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Chapter 1 

Abstract 

In 1990, the Naval Avionics Center/Indianapolis (NAC) contracted with the University of 
Louisville (UofL) to perform research and development of image processing algorithms to 
support the Digital Scene Matching Area Correlator (DSMAC) mission planning function. 
DSMAC is the map matching navigation system used by the Tomahawk Land Attack Missile 
for terminal navigation updates. Subsequently DEPSCOR Grant N00014-92-J-4096 was 
awarded to the University of Louisville by ONR to support doctoral student research related 
to the DSMAC mission planning research. This report constitutes the final technical report 
for grant N00014-92-J-4096. The grant period was three years, with a one-year no-cost 
extension. 

One of the major concerns in mission planning for DSMAC is the selection of ground 
scenes that contain an adequate number of stable features, i.e., scene features that remain 
constant regardless of diurnal and seasonal variations. This is important because it maxi- 
mizes the duration of the time window in which the mission planning reference maps can be 
used. Gray scale reconnaissance imagery is used to create reference maps, and the research 
to date by UofL has concentrated on the development of image segmentation algorithms and 
software for this purpose. We have developed a gray scale/texture segmenter for segmenting 
reconnaissance images. 

The UofL gray scale/texture segmenter utilizes low level gray scale and texture features, 
together with a Bayesian statistical classifier, to classify image pixels into a set of image 
feature classes, one of the classes being the unknown class. One of the problems is the 
unavoidable misclassification of image features. We developed a rule-based high level seg- 
mentation algorithm that will interface with the existing low level segmenter and accomplish 
an important function: it systematically applies heuristics to correct misclassified regions. 
The knowledge base requires the extraction of region attributes, and a number of transforms 
appear to be promising for this purpose. Fractal dimension and fractal error are useful 
attributes that describe texture and fractalness. For example, cultural regions have high 
fractal error (they typically do not fit fractal models), and they are generally stable relative 
to seasonal and diurnal cycles. We have developed techniques for efficiently and accurately 
extracting fractal error and fractal dimension. An analysis of fractal error for cultural object 
detection in aerial images, including synthetic aperture radar (SAR) is presented. Because 
fractal error can be computationally expensive, approximations to the measure were devel- 
oped. 



The chord transform appears to be a useful metric for determining the cultural and 
natural feature content in an aerial image. This was developed and tested, providing a 
robust geometric feature for segmentation in aerial imagery. 



Chapter 2 

Overview 

2.1 Introduction 

This report is laid out in four distinct chapters. Chapter 1 is an abstract describing the 
problem statement and the research accomplished under ONR Grant N00014-92-J-4096. 
Chapter 2 outlines the internal and external publications supported by this grant. The fractal 
error metric and the chord transform play an important role in the stable feature extraction 
and segmentation of aerial reconnaissance images documented in two Ph.D. dissertations, 
two M.Eng. thesis and ten journal and conference publications resulting from this grant. 
Thus, the fractal error metric and the chord transform are described in detail in Chapters 
3 and 4, respectively. The appendix contains two sections. The first section contains the 
unabridged text of each of the Ph.D. dissertations. The second section contains the ten 
journal and conference publications. 

2.2 Internal Publications 

ONR Grant N00014-92-J-4096 has supported, either directly or indirectly, two Ph.D. disser- 
tations and two M.Eng. thesis. These are listed below: 

• B. E. Cooper, Fractional Brownian Motion for Representing Natural Image Texture. 
Ph.D. dissertation. University of Louisville. 1994. 

• E. D. Jansing Feature Extraction and Edge Detection Using a Fractal-Based Metric, 
Ph.D. dissertation, University of Louisville, 1997. 

• O. Haidar, A Knowledge-Based System for Improving Gray Shade/Texture Segmenta- 
tion, M.Eng. thesis, University of Louisville, 1992. 

• B. S. Allen, Fractal Error Approximation Using .Neural Networks, M.Eng. thesis, Uni- 
versity of Louisville, 1997. 

Cooper [1] examined the possibility of using fractional Brownian motion (fBm) models 
for describing texture.  Prior research demonstrated that fBm may be used to model and 



subsequently characterize visual textures in aerial imagery. He argues, however, that much of 
the prior work has focused on fractal dimension, lacunarity or variants of fractal dimension, 
while little work has examined the relationship between the actual image data and the fractal 
model. Cooper thus proposed a measured called fractal error and introduced this measure as 
a texture feature. Cooper used feature extraction in aerial imagery as a basis for his analysis. 
A localized version of fractal error was developed, which Cooper found to be a robust feature 
for segmentation when compared to other features, such as the busyness operator. 

Jansing [2] investigated fractal error as a feature in aerial image segmentation and indus- 
trial edge detection. Jansing found fractal error to be useful in several different aerial images, 
including synthetic aperture radar (SAR). Applying this method to industrial images, he de- 
veloped a new edge detection technique that proved to be robust, even in the presence of 
noise. In the course of the investigation, Jansing encountered the dilemma that calculating 
fractal error can be computationally expensive. This prompted the implementation of an ap- 
proximation of fractal error using genetic algorithms. While Cooper [1] developed a Bayesian 
segmentation method, Jansing designed a novel 2-D entropic segmentation algorithm. This 
algorithm was shown to be accurate for cultural object detection in aerial images, using gray 
shade and fractal error as features. 

The knowledge-based system for improving gray-shade/texture segmentation was de- 
signed and implemented by Haidar [3]. This system uses selected attributes from selected 
segments in a segmented image. The selected attributes are used by heuristic rules in the 
knowledge-base to correct misclassifications. By using a set of ten attributes, including geo- 
metric information of the segments provided by the chord transform, and four rules, Haidar 
found his system corrected most of the misclassification in a segmented image. 

While Jansing [2] developed his approximation of fractal error using genetic algorithms, 
Allen [4] also recognized and quantified the computational expense of fractal error. Allen 
proposed using an artificial neural network as a universal approximator. The neural network 
architectures used were a multilayer feedforward network (MLFN) and a functional link 
network. While the functional link network was shown to be much faster than the MLFN, 
the MLFN gave a very accurate approximation. After tuning the network's parameters, Allen 
demonstrated that a five neuron hidden layer provided an accurate and fast approximation 
to fractal error. This network was independent of the input images, allowing for hardware 
implementation in the future. 

2.3    External Publications 

The following journal and conference publications have been directly or indirectly supported 
by this ONR grant: 

• B. E. Cooper, D. L. Chenoweth and J. E. Selvage, "Fractal Error for Detecting Man- 
Made Features in Aerial Images," Electronics Letters. Vol. 30, No. 7, pp. 554-555, 
1994. 

• D. L. Chenoweth, B. E. Cooper and J. E. Selvage, "Aerial Image Analysis using Fractal- 
Based Models," Proceedings of the IEEE Aerospace Conference, Vol. 2, pp. 277-285, 
Snowmass. CO. Feb 1995. 



• 

• 

• 

• 

V. E. Gold. D. L. Chenoweth and J. E. Selvage, "Image Segmentation using Modified 
Neural Network Techniques," Proceedings of the 1196 IS& T/SPIE Symposium on 
Electronic Imaging: Science & Technology, San Jose, CA, Jan/Feb 1996. 

J. E. Selvage, D. L. Chenoweth and V. E. Gold, "Geometric Feature Extraction us- 
ing the Chord Transform," Proceedings of the IEEE Aerospace Conference. Vol. 2. 
Snowmass, CO, Feb 1996. 

E. D. Jansing, D. L. Chenoweth and J. Knecht, "Detection of Man-Made Objects in 
Synthetic Aperture Radar (SAR) Images using Fractal Error," Proceedings of the IEEE 
Aerospace Conference, Vol. 1, Snowmass, CO, Feb 1997. 

E. D. Jansing, B. S. Allen and D. L. Chenoweth, "Edge Enhancement using the Fractal 
Error Metric," Proceedings of the 1st International Conference on Engineering Design 
and Automation, Bangkok, Thailand, Mar 1997. 

B. S. Allen, E. D. Jansing and D. L. Chenoweth, "Neural and Genetic Approximations 
to Fractal Error," Proceedings of the IEEE Aerospace Conference, Snowmass. CO, Mar 
1998. 

B. E. Cooper, E. D. Jansing, D. L. Chenoweth and J. E. Selvage, "Fractal Error For 
Image Analysis," in revision for Pattern Recognition. 

E. D. Jansing, T. A. Albert and D. L. Chenoweth, "Two-Dimensional Entropie Segmen- 
tation Of Cultural Objects In Aerial Imagery," conditionally accepted for publication 
in Pattern Recognition Letters. 

E. D. Jansing and D. L. Chenoweth, "A Genetic Approximation To Fractal Error," 
submitted for review to Evolutionary Optimization. 



Chapter 3 

Fractal Error 

3.1 Introduction 

Fractal error is an image processing metric that can be used to locate man-made features in 
aerial images. The metric can aid photointerpreters in locating targets in aerial reconnais- 
sance images. Fractal error was developed for this purpose by Cooper et al. [1], [5], [6], [7]. 
Since its development. Jansing et al. [2], [8] have shown that the fractal error metric also 
works well for extracting features in synthetic aperture radar (SAR) images. Jansing et al. 
[2]. [9] have also shown that the fractal error metric can be used for locating edge pixels in 
industrial images. The fractal error metric has a wide range of applications; however, some 
applications require real-time analysis. The main disadvantage of the fractal error algorithm 
is that it can take several seconds to compute on large images. Jansing et al. [2], [10] have 
developed a genetic approximation of fractal error.' Allen et al. [4], [11] also propose an 
approximation of fractal error using artificial neural networks. These approximations give 
usable representations of fractal error, while providing real-time or near real-time perfor- 
mance. The neural network provides an accurate representation of fractal error, while the 
genetic algorithm does in fact preserve all of the desired features of the original fractal error 
image. The genetic algorithm, on the whole, has been shown to be computationally faster 
than the neural network. 

This fractal error metric has gained acceptance in the literature. For example, Lin et al. 
[12] use fractal error to detect targets in X-band and millimeter wave (MMW) radar images. 
They proposed some modest modifications to the metric to improve its performance with 
MMW radar images. 

3.2 Definition Of A Fractal 

It is well known that many textures and scenes can be modeled as fractals. A fractal, 
according to La Brecque [13], "has a rough shape to one degree or another made of parts 
which, when magnified, resemble the whole." It is also well known that literature describing 
fractals often lacks precision when attempting to define what a fractal is. However, the 
reader of fractal geometry and theory can turn to Falconer [14] for a detailed description of 
the properties of fractals. 



Definition 1  The set F is a fractal, if it has the following properties: 

1. F has a fine structure, that is, detail on arbitrarily small scales. 

2. F is too irregular to be described in traditional geometrical language, both locally and 
globally. 

3. F often has some form of self-similarity, perhaps approximate or statistical. 

4-  Usually, the "fractal dimension" of F (defined in some way, and there are several 
unique definitions) is greater than its topological dimension. 

5. In most cases of interest, F is defined in a very simple way, perhaps recursively (e.g., 
the Julia or Mandelbrot Sets). 

3.3 Fractal Dimension 

How are fractals distinguished between one another? How does one measure the size of 
fractals? What measure can be used to compare and contrast fractals? 

Fractal dimension is the measure that is generally used to distinguish between fractals, 
giving the fractals a measurement of "size". This numeric representation attempts to quan- 
tify a subjective quality which one might have about how densely the fractal occupies the 
space in which it exists. 

Fractal dimension is just as difficult to define as fractals themselves. Mandelbrot [15]. 
Falconer [14], Peitgen et äl. [16] and Edgar [17] provide excellent discussions of many different 
fractal dimension definitions. Each fractal dimension definition has a distinct style. Although 
the definitions are all related, Peitgen [16] claims that some definitions make sense in certain 
cases, while other definitions may not be appropriate in the same case. Experience and 
heuristics prompt the selection of an appropriate fractal dimension definition, according to 
the application. 

3.4 Lacunarity 

Mandelbrot [15] defined another measure for fractals. Lacunarity describes the "holiness" 
([18], pg. 236) of an occupied fractal lattice. The origin of the name lacunarity can be 
appreciated by looking at an image of cork in Figure 3.1. This image is part of a collection 
of texture images, presented by Brodatz [19]. From the Latin word "lacona," which means 
gap, lacunarity represents the gaps within a fractal structure. Thus, the percentage of spaces 
between the cork in Figure 3.1 is the measure of lacunarity. Practically, lakes or other natural 
objects within aerial images may be.classified by using lacunarity as a feature measure. 

3.5 Fractional Brownian Motion 

Fractals may occur in many different forms. Mandelbrot [20] was the first to define fractional 
Brownian motion {fBm). Brownian motion refers to the erratic motion of small suspended 
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Figure 3.1: Texture image of cork. 

particles, resulting from random collisions with other particles. Fractional Brownian motion 
is an extension of this model. Cooper [1] gives an excellent description of fBm; it will be 
summarized here. 

The function of fBm is defined as the differences between successive samples. Let Bn(t) 
represent a fBm signal, where t is a vector containing E independent variables. Then the 
increment of the fBm signal is described as ABH — Bn{t2) ~ Bnih), where ti and t2 are 
two distinct points in time. The measure ABH is normally distributed with a mean of zero 
and a variance proportional to the 2H power of the Euclidean distance. The mean takes the 
form of 

E[BH(t2) - BH(t{)) = 0. (3.1) 

Likewise, the variance is defined as 

Vav[BH(t2) - BH(ti)] = a2\t2 - tx\
2H. (3.2) 

where a2 is the proportionality constant of the variance and H is the Hurst parameter, which 
must be strictly 0 < H < 1. Note that when H = 0.5, the fractional Brownian motion model 
is equivalent to the classical Brownian motion model. The value of H can be used to describe 
the fractal dimension D as 

D = E+1-H, (3.3) 

where E is the Euclidean dimension (or, the number of independent variables of t). It is 
therefore easy to see that small values of H produce high fractal dimension and large values 
of H produce a low fractal dimension. Combining the equations for mean and variance, while 
also taking into account the fractal dimension, we can arrive at the following relationship: 

E[\BH(t2)-BH(t1)\] = k\t2-tl\
H. (3.4) 

The above equation is the fundamental basis for the fractal error metric. The regions 
observed in an actual image may be a combination of many different textures. Each texture 
can be represented by its fractal dimension. However, before attempting to determine the 
fractal dimension, it is useful to know how well a region (or window) may fit the fractal 
model. Thus, measuring the error produced when estimating the fractal dimension will give 
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a useful metric in order to determine the "fractalness" of a region in the image. A small error 
will indicate that a region fits the fractal model well and thus can be considered fractal. 
Conversely, a large error will indicate that the region fits poorly into the fractal model and 
thus is probably not fractal and the fractal dimension measure is useless. Mathematically, 
this can be defined as 

E[|G[xa]-G[Xl]|]   =   fc|x2-Xl|" (3.5) 

E[|AG|Ax,|]   =   k\Ax\H (3.6) 

where G is the region or window in the image and x is the measured distances within the 
region. Estimates of H and k can be found by using a linear regression scheme, 

lnE[|AG|Ax||] -lnfc + #ln|Ax|. (3.7) 

These estimates, H and k can then be used to calculate the error with the following 
equation: 

error|Ax, = E[|AG|Ax| |] - k\Ax|F. (3.8) 

Using a "center-oriented" window (i.e., a square window of NxN, where N is strictly odd), 
there will be five, nine, or fourteen error values, given the window is 5x5, 7x7, or 9x9 
respectively. Thus, a cumulative error for the model can be given by the root mean square 
error 

RMS Error 
\ 
-E(erronAxi)2- (3.9) 
n|Ax| 

Thus, using the RMS error, it is easily determined whether or not a pixel with a surrounding 
5x5, 7x7 or 9x9 region is fractal in nature. 

3.6    Fractal Error Algorithm 

Using the method described in the previous section, Cooper developed an algorithm to 
calculate the fractal error for each pixel in a scene. This algorithm is described in detail in 
Table 3.1. 

The following will outline the steps of the entire fractal error algorithm. Note that this 
example will produce a single number that will represent the error for the center pixel in 
relation to its neighbors. Figure 3.2 represents a sample 5x5 window. Since the localized 
neighborhood is 5x5, there are five unique distances in the window, as shown in Figure 3.3. 

Table 3.2 represents the absolute values of the differences of the gray scales over the 
unique sets of distances in the neighborhood. Thus, the gray scale value of each pixel that 
has a distance of 1.41 is subtracted from the gray scale value of the center pixel. Their 
absolute values are averaged to give E[|AG|] for each unique set of distances. 

Using Equation 3.7, we can obtain estimates for the Hurst parameter and the proportion- 
ality constant, H and k respectively. These estimates can be found using linear regression 
[21]. If the linear model takes the form 

y = ß0 + ßix, (3.10) 

10 



Table 3.1: Fractal Error Algorithm 

1. 
2. 

3. 

4. 
5. 

6. 
7. 

Define a 5x5. 7x7, or 9x9 sliding window. 
Calculate Ax and E[|AG|] for each pixel in the neighborhood of the sliding 
window. 
Using linear regression, find the slope and the y-intercept for each unique 
Ax in the window from the equation ln(E[|AG|Ax.||]) = ln(A;) + H\Axi\. 
Derive H = slope and k = exp(y-intercept) from the above relationship. 
Using error|Axi| = E[|AG|Axi|] - k\&Xi\H, calculate the fractal error for 
each unique Ax. 

Compute RMS error by RMS Error = y^ E|AXi| (error|Axi|)
2- 

Save RMS error for that pixel, move the window, and repeat the process 
over the entire scene. 

250 200 220 200 200 

175 210 170 159 100 

110 100 120 115 100 

96 200 205 210 211 

95 201 197 205 200 

Figure 3.2: A sample 5x5 window. 

2.83 2.23 2.00 2.23 2.83 

2.23 1.41 1.00 1.41 2.23 

2.00 1.00 1.00 2.00 

2.23 1.41 1.00 1.41 2.23 

2.83 2.23 2.00 2.23 2.83 

Figure 3.3: The Euclidean distances over the 5x5 neighborhood. 
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Table 3.2: Distances From The Center Pixel (Ax) And The Expected Value Of The Absolute 
Difference In Gray Scale Relevant To The Center Pixel (E[|AG|]) 

Ax      In Ax E[|AG|] lnE[|AG|] 
1.000    0.000 40.00 3.69 
1.414    0.347 74.75 4.31 
2.000    0.693 51.75 3.95 
2.236    0.805 91.50 4.51 
2.828    1.040 78.75 4.37 

Table 3.3: Calculated Error From Fractional Brownian Motion Model 

Ax error 

1.00 -6.06 
1.41 18.4 
2.00 -17.3 
2.24 17.7 
2.83 -5.9 

then estimates for ßx (slope) and ß0 (y-intercept) are defined as 

-r- E(Xj — x)Vi 

ßi = -^r—=& 3-n 
E(Xj — x)2 v       ' 

ßo   =   y-ßix, ■       (3.12) 

where x is the sample mean of x and y is the sample mean of y. In our particular case, x 
represents the "In Ax" term in Equation 3.7 and y represents the "lnE[|AG ]" term in the 
same equation. It easy to see that x = 0.577 and y = 4.17. The estimates of ß0 and ßl can 
thus be calculated. 

A 

ßo  = 

SJUfo - 0.577)yi 

TLoiXi - 0.577)2 
0.585 

4.17-0.577/^ = 3.83 

(3.13) 

(3.14) 

The Hurst parameter estimate. H, is equivalent to the slope of the linear model, that is. 
H = ßx. The_proportionality constant_estimate, k. is equivalent to the y-intercept of the 
linear model, k = exp(/?0). Therefore, H = 0.585 and k = 46.1. 

Errors with respect to each unique distance set can be calculated with Equation 3.8. 
Table 3.3 shows the result of using Equation 3.8 in this example. 

The overall RMS error, as defined by Equation 3.9, is 14.31. This number represents the 
"fractalness" of the center pixel relative to its neighbors. Decisions regarding the fractalness 
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of the pixel are typically made in reference to the entire image. Thus, if the range of fractal 
errors is from 0 to 15. this pixel is not likely to be fractal in nature. 

3.7    Results 

Shown in Figure 3.4 is a small image of Alameda. CA. This is a high-contrast image, con- 
taining both natural and cultural features. Figure 3.4 shows the gray shade image, a contour 
map of the image and its histogram. 

Figure 3.5 shows the resulting fractal error measure for Figure 3.4. The figure again 
shows the normalized gray shade image, contour map and histogram of the fractal error 
result. It is not difficult to see that those areas with a fractal error higher than 5 represent 
cultural objects (refer to the contour map). Likewise, the areas that have light gray to white 
pixels in the normalized gray shade image represent cultural objects, while the darker pixels 
represent natural terrain. 
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Chapter 4 

Chord Transform 

4.1    Introduction 
I„ classification systems, it is sometimes >^^£££ZZZ££gZ& 
image is a natural segment oc — ^"he Tfiu* ^^^°in{ormatfon about 

discussed in [3] and [22]. 

4.2    The Chord Transform 

Detected edges by 
preprocessing 

G|. Oi: Gtadiem Vsetorc. 

6o-|8|-02l 

Figure 4.1: The general case of the chord transform. 
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360° 
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Figure 4.2: The quantized angle histogram and the signatures of certain geometric attributes. 

procedure for that edge pixel all all other possible edge pixels of the segment. By measuring 
the counterclockwise angle between both Gx and G2 for any two given edge pixels and their 
connecting vector (called a chord), the measurement of 6X and 62 can be found. The two 
angles define coordinates of a quantized angle histogram, shown in Figure 4.2, with features 
8A and 9D. Each possible pair of edge pixels is taken into account for the transform. 

The chord transform isolates identifying characteristic "signatures" for straight lines, 
perpendicular lines, parallel lines, and circles in an image. Figure 4.2 illustrates the areas in 
the histogram for certain signatures of the geometric attributes. For example, the signature 
of a straight line is represented by a single point at coordinates (180°, 180°). Because the 
chord transform relies on geometric information between edge pixel pairs, the transform is 
rotation and scale invariant. 

17 



Table 4.1: The chord transform algorithm. 

1. Get segment edge point list. 
2. Compute gradient along segment edge. 
3. Get pair of edge points. 
4. Compute 8\ and 82. 
5. Compute 6 A and 9p. 
6. Increment histogram pair (8A,0D)- 

7. All pairs done? Yes-Stop. No-Go to step 3. 

4.3    The Algorithm 

Table 4.1 describes the steps that are needed to perform the chord transform of a particular 
image segment. The first goal in finding the chord transform is to extract from a given 
segment a list of coordinates that comprise the edge of the segment. The edge map for a 
particular segment should be one pixel wide and closed. The first pixel is found by searching 
the image in the x (or row) direction until an edge pixel is found. Successive pixels are found 
by a clockwise search around a 3x3 neighborhood. 

Once the edge map and first edge pixel are located, then the gradients for each edge pixel 
is found, relative to its neighboring edge pixels. These gradients are used, along with the line 
segment connecting any two edge pixels in the map, to compute the angular information. 
This is accomplished by taking two points at a time from the edge map. Since there are Ne 

pixels, taken two at a time, there will be Nt — Ne(Ne — l)/2 combinations of unique pairs 
of edge pixels. 

Let any two points from the edge map be X\ and X2. A line segment joins the two 
points. This line (or chord) is the reference direction for angle measurements, as illustrated 
in Figure 4.3. Let w be the angular distance from the reference direction to the chord, 
measured counterclockwise. A similar definition is made for X2 and wp. Then w and wp are 
used to calculate #i and 62: 

J    —    J2 — J1 

w   =   arctan(J/7) 

0i   =   Gi-w, 

(4.1) 

/   =   h-h 
Wp   =   w + (IT/2) 

62   =   G2-wp, 

(4.2) 

where J1; J2, h, I2 are the row and column coordinates for the two edge pixels. Once 6\ and 
92 is calculated for each pair of edge pixels, they are used to find 8A and 6p which represent 
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Gradient at X2 

Figure 4.3: The definition of 6X and 02 
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Figure 4.4: The selected attributes from the quantized angle histogram. 

the average and the difference, respectively, 

6A   = 
(01+02) 

0D     =     |01 — 021 

(4.3) 

(4.4) 

Once all Nt angle pairs are found, they are compiled into the quantized angle histogram. 
The histogram measures the frequency of occurrence of each possible pair of angle. This 
histogram can then be sliced into sections to be used for feature extraction. Figure 4.4 
shows a possible sectioning of the histogram. It can be shown that the elements outside the 
bold "triangle" always have a value of zero; therefore, only the values inside this triangle 
provide useful information. These blocks inside the triangle can be used to make a 49 element 
feature vector, describing the geometric structure of the image segment. 
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ABSTRACT 

Fractional Brownian motion (fBm) holds intuitive appeal for modeling natural 

visual textures. In addition to synthesizing artificial textures based upon fBm, fractal 

characteristics may be extracted from actual images, to quantify aspects of texture within 

them. Recent research has demonstrated that fBm may be used to model and 

subsequently characterize visual textures. However, the vast majority of existing 

investigations have relied upon the fractal dimension, variants of the fractal dimension 

and lacunarity, all of which assume that the observed image fits the fractal model. The 

error between the actual image and the fractal model should be considered. Here, the 

fractal error is introduced as a texture feature. 

Although fractal models apply to a wide class of textures, particular emphasis is 

made here on aerial imagery, which few studies have included in their analyses. A ' 

localized version of the fractal error measurement was developed for the segmentation of 

aerial imagery. This operator was incorporated into a general purpose aerial image 

segmentation software package and evaluated. These successful results were compared 

against the previous choice of texture features for representing natural textures in aerial 

images, the "busyness" operator. In addition to segmentation, another important aspect 

of the scene evaluation process is the identification of stable features within an aerial 

image. Here, the fractal error also performed favorably, locating the stable, man-made 

objects in certain types of aerial images. 

in 
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CHAPTER I 

INTRODUCTION AND PURPOSE 

1.1 Motivation for a Texture Feature 

In some black and white aerial photographs, it is possible to distinguish among 

the regions within the image using only the differences in their gray shade intensities. 

For example, trees may appear darker than surrounding fields. However, gray shade is 

inadequate for other images, such as the shore scene in Figure 1. Suppose that there are 

three categories of regions to be identified in the shore scene: water, foliage (trees) and 

non-foliated land. Note that the gray shades of the water and foliage overlap 

considerably. The image in Figure 2a reveals an attempt to isolate the foliage, but much 

of the water is included with the foliage in the segmented image. If all of the water is 

Figure 1 Sample Image: Shore Scene 



(a) Highlighting the Foliage (b) Highlighting the Water 

Figure 2 Segmentation of the Shore Scene Using Only Gray Shade 

included, as shown in Figure 2b, then all of the foliage and portions of the non-foliated 

land are included with the water as well. 

Although the gray shades of the foliage and water are very similar, the water 

tends to be smooth and uniformly shaded, whereas the foliage tends to have more 

variation in its intensity, or a rougher texture. Thus, texture may be used in combination 

with gray shade to characterize regions within an image. Using busyness* as the texture 

feature, the three regions of foliage (black), water (gray) and non-foliated land (white) 

may be separated, as shown in Figure 3. 

In general usage, texture is usually associated with the visual and tactile 

perception of a material. However, in the context of image processing, only the visual 

aspect of texture is considered. Texture consists of two factors: the texture elements and 

their arrangement. The texture elements share a common size, shape or shade. These 

elements are arranged spatially in a particular orientation, pattern and density. Clearly, 

this definition includes a wide variety of textures. The natural textures which appear in 

The busyness texture feature is discussed later, in section 2.3.4.2. 



(a) Original Image 
(b) Segmented into Foliage 

(Black), Water (Gray) and 
Non-foliated Land (White) 

Figure 3 Segmenting the Shore Scene Using Gray Shade and Texture 

aerial photographs are frequently composed of very small texture elements, often 

considered to be the individual pixels which compose the image. Their arrangement 

tends to be statistical and non-periodic. 

1.2 Modeling Texture, with Frartak 

Of the many techniques designed to extract statistical, non-periodic textures with 

pixel-sized texture elements, fractal methods are a fairly recent addition. Fractals may 

occur in several forms, with applications ranging from data compression to fluid 

mechanics to particle aggregation and erosion. The analysis of natural visual textures 

was added to this list through the work of Pentland [39], who was inspired by the 

prevalence of fractals in nature. Formulating fractals in terms of fractional Brownian 

motion, he found a strong correlation between the fractal dimension of a surface and the 

intuitive notion of roughness. The correspondence between fractals and the natural 

processes which form the contents in a natural scene and the ability to quantify intuitive 



aspects of texture make a fractal approach attractive for describing the variety of textures 

in aerial images. 

1.3 Rationale forth?. Study 

Fractional Brownian motion (fBm) holds intuitive appeal for modeling visual 

texture. In addition to synthesizing artificial textures based upon fBm, fractal 

characteristics may be extracted from actual images, to quantify aspects of the textures 

within them. Recent research has demonstrated that fBm may be used to model and 

subsequently characterize visual textures. However, most of the existing investigations 

are fairly narrow in scope, focusing upon a particular fractal characteristic. All of these 

studies assume that the observed texture fits the fractal model. The error between the 

actual image and the fractal model should be considered. The fractal error is introduced 

here as a texture feature. 

Secondly, few fractal researchers have included aerial images in their studies. 

Accordingly, the practical analysis here places particular emphasis upon aerial images. A 

general purpose aerial image segmentation software package was implemented, into 

which the fractal error was incorporated and evaluated. Results were favorable enough 

to be compared against the previously chosen natural texture feature seen in section 1.1, 

the busyness operator. In addition to segmentation, another important goal of image 

interpretation is the identification of stable features, that is, objects which are less apt to 

change over time. The fractal error successfully located the stable, man-made objects in 

images of appropriate resolution. 

1.4 Statp.mp.nt r>f the Problem 

The primary purpose of this research was to determine fractal characteristics 

suitable for representing visual textures, and to develop algorithms to extract such fractal 
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characteristics, with particular emphasis on aerial imagery. Some questions which this 

dissertation addresses are given below: 

• How appropriate is the fractional Brownian motion model for visual texture? 

• What are some useful ffim synthesis algorithms and how do they compare? 

• What are some useful fractal characteristics, how may they be estimated, and how do 

their extraction algorithms compare? 

• How can estimation algorithms be applied? 

• How may the fractal characteristics be used within a knowledge-based segmentation 

system? 

1.5 Preview 

Before discussing fractal texture representation, background material is offered on 

both visual texture (Chapter 2) and fractals (Chapter 3). Chapter 4 Hnks these two topics 

together and examines three algorithms to synthesize fractal textures. The fractal 

dimension and fractal error are estimated in Chapter 5, both for describing a single 

texture and for segmenting an image containing multiple textures. Synthetic fractal 

textures, non-fractal artificial images, Brodatz textures and aerial images are included in 

the comparison. The success of the fractal error led to a more extensive examination of 

this operator for aerial image interpretation. Chapter 6 discusses two such applications of 

fractal error: texture segmentation and stable feature identification. The findings from 

the complete study are summarized in Chapter 7, along with other observations and 

conclusions. 



CHAPTER n 

A BACKGROUND ON VISUAL TEXTURE 

2.1 Definition 

A variety of definitions exist for the notion of texture. In general usage, texture is 

usually associated with the visual and tactile perception of fabric. This is reflected in the 

dictionary definition of texture as something composed of closely interwoven elements. 

In the context of image processing, only the visual aspect of texture is considered. Early 

attempts to define visual texture were often detailed and complicated (e.g., see Pickett 

[40] and Hawkins [20]), but provided the background for more recent descriptions. A 

particularly concise and accurate definition is offered by Hall [16]: a visual texture is "a 

repetitive arrangement of a basic pattern." Haralick's [18] description has the identical 

essence, but he elaborates upon the two aspects of texture, its primitives (i.e., the pattern) 

and their arrangement. A texture primitive or element (sometimes called a texet) is "a 

visual primitive with certain invariant properties which occurs repeatedly in different 

positions, deformations, and orientations within a given area."[l] The texels should be 

fairly homogeneous, sharing such properties as size, shape and coloring. The spatial 

dependence or interaction among these primitives could be random or dependent upon 

other primitives in a structural, statistical or functional manner. The resolution of a 

texture is related to the size of the texture elements. As the resolution increases, the 

texels increase in size until the observed texture completely changes character. Likewise, 

reducing the resolution can decrease the texel size down to a single pixel, at which point 

the original texture is no longer discernable. 



2.2 Examples 

With the above explanation in mind, it is enlightening to see how the definition of 

texture applies to some texture examples. A visual texture may be described by its 

texture primitives and their arrangement.. In Figure 4a, the bricks' texture primitives are 

the individual bricks, arranged in a regularly repeating directional manner. The texels in 

A*JL* •♦•*•***«• #»*» 
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Figure 4 Texture Examples 



8 

the reptile skin texture could be considered the holes in the mesh, which are oriented in a 

somewhat regular fashion. The holes in the grating texture have a distinctly periodic 

arrangement. Randomly positioned, the coins are the obvious texels in the coins texture, 

although the process of extracting them may not be simple. (People have the advantage 

over computers of applying relevant domain knowledge, such as the physical 

characteristics of coins and how they may be stacked.) All of these textures have large or 

medium-sized texels. In contrast, there are many textures whose texels are so small that 

they may be considered to be the individual pixels themselves. A statistical model is 

often appropriate for describing the interaction of the texels. Five such examples are 

shown in Figures 4e through 4i: paper (magnified), foliated land, ice, clouds and the 

surface of Mars. Most natural phenomena in aerial photographs (e.g., fields, trees, water, 

ice) will have textures with very small texels. 

2.3 Methods of Representation 

2.3.1 Preview 

A wide variety of approaches exist for representing texture. Spectral techniques 

consider periodicity and directionality of the texels, which are generally a few to several 

pixels in size. Statistical and discrete transform methods, which comprise the majority of 

texture approaches, are designed for pixel-sized texels with a random arrangement, as is 

the gray shade co-occurrence matrices method. Structural approaches concentrate upon 

large texels whose form follows a clearly specified structural pattern. Like the discrete 

transform methods, the fractional Brownian motion model is oriented toward pixel-sized 

texels arranged randomly. To gain perspective for the fractional Brownian motion 

model, each of these categories will be explained further. 



2.3.2 Spectral Methods 

Perhaps the earliest aspect of texture to be considered is its periodicity. Using 

either spatial autocorrelation or analysis in the Fourier frequency domain, the nature and 

degree of periodic repetition may be measured. This information can also be used to 

estimate the coarseness of a texture, related to the size of its texture elements. 

An intuitive understanding of autocorrelation may be gained by considering two 

duplicate transparency copies of an image [18]. For example, picture the grating texture 

shown in Figure 4c. Let one of the transparencies be laid over the other, with a light 

source passing through the pair. As one transparency is moved across the other, the 

amount of transmitted light passing through will change. If the texture on the 

transparencies is highly periodic (as with the grating texture), then the transmitted light 

will vary periodically as one transparency is slid across the other. 

In a discrete implementation of autocorrelation, only subregions of the image are 

correlated, to reduce computational effort. Otherwise, the concept is analogous to the 

previous description. The formula for discrete autocorrelation is given below. Let the 

m+w        n+w 

Y        X   X(i,J) X(i - uj - v) 
A(u,v;m,n) =  i*=m—w   j=n—w 

m+w        n+w 

Z   2 X«>A2 

i=m—w   j=n—w 

gray shade at row i and column/ be represented by X(iJ). Typically, a square subregion 

is used; in the formula, the subregion is (2W + 1) x (2W + 1) pixels in size. The 

center of the first subregion is located at fan), while the center of the second region is 

offset from this by u rows and v columns. The autocorrelation A(u,v;m,n) will be 

computed across the entire image, that is, for all fan). Thus, in summary, the image 

location is (m,n) and the amount of shift is (u,v). 

Figure 5 illustrates autocorrelation applied to a simple texture at a location fa,n) 

and offset (u = 3, v = 5) with w = 2. Since the texture is periodic at that spacing, the 
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Figure 5 Example of Spatial Autocorrelation 

autocorrelation function will produce the same value as it would with no offset, for every 

autocorrelation across the entire image. Clearly, spacings that are multiples of the period 

will produce the highest autocorrelation. Thus, for a known periodic texture, the spacing 

may be increased until this maximum is obtained, thereby determining the period. The 

autocorrelation may also be used to determine the coarseness of a texture. The 

autocorrelation will tend to decrease more slowly (at a given spacing) for large texels 

(coarse texture), as opposed to small texels (fine texture). 

Another method of extracting information on either the periodicity or coarseness 

of a texture is to transform the spatial image into the frequency domain, typically using a 

Fourier transform. Let the power spectrum of the Fourier coefficient F(u,v) be 

represented by \F(u, v)|2. Ballard and Brown [1] identify two types of features, radial 

and angular, which may be measured from the power spectrum. The formulas for these 

two features are given in Figure 6, along with an illustration of the feature being 

measured on a power spectrum. The radial and angular features consider some region of 

interest, such as those indicated by the shaded areas. (Note that the graphs in Figure 6 

are actually three-dimensional. Shown is an overhead view of the frequency plane (u,v). 

The power spectrum \F(u, v)|2 would rise vertically from the page's surface.) 

Radial measures can distinguish smooth textures (having mostly low frequencies) 

from rough textures (having mostly high frequencies). Likewise, periodic textures will 

have a peak within a particular frequency band. Angular measures can detect 
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(b) Angular Features 

Figure 6 Texture Measurement in the Frequency Domain 

directionality. If a texture has several lines or edges in the direction <p, then high values 

will occur within the frequency plane around 6 = <j> + JC/2. 

Spectral measures are perhaps the earliest techniques applied to image texture 

analysis. Predating discrete methods, Kaizer [22] judged the coarseness of aerial 

photographs of arctic regions using the autocorrelation function. He found a strong 

correspondence between the autocorrelation measurements and the coarseness rankings 

produced by a group of human subjects. Lendaris and Stanley [29] also took an optical 

approach, creating a Fraunhofer diffraction pattern of aerial photographs, equivalent to 

taking a two-dimensional Fourier transform. They used both the radial and angular 

features (with wedges spaced 9° apart) shown in Figure 6, along with measurements 

along parallel slits of the frequency plane, to distinguish between one-dimensional and 

two-dimensional regularities. Applied to a variety of aerial subimages, their technique 

gave inconclusive but favorable results. Kirvida [26] analyzed multispectral satellite 

imagery, identifying the land categories of conifers, hardwoods, open, water and urban. 
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He extracted texture information from the magnitude of the frequency distribution using 

four discrete transform algorithms. He found little difference among the transforms, but 

obtained an increase in classification accuracy from 73% (using only the original four 

spectral bands) to 98.5% when the frequency domain texture information was included. 

However, Hawkins [20] found considerable overlap in the spectra of aerial images of 

woods, urban and rural areas. He concluded that spectral measures are useful only for 

"rather gross discriminations,*' [20, p. 352] since distinct textures may have similar 

spatial frequency components, and sinusoidal variations in gray shade are poorly matched 

to textures typically found in aerial photographs. Although other applications (such as 

the detection and classification of coal miners' black lung disease [41]) still find spectral 

analysis useful, spectral methods have not been applied extensively to the analysis of 

aerial photography since the mid-1970's. 

2.3.3 Collecting Statistics within Subwindows of an Image 

Both statistical and discrete transform methods divide the image into smaller 

grids. These grids may or may not overlap one another, as shown in Figures 7a and 7b, 

respectively. Overlapping grids give better resolution, but require more computation. 

(a) Non-overlapping 
Windows 

(b) Overlapping 
Windows 

original image 
statistics 

I": original image 
cr 

statistics 

Figure 7 Collecting Statistics within Subwindows of an Image 
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The size of the grids, or windows, is subjective. Ideally, the window should be large 

enough to capture a texture adequately, but small enough to enclose a single texture. 

Within each window, various statistics may be collected on the gray shades of the 

enclosed pixels, such as the mean, standard deviation, skewness, minimum, maximum 

and range of gray shades. 

For a particular statistic, the values for each window of the first row are typically 

stored into the first row of pixels in the output image. The values calculated from 

successive rows of windows form the remainder of the output image. Clearly, 

overlapping windows produce a larger output image than non-overlapping windows, as 

shown in Figure 7. (When using non-overlapping windows of size w x w on an image 

of size n x n, the output image will be [n/w\ x [n/w\, where [x\ denotes the floor 

function. With overlapping windows, the output image will be (n - w + 1) x 

(n - w + 1), which has w - 1 fewer rows and columns than the original image. It is 

sometimes desirable to have the output image the same size as the original image. A 

common technique extends the original image by w - 1 rows and columns by copying 

the outside border of pixels into an extra "frame" surrounding the enlarged image.) 

Although the statistics of the small regions of an image may be sufficient for 

certain simple textures, such an approach is often inadequate. However, when used in 

conjunction with discrete transforms, more favorable results may be gained, as described 

in the following section. 

2.3.4 Discrete Transforms 

Discrete transforms are used extensively in image processing and thus are natural 

candidates for extracting texture. Just as a value was computed from the gray shades of 

the pixels within each window to obtain a statistical measure, discrete transforms also use 

a window. However, whereas the pixels' locations within a statistical window are 

irrelevant, each position within a discrete transform window is specifically defined in 
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somei : manner. For example, consider a 3 x 3 window designed to highlight the edge 

content of an image. For convenience, let the gray shades of each pixel be represented 

by the letters A through /, as shown in Figure 8. The formula to the right (the Laplacian 

edge operator) determines the value that will be assigned to that window. As before with 

the statistical windows, values are computed for windows across the entire image to give 

an output, or filtered, image. 

2.3.4.1 Edge Density 

Probably the earliest representation for aperiodic textures stemmed from studying 

the results of edge (high-pass) filters. Regions with a proliferation of edges correspond 

to rough or highly textured objects. Rosenfeld and Troy £44] applied an edge operator 

and then binarized the image. The number of edge pixels determined the degree of 

roughness of the texture. Ohta [35] employed a very similar approach much later, in the 

context of scene interpretation. After using the same 3 X 3 Laplacian edge operator 

shown in Figure 8, he binarized the image at the threshold T = mode + 

standard deviation x 1.4. Next, the resulting binary image was divided into 9x9 

squares, each of which was further subdivided into nine 3 x 3 windows of pixels. If all, 

or all but one, of the nine 3 x 3 windows contain any edge pixels, then the center pixel 

(of the entire 9x9 square) is considered to have texture. Subsequently, this result was 

scanned for connected components to identify textured regions. Fortunately, Ohta 

provides a reasonable amount of detail on his method, as well as an example. However, 

Figure 8 Specification for a 3x3 Laplacian Edge Operator 
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his particular scheme did not appear to perform especially well, as it significantly 

underemphasized the apparent textural content of the scene. In another image 

understanding system, Hanson and Riseman [17] used a small 2 x 2 edge mask (so that 

closely spaced parallel lines will be detected) to extract the magnitude and direction of 

the edge gradients. As the result tends to be highly fragmented, edges are grouped 

together according to the similarity of their magnitudes and gradients. If all of the longer 

line segments are removed (by thresholding), the textured regions may be found. 

(Likewise, keeping only the longer line segments of high magnitude yields the primary 

structural components of the image.) 

2.3.4.2 Busyness 

Originally developed by Rosenfeld and Kak [43], the busyness operator measures 

the roughness of a texture by the minimum of the gray shade differences in the horizontal 

and vertical directions. Busyness uses a single filter, whereas the edge density method 

requires binarization and counting the number of edge pixels in a region after applying 

the edge filter. In addition to being faster, busyness eliminates the subjectivity associated 

with determining the binarization threshold and the density measurement. The gray 

shades of the pixels within a 3 x 3 window are represented by the letters A through /, as 

shown in the right of Figure 9. The average absolute gray shade difference is calculated 

horizontally (Vx) and vertically (VY), as shown in Figure 9a. The minimum of these two 

values is the busyness of the pixel at the center of the window. 

The average gray shade difference in the direction perpendicular to an edge will 

be high. In order to reduce this undesirable emphasis, the minimum of the horizontal and 

vertical averages is taken. (Although it will always be present to some degree, the edge 

density method can remedy this problem by considering the density of edges within a 

sufficiently large area.) However, regions containing diagonal edges will be highlighted. 

A pair of diagonal averages were added to the busyness formulation in [5] to alleviate 
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(a) Original Definition 

Vx=QA-B\ + \B-Q + \D-E\ + \E-F\ + ]G-H\ + W-I!)/6 
V, = (|A - D\ + |D - G\ + |B - E\ + \E - H\ + \C - F\ + \F - I\)/6 

Busyness = min(Kx, VT) 

(b) Modified Definition 

Kx=(|A-B| + (B-q + |D-£| + |£-fl + |G-fl] + |H-/D/6 
V, = QA - D\ + |D - G\ + \B - E\ + \E - H\ + \C - F\ + \F - il)/6 

VDI = (ID - B\ + \G - E\ + \E - q + \H - f])/4 

Kw=(|B-f1 + |A-£| + |£-7I + |D- fl])/4 
Busyness = min(Kx, VT, Vm, VD2) 

Figure 9 Busyness Operator 

this problem. The modified formula is given in Figure 9b. Although edges at angles 

other than the horizontal, vertical and diagonal directions can still cause artificially high 

busyness values, including the diagonal measures significantly improves the quality of 

the busyness operator. 

2.3.4.3 Texture Energy 

The concept of texture energy originated from Laws' study [28] of statistical and 

discrete transform methods of extracting texture information. He analyzed a wide variety 

of texture features, including gray shade co-occurrence matrices, correlation methods and 

statistical-spatial methods. In the latter category, texture was extracted in two steps: 

small masks (3 x 3 or 5 x 5) were convolved with the image, and then local statistics 

were collected from within larger windows (15 x 15 or 31 x 31). The filtering mask 

should be small enough to capture only a single texture, and the statistical window should 

be large enough to get an adequate sampling of the texture. From this study, Laws found 

that a set of ad hoc masks designed for detecting spots, lines and other small features 

worked best for the filtering masks. The most effective statistical measure was the 

standard deviation (or equivalently, the variance). 
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Since the variance is related to the "energy" of a signal, and the filters attempt to 

extract a texture signal, Laws called such an approach a "texture energy measure." 

Combining both discrete filtering and the calculation of local statistics, he developed and 

refined his initial study into his final texture energy technique. A pictorial interpretation 

of the texture energy model is offered in Figure 10. Four one-dimensional ad hoc 

filtering masks (see Figure 11) compose the final model: Level, Edge, Spot and Ripple. 
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Figure 10 Texture Energy Model 

LEVEL [1    4 6    4    1] 
EDGE: [-1 -2 0   2    1   ] 
SPOT: [-1    0 2    0-1] 
RIPPLE: [1-4 6 -4    1   ] 

(a) One-dimensional Masks 

Edge-Spot 
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(b) Example of a Two-dimensional 
Mask formed by Convolving 
the One-dimensional Masks 
Edge and Spot 

Figure 11 Convolution Masks for Texture Energy 
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Convolving each of these four masks both horizontally and vertically yields sixteen 

two-dimensional masks, one of which is shown in the right of Figure 11. (Equivalently, 

if each of the one-dimensional masks is considered to be a n x 1 vector, then each 

n x n mask is created by multiplying a one-dimensional mask with the transpose of 

another one-dimensional mask.) Thus, sixteen filtered images are produced. One of 

these, the Level-Level image, is used to eliminate contrast variation among the 

remaining fifteen images. In the second stage, a statistical value is obtained from within 

a 15 x 15 window surrounding each pixel of the filtered images. The standard deviation 

is measured locally across the Level-Level image, whereas the absolute average is 

calculated for the other fifteen images since the absolute average is a faster, but less 

accurate, approximation of the standard deviation. The resulting images, called "texture 

energy planes," are used as features to classify the pixels of the image. 

High classification accuracies were achieved using texture energy on a collage of 

various sized blocks (16 x 16, 32 x 32 and 128 x 128) of eight Brodatz [3] textures. 

Without criticizing the quality of the texture energy features themselves, Hsiao and 

Sawchuk [21] note that Laws' segmented images contain "considerable errors in the 

interior of the large regions" and poor performance "near the borders between textures." 

When the statistical window encloses a single texture, its value will tend to be accurate. 

However, when this window overlaps a texture boundary, thus enclosing two or more 

textures, its value may be unreliable. Hsiao and Sawchuk examined the variance in the 

texture energy (i.e., the variance of the absolute average of the filtered image) to 

determine texture borders more effectively, as a high variance in texture energy often 

indicates a border. Scattered, small clusters of misclassified pixels were treated using 

probabilistic relaxation. 

Whereas both Laws [28] and Hsiao and Sawchuk [21] concentrated upon collages 

of Brodatz textures, Cooper [6] applied texture energy to aerial images. Gray shade is 

often the single most important feature for distinguishing regions within aerial images. 



19 

On the other hand, the Brodatz textures in the other two cited studies had approximately 

the same mean gray shade, and must therefore be separated solely by the differences in 

their textural properties. Although the segmentation of aerial images sometimes benefits 

from textures which are separable by gray shade, the textures in aerial images also 

possess much greater variability in content than do the highly homogeneous collages of 

Brodatz textures. Thus, a combination of gray shade and busyness gave better 

segmentation results on aerial imagery than texture energy alone. A combination of gray 

shade and texture energy was not examined in [6], since the anticipated extra increase in 

quality of the texture energy approach over busyness did not warrant the additional 

computational burden. 

2.3.5 Gray Shade Spatial Dependence Co-occurrence Matrices 

The gray shade spatial dependence co-occurrence method* considers the 

statistical distribution of pairs of pixels separated by a particular fixed distance. Let the 

distance between a pair of pixels /(/,*) and I(m,n) be expressed in polar form, with a 

distance r and angle 6 from the horizontal axis, as shown in Figure 12a. (Obviously, the 

selection of the spacing (r,0) will be restricted by the discrete nature in which is the 

image is stored.) The image (or region of an image) is examined to determine the 

number of times that each pair of gray shades occurs at the given distance and angle. 

This results in a matrix of size GxG (shown in Figure 12a), where G is the number of 

gray shades in the image. This matrix (after normalization) represents the observed 

statistical distribution of the gray shades in the image at one particular spacing. 

A collection of similar terms exists for the gray shade spatial dependence 
co-occurrence method, allowing such variations in: 
(1) using "gray shade," "gray level" or "gray tone" 
(2) the placement or omission of "spatial" 
(3) the omission of either "dependence" or "co-occurrence" (but not both) 
(4) the inclusion of either "matrix" or "statistics," to emphasize these aspects of the 

technique 
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(b) Example of a Gray Shade Co-occurrence Matrix 

Figure 12 The Gray Shade Spatial Dependence Co-occurrence Method 

Figure 12b offers an example of a 5 X 5 image region which has been quantized into 

four gray shades. The matrix at the far right contains the number of occurrences of each 

gray shade that is immediately above (i.e., a pixel distance of one at a ninety degree 

angle) every other gray shade. Such a matrix must be generated for every spacing (r, 6) 

of interest. 

Although the contents of the co-occurrence matrix may be used directly as 

textural features [45], typically simple statistical features are computed from the matrix. 

These features vary both in form and name; a few of the more common ones [15,18,45] 

are included in Figure 13. (Assume that the matrix is G x G, with array indices ranging 

from 0 to G - 1. Let pxy be the probability of a pixel with gray shade x being located at 

a spacing (r, 6) to a pixel of gray shade y, calculated by dividing the matrix element (x,y) 

by the sum of the matrix elements.) 
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Figure 13 Examples of Features Extracted from a Co-occurrence Matrix 

Note that these features do not necessarily correspond to any intuitive notions of 

textural properties. "Even though these features contain information about the textural 

characteristics of the image, it is hard to identify which specific textural characteristic is 

represented by each of these features." [19, p. 144] Fine textures will tend to have a 

co-occurrence matrix with fairly equal values, whereas a coarse texture (i.e., with larger 

texture elements) is more apt to have a localized distribution, so that most of the 

occurrences will occupy one particular portion of the co-occurrence matrix. The 

uniformity feature (see Figure 13) is lowest when the probability is evenly spread; the 

opposite is true for entropy. The maximum probability gives some insight into the 

coarseness of the texture. When the larger probabilities are located along the diagonal of 

the matrix, the local homogeneity will be high, while the inertia will be low. 

The gray shade spatial dependence co-occurrence method is a popular choice for 

analyzing natural images. Haralick et al. [19] applied the technique to photomicrographs 

of sandstone, aerial photographs and multispectral satellite images. Images were 
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quantized to either eight or sixteen gray shades, and matrices were generated from either 

20 x 50 or 64 x 64 sized regions. They narrowed the pixel spacings to four, using a 

distance of one pixel (r = 1) and four angles (0 = 0°, 90°, 180°, 270"). Fourteen 

features were computed for each of these four spacings. Although the same four pixel 

spacings were always used, the feature selection was tailored to the category of images. 

The mean and variance of four features for the photomicrographs yielded a classification 

accuracy of 89% with six classes. The aerial photographs used eleven features, but each 

of the four pixel spacings were pooled together to give a non-directional mean, range 

and deviation for each of the eleven features. With eight classes, 82% accuracy was 

obtained. The mean variance of four features, combined with eight spectral features, 

allowed 83% of the multispectral images (with seven classes) to be classified correctly. 

Conners et al. [4] introduced two new features, cluster shade and cluster 

prominence, to provide a means of separating certain types of visually distinct textures 

that other features could not distinguish. These two features were combined with four 

others, each of which was extracted initially from 48 spacings (r = 1,2,4,6,8,12,16,20 

andÖ = 0°,19o,75o,90o,109M65o). They carefully determined the region size and 

types of training samples to use, oriented toward high resolution aerial images. Using 

these features, image regions were identified as uniform, boundary or unspecified. The 

latter two region types were successively split to form labeled uniform regions. Their 

procedure achieved classification accuracies between 83% and 90%, identifying nine 

classes within the aerial images. Trivedi and Harlow [45] employed the same six 

features to locate regions within an aerial image which contain certain small objects of 

interest. However, they supplemented these features with the individual elements of the 

co-occurrence matrices themselves, making it unclear why the six features need to be 

computed. 

Although the gray shade spatial dependence co-occurrence method has been 

applied successfully to aerial imagery, its computational demands must be faced. Each 
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pixel spacing determines a co-occurrence matrix, and each matrix yields a set of 

descriptive features. Clearly, there are a vast number of potential pixel spacings to 

measure within an image region, and even the subset of these spacings which is useful 

can still remain large. Several features may be extracted from each of the resultant 

co-occurrence matrices. Since it may be difficult to match these features to obvious 

visual characteristics, it may be difficult to determine which features are suitable until 

they have been implemented and applied to a representative sample of images. Typically, 

only a few spacings and features are proposed, and then sample images are analyzed to 

determine a useful subset of these to include in the final model. 

2.3.6 Stochastic Methods 

The stochastic approach is related to the co-occurrences method, but it is a more 

general representation. It considers texture to be a sampling from a probability 

distribution. More specifically, the gray shades of the pixels in a rectangular image are 

represented by a Nt x N2 lattice L of random variables, called a random field: 

L = {(i,J): 1 < i < Nlt  1 <j < N2] 

Each pixel (ij) in the lattice L is mapped to a gray shade between 0 and G - 1 by a 

function X, so that X(i,j) = g for some gray shade g. The neighborhood nQ of a pixel 

(ij) is typically a set of pixels which are close to (ij) (see Figure 14), although proximity 

is not a requirement. Precisely, a neighborhood n^ cannot contain the pixel (ij), and if 

• • • • 

Figure 14 Typical Neighborhoods around a Pixel, of Increasing Size 
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one pixel is in the neighborhood of another, then the other pixel must be in the 

neighborhood of the first. Finally, a random field is a Markov random field when the 

probability of pixel (ij) given all other pixels in the lattice is equal to the probability of 

pixel (ij) given only those pixels in the neighborhood of (ij): 

P(X(z,y-)|X(l,l),...,X(fj- l),X(iJ+ l),...,*^,^) = 

P(X(i,j)\X(k,t) for (k,t)E n,v) for all (i,j) e I, and P(X(/,y)) > 0 

Whereas a Markov random field is characterized by conditional probabilities, joint 

probability distributions may be used in an equivalent representation, called a Gibbs 

randomfield. 

Typically, the goal is to create an effective texture model, and then attempt to fit 

actual textures to that model. Pratt et al. [42] represented the gray shade of each pixel by 

a Gaussian distribution; Cross and Jain [9] used a binomial distribution. In both studies, 

synthetic textures were generated from the Markov random field model. Cross and Jain 

provide extensive examples of artificial textures created from their binomial distributed 

Markov random field. The binomial parameter 6 (representing the probability.of a 

success) is formulated in terms of a weighted sum of the gray shades of a pixel's 

neighboring pixels, where each weight corresponds to the pixel's particular location in 

the neighborhood. By adjusting these weights, Cross and Jain were able to control 

textural characteristics such as directionality, the sizes and types of clustering, and the 

sharpness of the gray shade transitions. Tested on twelve Brodatz [3] textures, their 

model worked well for representing fine-grained homogeneous textures. However, 

larger grained textures, especially those with large areas of equal brightness, posed 

difficulties, as was the case with textures having "strong regularity or cloud-like 

inhomogeneities." [9, p. 36] Also, a large sample is required to obtain reliable estimates 

for the model. 

In addition to modeling the textures themselves, Derin and Cole [12] also 

formulated texture segmentation in terms of a Gibbs random field. In order to become 



25 

computationally tractable, their original maximum a posteriori estimation was simplified 

and approximated by a suboptimal version. Their segmentation algorithm was applied to 

artificially created images consisting of two or three textures, quantized to either two or 

four shades of gray. However, they did not approach the complexities related to the 

greater number of textures and wider range of gray shades present in aerial images. 

2.3.7 Structural Methods 

Whereas the other texture representations discussed so far are suited toward small 

to medium sized texels, structural methods are designed to work with large, clearly 

identified texture elements. It is usually assumed that the texels are extracted and defined 

beforehand. It should be noted that, although this task may often be straightforward, 

identifying the texels may often be very challenging, as was mentioned with the coins 

texture in Figure 4. 

Furthermore, structural methods depend upon the texels forming a repeating 

pattern (i.e., a regular structure), which can be described by a set of rules. The rules are 

often included within a formal grammar, similar to the way that a compiler describes a 

computer language by specifying a set of symbols and the rules by which these symbols 

may be combined. For a computer language, the symbols consist of characters such as 

letters, numbers and operators. For a texture, the symbols will be the texels. The rules 

are specified such that the left hand symbol may be replaced by the symbol(s) on the 

right hand side, where the left and right sides are separated by an arrow. These rules may 

be applied as many times as needed. For example, a simple brick pattern could be 

described by the two rules in Figure 15a. The top rule creates a single row of bricks; the 

bottom rule specifies how additional rows may be added. Another brick pattern is given 

in Figure 15b, along with a corresponding set of rules. (Note that, for either texture, 

alternate rule specifications are possible.) A texture may be recognized by applying the 

rules backwards until the initial symbol is obtained. 
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Initial symbol 

DC 
D=>CZD 

Rules 

=](=z3i—If II IIZZ1CZ 
cznizzDCzni—HZZ3CZHI 
=31 II      If II ICZDCZ 
tZZDCZZHZZDl ICZZ3CZ3I 
ZIEZZJI—ir ii nzziiz: 
EZHI—»—ii—»cum 
Z3I II 1EZZJI II Id 
i—II—iczni—lEZJczzii 

Generated Pattern 

(a) Simple Brick Texture 

Initial symbol 3 orD 

D=>C DC 
□ =>□□ 

IE=>I—i 

□ =>□ □ 

Rules 

DC DC DC DC □□□□□□□□□a 
3\II ir     II       II  
□□□□□□□□□□I 
J[ DC DC DC 
uDDDDDgopa gr    II     II—II II— 
□□□□□□□□□□i 

Generated Pattern 

(b) Variation of Brick Texture 

Figure 15 Example of a Shape Grammar 

Probabilities may be assigned to the rules, to form a stochastic grammar. For 

example, consider a brick pattern with rows of large bricks and rows of small bricks. 

Suppose that there are no restrictions about how many rows of large bricks there must be 

between rows of small bricks, or vice versus (as opposed to the strict alternation in 

Figure 15b). However, let there be twice as many rows of large bricks overall as rows of 

small bricks. Then this property could be reflected by giving a higher probability to the 

formation of a new row of large bricks and a small probability to the rule which 

generates a new row of small bricks. The reptile skin texture (Figure 4b) may be 

generated using a stochastic grammar [1]. The underlying tessellation of this texture is 

extracted, and the dual graph of the tessellation pattern is used to form the symbols of the 

grammar. 

Ballard and Brown [1] identify three types of grammars, each of which may 

presumably be made stochastic: shape, tree and array. The symbols used by a shape 
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grammar correspond to the texels. The grammars described previously (i.e., for the 

bricks and reptile skin textures) are all shape grammars. For a tree grammar, a tree 

structure is embedded within the image array. This structure defines the top level 

arrangement of the texels. After applying the top level of rules, a lower level of rules 

may be used to describe the pattern of pixels which define each texel. An array grammar 

is similar to a tree grammar. However, it uses the implicit structure of the image array 

rather than embedding a tree. As with the tree grammar, rules may be arranged in 

hierarchical levels corresponding to the different levels of resolution within the texture. 

Formal grammars may be developed for textures exhibiting a high degree of 

regularity, such as a brick wall, wire fence or herringbone pattern. Imperfections or 

variations in the structural arrangement may be accommodated by making the grammar 

stochastic, as was done for the reptile skin texture. Although such regularity can occur in 

certain types of aerial imagery (such as an urban or suburban scene), often a definitive 

placement of texels is absent. Also, the texels in aerial imagery may be too small or too 

difficult to extract to be used with a formal grammar. Thus, structural methods are 

seldom applied to aerial photographs. 

2.3.8 Fractal Methods 

2.3.8.1 Fractional Brownian Motion 

First popularized by Mandelbrot in [31], fractals may occur in several forms, with 

applications ranging from data compression to fluid mechanics to particle aggregation 

and erosion. In the analysis of natural visual textures, the model most often used is 

fractional Brownian motion, introduced by Mandelbrot and Van Ness [34]. Fractional 

Brownian motion (abbreviated/Bm) is an extension of ordinary Brownian motion, which 

refers to the erratic motion of small suspended particles, resulting from random collisions 

with other particles. 
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Early research synthesized natural terrain surfaces using wire-mesh terrain maps 

of two-dimensional fractional Brownian motion. Pentland [39] extended ffim to image 

textures in general. By mapping the height of a two-dimensional fBm signal to a gray 

shade (dark is low and light is high), natural cloud-like image textures may be produced. 

The fractal dimension of the signal corresponds closely to the perceived roughness of the 

visual texture. For example, Figure 16 shows a series of two-dimensional fBm images 

with increasing dimension and roughness. Texture representation is only one relatively 

minor aspect of the burgeoning field of fractal geometry. The following chapter provides 

the background needed to understand how fractals may be used to represent visual 

texture. 

Figure 16 Examples of Two-Dimensional Fractional Brownian Motion 



CHAPTER m 

A BACKGROUND ON FRACTALS 

3.1 Introduction 

Traditionally, geometrical descriptions have been based upon Euclidean geometry 

and Plato's Ideal Forms. While these concepts have been useful for describing many 

natural phenomena (such as the elliptical model of planetary orbits), objects such as lines, 

planes, cubes and spheres are usually found in artificial, not natural, environments. The 

"ideal" shapes fail to describe a wide spectrum of natural processes, ranging from the 

microstructure of fractured materials to the formation of galactic clusters. However, 

fractal geometry readily accommodates the complexity and infinite detail present in 

nature, such as the crumpled surface of mountainous terrain or the flow patterns in 

turbulent fluids. "Physical processes that modify shape through local action... will, after 

innumerable repetitions, typically produce a fractal surface shape." [39, p. 662] As 

observed by Mandelbrot [33], fractals appear to be the "Geometry of Nature." 

3.2 Definition 

While recognizing fractals in the natural world is fairly simple, developing a 

definition of a fractal is much more difficult. The term fractal was first used by 

Mandelbrot [31], derived from the Latin./racft«, meaning "fragmented" or "irregular." 

Attempting to provide more precision, he offers a tentative definition [33] which 

considers a fractal to be a set whose Hausdorff-Besicovitch dimension is strictly greater 

than its topological dimension, that is, "a set for which the only consistent description of 

its metric properties requires a 'dimension' value larger than our standard, intuitive 

definition of a set's 'dimension.' " [39, p. 662] This definition, although very specific, is 
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overly restrictive. Recognizing that fractals may occur in many forms, La Brecque gives 

a less technical description, that a fractal "has a rough shape to one degree or another 

made of parts which, when magnified, resemble the whole." [27, p. 34] The reader of 

fractal literature frequently senses a reluctance to confront the elusive task of developing 

a precise (and often inadequate) definition. For example, Barnsley [2] prefers instead to 

guide the reader to an intuitive understanding of fractals through examples, descriptions 

and usage. However, Falconer [13] faces the challenge directly, opting to describe the 

properties of a fractal, rather than use a definition, so as not to be too exclusive. 

(Falconer makes the analogy between defining a fractal and defining life: both are better 

described by their characteristics. It seems an appropriate analogy for a concept that 

corresponds so well to natural processes.) He refers to the set F as a fractal if it has 

properties such as those listed below (see [13], pp. xx-xxi): 

1. F has a fine structure, i.e., detail on arbitrarily small scales. 
2. F is too irregular to be described in traditional geometrical language, 

both locally and globally. 
3. Often F has some form of self-similarity, perhaps approximate or 

statistical. 
4. Usually, the 'fractal dimension' of F (defined in some way) is greater 

than its topological dimension. 
5. In most cases of interest F is defined in a very simple way, perhaps 

recursively. 

Clearly, this description incorporates the other definitions. The second property 

includes Mandelbrot's origin of the term fractal; the fourth repeats his original definition. 

La Brecque identifies characteristics related to the first and third properties. Rather than 

explaining the aspects of Falconer's description (such as "self-similarity" and "fractal 

dimension") in this section, these terms are better understood in the context of examples, 

as illustrated in the following sections. 
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3.3 Self-Similaritv and Self-Affinifv 

3.3.1 Discussion 

Falconer's third property of fractals mentions "some form of self-similarity.'' 

Note that in older publications, "self-similarity" sometimes refers collectively to both 

self-similarity and self-affinity. However, these terms have distinct meanings. Strict 

self-similarity requires that an object consist of smaller but otherwise exact copies of 

itself. Such fractals will have the identical appearance under any magnification. The 

self-similarity may be exact or statistical, in which the pattern of the fractal is repeated in 

an exact fashion (exact self-similarity) as opposed to using a random element to position 

or modify the repeated pattern (statistical self-similarity). Other fractals scale the pattern 

according to the magnification level, called self-affine fractals. Due to this scaling, 

self-affine fractals will reveal differences under various magnification levels. Like 

self-similar fractals, self-affine fractals may be either exact or statistical in form. 

Although self-similarity may occasionally be used generically for either 

self-similarity or self-affinity, self-similarity is actually a special instance of 

self-affinity. For a self-similar fractal with E coordinates, a uniform scaling constant r 

may be applied:* 

X =  (X^,...,Xi,...,Xjß) 

RsOO = (rxlt...,rxt,...rxE) 

However, self-affinity allows each element to have a unique scaling constant: 

x = (*!>•••»•*,•, — ,xE) 
R

AW = 0*1*!,..., riXi, ...rExE) 

Thus, self-similarity results from self-affinity when the scaling parameter is the same for 

all coordinates. Note that these definitions may be applied to the graphs of functions of 

an independent variable t. For example, consider a function y(t). Two coordinates 

* Note that rotation, reflection and translation are permitted for both self-similarity and 
self-affinity. However, these properties are ignored in this discussion, to focus on the 
scaling differences. 
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(E — 2) are present, expressed as (t,y) using the above notation. With self-similarity, a 

scaling of r along the t axis produces the same scaling along the y axis: 

R&,y) = (rt,ry). However, with self-affinity, the scaling may be different: 

K*(*.y) = (»"!*, r2y). 

Of particular interest is a special case of self-affinity in which the scaling factors 

of the independent variables are all equal to one another (call this value r), and the 

scaling factors of the dependent variables are all equal to one another (call this value rK). 

Furthermore, the relationship between the two constants is given by the equation 

rY = ra. Using the same two-variable example, this particular self-affinity produces the 

pair (rt, l^y). This type of self-affinity leads to the development of fractional Brownian 

motion, a generalization of Brownian motion, which describes the random movement of 

a particle subject to collisions and other forces. Fractional Brownian motion will be 

examined further in section 3.3.4. 

3.3.2 Examples of Self-Similar Fractals 

Perhaps the earliest known fractal is the Cantor set, developed by Georg Cantor in 

1883 while he was investigating the properties of continuous sets [10]. The most 

familiar of the Cantor sets is the middle third Cantor set, otherwise known as the triadic 

Cantor set or ternary Cantor set (see Figure 17), which is an exactly self-similar fractal. 

The process begins with the closed line interval [0,1]. The central third (j,§) of this 

interval is removed, leaving the two intervals [0,|] and [§, 1], shown as the first iteration 

in Figure 17. The central third of each of these intervals is similarly removed, leaving 

the intervals [0,|], [§, j], [§, |], [|, 1]. The Cantor set is the result of an infinite number 

of these deletions. Although it may seem that nothing remains, the Cantor set in fact 

contains an uncountably infinite number of points, in spite of the fact that it has zero 
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Begin with a line segment and 
successively remove the middle third from each segment. 

0 1/3                                            2/3 
* -f: H 

  «*n = 1   
  n = 2*>  
  «*n = 3         
  n = 4*-  
-----»„ = 5   
" " n = 6 *■  
-----* n = 7   

n = 8 *•  

Continue until n reaches infinity. 

Figure 17 Construction of the Ternary Cantor Set 

length [10]. (The length of the set of intervals at the n* step of the ternary Cantor set is 

(2/3)", whose limit approaches zero as n approaches infinity.) 

Originated by von Koch in 1904, the Koch curve is another pathological structure 

which challenged classical mathematics [31]. Although it is continuous, it has no 

tangents anywhere and thus is not differentiable. Its construction begins with a shape 

such as the one shown in Figure 18a* Next, each of the four line segments in this shape 

is replaced by a one-third scaled version of this same shape, as shown in Figure 18b. 

This recursive process is repeated infinitely to yield a Koch curve. The composition of 

three of these Koch curves creates a closed figure, often called a Koch snowflake 

(Figure 19). Because the Koch curve is exactly self-similar, a magnified view of any 

section of it will look the same as the original shape (although translation and rotation are 

allowed). This effect is illustrated in Figure 19. 

Instead of replacing each line segment of the shape in Figure 18a with a scaled 

version of the same shape, suppose that different shapes may be used. As a simple 

example, suppose there are two shapes: the "normal" shape used in Figure 18a and an 

* The Koch curves and Koch snowflakes illustrated here were created from an 
algorithm based upon a formal grammar model developed by Dietmar Saupe [38, 
Appendix C]. Each iteration applies a set of production rules to generate a character 
string which represents the curve at a given resolution. This string is then translated 
into a graphical portrait. 
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(a) First iteration (b) Second iteration (c) Third iteration 

(d) After six iterations, no further detail can be discerned at this resolution 

Figure 18 Construction of a Koch Curve 

Figure 19 Successive Magnification of a Koch Snowflake 

upside-down or inverted version ofthat same shape. The selection of which shape to use 

may be determined randomly. Two such random fractals are shown in Figure 20. 

Figure 20a shows the two shapes, normal and inverted. The fractal in Figure 20b 

contains mostly normal shapes (75%), and the fractal in Figure 20c contains an equal 

amount of normal and inverted shapes. (Note that the generation of these two fractals 

began with the same random seed value.) These two fractals are statistically self-similar, 
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Normal 

Inverted 

(b) 75% Normal Shapes, 25% Inverted Shapes 

(a) Two Shapes Used 
to Generate the 
Random Fractals 

(c) 50% Normal Shapes, 50% Inverted Shapes 

Figure 20 Statistically Self-Similar Koch Curves 

since their self-similarity possesses randomness. One cannot determine exactly what 

shape should appear, but the overall process can be expected to follow certain statistical 

properties. Note that these statistically self-similar fractals contain an infinitely fine 

structure, just like their exactly self-similar counterpart in Figure 18d. Also, as will be 

demonstrated in section 3.4.2, the fractal dimensions of Figures 18d, 20b and 20c are all 

equal. 

3.3.3 Examples of Self-Affine Fractals 

In addition to rotation, reflection and translation, self-affinity allows each 

coordinate to be scaled by a different ratio. A matrix form is convenient for this 

representation, where w(x) describes a geometric feedback equation often called an 

affine transformation. 

x' = w(x) = Ax + b 

Most applications involve two dimensions, with the customary notation shown below. 

l$]-4hmn} 
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A finite set of contractive affine transformations, called a Hutchinson operator 

[37], may be used to describe a particular self-similar or self-affine fractal. An iterated 

function system (IFS) [2] is the repeated feedback or iteration of a Hutchinson operator, 

which converges to a particular shape that defines the fractal. For example, the Koch 

curve may be expressed with four transformations, shown in tabular form in Figure 21. 

Let S be the set of points from (0,0) to (0,1), and let S{ be the set of points transformed 

by Wf, that is, St = {w/x) | x E S). The geometric interpretations of the first and 

second iterations of the Koch curve IFS are shown in Figures 22a and 22b, where SfS, 

indicates the set {W£WJ(X)) | x E S}. (Some of the labels have been omitted in Figure 

22b to reduce clutter.) 

Barnsley's popular fern image [2] consists of the recursive composition of the 

four affine transformations shown in Figure 23. Starting with a unit square (i.e., with 

w1 
a b c d e f 

0.3333 0.0000 0.0000 0.3333 0.0000 0.0000 
w2 0.1667 -0.2887 0.2887 0.1667 0.3333 0.0000 
w3 0.1667 0.2887 -0.2887 0.1667 0.5000 0.2887 
w4 0.3333 0.0000 0.0000 0.3333 0.6667 0.0000 

Figure 21 IFS Code for Koch Curve 

Si A", S2Sy 

5,S, SASl 

(b) Second Iteration (a) First Iteration 

Figure 22 Construction of a Koch Curve Using an IFS 

w1 

a b c d e f 
0.849 0.037 -0.037 0.849 0.075 0.183 

w2 0.197 -0.226 0.226 0.197 0.400 0.049 
w3 -0.150 0.283 0.260 0.237 0.575 -0.084 
w4 0.000 0.000 0.000 0.160 0.500 0.000 

Figure 23 IFS Code for Barnsley's Fern 
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coordinates (0,0), (0,1), (1,0) and (1,1)), the first iteration is shown in Figure 24a. 

Eventually, successive iterations will surpass the displayed resolution, although the true 

fractal requires an infinite number of iterations. Note that the initial shape of the unit 

square is no longer apparent in the final image (Figure 24e). In fact, the same final result 

will be obtained with any initial shape, including even a single point. 

Just as self-similarity may be exact or statistical, so can self-affinity. A random 

component in the selection of transformations is one way to obtain statistical 

self-affinity. Another type of statistical self-affinity is fractional Brownian motion, 

which will be described in the following section. 

(a) One iteration (b) Two iterations 

(c) Five iterations (d) Ten iterations       /„» #-       u.,    .. 1 ' l J       "*°"""*       (e) Enough iterations to exceed 
the resolution of the display 

Figure 24 Construction of Barnsley's Fern Using an IFS 
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3.3.4 Fractional Brownian Motion 

Introduced by Mandelbrot and Van Ness [34], fractional Brownian motion 

(abbreviatedyB/n) is a generalization of Brownian motion, which describes the complex, 

erratic movement of a particle, subjected to the collisions of the other particles in its 

surrounding medium [36]. The function of fBm is characterized by the properties of its 

increments, that is, the differences between successive samples. Let B^t) represent a 

fBm signal, where t is a vector containing E independent variables.* Then 

ABH = Bjftj) — B^tx) specifies an increment of a fBm signal. The increments ABU 

are normally distributed with a mean of zero and a variance proportional to the 2H power 

of the Euclidean distance between the two measurements tt and t2. The mean and 

variance are expressed below, with a2 representing the proportionality constant of the 

variance. The Hurst parameter H must be between 0 and 1, exclusively (0 < H < 1). 

E[ B^t2) - Bfa) ]  = 0 

var[ B^ - B^) ] = a2\ t2 - tx \w,       0<H<1 

(Informally, extensions beyond the range 0 < H < 1 may be considered as "derivatives" 

and "integrals" of fBm [48].) Fractional Brownian motion becomes ordinary Brownian 

motion when H — 1/2. The value of H is related to the fractal dimension D by the 

formula D = E + 1 — H (see section 3.4.5), where £ is the Euclidean dimension 

(equivalently, the number of independent variables of the signal). Thus, small values of 

H yield a high fractal dimension, and large values of H produce a low fractal dimension. 

Since var[Y] = E[Y2] - E[Y]2, the mean and variance equations above may be 

combined to give the expression 

E[ (B^t2) - B^))2 ] = a2|t2 - t,!2* 

* The notation used with fBm can vary considerably. When referring to a signal which 
is fBm by definition, the most common forms are Bn(t) [31,33], BH(U) [14] or VH(t) 
[47,38]. However, frequently authors describe a signal which could be modeled or 
approximated by fBm, in which case there is no accepted format. 
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However, the more common form is below, which may be derived through a 

transformation of random variables. (The constant k is proportional to the standard 

deviation a, as shown in the appendix.) From this equation 

E[ IBjrftj) - B^tjl ] = k |t2 - tj* 

it is clear that scaling the input t by a constant r will result in the output being scaled by 

r*. This nonuniform scaling across all increment sizes makes fBm a particular instance 

of a self-affine fractal. 

Some examples of one-dimensional fBm are shown in Figure 25, with 

dimensions £>=1.3 (tf=0.7), D=1.5 (ff=0.5, which gives standard Brownian motion) and 

D=1.7 (tf=0.3). The time or t axis extends horizontally, with the function values B^t) 

along the vertical axis. Note that the graphs have the same vertical range, as is indicated 

by the thin horizontal lines across them. 

As stipulated by the self-affine relationship, scaling the independent or t axis by a 

constant r entails scaling the dependent or B^t) axis by r". For example, a signal with 

(a) Dimension 1.3 
(H = 0.7) 

(b) Dimension 1.5 
(H = 0.5) 

(c) Dimension 1.7 
(H = 0.3) 

Figure 25 Examples of One-Dimensional Fractional Brownian Motion 
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dimension 1.7 is shown in Figure 26a. Figure 26b shows the first quarter of this signal, 

scaled improperly by the same factor of four along both axes. If the independent axis is 

scaled by four, then the dependent axis must be scaled by 42~ L7 = 403 « 1.5157 for 

the signals to maintain identical statistical properties. The first quarter of the signal in 

Figure 26a is scaled properly in Figure 26c. Whereas the correctly scaled signal looks 

(and is) statistically identical to the original signal, the incorrectly scaled signal is clearly 

distinct. Note, however, that scaling the dependent axis alone will have a different effect. 

While the visual appearance will certainly differ, the fractal dimension will not be 

affected. A linear scaling of the dependent axis will change the proportionality constant, 

but not the H parameter, and therefore not the fractal dimension. Assumed or ignored in 

the literature, this fact allows the function values of the ffim signal to be normalized 

without altering the fractal dimension. 

For a two-dimensional fBm signal, there are various ways to display the surface. 

One approach is to map each value to a certain color. For example, high values may 

appear light and low values may appear dark. This scheme is used in Figure 27, which 

shows three two-dimensional fBm surfaces, with fractal dimensions 2.3,2.5 and 2.7. In 

contrast to the examples of one-dimensional fBm, the two-dimensional examples are 

scaled individually so that each signal extends from a minimum of 0 (black) to a 

^'*^VrvVJV\ W 0ri9inal 

enlarged portion 

%A^WW\<\ 

Signal 

(c) Properly 
Scaled 
Signal (b) Improperly Scaled Signal 

Figure 26 Scaling a Fractional Brownian Motion Signal 
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Figure 27 Examples of Two-Dimensional Fractional Brownian Motion 

maximum of 255 (white). Likewise, fBm may be extended to higher dimensions, 

although it becomes more challenging to display the results. 

3.4 Fractal Dimension 

3.4.1 Introduction 

Perhaps even more difficult than defining a fractal is defining the fractal 

dimension. In general, the fractal dimension attempts to quantify a subjective feeling 

about the degree to which a shape fills the Euclidean space in which it is embedded. As 

such, a fractional value is associated with the fractal dimension, rather than an integer. 

The fractal dimension provides a meaningful measure of fractal objects, both artificial 

and natural. For example, Mandelbrot [33] found that natural coastlines and terrain 

surfaces typically have fractal dimensions within the ranges 1.1-1.4 and 2.1-2.4, 

respectively. 

Although intuitive motivation for fractal dimension is essential, formal support is 

also necessary. A plethora of formal definitions exist, many of which are very similar to 

one another, while others differ in significant ways. Mandelbrot [33], Falconer [13] and 

Peitgen et al. [37] provide excellent discussions of several different fractal dimension 

definitions, each reference with a distinct style and each including definitions that the 

others exclude. Falconer also outlines a typical set of desirable properties for a 
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dimension definition. Incidentally, he recognized the variety of existing dimension 

definitions in his fourth property describing a fractal (see section 3.2). 

Although the definitions are all related, "some of them, however, make sense in 

certain situations, but not at all in others.... Sometimes they all make sense and are all 

the same. Sometimes several make sense but do not agree. The details can be confusing 

even for a research mathematician." [37, p.202] Experience and intuition guide the 

selection of an appropriate definition. Three of the most prominent definitions will be 

discussed here: the similarity dimension, the Hausdorff dimension and the box-counting 

dimension. 

3.4.2 Similarity Dimension 

One of the simplest definitions is the similarity dimension, although it applies 

only to fractals which are strictly self-similar. Nevertheless, it provides a clear intuitive 

link from Euclidean to fractal dimension. Initially, consider only Euclidean objects, such 

as a line, square or cube. Each of these shapes may be considered to consist of smaller 

copies of itself. For example, if a line is scaled by one third, then three such copies will 

produce the original line. Likewise, each of the three subsections may be similarly 

decomposed recursively into infinitely smaller, scaled line segments. 

Clearly, scaling a line segment by 1/r will require r such copies to cover the 

original line. When a square is scaled by 1/r, however, r2 copies are needed to cover the 

original square. A cube requires r3 copies of itself, each scaled by 1/r. This effect is 

illustrated in Figure 28a for r = 3. The relationship between the scaling factor 1/r and 

the number of scaled copies AT may be generalized to the expression N(l/r)Ds = 1 or 

N = r°s, where Z>sis the object's dimension. Alternately, if the dimension is unknown, 

it may be computed from the number of copies and scaling ratio: 

Ds = log(7V)/log(r) 
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Similar analysis may be conducted on self-similar fractals, such as the Cantor set 

(Figure 17) or Koch curve (Figure 18). However, whereas any scaling ratio was equally 

satisfactory in the previous example, the choice is restricted for most self-similar 

fractals. As outlined in its recursive construction in section 3.3.2, the ternary Cantor set 

consists of two copies of itself, each scaled by one third. (In general, there will be 2n 

copies scaled by 1/3".) Accordingly, its similarity dimension is 

log(2)/log(3) « 0.6309. The Koch curve contains four subcopies, each scaled by one 

third, yielding a similarity dimension of log(4)/ log(3) « 1.2619. The geometric scaling 

relationships of the Cantor set and Koch curve are shown in Figure 28a. In Figure 28b 

the computation of the similarity dimension is shown for a few particular resolutions of a 

line, square, cube, Cantor set and Koch curve. Note that the similarity dimension is the 

same as the Euclidean dimension for the standard Euclidean objects. 

Whole 

l—l—I—l 

Part 

D 

r parts, each 
reduced by 1/r 

r2 parts, each 
reduced by 1/r 

-KTU?     \JJ\A. 

r3 parts, each 
reduced by 1/r 

2 parts, each 
reduced by 1/3 

4 parts, each 
reduced by 1/3 

(a) Representing a Shape as a Collection 
of Subcopies of Reduced Size 

N  Number of parts or subcopies 
1/r Reduction factor for each subcopy 
Qs Similarity dimension 

shape        N    r £fe = log(A/)/log(r) 

line          3   3 
10 m 

1 
1 

square        9   3 
100 10 

2 
2 

cube        27   3 
1000 10 

3 
3 

Cantor set    2   3 
4    9 

0.6309 
0.6309 

Koch curve   4   3 1.2619 
16    9 1.2619 

(b) Computation of Similarity Dimension 

Figure 28 Illustration of the Similarity Dimension 
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3.4.3 Hausdorff Dimension 

Although the simplicity of the similarity dimension is appealing, it is limited to 

only self-similar fractals. In contrast, the Hausdorff dimension (sometimes called the 

Hausdorff-Besicovitch dimension) is defined for any set. It is also the oldest definition, 

formulated by Felix Hausdorff in 1919 and is probably the most thoroughly studied. 

Thus, the Hausdorff dimension is often considered as the "default" fractal dimension, at 

least among mathematically oriented definitions. 

Before encountering the mathematical theory, a pair of illustrative examples will 

be helpful for understanding the motivation behind the Hausdorff dimension. Length, 

area and volume are one, two and three dimensional measures, respectively. A square 

has infinite length, zero volume, but finite area, which corresponds to the fact that a 

square is a two-dimensional object. Consider the Koch curve (Figure 18), with a 

similarity dimension of approximately 1.2619. Its length, a one-dimensional measure, is 

infinite. (The length of the nth stage in the construction of the Koch curve is (4/3)", 

which becomes infinite as n approaches infinity.) Its area, a two-dimensional measure, is 

zero. As the following explanation will indicate, only at the fractional value 

log(4)/ log(3) will the Koch curve produce a finite measure. 

Using the standard Euclidean distance \x — y\ between a pair of points x and y in 

/»-dimensional Euclidean space, the diameter of a set U is defined as 

diam(U) = sup{ \x -y| :x,y E U} 

which is the greatest distance between any pair of points in U. The countable family of 

00 

open sets {Ult U2, U3,...} forms an open cover of set A if A C  {J f/;. An £-cover of 

set A results when the sets Ut are all less than e in diameter, for some e > 0. For s > 0, 

'      00 

hs
£(A) = inf«   ]T diam( Uj)s: {Ut] is a f-cover of A > 
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The above equation takes the infimum across all open e-covers of A. For each U{ in the 

cover, its diameter is raised to the s"1 power and summed together. The infimum of these 

summations may or may not be finite. The number of e-covers decreases as e 

approaches zero, leading to the s-dimensional Hausdorff measure of A: 

h\A) = lim hs
£(A) 

e—O 

This limit exists for any set A in Euclidean space, although it is usually either zero or 

infinity. In fact, there is a critical value D^A) such that 

h W ~ JO  if s > Dj£A) 

This value is defined as the Hausdorff or Hausdorff-Besicovitch dimension of set A. 

Dj^A) = mf{s:hs(A) = 0} = sup{s:A%4) = 00} 

A variety of fundamental properties of the Hausdorff dimension are discussed thoroughly 

in the second chapter of Falconer [13]. 

3.4.4 Box-Counting Dimension 

In spite of the advantages of the Hausdorff dimension, it is usually difficult to 

calculate or estimate computationally. In practice, the box-counting dimension or a 

related variant serves as a useful alternative. Lending itself to straightforward empirical 

estimation, the box-counting dimension "is the one most used in measurements in all the 

sciences." [37, p.214] To some degree, the box-counting dimension also provides a link 

between the Hausdorff and similarity dimensions. 

The difficulty of measuring the Hausdorff dimension lies in the evaluation of the 

summation of the diam(C/,.)5 terms (see section 3.4.3), since all diam(Ut) < e must be 

considered. The formula may be simplified by covering the fractal object with 

n-dimensional spheres or "balls" of fixed diameter e. Or, one could use n-dimensional 

cubes or "boxes" of fixed length <5, which have a diameter e = d Jn. In this case, the 
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s-dimensional Hausdorff measure hs(Ä) is replaced by Nd(A)d* where Nd(A) is the 

number of boxes of size d covering the set A: 

N*(A)ds = hm < in« Y <55: /f/J is a <5-cover of A [ 
<5—o f-t L     L»=i J. 

The value s for which Nd(A)ds is non-zero and finite becomes the box-counting 

dimension DB. Roughly speaking, Nd(A) a ö ~D* for small s. (The proportionality may 

be replaced by an equality if d specifies an absolute size instead of a relative size ratio.) 

The procedure may be simplified further by restricting the boxes to a mesh, eliminating 

the complication of overlapping and rotated boxes. Such a configuration may be 

implemented effectively on a computer. 

The box-counting dimension may also be considered as a generalization of the 

similarity dimension (see section 3.4.2). The similarity dimension is 

Ds = log(iVr)/log(r), but it applies only to self-similar fractals and usually requires a 

particular selection of rvalues. Let the box size <5 = 1/r. Then the box-counting 

dimension may be defined as 

DB = MmflogCJVy/logd/d)) 

which may be applied to any fractal. Typically, an algorithm will estimate DB across a 

range of box sizes for better results. To compensate for using a fixed mesh of boxes, N6 

may be averaged across multiple meshes of size d which are successively shifted. 

3.4.5 The Dimension of Fractional Brownian Motion 

The fractal dimension of fractional Brownian motion (fBm) may be estimated 

using the box-counting dimension described in the previous section. However, the 

relationship between the fractal dimension and the H parameter of fBm requires a 

distinction between two particular representations of fBm. Fractional Brownian motion 

can be graphed as either a trail or a trace. For example, Figure 29a shows a trace of 
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BH(t)k 

► / 

(a) One-dimensional trace offBm 

BHm,t2) axis 
projected 
outward, 

perpendicular 
to the page 

(b) Two-dimensional trace of fBm 

Figure 29 Traces of Fractional Brownian Motion 

one-dimensional fBm. Note that the independent variable t follows one axis, and the 

function Brft) follows the other axis. An overhead view of a trace of two-dimensional 

fBm is shown in Figure 29b, with the independent axes labeled tx and t2 and the 

dependent axis B^tv t£ projected upward from the page. (The signal's height is 

indicated by the brightness.) In contrast, a trail of fBm removes the independent variable 

from the graph. Here, the path of the given particle is recorded by marking its position 

over time. The graph will contain a twisted line which meanders about, crossing over 

itself occasionally. The independent variable (time) is represented only implicitly. 

Finding the position of the particle at a particular time would require following along the 

trail a certain number of points. For a trace of fBm, however, the particle's position at a 

given time is readily apparent. Note that fBm trails will not be needed here; only fBm 

traces will be used. 

The relationship between the fractal dimension D and the Hurst parameter H 

differs for fBm trails and traces.* Voss [48] determined that D = 1/H for fBm trails, up 

to the dimension of the Euclidean space in which the signal is embedded. Thus, ordinary 

one-dimensional Brownian motion which fills the plane has H = 1/2 and D = 2. If 

* Mandelbrot mentions the relationship between the Hurst parameter and fractal 
dimension as early as [30], but does not elaborate upon it. A decade later, Voss [48] 
provides a lucid explanation. 
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1/H exceeds two, the trail overlaps itself more densely, but its dimension remains at two. 

The fractal dimension D of a fBm trace is D = E + 1 - H, provided that the function is 

considered over a sufficiently small scale of the independent variable. Note that, by 

convention, E refers to the Euclidean dimension of the signal, not the space in which the 

signal is embedded. More precisely, E is the number of independent variables of the 

signal. The following derivation, condensed from Voss [48], is included below, since this 

model is highly relevant to the fBm representation of image texture. 

Recall from section 3.3.4 that the increments of fBm ABH = B^t^) - Bjtfti) 

are, on average, proportional to the H power of the distance between the two 

measurements At = t2 - tv Thus, on average, ABH = k AtH. A trace of a 

one-dimensional fBm signal is shown in Figure 30, sampled at intervals of d. A square 

mesh with boxes of size ö has been laid atop this signal. Because the interval At equals 

the box size ö,ABH = öH. (Note that the proportionality constant k has been dropped, 

for simplicity. The proportionality will not affect the derivation and will be 

re-introduced later.) The number of boxes needed to cover one time instance of this 

signal is the average height of the signal within the interval, divided by the box size. 

Thus, the number of boxes of size Ö needed to cover a single vertical section of the signal 

is Kernel0) = ABH/d = 6H/d = öH~l. The number of boxes horizontally is 

Nhorizontal) = ^maxß, where dmax is the smallest box size which covers the entire 

Figure 30 Box Counting Applied to Fractional Brownian Motion 
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function. The total number of boxes N(d) needed to cover the entire signal is the product 

of the number of boxes horizontally times the number of boxes vertically: 

These boxes are shaded in Figure 30. Combining d,,^ and the earlier constant k, 

N(d) a dH~2 

Recall from section 3.3.4 that 

N(d) a d~D 

Thus, -D = H -2orD = 2-H. Voss [48] generalizes this relationship to higher 

dimensions, demonstrating that the fractal dimension of a fBm trace is D = E + 1 - H, 

where H is the Hurst parameter and E is the number of independent variables of the 

signal. 

The spectral density S(f) of a fBm function B^t) also has special properties. In 

particular, the frequency distribution of fBm decreases exponentially as the frequency 

increases. Specifically, the spectral density is inversely proportional to the ß + E - 1 

power of the frequency magnitude |f | =     / J(/i)2, where f is a vector of size E and k 
E 

;-=i 

is a constant: 

k S(f) = \f\ß+E-l 

The parameter ß is related to H as shown below: 

ß = 2H+l H=(ß- l)/2 

The derivation is excluded here; Peitgen and Saupe [38] provide further detail. From the 

above equation, the fractal dimension may be expressed in terms of ß: 

D = E+l-H = E+(3- ß)/2 

Both the spatial and spectral forms of fBm will be used later in the analysis of image 

texture. 



CHAPTER IV 

FRACTALS AND TEXTURE 

4.1 Modeling Natural Terrains and Textures with Fractals 

Mandelbrot [30] noticed that natural terrain surfaces may be modeled by 

two-dimensional fractional Brownian motion with startling effectiveness. Introduced by 

Mandelbrot and Van Ness [34], fractional Brownian motion (often abbreviated./Bm) is a 

generalization of Brownian motion, which describes the irregular path of a particle in a 

fluid, caused by the random molecular impacts of the surrounding particles. Voss [47] 

established a link between the spectral distribution of fBm and the fractal dimension. 

Based on this, he used Fourier synthesis to generate natural terrains and even complete 

landscapes. Upon closer examination, however, a simple fBm surface cannot 

accommodate the full diversity of detail present in an actual landscape. For example, 

fBm does not accurately portray lake bottoms [33] (which are submerged and thus 

invisible in the artificial landscapes), and river networks are generally absent in typical 

fractal renderings. However, this does not invalidate the suitability of fractals for 

modeling natural terrain. It merely indicates that there may be a combination of fractal 

phenomena involved. For example, a fractal approach was used in [38] to include river 

networks within a fBm landscape. Pentland [39] supports such a view, arguing that 

natural terrain should follow a fractal model, since it is formed by fractal processes such 

as aggregation and erosion. Furthermore, he asserted that an image intensity surface of a 

fBm surface will also produce fBm, under normal lighting conditions. In other words, 

not only may terrain be modeled by fBm, but images of such terrain also. 

Recognizing that fBm may be used to study images of natural terrain, Pentland 

[39] extended fBm to image textures in general. He found that fBm relief maps of 
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varying fractal dimension correlated very closely with the human perceptual notion of 

roughness, a fundamental characteristic of texture. Estimating the fractal dimension 

from the Fourier transforms of local neighborhoods, Pentland distinguished the textures 

within a sampling of Brodatz textures and textures from natural scenes. The estimated 

fractal dimension was also used to segment the regions within images of a desert, San 

Francisco Bay and Mount Dawn. Keller et al. [24] developed a one-dimensional fBm 

model to distinguish between silhouettes of trees and mountains. 

Natural image texture models are not restricted to using only the fractal 

dimension. In later work, Keller et al. [25] supplemented the fractal dimension with a 

lacunarity estimate to segment a set of Brodatz textures and a scene of trees. Likewise, 

Vehel [46] implemented an alternate form of each lacunarity and the fractal dimension to 

classify images of human lungs. Generalizing the normally scalar fractal dimension, 

Kaneko [23] used a 2 x 2 fractal dimension matrix to capture directional dependencies. 

The eigenvalue of this matrix was used to characterize Brodatz textures. Dennis and 

Dessipris [11] studied the derivative (rate of change) of the fractal dimension as a texture 

signature across a range of pixel distances. Wanting to distinguish between natural and 

cultural (man-made) objects in aerial images, Cooper and Chenoweth [7] investigated 

"fractalness," or the degree to which an image region fits the fractal model. 

Here, two primary fractal characteristics will be explored: fractal dimension and 

"fractalness." This work is oriented toward the representation of natural textures in aerial 

imagery, although Brodatz textures and artificial fractal textures are also included. The 

development of a fractal model for visual texture representation is divided into two parts: 

the synthesis of fractal images and the estimation of the fractal properties of images. The 

remainder of this chapter focuses on the generation of artificial images to be used for 

testing. The next chapter describes various approaches to extracting fractal 

characteristics of both artificial and actual images. 
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4.2 Synthesizing Artificial Fractal Images 

Before developing a method for estimating the fractal dimension of an actual 

image or of subregions of an actual image, a test standard is needed by which the 

estimation technique may be judged. The test standard should be created in a controlled 

manner such that its textural description, in this case, fractal dimension, originates from a 

sound theoretical model. Two theoretical approaches were examined and implemented 

for synthesizing artificial fractal images, a spectral technique (section 4.3) and the 

random midpoint displacement method (section 4.4). 

Fractional Brownian motion may be characterized by the exponential relationship 

below (see section 3.3.4), where the Hurst parameter H satisfies 0 < H < 1 and it is a 

positive constant: 

E[ IBjrfta) - 2^)1 ] = k |t2 - tj» 

For traces or functions of fBm (see section 3.4.5), the Hurst parameter is related to the 

fractal dimension D by the equation D = E + 1 - H, where E is the Euclidean 

dimension of the signal, which is the number of independent variables. Small values of 

H yield a rough visual texture; large values of H produce a smoother texture. 

Alternately, fBm may be expressed by its frequency distribution. As was shown in 

section 3.4.5, the spectral density S(f) of fBm is inversely proportional to the ß + E - 1 

power of the frequency magnitude lf|, where f is a vector of size £ (it is a constant): 

S® = |f|/J+£-l 

The spectral parameter ß is related to the Hurst parameter H by the equation 

ß = 2H + 1. Thus, the fractal dimension may also be expressed in terms of ß as 

D = E + (3 - ß)/2. 

When considering a two-dimensional signal, such as an image, there will be two 

independent variables (£ = 2). The notation G[x] refers to such a signal, which will be 

compared to the fBm signal B#(t). Thus, x = (xr,xc), which specifies the discrete row 

and column coordinates. The function G[x] E [0,..., 255] is a discrete value 
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representing the gray shade at location x. The following sections describe algorithms to 

synthesize a fBm image G[x], first in the frequency domain and then in the spatial 

domain. 

4.3 Spectral Synthesis 

4.3.1 Algorithm Design 

For a two-dimensional signal (£ = 2), the spectral density of fractional Brownian 

motion is 

S(f) = Stfi,/;,) = 
(Jfl

2+f2
2)t>+E-1    (ÄV?)^i    (A2+/2

2)^ 
or, in terms of the Hurst parameter H, 

(fx  +f2)
a+l 

In terms of the coefficients V[nx, nj of the two-dimensional discrete Fourier transform, 

(rt^ + «2 ) 
(where E[Y] is the expected value of Y), which may be achieved by selecting coefficients 

such that 

l^l,»2]| =  .    2J    2^- = ("I2 + "22)-^ 
(«1   + n2

2)— 

The spatial signal corresponding to the inverse Fourier transform of this frequency signal 

will be fractal, with dimension 3 - H. 

The program used to generate an artificial fractal image was based upon Saupe's 

algorithm [38] to synthesize two-dimensional fractional Brownian motion spectrally. As 

described previously, the synthesis begins in the complex frequency domain. The 

two-dimensional signal is conjugate symmetric and periodic. The lowest (zero) 

frequency component is located at the upper left corner of the array. Frequencies 

increase toward the center of the array, at which point they decline again, due to the 

periodic nature of the signal (i.e., the origin of the frequency plane has been shifted to the 
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upper left comer of the array). This relationship is shown in Figure 31, in which the array 

indices range from 0 to 255 and the frequencies nx and n2 increase from 0 to a peak of 

128 and then decline back to 1. The arrows indicate the direction of increasing 

frequency. 

To assure that the spatial transform will be purely real (i.e., no imaginary 

components present), the frequency domain signal must be conjugate symmetric: 

S(*i,n2) = S(-nl}-n2)* 

Since the frequency domain signal is periodic, this becomes 

5(n„/Z2) = SiN-n^N-n^* 

where N is the size of the array. Conjugate symmetry was included by setting the values 

in the lower right quadrant to the complex conjugates of the corresponding values in the 

upper left quadrant. Likewise, the upper right and lower left quadrants were linked by 

conjugate symmetry. 

To give the final spatial image a more natural appearance, randomness was added 

to the frequency coefficients. Following Saupe's specifications [38], the phase of the 

coefficients was uniformly distributed between 0 and 27r radians using a built-in 

pseudorandom number generator. The magnitude of the coefficients was scaled by a 

Gaussian distribution with zero mean and unit variance. The design of the Gaussian 

1 1 1 
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1 
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Array Indices Frequency Magnitudes 

Figure 31 Spectral Synthesis: Array Indices and Frequency Magnitudes 
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pseudorandom number function capitalized upon the Central Limit Theorem, in which 

the mean of the sample of any distribution (in this case, the existing uniform generator) 

will approximate a Gaussian distribution. Justification of these random elements was 

absent in the original reference, and no other sources were located which address the 

matter. However, the following explanation is offered. First, the phase is unrestricted, so 

any random distribution should be acceptable. A uniform distribution across all phase 

angle values would seem reasonable. Justification of the magnitude is less direct. The 

magnitude must satisfy the relationship given below: 

E[ l^i.njl2 ] = * 
(n^ + n2

z)a+l 

Using elementary probability theory, this may be rewritten 

E[ (n«i,"2])2 ] = var[V[ni,«2]] + EMn^nJ]2 

The fBm spectral requirements may be satisfied by selecting a random distribution with a 

zero mean and variance proportional to (nf + n2
2) ~^H+l\ Multiplying a standard 

Gaussian distribution (i.e., with zero mean and unit variance) by (nj2 + n2
2) -<H+1> 

achieved this specification. 

Finally, the randomized spectral image was transformed to the spatial domain 

using an inverse fast Fourier transform. As explained, the spatial image will have no 

imaginary component, since the spectral image was conjugate symmetric. The 

magnitude of the real portion of the spatial image was normalized to the maximum range 

of displayable gray shades, from 0 to 255, and quantized to an integer value. A fractal 

signal may be normalized in a linear fashion without affecting its fractal dimension. 

(This property was demonstrated both analytically (see section 3.3.4) and through 

examination of the empirical results.) Three samples of synthetic fractal images 

generated in this manner are shown below in Figure 32. The fractal dimension D is 

related to the parameter H by the equation D = 3 - H (assuming a two-dimensional 

signal). Notice how the visual texture becomes increasingly rough as the fractal 

dimension increases. 
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(a) H - 0.9 
Fractal dimension -2.1 

(b)H"0.5 
Fractal dimension = 2.5 

(c)H'0.1 
Fractal dimension - 2.9 

Figure 32 Synthetic Fractal Images, from the Spectral Model 

4.3.2 Analysis of Results 

The visual appearance of the synthetic fractal images seemed favorable. Cross 

sectional slices of the images were taken and studied. Again, the results appeared 
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reasonable. Slices of several images were obtained, at the same location within each 

image. Similarities were apparent, due to the fact that each of the images used the same 

initial value for the pseudorandom number generation. However, a rougher signal was 

observed in direct relationship to the magnitude of the fractal dimension. Of additional 

significance was the fact that the minimum, maximum and average gray shades for all of 

the synthetic fractal images were identical. Thus, any method which attempts to 

distinguish such images must rely solely upon textural properties. Since the average and 

extrema gray shades were the same for each of the synthetic images, these factors could 

not inadvertently influence the identification. 

In spite of their visual appeal, when the synthetic images were examined 

analytically, the results were less favorable. A linear regression approach within the 

frequency domain (see section 5.4.1) was used to estimate the fractal dimension. After 

establishing the validity of the linear regression algorithm, the inaccuracies in the 

estimates of the fractal dimension in the final images led to an examination of the 

algorithm which generates the original spectral image. Figure 33 lists the results for five 

synthetic fractal images with dimensions from 2.1 to 2.9. The leftmost column ("actual 

D") indicates the fractal dimension parameter which was used to generate the image. 

The fractal dimension was estimated from the spectral image as it was generated. Initial 

 actual D estm. D-. estm. Do estm n3 

2.1 2.0992 2.1048 2.1493 
2.3 2.2996 2.3042 2.3264 
2.5 2.4999 2.5048 2.5480 
2.7 2.6999 2.7050 2.7878 
2.9 2.8996 2.9051 3.0565 

actual D ideal fractal dimension used to generate the image 
estimated D-,   ... estimate from the original spectral image, uncorrupted by noise 
estimated D2 ... estimate from the original spectral image, corrupted by noise 
estimated D3 ... estimate from the final quantized spatial image, corrupted by noise 

Figure 33 Estimates of the Fractal Dimension of Spectrally Synthesized 
Fractal Images 
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measurement errors led to the removal of the pseudorandom number functions. The 

second column ("estm Di") gives the estimated dimension, measured directly from the 

spectral image, without any noise. Subsequent testing of the pseudorandom number 

functions revealed acceptable performance of both the uniform and normal distributions. 

A refinement of the estimation algorithm produced reasonable values (see the third 

column, "estm D2," of Figure 33) for the fractal dimension of the spectral image, with 

noise added to the signal as described previously. However, a degree of error remained 

in the estimates obtained from the final synthetic image. These results are listed in the 

fourth column ("estm D3") of Figure 33. Here, the spectrally synthesized image was 

transformed to the spatial domain, quantized and written to a file. Examples of such 

images were shown in Figure 32. These images were then converted back to the 

frequency domain, where the fractal dimension was then estimated. Because the 

synthesis and estimation algorithms were directly related, one should expect very 

accurate results. Accuracy losses attributed to computational error, such as converting 

between the spatial and spectral domains, should be negligible. Increased precision did 

not significantly improve the estimates, confirming this supposition. The remaining 

factor is the quantization of the real-valued signal into only 256 gray shade values. 

Further investigation is warranted to confirm that quantization is responsible for the 

discrepancy between the original dimension and the estimated dimension obtained from 

the final normalized, quantized spatial image. Nevertheless, in spite of this difference, 

the estimates are monotonically related to the actual values and fairly close for smaller 

dimensions. Additionally, the visual appearance of a series of synthetic images with 

increasing fractal dimension corresponds well with one's expectation of increasing 

textural roughness. 
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4.4 Random Midpoint Displacement Svnfopsk 

4.4.1 Synthesis of Fractional Brownian Motion 

The second theoretical model investigated for creating an artificial fractal image 

is the random midpoint displacement approach. This method follows directly from the 

definition of fractional Brownian motion given previously and repeated below. 

E[ Bflflj) - Brfkd ] = 0 

var[ Bfä) - BflCtt) ] = a2\ t2 - t{ \m,       0<H<1 

As before, the signal B^t) may be represented by the discrete function G[x], where 

G[x] is the gray shade at the row and column coordinate specified by x = (xr,xc). 

Let the coordinate system be normalized so that its four corners have coordinates 

(0,0), (0,1), (1,0) and (1,1), whose gray shades are obtained randomly from a normal 

distribution with zero mean and variance a2. These four initial points are labeled with 

zeroes in Figure 34. The midpoint between these four points is a single point at the 

center of the grid, at a distance of 1/ J2 from each of the corners. This point, from the 

first midpoint displacement, is labeled with a one in Figure 34. Its gray shade is the 

average of its four neighbors', plus a random offset with zero mean and variance 

(1/ v^)2^2. This assures that the fractional Brownian motion requirements given above 

Figure 34 Initial Steps of Random Midpoint Displacement 
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are met. In the second midpoint displacement, the average of the gray shades of each pair 

of adjacent corners plus the center point is found, added with a random offset with zero 

mean and variance (l/2)ma2. This progression continues, alternating between adding 

points on the diagonally oriented grid (aligned with the solid lines of Figure 34) and 

adding points on the standard grid (aligned with the dashed lines of Figure 34). The final 

result is shown in Figure 35 for three different fractal dimensions. 

Thus, the properties of fractional Brownian motion are preserved between the 

new point and those points whose values were included in the average. However, the 

same cannot be said about the relationship between points such as (0,1/4) and (0,3/4) 

which were generated independently from one another. Since the distance between points 

(0,1/4) and (0,3/4) is 1/2, then the variance of the difference between their gray shades 

should be {l/l^o2, in the same manner that the variance of the difference between the 

gray shades at (0,0) and (0,1/2), for example, is (l/l)211^. However, this will be true 

only when H = 1/2. The actual variance between separately generated points will be 

too large for H < 1/2 and too small for H > 1/2. For other independently generated 

points, the theoretical validity fails even for H — 1/2. Thus, although the random 

midpoint displacement algorithm produces valid fBm to some degree, it falls short from 

a complete representation. 

A variation of the random midpoint displacement algorithm adds a suitable 

displacement not just to the newly interpolated points, but to the original points as well. 

This process is called successive random addition [38]. Three samples of synthetic 

fractal images are shown in Figure 36, generated by the random midpoint displacement 

algorithm with random additions. This approach was motivated by the desire to 

eliminate the "creasing effect" which occurs in two-dimensional random midpoint 

displacement surfaces, when rendered as an illuminated terrain surface and viewed from 

certain angles, such as overhead (zenith) or parallel to the alignment of the square grid 

used by the algorithm. First mentioned by Mandelbrot [32], the creasing effect is 
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(a) H = 0.9 
Fractal dimension = 2.1 

(b) H-0.5 
Fractal dimension « 2.5 

(c) H = 0.1 
Fractal dimension = 2.9 

Figure 35 Synthetic Fractal Images, from the Random Midpoint Displacement Model 

characterized by unnaturally long and straight features on the surface which resemble 

crumbled or creased paper. 

Note, however, that the creasing effect is not visible when the surface is displayed 

as a "cloud," that is, when the height of the surface is mapped to a gray shade. For 
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(a) H = 0.9 
Fractal dimension = 2.1 

(b) H = 0.5 
Fractal dimension = 2.5 

(c) H = 0.1 
Fractal dimension = 2.9 

Figure 36 Synthetic Fractal Images, from the Random Midpoint Displacement Model 
with Random Additions 

example, refer to the fractal images in Figure 35. Likewise, even for illuminated terrain 

surfaces, the proper selection of viewing angle will obscure the creasing effect. 

Nevertheless, inclusion of random additions does not appear to affect the visual 
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roughness of the texture. For example, the three fractal images in Figure 36, which were 

created with random additions, compare very closely to their counterparts in Figure 35. 

The successive random addition method includes a random offset not just to the 

newly generated midpoints, but to all of the points which have been created thus far in 

the algorithm. Although this eliminates the visual defect of creasing, it actually worsens 

the theoretical validity of the final signal. It was discovered that proper fBm is obtained 

only in the iteration in which a midpoint was newly created. The successive random 

additions of later iterations alter the variance even for those increments which were valid 

under the original random midpoint displacement algorithm. 

4.4.2 Analysis of Results 

The visual roughness of textures generated both with and without successive 

random additions appeared suitable. However, when the fractal dimension was estimated 

for these images, poor results were obtained. The first column ("actual D") of Figure 37 

indicates the fractal dimension parameter used to generate the synthetic images. The 

second column ("estm Df) contains estimates from images computed without successive 

random additions, and the third column (uestm D2") shows the estimates taken from 

images which included successive random additions. The estimates were obtained by 

 actual D estm.D-, estm TV. 
2.1 2.5683 2.5299 
2.3 2.7359 2.7016 
2.5 2.9004 2.8723 
2.7 3.0469 3.0310 
2.9 3.1791 3.1685 

actual D 'deal fractal dimension used to generate the image 
estimated D-,   ... estimate from the final quantized image, without random additions 
estimated D2  ... estimate from the final quantized image, with random additions 

Figure 37 Estimates of the Dimension of Random Midpoint Displacement 
Fractal Images 
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transforming the fractal image into the frequency domain and then using linear regression 

(see section 5.4.1) on the spectral image. While such an approach should work well with 

the spectral synthesis algorithm, since both the synthesis and estimation paradigms are 

the same, it is conceivable that the spectral estimation of the random midpoint 

displacement algorithm could result in less accuracy. Li contrast, values obtained from 

spatial estimation algorithms (see section 5.4.2) were much more reasonable. 

Incidentally, the apparent similarity between the visual roughness of textures generated 

with and without random additions is supported by the spectral estimates. In spite of the 

discrepancy between the actual and estimated dimensions, the estimated values 

corresponded closely between the two synthesis algorithms. 

4.5 Summary 

Of the three synthesis algorithms implemented, only the spectral approach was 

theoretically valid. Presumably, this is the reason why it is used exclusively in the 

literature. The other two types of synthesis, both based on random midpoint 

displacement, were found to have flaws which prevented them from adhering completely 

to the fBm requirements. No known studies have included the random midpoint 

displacement method in a rigorous analysis. (Only terrain simulations have used this 

algorithm, where the judgment considered only the subjective appearance of the rendered 

surface.) In spite of the theoretical shortcomings of the spatial algorithms, they were 

included with the spectral synthesis technique for estimation in the following chapter, to 

provide a more comprehensive comparison. 



CHAPTER V 

ESTIMATION RESULTS 

5-1 Using Textlire to Sppmmtt Aerial Tma^ry 

In previous work contracted by the Naval Air Warfare Center in Indianapolis, 

Indiana, texture features were examined to aid the segmentation of aerial imagery [6]. 

The natural textures which appear in aerial images are frequently composed of very small 

texture elements, often considered to be the individual pixels which compose the image. 

Their arrangement tends to be statistical and non-periodic. Statistical and discrete 

transform methods are suitable for such textures. Of this category, techniques examined 

in the study included a small set of ad hoc filters, busyness and texture energy. Also 

considered was the gray shade cooccurrence matrix method, which is appropriate for 

pixel-sized texture elements with a statistical distribution. Although it is designed for 

much larger texture elements, the chord transform was evaluated as a potential tool for 

analyzing the shapes of certain regions. 

The texture study began with two sets of simple, arbitrary masks, one which 

considers the directional content of the texture and the other which looks for 

checkerboard patterns. This approach required the selection of an exemplar texture to 

which the rest of the image would be compared. Since results can vary appreciably 

according to the exemplar texture, this requirement is generally a disadvantage. Also, the 

ad hoc masks tended to overemphasize the.gray shade, and sometimes edge, content of 

the image. Conceivably the ad hoc masks could be supplemented by subsequent 

processing which would collect local statistics from the filtered images, as Laws did in 

his texture energy model [28]. However, this concept was not investigated. 
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The busyness feature [43] is a quick, non-linear filter which considers the 

average absolute gray shade differences within a small neighborhood of pixels. Since 

this approach can also extract edge information, the minimum of these averages was 

taken from four directions. This suppresses large gray shade differences resulting from 

edges. Results were favorable for both a synthetic test image and a set of aerial images. 

The only problem was that sometimes edges at angles not measured by the busyness 

operator would be marked with high busyness values. 

Lastly, the texture energy model originated from Laws' work [28] was examined. 

Although certain features of its final fifteen "texture energy planes" rivaled busyness, no 

single particular feature was consistently preferred. It is conceivable that the complete 

texture energy model, when coupled with gray shade information, could give comparable 

or superior results to the combination of busyness and gray shade. However, the extra 

benefit anticipated would not justify the additional computational expense. 

Thus, this examination of texture features led to the selection of busyness, which 

performed well with the natural textures of aerial images and was fast to compute. 

Busyness was used to model texture within the Gray Shade and Texture Segmentation 

Software, a tool designed to provide the scene analyst with a way to achieve improved 

accuracy in the segmentation of aerial images [5]. The combination of busyness and 

gray shade allowed much better classification of the regions within aerial images, as 

demonstrated by the results produced from the segmentation software. A more detailed 

discussion of the investigation of these texture features may be found in [6]. 

5.2 Background for the Experiment 

After the initial study of texture features described above, fractal methods were 

investigated for their potential to represent natural texture. As was demonstrated in the 

previous chapter, artificial fractal images of increasing dimension corresponded to 

increasing visual roughness. In addition to aerial images, two other categories of images 
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were studied: the synthetic fractal images generated in Chapter 4 and Brodatz textures. 

All images represented each pixel with one byte, allowing a maximum of 256 distinct 

gray shades. 

Artificially generated fractal images provide the most objective standard for 

measuring fractal characteristics. Due to its natural appearance, two-dimensional 

fractional Brownian motion provides the basis of the synthetic fractal images. Using 

spectral synthesis, random midpoint displacement and random midpoint displacement 

with successive random additions, three sets of nine fractal images were generated, with 

dimensions 2.1 through 2.9. Images produced by each of the three synthetic algorithms 

were shown in Figures 32,35 and 36, respectively. Five additional synthetic images 

were included in this category, shown in Figure 38: a constant gray shade, a diagonal 

linear gradient, uniformly distributed random "noise," Gaussian distributed random 

"noise" and the "homeplate" image. Used throughout the previous texture analysis 

described in section 5.1, the homeplate image consists of a homeplate-shaped region of 

Gaussian noise against a background or uniform noise. All of the artificial images were 

256 rows by 256 columns, except for the "homeplate," which was 128 x 128. 

Natural textures from the photographic album by Brodatz [3] have become an 

established standard for natural image texture analysis. These textures provide continuity 

between other texture research. Figure 39 illustrates some of the Brodatz textures used, 

From left to right: Constant gray shade, Diagonal linear gradient, Uniformly distributed 
random gray shades, Gaussian distributed random gray shades and Homeplate 
image (see text) 

Figure 38 Non-fractal Artificial Images 
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Burlap, Clouds, Cork, Fieldstone, Grass Top row, from left to right 
Bottom row, from left to right:     Ice, Paper, Pigskin, Sand, Waves 

Figure 39 Sample Brodatz Textures 

most of which have natural, fine-grained textures. The Brodatz textures were also 

256 X 256 pixels in size, except for "clouds" and "waves," which were 241 X 256. 

Finally, aerial imagery provides the focus and application of this research. 

Although natural textures in aerial images have been studied, very little work can be 

found which applies fractal analysis to this area. Scenes containing various mixtures of 

natural features (such as water, trees, grass and dirt) and man-made features (such as 

roads and buildings) were included in the analysis. The sizes of aerial images varied 

widely. Most were larger than the 256 x 256 artificial and Brodatz textures. 

Of the fractal characteristics mentioned in section 4.1, the most obvious is the 

fractal dimension. Because a given texture may or may not be fractal in form, the degree 

to which an image region fits the fractal model is a relevant consideration. Expressed in 

terms of the root mean square (RMS) error between the predicted model and the actual 

gray shade data, the "fractalness" of an image texture is explained further in section 

5.5.3. The fractal error appears to have some potential use for distinguishing between 

natural and man-made entities in an image, as natural objects are more apt to be fractal 

than man-made objects. This application of the fractal error is examined in section 6.3. 
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A region descriptor, such as fractal dimension or fractal error, may be used either 

to characterize known regions or to segment an image into regions. Usually, the latter 

task is more difficult, since the regions must be identified as well as characterized. 

Accordingly, most research on fractal texture models focuses upon the analysis of known 

textured regions so that they may be distinguished from one another. However, the 

problem of segmentation using fractal characteristics has received less attention. 

The characterization of a single texture may be considered as a "global" measure, 

in the sense that the measurement spans the entire image. In contrast, segmentation must 

describe the textural properties of smaller subregions of the image so that they may be 

distinguished from one another. This task may be considered a "local" measure, since it 

applies only to a particular neighborhood of the image. Both methods will be examined 

here: the description of a single texture (global measure) and the segmentation of an 

image containing several textures (local measure). Three global approaches will be 

discussed: spectral estimation, spatial estimation and box-counting. Local measurement 

will emphasize two spatial techniques. However, before attempting to estimate the 

fractal dimension either globally or locally, the relationship between the pixel spacing 

and the change in gray shade will be examined. 

5.3 Fractal Scaling Property 

Before estimating any fractal characteristics, the relationship between the pixel 

spacing and the change in gray shade across the image should be considered. This 

exponential relationship, sometimes called the fractal scaling property, was developed for 

fractional Brownian motion (fBm) in section 3.3.4: 

E[ iB^ta) - BrfLfl ] = k |t2 - t,|* 

Plotting the logarithm of the average change in the signal at a given interval versus the 

logarithm ofthat interval size will produce a straight line for fBm, the slope of which 
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will be the estimated value for the Hurst parameter H. (This slope corresponds to the 

spatial estimation method described in section 5.4.2.) 

To reduce the computational effort, this comparison considered only the 

horizontal and vertical pixel distances in the image, for pixel distances one through 

twenty. The log-log plots for the synthetic fractal images were highly linear. These 

results are illustrated in Figure 40 for images with dimensions 2.1,2.5 and 2.9 for each 

of the three fractal synthesis algorithms. The fit is especially close for the two spatial 

algorithms (random midpoint displacement with and without random additions); the 

difference between the plot and the estimated line is barely perceptible even if the graph 

is enlarged to fill the entire page. Log-log plots are also shown in Figure 40 for three of 
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Figure 40 Pixel Distance Versus Change in Gray Shade for Artificial Images 
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the non-fractal artificial images, the diagonal gradient and the two random images. 

These also corresponded very closely to the fractal scaling property. The results for the 

Brodatz textures ranged from good for "clouds" to poor for "burlap." The graphs for the 

"clouds," "burlap," "cork" and "sand" textures are shown in Figure 41. The dashed lines 

indicate the regression lines of the data. Comparing the Brodatz textures visually to the 

artificial fractals, these results seem reasonable. The favorable relationship between the 

pixel spacing and the change in gray shade for the artificial fractals led to the next step, 

the global estimation of fractal characteristics. 

5.4 Description of a Single Tfextiiiy 

5.4.1 Spectral Estimation of the Fractal Dimension 

The spectral estimation of the fractal dimension stems from the relationship 

between the fractal dimension and the spectral distribution of the image, as described in 

section 4.3.1. The image may be converted to the frequency domain using a Fourier 

transform. Here, the power spectrum S{fx,f$ of the frequency image of 

two-dimensional fractional Brownian motion is inversely proportional to the H + 1 

power of the squared magnitude of the frequency: 

(a) Clouds and Sand 
—i 1— 

(b) Cork and Burlap 
—r ■— 

■1.0 2.0 
Log of pixel distance 

3.0 1.0 2.0 
Log of pixel distance 

3.0 

Figure 41 Pixel Distance Versus Change in Gray Shade for Brodatz Textures 
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(fi2+/2V
+1 

In terms of the magnitude FD^, nj of the discrete spectral image (which is the square 

root of the power spectrum), this relationship may be expressed as shown below, where 

nx and n2 are the discrete frequency values: 

P^/Zj.nJ = k (nj2 + n2
2)    ^ 

Once the original image has been transformed to the frequency domain, the 

fractal dimension was estimated by fitting this spectral image to the above exponential 

equation. The relationship between the array indices and the frequency values ni and n2 

was shown in Figure 31. The Fourier coefficients V[nx, nj within this array can then be 

fit to the exponential equation above, and the parameters H (Hurst parameter) and k 

(proportionality constant) may be estimated. As mentioned previously in sections 4.3.1 

and 3.4.5, the fractal dimension D can then be obtained readily from the Hurst parameter 

H using the equation D = 3 - H (for two-dimensional signals). 

Least squares linear regression was used to estimate parameters H and k from the 

frequency values n\ and ri2 and the frequency magnitudes at these coordinates V[nlt nj. 

The logarithm of the exponential equation gives a linear equation, shown below. 

log(n*i>*2]) = log(*) - KY1 log(«!2 + n2
2) 

A conventional least squares linear regression routine was implemented and tested 

thoroughly, including verification by sample manual calculations. This analysis was 

applied to the linear form of the exponential scaling formula, with the slope — H j" 1 

yielding the Hurst parameter H. When estimating the dimension of a single texture, 

regression may be applied across the entire image to produce a single or global value for 

H and thus the fractal dimension. In addition to the fractal dimension, the root mean 

square (RMS) error in each estimate was also recorded. 

For each of the three sets of artificial fractals, nine different dimensions were 

tested, from 2.1 to 2.9. For each of these dimensions, a set often images was generated, 
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using different random number seeds. As expected, the fractal dimension estimates were 

very close to one another within each set often statistically identical images, as were the 

RMS error values. The mean of the dimension estimates are graphed in Figure 42a for 

each of the three sets of artificial fractals, from 2.1 to 2.9. The dashed line indicates the 

ideal dimension estimate. The mean of the RMS error values are given in Figure 42b. 

Note that the RMS error indicates how well the data fits the prescribed model, not how 

accurate the dimension estimates were. Although the RMS error remained fairly constant 

for the spatial fractals, it actually decreased for the spectral fractals, in spite of the fact 

that the dimension estimates became slightly worse. With the exception of the diagonal 

gradient, the spectral estimates of all the other non-fractal images were nearly 4.0, 

clearly unreliable. The numeric data may be found in Tables 1-5 in section 5.4.4. 

5.4.2 Spatial Estimation 

Applying the scaling property of fßm to an image G[x], the average change in 

gray shade at a particular pixel distance is exponentially proportional to the magnitude of 

the pixel distance (see section 3.3.4): 

E[ |G[X2] - G[Xl]| ] = k |x2 - Xl|* 
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Figure 42 Spectral Estimation of Synthetic Fractals 
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The fractal dimension of a two-dimensional signal will be 3 — H. Following this 

equation, the change in gray shade may be averaged across several occurrences of a 

given distance. Collected for a set of pixel distances, this data may then be fit to the 

scaling property above using least squares linear regression on the logarithmic equation 

below: 

log( E[ |G[X2] - G[Xl]| ] ) = log(*) + #log( |x2 - Xl| ) 

Examples of the logarithmic relationship between pixel distance and change in gray 

shade were shown in Figures 40 and 41. The closer the signal matches fBm, the more 

linear these graphs will be. For greater speed, only horizontal and vertical pixel spacings 

were used, as in section 5.3. 

Ideally, the scaling property should apply across the entire range of pixel 

distances in the image. However, tests on the synthetic fractals indicated that the 

behavior became erratic for larger pixel distances, on average greater than fifty pixels. In 

fact, the change in gray shade actually dropped around a distance of one hundred pixels, 

after which it fluctuated gradually. Apparently, a limit exists on the range over which the 

signal may be considered uniformly fractal. Most observed fractal phenomena in nature 

also share such a bound, due to limitations inherent in the underlying physical processes. 

In addition to these difficulties,.there will be fewer samples at larger pixel distances. 

Although there will be N — 1 times more samples at the minimum pixel distance of one 

than at the maximum distance of N — 1 for an N x N image (assuming only horizontal 

and vertical pixel spacings), each distance has equal weighting in the regression. Also, 

looking toward the goal of a local texture measure, the estimates at smaller pixel 

distances are of greater significance. Thus, the spatial estimates of fractal dimension and 

the root mean square (RMS) error were constrained to pixel distances one through 

twenty-five. 

Figure 43a shows the estimated dimensions for the three sets of artificial fractals, 

each consisting often statistically identical images for each of nine dimensions from 2.1 
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Figure 43 Spatial Estimation of Synthetic Fractals 

to 2.9. (As before, the graphs include the averages for each set often images.) The ideal 

dimension estimates would fall along the dashed line. The analysis of the random 

midpoint displacement algorithm in section 4.4.1 indicated that theoretically valid results 

should be obtained at the dimension 2.5. However, the estimation line crossed the ideal 

line closer to an actual dimension of 2.7. The RMS error values for the same set of 

images are graphed in Figure 43b. The RMS error remained somewhat constant for all 

three sets of fractals, although it increased slightly as the actual dimension increased. 

Recall that the RMS error indicates how well the data fits the prescribed model, not how 

accurate the dimension estimates were. Also, these RMS error values cannot be 

compared directly to those from the previous spectral estimation approach. For the 

actual data and further discussion, see section 5.4.4. 

The previous regression used the entire range of pixel values to obtain a single 

estimate. The estimates could vary if a different range of pixel distances were used. 

Accordingly, the fractal dimension and RMS error were calculated as functions of the 

pixel distance. However, these measures cannot be computed for a single pixel distance, 

since at least two data points are required for linear regression. Thus, two approaches 

were tried, one using three pixel distances and the other using five. The estimate for the 

pixel distance d relied upon distances d - l,dmdd+ 1 in the former case, and 
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distances d - 2 through d + 2 in the latter case. Generally, the results from using three 

or five distances were similar, with slightly smoother functions obtained from the latter 

approach. 

Ideally, the dimension should be constant across all pixel distances. This was true 

for the spatially synthesized fractals and the non-fractal artificial images. The dimension 

function increased slightly for the spectrally synthesized fractals, meaning that the 

estimated dimension would be higher in some cases over larger pixel spacings. These 

results are shown in Figures 44a and 44c for the spectral fractals and ordinary spatial 

fractals, respectively, using the five closest pixel distances for each estimate. (The 

images generated with random additions were excluded, since their results were very 
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similar to those from the ordinary random midpoint displacement images.) The RMS 

error decreased quickly and remained the lowest for the ordinary spatial fractals. The 

RMS error was also low for the fractals with random additions. Here, the functions 

became somewhat stratified according to the dimension of the image. For example, the 

function for 2.9 remained completely above the function for 2.8. The spectral fractals 

produced the highest RMS error, with some stratification over lower pixel distances. The 

RMS error functions are graphed in Figures 44b and 44d for the spectral fractals and 

ordinary spatial fractals, respectively. As before, the five closest pixel distances were 

used. 

Generally, the dimension curves were exceptionally flat for the non-fractal 

artificial textures, and the RMS error was typically very close to zero across the entire 

range. The notable exception was the uniform noise image. Although its RMS error 

began low, it rose above all the other fractal RMS error functions for larger pixel 

distances. The fractal dimension and thus the RMS error could not be computed for the 

constant image. The estimation takes the logarithm of the average change in gray shade, 

which will always be zero in this unusual case, leaving the logarithm undefined. 

5.4.3 Box-Counting 

A two-dimensional algorithm for estimating the box-counting dimension, 

described in sections 3.4.4 and 3.4.5, was implemented. The total number of boxes Nd 

of a given size <5 needed to cover a fractal follows an exponential relationship. The 

box-counting dimension DB was defined in section 3.4.4 as 

DB = lmjflog^yioga/d)} 

In practice, the box size cannot reach an arbitrarily small size for a discrete signal. 

Therefore, regression is performed on a set of small box sizes. Larger box sizes can 

adversely affect the estimate, since the number of large boxes needed to cover the object 

will level out. An arbitrary range of approximately the smallest ten percent of the 
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possible box sizes was used. For the synthetic fractals, having a size of 256 x 256 

pixels, the maximum range of box sizes is from one to 256 pixels. Thus, box sizes one 

through twenty-five were used. Note that this corresponds to the range of pixel distances 

used with global spatial estimation in section 5.4.2. Lastly, although the original 

explanation of box counting was based upon integer values for A^, a fractional number 

of boxes was used here, for greater accuracy. Figures 45a and 45b show the dimension 

and root mean square (RMS) error, respectively, for each of the three sets of synthetic 

fractals. (Recall that the RMS error does not measure the accuracy of the dimension 

estimates. It indicates how well the data fits the model.) The fractal dimension estimates 

deviated from the ideal dimension (the dashed line in Figure 45a) as the actual dimension 

increased. At the same time, the RMS error values rose sharply, indicating that the data 

fit the model best for lower fractal dimensions. The RMS error values of the 

box-counting algorithm cannot be compared directly to those from either the spectral or 

spatial estimation algorithms, as will be explained in section 5.4.4. 

Certain similarities are apparent between the box-counting and spatial estimation 

techniques. Both obtain an estimate from regression on an exponential equation. 

Although the actual exponents differ, both are directly related. (Recall that the 

box-counting model was used to determine the relationship between the fractal 
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dimension and the Hurst parameter, as used with spatial estimation.) The pixel spacings 

and box sizes correspond directly. Because a fractional number of boxes is allowed, it 

would appear at first that the number of boxes would match the average change in gray 

shade of the signal. Although this should be true in general, consider the following 

example, illustrated in Figure 46. Consider a pixel spacing and box size of four pixels. 

The spatial estimate will give a vertical displacement of one, ignoring the intermediate 

peak and valley. However, the box-counting method will not ignore the intermediate 

content. All points of the signal must be covered, even though the covering may be large 

and bulky. It is unclear, however, whether one approach is conceptually superior to the 

other. Instead, each approach is compared empirically in section 5.4.4. 

5.4.4 Comparison of Results 

Whereas each of the estimation algorithms was examined individually in the 

previous sections, here the three estimation algorithms will be compared against one 

another. Note that the RMS error values are not listed here. Although the RMS error 

values may be compared when using the same estimation algorithm, they may not be 

compared to those from another estimation algorithm. The RMS error is measured in 

terms of the power spectrum, the change in the signal and the number of boxes covering 

the signal for each the spectral, spatial and box-counting estimation algorithms, 

respectively. These quantities cannot be compared directly. This fact also illustrates why 

the magnitude of the RMS error differs for each estimation approach. 

Figure 46 Conceptual Comparison of Box Counting and Spatial Estimation 
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In this study, ten images were generated with different random seeds for each of 

the nine dimensions 2.1 through 2.9, for a total of ninety images for each of the three 

synthesis techniques. The estimated fractal dimensions and RMS errors were highly 

consistent within each group often statistically identical images. Thus, only the averages 

within each group often images are considered in this discussion, since the individual 

values were always very close. On average, the variance of the fractal dimension values 

within each of the twenty-seven groups often images was only 0.00199 for spectral 

estimation, 0.00038 for spatial estimation and 0.00014 for box counting. 

Table 1 lists the fractal dimension values of the spectrally synthesized fractals, 

with the absolute error between each estimated and actual value. The estimates from 

Keller et al. [25] are included also. (They offered the interpolated algorithm as an 

improvement over the standard box-counting technique.) The spectral values all 

overestimated the actual dimension, whereas the other methods began with overestimated 

values but ended with underestimated values. Judging by the average absolute error, the 

spectral and spatial algorithms performed well, comparable to the interpolated 

box-counting dimension presented in [25]. 

The midpoint displacement fractals, with and without random additions, are 

compared in Tables 2 and 3, respectively. As before, the fractal dimension and the 

absolute error between the estimated and actual dimensions are listed. Here, the spatial 

approach performs the best. Its estimates were too high for fractals with low dimension 

and too low for fractals with high dimension, but overall the absolute error was the least. 

The box-counting method had about twice the error as the spatial method. Its estimates 

began too high and ended much too low. Although the spectral approach gave excellent 

results in Table 1, it performed poorly with the spatial fractals. Its estimates were all 

much too large. Overall, the results between the spatial fractals with and without random 

additions were nearly identical for the spatial and box-counting estimation algorithms 
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Table 4 summarizes the results of each estimation algorithm, as applied to the 

three sets of synthetic fractals. The average absolute error between the estimated and 

actual dimensions indicates that the spatial estimation algorithm was consistently the 

best. Although the spectral approach worked well with spectrally synthesized fractals, it 

performed poorly on the spatial fractals. For the two sets of spatially synthesized 

fractals, the box-counting method did much better than the spectral approach. Although 

the RMS error values cannot be compared between different estimation algorithms, they 

may be compared within a single estimation approach. As expected, the fit was 

significantly better when the spectral approach was applied to spectral fractals and when 

the spatial approach was applied to spatial fractals, as opposed to when the two 

paradigms were mixed. Likewise, the RMS error values for the box-counting algorithm, 

which is essentially a spatial approach, were lower for the spatial fractals. Note that a 

good fit (low RMS error) can occur even if the actual estimates are in error (high error 

between the estimated and actual dimensions), as demonstrated by the box-counting 

results. Such a combination can be misleading. The RMS error indicates how well the 

data fits the model, not how close the dimension estimate might be. 

The fractal dimension and RMS error values for the non-fractal artificial images 

are listed in Table 5. The constant and diagonal gradient images should have a fractal 

dimension of exactly two, which matched the spatial and box-counting estimates. 

(Technically, the spatial estimate for the constant image could not be computed, as 

explained in section 5.4.2.) Although the spectral estimates of the diagonal gradient 

image were within an acceptable range, the value for the constant image was clearly 

incorrect. The noise images should, in some sense, fill the three-dimensional space. The 

uniformly distributed random signal should fill this space more densely than the 

Gaussian signal, which was reflected by the box-counting estimates. The spatial 

estimates were both near 3.0, but the spectral estimates were much too high. Generally, 

the RMS error values of the non-fractal artificial images were greater than those for the 
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fractal images. The exception was spatial estimation, whose values were comparable for 

both the fractal and non-fractal artificial images. 

Table 6 lists the fractal dimension and RMS error values for the Brodatz textures 

pictured in Figure 39. Consistently, the fit was the best for the "clouds," "sand" and 

"waves" textures and worst for "burlap" and "paper." The dimension estimates for the 

spatial estimation and box-counting algorithms were consistent with those produced for 

the fractal images. However, the spectral dimension estimates did not correspond very 

well to the values from the other two estimation approaches. For example, consider a 

synthetic fractal with dimension 2.6 and the "clouds" texture. The three synthetic 

fractals with dimension 2.6 produced spatial estimates ranging between 2.62 and 2.64 

and box-counting estimates ranging between 2.45 and 2.49. These two estimation ranges 

are very close to the estimates obtained for the "clouds" texture, 2.60 and 2.48, 

respectively. In contrast, the spectral estimates for synthetic fractals with an actual 

dimension of 2.6 ranged from 2.66 to 2.98, which is not even close to the spectral 

estimate of 2.17 for the "clouds" texture. In all cases, the RMS error values of the 

Brodatz textures were significantly higher than those obtained from the synthetic fractals, 

as would be expected. This particular group of fine-grained Brodatz textures produced 

RMS error values which were six times greater than those of the fractal images, on 

average. This would seem to indicate that, in spite of the variations in the RMS error 

values for the synthetic fractals, the fractal textures all produced a comparatively close 

fit. 

Of the three global estimation algorithms implemented, the spatial approach gave 

the best results. Its dimension estimates were closest to the actual dimensions of all three 

sets of artificially synthesized fractal textures. Its average absolute error was slightly 

lower than the improved interpolated box-counting algorithm of Keller et al. [25], 

although the individual absolute errors (see Table 1) of the spatial method were less 

uniform than those of the interpolated approach. The dimension estimates from the 
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non-fractal artificial textures and the Brodatz textures appeared to correspond well with 

their apparent visual roughness. Therefore, the spatial estimation approach was chosen 

as the predominant paradigm for further development into a local texture measure. 

Table 1 Global Fractal Dimension Estimates of Spectrally Synthesized Fractals 

Orig. 
Dim. 

Spectral Spatial Box 
Counting 

Standard Box 
Counting [25] 

Interpolated 
Box Ct. [25] 

Fdim |error| Fdim |error| Fdim |error| Fdim |error| Fdim |error| 
2.1 2.136 0.036 2.256 0.156 2.208 0.108 2.12 0.02 2.16 0.06 
2.2 2.224 0.024 2.319 0.119 2.256 0.056 2.18 0.02 2.26 0.06 
2.3 2.326 0.026 2.390 0.090 2.309 0.009 2.25 0.05 2.38 0.08 
2.4 2.435 0.035 2.468 0.068 2.367 0.033 2.34 0.06 2.49 0.09 
2.5 2.547 0.047 2.549 0.049 2.426 0.074 2.42 0.08 2.59 0.09 
2.6 2.662 0.062 2.631 0.031 2.486 0.114 2.48 0.12 2.67 0.07 
2.7 2.786 0.086 2.709 0.009 2.543 0.157 2.52 0.18 2.73 0.03 
2.8 2.915 0.115 2.780 0.020 2.594 0.206 2.53 0.27 2.77 0.03 
2.9 3.049 0.149 2.843 0.057 2.636 0.264 2.53 0.37 2.81 0.09 
Aver, j error| 0.064 0.066 0.114 |          | 0.130 0.067 j 

Table 2 Global Fractal Dimension Estimates of Spatially Synthesized Fractals, 
Random Midpoint Displacement 

Orig 
Dim 

Spectral Spatial Box Counting 
Fractal Dim |error|. Fractal Dim |error| Fractal Dim |error| 

2.1 2.453 0.353 2.206 0.106 2.184 0.084 
2.2 2.554 0.354 2.284 0.084 2.243 0.043 
2.3 2.667 0.367 2.369 0.069 2.306 0.006 
2.4 2.775 0.375 2.458 0.058 2.366 0.034 
2.5 2.871 0.371 2.545 0.045 2.421 0.079 
2.6 2.959 0.359 2.626 0.026 2.470 0.130 
2.7 3.037 0.337 2.698 0.002 2.511 0.189 
2.8 3.108 0.308 2.760 0.040 2.545 0.255 
2.9         3.174 0.274 2.812 0.088 2.573 0.327 

|   Average |error| 0.344 0.058 0.128 
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Table 3 Global Fractal Dimension Estimates of Spatially Synthesized Fractals, 
Random Midpoint Displacement with Random Additions 

Orig 
Dim 

Spectral Spatial Box Counting 
Fractal Dim |error| Fractal Dim |error| Fractal Dim |error| 

2.1 2.472 0.372 . 2.228 0.128 2.190 0.090 
2.2 2.569 0.369 2.302 0.102 2.244 0.044 
2.3 2.670 0.370 2.383 0.083 2.301 0.001 
2.4 2.770 . 0.370 2.467 0.067 2.355 0.045 
25 2.864 0.364 2.550 0.050 2.407 0.093 
2.6 2.951 0.351 2.628 0.028 2.454 0.146 
2.7 3.030 0.330 2.698 0.002 2.495 0.205 
2.8 3.104 0.304 2.760 0.040 2.530 0.270 
2.9 3.172 0.272 2.811 0.089 2.561 0.339 
Average |error| 0.345 0.065 0.137 

Table 4 Summary of Global Estimation of Fractal Images 

Type of 
Fractal 

Spectral Spatial Box Counting 
aver |err| avg RMS aver |err| avg RMS aver |err| avg RMS 

Spectral fractals 0.0645 0.2826 0.0665 1.0350 0.1135 59639 
Spatial without r/a 0.3443 0.5087 0.0575 0.1656 0.1275 23671 

Spatial with r/a 0.3450 0.5403 0.0654 0.1190 0.1370 29635 

Table 5 Global Estimates of Non-Fractal Artificial Images 

Image 
Spectral Spatial Box Counting 

FDim RMS err FDim RMS err FDim RMS err 
Constant 3.999 1.118 — — 2.024 0.022 

Diagonal Gradient 2.148 0.685 2.016 0.082 2.040 810 
Uniform Noise 3.991 0.517 3.000 0.162 2.915 511678 
Gaussian Noise 3.987 0.500 3.000 0.038 2.753 128031 

Homeplate 3.958 1.034 3.000 0.332 2.845 96508 
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Table 6 Global Estimates of Brodatz Textures 

Image 
Spectral Spatial Box Counting 

FDim RMS err FDim RMS err FDim RMS err 
Burlap 2.075 2.133 2.852 5.824 2.754 481307 
Clouds 2.165 1.073 2.595 1.400 2.475 78809 
Cork 2.089 1.079 2.789 3.875 2.527 143003 

Fieldstone 2.121 1.153 2.636 3.780 2.455 117131 
Grass 2.048 1.561 2.782 3.474 2.531 141653 
Ice 2.133 1.717 2.753 2.533 2.583 189673 

Paper 2.001 2.700 2.856 5.709 2.623 274217 
Pigskin 2.096 1.533 2.776 3.977 2.533 153846 

Sand 3.233 0.701 2.946 1.395 2.617 159790 
Waves 2.431 0.699 2.686 2.278 2.503        86356   | 

5.5 Segmenting an Tmagp. 

5.5.1 Developing a Local Measure 

In addition to the qualifications needed for a global measure, a local texture 

measure must characterize a small or local region of the image. This characterization 

must be capable of distinguishing between desired categories of local regions in order to 

segment or subdivide the image. The local texture measure must consider an area large 

enough to include a reasonable sampling of a texture, but small enough to isolate one 

particular texture among whatever other textures might be present in the image. 

Neighborhoods whose sizes ranged from 5x5 through 17 x 17 pixels were studied, 

but the smaller sizes appeared more suitable for the natural textures in aerial images. 

Based upon the results of global estimation, the spatial estimation algorithm was 

chosen as the primary focus of fractal-based local texture measures. However, a local 

spectral method was tested first, following the approach used in Pentland's influential 

work [39]. His selection of an 8x8 square of pixels, or window, was appropriate for 

this application. Also, since this size is a power of two, the fast Fourier transform may 

be used. To reduce computational demands, non-overlapping windows (see section 
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2.3.3) were used. Each non-overlapping 8x8 window of the image was individually 

transformed to the frequency domain. The resulting 8x8 spectral image was analyzed 

by the least squares linear regression algorithm presented in section 5.4.1 to produce an 

estimate of the fractal dimension for that portion of the image. 

This approach was applied to the artificial textures described in section 5.2. For 

an image with 256 x 256 pixels, there were 32 x 32 windows, each with 8x8 pixels. 

The fractal dimension estimates for the 1024 windows were collected together. The 

mean and standard deviation of the fractal dimension estimates are listed in Table 7 for 

each of the three sets of synthetic fractals, along with the absolute error between the 

estimated and actual dimensions. 

Table 7 Local Spectral Estimates of Fractal Images 

Orig 
Dim 

Spectral Spatial, without r/a Spatial, with r/a 
Dim(i Dimo |error| Dimu. Dimo lerrorj Dimfi Dimo |error| 

2.1 1.847 0.314 0.253 2.168 0.269 0.068 2.179 0.262 0.079 
2.3 2.077 0.302 0.223 2.375 0.251 0.075 2.359 0.247 0.059 
2.5 2.344 0.316 0.156 2.582 0.260 0.082 2.551 0.237 0.051 
2.7 2.624 0.294 0.076 2.761 0.258 0.061 2.728 0.242 0.028 
2.9 2.926 0.305 0.026 2.917 0.259 0.017 2.890 0.238 0.010 

Average |error| 0.147 0.061 0.045 

The accuracy was surprisingly good, especially considering that these 

measurements came from 8x8 windows, in contrast to the entire image for global 

estimation. Comparing the spectrally synthesized fractals, the average absolute error of 

the local spectral estimates (Table 7) was only about twice that of the global spectral 

estimates (Table 4). For the spatially synthesized fractals, the local dimension estimates 

were actually better than the global dimension estimates, by a considerable amount. This 

could indicate that the lower frequency information used by the global algorithm actually 

harmed the spectral estimates, similar to the manner in which the spatial and 
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box-counting estimation algorithms suffered when the pixel distances became too large. 

However, the local spectral estimates were poor for the non-fractal artificial images. The 

actual dimension of 2.0 for the constant and diagonal gradient images was overestimated 

at 3.6 and 3.5, respectively. Likewise, the estimates for the uniform and Gaussian noise 

images were much too high. 

As applied to segmentation, the fractal dimension of the local spectral approach 

did not provide enough distinction. The best result was obtained for a collage of three 

spectrally synthesized fractals, shown in Figure 47a. The top half has a dimension of 2.1, 

the bottom half has a dimension of 2.9 and the center has a dimension of 25. The fractal 

dimension image was enlarged and normalized from the range [0.95,4.03] to [0,255] so 

that it could be displayed as a gray shade image in Figure 47b. Dark pixels indicate a 

low fractal dimension; light pixels represent a high dimension. The average estimated 

dimensions for the top (2.1), bottom (2.9) and center (2.5) regions were 1.92, 2.95 and 

2.46. For aerial images, the local spectral measure of fractal dimension could only detect 

the faint impressions of very large features. For example, the fractal dimension image of 

(a) Original Image (b) Fractal Dimension Image 

Figure 47 Spectral Fractal Dimension of Fractal Collage Image 
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the shore scene (Figure 48a), enlarged and normalized from the range [0.27,3.32], is 

shown in Figure 48b. At best, the land and water regions are vaguely discernable. (Also, 

a slight difference is noticeable at the bottom and right edges, where there were not 

enough pixels to make a complete 8x8 square.) 

Although the local spectral estimation method gave exceptionally good results for 

the synthetic fractal images, its performance suffered on the non-fractal artificial images. 

Its ability to segment images was low. Certainly, this approach warrants further 

investigation. However, a faster algorithm was desired, that would allow overlapping 

windows for greater resolution. 

5.5.2 Spatial Estimation 

The computationally complexity of the Fourier transform makes spectral 

techniques less attractive. For a window size that is a power of two, the fast Fourier 

transform (FFT) may be used, which significantly increases the speed. For a window 

(a) Original Image (b) Fractal Dimension Image 

Figure 48 Spectral Fractal Dimension of Shore Scene 
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with w x w pixels, a spectral method will require >v2log2(w) computations if w is a 

power of two and w4 computations otherwise. 

Spatial measures offer an alternative. However, there is a total of (w4 - w2)^ 

pixel distances within a window of size w X w. Although this improves upon the 

ordinary Fourier transform, it is much worse than the FFT. Two improvements were 

examined. By considering only those pixel spacings in the horizontal and vertical 

directions, only w3 - w2 data points must be used. This approach was used with global 

spatial estimation in section 5.4.2. A further reduction results from a second technique. 

It includes all distances and angles within the window, but only with respect to the center 

pixel. There are w2 - 1 such pixel spacings. Figure 49 compares the algorithmic 

complexities of the four estimation approaches described here. The spectral curve dips at 

pixel distances which are powers of two, where the FFT may be used. 

The horizontal and vertical pixel spacings that would be used for a 4 x 4 

window are illustrated in Figure 50a. (The center-oriented spacings in Figure 50b will 

be discussed later.) In this example, there are twenty-four spacings with a distance of 

one pixel, sixteen with a distance of two pixels and eight with a distance of three pixels. 

Although windows between 5 x 5 and 25 x 25 pixels were considered, smaller, 

odd-numbered sizes received the most attention. The estimated dimensions for each of 
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Figure 49 Algorithmic Complexities for Various Estimation Approaches 
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Figure 50 Pixel Spacings Used with Local Spatial Estimation 

the three sets of synthetic fractals are graphed in Figure 51. Data from window sizes of 

5 x 5, 7 x 7 and 9 x 9 are shown in Figures 51a, 51b and 51c, respectively. The 

dashed lines indicate the ideal dimension estimates. In all cases, the accuracy increased 

with the window size, in terms of the average absolute error between the estimated and 

actual dimensions. However, the RMS error also increased for larger window sizes. 

Although this finding appears to contradict expectations, it is consistent with the global 

spatial estimates. Over 90% of the synthetic fractals experienced an increase in RMS 

error between estimates which used pixel distances one through five and those which 

used distances one through ten. (Recall that the RMS error in Figures 44b and 44d 

tended to decrease sharply for distances under about four or six pixels, after which it 

became nearly level.) Table 8 lists the average absolute error between the estimated and 
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actual dimensions and the average RMS error for each of the three sets of synthetic 

fractals and each of the three window sizes. The accuracy compared well against the 

global estimation algorithms, producing comparable average RMS error values. 

Table 8 Summary of Local Estimation of Fractal Images, 
from Horizontal/Vertical Approach 

Type of 
fractal 

5x5 window 7x7 window 9x9 window 
aver |err| avgRMS aver jerrj avgRMS aver |err| avgRMS 

Spectral 0.071 1.028 0.065 1.284 0.063 1.448 
Spatial without r/a 0.127 0.758 0.115 0.860 0.107 0.927 

Spatial with r/a 0.123 0.570 0.111 0.651 0.104 0.696 

The horizontal and vertical method was next applied to actual images. The 

dimension images were normalized to the range [0,255] so that they could be displayed 

as gray shade images. (Note that direct visual comparisons between different dimension 

images will not be meaningful, since each dimension image was individually 

normalized.) The results were not much better than those obtained with local spectral 

estimation. For example, Figure 52a shows the dimension image of the fractal collage 

(Figure 47a), using a 7 X 7 window. (The image was normalized from the range 

[1.98,3.34].) The top and bottom regions were separated, but the middle region is not 

especially distinct. Many linear artifacts are apparent, presumably related to the 

horizontal and vertical orientation of the measurements. Arguably, the window size 

could be too small to identify the fractal textures adequately. Having much smaller 

features, the shore scene of Figure 48a was examined. Normalized from the range 

[1.98,4.07], the dimension image is shown in Figure 52b, generated using a 5 x 5 

window. Although there is some distinction between the land and water regions, the 

separation is unsatisfactory. Similar results were obtained for other aerial images. 
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(a) Fractal Collage (7x7 Window) (b) Shore Scene (5x5 Window) 

Figure 52 Dimension Images from the Horizontal/Vertical Approach 

A better and faster alternative to the horizontal and vertical pixel spacing 

algorithm was sought. This led to the center-oriented pixel spacing method, illustrated 

in Figure 50b for a 5 x 5 window. In this example, there are four spacings each for 

pixel distances 1, Jx 2 and Js, plus eight spacings with a distance of 75. Thus, for a 

5x5 window, there are a total of twenty-four center-oriented pixel distances, 

compared with one hundred horizontal and vertical pixel distances for the same size 

window. Intuitively, the center-oriented approach seems to localize the measure more by 

emphasizing the center pixel, plus it strives to make the measure more directionally 

independent than the former approach. 

Most testing used 5x5, 7x7 and 9x9 window sizes. Figure 53a shows the 

average estimated fractal dimension for each of the three sets of synthetic fractals, using 

the 5 x 5 center-oriented algorithm. Figures 53b and 53c show the graphs for 7 x 7 

and 9 x 9 window sizes. The ideal estimates would fall along the dashed line. Similar 

to the results from the horizontal and vertical method, the average absolute error between 

the estimated and actual fractal dimensions decreased as the window size increased. At 
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Figure 53 Local Dimension Estimates from Center-Oriented Approach 

the same time, the average RMS error generally increased. Table 9 lists the average 

absolute error and average RMS error for each of the three sets of synthetic fractals, 

tested by each of three different window sizes. The accuracy was again comparable to 

the global estimation algorithms. Except for the spectrally synthesized fractals, the 

center-oriented approach produced smaller average absolute errors than the horizontal 

and vertical approach. However, the RMS error values were significantly higher in all 

cases for the center-oriented technique, probably because fewer pixel spacings 

contributed to the estimation. 

Table 9 Summary of Local Estimation of Fractal Images, 
from Center-Oriented Approach 

Type of 
fractal 

5x5 window 7x7 window 9x9 window 
aver |err| avgRMS aver |err| avg RMS aver jerrj avg RMS 

Spectral 0.095 2.418 0.072 7.701 0.059 3.800 
Spatial without r/a 0.109 1.945 0.099 2.469 0.092 2.779 

Spatial with r/a 0.100 1.537 0.089 2.007 0.076 2.157 

Applied to actual images, the center-oriented method was not a significant 

improvement. The dimension image of the fractal collage (Figure 47a) was normalized 

from the range [0.24,4.41] and is shown in Figure 54a. A 7 x 7 window was used. 
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(a) Fractal Collage 
(7x7 Window) 

(b) Fractal Collage, 
Histogram 
Equalized 

(c) Shore Scene 
(5x5 Window) 

(d) Shore Scene, 
Histogram 
Equalized 

Figure 54 Dimension Images from the Center-Oriented Approach 

The same image is shown in Figure 54b after histogram equalization, to facilitate visual 

analysis. Although the segmentation is better than that from the horizontal and vertical 

method (Figure 52a), the improvement is not substantial. The dimension image of the 

shore scene (Figure 48a) used a 5 x 5 window. Normalized from the range 

[-1.47,5.13], the result is shown in Figure 54c. Figure 54d shows the dimension image 

after histogram equalization. However, the quality remained unsatisfactory. The 

dimension operator appeared to extract second-derivative information from the original 

image, which was not helpful for this task. Nevertheless, the center-oriented approach 

produced equivalent or slightly improved results than the horizontal and vertical method, 

plus it required less computation. 

Note that both local spatial estimation approaches assume that all windows 

contain a fractal texture. Even if this were the case, boundaries between two regions 
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with different fractal dimensions would likely be non-fractal. Thus, problems will 

inevitably occur when a fractal estimate is taken within a window which does not have a 

uniform fractal dimension. This problem is addressed further in the following section. 

5.5.3 Spatial Estimation of the Fractal Error 

The regions observed in an actual image may be a combination of a wide variety 

of textures, some fractal and some not fractal. Before assuming that a region is fractal 

and attempting to extra« its dimension, a relevant prerequisite is to first determine 

whether or not the region may be considered a fractal. One such approach is to measure 

the error produced when estimating the fractal dimension. A small error indicates that 

the observed data fits the fractal model well and thus may be considered fractal, whereas 

a large error means that the examined region is not fractal and thus the fractal dimension 

estimate is unreliable. This insight led to the inclusion of fractal error measurements 

throughout this study, for both global and local estimation. 

Due to their greater processing speed, the two previous spatial models were 

chosen over the spectral model for estimating the fractal dimension. As before, the 

fractal dimension was estimated within each overlapping window of the image. The first 

approach used all possible horizontal and vertical distances within the window. The 

second approach used the set of gray shade differences which all include the center pixel 

of the window. The error between the estimated fractal dimension of a window and its 

actual data was used to quantify the degree to which that window may be considered a 

fractal texture. As explained in section 5.4.2, the average absolute change in gray shade 

of fractional Brownian motion at a given distance is proportional to the H power of the 

magnitude ofthat distance: 

E[ |G[X2] - G[Xl]| ] = k |x2 - x,|" 

E[ MGMx|| ] = k \Ax\H 
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The estimated values tf and k of the parameters H and k may be obtained using least 

squares linear regression on the logarithm of the above equation. The estimated average 

absolute change in gray shade, at a given pixel distance, may be computed from the 

estimates Fand k. The difference between the actual value of the average absolute 

change in gray shade and this estimate is the error. 

«W|a«l = E[ \AGm\ ] - k\dx\H 

With the horizontal and vertical method, there will be w - 1 pixel distances and 

thus w — 1 error values. With the center-oriented approach, there will be five, nine or 

fourteen error values, for windows of size five, seven or nine. A variety of error 

measurements are possible, but the root mean square (RMS) error tends to be a more 

rigorous and accepted form than others (e.g., average absolute error). The RMS error is 

obtained from the square root of the average of the squared error values, where n is the 

number of error values, as shown below: 

RMSerror=    /^(error^,)2 

Such a value is calculated for each overlapping window. Statistics may be gathered on 

the array of data or the result may be normalized to the range [0,255] and displayed as a 

gray shade image. 

Interestingly, the RMS error is somewhat distinct for synthetic fractals of 

different dimensions for small pixel distances, before the RMS error settles to a stable 

range. Thus, the fractal error could separate the three regions within the fractal collage 

(Figure 55a). Figure 55b shows the fractal error image of the fractal collage, using the 

horizontal and vertical method. The corresponding image for the center-oriented method 

is shown in Figure 55c. A 7 x 7 window size was used in both cases, and the error 

images were normalized from the ranges [0.02,11.36] and [0.18,34.46], respectively. 

Note that the fractal error images are negated to improve their visual clarity. Thus, light 

areas indicate low error or high "fractalness," whereas high error or low "fractalness" 
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fa) Original Image 
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(b) Negated Fractal Error, (c) Negated Fractal Error, 

Horizontal/Vertical Approach     Center-Oriented Approach 

Figure 55 Fractal Error Images of the Fractal Collage 

appears dark. Both algorithms separated the regions; although the center-oriented 

method produced less variance within the individual regions. This improvement is 

apparent from the illustration. 

Applied to aerial images, the center-oriented method was comparable or slightly 

preferable to the horizontal and vertical approach. For example, the negated fractal error 

images from each algorithm, using a 5 x 5 window size, are shown in Figures 56b 

(normalized from the range [0.00,14.48]) and Figure 56c (normalized from the range 

[0.00,17.27]) for the shore scene. The clarity of the center-oriented technique is better, 

and the image is less spotty. Similar findings resulted for other aerial images. The RMS 

error values from the horizontal and vertical method were always smaller, on average 

. --* 

(b) Negated Fractal Error, (c) Negated Fractal Error, 
Honzontal/Vertical Approach       Center-Oriented Approach 

Figure 56 Fractal Error Images of the Shore Scene 
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about one third to one half of those from the center-oriented approach. Nevertheless, the 

visual quality of the center-oriented approach was superior, and it required less 

computational effort. Various sizes of windows were tried, but results favored the 5 x 5 

size. Applications of the center-oriented fractal error measure, oriented toward aerial 

imagery, are explored in the following chapter. 



CHAPTER VI 

APPLICATIONS OF FRACTAL ERROR 

6.1 Introduction 

Focusing on aerial imagery, the fractal error was examined first as a generic 

texture feature. Originally, the fractal error was proposed as a potential alternative or 

supplement to the busyness operator, the texture feature previously chosen for classifying 

aerial images. The second application of fractal error considered here is the 

identification of cultural or man-made objects in an image. Because cultural objects are 

generally more stable than natural contents, such an ability would help to analyze the 

changes which occur in ä scene over time. 

6.2 Fractal Error as a Texture Feature 

As part of the contract with the Naval Air Warfare Center to investigate texture 

features, a software package was designed to facilitate the segmentation of aerial 

imagery. The classification routines within this software use a combination of gray shade 

and texture to represent each pixel of the image. As described in section 5.1, the 

busyness operator was selected as the texture feature. It was quick, localized (using a 

3X3 window) and general-purpose. The success of the fractal error operator on aerial 

imagery prompted an investigation to determine its value as a texture feature. 

Described in section 5.5.3, the approach using center-oriented pixel distances 

within overlapping windows was selected as the fractal error operator. (Unless stated 

otherwise, a 5 x 5 window will be used.) The similarity between the images produced 

by the new fractal error feature and the existing busyness feature was apparent. For 

example, Figure 57 compares the fractal error and busyness images of the shore scene 
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(a) Fractal Error Image, Negated (b) Busyness Image, Negated 

Figure 57 Comparison of Fractal Error and Busyness for the Shore Scene 

(Figure 58a). To provide a clearer visual interpretation, both images were negated, and 

the gray shade distributions were enhanced to increase the contrast. The resemblance 

between the images is strong. Pairs of fractal error and busyness images were compared 

for a set of twelve aerial images which included a variety of natural and man-made 

content. In all cases, the results were similar. Upon closer examination, two primary 

differences were apparent. To its advantage, the fractal error images did not contain the 

sharp "specks" which often appeared in the busyness images. However, the fractal error 

highlighted abrupt transitions of gray shade that busyness sometimes neglected. (Recall 

from section 2.3.4.2 that the busyness operator will suppress edges which occur at 45 

degree increments.) 

Next, two-dimensional histograms of gray shade and fractal error were compared 

to those of gray shade and busyness. Figure 58b shows the histogram of gray shade and 

fractal error for the shore scene, displayed as an image. The darkness of each point 

indicates the relative number of occurrences for that particular pair of gray shade and 

fractal error values. Gray shade values range between zero and 255 on the horizontal 

axis, and fractal error values range from zero to 17.27 (the maximum fractal error 
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Foliage (left top) 
Water (bottom center) 

Land (right top) 

(a) Original Image 

Gray Shade 

(b) Histogram 

(c) Classified Image (d) Correct Segmentation 

Figure 58 Fractal Error Applied to the Shore Scene 

obtained for this image) on the vertical axis. The distributions of the three classes foliage 

(trees), water and non-foliated land are approximated by the ellipses superimposed on 

the histogram. Using a combination of gray shade and fractal error, these classes may be 

separated, whereas either one of the features individually would fail. Of those 

histograms examined, the clustering ability of gray shade and fractal error was 
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comparable to that of gray shade and busyness, as expected from the high degree of 

similarity between the fractal error and busyness images. 

The fractal error was incorporated into the segmentation software in place of 

busyness, with favorable results. Figure 58c shows the classification of the shore scene 

into foliage (black), water (gray) and non-foliated land (white). This image was 

compared to the correctly segmented "ground-truth" image for these same three classes, 

shown in Figure 58d. Note that a certain degree of subjectivity is inevitable in the 

creation of such an image. In this case, no additional information about the contents of 

the scene was available. Even with such knowledge, human judgment would still be 

required, for example, to determine the subjective boundary between the beach and sea. 

In practice, a scene analyst relies on his experience to determine a suitable ground-truth 

segmentation. The image in Figure 58d was approved by such a trained scene analyst as 

a reasonable and accurate mapping of the ground features of the original shore scene in 

Figure 58a. Compared against this ground-truth image, the gray shade and fractal error 

classification gave an overall classification accuracy of 83.0%, whereas the classified 

image produced by the combination of gray shade and busyness (not shown) was only 

slightly more accurate, at 85.4%. 

In addition to the shore scene, other aerial images were considered. (However, 

ground-truth imagery was unavailable for these images.) A scene of farm land is shown 

in Figure 59a. The light colored dirt areas are clearly distinguishable solely on the basis 

of gray shade intensity. However, the grassy fields and foliage require a texture measure 

to be separated. Figure 59b shows the negated fractal error image, in which the foliage 

tends to have a larger error (darker gray shade) than the fields. In Figure 59c, the image 

has been classified as foliage (dark gray), grass (light gray) or dirt (white). Finally, 

Figure 60a introduces a mixture of natural and cultural (e.g., roads, buildings) content. 

The lake in the upper left, the trees, the fields and cultural objects are generally separated 

in the negated fractal error image, shown in Figure 60b. The classification in Figure 60c 
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(a) Original Image    (b) Fractal Error Image, Negated   (c) Classified Image 

Figure 59 Fractal Error Applied to the Farm Scene 

(a) Original Image    (b) Fractal Error Image, Negated   (c) Classified Image 

Figure 60 Fractal Error Applied to the Mixed Scene 

identifies four classes, from dark to light: water, foliage, fields and cultural objects. As 

expected, classification using gray shade and fractal error was comparable to that 

obtained using gray shade and busyness. 

The fractal error performed effectively as a natural texture feature, but the 

busyness gave similar results, in terms of the feature images, histograms and 

classifications. Since the quality of the two texture measures appeared equivalent, the 

deciding factor was computation time. The busyness feature is defined on a 3 x 3 

neighborhood of pixels and uses simpler mathematics than the 5 x 5 definition of fractal 

error. Experimental results indicated that the busyness feature was approximately eight 

times faster than the fractal error. Although the fractal error produced favorable results, 
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the simpler texture feature, busyness, produced comparable results at a lower 

computational cost. Thus, busyness was retained as the texture feature in the 

segmentation software. 

6.3 Fractal Error for Identification of Cultural Feaflires 

The fractal error should be large for regions which are not fractal. Since cultural 

or man-made objects often have a non-fractal appearance, the fractal error may have 

some potential use for aiding the identification of cultural features [7, 8]. Over an 

appropriate range of sizes, cultural objects will appear to be non-fractal. Clearly, a 

uniformly colored man-made object which is much larger than the window size will 

appear to be fractal in the center with a low fractal dimension corresponding to its 

smooth, uniform gray shade. Its boundary will very likely have a non-fractal 

appearance, since it represents a transition between two different textures. Thus, the 

correspondence between the object size and the window size used by the operator will be 

significant. 

This property was examined in the context of two images of a residential area 

with a fairly high content of deciduous vegetation. The same scene was photographed in 

April and in October. This was done to evaluate the robustness of the metric relative to 

seasonal variations and changes in contrast and illumination that occurred at the different 

times. The primary man-made objects in the test images are about fifty to sixty pixels in 

size. The pair of images is shown in Figure 61. Figure 62 illustrates the fractal error of 

each of these images, using a 7 x 7 window size, thresholded so that features with large 

fractal errors appear black against a white background. It is obvious by comparing the 

original image and the threshold fractal error images that the fractal error performed 

reasonably well in detecting man-made features. It was also fairly insensitive to changes 

in illumination, contrast, and season. Note the brighter lighting and greater contrast in the 
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Figure 61 A Residential Scene, at Two Times of the Year 

(&; October 

Figure 62 Binary Fractal Error Images of a Residential Scene 

October image of Figure 61 compared to the April image, as well as the distinct increase 

of foliage in the October scene. 
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A combination of operators which could detect cultural features was tested on this 

pair of images. Cultural features usually possess clear edges, so three edge operators 

were included in the comparison. The fractal error with window sizes 5 x 5, 7 x 7 and 

9x9 plus the busyness operator completed the set. 

Quantifying an operator's accuracy for detecting the man-made content is 

difficult. As mentioned in section 6.2, the creation of a correctly segmented or 

"ground-truth" image involves a degree of subjectivity. Both the April and October 

images were used to create the ground-truth urban image shown in Figure 63 for the two 

classes "buildings" and "background." This image contains buildings which may have 

been obscured by foliage and shadows in one or possibly even both of the original 

images. For example, the presence of a rooftop in a shadow may sometimes be implied 

by the geometry of the structure. Likewise, a building with very low contrast might be 

detected by a faint shadow. In some circumstances, objects were blurry even at larger 

resolutions, requiring a subjective determination whether the particular item was a 

portion of a building. Although the images were aligned with one another (i.e., 

"'»* ■ —ii—linn»  
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Figure 63 Correct Segmentation of Residential Scene 
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registered), there were slight misalignments of one or two pixels around the upper right 

and lower left corners of the image. The ground-truth segmentation attempted to 

compromise between the two images in such cases. 

When comparing the fractal error, busyness and edge operators, each of the 

filtered images produced by these operators was thresholded manually, while attempting 

to maximize the distinction between buildings and background. Although this task was 

performed carefully, it is inherently subjective. A more reliable comparison might 

consider a collection of several binary images which use different thresholds. 

The fractal error and busyness filtered images were compared directly to the 

ground-truth image. However,, one would not expect the edge operators to match well to 

the filled objects of the correctly segmented image. At best, they can detect only the 

object boundaries, although this should be considered a valid identification of the object. 

Therefore, each edge operator was also applied to the ground-truth image, and the result 

was thresholded to a binary image. (While partially subjective, the determination of a 

threshold was much more obvious for this step than for the previous edge images.) Thus, 

the edge image of the ground-truth image was compared to the edge image of the 

original image for each of the three edge operators. 

For each comparison, the percentage of correctly classified pixels was computed. 

The overall classification accuracy, based upon the relative number of pixels labeled as 

either buildings or background, was considered. However, this value can be misleading 

here, since there were about five times more pixels labeled as background than as 

buildings. (For example, an image consisting entirely of background would still manage 

to produce an excellent overall classification accuracy above 80%.) Since the goal is the 

detection of buildings, the percentage of buildings classified as buildings might be a 

better means of comparison, although one could obtain perfect results with an image 

consisting entirely of buildings. However, the images were thresholded to produce 

meaningful results, not pathological situations, so this percentage may still be useful. An 
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alternative criterion is the simple (non-weighted) average of the two matching 

classifications (i.e., buildings classified as buildings and background classified as 

background). Here, each the buildings and background classes are given equal 

importance. 

The fractal error correctly classified around 60% to 70% of the buildings, 

compared to around 50% to 60% for the busyness and 10% to 35% for the edge 

operators. The average classification accuracy was roughly equal for the fractal error and 

busyness, between 60% and 70%. This measure dropped to about 50% to 60% for the 

edge operators. A more thorough comparison might consider a more sophisticated 

decision criterion and a collection of binary filtered images obtained with various 

thresholds. Nevertheless, these results indicate that the visual appeal of the fractal error 

for identifying cultural features has quantitative support. 

This analysis led to another important task in the evaluation of aerial imagery, the 

enhancement of those objects in a scene which are stable over a period of time. 

Typically, cultural features are more stable than natural features. It was also desired that 

the resulting pair of enhanced images should be very similar, indicating their common 

origin. The same combination of operators which was considered previously for 

detecting cultural features was tested on the previous pair of images: three edge 

operators, the busyness operator and the fractal error with window sizes 5x5,7x7 

and 9x9. 

For each of the seven operators, the following test was conducted. (Recall that 

the previous test verified that the images were properly aligned with one another.) The 

pair of images was processed by the given operator, producing a pair of filtered images. 

Subtracting one filtered image from the other yielded the difference image. Ideally, the 

difference image should be uniformly zero: zero mean and zero variance. The root mean 

square (RMS) error was chosen as the statistic to characterize the difference image. 

Equal to the square root of the sum of the variance and squared mean, the RMS error 
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incorporates both of these statistics together into a single measure. (Note that the mean 

and variance of either the ordinary difference or absolute difference may be used; the 

result is mathematically equivalent.) However, the RMS error from two different 

operators cannot be compared directly, since the signal strengths of the filtered images 

may differ between operators. (For example, consider two signals with a given mean 

value. Scaling the signals by a constant factor will also scale their difference and RMS 

error by the same constant.) To compensate for differing signal strengths, each RMS 

error was normalized by the average magnitude of its particular filtered images. More 

precisely, suppose that /i l and fi2 are the average values for a pair of feature images. 

Then the normalized RMS error will be as shown below: 

normalized RMS error =   RMS error 

(«i+/*2)/2 
Figure 64a lists the normalized RMS error values for the seven features, ranked in 

order. (Each operator's window size is also indicated.) The 7 x 7 and 9 x 9 fractal 

error gave the best results. Unfortunately, the 5 x 5 fractal error did not perform as well 

as expected, trailing busyness and leading the Sobel edge operator by a margin that was 

not especially large. Although they clearly identified the edges of cultural objects, the 

edge operators generally performed poorly because they also located the edges of 

unstable items, such as shadows. Another pair of images, of a different residential area, 

Normalized Normalized 
Operator RMS Error Operator RMS Error 

Fractal Error 9x9 0.643 Fractal Error 9x9 0.529 
Fractal Error 7x7 0.734 Fractal Error 7x7 0.624 

Busyness 3x3 0.907 Sobel3x3 0.801 
Fractal Error 5x5 0.937 Busyness 3x3 0.807 

Sobel 3x3 .    0.968 Fractal Error 5x5 0.833 
Prewitt 3x3 1.205 Prewitt 3x3 1.013 
Laplacian 1.320 Laplacian 1.184 

(a) Original Pair of Residential Scenes (b) Second Pair of Residential Scenes 

Figure 64 Comparison of Operators for Cultural Feature Stability 
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was also examined. The resolution was approximately the same as before. One image 

was taken in April and the other in October. Listed in Figure 64b, these results also 

indicate that the 7 x 7 and 9 x 9 fractal error operators were the most suitable for 

detecting the stable contents of the scene. 



CHAPTER Vn 

OBSERVATIONS AND CONCLUSIONS 

The primary purpose of this research was to determine fractal characteristics 

suitable for representing visual textures, and to develop algorithms to extract such 

characteristics, with particular emphasis on aerial imagery. Under the original problem 

statement (section 1.4), the following questions were proposed: 

• How appropriate is the fractional Brownian motion model for visual texture? 

• What are some useful fBm synthesis algorithms and how do they compare? 

• What are some useful fractal characteristics, how may they be estimated, and how do 

their extraction algorithms compare? 

• How can estimation algorithms be applied? 

• How may the fractal characteristics be used within a knowledge-based segmentation 

system? 

The first question will conclude this discussion. The other questions will be addressed in 

order. 

Artificial fractional Brownian motion (fBm) images were created in three 

different manners. The spectral synthetic algorithm relies upon the frequency 

distribution of fBm. The other two spatial synthesis approaches use the random midpoint 

displacement algorithm. One included successive random additions while the other did 

not. In all cases, the visual roughness of the synthetic images increased along with their 

fractal dimension. Although artificially generated, these textures appeared very natural. 

However, only the spectral method is theoretically sound. Detailed analysis revealed that 

the random midpoint displacement algorithm preserved the properties of fBm only for 

certain pixel spacings. Furthermore, the practice of including successive random 
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additions to remove the creasing effect actually decreases the theoretical validity of the 

algorithm. Nevertheless, all three synthesis algorithms were included in the subsequent 

estimation of fractal characteristics. The estimates of the random midpoint displacement 

fractals were made to produce a more complete study and to provide insights from an 

algorithm whose empirical analysis is absent in the known literature. Although the 

random midpoint displacement algorithm was not studied in detail, there were no trends 

between its theoretical problems and its measured fractal properties. 

The most obvious and well-studied fractal characteristic is the dimension. The 

fractal dimension corresponds directly to the perceptual notion of visual roughness. Few 

researchers have considered the error in their estimation. Thus, the degree to which the 

measured signal fits the fBm model was included in this study. Also considered was the 

lacunarity, which seems to be related to the coarseness or granularity of the texture. 

However, formulations for estimating the lacunarity suffer from a lack of consistency, 

and very little work exists on synthesizing textures with a particular lacunarity value. 

Therefore, the fractal dimension and the fractal error were the two characteristics 

explored here. 

Before estimating the fractal dimension and fractal error of a texture, the fractal 

scaling property was considered, which requires an exponential relationship between the 

signal spacing and the average change in signal strength. The synthetic fractals adhered 

closely to this requirement, especially the spatially synthesized fractals. The Brodatz 

textures deviated from this property, as expected, with generally reasonable results. The 

"clouds," "sand" and "waves" textures matched the best, while the "burlap" and 

"paper" textures fit the worst. Next, three methods were applied to the estimation of the 

fractal dimension and fractal error across the entire image: spectral estimation, spatial 

estimation and box-counting. It was anticipated that the theoretical inconsistencies in the 

spatial synthesis algorithms might affect the accuracy of their estimates. For example, 

the spectral approach gave close estimates for spectrally synthesized fractals, but the 
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values for the spatial fractals were consistently high. However, the accuracy of the 

spatial technique was very close for all sets of artificial fractals. In addition to its 

consistency, the spatial estimation algorithm gave the most accurate results also. Its 

accuracy was close to that produced by the improved interpolated box-counting approach 

presented by Keller et al. [25] 

Although the attributes of a fractal should remain invariant across any resolution, 

findings indicated that the dimension and error were not necessarily constant. The 

estimated dimension curves remained fairly flat for the spatial fractals, but they increased 

slightly for the spectral fractals. The fractal RMS error decreased rapidly up to a 

distance of about four to six pixels before leveling out. As expected, the linearity of the 

dimension and error of the Brodatz textures varied, but the RMS error was always higher, 

on average six times greater than the RMS error for the synthetic fractals. 

For segmentation, the measure must be restricted to a small, local portion of the 

image. Statistics were collected on the synthetic fractals for each estimation algorithm, 

yielding surprisingly accurate dimension estimates compared to the global algorithms. 

Unfortunately, the dimension images of each spectral, horizontal/vertical and 

center-oriented local estimation were of poor quality. However, the fractal error proved 

to be a useful texture feature. Efforts focused on the faster center-oriented estimation, 

which offered better quality. 

Fractal error was examined as a texture feature, specifically for segmenting aerial 

images. In conjunction with gray shade, the fractal error could distinguish the regions in 

several aerial images effectively. It bore a strong resemblance to the texture feature 

previously chosen for aerial image segmentation, the busyness operator. However, 

because the fractal error took longer to compute, busyness was retained as the texture 

feature in the aerial image segmentation software. 

Noting that cultural or man-made objects in an image will typically be 

non-fractal, the fractal error was applied to the identification of cultural features. The 
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cultural content of the scene was located successfully using fractal error. Tested against 

other simple operators which could detect cultural features, the 9 x 9 and 7x7 

window sizes of fractal error were found to perform best. These operators were least 

affected by changes in illumination, contrast and season. 

The notion of modeling texture with fBm originated from the work of Pentland 

[39]. The justification stems from the assertion that natural terrain is created and shaped 

by fractal processes and is supported by the convincing appearance of fBm renderings of 

terrain surfaces [30]. Although an image intensity surface of a fBm surface will also 

produce fBm, the reflectance in the original surface will usually vary. Under such typical 

conditions, the argument that an image is inherently a fBm signal lacks rigor. 

Nevertheless, solid evidence exists linking the fractal dimension of a fBm surface with its 

perceived visual roughness. Because roughness is only one aspect of texture, a pair of 

textures could have the same roughness but otherwise be quite distinct. Similarly, the 

Brodatz textures "clouds" and "fieldstone" are noticeably different, although their 

estimated fractal dimensions were nearly identical. 

Dimension estimates which considered larger image regions produced accuracies 

which were competitive with other published work and sometimes even better. Whereas 

most researchers have estimated the dimension within fairly large regions, a much 

smaller size was required for the resolution of the aerial imagery in this study. Such a 

restriction decreased the impact of the fractal dimension estimates. However, the fractal 

error proved to be a viable feature, even when estimated within very small regions of the 

image. Even for larger regions, the degree to which the actual image fits the model is 

highly significant. However, very few researchers have considered this error in their 

estimations. 

The following areas of further research are proposed. First, the effects of 

quantizing the signal into only 256 values should be examined. Even more than 

sampling the continuous fBm signal into a discrete signal, the quantization is suspected to 
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be responsible for at least some of the inaccuracies in the estimated fractal dimension. 

For example, the global spectral estimates of the globally synthesized fractals should be 

highly accurate, since both share the same theoretical foundation. Brief experiments 

using a larger range of signal values indicated promise. 

Although the theory predicts that fractal characteristics should remain invariant 

over all resolutions, empirical findings revealed that this was not completely true. These 

effects could result from flaws in the synthesis, or they could be related to the estimation 

process. The findings could be used to develop more reliable synthesis and estimation 

algorithms. 

In addition to furthering the research on fractal dimension and fractal error, the 

lacunarity and other potential characteristics should be investigated. Just as dimension 

corresponds to roughness, lacunarity appears to describe the coarseness or granularity of 

a texture. A successful representation of roughness and coarseness, both of which relate 

inherently to fractal geometry, would provide a more detailed description of visual 

texture. 

Looking further ahead, the relationship between fBm and other texture models, 

such as co-occurrence matrices, Fourier spectra, Markov processes and autocorrelation 

deserves closer attention. In particular, parameters which are difficult to estimate in one 

paradigm might benefit from a potential link to more easily estimated parameters in 

another paradigm. 

In another area, the fractal model appears to be naturally suited toward multiple 

resolution analysis. In simplest terms, fractal texture analysis may be applied to a 

hierarchy of image resolutions. At a deeper level, the inherent scaling properties of 

self-affinity provide a stronger link to the concept of a representation which spans a 

range of resolutions. Also, the correspondence between fBm and Markov random fields 

serves as additional indication that such work deserves further attention. 
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APPENDIX 

Given a normally distributed random variable X with.a mean of zero and variance 

a2, the mean of |X| will be proportional to a. 

1. Let the probability distribution of X be labeled f(x). From the given information, 

** - T^AiS) 
2. Let Y = \X\. Find the probability distribution g(y) of Y. (Note that G<y) and F(x) 

denote the cumulative distributions of g(y) and f(x), respectively.) 

G(y) = P(Y<y) = PQX\ < y) = P(-y < X < y) = F(y) - F(-y) 

Differentiating with respect to y gives g(y) = /(y) + /(—y). 

Since y must be non-negative, g(y) = 0 for y < 0. 

The distribution of f(x) is symmetric about the origin, so 

g(y) = 2/(y) for y > 0. 

Thus, 

sW = ^feexp(^)for y a ° 
3. Find the mean of Y. By definition, 

00 00 

EPJ-    /»«W*-^/»«P(^)*- 
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Since the limit at infinity is zero, this becomes 

E[Y] = E[\X\] = <r /| 
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4. Thus, the mean of |Xj is proportional to the standard deviation of X, where the 

proportionality constant is Jlfn. 
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ABSTRACT 

Fractal error is an image processing metric that can be used to locate man- 

made features in aerial images, as well as edges in industrial images. The metric 

can aid photo interpreters in locating targets in aerial reconnaissance images. Since 

the development of fractal error, it has been shown that the fractal error metric also 

works well for extracting features in synthetic aperture radar (SAR) images. A novel 

method is presented for automatic 2-D entropic segmentation using fractal error as a 

feature. 

Previous work has also shown that the fractal error metric is useful for locating 

edge pixels in industrial images. An introduction to edge detection using fractal error 

is presented; the results of the fractal error edge detection algorithm are compared 

with the Canny edge operator for robustness and accuracy. 

Fractal error has many useful applications; however, some applications require 

real-time image analysis. The main disadvantage of the fractal error algorithm is that 

it can take several seconds to compute on large images. Therefore, it is desirable to 

create an approximation of fractal error to provide real-time image analysis. A novel 

approximation of fractal error using a genetic algorithm is also presented. 
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CHAPTER I 

INTRODUCTION 

The mathematical nature of textures within images has generated much in- 

terest in the literature in past years. Specifically, fractal dimension and lacunarity 

are commonly the focus of such interest. Notably, Pentland [49] used fractal dimen- 

sion to analyze natural visual textures. However, little attention has been given to 

measuring the fitness of the fractal model itself. Cooper [12], [13] conducted the first 

research indicating that there may be some use in a measure that quantifies the error 

between the calculated fractal model and the actual data. This study is an extension 

of'Cooper's work. The practical use of the fractal error as a feature measure, both in 

segmentation and edge detection, is explored here. 

A.    Major Contribution 

Upon examination, there are three important examples that can be described 

as motivation for this research. The first example involves segmentation of cultural 

objects in synthetic aperture radar (SAR) imagery. Reliable edge detection in the 

presence of noise is the second. An approximation to fractal error for real-time pro- 

cessing is the third. 

For example, mission planning is a critical part of a tactical aircraft mission. 

To ensure the safety of the pilot and the success of the mission, extensive planning 

is required. Greater efficiency and consistency are achieved by supplementing pilot 

calculations with machine automation and intelligence. However, during the actual 

execution of the mission, the tactical situation may undergo unpredictable change. 



Instead of returning to the aircraft carrier and re-planning a new mission, it may 

be desirable to modify the mission en route. Therefore, it is necessary to data link 

mission-related information to aid the pilot with his new objective. Surveillance 

and reconnaissance imagery coupled with other intelligence information and digital 

maps can be presented to the flight crew. Included in this mission-related data may 

be processed imagery of the target area from off-board sensors. These off-board 

sensors may provide infrared (IR) imagery, SAR imagery, and optical imagery. SAR 

imagery is a likely sensor candidate. While highly specular and often difficult to 

interpret without enhancement, SAR is less susceptible to weather conditions and 

ambient illumination, than IR. Thus, from all of the data sent to the flight crew, 

terrain features, line-of-sight perspectives, and expected target area features can be 

displayed in order to highlight the new mission aspects. The fractal error metric is 

described here in a method that provides useful detection of cultural objects. The 

resulting imagery could be used in on-the-fly mission adjustments. 

As another example, edges typically do not fit the fractional Brownian motion 

(£Bm) model well, due to their irregularity. Therefore, fractal error is also a practical 

edge enhancement operator. In this study, an algorithm has been developed, using 

fractal error as a likelihood function, to separate the edges from the other features 

in images. Edge linking, or the process of making discontinuous edges continuous, is 

the second stage in the edge detection process. A new method of edge linking using 

fractal error is introduced. 

Many applications require real-time processing. For example, automatic target 

recognition is worthless if several minutes are dedicated to processing the image. It 

will be shown that fractal error is a computationally intensive algorithm. Thus, a 

fast approximation to fractal error is desirable. This work will describe a genetic 

approximation to fractal error. A genetic algorithm is used to evolve a set of weights 

in a fixed mathematical structure.  The structure, along with the final weights, are 



then used to approximate fractal error. 

This dissertation will explore the functionality of fractal error, the genetic 

approximation of the algorithm, and a method of edge detection using the fractal error 

metric. Chapter II will briefly review the literature on fractal and texture analysis 

and edge detection. Chapter III will present an introduction to fractal error. Chapter 

IV will describe the approximation to the fractal error metric using evolutionary 

computing, specifically, genetic algorithms. The issue of automatic thresholding for 

cultural object detection will be addressed in Chapter V, which outlines a method 

using a 2-D entropy decision line to segment the image. Edge enhancement and 

edge detection will be examined in Chapter VI. Each chapter will present results, the 

advantages and disadvantages of each developed method and future research ideas. 



CHAPTER II 

PREVIOUS WORK 

A.    Feature Detection and Synthetic Aperture Radar 

There has been much work presented in the literature regarding feature extrac- 

tion, segmentation, and object recognition with respect to synthetic aperture radar 

(SAR) images. Many of the articles summarized in this section deal with terrain 

images and few attempt to address the problem of recognition of man-made objects 

in the images. 

For example, He and Wang [27] presented a new set of textural measures de- 

rived from the texture spectrum and applied these measures to SAR imagery. The 

measures developed in.their study extract textural information of an image. These 

measures provide information from the eight directions in a localized 3x3 neighbor- 

hood in the image. 

The basis of the features suggested by He and Wang is that a texture image will 

be considered as a set of texture units which characterize the local texture information 

for a given pixel and its neighborhood. From these local texture units, an image of the 

global texture aspects can be mapped. Using the local texture units, the frequency 

distribution of the texture units is calculated, with the abscissa representing the 

texture unit number and the ordinate representing its occurrence frequency. From 

this frequency distribution comes the term texture spectrum. He and Wang use this 

texture spectrum to extract information to form quantitative feature vectors which 

incorporate characteristics of the texture, such as black-white symmetry, geometric 



symmetry, degree of direction, orientational features and central symmetry. He and 

Wang compared their results to previous research using the co-occurrence matrix 

approach [34], [20], [23], [11], and [26]. The results indicate that the He and Wang 

measures provide a more detailed feature vector. 

Other authors have suggested using statistical image models as a means to 

segment SAR data [15], [38]., [57]. In an article by Rignot and Chellappa [52], a model 

for the conditional distribution of the polarimetric complex data is combined with a 

Markov random field representation in order to segment the SAR image. Their article 

describes a model for the posterior distribution of the region labels. Optimization of 

those region labels is defined as maximizing the posterior distribution of the region 

labels, or maximum a posteriori (MAP) estimate. 

Solberg, Taxt and Jain [57] developed a general model for multisource classifi- 

cation of remotely sensed data, such as optical, IR and SAR. Their model is based on 

Markov Random Fields (MRF) and was developed for the fusion of optical images, 

SAR images and Geographic Information Systems (GIS) ground cover data. Their 

model uses the spatial class dependencies, also called spatial context, between pixel 

neighbors in an image and temporal class dependencies between different images of 

the same scene. They have tested their model on Landsat TM images, ERS-1 SAR 

images and GIS ground-cover maps on agricultural scenes with encouraging results. 

Geometric feature extraction techniques have also been used to extract infor- 

mation from images. Methods such as the Hough transform [29], [3] can be useful, 

but are not typically scale- or rotation-invariant. Selvage, Chenoweth and Gold [56] 

describe a modification to the chord transform, which was able to detect geometric 

structural content within an image. This transform has been shown to be scale-, 

translation- and rotation-invariant. Features in a series of aerial images were high- 

lighted, showing an accurate extraction. The most noticeable problem with the chord 

transform, however, is its computational expense.   Their variant chord transform 
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takes 0(N4) computations where N is the number of edge pixels. This is impractical 

for real-time applications. They suggest a parallel SIMD (single instruction, multiple 

data) architecture to optimize the computation of the modified chord transform. 

In recent years, there has been a trend towards using metrics derived from 

fractal geometry in the analysis of natural textures [42]. Pentland [49] used fractal- 

based descriptions of image texture to effectively characterize natural visual imagery. 

There have also been other works that attempt to apply fractal characteristics and 

measures to basic image analysis, such as texture segmentation [37], [48]. Using a 

fractional Brownian motion (fBm) model, Stewart et al. [60] demonstrated the appli- 

cation of fractal random process models as features in the analysis and segmentation 

of SAR imagery. The fractal dimension of natural textures, such as grass and trees, 

was computed and used as a texture feature in a Bayesian classifier. 

Stewart, et al. discussed how metrics described by fractal geometry provide 

accurate measures of "roughness" and "irregularity" in scale-invariant natural forms. 

Moghaddam et al. [44], [45] have used the local fractal dimension, a fractal metric, 

for segmentation and analysis of infrared (IR) imagery. Likewise, Cooper [12] imple- 

mented a localized version of the fractal error measurement as well as other fractal 

metrics for the segmentation of aerial imagery. Stein [59] introduced another fractal 

error metric, calculated by a covering method similar to the method suggested by 

Peleg [48]. Solka, Rogers and Priebe [58] introduced a power law signature similar to 

Stein's. There were significant differences, however. Stein designed a discrimination 

scheme employing the slope and standard error of fit of the regression line, not unlike 

the algorithm the Cooper implemented [12], which is outlined in this work. Solka, 

Rogers and Priebe used different features to estimate fractal error. Also, Stein's deci- 

sion rules were heuristic in nature, where Solka, Rogers and Priebe proposed advanced 

density estimation techniques in an effort to fully characterize the decision surfaces 

which originate from their power law signatures. 



Image Edge Map 

FIGURE 1-The two-phase process for edge detection. 

In another paper, Rogers, Solka and Priebe [53] outlined a method to calculate 

fractal dimension using a parallel distributed processing (PDP) approach. A priori 

boundary information was incorporated into their covering method, improving their 

segmentation results. 

Cooper et al. [12] developed a fractal error metric based on the observed 

propensity of natural image features to fit a fractional Brownian motion model. They 

used this feature in a statistical classifier to successfully segment regions in aerial 

reconnaissance images. Jansing et al. [33] used this same feature to segment man- 

made objects in SAR imagery. 

B.    Edge Detection 

Edge detection has long been the subject of research in image processing and 

computer vision. Widely used in industrial vision systems, edge detection can be 

utilized for parts inspection or robot vision. Often, edges are detected and matched 

for registration in stereo vision. Edge detection is a two-phase process, as described 

by Figure 1. 

The first phase is edge enhancement, which is the process of locating pixels 

in the image that may be considered step edges. This process typically involves the 

initial detection of edge points using such techniques as the Laplacian of the Gaussian 

[43], [5], [10]. Canny [9] did an extensive study on edge detection, deriving the optimal 

filter for edge detection. He discovered that the optimal filter was well-approximated 



by the derivative of the Gaussian. The Prewitt edge operator [51] estimates the 

gradient with a quadratic fitting surface. Haralick [24] proposed an iterative facet 

model approach to edge enhancement. This model assumes that the spatial domain 

of the image can be partitioned into connected regions called facets. The boundaries 

of the facet define the step edges in the image. Jansing, et al. [32] proposed using a 

fractal error measure to highlight step edges. 

Typically, false edges are eliminated from a set of criteria. For example, Canny 

[9] suggested thresholding edge points by comparing the magnitude of the gradient 

of an edge point with the magnitudes of its eight local neighbors. In Haralick's facet 

model [24], false edges are eliminated by a chi-squared test on the magnitude of the 

candidate edge pixel. 

The second stage, edge linking, attempts to link edges which might be broken 

and discontinuous. This break in the edges may be caused by any number of phe- 

nomena in the image, including shadowing or noise. Some techniques for edge linking 

include the SEL algorithm [17] and the LINK algorithm [19]. Using search techniques, 

these methods attempt to produce edges that are connected over the image space. 



CHAPTER III 

AN INTRODUCTION TO FRACTAL ERROR 

A.     General Theory 

1.   Definition Of A.Fractal 

It is well known that many textures and scenes can be modeled as fractals. 

A fractal, according to La Brecque [6], "has a rough shape to one degree or another 

made of parts which, when magnified, resemble the whole." It is also well known that 

literature describing fractals often lacks precision when attempting to define what a 

fractal is. However, the reader of fractal geometry and theory can turn to Falconer 

[18] for a detailed description of the properties of fractals. Falconer states that 

The set F is a fractal, if it has following properties: 

1. F has a fine structure, that is, detail on arbitrarily small scales. 

2. F is too irregular to be described in traditional geometrical language, 

both locally and globally. 

3. Often F has some form of self-similarity, perhaps approximate or 

statistical. 

4. Usually, the "fractal dimension" of F (defined in some way, and 

there are several unique definitions) is greater than its topological 

dimension. 
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5. In most cases of interest, F is defined in a very simple way, perhaps 

recursively (e.g., the Julia or Mandelbrot Sets). 

2. Fractal Dimension 

How are fractals distinguished between one another? How does one measure 

the size of fractal? What measure can be used to compare and contrast fractals? 

Fractal dimension is the measure that is generally used to distinguish between 

fractals, giving the fractals a measurement of "size". This numeric representation 

attempts to quantify a subjective quality which one might have about how densely 

the fractal occupies the space in which it exists. 

Fractal dimension is just as difficult to define as fractals themselves. Mandel- 

brot [42], Falconer [18], Peitgen et al. [47] and Edgar [16] provide excellent discussions 

of many different fractal dimension definitions. Each fractal dimension definition has 

a distinct style. Although the definitions are all related, Peitgen [47] claims that some 

definitions make sense in certain cases, while other definitions will not be cogent in the 

same case. Experience and heuristics prompt the selection of an appropriate fractal 

dimension definition, according to the application. 

3. Lacunarity 

Mandelbrot [42] defined another measure for fractals. Lacunarity describes 

the "holiness" ([36], pg. 236) of an occupied fractal lattice. The origin of the name 

lacunarity can be appreciated by looking at an image of cork in Figure 2. This 

image is part of a collection of texture images, presented by Brodatz [8]. From the 

Latin word "lacona," which means gap, lacunarity measures the gaps within a fractal 

structure. Thus, the percentage of spaces between the cork in Figure 2 is the measure 

of lacunarity. Practically, lakes or other natural objects within aerial images may be 
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FIGURE 2-Texture image of cork, 

classified by using lacunarity as a feature measure. 

4.    Fractional Brownian Motion 

Fractals may occur in many different forms. Mandelbrot [41] was the first to 

define fractional Brownian motion (fBm). Brownian motion is the model which refers 

to the erratic motion of small suspended particles, resulting from random collisions 

with other particles. Fractional Brownian motion is an extension of this model. 

Cooper [12] gives an excellent description of fBm; it will be summarized here. 

The function of fBm is defined as the differences between successive samples. 

Let BH(t) represent a fBm signal, where t is a vector containing E independent 

variables. Then the increment of the fBm signal is described as ABH = BH(t2) - 

■Bff(ti)j where ti and t2 are two distinct measurements in time. The measure ABu 

is normally distributed with a mean of zero and a variance proportional to the IE 

power of the Euclidean distance. The mean takes the form of 

E[Bff(t2) - BH(t!)] = 0. (1) 

Likewise, the variance is defined as 

Var[£ff (t2) - BHfa)] = k2\t2 - tx|
2ff. (2) 
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where k2 is the proportionality constant of the variance and H is the Hurst parameter, 

which must be 0 < H < 1. Note that when H = 0.5, the fractional Brownian motion 

represents the original Brownian motion model. The value of H can be used to 

describe the fractal dimension D as 

D = E + 1-H, (3) 

where E is the Euclidean dimension (or, the number of independent variables oft). 

It is therefore easy to see that small values of H produce high fractal dimension and 

large values of H produce a low fractal dimension. Combining the equations for mean 

and variance, while also taking into account the fractal dimension, we can arrive at 

the following relationship: 

n\BH{t2)-BH{^)\) = k\t2-t1\H. (4) 

The above equation is the heart of the fractal error metric. The regions ob- 

served in an actual image may be a combination of many different textures. Each 

texture can be represented by its fractal dimension. But, before attempting to deter- 

mine the fractal dimension, it is useful to know how well a region (or window) may fit 

the fractal model. Thus, measuring the error produced when estimating the fractal 

dimension will give a useful metric in order to determine the "fractalness" of a region 

in the image. A small error will indicate that a region fits the fractal model well, 

and thus can be considered a fractal. Conversely, a large error will indicate that the 

region fits poorly into the fractal model and thus is probably not a fractal and the 

fractal dimension measure is useless. Mathematically, this can be defined as 

E[|G[xa]-G[Xl]|]   =   *|xa-Xl|* (5) 

E[|AG|Ax||]   =   *|Ax|* (6) 

where G is the region or window in the image and x is the measured distances within 



13 

the region. Estimates of H and k can be found by using a linear regression scheme, 

lnE[|AG|Ax||]=lnA; + #ln|Ax|. (7) 

These estimates, H and k, can then be used to calculate the error with the 

following equation: 

errorlAx{ = E[|AG,Ax||] - k\Ax|*. (8) 

Using a "center-oriented" window (i.e., a square window of n by n, where n is strictly 

odd), there will be five, nine, or fourteen error values, given the window is 5x5, 7x7, 

or 9x9 respectively. Thus, a cumulative error for the model can be given by the root 

mean square error 

RMS Error 

1 
-^2(errorlAx])

2. (9) 
|Ax| 

Thus, using the RMS error, it is easily determined whether or not a pixel with a 

surrounding 5x5, 7x7 or 9x9 region is fractal in nature. 

B.    Fractal Error Algorithm 

1. Description 

Using the method described in the previous section, Cooper [12] developed an 

algorithm to calculate the fractal error for each pixel in a scene. This algorithm is 

described in detail in Table 1. 

2. An Example 

The following section outlines the steps of the entire fractal error algorithm. 

Note that this example will produce a single number that will represent the error 

for the center pixel in relation to its neighbors.   Figure 3 represents a sample 5x5 
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TABLE 1 

Fractal Error Algorithm 

1. Define a 5x5, 7x7, or 9x9 sliding window. 

2. Calculate each Ax and E[|AG|] for each pixel in the neighbor- 

hood of the sliding window. 

3. Using linear regression, find the slope and the y-intercept 

for each unique set of Ax in the window from the equation 

\n(E[\AG]Axil\]) = ln(k) + H\Axi\. 

4. Assign H = slope and k = exp(y-intercept) from the above 

relationship. 

5. Calculate the fractal error from error|Axi| = E[|A(2|AXi||] - 

fc|Axj|H, for that unique set of Ax. 

6. Calculate RMS error from RMS Error = 

V^E|AXl!(error|Ax.|)2. 

7. Save the RMS error for that pixel, move the window and repeat 

the process over the entire scene. 
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FIGURE 3-A sample 5x5 window. 

2.83 2.23 2.00 2.23 2.83 

2.23 1.41 1.00 1.41 2.23 

2.00 1.00 1.00 2.00 

2.23 1.41 1.00 1.41 2.23 

2.83 2.23 2.00 2.23 2.83 

FIGURE 4-The Euclidean distances over the 5x5 neighborhood. 

window. Since the localized neighborhood is 5x5, there are five unique distances in 

the window, as shown in Figure 4. 

The following table represents the absolute values of the differences of the gray 

levels over the unique sets of distances in the neighborhood. Thus, the gray scale value 

of each pixel that has a distance of 1.41 is subtracted from the gray scale value of the 

center pixel. Their absolute values are averaged to give E[|A(?|] for each unique set 

of distances. 

Using Equation 7, we can obtain estimates for the Hurst parameter and the 

proportionality constant, H and k, respectively. These estimates can be found using 
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TABLE 2 

Distances From The Center Pixel (Ax) And The Expected Value Of The Absolute 
Values Of The Gray Scales In Reference To The Center Pixel (E[| AG|]) 

Ax      In Ax E[|AG|] lnE[|AG|] 

1.000    0.000 40.00 3.69 

1.414    0.347 74.75 4.31 

2.000    0.693 51.75 3.95 

2.236    0.805 91.50 4.51 

2.828    1.040 78.75 4.37 

linear regression [2]. If the linear model takes the form 

y = ß0 + ßix, 

then estimates for ßx (slope) and ß0 (y-intercept) are defined as 

Y,{xi - x)2 

ßo   =   y-ßix, 

(10) 

(11) 

(12) 

where x is Jhe sample mean of x and y is the sample mean of y. In our particular 

case, x represents the "In Ax" term in Equation 7 and y represents the "lnE[|AG|]" 

term in the same equation. To overcome the problem of evaluating lnE[|AG|] when 

E[IAGI] = 0, a protected natural log function, lnp(:c), was defined: If x = 0, then 

lnp(:r) = 0, otherwise lnp(x) = \n{x). This protected log function prevents having to 

evaluate the natural log function at zero, whose value is minus infinity. 

From that data in Table 2, it easy to see that x - 0.577 and y = 4.17. The 

estimates of ß0 and ß1 can thus be calculated, 

ßi   = 
Y,U(xi- 0.577)% 

_ TLifa- 0^77)2 

ßo   =   4.17-0.577^=3.83 

= 0.585 (13) 

(14) 
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FIGURE 5-In Aa; vs. lnE[|AG|] and the resulting estimated linear fit. 

The Hurst parameter estimate, H, is the slope of the linear model, that is, H = ß\. 

The proportionality constant estimate, k is the y-intercept of the linear model, k — 

exp(/?o)- Therefore, H = 0.585 and k = 46.1. Figure 5 shows In Ax vs. lnE[|AG|] 

and the estimated linear fit. 

Errors with respect to each unique distance set can be calculated with Equation 

8. Table 3 shows the result of using Equation 8 in this example. 

The overall RMS error, as defined by Equation 9, is 14.31. This number rep- 

resents the "fractalness" of the center pixel in relationship to its neighbors. Decisions 

regarding the fractalness of the pixel are typically made in reference to the entire 

image. Thus, if the variation of fractal errors is from 0 to 15, this pixel is not likely 

to be fractal in nature. 

3.    Results 

In this section, the algorithm is applied to several images. The original image 

and the resulting fractal image are shown. 
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TABLE 3 

Calculated Error From Fractional Brownian Motion Model 

Ax error 

1.00 -6.06 

1.41 18.4 

2.00 -17.3 

2.24 17.7 

2.83 -5.9 

Cultural objects in the aerial images, Figures 6 and 7, are highlighted. The 

pixels representing cultural objects are bright in comparison to the other pixels in the 

image, indicating that fractal error is high. In these examples, fractal error proves to 

be a useful discriminating feature for segmenting cultural objects in aerial images. 

Fractal error, will also enhance the edges in an image, as shown in Figures 8 

and 9. Since objects that are less fractal in nature have higher fractal error values 

than more naturally occurring objects, the normalized fractal error can be viewed as 

a likelihood measure. This likelihood will provide a useful metric in enhancing and 

linking edges in an image. 

Computational expense is the unfortunate by-product of this useful algorithm. 

Many applications require real-time computation to be practical. The next chapter 

will introduce a genetic approach to approximating fractal error. This genetic ap- 

proximation to fractal error provides real-time analysis, whether for cultural object 

detection or edge detection. 
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(a) Original Image 

(b) Fractal Error Image 

FIGURE 6-Washington, DC image. 
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(a) Original Image 

(b) Fractal Error Image 

FIGURE 7 - SAR image of desert terrain. 
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(a) Original Image (b) Fractal Error Image 

FIGURE 8-Coke can image. 
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(a) Original Image (b) Fractal Error Image 

FIGURE 9-Gear image. 



CHAPTER IV 

GENETIC APPROXIMATION TO FRACTAL ERROR 

A.    Introduction 

In 1975, John Holland [28] introduced the publication Adaptation in Natural 

and Artificial Systems. In this publication, Holland integrated two themes that had 

persistently appeared in his studies: the representation of complex structures using 

simple representations (such as bit strings), and the ability to modify and improve 

such structures with simple transformations. Holland demonstrated that under the 

proper conditions, bit strings could "evolve" into improved bit strings. The improve- 

ment was dependent on the fitness of each member of the group of strings. Holland 

realized the tremendous potential of such an operation, and thus, initiated the study 

of genetic algorithms. 

Holland discovered that the fundamental structures of genetics, chromosomes, 

can also be analogous to structures in other fields, such as types of goods in economic 

planning, strategies in gaming theory and functions in artificial intelligence. If the 

structures could be represented in a similar fashion, Holland posed the question of 

whether the same sort of operators that evolve chromosomes could be used to evolve 

optimal structures in the other fields? Holland demonstrated that, in fact, they do. 

Just as the operations of mutation and recombination adapt chromosomes to function 

in specific (and hopefully optimal) ways, the operations of production activities in 

economic planning or learning rules in artificial intelligence can adapt their respective 

structures. 
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In the same way chromosomes evolve over several generations, so do the struc- 

tures in our genetic algorithm. Structures are allowed to sexually reproduce into 

the generation via some random operation according to the structure's fitness in the 

population. Typical fitness functions may include utility in economic planning, error 

functions in controls, payoff in gaming theory, or comparative efficiency in artificial 

intelligence. Those individuals who are more fit than others (the lowest error in the 

case of controls or the highest payoff in the case of gaming theory) have a higher 

probability of reproducing into the next generation. As the total population evolves 

over generations, the best parts of fit structures combine with the best parts of other 

fit structures, creating structures that generate better fitness values. Holland [28] 

demonstrated that even in large, complicated search spaces, given certain conditions 

on the problem domain, the genetic algorithm would tend toward the global extrema. 

Much has been written about genetic algorithms and it would be impossible 

to cite completely in this work. The reader should reference Holland [28], Goldberg 

[21], Davis [14], or Koza [39] for more detailed discussion of the theory behind genetic 

algorithms. While Holland, Goldberg and Davis primarily focused on genetic algo- 

rithms, Koza has spent much of his studies extending genetic algorithms to genetic 

programs (GP). Here the structures were actual computer code, typically in LISP or 

C. These structures of code were then allowed to evolve over hundreds or thousands 

of generations, until the needed problem-specific code has been found. Using SPICE 

(Simulation Program with Integrated Circuit Emphasis), Bennett et al. [4] devel- 

oped a GP to design a low-distortion, low-bias 60 dB (1000-to-l) amplifier with good 

frequency generalization. They contended that the performance of a GP can match 

or exceed human performance in some circuit design problems [40]. In 1996, Harris 

and Buxton [25] demonstrated that GP techniques can be used to evolve 1-D edge 

detectors. 

Because fractal error can be computationally expensive, particularly for large 
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images, an approximation for real-time processing is desirable. This chapter will 

explore an approximation to fractal error with a genetic algorithm. An outline of 

the simple genetic algorithm (SGA) will be introduced to lay the foundation for the 

genetic approximation to fractal error (GAFE). Included in the discussion of the SGA, 

an example involving genetic algorithms will also be examined. 

B.    The Simple Genetic Algorithm 

1.    General Theory 

The genetic algorithm evolves a set (the population) of individual structures 

(the chromosomes) into a new population using operations modeled after the Dar- 

winian principle of reproduction and survival of the fittest. The structures are typ- 

ically fixed-length character strings, often representing binary numbers. Each string 

in the new population, also known as the next generation, is evaluated for fitness. If 

the solution has not yet been reached, the process is repeated and a new population 

is born from the structures of the previous generation. 

The simple genetic algorithm will be described in this section with an example 

of finding the global maximum of the monotonically increasing function, 

f(x) = x2 where 0 < x < 15. (15) 

Because the function is monotonically increasing, it is not difficult to see that the 

global maximum lies at x = 15. However, we will suspend this knowledge in order 

demonstrate how the SGA will converge to the solution. 

The basic operation of the genetic algorithm is described by the flowchart in 

Figure 10. At the start of the algorithm, a random population called the 0th or initial 

generation is created. Each member of the initial population is evaluated for fitness, 

while checking to see if the desired solution has been reached. If no solution is found 
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Declare 
Result 

FIGURE 10-Flowchart of the simple genetic algorithm. 

in the initial population, which is highly likely, then the next generation is formed. 

The formation of the next generation is performed by probabilistically selecting a 

genetic operation, selecting one or two fit individuals, performing the selected opera- 

tion and inserting the new individual or individuals in the new population. The new 

population is then evaluated for individual fitness. If a solution is found in this new 

population, the algorithm is stopped and the result is reported. However, if no solu- 

tion is obtained, the process repeats again until a solution is found or a predetermined 

number of generations have been created and evaluated. 

In traditional min-max theory, the global extrema are determined by evalu- 

ating the first derivative at zero. In some deterministic search methods, statistical 

knowledge of the function must be known or assumed [31]. In blind search methods, 

such as Monte Carlo methods [22], nothing regarding the function need be known, 

but there is no guarantee that the global extrema will be found in a timely fashion. 

Genetic algorithms, however, do not operate on the function directly, but on a pa- 
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FIGURE 11-A 4-bit integer representation for the search space [0,15]. 

rameterization of the inputs to the function. In this manner, no a priori information 

regarding the function need be known. The genetic algorithm is also not limited 

to just global optimization, but to a number of problems, such as gaming theory, 

scheduling, and economic planning. 

There are several problems associated with setting up this algorithm. How 

does one determine the structure of each individual in the population? How is the 

fitness function defined, and is it problem-dependent? How is an individual chosen 

out of the population, that is, how does one implement "survival of the fittest?" Are 

there rules or guidelines in randomly selecting the genetic operation? How many 

individuals should be in the population? How many generations is enough? Before 

the genetic algorithm can be used, each one of these issues must be addressed. 

a. Parameterization. Holland and many of his students [14] structured 

their chromosomes in bit strings. Many parameterizations can be set up as bit rep- 

resentations. In the case of our example, since it is known that the search will be 

conducted in the interval [0,15], the bit representation could be a 4-bit binary num- 

ber, as shown in Figure 11. This configuration would only represent the integers 

within the search space. If a real number representation is required, then a number of 

bits could be used to encode the fractional part of the number, such as the example 

in Figure 12. We will use the 4-bit integer representation for our SGA. 

There are certainly other ways to represent the chromosome structure. Exam- 

ples of other representations may include ordered lists (for bin-packing or the traveling 
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FIGURE 12-A 6-bit fixed-point representation for the search space [0,15]. 

salesperson problem), embedded lists (for scheduling), or variable- element lists (for 

semiconductor layout). Each problem will lend itself to a particular structure. 

b. Fitness Functions. Finding a proper fitness function is critical to the 

development of a genetic algorithm. The fitness function is the deciding factor in 

which an individual will be copied, mutated, or crossed over with another individual 

in the formation of a new population. Here, the value of f(x) may be used as the 

fitness measure. A higher value of f(x) represents a more fit individual. In the case of 

curve fitting, RMS error can serve as the fitness function, where smaller RMS errors 

denote fitter individuals. 

Normalization plays an important role in assigning fitness values. When the 

raw numbers of a fitness function are used, a very good individual may score 110 

and a poor one may score 100. If these raw values are used without alteration in 

the reproduction of the next population, it will take some time before the children 

of the good individual outnumber those of the poor one. For this reason, it may be 

desirable to normalize the scores in some fashion. However, if the performance of the 

genetic algorithm is too sensitive to the normalization method chosen, it will stress 

the improved individuals too much. This will lead to inbreeding with the population, 

promoting the rapid dominance of a single strain of structures. In this case, it is 

likely that the genetic algorithm will converge to a local maxima or minima and not 

the global solution. This is called premature convergence. 
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c. Selection. There are several methods of selecting fit individuals in the 

population for reproduction. The most common form of selection is the "roulette 

wheel." This method models a roulette wheel in that there are a fixed number of 

slots on the wheel. Slots are allocated according to fitness, with the highest fit 

individuals getting the most number of slots and the poorest fit individuals getting 

the fewest slots or perhaps no slot at all. Following a uniform distribution, the wheel 

is spun each time to select individuals for reproduction. There is no guarantee that 

the most fit will be chosen, but there is a high probability that a structure having 

a good fitness measure will be chosen. Unfortunately, this method often favors the 

most fit chromosomes frequently and the genetic algorithm suffers from premature 

convergence. 

Tournament selection is another popular method of selection, whereby Dar- 

win "s idea of "survival of the fittest" is modeled. Two structures in the population 

arc randomly chosen. The individual with the best fitness value is then selected for 

reproduction. This method avoids the problem of premature convergence, keeping 

the population as diverse as possible while still advancing the population towards the 

desired goal. 

d. Crossover. Once an individual (or two individuals in the case of crossover) 

is selected, reproduction into the next generation may begin. Crossover is a reproduc- 

tion operator that combines properties of two parent chromosomes into two children 

chromosomes. Figure 13 shows simple single-point crossover. If the individuals are of 

length n, then a point between [1, n] is chosen randomly from a uniform distribution. 

The children are formed by combining the genetic material from the parents. The 

newly formed offspring are then introduced to the new population. The parents are 

not deleted or destroyed from the old population, giving them the opportunity to 

reproduce in the future. 

Crossover is not restricted to single-point crossing. Multi-point crossover has 
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FIGURE 13-Illustration of single-point crossover. 
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also been shown to be useful in reproduction from one generation to the next. Single- 

point crossover tends to limit the areas of search, thereby risking premature con- 

vergence. Multi-point crossover, which uses two or more crossover points, creates 

diverse children, expanding the search area, and thus increasing the probability of 

finding the optimal solution. Crossover is the central operation of reproduction in 

genetic algorithms. Thus, the probability of choosing crossover, called pc, is usually 

0.9. 

e. Mutation And Copy. Iri addition to crossover, there are two other re- 

production operators: mutation and copy. Mutation is the act of changing one or 

more bits in a parent string. The mutated string then gets passed as a child to the 

next generation. Figure 14 illustrates single-point mutation. A bit within the genetic 

material is chosen randomly from a uniform distribution. If the bit is a 0, it mutates 

to a 1. Conversely, if the bit is 1, it changes to 0. Holland [28] described the mutation 

operator as a "background" operator. It maintains a full range of individuals for 

the crossover operator; this prevents the adaptive nature of reproduction from being 

trapped on local optima. Typically, the probability for choosing the mutation opera- 

tor (pm) is set low, perhaps at 0.1 or lower. Too little mutation produces premature 

convergence and inbreeding; too much mutation causes the population to oscillate 

between search spaces, hindering convergence. 

The copy operator simply allows a parent from the previous generation to pass 

to the next generation. This increases the probability that strings with high fitness 

values will enter into the next generation and maintain the current search space. This 

is particularly useful if the population resulting from crossover and mutation is weak. 

The probability of choosing copy is defined as (1.0 - (pm +pc)). 

f. Migration. Introduced by Potts et al. [50] in 1994, the migration opera- 

tor helps combat the problem of premature convergence. Potts et al. allowed multiple 

sets of individuals to evolve using traditional genetic operators such as crossover and 
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FIGURE 14-Illustration of the single-point mutation operator. 

mutation. Each set of individuals acts as an independent population, like a tribe or 

village. The migration operator chooses individuals at random and moves them to 

another population. This interaction prevents inbreeding and promotes reproduction 

among those individuals that have good characteristics, that is, high fitness values. 

The migration operator used in this research is an extension of the method 

proposed by Potts et al. [50]. Migration is implemented here by randomly generating 

a new individual and placing it in the new population. This randomness may allow 

for movement to a search space that the individuals in the previous population were 

unable to reach. This modification allows for the property of migration without the 

overhead of multiple populations. 

Premature convergence can be overcome by the choice of reproduction oper- 

ators and population size, as well as variations on the operators. Adjustments of 

parameters such as population size, crossover rate, and mutation rate may also con- 

tribute to or hinder premature convergence. There are no generalizations to choosing 

a combination of operators and parameters to ensure convergence on the desired so- 

lution. Thus, the area of optimal genetic algorithm design is a prominent area for 

further research. 
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C.    How The Genetic Algorithm Works 

It is not easily seen how this adaptive system works. However, consider the 

following: an SGA is attempting to optimize the monotonically increasing signal in 

Equation 15. The input x has been encoded in a 4-bit binary string, representing 

the search space [0,15]. The population size has been fixed at 4 individuals per 

generation. In the initial population, the strings 0001, 1101, 0010, and 0011 were 

created. Each string has a fitness of 1, 169, 4, and 9, respectively. Having the highest 

fitness, gene 1101 is the best candidate for reproduction. 

The possible search space that each string, or set of strings, represents can 

be described by schemata. Schemata is defined by the set 0,1, * where * is a "don't 

care" condition. Each schemata describes an area that can be searched, while each 

gene represents a point in that area. For example, consider the schema represented 

by 00**. This represents the search interval [0,3]. The third and fourth chromosomes 

(0010 and 0011) in the above example reside in this search space. Offspring from 

either of these two individuals are likely to fall within this area. However, since the 

fitnesses of the third and fourth chromosomes are relatively low, it is unlikely that 

they will reproduce. 

This schema gives some indication as to why 0010 and 0011 do so poorly in 

the population. The chromosomes, and indeed the schema 00** itself, represent the 

farthest possible area from the maximum in the search space. In fact, the fitness 

for 00**, which can be represented as an average value, would still be much less 

than the fitness for 10**, which is much closer to the maximum. Thus, any schema 

describes a set of points from the search space of a problem that have certain specified 

similarities [39]. The selection and reproduction operators exploit the similarities, 

creating a new population with offspring that exhibit the schema of their parents. 

This is seen in nature when an individual survives to the age of procreation and 

actively reproduces, his or her offspring carry their "best" characteristics, such as eye 
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TABLE 4 

Generation 0 Individuals, Their Raw Fitness Values, Their Normalized Fitness Values, 
And The Number Of Roulette Wheel Slots They Occupy 

Individual Raw Fitness Normalized Fitness Slots 

0001 1 0.0055 0 

1101 169 0.92 23 

0010 4 0.002 1 

0011 9 0.049 1 

color, hair color, bone structure, or knowledge skills. In the example of optimizing the 

monotonically increasing function, it would be desirable to pass on the characteristics 

of the individuals that have the highest fitness to advance the search toward the global 

maximum. Table 4 shows each individual, their raw fitness, their normalized fitness 

and the number of assigned slots for each individual for roulette wheel selection. 

Normalized fitness is calculated as 

n(x) m 
ELo/W 

(16) 

and for the general case, normalized fitness can be computed from 

r(i,t) 
n(i,t) = 

nLirM' (17) 

where r(i, t) is the raw fitness of individual i at time t for a total population of 

M individuals. Normalized fitness lie in the interval [0,1], making it easy for slot 

assignment if roulette wheel style selection is desired. If it is necessary to minimize 

fitness, for example, in a control problem where it is desirable to minimize error, the 

standardized fitness s(i,t) would be appropriate. The standardized fitness adjusts 

the raw fitness so that a lower numerical value indicates a better fitness. If a lesser 

value of the raw fitness is better, no standardization is necessary and s(i,t) - r(i,t). 
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However, if the a higher value of the raw fitness is better, a standard fitness can be 

found by 

s(i,t)=rmax-r(i,t), (18) 

where rmax is the maximum possible value of raw fitness. 

In addition to normalized and standardized fitness measures, Koza [39] de- 

scribed a third modification to raw fitness values called adjusted fitness. The adjusted 

fitness values are calculated from the standardized fitness values, 

a(M) = TT7M' (19) 

The adjusted fitness, like the normalized fitness, lies between 0 and 1. Bigger values 

of a(i, t) indicate better individuals. The benefit of adjusted fitness values is that 

adjusted fitness has a tendency to exaggerate the importance of small differences in 

the value of s(i,t), as s(i,t) approaches zero. It should be noted that standardized, 

normalized and adjusted fitness are not relevant for tournament selection. 

In the example, it is highly likely that 1101 will be chosen for reproduction, 

provided the opportunity is available to produce offspring from other strings (.1101 

holds 92% of the slots). This example shows the utility of tournament selection. 

Tournament selection may provide a more diverse population in the next generation. 

It is highly likely that roulette wheel selection will provide an inbred population, most 

likely ending up in premature convergence at the point x — 13.0. Population size also 

contributes to this problem. If the population size is too small, the fitness values may 

converge upon a local minimum or maximum, ending up with a population of clones. 

On the other hand, if the population is too large, it will take a considerable time to 

locate the schema necessary to converge on the perfect solution. Populations that 

are too small die quickly and populations that are too big oscillate back and forth 

between search spaces. 
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D.    Genetic Approximation Of Fractal Error (GAFE) 

To generate an approximation of fractal error, a mathematical structure is 

needed. Much of the information in calculating fractal error resides in the expected 

value of the absolute differences of the gray levels from the center pixel, grouped 

in uniform distances from the center pixel (refer to Chapter III). This is expressed 

mathematically as E[\AGlAx.{ |]. Weights are assigned to each of these expected values 

and all of the weighted expected values are added together to form the approximation 

of fractal error. In the case of the 5x5 window, this is expressed as 

FE   =   a0ln(E[|AGAx=2.82]) + a1ln(E[|AGAl=2.23]) (20) 

+   a2 ln(E[| AGAl=2.oo]) + a3 ln(E[| &GAx=1A1}) 

+   o4ln(E[|AGAx=1.oo]). 

The genetic approximation of fractal error, named GAFE, evolves the weights a0, 

°i "-i to try to estimate fractal error. The natural log of the expected values is 

used to maintain the linearity of the measure. The probability for crossover is set 

at 0.7. and the probability for mutation, copy, and migration are set at 0.1. Each 

operator is chosen randomly from a uniform distribution. The population size and 

the maximum number of generations allowed for each simulation is variable. Fitness 

for each individual is determined from signal-to-noise ratio (SNR). SNR measures, the 

ratio of original signal to noise in a given test image. It is defined as 

SNR= ^r=0 2^c—0^m\r,C) 

ErloEf=oOUr,c)-J0(r,c))2 {2i) 

where Im(r, c) is the measured image and I0(r, c) is the original signal for MxN sized 

images. The lower the value of SNR, the noisier the signal is. Thus, to evolve weights 

with a genetic algorithm, it is desirable to maximize the signal-to-noise ratio. 

The GAFE is also written in parallel to ensure fast simulation times.   The 

evaluation of fitness for each individual in the population consumes most of the run 
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TABLE 5 

Several Trials Of The GAFE With Varying Population Size And Generations 

Trial Population Size Maximum Generation Size SNR 

A 100 10000 1.27 

B 500 100 1.52 

C 500 2000 1.56 

D 1000 2000 1.63 

E 2000 250 1.74 

F 10000 90 3.82 

time for the GA itself. To parallelize the algorithm, each individual is evaluated for 

fitness separately, running on as many CPUs as are available. The parallel algorithm 

was executed on an SGI Onyx R10000 high-performance computer, with 16 CPUs. 

Table 5 shows six different trials of GAFE and their results. The varying 

population size and maximum number of generations allowed are also given. The 

training image for each of these simulations is shown in Figure 15. 

Figure 16 illustrates the resulting image from each trial. Figures 17 through 

22 show the change in SNR over the generations of the genetic simulations. 

Each individual is comprised of 100 bits, 20 bits per weight. The first 19 bits 

are the magnitude, starting at 22 and ending at 2~16. The 20th bit for each weight is 

a sign bit, allowing for positive and negative weights. Thus, the interval for each 20 

bits is (—8,8). Table 6 shows the final weights for Trial F. 

The results are revealing. For very small populations, sized from 100 to 1000 

individuals, the GAFE is unable to isolate a search area that will find a suitable 

set of weights, that is, it incorrectly converges to a local extrema. It is clear that 

larger populations fare better than smaller populations, regardless of the number of 
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(a) Original Image 

(b) Actual Fractal Error Image 

FIGURE 15-Training image for the genetic approximation to fractal error (GAFE). 
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TABLE 6 

Final Weights From GAFE, Trial F 

a0 = 0.0022583 

Ol = 0.0969543 

a2 = = -0.0341644 

a3 = -0.00694275 

CL4 = ■ -0.000930786 

generations evolved. Even in the final experiment, where there were 10,000 individuals 

in the pool, the final solution was found by chance. It is unclear whether the optimal 

solution would be converged upon, even if the gene pool were allowed to evolve for 

many generations. This may be attributed to a number of differing factors, such as 

the actual mathematical structure of FE, the parameterization of the weights, or the 

choice of genetic operators and their probabilities. However, it is not difficult to see 

that the weights evolved in Trial F produce a usable, if not noisy, image. 

Figures 23-26 show the results of the GAFE for other images, using the weights 

found in Trial F. Table 7 outlines the SNR between the original fractal error images 

and their resulting approximations. Table 8 compares computation times for the 

fractal error algorithm and the GAFE. There is approximately a 30 % decrease in 

computation time with the GAFE. 

The evolved expression appears to function for this limited set of images, pro- 

viding the needed features (either edges and/or cultural objects) in the presence of 

some noise. The noise in the images does not hinder general edge detection or seg- 

mentation. Simple thresholding can be employed to filter out the noise, because its 

gray-scale values are much higher than that of the desired features in the GAFE 

images. 
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TABLE 7 

SNR For Figures 23-25 

Image SNR 

Washington, DC Image 2.41 

SAR Image of Desert Terrain 5.08 

Gear Image 1.57 

Coke Can Image 2.66 

TABLE 8 

Computation Time For The Original FE Algorithm and The GAFE 

Size FE Algorithm (seconds) GAFE (seconds) 

256x256 1.43 0.43 

227x425 2.14 0.64 

589x409 5.59 1.65 

512x480 5.68 1.69 

974x723 16.36 4.85 

1267x941 . 27.74 8.22 



41 

The mathematical structure of GAFE poses a unique problem. There is no 

generalized form of fractal error as it is defined in Chapter III. A generalized form 

would make it possible to generate a type of convolution mask which could quickly 

and easily be used to compute fractal error. Forcing a mathematical structure to 

find the approximation is restricting. In the future, another approach may evolve a 

mathematical expression using a GP. This would expand the search space from merely 

searching the weights for FE to searching the infinite space of reusable functions to 

find the approximation. 
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FIGURE 16-Resulting FE images from each trial described in Table 5. 
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FIGURE 17-SNR vs. number of generations for Trial A. 
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FIGURE 18-SNR vs. number of generations for Trial B. 
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FIGURE 19-SNR vs. number of generations for Trial C. 
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FIGURE 20-SNR vs. number of generations for Trial D. 
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FIGURE 21-SNR vs. number of generations for Trial E. 
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FIGURE 22-SNR vs. number of generations for Trial F. 
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(a) Fractal Error 

(b) GAFE 

FIGURE 23-A comparison of GAFE vs. fractal error for the Washington, DC image. 
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(a) Fractal Error 

(b) GAFE 

FIGURE 24-A comparison of GAFE vs. fractal error for the SAR image of desert 
terrain. 
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(a) Fractal Error (b) GAFE 

FIGURE 25 - A comparison of GAFE vs. fractal error for the Coke can image. 
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(a) Fractal Error 

(b) GAFE 

FIGURE 26-A comparison of GAFE vs. fractal error for the Gear image. 



CHAPTER V 

TWO-DIMENSIONAL ENTROPIC SEGMENTATION 

Segmentation is an important task in many image processing systems. Auto- 

matic target recognition may use segmentation to separate the desired target from 

background. Segmentation is often used to automatically highlight certain parts of 

the image that may be difficult to see with the human eye, such as cultural objects 

in synthetic aperture radar (SAR) imagery. 

Thresholding gray scale values is the simplest method of segmentation. Thresh- 

olding implies that the object or objects in question have gray levels that are distinctly 

different from the background or other objects in the scene. For example, a black 

part on a white conveyor belt has distinctly different gray levels from the background 

it is against. The histogram for the gear image, shown in Figure 27, plainly shows the 

separation in gray-scale. Choosing a point somewhere between the large value at 0 

and the peak at 190 will produce a segmented image as shown in Figure 28. However, 

examination of the histogram results in a second threshold point, between 130 and 

160. Multi-point thresholding will produce the image shown in Figure 29. However, 

no useful information was gained from providing a second threshold. 

Selecting thresholds can be grouped into two categories, local methods and 

global methods. Segmenting an entire image with a single value using the gray-scale 

histogram is a global method. Local methods partition an image into a group of 

sub-images and select a threshold point or set of threshold points for each of the sub- 

images. Global thresholding techniques are easy to implement, but some methods 

tend to be inaccurate, especially with complex images. The reader is encouraged to 

reference Sahoo et al.  [55] and Wong and Sahoo [61] for excellent surveys of global 
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(a) Gear image 

100 150 
Gray Levels 

(b) Histogram of gear image 

FIGURE 27-Gear image and its resulting gray-scale histogram. 
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FIGURE 28-Segmented gear image with a gray level threshold of 50. 
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FIGURE 29-Segmented gear image with gray level thresholds at 50 and 145. 
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thresholding methods using information theory. 

This chapter presents a novel segmentation method after a technique pre- 

sented by Sahoo, Slaaf and Albert [54]. This method finds an thresholding line using 

the information from a two-dimensional probability density function. Sahoo, Slaaf, 

and Albert proposed an entropic global thresholding method that selects a threshold 

point based on minimizing the difference between entropies of the object and the 

background distributions of the probability density function. The method presented 

here uses this thresholding point along with statistical information from the assumed 

data sets of the object and the background to produce a second point. The line that 

is produced from the two thresholding points is then used to separate the object data 

set from the background data set. 

A.    General Theory 

Sahoo, Slaaf, and Albert [54] published an excellent review of the theory behind 

their entropic thresholding method. It will be summarized here. 

Thresholding typically uses the gray-level histogram of an image. Assuming 

a binary image, let B = b0, h be the pair of binary gray levels. B is the partition 

that separates the object from the background in the image. Mathematically, this 

partition is defined as 

b0   if i(r,c) < t 
3(r,c) = < (22) 

bi   if i(r, c) > t. 

where i(r,c) is the gray-scale image, t is the gray-scale threshold, and j(r,c) is the 

resulting binary image.  In general, a thresholding method determines the value of 

t. Many methods use statistical information within the image to determine t.  The 

gray-scale histogram can approximate the density function 

h(x) = Prob[/(m, n) = x] (23) 
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by using the expression 

h(x) = -52-, (24) 
dtotal 

where h(x) is the resulting histogram of the image, gx is the number of pixels with 

the gray- scale value x, and gtotai is the total number of pixels in the image. gtotai is 

equal to MN if the image is MxN. 

There have been many different techniques proposed to estimate t. The max- 

imum entropy sum method was proposed by Kapur, Sahoo, and Wong [35]. Their 

algorithm is based on the maximization of the information measure between the ob- 

ject and the background. Kapur, Sahoo, and Wong used the a priori entropy as the 

information measure. For a more detailed explanation of entropy, the reader should 

reference Chapter 15 of Papoulis [46]. 

Let Pi = h(i) = rii/MN define the estimate of the probability gray-level value. 

The a priori entropy is defined as 

255 

HT = -Y,Pilnpi (25) 
*=o 

for the entire image.   Assuming two classes of pixels, where b0 denotes the class 

of "black" pixels (gray-scale value of 0) and bi denotes the class of "white" pixels 

(gray-scale value of 255), the a priori entropies for each class of pixels are 

H»o(t)   =   -t-jh^^Ty (26) 
t^>P(bo)     p{b0) 

where 

P(bo)   =   J2Pi (28) 
i=0 

255 

P(h)   =    E Pi- (29) 
i=t+l 

Note that p(bo) +p(h) = 1. Kapur, Sahoo, and Wong define the information between 
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the two classes to be 

*(*) = Hb0(t) + Hbl (t) = ln.b(fiö)p(6i)] + -^L + H,T~f,(t (30) 
p(b0)       l-p(6i) s 

where H(t) is defined as 
t 

H(t) = -2>lnPi. (31) 
i=0 

Kapur, Sahoo, and Wong selected the threshold to be the value of t* at which $(*) 

is maximum. They noted that since some p{ will be very small, care should be taken 

in evaluating the term lnp;. 

In [54], Sahoo, Slaaf, and Albert define the optimal threshold t* by minimizing 

the difference of the entropies Hbo(t) and Hbl(t). The function 

E(t) = [Hb0(t)-Hbl(t)]2 (32) 

measures the difference in the a priori entropies of classes b0 and 6j. Sahoo, Slaaf, 

and Albert pointed out that the smaller E(t), the more homogeneous are b0 and 6X. 

Thus, the global minima of E(t) can be used to denote t*. This is expressed as 

t* = Arg min E{t). (33) 

Sahoo, Slaaf, and Albert show that their entropy crossover method tends to be more 

accurate in some applications then other entropic thresholding methods, such as in 

[35]. 

B.     2-D Extension Of The Entropy Crossover Method 

This section will outline the 2-D extension of the entropy crossover method 

outlined in [54] as well as the novel technique after the proposed extension. Often 

the information gathered by the gray-scale histogram is not enough to accurately 

segment a given image. In these cases, it is not uncommon to incorporate additional 

information in the histogram. The additional information results in a 2-D histogram 
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FIGURE 30-The overall thresholding point for the 2-D histogram shown. 

by computing the frequency distribution of the second feature and combining it with 

the gray-level histogram. This 2-D histogram represents a joint probability density 

function of the two features. The co-occurrence matrix is a commonly used 2-D 

histogram. Cooper [12] used a 2-D histogram made up of the gray-level values and 

fractal error. 

Abutaleb [1] proposed that the optimal threshold point for a 2-D histogram can 

be found by locating the optimal thresholding point for each feature in the histogram. 

This will result in two separate thresholds, £1* and £2*. When the threshold for each 

feature has been found, the two orthogonal lines segmenting the features divide the 

matrix into four quadrants. The intersection of the orthogonal lines produces the 

overall thresholding point (tl*, £2*), as shown in Figure 30. 

Brink [7] used the quadrants for segmentation. He segmented Quadrant II 

pixels as background and Quadrant IV pixels as foreground. However, he discarded 

the pixels located in Quadrants I and III, which may discard important information 

concerning the objects to be segmented.   Instead of thresholding in quadrants, a 
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thresholding line in the 2-D histogram plane would provide better segmentation. Such 

a line is shown in Figure 30. Sahoo, Slaaf, and Albert recognized that the selection 

of a single point to classify the 2-D pdf may completely discard some sections of 

the desired distribution that reside near, but not in, the foreground or background 

quadrants. They suggested finding the optimal thresholding line by minimizing the 

difference in the entropy values on either side of a proposed line in the 2-D histogram 

plane, not unlike the method used in finding the optimal point in the 1-D histogram. 

However, this could prove to be a costly method, as there are approximately 3.9xl05 

lines that intersect a 256x256 histogram. 

Instead of an exhaustive search of the possible thresholding lines, it is possible 

to calculate a thresholding line using the statistics of each quadrant. Let (x,y)I: 

(x;V)n, (x,y)ni, and (x,y)rv be the central moments for each of four quadrants 

respectively. Thus, 

X    = (34) 
Pquad 

- £% 
y = —— (35) 

Pquad 

where pguad is equal to the total number of points in a given quadrant. Figure 31 shows 

two separable classes in a 2-D histogram, and the central moment for each quadrant is 

computed. The quadrant with the most points is determined, and its central moment 

is used with the optimal threshold to form a line. This corresponds to Quadrant II 

in Figure 31. This resulting line is perpendicular to the desired thresholding line, as 

shown in Figure 32. The algorithm is summarized in Table 9. 

C.    Results 

The segmentation algorithm was first tested on random data from different 

Gaussian distributions. Figures 33, 34, and 35 show each set of Gaussian data, the 

optimal thresholding point, the central moment, and the optimal thresholding line. 



61 

TABLE 9 

Automatic 2-D Entropie Segmentation Algorithm 

1. Calculate the optimal thresholding point (tl*,t2*) as described 

in Sahoo, Slaaf, and Albert [54]. 

2. Divide the 2-D histogram into quadrants about (£1*, £2*). 

3. Determine the quadrant with the largest number of points and 

calculate its central moment, (x.y). 

4. Compute the line, l(x,y) that intersects (tl*,t2*) and (x,y). 

5. Define L(x, y) to be the line perpendicular to l(x, y). 

6. Segment the image using L(x, y) as the optimal thresholding 

line. 

The thresholding line provides nearly error-free segmentation in each case. 

The Alameda, CA aerial image, the Washington, DC aerial image, the SAR 

desert terrian image, and the suburban aerial image were segmented using the gradient 

values and fractal error as features. The results of each segmentation are shown 

in Figures 36 through 39. The resulting histograms, optimal thresholding points, 

central moments, and segmentation lines are shown in Figure 40. Man-made features 

and edges are easily identifiable in the Alameda, CA and Washington, DC images. 

However, the specular noise in the SAR makes segmentation difficult. The resulting 

segmentation of the suburban aerial image is poor. While the edges of the cultural 

objects, such as buildings, are outlined, the segmented image is noisy making it 

difficult to visually interpret. 

Cooper [12] used gray-scale values and fractal error as features in a 2-D statisti- 

cal classifier to successfully segment certain features in aerial images. Using gray-scale 

values and fractal error as features, results were produced using the segmentation al- 
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gorithm on the Alameda, CA image, the Washington, the DC image, the SAR image, 

and the suburban aerial image. The results of this segmentation are shown in Fig- 

ure 41 through 44, and the resulting histograms are shown in Figure 45. The DC 

image produces poorly segmented results. It is likely that the information needed in 

the DC image, such as man-made objects or edges, could not be separated with a 

single linear curve. Perhaps a piece-wise linear curve or a higher-order curve would 

provide a better segmentation using gray-scale value and fractal error. However, the 

segmentation results for the Alameda, SAR, and suburban images are very good. The 

cultural objects are highlighted and the natural terrian is classified as background. 

There is some misclassification of pixels in the SAR due to specular noise, but not 

enough to hinder visual correlation. 

Figure 46 shows ground truth for the suburban aerial image. For the resulting 

segmentation image using gradient and fractal error, shown in Figure 39, the misclas- 

sification of pixels is 25 %. However, for the resulting segmentation image using gray 

levels and fractal error, shown in Figure 44, the misclassification is only 13 %. This 

error may be due, in part, to the occlusion of houses and other cultural objects by 

the trees in the image. 

Cooper compared the results from classification using a modified busyness op- 

erator [12] with the results from classification with fractal error. Figure 47 illustrates 

this modified busyness operator with the suburban aerial image. Figure 48 shows 

the 2-D entropic segmentation of the suburban aerial image using as features the 

modified busyness operator and gray levels. The misclassification of pixels with the 

modified busyness operator is 22.2 %. However, if the normalized busyness image is 

used instead, the misclassification is 17 %. The resulting images do not provide the 

accuracy that fractal error did with this particular segmentation method. 

The segmentation algorithm was accurate for each set of Gaussian data. How- 

ever, success on real-world images is dependent on an intelligent choice of features. 
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FIGURE 31-Two separable classes with the optimal threshold point and the four 
quadrant's central moments. 

Future research should focus on a study of segmentation with different features. Such 

a study may provide an indication of which features may be more effective than others 

using the segmentation algorithm. 
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FIGURE 32-Two separable classes and the resulting optimal threshold line. 
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FIGURE 33-Example 1-Two Gaussian data sets and the resulting threshold line. 
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FIGURE 34-Example 2-Two Gaussian data sets and the resulting threshold line. 
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FIGURE 35-Example 3-Two Gaussian data sets and the resulting threshold line. 
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(a) Original Image 
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(b) Segmented Image 

FIGURE 36-Aerial image of Alameda, CA segmented using gradient and fractal 
error as features. 
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(a) Original Image 

--, ^i...      '  ■, %-;'/">-■ \ 

■- ■-;*• 

- -'-. / ,_ •-- ■ >. 
y i." 3?.., 

l.'^f.      t.-^'Vi:      !.:*»'<,.-.. '      '/.       'i>?S 

(b) Segmented Image 

FIGURE 37-Aerial image of Washington, DC segmented using gradient and fractal 
error as features. 
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(a) Original Image 

(b) Segmented Image 

FIGURE 38-SAR image of desert segmented using gradient and fractal error as 
features. 
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(a) Original Image 
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(b) Segmented Image 

FIGURE 39-Aerial image of suburban area segmented using gradient and fractal 
error as features. 
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FIGURE 40-2-D Histograms for each of the images shown in Figures 36 through 39 
with the resulting threshold lines. 
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(a) Original Image 

(b) Segmented Image 

FIGURE 41-Aerial image of Alameda, CA segmented using gray levels and fractal 
error as features. 
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(a) Original Image 

(b) Segmented Image 

FIGURE 42 -Aerial image of Washington, DC segmented using gray levels and fractal 
error as features. 
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(a) Original Image 

(b) Segmented Image 

FIGURE 43 - SAR image of desert terrian segmented using gray levels and fractal 
error as features. 
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(b) Segmented Image 

FIGURE 44-Aerial image of suburban area segmented using gray levels and fractal 
error as features. 
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FIGURE 45-2-D Histograms for each of the images shown in Figures 41 through 44 
with the resulting threshold lines. 
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FIGURE 46-Ground truth for the suburban aerial image shown in Figures 39 and 
44. 

(a) Busyness Image (b) Normalized Busyness Image 

FIGURE 47-Resulting busyness images using the aerial image of suburban area. 
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(b) Normalized Busyness 

FIGURE 48 - Aerial image of suburban area segmented using gray levels vs. busyness 
and gray levels vs. normalized busyness as features. 



CHAPTER VI 

FRACTAL ERROR-BASED EDGE DETECTION 

As previously mentioned, edge detection is a two-phase process. The first step 

is edge enhancement, or the process of locating pixels in the image that may be 

considered an edge. Edge linking attempts to link edges that might be broken. Edge 

enhancement and linking using fractal error are described in this chapter. 

A.    Edge Enhancement 

Edge enhancement is the process of detecting pixels that may be part of a step 

edge in the scene. Fractal error is a useful measure for enhancing edges, which may 

be boundaries between textures or shading. These boundaries do not fit well in the 

fBin model, therefore, normalized fractal error provides a likelihood, a probability 

that a pixel may belong to a boundary edge. Thus, the higher the fractal error value 

(and thus, the poorer the fit in the fBm model), the higher the likelihood that the 

pixel is part of the edge map. Edge pixels are assigned by simple thresholding, and 

false edges are eliminated by adjusting a thresholding constant, a. 

Table 10 outlines the enhancement algorithm. Figure 49 shows the gear image 

whose edges have been enhanced with this algorithm. The edges are barely detectable 

in the image when the threshold a was chosen too high, such as the image in Figure 

49 (a). When the threshold is too low, the edges are enhanced along with the noise in 

the image, such as the scene in Figure 49 (d). Further study is needed to determine 

an optimal threshold. 
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TABLE 10 

1. 

2. 

3. 

4. 

Edge Enhancement Algorithm 

Calculate fractal error for the image. 

Normalize fractal error. 

Specify the thresholding constant a. 

Choose candidate edge pixels if fractal error is greater than a. 

\**»f r1 

(a) a = 0.5 (b) a = 0.3 

K *gu(r 

#*•# 

.-«"V r—<  » 

(c) a = 0.25 (d) a = 0.1 

FIGURE 49-Edge enhancement with the gear image for various a thresholds. 
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FIGURE 50-Candidate edge pixels, with start nodes defined. 

B.    Edge Linking 

Edge linking involves connecting edges that are disconnected either by a lack 

of change in gray level values, by noise, or by occlusion. Broken edges may occur 

with fractal error edges because of a lack of dissimilarity between two textures or by 

noise masking the edges by assuming a sort of false self-similarity. 

Linking requires defining start nodes, a fitness measure for each possible path, 

and stop criteria. Edge pixels with no neighboring edge pixel or one neighboring edge 

pixel are designated as start nodes for the linking algorithm. An illustration of start 

nodes is shown in Figure 50. 

Farag and Delp [19] suggested that the number of edge paths to be searched 

can be reduced significantly by restricting each component of the path to no more 

than a 45° turn. This reduces the very large set of edge paths of length five to twenty- 

four unique paths. They are shown in Figure 51. The best path is then found by 

exhaustive search through all twenty-four paths. The fitness of each path is defined 
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FIGURE 51-The twenty-four unique edge paths suggested by Farag and Delp [19]. 
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as 

F = Y,™(Pi), (36) 
i=0 

where p{ is the possibility of a particular pixel being an edge, that is, its normalized 

fractal error value, and w(pi) is the weighting function 

w{pi) =Piexp(pi). (37) 

Figure 52 illustrates the weighting function. Pixels with high likelihood of being part 

of the edge path have an exponentially higher weight than those who are not likely 

to be part of the path. The edge path with the highest value of F is chosen to be 

the best path. The end of the path is marked as a start node and the edge tracing 

continues. 

The tracing continues for a particular edge path until the path encounters 

an already denned edge pixel or another start node. The tracing is also terminated 
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if the fitness for a chosen path is less than a particular user defined threshold r. 

This threshold prevents the algorithm from straying from the desired edge boundary, 

especially in noisy images that may have deceivingly high fractal error values in or 

around an edge boundary. If a particular path has a fitness that is less than r, that 

path is discarded and the tracing ceases. The search begins again for another start 

node. 

Once the best path is chosen from the start node, the final direction of the 

best path is used as a criteria for defining the next best path. For example, if the 

best path after a start node ends with an easterly direction, defined as direction 0 

in Figure 51, then the next best edge must either start in an easterly, northeasterly, 

or southeasterly (0, 1, or 7, respectively) direction. Therefore, if the directions are 

numerically assigned as in Figure 51, then the three candidate path directions for a 

next path are expressed as 

Co   =   (PD-1)%8 (38) 

Cx   =   PD (39) 

C2   =   (PD + 1)%8 (40) 

where C0, C\, and C2 are the three candidate edge directions, PD is the final direction 

of the previous path, arid % defines the modulus operation. Table 11 outlines the 

entire edge linking process. 

C.    Results 

A synthetic image was used to test the edge detection algorithms. Figure 53 

shows the test image with no noise present. The enhancement threshold a was equal 

to 0.25 in each image. The edge linking threshold was allowed to vary for different 

trials. Each trial is shown in Figure 54. The edge detection is consistently good for 

each value of r. 
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TABLE 11 

Edge Linking Algorithm 

2. 

3. 

o. 

6. 

7. 

Determine possible edge pixels with edge enhancement algo- 

rithm. 

Determine start nodes. 

For each start node, search through possible paths for best edge 

path. 

Stop search if chosen path intersects a previously defined edge 

pixel or another start node, or if the chosen path's fitness is less 

than the user-defined threshold r. 

If chosen path's is less than r, discard path. 

Otherwise, calculate the three candidate directions for next path 

and determine best fit edge. 

Continue steps 3-6 until all start nodes are linked. 

FIGURE 53-Noiseless synthetic image used to test fractal error edge detection. 
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(a) r = 1.5 (b) r = 1.0 

(c) T = 0.75 (d) r = 0.5 

FIGURE 54 - Results of fractal error edge detection with test image in Figure 53. 
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-FIGURE 55-Noisy synthetic image used to test fractal error edge detection. 

To test the robustness of the algorithm, the synthetic image was corrupted with 

Gaussian or "white" noise. Figure 55 shows the synthetic image corrupted with noise. 

The algorithm was executed over this image with a = 0.25 and r = 1.5,1.0,0.75 and 

0.5, as shown in Figure 56. It is clear that the edge paths wander from the edge 

boundaries when the path cutoff r is chosen poorly. However, it is not clear what an 

acceptable choice of r should be. If r is too large, gaps in the edge boundary will not 

be linked. On the other hand, if r is too small, false edges will be present. 

To compare the fractal error edge detection to another well-established edge 

method, the noiseless test image and the noisy test image had their edges detected 

by the fractal error edge detection as well as the Canny edge operator. The Pratt 

figure of merit [30] is a numerical measure of the accuracy of an edge detector. It is 

expressed as 

1   IA 

— Y- 
JL i=l x + ad2' (41) 

where IL = max(IL,IA), Ij and IA represent the number of ideal and actual edge 

points, a is a scaling constant, and d is the separation distance from an actual edge 
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FIGURE 56 - Results of fractal error edge detection with the noisy test image in 
Figure 55. 
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point to the nearest ideal edge point. For ideal edge detectors, F will equal 1. For 

most edge detectors, the Pratt figure of merit will decrease as the signal-to-noise ratio 

(SNR) decreases. Jansing, Allen, and Chenoweth [32] used the Pratt figure of merit 

to show that fractal error edge enhancement was more robust in a.noisy environment 

than the Canny edge operator. 

Figure 57 shows the edges of the noiseless test image (Figure 53) and the edges 

of the noisy test image (Figure 55). Both images were smoothed with a Gaussian 

kernel (a = 1.0) and thresholded at the gray-scale value 180. The Pratt figure of 

merit for these two images was F = 0.9952, with the edges from the noiseless test 

image defining the ideal edges. Using the scene from Figure 54 (a) as the ideal edges 

for fractal error edge detection, the Pratt figure of merit was computed for the scene 

in Figure 56 (a), producing F = 0.9656. This illustrates that the fractal error edge 

detection algorithm is comparable to the Canny edge operator in performance. There 

may be some improvement in the Pratt figure of merit for the fractal error edge 

detection algorithm, if the noisy image was smoothed before the fractal error edges 

were detected, like the smoothing performed in the Canny edge operator. 

The gear image was also used to illustrate the usefulness of this fractal error 

edge detection. Figure 58 shows the detected edges of the gear scene with a constant 

a = 0.25 and varying r. In each case, the gear was outlined satisfactorily, with the 

exception of a tooth in the lower left section of the part. This may be corrected by 

lowering the value of a, but at the risk of amplifying noise in the image. Decreasing 

the value of r may also promote the linking of the edges on either side of the gap, but 

may increase the probability of "wandering" edge paths, which lead to false edges. 

Further study is needed to determine consistent selection of the optimal a and r 

thresholds. 

There are two serious limitations to this edge detection: the time needed to 

search through the edge paths and the lack of information in choosing an optimal 
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(a) Noiseless Test Image (b) Noisy Test Image 

FIGURE 57-Edge detection of the noiseless and noisy test images using the Canny 
edge operator. 

r. These issues should be addressed in future work. The exhaustive search could be 

replaced by an intelligent search, such as an A* search (used by Farag and Delp in their 

edge linking algorithm) or a genetic search. The selection of r could be eliminated 

completely by modifying F of Equation 36 so that selected edges would have easily 

distinguishable fitness values. For example, poorly fitting edges would have fitness 

values near zero and well-fit edges would possess fitnesses values around 1. Then, 

intelligent selection of edges could be automatic and not require the assistance of the 

user. 
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FIGURE 58-Results of fractal error edge detection with the gear image. 



CHAPTER VII 

CONCLUSIONS 

Presented in this work were three methods relating to feature and edge ex- 

traction using fractal error. The first method, a genetic approximation to fractal 

error called GAFE, was shown to adequately mimick the original fractal error algo- 

rithm with an average SNR value of 3. This method evolved a set of weights in a fixed 

mathematical structure. The best set of weights is used, along with the mathematical 

structure, to produce the approximation to fractal error. 

A novel 2-D entropic segmentation method was introduced. This method was 

shown to be very accurate using Gaussian data. Given a set of features that produce 

two unique or nearly unique classes, this method should automatically segment an 

image with little error. Test images were shown using gradient and fractal error, as 

well as gray levels and fractal error, as the features in the segmentation. 

Edge detection using fractal error as a likelihood measure was shown to be 

accurate for synthetic and real-world images. Using the Pratt figure of merit, the 

fractal error edge detection algorithm was shown to be competitive with the Canny 

edge operator. However, the exhaustive search for possible edge paths in the edge 

linking process created a computationally intensive algorithm. 

Fractal error should be considered an extremely useful measure with numerous 

applications. For example, the fractal error metric could be useful in the analysis 

of images recently transmitted from the Pathfinder and Sojourner mission on Mars. 

Automatic target recognition and detection of cultural objects in aerial imagery can be 

performed accurately with fractal error. The detection of self-similar blocks of pixels 

using fractal error could provide a quick, effective method of image compression, 
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compressing those self-similar blocks and keeping those block which are not self- 

similar in nature. The following is a brief list of future research areas that utilize 

fractal error. 

• An quantitative study of different window sizes and shapes in the calculation 

of fractal error is needed. 

• The development of an approximation to fractal error using genetic program- 

ming is needed. This approach would allow the mathematical structure of the 

approximation to evolve, rather than just a set of weights to a fixed mathemat- 

ical structure. This evolved structure may provide a more accurate approxima- 

tion of fractal error. 

• An quantitative investigation of fractal error as a texture measure would be 

revealing, comparing fractal error to other traditional texture features, such as 

Haralick's co-occurrence features [23]. 

• The specular noise of unfiltered SAR images was shown to be problematic in 

segmentation with fractal error. Thus, a study of cultural object detection on 

filtered SAR images using fractal error is required. 

• The choice of the constants a and r outlined in the fractal error edge detection 

algorithm is undefined and heuristic. Research to define optimal selection of a 

and T would provide a more automatic edge detection algorithm. 

• A major disadvantage to the fractal error edge detection algorithm is computa- 

tionally expensive. Development of a fast search method, such as a genetic or 

simulated annealing search, may improve the processing time of edge detection 

using fractal error. 
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Fractal error for detecting man-made 
features in aerial images 

B.E. Cooper, D.L. Chenoweth and J.E. Selvase 

Indexing terms: Remote sensing. Image processing. Fractals 

A technique is proposed for aiding photointerpreters in detectin« 
man-made features in aerial reconnaissance images The 
technique, which uses a metric called fractal error, is bas~ed on the 
observed propensity of natural image features to fit a fractional 
Browman motion model. Man-made features usually do not fit 
this model well, and consequently the fractal error metric may be 
used as a discriminant function for detecting man-made scene 
features. 

introduction: Analysis and interpretation of aerial ret 
images often require the analyst to view Iarac amoui 
data for the purpose of detecting man-made7eatures. 
ter a new pholointerprctation metric, referred to as fra 
applied to the problem of detecting man-made fcatii 
reconnaissance images. It is based on the observation 
features in high-resolution grey shade aerial images 
tional Brownian motion (fBm) mathematical model 1 
text of Mandelbrot [I] links fractal geometry to the 
and infinite detail unique to natural features, and Pentl 
tends to support this hypothesis. 

By computing the fractal error locally over an emir 
possible to accentuate local scene features that have 
origins. This information can then be used by the photi 
for a variety of purposes, such as change analysis and 
turc extraction. 

Fractal error: We may describe fractional Brownian 
terms of the properties of the signal's increments The 
must be normally distributed with a mean of zero and 
proportional to the 2H power of the Euclidean distan 
the locations where any two signal measurements are 
more common form shown below combines these two 
into a single expression in terms of the mean of the mu 
the increments. In this case the signal of interest is a t 
sional grey shade aerial image. 

Let G(x) refer to a two-dimensional grey shade im; 
will be compared to the fBm signal model. Thus, x = (v 
ifies the discrete row and column co-ordinates of t 
Assume that the discrete valued function G(x) e [0 
scnts the grey shade at location x. If G(x) fits the fBm m 
the following equations hold for some H (where 0 < H 
some k (where k > 0): 

£[|G(X2)-G(x,)|] = *|x,. -x,|" 

£[|-lC|Ax!rj = *|Ax|" 

The fractal dimension D is related to the parameter // b) 
I - //, where E is the number of independent variables < 
nal. Here. £ = 2. 

The distance between a pair of pixels is |Ax| = |x, - x, 
increment, or difference in grey shades of the two pixels': 
- G(x,) - C(x,). The average absolute grey shade differer1 

across several pairs of pixels with spacings or the same rr 
will lollow the above exponential scaling if the image fif 
model. Moreover, a linear equation may be obtained by t 
logarithm of this equation: 

ln(£[|AC|Ax,|]) = ln(A-) + ff ln(|Ax|) 

Using least-squares linear regression, the estimated values 
may be determined from a collection of pixel distances i 
associated average absolute changes in grey shade. The ( 

can be obtained locally using a window operator that is si 
compatible with the resolution of the image and its featui 

The error at a particular pixel spacing"within the win 
be defined as the difference between the actual and estim 
ues as follows: 

CT-mriAx|=£[|ACAxi|]-X-|Ax|" 

Finally, we may use the root mean square (RMS) of these 
ual errors within the window to characterise the overall lo 
in the estimate. Letting n be the number of pixel distance' 
ered in the window. 

RMS error = 

\ 

1     v 
- 2J<?r/v>nAx )-> 

l-ixi 
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The RMS error measures the degree to which the observe 
fits the fBm model in a window centred at the pixel of 
and it is referred to here as the fractal error. Equivaler 
complement of the fractal error may be considered as a 
of the 'fractalness' of the image at the pixel of interest 

In this study the fractal error is implemented using wind, 
of JXD. 7x7 and 9x9 pixels. Rather than using everv possil 
spacing within the window, computational effort'is redi 
examining only those distances from the central pixel of tl 
window. For example. Fig. 1  illustrates the five differen 
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Pixel  distances 

ÄX:1 

Ax - 2 
4x:€ 
Ax   :N/8 

"Fig. 1 Pixel spacing used with 5x5 fractal er 

Av= I 
AA- = ■/: 
Av = 2 
Av = V5 
A.v = v'S 

spacings used within a 5x5 window. The 7x7 and 9x9 operators 
are similar to the 5x5 window. 

|757/2 j 

Fig. 2 Original images 

a April 
b October 

Results: To illustrate the technique a pair of images will be consid- 
ered to demonstrate qualitatively the ability of the fractal error 
operator to detect man-made image features. The images consist 
of aerial photographs of a residential area with a fairly high con- 
tent of deciduous vegetation. The same scene was photographed in 
April and in October. This was done to evaluate the robustness of 
the metric relative to seasonal variations and changes in contrast 
and illumination that occurred at the different times. The primary 
man-made objects in the test images are about 50 to 60 pixels in 
size. The pair of images is shown in Fig. 2. Fig. 3 illustrates the 
fractal error of each of these images, using the 7x7 window size, 
throsholded so that features with large fractal errors appear black 
against a white background. It is obvious by comparing the oriai- 

■ *  ■'■„ ■»■&$» ***VL 

Fig. 3 Binary fractal error images 

a April 
A October 

nal image and the threshold fractal error images that the fractal 
error performs reasonably well in delecting man-made features. It 
is also fairly insensitive to changes in illumination, contrast and 
season. Note the brighter lighting and greater contrast in the 
October image of Fig. 2 compared to the April image, as well as 
the distinct increase of foliage in the October scene. 

Conclusions: It has been demonstrated that man-made scene fea- 
tures can be detected in grey shade aerial reconnaissance images 
using the fractal error metric. The metric provides the photoimcr- 
pretcr analyst with a tool for automatically processing large image 
databases to determine the presence of. and estimate the extent of. 
man-made features in grey shade reconnaissance imagery. 
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Fractional Brownian Motion 

tensttcs could (a„d should) be ™°"S* «f error ,„ ,he estimation of other fractal Z 

^•'-r>^nd„,herJefVacX   ^^ 
Browntan motion. me"'sl°" »*=d here,., based upon ÜK //parameter of frac.L„a|' 

iower 
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formation of galactic clusters. In contrast to traditional geometry, fractal geometry readily accom- 
modates the complex.ty and infinite detail present in nature. 

Modeling Natural Terrains with Fractals 

Mandelbrot [8] noticed that natural terrain surfaces may be modeled by two-dimensional 
ractiona Browman motion with startling effectiveness. Introduced by Mandelbrot and Van Ness 

• I  uT BJWman m0ti°n (sometimes abbreviated)»/») is a generalization of Brownian mo- 
tion, which describes the complex, erratic movement of a particle, subjected to the collisions of the 

ttnTm        IT rrTdinS medium- V«» W established a link between the spectral distribu- 
tion of fBm and the fractal dimension. Based on this, he used Fourier synthesis to generate natural 

rams and even complete landscapes. Pentland [12] argued that natural terrain Should folC 

he a trd IT"0" " ,S t0rmed ^ fr3CtaI Pr°CeSSeS SUCh aS Negation and erosion. Furthermore, 
he asserted that an .mage mtens.ty surface of a fBm surface will also produce fBm, under norma 

Äto ^ °,her WOrdS' "^ °nIy may tCrrain be m°dded b* fBm' hut jWs öS 
Modeling Natural Image Textures 

tended m™T™^ ^ ^ ™y ^ "^ ta a"alyZe imaSeS of natural terrain- P™«™* [12] ex- 
tended fBm to image textures ,„ general. He found that fBm relief maps of varying fractal dimension 

pVTTv g tal dimenslon from the Four^ transforms of local neighborhoods 
P^nt and dustrnguKS e   the textures within a sampling of Brodatz textures and textures from natural' 

deJrt  Jn P     m      o       a dimenSi0" WaS a,SOUSed t0 Se-ment the «ß«™ mithin images of a 
model tZ Tu    " and M°Unt °aWn-  KeMer Ct aK W devd°Ped a <>n-dimensional fBm model to distinguish between silhouettes of trees and mountains. 

worlr J!ntUra! 'Tro teXtUre m0de,S are n0t reStricted t0 usinS on,y thc fractal dimension. In later 
work Keller et al. [5] supplemented the fractal dimension with a lacunarity estimate to segment a 
set of Brodatz textures and a scene of trees. Likewise, Vehel [15] implemented an alternate fortn* 
^ iaCU"an7 and,*e tractaI di™™on to classify images of human lungs. Generalizing mil 

normally scalar fractal d.mension, Kaneko [4] used a 2 x 2 fractal dimension matrix to captu^ 
directional dependencies. The eigenvalue of this matrix was used to characterize Brodatz texturM 
Dennis and Dess.pr.s [2] studied the derivative (rate of change) of the fractal dimension as a textuAl 
signature across a range of pixel distances. "" 

THE MODEL 

Motivation 

In spite of the variety of the fractal measures discussed above, all of them (exceptj|j 
rely upon one fundamental assumption: that the image texture is a fractal. Presumably, this» 
results from Pentland's original assertion that images of natural terrain may be modeled b; 
(specifically fBm) approach [12]. However, Pentland assumes that the scene's reflect^ 
uniform. When this condition does not hold, the validity of the fractal model is qujjgf 
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Image Segmentation Using Modified Neural Network Techniques 

V. Edward Gold, Darrel L. Chenoweth, and John E. Selvage 
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ABSTRACT 

This paper describes an application of neural networks in segmenting gray shade images. It 
describes a method for ranking pixel features relative to their ability to discriminate among different 

image segment classes. A neural classifier is proposed which operates on pixel feature vectors as 

inputs to the network, each feature having a variable weight. The weights are iteratively changed to 

obtain dense and highly separated clusters. The resulting weights are indicative of the usefulness, or 
rank, of the features. 

Key Words: Image segmentation, feature ranking, neural classification, Kohonen maps 

1. INTRODUCTION 

This paper describes a unique implementation of neural network technology for image 
segmentation applications. This algorithm characterizes each pixel of an image as a vector. A 
k-means classifier (implemented as a Kohonen[l] network) then assigns the pixel to an image 
segment class. The results are then output as a segmented image. 

Many neural network approaches rely on a classifier to determine the relationship between the 
input vectors and the desired outputs. Assuming the network achieves acceptable performance, the 

designer is still left with little or no understanding of what the network found valuable in the input 
data. Thus, further optimization may be difficult or impossible. To greatly reduce the number of 
input variables, we propose a feature extraction stage to remap the input pixels into feature vectors. 
The advantages and the disadvantages of this approach are discussed in this paper. 

The neural network designed for this implementation is not a neural network in the traditional 
sense of the term. The neural network is generated after the training data has been fully clustered and 
analyzed. Thus, the neural network does not come into existence until training is completed. The 
design technique for this implementation will be discussed in the sections that follow. 

The research reported in this paper was supported in part by a grant from the Office of Naval Research. 



2. FUNCTIONALITY 

Image processing applications often begin with a need to reduce the data in an input image into a 
significantly smaller amount of information. For example, in fingerprint imagery, the 
inter-relationships between the ridge events, endings and bifurcations yield all the information 
necessary to compare or identify the print. A fingerprint examiner is not concerned with how dark 
the ridges appear, nor is he concerned with the rotation, scale, edge magnitudes, or any other 
information contained in the image. In target tracking applications, as another example, the image 
processing algorithms must remove all of the unwanted information and extract only information 
about the target's position and possibly its signature. 

Frequently, the process of reducing an image begins with the segmentation of the image into 
regions of similar compositon. This paper will discuss a technique for performing this segmentation 
using a pixel-based classifier implemented via a Kohonen neural network architecture. 

Before the neural network can operate on the pixel data, features are extracted from the pixel and 
its neighbors. These features attempt to fully describe the pixel in every way that might help 
distinguish one class of pixels from all other classes. For example, in a satellite photo, pixel classes 
such as "tree", "building", "road", and "ocean" are applicable. Finger print image classes might be 
"ridge", "valley", and "background". Features would then be any manipulation of the input data that 
reveals some information about the pixel of interest. These can be based on mathematical analysis or 
on heuristics that make sense to the algorithm ist. 

The algorithm implemented for this paper considers 15 heuristic texture and gray shade features 
to be tested in the pixel classifier. One of the main goals in designing this algorithm was to determine 
a mechanism for evaluating how well each feature discriminates between the different classes. Since 
feature salience depends heavily on the imagery and its contents, a wide variety of features are 
required for a robust algorithm. This also requires that the algorithm make determinations as to the 
relative discrimination capability of each feature. Assuming it can perform this task, the 
algorithmist would then optimize his design for a specific application by retaining only the salient 
features. 

The features will be normalized before the clustering algorithm attempts to organize them. The 
clustering process measures similarity between input vectors by the Euclidean distance function. If 
one feature was scaled by a large constant, then the classifier would assign significantly more weight 
to variations in that feature. Before the relative discriminating capabilities of each feature are 
known, no such bias should exist. 

The clustering algorithm involves an iterative process of proposing a cluster organization, 
testing that organization, tuning the feature weighting coefficients, and adjusting the operational 
radius for each cluster. The classifier itself consists of a single layer of operators or nodes. During 
run time operation, the classifier evaluates each input sample using a weighted Euclidean distance 



metric. Before discussing the training process, a short discussion of the run time operation is 
appropriate. 

To determine the input sample's class, the classifier defines several clusters, or distributions, in 
feature space. Each of the previously mentioned nodes represents one of these clusters. This is done 
so that we can represent data that may be multi-modal more accurately. To explain the rationale for 
this, imagine a fruit classifier that is trained on apples, oranges and grapes. The object features might 
be color, shape, and size. If a wide array of apple samples are selected, the color feature would likely 
offer little help in discriminating apples from the other fruits because green apples were treated as 
part of the same distribution as the red and yellow apples. 

Figure 1 illustrates the fruit classifier sample distribution with size and color features. Clearly, 
size alone will not provide enough information to discriminate between apples and oranges. The 

middle figure identifies a potential interpretation of the input samples into meaningful distributions. 
A classifier that interprets the samples in this manner should be able to accurately classify most test 
samples correctly. The lower figure shows a poor interpretation of the sample distribution. A 
classifier that assumes these distributions will probably not perform with acceptable accuracy. 

An obvious and easy remedy would be to create classes such as red_apple, green_apple, etc. A 
better approach would employ clustering techniques to accommodate these intra-class differences, 
and account for them as they occur. This is very important in image processing applications where 
the designer might not fully understand the nature of the sample distributions. The self-organizing 
clustering algorithm that we propose enables the classifier to operate autonomously on any feature 
vector samples without customization to the specific application. This capability is especially useful 
in systems intended for novice operators with no knowledge of probability. 

The training procedure essentially attempts to determine a minimal data representation of the 
input sample feature distribution. The weighted distance to each node center is computed and that 
distance is then checked against the node's maximum acceptable distance. If the distance is within 
the node's "sphere of operation", the node continues to compete for the sample. The closest node 
with acceptable distance to the sample is then chosen as the node that will determine the class of the 
sample. Upon completion of training, the inverse covariance matrix is computed for each class of 
each node. This is used to compute the Mahalanobis distance from each class mean to the sample 
currently being classified. The classifier determines a sample's class by first locating the closest 
node, then by applying the Mahalanobis distance formula for each class within the node. The 
minimum distance determines the selected class. 

Feature Selection and Evaluation 

The features selected for use in the algorithm discussed in this paper are listed in Table 1. Each 

of these features reveals something about image texture or gray level in the region centered around 
the pixel of interest. Additional features such as the difference between the pixel intensity and its 



E[ |G(x2) - G(xj)| ] = k |x2 - Xl|" (5) 

E[ MSJ ] = * \dx\» (6) 

The distance between a pair of pixels is |zlx| = |x2 - xx\, and the difference in gray shade between 
these pixels is AG^ = G(x2) - G(Xj). The average absolute gray shade difference, taken across 
several pixel spacings of the same magnitude, will follow the above exponential scaling. A linear 
equation may be obtained by taking the logarithm of each side: 

ln(E[ MSx|l 1) = »«(*) + HH\*A) (7) 

Using least squares linear regression, the estimated values Hand k may be determined from a collec- 
tion of pixel distances and their associated average absolute changes in gray shade. 

Fractal Error 

However, G{\) may or may not fit the fBm model. Although the above method will compute 
estimates for //and k, the validity of these values depends upon how well G(x) corresponds to fBm. 

./Thus, the error in the estimation should be considered. The error at a particular pixel spacing is 

errors = E[ \AG^ ] - k {dxf (8) 

The root mean square (RMS) of these individual errors characterizes the overall error in the estima- 
tion, shown below. (Let n be the number of pixel distances considered.) 

RMS error =     /^(error^,)2 

V    H*l 
The RMS error measures the degree to which the observed signal fits the fBm model and is referred 3J 
to here as the fractal error. Equivalently, the complement of the fractal error may be considered asjif 
a measure of the "fractalness" of the signal. ^Si 

EXAMPLE IMPLEMENTATIONS AND RESULTS 

Developing a Local Measure 

The development of a fractal error feature was oriented toward textures in aerial gm 
reflectance images containing features such as trees, grass, shadows, water, soil and building, 
cause the regions in these images may be small, a small neighborhood of pixels was desir|jg 
dowsizesof5 x 5, 9 X 9, 13 x 13 and 17 x 17 were studied, but the smallest size|||" 
most suitable in the examples which are discussed in this paper. Also, this size offered JK| 
making it more practical to compute the fractal error within each pixel's neighborh«*4" 

Another factor was the choice of which pixel spacings to consider in computi 

error. For a window of size w x w, there are (w4 - w2)/2 possible spacings. *R*W' 
of computations, two approaches were examined. By considering only those"p|x| 
horizontal and vertical directions, only w3 - w2 data points must be useicL^Sj 
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ings used within a 5 x 5 window for the cento fZnJ^T/T" *iHUStrateS the pixd s^ 
to localize the measure more by empZT^he^ , ," ^"'^ this aPProach **™ 
more directional independent thanT forZ approach "     " ^^ * ^ ^ measurc 

^/y«i* *W/ Error to Standard Brodatz Textures 

of the localized fractal error operator SS" "T g ^criminatory capabilities 

textures in Figure 2. (The top of F^^ • wK K^ 
aPP"'ed f° * C°"aßB of Broda* 

"sand.") Areasonabledegreeofsep r2n Vevident in F T™ " "a,rk" and the <*«"* » 
are are clearly disenable "''" F'gUre 2b' and th« »hrec different textures 

Segmenting Aerial Imagery 

Pixel distances 

<dx = 1 
Ax = J2 
Ax = 2 
zlx = /§" 
^fx = yi 

Figure 1   PM »rtB, gsed „,„ ,„e centef-n„0„,^ Me,Aotf 

(a) Original Image ,., -    , , _ ■ 
(b) Fractal Error Image 
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Figure 3   Fractal Error Applied to the Shore Scene 

■i-  ö 

and non-foliated land. Although gray shade is often the predominant feature for distinguishing re- 
gions in aerial images, gray shade alone may be inadequate. Texture features are necessary, and be- 
cause of the wide variety of textures present and the frequent occurrence of small regions a texture 
feature for aerial imagery must be somewhat general-purpose and defined on a small neighborhood. 

Fractal Error as a Texture Feature -An Aerial Image Segmentation Application 

Figure 3a illustrates a shore scene (278 x 269) containing water, foliage and non-foliated 
land. Clearly, the gray shade of the water overlaps that of both the foliage and some of the open 
fields. The fractal error image in Figure 3b, negated to improve visibility, demonstrates that the wa- 
ter tends to have a low fractal error (light gray shade). The non-foliated land has a greater error, 
and the foliage has a medium to high error. Thus, a combination of gray shade and fractal error may 
be used to classify the pixels in this image, whereas either one of the features individually will fail. 
A supervised maximum likelihood classifier was designed to segment the image, on a pixel by pixel; 
basis, using gray shade and local fractal error as the pixel features. The segmentation result is shown'. 
in Figure 3c, separating foliage (dark gray), water (light gray) and non-foliated land (white). 

A farm land scene (512 x 512) is shown in Figure 4a. The light shaded soil areas are clearl} 
distinguishable solely on the basis of gray shade intensity. However, the grassy fields and 
require a texture measure to be separated. Figure 4b shows the negated fractal error image, in < 
the foliage tends to have a larger error (darker gray shade) than the fields. In Figure 4c, the 
has been classified as foliage (dark gray), grass (light gray) or soil (white). 

.•? 
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(a) 0rigina' lma9e        0» fractal Error Image, Negated (c) Segmented 
Image 

Figure 4   Fractal Error Applied to the Farm Scene 

^=^=^^ ™,, huild. 

« Original lma9e        (b) Fractal Error image, ^"^j 

Image 
Figure 5   Fratfa/ Error Applied to the Mixed Scene 

«- <- basses, from d;irk to ,ighl: „, «^^1^ "'i:^^ * Wen"- 

CONCLUSIONS 

*» ™™Z'ZZlt^ ",e "r0r r,imaling fraC,al <*—-«c, ,„ thi, inves. 

283 

III 

If! 



Ind 11 l Tu 3S deVel°ped 3S a ,0CaIized texture feature- The fractal error texture feature 
and the gray shade have been shown to be an effective set of features for classifying pixels in aerhl 
images in aerial image segmentation applications. *   g P "' 

Other Applications of Fractal Error 

The fractal error associated with non-fractal image features will be relatively lar-e   Sinre 

lvS.TsLTb!nC f r eS'° aenal reconnaissa"<* ™ages. To a mission planner/Scene Ma- 
u     f~0 at n 'f ra« "' We are CUrre""y 1™«1««*W -«»I ««npta containing cui- 

äerfaltaäg«y ^«.veness of fractal error for detecting cui.ural feature content i„ 
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mean (IX(y - Mean3X3 ) can be constructed from these features as well. This feature would likely 
correlate better than the pixel intensity alone since it measures offset above the average rather than 

intensity alone. 

Feature 

TABLE 1 
PIXEL FEATURES TESTED IN IMAGE SEGMENTER 

Definition 

Sobel_Magnitudex ( 2 * Px+l,y + Px+l,y-l + Px+l,y+l ) - 

( 2 * Px-l,y + Px-l,y-l + Px-l,y+l ) 

Sobel_Magnitudey ( 2 * Px,y-1 + Px-l,y-l + Px+l,y-l ) ~ 

( 2 * Px,y+1 + Px-l,y+l + Px+l,y+l ) 
Sobel_Magnitude VSobel_Mag-x + Sobel_Magz

Y 

Gradient max (abs( Px,y - Px-i,y-i ), 

abs( Px>y - Px,y-i ), 

abs( Px>y - Px+i.y-i ), 

abs( PXjy - Px_1>y), 

abs( PX;y - Px+i,y), 

abs( Px>y - Px-i.y+i), 

abs( Px>y - Px,y+i), 

abs( Px>y - Px+i,y+i) ) 

Mean3x3 I'"   2,_x-l,x+l2j=y-l,y+l Pjj 

Variance3x3 1/9     2l=x_l)X+lZj=y_l)y+l P    ij 

( 1/9   2,_x-l,X+l2j=y-l,y+l Pjj )2 

Mean5x5 1/25   2l=x-2,x+22j=y-2,y+2 Pi.j 

Variance5x5 1/25   2i=x-2,x+2^j=y-2,y+2 P i,j ~ 

(1/25   2t=x-2,x+22j=y-2,y+2 Pi,j )2 

Mean7x7 1/49   2l=x-3,x+32j=y-3,y+3 Pi,j 
Variance7x7 1/49   2t=x-3)x+32j=y-3,y+3P2i,j- 

(1/49   S^x^x^j^y-s.y+sPy)2 

Busynessx [2] 1/6      (abs( Px-l,y-l - PX>y-l ) + 

abs( Px_i,y - Px,y) + 

abs( Px-i,y+i - Px>y+i) + 

abs( Px+i,y-i - PX)y-i) + 

abs( Px+i>y - PX)y) + 

abs( Px+i,y+i - Px,y+i)) 



Feature 

TABLE 1 (Continued) 
PIXEL FEATURES TESTED IN IMAGE SEGMENTER 

Definition 
Busynessy [3] 

Busynesso45 [3] 

BusynessD135 [3] 

Busyness [2] 

1/6   (abs( Px-l,y-l - Px-l,y ) + 
abs( Px,y-1 - Px,y ) + 

abs( Px+l,y-l - Px+l,y ) + 

abs( Px-l,y+l - Px-l,y ) + ' 

abs( Px,y+1 - Px,y ) + 

abs( Px+l,y+l - Px+l,y ) ) 

1/4    (abs( Px.1)y_! - Px>y ) + 

abs( Px+i,y+1 - Px>y ) + 

abs( Px,y-1 - Px-l,y ) + 
abs( PX+l,y - PX)y+l ) ) 

1/4     (abs( Px-l,y+l - Px,y ) + 
abs( Px+l,y-l - Px,y ) + 

abs( Px,y-1 - Px+l,y ) + 

abs( Px+l,y - Px,y-i ) ) 

min  (Busynessx, Busynessy, 

Busynesso45j Busynesses ) 

After clustering the samples, the classifier evaluates the inter-class variance and the intra-class 
variances for each feature. The ratio of the inter-class variance to the sum of the intra-class 
variances indicates a "scatter ratio". A very high inter-class variance identifies that the feature is 
widely spread across multiple classes. Asmall intra-class variance indicates the samples of a single 
class within this cluster are all packed into a small region. A "good" feature would then have a very 
high inter-class variance and all the intra-class variance terms would be small. Using these ratios as 

a metric, the relative discrimination capability of each feature can be determined. 

Classifier Training 

The classifier most closely resembles the Kohonen network with one very significant 
difference. This implementation has a variable number of nodes which are created and deleted 

whenever the algorithm deems appropriate. The training system is nothing more than a serial 
computer executing a k-means classifier. The ideal run time system would be a three-dimensional 



SIMD parallel processor implementation. Such an architecture could implement the nodes along the 
z-axis while x-axis and the y-axis would span the image region of interest. Currently, a 
two-dimensional SIMD architecture would be the most cost efficient implementation that could still 
maintain real time performance speeds. The three-dimensional SIMD approach would use the 
processors parallel dimensions to span the image region of interest, and it would then serially 
emulate the node functions within each processor cell. 

The chosen training strategy begins with a classifier with no nodes defined. The first sample in 
the training set is chosen to be the initial node center for the first node. Subsequent samples are then 
tested to determine whether they are sufficiently close to this node. If the sample is close enough, it is 
included in the node. When a sample is absorbed into the node, it is used to update the node's mean 
and covariance statistics using the iteration formula: 

M,<") = (*.<") + (« *M.(" ~ !))/(" + 1) (1) 

C72v(«) = ((*,<«) - ßl(n - 1)) * (xj - fx,(n - 1)) + n * <rhi(n - l))/(n + 1) (2) 

i = 1 • • • NumberOfFeaturesJ = 1 • • • NumberOfFeatures, n = 0 • • ■ NumberOßamples 

These statistics are computed for each possible class as well as for all classes within the node. 
The inter-class statistics are used to determine which node should be used to classify a given sample. 
The intra-class statistics are used to determine the appropriate class for a sample, given that this node 
will be the one making the determination. 

After populating the node with all nearby samples, the sample list is then checked against all 
nodes to insure that every sample falls within the operating range of at least one node. If any sample 
is still not represented, another node is generated and that node is populated. This process is repeated 
until all samples are represented. 

Once the nodes are produced, the inverse covariance matrices are computed. The classifier is 
then tested using the training samples to evaluate the self-organized model. Each node is then scored 
to determine its discrimination accuracy. The score is computed as the number of correct 
classifications divided by the total number of classifications. 

After computing each node's score, the higher scoring nodes are then analyzed in an attempt to 
modify the feature weighting coefficients. In each high scoring node, the ratio of inter-class 
variance to the sum of the intra-class variances is computed. The average of this ratio is taken as the 
metric by which all feature weights will be scaled. These ratios are normalized to range from 0.0 to 
1.0, since changing the weights influences the node operating ranges. 

The final stage of the training process eliminates poor or unused nodes. If a node's score falls 
below a threshold percentage, it is eliminated and the region will be reclustered during subsequent 
iterations. This entire process is repeated until either a satisfactory score is reached or when a fixed 
number of iterations has expired. 



Classifier Implementation 

Once the training process is completed, the network is then implemented as a run time 
Kohonen-like system. All features that have near zero weighting coefficients can be eliminated 
from the entire design, since they have no influence. The remaining features are coded into the run 
time    system. Figure    2    illustrates    the    neural    network    implementation    of   the 
system. 

Input Feature Vector 

Output Classification 

Figure 2 Kohonen Implementation of Image Segmenter 

Training and Testing 

Aground truthing program was designed using the Xview library routines to permit an operator 
to associate pixels with known classifications. This program reads an input image from disk, 
displays this image, and allows the operator to draw over any pixel he wished to label. The operator 
may then select any of eight colors to represent each class. Thus, the software is currently limited to 
eight or fewer class operation. After carefully labelling the desired pixels, the operator may then 
request that the program output the ground-truthed image. This image contains only pixels 

representing locations that the operator designated to specific classes. All other pixels are zero 
valued. 



A second program then computes the feature vectors for the original imagery. This program 
reads the ground-truth image as well, and it outputs an ASCII text file containing the Cartesian 
coordinate of the pixel, the feature values for each feature, and the designated class. This file is 
maintained in ASCII for operator convenience. An operator can easily split the file into training and 
testing sets using various UNIX commands or even text editors. 

Finally, a third program compacts an ASCII feature file into a binary representation that the 
classifier will use for training and testing. 

Testing the classifier requires that a scoring mechanism be devised. The chosen scoring method 
evaluated the classifier based on each node individually. A node is scored based on the number of 
correct classifications divided into the number of samples classified by that node. Thus a node that 
only classifies one sample will either rate as a perfect score or as a zero score. Nodes that are not used 

rate as zero score, and are removed in successive iterations. The overall score, however, is computed 
as the total number of correct classifications divided by the total number of input samples. This 
penalizes the classifier for failing to classify any sample. 

3. RESULTS AND CONCLUSIONS 

The cluster-based classifier shows promise in classifying pixels for image segmentation 
applications. Early testing began with a primitive clustering strategy. This weighted all normalized 
features equally, and all clusters were spawned from any training vector that did not fit within any 
existing node. All nodes were also built with a fixed radius that was manually selected. During this 
testing, up to 80 percent classification accuracy was achieved on when testing and training was done 
on the same data (train A/test A). Approximately 75 percent accuracy was achieved when training 
and testing data were independent (train A / test B). The testing was performed on complex aerial 
photo imagery with three defined classes. 

Improved clustering strategies raised performance to 83 percent (train A/ test B) for the aerial 
imagery. These implementations began using weighting coefficients controlled by the scatter ratio. 
The first attempts computed new weight ratios directly from the scatter ratios, but unstable behavior 
was noted and the process tended to oscillate without significantly improving the clustering. The 
best strategies follow the basic steps of cluster, evaluate scatter ratios for high scoring nodes, then 
enhance high ranking features and penalize low ranking features. By repeating these steps 
iteratively, subsequent clusterings tended to show between three and ten percent increases in 
classification accuracy with no more than 15 iterations. 

These results suggest that an adaptive feature weighting scheme can improve the classification 
accuracy of image pixels. 
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Abstract—This paper discusses a technique 
that will enhance man-made features in SAR 
images. The technique uses a metric called 
fractal error.   Developed by Cooper, et al. 
[1] for aiding photointerpreters in detecting 
man-made features in aerial reconnaissance 
images, this metric is based upon the ob- 
served propensity of natural image features 
to fit a fractional Brownian motion (fBm) 
model. Natural scene features fit this model 
well, producing a small fractal error. Man- 
made features, on the other hand, usually 
do not fit the fBm model well and produce a 
relatively large fractal error. Therefore, the 
fractal error is useful as a discriminant func- 
tion for detecting man-made features in SAR 
imagery. The fractal error metric is defined, 
an approach to segmentating man-made ob- 
jects in SAR images is discussed, and the 
results are presented in this paper. 
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1.   INTRODUCTION 

In modern tactical air warfare, to assist the 
the pilot and improve the probability of mis- 
sion success, mission planning tools are es- 
sential.   However, even with comprehensive 
preplanning, the tactical situation may un- 
dergo unpredictable changes during the ex- 
ecution of the mission. Instead of returning 
to the aircraft carrier and re-planning a new 
mission, it is desirable to be able to modify 
the mission en route. To do this it becomes 
necessary to data link mission-related infor- 
mation to aid the pilot in making mission 
changes.   Various forms of surveillance and 
reconnaissance imagery coupled with other 
intelligence information and digital maps are 
among the information types to be transmit- 
ted and displayed to the flight crew.    In- 
cluded in this mission-related data may be 
processed imagery of the revised target area 
from an off-board Synthetic Aperture Radar 
(SAR). The image data sent to the flight 
crew can be used to enhance terrain features, 
line-of-sight perspectives, and highlight ex- 
pected target area features on cockpit dis- 
plays. The algorithms for accomplishing this 
form an essential part of an integrated mis- 
sion planning system to aid the pilot in re- 
defining the mission en route. 

This paper outlines initial research towards a 
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system that will enhance man-made features 
in SAR images as an aid for pilots in locat- 
ing targets. It uses a metric called fractal 
error. While this metric has been shown ef- 
fective with aerial photography [1], it has yet 
to be tested with SAR imagery. This paper 
presents results which indicate the fractal er- 
ror metric is robust and will segment man- 
made objects from natural terrain in SAR 
images. 

2.   PREVIOUS WORK 

Few attempts have been made to address the 
problem of recognition of man-made objects 
in SAR images. 

He and Wang [2] present a set of texture 
measures derived from a so-called texture 
spectrum and apply these measures to SAR 
imagery. The basis of the features suggested 
by He and Wang is that a texture image 
can be considered as a set of texture units 
which characterize the local texture infor- 
mation for a given pixel and its neighbor- 
hood.   From these local texture units, an 
image of the global texture aspects can be 
mapped. Using the local texture units, the 
frequency distribution of the texture units 
is calculated. From this frequency distribu- 
tion comes the term texture spectrum.  He 
and Wang use this texture spectrum to ex- 
tract information to form quantitative fea- 
ture vectors which incorporate characteris- 
tics of the texture, such as black-white sym- 
metry, geometric symmetry, degree of direc- 
tion, orientational features and central sym- 
metry. They compared their results to pre- 
vious research using the co-occurrence ma- 
trix approach [3], [4], [5], [6], and [7].  The 
results indicate the measures they chose pro- 
vide a more useful feature vector for seg- 
menting SAR images. 

Other authors have suggested using statis- 

tical methods as a means to segment SAR 
data [8], [9], [10]. In an article by Rignot and 
Chellappa [11], a model for the conditional 
distribution of polarimetric complex data is 
combined with a Markov random field repre- 
sentation to segment the SAR image. Their 
method describes a model for the a poste- 
riori distribution of the region labels. Op- 
timization of these region labels is defined 
as maximizing the a posteriori distribution 
of the region labels (maximum a posteriori 
(MAP) estimate). 

Solberg, Taxt and Jain [10] developed a gen- 
eral model for multisource classification of 
remotely sensed data, such as optical, in- 
frared (IR) and SAR. Their model is also 
based on Markov random fields and was 
developed for the fusion of optical images, 
SAR images and Geographic Information 
System (GIS) ground cover data. Their 
model uses the spatial class dependencies, 
also called spatial context, between pixel 
neighbors in an image and temporal class 
dependencies between images of the same 
scene at different times. They have tested 
their model on Landsat TM images, Euro- 
pean Remote Sensing (ERS-1) SAR images 
and GIS ground-cover maps on agricultural 
scenes with good results. 

Geometric feature extraction techniques 
have also been used to extract information 
from images. Methods such as the Hough 
transform [12], [13] can be useful. Sel- 
vage, Chenoweth and Gold [14] describe a 
modification to the chord transform for de- 
tecting geometric structural content within 
an image. This transform has been shown 
to be both scale, translation- and rotation- 
invariant. The most noticeable problem with 
the chord transform, however, is its compu- 
tational expense. 

In recent years, there has been progress 
in using metrics derived from fractal ge- 
ometry in the analysis of natural textures 
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[15]. Pentland [16] used fractal-based de- 
scriptions of image textures to effectively 
characterize natural visual imagery. There 
has also been progress in applying fractal 
characteristics to basic image analysis, such 
as texture segmentation [17], [18]. Using 
a fractional Brownian motion model (fBm 
model), Stewart, et al. [19] demonstrate the 
application of fractal random process mod- 
els as features in the analysis and segmenta- 
tion of SAR imagery. The fractal dimension 
of natural textures, such as grass and trees, 
was computed and used as texture features 
in a Bayesian classifier. 

Stewart discussed the application of metrics 
described by fractal geometry to provide ac- 
curate measures of "roughness" and "irregu- 
larity" in scale-invariant natural forms. Oth- 
ers [20], [21] have used the local fractal di- 
mension for segmentation and analysis of in- 
frared (IR) imagery. Likewise, Cooper [22] 
implemented a localized version of the frac- 
tal error measurement and fractal dimension 
for segmenting aerial images. 

3.    THE FRACTAL ERROR METRIC 

It is well known that many textures and 
scenes can be modelled as fractals. A fractal, 
according to La Brecque [23], "has a rough 
shape to one degree or another made of parts 
which, when magnified, resemble the whole." 
Literature describing fractals often lacks pre- 
cision when attempting to define what a frac- 
tal is. However, the reader of fractal geom- 
etry theory can turn to Falconer [24] for a 
detailed description of the properties of frac- 
tals. 

The set F, according to Falconer, is a fractal 
if it has properties such as: 

1. F has a fine structure, that is, detail on 
arbitrarily small scales. 
2. F is too irregular to be described in tra- 

ditional geometrical language, both locally 
and globally. 
3. Often F has some form of self-similarity, 
perhaps approximate or statistical. 
4. Usually, the "fractal dimension" of F (de- 
fined in some way, and there are several 
unique definitions) is greater than its topo- 
logical dimension. 
5. In most cases of interest, F is defined in 
a very simple way, perhaps recursively (e.g., 
the Julia or Mandelbrot Sets). 

Fractals may occur in many different forms. 
Mandelbrot [25] was the first to define frac- 
tional Brownian motion (fBm). Cooper [22] 
gives an excellent description of fBm; it will 
be summarized here. 

fBm is defined in terms of the differences 
between successive samples of a function. 
Let Bff(x) represent a fBm signal, where 
x is a vector containing E independent vari- 
ables. Then the increment of the fBm signal 
is described as ABH = Z?/j-(x2) — BH(x.i), 
where Xi and x2 correspond to two distinct 
measurements. The increment ABH is nor- 
mally distributed with a mean of zero and 
a variance proportional to the 2H power of 
the Euclidean distance between xi and x2. 
The mean of the fBm increment is 

E[BH(x1)-BH(x2)}=0. (1) 
Likewise, the variance of the increment of 
the fBm is 
Var[BH(x2)-BH(x1)\ = a2\x2-x1\

2H, (2) 
where o2 is the proportionality constant of 
the variance and H is the Hurst parameter, 
and must be strictly 0 < H < 1. Note that 
when H — 0.5, then the fBm model reduces 
to the original Brownian motion model. The 
value of H can be used to describe the fractal 
dimension D as 

D = E + 1 - H, (3) 
where E is the Euclidean dimension (or, the 
number of independent variables). Small 
values of H produce high fractal dimensions 
and large values of H produce low fractal 
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1 
dimensions.    Combining the equations for 
mean and variance, while also taking into ac- 
count the fractal dimension, we can obtain 
the following relationship 

E[\B„{x2) - BHMW = k\x2 - xx\H.   (4) 

Equation (4) is the essence of the fractal er- 
ror metric. 

The regions observed in a SAR image may 
be combinations of many different textures. 
Each texture can be represented by its frac- 
tal dimension. When attempting to deter- 
mine the fractal dimension, it is also useful 
to know how closely a texure element may 
be considered a fractal. Thus, measuring 
the error in estimating the fractal dimension 
will produce a useful metric to determine the 
"fractalness" of a feature in the image. A 
small error will indicate that an image fea- 
ture fits the fractal model well, and thus can 
be considered a fractal. Conversely, a large 
error will indicate that the image feature fits 
the fractal model poorly and the feature is 
man-made. 

We can mathematically define the fractal er- 
ror computation as follows. 

E[\G{K2]-G[X!]\]   =   Ar|x2-Xl|
H (5) 

E[\AGlAx]\]   =   fc|Ax|* (6) 
where G is the image function and Ax is 
the distance measure within the region. Es- 
timates of H and k can be found by using a 
linear regression. These estimates of H and 
k can then be used to calculate the fractal 
error using the equation _ 

Error[Axl = £[|AG,Ax||] - £|Ax|H. (7) 
Using a "center-oriented" window with n 
separate increment measurements of the dis- 
tance Ax, an RMS error can be computed 

RMS Error = ■Y.&rrorw)*.    (8) 

The RMS error is the degree to which a-pixel 
can be considered to be part of a fractal-like 
texture element. 

4.    FRACTAL ERROR ALGORITHM 

Using the method described in the previous 
section, Cooper [22] developed an algorithm 
for calculating the fractal error for each pixel 
in a scene. The algorithm is as follows: 

1. Define a 5x5, 7x7, or 9x9 sliding window. 
2. Calculate each Ax for each pixel in the 
neighborhood of the sliding window relative 
to the pixel of interest. 
3. Using linear regression, find the slope 
and the y-intercept for each unique set 
of Ax in the window from the equation 
Jn(£[|AG|£x||]) = Hk) + Hln\/\x\. 
4. Thus, H = slope and k = exp{y - 
intercept) from the above relationship. 
5. Then, from ErrorlAx\ = £[|AG|Ax|] - 
k\Ax\H, the fractal error is calculated for 
that unique set of Ax. 
6. The RMS error is then represented by 
RMSError = y/iIl\Ax\{Error^x\)2. 
7. The RMS error for that pixel is saved, the 
window is moved, and the process is repeated 
over the entire scene. 

5.    SEGMENTATION OF MAN-MADE 

OBJECTS USING THE FRACTAL 

ERROR METRIC 

The fractal error metric is useful for seg- 
menting non-fractal image features using a 
simple thresholding algorithm on the frac- 
tal error image. Adapting a method by 
Otsu [26], [27], a threshold is chosen to sepa- 
rate the natural fractal-like objects from the 
man-made objects using a maximum likeli- 
hood estimator. Otsu developed this seg- 
mentation method on the statistics of the 
distribution of the gray level values in an im- 
age. Here, we use the distribution of the frac- 
tal error within the image instead. Consider 
an image with pixels having discrete, nor- 
malized fractal errors from [1,L]. The dis- 
tribution of the fractal errors can be viewed 
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as a histogram, h(g), g = 1, • • •, L. This his- 
togram is a graph of the frequency of certain 
fractal error values within the image. An 
image can be segmented into two separate 
classes, C\ and C2, (in this case, natural ob- 
jects and man-made objects) by estimating 
a threshold level, denoted by t. This means 
that those pixels in the image belonging to 
class C\ have a fractal error in the range of 
[1, ■ ■ •, t] and those pixels in class C<i have 
a fractal error in the range of [t + 1, • • •, L]. 
Thus, the following statistics can be calcu- 
lated: 

"i(t)   =   Z>fo) (9) 

L 

<"2(*) =  E pig) (10) 
g=t+l 

t 

gdt) = T,9p(g) (11) 

L 

g2(t) =   E wig) (12) 
g=t+l 

<>!(!)   =   J2(9-9i(t))2
P(9)       (13) 

5=1 

4it)   =    E(9-92(t))2p(9),   (14) 
g=t+l 

where p(g) is the cumulative number of pix- 
els with gray level value g. 

The mean and variance for both classes 
bined is given by 

com- 

9T 

_2 

Li 

= E^(s) = E < 
L 

=   Y,(9-9T?P{9) 
n— 1 

^■(*)^(t) (15) 

where 

=      <&(t) + <4(*), (16) 

and 

°w(t) = E wi(*)o" 
i=i,2 

iW (17) 

o%(t) = E W
J 

i=i,2 
(*)(&(*) " Fr)2- (18) 

Note that the statistics Ow{t) and o%{t) are 
the within-class and the between-class vari- 
ance. 

Consider the classes C\ and Ci to be nor- 
mally distributed with unique means, but a 
common variance. The probability density 
function for each class is represented by the 
expression 

f(9\Cj) 
(27ra

2(i))1/2 

(9-Hi*))* exp( 
2a*(t) )>  (19) 

where j = 1,2.  Kurita, et al.  [27] showed 
that the likelihood function then becomes 

N    2 

L(G\e-,B(t)) = nm 

expt-b-n®)2)]*® 
6m        2a\t)     h 

=   (27ra2(i))-^2 

exp(- 
2a2 (*) 

N    2 

ITEM* 
»■=1 j=i 

-H(t)n (20) 

where g is the set of gray levels (or in 
our case, fractal error values), 9 is a vec- 
tor padded with zeros and a single one lo- 
cated in the position corresponding to the 
class of the pixel, and B(t) is the set of pa- 
rameters ßi(t),ß2{t),cr(t). Taking the loga- 
rithm of the above expression, we arrive at 
the log-likelihood equation, 

l(G\e;B(t))   =   ~log(2v) 

-jlog(a2(t)) 

j N    N 

Bji(9i - Mt))2}. (21) 
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The optimal parameters are obtained from 
this expression as 

Mt)   =   Vjit)   Ü = l»2)        (22) 
^(t)   =   o>w{t). (23) 

Therefore, the maximum log-hkehhood func- 
tion is expressed as 

T(G\Q;B(t))   = ■-y^(2») 

-jlog{o*w{t)) 

N 
- 9 ■ (24) 

It is not difficult to see that, barring the 
constant terms, the maximization of this 
log-likelihood function with respect to the 
threshold value t is simply the minimization 
of the function a^{t). Therefore, the op- 
timal thresholding for an image due to its 
fractal error distribution is the value of* that 
minimizes cry- 

ing method. The fractal error metric, orig- 
inally developed by Cooper [22], provides 
information regarding the "fractalness" of 
a pixel in an image.    This measure has 
been shown to provide enough information 
to discern between natural image features 
and man-made objects. A thresholding tech- 
nique, presented by Otsu [26], was modified 
to systematically choose a threshold to seg- 
ment the man-made objects from the back- 
ground terrain using the fractal error metric. 
While this method seems to work well for 
aerial photography, it has problems with the 
SA.R imagery, most notably with the specu- 
lar noise inherent to SAR. Future research is 
focused on finding an algorithm to choose a 
threshold that will more effectively segment 
the SAR images without noise. 

6.   RESULTS 

We tested the man-made feature segmenta- 
tion algorithm using SAR imagery provided 
by Naval Air Weapons Center  (NAWC), 
China Lake.  Figure 1 shows a SAR image 
with some small cultural objects, buildings 
and roads, located in a desert and moun- 
tain environment. Below it is the fractal er- 
ror image (normalized from 0 to 255). The 
lighter areas in the fractal error image corre- 
spond to pixels with higher fractal errors; the 
darker areas correspond to lower fractal er- 
rors. Thus, lighter areas in the resultant im- 
age tend to indicate man-made object. The 
third image shows the image segmented us- 
ing the method outlined in the previous sec- 
tion. Darker areas in the image correspond 
to man-made features in the SAR image. 

7.    CONCLUSIONS 

A method of segmentation was presented us- 
ing the fractal error metric and a threshold- 
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Fig. 1.   SAR image, normalized fractal error image, and segmented image. Pixel size is approximately 1 
square meter and the field of view is approximately 589 meters by 409 meters. 
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ABSTRACT 

This paper outlines a novel technique that will detect 
and enhance edge features in industrial images. While 
originally developed as an aid for pilots in locating 
their targets, this method is generally applicable to 
any type of image. The metric is based on the observed 
propensity of natural image features to fit a fractional 
Brownian motion (fBm) model [1], [2]. Because of 
their irregularity, edges do not typically fit the fBm 
model well. Thus, edges will have a higher fractal error 
than other features in the images, especially naturally- 
occurring texture. The fBm has been developed into 
a discriminant function to separate the edges from the 
other features in images. Results are presented and a 
comparison is made to the Canny edge operator. 

1.   INTRODUCTION 

Edge detection has long been the subject of research in 
image processing and computer vision. Widely used in 
industrial vision, edge detection can be implemented 
for parts inspection or for robot vision. The model for 
edge detection is shown in Figure 1 and is a two stage 
process. 

Image Edge Map 

Fig. 1.   The model for edge detection. 

The first stage, edge enhancement, focuses on locat- 
ing pixels in the image that can be considered a step 
edge. This process typically involves the initial de- 
tections of edge points using such techniques as the 
Laplacian of the Gaussian ([3], [4], [5]) or the gradient 
of the Gaussian [6]. False edges are eliminated from 
a set of criteria. For example, Canny [6] suggested 
thresholding edge points by comparing the magnitude 

of the gradient, an edge point candidate, against the 
magnitudes of its eight local neighbors. 

The second stage, edge linking, attempts to link edges 
which might be broken. This break in the edges may 
be caused by shadowing or noise in the image. Some 
techniques for edge linking include the SEL algorithm 
[7] and the LINK algorithm [8]. These methods at- 
tempt to produce edges that are closed and connected 
over the image space. 

This paper presents a novel method of edge enhance- 
ment, the first stage of the edge detection model. 
The method is based on the fractal error metric [1], 
[2]. It measures the error between the estimated frac- 
tional Brownian motion (fBm) model and the ob- 
served fBm. This model can be directly related to 
parts inspection, for example. A conveyer belt has a 
texture that may be classified as fractal in nature, with 
the part being non-fractal in nature. This metric effec- 
tively outlines the edges between this fractal texture 
and the part. 

2.   FRACTIONAL BROWNIAN MOTION 

Fractional Brownian motion (fBm) is defined as the 
differences between successive samples of a function. 
First to define fBm, Mandelbrot [9] let Bff(x) de- 
note a fBm signal, where x is a vector containing E 
independent variables. Then the successive sample is 
described by 

Aßff = ßff(x2)-ßff(Xl), (1) 
where xi and x2 correspond to two distinct measure- 
ments. The increment ABH is Gaussian distributed 
with a mean of zero and a variance proportional to 
the 2H power of the Euclidean distance between xi 
and x2. Thus, 

E[BH(XI) - BH(x2)}    =   0 

Var[BH(Xl) - Btf(x2)]    =    cr2|Xl - x2|
2",  (2) 

where a2 is the proportionality constant of the vari- 
ance and H is called the Hurst parameter and must 



be strictly 0 < H < 1. Note that when H = 0.5, 
then the fBm model reduces to the original Brownian 
motion model. The value of H can also be used to 
describe the fractal dimension of the observation as 

D = E+1-H (3) 
where E is the Euclidean distance (or, the number of 
independent variables in the system). It is easy to see 
that small values of H produce high fractal dimensions 
and large values of H produce low fractal dimensions. 
An observation is said to be fractal if the fractal di- 
mension D exceeds the topological dimension E [10]. 
Research has been done using the fractal dimension as 
a discriminant function in locating edge pixels (e.g., 

[11])- 

Combining the equations for mean and variance pro- 
duces the following relationship 

E[\BH{*a) - BH(x1)\] = k\x2 -Xl|", (4) 
where k is the proportionality constant. Equation 4 
is the essence of the fractal error metric. The regions 
observed in an image may be combinations of many 
different textures. Each texture can be represented by 
its fractal dimension. It has been shown [l], [2] that 
comparing the estimate of the fractal dimension to the 
actual data provides a useful metric to measure the 
"fractalness" of a feature in the image. A small error 
from the metric will indicate that an image feature 
fits the fractal model well, and thus can be considered 
fractal. On the other hand, a large error will indicate 
that the image feature fits the fBm model poorly and 
the feature is non-fractal in nature. 

3.   EDGE ENHANCEMENT ALGORITHM 

Using the method described in the previous section, 
a novel algorithm of enhancing edges has been devel- 
oped: 

1. Define a 5x5, 7x7 or a 9x9 sliding window. 
2. Calculate each Ax for each pixel in the neighbor- 
hood of the sliding window relative to the pixel of in- 
terest. 
3. Using simple linear regression, find the slope and 
the y-intercept for each unique set of Ax in the window 
from the equation ln(E[\AG A-X\]) = ln(k) + Hln\Ax\. 
4. Thus, H = slope and k = exp(y — intercept) from 
the above relationship. 
5. Then, from Equation 7 the fractal error is calcu- 
lated for that unique set of |Ax|. 
6. The RMS error is then calculated from Equation 8. 
7. The RMS error for that pixel is saved, the window 
is moved, and the process is repeated over the entire 
scene. 
8. A user-defined threshold r selects the pixels that 
will represent edges and those pixels that will represent 
background. In other words, for RMS[i][j] (where i 
and j are pixel coordinates in the image), a pixel is 
defined to be an edge pixel when fiMS[i][y] > r and 
a background pixel otherwise. 

The error metric is defined from Equation 4 as 
E[|G[x2]-G[Xl]|]   =   *|x2-Xl|"        (5) 

£[|AG|Ax,|]    =   fc|Ax|", (6) 
where G is the image function and Ax is the distance 
measure within the region. Regions are typically de- 
fined as a center-oriented window of 5x5, 7x7 or 9x9. 
Estimates of H and k can be found by using a linear 
regression scheme. These estimates of 77 and ~k can 
then be used to calculate the fractal error for the set 
|Ax| using the expression   

£rror|Ax, = £[|AG|Ax,|] - fc|Ax|". (7) 
Using the center-oriented window or region with n sep- 
arate increment measurements of the distance Ax, an 
RMS error can be computed ^^ 

RMS Error = 

M 
-^(£rror-|Ax|)2. (8) 

|A*| 

The RMS error measures the degree to which a pixel 
can be considered to be a part of a fractal-like texture 
element. Edges will have higher fractal errors than 
non-edge features in the image. Thus, the fractal error 
metric makes an appropriate discriminant function for 
enhancing edges in real-world images. 

4.   RESULTS 

The algorithm was tested on an industrial image. This 
image shows a hypothetical part on a textured back- 
ground (wood-grain). Figure 2 shows the test image, 
the result from enhancing the edges with the fractal 
error metric in a 5x5 window, and the edges detected 
with the Canny edge operator with a threshold of 50. 
The test image was smoothed with the median filter 
before the edges were enhanced with the fractal edge 
enhancement algorithm. The image was smoothed 
with a 3x3 Gaussian mask before edge enhancement 
and detection with the Canny edge operator. It is not 
difficult to see that the fractal error metric highlights 
the edges with the same accuracy as the Canny. 

The Pratt figure of merit[12] provides a quantitative 
measure for the performance of edge detection algo- 
rithms. The figure of merit F penalizes an algorithm 
for missing valid edges, errors in localizing edges, and 
classification of noise as edges. The Pratt figure of 
merit is defined as follows: 



Fig. 2. The test image, the edges enhanced with the fractal error 
metric, and the edges detected with the Canny operator, 
respectively. 

1    IA 1 

Ii^l + ad2' (9) 

ber of ideal and actual edge points, respectively, a is a 
scaling constant used to penalize displaced edges, and 
d is the separation distance from an actual edge point 
to the nearest ideal edge point. The equation gives a 
merit of F = 1 for perfectly matched edges. 

For most edge detectors, the Pratt figure of merit will 
decrease as the signal to noise ratio (SNR) decreases. 
Optimally, the Pratt figure of merit will decrease with 
a slope close to zero as the SNR decreases. To mea- 
sure the performance as the SNR decreases, the edges 
detected from the original image with no added noise 
are used as the ideal edge points. Gaussian noise is 
then added to the original image to provide test im- 
ages with various SNR's. The edges detected from the 
noisy images are used as the actual edge points, and 
the figure of merit is calculated. The fractal error met- 
ric algorithm and the Canny edge operator were per- 
formed on the test image with Gaussian distributed 
noise with a mean of zero and a standard deviation 
of a. The fractal error metric performed as well as 
the Canny operator for images with little noise and 
performed much better for images cormpted heavily 
with noise. Again, both images were smoothed prior 
to edge enhancement (the fractal error metric images 
with the median filter and the Canny edge operator 
images with a 3x3 Gaussian kernel). The fractal er- 
ror metric had a threshold set for all of the images 
at r = 130 and the Canny edge operator was set at 
« = 50. 

FtacM Eire« MMilc 

where IL = max(I{,IA), h and IA represent the num- 

Fig. 3.   Plot of the Pratt figure of merit for varying sigma. 

5.    CONCLUSIONS 

A novel method for edge enhancement was presented. 
Using fractional Brownian motion (fBm) as a model, 
the estimates for the model are determined and the er- 
ror is defined as the difference between the estimated 



model and the actual model. This error metric pro- 
vides a useful discriminant function in outlining edges 
in an industrial image. It was also shown that the 
fractal error metric performed better than the Canny 
edge operator for an industrial test image as the noise 
in the image increases. 
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Abstract— Fractal error is an image processing metric 
that can be used to locate man-made features in aerial 
images. The metric can aid photointerpreters in locating 
targets in aerial reconnaissance images. Fractal error was 
developed for this purpose by Cooper et al. [1]. Since the 
development, Jansing et al. [2] have shown that the frac- 
tal error metric also works well for extracting features in 
synthetic aperture radar (SAR) images. Jansing et al. 
[3] have also shown that the fractal error metric is useful 
for locating edge pixels in industrial images. The fractal 
error metric has a wide range of applications; however, 
some applications require real-time image analysis. The 
main disadvantage of the fractal error algorithm is that 
it can take several seconds to compute on large images. 
Therefore, it is desirable to create an approximation of 
fractal error to provide real-time image analysis. This 
paper presents two novel approximations of fractal error 
using a genetic algorithm and a neural network. 

The results obtained using the approximations are com- 
pared with those obtained from the fractal error algo- 
rithm. Results from the neural network and the genetic 
algorithm are compared with one another. The neural 
network provides an accurate representation of fractal er- 
ror, while the genetic algorithm does in fact preserve all 
of the desired features of the original fractal error image. 
The genetic algorithm has been shown to be computa- 
tionally faster than the neural network. 

Future work will consist of training a functional link 
neural network to improve computation time, and de- 
veloping a genetic programming technique to evolve the 
mathematical structure and weights for a better fractal 
error approximation. 
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1.   INTRODUCTION 

The mathematical nature of textures within images has 
generated much interest in the literature. Fractal di- 
mension and lacunarity are often the focus of such inter- 
est. Notably, Pentland [4] used fractal dimension to an- 
alyze natural visual textures. However, little attention 
has been given to measuring the fitness of the fractal 
model itself. There has also been other work that has 
attempted to apply fractal characteristics and measu'es 
to basic image analysis, such as texture segmentation [5], 
[6]. Using a fractional Brownian motion (fBm) model, 
Stewart et al. [7] demonstrated the application of fractal 
random process models as features in the analysis and 
segmentation of SAR imagery. The fractal dimension of 
natural textures, such as grass and trees, was computed 
and used as texture features in a Bayesian classifier. 

Stewart discussed how metrics described by fractal ge- 
ometry provide accurate measures of "roughness" and 
"irregularity" in scale-invariant natural forms. Moghad- 
dam et al. [8], [9] have used the local fractal dimension, a 
fractal metric, for segmentation and analysis of infrared 
(IR) imagery. Likewise, Cooper [10] implemented a lo- 
calized version of the fractal error measurement as well 
as other fractal metrics for the segmentation of aerial 
imagery. Stein [11] introduced a slightly different fractal 
error metric, calculated by the covering method simi- 
lar to the method suggested by Peleg [6]. Solka, Rogers 
and Priebe [12] introduced a power law signature sim- 
ilar to Stein's. There were significant differences, how- 
ever. Stein designed a discrimination scheme employing 



the slope and standard error of fit of the regression line, 
not unlike the algorithm Cooper implemented, which is 
outlined in this work. Solka, Rogers and Priebe used 
different features to estimate fractal error. Also, Stein's 
decision rules were heuristic in nature, whereas Solka, 
Rogers and Priebe proposed advanced density estimation 
techniques in an effort to fully characterize the decision 
surfaces which originate from their power law signatures. 

In another paper, Rogers, Solka and Priebe [13] out- 
lined a method to calculate fractal dimension using a 
parallel distributed processing (PDP) approach. A pri- 
ori boundary information was incorporated into their 
covering method, improving their segmentation results. 

Cooper et al. [1] developed a fractal error metric based 
on the observed propensity of natural image features to 
fit an fBm model. They used this feature in a statistical 
classifier to successfully segment regions in aerial recon- 
naissance images. Jansing et al. [2] also used this same 
feature to segment man-made objects in SAR imagery. 

Upon examination, there are two important examples 
that provide motivation for fractal error analysis. The 
first example involves segmentation of cultural objects in 
SAR imagery, and the second is reliable edge detection 
in the presence of noise. 

As an illustration of the need for segmentation, we will 
examine mission planning, a critical part of any tactical 
aircraft mission. To ensure the safety of the pilot and 
the success of the mission, extensive planning is required. 
Greater efficiency and consistency are achieved by sup- 
plementing pilot calculations with machine automation 
and intelligence. However, during the actual execution 
of the mission, the tactical situation may undergo un- 
predictable change' Instead of returning to the aircraft 
carrier and re-planning a new mission, it may be desir- 
able to modify the mission en route. Therefore, it is 
necessary to data link mission-related information to aid 
the pilot with his new objective. Surveillance and recon- 
naissance imagery coupled with other intelligence infor- 
mation and digital maps can be presented to the flight 
crew. Included in this mission-related data may be pro- 
cessed imagery of the target area from an off-board sen- 
sor. These off-board sensors may provide IR imagery, 
SAR imagery, and optical imagery. SAR imagery is a 
likely sensor candidate. While highly specular and often 
difficult to interpret without enhancement, SAR is less 
susceptible to weather conditions and ambient illumina- 
tion than IR. Thus, from all of the data sent to the flight 
crew, terrain features, line-of-sight perspectives, and ex- 
pected target area features can be displayed in order 
to highlight the new mission aspects. The fractalef for 
metric is described here in a method that provides use- 
ful detection of cultural objects. The resulting imagery 
could be used in on-the-fly mission adjustments. 

As another example, edges typically do not fit the frac- 
tional Brownian motion (fBm) model well, due to their 
irregularity. Therefore, fractal error is also a practical 
edge enhancement operator. Jansing et al. [3] devel- 
oped an algorithm utilizing fractal error to separate the 
edges from the other features in images. 

This paper presents an approximation of Cooper's [10] 
fractal error measure using a genetic algorithm and a 
neural network. Computational expense is the unfortu- 
nate by-product of Cooper's algorithm. Since many ap- 
plications require real-time computation to be practical, 
it is desirable to create an approximation of fractal error 
to provide real-time analysis, whether for the detection 
of cultural objects or edges. 

2.    FRACTAL ERROR 

Definition Of A Fractal 

It is well known that many textures and scenes can be 
modelled as fractals. A fractal, according to La Brccque 
[14], "has a rough shape to one degree or another made of 
parts which, when magnified, resemble the whole." It is 
also well known that literature describing fractals often 
lacks precision when attempting to define what a fractal 
is. However, the reader of fractal geometry and theory 
can turn to Falconer [15] for a detailed description of the 
properties of fractals. 

Definition 1: The set F is a fractal, if it has the following 
properties: 

1. F has a fine structure, that is, detail on arbitrarily 
small scales. 

2. F is too irregular to be described in traditional geo- 
metrical language, both locally and globally. 

3. F often has some form of self-similarity, perhaps ap- 
proximate or statistical. 

4. Usually, the "fractal dimension" of F (defined in some 
way, and there are several unique definitions) is greater 
than its topological dimension. 

5. In most cases of interest, F is defined in a very simple 
way, perhaps recursively (e.g., the Julia or Mandelbrot 
Sets). 

Fractal Dimension 

How are fractals distinguished between one another? 
How does one measure the size of fractals? What mea- 
sure can be used to compare and contrast fractals? 



Fig. 1.   Texture image of cork. 

Fractal dimension is the measure that is generally used 
to distinguish between fractals, giving the fractals a 
measurement of "size". This numeric representation at- 
tempts to quantify a subjective quality which one might 
have about how densely the fractal occupies the space in 
which it exists. 

Fractal dimension is just as difficult to define as fractals 
themselves. Mandelbrot [16], Falconer [15], Peitgen et 
al. [17] and Edgar [18] provide excellent discussions of 
many different fractal dimension definitions. Each frac- 
tal dimension definition has a distinct style. Although 
the definitions are all related, Peitgen [17] claims that 
some definitions make sense in certain cases, while other 
definitions may not be appropriate in the same case. Ex- 
perience and heuristics prompt the selection of an ap- 
propriate fractal dimension definition, according to the 
application. 

Lacunarity 

Mandelbrot [16] defined another measure for fractals. 
Lacunarity describes the "holiness" ([19], pg. 236) of 
an occupied fractal lattice. The origin of the name la- 
cunarity can be appreciated by looking at an image of 
cork in Figure 1. This image is part of a collection of 
texture images, presented by Brodatz [20]. From the 
Latin word "lacona," which means gap, lacunarity rep- 
resents the gaps within a fractal structure. Thus, the 
percentage of spaces between the cork in Figure 1 is the 
measure of lacunarity. Practically, lakes or other natural 
objects within aerial images may be classified by using 
lacunarity as a feature measure. 

Fractional Brownian Motion 

Fractals may occur in many different forms. Mandelbrot 
[21] was the first to define fractional Brownian motion 
(fBm). Brownian motion refers to the erratic motion of 

small suspended particles, resulting from random colli- 
sions with other particles. Fractional Brownian motion 
is an extension of this model. Cooper [10] gives an ex- 
cellent description of fBm; it will be summarized here. 

The function of fBm is defined as the differences between 
successive samples. Let BH(t) represent a fBm signal, 
where t is a vector containing E independent variables. 
Then the increment of the fBm signal is described as 
ABH = BH{t2) - BH(ti), where tx and t2 are two dis- 
tinct points in time. The measure ABH is normally dis- 
tributed with a mean of zero and a variance proportional 
to the 2H power of the Euclidean distance. The mean 
takes the form of 

E[BH(t2)-BH(ti)] = 0. (1) 
Likewise, the variance is defined as 

Vzr[BH(t2) - £„(*,)] = a2\t2 - t,\2H. (2) 
where a2 is the proportionality constant of the variance 
and H is the Hurst parameter, which must be strictly 
0 < H < 1. Note that when H = 0.5, the fractional 
Brownian motion model is equivalent to the classical 
Brownian motion model. The value of H can be used 
to describe the fractal dimension D as 

D=E+l-H, (3) 
where E is the Euclidean dimension (or, the number of 
independent variables of t). It is therefore easy to see 
that small values of H produce high fractal dimension 
and large values of H produce a low fractal dimension. 
Combining the equations for mean and variance, while 
also taking into account the fractal dimension, we can 
arrive at the following relationship: 

ü[\BH(t2)-BH(tl)\} = k\t2-tl\
H. (4) 

The above equation is the fundamental basis for the frac- 
tal error metric. The regions observed in an actual im- 
age may be a combination of many different textures. 
Each texture can be represented by its fractal dimen- 
sion. However, before attempting to determine the frac- 
tal dimension, it is useful to know how well a region 
(or window) may fit the fractal model. Thus, measuring 
the error produced when estimating the fractal dimen- 
sion will give a useful metric in order to determine the 
"fractalness" of a region in the image. A small error will 
indicate that a region fits the fractal model well, and 
thus can be considered fractal. Conversely, a large error 
will indicate that the region fits poorly into the fractal 
model and thus is probably not fractal and the fractal 
dimension measure is useless. Mathematically, this can 
be defined as 

E[|G[x2]-G[Xl]|]    =    *|x2-Xl|" (5) 

E[|AG,Ax||]    =    fc|Ax|" (6) 
where G is the region or window in the image and x 
is the measured distances within the region. Estimates 
of H and k can be found by using a linear regression 
scheme, 

In E[| AG)AX| |] = In fc + // In |Ax|. (7) 



TABLE I 
FRACTAL ERROR ALGORITHM 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Define a 5x5, 7x7, or 9x9 sliding win- 
dow. 
Calculate Ax and E[|AG|] for each 
pixel in the neighborhood of the slid- 
ing window. 
Using linear regression, find the slope 
and the y-intercept for each unique 
Ax in the window from the equation 
ln(E[|AG|Axi,|]) = ln(A) + i/|A?|. 
Derive H = slope and k = 
exp(y-intercept) from the above rela- 
tionship. 
Using _error|Ax.|   =   E[|AG|Aa..|] - 

k\Axi\H, calculate the fractal error 
for each unique Ax. 
Compute                RMS error 
by          RMS          Error = 

Save RMS error for that pixel, move 
the window, and repeat the process 
over the entire scene. 

These estimates, H and k can then be used to calculate 
the error with the following equation: 

error|Ax| = E[|AG|Ax,|] -I|Ax|". (8) 

Using a "center-oriented" window (i.e., a square window 
of NxN, where N is strictly odd), there will be five, nine, 
or fourteen error values, given the window is 5x5, 7x7, or 
9x9 respectively. Thus, a cumulative error for the model 
can be given by the root mean square error 

RMS Error = 

\ 

- 53 (error,Ax])2. (?) 
|Ax| 

Thus, using the RMS error, it is easily determined 
whether or not a pixel with a surrounding 5x5, 7x7 or 
9x9 region is fractal in nature. 

3.    FRACTAL ERROR ALGORITHM 

Using the method described in the previous section, 
Cooper developed an algorithm to calculate the fractal 
error for each pixel in a scene. This algorithm is de- 
scribed in detail in Table I. 

The following will outline the steps of the entire fractal 
error algorithm. Note that this example will produce a 
single number that will represent the error for the center 
pixel in relation to its neighbors. Figure 2 represents a 
sample 5x5 window. Since the localized neighborhood 
is 5x5, there are five unique distances in the window, as 
shown in Figure 3. 

250 200 220 200 200 

175 210 170 159 100 

110 100 120 115 100 

96 200 205 210 211 

95 201 197 205 200 

Fig. 2.   A sample 5x5 window. 

2.83 2.23 2.00 2.23 2.83 

2.23 1.41 1.00 1.41 2.23 

2.00 1.00 1.00 2.00 

2.23 1.41 1.00 1.41 2.23 

2.83 2.23 2.00 2.23 2.83 

Fig. 3.   The Euclidean distances over the 5x5 neighborhood. 

Table II represents the absolute values of the differences 
of the gray scales over the unique sets of distances in the 
neighborhood. Thus, the gray scale value of each pixel 
that has a distance of 1.41 is subtracted from the gray 
scale value of the center pixel. Their absolute values are 
averaged to give E[|Ad?|] for each unique set of distances. 

Using Equation 7, we can obtain estimates for the Hurst 
parameter and the proportionality constant, H and k 
respectively. These estimates can be found using linear 
regression [22]. If the linear model takes the form 

y = ßo + ßix, (10) 

then estimates for ß\ (slope) and ß0 (y-intercept) ure 

TABLE II 
DISTANCES FROM THE CENTER PIXEL (AX) AND THE EXPECTED 

VALUE OF THE ABSOLUTE DIFFERENCE IN GRAY SCALE 

RELEVANT TO THE CENTER PIXEL (E[|AG|]) 

Ax In Ax E[|AC|] In E[|AG|] 
1.000 0.000 40.00 3.69 
1.414 0.347 74.75 4.31 
2.000 0.693 51.75 3.95 
2.236 0.805 91.50 4.51 
2.828 1.040 78.75 4.37 



TABLE III 
CALCULATED ERROR FROM FRACTIONAL BROWNIAN MOTION 

MODEL 

Ax error 

1.00 -6.06 
1.41 18.4 
2.00 -17.3 
2.24 17.7 
2.83 -5.9 

defined as 
-r- E(xi -- x)Vi 

(13) 

ßo    =   V-ßix, (12) 
where x is the sample mean of x and y is the sample mean 
of y. In our particular case, x represents the "In Ax" 
term in Equation 7 and y represents the "In E[|AG ]" 
term in the same equation. It easy to see that x = 0.577 
and y = 4.17. The estimates of ß0 and ßx can thus be 
calculated, 

-Z-    =    Sf=0(^-0-577)y< 

' Zloixi -0.577)2 
=    0.585 (14) 

K = 4.17-0.577^=3.83 
The Hurst parameter estimate, H, js_ equivalent to the 
slope of the linear model, that is, H = ß{. The pro- 
portionality constant estimate, _fc, is equivalent to the 
y-intercept of the linear model, A; = exp(/?0). Therefore, 
H= 0.585 and k = 46.1. 

Errors with respect to each unique distance set can be 
calculated with Equation 8. Table III shows the result 
of using Equation 8 in this example. 

The overall RMS error, as defined by Equation 9, is 
14.31. This number represents the "fractalness" of the 
center pixel relative to its neighbors. Decisions regarding 
the fractalness of the pixel are typically made in refer- 
ence to the entire image. Thus, if the range of fractal 
errors is from 0 to 15, this pixel is not likely to be fractal 
in nature. 

It is not difficult to see that the majority of computation 
comes from using the linear regression and calculating 
the errors from the estimated H and k. Two approxima- 
tions have been developed to improve computation time 
without sacrificing accuracy. The first approximation 
uses a genetic approach, the second a neural approach. 

4.    GENETIC APPROXIMATION OF FRACTAL 
ERROR 

In 1975, John Holland [23] introduced the publication 
Adaptation in Natural and Artificial Systems.    In this 

publication, Holland integrated two themes that had 
persistently appeared in his studies: the portrayal of 
complex structures using simple representations (such as 
bit strings), and the ability to modify and improve such 
structures with simple transformations. Holland demon- 
strated that under the proper conditions, bit strings 
could "evolve" into improved bit strings. The improve- 
ment was dependent on the fitness of each member of 
the group of strings. Holland realized the tremendous 
potential of such an operation, and thus, initiated the 
study of genetic algorithms. 

Holland discovered that the fundamental structures of 
genetics, chromosomes, are analogous to structures in 
other fields, such as types of goods in economic plan- 
ning, strategies in gaming theory and functions in ar- 
tificial intelligence. If the structures could be repre- 
sented in a similar fashion, Holland posed the question of 
whether the same sort of operators that evolve chromo- 
somes could be used to evolve optimal structures in the 
other fields. Holland demonstrated that, in fact, they 
do. Just as the operations of mutation and recombi- 
nation adapt chromosomes to function in specific (and 
hopefully optimal) ways, the operations of production 
activities in economic planning or learning rules in arti- 
ficial intelligence can adapt their respective structures. 

In the same way chromosomes evolve over several gener- 
ations, so do the structures in our genetic algorithm. 
Structures are allowed to sexually reproduce into the 
generation via some random operation according to the 
structure's fitness in the population. Typical fitness 
functions may include utility in economic planning, error 
functions in controls, payoff in gaming theory or compar- 
ative efficiency in artificial intelligence. Those individu- 
als who are more fit than others (the lowest error in tue 
case of controls or the highest payoff in the case of gam- 
ing theory) have a higher probability of reproducing into 
the next generation. As the total population evolves over 
generations, the best parts of fit structures combine with 
the best parts of other fit structures, creating structures 
that generate better fitness values. Holland [23] demon- 
strated that even in large, complicated search spaces, 
given certain conditions on the problem domain, the ge- 
netic algorithm would tend toward the global optima. 

Much has been written about genetic algorithms and 
would be impossible to cite completely in this work. 
The reader should reference Holland [23], Goldberg [24], 
Davis [25], or Koza [26] for more detailed discussion 
of the theory behind genetic algorithms. While Hol- 
land, Goldberg and Davis primarily focused on genetic 
algorithms, Koza has spent much of his studies ex- 
tending genetic algorithms to genetic programs (GP). 
Here the structures are actual computer code, typically 
in LISP or C. These structures of code are then al- 
lowed to evolve over several generations, until the needed 



problem-specific code has been found. Using SPICE 
(Simulation Program with Integrated Circuit Empha- 
sis), Bennett et al. [27] developed a GP to design a 
low-distortion, low-bias 60 dB (1000-to-l) amplifier with 
good frequency generalization. They contend that the 
performance of a GP can match or exceed human per- 
formance in some circuit design problems [28]. In 1996, 
Harris and Buxton [29] demonstrated that GP techni- 
ques can be used to evolve 1-D edge detectors. 

To generate an approximation of fractal error, a mathe- 
matical structure is needed. Much of the information in 
calculating fractal error resides in the expected value of 
th." absolute differences of the gray scales from the cen- 
ter pixel, grouped in uniform distances from the center 
pixel. This is expressed mathematically as E[jAG|Aa.^||]. 
Weights are assigned to each of these expected values 
and all of the weighted expected values are added to- 
gether to form the approximation of fractal error. This 
is expressed as 

FE    = aoln(E[|AGAl=2.82]) (15) 

+ a, ta(E[|AGAx=2.23]) 

+ a2ln(E[|AGAx=2.oo]) 

+ a3ln(E[|AGAx=1.4i]) 

+ a4 ln(E[|AG*Ax=i.oo]). 

The genetic approximation of fractal error (GAFE) 
evolves the weights ao, a\, ..., a4 to try to estimate 
fractal error. The natural log of the expected values is 
used to maintain the linearity of the measure. As com- 
monly used in the design of a GA, the probability for 
crossover is set at 0.7, the probability for mutation is 
set at 0.1, the probability for copy is set at 0.1, and the 
probability for migration is also set at 0.1. Migration, 
originally introduced by Potts et al. [30] in 1994, helps 
combat the problem of premature convergence. Potts 
et al. allowed for multiple sets of individuals to evolve 
using traditional genetic operators such as crossover and 
mutation. Each set of individuals acts as an independent 
population, like a tribe or village. The migration oper- 
ator chooses individuals at random and moves them to 
another population. The interaction prevents inbreeding 
and promotes reproduction among those individuals that 
have good characteristics, that is, high fitness values. 

The migration operator used in this work is an extension 
of the method proposed by Potts et al. [30]. Migration 
is implemented here by randomly generating a new in- 
dividual and placing it in the new population. This ran- 
domness may allow for movement to a search space that 
the individuals in the previous population were unable 
to reach. This modification allows for the property of 
migration without the overhead of mulitple populations. 

Each operator is chosen randomly from a uniform distri- 
bution. The population size and the maximum number 

TABLE IV 

SEVERAL TRIALS OF THE GAFE WITH VARVINC POPULATION 

SIZE AND GENERATIONS 

Trial Pop Max Gen SNR 
A 100 10,000 1.27 
B 500 100 1.52 
C 500 2000 1.56 
D 1000 2000 1.63 
E 2000 250 1.74 
F 10,000 90 3.82 

of generations allowed for each simulation is variable. 
Fitness for each individual is determined from signal-^o- 
noise ratio (SNR). SNR measures the ratio of original 
signal to noise introduced into a given test image. For 
our application, SNR is defined as 

M    N 

SNR   =   £X>„(r,c)2/ (16) 
r=0 c=0 
M    N 

££(/m(r,c)-/0(r,c))2 

r=0 c=0 

where Im(r,c) is the measured image and I0(r,c) is the 
original signal for MxN sized images. The lower the 
value of SNR, the noisier the signal is. Thus, to evolve 
weights with a genetic algorithm, it is desirable to max- 
imize the signal-to-noise ratio. 

The GAFE is also written in parallel to ensure fast sim- 
ulation times. The evaluation of fitness for each indi- 
vidual in the population consumes most of the run time 
for the GA itself. To parallelize the algorithm, each in- 
dividual is evaluated for fitness separately, running on 
as many CPU's as are available. The parallel algorithm 
was executed on an SGI Onyx R10000 high-performance 
computer, having 16 CPU's. 

Table IV shows several different trials of GAFE and their 
results. The varying population size and maximum num- 
ber of generations allowed is also given. The training 
image for each of these simulations is shown in Figure 4. 

Figure 7 illustrates the resulting image from each trial. 

Each gene is comprised of 100 bits, 20 bits per weight. 
The first 19 bits are the magnitude, starting at 22 and 
ending at 2-16. The 20th bit for each weight is a sign 
bit, allowing for positive and negative weights. Thus, the 
interval for each 20 bits is (-8,8). Table V shows the 
final weights for Trial F. Figure 8 shows the evolution of 
the population over several generations for Trial F. 

The results are revealing. For very small populations, 
sized from 100 to 1000 genes, the GAFE is unable to iso- 
late a search area to find a suitable set of weights; that 



TABLE V 
FINAL WEIGHTS FROM GAFE, TRIAL F 

(a) Original Image 

(b) Actual Fractal Error Image 

Fig. 4.    Training image for the genetic approximation to fractal 
error (GAFE). 

is, it gets "stuck" on a local optimum. It is clear that 
larger populations fare better than smaller populations, 
regardless of the number of generations evolved. Even in 
the final experiment, where there are 10,000 genes in the 
pool, the final solution was found by chance. It is un- 
clear that the optimal solution would be converged upon, 
even if the gene pool is allowed to evolve for many gen- 
erations. This may be attributed to any number of fac- 
tors, such as the actual mathematical structure of FE, 
the parameterization of the weights, or the choice of ge- 
netic operators and their probabilities. However, it is 
not difficult to see that the the weights evolved in Trial 
F produce a usable, if not noisy, image. 

The mathematical structure of GAFE poses a unique 
problem. There is no generalized form of fractal error 
as it is defined above. A generalized form would make 
it possible to generate a type of convolution mask which 
could be used to compute fractal error in a timely fash- 

ao = 0.0022583 
Oi = 0.096954 
a2 = -0.034164 
a3 = -0.0069427 
0,4 = -0.00093078 

ion. Forcing a mathematical structure to find the ap- 
proximation is restrictive. In the future, it may be pru- 
dent to investigate the evolution of a mathematical ex- 
pression using a GP. This would expand _the search space 
from merely searching the weights for FE to searching 
the infinite space of reusable functions to find the ap- 
proximation. 

5.    NEURAL NETWORK APPROXIMATION OF 
FRACTAL ERROR 

Multilayer feedforward neural networks have been shown 
to be good function approximators, and are often re- 
ferred to as universal approximators [31],[32]. Girosi and 
Poggio suggest that a large number of networks can ap- 
proximate any continuous function arbritary well [33]. 
Can fractal error be considered such a function? If so, 
can it be approximated with a neural network? Poggio 
and Girosi also state that most approximation schemes 
can be mapped into a neural network [34]. Since frac- 
tal error is an algorithm, it really cannot be considered 
a function. However, it can be modelled with a neural 
network, provided the network can learn from a given 
set of examples. 

It is desirable to develop a neural network approximation 
of fractal error that will be consistent for all images. 
In other words, the network is trained using only one 
image. Once the final weights are obtained, they can 
be used to produce the desired output for any image. 
Since the fractal error algorithm calculates the fractal 
error of a pixel based upon neighboring pixels in a user 
defined window, a similar approach is used in designing 
the architecture of the neural network. 

Consider the 5x5 window in Figure 2. With the fractal 
error algorithm, each pixel in the window is used to find 
the fractal error of the center pixel. Similarly, each pixel 
in the window will be used as an input to a multilayer 
feedforward network. Figure 5 shows a 5x5 window with 
a multilayer feedforward network. The pixels in the 5x5 
window are labeled 1 through 25, which corresponds to 
the input neurons. The hidden layer consists of 25 neu- 
rons, and the output layer consists of only one neuron, 
whose output represents the fractal error of the center 
pixel. All neurons are unipolar continuous, and the ac- 
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TABLE VI 
TRAINING THE NEURAL NETWORK TO APPROXIMATE FRACTAL 

ERROR 

Fig. 5.   Multilayer Feedforward Network for Approximating Frac- 
tal Error. 

tivation function is defined by 

f(net) = 
1+e —Xnet' (17) 

The network is trained using the error back-propagation 
algorithm. The training set, shown in Figure 6, consists 
of an input image and a desired output image. The in- 
put is an aerial image showing part of Alameda, CA. The 
desired output is obtained by computing the fractal er- 
ror of the input image using the fractal error algorithm. 
The resulting image highlights the man-made features, 
including boats, buildings, roads, and runways. 

The idea is to feed the input image into the neural net- 
work one 5x5 window at a time, and compute the output 
of the network. This output represents the approximated 
fractal error of the center pixel in the current 5x5 win- 
dow. This value is compared to the the desired output, 
and the error is calculated. Weights are then adjusted 
according to the error back-propagation training algo- 
rithm (EBPTA). The process is repeated for each 5x5 
window. The total accumulated error for the entire im- 
age determines when the training stops. If the total error 
is below a user defined maximum error, then the train- 
ing stops. Otherwise, the error is reset, and the process 
starts over from the first 5x5 window. 

Simply stated, input a 5x5 window into the neural net- 
work, compute the response of the output layer, and 
compare it to the desired output corresponding to the 
center pixel of the current 5x5 window. Repeat for each 
pixel until the total error for the entire images is suf- 
ficiently small. The weights are being "fine-tuned" so 
that, given any 5x5 window, the output of the neural net- 
work produces a number that nearly matches the value 
given by the fractal error algorithm. Table VI summa- 
rizes the training for the network. 

Once the training is complete, the weights do not change. 

1. Read input image and normalize 
[0.1,0.9]. 

2. Read desired output image and nor- 
malize [0,1]. 

3. Initialize network parameters accord- 
ing to EBPTA. 

4. Input first 5x5 window and compute 
network output (network output rep- 
resents the approximated fractal error 
of the center pixel in the current 5x5 
window). 

5. Calculate error between desired out- 
put and network output according to 
EBPTA. 

6. Adjust the output and hidden layer 
weights according to EBPTA. 

7. If more inputs remain, input next 
5x5 window, compute network out- 
put, and goto step 5. Else goto step 
8. 

8. The training cycle is complete. If the 
error is below the user defined max- 
imum error, terminate the training 
session. Output weights, the cycle 
number, and the error. If the error is 
above the maximum error, then reset 
the error and initiate a new training 
cycle by going to step 4. 

Now, any image can be input into the network, and the 
fractal error for each pixel can be approximated using 
the steps outlined in Table VII. 

The network was tested on several images. The results 
indicate that the neural network closely approximates 
fractal error. Although the network was trained using 
only the "Alameda" image, the final network is consis- 
tent for all of the test images. However, the network 
with 25 hidden layer neurons does not provide a fast 
approximation. In fact, computation time has slightly 
increased. When considering the number of mathemat- 
ical operations required to compute the output of the 
neural network, it becomes clear why the computation 
time increases. 

Each neuron has 25 inputs, which is multiplied by a 
weight and summed together. Each neuron also requires 
the evaluation of an activation function. There are 25 
hidden layer neurons, and 1 output layer neurons, for 
a total of 26 neurons. The number of operations is 
26 x 25 = 650 additions, 26 x 25 = 650 multiplications, 
and 26 activation function evaluations, for a total of 1326 
operations required to approximate the fractal error of 



TABLE VII 
FRACTAL ERROR APPROXIMATION VIA THE NEURAL NETWORK 

(a) Input Image 

1. Read input image and normalize 
[0.1,0.9]. 

2. Weights are final weights obtained 
from training. 

3. Input first 5x5 window. Compute and 
save network output (network output 
represents the approximated fractal 
error of the center pixel in the current 
5x5 window). 

4. If more inputs remain, input next 5x5 
window, compute and save network 
output, and repeat step 4. Else goto 
step 5. 

5. Normalize output [0,255] and write 
output image. 

(b) Desired Output 

Fig. 6.    The Training Set for Learning to Approximate Fractal 
Error. 

just one pixel. Obviously, the size of the network needs 
to be reduced. 

Optimizing the Neural Network 

Optimization, in the context of this paper, is two-fold. 
The neural network approximation needs to produce ac- 
curate results, and it also needs to provide them in a 
timely fashion. The network developed thus far does in 
fact produce the necessary accuracy. The RMS error is 
relatively small, as shown in Table VIII. However, the 
network cannot provide the results in a timely fashion. 

Rather than try to improve accuracy that is already suf- 
ficient, efforts should be concentrated on trying to reduce 

the size and complexity of the network in order to im- 
prove computation time. 

If the computation time cannot be greatly reduced with- 
out losing accuracy, then this neural network architec- 
ture may not be suitable for the problem. Therefore, it 
seems reasonable to begin reducing the number of hid- 
den layer neurons by at least half, or significant improve- 
ments in computation time will not be seen. Upon re- 
training the network with only 10 hidden layer neurons, 
the error function shows learning patterns very similar 
to the network with 25 neurons in the hidden layer. In 
fact, the new network very nearly matches the accuracy 
of the previous network, as shown in Figure 9. 

Since nearly the same results were obtained with 10 hid- 
den layer neurons, another reduction by half seems in 
order. Again, retraining the network with only 5 hid- 
den layer neurons, the error function in Figure 9 shows 
learning patterns similar to the previous networks. This 
time, however, the error function does level off slightly 
sooner than before. The tradeoff between the loss in ac- 
curacy and the improvement in computation time must 
be considered. For the case of 5 hidden layer neurons, 
the loss of accuracy is minimal, while the improvement 
in computation time is significant. 

6.    RESULTS 

Both approximation were tested on several images. The 
results for the "Washington D.C." and "Alameda" test 
images are shown in Figures 10 and 11. Table VIII shows 
the RMS error for both approximations relative to the 
fractal error algorithm. Table IX shows the computation 
times of the fractal error algorithm and both approxima- 
tions for images of several different sizes. 



7.    CONCLUSIONS 

Genetic and neural approximations have been developed 
in this paper. Both approximations provide usable re- 
sults. While the neural network provides a more accurate 
representation of fractal error, it is clear that the genetic 
approximation preserves all the necessary features. Both 
approximations provide significant reductions in com- 
putation time, with the neural network being slightly 
faster. Currently, a genetic programming approach is 
being used to evolve a function to approximate fractal 
error. A functional link neural network is being imple- 
mented as well. It would be of great benefit to investigate 
combining the genetic and neural approaches discussed 
in this paper to improve the results. 



(a) Trial A (b) Trial B (c) Trial C 

(d> TVial D (c) Trial E (f) Trial F 

Fig. 7.   Resulting FE images from each CAFE trial described in Table IV. 

TABLE VIII 
RMS ERRORS OF TEST IMAGES WITH RESPECT TO ORIGINAL FE IMAGES 

Image Normalized RMS Error 
GAFE MFNN w/5 HLNs 

Alameda 0.109 0.050 
Washington D.C. 0.099 0.055 

TABLE IX 
COMPUTATION TIMES FOR ORIGINAL FE ALGORITHM, GAFE, AND MFNN 

Size Computation Time (seconds) 
FE Algorithm GAFE MFNN w/5 HLNs 

256x256 1.43 0.43 0.31 
227x425 2.14 0.64 0.47 
589x409 5.59 1.65 1.24 
512x480 5.68 1.69' 1.26 
974x723 16.36 4.85 3.63 
1267x941 27.74 8.22 6.13 
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Fig. 8.   Plot ofTrial F with SNR vs. number of generations. 
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Fig. 9.   Comparison of Error Functions for Different Number of Hidden Layer Neurons. 



(a) Original (b) FE Algorithm 

(c) GAFE (d) MFNN w/5 HLNs 

F',g' and S Thhee mS™ ^f^' 'T^ (25f x2!6>> the °utPuts g'ven bythe (b) fractal error algorithm, (c) the genetic approximation, 
and (d) the multilayer feedforward network with 5 hidden layer neurons. 



(a) Original (b) FE Algorithm 

(c) GAFE (d) MFNN w/5 HLNs 

Fig. 11.    (a) The original "Washington D.C." image (512x480), the outputs given by the (b) fractal error algorithm, (c) the genetic 
approximation, and (d) the multilayer feedforward network with 5 hidden layer neurons. 
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Fractal Error for Aerial Image Analysis 

Summary 

Although the fractal dimension, variants of the fractal dimension, and lacu- 
narity have been used to analyze natural visual textures, the vast majority 
of research assumes that the observed image fits the fractal model. The error 
between the actual image and the fractal model should be considered. In this 
paper, a localized measure of the "fractal error" is developed for gray shade 
aerial image analysis. Two applications are examined: segmentation and cul- 
tural feature detection. Paired with the image intensity, the fractal error was 
found to be a suitable, general-purpose texture feature for segmentation. Also, 
the fractal error, without image intensity, demonstrated its ability to detect 
cultural image features. 
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1     Introduction 

While there has been much work using fractal dimension, fractal dimension 
variants and lacunarity in image analysis, there has been little work in ex- 
amining the validity of the model used in estimating fractal dimension. Most 
work considering the fractal dimension of an object in the image assumes that 
the image texture is, in fact, a fractal. It is useful to consider the possibility 
that an image texture may not accurately fit the fractal model. This paper will 
describe a metric based on the degree to which a pixel fits the fractal model. 
The first section of the paper outlines the background of fractals and fractal 
geometry. The motivation and theory of the fractal error metric is described 
in the second section. Finally, results are presented and some conclusions are 
drawn. 

2    Background 

2.1    Definition of a fractal 

First popularized by Mandelbrot [1], fractals may occur in several forms, 
with applications ranging from data compression to fluid mechanics to par- 



tide aggregation and erosion. Appropriately, the meaning of the term fractal 
has widened from Mandelbrot's early tentative definition (in terms of the 
Hausdorff-Besicovitch dimension) to a broader set of properties. As described 
by Falconer [2], a fractal has an arbitrarily fine structure which may often be 
represented by some form of approximate or statistical self-similarity. Its frac- 
tal dimension, which may be defined in various ways, is usually greater than its 
topological dimension. Its irregularity, on both local and global scales, defies 
description by conventional Euclidean geometry. Such irregularity is common 
across a wide spectrum of natural processes, ranging from the microstructure 
of fractured materials to the formation of galactic clusters. In contrast to tra- 
ditional geometry, fractal geometry readily accomodates the complexity and 
infinite detail present in nature. 

2.2   Modeling natural terrains with fractals 

Mandelbrot [3] noticed that natural terrain surfaces may be modeled by two- 
dimensional fractional Brownian motion with startling effectiveness. Intro- 
duced by Mandelbrot and Van Ness [4], fractional Brownian motion (some- 
times abbreviated fBm) is a generalization of Brownian motion, which de- 
scribes the complex, erratic movement of a particle, subjected to the collisions 
of the other paricles in its surrounding medium. Voss [5] established a link 
between the spectral distribution of fBm and the fractal dimension. Based on 
this, he used Fourier synthesis to generate natural terrains and even complete 
landscapes. Pentland [6] argued that natural terrain should follow a fractal 
model, since it is formed by fractal processes such as aggregation and erosion. 
Furthermore, he asserted that an image intensity surface of a fBm surface will 
also produce fBm, under normal fighting conditions. In other words, not only 
may terrain be modeled by fBm, but gray shade images of such terrain also. 

2.3   Modeling image textures 

Recognizing that fBm may be used to study images of natural terrain, Pent- 
land [6] extended fBm to image textures in general. He found that fBm relief 
maps of varying fractal dimension correlated very closely with the human per- 
ceptual notion of roughness, a fundamental characteristic of texture. Estimat- 
ing the fractal dimension from the Fourier transforms of local neighborhoods, 
Pentland distinguished the textures within a sampling of Brodatz textures 
and textures from natural scenes. The estimated fractal dimension was also 
used to segment the regions within images of a desert, San Francisco Bay 
and Mount Dawn. Keller et al. [7] developed a one-dimensional fBm model 
to distinguish between silhouettes of trees and mountains. With respect to 



aerial image analysis, fractal dimension has been the dominant fractal charac- 
teristic. Most applications have studied the visual spectrum [8]—[12], although 
synthetic aperture radar and infrared imagery [13] have also been examined. 

Image texture models are not restricted to using only the fractal dimension. 
In later work. Keller et al. [14] supplemented the fractal dimension with a 
lacunarity estimate to segment a set of Brodatz textures and a scene of trees. 
Likewise, Vehel [15] implemented an alternate form of each lacunarity and the 
fractal dimension to classify images of human lungs. Generalizing the normally 
scalar fractal dimension, Kaneko [16] used a 2 x 2 fractal dimension matrix to 
capture directional dependencies. The eigenvalue of this matrix was used to 
characterize Brodatz textures. Dennis and Dessipris [17] studied the rate of 
change of the fractal dimension as a texture signature across a range of pixel 
distances. In an effort to distinguish between natural and cultural (man-made) 
objects in aerial images, Cooper et al. [18] introduced the fractal error, which 
considers the degree to which an image region fits the fractal model. 

3    The Model 

3.1    Motivation 

In spite of the variety of the fractal measures discussed above, nearly all of 
them rely upon one fundamental assumption: that the image texture is a 
fractal. Presumably, this situation results from Pentland's original assertion 
that images of natural terrain may be modeled by a fractal (specifically fBm) 
approach [6]. However, Pentland assumes that the scene's reflectance will be 
uniform. When this condition does not hold, the validity of the fractal model 
is questionable. In a study of the mathematical concerns of various algorithms 
to estimate the fractal dimension, Pruess [19] confirms this sentiment, stating 
that one of the essential attributes of an estimation algorithm is to "provide 
some statistical information as to the accuracy and sensitivity of the output." 
Before estimating the fractal characterisitics of an object, it is important to 
determine if such a model is appropriate. Furthermore, the degree to which 
an object fits the fractal model is an important characteristic itself. 

3.2   Fractional Brownian motion 

The predominant measure of a fractal is dimension. Therefore, the error in the 
estimation of the fractal dimension was examined, although the error in the 
estimation of other fractal characteristics could (and should) by considered. 



Following the historical precedent set by Mandelbrot [3], Pentland [6], and 
others, the fractal dimension used here is based upon the H parameter of 
fractional Brownian motion. 

Fractional Brownian motion (fBm) may be described by the properties of 
the signal's increments, which must be normally distributed with a mean of 
zero and a variance proportional to the 2H power of the Euclidean distance 
between the two measurements. Let BH(t) represent a fBm signal, where t 
is a vector containing E independent variables. Then the properties of the 
increments ABH = BH(t2) — BH(ti) are expressed below, where k represents 
the proportionality constant of the variance and H is a parameter between 
zero and one, exclusively (0 < H < 1): 

E[B„(t2)-BH(t1)}=0 (1) 

vax[£*(t2) - ßtf(ti)] =a2|t2 - tx|
2//. (2) 

The fractal dimension D is related to the parameter H by the formula D = 
N + 1 — H, where N is the topological dimension (equivalently, the number 
of independent variables of the signal). Mandelbrot mentions this relationship 
as early as his 1975 work [3], but does not elaborate upon it. The interested 
reader should refer to Voss [5] for a lucid explanation. 

Since var[y] = E[Y2} -E[Y}2, Equations (1) and (2) may be combined to give 
the expression 

E[(BH(t2) - £*(tO)2] = <x2|t2 - t,\2H. (3) 

However, the more common form is below, which may be derived through a 
transformation of random variables (see Appendix). 

E[\BH(t2) - £*(tOI] = k\t2 - til* (4) 

When considering a two-dimensional signal, such as an image, there will be 
two independent variables (N = 2). The notation G(x) refers to such a sig- 
nal, which will be compared to the fBm signal BH(t). Thus, x = (a:r>a;c), 
which specifies the discrete row and column coordinates. The function G(x) e 
[0,..., 255] is a discrete value representing the gray shade at location x. 

If G(x) is assumed to be fBm, then the following equations hold for some 
H  (0 < H < 1) and k   (k > 0): 

E[|G(x2)-G(xO|]=A;|x2-xir (5) 
E[|AG|Ax||] = A:|Ax|*. ' (6) 



The distance between a pair of pixels is |Ax| = |x2 — Xi|, and the difference 
in gray shade between these pixels is AG|Ax| = G(x2) - G{xx). The average 
absolute gray shade difference, taken across pixel spacings of the same magni- 
tude, denoted |Ax;|, will follow the exponential scaling described in Equation 
(6). A linear expression may be obtained by taking the logarithm of each side: 

ln(E[|AG|Axi||]) = ln(fc) + iJln(|AXi|). (7) 

Using least squares linear regression, the estimated values H and k may be 
determined from a collection of pixel distances and their associated average 
absolute changes in gray shade. 

3.3   Fractal error 

However, G(x) may or may not fit the fBm model. Although the above method 
will compute estimates for H and k, the validity of these values depends upon 
how well G(x) corresponds to fBm. Thus, the error in the estimation should 
be considered. The error at a particular pixel spacing is 

error|Axi| = E[|AG|Axi,|] - k\bxi)
H. (8) 

The root mean square (RMS) of these individual errors characterizes the over- 
all error in the estimation, shown below. (Let n be the number of pixel dis- 
tances considered.) 

RMS error = 
1 
-X>rror|Ax<|)2 (9) 

The RMS error measures the degree to which the observed signal fits the fBm 
model and is referred to here as the fractal error. 

In a paper by Stein [10], a different fractal error measure is considered. Rather 
than using a set of gray shade differences in a localized neighborhood, Stein 
used a covering method similar to Peleg's method [11]. This method estimates 
the fractal dimension using bounded surfaces and morphology. The estimated 
dimension is then used to calculate the fit of the model to the actual data. 
Priebe et al. [12] also used the Peleg covering method to calculate a similar 
fractal error of each pixel in a scene. An F-test statistic was used to calculate 
the model fit, rather than the RMSerror from the calculated error at each 
unique pixel spacing, as described above. 



4    Example Implementation and Results 

4-1    Developing a local fractal error measure 

The implementation of the fractal error operator'was oriented toward tex- 
tures in gray shade aerial images, such as trees, grass, soil, water, shadows 
and buildings. In contrast to the high degree of intra-class homogeneity in 
Brodatz textures, the textures here demonstrate greater variation within their 
individual classes. The resolution of the images required a measurement within 
small, preferably overlapping neighborhoods of pixels. Window sizes from 5x5 
through 17x17 were studied, with the smaller sizes giving the most favorable 
performance. Finally, the fractal error operator had to be quick and simple 
to use, so that it could be used interactively by a scene analyst who may not 
have a background in image processing. 

In addition to capturing the textures better, the small window size also of- 
fered greater speed. Another factor was the choice of which pixel spacings to 
consider. For a window of size w x w, there arc (w4 - w2)/2 possible spacings. 
To reduce the number of computations, two approaches were examined. By 
considering only those pixel spacings in the horizontal and vertical directions, 
only wz — w2 data points must be used. A further reduction results from a 
second technique. It examines all distances and angles within the window, but 
only with respect to the center pixel. There arc w2 — 1 such pixel spacings. 
Figure 1 illustrates the pixel spacings used within a 5 x 5 window for the 
center-oriented method. Intuitively, this approach seems to localize the mea- 
sure more by emphasizing the center pixel, plus it strives to make the measure 
more directionally independent than the former approach. 

4-2   Segmenting aerial imagery 

Although gray shade is often the predominant feature for distinguishing re- 
gions in aerial images, gray shade alone may be inadequate. For example, 
the gray shade of the water in Figure 2(a) overlaps that of the foliage or 
trees. Thus, a combination of gray shade and fractal error was used with a 
Mahalanobis-distance statistical classifier. Stein [10] considered two different 
fractal error measures, as well as the fractal dimension, along with a set of 
heuristic decision rules in order to successfully analyze tactical aerial images. 
Each of the measures were dependent on user-selected thresholds that may 
introduce error in the segmentation. Priebe et al. [12] simplified the algorithm 
by considering only the estimated fractal dimension parameters. 

Consider the shore scene (278 x 269) in Figure 2(a), containing water, foliage 



and non-foliated land. The fractal error image in Figure 2(b), negated to 
improve visibility, shows that the water tends to have a low fractal error (light 
gray shade). The non-foliated land has a greater error, and the foliage has 
a medium to high error. Figure 2(c) shows.the histogram of gray shade and 
fractal error, displayed as an image. The darkness of each point indicates the 
relative number of occurrences for that particular pair of gray shade and fractal 
error values. The distributions of the three classes foliage, water and non- 
foliated land are approximated by the ellipses superimposed on the histogram. 
Clearly, the combination of gray shade and fractal error can separate these 
classes. Using gray shade and fractal error to classify the pixels in the shore 
image, the resulting segmentation is shown in Figure 2(d), where the foliage 
is black, water is gray and soil is white. A neighborhood size of 5 x 5 was used 
in calculating the fractal error for these images. 

This image was compared to a correctly segmented "ground-truth" image for 
these same three classes, shown in Figure 3(a). Compared against this ground- 
truth image, the gray shade and fractal error classification had an overall 
classification accuracy of 83.0%. Note that the majority of misclassifications 
arc isolated pixels. Eroding all regions below the arbitrary size of ten pix- 
els increases the classification accuracy to 89.0% and produces a significant 
improvement in the visual quality of the segmentation, as shown in Figure 
3(b). Note that visual interpretation, as judged by a trained scene analyst, is 
typically the determinant of the quality of segmentation, since ground-truth 
imagery is seldom available. 

In addition to the shore scene, other aerial images were considered. A scene of 
farm land (512 x 512) is shown in Figure 4(a). The light colored soil areas are 
clearly distinguishable solely on the basis of gray shade intensity. However, 
the grassy fields and foliage require a texture measure to be separated. Figure 
4(b) shows the negated fractal error image, in which the foliage tends to have 
a larger error (darker gray shade) than the fields. In Figure 4(c), the image has 
been classified as foliage (dark gray), grass (light gray) or soil (white). Finally, 
Figure 5(a) introduces a mixture of natural content and cultural content (e.g., 
roads, buildings). (This image is also 512 x 512.) The lake in the upper left, 
the trees, the fields and cultural objects are generally separated in the negated 
fractal error image, shown in Figure 5(b). The classification in Figure 5(c) 
identifies four classes, from dark to light: water, foliage, open fields and cultural 
objects. Although ground-truth imagery was unavailable for these images, a 
visual comparison between the original and classified images indicates that 
gray shade and fractal error provide an effective way to segment the regions 
of interest in aerial imagery. 



4-3   Detection of cultural features 

The fractal error should be large for regions which are not fractal. Since cul- 
tural or man-made objects often have a non-fractal appearance, the fractal 
error was examined as a way to identify cultural features. Over an appropri- 
ate range of sizes, cultural objects will appear to be non-fractal. Clearly, a 
uniformly colored man-made object which is much larger than the window 
size will appear to be fractal in the center with a low fractal dimension cor- 
responding to its smooth, uniform gray shade. Its boundary will very likely 
have a non-fractal appearance, since it represents a transition between two 
different textures. Thus, the correspondence between the object size and the 
window size used by the fractal error operator will be significant. 

This property was examined in the context of two images of a residential 
area (each 364 x 323) with a fairly high content of deciduous vegetation. 
The same scene was photographed in April and in October. This was done 
to evaluate the robustness of the metric relative to seasonal variations and 
changes in contrast and illumination that occurred at the different times. The 
primary man-made objects in the test images are about fifty to sixty pixels in 
size. The pair of images is shown in Figure 6. Figure 7 illustrates the fractal 
error of each of these images, using a 7 x 7 window size, thresholdcd so that 
features with large fractal errors appear black against a white background. It 
is obvious by comparing the original image and the binary thresholdcd fractal 
error images that the fractal error performed reasonably well in detecting 
man-made features. It was also fairly insensitive to changes in illumination, 
contrast, and season. Note the brighter lighting and greater contrast in the 
October image of Figure 6 compared to the April image, as well as the distinct 
increase of foliage in the October scene. 

A selection of operators which were evaluated as candidates for detecting 
cultural features was tested on this pair of images. Cultural features usually 
possess clear edges, so three edge operators were included in the set. A texture 
operator previously studied for representing textures in aerial imagery, called 
"busyness," was also included. Originally developed by Rosenfeld and Kak 
[21], busyness measures the minimum average change in gray shade in each 
the horizontal and vertical directions within a local neighborhood of pixels. 
The fractal error with window sizes 5 x 5, 7 x 7 and 9x9 completed the set. 

Quantifying an operator's accuracy for detecting the man-made content is dif- 
ficult. The creation of a correctly segmented or "ground-truth" image involves 
a degree of subjectivity. Both the April and October gray shade images were 
used to create the ground-truth urban image shown in Figure 8 for the two 
classes "buildings" and "background." This image contains buildings which 
may have been obscured by foliage and shadows in one or possibly even both 
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of the original images. For example, the presence of a rooftop in a shadow may 
sometimes be implied by the geometry of the structure. Likewise, a building 
with very low contrast might be detected by a faint shadow. In some circum- 
stances, objects were blurry even at higher resolutions, requiring a subjective 
determination whether the particular item was a portion of a building. Al- 
though the images were registered, there were slight misalignments of one or 
two pixels around the upper right and lower left corners of the image. The 
ground-truth segmentation attempted to compromise between the two images 
in such cases. 

When comparing the fractal error, busyness and edge operators, each of the 
images processed by these operators was thresholded manually, while attempt- 
ing to maximize the distinction between buildings and background. Although 
this task was performed carefully, it is inherently subjective. The fractal er- 
ror and busyness images were compared directly to the ground-truth image. 
However, one would not expect the edge operators to match well to the filled 
objects of the correctly segmented image. At best, they can detect only the 
object boundaries, although this should be considered a valid detection of the 
object. Therefore, each edge operator was also applied to the ground-truth 
image, and the result was thresholded to a binary image. (While partially 
subjective, the determination of a threshold was much more obvious for this 
step than for the previous edge images.) Thus, the edge image of the ground- 
truth image was compared to the edge image of the original image for each of 
the three edge operators. 

For each comparison, the percentage of correctly classified pixels was com- 
puted. The overall classification accuracy, based upon the relative number of 
pixels labeled as either buildings or background, was considered. However, this 
value can be misleading, since there were about five times more pixels labeled 
as background than as buildings. (For example, an image consisting entirely 
of background would still manage to produce an excellent overall classification 
accuracy above 80%.) Since the goal is the detection of buildings, the percent- 
age of buildings classified as buildings might be a better means of comparison, 
although one could obtain perfect results with an image consisting entirely of 
buildings. However, the images were thresholded to produce meaningful re- 
sults, not pathological situations, so this percentage may still be useful. An 
alternative criterion is the simple (non-weighted) average of the two matching 
classifications (i.e., buildings classified as buildings and background classified 
as background). Here, each the buildings and background classes are given 
equal importance. 

The fractal error correctly classified 60% to 70% of the buildings, compared 
with 50% to 60% for the busyness and 10% to 35% for the edge operators. 
The average classification accuracy was roughly equal for the fractal error and 
busyness, between 65% and 70%. This measure dropped to between 50% to 
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60% for the edge operators. These results indicate that the visual appeal of 
the fractal error for identifying cultural features has quantitative support. 

5    Conclusions 

Few researchers have considered the error in their estimation of fractal char- 
acteristics. The error between the image data and the fractional Brownian 
motion model was therefore investigated as a texture descriptor, referred to 
here as the fractal error. The fractal error was developed as a localized texture 
feature, oriented toward the small, heterogeneous textures in gray shade aerial 
images. 

Two applications were considered: region segmentation and cultural feature 
detection. The combination of gray shade and fractal error gave quick and ac- 
curate classification results. The fractal error was able to differentiate between 
regions whose overlapping gray shades prevented simple gray shade threshold- 
ing, such as water and foliage or foliage and fields. However, the fractal error 
will highlight sharp edges as high errors and has some degree of scale sensi- 
tivity. 

Since cultural or man-made objects in an image will typically be non-fractal, 
the fractal error was applied to the detection of cultural features. The cultural 
content of the scene was located successfully using the fractal error. Compared 
both qualitatively and quantitatively with other simple operators, the fractal 
error provided superior performance in detecting cultural features. 

The fractal error was found to be an effective feature for both of these ap- 
plications of aerial image analysis. Because the observed data often deviates 
from the presumed model, the error should be considered in any expression 
of fractal characteristics. Further refinement could produce a more accurate 
measure of the "fractalness" of an image region. 
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Appendix 

Theorem: Given a normally distributed random variable X with a mean of 
zero and variance a2, the mean of \X\ will be proportional to a. 

Proof: Let the probability distribution of X be labeled f(x). Prom the given 
information, 

/w=^cxp(i?)- (10) 

Also, let Y = \X\. Find the probability distribution of g(y) of Y. (Note that 
G(y) and F(x) denote the cumulative distributions of g(y) and f(x), respec- 
tively.) G(y) can be written as 

G(y) = P(Y <y) = P(-y < X < y) = F(y) - F(-y). (11) 

Differentiating with respect to y produces 

g(y) = f(y) + f(-y)- (12) 

Since y must be non-negative, g(y) = 0 for y < 0. The distribution of f{x) is 
symmetric about the origin, so g(y) — 2f(y) for y > 0. Thus, 

9fe) = ^exp(i^) for*-0' (13) 

By definition, 

/oo 
yg(y)dy (14) 

-oo 

-2a2   r°°       ('-y2\ -y 

■zfcL exp[w)Jdv 

exp -V 
2' ~V2a oo 

'2 
7T 

Therefore, the mean of \X\ is proportional to the standard deviation of X, 
where the proportionality constant is J2/-K. 
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Pixel distances 
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A x = sqrt(8) 

Fig. 1. Pixel Spacings Used with the Center-Oriented Method 
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(a) Original Image (b) Fractal Error Image, Negated 
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(c) Histogram (d) Classified Image 

Fig. 2. Fractal Error and Image Intensity Applied to the Shore Scene 
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(a) Correct Segmentation 

Fig. 3. Comparison of Classification Quality 

(b) Classification after Removal of 
Small Regions 
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(a) Original Image (b) Fractal Error Image, Negated 

(c) Classified Image 

Fig. 4. Fractal Error and Image Intensity Applied to the Farm Scene 
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(a) Original Image (b) Fractal Error Image, Negated 

(c) Classified Image 

Fig. 5. Fractal Error and Image Intensity Applied to the Mixed Scene 
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(a) April (b) October 

Fig. 6. Residential Scene at Two Times of the Year 
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(a) April (b) October 

Fig. 7. Binary Fractal Error Images of Residential Scene 
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Fig. 8. Correct Segmentation of Residential Scene 

23 



Fractal Error for Aerial Imago Analysis 

Biographical Sketch 

Brian E. Cooper received his Ph.D. degree from the University of Louisville 
in 1994. His research interests include texture representation, fractal-based 
image modeling, halftoning, image and data compression, and approximate 
reasoning. He currently serves as a software research engineer with Lexmark 
International in Lexington, KY. 

Darrel L. Chenoweth is Professor and Chairman of Electrical Engineering at 
the University of Louisville. He joined the University of Louisville in 1970 
after completing his Ph.D. at Auburn University. He has been involved in 
image processing and pattern recognition research sponsored by the Naval Air 
Warfare Center and the Office of Naval Research since 1981. He is a Fellow in 
the Institution of Electrical Engineers. 

E. David Jansing earned his B.S. in 1991 and his M.Eng. in 1992 from the 
University of Louisville. He completed his Ph.D. in Computer Science and 
Engineering at the same institution in 1997. He is currently an instructor at the 
University of Louisville in the Electrical Engineering department. His research 
interests include computer vision, image processing and artificial intelligence, 
especially in the field of genetic algorithms. 

John E. Selvage is a doctoral student at the University of Louisville, where 
he has received B.S. and M.Eng. degrees in Computer Science and Engineer- 
ing. He is a former Senior Engineer at Martin Marietta Orlando Aerospace. 
He has done research in image processing, particularly object detection and 
classification algorithms. 

24 



Two-Dimensional Entropie Segmentation Of 
Cultural Objects In Aerial Imagery 

E. David Jansing", Thomas A. Albert l\ and 
Darrel L. Chenoweth a 

a
 University of Louisville 

Speed Scientific School 
Department of Electrical Eru/ineerinij 

Louisville, KY 40202 
h University of Louisville 

School of Medicine. 

Center for Applied Microcirculatory Research. 
Louisville. KY 40202 

Abstract 

A novel method of two-dimensional entropic segmentation using a linear discrim- 
inant function is presented. This segmentation approach highlights man-made ob- 
jects against background using features thai, provide two separable classes. It. will 
he shown that aerial images can be segmented accurately using fractal error and 
gray levels as features. 

Key words:  cntropic segmentation, man-made object recognition, classification, 
remote sensing 

1     Introduction 

Segmentation is an important task in many imago processing systems. Au- 

tomatic target recognition often uses segmentation to separate! the desired 

target from the background. Segmentation is also used to automatically high- 

light certain parts of the image that may be difficult to see with the human 

eye. such as man-made objects in synthetic aperture radar (SAR) imagery. 
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Thresholding intensity values is the simplest method e)f segmentation. This 

type of thresholding implies that the object or objects in question have inten- 

sities that are distinctly different from the background or other objects in the 

scene, e.g. a black part on a white conveyor bolt. 

Threshold selection methods can be grouped into two categories, local meth- 

ods and global methods. Segmenting an entire; image with a single value using 

the gray-scale histogram is an example of a global method. Local methods par- 

tition an image into a group of sub-images and select a threshold point or sot of 

threshold points for each of the sub-images. Global thresholding techniques are 

easy to implement, but some methods tend to be inaccurate, especially with 

complex images. The reader is encouraged to reference Sahoo et al. (1988) and 

Wong and Sahoo (19S9) for excellent surveys of global thresholding methods 

using information theory. 

This paper presents a novel segmentation method after a technique presented 

by Sahoo «t al. (1997). This method finds a thresholding line using the in- 

fbrmntion from a two-dimemsiemal probability density function. Saheio ot. al. 

propascxi an entropie global thresholding mothod that selects a threshold point 

basal on minimizing the difference between entropies of the; object and the' 

background distributions of the probability density function. The method pre- 

sented here uses this thresholding point along with statistical'information from 

the1 assumed elata sets of the object and the backgnmnd to proeluer a sex-one 1 

point. The: line that is produced from the two thresholding points is then usexl 



to separate the object data set from the background data set. The data is de- 

rived from an aerial image in which the object data set is the? cultural-objects 

present. 

2    2-D Extension Of The Entropy Crossover Method 

This section will outline the 2-D extension of the entropy crossover metho< 

described in Sahoo et al. (I'J'JT) as well as the novel technique for the pro- 

posed extension. The information in the gray-level frequency distribution (his- 

togram) is often not. enough to accurately segment a given image. In thes< 

cases, it is not uncommon to incorporate additional information in the his- 

togram. The additional information results in a 2-D histogram which is the 

frequency distribution of the second feature combined with tin; gray-level fre- 

quency distribution. This 2-D histogram is an estimate of the joint probability 

density function of the two features. The co-occurrence matrix is a commonly 

used example of this type of 2-D histogram. Obviously, the choice of features 

is extremely important in determining the separability of the object and back- 

ground classes in the joint probability density function. 

Abutalcb (1US9) proposed that the optimal threshold point for ä 2-D his- 

togram can be found by locating an optimal threshold for each feature in the 

histogram, which resulting in two separate thresholds, n* mu[ f2\ When the 

threshold for each feature has been found, the two orthogonal lines sequent- 



in»' each fonturc divide the matrix into four quadrants. The intersection of the 

orthogonal lines produces the over« 11 thresholding point (fl*. t'2*), as shown 

in Figure 1. 

Brink (1992) used two of the quadrants for segmentation. Hi; segmented Quad- 

rant II pixels as background and Quadrant IV pixels as foreground. However, 

he discarded the pixels located in Quadrants I and III. which may ignore 

important information concerning the objects to be segmented.  Instead of 

thresholding in quadrants, a thresholding line, in the 2-D histogram plane 

would provide better segmentation. Such a line is shown in Figure 1. Sahoo et 

al. recognized that the selection of a single point to classify the 2-D pdf may 

completely disregard some sections of the desired distribution that reside near, 

but not in. the foreground or background quadrants. They suggested finding 

the optimal thresholding line by minimizing the difference in the entropy val- 

ues on either side of a proposed line in the 2-D histogram plane, not unlike 

the method used in finding the optimal point in the 1-D histogram. -However, 

this is a costly method, as there are approximately 4x10'' lines that intersect 

a 25Gx25G histogram. 

Instead of an exhaustive search of the possible thresholding lines, it is possible 

to calculate a thresholding line using the statistics of each quadrant. Let (T.lj)j 

be the central moment of quadrant j = I.- ■ ■. I\'. Thus. 



Table 1 

Automatic 2-D Entropie Segmentation Alg<>rithm 

1. Calculate the optimal thresholding point (tr.t'2*) using the en- 
tropy crossover method as described in Sahoo et al. (IU!J7). 

2. Divide the 2-D histogram into quadrants around (/p. t2"). 

3. Determine the quadrant. ./'. with the largest number of points 
and calculate its central moment. (7.7/)y. 

4. Compute the line. /(./:.//) that intersects (fl\ f2*) and (x.Tj) •. 

5. Define L(x.y) to be the line perpendicular to /(.r. y). -passing 
through (Al*.«*). 

ü.     Segment the image using L{.r.y) as the optimal thresholding 
line. 

S.r, 

"-    P.i 
_ _ £//,■ 
7~ P./ 

(i] 

where /;, is equal to the total number of points in quadrant j. The quadrant 

with the most points is determined, and its central moment is used with the 

optimal threshold point to form a line. The resulting line is perpendicular to 

the desired thresholding line. The algorithm is summarized in Table 1. 

3    Direct Texture Measurement 

One very useful feature for segmentation is image; texture. While there is no 

formal definition of texture, there are several means by which to measure dif- 

ferent properties of texture, such as smoothness, coarseness, and regularity 

(Gonzalez and Woods. 1992). These; properties may be quantified using sta- 



tistical. structural, spectral, or fractal methods. An example of a statistical 

texture measure is standard deviation, which quanitifies similarity of pixels 

within a localized neighborhood (Albert ct al. 1ÜU1). Cooper et al. (l'M)l) 

described a fractal analysis approach to texture called "fractal error". This 

metric is based on the observation that natural features in high-resolution 

gray scale aerial images fit the fractional Brownian motion (fBm) .mathemat- 

ical model, as described by Mandelbrot (1977). 

Cooper (1(J(J4) used gray-scale values and fractal error as features in a 2-D 

statistical classifier to successfully detect, different, objects in aerial images. 

Jansing ct al. (1!)!)7) demonstrated that fractal error was useful in identifica- 

tion of cultural objects in synthetic aperture radar (SAR) imagery. Because of 

its provel ability to differentiate between textures, fractal error along wilh the 

pixel gray level value were used as feature« in the segmentation algorithm. 

4    Results 

The 2-D histogram and calculated threshold line are illustrated in Figure 

3. The result of applying the 2-D entropic segmentation method is shown 

in Figure 4. The cultural objects are highlighted and the natural terrain is 

classified as background. Figure 5 shows ground truth for the suburban aerial 

image. Table 2 shows the. comparison of the 1-D segmentation errors using 

intensity and fractal error as independent features, with the error values for the 



Table 2 

Results of 1-D and 2-D Segmentation Using Intensity and Fractal Error As Features 

Segmentation F<;ature;(s) Type« I Error 

Intensity 

Fractal Error 

Intensity <k Fractal Error 

15 «/ 

0 7 

4'Z 

Type; II Error Total Error 

10 7 

81 7K 

12 7. 

25 (X 

81 7 

lG7r 

proposed 2-D segmentation algorithm. These features were; found to be highly 

nncorrelated. with an r-yalue of 0.18. and therefore were well-suited for this 

task. It is clear that the 2-D method provides a more accurate; segmentation. 

The Typ« [I errors may be due. in part, to the- occlusion of houses and other 

cultural objects by the; trees in the image;. Also, the ground truth did not 

include the streets visible- in the image;, he>we;v<;r. the;s<; cultural obje;cts we;re; 

also correctly s<;gm<;nteel using the; me;thoel. Tli<;re;for<;. the; results of classifica- 

tion of man-made; objects was actually bettor than l(j 7. tor the; 2-D <;ntropie- 

segmentation. 

5    Conclusions 

A nove-1 mothocl of two-dimensional <;ntropie> segmentation was pre>se;nte;d. 

While; the; results for ail aerial image; an; accurate;, it is cle;ar that sums* with 

mal-world images is depeneknt on an intelligent choice of feature«. Namely, 

features should be; uncorrelateul to provide the best separability of classes in the; 

joint probability density function. For aerial images, direct texture measures 

such as fractal error often provide« a good feature for segmentation. Future 



research should focus on a study of segmentation with different features. Such 

a study may provide an indication of which features may he more effective in 

highlighting cultural objects in aerial imagery using this entropic segmentation 

method. 

References 

Ahutaleb. A. S. (1989). Automatic thresholding of gray-level pictures using 

two- dimensional entropy. Computer Vision. Graphics and Im aye. Process- 

ing. 47. 22 -32. 

Albert. T. A.. 0'Connci\ C. A., and Harris. P. D. (1991). Automatic seg- 

mentation of microvessols using textural analysis. In Proceedings of SPIE. 

volume 1450. 84 89. 

Brink. A. D. (1992).   Thresholding of digital images using two-dimensional 

entropies. Pattern Recognition. 25. 8. 803-808. 

Cooper. B. E. (1994).   Fractional Brotmia/n Motion For Representation Of 

Natural. Image Texture. Ph.D. thesis. University of Louisville. 

Cooper, B. E., Chenowetlh D. L.. and Selvage, .1. E. (1994). Fractal error for 

detecting man-made features in aerial images.   Electronics Letters. 30. 7. 

554-555. 

Gonzalez. R. C. and Woods. R. E. (1992). Digital Image Processing. Addison- 

W'esley Reading. 

Jansing. E. D.. Chenoweth. D. L.. and Knecht. J. (1997). Feature detection 



IC in synthetic aperture radar images using fractal error. In Proreednujs of th 

IEEE Aerospace Conference, volume 1. 187-195. 

Mandelbrot. B. B. (1977).   Fractals: Form. Chance, and Dimension.   W. II. 

Freeman and Co.. San Francisco. 

Sahoo. P. K.. Slaaf. D. W.. and Albert. T. A. (1997).   Threshold selection 

using' a minimal histogram entropy difference.   Optical. Enyinecriv.tj. 3(j. 7. 

1976-1981. 

Sahoo. P. K.. Soltani. S.. Wong. A. K. C. and Chen. Y. C. (1988). A survey of 

thresholding techniques. Computer Vision. Graphics and Imaijc Process-in;/. 

41. 233 200. 

Wong. A. K. C. and Sahoo. P. K. (1989).   A gray-level threshold selection 

method based on maximum entropy principle.  IEEE Transactions on Sys- 

tems. Man and. Cybernetics. SlMC-19. 8GG -871. 



Figure Captions 
Figure 1 - The optimum thresholding line for the 2-D histogram shown. 
Figure 2    Aerial image of suburban area. 
Figure 3    2-D frequency distribution showing resulting threshold line. 
Figure 4     Aerial image of suburban area segmented using gray levels and 
fractal error as features. 
Figure 5    Ground truth for the suburban aerial image; shown in Figure 4. 
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Abstract 

Fractal error is an image processing metric that can be used to locate man-made features in aerial 
images. The metric can aid photointerpreters in locating targets in aerial reconnaissance images. Fractal 
error was developed for this purpose by Cooper et al. [1]. Since the development. Jansing et al. [•_>] 
have shown that the fractal error metric also works well for extracting features in synthetic aperture 
radar (SAR) images. Jansing et al. [3] have also shown that the fractal error metric is useful for 
locating edge pixels in industrial images. The fractal error metric has a wide range of applications: 
however, some applications require real-time image analysis. The main disadvantage of the fractal error 
algorithm is that it can take several seconds to compute on large images. Therefore, it is desirable to 
create an approximation of fractal error to provide real-time image analysis. This paper presents a novel 
approximation of fractal error using a genetic algorithm. 

The results obtained using the approximation are compared with those obtained from the fractal 
error algorithm. The genetic algorithm does preserve all of the desired features of the original fractal 
error image, while providing a faster computation time. 

Future work will consist of developing a genetic programming technique to evolve a mathematical 
structure for a better fractal error approximation. 

1    Introduction 

The mathematical nature of textures within images has generated much interest in the literature. Fractal 
dimension and lacunarity are often the focus of such interest. Notably, Pentland [4] used fractal dimension 
to analyze natural visual textures. However, little attention has been given to measuring the fitness of the 
fractal model itself. There has also been other work that has attempted to apply fractal characteristics and 
measures to basic image analysis, such as texture segmentation [5], [6]. Using a fractional Brownian motion 
(fBm) model. Stewart et al. [7] demonstrated the application of fractal random process models as features 
in the analysis and segmentation of SAR imagery. The fractal dimension of natural textures, such as grass 
and trees, was computed and used as texture features in a Bayesian classifier. 

Stewart discussed how metrics described by fractal geometry provide accurate measures of "roughness" 
and "irregularity" in scale-invariant natural forms. Moghaddam et. al. [8], [9] have used the local fractal 
dimension, a fractal metric, for segmentation and analysis of infrared (IR) imagery. Likewise, Cooper [10] 
implemented a localized version of the fractal error measurement as well as other fractal metrics for the 
segmentation of aerial imagery. Stein [11] introduced a slightly different fractal error metric, calculated by 
the covering method similar to the method suggested by Peleg [6]. Solka. Rogers and Priebe [12] introduced 
a power law signature similar to Stein"s. There were significant, differences, however. Stein designed a 
discrimination scheme employing the slope and standard error of fit of the regression line, not unlike the 
algorithm Cooper implemented, which is outlined in this work. Solka. Rogers and Priebe used different 
features to estimate fractal error. Also, Stein's decision rules were heuristic in nature, whereas Solka. Rogers 



and Priebe proposed advanced density estimation techniques in an effort to fully characterize tl.e decision 
surfaces which originate from their power law signatures. 

In another paper, Rogers. Solfca and Priebe [[:!] outlined a method to calculate fractal dimension usino- a 
parallel distributed processing (PDP) approach. ,1 priori boundary information was incorporated into their 
covering method, improving their segmentation results. 

Cooper et al. [1] developed a fractal error metric based on the observed propensity of natural innate 
features to fit an fBm model. They used this feature in a statistical classifier to successfully segment regions 
in aerial reconnaissance images. .Jansing et al. [2] also used this same feature to segment man-made objects 
in SAR imagery. 

I'pon examination, there are two important examples that provide motivation for fractal error analysis 
The first example involves segmentation of cultural objects in SAR imagery, and the second is reliable ed°e 
detection in the presence of noise. ° 

As an illustration of the need for segmentation, we will examine mission planning, a critical part of 
any tactical aircraft mission. To ensure the safety of the pilot and the success of the mission, extensive 
planning is required. Greater efficiency and consistency are achieved bv supplementing pilot calculations 
will, mnch.ne automation and intelligence. However, during the actual execution of the mission, the tactical 
situation may undergo unpredictable change. Instead of returning to the aircraft carrier and re-planning 
a ii.-w mission, it may be desirable to modify the mission en route. Therefore, it is necessarv to data link 
mi^mn-rrhted .„formation to aid the pilot with his new objective. Surveillance and reconnaissance imagery 
coupled w,th other intelligence information and digital maps can be presented to the flight crew. Included 
m ill» mission-related data may be processed imagery of tin* target area from an off-board sensor. These 
ofl-board sensors may provide IR imagery. SAR imagery, and optical imagery. SAR imagery is a likelv 
sensor candidate. While highly specular and often difficult to interpret without enhancement, SAR is less 
susceptibl- to weather conditions and ambient illumination than IR. Thus, from all of the data sent to the 
Hi»ln rvrW. lorraiii features, line-of-sight perspectives, and expected target area features can be displayed 
m «.I-.I.T i., highlight the new mission aspects. Tl.e fractal error metric is described here in a method that 
piov.d-s useful detection of cultural objects. The resulting imagery could be used in ou-the-flv mission 
adjustments. 

A> another example, edges typically do not fit the fractional Brownian motion (fBm) mode! well, due to 
ili.-ir irn-gulanty. Therefore, fractal error is also a practical edge enhancement operator. .Jansing et al [:}] 
developed an algorithm utilizing fractal error to separate the edges from the other features in images. 

I his paper presents an approximation of Cooper's [10] fractal error measure using a genetic algorithm 
(. ompiii ai .onal expense is the unfortunate by-product of Cooper's algorithm. Since manv applications require 
real-time computation to be practical, it is desirable to create an approximation of fractal error to provide 
real-time analysis, whether for the detection of cultural objects or edges. 

2    Fractal Error 

2.1     Definition Of A Fractal 

It is well known that many textures and scenes can be modelled as fractal». A fractal, according to La 
Brecque [14]. "has a rough shape to one degree or another made of parts which, when magnified, resemble 
the whole. It is also well known that literature describing fractals often lacks precision when attempting to 
dehne what a fractal .s. However, the reader of fractal geometry and theory ran turn to Falconer [15] for a 
detailed description of the properties of fractals. 

Definition 1   The set F is a fractal, if it has the following properties: 

1.  F has a fine structure, that is. detail on arbitrarily small scales. 

-'.   F is too irregular to be described in traditional geometrical language, both locally and globally. 

J.   F often has some form of self-similarity, perhaps approximate or statistical. 

.',.   Usually, th,:  -fractal dimension" of F (defined in some way. and there are sereral unique definitions) 
is greater than its topological dimension. 



Figure 1: Texture image of cork. 

Ö.  In most cases of interest. F is defined in a very simple way. perhaps recursively (t.rj.. the Julio or 
Manch Ibrot Sets). 

2.2 Fractal Dimension 

How are fractals distinguished between one another? How does one measure the size of fractals? What 
measure can be used to compare and contrast fractals? 

Fractal dimension is the measure that is generally used to distinguish between fractals, giving the fractals 
a measurement of "size". This numeric representation attempts to quantify a subjective quality which one 
might have about, how densely the fractal occupies the space in which it exists. 

Fractal dimension is just as difficult to define as fractals themselves. Mandelbrot [16], Falconer [15], 
Peitgen et al. [17] and Edgar [18] provide excellent discussions of many different fractal dimension definitions. 
Each fractal dimension definition has a distinct style. Although the definitions are all related, Peitgen [17] 
claims that some definitions make sense in certain cases, while other definitions may not be appropriate in 
the same case. Experience and heuristics prompt the selection of an appropriate fractal dimension definition, 
according to the application. 

2.3 Lacunarity 

Mandelbrot [16] defined another measure for fractals. Lacunarity describes the "holiness" ([19], pg. 236) of 
an occupied fractal lattice. The origin of the name lacunarity can be appreciated by looking at an image of 
cork in Figure 1. This image is part of a collection of texture images, presented, by Brodatz [20]. From the 
Latin word "lacona,1" which means gap. lacunarity represents the gaps within a fractal structure. Thus, the 
percentage of spaces between the cork in Figure 1 is the measure of lacunarity. Practically, lakes or other 
natural objects within aerial images may be classified by using lacunarity as a feature measure. 

2.4 Fractional Brownian Motion 

Fractals may occur in many different forms. Mandelbrot [21] was the first to define fractional Brownian 
motion (fBin). Brownian motion refers to the erratic motion of small suspended particles, resulting from 
random collisions with other particles. Fractional Brownian motion is an extension of this model. Cooper 
[10] gives an excellent description of fBm; it will be summarized here. 

The function of fBm is defined as the differences between successive samples. Let BH(1) represent, a fBm 
signal, where t is a vector containing E independent variables. Then the increment of the fBm signal is 
described as ABH = Bn{U) - BH(ti). where ri and /2 are two distinct points in time. The measure AS// 
is normally distributed with a mean of zero and a variance proportional to the 'IE power of the Euclidean 
distance. The mean takes the form of 

E[ß/f(<2)-ßw(/1)]=0. (I)' 



Likewise, the variance is defined as 

Var[Z?//(/..,)-ß//(/l)] = *r2|/2-/l|
2". (2) 

where A-
2
 is the proportionality constant oft lie variance and // is the Hurst, parameter, which must be strictly 

0 < // < I. Note that when H = 0.5, the fractional Brownian motion model is equivalent to the classical 
Brownian motion model. The value of H can be used to describe the fractal dimension D as 

D=E+l-H. (:?) 

where E is the Euclidean dimension (or, the number of independent variables oft). It is therefore easv to see 
that small values of H produce high fractal dimension and large values of H produce a low fractal dimension. 
Combining the equations for mean and variance, while also talcing into account the fractal dimension, we 
can arrive at the following relationship: 

E[|ß//(/,)-ß//(^i)|] = A-|/L,-/1|
w. (4) 

The above equation is the fundamental basis for the fractal error metric. The regions observed in an 
actual image may be a combination of many different textures. Each texture can be represented bv its fractal 
dimension. However, before attempting to determine the fractal dimension, it is useful to know how well 
a region (or window) may fit the fractal model. Thus, measuring the error produced when estimating the 
fractal dimension will give a useful metric in order to determine the "fraetalness" of a region in the image 
A small error will indicate that a region fits the fractal model well, and thus can be considered fractal 
Conversely, a large error will indicate that the region fits poorly into the fractal model and thus is probablv 
not fractal and the fractal dimension measure is useless. Mathematically, this can be defined as 

E[K'[x2]-C?[x!]|]    =    A-lxa-xxl" (r>) 

E[|A6,AX||]    =    /-|Ax|" (6) 

where C is the region or window in the image and x is the measured distances within the region. Estimates 
ot H and A- can be found by using a linear regression scheme. 

lnE[|AG|^x||] = lnA+//ln|Ax[. (7) 

These estimates, // and I- can then be used to calculate the error with the following equation: 

error,AX| = E[|AG|Ax||] - Ä|Ax|" (8) 

Using a ••center-oriented" window (i.e.. a square window of ;VxA\ where A' is strictlv odd), there will be 
five, nine or fourteen error values, given the window is 5x5. 7x7. or 9x9 respectively. Thus, a cumulative 
error for the model can be given by the root mean square error 

RMS Error = 

N 
1 v-, 
-2Jerrori**i)-'. (9) 

|Ax| 

Thus, using the RMS error, it is easily determined whether or not a pixel with a surrounding 5x5. 7x7 or 
9x9 region is fractal in nature. 

3    Fractal Error Algorithm 

Using the method described in the previous section. Cooper developed an algorithm to calculate the fractal 
error for each pixel in a scene. This algorithm is described in detail in Table 1. 

The following will outline the steps of the entire fractal error algorithm. Note that this example will 
produce a single number that will represent the error for the center pixel in relation to its neighbors Fi-ure 
1 represents a sample 5x5 window. Since the localized neighborhood is 5x5. there are five unique distances 
in the window, as shown in Figure 3. 



1. 
2. 
:5. 

4. 

5. 

Table 1: Fractal Error Algorithm 
Define a 5x5. 7x7. or 9x9 sliding window. 
Calculate Ax and E[|A6'|] for each pixel in the neighborhood of the sliding window. 
I'sing linear regression, find the slope and the y-intercept for each unique Ax in the 
wiudowjrom the equation ln(E[|AG'|Aj|1|]) =in(A-) + #|A.r,|. 
Derive H = slope and k = exp(y-intercept) from the above relationship. 

Using frro;-^,,! = E[|A6,|4i,,|]-£|A.c1-|/i', calculate the fractal error for each unique 
Ax. 

[error Compute RMS error by R.\[S Error = J± Y,\\x 

Save RMS error for that pixel, move the window, and repeat the process over the 
entire scene. 

250 200 220 200 200 

175 210 170 159 100 

110 100 120 115 100 

96 200 205 210 211 

95 201 197 205 200 

Figure 2: A sample 5x5 window. 
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2.83 2.23 2.00 2.23 2.83 

Figure 3: The Euclidean distances over the 5x5 neighborhood. 



Table 2:  Distances From The Center Pixel (Ax) And The Expected Value Of The Absolute Difference In 
Gray Scale Relevant To The Center Pixel (E[[A(7[]) 

Ax In A* E[|A6'|] In E[|A6'|] 
1.000 0.000 40.00 . 3.(59 
1.414 0.347 74.75 4.31 
2.000 0.(593 51.75 3.95 
2.23(5 0.805 91.50 4.51 
2.828 1.040 78.75 4.37 

Table 3: Calculated Error From Fractional Brownian .Motion Mode 
Ax error 

1.00 -6.0(5 
1.41 18.4 
2.00 -17.3 
2.24 17.7 
2.83 -5.9 

Table 2 represents the absolute values of the differences of the gray scales over the unique sets of distant 
in the neighborhood. Thus, the gray scale value of each pixel that has a distance of 1.41 is subtracted from 
the gray scale value of the center pixel. Their absolute values are averaged to give E[|AG1] for each unique 
set of distances. 

Using Equation 7. we can obtain estimates for the Hurst parameter and the proportionality constant. H 
and k respectively. These estimates can be found using linear regression [22]. If the linear model takes the 
form 

y = 0o + ßix, (10) 

then estimates for iit (slope) and fi0 (y-intercept) are defined as 

01     = st*/ - jy- 
0o   =   y-ßix, 

(11) 

(12) 

where x is the sample mean of x and Tj is the sample mean of y. In our particular case, x represents the 
-In A* term in Equation 7 and y represents the "In E[|AG ]" term in the same equation. It easv to see that 
x = 0.OII and y = 4.17. The estimates of ^ and d, can thus be calculated 

ßi    = 

0o    = 

ELo(*i-0-577)y,- 

ELo(J.- - 0.577)3 
0.585 

4.17-0.577^ = 3.83 

(1-3) 

(14) 

The Hurst parameter estimate. H,js equivalent to the slope of the linear model, that is   H = 0[    The 
proportionality constant estimate, A-, is equivalent to the y-intercept of the linear model. T- = exp(5o) 
Therefore, H = 0.585 and k = 46.1. 

Errors with respect to each unique distance set can be calculated with Equation 8. Table 3 shows the 
result of using Equation 8 in this example. 

The overall RMS error, as defined by Equation 9, is 14.31. This number represents the "fractalness" of 
the center pixel relative to its neighbors. Decisions regarding the fractalness of the pixel are tvpicallv made 
in reference to the entire image. Thus, if the range of fractal errors is from 0 to 15. this pixel is not likelv to 
be fractal in nature. 



It is not difficult to see that the majority of computation conies from using the linear regression and 
calculating the errors from the estimated H and k. Thus, an approximation has been developed to improve 
computation time without sacrificing accuracy. 

4    Genetic Approximation Of Fractal Error 

To generate an approximation of fractal error, a mathematical structure is needed. Much of the information 
in calculating fractal error resides in the expected value of the absolute differences of the gray scales from 
the center pixel, grouped in uniform distances from the center pixel. This is expressed mathematically as 
EOAG'I^J.,)!]. Weights are assigned to each of these expected values and all of the weighted expected values 
are added together to form the approximation of fractal error. This is expressed as 

FE   =    aoln(E[|AGA^=2.s2]) + «iln(E[|AG'^=2.23]) + «i.ln(E[|A6'Aj.=,.oo]) (15) 

+«3 ln(E[|AGAr=1.4J) + «4 ln(E[|AGAr=1.oo]). 

The genetic approximation of fractal error (GAFE) evolves the weights n„. «! a.{ to try to estimate 
fractal error. The natural log of the expected values is used to maintain the linearity of the measure. 
As commonly used in the design of a GA. the probability for crossover is set at 0.7. the probability for 
mutation is set at 0.1, the probability for copy is set at 0.1, and the probability for migration is also set at 
0.1. Migration, originally introduced by Potts et al. [23] in 1904, helps combat the problem of premature 
convergence. Potts et al. allowed for multiple sets of individuals to evolve using traditional genetic operators 
such as crossover and mutation. Each set of individuals acts as an independent population. like a tribe 
or village. The migration operator chooses individuals at random and moves them to another population. 
The interaction prevents inbreeding and promotes reproduction among those individuals that have good 
characteristics, that is. high fitness values. 

The migration operator used in this work is an extension of the method proposed by Potts et al. [2:5]. 
Migration is implemented here by randomly generating a new individual and placing it in the new population. 
This randomness may allow for movement to a search space that the individuals in the previous population 
were unable to reach. This modification allows for the property of migration without, the overhead of mulitple 
populations. 

Each operator is chosen randomly from a uniform distribution. The population size and the maximum 
number of generations allowed for each simulation is variable. Fitness for each individual is determined from 
signal-to-noise ratio (SNR). SNR measures the ratio of original signal to noise introduced into a given test 
image. For our application, SNR is defined as 

S.YR= J2r=oJ2c=0^m(r:c)- 

££ol£o(/m(r,c)-/.(r.c))' *    ' 

where /,„(;•, c) is the measured image and I0(r,c) is the original signal for A/xA" sized images. The lower the 
value of SNR. the noisier the signal is. Thus, to evolve weights with a genetic algorithm, it is desirable to 
maximize the signal-to-noise ratio. 

The GAFE is also written in parallel to ensure fast simulation times. The evaluation of fitness for each 
individual in the population consumes most of the run time for the GA itself. To-parallelize the algorithm, 
each individual is evaluated for fitness separately, running on as many CPU's as are available, as shown in 
Figure 4. The parallel algorithm was executed on an SGI Onvx R10000 high-performance computer, having 
16 CPU's. ° 

5    Results 

Table 4 shows several different trials of GAFE and their results. The varying population size and maximum 
number of generations allowed is also given. The training image for each of these simulations is shown in 
Figure 5. Figure (3 illustrates the resulting image from each trial. 

Each gene is comprised of 100 bits. 20 bits per weight. The first 19 bits are the magnitude, starting at 
2- and ending at 2_1". The 20th bit for each weight is a sign bit. allowing for positive and negative weights. 
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Figure 4: Parallel implementation of GAFE. 
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Figure 5: Training image for the genetic approximation to fractal error (GAFE). 



Table 4: Several Trials Of The GAFE With Varying Population Size And Generations 
Trial Pop Max Gen SN'R 

A 100 10.000 1.27 
ß 500 100 1.52 
C 500 2000 1.5« 
D 1000 2000 1.63 
E 2000 250 1.74 
F 10.000 90 3.82 

Table 5: Final Weights From GAFE. Trial F 

«0   = 0.0022583 
al = 0.096954 
«■> = -0.034164 
«3 = -0.0069427 
n-i = -0.0009:3078 

Tlm>. ill" interval for each 20 bits is (-8,8). Table 5 shows the final weights for Trial F. Figure 7 shows the 
evolution of the population over several generations for Trial F. 

Tin- n-Milt* are revealing. For very small populations, sized from 100 to 1000 genes, the GAFE is unable 
to 'iM.lati- ;i x-juvh area with find a suitable set of weights: that is, it gets "stuck"' on a local optimum. It is 
i-l.-.-ir that larger populations fare better than smaller populations, regardless of the number of generations 
evolved, liven in the final experiment, where there are 10.000 genes in the pool, the final solution was found 
l.y ehaiir.-. due. most likely, to the migration operator. It is unclear that an optimal solution would be 
converge, 1 upon, even if the gene pool is allowed to evolve for many generations.   This may be attributed 
1(1 «iiy  "I)(>r of factors, such as the actual mathematical structure of FE, the parameterization of the 
weight >. or the choice of genetic operators and their probabilities. However, it is not difficult to see that the 
the weight* evolved in Trial F produce a usable, if not noisy, image. This noise can be easily removed by a 
simple thresholding technique. 

The mathematical structure of GAFE poses a unique problem. There is no generalized form of fractal 
error as it i> defined above. A generalized form would make it possible to generate a type of convolution 
mask which could be used to compute fractal error in a timely fashion. Forcing a mathematical structure 
to find the approximation is restrictive. In the future, it may be prudent to investigate the evolution of a 
mathematical expression using a GP. This would expand the search space from merely searching the weights 
for /'£' to searching the infinite space of reusable functions to find the approximation. 

The approximation was tested on several aerial images, include a SAR image. The results for the 
"Washington D.C." and uAlameda" test images are shown in Figures 8 and 9. The results for the SAR 
image are shown in Figure 10. Table 6 shows the RMS error for the approximation relative to the fractal 
error algorithm. Table 7 shows the computation times of the fractal error algorithm and the GAFE for 
images of several different sizes. 

Table 6: RMS Errors Of Test I Mages With Respect To Original FE Images 
Image Normalized RMS Errors 

Alameda 0.109 
Washington. DC 0.099 

SAR 0.114 
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Figure 7: Plot of Trial F with SiS'R vs. number of generations. 

6     Conclusions 

A genetic approximation to fractal error has been developed in this paper. The approximation provides 
usable results. The GAFE approximation provides significant reductions in computation time. A faster 
approximation may be possible if the calculation of the natural log function is implemented as a lookup table. 
The GAFE may also be parallelized, splitting the image up into subimages, passing the approximation's 
mathematical structure and the subimages off to as many processors as are available. This may also provide 
a result in a more timely fashion. Finally, a genetic programming approach is being explored to evolve a 
mathematical structure to more accurately approximate fractal error. 



(!>) FE Algoritli.il 

(c) GAFE 
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