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Abstract  

Statistical resampling plans can be thought of as procedures for "recycling data." They 
commonly involve computer-intensive methods for the interrogation of data through repeated 
inspection. The procedures detailed in this document free the data analyst from two major 
restrictions underlying much of the development in mathematical statistics: the normal or 
Gaussian assumption, and the necessity to focus on statistics that are in closed form and 
mathematically tractable. 
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1.    The Bootstrap 

Let x = (xi,X2,..., xn) be a random sample from a population with an unspecified distribution 

F and let s(x) be an arbitrary statistic. If the statistic estimates a parameter 9 of the distribution 

F, then we will write § = s(x), where the hat notation denotes an estimate. To have value as an 

estimator, a statistic needs to estimate accurately; common measures of accuracy are standard error 

and bias. Almost without exception (the sample mean being a notable exception) an estimate of 

the standard error of a statistic cannot be determined from a single random sample. The bootstrap 

procedure attempts to overcome this impediment through intensive computation. Simply put, the 

bootstrap procedure attempts to provide an estimate of standard error of an arbitrary statistic 6 

given only a single random sample. With this as its goal, the name "bootstrap" is not a misnomer. 

A fundamental notion (or artifice) is that of a bootstrap sample. A bootstrap sample x* = 

(x*,X2,..-,Xn) is a random sample of size n drawn with replacement from the class of n objects 

making up the random sample x = (xi, X2, • • •, xn), and so we might have x\ = xig, x\ = X7, X3 = 

£3,..., x* = X5, with some of the xi, X2, ■ ■ ■, xn values appearing several times in the bootstrap 

sample and, others, not at all. 

Why would anyone want to engage in such an exercise? 

Kiefer and Wolfowitz (1956) established for a univariate random sample, x = (£1,2:2,... ,xn), 

that the corresponding empirical distribution F is the nonparametric maximum likelihood estimate 

of the unknown distribution F. This result supports the construction of bootstrap samples in one 

dimension, but extension to a multivariate situation is not direct, and an alternative rationale for 

bootstrap sampling is needed. 

Toward this end, consider the so-called Dirac-comb density estimator associated with a one- 

dimensional data set x = (xi, X2, ■ ■ ■, xn). The Dirac-comb density estimator is given by 

1   n 

fs(x) = -^2S(x-Xi), (1) 
n i=i 

where the expression <$(•) is a Dirac 6 (or unit impulse) function, which can in turn be expressed as 

■6(x) = Vm-^e-&. (2) 
T—0 V27TT 



Expression (1) is a function that is zero everywhere except at the data points.* At each data 

point the density is unbounded; the assignment of probability mass 1/n at that location is merely 

suggestive of the limiting process. As a nonparametric density estimator, fs(x) is unappealing. It 

dictates that any subsequent experiment can only provide the data points already observed, and 

moreover, those points must have equal probability of occurrence. 

The representation fs(x) is not without value in some situations; for example, the mean of fs(x) 

is 

roo i   n 

= /     xfs(x)dx = ~Y^Xi = x (3) 

and 

r°° - 1   n 

aj = (x- xffs{x)dx = - J>, - x? = s2. (4) 
J—oo n .-I 

The Dirac-comb density estimator may be easily extended to higher dimensions. For a sample 

X = (X\,X2,..., Xn) of p-component random vectors, fs(x) becomes 

fs(X) = -'£6(X-Xi), (5) 
To  .    - 

1=1 

where 

6{X) = lim(-^-yexp(-5^i) (6) 
T^O^V^TTT 2r2 

and where Xj is the jth component of an observation X = (xi, x<i, ■ ■ ■, xp) 

"The unit impulse function (2) is more commonly expressed as 

S(x — Xi) 

and 

_ f 0,      x # Xi 
1     OO,      X = Xi 

f 6(x — Xi)dx = 1. 



Since in practice bootstrap sampling is carried out in both univariate and multivariate situations 

without regard to dimension, viewing the bootstrap procedure as based on a Dirac-comb estimator 

results in a more unified theory. 

Through a straightforward Monte Carlo procedure in which many samples of size n are drawn 

with replacement from F—bootstrap samples—an approximation to the sampling distribution of 6 

is produced. In order for the statistical accuracy of an estimate to be determined, properties of its 

sampling distribution must be established. For each bootstrap sample x*, xjj,..., x£ we determine a 

corresponding 0* = s(x*), i = 1,2,..., b. This empirical approximation to the sampling distribution 

of § allows an assessment of standard error to be made. 

Some attention to notation is in order. If the standard error of 8 is denoted as (TF(8), the 

bootstrap estimate of standard error should be written crp(9*), where the star (*) notation continues 

to indicate an estimate of 6 corresponding to a bootstrap sample from the empirical distribution 

F. The number of distinct bootstrap samples from a data set of n distinct values can be shown to 

be rn = C^n_1. For a modest sample size, say n = 10, this means that 92,378 bootstrap samples 

must be evaluated, each with a probability of occurrence pj given by a multinomial distribution, in 

order to determine ap{6*). The computational burden imposes practical limitations on the sample 

size n, but formally 

m 

M<h = {£p>K)-*(0J2}1/2, (7) 

where s(-) = Y^LiPjs{Xj), and Xj, Xj,... ,x^ are all distinct, is the appropriate expression. 

Of course op{6*) is in general not equal to aF(6) (the value we really seek), but it is the 

bootstrap approximation. Efron and Tibshirani (1993) refer to it as the ideal bootstrap estimate 

of standard error. As suggested, the ideal may not be easily attained because of the attendant 

combinatorial explosion, but an approximation to the ideal may be determined via the following 

algorithm. 

The bootstrap algorithm. 

1. Obtain b independent bootstrap samples xf,X2,... ,x£ by sampling with replacement from 

a random sample x = (x\,X2, • ■ ■, xn). 



2. Evaluate 8* = s(xf),    i = 1,2,..., b. 

3. Calculate 

6 

est op(§*) = {£[0* - §*(.)}2/(b - l)}1/2, 
i=l 

where H) = ZlJ*/b- 

Notice in step 3 of the algorithm use of the notation est crp(6*); an alternate expression, Vp{6*), 

could have been used. 

An important asymptotic result, stated here without proof, is that in the limit as b —> oo, the 

bootstrap estimate of standard error converges in probability to the ideal bootstrap estimate: 

lim estate*) = ap(6*). (8) 
b—»oo 

This result provides relief from the tedius, and often impractical, attempt at enumeration of the 

distinct bootstrap configurations needed for evaluation of equation (7). 

Before proceeding further, an example is in order. 

Example 1. Measures of dispersion for bivariate data are often relevant in applied problems, 

including ballistic studies, where the ordered pairs (xi,yi) correspond to impact locations on a 

target. Measures of bivariate dispersion have been extensively studied (e.g., Grubbs [1964]), in- 

cluding an intriguing statistic known as the extreme spread or bivariate range. For a sample 

(zii 2/i), (x2,2/2), • • •) (zn> Vn) the extreme spread may be expressed as 

R = max [(xi - Xjf + {yi - %)2]1/2   t, j = 1,2,... ,n. (9) 

The extreme spread is simply the maximum of the distances between all C% pairs of points in 

the sample. 

This statistic is intuitively appealing and simple to evaluate, and yet knowledge of its distri- 

bution remains largely confined to Monte Carlo studies.   This holds true even under a normal 



assumption for the variates {xi,yi), except for the trivial case, n=2, in which R can be shown to 

follow a chi distribution. 

In Table 1, impact coordinates for 10 rounds of small arms ammunition are listed; a scatterplot 

of the data appears in Figure 1. 

Table 1. Impact coordinates for 10 rounds of small arms ammunition fired against a 
vertical target (measurements are in inches) 

(6.5, 33.0) (11.5, 7.0) 
(3.0, 17.0) (13.0, 3.5) 
(6.5, 18.5) (10.0, 7.5) 
(8.5, 16.0) (15.5, 13.0) 
(8.5, 10.5) (21.5, 15.0) 
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Figure 1. Location of impact for 10 rounds of small arms ammunition. 

Estimates of standard error for the extreme spread from the impact data in Table 1 were 

computed, following the bootstrap algorithm. Those estimates of standard error for values of 

b=50(50)300 appear in Table 2. 

A histogram of b = 300 bootstrap replications is shown in Figure 2. Although C\° = 45 distinct 

values of extreme spread are possible, after 300 replications, only 14 have been realized. This is 

not unexpected; the distribution will be negatively skewed under the influence of the max operator 

appearing in statistic (9). 



Table 2. Bootstrap estimates of standard error (300 bootstrap replications gave the 
tabled values oiestap{6*)) 

b: 50      100     150     200     250     300 
est (jp{e*)    5.74    5.72    5.84    5.97    6.07    6.06 
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Figure 2. A histogram of b=300 bootstrap replications of the extreme spread for the 
impact data in Table 1. 

Guidance regarding the number of bootstrap replications necessary to estimate a standard 

error with an acceptable degree of precision is limited mostly to empirical evidence. This evidence 

suggests that a few hundred bootstrap replications is usually adequate, although, on occasion, a 

smaller number may suffice. A definitive answer is strongly case-dependent, and involves the rate 

of convergence in expression (8). 

2.    The Parametric Bootstrap 

There is no inherent requirement that the bootstrap approach be restricted to a nonparametric 

setting. If there is support for a specific form for the distribution F, then F can be estimated 

parametrically. We will adopt the notation Ff to indicate that a specific functional form, /(•), has 

been assumed for the random variable. Suppose for the impact data in section 1 the sample z = 

{(xi, 2/i)i (x2, 2/2)) • • • > {Xu-, Vn)} is assumed to have come from a normal population with parameters 



\i and £. Estimates of the mean vector and covariance matrix will be given by (x, y)' and 

l 
n-l 

E(xi - x)2 E(xj - x)(yi - y) 

Y,(xi - x)(i/i - y) E(yj - y)2 

Prom the impact data in Table 1, we obtain a mean vector ß = (10.45,14.10)' and covariance 

27.74    -15.27 
The bootstrap procedure, after parameterizing F (the empirical matrix E = 

-15.27    67.76 

distribution function F is replaced by a normal distribution Ff = N(ß, £)) reduces to an ordinary 

Monte Carlo procedure. Instead of sampling with replacement from z to generate bootstrap samples 

zf, zijj,..., z£, Monte Carlo samples are drawn directly from Fj to produce z*, i = 1,2,..., b. The 

histogram of R* values for b=300 is shown in Figure 3. The estimate of standard error from these 

data, est ap (6*) = 6.71—compared to 6.06 for the nonparametric model. 

Taylor and Grubbs (1975) carried out extensive Monte Carlo simulation studies of the extreme 

spread distribution for small sample sizes, under a standard normal assumption for the underlying 

distribution F, and concluded that the distribution is adequately described by a chi variate. 

10 14  18  22 26  30 34 38  42  46  50 54 

Figure 3. Histogram of R* values for b=300 replications under a normal assumption: 
F = 7V(M,£). 



3.    Bias Estimation 

The bootstrap procedure described in section 1 is not limited to estimation of the standard 

error of a statistic 9 = s(x); it can be used with only minor modification to provide an estimate of 

bias. The bias of an estimator 9 is the difference between the expectation of 9 and the parameter 

9 that it purports to estimate; formally, 

bias = EF(9)-9. (10) 

An unbiased estimator (i.e., a statistic 9 satisfying bias = EF{9) — 6 = 0) is desirable inasmuch 

as it provides a measure of assurance that the estimator is not producing values that are either 

systematically too small or too large. 

The fundamental problem remains unchanged. Only a single random sample x = (rci, X2, ■ ■ ■, xn) 

from an unspecified distribution F is available. Following the same rationale used in assessing the 

standard error, the ideal bootstrap estimate of bias becomes 

bias = Ep{0*) - 6, (11) 

where, as before, F is the empirical distribution of F, 6* is the bootstrap estimate of 0, and 6 is the 

estimate of 6 based on the random sample x. The same computational burden attendant to the 

evaluation of <Jp{9*) in section 1 is now imposed on the determination of the expectation Ep(9*), 

and is addressed in much the same manner. Namely, the further approximation 

_      1   6   . 
estbias = -J2e*-e (12) b 

%=i 

is invoked. To calculate est bias, it is only necessary to incorporate expression (12) at the final step 

of the bootstrap algorithm, and, if desired, est bias and est op can be determined simultaneously. 

The bias of R based on b = 300 bootstrap replications from the impact data in Table 1 was 

determined to be est bias = —5.55. 

Should we have much confidence in this estimate of bias?... No. 



The sign of the resultant estimate, if not the magnitude, was never in doubt. This is an example 

in which the bootstrap fails. 

To see why this is so, consider the estimate of bias (12). In that expression we have 9 = i?(x), the 

extreme spread of the basic random sample x. Clearly, no bootstrap sample can lead to a 9* larger 

than 9. It will, however, produce estimates 9* less than 0 whenever a pair of impact coordinates 

maximizing expression (9) fail to appear in the bootstrap sample x*. Thus the bootstrap estimate 

of bias will always be negative, except in the rare event when a maximizing pair appears in every 

bootstrap sample. 

The situation is closely related to the well-known problem of estimating the range of a uni- 

form variate U[0,9] from a random sample x = (xi, X2, ■ ■ ■, xn), in which the maximum likelihood 

estimate is 9 = X[n], the largest order statistic. 

A reality of the bootstrap is that the procedure is held captive in the convex hull of the original 

sample x = (x\, X2, ■ ■ ■, xn). A modification known as the smoothed bootstrap has been advanced, 

in which a scaled random variate with small dispersion is added to each observation in the original 

data set, but the result is essentially a perturbed Dirac-comb density estimator. 

This is not a contrived example. Instances in which Dirac-comb density estimator based tech- 

niques (viz., the bootstrap) produce unsatisfactory results are not difficult to find. Consider the 

situation where several rounds of ammunition impact nearby, but never directly on, an aim point. If 

the distribution of shots is assumed circular normal with mean located at the aim point—the most 

common assumption in ballistic analyses—then a neighborhood of the aim point will appear, with 

high probability, to be a particularly safe place to reside. Anomalies such as these gave impetus to 

an algorithm advanced by Taylor and Thompson (1982, 1986), which is discussed in section 5. 

4.    Bootstrap Confidence Intervals 

Application of the bootstrap procedure to confidence interval construction has been a major 

research focus, and a substantial number of procedures toward this end have been advanced. In this 

section a single approach, the percentile method, for constructing approximate confidence intervals 

in small sample nonparametric situations is considered. The intent is not to suggest that this is in 

some sense a "best" method; it is rather a widely used approach whose motivation is reasonably 

accessible. 



Under quite general conditions, the distribution of an estimate 6 of a parameter 6 approaches a 

normal distribution as the sample size x = (x\,X2, ■ ■ .,xn) increases without bound. This asymp- 

totic result leads to the approximation 

§~N{e,a2) (13) 

from which a 100(1 — 2a) confidence interval for 6, 

[§-z^-a)-a,e-z{^-a] (14) 

commonly expressed as 

§±z^-a)-a (15) 

is derived.  This is sometimes referred to as the standard confidence interval for 9; z^~a^ is the 

100(1 — a)th percentile of the standard normal distribution. 

Now consider as an estimate of 6, the bootstrap estimate, 0*. Appealing to the same argument, 

we are led to the approximation 

e*~N(6,a2), (16) 

where 6 is determined from x = (xi,X2, ■ ■ ■ ,xn) and a2 from any appropriate estimation procedure 

(e.g., the bootstrap, jackknife, or historical evidence). 

Proceeding formally, 

Pr[zM<?L=I<z(i-a)]    = 
a 

Pr[zW ■&<§*-§< z(1_a) • a)   = 

Pr[0 + zM ■ & < 0* <§ + z{1-a) -or)    =    l-2a. (17) 

10 



Notice that the lower and upper confidence limits for 6 appearing in (14) coincide with the 

lOOath and 100(l-a)thpercentilesof the distribution of 0* (since z^ = -z^l~°^). This observation 

is important because, when the distribution of 0* is approximately normal, one might entertain as 

an approximate 1 - 2a central confidence interval for 0 the interval [0*(a\ 0*(1_Q)]—the lOOcrth and 

100(1 - a)th percentiles of 0*. 

And this is precisely what the percentile method does. 

Further investigation, beyond the scope of this exposition, suggests that this procedure, or a 

modification of this procedure, may provide acceptable results in those situations for which there 

exists a transformation to normality for the estimator 6*. In that eventuality, the percentile method 

exploits this circumstance automatically, and without the necessity of formally determining the 

transformation. 

Consider the following example. 

Example 2. An historic approach to vulnerability assessment of military systems commences with 

the overlay of an mxn rectangular grid as illustrated in Figure 4. For each cell in the grid, a detailed 

computer model estimates the probability of incapacitation of the system that would result from 

an impact in that location under prescribed ballistic conditions. These conditional probabilities, 

commonly referred to as probability-of-kill, will be denoted by Pk\hii i = 1,2,..., mn. The cell-level 

Pjtl^s are combined under a weighting scheme over the entire grid to produce a global estimate of 

incapacitation, P^. 

Figure 4. Armored vehicle with an overlaid rectangular grid. 

Taylor and Bodt (1984) constructed approximate confidence intervals for Pfe, using the percentile 

method, for several choices of grid size. Coarse grid templates were chosen, but with the finest level 

of detail retained, to produce within-cell variation. A set of Pk\hi values was obtained, one value 

11 



from each grid cell, to form the base sample from which bootstrap samples would be drawn. Each 

confidence interval, [P^a\Pk^~a\ was based on b = 1,000 bootstrap estimates of Pk. 

This approach differs from the standard bootstrap procedure outlined in section 1 in that a 

stratified sample, rather than a simple random sample, was collected. The modification is ap- 

propriate for this particular application, and, since Pfc is essentially a weighted sum, the Central 

Limit Theorem supports the anticipation of an approximate normal distribution for the bootstrap 

estimates P£. 

A total of 100 confidence intervals were constructed for each grid size by returning to the 

coarsened grid 100 times to establish a new stratified base sample, and then repeating the entire 

bootstrap procedure. This exercise is again outside the usual bootstrap venue; the intent was 

to see if one hundred (1 — 2a)-level confidence intervals covered the parameter P& approximately 

100(1 — 2a) times. Empirical coverage results are shown in Table 3 and the mean interval width in 

Table 4. 

Table 3. Number of bootstrap confidence intervals covering the finest-level 
parameter estimate, Pk (100 confidence intervals were constructed for each 
table entry) 

grid .99 .95 .90 .80 
24x60 100 100 100 100 
16x40 100 100 100 99 
12x30 100 100 100 100 
8x20 100 99 99 95 

Table 4. Mean width of the confidence intervals corresponding to the entries in 
Table 3 

grid .99 .95 .90 .80 
24x60 .056 .042 .035 .027 
16x40 .084 .063 .053 .041 
12x30 .112 .084 .071 .055 
8x20 .167 .127 .106 .083 

Here the percentile method appears overly conservative. Efron and Tibshirani (1993) suggest 

modifications intended to increase its efficacy. DiCiccio and Romano (1988), Hall (1988), and Loh 

(1991) provide a more complete discussion of confidence interval construction. 

12 



5.    A Generalized Bootstrap 

The nonparametric bootstrap is not concerned with the construction of a nonparametric density 

estimator beyond the rudimentary Dirac-comb: its focus is on the generation of values that appear 

to conform to the same structure as that underlying the authentic data set. Given the ubiquity 

of fast computing, consideration of resampling schemes based on estimators more complex than 

the Dirac-comb appears warranted, and that is the focus of this section. A resampling plan that 

is useful for simulating data (SimDat) from an unspecified multivariate distribution is developed. 

The procedure is shown to behave in some respects like a normal kernel estimator; i.e., the density 

may be approximated by 

f6{X) = -Y^K{X-XuTli\ (18) 
lb    .      .. 

1=1 

where K(-) is a normal distribution centered at zero with a locally estimated covariance matrix Ej. 

The bootstrap procedure arises as a limiting case, and, in that sense, SimDat may be considered a 

generalized bootstrap. 

The algorithm operates as follows. 

Let X = (Xi, X2,..., Xn) be n observations of a p-component random vector X from a pop- 

ulation with an unspecified distribution F. Suppose that a pseudo-sample of size N, where n and 

N are not necessarily equal, is to be generated. The data are rescaled so that the marginal sample 

variances coincide and, for each of the n observations, a specified number (m-1) of nearest neighbors 

is determined. The nearest neighbors are retained in an nx(m-l) array for use as a reference set. 

To commence, a single point is selected at random from the data set X and its m-1 nearest 

neighbors recalled from the reference array. The mean of the resultant set of m points, 

1    TO 

X = -^Xu (19) 

is determined, and each of the m points coded about X to obtain 

X'i = Xi-X,   t = l,2,...,ro. (20) 

13 



This calculation, like the determination of the m-1 nearest neighbors for each data point, will be 

required only once. The X[ values along with X will be retained in an nx(m+l) array. 

Next, a random sample u\, U2, ■. ■, um is generated from the uniform distribution 

m 
/3(m-l)     1_       /3(m-l) 

m2     ' m     V      m2 (21) 

and the linear combination 

x' = X>^ 
1=1 

formed. Finally, with the addition of X, a pseudo-data-point X is produced: 

(22) 

X = X' + X. (23) 

And the process repeats. 

A second point is selected at random from X and its m-1 nearest neighbors recalled; continuing 

until at last N pseudo-values have been determined. 

With increasing m and n, the procedure behaves very much like the normal kernel approach 

mentioned earlier. To see why this is so, consider the sampled vector Xi and its m-1 nearest 

neighbors: 

Xi = 

Xli 

X2i 

X pi 

,      i = 1,2, ... ,771. (24) 

For the moment, consider this collection of m points as coming from a truncated distribution 

with mean vector fi and covariance matrix S. For the random sample ui,U2, ■.. ,um from the 

uniform distribution (21), we have 

,-,/   x       1      TT    /   \      m — 1 E{ui) = —,    Var(ui) = =-, (25) 

14 



and 

Cov(v,i, Uj) = 0, for i ^ j. (26) 

In the linear combination 

m 

Z = Y,UiX*> (27) 
i=l 

the rth component of the vector Z, zr = u\xr\ + uixr<i -\ \- umxrm, satisfies 

E(zr) = flr, (28) 

Var(zr) = a? + — ^, (29) 
m 

and 
„    .        . m — 1 .    . 
Cov{zr, zs) = ars H /ir/is. (30) 

m 

If the mean vector of the random variable X was 0 = (0,0,..., 0)', then the mean vector 

and covariance matrix of Z would be the same as that of X: E{zT) = 0, Var(zr) = a?, and 

Cov(zr,zs) = ars. By translation to the local sample mean of the nearest-neighbor cloud—the 

motivation behind expression (23)—we do not achieve this result exactly, but we do come very 

close to generating an observation from the truncated distribution that models the points in the 

nearest-neighbor cloud. For moderately large m, the Central Limit Theorem becomes dominant, 

and SimDat comes close to sampling from n normal distributions with mean and covariance matrices 

corresponding to those of the n m-nearest-neighbor clouds. 

Sufficient conditions for consistency of the nonparametric density estimator corresponding to 

SimDat is problematic. Mack and Rosenblatt [10] advance a formula for nearest-neighbor nonpara- 

metric density estimators: 

m = Cn4/(p+4), (31) 

which seems promising, were it not for the fact that the parameter C is usually not available. 

15 



At the extremes, a choice of m=l causes SimDat to collapse to the bootstrap; m=n produces an 

estimator that roughly samples from a multivariate normal distribution with the mean vector and 

covariance matrix computed from the original data set. 

* + **+ 

* + * + * A-%* 
,1, a, T *-<*V 

♦.** 

+* **ft*A*«i 
,7 .•*+*•.*+...     .. * H*++'-*t* 

+  + 

* ^. * +     ~    * 

/* 
** 

Aff* * 

* is the actual data 

+ is the simulated data 

m=5 

Figure 5. Samples from a normal mixture: l/2Ni + I/3N2 + I/6N3 with m=5. 

Example 3.    In Figure 5, a sample of 85 values from a mixture of 3 normal distributions, 

Ni(/j,i, Si),   i = 1,2,3, with mean and covariance matrices 

Mi 
-1 

-2 
Si = 

'     1       1/2 N 

,-1/2     1    , 
(32) 

M2 
'^ 

v öy 
E2 = 

(   1     1/2 ^ 

,1/2     1    J 
(33) 

and 

M3 £3 (34) 

along with a pseudo-data-set of size 85 generated by SimDat, with m=5, is presented. The emulation 

of the data appears satisfactory, at least visually. In Figure 6, the same exercise, but with m=15, 

is shown. There, effects of a modest oversmoothing appear to be present. 
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Figure 6. Samples from a normal mixture: l/2Ni + 1/3N2 + I/6N3 with m=15. 

Example 4. The SimDat algorithm was applied to the impact data from Table l.t Three hun- 

dred pseudo-data-sets of size 10 were generated, with a value of m=3, and their extreme spreads 

determined. A histogram of the results is shown in Figure 7. 

6  8  10 12 14 16 18 20 22 24 26 28 30 32 

Figure 7. SimDat algorithm applied to the impact data, with m=3. 

Empirical evidence suggests that if the data set is very large, say of size 1,000 or greater, good 

results are generally obtained with m«.02n. For smaller values of n, m«.05n often work well. 

fA version of SimDat in the S language is available under the name "gendat" from the S Library; a Fortran version 
of SimDat entitled "RNDAT" is available from IMSL. 
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6.    Summary 

A comparison of the nonparametric bootstrap, parametric bootstrap, and SimDat procedure, 

all applied to estimation of extreme spread from the impact data presented in Table 1, is shown 

in Table 5. This application proves vexing to any approach, as the tabled values suggest. The 

nonparametric bootstrap applied to the impact data has been extensively discussed. It is worth 

remembering that the extreme spread of the original data set, 6 = 30.21 (appearing as the maximum 

value for the nonparametric bootstrap) is the sole authentic estimate. The parametric bootstrap 

has the smallest estimate of bias, a direct consequence of the strong distribution assumption. Notice 

the maximum value of 54.64—far in excess of 30.21. SimDat has the smallest estimated standard 

error and the largest bias. It generated some extreme spreads larger than the authentic 6—notice 

the maximum, 31.18—but most pseudo-points are aggregated in the regions of highest population 

density by virtue of the randomly selected center points that commence the algorithm. In other 

words, SimDat is providing a modest amount of smoothing under control of the parameter m, as 

it was intended to do. 

Table 5. Descriptive statistics for the nonparametric(n) and parametric(p) bootstrap 
and the SimDat procedure. Estimates of standard error, bias, and maximum 
and minimum values of the extreme spread are for 300 replications. 

method std err est    bias est     min      max 
bootstrap(n) 
bootstrap(p) 

SimDat 

6.06           -5.55       9.82     30.21 
6.71           -2.60      13.18    54.64 
4.71          -11.56      7.78     31.18 

And finally, a note of caution. Both the nonparametric bootstrap and SimDat are model-free 

techniques for examining data. The nonparametric techniques use the power of the computer 

to circumvent detailed modeling, and such an approach is highly useful as an interpolative device. 

When the dimensionality of a data set becomes high-say, five or greater, these approaches should be 

used with caution, since a number of widely separated modes, with data-scarce regions in between, 

might easily be obscured. Dealing with such data sets nonparametrically and away from the modes 

becomes more of an extrapolation problem, and blindly using smoothed interpolation routines can 

be a precursor to faulty inference. 
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