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Preface 

This report describes the development of a method to compute at-rest earth 
pressures by combining the results of a gravity turn-on analysis with theory of 
elasticity solutions. The user's manual for the program CSOILP, which performs 
these calculations, is also presented. The computer program and theoretical/ 
user's guide were written using funds provided to the U.S. Army Engineer 
Waterways Experiment Station (WES), Vicksburg, MS, by Headquarters, 
U.S. Army Corps of Engineers Civil Works Directorate, under Structural 
Engineering Research Program work unit 31589, Computer-Aided Structural 
Engineering (CASE). 

The analytical finite element studies and comparisons were performed by 
Dr. William P. Dawkins, P.E., Houston, Texas. Dr. Dawkins also wrote the 
original CSOILP program. Later, Mr. Michael E. Pace, Computer-Aided 
Engineering Division (CAED), Information Technology Laboratory (ITL), WES, 
developed the Windows interface for the program and wrote the user's guide. 

The work was managed, coordinated, and monitored by Dr. Reed Mosher, 
Chief, Structural Mechanics Division (SMD), Structures Laboratory (SL), WES; 
and Mr. Pace. Dr. Bryant Mather was Director, SL, Mr. H. Wayne Jones was 
Chief, CAED, and Dr. N. Radhakrishnan was Director, ITL. 

At the time of publication of this report, Director of WES was Dr. Robert W. 
Whalin, and the Commander was COL Robin R. Cababa, EN. 

The contents of this report are not to be used for advertising, 
publication, or promotional purposes. Citation of trade names 
does not constitute an official endorsement or approval of the use 
of such commercial products. 



1    Introduction 

Background 

At-rest soil pressures for horizontal soil surfaces are traditionally estimated 
by applying an at-rest pressure coefficient to the effective vertical pressure. No 
method for estimating at-rest pressures has gained general acceptance when the 
soil surface is not horizontal. 

The use of elasticity solutions to account for the effects of surface surcharge 
loads on active and passive pressures for design of retaining walls is common1,2. 
It has been proposed that the at-rest pressures due to a sloping surface be esti- 
mated by treating the weight above a horizontal datum as a surcharge load. The 
contribution of the surcharge to the pressures below the datum would be evalu- 
ated using appropriate theory of elasticity solutions for surface loads on a semi- 
infinite elastic medium. 

Scope 

This report details a finite element study performed to explore the accuracy 
of the proposed method of determining at-rest pressures. 

This report is organized into the following chapters. Chapter 2 details the 
finite element study performed on several configurations of a one-layered granu- 
lar soil in a loose and a dense state. Chapter 3 details the finite element study 
performed on several two-layered soil configurations composed of a sand and a 
clay. A computer program called CSOILP has been written to automate the pro- 
posed process of computing at-rest earth pressures. The user's guide for CSOIL 
is presented in Chapter 4. Example problems for CSOILP are given in Chapter 5. 
Details of the finite element grids used in the studies are presented in 
Appendixes A and B. 

Joseph E. Bowles. (1977). Foundation analysis and design. 2   ed., McGraw-Hill, New York. 
2 K-Terzaghi. (1943). Theoretical soil mechanics. John Wiley, New York. 
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2    One-Layered Granular 
Soil/Surface Systems 

A limited number of surface configurations (Figure 1) for drained granular 
soil systems has been selected to investigate the appropriateness of elasticity 
equations for estimating at-rest pressures for these systems. These systems are 
assumed to be composed of a homogeneous, undrained granular material with 
properties shown in Table 1. 

Table 1 
Soil Properties 

Soil 
Designation 

Unit Weight 
lb/ft3 (kgfm3) 

<
 £

 u. -o 

Initial 
Modulus 
Parameter 
K1 

Modulus 
Exponent1 

Initial Bulk 
Modulus 
Parameter KB1 

Bulk Modulus 
Exponent1 

Unload 
Modulus      I 
Parameter1   | 

L 120(1,942) 35 500 0.4 250 0.2 600               j 

H 130 (2,104) 40 1,500 0.4 750 0.2 600                1 
1 Hyperbolic stress-strain model parameter. 
K = initial modulus parameter. 
KB = initial bulk modulus parameter. 

Finite Element Analysis 

Finite element analyses of the systems were performed with computer pro- 
gram SOILSTRUCT1 using the parameters shown in Table 1 for the soils. The 
soil above elevation (el) 40 ft (Figure 1) was built up in five lifts for the systems 
shown in Figures la and lc, and in seven lifts for the system shown in Figure lb. 
Three iterations were performed for each lift 

The finite element models for the various systems are shown in Appendix A. 
The element dimensions and configuration below el 40 were maintained 

R.M. Ebeling, J. F. Peters, and G. W. Clough. (1991). "User's guide for the incremental 
construction, soil-structure interaction program SOILSTRUCT," Technical Report rrL-90-6, U.S. 
Army Engineer Waterways Experiment Station, Vicksburg, MS. 
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regardless of the surface shape. The element horizontal dimensions and 
configuration above el 40 were maintained for the systems shown in Figures la 
and lb; however, the vertical dimensions were proportioned according to the 
slope of the surface. The left and right vertical boundaries and the bottom 
horizontal boundary were assumed to be frictionless. The horizontal stresses at 
the center of the first column of elements were taken as representative of the 
horizontal pressures on the left rigid boundary. 

Initial stresses in all elements below el 40 were evaluated by gravity turn-on 
in SODLSTRUCT with an at-rest pressure coefficient equal to 0.5. 

Theory of Elasticity Solutions 

The theory of elasticity solutions used for comparison with the finite element 
solutions are based on an assumed radial stress distribution due to a distributed 
load applied to the surface of an elastic half space1. The three soil/surface sys- 
tems described in the preceding section are represented for the elasticity solutions 
as shown in Figures 2, 3, and 4. These solutions have been used to represent 
surcharge loads on horizontal surfaces for various applications;2 however, it is 
usually recommended that the horizontal stress obtained by the elasticity 
equations be doubled to represent the vertical plane as a plane of symmetry. This 
aspect will be discussed subsequently in this report. 

Discussion of Results 

Increasing surface slope 

The horizontal pressures predicted by the finite element analyses on the left 
vertical surface of the system are shown in Figures 5 through 8 along with two 
variations of the pressures predicted by combining pressures predicted by the 
elasticity solutions and geostatic pressures for a horizontal surface at el 40. For 
both elasticity solutions the contribution of the surcharge (Figure 2) was 
doubled. The two curves labeled "elasticity" consider the uniform segment of 
the load to extend to a total of 48.8 m (160 ft) (the right boundary of the finite 
element model) and to infinity, respectively (i.e., for 92 = 7T/2, in Figure 2). 
These two curves suggest that the proximity of the right-hand boundary of the 
model has a greater effect on the pressures at the left boundary for the suffer soil 
(type H, Table 1) than for the softer soil (type L) but does not significantly 
influence the pressures for either soil. For all cases the elasticity solutions bound 
the finite element predictions as the depth increases and provide reasonable 
approximations elsewhere. 

1 S.TimoshenkoandJ.N.Goodier. (1951). Theory of elasticity. 2nd ed., McGraw-Hill, New 
York. 

Bowles, op. cit. 
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Decreasing surface slope 

Comparisons of finite element and theory of elasticity solutions for the 
decreasing surface slopes are shown in Figures 9 through 12. The geostatic 
pressures for a horizontal surface at el 70 (Figures 9 and 10) and for el 80 
(Figures 11 and 12) are included. The theory of elasticity solutions (Figure 3) are 
not doubled in these figures. The theory of elasticity solutions compare very 
favorably with the finite element solutions for the softer soil (soil L) for depths 
greater than 4.6 to 6.1 m (15 to 20 ft) below the datum The theory of elasticity 
solution overestimates the horizontal pressure near the datum and provides no 
estimate of pressure above the datum. The solutions for finite element and theory 
of elasticity compare less favorably for the suffer soil for both surface slopes. 
The finite element solutions indicate that the horizontal pressures on the rigid 
boundary actually decrease from the initial levels as the surface surcharge is 
increased for the suffer soil. For both surface slopes and soil stiffnesses, the 
contribution of the theory of elasticity component to the total horizontal pressures 
decreases with depth. Below el 0 the primary source of horizontal pressure is the 
geostatic effect The best approximation of the finite element results for 
decreasing slopes appears to be a linear increase of pressure with depth from zero 
at the maximum surface elevation to the geostatic pressure produced by a 
horizontal surface at the datum. These approximations are shown by the dotted 
lines in Figures 9 through 12. 

Triangular surface 

Comparisons of finite element and theory of elasticity solutions for the 
triangular surface are shown in Figures 13 and 14. The theory of elasticity 
solutions (Figure 4) are not doubled in these figures. The theory of elasticity 
provides excellent approximations of the pressures predicted by the finite element 
analyses for both soils. 

Conclusions and Recommendations 

Except for the decreasing surface slopes, the theory of elasticity approach 
provides excellent approximations for at-rest soil pressures. For decreasing 
surface slopes, the best approximation appears to be a simple linear increase in 
at-rest pressure with depth. 

The following paragraphs recommend procedures for estimating at-rest 
pressures. 

Increasing surface slopes 

For surfaces that increase linearly with distance from the wall to a maximum 
uniform elevation, the at-rest pressure may be obtained by combining the geo- 
static pressure for a horizontal datum at the top of the wall with twice the 
horizontal pressures from the theory of elasticity solution (Figure 2) with the 
horizontal maximum surface assumed to extend to inifinity. 
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Decreasing surface slopes 

For surfaces that decrease linearly with distance from the wall to a minimum 
uniform elevation (Figure 3), the at-rest pressure may be estimated by a linear 
increase of pressure with depth from zero at the maximum surface elevation to 
the geostatic pressure produced by horizontal surface at the datum for a depth 
below the datum equal to the horizontal distance to which the decreasing surface 
extends. 

Triangular surfaces 

For a surface that increases linearly with distance from the wall to a maxi- 
mum elevation and then decreases linearly to a horizontal surface at the same 
elevation as the top of the wall, the at-rest pressure may be estimated by com- 
bining the geostatic pressure due to a horizontal datum with the pressure 
predicted by the theory of elasticity (Figure 4). 
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3    Two-Layered Soil/Surface 
Systems 

Several irregular surface configurations (Figures 15 and 16) have been 
selected to investigate the appropriateness of elasticity equations for estimating 
at-rest pressures for these systems. These systems are assumed to be composed 
of various combinations of granular and cohesive soils with properties shown in 
Table 2. 

Table 2                                                                                                  | 
Soil Properties                                                                                   | 

Soil Notation 

Sand 

Clay L H 

Unit weight, lb/ft3 (kg/m3) 120(1,922.2) 130 (2,082.4) 120(1,922.2) 

Angle of internal friction, deg 35 40 0 

Cohesion, Ibf/ft2 (kPa) 0 0 1,500(71.8) 

At-rest coefficient fc 0.5 0.5 1.0 

Initial modulus coefficient1 500 1,500 850 

Modulus exponent1 0.4 0.4 N/A 

Initial bulk modulus 
coefficient1 

250 750 N/A 

Bulk modulus exponent1 0.2 0.2 N/A 

Failure ratio1 0.7 0.7 0.7 

Poisson's ratio N/A N/A 0.49 
1 Hyperbolic stress-strain model parameters (Ebeling, Peters, and Clough, op. cit.)                             | 

Finite Element Analysis 

Finite element analyses of the systems were performed with computer pro- 
gram SOILSTRUCT1 using the parameters shown in Table 2 for the soils. The 
soil above el 40 was built up in several lifts, and three iterations were performed 
for each lift Initial stresses in all elements below el 40 were evaluated by gravity 
turn-on in SOILSTRUCT with an at-rest pressure coefficient given in Table 2. 

1 Ebeling, Peters, and Clough, op.cit. 
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The finite element models for the various systems are shown in Appendix A. 
Details of the models are given in Table 3. The element dimensions and configu- 
ration below el 40 were maintained regardless of the shape of the surface. The 
element horizontal dimensions and configuration above el 40 were maintained; 
however, the vertical dimensions were proportioned according to the slope of the 
surface. The left and right vertical boundaries and the bottom horizontal 
boundary were assumed to be frictionless. The horizontal stresses at the center of 
the first column of elements were taken as representative of the horizontal 
pressures on the left rigid boundary. 

Table 3 
Details of Finite Element Models 
Surface 
Designation 

No. of 
Elements 

No. Of 
Nodes 

No. of 
Surcharge Lifts 

Ramp surface (S1) 1,125 1,163 15 

Single triangle surface (S2) 890 933 9 

Double triangle surface (S3) 922 960 9 

Single triangle surface (S4) 1,001 1,054 14 

Double triangle surface (S5) 1,033 1,081 I 

Theory of Elasticity Solutions 

The theory of elasticity solutions used for comparison with the finite element 
solutions are based on an assumed radial stress distribution due to a distributed 
load applied to the surface of an elastic half space1. The various surfaces were 
represented as combinations of the elasticity solutions as shown in Figure 17. 
These solutions have been used to represent surcharge loads on horizontal 
surfaces for various applications2; however, it is usually recommended that the 
horizontal stress obtained by the elasticity equations be doubled to represent the 
vertical plane as a plane of symmetry. This aspect will be discussed subsequently 
in this report. In all cases the solutions subsequently referred to as "elasticity" 
consist of the superposition of the stress obtained from the equations in Figure 17 
on the geostatic horizontal earth pressures; 

Ghjotal ~ Pv^o + nGk,clasticiy (1) 

where 

pv = effective vertical pressure below el 40 prior to application of the 
surcharge 

ka = at-rest coefficient given in Table 2 

1 Timoshenko and Goodier, op. cit 
Bowles, op. cit. 
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n = 1 or 2, depending on the surface configuration 

Ohdastidty = effective horizontal stress computed using theory of elasticity 

Discussion of Results 

Ramp surfaces (S1) 

The horizontal pressures on the left vertical surface of the system for initial 
surface slopes of 2, 3, and 4 vertical to 8 horizontal with various combinations of 
homogeneous and layered systems are shown in Figures 18 through 32. In all 
cases the elasticity component of the total stress (Equation 1) was doubled. It is 
apparent that the elasticity solution provides an excellent estimate of the hori- 
zontal pressure for all systems with homogeneous surcharge and base (Figures 18 
through 23). 

The elasticity solution underestimates the horizontal pressure for a homo- 
geneous clay base as shown in Figures 24, 25, and 26, with the accuracy of the 
approximation decreasing as the surface slope increases. The erratic variation of 
the finite element solution for the 4V on 8H slope is due to high stress levels in 
the surcharge at the toe of the slope. Several elements in that location exhibited 
stress levels at or near a failure condition. This situation is due to spurious stress 
concentrations in the triangular elements in the finite element model. 

For the layered sand-H over clay base, the elasticity solution accurately 
predicts the stresses in the lower clay layer (Figures 27,28, and 29). However, 
as the surcharge load increases, the horizontal stresses in the upper sand-H layer 
appear to tend toward a passive condition to the extent that the discontinuity in 
geostatic stresses at the layer boundary becomes entirely obscured. 

With a clay over sand-H layered base (Figures 30,31, and 32), the elasticity 
solution accurately predicts the horizontal pressures for the lower 2V on 8H 
slope. As the surface slope increases, the finite element solution indicates a 
tendency toward a passive state in both layers with the discontinuity in geostatic 
stresses again being obscured. 

Single triangle surfaces (S2) 

The elasticity solution, with n = 1 in Equation 1, provides an excellent 
approximation of the horizontal stress for all combinations of homogeneous and 
layered systems (Figures 33 through 37). 

Double triangle surfaces (S3) 

The horizontal stresses in the homogeneous sand-L and sand-H systems 
(Figures 38 and 39) are accurately predicted by the elasticity solution with n = 1 
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in Equation 1. A factor n = 2 provides the better estimate of stresses in the 
homogeneous clay base (Figure 40). Elasticity solutions with n = 1 and n = 2 are 
shown for comparison with the finite element solution for layered bases in Fig- 
ures 41 and 42. It is apparent that the stresses are best approximated with ra = 1 
for the sand-H layer and with n - 2 for the clay layer. 

Single triangle surfaces (S4) 

The elasticity solution, with n = 1, overestimates the horizontal pressure for 
all homogeneous sand-L and sand-H systems (Figures 43 through 48). The high 
stress near the surface of the base material (el 40) predicted by the elasticity solu- 
tion is not indicated by the finite element solution. The finite element solution 
also indicates that the horizontal stresses at lower elevations are essentially 
unaffected by the surcharge. 

Pressures from the elasticity solution compare favorably with those from the 
finite element analysis for lower elevations in the homogeneous clay base (Fig- 
ures 49-51). Pressures in the base near el 40 are overestimated by the elasticity 
solution. The pressures above el 40 from the finite element analysis suggest that 
the material in the surcharge is tending toward an active state of stress. 

The elasticity solution accurately predicts the horizontal pressures in the clay 
stratum in both layered base systems (Figures 52-57), and overestimates the 
pressures in the sand-H stratum in all systems. 

Double triangle surfaces (S5) 

The elasticity solution overestimates horizontal pressures for the homo- 
geneous sand-L and sand-H systems (Figures 58 through 63) with error in the 
approximation increasing with surcharge intensity and material strength. Except 
for the combination of high initial surcharge slope (-4V on 8H) and higher 
material strength (sand-H) (Figure 63), the elasticity solution provides reasonable 
approximations of pressures at increasing depth. As with the previously dis- 
cussed single triangle surface (S4), the high pressures indicated by the elasticity 
solution near el 40 are not reflected in the finite element results. 

Pressures from both finite element and elasticity solutions agree well for the 
homogeneous clay base system (Figures 64-66) except near el 40 where the 
elasticity solution again predicts higher pressures than those from the finite 
element analysis. 

The elasticity solution underestimates pressures in the sand-H stratum and 
overestimates those in the clay stratum for all layered systems (Figures 67-72). 
The solutions diverge with increases in surface slope and material strengths. 
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Conclusions and Recommendations 

The reliability with which the theory of elasticity approach predicts the at-rest 
pressures in a system is dependent on the configuration of the surface and the 
materials below the selected datum. The following paragraphs suggest 
procedures that appear to yield the best approximations. 

Ramp surfaces (S1) 

The at-rest pressures for homogeneous sand systems are accurately predicted 
by Equation 1 with n = 2. 

For a homogeneous clay base, Equation 1 with n = 2 underestimates the hori- 
zontal pressures in the base with the underestimation greatest near the top of the 
base and increasing with increasing surface slope at all depths. The following 
procedure alleviates the degree of underestimation near the top of the base and 
provides estimates within 20 percent at all depths: 

a. Calculate the horizontal pressure from Equation 1 with n = 1 for several 
points in the base at a depth approximately equal to the maximum height 
of the overburden. 

b. Extrapolate a straight line through the points obtained in a to the top of 
the base. 

For layered bases with sand over clay, the elasticity solution is less reliable. 
For lightly loaded systems (low initial slopes), Equation 1 with a value of n = 2 
accurately estimates the pressures in the clay layer but significantly under- 
estimates the pressures in the upper sand stratum. A value ofn = 4ton = 5in 
Equation 1 appears to be appropriate for the sand layer. 

For layered bases with clay over sand, a multiple of n = 2 provides reasonable 
estimates of pressures in the lower sand stratum but significantly underestimates 
pressures in the clay layer near the top of the base. A procedure for estimating 
the pressures in the clay layer that reduces the errors near the top of the base is as 
follows: 

a. Calculate the pressures predicted by Equation 1 with n = 2 for the lower 
sand layer and determine the slope of a straight line. This line is 
representative of the pressures in this region. 

b. Calculate the pressures from Equation 1 with n = 2 for a point in the 
upper clay layer at the boundary between layers. 

c. Represent the pressures in the clay layer by a straight line from the point 
obtained in b using the slope obtained in a. 
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Single triangle surfaces (S2) 

Equation 1 with n = 1 provides an excellent indication of the distribution of 
pressures throughout all base configurations. 

Double triangle surfaces (S3) 

For the pressures in the base below the double triangle surface (and, 
presumably, for other undulating surfaces), Equation 1 with n = 1 accurately 
predicts the pressures throughout homogeneous sand bases. 

For a homogeneous clay base, a factor of n = 2 provides the best estimate of 
pressures. 

For layered bases, Equation 1 with values of n = 1 for sand layers and n = 2 
for clay layers provides good estimates of pressures in the base. 

Single triangle surfaces (S4) 

The elasticity solution is less reliable for systems in which the surface slope is 
initially downward to a horizontal extension. For homogeneous sand bases the 
pressures appear to be approximated by the average of two distributions obtained 
by the following procedures: 

a. Calculate the geostatic pressure at a depth in the base equal to the 
maximum height of the surcharge and connect this point with a straight 
line to zero at the top of the surcharge. 

b. Calculate the pressure by Equation 1 with n = 1 at a point in the base at a 
depth equal to the height of the surcharge. Draw a straight line from this 
point to zero at the top of the surcharge. 

The elasticity solution with n = 1 provides a good approximation of pressures 
in a homogeneous clay base for points below a depth in the base equal to the 
maximum height of the surcharge. However, it overestimates the pressures near 
the top of the base and provides no means of indicating the pressures in the 
surcharge. The following procedure appears to reasonably approximate the 
distribution of pressures throughout the system: 

a. Calculate the pressures by Equation 1 with n = 1 for several points below 
a depth in the base equal to the maximum height of the surcharge. 

b. Extrapolate a straight-line approximation to the points obtained in a to its 
intersection with the top of the base. 

c. Draw a straight line from the terminus of the line in b at the top of the 
base to zero at the top of the surcharge. 

Chapter 3  Two-Layered Soil/Surface Systems 11 



For a layered base with a sand stratum above clay, Equation 1 with n = 1 
provides a good estimate of the pressures in the clay layer but significantly 
overestimates pressures in the sand stratum and again provides no indication of 
pressures in the surcharge. The following procedure is suggested for this case: 

a. Calculate the pressures from Equation 1 with n = 1 for the lower clay 
stratum. 

b. Calculate the geostatic pressure in the sand layer at the boundary 
between layers. Draw a straight line from this point to zero pressure at 
the top of the surcharge. 

For a layered base with a clay layer above sand, the following steps are 
suggested: 

a. The pressures in the lower sand stratum appear to be relatively 
unaffected by the surcharge. Hence the initial geostatic pressures 
provide an adequate estimate. 

b. Calculate the pressures from Equation 1 with n - 1 for several points in 
the clay layer near the boundary between layers. Extrapolate a straight- 
line approximation through these points to its intersection with the top of 
the base. 

c. Calculate a horizontal pressure in the surcharge material at the top of the 
base from 

p = 7Atan2(45-0/2) (2) 

where 

y, = unit weight of the surcharge material 

hs = maximum height of the surcharge 

0 = angle of internal friction of the surcharge material 

d. Draw a straight line from the point obtained in c to zero pressure at the 
top of the surcharge. 

Double triangle surfaces (S5) 

For undulating surfaces with initial downward slopes and homogeneous sand 
bases, the pressures throughout the system may be estimated by the same pro- 
cedures as those for the single triangle surface (S4). 

The pressures in a homogeneous clay base may be estimated by the same 
procedures as for a homogeneous clay base in a single triangle surface (S4). 
Pressures in the surcharge above the base may be approximated by the 
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procedures for a layered base with a sand stratum above clay in a single triangle 
surface (S4). 

The procedures described for the single triangle surface (S4) may be used to 
estimate pressures for a layered system with sand overlying clay and for a layered 
system with a clay layer above sand. 

Chapter 3  Two-Layered Soil/Surface Systems 13 



4    CSOILP User's Guide 

Purpose of CSOILP 
CSOILP estimates the at-rest soil pressures against a vertical rigid wall by 

combining gravity turn-on and theory of elasticity stresses. CSOILP is written to 
operate under Microsoft Windows (3.1,3.11,95, NT). This chapter will discuss 
the operation of the program. 

General Soil System 
The general soil system accommodated by CSOILP is shown in Figure 73. 

The system is assumed to be uniform to the plane of the figure. A typical 0.3-m 
(1-ft) slice of the uniform system is used for analysis. All results are assumed to 
be "per 1 ft" of the system. (The input and output of CSOILP are in non-SI 
units.) 

Soil surface 

The soil surface is described by a sequence of distances from the wall and 
elevations for each point at which a change in surface slope occurs. The surface 
is assumed to be straight between successive points and to extend ad infinitum 
horizontally at the elevation of the last surface point The elevation of the lowest 
surface point is referred to as the datum in subsequent paragraphs. 

Soil profile 

The soil profile is composed of up to 15 layers with straight horizontal 
boundaries between adjacent layers. Soil layer boundaries that do not intersect 
the soil surface are assumed to extend ad infinitum horizontally. The last layer 
input is assumed to extend ad infinitum downward. 
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Soil properties 

Each soil layer is assumed to be homogeneous. The following properties are 
required for each layer: 

a. Soil saturated unit weight y„ lbf/ft2. The program determines the 
buoyant unit weight y' for submerged soil according to 

Y' = Ys-Yw (3) 

where yw is the unit weight of water. 

b. Soil moist unit weight ym, lbf/ft2. The most unit weight is used for all soil 
above the water surface. 

c. Angle of internal friction <|>, deg. The program uses the angle of internal 
friction for calculating an at-rest earth pressure coefficient k0 from Jaky's 
equation: 

k0 = 1 - sin (|> (4) 

Water 

The location of the water surface within the soil profile affects the effective 
unit weight of the soil. No other effects of water are considered in CSOILP. 

Soil Pressure Calculations 
The following paragraphs describe the procedures used for calculating the 

various soil pressures reported by CSOILP. 

Calculation points 

Soil pressures are calculated at the following locations: 

a. At the intersection of the soil surface with the rigid wall (i.e., at the 
elevation of the first surface point input). 

b. At the elevation of the bottom of each soil layer. (Note: Although the 
last layer input is assumed to extend ad infinitum downward, soil 
pressure calculations are terminated at the bottom elevation provided for 
the last layer.) 

c. At the elevation of the water surface if the water elevation is between the 
first surface point elevation and the bottom elevation of the last soil 
layer. 
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d. At the elevation of the datum. 

e. At 1-ft intervals commencing at the elevation of the first surface point 

Effective vertical soil pressure 

The effective vertical soil pressure pv, lbf/ft2, as used herein is defined as the 
cumulative effective weight of soil commencing at the elevation of the first sur- 
face point as if the soil surface were horizontal at that elevation: 

h 
p  =\y dz (5) 

v   o e 

where zt is the depth below the first surface point and ye is the effective soil unit 
weight 

At-rest pressure estimate for horizontal surface 

If the soil is horizontal, the at-rest pressure reported by CSOILP is given by 

Po=Pv-K (6) 

where p0 is the at-rest pressure, lbf/ft2. 

At-rest pressure estimates for irregular surfaces 

At-rest pressures are estimated by combining gravity turn-on at-rest soil 
pressures for a horizontal surface at the datum and theory of elasticity solutions 
for horizontal stresses where the soil above the datum is treated as an equivalent 
surcharge load. 

Equivalent surcharge loads 

Two systems with irregular soil surfaces are illustrated in Figures 74 and 75. 
The equivalent soil surcharge at any point is equal to the cumulative effective 
unit weight of the soil above the datum. For the system shown in Figure 74, the 
datum coincides with the first surface point and all other surface points including 
the assumed extension of the surface to infinity at the elevation for the last sur- 
face point lying above this elevation. Consequently, the equivalent soil surcharge 
extends uniformly to infinity at the value of the last surface point For the system 
shown in Figure 75, the datum coincides with the elevation for the last surface 
point and the equivalent soil surcharge beyond this point is zero. 
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Stresses due to equivalent surcharge loads 

Horizontal stresses at the wall computed using the theory of elasticity <7„ due 
to an equivalent surcharge are obtained from the theory of elasticity according to 

=-\q«»sii sin2 QdQ (7) 

where qw is the equivalent surcharge at an angle 9. 

Total at-rest pressure estimate 

The total at-rest pressure at any point below the datum is obtained from 

Po, total =Po + "Oft (8) 

where p0 is the pressure from Equation 6, Oi is the stress from theory of elasticity, 
and elasticity stress coefficient n is a factor supplied by the user, which depends 
on the configuration of the surface and the type of the soil in the backfill. For 
more information on n see the recommendations for selecting n presented in 
Chapters 2 and 3. 

Program Operation 
Main program screen 

The main screen for CSOILP, shown in the following sample screen, contains 
a tool bar, menu items, and a status bar. 

CSOILP: D:\VBS0URCE\CS0SUnS0URCElEX2.DAT 

SSwExampte 2 - Homogeneous Sand with Ramp Surface 

ill :::,z:::,z:: _;;;.,: m  _- :  I 
s?.i,^-y-,^ 

"JhUM ;Ä' UWfflT24-S^37"<a:09PM 

The functions of these components are described as follows: 

a. The tool bar contains shortcuts to various program options and contains 
some control information that affects the input of data. 

b. The menu items allow the input of data, saving of data, running of the 
analysis, and inspection of the output 
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c.   The status bar contains informational messages about current operations 
or items of data entry. The bar contains extended definitions of variables 
and applicable units. 

The shortcut buttons duplicate the following menu items: 

a. New 

b. Open. 

c. Save 

d. Water information 

e. Soil surface information 

/ Soil properties and layers information 

g. Run analysis 

h. Help 

The main menu contains the following menu and submenu items: 

a. File: file operations 

b. View: viewing of input and output 

c. Waten input of water data 

d. Soil: input of soil data 

e. Analysis: run analysis 

/    Help: viewing of help file 

File menu. The file menu consists of the following items: 

a. New: initializes the program for a new problem. Settings reset to 
defaults. 

b. Open: opens a previously saved data file. 

c. Save: saves the current input data to the currently opened file. Also 
saves the output to a desired file. 

d. Save As: saves the current data to a file of the user's choosing. 

e. Print: prints the input and output from the program. 

/    Print setup: chooses the default printer and set the printer options. 
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g.   Exit: exits from the program. 

View menu. The view menu consists of the following items: 

a. Input data: views the input data. 

b. Analysis results: views the results of the analysis. 

c. Plot of Input Geometry: views a plot of the input geometry to aid in 
checking data. 

d. Plot of results: views a plot of the calculated earth pressures. 

Soil menu. The soil menu consists of the following items: 

a. Soil Surface Data 

b. Soil properties and Layer Data 

Water data 

The dialog box for entry of the water data is shown in the following sample 
screen. 

The water data consist of the following items: 

a. Unit weight of water, lb/ft3. The effective soil unit weight for submerged 
soil is calculated in the program by subtracting the weight of water from 
the saturated unit weight of the soil. 

b. Elevation of the water table, ft. The water surface may be at any eleva- 
tion. However, if the water surface is below the bottom elevation of the 
last soil layer, water will have no effect on soil pressures. 

Soil surface data 

The soil surface data entry screen is shown in the following sample screen. 
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The soil surface data consist of the following: 

a. Distance from the wall, ft 

b. Elevation of the soil, ft 

The program has the following characteristics: 

a. The "Add Row" and "Delete Row" buttons may be used to add 
additional layers or to delete certain layers. To delete a layer, click on 
the row with the mouse and then click "Delete Row." Additional rows 
are always added to the end of the list 

b. To enter values in the grid, click on a cell or use the arrow keys to move 
to a cell and then type in a value. 

c. At least one surface point is required. Up to 15 points are permitted. 

d. If the distance of point 1 is greater than zero, a horizontal surface is 
assumed at the entered elevation of point 1 out to the distance entered for 
point 1. 

e. If more than one surface is provided, distances and elevations must begin 
with the point nearest the wall and progress outward. 

/    The surface is assumed to extend horizontally ad infinitum at the 
elevation of the last surface point provided. 

g. The soil above the minimum of all surface point elevations (the datum) 
will be converted to an equivalent surcharge load for estimating at-rest 
pressures when an irregular soil surface is present 
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Soil properties and layer data 

The soil properties and layer dialog box is shown in the following sample 
screen. 

Soil Layer Data 

11 
41T 

^jJJS^By?^; 
Kf 

HUM 
in 

The following data items are included: 

a. Saturated unit weight, lb/ft3 

b. Moist unit weight, lb/ft3 

c. Angle of internal friction, deg 

d. At-rest pressure coefficient 

e. Elasticity stress coefficient 

/    Elevation of the bottom of the layer, ft 

The program has the following characteristics: 

a. The "Add Row" and "Delete Row" buttons may be used to add 
additional layers or to delete certain layers. To delete a layer, click on 
the row with the mouse and then click "Delete Row". Additional rows 
are always added to the end of the list 

b. To enter values in the grid, click on a cell or use the arrow keys to move 
to a cell and then type in a value. 
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c. Depending on whether "Strengths" or "Coefficients" was selected on the 
main screen, the soil layer data will require either the angle of internal 
friction or the at-rest pressure coefficient The angle of internal friction 
is used to calculate the at-rest pressure coefficient 

d. At least one layer is required. Up to 15 layers are permitted. 

e. Soil layer data must commence with the topmost layer and proceed 
sequentially downward. 

/    The last soil layer is assumed to extend ad infinitum downward. The 
bottom elevation entered for the last layer is the depth to which soil 
pressures are calculated. 

g.   The layer bottom elevations must conform to the following guidelines: 

(1) The bottom elevation of layer 1 must be less than the elevation of 
the first soil surface point. 

(2) The bottom elevation of layer i must be less than layer i = 1. 

h.   The boundaries between adjacent layers are assumed to be horizontal. 

L If the top surface of layer 1 is irregular, then an elasticity stress coeffi- 
cient will be required. Guidance for selection of the coefficient is dis- 
cussed in the recommendations section of Chapters 2 and 3. 

Plots of input geometry and results 

The plots of the input geometry and results are shown in the following sample 
screens. 

The plots have command buttons that let the user copy the picture as a 
Windows metafile to the clipboard. The user may then paste the graphic in a 
word processing program when preparing design reports. The user may also 
print the plot to the currently selected printer. 

Output 
The output from the program consists of a plot of the computed earth pres- 

sures and a tabular output of the computations. The tabular output consists of the 
gravity turn-on, theory of elasticity pressures, and the combined pressures at 
elevations down the wall. 
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Creating a Data File 
The following discussion shows the format of the input data file. Units of 

feet and pounds are used by this program. To convert these units to SI units, use 
the following conversions: 1 ft = 0.3048 m; 1 lb = 0.454 kg; 1 lbf/ft2 = 47.8 Pa; 
and 1 lb/ft3 = 16.02 kg/m3. Each command line is shown in bold print with an 
explanation of the variables shown immediately afterward. Variables in single 
quotes denote that the variable should be typed as shown or is a user-defined 
string. The format of the data file is as follows: 

Heading (1 to 4 lines) 

'heading* 

'heading' = title line describing input. Must begin with a single 
apostrophe. 

Soil Surface Data (1 or more lines) 

'Surface' NSUR 

Surface = command word 
NSUR = number of surface points 

DSUR(i) ELSUR(i) 

DSUR(i) = horizontal distance from wall to ith surface point 
ELSUR(i)       = elevation of ith surface point 

Soil Profile Data 

'Soil' type' NLAYER 

'Soil' = command word 
type' = 'Strengths' if friction angles are provided 

'Coefficients' if at-rest coefficients are provided 
NLAYER        = number of soil layers (1 to 15) 

GAMSAT GAMMST Property ELASCOF ELLAYB 

GAMSAT       = saturated unit weight of soil 
GAMMST      = moist unit weight of soil 
Property = angle of internal friction if type' = 'Strengths' 

at-rest pressure coefficient if type' = 
'Coefficients' 

ELASCOF      = elasticity stress coefficient 
ELLAYB = elevation of bottom of layer 
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Water Data 

'Water' GAMWAT ELWAT 

'Water1 

GAMWAT 
ELWAT 

= command word 
= unit weight of water 
= elevation of water surface 

Termination 

'Finish' 

'Finish' = command word 
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5    CSOILP Examples 

The example solutions described in the following paragraphs are intended 
only to illustrate the execution of CSOILP and are not to be consumed as 
recommendations for its application to real systems. 

Example 1 

A soil system composed of a homogeneous sand with a horizontal surface is 
shown in Figure 76. The input data file for the system follows. Because of the 
horizontal surface, there is no theory of elasticity component of soil pressure and 
the total at-rest pressure is due only to the gravity turn-on component. Conse- 
quently the value of the elasticity coefficient is immaterial. 

'Example 1 - Homogeneous Sand with Horizontal 
Surface 
SURFACE 1 
0 10 

SOIL STRENGTHS   1 
125    120    30    0    0 

WATER    62.4    10 
FINISHED 

The following are the echo print of the input data and the tabulated results of 
the analysis. 

PROGRAM CSOILP - CALCULATION OF AT-REST PRESSURES BY 
COMBINATION OF "GRAVITY-TURN-ON" AND THEORY OF 
ELASTICITY COMPONENTS 
DATE: 6-JULY-98 TIME: 12:35:25 

******************** 

* INPUT DATA * 
******************** 
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I.—HEADING 

'Example 1 - Homogeneous Sand with Horizontal Surface 

II.—SURFACE POINTS 

DIST. FROM 
WALL (FT) 

0.0 

III.—SOIL LAYER DATA 

ELEVATION 
(FT) 
10.0 

<WEIGHT     (PCF)> 
SAT. MST. 
125.0 120.0 

IV—WATER DATA 

INTERNAL 
FRICTION 

(DEG) 
30.0 

ELASTICITY 
COEFF. 

0.00 

BOTTOM 
ELEV. 
(FT) 
0.0 

UNIT WEIGHT: 
ELEVATION: 

62.4 (PCF) 
10.0 (FT) 

PROGRAM CSOILP - CALCULATION OF AT-REST PRESSURES BY 
COMBINATION OF "GRAVITY-TURN-ON" AND THEORY OF 
ELASTICITY COMPONENTS 

DATE: 6-JULY-98 TIME: 12:35:10 

* RESULTS * 
***************** 

I.—HEADING 

'Example 1 - Homogeneous Sand with Horizontal Surface 

II.—EQUIVALENT SURCHARGE LOAD DUE TO IRREGULAR 
SURFACE ABOVE 10.0 (FT) 

NONE 

III.—PRESSURES ON WALL BELOW EL. 10.0 (FT) 

GRAVITY- ELASTICITY COMBINED GTO 
TURN-ON COMPONENT & ELASTICITY 

ELEVATION PRESSURE PRESSURE PRESSURE 
(FT) (PSF) (PSF) (PSF) 

10.00 0.00 0.00 0.00 
9.00 31.30 0.00 31.30 
8.00 62.60 0.00 62.60 
7.00 93.90 0.00 93.90 
6.00 125.20 0.00 125.20 
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5.00 156.50 0.00 156.50 
4.00 187.80 0.00 187.80 
3.00 219.10 0.00 219.10 
2.00 250.40 0.00 250.40 
1.00 281.70 0.00 281.70 
0.00+ 313.00 0.00 313.00 

Resultant Force for Combined Pressures = 1565.00 lbs 
Resultant Location at elev. = 3.33 feet 

The plot of the at-rest earth pressures is shown in Figure 77. 

Example 2 

A system with a "ramp" surface and the associated input data are shown in 
Figure 78. The soil above el 10 is treated as an equivalent surcharge on a hori- 
zontal datum at el 10. The total at-rest pressure is composed of the gravity turn- 
on pressure for a horizontal surface at el 10 and twice the theory of elasticity 
stresses due to the equivalent surcharge. 

'Example 2 - Homogeneous Sand with Ramp Surface 

SURFACE 2 
0 10 
20 20 
SOIL STRENGTHS   1 
125    120   30   2    0 
WATER    62.5    10 
FINISHED 

The following are the echo print of the input data and results of the analysis. 

PROGRAM CSOILP - CALCULATION OF AT-REST PRESSURES BY 
COMBINATION OF "GRAVITY-TURN-ON" AND THEORY OF 
ELASTICITY COMPONENTS 
DATE: 6-JULY-98 TIME: 12:41:38 

******************** 

* INPUT DATA * 
*********•**••*•**** 

I.—HEADING 

'Example 2 - Homogeneous Sand with Ramp Surface 
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II.—SURFACE POINTS 

DIST. FROM 
WALL (FT) 

0.0 
20.0 

III.—SOIL LAYER DATA 

ELEVATION 
(FT) 
10.0 
20.0 

<WEIGHT (PCF)> 
SAT. MST. 
125.0        120.0 

INTERNAL 
FRICTION 

(DEG) 
30.0 

ELASTICITY 
COEFF. 
2.00 

BOTTOM 
ELEV. 
(FT) 
0.0 

IV.—WATER DATA 

UNIT WEIGHT: 
ELEVATION: 

62.5 (PCF) 
10.0 (FT) 

PROGRAM CSOILP - CALCULATION OF AT-REST PRESSURES BY 
COMBINATION OF "GRAVITY-TURN-ON" AND THEORY OF 
ELASTICITY COMPONENTS 
DATE: 6-JULY-98 TIME: 12:41:34 

***************** 

* RESULTS * 
***************** 

I.—HEADING 

'Example 2 - Homogeneous Sand with Ramp Surface 

II—EQUIVALENT SURCHARGE LOAD DUE TO IRREGULAR 
SURFACE ABOVE 10.0 (FT) 

DIST. FROM        SURCHARGE 
WALL (FT)          LOAD (PSF) 

0.00 0.00 
20.00 1200.00 

III.—PRESSURES ON WALL BELOW EL 10.0 (FT) 

GRAVITY- ELASTICITY COMBINED GTO 
TURN-ON COMPONENT & ELASTICITY 

ELEVATION PRESSURE PRESSURE PRESSURE 
(FT) (PSF) (PSF) (PSF) 

10.00 0.00 0.00 0.00 
9.00 31.25 133.56 298.37 
8.00 62.50 214.36 491.21 
7.00 93.75 275.54 644.83 
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6.00 125.00 324.30 773.60 
5.00 156.25 364.13 884.50 
4.00 187.50 397.13 981.77 
3.00 218.75 424.75 1068.25 
2.00 250.00 448.02 1146.03 
1.00 281.25 467.72 1216.69 
0.00+ 312.50 484.48 1281.46 

Resultant Force for Combined Pressures = 8145.99 lbs 
Resultant Location at elev. = 3.81 feet 

The plot of the at-rest earth pressures is shown in Figure 79. 

Example 3 

A portion of a floodwall-levee system is shown in Figure 80. The soil system 
is composed of alternating sand layers. The soil above elevation 2 is treated as 
the equivalent surcharge on the horizontal datum as elevation 2. 

'Example 3 - Levee Section, Granular Soil 
'Irregular ground surface 
'Interspersed strong and weak layers 
SURFACE 3 
2 9 
26 3 
46 2 
SOIL STRENGTHS   4 

102.5    102.5 23 1 4 
122.5    122.5 30 1 -1 
102.5    102.5 23 1 -4 
122.5    122.5 30 1 -10 

WATER    62.5 14 
FINISHED 

The following are the echo print of the input data and the results of the 
analysis. 

PROGRAM CSOILP - CALCULATION OF AT-REST PRESSURES BY 
COMBINATION OF "GRAVITY-TURN-ON" AND THEORY OF 
ELASTICITY COMPONENTS 
DATE: 6-JULY-98 TIME: 12:53:12 

******************** 

* INPUT DATA * 
******************** 
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I.—HEADING 

"Example 3 - Levee Section, Granular Soil 
'Irregular ground surface 
'Interspersed strong and weak layers 

II.—SURFACE POINTS 

DIST. FROM ELEVATION 
WALL (FT) (FT) 

2.0 9.0 
26.0 3.0 
46.0 2.0 

1.—SOIL LAYER DATA 

INTERNAL BOTTOM 
<WEIGHT    (PCF)> FRICTION ELASTICITY ELEV. 

SAT.         MST. (DEG) COEFF. (FT) 
102.5         102.5 23.0 1.00 4.0 
122.5         122.5 30.0 1.00 -1.0 
102.5         102.5 23.0 1.00 -4.0 
122.5         122.5 30.0 1.00 -10.0 

V.—WATER DATA 

UNIT WEIGHT: 62.5 (PCF) 
ELEVATION: 14.0 (FT) 

PROGRAM CSOILP - CALCULATION OF AT-REST PRESSURES BY 
COMBINATION OF "GRAVITY-TURN-ON" AND THEORY OF 
ELASTICITY COMPONENTS 
DATE: 6-JULY-98 TIME: 12:53:09 

***************** 

* RESULTS * 
***************** 

I—HEADING 

'Example 3 - Levee Section, Granular Soil 
'Irregular ground surface 
'Interspersed strong and weak layers 

II.—EQUIVALENT SURCHARGE LOAD DUE TO IRREGULAR 
SURFACE ABOVE 2.0 (FT) 
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DIST. FROM        SURCHARGE 
WALL (FT)          LOAD (PSF) 

0.00 320.00 
2.00 320.00 

22.00 120.00 
26.00 60.00 
46.00 0.00 

III.—PRESSURES ON WALL BELOW EL. 2.0 (FT) 

GRAVITY- ELASTICITY COMBINED GTO 
TURN-ON COMPONENT & ELASTICITY 

ELEVATION PRESSURE PRESSURE PRESSURE 
(FT) (PSF) (PSF) (PSF) 
2.00 0.00 0.00 0.00 
1.00 30.00 142.53 172.53 
0.00 60.00 127.13 187.13 

-1.00+ 90.00 114.06 204.06 
-1.00- 109.67 114.06 223.73 
-2.00 134.04 102.89 236.93 
-3.00 158.41 93.21 251.62 
-4.00+ 182.78 84.73 267.51 
-4.00- 150.00 84.73 234.73 
-5.00 180.00 77.24 257.24 
-6.00 210.00 70.58 280.58 
-7.00 240.00 64.63 304.63 
-8.00 270.00 59.30 329.30 
-9.00 300.00 54.50 354.50 

-10.00+ 330.00 50.17 380.17 

Resultant Force for Combined Pressures = 3029.53 lbs 
Resultant Location at elev. = -4.96 feet 

A plot of the at-rest soil pressures is shown in Figure 81. 
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Figure 2.  Theory of elasticity solution for increasing surface slope 

Figure 3.  Theory of elasticity solution for decreasing surface slope 
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Figure 10.   Soil pressures for decreasing 3V on 8H surface slope (K= 1,500, 
KB - 750), system for Figure 1b, soil type H (1 ft = 0.305 m; 
1 11)^ = 47.9 Pa) 
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Figure 11.   Soil pressures for decreasing 4V on 8H surface slope (K= 500, KB= 
250), system for Figure 1b, soil type L (1 ft = 0.305 m; 1 lbf/ft2= 
47.9 Pa) 
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Figure 12.   Soil pressures for decreasing 4V on 8H surface slope (/C= 1,500, 
KB = 750), system for Figure 1b, soil type H (1 ft = 0.305 m; 
111)^ = 47.9 Pa) 
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Figure 13.   Soil pressures for triangular (1 -2-1) surface to 24.4 m (80 ft) (K= 
500, KB = 250), system for Figure 1c, soil type L (1 ft = 0.305 m; 
1 10^ = 47.9 Pa) 
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Figure 14.   Soil pressures for triangular (1 -2-1) surface to 24.4 m (80 ft) (K= 
1,500, KB= 750), system for Figure 1c, soil type H (1 ft = 0.305 m; 
1 Ibf/ft^ 47.9 Pa) 
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Figure 15.  Surfaces sloping upward away from wall (1 ft = 0.305 m) 
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Rgure 16.  Surfaces sloping downward away from wall (1 ft = 0.304 m) 
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Figure 17.  Theory of elasticity solutions 
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Figure 18.   Ramp surface (S1), 2V on 8H slope, 
homogeneous sand-L surcharge and base 
(1 ft = 0.305 m; 1Ibf/ft2 = 47.9 Pa) 
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Figure 19.   Ramp surface (S1), 3V on 8H slope, 
homogeneous sand-L surcharge and base 
(1 ft = 0.305 m; 11bf/ft2 = 47.9 Pa) 
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Figure 20.   Ramp surface (S1), 4V on 8H slope, 
homogeneous sand-L surcharge and base 
(1 ft = 0.305 m; 11bf/ft2 = 47.9 Pa) 
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Figure 21.   Ramp surface (S1), 2V on 8H slope, 
homogeneous sand-H surcharge and base 
(1 ft = 0.305 m; 1 lbf/fl2 = 47.9 Pa) 
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Figure 22.   Ramp surface (S1), 3V on 8H slope, 
homogeneous sand-H surcharge and base 
(1 ft = 0.305 m; 1 Ibfffl2 = 47.9 Pa) 
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Figure 23.   Ramp surface (S1), 4V on 8H slope, 
homogeneous sand-H surcharge and base 
(1 ft = 0.305 m; 11bf/ft2 = 47.9 Pa) 
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Rgure 24.   Ramp surface (S1), 2V on 8H slope, sand-H 
surcharge on homogeneous clay base 
(1 ft = 0.305 m; 11bf/ft2 = 47.9 Pa) 
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Rgure 25.   Ramp surface (S1), 3V on 8H slope, sand-H 
surcharge on homogeneous clay base 
(1 ft = 0.305 m; 1 Ibf/ft2 = 47.9 Pa) 
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Figure 26.   Ramp surface (S1), 4V on 8H slope, sand-H 
surcharge on homogeneous clay base 
(1 ft = 0.305 m; 1Ibf/ft2 = 47.9 Pa) 
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Figure 27. Ramp surface (S1), 2V on 8H slope, sand-H 
surcharge on layered sand-H over clay base 
(1 ft = 0.305 m; 1 Ibf/ft2 = 47.9 Pa) 
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Figure 28. Ramp surface (S1), 3V on 8H slope, sand-H 
surcharge on layered sand-H over clay base 
(1 ft = 0.305 m; 1 lbf/ft2 = 47.9 Pa) 
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Figure 29. Ramp surface (S1), 4V on 8H slope, sand-H 
surcharge on layered sand-H over clay base 
(1 ft = 0.305 m; 1 lbf/ft2 = 47.9 Pa) 
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Figure 30. Ramp surface (S1), 2V on 8H slope, sand-H 
surcharge on layered clay over sand-H base 
(1 ft = 0.305 m; 11bf/ft2 = 47.9 Pa) 
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Figure 31. Ramp surface (S1), 3V on 8H slope, sand-H 
surcharge on layered clay over sand-H base 
(1 ft = 0.305 m; 1 lbf/ft2 = 47.9 Pa) 
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Figure 32. Ramp surface (S1), 4V on 8H slope, sand-H 
surcharge on layered clay over sand-H base 
(1 ft = 0.305 m; 1 lbf/fl2 = 47.9 Pa) 
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Figure 33. Single triangle surface (S2), homogeneous 
sand-L surcharge and base (1 ft = 0.305 m; 
1 WUtP = 47.9 Pa) 
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Rgure 34.   Single triangle surface (S2), homogeneous 
sand-H surcharge and base (1 ft = 0.305 m; 
1 lbf/ft2 = 47.9Pa) 

Figure 35.   Single triangle surface (S2), sand-H 
surcharge on homogeneous clay base 
(1 ft = 0.305 m; 1 lbf/ft2 = 47.9 Pa) 
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Figure 36.   Single triangle surface (S2), sand-H 
surcharge on layered sand-H over clay base 
(1 ft = 0.305 m; 11bf/ft2 = 47.9 Pa) 
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Figure 37.  Single triangle surface (S2), sand-H sur- 
charge on layered day over sand-H base 
(1 ft = 0.305 m; 1 Ibf/ft2 = 47.9 Pa) 
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Rgure 38. Double triangle surface (S3), homogeneous 
sand-L surcharge and base (1 ft = 0.305 m; 
1^/^ = 47.9 Pa) 
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Rgure 39. Double triangle surface (S3), homogeneous 
sand-H surcharge and base (1 ft = 0.305 m; 
11bf/ft2 = 47.9 Pa) 
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Rgure 40.   Double triangle surface (S3), sand-H 
surcharge on homogeneous clay base 
(1 ft = 0.305 m; 1 Ibf/ft2 = 47.9 Pa) 
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Rgure 41.   Double triangle surface (S3), sand-H 
surcharge on layered sand-H over clay base 
(1 ft = 0.305 m; 1 Ibf/ft2 = 47.9 Pa) 
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Figure 42.  Single triangle surface (S3), sand-H 
surcharge on layered clay over sand-H base 
(1 ft = 0.305 m; 1 lbf/ft2 = 47.9 Pa) 
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Figure 43.  Single triangle surface (S4), -2V on 8H 
slope, homogeneous sand-L surcharge and 
base (1 ft = 0.305 m; 1 lbf/ft2 = 47.9 Pa) 
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Figure 44.  Single triangle surface (S4), -3V on 8H 
slope, homogeneous sand-L surcharge and 
base (1 ft = 0.305 m; 11bf/ft2 = 47.9 Pa) 
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Figure 45.   Single triangle surface (S4), -4V on 8H 
slope, homogeneous sand-L surcharge and 
base (1 ft = 0.305 m; 11bf/ft2 = 47.9 Pa) 
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Figure 46.  Single triangle surface (S4), -2V on 8H 
slope, homogeneous sand-H surcharge and 
base (1 ft = 0.305 m; 11bf/ft2 = 47.9 Pa) 

-MTML STRESSES 
-FEMUFT14 

♦        #     ELASTICITY (»t) 

1000 1500 2000 
HORIZONTAL PRESSURE (PSF) 

2500 

Figure 47. Single triangle slope (S4), -3V on 8H slope, 
homogeneous sand-H surcharge and base 
(1 ft = 0.305 m; 1 Ibf/ft2 = 47.9 Pa) 
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Figure 48.   Single triangle surface (S4), -4V on 8H 
slope, homogeneous sand-H surcharge and 
base (1 ft = 0.305 m; 11bfffi2 = 47.9 Pa) 
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Figure 49.   Single triangle surface (S4), -2V on 8H 
slope, sand-H surcharge on homogeneous 
clay base (1 ft = 0.305 m; 11bf/ft2 = 47.9 Pa) 
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Figure 50.   Single triangle surface (S4), -3V on 8H 
slope, sand-H surcharge on homogeneous 
clay base (1 ft = 0.305 m; 11bfffi2 = 47.9 Pa) 
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Figure 51.   Single triangle surface (S4), -4V on 8H 
slope, sand-H surcharge on homogeneous 
clay base (1 ft = 0.305 m; 1 lbf/ft2 = 47.9 Pa) 
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Rgure 52.   Single triangle surface (S4), -2V on 8H 
slope, sand-H surcharge on layered sand-H 
over clay base (1 ft = 0.305 m; 11bf/ft2 = 
47.9 Pa) 
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Rgure 53.   Single triangle surface (S4), -3V on 8H 
slope, sand-H surcharge on layered sand-H 
over clay base (1 ft = 0.305 m; 1 lbf/ft2 = 
47.9 Pa) 
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Figure 54.  Single triangle surface (S4), -4V on 8H 
slope, sand-H surcharge on layered sand-H 
over clay base (1 ft = 0.305 m; 1 lbf/ft2= 
47.9 Pa) 
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Figure 55.  Single triangle surface (S4), -2V on 8H 
slope, sand-H surcharge on layered clay 
over sand-H base (1 ft = 0.305 m; 1 lbf/ft2 = 
47.9 Pa) 
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Figure 56.  Single triangle surface (S4), -3V on 8H 
slope, sand-H surcharge on layered clay 
over sand-H base (1 ft = 0.305 m; 11bf/ft2= 
47.9 Pa) 
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Figure 57.   Single triangle surface (S4), -4V on 8H 
slope, sand-H surcharge on layered clay 
over sand-H base (1 ft = 0.305 m; 1 lbf/ft2 = 
47.9 Pa) 
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Figure 58.   Double triangle surface (S5), -2V on 8H 
initial slope, homogeneous sand-L 
surcharge and base (1 ft = 0.305 m; 
1^/^ = 47.9 Pa) 
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Rgure 59.   Double triangle surface (S5), -3V on 8H 
initial slope, homogeneous sand-L 
surcharge and base (1 ft = 0.305 m; 
11bf/ft^ 47.9 Pa) 



i 

10 

1 
JFT14 
TK3TY(x1) —$——$—BAS 

( 

\ 

^ % 

v N 
1500 2000 

HORIZONTAL PRESSURE (PSF) 

Rgure 60.   Double triangle surface (S5), -4V on 8H 
initial slope, homogeneous sand-L 
surcharge and base (1 ft = 0.305 m; 
1 lbfflt* = 47.9Pa) 
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Rgure 61.   Double triangle surface (S5), -2V on 8H 
initial slope, homogeneous sand-H 
surcharge and base (1 ft = 0.305 m; 
11bf/ft2 = 47.9 Pa) 
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Figure 62.   Double triangle surface (S5), -3V on 8H 
initial slope, homogeneous sand-H 
surcharge and base (1 ft = 0.305 m; 
1^/^ = 47.9 Pa) 
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Figure 63.   Double triangle surface (S5), -4V on 8H 
initial slope, homogeneous sand-H 
surcharge and base (1 ft = 0.305 m; 
1lbf/ft2 = 47.9 Pa) 
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Rgure 64.   Double triangle surface (S5), -2V on 8H 
initial slope, sand-H surcharge on 
homogeneous clay base (1 ft = 0.305 m; 
1lbfffi2 = 47.9Pa) 
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Rgure 65.   Double triangle surface (S5), -3V on 8H 
initial slope, sand-H surcharge on 
homogeneous clay base (1 ft = 0.305 m; 
11bf/ft2 = 47.9 Pa) 
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Rgure 66.   Double triangle surface (S5), -4V on 8H 
initial slope, sand-H surcharge on 
homogeneous clay base (1 ft = 0.305 m; 
1^/^ = 47.9 Pa) 
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Figure 67.   Double triangle surface (S5), -2V on 8H 
initial slope, sand-H surcharge on layered 
sand-H over clay base (1 ft = 0.305 m; 
1 \bVtf = 47.9 Pa) 
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Rgure 68.   Double triangle surface (S5), -3V on 8H 
initial slope, sand-H surcharge on layered 
sand-H over clay base (1 ft = 0.305 m; 
1tatfR* = 47.9Pa) 

I« 

m   m FEML FT 14 
r«TY(xT) 

» 
1000 2000 3000 4000 5000 6000 7O00 

HORBOKTAL PRESSURE (PSF) 

Figure 69.   Double triangle surface (S5), -4V on 8H 
initial slope, sand-H surcharge on layered 
sand-H over clay base (1 ft = 0.305 m; 
11bf/ft2 = 47.9 Pa) 
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Figure 72.   Double triangle surface (S5), -4V on 8H 
initial slope, sand-H surcharge on layered 
clay over sand-H base (1 ft = 0.305 m; 
1 lbf/ft2 = 47.9Pa) 
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Figure 79.   Example 2, homogeneous sand with ramp surface (1 ft = 0.305 m; 
1 lbf/ft2 = 47.8 Pa) 
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