"1 -x-— , (2.13) 

within Z)c does not result in appreciable error. Then, 

sec On f      f °° 
n£>     i=l •/°*».i ■'00 

■Ps(t2 -Td- 2R)p\(U - 2R)dRd<p. (2.14) 

Also, assume that the antenna patterns are approximately constant with respect to R within 

Dc. such that 

\GT(<P,*)\*\GT(*0D)\ (2.15) 

and 

\GR{<p,6)\ = \GR(*,eD)\. (2.16) 

It follows that 

sec On NA t 
A/n«(*i,<2) = -är-ZwiAh - U) /    \GT(<P,OD)GB(V,OD)? 

■ r Ps{t2 -Td- 2R)p'(t1 - 2R)dRdy. (2.17) 

Since the integral involving the two auto-correlation functions in (2.17) can be written as 

r Ps(t2 -Td- 2R)p]{ti - 2R)dR = 2 {Pt{t2 - U - Td) ® ps(t2 - r, - Td)},       (2.18) 
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we have 

sec On 'V-A /■ 

• W<2 - <i - Td)p-S(t2 -tx- Td)} . (2.19) 

The clutter power spectrum Mnc{-) is the Fourier transform of Afnc. Denote the Fourier 

transforms of pg(-) and s(-) by Vg{-) and S(-). respectively. From the fact that 

/oo I   roo 2 

{Ps(x) ® />,(*)} e-^'A =   /    p,(x)e-»*vxdt (2.20) 
•oo K—oo 

and 

r/>s(o-)e-^^x = |%)|2, (2.21) 
J—oo 

we have 

*<"«(/) = ^rE^{PtAf) ® |5(/)|4} /     |Gr(9,*D)G*fo*D)|%.        (2.22) 

2.2    Clutter observed from an airborne monostatic sys- 
tem 

In this section we generalize the previous analysis by assuming the radar platform is airborne. 

Through this examination, the effects of the relative motion between the radar platform and 

the illuminated scatterers on the observed clutter characteristics will be clear. 

The relative motion between the radar platform and the scatterers induces Doppler shift 

//. Explicitly, v is a function of the platform speed u, the direction of v, the transmitted 

wavelength A, and the location of the scatterer. Let (<pv,öv) be the direction of v; then, 

v = — sin(v? - <pv) cos(0 - ev). (2.23) 

Comparing with (2.3), where the radar platform was assumed to be stationary, the reflections 

from the scatterers in Dr becomes 

rc(t) = E %GT{<Pk,9k)GR{<pk.0k)s{t - 1Rk)e?^-m*dRa. (2.24) 
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Suppose the return from range ring Dc is obtained by correlating the received signal with 

s(t - tj)exp[j'2TrfD(t - td)], where td is the travel time to some point in Dc and fD is the 

Doppler shift with respect to a point in Dc. Consequently, the observed clutter return is 

given by 

nc(U) = I E %GT{?k, 0k)GR{*k, 6k)s{t - 2Rk)e
j2*^t-2R") \®s(t- id)eJ'2^('-<fi25) 

Denote the time-frequency correlation function of s(t) by $s(-, •), 

*s(r'f)=II s(t+ds* (' ■ 0 e~j2Kftdt (2-26) 
The expression (2.25) becomes 

"cC«*) = £ %GT(<Pk,0k)GR{<Pk,0k)$,(ti - 2Rk,fD - ^)e^^-"*)^-2^).        (2.27) 
k=0Kk 

With the same assumptions and procedures used in deriving (2.17), we have 

sec 0n t 
M.e(*i,<2) = -^I>c,,7W(*2--*i) /     \GT(<P,0D)GR(<P,0D)\

2 

■ I" $.(t2 -Td- 2Ä, fD - !/)$;(<! - 2Ä, /D - i/) 
./oo 

.tMJD-»)(.h-u-Td)dRdy ^228j 

Due to the dependence of i/ on R, the right-hand side of (2.28) is not a function of (t2 — U) 

only: this indicates a non-stationary process. Then, it is of interest to find out if there are 

cases where the nonstationary effect is not significant. 

Consider the effect of a small deviation AR of Rp on 9. The corresponding change of 9, 

A0, can be found from the relationship 

h = (R + AR) sin(0 + A6) = R sin 9. (2.29) 

Using the small angle approximation 

sin A9 S A9 (2.30) 

and straightforward manipulation of (2.29), we have 

M^eWEm- <2-31> 
15 



In practice, it is usually true that the width of the range ring is much smaller than the 

minimum detection range; in other words, AR/R <C 1, for all R. Thus, 

_ A   D 

A0 = tan0-=p. (2.32) 
R 

With the approximation 

cosAfl^l, (2.33) 

the value of the cosine factor around (9D — 9V) can be written as 

cos(0D + A9 - 9V) = cos(9D - 9V) - sm(9D - 9V)A9. (2.34) 

From (2.23), (2.32) and (2.34), the Doppler shift in the reflections from the scatterers 

located near RD can be approximated by 

v = ^- sin(v? - (pv) COS(6D - 9V) + — sin(</> - <pv) sin(9D - 9V) tan 9D——. (2.35) 
A A tiD 

It can be seen from (2.35) that, by denoting the first term on the right-hand side by VQ and 

the second term by Av\ the quantity Av can be ignored when 

—i -i- ——'- = tan(0£, - ö^tanöß—— < 1. (2.36) 
cos(0£> — vv) KD 

Therefore, it is sufficient that 

tan(0D - 9V) tan 9D < 1 (2.37) 

for (2.36) to be true, e.g., 9p < x/4 is sufficient when 9V = 0. The clutter correlation (2.28) 

becomes 

Kb   ,=i 

• /     \GT(^9D)GR((pM\2ej^-^i^-T^ 
JDVji 

rco 
■       *.(t2-Td-2RJD-v)*;{U-2RJD-v) (2.38) 

Joo 

In the rest of this analysis, we consider only the case where Av <C VQ. 
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In a manner similar to the derivation of (2.19), we have 

Kb   ,=i 

• /   \GT(^eD)GR(^eD)\2ej^D-"D)^-ti-T'') 

■ {*.(** -h- Td, fD - v)*;(t2 - h - Td, fD - v)} d<p. (2.39) 

The clutter power spectrum is readily obtained by taking the Fourier transform of the right- 

hand side of (2.39). From the fact that 

2 

f° {#.(*, y) © *.(*• y)} e-j2*wxdx = |jT *.(*,y) (2.40) 

and 

we have 

J~ *,(*, y)e-^*ifa = 5 (to + |) 5* (u> - |) , (2.41) 

sec 0ß v 9o)f 

■ I?.* (f ~ ^T^) ® |5(/)5 (/ - (fD ~ ^))|2} ^V. (2-42) 

2.3    Clutter observed from an airborne bistatic system 

In the following we consider the case where the radar platform is airborne and bistatic. The 

effects of geometry on clutter will be examined in detail. 

The Cartesian coordinate system is used to describe the three dimensional bistatic geome- 

try. Let the transmitter site be the origin; this choice is arbitrary and will be discussed later. 

Let the local horizontal plane of the transmitter be the x-y plane. The vertical line passing 

through the transmitter is chosen to be the z-axis, and the intersection of the x-y plane 

and the vertical plane containing the transmitter and the receiver is chosen to be the x-axis; 

y-axis is defined according to the right-hand rule. Further, assume that the depression angle 

is measured from the x-y plane, positive downward, and the azimuth angle is measured from 

y-axis, positive clockwise. 
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For simplicity of expression, measurements relative both to the transmitter and to the 

receiver are used. In particular, we assume that the angle measurements relative to the 

receiver are obtained by translating the origin from the the transmitter site to the receiver 

site. The same symbols for the angle and distance measurements used in the monostatic 

case are kept for the present analysis; however, subscripts T and R are added to indicate 

that the quantity is measured relative to the transmitter or the receiver. For example, RT 

is the distance of a point from the transmitter and Rj is the ground projection of Rj. 

RTg = ^R\-h2
T (2.43) 

The symbol R is now used to denote the total distance the signal traveled: R = RT + RR. 

Finally, let L denote the distance between the transmitter and the receiver. The scenario 

considered, together with the relationships of the parameters, is illustrated in Figure 2-2. 

Specifically, the quantities RR, <PR and OR can be expressed as functions of Rj, <pr and 9j 

by knowing the relative positions between the transmitter and the receiver. Let depression 

angles of the receiver with respective to the transmitter be ORT; clearly, the azimuth angle 

of the receiver relative to the transmitter is x/2. From the law of cosines, 

RR = [R\3 + L2 cos2 eRT - 2RTgL cos BRT sin y>r + h2
R] ^. (2.44) 

Using the relationships 

and 

it can be shown that 

ind 

RT sin OT = RR sin 9R + L sin ORT (2.45) 

RT cos <PT COS OT = RR cos <?R cos OR, (2.46) 

OR = sin"1 [(RT sin 0T - L sin ORT)/RR] (2.47) 

ipR = cos x URT COS <PT cos OT [RT cos2 OT + L2 cos2 ORT 

• +2RTL cos OT COS ORT cos((fT — VRT)]"    } • (2.48) 
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Receiver 

Ground 

Figure 2.2: Geometry relationships for the airborne bistatic radar 
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In comparison with the clutter model (2.25). the factor R~2 representing the propagation 

loss becomes (RTRR)'
1
- Also, the Doppler shift depends on the bistatic geometry. Let the 

transmitter's speed relative to the ground be IT, in the direction (ipVT,9VT), and the receiver's 

speed relative to the ground be VR, in the direction (<pVR,QvR)- The resulting Doppler shift 

is given by 

t'T" 1!D 

// = —- sin(^r - Vvr) cos(0T - 0«.-T) + -j- sin(y?Ä - <^t.Ä) cos(0ß - 6VR). (2.49) 

Hence, the clutter return is written as 

nc(t) = {fl^^Grt^^^^ 
®s(t-tD)ej2'jD^-tD) (2.50) 

Then, similar to the monostatic case, we assume that the reflectivity of the scatterers are 

statistically independent from the number and from the location of the scatterers, and the 

occurrence of the scatterers is governed by the non-homogeneous spatial Poisson process. 

The bistatic clutter correlation function becomes 

v»AU.t2) = £j*e,-/U*2-«i)/n    r \GT(*T,eT)GR(<pR,eR)\2     * 
,=1 JD*T,i •/-» \KTKR) 

■$s(t2 -Td-R,fD- !/)$:(*, -RJD- V) 

.eMfD-^)(h-h-Td)dR^d(pT (251j 

It should be noted that, in (2.51), the integration over RT9 is due to the choice of the 

transmitter site as the origin of the coordinate system; the integration over RT9 can be 

changed to over R. Define the factors 

A = L cos 0RT sin (pj (2.52) 

and 

B = h2
r-h2

R-L2 cos2 0RT. (2.53) 

Using the fact that RR = R— RT and the relationship (2.44), it can be shown that 

RTg = \A(R
2
 + B) + Rj(R2 + B)2-ih2

T(R*-A*)y [2(R2 - A2)], (2.54) 
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for R > '' T + TJL
2
 COS

2
 6RT + h2

R, and 

Är, = [ä{R
2
 + B)± Ry/(R* + B)>-4h}(R*-A>)y [2(R2 - A2)\. (2.55) 

We have the following observation for the case R < hj + \JL2 cos2 6RT + hR. The region 

R < hr- \JL2 cos2 6RT + hR on the ground is inside the contour defined by the intersection 

of the ellipsoid R = hT + \JL2 cos2 9RT + h2
R and the ground. When the region R < hr + 

yjL2 cos: 9RT + hR is larger than R> hR + ^1? cos2 ORT + Af, it is more convenient to set 

the origiz of the coordinate system at the receiver instead of the transmitter. In such regions, 

there are two intersections with the constant range contour in the transmitter's line of sight 

and may result in ambiguities; we only consider the case where R > hr + JL2 cos2 9RT + hR. 

The analysis can easily be extended to the case where R < hj+JL2 cos2 0Rj + hR by adding 

the additional clutter return. It can be shown that 

^ = 2RTRR [(R2 + Bf - 4hT(R2 - A2)] "1/2. (2.56) 

More discussions on RT, RR and RT3 are given in Appendix A. 

From the foregoing derivation, the clutter correlation function (2.51) can be written as 

U,«''l,'2) = E//C),7W(*2 - <l) / r \GT(<PT,0T)GR(<pR,eR)\2 

1      $s(ti -Td-R,fD- !/)*;(<! -RJD- l/)e>*V*-")to-t*-T') 
{RTRR)

2 

■2RTRR [(R2 + B)2 - Ah2
T(R

2 - A2)] ~l/2 dRd<pT. (2.57) 

For simplicity of notation, define the quantity 

Q = 2RTRR [(R2 + B)2 - 4h2
T(R

2 - A2)] ~1/2. (2.58) 

Thus, 

UnMuh) = E^,,^,(<2 - U) I       r \GT(^0T)GR(ipR,eR)\2 r®  v. 
i=l JDVT,i J-oo {KTKRY 

•$,(h -Td-RJD- !/)*;(*! -R,fD- v)e^^-^^-tx-Td)dMpT^j^ 

Suppose Dc is short enough that a constant RQ can be used in calculating the factor 

Q/{RTRR)
2
 without causing appreciable error. Let RTD,RRD and QD denote the quantities 
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obtained by substituting RQ into (A.l) and (A.3) of Appendix A and (2.58), respectively, 

e.g.. 

QD = 2RTDRRD [(R
2

D + B)2-ih2
T(R

2
D-A2)]~l/\ (2.60) 

Then. 

UnAhJt) = X>,,/w(f2 - ti) L      ,g 
Q°   ,2 r \GT{*T,0T)GR(<pR,0R)\2 

,=1 JDVT,i {RTDRRDY J-™ 

■$3(t2 -Td-R,fD- £/)*;(*! -RJD- vW^o-W^-^dRdvTp.Ql) 

Similar to the monostatic case, we assume that the antenna patterns are insensitive to the 

change of R within Dc\ let 6TD and 6RD denote the depression angles evaluated at a constant 

RD in Z)c, e.g.. 

6TD = sin"1 £-. (2.62) 

It follows that 

MnAU.h) = Y.M9Äi* - *i) /       ,» Qn    ,2 \GT(-PTMGR(^0R)\
2 

■ r *,(<2 -Td-R,fD- !/)$;(*, -R.fD- V) 
J—oo 

.ei*UD->>)to-ti-Td)dRd(pTm (2.63) 

The expression (2.63) indicates a nonstationary process since v varies with R such that 

(2.63) is not a function of (^ — *i)- The condition under which the Doppler shift can be 

considered approximately constant with respect to R within one range ring was analyzed for 

the monostatic case; the derivation can be extended to the bistatic case. It can be seen from 

the derivation of (2.31) to (2.36) that it is sufficient to have 

tan(0TD - 6VT) tan 0TD t + f^r, ^ * (2M) 

and 

^-''"■sSift.*1 (265) 
For v to be insensitive to the change of R in one range ring consider the factors ARJ/RTD 

and ARR/RRD. It is expected that those two factors are also much less than unity when 

22 



AR/R < 1 for one range ring for fairly general geometry. The change of RT due to a small 

change of R is governed by the differentiation of RT with respect to R. Using chain rule, we 

have 
dRT _ dRT dRTg 

~dR ~ dhT,~dR' (266) 

From (2.43) and (2.56), we have 

^ = 2RTgRR \(R
2 + Bf - AhUR2 - A2)]"1/2. (2.67) 

It follows that 

Ifr  = 2%RR '(i?2 + B)2 ~ 4h2AR2 " ^1   1/2 dR- V-68> 
Substituting (A.3) from Appendix A for RR, we have 

CIRT      RT, 

RT       RT 

1 - 2A2/R2 - B/R2  A/R 
?2 f ■ (2.69, 

.(1 - A2/R2)J{1 + B/R?)2 - Ah2
T/R?{\ - A2/R?)     1 - A2/R 

Assume that the square of the ratios hr/R, hR/R and L/R are much smaller than unity; 

it follows that A2/R2 and B/R2 are negligible compared to unity and RT /RT is close to 

unity. Consequently, 
dRT      /,      A\ dR 

*7 = I1" R) 7P (2-70> 
From the definition of A given by (2.52), we have \A/R\ < 1. Then, we conclude from (2.70) 

that ART/RT < 1 when AR/R < 1 within one range ring. The analysis of the condition 

for ARRg/RR to be much smaller than unity follows similar procedure as that for ART /RT: 

it is given in Appendix A. 

The factors |tanörD| and |tan#/?J are smaller than unity by the previous assumptions: 

therefore, it is sufficient to have |tan(0rD - 0VT)\ and |tan(^rD - 9„T)\ to be smaller than 

unity for (2.64) and (2.65) to be true. Assume that \ta,n(0TD - 0^)1 and |tan(0rx) - 0„r)| 

are smaller than unity in the analysis to follow. Let vn denote the quantity 

vD = y sin(^r - w) cos(0rB - 0VT) + y sm((pR - <pVR) cos(9Rj} - 6VR). (2.71) 

With the above analysis, it is seen that v is insensitive to the change of R within one range 

ring when the assumptions are true, such that 
NA f On 

Mnc{h.t2) = YfctPiAh -h)jDv t {R*RRD)2 \GT{<PT,eTD)GR{<pR,eRD)\2 
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• {$s(t2 -U- Td. h - VD) ® Wh -U- Td, fD - uD)} 

.eJ*UD-»D){h-ti-Td)(lxpT (2.72) 

It follows that 

Mnc(f) £ *,.■ JDv t {*>,,■ (/ - lR-^R) ® MM (/ - UD - ^))|2} 

•  p 
Q°   „ |GT(^AI,)GJI(Vä,^I,)I

8
^ 

(i?rDÄßD)2 
(2.73) 

2.4    Detection of target in clutter 

The effects of ground clutter return on the detection performance in both the space-time 

and time domain processing are considered in the follwoing. In particular, we examine the 

SCNR at the receiver output. This quantity is also proportional to the detection probability 

in the Gaussian interference case. 

The receiver output SCNR was given by (1.1), and its maximum is attained by using the 

weights specified by (1.2). As a result. 

£ = sHBrn
xs. (2.74) 

Suppose that the thermal noise has power a\ and denote the clutter covariance matrix by 

Rc: the expression (2.74) becomes 

<P = sH (a2J + Re)'* s, (2.75) 

where I denotes the identity matrix and Rc denotes the clutter correlation matrix. Specifi- 

callv, Rr. can be written as 

Hn = 

r a2J + Äco        Rc 
R* all + R 

C\ 

RCN-1 

CO 

•RcN-1 

Oil + Rco \ 

(2.76) 

where each Ac, is the correlation matrix due to the clutter component of the output of the 

array sensors at i pulses apart, and N is the number of the received pulses. In other words, 
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the (k. /)th element of RCi is given by E[nCk(t)n*((< - iT)]. It follows that Rn is not of full 

rank if an = 0 and E[sk(t)s'(t - iT)] = E[sp(t)s*(t — iT)]. When this problem arises, it can 

be avoided by adding a small quantity to the diagnal of An. In the following, without making 

further assumptions regarding the observed clutter characteristics across the array sensors, 

we will only consider the SCNR at the output of a single sensor on a bistatic receiver. A 

more thorough investigation of the utility of (2.39) and (2.72), especially in the context of 

space-time processing, is the focus of the continuing effort. 

The derivation of the SCNR at the output of a single sensor receiver is discussed in detail 

in [3]: 

SCNR = r   2lf1fflm#' (2-77) J-ooai + M^if) 

where Sj(f) is the desired signal from the receiver output. 

The result (2.77) has two important consequences. First, it can be seen that the perfor- 

mance of the optimum receiver is the same as the matched filter when «M*c(/) is displaced 

from $j(f)- Therefore, it indicates that the receiver structure can be simplified with properly 

designed transmitted signal. This subject was studied in detail in the literature, e.g. [5]; 

however, no consideration has been given in the context of space-time processing. 

The second issue associated with (2.77) is when S(f) is wide but V*(f) is narrow, in terms 

of the quantity /p — i/o, i.e., the Doppler spread in one resolution cell. If we can further 

assume that the illuminated ground clutter is homogeneous, it can be seen from (2.73) that 

the area of the resolution cell becomes the dominant factor which affects the receiver output 

SCNR. Specifically, when the the illuminated ground clutter is homogeneous, we can write 

Mnc(f) = ßcf     \P3 (/ - ^~) ® \S(f)S(f - (//, - uD))\^ 

•/p 
Qn   vi IGrfar.°TD)GR(<pR,6RD)\

2d<pT (2.78) 

From the above expression it is seen that, by letting an impulse function to approximate 

Vg{f) and letting a constant to approximate S(f) in the correlation calculation, the integral 

is affected by the geometry factors alone. In the following we give an example to illustrate 

this observation. 
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Example 

In this example we we consider the clutter return in a bistatic system where both the 

transmitter and the receiver depression angles are small. We assume that the transmit 

beam is omnidirectional but the receive beam is narrow with a 3 dB beamwidth of 2deg; 

for simplicity, we further assume that the receive beam pattern is uniform within the 3 dB 

beamwidth and negligible elsewhere. The above assumption about the receive beam is one of 

the two models which are generally adopted in the literature, while Gaussian beam pattern 

is the other one. Thus, we have 

L <w M"
1
»™*»

1
-***=L v£k?*"   (2-79) 

where Dg is the ground intersection of the beam and the distance corresponding to one 

range cell. The quantity on the right-hand side of (2.79) is evaluated along three range 

rings, at the receiver look angle from —n to 7r, while each range ring is specified in terms of 

its eccentricity e, R = L/e. Figure 2.3 shows the geometry of e = 0.4 by having the baseline 

to be 50km and the range ring, the inner circle in the plot, to be 125km. The results are 

plotted by normalizing with respect to the value obtained at <pn = JT/2. Thus, the plots can 

be used for any geometry irregardless of the actual values of R and L. Figures 2.4 to 2.6 

give the results for e = 0.4, e = 0.1 and e = 0.025. respectively. 

From these figures it is seen that the geometry factors have mild to minimal effects on the 

clutter power. This conclusion is consistent with results in the literature where the change 

of illuminated area is considered to be the dominant factor in the variation of the clutter 

power. However, it should be emphasized that the applicability of the results shown in this 

example relies on the vailidity of the simplification that leads to (2.79). 
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Figure 2.3: Isorange Contour at eccentricity of 0.4 
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Figure 2.4: Normalized geometry factor at eccentricity of 0.4 
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Figure 2.5: Normalized geometry factor at eccentricity of 0.1 
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Eccentricity e=0.025 
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Figure 2.6: Normalized geometry factor at eccentricity of 0.025 
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Chapter 3 

Doppler Spread of the Ground 
Clutter in Airborne Bistatic Radar 

This chapter concerns the Doppler spread of the ground clutter in airborne bistatic radars. 

The subject of Doppler spread of the clutter in the bistatic plane was treated in [16]. Here 

we extend the development to three-dimension, assuming flat earth. This assumption is 

useful when the illuminated region on the ground is small such that it can be approximated 

by a plane. To facilitate the analysis, we first derive some results on the three-dimensional 

bistatic geometry. The ground clutter Doppler spread is studied in Section 2. 

3.1    Constant range and constant Doppler contours 

In this section, we show how the intersection of the constant range contour and the ground 

can be described for an airborne bistatic radar, with the assumption of flat earth. The 

illuminated portion of this intersection gives the cross-range dimension of the resolution cell 

on the ground. 

Expressed in terms of the Cartesian coordinate system, the constant range contour in an 

airborne bistatic radar is an ellipsoid given by 

(x2 + y2 + z2)l/2 + [(* - Leos ORT)
2
 + y> + (z-hR + hT)2]lß = R. (3.1) 

Assuming flat earth, the intersection of this ellipsoid with the ground is an ellipse, which can 

be found by setting z = —hj in (3.1). With this substitution and straightforward algebraic 
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manipulations, the expression for the ellipse is obtained as 

(* - df  , y2 

+ 
62 1, (3.2) 

where the major axis is 

R 
°=2 

1- 
(hR-hTf 

R2-L2cos20RT 

V2 r 
1- 

(hR + hTy 
R2 -L2 cos2 ORT 

1/2 

the minor axis is 

6 = 
(R2 -L2cos26RT) 1/2  r 

1 
(hR - hTy 

R2 - L2 cos2 0RT 

1/2 (hR + hTy 
R2-L2cos20RT 

1/2 

the translation in the x-axis is 

L cos 0/ir (x h2
R-h2

T       \ 
V       R2-L2cos2eRT)' 

(3.3) 

(3.4) 

(3.5) 
2       V"     R2-L2cos29RTj 

and sqrtR2 — L2 cos2 6 RT > (Ä/i + ftj) is assumed to insure that the intersection exists. 

Using the definition c = \Ja2 — 62, the location of the foci of the ellipse can be written as 

(-c + r/.O, -hT) and (c + rf,0,-/ir). 

To determine the extent of a range cell, the coordinate of the points on the contour (3.2) 

as function of the transmitter or receiver azimuth angle is needed. Clearly, the points on 

the ground at a given <pr satisfy y = tan^r^- Substituting this relationship into (3.2), we 

obtain the coordinates 

b2d cos2 v?r + aicos v'ry (a2 — d2) sin2 <p? + b2 cos2 y-j 
x = 

a2 sin ifT + b2 cos2 y>r 
(3.6) 

and 

y = 
b2 d sin <PT cos (fT + abtmipr cos ipxy (a2 — d?) sin2 tpj + ^cos2«^ 

a2 sin ¥>r + 62 cos2 (pr 
(3.7) 

where the condition that |y>j| < tan 1(b/y/d2 — a2), when d > a, and x—tan 1(b/y/d? — a2) < 

yT < yr + tan-1(6/\/52_—"ö2), when rf < —a, is imposed to insure the intersection exists. Sim- 

ilarly, the intersection of the receiver line-of-sight with (3.2) can be obtained by substituting 

y = tan ^>R(x — Lg) into (3.2); thus, we have 

a2Lg sin2 ipR + b2d cos2 ipR + ab cos (pRyJ[a2 — (d — Lg)
2] sin2 <fR + b2 cos2 y?fl 

a2 sin ipR + 62 cos2 (pR 
(3.8) 
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and 

b2(d - Lg) sin V?H cos y?ft + a&tan <pR cos (pRy/\a*- {d - Lg)
2] sin2 fR + b2 cos2 <pR 

«/ = a2 sin <pR + b2 cos2 i?R 
, (3.9) 

where the condition that \<?R\ < tan_1(6/^/(rf- Lg)
2 - a2), when (</ - Lg) > a, and JT - 

tan-Hb/y/id-L,)2-^) < <pT < * + Un^ib/^d - Lg)
2 - a2), when (d - Lg) < -a, is 

imposed to insure the intersection exists. 

The derivations in this section are based on the assumption of flat earth. This assumption 

is applicable in practice if the illuminated region is small such that it can be approximated 

by a plane. In the next section we use the results presented here to analyze the ground 

clutter Doppler spread in airborne bistatic radar. 

3.2    Doppler spread in ground clutter 

The previous section gives the formula of the constant range contour on the ground, assuming 

flat earth. The illuminated portion of this countour defines the cross-range dimension of the 

range cell. In the following we derive the Doppler relationships along the aforementioned 

contour. It will be seen that the Doppler of the ground return is both range and angle 

dependent. The ground clutter Doppler spread is then analyzed. 

Assume that the velocity of the transmitter is Vj, in the direction (cos .pvT cos 0yT, sin <pvT cos $vT, 

- sin 9vT). and the velocity of the receiver is VR, in the direction (cos ipvR cos 0vÄ, sin v?vÄ cos $vR, 

- s\n0yR). The resulting Doppler at a point on the ground, (x,y, -hj), can be written as 

fD = -r£-(x cos (pvT cos 0vT + y sin <pvT cos 9yT + hT sin 8vT) 
XRT 

+—£-[(x- Lg) cos tpvR cos 6VR + y sin <pvR cos 0VR + hR sin 0VR), (3.10) 
XRR 

where A is the wavelength. Figure 3.1 to Figure 3.3 show the constant Doppler contours using 

the same scenario as given in [16] but with the restriction of near zero altitude removed. The 

values used are hT = 0AL,hR = 0.21, VT = 100m/s, VR = 250m/s, 9yT = 0vR = 0, and 

A = 0.03m. The unit of range in the figures is normalized with the baseline length. Fig. 

3.1 depicts the case when <pvT = VvR = T/2, while Figure 3.2 depicts the case <pvT = 
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-4-20246 
Down range (Normalized to the baseline) 

Figure 3.1: Bistatic constant Doppler contours on the bistatic plane 
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-6 
-6 -2024 

Down range (Normalized to the baseline) 

Figure 3.2:  Constant Doppler contours on the ground for a bistatic radar with airborne 
transmitter 
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"/'-• r»Ä = ÖÄ-/4. It can be seen from these figures that the Doppler shift varies along 

the ground projection of either the transmitter or the receiver line-of-sight. Consequently, 

collecting secondary data along either direction requires different Doppler compensations 

for each secondary range cell to reconcile with the clutter Doppler shift at the test cell. 

Nevertheless, the ground clutter Doppler spread may still depend on the range and angle. 

In the following we examine the Doppler spread at given transmitter and receiver azimuth 

angles. 

The intersection of the transmitter line-of-sight and the constant range contour on the 

ground was given by (3.6) and (3.7). Substitution of these expressions into (3.10) gives the 

Doppler shift at that point. In other words, Doppler shift at the points on (3.2) is expressed 

as a function of the ranges and ipT. Thus, writing the Doppler shift as fD(R,hT, hR,?T), it 

is easily seen that the maximum change in Doppler shift over the constant range contour, 

within the transmitting beam, can be obtained by 

A/DT=   max  fD{R,hT,hR^T)-   min   fD(R,hT,hR,ipT), (3.11) 

where DBT is the interval of tpr of the transmitting beam. In fact, A/Dr is the ground clutter 

Doppler spread when the cross-range dimension of the transmitting beam is the determining 

factor of the cell length. Likewise, substitution of (3.8) and (3.9) into (3.10) may be used 

to calculate the clutter Doppler spread when the cell length is determined by the receiving 

beam: 

A
/D*=   max   fD(R,hT,hR,<pR)-   min   fD(R,hT,hR,ipR), (3.12) 

<PR€L)BR *PR£L>BR ' 

where DßR is the interval of tpR of the receiving beam. 

In the following we give an example to illustrate how the Doppler spread varies along 

a given direction of the transmitting beam; similar results can be expected along a given 

receiving beam direction. The beam width is assumed to be 4deg and the geometry in Figs. 

3.1 and 3.2 are used. Figures 3.3 and 3.4 show the Doppler spread for <pr = Odeg and 

YT = 45deg. respectively. 

In this section we derived the Doppler shift along a constant range contour on the ground 

for an airborne bistatic radar.    It was shown that the Doppler shift is both range and 
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Doppler Spread 

4 5 6 
Distance (Normalized to the baseline) 

Figure 3.3: Clutter Doppler spread along the direction of <px = 0 deg 
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Doppler Spread 

4 5 6 
Distance (Normalized to the baseline) 

Figure 3.4: Clutter Doppler spread along the direction of tpj = 45 deg 
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angle dependent. The clutter Doppler spread along a given transmitting or receiving beam 

direction was then analyzed. The results were illustrated with an example. In the next 

chapter we examine how the variation in the clutter spread affects the estimation of the 

clutter covariance matrix. 
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Chapter 4 

A Preliminary Study of Space-Time 
Processing for Multistatic Radar 
System 

In this chapter we present some results from a preliminary study of the space-time processing 

for multistatic system. This analysis will provide us with a basis for further development. 

Attention is restricted to the single transmitter case. The extension to a more generalized 

system is straightforward and involves the same concept. 

Optimum processing and the steering signal 

Suppose the multistatic system consists of one transmitter and M receivers. The returned 

signal vector is now given as s = [sjs^ • • • s^]7, where Sm, m = 1,2, • • •, M, is the signal 

sample vector obtained at the mth receiver. The vectors of the noise and the weights of the 

optimum filter can be formed in a similar manner. 

On the one hand, using the Schwarz inequality, the same conclusion can be drawn that the 

optimum filer weights are of the form given by (1.2); on the other hand, a direct realization 

may be prohibitive due to the heavy computational requirement. It is of interest to find out 

the possibility of further simplifying (1.2). 

Assume the interferences from different receivers have zero mean and are uncorrelated 
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?uch that 

Rn = Ehh" = H 

R ■ni « 

0       Rn2 

0 

R I« J 

(4.1) 

where Rk. k = 1.2, • • •, M are the noise covariance matrix of the A-th receiver and 0 is a zero 

matrix. It follows that 

R:' = 

R;1   o 
o   Kl 

o 

Rnlu  -< 

(4.2) 

Substituting the above into (1.2), we see that the optimum weights of each receiver can be 

generated independently. 

The use of (4.2) relies on whether it is appropriate to assume that the noise at one receiver 

is independent from that from the others. In fact, such assumption is applicable when the 

thermal noise is dominant, but it may not be suitable when clutter is the prevailing factor of 

the interference. This is one of the problem to be solved in developing space-time processing 

for multistatic radar. 

There is another problem generally overlooked, namely, the employment of equally spaced 

array sensors. This configuration may not cause difference in the monostatic case, where 

geometry does not change the clutter characteristics. However, the analysis in Chapter 

2 indicates that the bistatic geometry affects the observed clutter characteristics. Conse- 

quent ly, array sensors that are not equally spaced may be more suitable for the application 

of space-time processing in the bistatic/multistatic case. This problem is to be analyzed. 
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Chapter 5 

Discussion 

In this report, we presented an analysis of the clutter characteristics as observed from a 

radar platform of either the monostatic or the bistatic configuration, airborne or stationary. 

This study shows the effects of system parameters, particularly the system geometry, on the 

observed clutter characteristics. However, due to the lack of a suitable model, variation of 

the clutter strength in the out-of-plane geometry in the bistatic radar was not included. This 

problem will be considered further in the next phase of this research effort. 

A preliminary study of adaptive space-time processing for multistatic active radar can be 

found in this report as well. This analysis shows where the problems lie and provides us with 

a basis for further development. It is seen that there are two major factors that need to be 

investigated further in the development of space-time processing for the multistatic system: 

(1) the correlation of the observed interference among the receivers; and (2) the effects of 

system geometry on the observed reverberation characteristics. 

As the analysis shown, the problem of multistatic space-time processing reduces to the 

monostatic one when the interferences are uncorrelated. However, this may not be the case, 

e.g.. when multipath occurs. Then, it is of interest to know if the a priori knowledge of the 

system geometry can be used to reduce the computational burden. It was also seen from the 

study of clutter characteristics that the observed clutter characteristics does depend on the 

system geometry, stationary. Then, the question is how it affects the system performance 

and if it can be rectified. Problem also arises when the actual signal angle of arrival does 

not coincide with the estimated one, or when the actual geometry of the array differs from 
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the one assumed. When such errors occur, the actual signal may be tuned out, instead of 

the intended interference. 

The aforementioned issues are essential to the bistatic/multistatic space-time processing. 

They need to be addressed before an effective system can be implemented. The solution to 

them is the goal of the next phase of this research effort. 
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Appendix A 

Some Results on Bistatic Geometry 

Here we give a detailed derivation of the geometry relationships for bistatic radar.   Some 

special cases are considered for illustration. 

A.l    Relationships among the distance parameters 

From (2.43). (2.54) and (2.55), it can be shown that 

R(R2 + B) + Ay/(R2 + B)2-4h2
T(R

2-A2)y \2(R2 - A2)\ (A.l) RT 

for R>hT + y/L7 cos* 0RT + h2
R, and 

R(R2 + B)± Ayl{R? + BY-lh\{R?-A*y \l{R2 - A2)} (A.2) RT = 

(A.4) 

for R < hj+ JL
2
 COS

2
 ORT + hR. Using the definition that R = Rj + RR. it follows that 

RR = \R(R
2
 - 2A2 -B)- Ay/(R2 + B)2 - 4h2

T(R
2 - A2)]/ [2(R2 - A2)] (A.3) 

for R > hT + yjL2 cos2 ORT + hl, and 

RR = \R(R
2
 - 2A2 -B)T Aj(R2+B)2-4h2

T(R
2-A2)y [2(R2 - A2)] 

for R < hT + y/L2cos29RT + h2
R. 

Differentiating (2.55), we have 

^ = \-2AR(A2 + B)y/(R2 + B)2-4hT(R2-A2) 
dR        I 

[ä
6
 - 3A2R* - (4A2B + B2- 4A2h2

T)R
2 - (A2B2 + 4A4h2

T)]} 
  i-i 

• \2(R2 - A2)2J{R2 + Bf - 4h2
T(R

2 - A2) (A.5) 
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The subtraction in (A.5) only occurs when R < hj + \JL2 COS
2
 ORT + h2

R. Using the results 

for RT and RR, we have 

45p- = ±2RTRR \(R2 + Bf - 4hT(R2 - A2)] ~1/2 (A.6) 

the negative sign only occurs when R < hj + \JL2 COS
2
 ORT + hR. 

Special cases 

Clearly, the parameters for the monostatic case can be obtained by letting L — 0, and they 

are not derived here. When Ar = 0, 

RT = (R2 - L2)/ [2(R-L cos eRTs\nif T)], (A.7) 

RR = [R2 - 2I2cos20RrsinVr + hR + L2 cos2 0RT]/2(R - LcosORTsm<pT),        (A.8) 

RT3=RT, (A.9) 

and 

^ = ^ = W(Ä*_i2) (A,0) 

A.2    Width of the range ring and the distance to the 
receiver 

From the definition that R = RT + RR, we have 

dRR       !      dRT /A 11\ 
lR=1-lR- (A-U) 

It follows that 

Using (2.54), (2.67) and (A.3) in (A.12), we have 

<IRR      \          2(1-A2/R2) 

■t RR      \ 1 - 2A2/Ä2 - B/R2 - (A/R)y/{1 + B/R2)2 - 4hT/R2(l - A2/R2) 

(A/R)(l + B/R2) + y/(l + B/R2)2 - 4h2
T/R

2(l - A2jR2)\ dR 

(1 - A2/R2)y/(l + B/R2)2 -4h2
T/R

2(l - A2/R2)       J  R ' 
)*4-     (A.13) 
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Invoking the assumptions that the square of the ratios hT/R. hR/R and L/R are much 

smaller than unity, the above relationship reduces to 

^ = _^_d_R 

RR      l-A/R R 

Also, following the assumptions, the second and higher powers of \A/R\ are much smaller 

than unitv; thus. 

ff=K)£ <A15> 
Since \A/R\ is smaller than unity, we conclude that ARR/RR < 1 when AR/R < 1 within 

one range ring. 

48 



MISSION 
OF 

AFRL/INFORMATIONDIRECTORATE (IF) 

The advancement and application of information systems science and 

technology for aerospace command and control and its transition to air, 

space, and ground systems to meet customer needs in the areas of Global 

Awareness, Dynamic Planning and Execution, and Global Information 

Exchange is the focus of this AFRL organization. The directorate's areas 

of investigation include a broad spectrum of information and fusion, 

communication, collaborative environment and modeling and simulation, 

defensive information warfare, and intelligent information systems 

technologies. 


