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In This Issue

We begin with two articles suggesting the possible sep-
aration of document and query vector space. Viewing in-
formation retrieval as a topology on a document space
determined by a similarity function between queries and
documents gives what Egghe and Rousseau call a retrieval
topology. Such topologies might use a pseudo metric which
measures the distance between documents independent of
the query space, or might make all similarity functions
between documents and queries continuous, called here the
similarity topology. The topological model allows the in-
troduction of Boolean operators. The inner product is sug-
gested as producing a more powerful model than the cosine
measure. Bollmann-Sdorra and Raghavan show that if
query term weights are to be useful in retrieval, term inde-
pendence is an undesirable property in a query space. Inde-
pendence remains desirable in document space. It would
appear that the assumptions that documents and queries are
elements of the same space, and that term independence is
required, are not warranted.

Al-Fares presents a new loan policy model which incot-
porates a decision variable for maximum books to be bor-
rowed, along with the traditional loan period, and adds user
satisfaction with policies to the usual book availability
satisfaction indicator. Each indicator is defined as the ratio
of satisfied demand to total demand. Number of renewals,
duplications, demand, and reservations are considered to
have a very small effect.

Yager and Rybalov assume m retrieval systems without
file overlap each providing a ranked list of texts based upon
their varying ranking criteria, and in response to a common
query, and define fusion as the construction of a single
ordered list of the n most relevant texts over all m system
responses. This requires determining the potential of each
system to provide relevant answers to the query.

A previous fusion method which is empirically effective
but where different runs will result in different orderings,
uses a random selection method biased toward the length of
the contributing list. Alternatively one might use the longest
remaining list for each choice or take equally from each
collection until the shortest is exhausted, and then continue
until the next shortest is exhausted, and on, until all are
exhausted. A centralized fusion scheme computes a value
based upon the number of documents in a list and the

© 1998 John Wiley & Sons, Inc.
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number already removed. The value is re-computed for each
collection after each removal of the top element in the
collection with the highest value. Another possibility is a
proportional approach, where the list value is its remaining
number of elements less one divided by the original number,
and a value can be assigned to each individual document
which is the number of elements in the list less its position
in the list, divided by the number of elements in the list.

Bates provides a review of what we know and do not
know about indexing and access that will apply to large
digital document files. Particularly she emphasizes that sta-
tistical regularities exist in the subject representation of files
and should influence design, that subject domain should
affect system design, and that what we know of human
linguistic and searching behavior must be taken into account
for an optimal information retrieval system.

The indexing for 16,691 documents from 1982 to 1994
which were assigned at least one term from the software
engineering category was collected by Coulter, Monarch,
and Konda and a co-occurrence study carried out to deter-
mine the interaction of software engineering areas of study
over time. The association measure was the square of the
co-occurrences of two terms over the product of their oc-
currences. The threshold value was varied with the size of
the data sets, but the number of links and nodes was fixed at
twenty-four and twenty. For the period 1982-1986 15 net-
works were generated; for 1987-1990 16; and for 1991-
1994 11. The networks exhibit considerable change over
time although some consistent themes, like software devel-
opment and user interfaces, persist.

To address the role of information technology in non-
traditional organizations Travica treats IT as level of use of
several specific technologies, and non-traditional structure
as the level of organization structure, plus other selected
variables. Data came from surveys of a random stratified
sample of employees at twelve local accounting offices and
an interview with the local manager. Information technol-
ogy correlates with non-traditional structure. Information
technology correlates negatively with formalization and
centralization, and positively with cross boundary commu-
nication. Spatial dispersion is negatively associated with
trust sharing.

Bert R. Boyce
Louisiana State University

CCC 0002-8231/98/131143-01




Topological Aspects of Information Retrieval

Leo Egghe,
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Let (DS, DQ, sim) be a retrieval system consisting of a
document space DS, a query space QS, and a function
sim, expressing the similarity between a documentand a
query. Following D. M. Everett and S. C. Cater (1992), we
introduce topologies on the document space. These to-
pologies are generated by the similarity function sim and
the query space QS. Three topologies will be studied:
The retrieval topology, the similarity topology, and the
(pseudo-)metric one. It is shown that the retrieval topol-
ogy is the coarsest of the three, while the (pseudo-)
metric is the strongest. These three topologies are gen-
erally different, reflecting distinct topological aspects of
information retrieval. We present necessary and suffi-
cient conditions for these topological aspects to be
equal. Several examples of topological retrieval systems
are presented. One of these examples is a vector space
mode! that yields a simplification of the Everett-Cater
model, yet having a more diversified spectrum of topo-
logical properties. Finally, it is shown that information
retrieval based on Boolean operators is an intrinsic part
of the general topological model. This is a major moti-
vation of the introduction of topologies in theoretical IR
models.

1. Introduction

Theoretical document retrieval has two main compo-
nents: indexing and searching. As our article only deals with
theoretical aspects, we leave all software and hardware
aspects aside. Indexing determines the way documents are
placed in a database. We will use the term “indexing” in a
very broad way: Even when the original document has not
changed, e.g., it is directly put on the Internet, we call this
a form of indexing. Therefore, indexing is considered as a
surjective map, f, from the set of original documents, X, to

Received December 19, 1996; revised October 23, 1997; accepted October
23, 1997.
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the set of “indexed document representation,” denoted as
DS, the document space:

f:X — DS. 1)

Here “surjective” means that every element in DS is the
representation of at least one document in X. Elements of
DS will be denoted by D, E, D', etc. They can be biblio-
graphical records with or without abstracts, or full-text
documents, or any form of multimedia document.

Searching uses queries and refers to the way customers
express an information need, a topic on which they want to
be informed. Users’ needs are also transformed, and are
represented by a formal query. The set of all formal queries
is called query space and denoted by @S. So, again we can
consider a surjective map, g, from the space of all topics (or
use needs) to the query space:

g:Y — @S. )

From now on elements in QS will be denoted by the
symbols Q, Q’, etc. We will mainly be interested in single
attribute queries, e.g., keywords or authors. Different query
definitions, hence different QS spaces lead to different
retrieval systems.

The spaces DS and QS do not completely determine a
retrieval system. What is missing is a way to express the
degree of agreement between a query Q € QS and a
document D € DS. This is done using a similarity function,
denoted as sim:

sim: DS X 0S — R: (D, Q) — sim(D, Q).

We will often keep Q fixed, which yields functions of the
form:

sim(., Q)- :DS — R:D — sim(D, Q). 3)

CCC 0002-8231/98/131144-17




The higher the value of sim(D, Q), the more D and Q
correspond and therefore, the more probable it will be that
the document D satisfies the user’s need. Consequently,
such documents are wanted in the set of retrieved docu-
ments. This retrieved documents set is further determined
by a cutoff value » € R. So, all documents D € DS, such
that

sim(D, Q) > r @

are retrieved.
Other forms of thresholds such as

r<sim{(D, Q) <r, 5)

or even clustering techniques can also be used (Salton &
McGill, 1983).

Everett and Cater (1992) have shown that requirements 4
and 5 can be used to determine topological properties of the
space DS. The definition of a topology and of a topological
space is given in Appendix A. As such, it is not clear that
such systems express “how near” points (here documents)
are to each other. However, many topologies are determined
by functions that measure similarity or distance between
two documents (see Equations 4, 5, or the example of a
metric space as a special case of a topological space—
Appendix A) and, hence, the link with this powerful math-
ematical tool is clear.

Topologies on DS as determined by Equations 4 or 5, or,
in general, by using queries Q € (S, are called topological
retrieval systems. Indeed, the above described available
notion of “how near” documents are, can be used in IR. It is
a kind of predetermined system of documents for which the
notion of “relatedness” is available and this is independent
from a used query Q (i.e., prior to the retrieval action itself,
but with the knowledge of QS, the set of all possible
queries).

Different topologies will, in addition, yield different re-
trieval properties. As such, the notion of a topological
retrieval system is closely linked to the dynamics of re-
trieval behavior. The mathematical tools made available
through these systems allow us to give answers to questions
such as: “How do slight alterations in queries or thresholds
influence the retrieval result?”

In the next section, we will set up a general framework
for topological retrieval. Three topologies on DS will play
a role: the retrieval topology 7, the (pseudo-)metric topol-
ogy 7' (both introduced by Everett & Cater, 1992), and the
similarity topology 7".

In the second section, we present examples of document
spaces DS for which the three topologies coincide, as well
as examples where any two of these topologies are different.
These properties illustrate the specific role each of these
topologies plays. In particular, we give an example of a
vector space model on DS = I" (I denotes the unit interval
[0, 11, n € N) with the inner product as similarity function.

We will show that this approach leads to a simpler model,
with more interesting properties, than the vector model
studied in Everett and Cater (1992), which is based on
Salton’s cosine measure.

The last section shows that information retrieval based
on Boolean connectives AND and OR is an intrinsic part of
the general topological model. In particular, it is only nec-
essary to have a query space QS consisting of elementary
queries. The Boolean aspects are taken care of by the
topology of DS. This generalizes the Boolean algebra re-
sults of Cater (1986) and Everett and Cater (1992).

Mathematical proofs of most of the results are relegated
to the Appendices.

Notation. We will use the abbreviation iff for the phrase
“if and only if.”

2. Document Spaces as Topological Spaces

A retrieval system is a triple (DS, OS, sim) consisting
of a document space DS, a query space @S and a simi-
larity function sim. At this moment, DS is only a set.
However, using the query set QS and the similarity func-
tion sim will enable us to put an additional structure on
DS, namely that of a topological space. We focus here on
the document space as a topological space (by using QS)
since we want to have a notion of similarity between
documents. But theoretically, there is no real difference
between QS and DS: We could study a topological system
on QS, determined by DS. This is an example of a dual
situation. For more on this, see Egghe and Rousseau
(1997a).

At this point, we refer the reader who is not familiar
with topological notions again to Appendix A, and the
second section of Everett and Cater (1992). Information
on general topology can be found in any of the following
books: Csdaszdr (1978), Dugundji (1966), and Willard
(1970). Special examples of topological spaces can be
found in Steen and Seebach (1978). Finally, Wilansky
(1970) and Kreyszig (1978) are good references on
normed spaces.

In this article we will study three topologies on DS.

The Retrieval Topology T (Everett & Cater, 1992)

The retrieval topology, denoted as T, is generated by the
subbasis

{R(Q, NIr € R, 0 € QS} (6)

where a retrieval R(Q, r) is defined as:
R(Q, r) ={D € DSIsim(D, Q) > r}. )
A subbasis is a subset C of the set of all open sets such that

all open sets can be constructed by forming finite intersec-
tions of elements of C.
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Note that, usually, the range of all sim(., Q) is in R* (the
positive real numbers, including zero), so that in these cases
T is generated by

{R(Q, NIr € R*, 0 € QS}.

There is no mathematical reason to limit the range of
sim to the positive numbers. Therefore, we decided to use
R in theoretical arguments, but to use R™ in all examples.
The set

ret(Q) ={R(Q, r)lr € R} ®)

is called the set of retrievals of Q (or, in short, the retrievals
of Q) w.r.t. 7. Also, the sets R(Q, r), r E R, 0 € QS are
called retrievals of the system (DS, @S, sim, 7) or, in short,
of .

Note that the set of retrievals of a query Q is the set of
all possible answers to the query Q in the system (DS, O,
sim) with the retrieval topology. Different answers are ob-
tained by changing the threshold. Consequently, the retriev-
als of a fixed query Q, form a nested set, i.e.,

R(Q,r) C RO, ry iff r, = r,.

Another name for 7 could be the “threshold” topology, a
name that is clear from the definition 7. Here, a document is
retrieved if its similarity with a query Q is at least a a certain
value r.

The (Pseudo-)Metric Topology 7' (Everett & Cater, 1992)

Everett and Cater (1992) give the following definition.
Let (DS, QS, sim) be a retrieval system. Define a function
d on DS X DS as follows:

dD,E) = supQEQsIsim(D, Q) —sim(E, Q).  (9)

The function d should be a pseudo-metric (see Appendix A
for the definition), leading to the pseudo-metric topology 7'
However, there is a problem with definition 9. It is possible
that the supremum is infinite, in which case d does not exist
in the usual sense. To correct this, we will define +' in a
more accurate way. For the ease of the notation, we first
define

po(D, E) = Isim(D, Q) — sim(E, Q)I 10)
here D, E € DS, Q € QS. Then define

(i) if the supremum of Equation 10 is finite:

d(D, E) = SUP,, ¢ s po(D, E)

i.e., the pseudo-metric defined by Everett and Cater;

1146

(ii) d' : DS X DS — [0, 1] by

d'(D, E) = _polD-E) 11
(Dy ) - SuerQSl + pQ(D, E) ( )

(iii) 4" : DS X DS — [0, 1] by

d"(D, E) = SUP, ¢ os [min(1, po(D, E))].  (12)

Clearly d’ and d’ always exist and are finite. The fol-
lowing theorem states that from a topological point of view,
the pseudo-metrics d, d', and d" are “the same” (although
they are, of course, different as metrics).

Theorem 2.1

Let d, d', and d” be as defined in Equations 9, 11, and
12. Then

(i) the (pseudo-)metrics d’ and d” are equivalent
(ii) if d exists, it is equivalent with d’ and d".

The proof of this theorem is given in Appendix B. The
topology generated by d (if it exists), d’ or d” is called the
pseudo-metric topology on DS and is denoted by 7'. The
topology 7 measures absolute distances between docu-
ments, independent of a used query in IR.

As noted by Everett and Cater (1992) the following
result is true:

Proposition 2.2

7' is generated by the subbasis
V(D, e) ={E € DSlpy(D,E)<e, VQ € 0S}

where e is any strictly positive real number. The proof
follows readily from the proof of Theorem 2.1.

Definition 2.3 (Everett & Cater, 1992)

The retrieval system (DS, QS, sim) separates the points
of DS if,

(VQ € 0§ :sim(D, Q) = sim(E, Q)) > (D = E).

It is obvious that the pseudo-metrics above are metrics iff
the retrieval system (DS, QS, sim) separates the points
of DS.

The Similarity Topology 7"

In order to obtain consistent results, stability is very
important in IR. It is, e.g., necessary that if documents D
and E are “alike” (an expression to be defined in each
concrete case), their similarity values must also be close to
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each other. In this way slight changes in, e.g., recall require-
ments, yield only slight changes in the retrieval result. Such
a behavior can only be guaranteed if the functions sim(., Q)
are continuous. We therefore define the topology 7, re-
ferred to as the similarity topology, as the coarsest topology
on DS that makes all similarity functions sim(., Q) contin-
uous. The next theorem describes a subbasis of the similar-

ity topology.

Theorem 2.4
The similarity topology 7" is generated by the subbasis

(U@, r, 1)IQ € 0S8, ry<ry}
where
U(Q, ry, r)) ={D € DSlr,<sim(D, Q) <ry}
= sim(., Q) '(Iry, r2[)

with r; < r,, r;, 7, ER, Q € OS.

Proof.  The proof is easy: It follows immediately from
properties of the inverse relation and the fact that the open
intervals ]r;, r,[ are a basis for the Euclidean topology on
the real line. O

The set

ret‘T"(Q) = {U(Q’ ry, r2)|r1 < 7'2}

is called the set of retrievals of Q (or, in short, the retrievals
of @) wr.t. 7. Also, the sets U(Q, ry, 1p), 1y < 1p, 11, 15
€ R, Q € @8, are called retrievals of the system (DS, @S,
sim, 7") or, in short, of 7.

Note that if ry < r; < r, < r, then

U(Q7 7y r2) - U(Q? rs, 7'4).

The topology 7" describes the retrieval of documents
according to their closeness to a given query Q. Here (in
contrast with 7) the exact query Q must be matched.
When it is clear from the context with which topology we
work, we will drop the subscript T or 7 and simply write
ret(Q).

Results on these topologies will follow in the next
sections. We can, however, already point out one intrin-
sic property of these topological spaces. The topologies
7, T, and 7' determine neighborhoods around every doc-
ument D € DS. These neighborhoods determine a filter-
ing of documents: The finer we look, the more closely we
end up in the neighborhood of D. The availability of such
neighborhoods determines the degree of “fine tuning”
that is possible in IR-systems that work with 7, 7/, or 7.
Otherwise stated, the topologies on the document space

DS determine a pre-defined structure on DS of “what
documents are close to (a) certain document(s),” even
without the formulation of a specific query O € QS. It is
the totality OS of all possible queries that determines this
pre-defined structure. This, in turn, is comparable (but
totally different in nature) with the statistical clustering
techniques for documents that exist—see, e.g., Salton and
McGill (1983).

The three topologies we have introduced are related in
the following way.

Theorem 2.5
rCTCT

Proof The sets R(Q, r) = sim(., Q) !(Qr, + ),
generating the retrieval topology, are open in 7" since sim(.,
Q) is continuous on (DS, 7"). Hence, 7 C 7. Furthermore,
it is clear that sim(., Q) is continuous on (DS, 7'), hence 7'
C 7' as 7' is the coarsest topology that makes all sim(., Q)
continuous. [

It will be shown in this and in the next section that it is
possible that + # 7', 7" # 7', and even 7 # 7" # 7' are
possible, as well as 7 = 77 = 7’|

Everett and Cater (1992) claimed the following re-
sults:

Statement '1

Forany Q € QS and r € [0, 1], the set U(Q, 1) = {D
€ DSIsim(D, Q) < t} € 7.

Statement 2

Let 7; and 7, be the retrieval topologies of two essen-
tially equivalent retrieval systems. Assume that (DS, 7,) is
compact, then 7, = 7,.

Recall (Everett & Cater, 1992) that two retrieval systems
(DS, 08, sim,) and (DS, @S, sim,) are said to be essen-
tially equivalent if sim,(D, Q) < sim,(E, Q) iff simy(D,
Q) < simy(E, Q). Essentially equivalent models retrieve all
documents in the same order.

In Egghe and Rousseau (1997b), we have shown that
these statements (Lemma 1 and Theorem 4 in Everett &
Cater, 1992) are wrong. We briefly repeat the counterex-
amples constructed in Egghe and Rousseau (1997b) and add
some new comments,

A Counterexample to Statement 1. Let DS = N (all
natural numbers, including zero); QS can be any non-
empty set. Let sim; be defined as follows: sim;(D, Q) =
% for all g € QS, except for one special query Q,. For this
special query sim,(n, Q;), n € N, is given by the follow-
ing table:
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n sim, (n,0Q)
0 1/5

1 1/6

3 3/8

5 7/16

7 15/32
and so on for the odd numbers

2 172

4 3/4

6 778

and so on for the even numbers

Note that the similarity values for the odd numbers
converge to L the similarity values for the even numbers
converge to 1.

Now the set U(Q,, }) = {D € DSlsim, (D, Q,) < ;}
= {0} does not belong to the retrieval topology 7;. Indeed,
the sets of 7, are the following:

N and & (the empty set);

all natural numbers except zero;

all natural numbers except zero less the j smallest odd
numbers

(J =1, 2’ )’

all natural numbers except zero, less the odd numbers and
the j smallest even numbers (j = 1, 2, 3, -- ).

Note that the set consisting of all even numbers {2, 4, 6,
- 337 is NOT an open set for this retrieval topology.

This example also shows that the function sim, (., Q,) is
not continuous for the retrieval topology. Hence, this is also
a case where the retrieval topology differs from the simi-
larity topology.

A Counterexample to Statement 2.  We consider the
same retrieval system as before but—for the second simi-
larity function—make a slight change to the first one. The
similarity function sim, is everywhere equal to sim,, except
for the value in (2, Q;). We set sim,(2, Q;) equal to % It
is now clear that the models (DS = N, OS, sim,) and (DS
= N, QS, sim,) are essentially equivalent. Moreover, as
sim; (0, Q) is 5 for every Q,i=1,2,theset DS = N is
compact for the retrieval topology (the point zero plays the
role of Dy in the Proposition of Egghe and Rousseau
(1997b). However, the two retrieval topologies do not co-
incide. For 1, (the retrieval topology derived from sim,), the
set consisting of all even numbers = {D € DSlsim,(D,
0,) > %} is clearly open (an element of 7,). We noted
before that this set is not open in 7. Hence, the two
topologies are not equal, which contradicts statement 2.

We consider now the following question: Can statements
1 and 2 be adapted so that they become true? The answer to
this is yes, essentially by using 7" instead of 7. This will be
shown in Theorems 2.8.1 and 2.8.2. We first state a simple
Jemma and introduce a new notion.

Lemma 2.6
For any @ € QS and any r € R, the set

{D € DSIsim(D, Q) < r}

belongs to the similarity topology 7.

Proof. This follows readily from the definition of 7"
and the fact that the sets ]—oo, r[ are open in R, for every r
e R O

Lemma 2.6 shows that Lemma 1 in Everett and Cater
(1992) is true for 7". Also, their Theorem 4 becomes true
when using 7" instead of 7; see theorem 2.8.2 further on.

Definition 2.7

We say that a retrieval system (DS, @S, sim) satisfies the
maximum principle if Vr = 0, VQ € QS, the set

A ={sim(D, Q)ID € DS, sim(D, Q) < r}

has a maximum, i.e., there exists D, € DS such that
sim(D,, @) = max A. An analogous definition can be given
for the minimum principle.

Examples. We formulate some cases of retrieval sys-
tems satisfying Definition 2.7 (minimum as well as maxi-
mum principle).

(i) If the range of sim(., Q) is finite for every Q € 0S,
then the system satisfies the minimum as well as the
maximum principle. This is the case for the classical
example where sim can only take values in {0, 1}. This
is also the case for a finite document space.

(ii) If DS is compact for a certain topology S such that all
sim(., Q) are continuous (e.g., 7'), then the system also
satisfies the minimum and the maximum principle. In-
deed, under these conditions, sim(DS, Q) is compact in
R for every @ € QS. Consequently, sim(DS, Q) is
closed and bounded, and therefore has a minimum and
a maximum.

This brings us to Theorems 2.8.1 and 2.8.2.

Theorem 2.8.1

If (DS, OS, sim;) and (DS, QS, sim,) are essentially
equivalent retrieval systems, and if one of the two satisfies
the maximum principle, then their retrieval topologies are
equal.

Proof. If one model satisfies the maximum principle
then, by the fact that they are essentially equivalent, the
other model does too (and the maxima are reached for the
same document D). For every O € @S and r € R, let D,
€ DS be such that sim; (Dy, @) = max {sim,(E, Q); sim,
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(E, Q) = r}. Then the following expressions are equiva-
lent:

D € R(Q, r) ={E € DSlIsim(E, Q) > r}
&simy(D, Q) > simy(Dy, Q)
Ssimy(D, Q) > simy(Dy, Q)
& D € Ry(Q, simy(Dy, 0))

The same argument can be given when the indices are
interchanged. Since the sets {R,(Q, nIQ € QS, r € R},
i = 1, 2 form a subbasis for the respective retrieval
topologies, these topologies are the same. [

Theorem 2.8.2

If (DS, QS, sim;) and (DS, QS, sim,) are essentially
equivalent retrieval systems, and if one of the two satisfies
the minimum principle, and if one of the two satisfies the
maximum principle, then their similarity topologies are
equal.

Proof. Since the retrieval systems are essentially
equivalent, they both satisfy the minimum and the maxi-
mum principle. In the same way as in the proof of Theorem
2.8.1, we can now show that, for every Q € QS and r;, r,
ERr; <ry

{E € DSIr, <sim/(E, Q) <r,}
={E € DSlsimy(D,, Q) < simy(E, Q)

< SimZ(DOs Q)}

where D, resp. D, are the documents featuring in the
definition of the minimum resp. maximum principle of the
first system. Hence

U(Q, r1, 1) = UxXQ, simy(D;, Q), sima(D,, Q)).

Again, the same argument can be given with the indices
interchanged and hence 77 = 5. O

The topology 7" is defined as the coarsest topology on DS
that makes all the functions sim(., Q) : DS — R continuous.
Here, R has the usual Euclidean topology e. Our next result
shows that the retrieval topology can be defined in a similar
way, but using a different topology on R.

Theorem 2.9

Equip the real line R with the topology, S, generated by
the open half-lines ]r, + <[, r € R, Then the retrieval

topology T is the coarsest topology on DS that makes all
functions

sim(.,, Q) : DS — R, §

continuous.

Proof. The functions sim(., Q) are continuous from
DS to R, S iff the sets R(Q, r) = sim(., Q)" '(]r, + «[)
are open in DS. [

One could also say that on (DS, 1) all sims are lower
semi-continuous into R, equipped with & (see Willard,
1970, p. 49, 7K). Also, the (pseudo-)metric topology 7’ can
be characterized through continuity properties of the simi-
larity functions.

Theorem 2.10
The following assertions are equivalent:
@ =1

(ii) The family {sim(., @Q)IQ € @S} is equicontinuous on
(DS, 1), where the functions range in R, &

For the proof, we refer to Appendix C.

Corollary 2.11

If QS is finite, then 7" = 7”. Based on the above theorem
and/or Theorem 2.5, we obtain the following easy results.

Proposition 2.12
The following assertions are equivalent:
G 7= 1,

@ii) All functions sim(., Q) are continuous on (DS, 1), with
range in R, &.

Proposition 2.13
The following assertions are equivalent:
@ r=1=1

(ii) The family {sim(., @); Q € QS} is equicontinuous on
(DS, 1) with range in R, &.

3. Examples of Topologies on Document Spaces

3.1. The Counterexample to Statement 1

We repeat that the counterexample to Statement 1 is an
example for which 7 = 7", Since the similarity functions are
clearly equicontinuous in 7’, we conclude by Theorem 2.10
that 7' = 7.
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3.2. The Vector Space Model of Everett and Cater (1992)

We briefly recall the structure of the vector space model
as presented in Everett and Cater (1992) and point out some
problems with this model. We will compare this vector
model to another one in Section 3.3.

The Everett-Cater model starts by taking I" = [0, 1]” for
the document space, as well as for the query space, with the
following similarity function:

(D, @)

sim(D, Q) = DLl

= cos(D, Q) (13)

where (.,.) denotes the usual inner product, ||, is the
Euclidean norm and cos(D, Q) denotes the cosine of the
angle between the lines OD and OQ.

We see two problems with this model. Firstly, the model
does not distinguish between documents on a straight line
through the origin. Since documents in [0, 1]” are often
obtained through a weighing process, it seems to us a waste
of possibilities not to use these different weights. Secondly,
the similarity functions are not defined in points (D, Q)
where at least one of the coordinates is zero. Moreover, it is
impossible to extend sim in such a way that this function
becomes continuous on I”.

Everett and Cater solve these problems by taking DS
= QS = I'\{0} and introducing an equivalence relation R,
where DRE iff there is straight line through the origin
containing both D and E. Then DS* = (I"\{0})/R with the
usual quotient norm (and hence quotient topology). For
readers not familiar with quotient theory, we just note here
that elements of DS* are straight half-lines through the
origin (0 not included), and only the part inside I” is used.
The similarity function 13 can be used unambiguously as
above: If D* € DS* and Q € S, then

0.0
sm(0% O = (Dl 9

for any representative D € D*. Also, for D*, E* € DS¥*,
we can define:

(D, E)

1 * Y —
sim(D*, E*) = 15 LEl,

(15)

for any representative D € D*, E € E*,

By taking quotients as above, we now obtain that the
retrieval system separates points. Indeed, if sim(D*, Q) =
sim(E*, ), VO € 08, then cos(D, Q) = cos(E, Q) for
any D € D*, E € E*, and hence D* = E*, This shows
that here +' is a metric topology. This leads to:

Theorem 3.1 (Everett & Cater, 1992)

(DS*, ') = (S, €) with S that part of the unit sphere
that contains vectors with positive (or zero) coordinates and
with & the Euclidean topology on S.

Proof. The homeomorphism is obtained via the func-
tion:

f:DS* - S:D* - D NS O (16)

Theorem 3.2
7= 1"= 7" on DS* and on DS.

Proof. The subbasic neighborhoods for an element D
€ DS or D* € DS*, for T as well as for 1, are of the form:
An open cone with top 0 (not an element of DS*) and D*
as central ray. Hence 7 = 7/, and thus, by Theorem 2.5, 7 =
=40

Corollary 3.3

DS* with r = 7 = 7", is compact.

Proof. This follows from Theorem 3.1 and Theorem
3.2.

Corollary 3.4 (Everett & Cater, 1992)

DS with 7 = 7 = 7' is compact.

Proof. The argument that proves that (S, £) is compact
can be used on DS if we use the function f~* (the inverse of
function f of Equation 16) and consider D* as a subset
of DS. [J

Note. 1Ttis not true that DS and DS* are homeomorphic!
Indeed, DS* is a Hausdorff (or T,) space, while DS is not.

The vector space model that we will present in the next
section is an alternative for the usual one. Its mathematical
properties are less complicated and more interesting, as it
will be defined on I" (not on a quotient space) and will give
different topologies T # 7. In addition to this, it takes into
account the different weights of vectors in I”.

3.3. An Alternative for the Classical Vector Space Model

Using the cosine of the angle between vectors does not
take into account the different weights given to each coor-
dinate (representing, e.g., a keyword). In addition to this,
documents can be situated close to each other, yet the
similarity as measured by cosines can be relatively small
too. Using the inner product between vectors takes care of
these problems. In such a model, a query gives weights to
keywords. These weights can be interpreted as minimum
requirements: Documents with higher weights (for that par-
ticular keyword) will just score better.

We will now formalize this. Let DS = gS = I" = [0,
1]%, n € N,. For every D € DS, Q € 0S:

sim(D, Q) = (D, @) = [D[lQll> cos(D, Q). (17)
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The following results describe the topologies of this re-
trieval model.

Theorem 3.5

(i) The function {.,.): X @S = R,; (D, Q) = (D, O
is continuous for the norm topologies on DS = QS = I".
(ii) The retrieval system (DS, Q@S = DS, sim), with sim
defined in Equation 17 separates the points of DS.

The proof of these results is well-known and is omitted.

Theorem 3.6

In this model, 7 = ¢, the BEuclidean topology on I”.
Hence, here DS with any of the topologies 7, 7', or 7' is
compact.

Theorem 3.7

For this model, 7 = 7', hence DS with this topology is
a T, space.

Theorem 3.8

For this model, (DS, 7) is a T,-space, that is, not a
T,-space. Consequently 7 # 7".

The proof of these theorems can be found in Appen-
dix D.

3.4. Another Simple Example of a Document System for
Whicht# 7' =7

Let DS = {a, b, ¢, d}, OS = {e} and define

sim(a, e) = 0.5 = sim(d, e)
sim(b, ) = 1, sim(c, ) = 0
Then:

T =1{Q, DS, {a, b, d{, {b}}
while
v = 1" ={J, DS, {b}, {c}, {a, d}, {b, c},

{a, b, d}, {a, ¢, d}} # P(DS),

the discrete topology. Note that the equality between 7' and
7 illustrates Corollary 2.11, as here QS is a finite set. This
retrieval system does not separate points.

3.5. Three Examples for Which r = ' = 1" = P (DS)

Example 3.2 gave an example for which 7= 7' = 7, but
different from the discrete topology, since they were ho-
meomorphic with the Ecuclidean topology on S. Three
examples will follow where all topologies are equal to &
(DS), the discrete topology on DS.

3.5.1. DS = QS any set

. = o
sim(D, Q){ - 0 (18)

Hence, in this IR-model only exact matches are allowed!
So,VQ € 0S,VrE RR(Q, r) =T ifr=1and = {Q}
if r < 1. Hence, 7 = & (DS). By Theorem 2.5, 1 C 7' C
7. Hence, 7 = 7" = 1 = P (DS).

Note that the metric of 7' is the discrete metric

=1 ifD=E

(D, E){ =0 ifD#E (19)

Discrete metrics yield discrete topologies but not con-
versely, as the next two examples show.

3.5.2.  The next example deals with documents that are
ordered according to “similarity.” This is an index approach
and cannot always be used in practice. However, if topics
can be ordered this way (e.g., for aspects on which a linear
order applies, such as distance, temperature, . . .) the exam-
ple is useful. Let

DS ={D,,...,D,} = 08, n € N fixed.
Define

i+j

sim(D;, Dj) = m—]_)

(20

Intuitively, this means that if i/ and j are far apart, then
sim(D;, D;) is small, and if i ~ j, then sim(D;, D,) ~ 1.
In any case, sim(D;, D;) = 1, forevery i € {1, ..., n}.
We have the following results:

Theorem 3.9
YVi=1,..,n Vr>0:

R(D, r)y=1{D; € DSli € {1,...,n}
Y |
N ]ZJ"—], '27_—1[ (21)

which forms a subbasis for 7.
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Theorem 3.10

Let d be the metric of 7. Then, Vi, k=1, ..., n:
D) = i — kl )
d(D;, D)) = 3 max(i, k) (22)

Corollary 3.11 + = 7' = ¢/, = & (DS).
For the proofs, we refer the reader to Appendix E.

A similar example, but with a completely different
similarity function, now follows.

353 DS = QS = {Dy,..
Define

., D,} n € N fixed.

2 1
sim(D,, D)) = - Arctan(ll. — j|> . 23)
Note again that sim(D;, D;) = 1, Vi=1,...,n.

Theorem 3.12
Vi=1,..,n, Vr>0.

R(D;, r)={D,- e psli e {1,...,n}

1
A e (24)
tan 5 tal'l?
which forms a subbasis for 7.
Theorem 3.13
Let d be the metric of 7. Then, Vi, k =1, ..., n:
2
d(D, D)) = p Arctanli — kl. 25)
Corollary 3.14

T=17" =1 =P(DS).

For the proofs, we refer the reader to Appendix F.

3.6. An Example for Which v #+ 7 # 17"

This final example shows that T # 1’ # 7" is possible. In
view of Theorem 2.10 and its Corollary 2.11, QS must be an
infinite space. This means that we must admit an infinite
number of possible queries.

Let DS = QS = [0, + »[, with sim(D, Q) = D - Q
(the simple product of the numbers D and (). Let
,,,, » be a strictly increasing sequence in DS,
converging to D in the usual, Euclidean norm on [0, + o[
(i.e., the absolute value). Consequently, lim,_,., D, = D in
7' since, for every Q € QS:

sim(D,, Q) = D,*»Q — D+Q = sim(D, Q).
Now, D,, does not tend to D in 7' since

d'(D,, D) = supQEQS(min(l, Isim(D,, Q) — sim(D, O)!))

which is equal to 1 if D,, # D and is equal to 0 if D, = D.
As here D, is never equal to D, d'(D,D) is always equal
to 1.

From this, it follows that 7" = ® (DS) # 7". We still
have to prove that 7 # 7', We know already that 7" yields a
T,-space, since 7" coincides here with the Euclidean topol-
ogy on [0, + o[, (This follows from the fact that a sequence
D,—Dinl-|iff D, Q — D - Q for every Q € [0, +
»[.) Now, (DS, 7) is not even a T;-space: For every D
€ DS and E = oD, o > 1, and for every 7-neighborhood
UofD, dn € N and R(Fj, ry) such that

DE N" R(F,r) C U
j=1

Hence, sim(D, Fj) =D- Fj > foreveryj=1,...,
n. Since D+ F; € [0, + o[ also sim(E, F;) = aD * F; >
r;, which implies that £ € U. This shows that (DS, 7) is
not a T;-space.

In fact, if [0, + oo[ is equipped with the topology D
inherited from S on R (c¢f. Theorem 2.9), then 7 = D
(restricted to [0, + <°[). We conclude:

7 is the topology inherited from S on R
7" is the Euclidean topology
7' is the discrete topology on DS,

and all three of them are different.

4. Boolean Information Retrieval as a Subsystem
of Any Topological IR-System

In Cater (1986) and Everett and Cater (1992), the Bool-
ean IR-model is shown to be an example of topological
retrieval, in the sense that specially defined similarity values
yield traditional Boolean retrieval. In this section, we will
show that Boolean retrieval can be introduced in any IR-
model (DS, @S, sim) without having to specify the value of
a similarity function for Boolean combinations of elemen-
tary queries. The Boolean model we will present has the
further advantage that it presents a major clarification of
why the introduction of topologies in theoretical IR-models
is essential.
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As defined in Section 1, let, for every Q € 0QS,

ret,(Q) = {R(Q, r)lr € R}

and
retf"(Q) = {U(Q’ Ty r2)|r19 r € R’ r < r2}

be the retrieval sets of Q w.r.t. the topology 7 (resp. 7).
Later in this section, we will focus on ret,(Q), denoting this
set simply as ret(Q). (Exactly the same reasoning can be
made for 7).

The set QS consists of elementary queries, which means
that usually logical combinations of queries do not belong to
0S5, although they are not excluded either. ret(Q) consists
of all possible results when Q is used as a query. The only
difference between the use of the topologies 7 and 7" is that
we require “minimum” (threshold) values for sim(t case), or
“close” values (7" case).

Recall also that the sets in all ret (Q), @ € QS, form a
subbasis for 7. This means that

B={ r’l\ R(Qi’ r,~)|Q,~ S QS, r; (S5 R,n S No}

i=1

is a basis for 7 (similarly, a basis for 7 can be built using the
sets U(Q, ry, r;)). An open set A in 7 is then any union
(finite or infinite) of sets in B:

A= U (r"% R(Q,-j,r,-j)

jer \i=1

where J is a finite or infinite index set. From now on, we
will assume that DS and QS are finite. Note that then 7' =
7' (Theorem 2.10 and Corollary 2.11). So, we have only 7
and 7" to consider, and, as stated before, we will focus on 7.
In this case, a general open set A in T has the form

A= U (N R(Qy ry. (26)
j=1 =1
Definition 4.1
Let O, ..., Q, be n elements of OS. We introduce,

Y3

symbolically, an element ®7_; Q; and define

ret( ® Q,-) ={ A R(Q, ) € R} en
i=1

i=1

We call ®7_, Q,; the Boolean AND applied to the elemen-
tary queries Qy, . .., Q,, € QS. By definition, this Boolean
AND retrieves sets in ret(®7_; Q,). We repeat that ®7_, Q;
is not necessarily an element of QS. Similarly, we define a
Boolean OR.

Definition 4.2

Let Q;, ..., Q, be n elements of @S. Consider, sym-
bolically, an element ©7_; Q; and define

ret( @ Q,-) ={ A R(Q, r)lr; € R}. (28)

Jj=1 j=1

The set ©/_; Q; is called the Boolean OR applied to the
elementary queries Q;, ..., O, € 0S. By definition, this
Boolean OR retrieves sets in ret(@]’-’;l Q).

Of course, we can as well define Boolean ANDs and
Boolean ORs with respect to the topology 7. We suppose
that it is clear in every IR-search whether we want to work
with 7 (thresholds) or 7 (close matches).

Based on Definitions 4.1 and 4.2, we can easily define
more arbitrary Boolean queries, based on elementary que-
ries in QS.

Definition 4.3

Let(Q;)7, /2, be an array of queries in Q. The Boolean
query (not necessarily in QS) ®7_; (®L; Q) is defined
through its retrieval:

ret( é ( é Q,J))
=1 \ =1

={ U (n R(Q;, r,.j)lr,,. € R} (29)
=1 \i=1

and similarly when © and ® (hence U and N) are inter-
changed. We now need the following lemma:

Lemma 4.4 (Dugundji, 1966, p. 25)

Let {B,la € A} be a family of sets and assume that
{A,; A € A} is a partition of A (hence each A,; A ¢ # ).
Let T = II, 4 A,.

Then

N ( U Ba> = U( N B,()‘)) (30)

AEA \a€A tET\AEA

where t(A) € A, and t = (¢(A))y=p.
By taking complements, one also has:

U ( N Ba) = ﬂ( U B,()\)). (31)

AEA \a€A tET\AEA

In plain terms: Any introduction of unions of sets A;; can be
interpreted as a union of intersections of the same sets (but
in another order) and vice versa.
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We have now reached the following important result,
yielding a major reason why topologies on IR-systems are
useful.

Theorem 4.5

For any IR-model (DS, QS, sim) with finite DS and QS,
we have the following equalities:

a) The topology 7 is equal to the set of all possible Boolean
retrievals, based on elementary queries Q in QS, using
thresholds;

b) the topology 7" is equal to the set of all possible Boolean
retrievals, based on elementary queries Q in OS, using close
matches.

Proof. The principal elements of the proof have al-
ready been outlined. An arbitrary Boolean query can be
denoted as a combination of AND and OR Boolean queries
in any order, which can be denoted as in Equation 29 or with
U and N interchanged (cf. Definition 4.3). By lemma 4.4,
its set of retrievals can be written in the form:

{CJ (F\ R(Q,.j,rij)|r,«j S R}.

=1 \i=1

Letting m and n; vary over all possible natural numbers
and Q,-j € @S, we see, by Equation 26, that the set of all
Boolean retrievals using thresholds, is nothing but the
topology 7. Similarly, the set of all Boolean retrievals
using close matches is nothing but the topology 7. [

The following result gives a relation between the usual
OR relation and our somewhat more general use of the
Boolean OR.

Proposition 4.6

If 9, and Q, are single attribute queries, if also Q0 = Q,
OR Q, belongs to QS, and if sim(D, Q) is defined as
max(sim(D, @), sim(D, @,))—as in the classical Boolean
or in the fuzzy set case-then (using thresholds)

ret(Q) C ret< 629 Q,-).
i=1

Proof.  Consider the set {D € DSlsim(D, Q) > r}, an
element of ret(Q). As sim(D, Q) = max(sim(D, Q,),
sim(D, Q,)), this set is equal to {D € DSImax(sim(D,
Q). sim(D, Q,)) > r}.
={D € DSIsim(D, Q,) > r, or, sim(D, Q,) > r}
={D € DSsim(D, 0,) > r} U{D € DSIsim(D, Q,) > r}
=R(Q,, ) UR(Qy 1) € 1et{(Q, @ Q).

A similar result can be shown for any finite disjunctive

form, and for any finite conjunctive form. The Boolean
NOT will be studied in a future article.

5. Summary

In this article, Everett and Cater’s retrieval and pseudo-
metric topologies are examined. Counterexamples to two
statements are given, and results correcting the original
statements are presented. These corrections lead to the in-
troduction of a new topology, namely the similarity topol-
ogy. This new topology satisfies the interesting property of
making the similarity functions continuous (stable).

Several examples are presented, among them a modified
vector space model. Finally, the article shows that the
retrieval and the similarity topology can be considered as
the sets of retrievals of arbitrary Boolean AND/OR queries.

Appendix A: Generalities on Topological Spaces

Let X denote a set. Denote by P (X) the set of all subsets
of X. A topology T on X is a subset of P (X) such that:

(i) Any union of elements in 7 belongs to T;
(ii) any finite intersection of elements in 7 belongs to T;
(iii) & (the empty set) and X belong to 7.

The element of T are called open sets. The couple (X, 1) is
called a topological space.

Given two topologies 7; and 7, on X, we say that 7, is
weaker (or smaller, or coarser) than 7,, if 7, C 7,. We then
also say that 7, is stronger (or larger, or finer) than 7,.

A set F C X is called closed if its complement F° € 7.
If A C X, the closure of A in X, w.r.t. 7, denoted by A, is
the set

A= N{BC XIBisclosed and A C B}.

If it is not clear that the closure is w.r.t. 7, we denote A",
If (X, 7) is a topological space, a base for 7is a collection
9% C 7, such that

7=< U B|‘6C%}.

Be<%

A subbase for T is a collection € C 7, such that the
collection of all finite intersections of elements of ¢ forms
a base for 7. Any collection of subsets of a set X is a subbase
for some topology on X. This follows from the definition of
7. This assertion is not true for a base!

Note that 9B is a basis for 7 iff, whenever G € 7 and X
€ G, thereisaB € Bsuchthatx € B C G.

Let x € X. We say that U C X is a neighborhood of x
if there exists G € T, such that x € G C U. We denote by
V.(x) the collection of all neighborhoods of x € X and it is
called a neighborhood system. A neighborhood base at x
€ X is a collection B, (x) C V. (x) such that each U
€ V.(x) contains an element V € B (x), ie., V.(x) is
determined by B, as

V.x) ={UcXIVC U, 3V € BX)}
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The elements of B, (x), once chosen, are called basic neigh-
borhoods.

Let (X, 1) be a topological space. We say that it is a T,
space, if for every x, y € X, x # y, there exists a
neighborhood of one of these points not containing the
other. We say that it is a T space, if forevery x,y € X, x
# y, there exist neighborhoods of each of these points not
containing the other point.

Let (X, 7) be a topological space. We say that (X, 7) is
a Hausdorff (or T,) space, if for every x, y € X, x # y,
there exists G, H € Tsuchthatx € G,y € H,and G N
H = (. Equivalently, if there exists U € V (x), V
€ V(y),suchthat U NV = &,

Clearly, T, = T; = T,. In this article, we will have
examples showing that the converse is not true.

Let X be a set and

d: XXX — R,

(x,y) = d(x, y)

a function such that

@) dix,x)y=20
i) d(x,y) = d(y, %) o
(iii) d(x, y) = d(x, z) + d(z, y) (triangle inequality)

for every x, y, z € X. Then d is called a pseudo-metric on
X and (X, d) is called a pseudo-metric space. Every pseudo-
metric space can be considered as a topological space as
follows:

(a) Define the “open balls,” V x € X, Ve>0 B(x, € )={y
€ Xld(x, y)< € }.

(b) Define sets A C X open iff for every x € A, there is a B(x,
g) C A. It can be shown (cf. Willard, 1970, 2.6, p. 18) that the
open sets defined above form a topology on X, the so-called
pseudo-metric topology on X.

If (i) above can be reformulated as
@) dlx,y) =0iff x = y
then we call d a metric, (X, d) a metric space, and the
topology that it generates, the metric topology.

If X is a vector space over R, we can even go futher. We
say that

[+ :X — R,
is a pseudo-norm on X if
@ 0] = 0 (0 is the zero vector in X)
(i) [lax|| = lal ||, V& € R

@iii) e + ¥l =[xl + iyl

forallx,y € X. || - || is called a norm if (i) can be replaced
by

() x| =0iffx=0

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE—November 1998

forallx € X.
X, || - II, accordingly, is called a (pseudo-)normed space.
If we define

d(x, y) = |lx =yl

then it can be shown that d is a (pseudo-)metric.

Example

R”, ||*|l, with, if x = (x),,x,) € R,

n 1/p
”x“p: (2 |xi|p) s
i=1

forp = 1.

[| - ||, is called the Minkowski norm and, if p = 2, || * ||,
is called the Euclidean norm, d derived from || - ||, is called
the Euclidean metric, and its topology the Euclidean topol-
ogy, denoted by &. For p = o, we define

[¥)le = max |xl.

i=1,...,n

Also, || * |l is @ norm on R". All norms || - ||, (1 = p
= =) are equivalent, by which we mean that they all induce
the same topology (in this case, £). The same definition goes
for equivalent pseudo-metrics.

Il - I, has one special feature, however. Define, for x, y
E RII

<-xa }’> = Z X Yi
i=1

the so-called inproduct in R”. This inproduct is used in this
article. It makes R” into an inproduct space. Every inprod-
uct space X is a normed space via the definition

(x, x)

Il =

for every x € X.
The inproduct satisfies the so-called inequality of
Cauchy-Schwarz: Vx, y, € X

lIGe, M = [lxdleliyll.
Let (X, 7) be a topological space and ¥ C X. Then
,={GNYIG € 1}

is a topology on Y, the subspace topology induced on Y
by 7.
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Example

I'' C R” where I = [0, 1].

We can take the restriction of | - ||, (or any other norm on
R") to I". This yields the Euclidean topology on I”, being
the subspace topology of I", inherited from the Euclidean
topology on R”.

Let (X, 7) and (Y, ') be two topological spaces and let
J: X — Y be a function. We say that f is continuous, if for
every BE 1',f ! (B) € 7. We say that fis open if G € 7
implies f(G) € 7'. If f: X — Y is a bijection that is open
and continuous, then we say that (X, 7) and (¥, 7') are
homeomorphic, and we denote (X, ) = (¥, 7'). Topolog-
ically spoken these spaces are indistinguishable.

Let (X, 7) be a topological space. We say that 7 is
compact if every open cover of X has a finite subcover.

Eample

[0, 1] is compact by 10, 1[ is not (11/n, 1[, n € Nis an
open cover of 10, 1[ without a finite subcover).

A set in R™ (with the Euclidean topology €) is compact
iff it is closed and bounded.

Let f; : (X, 7) — R be a family of functions (j € J,
where the index set J can be any, denumerable or non-
denumerable, set). We say that the family ( f3);j e jforms an
equicontinuous family in x € X, if for every & > 0, there
is a neighborhood U of x, independent of j € J, such that
y € U implies that for every j € J : | f;(x) - <e.
The family f;); < ; is said to equicontinuous on (X, 7) iff it
is equicontinuous in every point x of X. Note that every
finite family of continuous functions is an equicontinuous
family. Moreover, if the topology 7 = % (X), the discrete
topology, then any family is equicontinuous.

Appendix B: Proof of Theorem 2.1

Theorem 2.1

Let d, d’, and d” be as defined in Equations 9, 11, and
12. Then

(i) the (pseudo-)metrics d’ and d” are equivalent;
(ii) if d exists, is is equivalent with 4’ and d”.

Proof. For every e > 0 and D € DS, we denote by

B(D, &), B' (D, €), and B"(D, &), the d- (resp. d' and d")
e-open ball around D.
() It is clear that for every D, E € DS, d' (D, E) = d"
(D, E), hence, B" (D, €) C B’ (D, &) for every £ > 0 and
D € DS. Letnow & > 0 and D € DS be given. Set &’ =
e/(2+eg). Then d’' (D, E) < &' implies

pQ(D7 E) ’
<&
1+ py(D, E)
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for every Q € QS. Hence, 6,(D, E) < &/2 for every Q
€ 0S. So, d"(D, E) < ¢ and, hence B' (D, ') C B"(D,
€). This shows that d' and d” generate the same topology on
DS, denoted as 7.

(iii) Assume now that d exists. Since for every D, E
€ DS :d (D, E) =d(D, E), we see that B(D, ) C B’
(D, e)forevery e > 0 and D € DS. Let now B (D, &) be
an arbitrary open g-ball around D. Let &' = &/(2 + &) > 0,
then we have for every E € B’ (D, ') that

pQ(D’ E) ’

d' (D, E)=SuPQeQSWb,—E) °-

This implies that, for every Q0 € QS, po(D, E) < &/2.
Hence, d(D , E) < g, which shows that B’ (D, &) C B(D,
€). This proves part (ii) of the theorem. [

Appendix C: Proof of Theorem 2.10

Theorem 2.10

The following assertions are equivalent:

W =17
(ii) The family {sim(., Q)IQ € @S} is equicontinuous on
(DS, 7"), where the functions range in R, €.

Proof:  (ii)=(i). Let (D;); ¢ ; be anet in DS, conver-
gent to D € DS for 7". Since the set {sim(.,0)IQ € QS}
is equicontinuous on 7’ into R, €, we have that Ve > 0,
Jis(e) € I (independent of Q@ &€ QS), such that Vi
= ig(e)

| sim(D,, Q) — sim(D, Q)| <-§-

VQ € QS. Hence, VQ € 0S8

| sim(D,, Q) ~ sim{D, Q)| €
1+ I sim(D, 0) — sim(D, Q) ~ 72"

Hence,

[ sim(D;, Q) — sim(D, Q)I
SPoeos T+ | sim(D, Q) — sim(D, Q) ~ °

sod’(D;, D) < e. Consequently, (D,);c; converges to D in
7' (by using the definition of 7). Hence, 7 = 7".

Proof. (i) = (ii). Let the net (D,);c; be convergent to
D on DS equipped with the topology 7" = 7'. Hence, Ve >
0, Vig)e) € I, such that Vi = iy(e), i € I

&
d (Di’ D) <1—+;.
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From this, it follows that, VQ € 0S
| sim(D;, Q) — sim(D, Q)I < e

(hence, Vi = iy(e), independent of Q). Since this goes for
every net (D,);c, that converges in 7", we have that the set

{sim(,, Q)10 € QS}

is equicontinuous on (DS, 7). O

Appendix D: Proof of Theorems 3.6, 3.7, and 3.8

Theorem 3.6

7 = &. Hence 7, 7, 7 are compact.

Proof. Let!| - || be defined by, for D € DS

D]l = sup KQ, D)l
lok=1

= sup KQ, D(I
QeEQS

(since D € I", we can indeed restrict ourselves to vectors
Q with positive coordinates). Hence, d defined by

d(D, E) = ||D — E||I

yields the metric topology 7'. Furthermore, d' defined by
d'(D, E) = |ID - El,

with

|Dll, = sup KQ, D)
llgl=1

yields the Euclidean metric. Since || * ||, and || - ||, are
equivalent (see Appendix A), and since {aQ, D) = a(Q,
D) for every a € R, it follows that d and d’ are equivalent
and hence, 7 = .

Since 7 C 7" C 7' = ¢, and since & is compact, 7, 7', and
7’ also are. [J

Theorem 3.7

7' = 7", hence they are T,-spaces.

Proof.
that the set

In view of Theorem 2.10, it suffices to prove

{ (.00 € g8}

is Euclidean on (I”, 7"). For this, it suffices to prove that

sup [|(., Q) <o
gegs

(see, e.g., Wilansky, 1970, p. 291, ex. 201).
Now

sup [(., Q)ll = sup sup KD, Q)
geEQS 0 € 05 D=1

= sup sup |[D{,|Qll, (Cauchy-Scwarz)
Q€05 IDh=q

= sup sup [D[LIQl}.
Dlst 1Dl

Since || * |l;70 and || « |l, are equivalent, the result follows.
From Theorem 3.6, it now follows that 7' = 7" aare T,-
spaces (since g is). O

Theorem 3.8
7 is a Ty-space, but not a T;-space. Hence 7 # 7.

Proof. (@) tisTy. Let D, E € DS, D # E and we are
lookinf for (sufficient condition)

[D € RID,r) \ E & R(D, r)]
Vv
[D ¢« RLEE,r) \ E € R(E, 1]

Hence, we look for D = (D, ..
in DS, such that

.,D),E=(E,,...,E)

(D, D) = éD?> r/\ (D, E)y = éD,-E,-Sr}

i=1 i=1

V

[w,m: S DB =y A (B B) - g}

i=1 i=1

It is therefore sufﬁcient to look for r, such that

(

E DiEiS r

i=1

> E>r.

i=1

> D}
i=1

\

Such as r exists if
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or

(D, E) <|DILlEll,

i.e., the inequality of Cauchy-Schwarz must be strict. This is
so iff

E ¢ {aD|a € R}.

Let now E = aD, Ja € R. Since E € DS, « € R™.
If @ > 1, take r = (D, E) = o||D||3. Then, since

(E,E)> (D, E)

we have that £ € R(E, r). Hence, R(E, r) € V_(E). But
(D, E) = r, hence, D ¢ R(E, r). If a < 1, then we have
the above with D and E replaced: D © (1/a) E.

Proof: (ii) 7 is not T;. Choose any D, E # 0 in DS
with E = aD, a > 1. For every V € V,4(D), there is an
n€ 319, F,€DS, r;,>0@G =1,..., n) such that

_

D e

R(F,r) C V.
1

i

Hence(F, D) >r,, ¥V =1, ..., n and hence, also (F,, E)
=aF,Ey>r,Vi=1,...,n
Hence,

x

E e

i=1

R(F,r) C V.

So (DS, 7) is not a T,-space. Since 7" = 7" are (even
T,-spaces), we have that 7 # 7. [

Note. In the above proof, we had to check carefully if
D € R(D, r). This looks trivial, but it is not so. It is even
not always true. Indeed, D € R(D, r) iff (D, D) > r, ie.,

iff [D]l, > \F-. So, it can easily be that R(D, r) # &, R(D,
re€ 7, butD ¢ R(D, r).

Appendix E: Proof of the Results of Example 3.5.2

Theorem 3.9

., n, Vr>0:

R(Dj,r)
= d.epslie{l n} N 2jr—j—1—
i 90 o o 9 92r_1

1158

forming a subbasis for 7.
Proof. Vi,je {1,...,n},Vr>20

D, € R(D;, r) ={D € DSIsim(D, D)) > r}
(ED

i+j

sim(D;, D)) = 2 max(i, j) .

ai<j
Then Equation E1 is equivalent to

j>i>2jr—j.

b)yi>j
Then, by (a) and reversing i and j, we find

i>j>2ir—i.

Hence,

. J
]<z<2r_1. |

Theorem 3.10
Let d be the metric of 7'. Then, Vi, K =1, ..., n:

li — &l

d(D;, Dy = 2 max(i, k)

Proof. Vi, k= 1,..., n, by definition of d,

i+j k+j
2 max(i, j) 2 max(k, j)

d(Db Dk) = Sup ‘

j=1...n

Suppose first that i = k.

Mj=i
Then,
i+ k+j
P |2 max(i, ) ~ 2 max(k, )
i+j k+j| k—i
maxX T T Tk LT 2k

j=1...n

Qi=j=<k
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Then, Appendix F: Proof of the Results of Example 3.5.3

Theorem 3.12

i+j k+j vi v
,.i‘j.‘fk 2 max(i, j) 2 max(k, j) j=1...,nVr>0
i+j k+j R(D,-,r)={d,.eDSIie{l,...,n}
ol BTN
N . Al 1 - 1
=max——llk—']|=k_l J ’7Tr,] wr
i<j=k 2kj 2k ta1’17 tanT
the maximum being obtained inj = 1, as well as inj = k. which forms a subbasis for 7.
Gj=k
Proof. Vj=1,...,n
i+j k+j 2 1
s — — - i
j=k,_“.9,,, 2 max(i, j) 2 max(k, j) D; € RD, r) & p= Arctan(ll. -—jl) >r
i+j k+j| k—i @i<j
= max ————| = .
j=k. . .m 2j 2j 2k Then,
mr 1
So, if i =<k, D, € R(Dj, e tan7 <j_—1
d(D, DY = = L cie
( is k)_ 2k . @_]—?<l<]
tan7

For i = k we, hence, have (since d(D;, D) = d(D,,
D)) An analogous argument yields the right-hand side of the

open interval in Equation 24, in case j < i. [

i—k
d(D,, Dy = ECTHE Theorem 3.13

Let d be the metric of 7. Then, =i, k=1, ..., n:

This proves the theorem. [ )
d(D;, D) = p Arctanli — kl.

Corollary 3.11
=17 =1 = PWDS). Proof Vi, k=1,...,n
Proof.  If suffices, by Theorem 2.5, to show that 7 = &P 1
(DS). Now =j = 1, ..., n and d(D;, Dy ——j_max p Arctan i—jl
L1 1
JT3 - Arctan( kl) ’
r € iU 1| #J
2 1
we have that R(Q, r) = {Q}. This follows readily from = 7 Arctan max tan{ || 7= ]l
Theorem 3.9. O
Note that also 7' is the discrete topology, but that d is not 1
the discrete metric. - Arctan(I kl) )
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since Arctan is an increasing function.
By the two lemmas below, we have that Vi, j, k
=1,...,n

‘a“( (Ii iﬂ)"““m“’(lj - kl)‘)
ta“(““*‘“(li 11!) - Ar“a“(lj%id)) ‘

lj =k — i — ji
i—jlj— K+ 1

using the formula

tan o — tan 3

tan(a_B)=1+tanoztan[~l'

If we split up the cases, as in the previous example, we
find that, in all cases that i < k, we have that

2
d(D,, D) = p Arctan(k — ).

The analogue result is true if i = £, yielding the proof of the
theorem. O

Lemma A

tan « tanalae 2,2 .

Ar 1 An 1 T T
ctan——~|i_jI — Arctan T S 507 -

Proof. Fori,j, ke {1,...,n},
li—jl,lji—kl € [0,n—1].

From this, the conclusion follows easily. [

Corollary 3.14
T=7 =71=%® (DS)

Proof.
R(D;, r)={D}ifr>1:

indeed, then

Jol<i= mr
tan2

, >+

JH1>] mr
tan2

Hence, T = P(DS) and, hence, also 7" = 7" = P(DS) by
Theorem 2.5. [
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In recent years, in the context of the vector space model,
the view, held by many researchers, that documents,
queries, terms, etc., are all elements of a common space
has been challenged (Bollmann-Sdorra & Raghavan,
1993). In particular, it was noted that term independence
has to be investigated in the context of user preferences
and it was shown, through counterexamples, that term
independence can hold in the document space, but not
in the query space and vice versa. In this article, we
continue the investigation of query and document
spaces with respect to the property of term indepen-
dence. We prove, under realistic assumptions, that re-
quiring term independence to hold in the query space is
inconsistent with the goal of achieving better perfor-
mance by means of weighted retrieval. The result that
term independence in the query space is undesirable is
obtained without making any assumption about whether
or not the property of term independence holds in the
document space. The results of this article reinforce our
position that the properties of document and query
spaces must be investigated separately, since the doc-
ument and query spaces do not necessarily have the
same properties.

1. Introduction

The vector space model has been introduced by Salton’s
SMART group about 30 years ago. Since then, it is one of
the most popular models in the sense that most investiga-
tions use this model in one way or another. Its popularity
comes from the fact that queries and documents are repre-
sented both in the same vector notation, which suggests a
geometrical interpretation of the retrieval process in an
n-dimensional space. It suggests the use of many statistical
techniques, such as association measures that were devel-
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oped in numerical taxonomy, and it supports various feed-
back techniques such as Rocchio’s query feedback (Rocchio
& Salton, 1965), or more perception-like feedback as in
Bollmann and Wong (1987) and Wong, Yao, and Bollmann
(1988). In the last decade, there have also been discussions
about the underlying assumptions of this model. For exam-
ple, in Raghavan and Wong (1986), the question was raised
whether “vector space model” is just related to vector or
tuple notation, or if really a Euclidean vector space was
intended. Then, under the assumption that we really have a
Euclidean vector space, consequences for the retrieval pro-
cess were derived. The underlying assumptions of the vector
space model were as follows: Documents, terms, and que-
ries are all elements of the same vector space. The term
vectors are “independent” in the sense that they constitute
an orthogonal basis of the space. It was, of course, accepted
that the assumptions of this model might not be fulfilled
completely in reality (which is obviously true for many
mathematical models that want to capture the reality of
natural language processing), but whether these assump-
tions are consistent was not explored.

This view was challenged recently by Bollmann-Sdorra
and Raghavan (1993) by showing that documents and que-
ries behave very differently. To this end, preference rela-
tions and evaluation measures, which imply preferences on
queries, were exploited. A notion of term independence was
introduced, and by means of counterexamples, the possibil-
ity of having term independence in the document space, but
not in the query space and vice versa, was established. This,
in turn, implied that terms are not independent per se, but
that term independence has to be investigated in the context
of user preferences.

In that article, the investigation was based on examples
using unweighted document and query descriptions. In con-
trast, it is widely agreed that weighted query terms have a
potential for better performance. Also, the following ques-
tion remained open: Would it not be desirable, at least for
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special cases, that term independence holds both in query
and document spaces? In this article, we will show that, for
retrieval functions such as dot product or cosine, weighted
retrieval is incompatible with term independence in the
query space. In other words, in order to capture the benefits
of query term weights, term independence is an undesirable
property. This result highlights yet another important dif-
ference between queries and documents.

Furthermore, we want to mention that this investigation
is not meant to discredit the vector processing model as a
whole. On the contrary, we ascribe more power to it by
obviating the need for certain common restrictions. Qur
suggestion is that the assumptions of the model (Euclidean
vector space, terms are independent, documents and queries
are elements of the same space, etc.) are too strong and are
not really needed. Finally, this work brings out the impor-
tance of investigating properties of a query space separately,
since it does not necessarily have the same properties as the
associated document space.

2. Basic Concepts

2.1. The Vector Space Model

The mathematical model for a typical information re-
trieval system S can be defined as a 5-tuple S = (7, D, Q, V,
F), where: T is the set of index terms; D is the set of
documents; Q is a set of queries; V is a subset of the real
numbers; F : D X Q — Vis a retrieval function between a
query and a document (Bookstein & Cooper, 1976). Infor-
mation Retrieval (IR) systems based on the vector process-
ing model, represent each document by means of index
terms (also known as keywords or index words). They are
extracted from either the body of a text or a surrogate text
(e.g., abstract) through a process of indexing. Documents
are represented by a vector of the formd = (d,, d,, . . ., d,),
where d; is the weight of ¢, € T. At times, the ds are binary;
however, it is also conventional to assign a weight for each
term to reflect the relative importance of the term within a
document. A user reveals his/her need either writing a
passage in natural language or using keywords connected
with Boolean operators. In the former case, the query may
be represented within the IR system as a set of (index term,
weight) pairs (Salton, 1989). In either case, a query can be
expressed in a vector of the form ¢ = (g, ¢, ..., gy,
‘where g; is the weight of t,; € T (Wong, Ziarko, Raghavan,
& Wong, 1989). The result of applying a retrieval function,
F, is called retrieval status value of d for g. Two commonly
used retrieval functions are dot product, which is

F(g, d) = E q4d;
i=1

and the cosine measure, given by
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2
,d) =
Fa 4 = s &

The ordered list of documents returned by the IR system to
answer a user’s query, which is called the retrieval output,
is obtained by ranking documents with respect to their
retrieval status values in descending order.

2.2, Document Space and Query Space

By a document space, we mean a relations system (D, *
=), where D is a set of document descriptions and+ = is a
preference relation on D (Bollmann & Wong, 1987; Wong
et al., 1988). A document description stands for a nonempty
equivalence class of documents—for all items with the
same description. The preference relation + = is defined
relative to the information need of some user. We assume
that, for the preference relation, the following two condi-
tions hold for all 4, 4', d" € D:

d' ord - = d (connectedness)
dandd «- = d)>d - = 4 (transitivity).

ijd- =
=

i) @ -

In other words, we consider + = to be a weak order and
d+ ='is interpreted as: d is preferred to d’, or they are
equally good. If d* =d’ andd' + = dhold, we write d ~ d’,
which means that d and d' are equally good. If d+ = d’ and
not d' + ~ d holds, we write d+ > d’, which means that d
is better than d'. The following is an example of a prefer-
ence relation:

d+ = d' iff all documents with description on d are relevant
and all documents with description d’ are nonrelevant;

d ~ d' both d and d' represent either only relevant docu-
ments or only nonrelevant documents.

In the case that there are relevant as well as nonrelevant
documents with the same description, we could have the fol-
lowing preference, which is assumed in probabilistic retrieval
models: d+ = d' iff P (relevant | d) = P (relevant | d').

Example 2.1. Let D C {0,1}>. Suppose that the prefer-
ence on the document space (D, * >) is given by

0, 0, 1
0o o) [©0
0, 1, 0
R A (YR
@ 1 (1, 1, 1

Documents in { }are considered to be equally good for
the user. Three of them, (1, 0, 0), (1, 0, 1), and (1, 1, 0), are
relevant, whereas the remaining four are nonrelevant. #

A query space is a relational system denoted by (Q, *
=*), where Q is the set of all possible queries and - =* is
a preference relation on Q. Preference relations on Q were
first considered implicitly by Rocchio and Salton (1965) in
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the sense that the generation of an optimal query always
involves some preference. Preference relations on Q were
also considered by Yu (1974), Yu and Salton (1976), and
Robertson, Maron, and Cooper (1982). The works of Roc-
chio, Salton, and Yu relate more closely to this investiga-
tion, since they also considered preference on queries with
respect to a particular user need. In Yu, Salton, and Siu
(1978), for example, it is shown that a study of query space
has implications for query modifications through term ad-
dition and deletion. Robertson et al. (1982), on the other
hand, consider a family of queries, where each instance
represents a different user need.

The preference relation on O depends on the following
factors: The document space (D, * =), the retrieval function
F: D X Q — R, which maps each document-query pair into
the real numbers, and the evaluation measure that assesses
the rankings generated by F. We illustrate this in the fol-
lowing example. In the example, the evaluation measure
R,,,.» defined in the Appendix, is chosen. R, ,,, is intended
to compare the rank ordering of documents generated by the
system, relative to the preference ordering of the same
documents given by the user, with respect to a given need.
R,om reaches the highest value of 1, if, forall d, d' e D, d
+ > d' implies that system ranks d higher than d'.

Example 2.2. We consider the document space of Exam-
ple 2.1. Let Q = D. The retrieval function F is given by the
coefficient of Jaccard, where

# of terms in d and ¢
# of terms in d or ¢

F(d, q) =

The evaluation measure is the normalized recall, R,,,,,. Let
g = (1, 1, 0). This gives the following similarities for the
documents:

F((0,0,1),9)=0
F((0,1,0),9) =5

F((0, 1, 1), q) = .333
F((1,0,0),9) = .5

F((1,0,1), q) = .333
F((1,1,0),9) = 1.0

F((1,1,1), q) = .667

The resulting ranking of the documents is as follows:

(a0t ] gle s nle.on)

If we substitute each document by its relevance judg-
ments, we obtain the ranking

(F1—-1x1x1-)

where the + signs and — signs represent the rank of,
respectively, the relevant and nonrelevant documents.

For this ranking, which corresponds to setting g = (1, 1,
0), we obtain R,,,, = 3 = .667. If we repeat this for all
queries, we obtain the following preference relation on

queries, defined by their R,,,, values:

Rnorm:
(1,0,0) 1
(1,0, 1)
" *{(1, o) %7

- >#%(1,1,1)  .583

- > *{Eg (1)’ (1);} 292

- >*0,1,1 0

2.3. Term Independence

We have already seen that term independence is consid-
ered to be one of the basic assumptions of the vector space
model. If term independence is viewed as an empirical
property, it should have a definition such that the conduct of
experiments in order to find out whether such an assumption
holds in reality is possible. A notion of term independence
was introduced in the context of probabilistic retrieval mod-
els. There, term independence means that terms contribute,
independently of each other, to the probability that a docu-
ment with certain description is relevant. Hence, the general
principle that we want to adopt is that term independence
means that terms contribute independently of each other to
some well-defined property. This means, in order to discuss
term independence among terms in queries, we need an
analogous property. Our review of IR literature shows that
the property that is mostly investigated for queries is how
well queries perform with respect to a given retrieval func-
tion and an evaluation measure (Robertson & Sparck-Jones,
1976; Robertson et al.,, 1982; Rocchio & Salton, 1965;
Wong et al., 1988; Yu & Salton, 1976). This is also sup-
ported by the fact that all query feedback methods are
intended to find some optimal query. Hence, we think, for
information retrieval, that it is natural to discuss term inde-
pendence in the query space in the context of preferences on
queries. For subsequent developments, we require a defini-
tion of term independence that is applicable to both docu-
ment and query space. The probabilistic concept of term
independence that is used for the document space, which is
based on a frequency ration interpretation of probability,
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does not easily generalize to the query space. We, therefore,
consider a notion of independence that has been introduced
in measurement theory (Krantz, Luce, Suppes, & Tversky,
1971, chap. 7). It is defined as follows:

Definition 2.1. Let A = A; X -+ - X A, be the Cartesian
product of n nonempty sets. Let + = be a binary relation on
A. A, is independent of all other attributes A; (that is, j # 7),
iff the following condition holds for all i, 1 =i =< n, a, q]

€A, andforallb=(b,,...,b,),c=(c,...,c,) where b,
ceA: ‘
by, ....b_y,a,biq,...,b,)
«=(0by.... b, ah by, ..., by)
E(Cy, v v s Cits Qiy Ciggy v -+ 5 Cp)
= (Cpy ey Cimpy O Ciggy v oy ) #

This means that, for A; to be independent of all other
attributes, if the substitution of a] by a; gives an improve-
ment in one context, then it should give an improvement in
every context.

Sometimes, in information retrieval, not all objects of the
Cartesian product are available. For example, if the retrieval
function is the cosine measure, then the zero vector is not
admissible. In that case, we assume the condition of the
definition above to hold only for the admissible vectors.

In the following example, we show that it is possible that
term independence holds in the document space, but not in
the query space.

Example 2.3. Let D = Q = {1,0}>. We consider the
following preference relation on D.

©, 1, 0)
(1,1,0) ©,1, 1) (0, 0, 0)
{(1,1,1)}'> (1,0,0[" 7,0, 1)}
(1,0, 1)

Here the terms are independent. For term ¢; we obtain:
(1,0,0)- > (0,0, 0)
(1,0,1)- > (0,0, 1)
(1,1,0)- >(0,1,0)
(1,1,1)- >(0,1,1)

Hence, we see that the inclusion of term #; always gives
an improvement, no matter what the other term values are.
Hence, term ¢, is independent of the other terms. Similar
considerations can be also made for the terms ¢, and #;.

We now choose dot product as the retrieval function, and
the normalized recall, R,,,,.,. as the evaluation measure. This
gives the following query space (Q, - =*):

RnOrm:
(1,1,0) 1
>, L1 9

'>*{(1’ o O)} 8

(0,1,0)
1,0,1)
.>*{(0, ! 1)(} 725
0,0,1)
oo o

Here, term independence does not hold in the query
space, as evidence by the fact that the third term is not
independent of the first two; that is, (1, 1, 0) + >*(1, 1, 1),
but (0, 0, 0) ~* (0, 0, 1). #

Whenever independence holds for document vectors,
according to Definition 2.1, we see that terms contribute to
document quality independently of each other; that is, it is
an essential property for a linear decision function to exist.

In the next section, we show that in the case that the
query terms are weighted, insistence on term independence
in the query space can negate the effect of weights.

3. Weighted Retrieval and Term Independence in
the Query Space

It is widely accepted that weighted query terms offer the
potential for improving retrieval performance. Especially,
all query feedback methods are aimed at deriving the term
weights for the optimal query. In the following theorems,
we show that for a certain class of retrieval functions, which
may include either one or both dot product and cosine
measures, weighted retrieval is incompatible with term in-
dependence in the query space. To this end, we first closely
consider the various assumptions needed.

One of the assumptions in Theorem 3.1 is that the doc-
ument space is finite. Although, in many retrieval models,
there are infinitely many document descriptions (as in the
vector space model with weighted document terms), a user
will always have to make retrieval on a finite document
collection. This implies that the set of document descrip-
tions under consideration at any given time will be finite.
Hence, we think it is quite natural to assume that the
document space is finite.

There are basically two ways to evaluate retrieval results.
One approach is based solely on the ranking of the docu-
ments and it disregards the retrieval status values. Measures
that are based on this view are exemplified by recall-preci-
sion graph, recall-fallout graph, normalized recall, normal-
ized precision, and expected search length. They constitute
a majority of the evaluation measures so far designed.
Cherniavsky and Lakhuty (1970) call this evaluation rela-
tive because only the positions of the documents relative to
each other is taken into consideration. The alternative ap-
proach of evaluation uses the retrieval status values. Cher-
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niavsky and Lakhuty called such an evaluation absolute.
Examples of absolute measures are the measure of Swets
(1969), or the measure used in the SMART project in order
to define the optimal query (Rocchio & Salton, 1965). We
note that, with respect to query term independence, whether
the evaluation is relative or absolute can make a difference,
since we want to make use of the property that the prefer-
ence relation on the query space can only have finitely many
levels. In Theorem 3.1, we assume that relative evaluation is
used. In general, in IR, there are sound theoretical reasons to
favor relative evaluation measures (Robertson, 1977).

In the vector space model, among the most important
retrieval functions are the dot product and the cosine mea-
sure. Both retrieval functions have a common property. If
we multiply a query vector ¢ = (g;,..., g,) With some
constant A > 0, then Ag = (Ag;, ..., Ag,) gives the same
ranking of documents as ¢, for both functions. In the case of
dot product, we have

F(g,d)=F(q, d)YoF(Aq,d) = F(Ag, d')

Hence, we obtain exactly the same ranking of document. In
the case of the cosine measure, we obtain

F(q, d) = F(Aq, d)

which also implies the same ranking. In the case of a
relative evaluation, in both cases Ag ~ * g holds. For both
Theorems 3.1 and 3.2, we shall, therefore, assume a class of
retrieval functions with the property g ~ * Ag. We think that
this class of retrieval functions is of special interest in
information retrieval, since it includes both dot product and
cosine. It should be noted that for some absolute evaluation
measures (e.g., measure of Swets), the property g ~ * Ag
holds for dot product.

The following theorem states that under certain assump-
tions three query weights, —1, 0 and +1, are sufficient. By this
we mean, that for each query ¢ there exists a query ¢’, such that
all the term weights of g' are one of ~1,0,0r +1and g ~ * ¢'.

Lemma 3.1. Assume that there exist a query g{ =
(g%, - ... q)) and a query g5 = (q7, ..., g7), such that

1 q!>0
gi=y 0 ¢i=0
-1 ¢gi<0

and gj + * g{. Then, there exist two queries, ¢’ = (g1,
4 ... g and q" = (g, g5, ..., q), such that gj/q] > 0
and ¢' - > * ¢".

Proof. Let g7 = (g1, -5 Gk Gia1s+-+» gn) fOT k
=0,1,...,n Then g4 = g and g¢, = qo. If, for all k, g{,
~* goq+1) then, because of transitivity gy ~* go. Hence,
there exist two queries, gor = (@71, - - -+ G Qiat1s -« Q1)
and g1y = @1 - - > Qoo Qoo Diw1s Dira, .., 2> that are

not equivalent. They only differ in the term & + 1, and also
qi+1 and g7, have the same sign. By rearrangement of the
terms, we may assume, without loss of generality, that they
only differ in the first term.

Theorem 3.1. Assume that the following assumptions
hold:

i) The document space if finite;

ii) Q, - =%)is a weak order, and the preference relation is based
only on the ranking of the documents as defined by the query
and the retrieval function, (i.e., the evaluation measure is
relative);

iii) Forallge Qand A > 0, and A+ g € Q and, g ~* Ag; and

iv) Term independence holds in the query space.

Then for each query term the three weights, —1, 0, and +1,
are sufficient.

Proof. The proof will be indirect. Assume that there
exists a query term for which the three weights —1, 0, +1
are not sufficient. Without loss of generality, we assume it
to be the first term. Hence, because of Lemma 3.1, there
exist two queries, ¢’ and ¢" with ¢’ - >* ¢", ¢’ = (qi,
g% ....qg)and ¢" = (g7, 4%, ..., g%, such that ¢’ and g
are both non-zero and have the same sign. Let A = g;/g7 >
0.

From this we obtain, because of assumption iii,

()\qullr, /\kqg’ .
= (g1, 4% ...

S Mg ~*(Agl gk ... gD
N R C N L A 3
~ (A% Atg% L., Mg
Because of the independence assumption iv, this implies
Mg, 45 .04 >* Vgl qp ..., g forall g, €R,
i = 2,...,n This then implies that there are infinitelymany
preference levels in (Q, + =*). On the other hand, the
finiteness of the document space (assumption i) and the
adoption of relative evaluation measure (assumption ii)
imply that there are only finitely many rankings of the
document space. Since, by assumption ii), only these rank-
ings are evaluated, (Q, * =*) can have only finitely many
preference levels. Hence, we have a contradiction. Let g

=(qy,-.-,9q,) € Q be an arbitrary query. We now define g’
= (qi’ R 1 q:l) as
1, ifg>0
gi=y 0, ifg=0
-1 ifg,<0

Then g ~* g¢’. Hence, the three weights —1, 0, and +1 are
sufficient. #

The theorem can be used to derive several corollaries.
For example, in a real retrieval situation, the three weights
-1, 0, and +1 will not be sufficient. Hence, we can con-
clude that under the given assumptions, term independence
will not hold in the query space. Another conclusion is that
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if term independence holds, and for some reason negative
query weights are not included, then unweighted queries
perform as well as weighted ones. This basically means that,
under the given assumptions, term independence in the
query space holds only for unweighted queries. Moreover, it
shows that, for the query space, term independence is not a
desirable property. It also should be noted that the only
assumption made about the document space is that it is
finite. There are no assumptions made as to whether the
document terms are weighted, or whether term indepen-
dence holds in the document space. This again shows that
documents and queries are fundamentally different objects,
and that they should not be treated in a uniform manner.

We next present a theorem that deals with the incompat-
ibility between term independence in the query space and
weighted retrieval in a more general setting. Before present-
ing the theorem, we define the notion of an optimal query.

Definition 3.1. Let (Q, + =*) be a query space. then g* €
Q is an optimal query iff g* - =* ¢ for all ¢ € Q.

Lemma 3.2. Assume that there exist an optimal query g*

= (¢%, ..., q}) and a query ¢' = (q},. .., g,), such that
1 g0
gi={ 0 4f=0
-1 g¥<o0

and not g* ~* g’. Then there exist an optimal query g§ =
(461 - - -» 96, and a query go = (9o1» o - - - » 90n)» Such

that g&,/g5; > 0 and g} + >* ¢,

Proof. Similar to the proof of Lemma 3.1.

Theorem 3.2. Assume the following holds:

ii) There exists an optimal query ¢* = (¢%,..., ¢7).

il) (@, * =¥) is a weak order. iii) Forallge Qand A > 0, A+ ¢
€ Qand g ~* Aq.

iv) Terms are independent in the query space.

Then there exists an optimal query ¢’ = (g1, . . .

that g/ e foralli = 1,..., n and g° ~* g*.

» 4,), such

Proof. The proof is similar to the proof of Theorem
3.1. Assume such a g~ does not exist. Then, because of
Lemma 3.2, we can conclude that there exists a query g
= (g1 g5, . . . » ¢, such that

(CIT”;’--',‘IZ‘)’ >*(411:q>§,'~,‘1j)

and g¥/g, = A > 0.
As in the proof of Theorem 3.1, we conclude

(A1g, XNigh, ..., Mg

- >*(Mqy, Mgk Lo Mg, YE=1,2,. -
and because of term independence in the query space

Mg, g% ... 90 >*(MpL gk ..., gD

For k = 1, we obtain

LaD >*(gtab . D)

But this is a contradiction because (g%, . .
mal query. #

In the theorem above, there are no assumptions made
about the finiteness of the document space. Another impor-
tant difference to note between Theorems 3.1 and 3.2 is that
the latter does not mention the type of evaluation measure.
If the evaluation measure is absolute, it can happen that g
and Ag produce the same ranking, but g + * Ag. In such a
case, Theorem 3.2 holds only for cosine retrieval function.
In contrast, if relative evaluation is used, then Theorem 3.2
applies for both dot product and cosine. Of course, because
of fewer assumptions, conclusions are a bit weaker. We
cannot say that three weights
are sufficient for any query; rather, that result holds only for
optimal queries. But this does not make the situation any
better. Why should we use weights if, for optimal queries, the
weights {—1, 0, +1} are sufficient for any query; rather, that
result holds only for optimal queries. But this does not make
the situation any better. Why should we use weights if, for
optimal queries, the weights {—1, 0, +1} are sufficient?
Hence, again, term independence in the query space contra-
dicts the benefits of weights. Of course there is always the
possibility that, in the general case, no optimal query exists.
But in any case, IR in such a context is a hopeless endeavor.

The notion of independence that is involved in Definition
2.1 is a kind of utility theoretic independence. In the case of the
probabilistic binary independence model, there exists a linear
decision function in the document space. Probabilistic inde-
pendence implies utility theoretic independence in the docu-
ment space. But from Theorem 3.2, we can conclude that, even
under the assumptions of the probabilistic binary independence
model, query term independence does not hold.

In the following example, we show a particular situation
where term independence holds in the query space and the
weights —1, 0, and +1 are not sufficient.

AT, g% ...

.» qF) is an opti-

Example 3.1 Let Q C R" and let the retrieval function be
Flg d = 3, f (g, d;). Examples of such a retrieval
function are dot product and Canberra metric (Sneath &
Sokal, 1973). Furthermore, let the evaluation measure, ., be
g = &3y F(g, d) = B3, Flg, d), where &, B> 0, R
is the set of relevant documents and R is the set of nonrel-
evant documents. Such an evaluation was, for example,
chosen in the SMART-project in the context of query feed-
back. Usually in such a case, three query term weights are
not sufficient. We now obtain

w(g) =a > Flg,d) — B >, Fg, d)

deR deR

> X flgsd) = B> D flas d)

deR i=1 deR i=1

I

2 o E.ﬁ(qi’ d)—-pB Efi(q.-, di))

i=1 deR dER
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If we now define

¢1(qi) =a Ef;(q.-, d) - B Zfi(qi’ d)

deR dER

then u(q) = 27, ¢ (g)-

Then for the preference relation * =* defined as g - =* g°
S w(g) = (g, it is easy to see that term independence
property holds in the query space. Unfortunately, however,
according to Theorem 3.2, there are infinitely many prefer-
ence levels in (Q, - =*). Thus, if one insists on term
independence, optimal query cannot exist and, Rocchio’s
objective of finding an optimal query is unattainable. #

4. Conclusions

In a previous article, we (Bollmann-Sdorra & Raghavan,
1993) showed by a number of examples, that properties of
a document space can be very different from those of the
associated query space. In contrast, in this article, we for-
mally establish that, with respect to the property of term
independence, requiring query and document spaces to be
identical has undesirable consequences.

It is proved that, under realistic assumptions, in order to
realize the benefits of weighted retrieval, the property of
term independence must not hold in the query space. More-
over, term independence in the query space is found to be
undesirable, with no assumptions made regarding whether
such a property holds in the document space.

What are the consequences of these results for the vector
space model? One commonly accepted assumption for the
vector space model is that terms are independent, and doc-
uments and queries are elements of the same space. Salton
himself considered these as disadvantages (Salton, 1989, p.
319). By not requiring the assumption that documents and
queries belong to a common space, we have shown that the
disadvantages mentioned above do not exist. More specifi-
cally, document term independence is a desirable property,
but not query term independence. In this sense, our results
give the vector space model a greater generality (by removal
of assumptions originally thought to be required) and
broaden its scope of applicability.

Our work also suggests that more detailed studies that
explore the properties of query spaces are needed. For
example, in Raghavan and Sever (1995), properties of the
query space are investigated form the point of reusing
optimal queries.
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Appendix

Definition of R,,,,,,

Let (D, - =) be a document space, where D is a finite set of
documents on which a preference relation, - =, that is complete
and transitive (weak order) is defined. Let A be some ranking
of D given by a retrieval system. Then R, is defined as

1 S+ —-85-—
Rnorm(A)=§ 1+—_§+—'

where S* is the number of document pairs where a better
document is ranked ahead of a worse one, S~ is the number
of pairs where a worse document is ranked ahead of a better
one, and S*, . is the maximal possible number of S*. This
R, Was introduced in the LIVE-Project (Bollmann, Jo-
chum, Reiner, Weissmann, & Zuse, 1985) and further in-
vestigated by Yao (1995).
Example. We consider the ranking

A = (rplpnirnnlnnn)

where r stands for a relevant document, p for a partially
relevant document, and n for a nonrelevant document. There
are two relevant documents, two partially relevant docu-
ments, and six nonrelevant documents. Vertical lines are
used as rank separators. That is, first rank has one relevant
and partially relevants document, etc. Hence S+m = 28,
ST =21,8 = 3, and R,,,,,(A) = .82.
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Providing the best service in order to satisfy users is the
main objective of any library. The loan policy is a major
tool available to achieve this objective. Previous studies
have all focused on the loan period, ignoring the loan
policy’s other equally important aspect, which is the
maximum number of books a user can borrow. More-
over, only book availability has been used as a measure
of user satisfaction. User satisfaction with either the
length of the loan period or the number of books allowed
to be borrowed has been largely overlooked. This article
combines those relevant components into a more com-
plete model. An easy-to-solve integer programming
model is formulated, whose solution yields the optimum
loan period and optimal limit on the number of books
that can be borrowed to maximize user satisfaction. A
case study of an actual university library is presented.

1. Introduction

With resources shrinking, and collections and the num-
ber of users ever growing, library management is an increas-
ingly difficult task. Hindle and Buckland (1976) maintain
that the main objective of a library, as a service facility, is
to satisfy its users. They classify library management into
the following decision areas: Acquisition, collection con-
trol, user education, and administrative systems. The major
tool available to library management for achieving its user
satisfaction objective is the collection control, or loan pol-
icy. While the loan policy has a large influence on user
satisfaction, it is also directly under the control of the
librarians.

According to Buckland (1975, p. 75), three regulations
constitute a loan policy: (1) The maximum loan period, (2)
the maximum number of books that can be borrowed by the
same user, and (3) the number of renewals allowed. For the
sake of completeness, we can add a fourth regulation: One
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that concerns reservations and recalls. Of these four regu-
lations, the first two are much more important. Buckland
(1972) finds that while there is a strong tendency for books
to be kept out until their due date, the great majority of loans
are not renewed. Somewhat surprisingly, even the length of
the official loan period has little effect on the frequency of
renewals. Moreover, Buckland (1975, p. 91) also observes
that reservations are made only on a small fraction of
instances when books are not immediately available.

This article is mainly concerned with the two more
important aspects of the loan policy: (1) The length of loan
period, and (2) the number of books allowed to be bor-
rowed. The objective is to maximize user satisfaction with
both of them, in addition to satisfaction with book avail-
ability. The article is organized as follows. First, a review of
previous relevant literature is given. Then, the integer pro-
gramming model of the problem is formulated. Subse-
quently, considerations for implementing the model are
discussed. Next, a case study is presented, and availability
percentages are compared with previously published values.
Finally, conclusions and recommendations are given.

2. Literature Review

The application of operations research (OR) techniques
to library problems was pioneered by Morse (1968, 1979).
In his book, Library Effectiveness: A Systems Approach, he
relies primarily on queuing theory and Markovian processes
to model circulation and book use. Morse also uses queuing
theory to analyze loan policies, in particular the effect of
reducing the loan period on satisfying circulation demand.
For library effectiveness, the criterion that Morse uses is the
ability to provide service (that is, the availability of desired
books) to users.

Using computer simulation, significant contributions
have been made by the library research group at the Uni-
versity of Lancaster (Buckland, 1972, 1975; Hindle &
Buckland, 1976). Their main objective is maximizing book
availability, which they consider to be the result of three
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interacting factors: (1) The frequency of demand, (2) the
length of the loan period, and (3) the amount of duplication.
Two measures of effectiveness are defined: (1) Satisfaction
level: The average immediate availability for a given time
duration; and (2) collection bias: The average availability of
the 10% most requested books. The group’s main recom-
mendation is to implement a variable loan policy, in which
the most popular books are subject to a shorter loan period.

Several studies related to loan period, availability, and
satisfaction have been conducted at Case Western Reserve
University. Kantor (1976b) proposes using document expo-
sure time and user satisfaction level as a combined measure
of library performance. Kantor (1976a) uses a branching
diagram to describe how availability is reduced by four
factors: Lack of acquisition, circulation, misshelving, and
user error. Shaw (1976a) develops a simulation model that
evaluates the effect of the loan period on user satisfaction,
which is measured by book availability and delay associated
with recalls. Shaw (1976b) conducts a survey of loan period
distribution in academic libraries. Saracevic, Shaw, and
Kantor (1977) use a branching approach to analyze the
causes of user dissatisfaction, including the loan period.

An approach employing basic queuing theory has been
used by Goyal (1970) to determine the optimal loan periods
for periodicals. Two models are proposed, both considering
readers as customers, periodicals as servers, and the loan
period as service time, which is considered exponentially
distributed as a simplifying assumption. The objective of
the first model is to minimize the total cost of providing the
service plus the cost of waiting. The objective of the second
model is to maximize customer satisfaction, assumed to be
a function of the loan period, book availability, and waiting
time.

Bookstein (1975) develops a more sophisticated analyt-
ical model based on queuing theory in order to determine
optimal loan periods. The model assumes that no queues are
allowed to form (no reservations permitted), but it considers
the effect of user satisfaction with the loan period. Consid-
ering transactions at the circulation desk as generating costs,
the objective of the model is to minimize the number of
these transactions. Alternative objective functions, such as
maximizing book availability or maximizing the probability
of successful book use, are also discussed.

Several studies deal with the loan policy and its rela-
tionship to various aspects of the library system. Burkhal-
ter and Race (1968) analyze the effect of renewals, over-
dues, and other factors on the optimal loan period. Bruce
(1975) models the library loan dynamics as a four-state
Markovian system, relating the loan period to this sys-
tem. Yagello and Guthrie (1975) examine the increase in
circulation resulting from reducing the loan period. Sinha
and Clelland (1976) present a general model for collec-
tion control, which can be extended to include variations
in the loan period. Burrell (1980) proposes, and Hindle
and Worthington (1980) discuss, simple stochastic mod-
els for library loans which explain some empirical circu-
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lation frequency distributions. Burrell and Fenton (1994)
develop a modified model of library circulation which
accounts for book unavailability for borrowing while it is
out on loan. Goehlert (1978) analyzes the influence on
availability by several factors, including book reshelving,
search, circulation, on order, not owned, duplication, age,
and subject. Goehlert determines that circulation is the
most important factor. Kantor (1979) presents a compre-
hensive review of library operations research up to 1979.
Kraft and Boyce (1991) provide the most recent and
extensive bibliography of library OR literature.

3. The Integer Programming Model

The literature review confirms the importance of loan
policy for library user satisfaction. The four elements of the
loan policy have been identified as: Loan period, number of
books allowed, renewals, and reservations or recalls. The
first two are shown to be more important; however, all of the
reviewed research seems to focus only on the loan period.
Although the maximum number of books to be borrowed is
also significant for achieving user satisfaction, it has been
apparently overlooked in the literature. The model to be
presented here considers the two major elements of the loan
policy: (1) The length of the loan period, and (2) the
maximum number of books allowed to be borrowed.

User satisfaction appears to be a common objective
based on all the literature surveyed. For measuring satisfac-
tion, most articles simply choose immediate availability—
the probability of finding a required book available on the
shelf. Variations include availability of the most popular
books, satisfaction with the loan period and the waiting
time, and some cost-based objectives. We believe that im-
mediate availability is not an adequate measure of user
satisfaction, which must include satisfaction with both the
loan period and the maximum number of books that are
allowed to be borrowed. Just as a user becomes dissatisfied
when books are not available, he or she will be dissatisfied
if the loan period is too short or the books he or she is
allowed to borrow are too few. Thus, three measures of
satisfaction are used in this article:

s1 = satisfaction with the loan period,

s2 = satisfaction with the maximum number of books allowed to
be borrowed, and

s3 = satisfaction with book availability.

3.1. Model Assumptions

1. User satisfaction, for all three types, is defined to be a
ratio of satisfied demands to total demands. This is consis-
tent with approaches used in the literature. For example,
Hindle and Buckland (1976) define satisfaction level as the
proportion of demands which can be immediately satisfied.

2. User demands, for the number of books or the length
of loan period, will not be affected by changes in the loan
policy. If this is not the case, then according to Hindle and
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Buckland (1976), one would expect the renewal probability
to change with the loan period. It was mentioned earlier
that, to the contrary, the length of the official loan period is
seen to have negligible influence on the frequency of re-
newals.

3. As discussed previously, availability is affected by
many factors, such as the loan period, duplication, and
demand, which have been identified by Buckland (1975),
Kantor (1976a), and Goehlert (1978). However, both Buck-
land and Goehlert conclude that the loan policy has, by far,
the most significant impact on availability. Therefore, all
other factors are assumed constant, and thus their effect is
ignored, as we concentrate on the relationship between the
loan policy and availability.

4. For the model to be realistic, s3 should be considered
to have a more significant impact on overall user satisfac-
tion than either s1 or s2. The level of dissatisfaction result-
ing from book unavailability should be greater than that
resulting from not getting all the borrowing time or number
of books desired. If books are not available, the user will not
be concerned about how many to borrow or how long to
keep them. Determining the relative weight of the three
satisfaction components requires further research well be-
yond the scope of this article. Therefore, it will be assumed
here that s3 is much more important than either s1 or s2.

3.2. Model Parameters
Let

I = upper limit on the official loan period in weeks

J = upper limit on the maximum number of books a user is
allowed to borrow

i = length of the official (maximum) loan period in weeks, i

=1,...,1

Jj = maximum number of books allowed to be borrowed by the
sameuser,j = 1,...,J

w = number of loan weeks desired by the user, w = 1, ..., 1

b = number of books desired to be borrowed by the user, b
=1,...,J

a = number of books available, out of those desired by the user, a
=0,..., b

Obviously, s1 (satisfaction with loan period i) is a func-
tion of i, and s2 (satisfaction with number of books j) is a
function of j. Since availability is affected by the loan
period and the number of books allowed, s3 (satisfaction
with book availability) is a function of both i and j. A user
is partially satisfied if the loan policy does not allow him all
the borrowing time or number of books he needs; in this
case, we assume that satisfaction is the ratio of what is
needed to what is allowed. On the other hand, a user is
completely satisfied if the policy meets or exceeds his
needs. Keeping in mind that satisfaction cannot exceed
100%, s1, s2, and s3 can be defined for each user as
follows:

. i
sl =mm{l,;} 8

52 = min{ 1, JZ} 2)

_a
S3_Z' 3)

Surveys of user needs must be conducted to determine
user borrowing needs and current book availability. From
these, probability distributions can be constructed for both
the loan period and number of books required for borrow-
ing. Given

f,, = the probability that a user needs w weeks
&, = the probability that a users needs b books.

The average satisfaction with the loan period, S1;, and
with the number of books, S2j, can be calculated for any
given policy as follows:

I N
s1.-=2f:‘:min{1,§},i=1,...,1 @

w=1

d j

b=1

Another approach is used to calculate average availabil-
ity §3. It is easier to calculate book unavailability (S3' = 1
— §3), since it is directly related to the loan period i and the
maximum number of books j. A logical assumption is that
unavailability—the probability of not finding a needed
book—depends on the average borrowing time W, times the
average number of borrowed books B;. If the needed time w
is less than the official loan period i, the user will keep
books for w weeks; if w is greater than i, he/she will borrow
them for only i weeks. Similarly, if the number of needed
books b is less than the maximum number allowed j, the
user will borrow b books; if b is greater than j, he will
borrow only j books. Noting that the loan period cannot
exceed I, and that the number of books cannot exceed j, W;
and B; can be estimated for each policy as shown below.

I

W= > fimin{w, i}, i=1,...,1 (6)
w=1
J

B;= Xgimin{b,jlj=1,....J 7
b=1

For each policy, average unavailability S3’ is assumed
proportional to the product of the average borrowing time W
times the average number of borrowed books B. Let us
define « as the average demand per book per week. If one
book is checked out for one week, there will be an average
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of o unavailabilities (unsatisfied demands). In general, if on
average B; books are checked out for W; weeks, the average
unavailability is aW,-Bj. Thus, for each library, there is a
demand constant « such that:

S3;=aWB,i=1,...,L,j=1,...,J. 8)

3.3. Decision Variables

_ [ 1 ifthe loan period is i weeks
Xi=1 0 otherwise ’
i=1,...,1 9
Y = 1 if the number of books is j books
i7 | 0 otherwise ’

j=1,...,J (10)

3.4. Objective Functions

The objective is to maximize average total satisfaction,
which is the aggregate of S1, S2, and §3. First, $3 is
multiplied by the constant C (C > 1) to indicate that it is
much more important than S1 or $3. However, since S3
= 1 — §3', maximizing the availability S3 is replaced by
maximizing the negative of unavailability S3'.

I J
Maximize Y, S1X; + Y, §2,%;

i=1 =1

I J
-C Y > 83Xy, (1)

i=1 j=1

or, from Equation 8:

1 J
Maximize , S1X;+ D, S2,Y,

i=1 j=t

1 J
- Ca Y D WBXY. (12)

i=1 j=1

Here, o is a demand constant, defined by Equation 8,
which must be calculated from the data for each library.
First, calculate average unavailability $3’ for the current
loan policy of n weeks and m books. For a sample of K
users, $3' and « are calculated as:

K K
83,,=1- (2 a/>, by (13)
k=1 k=1
_ S34,
o= WB, (14)

It can also be reasonably assumed, as indicated by Buck-
land (1972) and Shaw (1976b), that user needs for different
loan periods have little effect on book return time, i.e., that
users almost always wait until the books are due back. In
this case, the average loan period W, is equal to the official
loan period i, and the objective function becomes:

1 J
Maximize Y, S1X; + >, S2,%;

i=1 =1

1
~Ca Y, Y, iBXY, (15)

i=1 j=1

From the data for the current loan policy of n weeks and
m books, the constant « is now computed by:

_ 83,
o= "B, "

(16)

Both objective functions 12 and 15 are nonlinear, since
they involve the product of X; and Y;. In order to solve by
linear programming, the linearization technique developed
by Watters (1967) for 0-1 variables must be applied first.
Fortunately, this is not necessary, since the solution can be
easily obtained by simple search.

3.5. Constraints

Since only one official loan period must be chosen, only
one of the 0—1 X, variables must be equal to 1, while the
others must be equal to 0.

M ~

Xi=1 a7

1

I

A similar constraint must be included to make only one
choice for the maximum number of books.

J
=1 (18)
i=1

4, Implementation Considerations

Unfortunately, computerized circulation data do not usu-
ally show user needs with respect to the loan policy, nor
contain information on book availability. An exit poll must
be conducted at the circulation checkout counter to obtain
these data from users after they have been through the
library; only then can they supply information regarding
book availability. A convenient approach for doing this is
by means of a short questionnaire that the user is requested
to fill out at the time of checking out books. It is important
to emphasize the fact to users that we want to know their
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TABLE 1. Loan period demands and calculations.

Maximum loan period in

weeks i 1 2 3 4
% Demand for i weeks =

100 * f; 5 6 8 2
% Satisfaction with i weeks

=100 * §; 235 419 57.4 70.2
Average borrowing time in

weeks W, 1 1.95 2.84 3.65

5 6 7 8 9 10
36 3 6 5 20 9
82.5 87.6 922 96.0 99.1 100
4.44 4.87 5.27 5.61 5.90 5.99

actual needs, regardless of the official loan policy currently
in force.

The input parameters to the model must be obtained by
surveying users of the library. For each user, data must be
collected on the needed number of weeks w, needed number
of books b, and number of needed books available a. In
determining the frequency of user demands for given num-
bers of books g,, the number of needed books » must
include books already on loan by the same user, reflecting
total user needs. However, in calculating availability using
Equations 3 or 13, books already on loan must be included,
since we are interested only in immediate availability. The
upper limits on the number of weeks I and number of books
J must be set by the librarian, according to both user needs
and practical considerations. Any given user needs that
exceed any of these limits must be considered equal to the
violated limit(s).

For obtaining the optimum solution, it is not necessary to
use specialized integer programming software. Because of
the simple 0-1 structure, it is more convenient to use
spreadsheet packages such as Excel or Lotus. With simple
spreadsheet techniques, one can develop an I X J matrix, in
which each (i, j) cell contains the following value for the
objective function:

S1;+ 82, — CaWB,. (19)

The cell with the highest value is chosen. Let this be cell
(d, e), then the optimum loan policy calls for a maximum
loan period of d weeks and a maximum of e books per user.
Of course, W; must be set equal to i for the second objective
function 15. Although the integer programming model is
not necessary for the solution, it provides a formal mathe-
matical representation of the optimization problem. More-
over, it serves as a basis for more elaborate models with
additional realistic considerations. For example, different
loan policies for faculty, graduate students, and undergrad-
uates can be optimized in an enlarged model.

5. Case Study

The proposed model was applied successfully at the
central library of King Fahd University of Petroleum and
Minerals in Saudi Arabia. There are three classes of users
with three different loan policies: Faculty, graduate stu-
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dents, and undergraduate students. The study concentrated
on the class of undergraduate students, as it was the largest
group. The loan policy for undergraduates allows a maxi-
mum of seven books and 4 weeks. First, a questionnaire
form was developed to obtain data on student needs and
book availability. Students were asked to ignore the current
loan regulations and express their actual needs by answering
the following questions:

1. How many books do you need to borrow?

2. How many other books have you already borrowed and not yet
returned?

3. Of the number needed (stated in Question 1), how many books
were checked out by others?

4. How many weeks do you need to keep the borrowed books?

On the basis of students input and practical consider-
ations, the maximum number to be considered of weeks I
and books J were both set to 10. This agrees with Hindle
and Buckland’s (1976) survey which showed that loan
periods in most university libraries do not exceed 10 weeks.

Table 1 shows the demand probabilities, percentage sat-
isfaction, and average borrowing time for each official
(maximum) loan period. Frequency of student needs for
certain lengths of the borrowing time in weeks, taken from
the survey, was used to obtain the demand probabilities. For
each official loan period i, average percentage satisfaction
with the number of weeks S1; was calculated using Equa-
tion 4. The average borrowing time in weeks W; was com-
puted by Equation 6.

Table 2 shows the demand probabilities, percentage sat-
isfaction, and average number of borrowed books, for each
limit on the number of books. Frequency of student needs
for certain numbers of books was used to obtain the demand
probabilities. For each limit on the number of books j,
average percentage satisfaction with the number books $2;
was computed using Equation 5. The average number of
borrowed books B; was calculated for each book limit j by
Equation 7.

5.1. Objective Function 12

In order to apply the model, constants must be calculated
based on the present loan policy and current book availabil-
ity. First, using Equation 13 on the survey data, current
average unavailability S3’ was determined to be 22.5%,
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TABLE 2. Number of books’ demands and calculations.

Maximum no. of books

allowed j 1 2 3 4 5 6 7 8 9 10
% Demand for j books =

100 * g; 6 6 15 17 25 7 13 3 2 6
% Satisfaction with j books

= 100 * §2; 27.5 48.9 67.4 80.9 90.1 94.3 97.4 98.6 99.4 100
Average no. of borrowed :

books B; 1 1.94 2.82 3.55 4.11 442 4.66 471 4.85 491

which meant average availability is 77.5%. Tables 1 and 2
respectively show the average loan time and average num-
ber of borrowed books for the existing policy of 4 weeks
and seven books (W, = 3.65, B, = 4.66). Equation 13
can now be used to calculate the demand constant for the
first objective function 12.

a = 0.225/(3.65) = (4.66) = 0.01323

Having calculated «, we can determine average book
availability S3,;, the probability of finding a needed book,
for each limit on the loan period i and number of books j.
First, average unavailability $3;; is found by Equation 8,
then $3 is set equal to 1 — $3};. The values obtained are
displayed in Table 3.

Now, all the input parameters needed for the model have
been calculated. Arbitrarily setting C = 2, the resulting
binary integer programming model was then solved using
the LINDO® linear programming package. The following
optimal solution was obtained:

Maximum loan period i = 7 weeks
Maximum number of books j = 5 books
Percent average satisfaction = 100(S1+S2+S3)/3
=(92.2+90.1+72.3)/3
= 81.3%.

5.2. Objective Function 15

For the second objective function 15, the constant « is
calculated by Equation 16, then average availability values
§3,; are calculated as before and shown in Table 4.

a = 0.225/4 * (4.66) = 0.01207

The optimal solution for the second objective, also ob-
tained by LINDO®, is given below.

Maximum loan period i = 7 weeks

Maximum number of books j = 5 books
Percent average satisfaction = (92.2 + 90.1 + 71.9)/3
= 80.9%

5.3. Sensitivity Analysis

With both objective functions, the above solutions have
been obtained by using the somewhat arbitrary value of
(2.0) for C, the coefficient of §3, indicating that §3 is twice
as significant as S1 or S2. For objective function 12, the
above solution remains valid for values of this coefficient
ranging from 2.0 to 2.2. For objective function 15, the
solution is valid for coefficient values ranging from 1.8 to
2.1. This indicates that the solution is rather sensitive to the
value of the coefficient. There is clearly a need to establish
more reliable values for the coefficients of S1, $2, and S3.
Therefore, a full-scale investigation of user opinions must
be carried out to determine the relative influence of the three
factors on overall satisfaction.

6. Comparison with Buckland’s Values

It is interesting to note the remarkable similarity between
the availability figures found by the new model, shown in
Tables 3 and 4, and those determined by Buckland (1975).

TABLE 3. Percentage book availability $3;; for each policy with objective 12, assuming average borrowing time is i weeks.

Books j

Weeks i 1 2 3 4 5 6 7 8 9 10
1 98.7 97.4 96.3 95.3 94.6 94.2 93.8 93.7 93.6 93.5
2 97.4 95 92.7 90.8 89.4 88.6 88 87.7 87.5 87.3
3 96.2 92.7 89.4 86.7 84.6 83.4 82.5 82.1 81.8 81.6
4 95.2 90.6 86.4 82.9 80.2 78.7 7.5 77 76.6 76.3
5 94.1 88.6 834 79.2 75.9 74 72.3 72 71.5 71.2
6 93.6 87.5 81.8 771 73.5 71.5 70 69.3 68.8 68.4
7 93 86.5 80.3 75.3 714 69.2 67.5 66.8 66.2 65.8
8 92.6 85.6 79.1 73.7 69.5 67.2 65.4 64.6 64 63.6
9 922 84.9 78 72.3 67.9 65.5 63.6 62.8 62.2 61.7
10 92.1 84.6 77.7 71.9 67.4 65 63.1 622 61.6 61.1
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TABLE 4. Percentage book availability §3,; for each policy with objective 15, assuming average borrowing time is i weeks.

Books j
Weeks i 1 2 3 4 5 6 7 8 9 10
1 98.8 97.7 96.6 95.7 95 94.7 94.4 94.2 94.1 94.1
2 97.6 95.3 93.2 914 90.1 89.3 88.8 88.5 88.3 88.1
3 96.4 93 89.8 87.1 85.1 84 83.1 82.7 82.4 82.2
4 95.2 90.6 86.4 829 80.2 78.7 715 71 76.6 76.3
5 94 88.3 83 78.6 75.2 73.3 71.9 71.2 70.7 70.4
6 92.8 85.9 79.6 74.3 70.2 68 66.3 65.5 64.9 64.4
7 91.6 83.6 76.2 70 65.3 62.7 60.6 59.7 59 58.5
8 90.3 81.3 72.8 65.7 60.3 573 55 53.9 53.2 52.6
9 89.1 78.9 69.4 61.4 55.4 52 49.4 482 413 46.7
10 879 76.6 66 57.1 50.4 46.6 43.8 424 41.5 40.7

The availability values obtained by the two objective func-
tions 12 and 15 were compared to those determined by
Buckland for loan periods of 1, 2, 5, and 10 weeks. Table 5
shows the percentage availability values computed by the
proposed model for the current policy of seven books, with
the corresponding Buckland (1975, p. 92) values for popu-
larity class B one-copy loan policy.

It is not surprising to see that the second objective
function yields the closest values to Buckland’s. After all,
the two models are based on the same assumption that users
will always wait until the books are due back before return-
ing them to the library. Naturally, complete agreement is not
expected, since availability values calculated by the pro-
posed model depend on the frequency distributions of user
demands, and thus will vary from library to library. How-
ever, the similarity confirms that the assumptions made
about availability are valid, and indicates that the model as
a whole has a sound theoretical basis.

7. Conclusions

A new model for maximizing user satisfaction with a
library’s loan policy has been introduced. This integer pro-
gramming model considers both elements of a loan policy:
The loan period and the maximum number of books a user
can borrow. User satisfaction is measured in terms of sat-
isfaction with these two elements, as well as with book
availability. By including these elements, the proposed
model offers a more complete and realistic representation of
the problem. The model has the advantage of easy solution,
which can be obtained by simple spreadsheet software.

TABLE 5. Percentage availability values calculated by three methods.

Weeks
Loan period 1 2 5 10
Objective 12: 7 books 94 88 73 63
Objective 15: 7 books 94 89 72 44
Buckland (1975, p. 92) 94 86 62 44
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A case study has been presented, illustrating how model
parameters are calculated from user demand distributions.
The values obtained compared well with previously pub-
lished results. For future research, further investigation
could be carried into the relative weights of the three mea-
sures of satisfaction mentioned above. Alternatively, loan
policies for different groups, i.e., faculty, graduate and
undergraduate students, could be simultaneously optimized.
Furthermore, renewals and reservations (recalls), as well as
duplication and multiple loan periods, could be included for
a more comprehensive analysis.
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We investigate the problem of fusing coliections of doc-
uments provided by multiple information retrieval sys-
tems. A parameterized approach is suggested in which a
parameter determines how the documents in the indi-
vidual collections are interleaved to form a fused list of
documents. We then suggest a mechanism for learning
this parameter.

1. Introduction

An important problem is that of the retrieval of text
documents, satisfying the requirements of a user. In Salton
and McGill (1983), Salton (1989), Meadow (1992), and
Frakes and Baeza-Yates (1992), a number of techniques to
address this information retrieval problem are described. In
some situations, especially with emergence of the Internet,
users have at their disposal multiple independent sources in
which to search for their documents. For example, in
searching for some information about future stock prices, a
user may search information bases of articles maintained by
the New York Times, the Wall Street Journal, the Chicago
Tribune, and other newspapers. Each one of these sources
can provide a list of relevant articles which they published.
Having these multiple sources raises the problem of fusing
the results of searchers on these individual information
bases (Bartell, Cottrell, & Belew, 1994; Belkin, Kantor,
Cool, & Quatrain, 1993; Voorhees, Gupta, & Johnson-
Laird, 1994, 1995). This problem is called the collection
fusion problem. A particularly interesting solution to this
problem has been suggested in Voorhees et al. (1994, 1995).
One difficulty with the methodology used in Voorhees et al.
(1994, 1995) is the nondeterminism of the fused list; the
same query run twice in a row can result in a different
ordering of the retrieved documents. This is due to the use
of a probabilistic mechanism in the fusion process which

Received April 7, 1997; revised August 19, 1997 and September 29, 1997,
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leads to a randomness in the result. In this work, we look at
the problem of fusing ordered lists of documents and sug-
gest a number of alternative approaches, all of which are
deterministic.

2. Collection Fusion Problem

In Voorhees et al. (1994, 1995), the collection fusion
problem is formally described. Assume that we have a
group of information servers. Here we have in mind, as a
server, a collection of text documents, like that which could
be maintained by the New York Times consisting of all the
articles that have appeared in it. We shall denote these as S;
for i = 1 to m, m being the number of servers. We assume
each server contains a unique collection of documents, a
document appears in only one server. Furthermore, it is
assumed that each server has its own distinct searching
mechanism. Using these searching mechanisms, for a given
query @, each server can associate a score with each doc-
ument contained in it and thus provide an ordered list of
relevant documents in response to the query. The problem
we are interested in solving is one in which we desire to
obtain an ordered list of the N most relevant documents,
where these documents can come from any of the servers.
The difficulty in accomplishing this task resides in the fact
that the scoring mechanisms used by the individual servers
may be incomparable, and hence we cannot just simply take
the N highest scoring documents across all servers. An
approach for solving this problem has been suggested (Voo-
rhees et al., 1994, 1995) which can essentially be seen to
consist of a three-step process:

1. Pass the query Q to each of the individual servers and
obtain a score for each of the documents. This scoring
allows us to obtain, from each of the servers, a list of
documents ordered by their relevancy to the query.

2. Based upon the nature of the query Q, determine how
many documents should be contributed by the server S,.
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We shall denote this as N;; it is assumed that 272, N, =
N. Combining this with step one, we obtain, from each
server, an ordered list, L;, consisting of its N, highest
scoring documents.

3. Fuse the individual lists, L,, L,, ... L, to obtain an
ordered list of the N desired documents which we denote
as L.

It should be clear that the issues relating specifically to
the collection fusion problem arise with respect to steps two
and three, the determination of the number of elements to
select from each collection and the fusion of the lists; step
one can be implemented by any of a number of approaches
that are now available (Frakes & Baeza, 1992; Meadow,
1992; Salton, 1989; Salton & McGill, 1983).

Step two requires some comparison between the individ-
ual information servers regarding their potential for contain-
ing documents relevant to the question being asked. The
solution to this problem is highly information intense and
can be seen to require empirical studies on the contents of
the different information bases, with respect to the query
being posed. Formally, in order to determine how many
documents we should take from each server under the query
@, given the constraint that we should take a total of N
documents, all we need is the relative proportion of the
documents which we should take from source §; with
respect to another server, say S,. That is, we need to obtain
for i = 2 to m, a value 3;, based upon the query, where B,
is the proportion of documents to be contributed by S;,
compared to that of §;. Once having these 3;, we know that

N, =BN,fori=2tom

and since

we get N = N, + BN, + BN, + --- BN, = Ni(1
+ 27., By). This can be solved for N; = N(1 + 37,
B;) " which gives us all the N,.

In this work we shall concentrate on the solution to the
problem in the third step, fusing the individual collection to
get one collection, for as we shall see in the following, the
solution suggested in Voorhees et al. (1994, 1995) has
problems.

3. Ordered List Fusion

We now focus on the process involved in step three of
the preceding algorithm; we have a collection of m ordered
lists, L;, of distinct elements, and we desire to fuse these
lists into one ordered list L. We should note that this
problem has some connection with the classic work done by
Arrow (1951) on social choice.
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In forming the combined list L from the individual lists,
we require that one property be satisfied, intra-list consis-
tency. This condition requires that if x and y are two
documents appearing in list L; and if x is preferred (is
higher up on L;) over y in this list, i.e., x > ;y, then it is
required that in the fused list L x is higher than y, i.e., x
>y,

In order to combine these individual ordered lists, we
need some guiding imperative. However, on the surface,
there appears no natural principle for guiding us in the task
of combining these lists. Essentially, there appears only one
distinction between the lists: The number of elements in
each list.

An approach to the fusion of these lists has been sug-
gested and tested (Voorhees et al., 1994, 1995) and which,
according to the studies, worked well. The method uses a
probabilistic mechanism to determine each of the elements
to be placed on L. In the method suggested, the list L is
constructed in descending order. In particular, using a ran-
dom experiment, one selects one of the contributing lists,
and then selects the top available element from that list and
places it in the next position in L. One continues in this
manner until all contributing list are depleted. The basic
mechanism for selecting the next element to be added to L
is as follows.

Assume after selecting the first » documents in L, one
has n; documents left in each of the individual lists to be
fused. One then associates with each list L;, a probability

n;
pt 2‘71:1”]"

One then associates with each collection L;, an interval

I,={a, b)
where
a =0
a;,=b,_, i=2,--m
i=a;+p; i=1,--m.

One next generates a random number ran € [0, 1]. If ran
€ I, one selects the top element in list L, to be added to L.
This process can be seen as a biased random generation. It
is clear that this method satisfies the property of intra-list
consistency. In Voorhees et al. (1994, 1995), it is shown
empirically that this procedure results in good ordering.
However, this approach has one fundamental flaw. Because
of the probabilistic mechanism used, each time we imple-
ment this procedure, we could get a different ordering in L,
i.e., it is non-deterministic. In the environment of informa-
tion retrieval, this is unacceptable. For if a user starts going
down the list to check the documents, stops, and then later
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resubmits the query, the user will get a different Iist. This,
of course, causes confusion and anxiety.

The spirit for fusing the individual lists used in Voorhees
et al. (1994, 1995) can be seen to be based upon the
following imperative:

The more elements left in an individual list, the more likely
it is to contain the best remaining element.

We should 